
C H R I S E A G L E A N D K A R A N A N C E

T H E
G H I D R A B O O K

T H E D E F I N I T I V E G U I D E

by Chris Eagle and Kara Nance

San Francisco

T H E G H I D R A
B O O K

T h e D e f i n i t i v e G u i d e

THE GHIDRA BOOK.
Copyright © 2020 Chris Eagle and Kara Nance.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-71850-102-7 (print)
ISBN-13: 978-1-71850-103-4 (ebook)

Publisher: William Pollock
Executive Editor: Barbara Yien
Production Editors: Laurel Chun and Katrina Taylor
Cover Illustration: Gina Redman
Interior Design: Octopod Studios
Project Editor: Dapinder Dosanjh
Developmental Editor: Athabasca Witschi
Technical Reviewer: Brian Hay
Copyeditor: Barton D. Reed
Compositor: Danielle Foster
Proofreader: Sharon Wilkey

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Control Number: 2020938508

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

www.nostarch.com

To all those who believe in science and fact-based decision
making as well as all of the COVID-19 first responders

around the world whose hard work and sacrifice provided a
ray of hope in a time of global crisis.

To all girls who are passionate about investigating and
understanding technology and the men and women
who support and encourage them. Dream big and

keep exploring!

About the Authors
Chris Eagle has been reverse engineering software for 40 years.
He is the author of The IDA Pro Book (No Starch Press) and is a
highly sought-after provider of reverse engineering training. He
has published numerous reverse engineering tools and given
talks at conferences such as Blackhat, Defcon, and Shmoocon.

Kara Nance is a private security consultant. She has been a pro-
fessor of computer science for many years. She has served on the
Honeynet Project Board of Directors and given numerous talks at
conferences around the world. She enjoys building Ghidra exten-
sions and regularly provides Ghidra training.

About the Tech Reviewer
Brian Hay has been a reverse engineer, professor, and software
developer for many years. He has spoken and taught at many
conferences and is currently a senior researcher for a boutique
security research company. He specializes in designing and
developing virtualized environments for training and testing
exciting new tools like Ghidra.

B R I E F C O N T E N T S

Acknowledgments . xix

Introduction . xxi

PART I: INTRODUCTION . 1

Chapter 1: Introduction to Disassembly . 3

Chapter 2: Reversing and Disassembly Tools . 15

Chapter 3: Meet Ghidra . 33

PART II: BASIC GHIDRA USAGE . 39

Chapter 4: Getting Started with Ghidra . 41

Chapter 5: Ghidra Data Displays . 55

Chapter 6: Making Sense of a Ghidra Disassembly . 89

Chapter 7: Disassembly Manipulation . 119

Chapter 8: Data Types and Data Structures . 147

Chapter 9: Cross-References . . 183

Chapter 10: Graphs . 197

PART III: MAKING GHIDRA WORK FOR YOU . 215

Chapter 11: Collaborative SRE . 217

Chapter 12: Customizing Ghidra . 241

Chapter 13: Extending Ghidra’s Worldview . 261

Chapter 14: Basic Ghidra Scripting . 285

Chapter 15: Eclipse and GhidraDev . 315

Chapter 16: Ghidra in Headless Mode . 341

viii Brief Contents

PART IV: A DEEPER DIVE . 361

Chapter 17: Ghidra Loaders . 363

Chapter 18: Ghidra Processors . . 401

Chapter 19: The Ghidra Decompiler . 427

Chapter 20: Compiler Variations . 443

PART V: REAL-WORLD APPLICATIONS . 467

Chapter 21: Obfuscated Code Analysis . . 469

Chapter 22: Patching Binaries . 505

Chapter 23: Binary Differencing and Version Tracking . 529

Ghidra for IDA Users . . 551

Index . . 557

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS	 XIX

INTRODUCTION	 XXI
About This Book . xxii
Who Should Read This Book? . . xxii
What’s in This Book? . . xxii

Part I: Introduction . xxii
Part II: Basic Ghidra Usage . xxiii
Part III: Making Ghidra Work for You . . xxiii
Part IV: A Deeper Dive . xxiv
Part V: Real-World Application . xxiv

PART I: INTRODUCTION 	 1

1
INTRODUCTION TO DISASSEMBLY	 3
Disassembly Theory . . 4
The What of Disassembly . . 5
The Why of Disassembly . 6

Malware Analysis . 6
Vulnerability Analysis . 6
Software Interoperability . 7
Compiler Validation . 7
Debugging Displays . 7

The How of Disassembly . 7
A Basic Disassembly Algorithm . 8
Linear Sweep Disassembly . 9
Recursive Descent Disassembly . 11

Summary . 14

2
REVERSING AND DISASSEMBLY TOOLS	 15
Classification Tools . 15

file . 16
PE Tools . 18
PEiD . 19

Summary Tools . 20
nm . 20
ldd . 22
objdump . 24

x Contents In Detail

otool . . 25
dumpbin . 25
c++filt . . 26

Deep Inspection Tools . 27
strings . . 28
Disassemblers . 29

Summary . 31

3
MEET GHIDRA	 33
Ghidra Licenses . 34
Ghidra Versions . 34
Ghidra Support Resources . 34
Downloading Ghidra . 35
Installing Ghidra . 35

The Ghidra Directory Layout . 36
Starting Ghidra . 37

Summary . 38

PART II: BASIC GHIDRA USAGE 	 39

4
GETTING STARTED WITH GHIDRA	 41
Launching Ghidra . 41
Creating a New Project . 43

Ghidra File Loading . 44
Using the Raw Binary Loader . . 46

Analyzing Files with Ghidra . 48
Auto Analysis Results . 51

Desktop Behavior During Initial Analysis . 52
Saving Your Work and Exiting . . 53

Ghidra Desktop Tips and Tricks . 54
Summary . 54

5
GHIDRA DATA DISPLAYS	 55
CodeBrowser . 56
CodeBrowser Windows . 58

The Listing Window . 61
Creating Additional Disassembly Windows . 64
Ghidra Function Graph View . . 66
The Program Trees Window . 71
The Symbol Tree Window . 72
The Data Type Manager Window . 75
The Console Window . 75
The Decompiler Window . 75

Contents In Detail xi

Other Ghidra Windows . . 78
The Bytes Window . 78
The Defined Data Window . 80
The Defined Strings Window . 81
The Symbol Table and Symbol References Windows 82
The Memory Map Window . 85
The Function Call Graph Window . 86

Summary . 87

6
MAKING SENSE OF A GHIDRA DISASSEMBLY	 89
Disassembly Navigation . 90

Names and Labels . 90
Navigation in Ghidra . 91
Go To . . 92
Navigation History . 92

Stack Frames . 93
Function Call Mechanics . 94
Calling Conventions . 96
Additional Stack Frame Considerations . . 100
Local Variable Layout . 101
Stack Frame Examples . 101

Ghidra Stack Views . . 105
Ghidra Stack Frame Analysis . . 106
Stack Frames in Listing View . 106
Decompiler-Assisted Stack Frame Analysis . . 109
Local Variables as Operands . . 110
The Ghidra Stack Frame Editor . 111

Searching . 114
Search Program Text . 115
Search Memory . 116

Summary . 117

7
DISASSEMBLY MANIPULATION	 119
Manipulating Names and Labels . . 120

Renaming Parameters and Local Variables . 121
Renaming Labels . 124
Adding a New Label . 125
Editing Labels . 126
Removing a Label . . 127
Navigating Labels . 128

Comments . 128
End-of-Line Comments . 129
Pre and Post Comments . . 130
Plate Comments . 130
Repeatable Comments . 131
Parameter and Local Variable Comments . 132
Annotations . 132

xii Contents In Detail

Basic Code Transformations . 133
Changing Code Display Options . 133
Formatting Instruction Operands . 135
Manipulating Functions . 137
Converting Data to Code (and Vice Versa) . 139

Basic Data Transformations . 140
Specifying Data Types . 141
Working with Strings . 142
Defining Arrays . 144

Summary . 145

8
DATA TYPES AND DATA STRUCTURES	 147
Making Sense of Data . 148
Recognizing Data Structure Use . 150

Array Member Access . 150
Structure Member Access . 159

Creating Structures with Ghidra . 166
Creating a New Structure . 166
Editing Structure Members . . 169
Applying Structure Layouts . 171

C++ Reversing Primer . 172
The this Pointer . 173
Virtual Functions and Vftables . 173
The Object Life Cycle . 177
Name Mangling . 179
Runtime Type Identification . 180
Inheritance Relationships . 181
C++ Reverse Engineering References . 182

Summary . 182

9
CROSS-REFERENCES	 183
Referencing Basics . 184

Cross-References (Back References) . 185
References Example . 188

Reference Management Windows . . 193
XRefs Window . . 193
References To . 194
Symbol References . 194
Advanced Reference Manipulation . . 195

Summary . 196

10
GRAPHS	 197
Basic Blocks . 198
Function Graphs . 198
Function Call Graphs . . 208

Contents In Detail xiii

Trees . 214
Summary . 214

PART III: MAKING GHIDRA WORK FOR YOU	 215

11
COLLABORATIVE SRE	 217
Teamwork . 218
Ghidra Server Setup . 218
Shared Projects . . 221

Creating a Shared Project . 222
Project Management . 223

Project Window Menus . 224
File . . 224
Edit . 227
Project . 229

Project Repository . 232
Version Control . 233
Example Scenario . 235

Summary . 240

12
CUSTOMIZING GHIDRA	 241
CodeBrowser . 242

Rearranging Windows . 242
Editing Tool Options . . 243
Editing the Tool . 246
Special Tool Editing Features . 247
Saving the CodeBrowser Layout . . 248

Ghidra Project Window . . 249
Tools . 253
Workspaces . 258
Summary . 259

13
EXTENDING GHIDRA’S WORLDVIEW	 261
Importing Files . 262
Analyzers . . 265
Word Models . 265
Data Types . . 267

Creating New Data Type Archives . 269
Function IDs . 272
Function ID Plugin . 273

Function ID Plugin Example: UPX . 275
Function ID Plugin Example: Profiling a Static Library 279

Summary . 284

xiv Contents In Detail

14
BASIC GHIDRA SCRIPTING	 285
Script Manager . . 286

Script Manager Window . 286
Script Manager Toolbar . 287

Script Development . 289
Writing Java Scripts (Not JavaScript!) . . 289
Edit Script Example: Regex Search . 290
Python Scripts . 295
Support for Other Languages . . 297

Introduction to the Ghidra API . . 297
The Address Interface . 298
The Symbol Interface . 298
The Reference Interface . . 299
The GhidraScript Class . 299
The Program Class . 305
The Function Interface . 306
The Instruction Interface . . 306

Ghidra Scripting Examples . . 307
Example 1: Enumerating Functions . 307
Example 2: Enumerating Instructions . . 308
Example 3: Enumerating Cross-References . 308
Example 4: Finding Function Calls . 310
Example 5: Emulating Assembly Language Behavior 311

Summary . 313

15
ECLIPSE AND GHIDRADEV	 315
Eclipse . . 316

Eclipse Integration . 316
Starting Eclipse . 316
Editing Scripts with Eclipse . 317

GhidraDev Menu . 318
GhidraDev4New . 319
Navigating the Package Explorer . . 324

Example: Ghidra Analyzer Module Project . . 329
Step 1: Define the Problem . 330
Step 2: Create the Eclipse Module . 331
Step 3: Build the Analyzer . . 331
Step 4: Test the Analyzer Within Eclipse . 337
Step 5: Add the Analyzer to Our Ghidra Installation 337
Step 6: Test the Analyzer Within Ghidra . . 338

Summary . 340

16
GHIDRA IN HEADLESS MODE	 341
Getting Started . 342

Step 1: Launch Ghidra . 343
Steps 2 and 3: Create a New Ghidra Project in a Specified Location 343

Contents In Detail xv

Step 4: Import a File to the Project . 344
Steps 5 and 6: Auto Analyze the File, Save, and Exit 344
Options and Parameters . 347

Writing Scripts . 355
HeadlessSimpleROP . 355
Automated FidDb Creation . 359

Summary . 360

PART IV: A DEEPER DIVE	 361

17
GHIDRA LOADERS	 363
Unknown File Analysis . 365
Manually Loading a Windows PE File . 366
Example 1: SimpleShellcode Loader Module . 375

Step 0: Take a Step Back . 377
Step 1: Define the Problem . 379
Step 2: Create the Eclipse Module . 379
Step 3: Build the Loader . 380
Step 4: Add the Loader to Our Ghidra Installation . 385
Step 5: Test the Loader Within Ghidra . 385

Example 2: Simple Shellcode Source Loader . 387
Update 1: Modify the Response to the Importer Poll 388
Update 2: Find the Shellcode in the Source Code . 388
Update 3: Convert Shellcode to Byte Values . 389
Update 4: Load Converted Byte Array . 389
Results . 389

Example 3: Simple ELF Shellcode Loader . 391
Housekeeping . 392
ELF Header Format . 392
Find Supported Load Specifications . 393
Load File Content into Ghidra . 394
Format Data Bytes and Add an Entry Point . 395
Language Definition Files . 396
Opinion Files . . 397
Results . 398

Summary . 400

18
GHIDRA PROCESSORS	 401
Understanding Ghidra Processor Modules . 403

Eclipse Processor Modules . . 403
SLEIGH . 404
Processor Manuals . 406

Modifying a Ghidra Processor Module . 407
Problem Statement . 408
Example 1: Adding an Instruction to a Processor Module 409

xvi Contents In Detail

Example 2: Modifying an Instruction in a Processor Module 415
Example 3: Adding a Register to a Processor Module 424

Summary . 426

19
THE GHIDRA DECOMPILER	 427
Decompiler Analysis . 428

Analysis Options . 428
The Decompiler Window . 430

Example 1: Editing in the Decompiler Window . 431
Example 2: Non-Returning Functions . . 436
Example 3: Automated Structure Creation . 437

Summary . 442

20
COMPILER VARIATIONS	 443
High-Level Constructs . 444

switch Statements . 444
Example: Comparing gcc with Microsoft C/C++ Compiler 449

Compiler Build Options . 451
Example 1: Modulo Operator . 452
Example 2: The Ternary Operator . 455
Example 3: Function Inlining . 457

Compiler-Specific C++ Implementation . 458
Function Overloading . 458
RTTI Implementations . 459

Locating the main Function . 463
Example 1: _start to main with gcc on Linux x86-64 464
Example 2: _start to main with clang on FreeBSD x86-64 464
Example 3: _start to main with Microsoft’s C/C++ compiler 465

Summary . 466

PART V: REAL-WORLD APPLICATIONS	 467

21
OBFUSCATED CODE ANALYSIS	 469
Anti–Reverse Engineering . . 470

Obfuscation . 470
Anti–Static Analysis Techniques . 470
Imported Function Obfuscation . 482
Anti–Dynamic Analysis Techniques . . 487

Static Deobfuscation of Binaries Using Ghidra . 491
Script-Oriented Deobfuscation . 491
Emulation-Oriented Deobfuscation . 496
Step 1: Define the Problem . 498
Step 2: Create the Eclipse Script Project . 498

Contents In Detail xvii

Step 3: Build the Emulator . 499
Step 4: Add the Script to Our Ghidra Installation . 502
Step 5: Test the Script Within Ghidra . 502

Summary . 504

22
PATCHING BINARIES	 505
Planning Your Patch . 506
Finding Things to Change . 506

Searching Memory . . 507
Searching for Direct References . 508
Searching for Instruction Patterns . 508
Finding Specific Behaviors . 512

Applying Your Patch . 513
Making Basic Changes . 513
Making Nontrivial Changes . 519

Exporting Files . 522
Ghidra Export Formats . 522
The Binary Export Format . 523
Script-Assisted Export . 523

Example: Patching a Binary . 525
Summary . 528

23
BINARY DIFFERENCING AND VERSION TRACKING	 529
Binary Differencing . 529

Program Diff Tool . 531
Example: Merging Two Analyzed Files . 534

Comparing Functions . . 538
Function Comparison Window . 538
Example: Comparing Crypto Routines . 541

Version Tracking . 546
Version Tracking Concepts . 547

Summary . 549

GHIDRA FOR IDA USERS	 551
The Basics . 552

Database Creation . 552
Basic Windows and Navigation . 554

Scripting . 556
Summary . 556

INDEX	 557

This book would not have been possible without the help and support of
the extremely professional staff at No Starch Press. Bill Pollock and Barbara
Yien supported our goal of creating a book about Ghidra that aligned with
our vision and we deeply appreciate their confidence in us throughout this
journey. Athabasca Witschi’s initial feedback on chapters provided valu-
able insight and guidance. Laurel Chun’s ongoing support and patience
through all our questions helped turn this book into a finished product we
are very proud of. We would also like to thank all of the people “behind
the scenes” for their hard work in making this dream a reality, including
Katrina Taylor, Barton D. Reed, Sharon Wilkey, and Danielle Foster.

We would like to thank our technical editor, Brian Hay, for review-
ing our many words and examples. His knowledge and experience with
Ghidra has helped to ensure that the technical content in this book is solid,
and his teaching experience guided our presentation so that the material
is presented in a way that appeals to both new and experienced reverse
engineers.

We would like to thank the entire Ghidra development team, past and
present, at the National Security Agency for building Ghidra and sharing it
with the world as an open source project.

A C K N O W L E D G M E N T S

xx Acknowledgments

Kara would like to thank Ben for his patience while she learned about
technology and Katie for her patience while she wrote about it. She thanks
Jen for the inspirational introduction, and Dickie and Lenora for always
believing in her. Finally, she would like to thank Brian for his humor and
ongoing support every hour of every day. Without the support that you all
provided, this book would not have been possible.

I N T R O D U C T I O N

Our goal in writing this book is to provide
a resource that introduces Ghidra to both

current and future reverse engineers. In
the hands of a skilled reverse engineer, Ghidra

streamlines the analysis process and allows users to
customize and extend its capabilities to suit their
individual needs and improve their workflows. Ghidra is also very accessible
to new reverse engineers, particularly with its included decompiler that can
help them more clearly understand the relationships between high-level
language and disassembly listings as they begin exploring the world of
binary analysis.

Writing a book about Ghidra is a challenging undertaking. Ghidra is a
complex open source reverse engineering tool suite that is continually evolv-
ing. Our words describe a moving target, as the Ghidra community contin-
ues to improve and extend its capabilities. As with many new open source
projects, Ghidra has begun its public life with a rapid string of evolutionary
releases. A primary goal while writing this book has been to ensure that as
Ghidra evolves, the book’s content continues to provide readers with a wide

xxii Introduction

and deep foundation of knowledge to understand and effectively utilize cur-
rent and future Ghidra versions to address their reverse engineering chal-
lenges. As much as possible, we have tried to keep the book version-agnostic.
Fortunately, new releases of Ghidra are well-documented, with detailed list-
ings of changes that provide version-specific guidance should you encounter
any differences between the book and your version of Ghidra.

About This Book
This book is the first comprehensive book about Ghidra. It is intended to be
an all-encompassing resource for reverse engineering with Ghidra. It pro-
vides introductory content to bring new explorers to the reverse engineer-
ing world, advanced content to extend the worldview of experienced reverse
engineers, and examples for rookie and veteran Ghidra developers alike to
continue to extend Ghidra’s extensive capabilities and become contributors
to the Ghidra community.

Who Should Read This Book?
This book is intended for aspiring and experienced software reverse engi-
neers. If you don’t already have reverse engineering experience, that’s okay,
as the early chapters provide the background material necessary to introduce
you to reverse engineering and enable you to explore and analyze binaries
with Ghidra. Experienced reverse engineers who want to add Ghidra to their
toolkits might choose to move quickly through the first two parts to gain a
basic understanding of Ghidra and then jump to specific chapters of interest.
Experienced Ghidra users and developers may choose to focus on the later
chapters so that they can create new Ghidra extensions and can apply their
experience and knowledge to contribute new content to the Ghidra project.

What’s in This Book?
The book is divided into five parts. Part I introduces disassembly, reverse
engineering, and the Ghidra project. Part II covers basic Ghidra usage.
Part III demonstrates ways you can customize and automate Ghidra to
make it work for you. Part IV takes a deeper dive into explaining specific
types of Ghidra modules and supporting concepts. Part V demonstrates
how Ghidra can be applied to some real-world situations a reverse engineer
is likely to encounter.

Part I: Introduction
Chapter 1: Introduction to Disassembly

This introductory chapter walks you through the theory and practice
of disassembly and discusses some of the pros and cons associated with
the two common disassembly algorithms.

Introduction xxiii

Chapter 2: Reversing and Disassembly Tools
This chapter discusses the major categories of tools available for reverse
engineering and disassembly.

Chapter 3: Meet Ghidra
Here you get to meet Ghidra and learn a little bit about its origin and
how you can obtain and start using this free open source tool suite.

Part II: Basic Ghidra Usage

Chapter 4: Getting Started with Ghidra
Your journey with Ghidra begins in this chapter. You’ll get your first
glimpse of Ghidra in action as you create a project, analyze a file, and
begin to understand the Ghidra graphical user interface (GUI).

Chapter 5: Ghidra Data Displays
Here you’ll be introduced to the CodeBrowser, Ghidra’s main tool for file
analysis. You’ll also explore the primary CodeBrowser display windows.

Chapter 6: Making Sense of a Ghidra Disassembly
This chapter explores the concepts that are fundamental to under-
standing and navigating Ghidra disassemblies.

Chapter 7: Disassembly Manipulation
In this chapter, you’ll learn to supplement Ghidra’s analysis and manip-
ulate a Ghidra disassembly as part of your own analysis process.

Chapter 8: Data Types and Data Structures
In this chapter, you will learn how to manipulate and define simple and
complex data structures found within compiled programs.

Chapter 9: Cross-References
This chapter provides a detailed look at cross-references, how they sup-
port graphing, and the critical role they play in understanding a pro-
gram’s behavior.

Chapter 10: Graphs
This chapter introduces you to Ghidra’s graphing capabilities and the
use of graphs as binary analysis tools.

Part III: Making Ghidra Work for You
Chapter 11: Collaborative SRE

This chapter presents a unique capability within Ghidra—using Ghidra
as a collaborative tool. You will learn how to configure a Ghidra server
and share projects with other analysts.

Chapter 12: Customizing Ghidra
Here you begin to see how you can customize Ghidra by configuring
projects and tools to support your individual analysis workflows.

xxiv Introduction

Chapter 13: Extending Ghidra’s Worldview
This chapter teaches you how to generate and apply library signatures
and other specialized content so that Ghidra can recognize new binary
constructs.

Chapter 14: Basic Ghidra Scripting
In this chapter, you’ll be introduced to the basic Ghidra scripting capa-
bilities in Python and Java using Ghidra’s inline editor.

Chapter 15: Eclipse and GhidraDev
This chapter takes your Ghidra scripting to a whole new level by inte-
grating Eclipse into Ghidra and exploring the powerful scripting capa-
bilities that this combination provides, including a worked example of
building a new analyzer.

Chapter 16: Ghidra in Headless Mode
You’ll be introduced to the use of Ghidra in headless mode, where no
GUI is required. You will quickly understand the advantage of this mode
for common large-scale repetitive tasks.

Part IV: A Deeper Dive
Chapter 17: Ghidra Loaders

Here you’ll take a deep dive into how Ghidra imports and loads files.
You will have the opportunity to build new loaders to handle previously
unrecognized file types.

Chapter 18: Ghidra Processors
This chapter introduces you to Ghidra’s SLEIGH language for defining
processor architectures. You will explore the process for adding new
processors and instructions to Ghidra.

Chapter 19: The Ghidra Decompiler
Here you’ll be provided with a closer look at one of Ghidra’s most pop-
ular features: the Ghidra Decompiler. You will see how it works behind
the scenes and how it can contribute to your analysis process.

Chapter 20: Compiler Variations
This chapter helps you understand the variations you can expect to
see in code compiled using different compilers and targeting different
platforms.

Part V: Real-World Application
Chapter 21: Obfuscated Code Analysis

You’ll learn how to use Ghidra to analyze obfuscated code in a static
context so that the code doesn’t need to be executed.

Chapter 22: Patching Binaries
This chapter teaches you some methods for using Ghidra to patch
binaries during analysis, both within Ghidra itself and to create new
patched versions of the original binaries.

Introduction xxv

Chapter 23: Binary Differencing and Version Tracking
This final chapter provides an overview of the Ghidra features that
allow you to identify differences between two binaries as well as a brief
introduction to Ghidra’s advanced version tracking capabilities.

Appendix: Ghidra for IDA Users
If you are an experienced IDA user, this appendix will provide you with
tips and tricks for mapping IDA terminology and usage to similar func-
tionality in Ghidra.

N O T E 	 Visit the companion sites, https://nostarch.com/GhidraBook/ and
https://ghidrabook.com/, to access the code listings contained in this book.

PART I
I N T R O D U C T I O N

You may be wondering what to expect in a
book dedicated to Ghidra. While obviously

Ghidra-centric, this book is not intended to
come across as The Ghidra User’s Manual. Instead,

we intend to use Ghidra as the enabling tool for dis-
cussing reverse engineering techniques that you will
find useful in analyzing a wide variety of software,
ranging from vulnerable applications to malware. When appropriate,
we will provide detailed steps in Ghidra for performing specific actions
related to the task at hand. As a result, we will take a rather roundabout
walk through Ghidra’s capabilities, beginning with the basic tasks you
will want to perform upon initial examination of a file and leading up to
advanced uses and customization of Ghidra for more challenging reverse
engineering problems. We make no attempt to cover all of Ghidra’s fea-
tures. We do, however, cover the features you will find most useful in meet-
ing your reverse engineering challenges. This book will help make Ghidra
the most potent weapon in your arsenal of tools.

1
I N T R O D U C T I O N T O D I S A S S E M B LY

4 Chapter 1

Prior to diving into any Ghidra specifics, we will cover some of the
basics of the disassembly process and review other tools available for reverse
engineering compiled code. While these tools may not match the complete
range of Ghidra’s capabilities, each does address specific subsets of Ghidra
functionality and offers valuable insight into specific Ghidra features. The
remainder of this chapter is dedicated to understanding the disassembly pro-
cess from a high level.

Disassembly Theory
Anyone who has spent any time at all studying programming languages has
probably learned about the various generations of languages, but they are
summarized here for those who may have been sleeping:

First-generation languages  These are the lowest form of language,
generally consisting of ones and zeros or a shorthand form, such as
hexadecimal, and readable only by binary ninjas. Distinguishing data
from instructions is difficult at this level because all the content looks
the same. First-generation languages may also be referred to as machine
languages, and in some cases byte code, while machine language pro-
grams are often referred to as binaries.

Second-generation languages  Also called assembly languages, second-
generation languages are a mere table lookup away from machine
language and generally map specific bit patterns, or operation codes
(opcodes), to short but memorable character sequences called mnemon-
ics. These mnemonics help programmers remember the instructions
with which they are associated. An assembler is a tool used by program-
mers to translate their assembly language programs into machine
language suitable for execution. In addition to instruction mnemon-
ics, a complete assembly language generally includes directives to the
assembler that help dictate the memory layout of code and data in the
final binary.

Third-generation languages  These languages take another step
toward the expressive capability of natural languages by introducing
keywords and constructs that programmers use as the building blocks
for their programs. Third-generation languages are generally platform
independent, though programs written using them may be platform
dependent as a result of using features unique to a specific operating
system. Often-cited examples of third-generation languages include
FORTRAN, C, and Java. Programmers generally use compilers to trans-
late their programs into assembly language or all the way to machine
language (or some rough equivalent such as byte code).

Fourth-generation languages  These exist but aren’t relevant to this
book and are not discussed.

Introduction to Disassembly 5

The What of Disassembly
In a traditional software development model, compilers, assemblers, and
linkers are used by themselves or in combination to create executable pro-
grams. To work our way backward (or reverse engineer programs), we use
tools to undo the assembly and compilation processes. Not surprisingly,
such tools are called disassemblers and decompilers, and they do pretty much
what their names indicate. A disassembler undoes the assembly process, so
we should expect assembly language as the output (and therefore machine
language as input). Decompilers aim to produce output in a high-level lan-
guage when given assembly or even machine language as input.

The promise of “source code recovery” will always be attractive in a
competitive software market, and thus the development of usable decompil-
ers remains an active research area in computer science. The following are
just a few of the reasons that decompilation is difficult:

The compilation process is lossy.  At the machine language level, there
are no variable or function names, and variable type information can be
determined only by how the data is used rather than explicit type decla-
rations. When you observe 32 bits of data being transferred, you’ll need
to do some investigative work to determine whether those 32 bits repre-
sent an integer, a 32-bit floating point value, or a 32-bit pointer.

Compilation is a many-to-many operation.  This means that a
source program can be translated to assembly language in many dif-
ferent ways, and machine language can be translated back to source
in many different ways. As a result, compiling a file and immediately
decompiling it commonly yields a source file that is vastly different
from the original.

Decompilers are language and library dependent.  Processing a
binary produced by a Delphi compiler with a decompiler designed
to generate C code can yield very strange results. Similarly, feeding a
compiled Windows binary through a decompiler that has no knowledge
of the Windows programming API may not yield anything useful.

A nearly perfect disassembly capability is needed in order to
accurately decompile a binary.  Any errors or omissions in the
disassembly phase will almost certainly propagate through to the
decompiled code. Disassembled code can be verified for correctness
against appropriate processor reference manuals; however, no
canonical reference manuals are available to use in verifying the
correctness of a decompiler’s output.

Ghidra has a built-in decompiler, which is the subject of Chapter 19.

6 Chapter 1

The Why of Disassembly
The purpose of disassembly tools is often to facilitate understanding of pro-
grams when source code is unavailable. Common situations in which disas-
sembly is used include the following:

•	 Analysis of malware

•	 Analysis of closed source software for vulnerabilities

•	 Analysis of closed source software for interoperability

•	 Analysis of compiler-generated code to validate compiler performance
or correctness

•	 Display of program instructions while debugging

The subsequent sections explain each situation in more detail.

Malware Analysis
Unless you are dealing with script-based malware, malware authors seldom
do you the favor of providing the source code to their creations. Lacking
source code, you are faced with a very limited set of options for discovering
exactly how the malware behaves. The two main techniques for malware
analysis are dynamic analysis and static analysis. Dynamic analysis involves
allowing the malware to execute in a carefully controlled environment
(sandbox) while recording every observable aspect of its behavior by using
any number of system instrumentation utilities. In contrast, static analy-
sis attempts to understand the behavior of a program simply by reading
through the program code, which, in the case of malware, generally con-
sists solely of a disassembly listing and possibly a decompiler listing.

Vulnerability Analysis
For the sake of simplification, let’s break the entire security-auditing pro-
cess into three steps: vulnerability discovery, vulnerability analysis, and
exploit development. The same steps apply whether you have source code
or not; however, the level of effort increases substantially when all you have
is a binary. The first step in the process is to discover a potentially exploit-
able condition in a program. This is often accomplished using dynamic
techniques such as fuzzing,1 but it can also be performed (usually with
much more effort) via static analysis. Once a problem has been discovered,
further analysis is often required to determine whether the problem is
exploitable at all and, if so, under what conditions.

Identifying variables that can be manipulated to the attacker’s advan-
tage is an important early step in vulnerability discovery. Disassembly list-
ings provide the level of detail required to understand exactly how the
compiler has chosen to allocate program variables. For example, it might

1. Fuzzing is a vulnerability-discovery technique that relies on generating large numbers of
unique inputs for programs in the hope that one of those inputs will cause the program to
fail in a manner that can be detected, analyzed, and ultimately exploited.

Introduction to Disassembly 7

be useful to know that a 70-byte character array declared by a programmer
was rounded up to 80 bytes when allocated by the compiler. Disassembly
listings also provide the only means to determine exactly how a compiler
has chosen to order all of the variables declared globally or within func-
tions. Understanding the spatial relationships among variables is often
essential when attempting to develop exploits. Ultimately, by using a disas-
sembler and a debugger together, an exploit may be developed.

Software Interoperability
When software is released in binary form only, it is very difficult for com-
petitors to create software that can interoperate with it or to provide plugin
replacements for that software. A common example is driver code released
for hardware that is supported on only one platform. When a vendor is slow
to support or, worse yet, refuses to support the use of its hardware with alter-
native platforms, substantial reverse engineering effort may be required in
order to develop software drivers to support the hardware. In these cases,
static code analysis is almost the only remedy and often must go beyond the
software driver to understand embedded firmware.

Compiler Validation
Since the purpose of a compiler (or assembler) is to generate machine lan-
guage, good disassembly tools are often required to verify that the compiler
is doing its job in accordance with any design specifications. Analysts may
also be interested in locating additional opportunities for optimizing com-
piler output and, from a security standpoint, ascertaining whether the
compiler itself has been compromised to the extent that it may be inserting
backdoors into generated code.

Debugging Displays
Perhaps the single most common use of disassemblers is to generate listings
within debuggers. Unfortunately, disassemblers embedded within debug-
gers tend to lack sophistication. They are generally incapable of batch disas-
sembly and sometimes balk at disassembling when they cannot determine
the boundaries of a function. This is one of the reasons it is best to use a
debugger in conjunction with a high-quality disassembler to provide better
situational awareness and context during debugging.

The How of Disassembly
Now that you’re well versed in the purposes of disassembly, it’s time to move
on to how the process actually works. Consider a typical daunting task faced
by a disassembler: Take these 100KB, distinguish code from data, convert the code
to assembly language for display to a user, and please don’t miss anything along the
way. We could tack on any number of special requests, such as asking the
disassembler to locate functions, recognize jump tables, and identify local
variables, making the disassembler’s job that much more difficult.

8 Chapter 1

To accommodate all of our demands, any disassembler will need to pick
and choose from a variety of algorithms as it navigates through the files
we feed it. The quality of the generated disassembly listing will be directly
related to the quality of the algorithms utilized and how well they have
been implemented.

In this section, we discuss two of the fundamental algorithms in use
today for disassembling machine code. As we present these algorithms, we
also point out their shortcomings in order to prepare you for situations in
which your disassembler appears to fail. By understanding a disassembler’s
limitations, you will be able to manually intervene to improve the overall
quality of the disassembly output.

A Basic Disassembly Algorithm
For starters, let’s develop a simple algorithm for accepting machine lan-
guage as input and producing assembly language as output. In doing so,
you will gain an understanding of the challenges, assumptions, and com-
promises that underlie an automated disassembly process:

1.	 The first step in the disassembly process is to identify a region of code
to disassemble. This is not necessarily as straightforward as it may seem.
Instructions are generally mixed with data, and it is important to dis-
tinguish between the two. In the most common case, disassembly of an
executable file, the file will conform to a common format for execut-
able files such as the Portable Executable (PE) format used on Windows
and the Executable and Linkable Format (ELF) common on many Unix-
based systems. These formats typically contain mechanisms (often in
the form of hierarchical file headers) for locating the sections of the
file that contain code and entry points into that code.2

2.	 Given the address of an instruction, the next step is to read the value
or values contained at that address (or file offset) and perform a table
lookup to match the binary opcode value to its assembly language
mnemonic. Depending on the complexity of the instruction set being
disassembled, this may be a trivial process, or it may involve several
additional operations such as understanding any prefixes that may
modify the instruction’s behavior and determining any operands
required by the instruction. For instruction sets with variable-length
instructions, such as the Intel x86 instruction set, additional instruction
bytes may need to be retrieved in order to completely disassemble a
single instruction.

3.	 Once an instruction has been fetched and any required operands
decoded, its assembly language equivalent is formatted and output as
part of the disassembly listing. It may be possible to choose from more

2. A program entry point is simply the address of the instruction to which the operating system
passes control after a program has been loaded into memory.

Introduction to Disassembly 9

than one assembly language output syntax. For example, the two pre-
dominant formats for x86 assembly language are the Intel format and
the AT&T format.

4.	 Following the output of an instruction, we need to advance to the next
instruction and repeat the previous process until we have disassembled
every instruction in the file.

X86 A SSE MBLY SY N TA X: AT&T V S. IN T E L

Two main syntaxes are used for assembly source code: AT&T and Intel. Even
though they are second-generation languages, the two vary greatly in syntax—
from variable, constant, and register access, to segment and instruction size
overrides, to indirection and offsets. The AT&T assembly syntax is distinguished
by its use of the % symbol to prefix all register names, the use of $ as a prefix
for literal constants (also called immediate operands), and its operand ordering
in which the source operand appears on the left and the destination operand
appears on the right. Using AT&T syntax, the instruction to add 4 to the EAX reg-
ister would be add $0x4,%eax. The GNU Assembler (as) and many other GNU
tools, including gcc and gdb, utilize AT&T syntax by default.

Intel syntax differs from AT&T in that it requires no register or literal pre-
fixes, and the operand ordering is reversed such that the source operand
appears on the right and the destination appears on the left. The same add
instruction using the Intel syntax would be add eax,0x4. Assemblers utiliz-
ing Intel syntax include the Microsoft Assembler (MASM) and the Netwide
Assembler (NASM).

Various algorithms exist for determining where to begin a disassembly,
how to choose the next instruction to be disassembled, how to distinguish
code from data, and how to determine when the last instruction has been
disassembled. The two predominant disassembly algorithms are linear
sweep and recursive descent.

Linear Sweep Disassembly
The linear sweep disassembly algorithm takes a very straightforward
approach to locating instructions to disassemble: where one instruction
ends, another begins. As a result, the most difficult decisions faced are
where to begin and when to stop. The usual solution is to assume that
everything contained in sections of a program marked as code (typically
specified by the program file’s headers) represents machine language
instructions. Disassembly begins with the first byte in a code section and
moves, in a linear fashion, through the section, disassembling one instruc-
tion after another until the end of the section is reached. No effort is made
to understand the program’s control flow through recognition of nonlinear
instructions such as branches.

10 Chapter 1

During the disassembly process, a pointer can be maintained to
mark the beginning of the instruction currently being disassembled. As
part of the disassembly process, the length of each instruction is computed
and used to determine the location of the next instruction to be disassem-
bled. Instruction sets with fixed-length instructions (MIPS, for example)
are somewhat easier to disassemble, as locating subsequent instructions is
straightforward.

The main advantage of the linear sweep algorithm is that it provides
complete coverage of a program’s code sections. One of the primary disad-
vantages of the linear sweep method is that it fails to account for data that
may be comingled with code. This is evident in Listing 1-1, which shows the
output of a function disassembled with a linear sweep disassembler.

40123f: 55 push ebp
401240: 8b ec mov ebp,esp
401242: 33 c0 xor eax,eax
401244: 8b 55 08 mov edx,DWORD PTR [ebp+8]
401247: 83 fa 0c cmp edx,0xc
40124a: 0f 87 90 00 00 00 ja 0x4012e0
401250: ff 24 95 57 12 40 00 jmp DWORD PTR [edx*4+0x401257]u

 401257: e0 12 loopne 0x40126b
401259: 40 inc eax
40125a: 00 8b 12 40 00 90 add BYTE PTR [ebx-0x6fffbfee],cl
401260: 12 40 00 adc al,BYTE PTR [eax]
401263: 95 xchg ebp,eax
401264: 12 40 00 adc al,BYTE PTR [eax]
401267: 9a 12 40 00 a2 12 40 call 0x4012:0xa2004012
40126e: 00 aa 12 40 00 b2 add BYTE PTR [edx-0x4dffbfee],ch
401274: 12 40 00 adc al,BYTE PTR [eax]
401277: ba 12 40 00 c2 mov edx,0xc2004012
40127c: 12 40 00 adc al,BYTE PTR [eax]
40127f: ca 12 40 lret 0x4012
401282: 00 d2 add dl,dl
401284: 12 40 00 adc al,BYTE PTR [eax]
401287: da 12 ficom DWORD PTR [edx]
401289: 40 inc eax
40128a: 00 8b 45 0c eb 50 add BYTE PTR [ebx+0x50eb0c45],cl
401290: 8b 45 10 mov eax,DWORD PTR [ebp+16]
401293: eb 4b jmp 0x4012e0

Listing 1-1: Linear sweep disassembly

This function contains a switch statement, and the compiler used in
this case has elected to implement the switch by using a jump table to
resolve case label targets. Furthermore, the compiler has elected to embed
the jump table within the function itself. The jmp statement  references
an address table . Unfortunately, the disassembler treats the address table
as if it were a series of instructions and incorrectly generates the following
assembly language representation.

Introduction to Disassembly 11

If we treat successive 4-byte groups in the jump table  as little-endian
values,3 we see that each represents a pointer to a nearby address that is
in fact the destination for one of the various jumps (004012e0, 0040128b,
00401290, . . .). Thus, the loopne instruction  is not an instruction at all.
Instead, it indicates a failure of the linear sweep algorithm to properly dis-
tinguish embedded data from code.

Linear sweep is used by the disassembly engines contained in the GNU
debugger (gdb), Microsoft’s WinDbg debugger, and the objdump utility.

Recursive Descent Disassembly
The recursive descent disassembly algorithm takes a different approach
to locating instructions: it focuses on the concept of control flow, which
determines whether an instruction should be disassembled based on
whether it is referenced by another instruction. To understand recursive
descent, it is helpful to classify instructions according to how they affect
the instruction pointer.

Sequential Flow Instructions

Sequential flow instructions pass execution to the instruction that immediately
follows. Examples of sequential flow instructions include simple arithmetic
instructions, such as add; register-to-memory transfer instructions, such
as mov; and stack-manipulation operations, such as push and pop. For such
instructions, disassembly proceeds as with linear sweep.

Conditional Branching Instructions

Conditional branching instructions, such as the x86 jnz, offer two possible
execution paths. If the condition evaluates to true, the branch is taken, and
the instruction pointer must be changed to reflect the target of the branch.
However, if the condition is false, execution continues in a linear fashion,
and a linear sweep methodology can be used to disassemble the next
instruction. As it is generally not possible in a static context to determine
the outcome of a conditional test, the recursive descent algorithm disas-
sembles both paths, deferring disassembly of the branch target instruction
by adding the address of the target instruction to a list of addresses to be
disassembled at a later point.

Unconditional Branching Instructions

Unconditional branches do not follow the linear flow model and therefore are
handled differently by the recursive descent algorithm. As with the sequential
flow instructions, execution can flow to only one instruction; however, that

3. The x86 is a little-endian architecture, meaning that the least significant byte of a multi-
byte data value is stored first, at a lower memory address than each subsequent byte of that
data item. Big-endian data is stored in reverse order, with the most significant byte of a data
value being stored at a lower memory address than each subsequent byte. Processors may be
classified as big-endian or little-endian, or in some cases, both.

12 Chapter 1

instruction need not immediately follow the branch instruction. In fact, as
seen in Listing 1-1, there is no requirement at all for an instruction to imme-
diately follow an unconditional branch. Therefore, there is no reason to
immediately disassemble the bytes that follow an unconditional branch.

A recursive descent disassembler attempts to determine the target of
the unconditional jump and continues disassembly at the target address.
Unfortunately, some unconditional branches can cause problems for recur-
sive descent disassemblers. When the target of a jump instruction depends
on a runtime value, it may not be possible to determine the destination of the
jump by using static analysis. The x86 instruction jmp rax demonstrates this
problem. The rax register contains a value only when the program is actually
running. Since the register contains no value during static analysis, we have
no way to determine the target of the jump instruction, and, consequently,
we have no way to determine where to continue the disassembly process.

Function Call Instructions

Function call instructions operate similarly to unconditional jump instruc-
tions (including the inability of the disassembler to determine the target
of instructions such as call rax), with the additional expectation that
execution usually returns to the instruction immediately following the call
instruction after the function completes. In this regard, they are similar to
conditional branch instructions in that they generate two execution paths.
The target address of the call instruction is added to a list for deferred
disassembly, while the instruction immediately following the call is disas-
sembled in a manner similar to linear sweep.

Recursive descent can fail if programs do not behave as expected when
returning from called functions. For example, code in a function can delib-
erately manipulate the return address of that function so that upon comple-
tion, control returns to a location different from the one expected by the
disassembler. A simple example is shown in the following incorrect listing,
where function badfunc simply adds 1 to the return address before returning
to the caller:

badfunc proc near
48 FF 04 24 inc qword ptr [rsp] ; increments saved return addr
C3 retn
badfunc endp
; -------------------------------------
label:
E8 F6 FF FF FF call badfunc
05 48 89 45 F8 add eax, F8458948hu

As a result, control does not actually pass to the add instruction  fol-
lowing the call to badfunc. A proper disassembly appears next:

badfunc proc near
48 FF 04 24 inc qword ptr [rsp]
C3 retn
badfunc endp

Introduction to Disassembly 13

; -------------------------------------
label:
E8 F6 FF FF FF call badfunc
05 db 5 ;formerly the first byte of the add instruction
48 89 45 F8 mov [rbp-8], rax

This listing more clearly shows the flow of the program in which func-
tion badfunc actually returns to the mov instruction . It is important to
understand that a linear sweep disassembler will also fail to properly disas-
semble this code, though for slightly different reasons.

Return Instructions

In some cases, the recursive descent algorithm runs out of paths to follow.
A function return instruction (x86 ret, for example) offers no information
about which instruction will be executed next. If the program were actu-
ally running, an address would be taken from the top of the runtime stack,
and execution would resume at that address. Disassemblers do not have the
benefit of access to a stack. Instead, disassembly abruptly comes to a halt.
It is at this point that the recursive descent disassembler turns to the list of
addresses it has been setting aside for deferred disassembly. An address is
removed from this list, and the disassembly process is continued from this
address. This is the recursive process that lends the disassembly algorithm
its name.

One of the principle advantages of the recursive descent algorithm is its
superior ability to distinguish code from data. As a control flow-based algo-
rithm, it is much less likely to incorrectly disassemble data values as code. The
main disadvantage of recursive descent is the inability to follow indirect code
paths, such as jumps or calls, which utilize tables of pointers to look up a tar-
get address. However, with the addition of some heuristics to identify point-
ers to code, recursive descent disassemblers can provide very complete code
coverage and excellent recognition of code versus data. Listing 1-2 shows the
output of Ghidra’s recursive descent disassembler used on the same switch
statement shown earlier in Listing 1-1.

0040123f PUSH EBP
00401240 MOV EBP,ESP
00401242 XOR EAX,EAX
00401244 MOV EDX,dword ptr [EBP + param_1]
00401247 CMP EDX,0xc
0040124a JA switchD_00401250::caseD_0
 switchD_00401250::switchD
00401250 JMP dword ptr [EDX*0x4 + ->switchD_00401250::caseD_0] = 004012e0
 switchD_00401250::switchdataD_00401257
00401257 addr switchD_00401250::caseD_0
0040125b addr switchD_00401250::caseD_1
0040125f addr switchD_00401250::caseD_2
00401263 addr switchD_00401250::caseD_3
00401267 addr switchD_00401250::caseD_4
0040126b addr switchD_00401250::caseD_5
0040126f addr switchD_00401250::caseD_6

14 Chapter 1

00401273 addr switchD_00401250::caseD_7
00401277 addr switchD_00401250::caseD_8
0040127b addr switchD_00401250::caseD_9
0040127f addr switchD_00401250::caseD_a
00401283 addr switchD_00401250::caseD_b
00401287 addr switchD_00401250::caseD_c
 switchD_00401250::caseD_1
0040128b MOV EAX,dword ptr [EBP + param_2]
0040128e JMP switchD_00401250::caseD_00040128E

Listing 1-2: Recursive descent disassembly

Note that this section of the binary has been recognized as a switch
statement and formatted accordingly. An understanding of the recursive
descent process will help us recognize situations in which Ghidra may pro-
duce less-than-optimal disassemblies and allow us to develop strategies to
improve Ghidra’s output.

Summary
Is deep understanding of disassembly algorithms essential when using
a disassembler? No. Is it useful? Yes! Battling your tools is the last thing
you want to spend time doing while reverse engineering. One of the many
advantages of Ghidra is that, as an interactive disassembler, it offers you
plenty of opportunity to guide and override its decisions. The net result
is quite often a disassembly that is both thorough and accurate.

In the next chapter, we review a variety of existing tools that prove
useful in many reverse engineering situations. While not directly related
to Ghidra, many of these tools have influenced Ghidra, and they help to
explain the wide variety of informational displays available in the Ghidra
user interface.

With some disassembly background under
our belts, and before we begin our dive

into the specifics of Ghidra, it will be useful
to understand some of the other tools that are

used for reverse engineering binaries. Many of these
tools predate Ghidra and continue to be useful for
quick glimpses into files as well as for double-checking the work that Ghidra
does. As we will see, Ghidra rolls many of the capabilities of these tools into
its user interface to provide a single, integrated environment for reverse
engineering.

Classification Tools
When first confronted with an unknown file, it is often useful to answer
simple questions such as, “What is this thing?” The first rule of thumb
when attempting to answer that question is to never rely on a file extension to
determine what a file actually is. That is also the second, third, and fourth

2
R E V E R S I N G A N D

D I S A S S E M B LY T O O L S

16 Chapter 2

rules of thumb. Once you have become an adherent of the file extensions are
meaningless line of thinking, you may wish to familiarize yourself with one
or more of the following utilities.

file
The file command is a standard utility, included with most *nix-style oper-
ating systems as well as the Windows Subsystem for Linux (WSL).1 This
command is also available to Windows users by installing either Cygwin
or MinGW.2 The file command attempts to identify a file’s type by examin-
ing specific fields within the file. In some cases, file recognizes common
strings such as #!/bin/sh (a shell script) and <html> (an HTML document).

Files containing non-ASCII content present somewhat more of a chal-
lenge. In such cases, file attempts to determine whether the content
appears to be structured according to a known file format. In many cases,
it searches for specific tag values (often referred to as magic numbers)3 known
to be unique to specific file types. The following hex listings show several
examples of magic numbers used to identify some common file types.

Windows PE executable file
 00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ..............
 00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00@.......
Jpeg image file
 00000000 FF D8 FF E0 00 10 4A 46 49 46 00 01 01 01 00 60JFIF.....`
 00000010 00 60 00 00 FF DB 00 43 00 0A 07 07 08 07 06 0A .`.....C........
Java .class file
 00000000 CA FE BA BE 00 00 00 32 00 98 0A 00 2E 00 3E 082......>.
 00000010 00 3F 09 00 40 00 41 08 00 42 0A 00 43 00 44 0A .?..@.A..B..C.D.

The file command has the capability to identify many file formats,
including several types of ASCII text files and various executable and data
file formats. The magic number checks performed by file are governed by
rules contained in a magic file. The default magic file varies by operating
system, but common locations include /usr/share/file/magic, /usr/share/misc​
/magic, and /etc/magic. Please refer to the documentation for file for more
information concerning magic files.

1. See https://docs.microsoft.com/en-us/windows/wsl/about/.

2. �For Cygwin, see http://www.cygwin.com/. For MinGW, see http://www.mingw.org/.

3. A magic number is a special tag value required by some file format specifications whose
presence indicates conformance to such specifications. In some cases, magic numbers are
selected for humorous reasons. The MZ tag in MS-DOS executable file headers represents
the initials of Mark Zbikowski, one of the original architects of MS-DOS, while the hex
value 0xcafebabe, the well-known magic number associated with Java .class files, was chosen
because it is an easily remembered sequence of hex digits.

http://www.cygwin.com/

Reversing and Disassembly Tools 17

In some cases, file can distinguish variations within a given file type.
The following listing demonstrates file’s ability to identify not only sev-
eral variations of ELF binaries but also information pertaining to how
the binary was linked (statically or dynamically) and whether the binary
was stripped.

ghidrabook# file ch2_ex_*
 ch2_ex_x64: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
 dynamically linked, interpreter /lib64/l, for GNU/Linux
 3.2.0, not stripped
 ch2_ex_x64_dbg: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
 dynamically linked, interpreter /lib64/l, for GNU/Linux
 3.2.0, with debug_info, not stripped
 ch2_ex_x64_static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux),
 statically linked, for GNU/Linux 3.2.0, not stripped
 ch2_ex_x64_strip: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
 dynamically linked, interpreter /lib64/l, for GNU/Linux
 3.2.0, stripped
 ch2_ex_x86: ELF 32-bit LSB shared object, Intel 80386, version 1
 (SYSV), dynamically linked, interpreter /lib/ld-, for
 GNU/Linux 3.2.0, not stripped
 ch2_ex_x86_dbg: ELF 32-bit LSB shared object, Intel 80386, version 1
 (SYSV), dynamically linked, interpreter /lib/ld-, for
 GNU/Linux 3.2.0, with debug_info, not stripped
 ch2_ex_x86_static: ELF 32-bit LSB executable, Intel 80386, version 1
 (GNU/Linux), statically linked, for GNU/Linux 3.2.0,
 not stripped
 ch2_ex_x86_strip: ELF 32-bit LSB shared object, Intel 80386, version 1
 (SYSV), dynamically linked, interpreter /lib/ld-, for
 GNU/Linux 3.2.0, stripped
 ch2_ex_Win32: PE32 executable (console) Intel 80386, for MS Windows
 ch2_ex_x64: PE32+ executable (console) x86-64, for MS Windows

T HE W SL E N V IRONME N T

The Windows Subsystem for Linux provides a GNU/Linux command line
environment directly within Windows without the need to create a virtual
machine. During WSL installation, users choose a Linux distribution and can
then run it on the WSL. This provides access to common command line free
software (grep, awk), compilers (gcc, g++), interpreters (Perl, Python, Ruby),
networking utilities (nc, ssh), and many others. Once WSL has been installed,
many programs written for use with Linux can be compiled and executed on
Windows systems.

18 Chapter 2

The file utility and similar utilities are not foolproof. It is quite possible
for a file to be misidentified simply because it happens to bear the identify-
ing marks of a particular file format. You can see this for yourself by using
a hex editor to modify the first 4 bytes of any file to the Java magic number
sequence: CA FE BA BE. The file utility will incorrectly identify the newly
modified file as compiled Java class data. Similarly, a text file containing only
the two characters MZ will be identified as an MS-DOS executable. A good
approach to take in any reverse engineering effort is to never fully trust the
output of any tool until you have correlated that output with several tools
and manual analysis.

S T R IPPING BIN A RY E X ECU TA BL E F IL E S

Stripping a binary is the process of removing symbols from the binary file.
Binary object files contain symbols as a result of the compilation process.
Some of these symbols are utilized during the linking process to resolve refer-
ences between files when creating the final executable file or library. In other
cases, symbols may be present to provide additional information for use with
debuggers. Following the linking process, many of the symbols are no longer
required. Options passed to the linker can cause the linker to remove the unnec-
essary symbols at build time. Alternatively, a utility named strip may be used
to remove symbols from existing binary files. While a stripped binary will be
smaller than its unstripped counterpart, the behavior of the stripped binary will
remain unchanged.

PE Tools
PE Tools is a collection of tools useful for analyzing both running processes
and executable files on Windows systems.4 Figure 2-1 shows the primary
interface offered by PE Tools, which displays a list of active processes and
provides access to all of the PE Tools utilities.

From the process list, users can dump a process’s memory image to a
file or utilize the PE Sniffer utility to determine what compiler was used to
build the executable or whether the executable was processed by any known
obfuscation utilities. The Tools menu offers similar options for analysis of
disk files. Users can view a file’s PE header fields by using the embedded PE
Editor utility, which also allows for easy modification of any header values.
Modification of PE headers is often required when attempting to recon-
struct a valid PE from an obfuscated version of that file.

4. See https://github.com/petoolse/petools/.

https://github.com/petoolse/petools/

Reversing and Disassembly Tools 19

Figure 2-1: The PE Tools utility

BIN A RY F IL E OBF USC AT ION

Obfuscation is any attempt to obscure the true meaning of something. When
applied to executable files, obfuscation is any attempt to hide the true behavior
of a program. Programmers may employ obfuscation for a number of reasons.
Commonly cited examples include protecting proprietary algorithms and
obscuring malicious intent. Nearly all forms of malware utilize obfuscation
in an effort to hinder analysis. Tools are widely available to assist program
authors in generating obfuscated programs. Obfuscation tools and techniques
and their associated impact on the reverse engineering process are discussed
further in Chapter 21.

PEiD
PEiD is another Windows tool whose primary purposes are to identify the
compiler used to build a particular Windows PE binary and to identify any
tools used to obfuscate a Windows PE binary.5 Figure 2-2 shows the use of
PEiD to identify the tool (ASPack in this case) used to obfuscate a variant
of the Gaobot worm.6

5. See https://github.com/wolfram77web/app-peid/.

6. See https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/GAOBOT/.

https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/GAOBOT/

20 Chapter 2

Figure 2-2: The PEiD utility

Many additional capabilities of PEiD overlap those of PE Tools, includ-
ing the ability to summarize PE file headers, collect information on run-
ning processes, and perform basic disassembly.

Summary Tools
Since our goal is to reverse engineer binary program files, we are going to
need more sophisticated tools to extract detailed information following
initial classification of a file. The tools discussed in this section, by neces-
sity, are far more aware of the formats of the files that they process. In most
cases, these tools understand a very specific file format, and the tools are
utilized to parse input files to extract very specific information.

nm
When source files are compiled to object files, compilers must embed infor-
mation regarding the location of any global (external) symbols so that the
linker will be able to resolve references to those symbols when it combines
object files to create an executable. Unless instructed to strip symbols from
the final executable, the linker generally carries symbols from the object
files over into the resulting executable. According to the man page, the nm
utility “lists symbols from object files.”

When nm is used to examine an intermediate object file (a .o file rather
than an executable), the default output yields the names of any functions
and global variables declared in the file. Sample output of the nm utility is
shown next:

ghidrabook# gcc -c ch2_nm_example.c
ghidrabook# nm ch2_nm_example.o
 U exit
 U fwrite
 000000000000002e t get_max
 U _GLOBAL_OFFSET_TABLE_
 U __isoc99_scanf

Reversing and Disassembly Tools 21

 00000000000000a6 T main
 0000000000000000 D my_initialized_global
 0000000000000004 C my_uninitialized_global
 U printf
 U puts
 U rand
 U srand
 U __stack_chk_fail
 U stderr
 U time
 0000000000000000 T usage
ghidrabook#

Here we see that nm lists each symbol, along with information about
the symbol. The letter codes are used to indicate the type of symbol being
listed. In this example, we see the following letter codes:

U  An undefined symbol (usually an external symbol reference).

T  A symbol defined in the text section (usually a function name).

t  A local symbol defined in the text section. In a C program, this
usually equates to a static function.

D  An initialized data value.

C  An uninitialized data value.

N O T E 	 Uppercase letter codes are used for global symbols, whereas lowercase letter codes are
used for local symbols. More information, including a full explanation of the letter
codes, can be found in the man page for nm.

Somewhat more information is displayed when nm is used to display sym-
bols from an executable file. During linking, symbols are resolved to virtual
addresses (when possible), which results in more information being avail-
able when nm is run. Truncated sample output from nm used on an execut-
able is shown here:

ghidrabook# gcc -o ch2_nm_example ch2_nm_example.c
ghidrabook# nm ch2_nm_example
 ...
 U fwrite@@GLIBC_2.2.5
 0000000000000938 t get_max
 0000000000201f78 d _GLOBAL_OFFSET_TABLE_
 w __gmon_start__
 0000000000000c5c r __GNU_EH_FRAME_HDR
 0000000000000730 T _init
 0000000000201d80 t __init_array_end
 0000000000201d78 t __init_array_start
 0000000000000b60 R _IO_stdin_used
 U __isoc99_scanf@@GLIBC_2.7
 w _ITM_deregisterTMCloneTable
 w _ITM_registerTMCloneTable
 0000000000000b50 T __libc_csu_fini
 0000000000000ae0 T __libc_csu_init

22 Chapter 2

 U __libc_start_main@@GLIBC_2.2.5
 00000000000009b0 T main
 0000000000202010 D my_initialized_global
 000000000020202c B my_uninitialized_global
 U printf@@GLIBC_2.2.5
 U puts@@GLIBC_2.2.5
 U rand@@GLIBC_2.2.5
 0000000000000870 t register_tm_clones
 U srand@@GLIBC_2.2.5
 U __stack_chk_fail@@GLIBC_2.4
 0000000000000800 T _start
 0000000000202020 B stderr@@GLIBC_2.2.5
 U time@@GLIBC_2.2.5
 0000000000202018 D __TMC_END__
 000000000000090a T usage
ghidrabook#

At this point, some of the symbols (main, for example) have been assigned
virtual addresses, new ones (__libc_csu_init) have been introduced as a result
of the linking process, some (my_unitialized_global) have had their symbol
type changed, and others remain undefined as they continue to reference
external symbols. In this case, the binary we are examining is dynamically
linked, and the undefined symbols are defined in the shared C library.

ldd
When an executable is created, the location of any library functions ref-
erenced by that executable must be resolved. The linker has two methods
for resolving calls to library functions: static linking and dynamic linking.
Command line arguments provided to the linker determine which of the
two methods is used. An executable may be statically linked, dynamically
linked, or both.7

When static linking is requested, the linker combines an application’s
object files with a copy of the required library to create an executable file.
At runtime, there is no need to locate the library code because it is already
contained within the executable. Advantages of static linking are that (1) it
results in slightly faster function calls and (2) distribution of binaries is easier
because no assumptions need be made regarding the availability of library
code on users’ systems. Disadvantages of static linking include (1) larger
resulting executables and (2) greater difficulty upgrading programs when
library components change. Programs are more difficult to update because
they must be relinked every time a library is changed. From a reverse engi-
neering perspective, static linking complicates matters somewhat. If we are
faced with the task of analyzing a statically linked binary, there is no easy way
to answer the questions “Which libraries are linked into this binary?” and
“Which of these functions is a library function?” Chapter 13 discusses the
challenges encountered while reverse engineering statically linked code.

7. For more information on linking, consult John R. Levine’s Linkers and Loaders (Morgan
Kaufmann, 1999).

Reversing and Disassembly Tools 23

Dynamic linking differs from static linking in that the linker has no need
to make a copy of any required libraries. Instead, the linker simply inserts ref-
erences to any required libraries (often .so or .dll files) into the final execut-
able, usually resulting in much smaller executable files. Upgrading library
code is much easier when dynamic linking is utilized. Since a single copy of
a library is maintained and that copy is referenced by many binaries, replac-
ing the single outdated library with a new version results in any new process
based on a binary that dynamically links to that library using the updated
version. One of the disadvantages of using dynamic linking is that it requires
a more complicated loading process. All of the necessary libraries must be
located and loaded into memory, as opposed to loading one statically linked
file that happens to contain all of the library code. Another disadvantage of
dynamic linking is that vendors must distribute not only their own executable
file but also all library files upon which that executable depends. Attempting
to execute a program on a system that does not contain all the required library
files will result in an error.

The following output demonstrates the creation of dynamically and
statically linked versions of a program, the size of the resulting binaries,
and the manner in which file identifies those binaries:

ghidrabook# gcc -o ch2_example_dynamic ch2_example.c
ghidrabook# gcc -o ch2_example_static ch2_example.c -static
ghidrabook# ls -l ch2_example_*
 -rwxrwxr-x 1 ghidrabook ghidrabook 12944 Nov 7 10:07 ch2_example_dynamic
 -rwxrwxr-x 1 ghidrabook ghidrabook 963504 Nov 7 10:07 ch2_example_static
ghidrabook# file ch2_example_*
 ch2_example_dynamic: ELF 64-bit LSB executable, x86-64, version 1 (SYSV),
 dynamically linked, interpreter /lib64/l, for GNU/Linux 3.2.0,
 BuildID[sha1]=e56ed40012accb3734bde7f8bca3cc2c368455c3, not stripped
 ch2_example_static: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux),
 statically linked, for GNU/Linux 3.2.0,
 BuildID[sha1]=430996c6db103e4fe76aea7d578e636712b2b4b0, not stripped
ghidrabook#

In order for dynamic linking to function properly, dynamically linked
binaries must indicate which libraries they depend on, along with the spe-
cific resources required from each of those libraries. As a result, unlike stat-
ically linked binaries, it is quite simple to determine the libraries on which
a dynamically linked binary depends. The ldd (list dynamic dependencies) util-
ity is a tool used to list the dynamic libraries required by any executable. In
the following example, ldd is used to determine the libraries on which the
Apache web server depends:

ghidrabook# ldd /usr/sbin/apache2
 linux-vdso.so.1 => (0x00007fffc1c8d000)
 libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007fbeb7410000)
 libaprutil-1.so.0 => /usr/lib/x86_64-linux-gnu/libaprutil-1.so.0 (0x00007fbeb71e0000)
 libapr-1.so.0 => /usr/lib/x86_64-linux-gnu/libapr-1.so.0 (0x00007fbeb6fa0000)
 libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fbeb6d70000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fbeb69a0000)
 libcrypt.so.1 => /lib/x86_64-linux-gnu/libcrypt.so.1 (0x00007fbeb6760000)

24 Chapter 2

 libexpat.so.1 => /lib/x86_64-linux-gnu/libexpat.so.1 (0x00007fbeb6520000)
 libuuid.so.1 => /lib/x86_64-linux-gnu/libuuid.so.1 (0x00007fbeb6310000)
 libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007fbeb6100000)
 /lib64/ld-linux-x86-64.so.2 (0x00007fbeb7a00000)
ghidrabook#

The ldd utility is available on Linux and BSD systems. On macOS sys-
tems, similar functionality is available using the otool utility with the -L
option: otool -L filename. On Windows systems, the dumpbin utility, part of
the Visual Studio tool suite, can be used to list dependent libraries: dumpbin
/dependents filename.

BE WA R E YOUR TOOL S!

While ldd may appear to be a simple tool, the ldd man page states that “you
should never employ ldd on an untrusted executable, since this may result in
the execution of arbitrary code.” While this is unlikely in most cases, it provides
a reminder that running even apparently simple software reverse engineering
(SRE) tools may have unintended consequences when examining untrusted
input files. While it is hopefully obvious that executing untrusted binaries is
unlikely to be safe, it is wise to take precautions even when statically analyzing
untrusted binaries, and to assume that the computer on which you perform SRE
tasks, along with any data on it or other hosts connected to it, may be compro-
mised as a result of SRE activities.

objdump
Whereas ldd is fairly specialized, objdump is extremely versatile. The purpose
of objdump is to “display information from object files.”8 This is a fairly broad
goal, and to accomplish it, objdump responds to more than 30 command line
options tailored to extract various pieces of information from object files.
The objdump tool can be used to display the following data (and much more)
related to object files:

Section headers  Summary information for each of the sections in the
program file.

Private headers  Program memory layout information and other
information required by the runtime loader, including a list of required
libraries, such as that produced by ldd.

8. See http://www.sourceware.org/binutils/docs/binutils/objdump.html.

https://www.sourceware.org/binutils/docs/binutils/objdump.html

Reversing and Disassembly Tools 25

Debugging information  Any debugging information embedded in
the program file.

Symbol information  Symbol table information, dumped in a manner
similar to the nm utility.

Disassembly listing  The objdump tool performs a linear sweep disas-
sembly of sections of the file marked as code. When disassembling
x86 code, objdump can generate either AT&T or Intel syntax, and the
disassembly can be captured as a text file. Such a text file is called a
disassembly dead listing, and while these files can certainly be used for
reverse engineering, they are difficult to navigate effectively and even
more difficult to modify in a consistent and error-free manner.

The objdump tool is available as part of the GNU binutils tool suite and
can be found on Linux, FreeBSD, and Windows (via WSL or Cygwin).9 Note
that objdump relies on the Binary File Descriptor library (libbfd), a component
of binutils, to access object files and thus is capable of parsing file formats
supported by libbfd (ELF and PE among others). For ELF-specific parsing,
a utility named readelf is also available. The readelf utility offers most of the
same capabilities as objdump, and the primary difference between the two is
that readelf does not rely upon libbfd.

otool
The otool utility is most easily described as an objdump-like option for macOS,
and it is useful for parsing information about macOS Mach-O binaries. The
following listing demonstrates how otool displays the dynamic library depen-
dencies for a Mach-O binary, thus performing a function similar to ldd:

ghidrabook# file osx_example
 osx_example: Mach-O 64-bit executable x86_64
ghidrabook# otool -L osx_example
 osx_example:
 /usr/lib/libstdc++.6.dylib (compatibility version 7.0.0, current version 7.4.0)
 /usr/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1281.0.0)

The otool utility can be used to display information related to a file’s
headers and symbol tables and to perform disassembly of the file’s code sec-
tion. For more information regarding the capabilities of otool, please refer
to the associated man page.

dumpbin
The dumpbin command line utility is included with Microsoft’s Visual Studio
suite of tools. Like otool and objdump, dumpbin is capable of displaying a wide
range of information related to Windows PE files. The following listing

9. See http://www.gnu.org/software/binutils/.

http://www.gnu.org/software/binutils/

26 Chapter 2

shows how dumpbin displays the dynamic dependencies of the Windows note-
pad program in a manner similar to ldd:

$ dumpbin /dependents C:\Windows\System32\notepad.exe
Microsoft (R) COFF/PE Dumper
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file notepad.exe

File Type: EXECUTABLE IMAGE

 Image has the following delay load dependencies:

 ADVAPI32.dll
 COMDLG32.dll
 PROPSYS.dll
 SHELL32.dll
 WINSPOOL.DRV
 urlmon.dll

 Image has the following dependencies:

 GDI32.dll
 USER32.dll
 msvcrt.dll
 ...

Additional dumpbin options offer the ability to extract information from
various sections of a PE binary, including symbols, imported function names,
exported function names, and disassembled code. Additional information
related to the use of dumpbin is available via the Microsoft website.10

c++filt
Languages that allow function overloading must have a mechanism for dis-
tinguishing among the many overloaded versions of a function since each
version has the same name. The following C++ example shows the proto-
types for several overloaded versions of a function named demo:

void demo(void);
void demo(int x);
void demo(double x);
void demo(int x, double y);
void demo(double x, int y);
void demo(char* str);

As a general rule, it is not possible to have two functions with the same
name in an object file. To allow overloading, compilers derive unique names
for overloaded functions by incorporating information describing the type
sequence of the function arguments. The process of deriving unique names

10. See https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-command-line/.

https://docs.microsoft.com/en-us/cpp/build/reference/dumpbin-command-line/

Reversing and Disassembly Tools 27

for functions with identical names is called name mangling.11 If we use nm to
dump the symbols from the compiled version of the preceding C++ code,
we might see something like the following (filtered to focus on versions of
demo):

ghidrabook# g++ -o ch2_cpp_example ch2_cpp_example.cc
ghidrabook# nm ch2_cpp_example | grep demo
 000000000000060b T _Z4demod
 0000000000000626 T _Z4demodi
 0000000000000601 T _Z4demoi
 0000000000000617 T _Z4demoid
 0000000000000635 T _Z4demoPc
 00000000000005fa T _Z4demov

The C++ standard does not define a standard name mangling scheme,
leaving compiler designers to develop their own. To decipher the mangled
variants of demo shown here, we need a tool that understands our compiler’s
(g++ in this case) name mangling scheme. This is precisely the purpose of
c++filt. This utility treats each input word as if it were a mangled name
and then attempts to determine the compiler that was used to generate
that name. If the name appears to be a valid mangled name, it outputs the
demangled version of the name. When c++filt does not recognize a word as
a mangled name, it simply outputs the word with no changes.

If we pass the results of nm from the preceding example through c++filt,
it is possible to recover the demangled function names, as seen here:

ghidrabook# nm ch2_cpp_example | grep demo | c++filt
 000000000000060b T demo(double)
 0000000000000626 T demo(double, int)
 0000000000000601 T demo(int)
 0000000000000617 T demo(int, double)
 0000000000000635 T demo(char*)
 00000000000005fa T demo()

It is important to note that mangled names contain additional informa-
tion about functions that nm does not normally provide. This information
can be extremely helpful in reverse engineering situations, and in more
complex cases, this extra information may include data regarding class
names or function-calling conventions.

Deep Inspection Tools
So far, we have discussed tools that perform a cursory analysis of files based
on minimal knowledge of those files’ internal structure. We have also seen
tools capable of extracting specific pieces of data from files based on very
detailed knowledge of a file’s structure. In this section, we discuss tools

11. For an overview of name mangling, refer to http://en.wikipedia.org/wiki/Name_mangling.

https://en.wikipedia.org/wiki/Name_mangling

28 Chapter 2

designed to extract specific types of information independently of the type
of file being analyzed.

strings
It is occasionally useful to ask more generic questions regarding file content—
questions that don’t necessarily require any specific knowledge of a file’s
structure. One such question is “Does this file contain any embedded
strings?” Of course, we must first answer the question “What exactly con-
stitutes a string?” Let’s loosely define a string as a consecutive sequence of
printable characters. This definition is often augmented to specify a mini-
mum length and a specific character set. Thus, we could specify a search
for all sequences of at least four consecutive ASCII printable characters
and print the results to the console. Searches for such strings are generally
not limited in any way by the structure of a file. You can search for strings
in an ELF binary just as easily as you can search for strings in a Microsoft
Word document.

The strings utility is designed specifically to extract string content from
files, often without regard for the format of those files. Using strings with
its default settings (7-bit ASCII sequences of at least four characters) might
yield something like the following:

ghidrabook# strings ch2_example
 /lib64/ld-linux-x86-64.so.2
 libc.so.6
 exit
 srand
 __isoc99_scanf
 puts
 time
 __stack_chk_fail
 printf
 stderr
 fwrite
 __libc_start_main
 GLIBC_2.7
 GLIBC_2.4
 GLIBC_2.2.5
 _ITM_deregisterTMCloneTable
 __gmon_start__
 _ITM_registerTMCloneTable
 usage: ch4_example [max]
 A simple guessing game!
 Please guess a number between 1 and %d.
 Invalid input, quitting!
 Congratulations, you got it in %d attempt(s)!
 Sorry too low, please try again
 Sorry too high, please try again
 GCC: (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0
 ...

Reversing and Disassembly Tools 29

Unfortunately, while we see some strings that look like they might
be output by the program, other strings appear to be function names
and library names. We should be careful not to jump to any conclusions
regarding the behavior of the program. Analysts often fall into the trap of
attempting to deduce the behavior of a program based on the output of
strings. Remember, the presence of a string within a binary in no way indi-
cates that the string is ever used in any manner by that binary.

Here are some final notes on the use of strings:

•	 By default, strings gives no indication of where, within a file, a string is
located. Use the -t command line argument to have strings print file
offset information for each string found.

•	 Many files utilize alternate character sets. Utilize the -e command line
argument to cause strings to search for wide characters such as 16-bit
Unicode.

Disassemblers
As mentioned earlier, tools are available to generate dead listing–style
disassemblies of binary object files. PE, ELF, and Mach-O binaries can be
disassembled using dumpbin, objdump, and otool, respectively. None of those,
however, can deal with arbitrary blocks of binary data. You will occasion-
ally be confronted with a binary file that does not conform to a widely
used file format, in which case you will need tools capable of beginning
the disassembly process at user-specified offsets.

Two examples of such stream disassemblers for the x86 instruction set
are ndisasm and diStorm.13 The utility ndisasm is included with the NASM.14

13. See https://github.com/gdabah/distorm/.

14. See http://www.nasm.us/.

W H Y DID S T R INGS CH A NGE?

Historically, when strings was used on executable files, it would, by default,
search only for character sequences in the loadable, initialized data sections of
the binary file. This required that strings parse the binary file to find those sec-
tions, using libraries such as libbfd. When it was used for parsing untrusted bina-
ries, vulnerabilities in libraries could potentially result in arbitrary code execution.12
As a result, the default behavior for strings was changed to examine the entire
binary file without parsing for loadable initialized data sections (synonymous with
the use of the -a flag.) The historical behavior can be invoked using the -d flag.

12. See CVE-2014-8485 and https://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on​
-untrusted​-files.html.

https://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted-files.html
https://lcamtuf.blogspot.com/2014/10/psa-dont-run-strings-on-untrusted-files.html

30 Chapter 2

The following example illustrates the use of ndisasm to disassemble a piece
of shellcode generated using the Metasploit framework:15

ghidrabook# msfvenom -p linux/x64/shell_find_port -f raw > findport
ghidrabook# ndisasm –b 64 findport
 00000000 4831FF xor rdi,rdi
 00000003 4831DB xor rbx,rbx
 00000006 B314 mov bl,0x14
 00000008 4829DC sub rsp,rbx
 0000000B 488D1424 lea rdx,[rsp]
 0000000F 488D742404 lea rsi,[rsp+0x4]
 00000014 6A34 push byte +0x34
 00000016 58 pop rax
 00000017 0F05 syscall
 00000019 48FFC7 inc rdi
 0000001C 66817E024A67 cmp word [rsi+0x2],0x674a
 00000022 75F0 jnz 0x14
 00000024 48FFCF dec rdi
 00000027 6A02 push byte +0x2
 00000029 5E pop rsi
 0000002A 6A21 push byte +0x21
 0000002C 58 pop rax
 0000002D 0F05 syscall
 0000002F 48FFCE dec rsi
 00000032 79F6 jns 0x2a
 00000034 4889F3 mov rbx,rsi
 00000037 BB412F7368 mov ebx,0x68732f41
 0000003C B82F62696E mov eax,0x6e69622f
 00000041 48C1EB08 shr rbx,byte 0x8
 00000045 48C1E320 shl rbx,byte 0x20
 00000049 4809D8 or rax,rbx
 0000004C 50 push rax
 0000004D 4889E7 mov rdi,rsp
 00000050 4831F6 xor rsi,rsi
 00000053 4889F2 mov rdx,rsi
 00000056 6A3B push byte +0x3b
 00000058 58 pop rax
 00000059 0F05 syscall
ghidrabook#

The flexibility of stream disassembly is useful in many situations. One
scenario involves the analysis of computer network attacks in which network
packets may contain shellcode. Stream disassemblers can be used to disas-
semble the portions of the packet that contain shellcode in order to analyze
the behavior of the malicious payload. Another situation involves the analy-
sis of ROM images for which no layout reference can be located. Portions of
the ROM will contain data, while other portions will contain code. Stream
disassemblers can be used to disassemble just those portions of the image
thought to be code.

15. See https://metasploit.com/.

https://metasploit.com/

Reversing and Disassembly Tools 31

Summary
The tools discussed in this chapter are not necessarily the best of their
breed. They do, however, represent tools commonly available for anyone
who wishes to reverse engineer binary files. More important, they represent
the types of tools that motivated much of the development of Ghidra. In
future chapters, we occasionally highlight stand-alone tools that provide
functionality similar to that integrated into Ghidra. An awareness of these
tools will greatly enhance your understanding of the Ghidra user interface
and the many informational displays that Ghidra offers.

Ghidra is a freely available open source
SRE tool suite developed by the National

Security Agency (NSA). The platform-
independent Ghidra environment includes an

interactive disassembler and decompiler as well as a
plethora of related tools that work together to help
you analyze code. It supports a wide variety of instruction set architectures
and binary formats and can be run in both stand-alone and collaborative
SRE configurations. Perhaps the best feature of Ghidra is that it allows you
to customize your work environment and develop your own plugins and
scripts to enhance your SRE process and to share your innovations with the
Ghidra community at large.

3
M E E T G H I D R A

34 Chapter 3

Ghidra Licenses
Ghidra is distributed free of charge and is licensed under the Apache
License, Version 2.0. This license provides a lot of freedom to individuals
to use Ghidra but does have some associated restrictions. All individuals
downloading, using, or editing Ghidra are encouraged to read the Ghidra
User Agreement (docs/UserAgreement.html) as well as the license files in the
GPL and licenses directories in order to ensure that they are complying
with all licensing agreements, as third-party components within Ghidra
have their own licenses. In case you ever forget anything in this paragraph,
Ghidra helpfully displays the licensing information every time you start Ghidra
or select About Ghidra from the Help menu.

Ghidra Versions
Ghidra is available for Windows, Linux, and macOS. While Ghidra is highly
configurable, most new users will likely download Ghidra and choose to
start with the most current version of Ghidra Core, which includes tra-
ditional reverse engineering functionality. The focus of this book is on
the Ghidra Core functionality for nonshared projects. In addition, we
spend time discussing shared projects and headless Ghidra as well as the
Developer, Function ID, and Experimental configurations.

Ghidra Support Resources
Working with a new software suite can be daunting, especially when the
intent is to approach a challenging real-world problem by using reverse
engineering. As a Ghidra user (or potential developer), you may wonder
where you can turn for help when you have Ghidra-related questions. If we
do our job well enough, this book will suffice in many situations. When you
find yourself needing additional help, though, here are some additional
resources you can turn to:

Official help documentation  Ghidra contains a detailed help system
that can be activated through the menu or by pressing F1. The help sys-
tem provides a hierarchical menu as well as search functionality. While
the Help menu offers various views, it does not currently provide sup-
port for interrogatory questions such as “How can I do x?”

Readme files  In some cases, the Ghidra Help menu will refer you
to additional content on a particular topic such as a readme file.
Many readme files are included in the documentation to supplement
specific plugins, extend topics in the Help menu (such as support​
/analyzeHeadlessREADME.html), assist with various installations (docs​
/InstallationGuide.html), and aid your evolution as a developer (such
as Extensions/Eclipse/GhidraDev/GhidraDev_README.html) should you
choose to pursue that path (and perhaps develop support for interroga-
tory questions such as “How can I do x?”).

Meet Ghidra 35

Ghidra site  The Ghidra project home page (https://www.ghidra-sre.org/)
provides options for potential users, current users, developers, and con-
tributors to further their knowledge about Ghidra. Along with detailed
download information associated with each Ghidra release, a helpful
Installation Guide video walks you through the installation process.

Ghidra docs directory  Your installation of Ghidra includes a directory
containing helpful Ghidra-related documentation, including a print-
able guide to menus and hotkeys (docs/CheatSheet.html) that can greatly
ease your introduction to Ghidra, and much more. Tutorials that cover
beginner, intermediate, and advanced features of Ghidra can be found
under docs/GhidraClass.

Downloading Ghidra
Obtaining your free copy of Ghidra is an easy three-step process:

1.	 Navigate to https://ghidra-sre.org/.

2.	 Click the big red Download Ghidra button.

3.	 Save the file to the desired location on your computer.

As with many simple three-step processes, there are a couple of points
where a few renegades may choose to veer slightly from the recommended
path. The following options are for those of you who want something differ-
ent from the traditional starter pack:

•	 If you want to install a different release, just click the Releases but-
ton and you will have the option to download other released versions.
While some functionality may vary, the basics of Ghidra should remain
the same.

•	 If you wish to install to a server to support collaborative work, hang on
until Chapter 11 to find out how to make that important change to your
installation (or feel free to jump ahead and give it a try using the infor-
mation in the server directory.) Worst case, it is easy to back out and
start again with the simple three-step process and begin with a local
Ghidra instance.

•	 The truly brave at heart may wish to build Ghidra from source. The
Ghidra source code is available on GitHub at https://github.com​
/National​SecurityAgency/ghidra/.

Let’s move ahead with the traditional installation process.

Installing Ghidra
So, what did the magical red download button do when you clicked it and
selected a destination on your computer? If everything went as planned,
you should now have a zip file in your selected directory. For the original
Ghidra release, the zip file’s name was ghidra_9.0_PUBLIC_20190228.zip.

https://github.com/NationalSecurityAgency/ghidra/
https://github.com/NationalSecurityAgency/ghidra/

36 Chapter 3

We can break down the naming convention. First, 9.0 is the version number.
Next, PUBLIC is the type of release (there are other release types such as
BETA_DEV releases). Finally, we have the release date, followed by the .zip
file extension.

This zip file is actually a collection of the over 3400 files that make up
the Ghidra framework. If you are happy with the location you saved the file
to, unzipping it (for example, by right-clicking and selecting Extract All in
Windows) will provide access to the Ghidra hierarchical directory. Note
that Ghidra needs to compile some of its internal data files, so a Ghidra
user will typically need write access to all Ghidra program subdirectories.

The Ghidra Directory Layout
Familiarity with the contents of your Ghidra installation is by no means a
requirement before you start using Ghidra. However, since our attention
is on your extracted download for the moment, let’s take an initial look at
the basic layout. An understanding of the Ghidra directory structure will
become more important as you progress to using the more advanced fea-
tures of Ghidra covered in later chapters. A brief description of each of the
subdirectories within the Ghidra installation follows. Figure 3-1 shows the
Ghidra directory layout.

Figure 3-1: Ghidra directory layout

docs  Contains general support documentation about Ghidra and
how to use it. Included in this directory are two subdirectories that bear
mentioning. First, the GhidraClass subdirectory provides educational
content to help you learn about Ghidra. Second, the languages sub
directory describes Ghidra’s processor specification language, SLEIGH.
SLEIGH is discussed extensively in Chapter 18.

Meet Ghidra 37

Extensions  Contains useful prebuilt extensions and important content
and information for writing Ghidra extensions. This directory is covered
more thoroughly in Chapters 15, 17, and 18.

Ghidra  Contains the code for Ghidra. You will learn more about
the resources and contents in this directory as we begin customizing
Ghidra in Chapter 12 and building new capabilities in Chapters 13
through 18.

GPL  Some of the components that make up part of the Ghidra frame-
work were not developed by the Ghidra team, but consist of other code
distributed under the GNU General Public License (GPL). The GPL
directory contains files associated with this content, including licensing
information.

licenses  Contains files outlining the appropriate and legal usage of
various third-party components of Ghidra.

server  Supports the installation of the Ghidra server, which facilitates
collaborative SRE. This directory is discussed in depth in Chapter 11.

support  Serves as a catchall for a variety of specialized Ghidra capabili-
ties and functionalities. As a bonus, this is also where the Ghidra icon
can be found (ghidra.ico) if you want to customize your work environ-
ment further (for example, creating a shortcut to your Ghidra startup
script). This directory is discussed as needed throughout the text, as we
introduce various Ghidra capabilities.

Starting Ghidra
Alongside the subdirectories, files in the root directory allow you to get
started on your Ghidra SRE journey. Yet another license file is in this direc-
tory (LICENSE.txt), but more importantly, you will find the scripts that
actually launch Ghidra. The first time you double-click ghidraRun.bat (or
run the equivalent ghidraRun script from the command line on Linux or
macOS), you will need to agree to the end-user license agreement (EULA)
shown in Figure 3-2, to acknowledge that you plan to use Ghidra in compli-
ance with the Ghidra User Agreement. Once you have agreed, you will not
see this window on subsequent startups, but can view the content at any
time through the Help menu.

In addition, you may be asked for the path to your Java installa-
tion. (If you do not have Java installed, see the Installation Guide in
the docs subdirectory, which provides supporting documentation in the
Java Notes section.) Ghidra requires version 11 or higher of the Java
Development Kit (JDK).1

1. JDK is available at https://adoptopenjdk.net/releases.html?variant=openjdk11&jvmVariant=hotspot/.

https://adoptopenjdk.net/releases.html?variant=openjdk11&jvmVariant=hotspot

38 Chapter 3

Figure 3-2: Ghidra User Agreement

Summary
Once you are successful in opening Ghidra, you are ready to move on to
using it to accomplish something useful. Over the course of the next few
chapters, you will discover how to use Ghidra to perform basic file analysis,
learn about CodeBrowser and the many common Ghidra display windows,
and see how to configure and manipulate those displays to further your
understanding of a program’s behavior.

PART II
B A S I C G H I D R A U S A G E

It’s about time we got down to actually
using Ghidra. The remainder of this book

is dedicated to various features of Ghidra
and how you can leverage them to best meet

your reverse engineering needs. In this chapter, we
begin by covering the options you are presented with
when you launch Ghidra, and then we describe what happens when you
open a single binary file for analysis. Finally, we present a quick overview of
the user interface to lay the groundwork for the remaining chapters.

Launching Ghidra
Anytime you launch Ghidra, you will be greeted briefly by a splash screen
that displays the Ghidra logo, build information, the Ghidra and Java ver-
sion numbers, and the licensing information. If you wish to thoroughly read
the splash screen to learn more about your versions, you can display it at
any time by choosing HelpAbout Ghidra from the Ghidra Project window.

4
G E T T I N G S T A R T E D W I T H G H I D R A

42 Chapter 4

Once the splash screen clears, Ghidra displays the Ghidra Project win-
dow behind a Tip of the Day dialog, as shown in Figure 4-1. You can scroll
through tips by clicking the Next Tip button. When you are ready to begin
working, close the Tip of the Day dialog.

If you prefer not to see the daily tips, feel free to uncheck the Show Tips
on Startup? checkbox at the bottom of the dialog. If you uncheck the box
and find yourself missing the Tip of the Day dialog, you can easily restore it
through the Ghidra Help menu.

Figure 4-1: Launching Ghidra

If you close the Tip of the Day dialog or uncheck the box and restart
Ghidra, you will be presented with the Ghidra Project window. Ghidra uses
a project environment to allow you to manage and control the tools and data
associated with a file or group of files as you are working with them. This ini-
tial introduction focuses on a single file as a component of a nonshared proj-
ect. More complex project capabilities are discussed in Chapter 11.

Getting Started with Ghidra 43

Creating a New Project
If this is your first time launching Ghidra, you will need to create a project. If
you have launched Ghidra previously, the active project will be the one you
used most recently. Choosing File4New Project allows you to specify char-
acteristics of the environment associated with the project. The first step in
creating a new project is to choose between a nonshared project and a shared
project. In this chapter, we begin with a nonshared project. With that choice
out of the way, you will be presented with the dialog in Figure 4-2. Nonshared
projects require you to specify a project directory and name.

Figure 4-2: Creating a Ghidra project

Once you have entered the project location information, click Finish
to complete the project creation process. This will return you to the Project
window with the newly created project selected, as shown in Figure 4-3.

Figure 4-3: Ghidra Project window

44 Chapter 4

Ghidra File Loading
To do any useful work, you will need to add at least one file to your new proj-
ect. You can open a file either by choosing FileImport File and browsing to
the file you wish to import or by dragging and dropping a file directly into
a folder in the Project window. After you have selected a file, you will be pre-
sented with the Import dialog shown in Figure 4-4.

Figure 4-4: Ghidra Import dialog

Ghidra generates a list of potential file types and provides these to you
in the Format picklist at the top of the dialog. Clicking the Information
button to the right of the Format field will provide you with a list of sup-
ported formats, which are described in Chapter 17. The Format picklist pro-
vides the subset of Ghidra loaders that are best suited for dealing with the
selected file. For this example, two options are provided in the Format pick-
list: Portable Executable (PE) and Raw Binary. The Raw Binary option will
always be present since it is Ghidra’s default for loading files that it does not
recognize; this provides the lowest-level option for loading any file. When
offered the choice of several loaders, it is not a bad strategy to accept the
default selections unless you possess specific information that contradicts
Ghidra’s determination.

The Language field allows you to specify which processor module
should be used during the disassembly process. A Ghidra language/com-
piler specification can consist of a processor type, an endian-ness speci-
fication (LE/BE), a bitness value (16/32/64), a processor variant, and a
compiler ID (for example, ARM:LE:32:v7:default). For more information,
refer to the Language/Compiler Specifications callout in Chapter 13 as well
as “Language Definition Files” on page 396. In most cases, Ghidra will
choose the proper processor based on information that it reads from the
executable file’s headers.

Getting Started with Ghidra 45

The Destination Folder field lets you select the project folder in which
the newly imported file will be displayed. The default is to display the top-
level project folder, but subfolders can be added to organize imported pro-
grams within a project. You can select the extension buttons to the right of
the Language and Destination Folder fields to view other options for each.
You can also edit the text in the Program Name field. Don’t be confused
by the change in terminology: Program Name is the name that Ghidra
uses to refer to the imported binary within the project, including for dis-
play in the project window. It defaults to the name of the imported file but
could be changed to something more descriptive, such as “Malware from
Starship Enterprise.”

In addition to the four fields shown in Figure 4-4, you can access other
options to control the loading process via the Options button. These
options are dependent on the selected format and processor. The options for
ch4_example.exe, a PE file for x86, are shown in Figure 4-5, with the default
options selected. While moving ahead with the default options is generally
a good approach, you may choose other options as you gain experience. For
example, you could include the Load External Libraries option if you wanted
to have any dependent libraries imported into your project as well.

Figure 4-5: Ghidra PE file-loading options

The import options are used to gain finer control over the file-loading
process. The options are not applicable to all input file types, and in most
cases, you can rely on the default selections. Additional information about
options is available in Ghidra Help. More details about Ghidra’s import pro-
cess and loaders are provided in Chapter 17.

When you are happy with your loading options and click OK to close
the dialogs, you are presented with an Import Results Summary window,
as shown in Figure 4-6. This provides you an opportunity to review the
selected import options along with basic information that the loader has
extracted from your chosen file. In “Importing Files” on page 262, we
discuss ways to modify some of the import results prior to analysis if you

46 Chapter 4

have additional information that isn’t reflected in the Import Results
Summary window.

Figure 4-6: Ghidra Import Results Summary window

Using the Raw Binary Loader
At times, Raw Binary will be the only entry in the Format picklist. This is
Ghidra’s way of telling you that none of its loaders recognize the chosen file.
Examples of situations that may call for the use of the Raw Binary loader
include the analysis of custom firmware images and exploit payloads that
may have been extracted from network packet captures or log files. In these

Getting Started with Ghidra 47

cases, Ghidra cannot recognize any file header information to guide the
loading process, so it is up to you to step in and perform tasks that loaders
often do automatically, like specifying the processor, the bit size, and, in
some cases, a particular compiler.

For example, if you know the binary contains x86 code, many choices
are available in the Language dialog, as shown in Figure 4-7. Often some
research, and occasionally some trial and error, is required to narrow your
language choices to something that will work for your binary. Any informa-
tion you can obtain about the device the file was designed to run on will be
useful. If you are confident that the file is not intended for a Windows sys-
tem, you should select gcc or default (if available) for the Compiler setting.

Figure 4-7: Language and compiler selection options

If the binary file contains no header information Ghidra can work
with, Ghidra also will not recognize the memory layout of the file. If you
know the base address, file offset, or length of the file, you can enter those
values into the corresponding loader option fields shown in Figure 4-8,
or continue to load the file without entering this additional information.
(This information can be provided or adjusted at any point before or after

48 Chapter 4

analysis through the Memory Map window discussed in the “The Memory
Map Window” on page 85.)

Figure 4-8: Ghidra Raw Binary loader options

Chapter 17 provides a more detailed discussion of manually loading
and organizing unrecognized binary files.

Analyzing Files with Ghidra
At its heart, Ghidra is essentially a database application controlled by a
library of plugins, each with its own functionality. All project data is stored
using a custom database that grows and evolves as the user adds informa-
tion to the project. The various displays that Ghidra offers are simply views
into the database that reveal information in formats useful to the software
reverse engineer. Any modifications that users make to the database are
reflected in the views and saved into the database, but these changes have
no effect on the original executable file. The power of Ghidra lies in the
tools it contains to analyze and manipulate the data within the database.

The CodeBrowser anchors the many tools available in Ghidra and has
unique functionality to help you keep your windows organized, add and
delete tools, rearrange content, and document your process. By default, the
CodeBrowser opens with windows for Program Tree, Symbol Tree, Data
Type Manager, Listing, Decompiler, and Console. These and other displays
are introduced in Chapter 5.

The process just described can be used to create projects and populate
them with files, but the real work of analysis has not yet begun. When you
double-click a file in the Ghidra Project window, you are presented with the
CodeBrowser window, shown in Figure 4-9. If this is your first time select-
ing one of the files you have imported, you will be presented with an option
to allow Ghidra to auto analyze the file. An example of auto analysis using
the Analysis Options dialog is shown in Figure 4-10. In the majority of cases

Getting Started with Ghidra 49

involving binaries taken from common platforms and built with commonly
available compilers, auto analysis is probably the correct first choice. You
can halt the auto analysis process at any time by clicking the red stop but-
ton at the bottom-right corner of the CodeBrowser window. (The button is
visible only during auto analysis.)

Figure 4-9: Ghidra CodeBrowser window

Figure 4-10: The Analysis Options dialog

50 Chapter 4

Keep in mind that if you are not happy with Ghidra’s auto analysis, you
can always discard your work by closing the CodeBrowser and electing not
to save your changes, at which point you may reopen the file and try a dif-
ferent combination of auto analysis options. The most common reasons for
modifying your auto analysis options involve unusually structured files such
as obfuscated binaries, or binaries built with compilers or on operating sys-
tems that may be unknown to Ghidra.

Note that if you are opening an extremely large binary (perhaps 10MB
or larger), Ghidra may take minutes to hours to perform its auto analysis.
In such cases, you may opt to disable or set an analysis time-out for some of
the more demanding analyzers (for example, Decompiler Switch Analysis,
Decompiler Parameter ID, and Stack). As shown in Figure 4-10, highlight-
ing an analyzer will display a description of the analyzer, which may include
useful warnings about the amount of time the analyzer may take to run.
In addition, you will see the Options frame, which provides you an oppor-
tunity to control some behavioral aspects of the individual analyzers. Any
analysis that you opt to disable or that times out can always be run later
using the options available under Ghidra’s Analysis menu.

AU TO A N A LYSIS WA R NINGS

Once a loader begins to analyze a file, it may encounter issues during analysis
that it deems important enough to warn you about. One example of this occurs
with PE files that have been built without an associated Program Database
(PDB) file. In such cases, once analysis is complete, you will be presented with
an Auto Analysis Summary dialog that includes a message summarizing any
issues encountered (see Figure 4-11).

Figure 4-11: Auto Analysis Summary dialog

In most cases, the messages are simply informational. In some cases, the
messages are instructional, offering you suggestions for ways to resolve an
issue, perhaps by installing an optional, third-party utility for Ghidra to make
use of in the future.

After Ghidra has auto analyzed the file, you can see that the import
summary information has been supplemented with new information about
your file, as shown in Figure 4-12.

Getting Started with Ghidra 51

Figure 4-12: Ghidra HelpAbout ch4_example.exe view of import summary information

Auto Analysis Results
Ghidra’s auto analysis is carried out by running each of the selected analyz-
ers over your newly loaded binary. The Analysis Options dialog, as well as
Ghidra Help, offers descriptions of each analyzer. The default analyzers are
chosen because Ghidra users have historically found them to be the most
useful across a wide range of file types. In the sections that follow, we dis-
cuss some of the most useful information extracted from a binary file dur-
ing its initial loading and subsequent auto analysis.

Compiler Identification

Identifying the compiler used to build a piece of software can help us
understand function-calling conventions used in a binary as well as

52 Chapter 4

determine which libraries the binary may be linked with. If the compiler
can be identified when a file is loaded, Ghidra’s auto analysis will incorpo-
rate knowledge of behaviors specific to the identified compiler. Differences
that you may observe when using different compilers and different compile
time options are the focus of Chapter 20.

Function Argument and Local Variable Identification

Within each identified function (identified from symbol table entries and
addresses that are targets of call instructions), Ghidra performs a detailed
analysis of the behavior of the stack pointer register in order to both rec-
ognize accesses to variables located within the stack and understand the
layout of the function’s stack frame. Names are automatically generated for
such variables based on their use as either local variables within the func-
tion or as stack-allocated arguments passed into the function as part of the
function call process. Stack frames are discussed further in Chapter 6.

Data Type Information

Ghidra uses its knowledge of common library functions and their associ-
ated parameters to identify functions, data types, and data structures used
within each function. This information is added to the Symbol Tree and
Data Type Manager windows as well as the Listing window. This process
saves you a tremendous amount of time by providing information that
would otherwise need to be manually retrieved and applied from various
application programming interface (API) references. Detailed information
about Ghidra’s handling of library functions and associated data types is
discussed in Chapter 8.

Desktop Behavior During Initial Analysis
A tremendous amount of activity takes place within the CodeBrowser desktop
during the initial analysis of a newly opened file. You can gain an understand-
ing of this analysis by watching the analysis updates in the bottom right of
the CodeBrowser window. This also keeps you updated on the progress of the
analysis. If you are not an expert in speed reading, you can open the associ-
ated Ghidra log file and peruse the activities at a more leisurely pace. You can
open the log file from the Ghidra Project window by selecting Help4Show
Log. (Note that the Show Log menu option is available only in the Ghidra
ProjectHelp menu, not in the CodeBrowserHelp menu.)

The following output is from the log file generated by Ghidra during the
auto analysis of ch4_example.exe and is representative of messages generated
during the auto analysis process. The messages form a narrative of the analy-
sis process and offer insight into the sequence of operations performed by
Ghidra as well as the time required for each task during that analysis:

2019-09-23 15:38:26 INFO (AutoAnalysisManager) -----------------------------
 ASCII Strings 0.016 secs
 Apply Data Archives 1.105 secs

Getting Started with Ghidra 53

 Call Convention Identification 0.018 secs
 Call-Fixup Installer 0.000 secs
 Create Address Tables 0.012 secs
 Create Function 0.000 secs
 Data Reference 0.014 secs
 Decompiler Parameter ID 2.866 secs
 Decompiler Switch Analysis 2.693 secs
 Demangler 0.004 secs
 Disassemble Entry Points 0.016 secs
 Embedded Media 0.031 secs
 External Entry References 0.000 secs
 Function ID 0.312 secs
 Function Start Search 0.051 secs
 Function Start Search After Code 0.006 secs
 Function Start Search After Data 0.005 secs
 Non-Returning Functions - Discovered 0.062 secs
 Non-Returning Functions - Known 0.000 secs
 PDB 0.000 secs
 Reference 0.025 secs
 Scalar Operand References 0.074 secs
 Shared Return Calls 0.000 secs
 Stack 0.063 secs
 Subroutine References 0.016 secs
 Windows x86 PE Exception Handling 0.000 secs
 Windows x86 PE RTTI Analyzer 0.000 secs
 WindowsResourceReference 0.100 secs
 X86 Function Callee Purge 0.001 secs
 x86 Constant Reference Analyzer 0.509 secs

 Total Time 7 secs

2019-09-23 15:38:26 DEBUG (ToolTaskManager) task finish (8.128 secs)
2019-09-23 15:38:26 DEBUG (ToolTaskManager) Queue - Auto Analysis
2019-09-23 15:38:26 DEBUG (ToolTaskManager) (0.0 secs)
2019-09-23 15:38:26 DEBUG (ToolTaskManager) task Complete (8.253 secs)

Even before the auto analysis has completed, you can begin navigating
through the various data displays. When the auto analysis is complete, it is
safe to make any changes you like to your project file.

Saving Your Work and Exiting
When you need to take a break from your analysis, it is a good idea to save
your work. This is easy to accomplish in the CodeBrowser window in any of
the following ways:

•	 Use one of the Save options within the CodeBrowser File menu.

•	 Click the Save icon in the CodeBrowser toolbar.

•	 Close the CodeBrowser window.

•	 Save the project in the Ghidra window.

•	 Exit Ghidra through the Ghidra File menu.

54 Chapter 4

In each case, you will be prompted to save any modified files. More
detailed information about changing the appearance and functionality of
CodeBrowser and other Ghidra tools is discussed in Chapter 12.

Ghidra Desktop Tips and Tricks
Ghidra displays a tremendous amount of information, and its desktop
can become cluttered. Here are some quick tips for making the best use
of your desktop:

•	 The more screen real estate you dedicate to Ghidra, the happier you
will be. Use this fact to justify the purchase of a king-size monitor
(or four)!

•	 Don’t forget to use the Window menu in the CodeBrowser as a means
of opening new views or restoring data displays that you have inadver-
tently closed. Many windows can also be opened using tool buttons on
the CodeBrowser toolbar.

•	 When you open a new window, it may appear in front of an existing
window. When this happens, look for tabs at the top or bottom of win-
dows that allow you to switch between them.

•	 You can close any window and reopen it as needed and drag it to a new
location in the CodeBrowser desktop.

•	 The appearance of displays can be controlled using Edit4Tool Options
and locating the associated Display options.

While these pointers are just the tip of the iceberg, they should be help-
ful as you begin to navigate the Ghidra CodeBrowser desktop. Additional
CodeBrowser tips and tricks, including shortcuts and toolbar options, are
discussed in Chapter 5.

Summary
Familiarity with the CodeBrowser desktop will greatly enhance your Ghidra
experience. Reverse engineering binary code is difficult enough without
having to struggle with your tools. The options you choose during the
initial loading phase and the associated analysis performed by Ghidra set
the stage for all of the analysis you will do later. At this point, you may be
content with the work that Ghidra has accomplished on your behalf, and
for simple binaries, this may be all that you need. On the other hand, if you
wonder how you can gain additional control over your reverse engineering
process, you are now ready to dive deeper into the functionality of Ghidra’s
many data displays. In the coming chapters, you will be introduced to each
of the primary displays, the circumstances under which you will find each
one useful, and how to gain mastery of the tools and displays to optimize
your workflow.

At this point, you should have some con-
fidence creating projects, loading binaries

into projects, and initiating auto analysis.
Once Ghidra’s initial analysis phase is complete,

it is time for you to take control. As discussed in
Chapter 4, when you launch Ghidra, your adventure
starts in the Ghidra Project window. When you open a file within one of
your projects, a second window opens. This is the Ghidra CodeBrowser, and
it’s your home base for much of your SRE efforts. You’ve already used the
CodeBrowser to auto analyze your file; now we’ll take a deeper dive into
the CodeBrowser menu, windows, and basic options to increase your aware-
ness of Ghidra’s capabilities and allow you to create an SRE analysis envi-
ronment that is consistent with your personal workflow. Let’s begin with the
principal Ghidra data displays.

5
G H I D R A D A T A D I S P L A Y S

56 Chapter 5

CodeBrowser
You can open the CodeBrowser window by selecting Tools4RunTool
CodeBrowser from the Ghidra Project window. Although CodeBrowser is
generally opened by selecting a file for analysis, we are opening an empty
instance so that the functionality and configuration options can be dem-
onstrated without specific file-related content influencing the display, as
shown in Figure 5-1. In its default configuration, CodeBrowser has six
subwindows. Before we get into the details associated with each of these
displays, let’s spend a little time looking at the CodeBrowser menu and its
associated functionality.

Figure 5-1: Unpopulated CodeBrowser window

At the top of the CodeBrowser window is the main menu with a tool-
bar immediately below. The toolbar provides one-click shortcuts to some
of the most commonly used menu options. As we do not currently have a
file loaded, we will focus on the menu options that are not associated with
a loaded file in this section. Other menu actions will be demonstrated and
explained in context with their applicability to the SRE process.

File  Provides the basic functionality expected in most file manipula-
tion menus, including options for Open/Close, Import/Export, Save,
and Print. In addition, some options are specific to Ghidra, such as

Ghidra Data Displays 57

Tool options, which allow you to save and manipulate the CodeBrowser
tool, and Parse C Source, which can aid in the decompilation process
by extracting data type information from C header files. (See “Parsing
C Header Files” on page 269.)

Edit  Includes one command that is applicable outside individual sub-
windows: the Edit4Tool Options command, which opens a new window
that allows you to control parameters and options associated with the
many tools available from the CodeBrowser. The options related to the
console are shown in Figure 5-2. The Restore Defaults button (revert
to default settings) is always available at the bottom right.

Figure 5-2: CodeBrowser Console edit options

Analysis  Allows you to reanalyze a binary or selectively perform indi-
vidual analysis tasks. The basic analysis options were introduced in
“Analyzing Files with Ghidra” on page 48.

Navigation  Facilitates navigation within files. This menu provides the
basic keyboard functionality supported by many applications and adds
special navigation options for binaries. While the menu provides one

58 Chapter 5

method for moving through a file, you will likely use toolbar options or
shortcuts (listed at the right of each menu option) after you gain expe-
rience with the many options available for navigation.

Search  Provides search capabilities for memory, program text, strings,
address tables, direct references, instruction patterns, and much more.
Basic searching functionality is introduced in “Searching” on page 114.
More specialized search concepts are presented in context as part of the
many examples in subsequent chapters.

Select  Provides the capability to identify a portion of the file to
consider for a specific task. Selections can be based on subroutines,
functions, control flows, or simply by highlighting a desired portion
of the file.

Tools  Includes some interesting features that allow you to place addi-
tional SRE resources on your desktop. One of the most useful is the
Processor Manual option, which brings up the processer manual associ-
ated with the current file. If you attempt to open a missing processor
manual, you will be provided with a method to include the manual, as
shown in Figure 5-3.

Figure 5-3: Missing Processor Manual message

Window  Allows you to configure your Ghidra work environment for
your workflow. We spend most of this chapter introducing and investi-
gating the default Ghidra windows as well as some others that you will
find helpful.

Help  Provides rich, well-organized, and very detailed options. The
Help window supports searching, different views, favorites, zooming
in/out, as well as printing and page setup options.

CodeBrowser Windows
The expanded Window menu can be seen running down the center of
Figure 5-4. By default, six of the available windows are opened when
CodeBrowser is launched: Program Trees, Symbol Tree, Data Type

Ghidra Data Displays 59

Manager, Listing, Console, and Decompiler. The name of each window is
displayed at the top left of the associated window. Each of these windows
appears as an option on the Window menu, and some also have associated
icons on the toolbar directly below the menu. (As an example, we’ve used
arrows in Figure 5-4 to highlight the toolbar option and menu option for
opening and accessing the Decompiler window.)

Figure 5-4: CodeBrowser window with options to display Decompiler window emphasized

Let’s dive into the six default windows to understand their fundamental
importance in the SRE process.

HOT KE YS A ND BU T TONS A ND BA RS, OH M Y !

Almost all commonly used actions within Ghidra have an associated menu
item, hotkey, and toolbar button. If they don’t, you have the power to create
them! The Ghidra toolbar is highly configurable, as is the mapping of hotkeys
to menu actions. (See CodeBrowser Edit4Tool OptionsKey Bindings or just
hover over a command and press F4.) As if this wasn’t enough, Ghidra also
offers good, context-sensitive menu actions in response to right mouse clicks.
While these context-sensitive menus do not offer an exhaustive list of permis-
sible actions at a given location, they do serve as good reminders for the most
common actions you will be performing. This flexibility allows you to perform
an action using the means most comfortable to you and to customize the envi-
ronment as you discover how Ghidra can work for you.

60 Chapter 5

W INDOW INSIDE RS A ND OU T SIDE RS

As you begin exploring the various Ghidra windows, you will notice that,
by default, some windows open within the CodeBrowser desktop and others
open as new floating windows outside the CodeBrowser desktop. Let’s take
a minute to talk about these “insiders” and “outsiders” in the context of the
Ghidra environment.

The “outsider” windows float outside the CodeBrowser environment and
may be connected or independent. These windows allow you to explore their
contents side by side with CodeBrowser. Examples of these windows are
Function Graph, Comments, and Memory Map.

Next, there are three distinct classes of “insider” windows:

•	 Windows that open by default in CodeBrowser (for example, Symbol Tree
and Listing)

•	 Windows that are stacked with a default CodeBrowser window (for
example, Bytes)

•	 Windows that create or share space with other CodeBrowser windows
(for example, Equates and External Programs)

When you open a window that shares a space with another open win-
dow, it appears in front of the existing window. All windows sharing the same
space are tabbed to allow rapid navigation between windows. If you want to
view two windows that share a space simultaneously, you can click the title bar
of the window and drag it outside the CodeBrowser window.

But be careful! Getting windows back into the CodeBrowser window is
not as easy as moving them out. (See “Rearranging Windows” on page 242
for more details.)

W HE R E’S M Y W INDOW ?

Ghidra has a lot of windows, and it can be challenging to keep track of where
they are at any particular time. This becomes even more complicated as you
open more windows and others disappear behind them in CodeBrowser or
on your desktop. Ghidra has a unique feature to help you locate those miss-
ing windows. Clicking the associated toolbar icon or menu item will move the
selected window to the front, but that might not be enough. If you continue
clicking the toolbar icon for the window, your missing window will try to catch
your attention by vibrating, changing font size or colors, zooming, spinning,
and other exciting motions that are sure to catch your eye to help you find it. If
you are bored, you can wave back.

Ghidra Data Displays 61

The Listing Window
Also known as the Disassembly window, the Listing window will be your
primary tool for viewing, manipulating, and analyzing Ghidra-generated
disassemblies. The text display presents the entire disassembly listing of a
program and provides the primary means for viewing the data regions of
a binary.

The CodeBrowser display for ch5_example1.exe is shown in its default
configuration in Figure 5-5. The margin to the left of the Listing window
provides important information about the file as well as your location
within the file. There is an additional marker area on the right side of the
Listing window (immediately to the right of the vertical scroll bar) that also
provides important information and navigational capabilities. The scroll
bar indicates your location within the file and can be used for navigation.
To the immediate right of the scroll bar are some informational displays,
including bookmarks, that provide additional insight into the file.

Figure 5-5: Default CodeBrowser window with ch5_example1.exe loaded

62 Chapter 5

YOUR FAVOR I T E BA RS

After a file is auto analyzed, you can use informational margin bars to help
you navigate and further analyze the file. By default, only the Navigation bar
is displayed. You can choose to add (or hide) the Overview bar and Entropy
bar by using the Toggle Overview Margin tool button at the top right of the
Listing window (see Figure 5-6). Regardless of which bars are displayed, a
navigation marker to the left of all of the bars reminds you of where you are in
the file. Left-clicking any location in any of the bars will move you to that loca-
tion in the file and update the contents of the Listing window.

Now that you know how to control the appearance (and disappearance)
of the bars, let’s investigate what each bar shows and how you might use it in
your SRE process:

Navigation Marker area  Allows you to move through the file, but it also
has another very important function: if you right-click the Navigation
Marker area, you will see the classes of markers and bookmarks that can
be associated with your file. By selecting and deselecting marker types,
you can control what is displayed in the Navigation bar. This allows you
to easily move through particular types of markers (such as highlights).

Overview bar  Provides you with important visual information about the
contents of a file. The horizontal bands in the Overview bar represent
color-coded regions of the program. While Ghidra provides default colors
associated with common categories, such as functions, external refer-
ences, data, and instructions, you can control the color scheme through
the Edit4Tool Options menu. By default, if you hover over a region, you
can view detailed information about that region, including the region type
and an associated address, if applicable.

Entropy bar  Provides a unique Ghidra functionality: it “stereotypes” file
content based on the file content around it. If there is very little variation
within a region, it is assigned a low entropy value. If there is high degree
of randomness, the corresponding entropy value is high. Hovering your
mouse over a horizontal band in the Entropy bar will give you the entropy
value (between 0.0 and 8.0), a type (for example, .text), as well as the
associated address in the file. The highly configurable Entropy bar can be
used to help determine the most likely content in the band. More informa-
tion about this capability and the mathematics behind it can be discov-
ered in the Ghidra Help menu.

Ghidra Data Displays 63

Figure 5-6 provides a breakdown of tool buttons specific to the Listing
window. In Figure 5-7, we have expanded and zoomed in on the Listing win-
dow to investigate what is shown. The disassembly is presented in linear
fashion, with the leftmost column displaying virtual addresses by default.

Copy

Paste

Toggle Mouse Hover
Popups

Browser Field Formatter

Open Diff View

Snapshot

Toggle Overview Margin
Displays

This functionality is available in the number of Ghidra windows and varies based
on the window in which they appear as well as the content that is selected when
the operation is activated. In some cases with incompatible content, you will see
an error message.

This button allows you to choose whether you want mouse hovers to display
information or not.

This allows you to format the Listing window. (See Chapter 12.)

This allows you to compare two files. (See Chapter 23.)

This button creates and opens a disconnected copy of the Listing window.

This toggle allows you to choose if the entropy and overview bars are displayed.

Figure 5-6: Listing window tool buttons

Declarations

Flow arrows

Margin marker

Cross-reference

Figure 5-7: Listing window with labeled example artifacts

64 Chapter 5

Within the Listing window are several items that merit your attention.
The gray band at the far left of the window is the margin marker. It is used
to indicate your current location in the file and includes point markers and
area markers, which are described in Ghidra Help. In this example, the cur-
rent file location (004011b6) is indicated in the margin marker by the small
black arrow.

The region immediately to the right of the margin marker is used to
graphically depict nonlinear flow within a function.1 When the source or
target address for a control flow instruction is visible in the Listing window,
associated flow arrows appear. Solid arrows represent unconditional jumps,
while dashed arrows represent conditional jumps. Hovering over a flow line
opens a tool tip that displays the start and end address of the flow along
with the flow type. When a jump (conditional or unconditional) transfers
control to an earlier address in the program, it is often indicative of a loop.
This is demonstrated in Figure 5-7 by the flow arrow from address 004011cf
to 004011c5. You can easily navigate to the source or destination of any jump
by double-clicking the associated flow arrow.

The declarations at the top of Figure 5-7 show Ghidra’s best estimate
concerning the layout of the function’s stack frame.2 Ghidra computes
the structure of a function’s stack frame (local variables) by performing
detailed analysis of the behavior of the stack pointer and any stack frame
pointer used within a function. Stack displays are discussed further in
Chapter 6.

Listings generally have numerous data and code cross-references indi-
cated by XREF, seen on the right side of Figure 5-7. A cross-reference is
created anytime one location in the disassembly refers to another location
in the disassembly. For example, an instruction at address A jumping to an
instruction at address B would result in the creation of a cross-reference
from A to B. Hovering over a reference address causes a reference pop-up
to appear with the referencing location. The reference pop-up is in the
same layout as the Listing window but has a yellow background (similar to
a tool tip pop-up). The pop-up window allows you to view the content but
does not allow you to follow the references. Cross-references are the subject
of Chapter 9.

Creating Additional Disassembly Windows
If you ever find yourself wanting to view a listing of two functions simultane-
ously, all you need to do is open another disassembly window by using the
Snapshot icon in the Listing toolbar (refer to Figure 5-6). The first disassembly

1. Ghidra uses the term flow to indicate how execution can continue from a given instruction.
A normal (also called ordinary) flow indicates default sequential execution of instructions. A
jump flow indicates that the current instruction jumps (or may jump) to a nonsequential loca-
tion. A call flow indicates that the current instruction calls a subroutine.

2. A stack frame (or activation record) is a block of memory, allocated in a program's runtime
stack, that contains both the parameters passed into a function and the local variables
declared within the function. Stack frames are allocated upon entry into a function and
released as the function exits. Stack frames are discussed in more detail in Chapter 6.

Ghidra Data Displays 65

CONF IGUR ING L IS T ING W INDOW S

A disassembly listing may be decomposed into a number of component fields,
including information such as a mnemonic field, an address field, and a comment
field. The listings we have seen so far have been composed from a default set of
fields that provide important information about the file. However, sometimes the
default view does not provide the information you would like to see. Enter the
Browser Field Formatter.

The Browser Field Formatter provides you the ability to customize over 30
fields to ensure you have ultimate control over the appearance of your Listing
windows. You can activate the Browser Field Formatter by clicking the button in
the Listing toolbar (refer to Figure 5-6). This opens a powerful submenu and layout
editor, seen in Figure 5-8, at the top of the listing. The Browser Field Formatter
allows you to control the appearance of address breaks, plate comments, func-
tions, variables, instructions, data, structures, and arrays. Within each of these
categories are fields that you can adjust, tune, and control to create the perfect
listing format for you. We stick primarily with the default formats for listings, but
you should explore the Browser Field Formatter to determine whether any options
improve your understanding of the Listing window contents.

Figure 5-8: Listing window with Browser Field Formatter activated

66 Chapter 5

window opened has the prefix Listing: before the filename. All subsequent
disassembly windows are titled [Listing: <filename>] to indicate that they are
disconnected from the primary display. The snapshots are disconnected so
you can navigate freely through them without affecting other windows.

Ghidra Function Graph View
While assembly listings are interesting and informative, the flow of the pro-
gram might be easier to understand by viewing a graph-based display. You
can open a Function Graph window associated with the CodeBrowser by
choosing WindowFunction Graph or clicking the associated icon in the
CodeBrowser toolbar. The Function Graph window corresponding to the
function in Figure 5-7 is shown in Figure 5-9. Graph views are somewhat rem-
iniscent of program flowcharts in that a function is broken into basic blocks
so you can visualize the function’s control flow from one block to another.3

Figure 5-9: Graph view of listing from Figure 5-7

3. A basic block is a maximal sequence of instructions that executes, without branching, from
beginning to end. Each basic block has a single entry point (the first instruction in the block)
and a single exit point (the last instruction in the block). The first instruction in a basic block
is often the target of a branching instruction, while the last instruction in a basic block is
often a branch instruction.

Ghidra Data Displays 67

Onscreen, Ghidra uses different-colored arrows to distinguish various
types of flows between the blocks of a function. In addition, the flows become
animated as you mouse over them to indicate direction. Basic blocks that ter-
minate with a conditional jump generate two possible flows: the Yes edge arrow
(yes, the tested condition was met) is green by default, and the No edge arrow
(no, the tested condition was not met) is red by default. Basic blocks that
terminate with only one potential successor block use a Normal edge (blue by
default) to point to the next block to be executed. You can click any arrow
to see the associated transition from one block to another. Since the graph
and listing tools are synchronized by default, your file location will gener-
ally remain consistent when switching between and navigating within the
listing view and graph view. Exceptions are discussed in Chapter 10 as well
as in Ghidra Help.

In graph mode, Ghidra displays one function at a time. Ghidra facili-
tates navigation around the graph by using traditional image interaction
techniques such as pan and zoom. Large or complex functions may cause
the graph to become extremely cluttered, making the graph difficult to navi-
gate, which is where the Satellite View can help you. By default, the Satellite
View is positioned at the bottom right of the graph window and can be a valu-
able aid to provide some situational awareness (see Figure 5-9).

S AT E L L I T E N AV IG AT ION

The Satellite View always displays the complete block structure of the graph
along with a highlighted frame that indicates the region of the graph currently
being viewed in the disassembly window. Clicking any block in the Satellite
View centers the graph around that block. The highlighted frame acts as a lens
and can be dragged around the overview window to rapidly reposition the
graph view to any location on the graph. In addition to providing a means to
navigate the Function Graph window, this magical window has other powers
that can work for or against you as you examine files.

This window consumes valuable space in your Function Graph window
and can hide important blocks and contents just when you want to see them.
There are two approaches to remedy this situation. You can right-click the
Satellite View and uncheck the Dock Satellite View checkbox. This will move
the Satellite View and its full functionality outside the Function Graph window.
Rechecking the option at any time will move it back to its original location in
the Function Graph window.

A second option is to hide the Satellite View, provided you don’t need to use
it to navigate. This is another checkbox available in the right-click context menu.
When you hide the Satellite View, a small icon will appear in the bottom right of
the Function Graph window. Clicking this icon will restore the Satellite View.

When visible, the Satellite View can cause the primary view to behave more
slowly than desired. Hiding the Satellite View can help to make it more responsive.

68 Chapter 5

In addition to navigating with the Satellite View, you can manipulate the
view within the Function Graph window in many ways to suit your needs:

Panning  First, in addition to using the Satellite View to rapidly reposi-
tion the graph, you can reposition the graph by clicking and dragging
the background to change the graph view.

Zooming  You can zoom in and out using traditional keyboard meth-
ods such as ctrl/command, a mouse scroll, or associated key bindings.
If you zoom out too far, you may pass the painting threshold, where the
block contents are no longer displayed. Each block just becomes a col-
ored rectangle. In some cases, particularly when working side by side
with the Listing window, this might be advantageous, as it improves the
speed at which the function graph can be rendered.

Rearranging blocks  Individual blocks within the graph can be dragged
to new positions by clicking the title bar for the desired block and drag-
ging it to a new position. All links between blocks are preserved as you
move the blocks. If at any point you find yourself wishing to revert to the
default layout for your graph, you can do so by selecting the Refresh icon
in the Function Graph toolbar.

Grouping and collapsing blocks  Blocks can be grouped, either indi-
vidually or together with other blocks, and collapsed to reduce the

TOOL S M A KING CONNEC T IONS

Tools can operate together or independently. We have seen how the Listing
window and the Function Graph window share data and how events that occur
in one window affect the other. If you select a particular block in the Function
Graph window, the corresponding code will be highlighted in the Listing
window. Conversely, navigating between functions in the Listing window will
cause the Function Graph window to be updated. This is one of the many tool
connections that happens automatically and is bidirectional. Ghidra also has
capabilities for unidirectional connections as well as the ability to manually
connect and disconnect tools using a producer/consumer model associated
with tool events. In this book, we focus on the bidirectional automatic tool con-
nections that Ghidra provides.

Ghidra Data Displays 69

clutter in the display. Grouping causes a block to collapse. Collapsing
blocks is an easy method to keep track of the blocks you have analyzed.
You can collapse any block by choosing the Group icon in the far right
of the block toolbar. If you choose this option with multiple blocks
selected, they will be collapsed, and the list of associated blocks will
be displayed in the stacked window. Some nuances are associated with
forming/unforming groups as well as performing actions on the newly
formed groups that are explained in Ghidra Help.

CUS TOMI Z ING YOUR GR A PH DISPL AY

To help you with your analysis, Ghidra provides a menu bar at the top of each
node in the Function Graph display that allows you to control the display for
that particular node. You can control background/text color for the node,
jump to an XREF, view a full window listing of the graph node, and use group-
ing functionality to combine and collapse nodes. (Note that changing the
background for a block in the Function Graph also changes the background
in the Listing window.) Some of these features might be unnecessary if you
are actively using the Listing window in conjunction with the Function Graph
window, but the customization options may be helpful and are certainly worth
investigating. These options are discussed further in Chapter 10.

As the graph-based display opens in a window external to CodeBrowser,
you can view the two displays side by side. Because the windows have a
connection, changing locations in one of the windows moves the location
marker in the other window. While many users tend to prefer one view over
the other to visualize program flow, you don’t have to choose only one.
Also, keep in mind that your control over the graph and text views extends
far beyond these examples. Additional Ghidra graphing capabilities are
covered in Chapter 10, while more information on the manipulation of
Ghidra’s view options is available in Ghidra Help.

For the next five chapters, we primarily focus on the listing display for
examples, supplemented with the graph display in cases where it adds sig-
nificant clarity. In Chapter 6 we will focus on understanding a Ghidra disas-
sembly, and in Chapter 7, we cover the specifics of manipulating the listing
display in order to clean up and annotate a disassembly.

70 Chapter 5

MOV ING A ROUND

In addition to traditional means of navigating a file (up arrow, down arrow,
page up, page down, and so on), Ghidra provides navigation tools specific
to the SRE process. The icons in the Navigation toolbar (shown in Figure 5-10)
make it easy to move through the program. Let’s meet the icons that serve the
reverse engineer.

Figure 5-10: CodeBrowser Navigation toolbar

On the far left is the Direction icon. This arrow toggles between up and
down and controls the direction for all of the other navigation icons. The next
eight icons advance you through the various targets shown in Figure 5-11.

Instruction

Data

Undefined

Label

Function

Instruction not in the function

Different byte value

Bookmark (all types)

Figure 5-11: Navigation toolbar
definitions

Rather than just advancing you to the next data in the listing, choosing the
Data option skips over adjacent data and takes you to the start of the next non-
adjacent data. Instruction and Undefined demonstrate the same behavior.

The drop-down arrow at the far right of the Navigation toolbar displays a
list that allows you to select among specific bookmark types for quick navigation.
While used primarily with the Listing window, these navigation shortcuts work in
all windows that are connected to the Listing window. Navigating within any of
these windows results in synchronous navigation in all connected windows.

Ghidra Data Displays 71

The Program Trees Window
Let’s return to our discussion of the default CodeBrowser windows by tak-
ing a brief look at the Program Trees window, shown in Figure 5-12.

Figure 5-12: Program Trees window

This window shows your program organized into folders and fragments
and provides you with the ability to refine the organization that takes place
during auto analysis. Fragment is a Ghidra term for a contiguous range of
addresses. Fragments may not overlap one another. A more traditional
name for a fragment is a program section (for example, .text, .data, and .bss).
Program tree–related operations include the following:

•	 Create folder/fragment

•	 Expand/Collapse/Merge folders

•	 Add/Remove folders/fragments

•	 Identify content in Listing window and move to a fragment

•	 Sort by name/address

•	 Select addresses

•	 Copy/Cut/Paste fragment/folders

•	 Reorder folders

The Program Trees window is a connected window, so clicking a frag-
ment in the window navigates you to that location in the Listing window.
More information about the Program Trees window can be found in
Ghidra Help.

72 Chapter 5

The Symbol Tree Window
When you import a file into a Ghidra project, a Ghidra loader module is
selected to load the file content. When present in the binary, the loader is
capable of extracting symbol table information (discussed in Chapter 2)
for display in the Symbol Tree window shown in Figure 5-13. The Symbol
Tree window includes the imports, exports, functions, labels, classes, and
namespaces associated with a program. Each of these categories and associ-
ated symbol types are discussed in the sections that follow.

Figure 5-13: CodeBrowser Symbol
Tree window

All six of the Symbol Tree folders can be controlled by the filter at the
bottom of the Symbol Tree window. This functionality will become more
valuable as you get to know the file that you are analyzing. In addition, you
will find the Symbol Tree window offers functionality similar to command
line tools such as objdump (-T), readelf (-s), and dumpbin (/EXPORTS).

Imports

The Imports folder in the Symbol Tree window lists all functions that are
imported by the binary being analyzed. It is relevant only when a binary
makes use of shared libraries—statically linked binaries have no external
dependencies and therefore no imports. The Imports folder lists imported

Ghidra Data Displays 73

libraries with entries for each item (function or data) imported from that
library. Clicking any symbol within the Symbol Tree view jumps all con-
nected displays to the selected symbol. In our sample Windows binary,
clicking the GetModuleHandleA in the Imports folder would jump the disassembly
window to the import address table entry for GetModuleHandleA, which in this
example resides at address 0040e108, as shown in Figure 5-14.

Figure 5-14: Import address table entry and associated location in Listing window

An important point to remember about the Imports category is that it
displays only the symbols named in the binary’s import table. Symbols that
a binary chooses to load on its own using a mechanism such as dlopen/dlsym
or LoadLibrary/GetProcAddress will not be listed in the Symbol Tree window.

Exports

The Exports folder lists the entry points into the file. These include the
program’s execution entry point, as specified in its header section, along
with any functions and variables that the file exports for use by other
files. Exported functions are commonly found in shared libraries such as
Windows DLL files. Exported entries are listed by name, and the corre-
sponding virtual address will be highlighted in the Listing window when
the export is selected. For executable files, the Exports folder always contains
at least one entry: the program’s execution entry point. Ghidra may name
this symbol entry or _start, depending on the binary’s type.

Functions

The Functions folder contains a list of every function that Ghidra has iden-
tified in the binary. Hovering over a function name in the Symbol Tree
window generates a pop-up with detailed information about the function,
as shown in Figure 5-15. As part of the loading process, the loader utilizes
various algorithms, including file structure analysis and byte sequence
matching to infer the compiler that was used to create the file. During the
analysis phase, the Function ID analyzer utilizes the compiler identification

74 Chapter 5

information to perform hash-based function body matching in order to
identify the presence of library function bodies that may have been linked
into the binary. When a hash match is made, Ghidra retrieves the matched
function’s name from the hash database (contained in Ghidra .fidbf files)
and adds the name as a function symbol. Hash matching is particularly
useful on stripped binaries, as it provides a means of symbol recovery that
is independent of the presence of a symbol table. This functionality is dis-
cussed in more depth in “Function IDs” on page 272.

Figure 5-15: Symbol Tree Functions folder pop-up

Labels

The Labels folder is the data equivalent of the Functions folder. Any data
symbols contained in a binary’s symbol table will be listed in the Labels
folder. In addition, anytime you add a new label name to a data address,
that label will be added to the Labels folder.

Classes

The Classes folder contains an entry for each class identified by Ghidra
during its analysis phase. Under each, Ghidra lists the identified data and
methods that may assist you in understanding the behavior of the class.

Ghidra Data Displays 75

C++ classes and the structures that Ghidra uses to populate the classes
folder are discussed in more detail in Chapter 8.

Namespaces

In the Namespaces folder, Ghidra may create new namespaces to provide
organization and ensure that assigned names do not conflict in the binary.
For example, a namespace may be created for each identified external
library or for each switch statement that uses jump tables (allowing jump
table labels to be reused in other switch statements without conflicting).

The Data Type Manager Window
The Data Type Manager window allows you to locate, organize, and apply
data types to your file by using a system of data type archives. Archives rep-
resent Ghidra’s accumulated knowledge of predefined data types gleaned
from header files included with most popular compilers. By processing
header files, Ghidra understands the data types that are expected by com-
mon library functions and can annotate your disassembly and decompiler
listings accordingly. Similarly, from these header files, Ghidra understands
both the size and layout of complex data structures. All of this information
is collected into archive files and applied anytime a binary is analyzed.

Referring back to Figure 5-4, you can see that the root of the
BuiltInTypes tree, which contains primitive types like int that cannot be
changed, renamed, or moved within a data type archive, is displayed in the
Data Type Manager window (bottom left of the CodeBrowser window) even
without a program loaded. In addition to the built-in types, Ghidra supports
the creation of user-defined data types, including structures, unions, enums,
and typedefs. It also supports arrays and pointers as derived data types.

Each file you open has an associated entry in the Data Type Manager
window, as shown previously in Figure 5-5. The folder shares the name of
the current file and entries within the folder are specific to the current file.

The Data Type Manager window displays nodes for each of the data type
archives that are open. Archives can be opened automatically, such as when
a program references an archive, or manually by the user. Data types and the
Data Type Manager are covered in more detail in Chapters 8 and 13.

The Console Window
The Console window at the bottom of the CodeBrowser window serves as
Ghidra’s output area for plugins and scripts, including those you develop
yourself, and is the place to look for information on tasks Ghidra is per-
forming as you work with a file. Developing scripts and plugins is intro-
duced in Chapters 14 and 15.

The Decompiler Window
The Decompiler window allows you to simultaneously view and manipulate
assembly and C representations of your binary through connected win-
dows. The C representation that is generated by the Ghidra decompiler

76 Chapter 5

isn’t always perfect, but it can be very useful in helping you to understand
a binary. Basic functionality provided by the decompiler includes recovery
of expressions, variables, function parameters, and structure fields. The
decompiler is also often capable of recovering a function’s block structure,
which tends to get obscured in assembly language, which is not block struc-
tured and makes extensive use of goto (or equivalent) statements to appear
block structured.

The Decompiler window displays a C representation of a function
selected in the Listing window, as shown in Figure 5-16. Depending on your
experience with assembly language, the decompiled code may be much
easier to understand than the code in the Listing window. Even beginning
programmers should be able to identify the infinite loop in the decompiled
function. (The while loop condition is dependent on the value of param_3,
which is not modified within the loop.)

Figure 5-16: Listing and Decompiler windows

The Decompiler window icons are shown in Figure 5-17. You can use the
Snapshot icon to open additional (disconnected) Decompiler windows if you
want to compare the decompiled version of multiple functions or continue
viewing a particular function while moving elsewhere in the Listing window.
The Export icon allows you to save the decompiled function to a C file.

Within the Decompiler window, context menus are available through
right-clicking that allow you to perform actions associated with a highlighted

Ghidra Data Displays 77

item. The options associated with one of the function parameters, param_1,
are shown in Figure 5-18.

Re-decompile This button re-decompiles the listing when selected.

Copy This button copies the selected content from the Decompiler window to the
Ghidra clipboard.

Export This button exports the decompiled function and lets you choose a file
destination.

Snapshot This button creates and opens a disconnected copy of the Decompiler window.

Debug Function
Decompilation

This button runs the decompiler and saves all associated information to an
XML file.

Figure 5-17: Decompiler window toolbar

Figure 5-18: Decompiler window options for function parameters

78 Chapter 5

Decompilation is an extraordinarily complicated process, and decom-
piler theory remains an active research area. Unlike disassembly, whose
accuracy can be verified against manufacturers’ reference manuals, there
are no reference manuals that provide canonical translations of assem-
bly language back to C (or C to assembly for that matter). In fact, while
Ghidra’s decompiler always generates C source code, it may be the case that
the binary the decompiler is analyzing was originally written in a language
other than C, and many of the decompiler’s C-oriented assumptions may
not hold at all.

As with most complex plugins, the decompiler has idiosyncrasies, and
the quality of its output depends, to a large extent, on the quality of its
input. Many of the issues and irregularities in the Decompiler window can
be traced back to issues with the underlying disassembly, so if the decom-
piled code doesn’t make sense, you may need to spend time improving the
quality of the disassembly. In most cases, this involves annotating the dis-
assembly with more accurate data type information, which is discussed in
Chapters 8 and 13. We continue to explore the decompiler’s capabilities in
subsequent chapters and discuss it in depth in Chapter 19.

Other Ghidra Windows
In addition to the six default windows, you can open other windows to
support your SRE process with alternate or specialized views into the file.
The list of available windows is displayed from the Window menu, shown
previously in Figure 5-4. The utility of these displays depends on both the
characteristics of the binary you are analyzing and your skill with Ghidra.
Several of these windows are sufficiently specialized to require more detailed
coverage in later chapters, but we introduce some common ones here.

The Bytes Window
The Bytes window provides a raw look at the byte-level content of the
file. By default, the Bytes window opens on the upper-right side of the
CodeBrowser and provides a standard hex dump display of the program
contents with 16 bytes per line. The window doubles as a hex editor and
can be configured to display a variety of formats by using the Settings tool
in the Bytes window toolbar. In many cases, it might be helpful to add the
ASCII display to the Bytes window, as shown in Figure 5-19. The figure also
shows the Byte Viewer Options dialog and toolbar icons for editing or snap-
shotting the byte view.

Ghidra Data Displays 79

Figure 5-19: Synchronized hex and disassembly views with Toggle and Snapshot
icons emphasized

As with the Listing window, several Bytes windows can be opened
simultaneously using the Snapshot icon (see Figure 5-19) in the Bytes
window toolbar. By default, the first Bytes window has a connection to the
Listing window, so scrolling in one window and clicking an element causes
the other window to scroll to the same location (same virtual address).
Subsequent Bytes windows are disconnected, which allows you to scroll
through them independently. When a window is disconnected, the window
name appears within square brackets in the window title bar.

To turn the Bytes window into a hex (or ASCII) editor, simply toggle the
pencil icon highlighted in Figure 5-19. The cursor will turn red to indicate
that you can edit, though you will not be able to edit at addresses that contain
an existing code item such as an instruction. When you are finished editing,
toggle the icon again and you will be back in read-only mode. (Note that any
changes will not be reflected in disconnected Bytes windows.)

If the Hex column displays question marks rather than hex values,
Ghidra is telling you that it is not sure what values might occupy a given vir-
tual address range. Such is the case when a program contains a bss section,4
which typically occupies no space within a file but is expanded by the loader
to accommodate the program’s static storage requirements.

4. A bss section is created by a compiler to house all of a program’s uninitialized, static vari-
ables. Since no initial value is assigned to these variables, there is no need to allocate space
for them in the program’s file image, so the section’s size is noted in one of the program’s
headers. When the program is executed, the loader allocates the required space and initial-
izes the entire block to zero.

80 Chapter 5

The Defined Data Window
The Defined Data window displays a string representation of data defined
in the current program, view, or selection, along with the associated
address, type, and size, as shown in Figure 5-20. As with most of the colum-
nar windows, you can sort by any column in ascending or descending order
by clicking the column header. Double-clicking any row in the Defined
Data window causes the Listing window to jump to the address of the
selected item.

When used with cross-references (discussed in Chapter 9), the Defined
Data window provides the means to rapidly spot an interesting item and
to track back to any location in the program that references that item with
only a few clicks. For example, you might see the string "SOFTWARE\Microsoft​
\Windows\Current Version\Run" listed and wonder why an application is refer-
encing this particular key within the Windows registry, and then discover
that the program is setting that registry key to automatically start itself
when Windows boots.

Figure 5-20: Defined Data window with
Filter icon emphasized

The Defined Data window has extensive filtering capabilities. In addi-
tion to the Filter bar at the bottom of the window, a Filter icon at the top
right (emphasized in Figure 5-20) allows you to control additional data type
filter options, as shown in Figure 5-21.

Ghidra Data Displays 81

Figure 5-21: Defined data type filter options

Every time you close the Set Data Type Filter dialog by clicking OK,
Ghidra will regenerate the Defined Data window contents in accordance
with the new settings.

The Defined Strings Window
The Defined Strings window displays strings that have been defined in the
binary. An example of this window is shown in Figure 5-22. In addition to
the default columns displayed in the figure, you can add columns by right-
clicking in the row of column titles. Perhaps one of the most interesting
available columns is the Has Encoding Error flag, which can be indicative
of an issue with the character set or misidentification of a string. In addi-
tion to this window, substantial string search functionality is available in
Ghidra. This is discussed in Chapter 6.

82 Chapter 5

Figure 5-22: Defined Strings window

The Symbol Table and Symbol References Windows
The Symbol Table window provides a summary listing of all the global
names within a binary. Eight columns are displayed by default, as shown in
Figure 5-23. The window is highly configurable, with the capability to add
and delete columns in the display as well as to sort in ascending or descend-
ing order on any column. The first two default columns are Name and
Location. A name is nothing more than a symbolic description given to a
symbol defined at a location.

The Symbol Table is connected to the Listing window but provides the
capability to control its interaction with the Listing window. The empha-
sized icon on the right in Figure 5-23 is a toggle that determines whether a
single click on a location in the Symbol Table window causes a related move
in the Listing window. Regardless of the toggle selection, double-clicking
any Symbol Table location entry will immediately jump the Listing view to
display the selected entry. This provides a useful tool for rapidly navigating
to known locations within a program listing.

Ghidra Data Displays 83

Figure 5-23: Symbol Table window with Display Symbol References and Navigation
Toggle icons emphasized

There is extensive filtering capability available in the Symbol Table
window and several ways to access the filtering options. The cog icon in
the toolbar opens the Symbol Table Filter dialog. The dialog (with the
Use Advanced Filters box checked) is shown in Figure 5-24. In addition
to this dialog, you can use the Filter options at the bottom of the window.
Thorough discussions of the symbol table filtering options are available in
Ghidra Help.

The emphasized icon on the left in Figure 5-23 is the Display Symbol
References icon. Clicking this icon adds the Symbol References window to
the Symbol Table window. By default, these two tables will appear side by
side. To improve readability, you can drag the Symbol References window
below the Symbol Table window, as shown in Figure 5-25. The connection
between these two tables is unidirectional, with the Symbol References
table being updated when a selection is made in the Symbol Table.

84 Chapter 5

Figure 5-24: Symbol Table Filter dialog

Figure 5-25: Symbol Table with Symbol References

Ghidra Data Displays 85

Like the Symbol Table window, the Symbol References window has the
same column organization controls. In addition, the content of the Symbol
References window is controlled by the three icons (S, I, and D) at the top
right of the Symbol References toolbar. These options are mutually exclu-
sive, meaning only one can be selected at a time:

S icon  When this icon is selected, the Symbol References window will dis-
play all references to the symbol that you have selected in the Symbol Table.
Figure 5-25 shows a Symbol References window with this option selected.

I icon  When this icon is selected, the Symbol References window
will display all instruction references from the function that you have
selected in the Symbol Table. (This list will be empty if you did not
select a function entry point.)

D icon  When this icon is selected, the Symbol References window will
display all data references from the function that you have selected in
the Symbol Table. This list will be empty if you did not select a function
entry point or if the function makes no references to any data symbols.

The Memory Map Window
The Memory Map window displays a summary listing of the memory blocks
present in the program, as shown in Figure 5-26. Note that what Ghidra
terms memory blocks are frequently called sections when discussing the struc-
ture of binary files. Information presented in the window includes the
memory block (section) name, start and end addresses, length, permission
flags, block type, initialized flag, as well as a space for source filename and
user comments. The start and end addresses represent the virtual address
range to which the program sections will be mapped at runtime.

Figure 5-26: Memory Map window

Double-clicking any start or end address in the window jumps the
Listing window (and all other connected windows) to the specified address.
The Memory Map window toolbar provides options to add/delete blocks,
move blocks, split/merge blocks, edit addresses, and set a new image base.

86 Chapter 5

These features are particularly useful when reverse engineering files with
nonstandard formats, as the binary’s segment structure may not have been
detected by the Ghidra loader.

Command line counterparts to the Memory Map window include
objdump (-h), readelf (-S), and dumpbin (/HEADERS).

The Function Call Graph Window
In any program, a function can both call and be called by other functions.
The Function Call Graph window shows the immediate neighbors of a
given function. For our purposes, we will call Y a neighbor of X if Y directly
calls X or if X directly calls Y. When you open the Function Call Graph
window, Ghidra determines the neighbors of the function in which the cur-
sor is positioned and generates the associated display. This display shows a
function in the context it is used in the program file, but it is just a part of
the big picture.

Figure 5-27 shows a function named FUN_0040198c that is called from
FUN_00401edc and, in turn, makes calls to six other functions. Double-clicking
any function in the window immediately jumps the Listing window and
other connected windows to the selected function. Ghidra cross-references
(XREFs) are the mechanisms that underlie the generation of the Function
Call Graph window. XREFs are covered in more detail in Chapter 9.

Figure 5-27: Function Call Graph window

Ghidra Data Displays 87

Summary
At first glance, the number of displays that Ghidra offers can seem over-
whelming. You may find it easiest to stick with the default displays until you
are comfortable enough to begin exploring the additional display offerings.
In any case, you should certainly not feel obligated to use everything that
Ghidra throws at you. Not every window will be useful in every reverse engi-
neering scenario.

One of the best ways to familiarize yourself with Ghidra’s displays is sim-
ply to browse around the various tabbed subwindows that Ghidra populates
with data about your binary and also open a few of the other available win-
dows. The efficiency and effectiveness of your reverse engineering sessions
will improve as your comfort level with Ghidra increases.

 W HO’S C A L L ING?

While the Function Call Graph window is helpful, sometimes you need the
big picture, or at least a bigger picture. The Function Call Trees window
(WindowFunction Call Trees) allows you to see all calls to and from a
selected function. The Function Call Trees window (as shown in Figure 5-28)
has two sections: one for incoming calls and one for outgoing calls. Both
incoming and outgoing calls can be expanded and collapsed, as desired.

Figure 5-28: The Function Call Trees view

If you open the Function Call Tree window with the entry function selected,
you can view a hierarchical representation of the program’s function calls.

88 Chapter 5

Ghidra is a very complex tool. In addition to the windows covered in
this chapter, you may encounter additional dialogs as you endeavor to mas-
ter Ghidra. We introduce key dialogs as they become relevant throughout
the remainder of the book.

At this point, you should be starting to feel more comfortable with the
Ghidra interface and the CodeBrowser desktop. In the next chapter, we
begin to focus on the many ways that you can manipulate a disassembly to
enhance your understanding of its behavior and to generally make your life
easier with Ghidra.

In this chapter, we cover important basic
skills that will help you to better understand

the Ghidra disassembly. We start with basic
navigational techniques that allow you to move

through the assembly and examine the artifacts you
encounter. As you navigate from function to function,
you will find that you need to decode each function’s
prototype by using only clues available in the disassembly. Accordingly,
we’ll discuss techniques for understanding how many parameters a func-
tion receives and how we might decode the data types of each parameter
we encounter. Since much of the work that a function performs is associ-
ated with local variables maintained by the function, we’ll also discuss
how functions use the stack for local variable storage and how you can,
with Ghidra’s help, understand exactly how a function makes use of any
stack space it may reserve for itself. Whether you find yourself debugging
code, analyzing malware, or developing exploits, understanding how to
decode a function’s stack-allocated variables is an essential skill for under-
standing the behavior of any program. Finally, we will look at the options

6
M A K I N G S E N S E O F A G H I D R A

D I S A S S E M B LY

90 Chapter 6

Ghidra provides for searching and how that can contribute to understand-
ing the disassembly.

Disassembly Navigation
In Chapters 4 and 5, we demonstrated that at a basic level, Ghidra combines
the features of many common reverse engineering tools into its integrated
CodeBrowser display. Navigating around the display is one of the essential
skills required to master Ghidra. Static disassembly listings, such as those
provided by tools like objdump, offer no inherent navigational capability
other than scrolling up and down the listing. Even with the best text editors
offering an integrated, grep-style search, such dead listings are very difficult
to navigate. Ghidra, on the other hand, provides exceptional navigational
features. In addition to offering fairly standard search features that you
are accustomed to from your use of text editors or word processors, Ghidra
develops and displays a comprehensive list of cross-references that behave
like web page hyperlinks. The end result is that, in most cases, navigating to
locations of interest requires nothing more than a double-click.

Names and Labels
When a program is disassembled, every location in the program is assigned
a virtual address. As a result, we can navigate anywhere within a program
by providing the virtual address of the location we are interested in visiting.
Unfortunately for us, maintaining a catalog of addresses in our heads is
not a trivial task. This fact motivated early programmers to assign symbolic
names to program locations that they wished to reference, making things
a whole lot easier on themselves. The assignment of symbolic names to
program addresses was not unlike the assignment of mnemonic instruction
names to program opcodes; programs became easier to read and write by
making identifiers easier to remember. Ghidra continues this tradition by
creating labels for virtual addresses and allowing the user to modify and
expand the set of labels. We have already seen the use of names in relation
to the Symbol Tree window. Recall that double-clicking a name caused the
Listing view (and the Symbol References window) to jump to the referenced
location. While there are usage differences between the terms name and
label (for example, functions have names and appear in a separate branch
of the Ghidra Symbol Tree from labels), in a navigational context the terms
are largely interchangeable because both represent navigational targets.

Ghidra generates symbolic names during the auto analysis phase by
using an existing name from the binary (if available) or by automatically
generating a name based on how a location is referenced within the binary.
In addition to its symbolic purpose, any label displayed in the disassembly
window is a potential navigation target similar to a hyperlink on a web
page. The two major differences between these labels and standard hyper-
links are that the labels are not highlighted in any way to indicate that they
can be followed and that Ghidra generally requires a double-click to follow
rather than the single-click required by a traditional hyperlink.

Making Sense of a Ghidra Disassembly 91

Navigation in Ghidra
In the listing shown in Figure 6-1, each of the symbols indicated by a solid
arrow represents a named navigational target. Double-clicking any of them
in the Listing window will cause Ghidra to relocate the Listing display (and
all connected windows) to the selected location.

0040132b

00401331

00401333

00401339

0040133c

0040133e

00401344

00401346

00401347

LAB_0040132b XREF[1]: 004012ef(j)

LAB_0040134 XREF[1]: 00401331(j)

81 fa cd

7f 1b

0f 84 86

83 ea 0a

74 69

81 ea c1

74 69

4a

74 6e

CMP

JG

JZ

SUB

JZ

SUB

JZ

DEC

JZ

EDX,0xcd

LAB_0040134eu

LAB_004013bfu

EDX,0xa

LAB_004013a7u

EDX,0xc1

LAB_004013afu

EDX

LAB_004013b7u

Navigational
targets

Figure 6-1: Listing showing navigational targets

For navigational purposes, Ghidra treats two additional display entities
as navigational targets. First, cross-references (indicated by dashed arrows
in Figure 6-1) are treated as navigational targets. Double-clicking the bot-
tom cross-reference address will jump the display to the referencing loca-
tion (00401331 in this case). Cross-references are covered in more detail in
Chapter 9. Hovering over any of these navigable objects will display a pop-
up that shows the destination code.

Second, the other type of display entity afforded special treatment
in a navigational sense is one that uses hexadecimal values. If a displayed
sequence of hexadecimal values represents a valid virtual address within
the binary, then the associated virtual address will be displayed to the right,
as shown in Figure 6-2. Double-clicking the displayed value will reposition
the disassembly window to the associated virtual address. In Figure 6-2,
double-clicking any of the values indicated by a solid arrow will jump the
display, because each is a valid virtual address within this particular binary.
Double-clicking any of the other values will have no effect.

YOU A R E IN V I T E D TO T HE N A MING CON V E N T ION!

Ghidra provides the user lots of flexibility when assigning labels, but cer-
tain patterns have a special meaning and are reserved for Ghidra. These
include the following prefixes when they are followed by an underscore and
an address: EXT, FUN, SUB, LAB, DAT, OFF, and UNK. When you create a label,
avoid these patterns. In addition, spaces and nonprintable characters are not
allowed in labels. On the plus side, labels can be up to 2000 characters.
Count carefully if you think you are in danger of exceeding that limit!

92 Chapter 6

00409013

00409014

00409015

00409016

00409017

00409018

00409019

0040901a

0040901b

0040901c

0040901d

0040901e

0040901f

00409020 00404da8

00404590

004037b0

04

b0

37

40

00

00

0a

90

45

40

00

00

0a

a8

??

??

??

??

??

??

??

??

??

??

??

??

??

??

04h

B0h

37h

40h

00h

00h

0Ah

90h

45h

40h

00h

00h

0Ah

A8h

?

7

@

?

E

@

?

–>

–>

–>

Navigational
targets

Figure 6-2: Listing showing hexadecimal navigational targets

Go To
When you know the address or name you want to navigate to (for example,
navigating to main in an ELF binary to begin your analysis), you could scroll
through the listing to look for the address, scroll through the Functions
folder in the Symbol Tree window to find the desired name, or use Ghidra’s
search features (which are discussed later in this chapter). Ultimately, the
easiest way to get to a known address or name is to use the Go To dialog
(shown in Figure 6-3), accessed via NavigationGo To or by using the
G hotkey while the disassembly window is active.

Figure 6-3: The Go To dialog

Navigating to any location in the binary is as simple as specifying a valid
address (a case-sensitive symbol name or hex value) and clicking OK, which
will immediately jump the display to the desired location. Values entered into
the dialog are made available on subsequent use via a drop-down history list,
which simplifies returning to previously requested locations.

Navigation History
As a final navigational feature, Ghidra supports forward and backward navi-
gation based on the order in which you navigate the disassembly. Each time

Making Sense of a Ghidra Disassembly 93

you navigate to a new location within a disassembly, your current location is
appended to a history list. This list can be traversed from the Go To window
or the left and right arrow icons in the CodeBrowser toolbar.

In the Go To window, shown in Figure 6-3, the arrow on the right side
of the text box opens a picklist that allows you to choose from previous
locations you have entered in the Go To dialog. The CodeBrowser toolbar
buttons, seen near the top left in Figure 6-4, provide familiar browser-style
forward and backward behavior. Each button is associated with a detailed
drop-down history list that provides instant access to any location in the
navigation history without having to retrace your steps through the entire
list. A sample drop-down list associated with the back arrow is displayed in
Figure 6-4.

Figure 6-4: Forward and backward navigation arrows with address list

alt-left arrow (option-left arrow on Mac), for backward navigation,
is one of the most useful hotkeys you can commit to memory. Backward
navigation is extremely handy when you have followed a chain of function
calls several levels deep and you decide that you want to navigate back to
your original position within the disassembly. alt-right arrow (option-right
arrow on Mac) moves the disassembly window forward in the history list.

While we now have a much clearer picture regarding navigating a disas-
sembly in Ghidra, we still have not attached meaning to the various destina-
tions we have visited. The next section investigates what makes functions in
general, and stack frames in particular, such important navigational targets
for a reverse engineer.

Stack Frames
Because Ghidra is a low-level analysis tool, many of its features and dis-
plays expect the user to be somewhat familiar with the low-level details of
compiled languages, which focus on the specifics of generating machine

94 Chapter 6

language and managing the memory used by a high-level program. Ghidra
pays particular attention to the manner in which compilers handle local
variable declarations and accesses. You may have noticed that a significant
number of lines are dedicated to local variables at the beginning of most
function listings. These lines result from detailed stack analysis that Ghidra
performs on each function, using its Stack analyzer. This analysis is nec-
essary because compilers place a function’s local variables (and in some
circumstances, the function’s incoming arguments) in blocks of memory
allocated on the stack. In this section, we review how compilers treat local
variable and function arguments to help you better understand the details
of Ghidra’s Listing view.

Function Call Mechanics
A function invocation may require memory for information passed into the
function in the form of parameters (arguments) and for temporary storage
space while executing the function. The parameter values, or their cor-
responding memory addresses, need to be stored somewhere the function
can locate them. The temporary space is often allocated by a programmer
through the declaration of local variables, which can be used within the
function but cannot be accessed after the function has completed. Stack
frames (also known as activation records) are blocks of memory allocated
within a program’s runtime stack and dedicated to a specific invocation
of a function.

Compilers use stack frames to make the allocation and deallocation
of function parameters and local variables transparent to the programmer.
For calling conventions that pass parameters on the stack, the compiler
inserts code to place a function’s parameters into the stack frame prior
to transferring control to the function itself, at which point the compiler
inserts code to allocate enough memory to hold the function’s local vari-
ables. In some cases, the address to which the function should return is also
stored within the new stack frame. Stack frames also enable recursion,1 as
each recursive call to a function is given its own stack frame, neatly segre-
gating each call from its predecessor.

The following operations take place when a function is called:

1.	 The caller places any parameters required by the function being called
into locations dictated by the calling convention employed by the called
function. The program stack pointer may change if parameters are
passed on the runtime stack.

2.	 The caller transfers control to the function being called with an instruc-
tion such as the x86 CALL, ARM BL, or MIPS JAL. A return address is
saved onto the program stack or in a processor register.

1. Recursion results when a function, either directly or indirectly, calls itself. Each time a
function recursively calls itself, it creates a new stack frame. If there isn’t a clearly defined
stopping case (or if the stopping case is not reached within a reasonable number of recursive
calls), uncontrolled recursion can consume all available stack space and crash the program.

Making Sense of a Ghidra Disassembly 95

3.	 If necessary, the called function configures a frame pointer and saves
any register values that the caller expects to remain unchanged.2

4.	 The called function allocates space for any local variables that it may
require. This is often done by adjusting the program stack pointer to
reserve space on the runtime stack.

5.	 The called function performs its operations, potentially accessing the
parameters passed to it and generating a result. If the function returns
a result, it is often placed into a specific register or registers that the
caller can examine after the function returns.

6.	 When the function has completed its operations, any stack space
reserved for local variables is released. This is often done by reversing
the actions performed in step 4.

7.	 Registers whose values were saved (in step 3) on behalf of the caller are
restored to their original values.

8.	 The called function returns control to the caller. Typical instructions
for this include the x86 RET, ARM POP, and MIPS JR. Depending on the
calling convention in use, this operation may also clear one or more
parameters from the program stack.

9.	 Once the caller regains control, it may need to remove parameters from
the program stack by restoring the program stack pointer to the value
that it held prior to step 1.

Steps 3 and 4 are so commonly performed upon entry to a function
that together they are called the function’s prologue. Similarly, steps 6
through 8 make up the function’s epilogue. All of these operations, except
step 5, are part of the overhead associated with calling a function, which
may not be obvious in a program’s high-level source code, but is quite
observable in assembly language.

A R E T HE Y R E A L LY GONE?

When we talk about “removing” items from the stack, as well as the removal
of entire stack frames, we mean that the stack pointer is adjusted so it points
to data lower on the stack and the removed content is no longer accessible
through the POP operation. Until that content is overwritten by a PUSH operation,
it is still there. From a programming perspective, that qualifies as removal. From
a digital forensics perspective, you just have to look a little harder to find the
contents. From a variable initialization standpoint, it means that any uninitial-
ized local variables within a stack frame may contain stale values that remain
in memory from the last use of a particular range of stack bytes.

2. A frame pointer is a register that points to a location inside a stack frame. Variables within
the stack frame are typically referenced by their relative distance from the location to
which the frame pointer points.

96 Chapter 6

Calling Conventions
When passing arguments from caller to callee, the calling function must
store parameters exactly as the function being called expects to find them;
otherwise, serious problems can arise. A calling convention dictates exactly
where a caller should place any parameters that a function requires: in spe-
cific registers, on the program stack, or in both registers and on the stack.
When parameters are passed on the program stack, the calling convention
also determines who is responsible for removing them from the stack after
the called function has completed: the caller or the callee.

Regardless of what architecture you are reversing for, understanding
the code surrounding a function call will be difficult if you don’t under-
stand the calling conventions in use. In the sections that follow, we review
some of the common calling conventions encountered in compiled C and
C++ code.

Stack and Register Arguments

Function arguments may be passed in processor registers, on the program
stack, or in a combination of both. When arguments are placed on the stack,
the caller performs a memory write (often a PUSH) to place the argument
onto the stack, and the called function must then perform a memory read to
access the argument. To speed up the function call process, some calling con-
ventions pass arguments in processor registers. When an argument is passed
in a register, there is no need to perform the memory write and read opera-
tions, as the argument is immediately available to the called function in a
designated register. The one shortcoming with register-based calling conven-
tions is that processors have a finite number of registers while function argu-
ment lists can be arbitrarily long, so the conventions must properly handle
functions that require more arguments than available registers. Excess argu-
ments that “spill” out of available registers are generally placed on the stack.

The C Calling Convention

The C calling convention is the default calling convention used by most C com-
pilers when generating function calls. The keyword _cdecl may be used in a
function’s prototype to force the use of this calling convention in C/C++ pro-
grams. The cdecl calling convention specifies that the caller place any stack-
allocated parameters to a function on the stack in right-to-left order and that
the caller (as opposed to the callee) remove the parameters from the stack
after the called function completes. For 32-bit x86 binaries, cdecl passes all
arguments on the program stack. For 64-bit x86 binaries, cdecl varies by oper-
ating system; on Linux, up to six arguments are placed in registers RDI, RSI,
RDX, RCX, R8, and R9, in that order, and any additional arguments spill onto the
stack. For ARM binaries, cdecl passes the first four arguments in registers R0
to R3, with arguments five and later spilling onto the stack.

When stack-allocated arguments are placed on the stack in right-to-left
order, the leftmost argument will always be on the top of the stack when the
function is called. This makes the first argument easy to locate regardless of

Making Sense of a Ghidra Disassembly 97

the number of parameters the function expects, and it makes the cdecl call-
ing convention ideally suited for use with functions that can take a variable
number of arguments (such as printf).

Requiring the calling function to remove parameters from the stack
means that you will often see instructions that make an adjustment to the
program stack pointer immediately following the return from a called func-
tion. In the case of functions that can accept a variable number of arguments,
the caller knows exactly how many arguments it passed to the function and
can easily make the correct adjustment, whereas the called function does
not know ahead of time how many parameters it will receive.

In the following examples, we consider calls to functions in a 32-bit, x86
binary, each using a different calling convention. The first function has the
following prototype:

void demo_cdecl(int w, int x, int y, int z);

By default, this function will use the cdecl calling convention, expecting
the four parameters to be pushed in right-to-left order and requiring the
caller to clean the parameters off the stack. Given the following function
call in C:

demo_cdecl(1, 2, 3, 4); // call to demo_cdecl (in C)

a compiler might generate the following code:

u PUSH 4 ; push parameter z
PUSH 3 ; push parameter y
PUSH 2 ; push parameter x
PUSH 1 ; push parameter w
CALL demo_cdecl ; call the function

 ADD ESP, 16 ; adjust ESP to its former value

The four PUSH operations  change the program stack pointer (ESP) by
16 bytes (4 * sizeof(int) on a 32-bit architecture), which is undone imme-
diately following the return from demo_cdecl . The following technique,
which has been used in some versions of the GNU compilers (gcc and g++),
also adheres to the cdecl calling convention while eliminating the need for
the caller to explicitly clean parameters off the stack following each call to
demo_cdecl:

MOV [ESP+12], 4 ; move parameter z to fourth position on stack
MOV [ESP+8], 3 ; move parameter y to third position on stack
MOV [ESP+4], 2 ; move parameter x to second position on stack
MOV [ESP], 1 ; move parameter w to top of stack
CALL demo_cdecl ; call the function

In this example, when the parameters for demo_cdecl are placed on the
stack, there is no change to the program stack pointer. Note that either
method results in the stack pointer pointing to the leftmost stack argument
when the function is called.

98 Chapter 6

The Standard Calling Convention

In 32-bit Windows DLLs, Microsoft makes heavy use of a calling conven-
tion it has named the standard calling convention. In source code, this may
be mandated by the use of the _stdcall modifier in a function declaration,
as shown here:

void _stdcall demo_stdcall(int w, int x, int y);

To avoid any confusion surrounding the word standard, we refer to this call-
ing convention as the stdcall calling convention for the remainder of the book.

The stdcall calling convention also requires that any stack-allocated
function parameters be placed on the program stack in right-to-left order,
but the called function is responsible for clearing any stack-allocated argu-
ments from the stack when the function has finished. This is possible only
for functions that accept a fixed number of parameters; variable argument
functions such as printf cannot use the stdcall calling convention.

The demo_stdcall function expects three integer parameters, occupying a
total of 12 bytes on the stack (3 * sizeof(int) on a 32-bit architecture). An x86
compiler can use a special form of the RET instruction to simultaneously pop
the return address from the top of the stack and add to the stack pointer to
clear the stack-allocated function arguments. In the case of demo_stdcall, we
might see the following instruction used to return to the caller:

RET 12 ; return and clear 12 bytes from the stack

Using stdcall eliminates the need to clean parameters off the stack fol-
lowing every function call, which results in slightly smaller, slightly faster
programs. By convention, Microsoft uses the stdcall convention for all
fixed-argument functions exported from 32-bit shared library (DLL) files.
This is an important point to remember if you are attempting to gener-
ate function prototypes or binary-compatible replacements for any shared
library components.

The fastcall Convention for x86

The Microsoft C/C++ and GNU gcc/g++ (version 3.4 and later) compilers
recognize the fastcall convention, a variation on the stdcall convention
where the first two parameters are placed in the ECX and EDX registers,
respectively. Any remaining parameters are placed on the stack in right-to-
left order, and called functions are responsible for removing parameters
from the stack when they return to their caller. The following declaration
demonstrates the use of the fastcall modifier:

void fastcall demo_fastcall(int w, int x, int y, int z);

Given the following function call in C:

demo_fastcall(1, 2, 3, 4); // call to demo_fastcall (in C)

Making Sense of a Ghidra Disassembly 99

a compiler might generate the following code:

PUSH 4 ; move parameter z to second position on stack
PUSH 3 ; move parameter y to top position on stack
MOV EDX, 2 ; move parameter x to EDX
MOV ECX, 1 ; move parameter w to ECX
Call demo_fastcall ; call the function

No stack adjustment is required upon return from demo_fastcall, as
demo_fastcall is responsible for clearing parameters y and z from the stack as
it returns to the caller. It is important to understand that because two argu-
ments are passed in registers, the called function needs to clear only 8 bytes
from the stack even though there are four arguments to the function.

C++ Calling Conventions

Nonstatic member functions in C++ classes must make available a pointer
to the object used to invoke the function (the this pointer).3 The address of
the object used to invoke the function must be provided by the caller as a
parameter, but the C++ language standard does not specify how this should
be passed, so it should come as no surprise that different compilers use dif-
ferent techniques.

On x86, Microsoft’s C++ compiler utilizes the thiscall calling convention,
which passes this in the ECX/RCX register and requires the non-static member
function to clean parameters off the stack, as in stdcall. The GNU g++ com-
piler treats this as the implied first parameter to any nonstatic member func-
tion and behaves in all other respects as if the cdecl convention is being used.
Thus, for g++-compiled 32-bit code, this is placed on top of the stack prior
to calling the nonstatic member function, and the caller is responsible for
removing parameters (there will always be at least one) from the stack after
the function returns. Additional characteristics of compiled C++ programs
are discussed in Chapters 8 and 20.

Other Calling Conventions

Complete coverage of every calling convention would require a book in
its own right. Calling conventions are often operating system, language,
compiler, and/or processor specific, and some research on your part may
be required if you encounter code generated by less-common compilers.
A few additional situations deserve special mention, however: optimized
code, custom assembly language code, and system calls.

When functions are exported for use by other programmers (such as
library functions), it is important that they adhere to well-known calling
conventions so that programmers can easily interface to those functions.

3. A C++ class may define two types of member functions: static and nonstatic. Nonstatic
member functions are used to manipulate the attributes of specific objects and as such, must
have some means of knowing exactly what object they are operating on (a this pointer). Static
member functions belong to the class at-large and are used to manipulate attributes shared
across all instances of the class. They do not require (nor do they receive) a this pointer.

100 Chapter 6

On the other hand, if a function is intended for internal program use only,
then the calling convention used by that function need be known only
within the program. In such cases, optimizing compilers may choose to use
alternate calling conventions to generate faster code. For example, the use
of the /GL option with Microsoft C/C++ instructs it to perform “whole pro-
gram optimization,” which may result in optimized use of registers across
function boundaries, and the use of the regparm keyword with GNU gcc/g++
allows the programmer to dictate that up to three arguments be passed
to registers.

When programmers go to the trouble of writing in assembly language,
they gain complete control over how parameters will be passed to any func-
tions that they create. Unless they wish to make their functions available
to other programmers, assembly language programmers are free to pass
parameters in any way they see fit. As a result, take extra care when analyz-
ing custom assembly code, like obfuscation routines and shellcode.

A system call is a special type of function call used to request an operating
system service. System calls usually affect a state transition from user mode
to kernel mode in order for the operating system kernel to service the user’s
request. The manner in which system calls are initiated varies across oper-
ating systems and processors. For example, 32-bit Linux x86 system calls
may be initiated using the INT 0x80 instruction or the sysenter instruction,
while other x86 operating systems may use only the sysenter instruction or
alternate interrupt numbers, and 64-bit x86 code uses the syscall instruction.
On many x86 systems (Linux being an exception), parameters for system
calls are placed on the runtime stack, and a system call number is placed in
the EAX register immediately prior to initiating the system call. Linux system
calls accept their parameters in specific registers and occasionally in memory
when there are more parameters than available registers.

Additional Stack Frame Considerations
On any processor, registers are a finite resource that need to be shared,
cooperativley, among all functions within a program. When a function
(func1) is executing, its world view is that it has complete control over all
processor registers. When func1 calls another function (func2), func2 may
wish to adopt this same view and make use of all available processor regis-
ters according to its own needs, but if func2 makes arbitrary changes to the
registers, it may destroy values that func1 depends on.

To address this problem, all compilers follow well-defined rules for reg-
ister allocation and use. These rules are generally referred to as a platform’s
application binary interface (ABI). An ABI divides registers into two categories:
caller-saved and callee-saved. When one function calls another, the caller
needs to save only registers in the caller-saved category to prevent values
from being lost. Any registers in the callee-saved category must be saved by
the called function (the callee) before that function is allowed to use any of
those registers for its own purposes. This typically takes place as part of the
function’s prologue sequence, with the caller’s saved values being restored
within the function’s epilogue immediately prior to returning. Caller-saved

Making Sense of a Ghidra Disassembly 101

registers are referred to as clobber registers because a called function is free
to modify their contents without first saving any of them. Conversely, callee-
saved registers are referred to as no-clobber registers.

The System V ABI for Intel 32-bit processors states that the caller-saved
registers include EAX, ECX, and EDX, while the callee-saved registers include
EBX, EDI, ESI, EBP, and ESP.4 In compiled code, you may notice that compilers
often prefer to use caller-saved registers within a function because they
are relieved from the responsibility of saving and restoring their contents
on entry and exit from the function.

Local Variable Layout
Unlike the calling conventions that dictate how parameters are passed
into a function, no conventions dictate the memory layout of a function’s
local variables. When compiling a function, a compiler must compute the
amount of space required by a function’s local variables, along with space
required to save any no-clobber registers, and determine whether those
variables can be allocated in processor registers or whether they must be
allocated on the program stack. The exact manner in which these alloca-
tions are made is irrelevant to both the caller of a function and to any
functions that may, in turn, be called, and it is not generally possible to
determine a function’s local variable layout based solely on examination
of the function’s source code. One thing is certain with regard to stack
frames: the compiler must dedicate at least one register to remember the
location of a function’s newly allocated stack frame. The most obvious
choice for this register is the stack pointer, which, by definition, points at
the stack and thus the current function’s stack frame.

Stack Frame Examples
When you perform any complex task, such as reverse engineering a binary,
you should always strive to make efficient use of your time. When it comes
to understanding the behavior of a disassembled function, the less time
you spend examining common code sequences, the more time you will
have to spend on difficult sequences. Function prologues and epilogues
are excellent examples of common code sequences, and it is important that
you’re able to recognize them, understand them, and rapidly move on to
more interesting code that requires more thought.

Ghidra summarizes its understanding of function prologues in the
local variable list at the head of each function listing, and while it may make
the code more readable, it does nothing to reduce the amount of disas-
sembled code that you need to read. In the following examples, we discuss
two common types of stack frames and review the code necessary to create
them so that when you encounter similar code in the wild, you can quickly
move through it to get to the meat of a function.

4. See https://wiki.osdev.org/System_V_ABI.

https://wiki.osdev.org/System_V_ABI

102 Chapter 6

Consider the following function compiled on a 32-bit x86-based computer:

void helper(int j, int k); // a function prototype
void demo_stackframe(int a, int b, int c) {
 int x;
 char buffer[64];
 int y;
 int z;
 // body of function not terribly relevant
 // other than the following function call
 helper(z, y);
}

The local variables for demo_stackframe require 76 bytes (three 4-byte
integers and a 64-byte buffer). This function could use either stdcall or
cdecl, and the stack frame would look the same.

Example 1: Local Variable Access via the Stack Pointer

Figure 6-5 shows one possible stack frame for an invocation of demo_stackframe.
In this example, the compiler has elected to utilize the stack pointer any-
time it references a variable contained in the stack frame, leaving all other
registers available for other purposes. If any instruction causes the value of
the stack pointer to change, the compiler must ensure that it accounts for
that change in all subsequent local variable accesses.

z

y

buffer

x

Saved EIP

a

b

c

ESP [ESP]

[ESP+4]

[ESP+8]

[ESP+72]

[ESP+76]

[ESP+80]

[ESP+84]

[ESP+88]

Local variables

Parameters

Variable Offset

Figure 6-5: Sample stack frame for a function
compiled on a 32-bit x86 computer

The space for this frame is set up on entry to demo_stackframe with the
one-line prologue:

SUB ESP, 76 ; allocate sufficient space for all local variables

The Offset column in Figure 6-5 indicates the x86 addressing mode
(base + displacement in this case) required to reference each of the local
variables and parameters in the stack frame. In this case, ESP is being used

Making Sense of a Ghidra Disassembly 103

as the base register, and each displacement is the relative offset from ESP to
the start of the variable within the stack frame. However, the displacements
shown in Figure 6-5 are correct only as long as the value held in ESP doesn’t
change. Unfortunately, the stack pointer changes frequently, and the com-
piler must constantly adapt to ensure that proper offsets are used when
referencing any variables within the stack frame. Consider the call made to
helper in the function demo_stackframe, the code for which is shown here:

u PUSH dword [ESP+4] ; push y
v PUSH dword [ESP+4] ; push z

CALL helper
ADD ESP, 8 ; cdecl requires caller to clear parameters

The first PUSH  correctly pushes local variable y per the offset in
Figure 6-5. At first glance, it might appear that the second PUSH  incor-
rectly references local variable y a second time. However, because all vari-
ables in the stack frame are referenced relative to ESP and the first PUSH 
modifies ESP, all of the offsets in Figure 6-5 must be temporarily adjusted.
Therefore, following the first PUSH , the new offset for local variable z
becomes [ESP+4]. When examining functions that reference stack frame
variables using the stack pointer, you must be careful to note any changes
to the stack pointer and adjust all future variable offsets accordingly.

Once demo_stackframe has completed, it needs to return to the caller.
Ultimately, a RET instruction will pop the desired return address off the top
of the stack into the instruction pointer register (EIP in this case). Before
the return address can be popped, the local variables need to be removed
from the top of the stack so that the stack pointer correctly points to the
saved return address when the RET instruction is executed. For this particu-
lar function (assuming the cdecl calling convention is in use), the epilogue
becomes the following:

ADD ESP, 76 ; adjust ESP to point to the saved return address
RET ; return to the caller

Example 2: Give the Stack Pointer a Break

At the expense of dedicating a second register to locating variables with a
stack frame, the stack pointer may be allowed to freely change without the
need to recompute offsets for each variable within the frame. Of course,
the compiler needs to commit to not changing this second register; other
wise, it will need to contend with the same issues raised in the previous
example. In this situation, the compiler needs to first select a register for
this purpose and then it must generate code to initialize that register on
entry to the function.

Any register selected for this purpose is known as a frame pointer. In the
preceding example, ESP was being used as a frame pointer, and we can say
that it was an ESP-based stack frame. The ABI for most architectures sug-
gests which register should be used as a frame pointer. The frame pointer

104 Chapter 6

is always considered a no-clobber register because the calling function
may already be using it for the same purpose. In x86 programs, the EBP/RBP
(extended base pointer) register is typically dedicated for use as a frame
pointer. By default, most compilers generate code to use a register other
than the stack pointer as a frame pointer, though options typically exist for
specifying that the stack pointer should be used instead. (GNU gcc/g++, for
example, offers the -fomit-frame-pointer compiler option, which generates
functions that do not use a second register as a frame pointer.)

To see what the stack frame for demo_stackframe will look like using a
dedicated frame pointer, we need to consider this new prologue code:

 PUSH EBP ; save the caller's EBP value, because it's no-clobber
 MOV EBP, ESP ; make EBP point to the saved register value
 SUB ESP, 76 ; allocate space for local variables

The PUSH instruction  saves the value of EBP currently being used by
the caller because EBP is a no-clobber register. The caller’s value of EBP must
be restored before we return. If any other registers need to be saved on
behalf of the caller (ESI or EDI, for example), compilers may save them at
the same time EBP is saved, or they may defer saving them until local vari-
ables have been allocated. Thus, there is no standard location within a stack
frame for the storage of saved registers.

Once EBP has been saved, it can be changed to point to the current
stack location with the MOV instruction , which copies the current value of
the stack pointer (the only register guaranteed to be pointing into the stack
at this moment in time) into EBP. Finally, as in the ESP-based stack frame,
space for local variables is allocated . The resulting stack frame layout is
shown in Figure 6-6.

z

y

buffer

x

Saved EBP

Saved EIP

a

b

c

ESP

EBP

[EBP-76]

[EBP-72]

[EBP-68]

[EBP-4]

[EBP]

[EBP+4]

[EBP+8]

[EBP+12]

[EBP+16]

Local variables

Parameters

Variable Offset

Figure 6-6: An EBP-based stack frame

With a dedicated frame pointer, all variable offsets can now be com-
puted relative to the frame pointer register, as seen in Figure 6-6. It is most
often (though not necessarily) the case that positive offsets are used to

Making Sense of a Ghidra Disassembly 105

access any stack-allocated function arguments, while negative offsets are
used to access local variables. With a dedicated frame pointer in use, the
stack pointer may be freely changed without affecting the offset to any vari-
ables within the frame. The call to the function helper can now be imple-
mented as follows:

x PUSH dword [ebp-72] ; PUSH y
PUSH dword [ebp-76] ; PUSH z
CALL helper
ADD ESP, 8 ; cdecl requires caller to clear parameters

The fact that the stack pointer has changed following the first PUSH 
has no effect on the access to local variable z in the subsequent PUSH.

In the epilogue of a function that uses a frame pointer, the caller’s
frame pointer must be restored prior to returning. If the frame pointer is
to be restored using a POP instruction, local variables must be cleared from
the stack before the old value of the frame pointer can be popped, but
this is made easy by the fact that the current frame pointer points to the
location on the stack that holds the saved frame pointer value. In 32-bit x86
programs utilizing EBP as a frame pointer, the following code represents a
typical epilogue:

MOV ESP, EBP ; clears local variables by resetting ESP
POP EBP ; restore the caller's value of EBP
RET ; pop return address to return to the caller

This operation is so common that the x86 architecture offers the LEAVE
instruction to accomplish the same task:

LEAVE ; copies EBP to ESP AND then pops into EBP
RET ; pop return address to return to the caller

While the names of registers and instructions used will certainly differ
for other processor architectures, the basic process of building stack frames
will remain the same. Regardless of the architecture, you will want to famil-
iarize yourself with typical prologue and epilogue sequences so that you
can quickly move on to analyzing more interesting code within functions.

Ghidra Stack Views
Stack frames are a runtime concept; a stack frame can’t exist without a stack
and without a running program. While this is true, it doesn’t mean that you
should ignore the concept of a stack frame when you are performing static
analysis with tools such as Ghidra. All of the code required to set up stack
frames for each function is present within a binary. Through careful analysis
of this code, we can gain a detailed understanding of the structure of any
function’s stack frame, even though the function is not running. In fact, some
of Ghidra’s most sophisticated analysis is performed specifically to determine
the layout of stack frames for every function that it disassembles.

106 Chapter 6

Ghidra Stack Frame Analysis
During initial analysis, Ghidra goes to great lengths to track the behavior
of the stack pointer over the course of a function by making note of every
PUSH or POP operation along with any arithmetic operations that may change
the stack pointer, such as adding or subtracting constant values. The goal
of this analysis is to determine the exact size of the local variable area allo-
cated to a function’s stack frame, determine whether a dedicated frame
pointer is in use in a given function (by recognizing a PUSH EBP/MOV EBP, ESP
sequence, for example), and recognize all memory references to variables
within a function’s stack frame.

For example, if Ghidra noted the instruction

MOV EAX, [EBP+8]

in the body of demo_stackframe, it would understand that the first argument
to the function (a in this case) is being loaded into the EAX register (refer to
Figure 6-6). Ghidra can distinguish between memory references that access
function arguments (those that lie below the saved return address) and refer-
ences that access local variables (those that lie above the saved return address).

Ghidra takes the additional step of determining which memory loca-
tions within a stack frame are directly referenced. For example, while the
stack frame in Figure 6-6 is 96 bytes in size, there are only seven variables
that we are likely to see referenced (four locals and three parameters). As
a result, you can focus your attention on the seven things that Ghidra has
identified as important and spend less time thinking about all the bytes that
Ghidra has left unnamed. In the process of identifying and naming indi-
vidual items within a stack frame, Ghidra also recognizes the spatial rela-
tionship of variables with respect to one another. This can be tremendously
helpful in some use cases, such as exploit development, when Ghidra makes
it easy to determine exactly which variables may get overwritten as the
result of a buffer overflow. Ghidra’s decompiler (discussed in Chapter 19)
also relies heavily on stack frame analysis, and it uses the results to infer
how many arguments a function receives and what local variable declara-
tions are necessary in the decompiled code.

Stack Frames in Listing View
Understanding the behavior of a function often comes down to understanding
the types of data that the function manipulates. When you’re reading a disas-
sembly listing, one of the first opportunities you have to understand the data
that a function manipulates is to view the breakdown of the function’s stack
frame. Ghidra offers two views into any function’s stack frame: a summary view
and a detailed view. To understand these two views, we will refer to the follow-
ing version of demo_stackframe, which we have compiled using gcc:

void demo_stackframe(int i, int j, int k) {
 int x = k;
 char buffer[64];

Making Sense of a Ghidra Disassembly 107

 int y = j;
 int z = 10;
 buffer[0] = 'A';
 helper(z, y);
}

As local variables exist only while the function is running, any local
variable that is not used in the function in a meaningful way is essentially
useless. From a high-level view, the following code is a functionally equiva-
lent (you might say optimized) version of demo_stackframe:

void demo_stackframe_2(int b) {
 helper(10, b);
}

(So, while this function acts like it is doing a lot of work, it’s really just
trying to look busy to impress the boss.)

In the original version of demo_stackframe, local variables x and y are initial-
ized from parameters k and j, respectively. Local variable z is initialized with
the literal value 10, and the first character in the 64-byte local array, named
buffer, is initialized to the character 'A'. The corresponding Ghidra disassem-
bly of this function, using the default auto analysis, is shown in Figure 6-7.

Figure 6-7: Disassembly of the demo_stackframe function

108 Chapter 6

There are many points to cover in this listing as we begin to acquaint
ourselves with Ghidra’s disassembly notation. In this discussion, we focus
on two sections of the disassembly that provide us with particularly useful
information. Let’s start by zooming in on the stack summary, as shown in
the following listing. (You can always refer back to Figure 6-7 to see this
summary stack frame in context.) To simplify the discussion, the terms local
variable and argument are used to distinguish between the two types of vari-
ables. The term variable is used when discussing both collectively.

 undefined AL:1 <RETURN>
 undefined Stack[0x4]:1 param_1
 undefined4 Stack[0x8]:4 param_2
 undefined4 Stack[0xc]:4 param_3
 undefined4 Stack[-0x10]:4 local_10
 undefined4 Stack[-0x14]:4 local_14
 undefined4 Stack[-0x18]:4 local_18
 undefined1 Stack[-0x58]:1 local_58

Ghidra provides a summary stack view that lists every variable directly
referenced within the stack frame, along with important information about
each. The meaningful names (in the third column) that Ghidra assigns to
each variable provide information about the variables when you see them
throughout the disassembly listing: the names of arguments passed to the
function begin with a helpful prefix of param_, and local variable names
begin with local_. As a result, it is easy to distinguish between the two
types of variables.

The variable name prefixes are combined with information about the
position or location of a variable. For arguments, like param_3, the num-
ber in the name corresponds to the argument’s position in the function’s
parameter list. For local variables, like local_10, the number is a hexadeci-
mal offset representing the variable’s location within the stack frame. The
location can also be found in the center column of the listing, to the left of
the names. This column has two components separated by a colon: Ghidra’s
estimate of the size of the variable in bytes, and the location of the variable
within the stack frame, represented as the offset of that variable from the
initial stack pointer value on entry into the function.

A tabular representation of this stack frame is shown in Figure 6-8.
As discussed, parameters lie below the saved return address and thus
have a positive offset from the return address. Local variables lie above
the saved return address and thus have a negative offset. The order of
the local variables in the stack do not match the order in which they were
declared in the source code shown earlier in this chapter, because the
compiler is free to arrange local variables on the stack based on a variety
of internal factors, such as byte alignment and placement of arrays rela-
tive to other local variables.

Making Sense of a Ghidra Disassembly 109

Address
-0x68

-0x64

-0x58

-0x18

-0x14

-0x10

-0x04

0x00

0x04

0x08

0x0c

helper
parameters

local_58

local_18

local_14

local_10

param_1

param_2

param_3

Desc Name

buffer

z

y

x

i

j

k

Saved EBP

Saved RET

Figure 6-8: Sample stack frame image

Decompiler-Assisted Stack Frame Analysis
Remember the functional equivalent of the code that we identified?

void demo_stackframe_2(int j) {
 helper(10, j);
}

The code that the decompiler generated for this function is shown in
Figure 6-9. Ghidra’s decompiler-generated code is very similar to our opti-
mized code, as the decompiler includes only the executable equivalent of
the original function. (The exception is the inclusion of param_1.)

Figure 6-9: Decompiler window for demo_stackframe (with Decompiler Parameter ID analyzer)

You may have noticed that the function demo_stackframe accepted
three integer parameters, but only two of them (param_1 and param_2)
are accounted for in the decompiler listing. Which one is missing and
why? It turns out that the Ghidra disassembler and the Ghidra decom-
piler approach the names a little differently. While both name all of
the parameters up to the last one referenced, the decompiler names

110 Chapter 6

only the parameters up to the last one that is used in a meaningful way.
One of the analyzers that Ghidra can run for you is called the Decompiler
Parameter ID analyzer. In most cases, this analyzer is not enabled by default
(it is enabled for only Windows PE files smaller than 2MB). When the
Decompiler Parameter ID analyzer is enabled, Ghidra uses decompiler-
derived parameter information to name a function’s parameters in the dis-
assembly listing. The following listing shows the variables in the disassembly
listing of demo_stackframe when the Decompiler Parameter ID analyzer is
enabled:

 undefined AL:1 <RETURN>
 undefined Stack[0x4]:4 param_1
 undefined4 Stack[0x8]:4 param_2
 undefined4 Stack[-0x10]:4 local_10
 undefined4 Stack[-0x14]:4 local_14
 undefined4 Stack[-0x18]:4 local_18
 undefined1 Stack[-0x58]:1 local_58

Note that param_3 no longer appears in the list of function arguments,
as the decompiler has determined that it is not used in any meaningful
way within the function. This particular stack frame is discussed further in
Chapter 8. If you ever want Ghidra to perform Decompiler Parameter ID
analysis after opening a binary with that analyzer disabled, you can always
choose Analysis4One ShotDecompiler Parameter ID to run the analyzer
after the fact.

Local Variables as Operands
Let’s shift our focus to the actual disassembly portion of the following listing:

08048473 55 PUSH EBPu
08048474 89 e5 MOV EBP,ESP
08048476 83 ec 58 SUB ESP,0x58v
08048479 8b 45 10 MOV EAX,dword ptr [EBP + param_3]
0804847c 89 45 f4 MOV dword ptr [EBP + local_10],EAX
0804847f 8b 45 0c MOV EAX,dword ptr [EBP + param_2]
08048482 89 45 f0 MOV dword ptr [EBP + local_14],EAX
08048485 c7 45 ec MOV dword ptr [EBP + local_18],0xa
 0a 00 00 00
0804848c c6 45 ac 41 MOV byte ptr [EBP + local_58],0x41
08048490 83 ec 08 SUB ESP,0x8
08048493 ff 75 f0 PUSH dword ptr [EBP + local_14]{
08048496 ff 75 ec PUSH dword ptr [EBP + local_18]

The function uses a common function prologue  for an EBP-based
stack frame. The compiler allocates 88 bytes (0x58 equals 88) of local

Making Sense of a Ghidra Disassembly 111

variable space  in the stack frame. This is slightly more than the estimated
76 bytes and demonstrates that compilers occasionally pad the local vari-
able space with extra bytes in order to maintain a particular memory align-
ment within the stack frame.

An important difference between Ghidra’s disassembly listing and the
stack frame analysis that we performed earlier is that in the disassembly list-
ing you don’t see memory references similar to [EBP-12] (which you might
see with objdump, for example). Instead, Ghidra has replaced all constant
offsets with symbolic names corresponding to the symbols in the stack view
and their relative offsets from the function’s initial stack pointer location.
This is in keeping with Ghidra’s goal of generating a higher-level disassem-
bly. It is simply easier to deal with symbolic names than numeric constants.
It also gives us a name that can be modified to match our understanding
of the variable’s purpose once known. Ghidra does display the raw form of
the current instruction, without any labels, in the extreme, lower-right cor-
ner of the CodeBrowser window for reference.

In this example, since we have source code available for comparison, we
can map the Ghidra-generated variable names back to the names used in
the original source by using a variety of clues available in the disassembly:

1.	 First, demo_stackframe accepts three parameters, i, j, and k, which corre-
spond to variables param_1, param _2, and param _3, respectively.

2.	 Local variable x (local_10) is initialized from parameter k (param_3) .

3.	 Similarly, local variable y (local_14) is initialized from parameter
j (param _2) .

4.	 Local variable z (local_18) is initialized with the value 10 .

5.	 The first character buffer[0] (local_58) in the 64-byte character array is
initialized with A (ASCII 0x41) .

6.	 The two arguments for the call to helper are pushed onto the stack . The
8-byte stack adjustment that precedes these two pushes combines with
the two pushes to yield a net stack change of 16 bytes. As a result, the
stack maintains any 16-byte alignment achieved earlier in the program.

The Ghidra Stack Frame Editor
In addition to the summary stack view, Ghidra offers a detailed stack frame
editor in which every byte allocated to a stack frame is accounted for. The
Stack Frame Editor window is accessed by right-clicking and selecting
FunctionEdit Stack Frame from the context menu when you have selected
a function or stack variable within Ghidra’s summary stack view for a func-
tion. The resulting window for the demo_stackframe function is shown in
Figure 6-10.

112 Chapter 6

Figure 6-10: Sample summary stack view

Because the detailed view accounts for every byte in the stack frame,
it occupies significantly more space than the summary view. The portion
of the stack frame shown in Figure 6-10 spans a total of 29 bytes, which is
only a small portion of the entire stack frame. Also in the previous listing,
local_10 , local_14 , and local_18  are directly referenced in the disas-
sembly listing where their contents were initialized using dword (4-byte)
writes. Based on the fact that 32 bits of data were moved, Ghidra is able to
infer that each of these variables is a 4-byte quantity and labels each as an
undefined4 (a 4-byte variable of unknown type).

As this is a Stack Frame Editor, we can use this window to edit fields,
change display formats, and add supplemental information if it benefits
our process. For example, we could add a name for the saved return
address at 0x0.

Making Sense of a Ghidra Disassembly 113

R EGIS T E R-BA SE D PA R A ME T E RS

ARM calling conventions use up to four registers to pass parameters to func-
tions without using the stack. Some x86-64 conventions use as many as six
registers, and some MIPS conventions use up to eight. Register-based param-
eters are a little harder to identify than stack-based parameters.

Consider the following two assembly language fragments:

stackargs: ; An example x86 32-bit function
 PUSH EBP ; save no-clobber ebp
 MOV EBP, ESP ; set up frame pointer
  MOV EAX, [EBP + 8] ; retrieve stack-allocated argument
 MOV CL, byte [EAX] ; dereference retrieved pointer argument
 ...
 RET
regargs: ; An example x86-64 function
 PUSH RBP ; save no-clobber rbp
 MOV RBP, RSP ; set up frame pointer
  MOV CL, byte [RDI] ; dereference pointer argument
 ...
 RET

In the first function, the region of the stack beneath the saved return
address is being accessed , and we conclude that the function expects at
least one argument. Ghidra, like most high-end disassemblers, performs stack
pointer and frame pointer analysis to identify instructions that access members
of a function’s stack frame.

In the second function, RDI is used  before it has been initialized. The
only logical conclusion is that RDI must have been initialized in the caller,
in which case RDI is being used to pass information from the caller into the
regargs function (that is, it is a parameter). In program analysis terms, RDI is
live on entry to regargs. To determine the number of register-based parameters
the function expects, identify all registers that appear to be live within a func-
tion by observing that their contents are read and utilized before the register
has been written (initialized) within a function.

Unfortunately, this data flow analysis is usually beyond the capabilities of
most disassemblers, including Ghidra. Decompilers, on the other hand, must
perform this type of analysis and are generally quite good at identifying the
use of register-based parameters. Ghidra’s Decompiler Parameter ID analyzer
(Edit4Options for <prog>4PropertiesAnalyzers) can update the disassembly
listing based on parameter analysis performed by the decompiler.

114 Chapter 6

The stack editor view offers a detailed look at the inner workings
of compilers. In Figure 6-10, it is clear that the compiler has inserted
8 extra bytes between the saved frame pointer -0x4 and the local variable x
(local_10). These bytes occupy offsets -0x5 through -0xc in the stack frame.
Unless you happen to be a compiler writer yourself or are willing to dig
deep into the source code for GNU gcc, all you can do is speculate as to why
these extra bytes are allocated in this manner. In most cases, we can chalk
up the extra bytes to padding for alignment, and usually the presence of
these extra bytes has no impact on a program’s behavior. In Chapter 8, we
return to the stack editor view and its uses in dealing with more complex
data types such as arrays and structures.

Searching
As shown at the start of the chapter, Ghidra makes it easy to navigate
through the disassembly to locate artifacts that you know about and to dis-
cover new artifacts. It also designs many of its data displays to summarize
specific types of information (names, strings, imports, and so on), making
them easy to find as well. However, effective analysis of a disassembly listing
often requires the ability to search for new clues to inform the disassembly
analysis. Fortunately for us, Ghidra has a Search menu that allows us to con-
duct searches to locate items of interest. The default search menu options
are shown in Figure 6-11. In this section, we investigate methods to search
the disassembly by using both text and byte search functionality provided
in the CodeBrowser.

Figure 6-11: Ghidra Search menu options

Making Sense of a Ghidra Disassembly 115

Search Program Text
Ghidra text searches amount to substring searches through the disas-
sembly listing view. Text searches are initiated via Search4Program Text,
which opens the dialog shown in Figure 6-12. Two search types are avail-
able: the entire program database, which extends beyond what you see in
the CodeBrowser window, and the listing display within the CodeBrowser.
Beyond the search type, several self-explanatory options let you select how
and what to search.

To navigate between matches, use the Next and Previous buttons at the
bottom of the Search Program Text dialog, or select Search All to open the
search results in a new window, allowing easy navigation to any match.

Figure 6-12: Search Program Text dialog

116 Chapter 6

Search Memory
If you need to search for specific binary content, such as a known sequence
of bytes, then text searches are not the answer. Instead, you need to use
Ghidra’s memory search functionality. A memory search can be initiated
using SearchMemory, or the associated hotkey S. Figure 6-13 shows the
Search Memory dialog. To search for a sequence of hex bytes, the search
string should be specified as a space-separated list of two-digit, case-insensitive
hex values, such as c9 c3, as shown in Figure 6-13. If you are not sure of
the hex sequence, you can use wildcards (* or ?).

Figure 6-13: Search Memory dialog

I DUB T HE E . . .

Search windows are one of the window types within Ghidra that you can
rename at will, which will help you keep track of search windows as you exper-
iment. To rename a window, just right-click the title bar and provide a name
that is meaningful to you. A handy trick is to include the search string along
with a mnemonic to help you remember the settings you have chosen.

Making Sense of a Ghidra Disassembly 117

The Search Memory results for the bytes c9 c3, run with the Search All
option, are shown in Figure 6-14. You can sort on any column, rename the
window, or apply a filter. This window also offers some right-click options,
including the ability to delete rows and manipulate selections.

Figure 6-14: Search Memory results

Search values can be input in string, decimal, binary, and regular
expression formats as well. String, decimal, and binary each provide con-
text-appropriate format options. Regular expressions let you search for a
particular pattern, but only in the forward direction, because of restrictions
on how they are processed. Ghidra uses Java’s built-in regular expressions
grammar, which is described in significant detail in Ghidra Help.

Summary
The intent of this chapter was to provide you with the minimum essential
skills for effectively interpreting Ghidra’s disassembly listings and navigat-
ing your way around them. The overwhelming majority of your interac-
tions with Ghidra will involve the operations that we have discussed so far.
However, the ability to perform basic navigation, understand important dis-
assembly constructs like the stack, and search the disassembly are just the
tip of the iceberg for a reverse engineer.

With these skills safely under your belt, the logical next step is learn-
ing how to use Ghidra to suit your particular needs. In the next chapter, we
begin to look at how to make the most basic changes to a disassembly list-
ing as a means of adding new knowledge based on our understanding of a
binary’s content and behavior.

After navigation, disassembly modifica-
tion is the next most significant feature of

Ghidra. Ghidra offers the ability to easily
manipulate disassemblies to add new informa-

tion or reformat a listing to suit your particular needs,
and because of Ghidra’s underlying structure, changes
that you make to a disassembly are easily propagated to all associated
Ghidra views to maintain a consistent picture of your program. Ghidra
automatically handles operations such as context-aware search and replace
when it makes sense to do so, and it makes trivial work of reformatting
instructions as data, and data as instructions. And perhaps the best feature
is that almost anything you do can be undone!

7
D I S A S S E M B LY M A N I P U L A T I O N

120 Chapter 7

Manipulating Names and Labels
At this point, we have encountered two categories of identifiers in Ghidra
disassemblies: labels (which are identifiers associated with locations) and
names (which are identifiers associated with stack frame variables). For the
most part, we will refer to both as names, as Ghidra is somewhat loose in
this distinction also. (If you want to be really precise, labels actually have
associated names, addresses, histories, and so on. The name of the label is
how we generally reference the label.) We use more specific terms when the
distinction makes a critical difference.

To review, stack variable names have one of two prefixes based on
whether the variable is a parameter (param_) or a local variable (local_), and
locations are assigned names/labels with helpful prefixes during auto analy-
sis (for example, LAB_, DAT_, FUN_, EXT_, OFF_, and UNK_). In most cases, Ghidra
will automatically generate names and labels based on its best guess about
the use of the associated variable or address, but you will need to analyze the
program yourself to understand the purpose of a location or variable.

As you begin to analyze any program, one of the first and most com-
mon ways to manipulate a disassembly listing is to change default names
into more meaningful names. Fortunately, Ghidra allows you to easily
change any name, and it intelligently propagates name changes throughout
the entire program. To open a name-change dialog, select the name by
clicking it and then use the L hotkey or the Edit Label option on the right-
click context menu. From there, the process for stack variables (names) and
named locations (labels) varies, as detailed in the following sections.

I W ISH I H A DN’T DONE T H AT

Part of being good at software reverse engineering is the ability to explore,
experiment, and, when necessary, backtrack and retrace your steps. Ghidra’s
powerful Undo capability allows you the flexibility to undo (and redo) actions
during the SRE process. Multiple methods are available to access this magi-
cal power: the appropriate arrow icons in the CodeBrowser toolbar u, as
shown in Figure 7-1; Edit4Undo from the CodeBrowser menu; and the hotkeys
ctrl-Z to undo and ctrl-shift-Z to redo.

1 2

Figure 7-1: Undo and Redo icons in the CodeBrowser toolbar

Disassembly Manipulation 121

Renaming Parameters and Local Variables
Names associated with stack variables are not associated with a specific vir-
tual address. As in most programming languages, such names are restricted
to the scope of the function to which a given stack frame belongs. Thus,
every function in a program can have its own stack variable named param_1,
but no function may have more than one variable named param_1, as shown
in Figure 7-2.

Figure 7-2: Symbol Tree showing reuse of
parameter names (param_1)

When you rename a variable in the Listing window, the informative
dialog shown in Figure 7-3 will pop up. The type of entity you are changing
(variable, function, and so on) appears in the title bar of the window, and
the current (about to be changed) name appears in the editable text box
and the title bar.

122 Chapter 7

Figure 7-3: Renaming a stack variable
(local_14 to y)

Once a new name is supplied, Ghidra changes every occurrence of the
old name in the current function. The following listing shows the result of
renaming local_14 to y in demo_stackframe:

 * FUNCTION *

 undefined demo_stackframe(undefined param_1, undefined4
 undefined AL:1 <RETURN>
 undefined Stack[0x4]:1 param_1
 undefined4 Stack[0x8]:4 param_2
 undefined4 Stack[0xc]:4 param_3
 undefined4 Stack[-0x10]:4 local_10
 undefined4 Stack[-0x14]:4 y
 undefined4 Stack[-0x18]:4 local_18
 undefined1 Stack[-0x58]:1 local_58
 demo_stackframe
08048473 55 PUSH EBP
08048474 89 e5 MOV EBP,ESP
08048476 83 ec 58 SUB ESP,0x58
08048479 8b 45 10 MOV EAX,dword ptr [EBP + param_3]
0804847c 89 45 f4 MOV dword ptr [EBP + local_10],EAX
0804847f 8b 45 0c MOV EAX,dword ptr [EBP + param_2]
08048482 89 45 f0 MOV dword ptr [EBP + y],EAXv
08048485 c7 45 ec MOV dword ptr [EBP + local_18],0xa
 0a 00 00 00
0804848c c6 45 ac 41 MOV byte ptr [EBP + local_58],0x41
08048490 83 ec 08 SUB ESP,0x8
08048493 ff 75 f0 PUSH dword ptr [EBP + y]w
08048496 ff 75 ec PUSH dword ptr [EBP + local_18]
08048499 e8 88 ff CALL helper
 ff ff
0804849e 83 c4 10 ADD ESP,0x10
080484a1 90 NOP
080484a2 c9 LEAVE
080484a3 c3 RET

Disassembly Manipulation 123

These changes uv are also reflected in the Symbol Tree, as shown in
Figure 7-4.

Figure 7-4: Symbol Tree view of renamed
stack variable, y

T HE FOR BIDDE N N A ME S

Some interesting rules restrict what you can name variables within a function.
Here are some of the more relevant rules for parameters:

•	 You can’t use the prefix param_ followed by an integer in a name, even if
the resulting name does not conflict with an existing parameter name.

•	 You can use the prefix param_ followed by other characters.

•	 You can use the prefix Param_ followed by an integer, as names are case-
sensitive (but it might not be advisable).

•	 You can restore a parameter name to its original Ghidra-assigned name
by entering param_ followed by an integer value. If you use the original
integer value, Ghidra will revert the name with no complaints. If you use
any integer other than the original value, Ghidra will warn “Rename
failed – default names may not be used.” At this point, clicking Cancel in
the Rename Parameter dialog will restore the original name.

•	 You can have two parameters with the names param_1 (named by Ghidra)
and Param_1 (named by you). Names are case-sensitive, but it might not
be advisable to reuse them.

Local variables are also case-sensitive, and you can use the prefix local_
with a non-numeric suffix.

For all types of variables, you can’t use a variable name that’s already
used in that scope (for example, in the same function). Your attempt will be
rejected with a reason in the dialog.

Finally, if you are thoroughly confused by your labels, you can see the label
history for a variable by pressing the hotkey H, choosing Show All History, and
entering the current name (or a past name) of the variable into the text box. (This
option is also available through SearchLabel History in the main menu.)

124 Chapter 7

Renaming Labels
A label is a default or user-assigned name associated with a location. As
with stack variables, the name-change dialog is opened with the hotkey L
or context option Edit Label. When you change a location’s name, you can
also change its namespace and properties, as shown in Figure 7-6.

W HE R E SHOUL D YOU CH A NGE YOUR N A ME?

Variable names can be changed from the Listing, Symbol Tree, and Decompiler
windows; the outcome is the same regardless, but the dialog accessed from
the Listing window presents more information. All rules associated with naming
variables are enforced when using any of these methods.

Many of the example parameter names in this book were changed in
the Listing window using the dialog shown on the left in Figure 7-5. To change
a name in the Symbol Tree, right-click the name and select Rename from the
context menu. In the Decompiler window, use the hotkey L, or use the Rename
Variable context menu option; the corresponding dialog is shown on the right
in Figure 7-5. While the two dialogs provide the same functionality, the right
dialog does not include information about the namespace or properties associ-
ated with the parameter.

Figure 7-5: Renaming a variable from the Listing window or Symbol Tree (left) or the
Decompiler window (right)

In Ghidra, a namespace is simply a named scope. Within a namespace,
all symbols are unique. The global namespace contains all symbols within a
binary. Function namespaces are nested within the global namespace. Within
a function namespace, all variable names and labels are unique. Functions
may themselves contain nested namespaces, such as a namespace associated
with a switch statement (which allows case labels to be reused in separate
namespaces; for example, when a function contains two switch statements that
each have a case 10).

Disassembly Manipulation 125

Figure 7-6: Renaming a function

This enhanced dialog shows the entity type and virtual address of the
location in the title bar. Under Properties, you can identify the address
as an entry point or pin the address (see “Editing Labels” on page 126).
As mentioned in Chapter 6, Ghidra limits names to a maximum of 2000
characters, so feel free to use meaningful names or even embed a narrative
about the address (without any spaces). The Listing window will display
only a portion of the name if the length is excessive, but the Decompiler
window shows the entire thing.

Adding a New Label
While Ghidra generates many default labels, you can also add new labels
and associate them with any address in the listing. These can be used to
annotate your disassembly, although in many cases comments (discussed
later in this chapter) are a more appropriate mechanism for this. To add a
new label, open the Add Label dialog (hotkey L), shown in Figure 7-7, for
the address associated with the cursor location. The drop-down list for the
name includes a list of names you have used recently, and the Namespace
drop-down list lets you choose an appropriate label scope.

Figure 7-7: Add Label dialog

126 Chapter 7

You can run into conflicts if you attempt to use one of Ghidra’s reserved
prefixes when entering a name. If you insist on using a reserved prefix,
Ghidra will reject your new label if it believes that a name conflict might
arise. This occurs only when Ghidra determines that your suffix looks like
an address (in our experience, this means four or more hex digits). For
example, Ghidra will allow FUN_zone and FUN_123, but will reject FUN_12345.
Also, if you attempt to add a label at the same address as a function that has
a default label (for example, FUN_08048473), Ghidra renames the function
rather than adding a second label at that location.

Editing Labels
To edit a label, use the hotkey L or context menu option Edit Label. Editing
a label presents you with the same dialog as adding a label, except that the
fields in the dialog will be initialized with the current values for the exist-
ing label. Note that editing labels can have an effect on other labels that
share the same address, whether or not they share the same namespace. For
example, if you identify a label as an entry point, Ghidra will identify all
labels associated with that location as entry points.

F UN _ W I T H PR E F I X E S

When Ghidra creates labels during auto analysis, it uses meaningful prefixes
followed by an address to let you know what to expect at that location. These
prefixes are listed next with very general descriptions. More information about
the meaning of each prefix can be found in Ghidra Help.

LAB_address  Code—an auto-generated label (usually a jump target within
a function)
DAT_address  Data—an auto-generated global variable name
FUN_address  Function—an auto-generated function name
SUB_address  Target of a call (or equivalent)—probably not a function
EXT_address  External entry point—probably someone else’s function
OFF_address  An offcut (inside existing data or code)—probably a
disassembly error
UNK_address  Unknown—the purpose of the data here can’t be determined

Function labels have the following specific behaviors associated with them:

•	 If you delete a default function label (such as FUN_08048473) in the Listing
window, the FUN_ prefix will be replaced by the SUB_ prefix (in this case,
resulting in SUB_08048473).

•	 Adding a new label to an address that has a default FUN_ label changes
the function name rather than creating a new label.

•	 Labels are case-sensitive, so you can use Fun_ or fun_ as a valid prefix if
your desire is to create a confusing disassembly.

Disassembly Manipulation 127

The Primary checkbox in Figure 7-7 indicates that this is the label that
will be displayed when the address is displayed. By default, this checkbox
is disabled for the primary label, so you cannot deselect the primary name.
This is necessary to ensure that there is always a name to display. If another
label were chosen as the primary, its checkbox would be disabled, and
checkboxes for other labels at the same address would be enabled.

Although we have, up to now, associated labels with addresses, in real-
ity labels are most commonly associated with content that happens to have
an address. For example, the label main typically denotes the beginning of
the block of code that is the main function in a program. Ghidra assigns
an address to this location based on file header information. If we were to
relocate the entire content of the binary to a new address range, we would
expect that the label main would continue to correctly associate with the
new address of main and its corresponding, unchanged byte content. When
a label is pinned, the label’s association with the content at its address is
severed. If you were to then relocate the binary’s content to a new address
range, any pinned labels would not move accordingly, but remain fixed
to the address that you pinned them to. The most common use of pinned
labels is to name reset vectors and memory mapped I/O locations that exist
at specific addresses designated by the processor/system designers.

Removing a Label
To remove a label at the cursor, you can use the right-click context option
(or hotkey delete). Be warned that not all labels are removable. First, it is
impossible to delete a default, Ghidra-generated label. Second, if you have
renamed a default label and later decide to delete the new label, Ghidra
will replace the name you are deleting with the originally assigned, default
label (this is a direct result of the previous statement). The finer details
associated with removing labels are discussed in Ghidra Help.

IS I T A BUG OR A F E AT UR E?

In the course of experimenting with function names, you may notice that
Ghidra is perfectly content to allow you to give two functions the same name.
This may elicit flashbacks to overloaded functions, which can be distinguished
by the parameters they are passed. Ghidra’s capability extends beyond this:
you can give two functions the exact same name even if this results in duplicate
function prototypes within the same namespace. This is possible because a
label is not a unique identifier (primary key in the database sense) and thus
does not uniquely identify a function, even when considered with its associated
parameters. Duplicate names can be used to tag functions; for example, to
classify them for further analysis or eliminate them from consideration. Recall
that all names are preserved in the function history (hotkey H) and can easily
be reverted.

128 Chapter 7

Navigating Labels
Labels are associated with navigable locations, so double-clicking a refer-
ence to a label will navigate you to that label. While this is discussed more
thoroughly in Chapter 9, remember that you can add labels to any location
you wish to navigate to in the disassembly. While the same functionality is
described in “Annotations” on page 132, sometimes a label (particularly
with its 2000-character allowance) is the quickest way to accomplish the
same goal.

Comments
Embedding comments into your disassembly and decompiler listings is a
particularly useful way to leave notes for yourself regarding your progress
and discoveries as you analyze a program. Ghidra offers five categories of
comments, each suited for a different purpose. We begin by looking at com-
ments that we can add directly to the disassembly in the Listing window.

While you can navigate to the Set Comment dialog (shown in Figure 7-8)
through the right-click context menu, the quickest way is to use the hotkey
for comments, which is the semicolon (;) key. (This is a logical choice, as the
semicolon is the comment indicator in many flavors of assembly.)

Figure 7-8: Set Comment dialog

The Set Comment dialog opens in association with a particular
address: 08048479 in Figure 7-8, as displayed in the title bar. Any content
entered into any one of the five comment category tabs (EOL, Pre, Post,
Plate, and Repeatable Comments) is associated with that address.

By default, you enter content in the text box, including carriage
returns, create a comment that is one or more lines long, and then click
Apply or OK. (Apply allows you to see the comment in context and keeps
the Set Comment dialog open for continued editing.) To save time when
entering short comments, select the Enter accepts comment checkbox in
the lower left of the dialog. (You can always deselect the box temporarily if
you are writing a particularly informative plate comment.)

Disassembly Manipulation 129

To delete a comment, clear a comment’s text in the Set Comment
dialog, or use the hotkey delete when the cursor is on a comment in the
Listing window. Right-clicking CommentsShow History for Comment can
be used to recall the comments associated with a particular address and
reinstate them as needed.

End-of-Line Comments
Perhaps the most commonly used type of comment is the end-of-line (EOL)
comment, placed at the end of existing lines in the Listing window. To add
one, open the Set Comment dialog with the semicolon hotkey and select
the EOL Comment tab. By default, EOL comments are displayed as blue
text and will span multiple lines if you enter multiple lines in the com-
ment text box. Each line will be indented to align at the right side of the
disassembly, and existing content will be moved down to make space for
the new comments. You can edit your comments at any time by reopening
the Set Comment dialog. The quickest method to delete a comment is to
click the comment in the Listing window and press delete.

Ghidra itself adds many EOL comments during auto analysis. For
example, when you load a PE file, Ghidra inserts descriptive EOL comments
to describe the fields in the IMAGE_DOS_HEADER section, including the comment
Magic number. Ghidra is able to do this only when it has this information
associated with a particular data type. This information is typically con-
tained within type libraries, which are displayed in the Data Type Manager
window and discussed in depth in Chapter 8 and Chapter 13. Among all
the comment types, EOL comments are the most configurable through the
Edit4Tool OptionsListing Fields options for each comment type.

T HOSE T HR E E BU T TONS

Of the three buttons at the bottom of the Set Comment dialog (Figure 7-8), the
OK and Apply buttons behave as you might expect. Clicking OK closes the
dialog and commits your changes. When you click Apply, the listing is updated
so that you can examine your changes and approve them or continue editing
your comment.

Dismiss, however, is not the same as Cancel, which would exit the dialog
with no effect on your listing! The unique term is consistent with the unique
behavior. Clicking the Dismiss button exits the window immediately if you have
not modified any comments, but lets you decide whether you want to save
changes if you did modify comments. Closing the window using the X in the
top right exhibits the same behavior. This Dismiss functionality will be encoun-
tered in other places within Ghidra.

130 Chapter 7

Pre and Post Comments
Pre and post comments are full-line comments that appear either immediately
before or after a given disassembly line. The following listing shows a multi
line pre comment and a truncated single-line post comment, associated
with address 08048476. Hovering over a truncated comment will display the
complete comment. By default, pre comments are displayed in purple, and
post comments are displayed in blue, so that you can easily associate them
with the correct address in the listing.

08048473 PUSH EBP
08048474 MOV EBP,ESP
 ******** Pre Comment - This is a multi-line comment.
 ******** The following statement allocates 88 bytes of local
 ******** variable space in the stack frame.
08048476 SUB ESP,0x58
 ******** Post Comment - Now that we have allocated the space...
08048479 MOV EAX,dword ptr [EBP + param_3]

Plate Comments
Plate comments allow you to group comments for display anywhere in the
Listing window. A plate comment is centered and placed within an asterisk-
bounded rectangle. Many of the listings we have examined include a simple
plate comment with the word FUNCTION inside the bounding box, as shown in
Figure 7-9. This example includes the associated Decompiler window on the
right side so you can see that, in this default presentation, a plate comment
has been inserted in the Listing window, but no corresponding comment
exists in the Decompiler window.

Figure 7-9: Plate comment example

When you open the comment dialog with the first address in the func-
tion selected, you have the option to replace this general plate comment

Disassembly Manipulation 131

with your own, more informative one, as shown in Figure 7-10. In addition
to replacing the default plate comment, Ghidra adds your comment as a
C-style comment at the top of the Decompiler window. If the cursor were
at the top of the Decompiler window when the plate comment was created,
the result would have been the same.

Figure 7-10: Custom plate comment example

N O T E 	 Only plate and pre comments are displayed in the Decompiler window by default,
although you can change this using options in Edit4Tool OptionsDecompiler
Display.

Repeatable Comments
A repeatable comment is entered once but may appear automatically in
many locations throughout the disassembly. The behavior of repeatable
comments is tied to the concept of cross-references, which are discussed
in depth in Chapter 9. Basically, a repeatable comment entered at the
target of a cross-reference is echoed at the source of a cross-reference. As
a result, a single repeatable comment may be echoed at many locations
in the disassembly (because cross-references can be many-to-one). In a
disassembly listing, the default color is orange for repeatable comments
and gray for echoed comments, making them easily distinguishable from
other types of comments. The following listing demonstates the use of a
repeatable comment.

08048432 JGE LAB_08048446 Repeatable comment at 08048446u
08048434 SUB ESP,0xc
08048437 PUSH s_The_second_parameter_is_larger
0804843c CALL puts
08048441 ADD ESP,0x10
08048444 JMP LAB_08048470
 LAB_08048446
08048446 MOV EAX,dword ptr [EBP + param_2] Repeatable comment at 08048446v

132 Chapter 7

In the listing, a repeatable comment is set at 08048446  and repeated at
08048432  because the instruction at 08048432 refers to address 08048446 as a
jump target (thus a cross-reference exists from 08048432 to 08048446).

When an EOL comment and a repeatable comment share the same
address, only the EOL comment is visible in the listing. Both comments
can be viewed and edited in the Set Comment dialog. If you delete the EOL
comment, the repeatable comment will become visible in the listing.

Parameter and Local Variable Comments
To associate a comment with a stack variable, select the stack variable and
use the semicolon hotkey. Figure 7-11 shows the resulting minimal comment
window. The comment will be displayed next to the stack variable in a trun-
cated format similar to an EOL comment. Hovering over the comment will
display it in its entirety. The color of the comment matches the default color
of the variable type, rather than the blue default for EOL comments.

Figure 7-11: Stack variable comment

Annotations
Ghidra provides a powerful capability to annotate comments with links
to programs, URLs, addresses, and symbols in its Set Comment dialog.
Symbol information in comments will automatically update when symbol
names are changed. When you use an annotation to launch a specified
executable, you can provide optional parameters to gain even more control
(yes, that sounds dangerous to us, too).

For example, the annotation on a plate comment in Figure 7-12 pro-
vides a hyperlink to an address in the listing. Additional information about
the power of annotations is provided in Ghidra Help.

Disassembly Manipulation 133

Figure 7-12: Address annotation example

Basic Code Transformations
In many cases, you will be perfectly content with the disassembly listings
that Ghidra generates. In some cases, however, you won’t. As the types of
files that you analyze diverge further and further from ordinary executables
generated with common compilers, you may need to take more control of
the disassembly analysis and display processes. This will be especially true
if you analyze obfuscated code or files that utilize a custom (unknown to
Ghidra) file format.

Ghidra facilitates the following code transformations (among others):

•	 Changing code display options

•	 Formatting instruction operands

•	 Manipulating functions

•	 Converting data into code

•	 Converting code into data

In general, if a binary is very complex, or if Ghidra is not familiar with
the code sequences generated by the compiler used to build the binary,
then Ghidra will encounter more problems during the analysis phase, and
you will need to make manual adjustments to the disassembled code.

Changing Code Display Options
Ghidra allows very fine-grained control over the formatting of lines within
the Listing window. Layout is controlled with the Browser Field Formatter
(introduced in Chapter 5). Selecting the Browser Field Formatter icon
opens a tabbed display of all the fields associated with your listing, as dis-
played in Figure 5-8. You can add, delete, and rearrange fields by using a
simple drag-and-drop interface that allows you to immediately observe the
changes in your listing. The tight association between an item in the listing
field and in the associated Browser Field Formatter is very useful. Anytime

134 Chapter 7

you move the cursor to a new location in the Listing window, the Browser
Field Formatter moves the appropriate tab and associated field so that you
can immediately identify options associated with a particular item. See
“Special Tool Editing Features” on page 247 for additional discussion of
the Browser Field Formatter.

To control the appearance of individual elements within the Listing
window, you can select Edit4Tool Options, as described in Chapter 4. The
unique submenus for each field in the Listing window allow you to fine-tune
each field to your liking. While the capabilities associated with each field
vary, in general you can control display colors, associated default values,
configurations, and formats. For example, users who love assembly code
and read it in their spare time may choose to adjust the default parameters
in the EOL Comments Field area, shown in Figure 7-13, to activate the
Show Semicolon at Start of Each Line option in order to view the assembly
comments in a familiar format.

Figure 7-13: Tool Options menu for EOL Comments Field

To color the background for individual lines or larger selections in the
Listing window, select the Colors option through the right-click context
menu and choose a color. The range of available colors is extensive, and a
quick pick option is provided for recently used colors. Through the same
menu, you can also clear the background color for a line, a selection, or an
entire file.

N O T E 	 Clearing options do not appear if no colors are currently set for the listing.

Disassembly Manipulation 135

Formatting Instruction Operands
During the auto analysis process, Ghidra makes many decisions regarding
how to format operands associated with each instruction, especially various
integer constants used by a wide variety of instruction types. Among other
things, these constants can represent relative offsets in jump or call instruc-
tions, absolute addresses of global variables, values to be used in arithmetic
operations, or programmer-defined constants. To make a disassembly more
readable, Ghidra attempts to use symbolic names rather than numbers
whenever possible.

In some cases, formatting decisions are made based on the context of the
instruction being disassembled (such as a call instruction); in other cases,
the decision is based on the data being used (such as access to a global vari-
able or an offset into a stack frame or structure). Often, the exact context
in which a constant is used may not be discernable to Ghidra. When this
happens, the constant is typically formatted as a hexadecimal value.

If you are not one of the few people in the world who eat, sleep, and
breathe hex, then you will welcome Ghidra’s operand-formatting features.
Assume that you have the following in your disassembly listing:

08048485 MOV dword ptr [EBP + local_18],0xa
0804848c MOV byte ptr [EBP + local_58],0x41

Right-clicking the hex constant 0x41 opens the context-sensitive menu
shown in Figure 7-14. (See Figure 6-7 for this example in context.) The con-
stant can be reformatted in the various numeric representations displayed on
the right side of the figure, or as a character constant (since this value also
falls within the ASCII printable range). This can be a very helpful feature as
you may not realize the many representations that can be associated with a
given constant. In all cases, the menu displays the exact text that will replace
the operand text should a particular option be selected.

Figure 7-14: Formatting options for constants

In many cases, programmers use named constants in their source code.
Such constants may be the result of #define statements (or their equivalent),
or they may belong to a set of enumerated constants. Unfortunately, by
the time a compiler is finished with the source code, it is no longer pos-
sible to determine whether the source used a symbolic constant or a literal,
numeric constant. Fortunately, Ghidra maintains a large catalog of named

136 Chapter 7

constants associated with many common libraries, such as the C standard
library or the Windows API. This catalog is accessible via the Set Equate
option (hotkey E) on the context-sensitive menu associated with any con-
stant value. Selecting this option for the constant 0xa opens the Set Equate
dialog (Figure 7-15).

Figure 7-15: Set Equate dialog

The dialog is populated from Ghidra’s internal list of constants after
filtering according to the value of the constant we are attempting to format.
In this case, we can scroll to see all of the constants that Ghidra knows to be
equated with the value 0xA. If we determined that the value was being used
in conjunction with the creation of an X.25-style network connection, we
might select AF_CCITT and end up with the following disassembly line:

08048485 MOV dword ptr [EBP + local_18],AF_CCITT

The list of standard constants is useful to determine whether a particu-
lar constant may be associated with a known name and can save a lot of
time reading through API documentation in search of potential matches.

Disassembly Manipulation 137

Manipulating Functions
Ghidra provides the capability to manipulate functions in the disassembly
(for example, correcting which code Ghidra identifies as belonging to func-
tions, or changing function attributes), which is especially helpful when you
disagree with the results of the auto analysis. In some cases, such as when
Ghidra fails to locate a call to a function, functions may not be recognized,
as there may be no obvious way to reach them. In other cases, Ghidra may
fail to properly locate the end of a function, requiring you to correct the
disassembly. Ghidra may have trouble locating the end of a function if a
compiler has split the function across several address ranges or when, in the
process of optimizing code, a compiler merges common end sequences of
two or more functions in order to save space.

Creating New Functions

New functions can be created from existing instructions that do not already
belong to a function. You create functions by right-clicking the first instruc-
tion to be included in the new function and selecting Create Function (or
hotkey F). If you selected a range, that will become the function body. If
you did not, Ghidra will follow the control flow to try to determine the
bounds of the function body.

Deleting Functions

You can delete existing functions by placing the cursor within the function
signature and using the hotkey delete. You may wish to delete a function
if you believe that Ghidra has erred in its auto analysis or you have erred
in creating a function. Note that while the function and its associated attri-
butes will no longer exist, no change occurs to the underlying byte content,
so the function can be re-created if desired.

Editing Function Attributes

Ghidra associates several attributes with each function that it recognizes,
which can be viewed by selecting the WindowFunctions option from the
CodeBrowser menu. (While only five attributes are displayed by default, you
can add any of 16 additional attributes by right-clicking in a column head-
ing.) To edit the attributes, open the Edit Function dialog from the right-
click context menu when the cursor is positioned in the region between a
function’s plate comment and the last local variable listed before the begin-
ning of the function’s disassembled code. An example of the Edit Function
dialog is shown in Figure 7-16.

138 Chapter 7

Figure 7-16: Edit Function dialog

Each attribute that can be modified through this dialog is explained here:

Function Name
You can modify the name within the text box at the top of the dialog or
within the Function Name field.

Function Attributes
Five optional function attributes can be enabled in this area. The first
four attributes, Varargs, In Line, No Return, and Use Custom Storage,
are checkboxes that are unchecked by default. The fifth optional attri-
bute, Call Fixup, appears in the bottom left of the dialog, defaults to
none, and provides a drop-down menu from which you can choose a
value. If you modify any of the function’s attributes, Ghidra automati-
cally propagates the function’s updated prototype to all locations at
which it may be displayed throughout the disassembly.

The Varargs option indicates that a function takes a variable num-
ber of arguments (for example, printf). Varargs is also enabled if you
edit (in the text field at the top of Figure 7-16) the function’s parameter
list such that the last argument has an ellipsis (. . .). The In Line option
has no effect on disassembly analysis other than to include the inline
keyword in the function’s prototype. (Keep in mind that if a function
were actually inlined by a compiler, you would not see that function

Disassembly Manipulation 139

as a distinct entity in a disassembly because its body would have been
embedded within the body of the functions that call it.) The No Return
option is used when it is known that a function will never return (for
example, if it uses exit or an opaque predicate to jump to another func-
tion). When a function is tagged as No Return, Ghidra will not assume
that the bytes following a call to that function are reachable unless it
has other evidence to support their reachability, such as a jump instruc-
tion targeting those bytes. The Use Custom Storage option allows you
to override Ghidra’s analysis of parameter and return value storage
locations and sizes.

Calling Convention
The Calling Convention drop-down allows you to modify the calling
convention used by the function. Modifying the calling convention
may change Ghidra’s stack pointer analysis, so it is important to get
this correct.

Function Variables
The Function Variables area allows you to edit function variables with
guidance. As you modify the data in the four columns associated with
the variables, Ghidra will provide information to help you change
things appropriately. For example, attempts to change the Storage
for param_1 will result in a message saying Enable 'Use Custom Storage'
to allow editing of Parameter and Return Storage. The four icons on the
right allow you to add, delete, and navigate through the variables.

Converting Data to Code (and Vice Versa)
During the automatic analysis phase, data bytes may be incorrectly classi-
fied as code bytes and disassembled into instructions, or code bytes may
be incorrectly classified as data bytes and formatted as data values. This
happens for many reasons, including because some compilers embed data
into the code section of programs and because some code bytes are never
directly referenced as code and thus Ghidra opts not to disassemble them.
Obfuscated programs in particular tend to deliberately blur the distinction
between code and data. (See Chapter 21.)

The first option for reformatting anything is to remove its current
formatting (code or data). It is possible to undefine functions, code, or
data by right-clicking the item you wish to undefine and selecting Clear
Code Bytes (hotkey C). Undefining an item causes the underlying bytes to
be reformatted as a list of raw byte values. Large regions can be undefined
by using a click-and-drag operation to select a range of addresses prior to
performing the undefine operation. As an example, consider this simple
function listing:

004013e0 PUSH EBP
004013e1 MOV EBP,ESP
004013e3 POP EBP
004013e4 RET

140 Chapter 7

Undefining this function would yield the series of uncategorized bytes
shown here, which we could reformat in virtually any manner:

004013e0 ?? 55h U
004013e1 ?? 89h
004013e2 ?? E5h
004013e3 ?? 5Dh]
004013e4 ?? C3h

To disassemble a sequence of undefined bytes, right-click the first byte
to be disassembled and select Disassemble. This causes Ghidra to start the
recursive descent algorithm at that point. Large regions can be converted
to code by using click-and-drag to select a range of addresses prior to per-
forming the code-conversion operation.

Converting code to data is a little more complex. First, you cannot
directly convert code to data by using the context menu, unless you first
undefine the instructions that you wish to convert to data and then for-
mat the bytes appropriately. Basic data formatting is discussed in the fol-
lowing section.

Basic Data Transformations
To understand a program’s behavior, properly formatted data can be as
important as properly formatted code. Ghidra takes information from a
variety of sources and uses an algorithmic approach to determine the most
appropriate way to format data within a disassembly. For example:

•	 Data types and/or sizes can be inferred from the manner in which reg-
isters are used. An instruction that loads a 32-bit register from memory
implies that the associated memory location holds a 4-byte data type
(though we may not be able to distinguish between a 4-byte integer and
a 4-byte pointer).

•	 Function prototypes can be used to assign data types to function param-
eters. Ghidra maintains a large library of function prototypes for exactly
this purpose. Analysis is performed on the parameters passed to func-
tions in an attempt to tie a parameter to a memory location. If such a
relationship can be uncovered, a data type can be applied to the associ-
ated memory location. Consider a function whose single parameter is a
pointer to a CRITICAL_SECTION (a Windows API data type). If Ghidra can
determine the address passed in a call to this function, that address can
be flagged as a CRITICAL_SECTION object.

•	 Analysis of a sequence of bytes can reveal likely data types. This is pre-
cisely what happens when a binary is scanned for string content. When
long sequences of ASCII characters are encountered, it is not unreason-
able to assume that they represent character arrays.

In the next few sections, we discuss some basic transformations that you
can perform on data within your disassemblies.

Disassembly Manipulation 141

Specifying Data Types
Ghidra offers data size and type specifiers. The most commonly encoun-
tered specifiers are byte, word, dword, and qword, representing 1-, 2-, 4-, and
8-byte data, respectively. Data types can be set or changed by right-clicking
any disassembly line that contains data (that is not an instruction) and
selecting the Set Data Type submenu shown in Figure 7-17.

Figure 7-17: The Data submenu

This list allows you to immediately change the formatting and data size
of the currently selected item by choosing a data type. The Cycle option lets
you quickly cycle through a group of associated data types, such as numeric,
character, and floating point types, as shown (with associated hotkeys) in
Figure 7-18. For example, repeatedly pressing F would cycle you between
float and double, as they are the only items in that cycle group.

Figure 7-18: Cycle groups

142 Chapter 7

Toggling through data types causes data items to grow, shrink, or remain
the same size. If an item’s size remains the same, the only observable change
is in the way the data is formatted. If you reduce an item’s size, from ddw (4
bytes) to db (1 byte), for example, any extra bytes (3 in this case) become
undefined. If you increase the size of an item, Ghidra will warn you of any
conflict and guide you through resolving it. An example involving array
dimensioning is shown in Figure 7-19.

Figure 7-19: Example of an array declaration and warning

Working with Strings
Choosing SearchFor Strings brings up the dialog shown in Figure 7-20,
where you can set and control the search criteria for a specific string search.
While most of the fields in this window are self-explanatory, a unique fea-
ture of Ghidra is the ability to associate a word model with a search. A word
model can be used to determine whether a particular string is considered a
word in a given context. Word models are discussed in Chapter 13.

Figure 7-20: Search For Strings dialog

Disassembly Manipulation 143

Once a search has been conducted, the results are presented in a
String Search window (Figure 7-21). Subsequent searches will be tabbed
within the same window, and the window title bar will include timestamps
for each search so you can easily order them.

Figure 7-21: String Search window showing search results

The leftmost column of the String Search window contains icons that
indicate the string definition status (from undefined to conflicting). The
meanings of the icons are shown in Figure 7-22. To show or hide strings in
any of the categories, toggle the corresponding icons in the title bar.

Icon Definition
The string is already defined (and thus appears in the Defined Strings
window). Such strings are usually the target of a cross-reference.

Part of the string has been defined. Usually this is a string that has a
defined string as a substring.

The string conflicts (overlaps) with something already defined such as
existing instructions or data.

The string is not defined. The string is not the target of a cross-
reference, and the bytes generally appear as individual hex values.

Figure 7-22: String toggle icon definitions

144 Chapter 7

Using the icons allows you to easily identify the items in the listing that
are not already defined as strings and make a string or character array from
these entries by selecting them and clicking the Make String or Make Char
Array button, as appropriate. These newly defined entities will be displayed
in the Defined Strings window, which is discussed in “The Defined Strings
Window” on page 81.

Defining Arrays
One of the drawbacks to disassembly listings derived from higher-level lan-
guages is that they provide very few clues regarding the size of arrays. In
a disassembly listing, an array can require a tremendous amount of space
if each item in the array is specified on its own line. The following listing
shows a sequence of items in a data section. The fact that only the first item
in the listing is referenced by any instructions suggests that it may be the
first element in an array. Rather than being referenced directly, additional
elements within arrays are often referenced using index computations rela-
tive to the beginning of the array.

 DAT_004195a4 XREF[1]: main:00411727(W)
004195a4 undefined4 ??
004195a8 ?? ??
004195a9 ?? ??
004195aa ?? ??
004195ab ?? ??
004195ac ?? ??
004195ad ?? ??
004195ae ?? ??
004195af ?? ??
004195b0 ?? ??
004195b1 ?? ??
004195b2 ?? ??
004195b3 ?? ??
004195b4 ?? ??
004195b5 ?? ??
004195b6 ?? ??

Ghidra can group consecutive data definitions into a single array defi-
nition. To create an array, select the first element of the array and use the
DataCreate Array option in the context menu (hotkey [). You will be
prompted for the number of elements in the array, or you can accept the
default that Ghidra suggests. (If you have selected a range of data, rather
than a single value, Ghidra will use your selection as the array bounds.) By
default, the data type and size associated with the array elements are based
on the data type of the first element in the selection. The array is presented
in a collapsed format, but can be expanded to view the individual elements.
The number of elements displayed per line is controlled in the EditTool
Options of the CodeBrowser window. Arrays are discussed more thoroughly
in Chapter 8.

Disassembly Manipulation 145

Summary
Together with the previous chapter, this chapter encompasses the most com-
mon operations that Ghidra users will ever need to perform. Disassembly
manipulation lets you combine your knowledge with the knowledge imparted
by Ghidra during its analysis phase to produce valuable information. As
in source code, the effective use of names, assignment of data types, and
detailed comments will not only assist you in remembering what you have
analyzed but also greatly assist others who make use of your work. In the
next chapter, we take a look at how to deal with more complex data struc-
tures, such as the C struct, and examine some of the low-level details of
compiled C++.

Understanding the data types and data
structures that you encounter as you analyze

a binary is foundational to reverse engineer-
ing. The data that is being passed into a function

is a key to reverse engineering the function’s signature
(the number, type, and sequence of parameters required
by the function). Beyond that, the data types and data structures declared
and utilized within functions provide additional clues to what each function
is doing. This reinforces the importance of developing a deep understand-
ing of how data types and data structures are represented and manipulated
at the assembly language level.

In this chapter, we devote significant time to these topics that are so
critical to the success of a reverse engineering effort. We demonstrate how
to recognize data structures used in a disassembly and to model those struc-
tures in Ghidra. We follow with a demonstration of how Ghidra’s rich col-
lection of structure layouts can save you time with your analysis. Since C++
classes are a complex extension of C structures, the chapter concludes with

8
D A T A T Y P E S A N D D A T A

S T R U C T U R E S

148 Chapter 8

a discussion of reverse engineering compiled C++ programs. So let’s begin
our discussion of the manipulation and definition of simple and complex
data types and structures found within compiled programs.

Making Sense of Data
As a reverse engineer, you want to make sense of the data you see in a disas-
sembly. The simplest method for associating a specific data type with a vari-
able is to observe the use of the variable as a parameter to a function that
we know something about. During its analysis phase, Ghidra makes every
effort to annotate data types when they can be deduced based on a vari-
able’s use with a function for which Ghidra possesses a prototype.

With imported library functions, Ghidra often will already know the
prototype of the function. In such cases, you can easily view the prototype by
hovering over the function name in the Listing window or the Symbol Tree
window. When Ghidra has no knowledge of a function’s parameter sequence,
it should, at a minimum, know the name of the library from which the func-
tion was imported (see the Imports folder in the Symbol Tree window). When
this happens, your best resources for learning the signature and behavior of
the function are any associated man pages or other available API documenta-
tion. When all else fails, remember the adage “Google is your friend.”

The low-hanging fruit in understanding the behavior of binary programs
lies in cataloging the library functions that the program calls. A C program
that calls the connect function is creating a network connection. A Windows
program that calls RegOpenKey is accessing the Windows registry. Additional
analysis is required, however, to gain an understanding of how and why
these functions are called.

Discovering how a function is called requires learning about the param-
eters associated with the function. Let’s consider a C program that calls the
connect function as part of retrieving an HTML page. To call connect, the
program needs to know the IP address and destination port of the server
that is hosting the page, which is provided by a library function called
getaddrinfo. Ghidra recognizes this as a library function and adds a com-
ment to the call to provide us with additional information in the Listing
window, as shown here:

000100a30 CALL getaddrinfo int getaddrinfo(char * __name, c...

You can obtain more information about this call in several ways.
Hovering over the abbreviated comment to the right of the instruction
shows that Ghidra has provided the complete function prototype to help
you understand the parameters that are being passed in the function call.
Hovering over the function name in the Symbol Tree displays the function
prototype and variables in a pop-up window. Alternatively, choosing Edit
Function from the right-click menu provides the same information in an
editable format, as shown in Figure 8-1. If you want even more informa-
tion, you can then use the Data Type Manager window to find information
on specific parameters such as the addrinfo data type. If you had clicked

Data Types and Data Structures 149

getaddrinfo in the preceding listing, you would see that the content shown in
Figure 8-1 is replicated within the listing. (This is within a thunk function,
which is discussed in “Thunk” on page 212.)

Figure 8-1: Edit Function window for getaddrinfo function

Finally, you aren’t required to navigate through the Symbol Tree and
Data Type Manager windows to make these observations, as the decompiler
has already applied this information in the Decompiler window. If you look
at the Decompiler window, you will see that Ghidra has already incorporated
member names for the fields contained within the structure (addrinfo) by
using information from loaded type libraries. For the same example, in the
following excerpt of code from the decompiler, you can see that the member
names ai_family and ai_socktype help us understand that local_48 is a struc-
ture that is used when getting the information needed for connect. In this
case, the ai_family assignment indicates that an IPv4 address is being used
(2 equates to the symbolic constant AF_INET), and ai_socktype indicates the
use of a stream socket (1 equates to the symbolic constant SOCK_STREAM):

 local_48.ai_family = 2;
 local_48.ai_socktype = 1;
 local_10 = getaddrinfo(param_1,"www",&local_48,&local_18);

150 Chapter 8

Recognizing Data Structure Use
While primitive data types often fit in a processor’s registers or instruc-
tion operands, composite data types such as arrays and structures typically
require more complex instruction sequences in order to access the indi-
vidual data items they contain. Before we can discuss Ghidra’s features for
improving the readability of code that utilizes complex data types, we need
to review what that code looks like.

Array Member Access
Arrays are the simplest composite data structures in terms of memory lay-
out. Traditionally, arrays are contiguous blocks of memory that contain
consecutive elements of the same data type (a homogeneous collection).
The size of an array is the product of the number of elements in the array
and the size of each element. Using C notation, the minimum number of
bytes consumed by declaring the integer array

int array_demo[100];

is computed as

int bytes = 100 * sizeof(int); // or 100 * sizeof(array_demo[0])

Individual array elements can be accessed by supplying an index value,
which may be a variable or a constant, as shown in these valid array references:

  array_demo[20] = 15; // fixed index into the array
 for (int i = 0; i < 100; i++) {

  array_demo[i] = i; // varying index into the array

Assuming, for the sake of example, that sizeof(int)is 4 bytes, then the
first array access  accesses the integer value that lies 80 bytes into the
array, while the second array access  accesses integers at offsets 0, 4, 8, . . .
96 bytes into the array. The offset for the first array access can be computed
at compile time as 20 * 4. In most cases, the offset for the second array
access must be computed at runtime because the value of the loop counter,
i, is not fixed at compile time. Thus, the product i * 4 is computed on each
pass through the loop to determine the exact offset into the array.

Ultimately, how an array element is accessed depends not only on the
type of index used but also on where the array is allocated within the pro-
gram’s memory space.

Globally Allocated Arrays

When an array is allocated within the global data area of a program (within
the .data or .bss section, for example), the compiler knows the base address
of the array at compile time, which enables the compiler to compute fixed

Data Types and Data Structures 151

addresses for any array element that is accessed using a fixed index. Consider
the following trivial program, which accesses a global array using both fixed
and variable indices.

int global_array[3];
int main(int argc, char **argv) {
 int idx = atoi(argv[1]); //not bounds checked for simplicity
 global_array[0] = 10;
 global_array[1] = 20;
 global_array[2] = 30;
 global_array[idx] = 40;
}

W H AT IS C R E A L LY E X PEC T ING?

For simplicity, we said that C is expecting an integer index as either a variable
or a constant. In reality, any expression that can be evaluated to or interpreted
as an integer will do. The general guideline is, “anywhere you can use an
integer, you can use an expression that evaluates to an integer.” Of course, this
is not limited to just integers. C is perfectly happy to evaluate any expression
you provide and try to make it work for the variable type expected. What if the
values are outside the bounds of the array? You have the makings of numerous
exploitable vulnerabilities, of course! Values will be read from or written to the
resulting out-of-bounds memory region, or the program will simply crash if the
computed target address is not valid within the program.

If we disassemble a stripped version of the corresponding binary, the
main function contains the following code:

 ...
00100657 CALL atoi
0010065c MOV dword ptr [RBP + local_c],EAX
0010065f MOV dword ptr [DAT_00301018],10u
00100669 MOV dword ptr [DAT_0030101c],20v
00100673 MOV dword ptr [DAT_00301020],30w
0010067d MOV EAX,dword ptr [RBP + local_c]
00100680 CDQE
00100682 LEA RDX,[RAX*4]x
0010068a LEA RAX,[DAT_00301018]
00100691 MOV dword ptr [RDX + RAX*1]=>DAT_00301018,40
 ...

While this program has only one global variable (the global array),
the disassembly lines  v seem to indicate three global variables:
DAT_00301018, DAT_0030101c, and DAT_00301020, respectively. However, the LEA
instruction  loads the address of a global variable seen previously . In

152 Chapter 8

this context, when combined with the computation of an offset (RAX*4) ,
and scaled memory access , DAT_00301018 is most likely the base address of a
global array. The annotated operand =>DAT_00301018  provides us with the
base of the array into which 40 will be written.

W H AT’S A S T R IPPE D BIN A RY ?

When compilers generate object files, they must include enough information
for the linker to be able to do its job. One of the linker’s jobs is to resolve refer-
ences between object files, such as a call to a function whose body resides in
a different file, utilizing information from a compiler-generated symbol. In many
cases, the linker combines all of the symbol table information from the object
files and includes the consolidated information in the resulting executable file.
This information is not necessary for the executable to run properly, but it is
very useful from a reverse engineering perspective, as Ghidra (and other tools
like debuggers) can use the symbol table information to recover function and
global variable names and sizes.

Stripping a binary means removing portions of an executable file that are
not essential to the runtime operation of the binary. This can be accomplished
by using the command-line strip utility to post-process an executable, or by
providing build options to the compiler and/or linker (-s for gcc/ld) to have
them generate a stripped binary themselves. In addition to symbol table infor-
mation, strip can remove any debugging symbol information, such as local
variable names and type information, that were embedded in a binary when
it was built. Lacking symbol information, reverse engineering tools must have
algorithms for both identifying and naming functions and data.

Based on the names assigned by Ghidra, we know that the global
array starts with the 12 bytes beginning at address 00301018. During com-
pilation, the compiler used the fixed indices (0, 1, 2) to compute the actual
addresses of the corresponding elements in the array (00301018, 0030101c, and
00301020), which are referenced using the global variables at , , and .
Based on the values being moved into these locations, we can surmise that
we are moving 32-bit integer (dword) values into this array. If we navigate to
the associated data in the listing, we see the following content:

 DAT_00301018
00301018 ?? ??
00301019 ?? ??
0030101a ?? ??
0030101b ?? ??
 DAT_0030101c
0030101c ?? ??
0030101d ?? ??
0030101e ?? ??
0030101f ?? ??

Data Types and Data Structures 153

 DAT_00301020
00301020 ?? ??
00301021 ?? ??
00301022 ?? ??
00301023 ?? ??

The question marks indicate that this array is probably allocated within
the program’s .bss section and that no initialization values are present
within the f﻿﻿ile image.

It is easier to recognize an array in disassembly when it is accessed using
variable indices. When constant indices are used to access global arrays, the
corresponding array elements appear as global variables in the disassembly.
However, the use of variable index values reveals the base address of the
array at  and the size of the individual elements at , because the offset
into the array must be computed using the index. (Such scaling operations
are required to convert an integer array index from C to a byte offset for
the correct array element in assembly language.)

Using Ghidra’s type- and array-formatting operations discussed in the
previous chapter (DataCreate Array), we can format DAT_000301018 as a
three-element integer array, yielding disassembly lines with a named array
accessed with indices rather than offsets:

00100660 MOV dword ptr [INT_ARRAY_00301018],10
0010066a MOV dword ptr [INT_ARRAY_00301018[1]],20
00100674 MOV dword ptr [INT_ARRAY_00301018[2]],30

The default array name assigned by Ghidra, INT_ARRAY_00301018, includes
the array type as well as the starting address of the array.

UPDAT ING SY MBOL INFOR M AT ION IN COMME N T S

As you begin identifying data types, changing symbol names, and so on, you
can make sure that the valuable comments you have added to your listing don’t
become outdated, or challenging to follow, by using comment annotations that
update automatically. The Symbol annotation option lets you include references
to symbols that will be updated as you change the symbols to accurately reflect
your findings. (See “Annotations” on page 132.)

Let’s look at the Decompiler window before (Figure 8-2) and after
(Figure 8-3) the array has been created. In Figure 8-2, the important
warning on line 2 is another clue that you might be looking at an array,
and the assignment of integer values supports the assumption that the
array type is integer.

154 Chapter 8

Figure 8-2: Decompiler view indicating potential array

After the integer array is created, the code in the Decompiler window is
updated to use the new array variable, as shown in Figure 8-3.

Figure 8-3: Decompiler view after declaring array type

Stack-Allocated Arrays

The compiler can’t know the absolute address of an array allocated on the
stack as a local variable in a function at compile time, so even accesses that
use constant indices require some computation at runtime. Despite the dif-
ferences, compilers often treat stack-allocated arrays almost identically to
globally allocated arrays.

Data Types and Data Structures 155

The following program is a variation of the previous example that uses
a stack-allocated array rather than a global array:

int main(int argc, char **argv) {
 int stack_array[3];
 int idx = atoi(argv[1]); //bounds check omitted for simplicity
 stack_array[0] = 10;
 stack_array[1] = 20;
 stack_array[2] = 30;
 stack_array[idx] = 40;
}

The address at which stack_array will be allocated is unknown at compile
time, so the compiler cannot precompute the address of stack_array[2] as
it did for global_array[2]. The compiler can, however, compute the relative
location of any element within the array. For example, element stack_array[2]
begins at offset 2*sizeof(int) from the beginning of the array, and the
compiler is well aware of this at compile time. If the compiler elects to allo-
cate stack_array at offset EBP-0x18 within the stack frame, it can compute
EBP-0x18+2*sizeof(int), which reduces to EBP-0x10 at compile time and avoids
the need for additional arithmetic at runtime to access stack_array[2]. This
becomes evident in the following listing:

 undefined main()
 undefined AL:1 <RETURN>
 undefined4 Stack[-0xc]:4 local_cu
 undefined4 Stack[-0x10]:4 local_10
 undefined4 Stack[-0x14]:4 local_14
 undefined4 Stack[-0x18]:4 local_18
 undefined4 Stack[-0x1c]:4 local_1c
 undefined8 Stack[-0x28]:8 local_28
0010063a PUSH RBP
0010063b MOV RBP,RSP
0010063e SUB RSP,0x20
00100642 MOV dword ptr [RBP + local_1c],EDI
00100645 MOV qword ptr [RBP + local_28],RSI
00100649 MOV RAX,qword ptr [RBP + local_28]
0010064d ADD RAX,0x8
00100651 MOV RAX,qword ptr [RAX]
00100654 MOV RDI,RAX
00100657 MOV EAX,0x0
0010065c CALL atoi
00100661 MOV dword ptr [RBP + local_c],EAX
00100664 MOV dword ptr [RBP + local_18],10
0010066b MOV dword ptr [RBP + local_14],20
00100672 MOV dword ptr [RBP + local_10],30
00100679 MOV EAX,dword ptr [RBP + local_c]
0010067c CDQE
0010067e MOV dword ptr [RBP + RAX*0x4 + -0x10],40y
00100686 MOV EAX,0x0
0010068b LEAVE
0010068c RET

156 Chapter 8

It is even more difficult to detect this array than the global array.
This function appears to have six unrelated variables  (local_c, local_10,
local_14, local_18, local_1c, and local_28), rather than an array of three
integers and an integer index variable. Two of these locals (local_1c and
local_28) are the function’s two parameters, argc and argv, being saved for
later use .

The use of constant index values tends to hide the presence of a stack-
allocated array, because you see only assignments to separate local vari-
ables . Only the multiplication  hints at the existence of an array with
individual elements that are 4 bytes each. Let’s break down that statement
further: RBP holds the stack frame base pointer address; RAX*4 is the array
index (converted by atoi and stored in local_c ) multiplied by the size of
an array element; -0x10 is the offset to the start of the array from RBP.

The process to convert local variables to an array is a little different
from creating an array in the data section of the listing. Because the stack
structure information is associated with the first address in the function,
you cannot select a subset of the stack variables. Instead, place the cursor
on the variable at the start of the array, local_18, select the Set Data Type
followed by the Array option from the right-click context menu, and then
specify the number of elements in the array. Ghidra will display a warning
message about conflict with the local variables that we are pulling into the
array definition, as shown in Figure 8-4.

Figure 8-4: Warning about potential conflict when defining stack array

If you proceed, despite the potential conflict, you will see the array in
the Listing window, as shown here:

 ...
00100664 MOV dword ptr [RBP + local_18[0]],10
0010066b MOV dword ptr [RBP + local_18[1]],20
00100672 MOV dword ptr [RBP + local_18[2]],30
 ...

Even after the array is defined, the decompiler listing in Figure 8-5
doesn’t resemble the original source code. The decompiler has omitted the
static array assignments because it believes they do not contribute to the
result of the function. The call to atoi and resulting assignment remain
because Ghidra can’t compute the side effects of calling atoi, but Ghidra

Data Types and Data Structures 157

mistakes the saved result of atoi as the fourth element of the array (local_c
in the disassembly, and iVar1 in the decompiler listing).

Figure 8-5: Decompiler view of function with all stack variables after array
is defined

Heap-Allocated Arrays

Heap-allocated arrays are allocated using a dynamic memory allocation
function such as malloc (C) or new (C++). From the compiler’s perspective,
the primary difference in dealing with a heap-allocated array is that the
compiler must generate all references into the array based on the address
returned from the memory allocation function. The following C program
allocates a small array in the program heap:

int main(int argc, char **argv) {
 int *heap_array = (int*)malloc(3 * sizeof(int));
 int idx = atoi(argv[1]); //bounds check omitted for simplicity
 heap_array[0] = 10;
 heap_array[1] = 20;
 heap_array[2] = 30;
 heap_array[idx] = 40;
}

The corresponding disassembly is a little more complex than the two
previous examples:

 undefined main()
 undefined AL:1 <RETURN>
 undefined8 Stack[-0x10]:8 heap_array
 undefined4 Stack[-0x14]:4 local_14
 undefined4 Stack[-0x1c]:4 local_1c
 undefined8 Stack[-0x28]:8 local_28
0010068a PUSH RBP
0010068b MOV RBP,RSP
0010068e SUB RSP,0x20

158 Chapter 8

00100692 MOV dword ptr [RBP + local_1c],EDI
00100695 MOV qword ptr [RBP + local_28],RSI
00100699 MOV EDI,0xc
0010069e CALL malloc
001006a3 MOV qword ptr [RBP + heap_array],RAXv
001006a7 MOV RAX,qword ptr [RBP + local_28]
001006ab ADD RAX,0x8
001006af MOV RAX,qword ptr [RAX]
001006b2 MOV RDI,RAX
001006b5 CALL atoi
001006ba MOV dword ptr [RBP + local_14],EAX
001006bd MOV RAX,qword ptr [RBP + heap_array]
001006c1 MOV dword ptr [RAX],10w
001006c7 MOV RAX,qword ptr [RBP + heap_array]
001006cb ADD RAX,0x4x
001006cf MOV dword ptr [RAX],20
001006d5 MOV RAX,qword ptr [RBP + heap_array]
001006d9 ADD RAX,0x8y
001006dd MOV dword ptr [RAX],30
001006e3 MOV EAX,dword ptr [RBP + local_14]
001006e6 CDQE
001006e8 LEA RDX,[RAX*0x4]z
001006f0 MOV RAX,qword ptr [RBP + heap_array]
001006f4 ADD RAX,RDX
001006f7 MOV dword ptr [RAX],40
001006fd MOV EAX,0x0
00100702 LEAVE
00100703 RET

The starting address of the array (returned from malloc in the RAX reg-
ister) is stored in the local variable heap_array . In this example, unlike
the previous examples, every access to the array begins with reading the
contents of heap_array to obtain the array’s base address. The references to
heap_array[0], heap_array[1], and heap_array[2] require offsets of 0 , 4 ,
and 8 bytes , respectively. The variable index array access heap_array[idx] is
implemented with multiple instructions to compute the offset into the array
by multiplying the array index by the size of an array element , and add-
ing the result to the base address of the array .

Heap-allocated arrays have one particularly nice feature: the number
of elements allocated to the array can be computed from the total size of
the array and the size of each element. The parameter passed to the mem-
ory allocation function (12 passed to malloc ) tells you the number of bytes
allocated to the array. Dividing this by the size of an element (4 bytes in this
example, as observed from the offsets w, which step by 4, and the scale
factor ) tells us the number of elements in the array. In this example, a
three-element array was allocated.

The decompiler was also able to recognize the array, as seen in Figure 8-6.
(The name of the array pointer, puVar2, indicates that it is a pointer to an
unsigned integer using the prefix pu.)

Data Types and Data Structures 159

Figure 8-6: Decompiler view of heap array function

In this function, unlike the stack-allocated array function, the decom-
piler listing shows the constant index array assignments, even though it
would normally exclude them because the array is not used in other opera-
tions or returned from the function. This case is different because the
assignments are not just manipulating stack variables: the stack variable is
actually a pointer to memory that malloc requested from the heap. Writing
via that variable does not write to the local stack variable but rather uses the
stack variable to locate the allocated memory. The program may lose the
pointer (address of the start of the heap array) when the function exits, but
the values persist in memory. (This particular example is actually a demon-
stration of a memory leak. While not a good programming practice, it does
allow us to demonstrate the concept of a heap array.)

In conclusion, arrays are easiest to recognize when a variable is used as
an index into the array. The array-access operation, which requires the index
to be scaled by the size of an array element before adding the resulting off-
set to the base address of the array, stands out in a disassembly listing.

Structure Member Access
C-style structs, referred to here generically as structures, group collections
of (often heterogeneous) data items into a composite data type. In source
code, the data fields within a structure are accessed by name rather than
by index. Unfortunately, these informative field names are converted to
numeric offsets by the compiler, so by the time you are looking at a disas-
sembly, structure field access looks remarkably similar to accessing array
elements using constant indices.

160 Chapter 8

The following structure definition containing five heterogeneous fields
will be used in the upcoming examples:

struct ch8_struct { //Size Minimum offset Default offset
 int field1; // 4 0 0
 short field2; // 2 4 4
 char field3; // 1 6 6
 int field4; // 4 7 8
 double field5; // 8 11 16
}; // Minimum total size: 19 Default size: 24

When a compiler encounters a structure definition, the compiler main-
tains a running total of the number of bytes consumed by the fields of the
structure to determine the offset of each field within the structure. The sum
of the space required to allocate each field within a structure determines
the minimum space required for the structure. However, you should never
assume that a compiler utilizes the minimum required space to allocate a
structure. By default, compilers align structure fields to memory addresses
that allow for the most efficient reading and writing of those fields. For
example, 4-byte integer fields will be aligned to offsets that are divisible by
four, while 8-byte doubles will be aligned to offsets that are divisible by eight.
Depending on the composition of the structure, the compiler may insert
padding bytes to meet alignment requirements, meaning the actual size of a
structure will be larger than the sum of its component fields. The default off-
sets and resulting structure size for the sample structure can be seen in the
Default offset column in the comments in the preceding structure definition,
and they sum to 24 rather than the minimum 19.

Structures can be packed into the minimum required space by using
compiler options to request specific member alignments. Microsoft C/C++
and GNU gcc/g++ both recognize the pack pragma for controlling structure
field alignment. The GNU compilers additionally recognize the packed attri-
bute for controlling structure alignment on a per-structure basis. Requesting
1-byte alignment for structure fields causes compilers to squeeze the struc-
ture into the minimum required space. The offsets and structure size of
the sample structure are found in the Minimum offset column. (Note that
some processors perform better when data is aligned according to its type,
while other processors may generate exceptions if data is not aligned on spe-
cific boundaries.)

With these facts in mind, let’s look at how structures are treated in
compiled code. As with arrays, access to structure members is performed
by adding the base address of the structure to the offset of the desired
member. However, while array offsets can be computed at runtime from a
provided index value (because each element in an array has the same size),
structure offsets must be computed at compile time and will turn up in
compiled code as fixed offsets into the structure, looking nearly identical to
array references that make use of constant indices.

Creating structures in Ghidra is more involved than creating arrays,
so we cover that in the next section, after we show several examples of dis-
assembled and decompiled structures.

Data Types and Data Structures 161

Globally Allocated Structures

As with globally allocated arrays, the addresses of globally allocated struc-
tures are known at compile time. This allows the compiler to compute the
address of each member of the structure at compile time and eliminates
the need to do any math at runtime. Consider the following program that
accesses a globally allocated structure:

struct ch8_struct global_struct;
int main() {
 global_struct.field1 = 10;
 global_struct.field2 = 20;
 global_struct.field3 = 30;
 global_struct.field4 = 40;
 global_struct.field5 = 50.0;
}

If this program is compiled with default structure alignment options,
we can expect to see something like the following when we disassemble it:

 undefined main()
 undefined AL:1 <RETURN>
001005fa PUSH RBP
001005fb MOV RBP,RSP
001005fe MOV dword ptr [DAT_00301020],10
00100608 MOV word ptr [DAT_00301024],20
00100611 MOV byte ptr [DAT_00301026],30
00100618 MOV dword ptr [DAT_00301028],40
00100622 MOVSD XMM0,qword ptr [DAT_001006c8]
0010062a MOVSD qword ptr [DAT_00301030],XMM0
00100632 MOV EAX,0x0
00100637 POP RBP
00100638 RET

This disassembly contains no math whatsoever to access the members
of the structure, and, in the absence of source code, it would not be possi-
ble to state with any certainty that a structure is being used at all. Because
the compiler has performed all of the offset computations at compile
time, this program appears to reference five global variables rather than
five fields within a single structure. You should be able to note the similar-
ities with the previous example of globally allocated arrays using constant
index values.

In Figure 8-2, the uniform offsets coupled with the values allowed us
to surmise (accurately) that we were dealing with an array. In this example,
we are correct to conclude that we are not dealing with an array because
the size of the variables is nonuniform (dword, word, byte, dword, and qword,
respectively), but we lack sufficient evidence to assert that we are dealing
with a struct.

162 Chapter 8

Stack-Allocated Structures

Like stack-allocated arrays, stack-allocated structures are challenging to
recognize based on stack layout alone, and the decompiler doesn’t provide
additional insight. Modifying the preceding program to use a stack-allocated
structure, declared in main, yields the following disassembly:

 undefined main()
 undefined AL:1 <RETURN>
 undefined8 Stack[-0x18]:8 local_18
 undefined4 Stack[-0x20]:4 local_20
 undefined1 Stack[-0x22]:1 local_22
 undefined2 Stack[-0x24]:2 local_24
 undefined4 Stack[-0x28]:4 local_28
001005fa PUSH RBP
001005fb MOV RBP,RSP
001005fe MOV dword ptr [RBP + local_28],10
00100605 MOV word ptr [RBP + local_24],20
0010060b MOV byte ptr [RBP + local_22],30
0010060f MOV dword ptr [RBP + local_20],40
00100616 MOVSD XMM0,qword ptr [DAT_001006b8]
0010061e MOVSD qword ptr [RBP + local_18],XMM0
00100623 MOV EAX,0x0
00100628 POP RBP
00100629 RET

Again, no math is performed to access the structure’s fields since the
compiler can determine the relative offsets for each field within the stack
frame at compile time, and we are left with the same, potentially misleading
picture that five individual variables are being used rather than a single vari-
able that happens to contain five distinct fields. In reality, local_28 should be
the start of a 24-byte structure, and each of the other variables should some-
how be formatted to reflect the fact that they are fields within the structure.

Heap-Allocated Structures

Heap-allocated structures reveal much more about the size of the structure
and the layout of its fields. When a structure is allocated in the program
heap, the compiler has no choice but to generate code to compute the proper
field address whenever a field is accessed, because the structure’s address is
unknown at compile time. For globally allocated structures, the compiler is
able to compute a fixed starting address. For stack-allocated structures, the
compiler can compute a fixed relationship between the start of the structure
and the frame pointer for the enclosing stack frame. When a structure has
been allocated in the heap, the only reference to the structure available to
the compiler is the pointer to the structure’s starting address.

Data Types and Data Structures 163

To demonstrate heap-allocated structures, we modify the sample pro-
gram to declare a pointer within main and assign it the address of a block of
memory large enough to hold the structure:

int main() {
 struct ch8_struct *heap_struct;
 heap_struct = (struct ch8_struct*)malloc(sizeof(struct ch8_struct));
 heap_struct->field1 = 10;
 heap_struct->field2 = 20;
 heap_struct->field3 = 30;
 heap_struct->field4 = 40;
 heap_struct->field5 = 50.0;
}

Here is the corresponding disassembly:

 undefined main()
 undefined AL:1 <RETURN>
 undefined8 Stack[-0x10]:8 heap_struct
0010064a PUSH RBP
0010064b MOV RBP,RSP
0010064e SUB RSP,16
00100652 MOV EDI,24
00100657 CALL malloc
0010065c MOV qword ptr [RBP + heap_struct],RAX
00100660 MOV RAX,qword ptr [RBP + heap_struct]
00100664 MOV dword ptr [RAX],10
0010066a MOV RAX,qword ptr [RBP + heap_struct]
0010066e MOV word ptr [RAX + 4],20
00100674 MOV RAX,qword ptr [RBP + heap_struct]
00100678 MOV byte ptr [RAX + 6],30
0010067c MOV RAX,qword ptr [RBP + heap_struct]
00100680 MOV dword ptr [RAX + 8],40
00100687 MOV RAX,qword ptr [RBP + heap_struct]
0010068b MOVSD XMM0,qword ptr [DAT_00100728]
00100693 MOVSD qword ptr [RAX + 16],XMM0
00100698 MOV EAX,0x0
0010069d LEAVE
0010069e RET

In this example, we can discern the exact size and layout of the struc-
ture. The structure size can be inferred to be 24 bytes based on the amount
of memory requested from malloc . The structure contains the following
fields at the indicated offsets:

•	 A 4-byte (dword) field at offset 0 v

•	 A 2-byte (word) field at offset 4 w

•	 A 1-byte field at offset 6 x

•	 A 4-byte (dword) field at offset 8 y

•	 An 8-byte (qword) field at offset 16 z

164 Chapter 8

Based on the use of floating point instructions (MOVSD), we can further
deduce that the qword field is actually a double.

The same program compiled to pack structures with a 1-byte alignment
yields the following disassembly:

0010064a PUSH RBP
0010064e SUB RSP,16
00100652 MOV EDI,19
00100657 CALL malloc
0010065c MOV qword ptr [RBP + local_10],RAX
00100660 MOV RAX,qword ptr [RBP + local_10]
00100664 MOV dword ptr [RAX],10
0010066a MOV RAX,qword ptr [RBP + local_10]
0010066e MOV word ptr [RAX + 4],20
00100674 MOV RAX,qword ptr [RBP + local_10]
00100678 MOV byte ptr [RAX + 6],30
0010067c MOV RAX,qword ptr [RBP + local_10]
00100680 MOV dword ptr [RAX + 7],40
00100687 MOV RAX,qword ptr [RBP + local_10]
0010068b MOVSD XMM0,qword ptr [DAT_00100728] =
00100693 MOVSD qword ptr [RAX + 11],XMM0
00100698 MOV EAX,0x0
0010069d LEAVE
0010069e RET

The only changes are the smaller structure size (now 19 bytes) and the
adjusted offsets to account for the realignment of each structure field.

Regardless of the alignment used when compiling a program, finding
structures allocated and manipulated in the program heap is the fastest
way to determine the size and layout of a given data structure. However,
keep in mind that many functions will not do you the favor of immediately
accessing every member of a structure to help you understand the struc-
ture’s layout. Instead, you may need to follow the use of the pointer to the
structure and make note of the offsets used whenever that pointer is deref-
erenced, and eventually piece together the complete layout of the structure.
In “Example 3: Automated Structure Creation” on page 437, you’ll see
how the decompiler can automate this process for you.

Arrays of Structures

Some programmers say that the beauty of composite data structures is
that they allow you to build arbitrarily complex structures by nesting
smaller structures within larger structures: arrays of structures, structures
within structures, and structures that contain arrays as members, for example.
The preceding discussions regarding arrays and structures apply just as well
to such nested types. As an example, consider the following simple program
in which heap_struct points to an array of five ch8_struct items:

int main() {
 int idx = 1;
 struct ch8_struct *heap_struct;

Data Types and Data Structures 165

 heap_struct = (struct ch8_struct*)malloc(sizeof(struct ch8_struct) * 5);
 heap_struct[idx].field1 = 10;
}

Underneath the hood, accessing field1 involves multiplying the index
value by the size of an array element (in this case, the size of the structure)
and then adding the offset to the desired field. The corresponding disas-
sembly is shown here:

 undefined main()
 undefined AL:1 <RETURN>
 undefined4 Stack[-0xc]:4 idx
 undefined4 Stack[-0x18]:8 heap_struct
0010064a PUSH RBP
0010064b MOV RBP,RSP
0010064e SUB RSP,16
00100652 MOV dword ptr [RBP + idx],1
00100659 MOV EDI,120
0010065e CALL malloc
00100663 MOV qword ptr [RBP + heap_struct],RAX
00100667 MOV EAX,dword ptr [RBP + idx]
0010066a MOVSXD RDX,EAX
0010066d MOV RAX,RDX
00100670 ADD RAX,RAX
00100673 ADD RAX,RDX
00100676 SHLw RAX,3
0010067a MOV RDX,RAX
0010067d MOV RAX,qword ptr [RBP + heap_struct]
00100681 ADD RAX,RDX
00100684 MOV dword ptr [RAX],10
0010068a MOV EAX,0
0010068f LEAVE
00100690 RET

The function allocates 120 bytes  in the heap. The array index in RAX
is multiplied by 24 using a series of operations , ending with SHL RAX, 3 
before being added to the start address for the array . (If it is not readily
apparent to you that the series of operations starting at  is equivalent to
multiplication by 24, don’t worry. Code sequences such as this are discussed
in Chapter 20.) Because field1 is the first member of the struct, no addi-
tional offset is required in order to generate the final address for the assign-
ment into field1 .

From these facts, we can deduce the size of an array item (24), the num-
ber of items in the array (120 / 24 = 5), and the fact that there is a 4-byte
(dword) field at offset 0 within each array element. This short listing does not
offer enough information to draw any conclusions about how the remaining
20 bytes within each structure are allocated to additional fields. The size
of the array can be even more easily deduced using the same formula from
the decompiler listing in Figure 8-7 (0x18 hex is 24 decimal).

166 Chapter 8

Figure 8-7: Decompiler view of function with heap-allocated struct array

Creating Structures with Ghidra
In the preceding chapter, you saw how to use Ghidra’s array-aggregation
capabilities to collapse long lists of data declarations into a single disassem-
bly line representing an array. The next few sections explore Ghidra’s facili-
ties for improving the readability of code that manipulates structures. Our
goal is to move away from cryptic structure references such as [EDX + 10h]
and toward something more readable like [EDX + ch8_struct.field_e].

Whenever you discover that a program is manipulating a data structure,
you need to decide whether you want to incorporate structure field names
into your disassembly or whether you can make sense of all the numeric
offsets sprinkled throughout the listing. In some cases, Ghidra may recog-
nize the use of a structure defined as part of the C standard library or the
Windows API and use its knowledge of the exact layout of the structure to
convert numeric offsets into symbolic field names. This is the ideal case, as
it leaves you with a lot less work to do. We will return to this scenario once
you understand a little more about how Ghidra deals with structure defini-
tions in general.

Creating a New Structure
When Ghidra has no layout knowledge for a structure, you can create the
structure by selecting the data and using the right-click context menu.
When you select DataCreate Structure (or use the hotkey shift-[), you
will see the Create Structure window shown in Figure 8-8. Since you have
highlighted a block of data (which could be defined or undefined), Ghidra
will try to identify existing structures that have a matching format or the
same size. You can select one of the existing structures from the window or
create a new structure. In this example, we are using the globally allocated
structure sample code discussed previously and are creating a new structure

Data Types and Data Structures 167

called ch8_struct. As soon as you click OK, the structure becomes an official
type in the Data Type Manager window and the information is propagated
to other CodeBrowser windows.

Figure 8-8: Create Structure window

Let’s look at the effect of this creation on the associated CodeBrowser
windows, starting with the Listing window. As shown earlier in the chap-
ter, the disassembly listing gives you few hints that you might be dealing
with a structure, because the code modifies a series of seemingly unrelated
global variables:

001005fa PUSH RBP
001005fb MOV RBP,RSP
001005fe MOV dword ptr [DAT_00301020],10
00100608 MOV word ptr [DAT_00301024],20
00100611 MOV byte ptr [DAT_00301026],30
00100618 MOV dword ptr [DAT_00301028],40
00100622 MOVSD XMM0,qword ptr [DAT_001006c8]
0010062a MOVSD qword ptr [DAT_00301030],XMM0
00100632 MOV EAX,0
00100637 POP RBP
00100638 RET

When you navigate to the associated data items, select the range (00301020
through 00301037), and create the associated structure, you see the individual
data items in the structure are now associated with a structure called ch8_struct​
00301020, and each item in the structure has the name field concatenated
with its offset from the first element in the structure.

168 Chapter 8

00401035 POP EBP
001005fb MOV RBP,RSP
001005fe MOV dword ptr [ch8_struct_00301020],10
00100608 MOV word ptr [ch8_struct_00301020.field_0x4],20
00100611 MOV byte ptr [ch8_struct_00301020.field_0x6],30
00100618 MOV dword ptr [ch8_struct_00301020.field_0x8],40
00100622 MOVSD XMM0,qword ptr [DAT_001006c8]
0010062a MOVSD qword ptr [ch8_struct_00301020.field_0x10],XMM0
00100632 MOV EAX,0
00100637 POP RBP
00100638 RET

This is just one of the windows that changes with the creation of the
structure. Recall that the Decompiler window gave us a helpful warning
that we might be working with a structure or array. After we create the
structure, the warning disappears and the decompiled code more closely
resembles the original C code, as shown in Figure 8-9.

Figure 8-9: Decompiler view after struct is created

S TAT E OF T HE UNION

A union is a construct that is similar to a structure. The major difference between
structures and unions is that structure fields have unique offsets and their own
dedicated memory space, whereas union fields all overlap one another begin-
ning at offset 0. The result is that all union fields share the same memory space.
The Union Editor window in Ghidra looks similar to the Structure Editor window,
and the functionality is basically the same.

Data Types and Data Structures 169

The new structure also now appears as an entry in the Data Type
Manager window in the CodeBrowser. Figure 8-10 shows the new entry in
the Data Type Manager window and the associated window showing all uses
of ch8_struct.

Figure 8-10: Newly declared structure in Data Type Manager and References windows

Editing Structure Members
At this point, Ghidra presents the newly created structure as a contiguous
collection of undefined bytes with cross-references at each offset accessed
by the example program, instead of a collection of defined data types
(which you have identified from the size of each item and the way it is being
used). To define the type of each field, you can edit the structure from
the Listing window by right-clicking and selecting the appropriate Data
option. Alternatively, you can edit the structure from within the Data Type
Manager by double-clicking the structure.

If you double-click the newly created structure in the Data Type
Manager window (shown in Figure 8-10), the Structure Editor window
(shown in Figure 8-11) opens to show 24 elements of undefined type, all
with a length of 1. To determine the number, sizes, and types of the indi-
vidual elements within the structure, you could study the disassembly, or
you could let the decompiler listing shown earlier in Figure 8-9 provide
the answers.

170 Chapter 8

Figure 8-11: Structure Editor window

The original decompiler listing associated with our newly created struc-
ture shows that five items are referenced within the same structure, ch8_struct​
_00301020, using field names containing two integers. The first integer rep-
resents the offset from the base address of the structure. The second shows
the number of bytes used, which is a good indicator of the size of the item.
Using this information (and some meaningful field names), you can update
the Structure Editor window, as shown in Figure 8-12. The Byte Offset/
Component Bits scroll bar within the Structure Editor provides a visual
representation of the structure. When a structure is edited, the Decompiler
window (on the left of Figure 8-12), the Listing window, and other associ-
ated windows are also updated.

Because field_c is a character, the decompiler converted the integer 30
into the ASCII character represented by 30 (0x1e), which is an unprintable
control character (RS). In the Structure Editor, the padding bytes (indi-
cated by the mnemonic ??) have been included for proper field alignment,
and the offsets to each field and the overall size (24 bytes) of the structure
match the values seen in the earlier examples.

Data Types and Data Structures 171

Figure 8-12: Decompiler and Structure Editor windows after editing structure

Applying Structure Layouts
You have seen how to use existing structure definitions and create new ones
to associate existing memory with a particular memory layout. You have also
seen how that association is propagated through the CodeBrowser windows
to make the contents clearer. Vague memory references such as [EBX+8]
become more readable by converting numeric structure offsets into symbolic
references such as [EBX+ch8_struct.field_d], especially because symbolic refer-
ences can be given meaningful names. Ghidra’s use of a hierarchical nota-
tion makes it clear exactly what type of structure, and exactly which field
within that structure, is being accessed.

Ghidra’s library of known structure layouts has been populated with
information gathered by parsing common C header files. The layout of a
structure defines its total size, the name and size of each field, and the start-
ing offset of each field within the structure. You can use structure layouts
even without associated content in the data section, which is especially help-
ful when dealing with structure pointers.

Anytime you encounter a memory reference in the form [reg+N] (for
example, [RAX+0x12]), where reg is a register name and N is a small constant,
reg is being used as a pointer and N represents an offset into the memory
that reg points to. This is a common pattern for structure member access,
with reg pointing to the beginning of the structure and N selecting the field
at structure offset N. Under some circumstances, Ghidra, with your assis-
tance, can clean up this type of memory reference to reflect both the type

172 Chapter 8

of structure being pointed to and the specific field within that structure
that is being referenced.

Let’s look at the 32-bit version of the example from the beginning of
the chapter, where we were requesting an HTTP page from a server. The
request is made by a function named get_page. In this version of the binary,
Ghidra asserts that the function receives three stack-allocated parameters.
These parameters appear in the Listing window as follows:

 undefined get_page(undefined4 param_1, undefined param_2...
 undefined AL:1 <RETURN>
 undefined4 Stack[0x4]:4 param_1
 undefined Stack[0x8]:1 param_2
 undefined4 Stack[0xc]:4 param_3

The Decompiler window shows that param_3 is used with some offsets in
a call to connect:

iVar1=connect(local_14,*(sockaddr **)(param_3+20),*(socklen_t*)(param_3+16));

Tracing through the calling sequence and the return values from the
called functions, we can conclude that param_3 is a pointer to an addrinfo
struct and retype param_3 as an addrinfo* (using ctrl-L from the Listing
or Decompiler window). The decompiled statement using param_3 will be
replaced with the far more informative statement shown here:

iVar1 = connect(local_14, param_3->ai_addr, param_3->ai_addrlen);

You can see that pointer arithmetic has been replaced by structure field
references. Pointer arithmetic in source code is rarely self-explanatory. Any
effort you spend updating data types for program variables will be well
worth it. You’ll have saved your colleagues the time required to deduce the
type of param_3 themselves, and you’ll thank yourself upon returning from
two weeks at the beach that you don’t need to reanalyze the code to relearn
the type of that variable that you forgot to update.

C++ Reversing Primer
C++ classes are the object-oriented extensions of C structs, so it is somewhat
logical to wrap up our discussion of data structures by reviewing the fea-
tures of compiled C++ code. Detailed coverage of C++ is beyond the scope
of this book. Here, we attempt to cover the highlights and a few of the dif-
ferences between Microsoft’s C++ compiler and GNU’s g++.

Remember that a solid, fundamental understanding of the C++ language
will assist you greatly in understanding compiled C++. Object-oriented con-
cepts such as inheritance and polymorphism are difficult enough to master
at the source level. Attempting to dive into these concepts at the assembly
level without understanding them at the source level can be an exercise
in frustration.

Data Types and Data Structures 173

The this Pointer
The this pointer is available in all nonstatic C++ member functions. Whenever
such a function is called, this is initialized to point to the object used to
invoke the function. Consider the following function calls in C++:

// object1, object2, and *p_obj are all the same type.
object1.member_func();
object2.member_func();
p_obj->member_func();

In the three calls to member_func, this takes on the values &object1, &object2,
and p_obj, respectively.

It is easiest to view this as a hidden first parameter passed in to all non-
static member functions. As discussed in Chapter 6, the Microsoft C++ com-
piler utilizes the thiscall calling convention and passes this in the ECX register
(x86) or the RCX register (x86-x64). The GNU g++ compiler treats this exactly
as if it were the first (leftmost) parameter to nonstatic member functions.
On 32-bit Linux x86, the address of the object used to invoke the function
is pushed as the topmost item on the stack prior to calling the function. On
Linux x86-64, this is passed in the first register parameter, RDI.

From a reverse engineering point of view, moving an address into the
ECX register immediately before a function call is a probable indicator of two
things. First, the file was compiled using Microsoft’s C++ compiler. Second,
the function is possibly a member function. When the same address is passed
to two or more functions, we can conclude that those functions all belong to
the same class hierarchy.

Within a function, the use of ECX prior to initializing it implies that
the caller must have initialized ECX (recall the discussion of liveness from
“Register-Based Parameters” on page 113) and is a possible sign that the
function is a member function (though the function may simply use the
fastcall calling convention). Further, when a member function passes this
to additional functions, those functions can be inferred to be members of
the same class as well.

For code compiled using GNU g++, calls to member functions stand
out somewhat less because this looks a lot like any other first parameter.
However, any function that does not take a pointer as its first argument can
certainly be ruled out as a member function.

Virtual Functions and Vftables
Virtual functions enable polymorphic behavior in C++ programs. For each
class (or subclass through inheritance) that contains virtual functions, the
compiler generates a table containing pointers to each virtual function in
the class. Such tables are called vftables (also vtables). Every instance of a
class that contains virtual functions is given an additional data member that
points to the class’s vftable. The vftable pointer is allocated as the first data
member within the class instance, and when an object is created at runtime,
its constructor function sets its vftable pointer to point at the appropriate

174 Chapter 8

vftable. When that object invokes a virtual function, the correct function is
selected by performing a lookup in the object’s vftable. Thus, vftables are
the underlying mechanism that facilitates runtime resolution of calls to
virtual functions.

A few examples may help to clarify the use of vftables. Consider the
following C++ class definitions:

class BaseClass {
 public:
 BaseClass();

  virtual void vfunc1() = 0;
 virtual void vfunc2();
 virtual void vfunc3();
 virtual void vfunc4();
 private:
 int x;
 int y;
};
class SubClass : public BaseClass {
 public:
 SubClass();

  virtual void vfunc1();
 virtual void vfunc3();
 virtual void vfunc5();
 private:
 int z;
};

In this case, SubClass inherits from BaseClass . BaseClass contains four
virtual functions , while SubClass contains five  (four from BaseClass,
two of which it overrides, plus the new vfunc5). Within BaseClass, vfunc1 is
a pure virtual function, indicated by = 0  in its declaration. Pure virtual
functions have no implementation in their declaring class and must be
overridden in a subclass before the class is considered concrete. In other
words, there is no function named BaseClass::vfunc1, and until a subclass
provides an implementation, no objects can be instantiated. SubClass provides
such an implementation, so SubClass objects can be created. In object-
oriented terms, BaseClass::vfunc1 is an abstract function, which makes BaseClass
an abstract base class (that is, an incomplete class that cannot be directly
instantiated since it is missing an implementation for at least one function).

At first glance, BaseClass appears to contain two data members, and
SubClass three data members. Recall, however, that any class that contains
virtual functions, either explicitly or because they are inherited, also
contains a vftable pointer. As a result, the compiled implementation of
BaseClass has three data members, while instantiated SubClass objects have
four data members. In each case, the first data member is the vftable pointer.
Within SubClass, the vftable pointer is actually inherited from BaseClass
rather than being introduced specifically for SubClass. You can see this
in the simplified memory layout in Figure 8-13, in which a single SubClass
object has been dynamically allocated. During the creation of the object,
the new object’s vftable pointer is initialized to point to the correct vftable
(SubClass’s in this case).

Data Types and Data Structures 175

SubClass vftable

&purecall

&BaseClass::vfunc2

BaseClass vftable

&SubClass::vfunc1

&BaseClass::vfunc4

&SubClass::vfunc3

p_vftable

X

Y

&SubClass::vfunc5

BaseClass *bc = new SubClass();

Read-only data
(.rdata/.rodata)

Heap data

&BaseClass::vfunc2

&BaseClass::vfunc4

&BaseClass::vfunc3

Z

Figure 8-13: A simple vftable layout

The vftable for SubClass contains two pointers to functions belong-
ing to BaseClass (BaseClass::vfunc2 and BaseClass::vfunc4) because SubClass
does not override either of these functions and instead inherits them from
BaseClass. The vftable for BaseClass shows how pure virtual functions are
handled. Because there is no implementation for the pure virtual function
BaseClass::vfunc1, no address is available to store in the BaseClass vftable slot
for vfunc1. In such cases, compilers insert the address of an error-handling
function, dubbed purecall in Microsoft libraries and __cxa_pure_virtual in
GNU libraries. In theory, these functions should never be called, but in the
event that they are, they cause the program to be terminated abnormally.

You must account for the vftable pointer when you manipulate classes
within Ghidra. Because C++ classes are extensions of C structures, you
can use Ghidra’s structure definition features to define the layout of C++
classes. With polymorphic classes, you must include a vftable pointer as the
first field within the class as well as account for the vftable pointer in the
total size of the object. This is most apparent when observing the dynamic
allocation of an object using the new operator, where the size value passed
to new includes the space needed by all explicitly declared fields in the
class (and any superclasses) as well as any space required for a vftable
pointer.

In the following example, a SubClass object is created dynamically and
its address saved in a BaseClass pointer. The pointer is then passed to a func-
tion (call_vfunc), which uses the pointer to call vfunc3:

void call_vfunc(BaseClass *bc) {
 bc->vfunc3();
}
int main() {
 BaseClass *bc = new Subclass();
 call_vfunc(bc);
}

176 Chapter 8

Since vfunc3 is a virtual function and bc points to a SubClass object, the
compiler must ensure that SubClass::vfunc3 is called. The following disas-
sembly of a 32-bit, Microsoft C++ version of call_vfunc demonstrates how the
virtual function call is resolved:

 undefined __cdecl call_vfunc(int * bc)
 undefined AL:1 <RETURN>
 int * Stack[0x4]:4 bc
004010a0 PUSH EBP
004010a1 MOV EBP,ESP
004010a3 MOV EAX,dword ptr [EBP + bc]
004010a6 MOV EDX,dword ptr [EAX]
004010a8 MOV ECX,dword ptr [EBP + bc]
004010ab MOV EAX,dword ptr [EDX + 8]
004010ae CALL EAX
004010b0 POP EBP
004010b1 RET

The vftable pointer (the address of SubClass’s vftable) is read from the
structure and saved in EDX . Next, the this pointer is moved into ECX .
Then, the vftable is indexed to read the third pointer (the address of
SubClass::vfunc3 in this case) into the EAX register . Finally, the virtual
function is called .

The vftable indexing operation  looks very much like a structure ref-
erence operation. In fact, it is no different, and it is possible to define new
structures for the class and its vftable (right-click in the Data Type Manager
window) and then use the defined structures (see Figure 8-14) to make the
disassembly and decompilation more readable.

Figure 8-14: Data Manager Window showing new SubClass and SubClass_vftable

The Decompiler window with references to the new structures is shown
in Figure 8-15.

Data Types and Data Structures 177

Figure 8-15: Decompiler window reflecting defined structures
for SubClass

A class’s vftable is referenced directly in only two circumstances: within
the class constructor(s) and destructor. When you locate a vftable, you
can utilize Ghidra’s data cross-referencing capabilities (see Chapter 9) to
quickly locate all constructors and destructors for the associated class.

The Object Life Cycle
Understanding the mechanism by which objects are created and destroyed
can help to reveal object hierarchies and nested object relationships as well
as quickly identify class constructor and destructor functions.

W H AT’S A CONS T RUC TOR?

A class constructor function is an initialization function that is invoked when
a new object of that class is created. Constructors provide an opportunity to
initialize variables within the class. The inverse of a constructor, a destructor, is
called when an object goes out of scope or a dynamically allocated object is
explicitly deleted. Destructor functions perform cleanup activities such as releas-
ing resources like open file descriptors and dynamically allocated memory.
Properly written destructors mitigate the potential for memory leaks.

The storage class of an object determines when its constructor is
called.1 For global and statically allocated objects (static storage class),
constructors are called during program startup prior to entry into the pro-
gram’s main function. Constructors for stack-allocated objects (automatic
storage class) are invoked when the object comes into scope within the
function in which it is declared. In many cases, this will be immediately

1. A variable’s storage class roughly defines its lifetime during program execution. The two
most common storage classes in C are static and automatic. The storage space for static vari-
ables exists for the duration of the program. Automatic variables are associated with function
invocations and exist only for the duration of a specific function call.

178 Chapter 8

upon entry to the function in which it is declared. However, when an object
is declared within a nested block statement, its constructor is not invoked
until that block is entered, if it is entered at all. When an object is allocated
dynamically in the program heap, its creation is a two-step process: the new
operator is invoked to allocate the object’s memory and then the construc-
tor is invoked to initialize the object. Microsoft C++ ensures that the result
of new is not null prior to invoking the constructor, but GNU’s g++ does not.

When a constructor executes, the following sequence of actions
takes place:

1.	 If the class has a superclass, the superclass constructor is invoked.

2.	 If the class has any virtual functions, the vftable pointer is initialized to
point to the class’s vftable. This may overwrite a vftable pointer that was
initialized in the superclass constructor, which is exactly the desired
behavior.

3.	 If the class has any data members that are themselves objects, the con-
structor for each of those data members is invoked.

4.	 Finally, the class constructor is executed. This is the C++ constructor
code specified by the programmer of the class.

From a programmer’s perspective, constructors do not specify a return
type or allow a value to be returned. Some compilers actually return this as a
result that they may further utilize in the caller, but this is a compiler imple-
mentation detail and C++ programmers cannot access the returned value.

Destructors, as their name implies, are called at the end of an object’s
lifetime. For global and static objects, destructors are called by cleanup code
that is executed after the main function terminates. Destructors for stack-
allocated objects are invoked as the objects go out of scope. Destructors
for heap-allocated objects are invoked via the delete operator immediately
before the memory allocated to the object is released.

W H AT’S NE W ?

The new operator is used for dynamic memory allocation in C++ in much the
same way that malloc is used in C. It is used to allocate memory from the heap
and allows a program to request space as needed during execution. The new
operator is built into the C++ language, whereas malloc is merely a standard
library function. Remember that C is a subset of C++, so you might see either
in a C++ program. The most notable difference between malloc and new is that
invocations of new for object types will result in an implicit invocation of the
object’s constructor, where memory returned by malloc is not initialized before
it is made available to the caller.

Data Types and Data Structures 179

The actions performed by destructors mimic those performed by
constructors, with the exception that they are performed in roughly
reverse order:

1.	 If the class has any virtual functions, the vftable pointer for the object is
restored to point to the vftable for the associated class. This is required
in case a subclass had overwritten the vftable pointer as part of its cre-
ation process.

2.	 The programmer-specified code for the destructor executes.

3.	 If the class has any data members that are themselves objects, the
destructor for each of those members is executed.

4.	 Finally, if the object has a superclass, the superclass destructor is called.

By understanding when superclass constructors and destructors are
called, it is possible to trace an object’s inheritance hierarchy through the
chain of calls to its related superclass functions.

I T HINK YOU A R E OV E R LOA DE D

Overloaded functions are functions that share the same name but have different
parameters. C++ requires that each version of an overloaded function differ
from every other version in the sequence and/or quantity of parameter types
that the function receives. In other words, while they share the same function
name, each function prototype must be unique, and each overloaded function
body can be uniquely identified within the disassembled binary. This is not
to be confused with functions, such as printf, that take a variable number of
arguments but are associated with a single function body.

Name Mangling
Also called name decoration, name mangling is the mechanism C++ compilers
use to distinguish among overloaded versions of a function. To generate
unique, internal names for overloaded functions, compilers decorate the
function name with additional characters that encode various pieces of
information about the function: the namespace to which the function (or
its owning class) belongs (if any), the class to which the function belongs
(if any), and the parameter sequence (type and order) required to call
the function.

Name mangling is a compiler implementation detail for C++ programs
and, as such, is not part of the C++ language specification. Not unexpect-
edly, compiler vendors have developed their own, often-incompatible con-
ventions for name mangling. Fortunately, Ghidra understands the name
mangling conventions employed by Microsoft’s C++ compiler and GNU
g++ v3 (and later) as well as some other compilers. Ghidra provides names
of the form FUN_address in place of the mangled name. Mangled names do

180 Chapter 8

carry valuable information regarding the signature of each function, and
Ghidra includes this information in the Symbol Table window as well as
propagating the information to the disassembly and other related windows.
(To determine the signature of a function without a mangled name, you
might need to conduct time-consuming analysis of the data flowing into
and out of the function.)

Runtime Type Identification
C++ provides operators to determine (typeid) and check (dynamic_cast) an
object’s data type at runtime. To support these operations, C++ compilers
must embed type-specific information, for each polymorphic class, within
a program binary. When a typeid or dynamic_cast operation is performed at
runtime, library routines reference the type-specific information in order
to determine the exact runtime type of the polymorphic object being ref-
erenced. Unfortunately, as with name mangling, Runtime Type Identification
(RTTI) is a compiler implementation detail rather than a language issue,
and there is no standard means by which compilers implement RTTI
capabilities.

We will take a brief look at the similarities and differences between
the RTTI implementations of Microsoft’s C++ compiler and GNU g++.
Specifically, we’ll describe how to locate RTTI information and, from there,
how to learn the name of the class to which that information pertains.
Readers desiring more detailed discussion of Microsoft’s RTTI implemen-
tation should consult the references listed at the end of this chapter. In
particular, the references detail how to traverse a class’s inheritance hier-
archy, including how to trace that hierarchy when multiple inheritance is
being used.

Consider the following simple program, which uses polymorphism:

class abstract_class {
 public:
 virtual int vfunc() = 0;
};
class concrete_class : public abstract_class {
 public:
 concrete_class(){};
 int vfunc();
};
int concrete_class::vfunc() {return 0;}

 void print_type(abstract_class *p) {
 cout << typeid(*p).name() << endl;
}
int main() {
 abstract_class *sc = new concrete_class();
 print_type(sc);
}

The print_type function  prints the type of the object being pointed
to by the pointer p. In this case, it must print "concrete_class" since a concrete​

Data Types and Data Structures 181

_class object is created in the main function . How does print_type, and
more specifically typeid, know what type of object p is pointing to?

The answer is surprisingly simple. Since every polymorphic object
contains a pointer to a vftable, compilers leverage that fact by co-locating
class-type information with the class vftable. Specifically, the compiler
places a pointer, immediately prior to the class vftable, that points to a
structure containing information about the class that owns the vftable. In
GNU g++ code, this pointer points to a type_info structure, which contains a
pointer to the name of the class. In Microsoft C++ code, the pointer points
to a Microsoft RTTICompleteObjectLocator structure, which in turn contains a
pointer to a TypeDescriptor structure. The TypeDescriptor structure contains a
character array that specifies the name of the polymorphic class.

RTTI information is required only in C++ programs that use the typeid
or dynamic_cast operator. Most compilers provide options to disable the
generation of RTTI in binaries that do not require it; therefore, you should
not be surprised if you encounter compiled binaries that contain no RTTI
information even though vftables are present.

For C++ programs built with Microsoft’s C++ compiler, Ghidra con-
tains an RTTI analyzer that is enabled by default and that is capable of
identifying Microsoft RTTI structures, annotating those structures (if pres-
ent) in the disassembly listing, and utilizing class names recovered from
those RTTI structures in the Symbol Tree’s Classes folder. Ghidra has no
RTTI analyzer for non-Windows binaries. When Ghidra encounters an
unstripped, non-Windows binary, if it understands the name mangling
scheme employed in the binary, then Ghidra utilizes available name infor-
mation to populate the Symbol Tree’s Classes folder. If a non-Windows
binary has been stripped, Ghidra will not be able to automatically recover
any class names or identify vftables or RTTI information.

Inheritance Relationships
It is possible to unravel inheritance relationships by using a compiler’s
particular implementation of RTTI, but RTTI may not be present when a
program does not utilize the typeid or dynamic_cast operators. Lacking RTTI
information, what techniques can be employed to determine inheritance
relationships among C++ classes?

The simplest method to determine an inheritance hierarchy is to
observe the chain of calls to superclass constructors that are called when
an object is created. The single biggest hindrance to this technique is the
use of inline constructors. In C/C++, a function declared as inline is usu-
ally treated as a macro by the compiler, and the code for the function is
expanded in place of an explicit function call. Inline functions hide the
fact that a function is being used, since no assembly language call statement
will be generated. This makes it challenging to understand that a superclass
constructor has in fact been called.

The analysis and comparison of vftables can also reveal inheritance
relationships. For example, in comparing the vftables shown in Figure 8-13,
we note that the vftable for SubClass contains two of the same pointers that

182 Chapter 8

appear in the vftable for BaseClass, and we conclude that BaseClass and
SubClass must be related in some way. To understand which one is the base
class and which one is the subclass, we can apply the following guidelines,
singly or in combination:

•	 When two vftables contain the same number of entries, the two corre-
sponding classes may be involved in an inheritance relationship.

•	 When the vftable for class X contains more entries than the vftable for
class Y, class X may be a subclass of class Y.

•	 When the vftable for class X contains entries that are also found in the
vftable for class Y, then one of the following relationships must exist: X
is a subclass of Y, Y is a subclass of X, or X and Y are both subclasses of a
common superclass Z.

•	 When the vftable for class X contains entries that are also found in
the vftable for class Y and the vftable for class X contains at least one
purecall entry that is not also present in the corresponding vftable entry
for class Y, then class Y is likely to be a subclass of class X.

While the preceding list is by no means all-inclusive, we can use these
guidelines to deduce the relationship between BaseClass and SubClass in
Figure 8-14. In this case, the last three rules all apply, but the last rule spe-
cifically leads us to conclude, based on vftable analysis alone, that SubClass
inherits from BaseClass.

C++ Reverse Engineering References
Several excellent references exist on reverse engineering compiled C++.2
While many of the details in each of these articles apply specifically to
programs compiled using Microsoft’s C++ compiler, many of the concepts
apply equally to programs compiled using other C++ compilers.

Summary
You can expect to encounter complex data types in all but the most trivial
programs. Understanding how data within data structures is accessed and
knowing how to recognize clues to the layout of those data structures is
an essential reverse engineering skill. Ghidra provides a wide variety of
features designed specifically to deal with data structures. Familiarity with
these features will greatly enhance your ability to comprehend what data is
being manipulated and spend more time understanding how and why that
data is being manipulated. In the next chapter, we continue our discussion
of Ghidra’s basic capabilities with an in-depth look at cross-references.

2. See Igor Skochinsky’s article “Reversing Microsoft Visual C++ Part II: Classes, Methods and
RTTI,” available at http://www.openrce.org/articles/full_view/23 and Paul Vincent Sabanal and
Mark Vincent Yason’s paper “Reversing C ++,” available at http://www.blackhat.com/presentations​
/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf.

http://www.openrce.org/articles/full_view/23
http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
http://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf

Two common questions asked while
reverse engineering a binary are “Where

is this function called from?” and “Which
functions access this data?” These and other

similar questions seek to identify and catalog the ref-
erences to and from various resources in a program.
The following two examples serve to show the useful-
ness of such questions.

Example 1
While you are reviewing the large number of ASCII strings in a par-
ticular binary, you see a string that seems particularly suspicious: “Pay
within 72 hours or the recovery key will be destroyed and your data will
remain encrypted forever.” On its own, this string is just circumstan-
tial evidence. It in no way confirms that the binary has the capability
or intent to execute a crypto ransomware attack. The answer to the
question “Where is this string referenced in the binary?” would help

9
C R O S S - R E F E R E N C E S

184 Chapter 9

you to quickly track down the program location(s) that makes use of
the string. This information, in turn, should assist you in locating any
related crypto ransomware code that uses the string or to demonstrate
that the string, in this context, is benign.

Example 2
You have located a function containing a stack-allocated buffer that can
be overflowed, possibly leading to exploitation of the program, and you
want to determine if this is actually possible. If you want to develop and
demonstrate an exploit, the function is useless to you unless you can get
it to execute. This leads to the question “Which functions call this vul-
nerable function?” as well as additional questions regarding the nature
of the data that those functions may pass to the vulnerable function.
This line of reasoning must continue as you work your way back up
potential call chains to find one that you can influence to demonstrate
that the overflow is exploitable.

Referencing Basics
Ghidra can help you analyze both of these cases (and many others) through
its extensive mechanisms for displaying and accessing reference informa-
tion. In this chapter, we discuss the types of references that Ghidra makes
available, the tools for accessing reference information, and ways to inter-
pret that information. In Chapter 10, we will use Ghidra’s graphing capa-
bilities to examine visual representations of reference relationships.

All references obey the same general traffic rules.
Associated with each reference is the notion of a
direction. All references are made from one address
to another address. If you are familiar with graph
theory, you can think of addresses as nodes (or ver-
tices) in a directed graph, and references as the edges
that identify directed connections between the nodes.
Figure 9-1 provides a quick refresher on basic graph
terminology. In this simple graph, three nodes—A, B,
and C—are connected by two directed edges.

Directed edges are represented by arrows to indicate the allowable
direction of travel along the edge. In Figure 9-1, travel from A to B is pos-
sible, but travel from B to A is not, similar to a one-way street. If the arrows
were bidirectional, travel in either direction would be acceptable.

Ghidra has two basic categories of references: forward references and
back references (each with subcategories as well). The back references are
the less complex of the two types and are likely to be used most frequently
in reverse engineering. Back references, also referred to as cross-references,
provide a means to navigate between locations in the listing such as code
and data.

A

B C

Figure 9-1: Directed
graph with three
nodes and two edges

Cross-References 185

Cross-References (Back References)
Back references within Ghidra are often referred to simply as XREFs, which
is a mnemonic for the term cross-reference. Within this text, we use the term
XREF only when referring to the specific sequence of characters (XREF)
in a Ghidra listing, menu item, or dialog. In all other cases, we stick to the
more general term cross-reference when referring to back references. Let’s
start by looking at specific examples of XREFs in Ghidra before moving on
to a more comprehensive example.

Example 1: Basic XREFs

Let’s begin by examining some of the XREFs that we encountered in
demo_stackframe (see Chapter 6) and use the following listing to under-
stand the associated format and meaning:

 * FUNCTION *

 undefined demo_stackframe(undefined param_1, undefined4. . .
 undefined AL:1 <RETURN>
 undefined Stack[0x4]:4 param_1
 undefined4 Stack[0x8]:4 param_2 XREF[1]:u0804847fv(R)
 undefined4 Stack[0xc]:4 param_3 XREF[1]: 08048479(R)
 undefined4 Stack[-0x10]:4 local_10 XREF[1]: 0804847c(W)
 undefined4 Stack[-0x14]:4 local_14 XREF[2]: 08048482(W),
 08048493(R)
 undefined4 Stack[-0x18]:4 local_18 XREF[2]: 08048485(W),
 08048496(R)
 undefined1 Stack[-0x58]:1 local_58 XREF[1]: 0804848c(W)
 demo_stackframe XREF[4]: Entry Point(*),
 main:080484be(c),
 080485e4, 08048690(*)

Ghidra not only indicates that there is a cross-reference with the indi-
cator XREF u but also shows the number of cross-references with an index
value following XREF. This part of the cross-reference (for example, XREF[2]:)
is called the XREF header. Examining the headers in the listing, we can see
that most of the cross-references have only one referring address, but a few
have more.

Following the header is the address associated with the cross-reference v,
which is a navigable object. Following the address, there is a type indica-
tor in parentheses w. For data cross-references (which is the case in this
example), the valid types are R (indicating that the variable is read at the
corresponding XREF address), W (indicating that the variable is being writ-
ten to), and * (indicating that an address of a location is being taken as a
pointer). In summary, data cross-references are identified in the listing where
the data is declared, and associated XREF entries provide links to the loca-
tions where the data is referenced.

186 Chapter 9

The listing also contains a code cross-reference x. Code cross-references
are a very important concept, as they facilitate Ghidra’s generation of func-
tion graphs and function call graphs, which are the focus of Chapter 10.
A code cross-reference is used to indicate that an instruction transfers or
may transfer control to another instruction. The manner in which instruc-
tions transfer control is referred to as a flow. Flows may be any of three basic
types: sequential, jump, or call. Jump and call flows can be further divided
according to whether the target address is a near or far address.

A sequential flow is the simplest flow type, as it represents linear flow from
one instruction to the next. This is the default execution flow for all non-
branching instructions such as ADD. There are no special display indicators

FOR M AT T ING X R E F S

As with most items you encounter in the Listing window, you can control the
attributes associated with the cross-reference display. Selecting Edit4Tool
Options opens the editable options for the CodeBrowser. Since an XREF is part
of the Listing window, the XREFs Field can be found within the Listing Fields
folder. When it is selected, it will open the dialog shown in Figure 9-2 (here
with default options). If you were to change Maximum Number of XREFs to
Display to 2, the header for all cross-references exceeding this number would
be displayed as XREF[more]. The option to display nonlocal namespaces allows
you to quickly identify all of the cross-references that are not within the current
function’s body. All of the options are explained in Ghidra Help.

Figure 9-2: XREFs Field edit window showing defaults

Cross-References 187

for sequential flows other than the order in which instructions are listed in
the disassembly: if instruction A has a sequential flow to instruction B, then
instruction B will immediately follow instruction A in the disassembly listing.

Example 2: Jump and Call XREFs

Let’s take a quick look at a new example containing code cross-references
that demonstrate jumps and calls. As with data cross-references, code cross-
references also have an associated XREF entry in the Listing window. The
following listing shows information associated with the function main:

 **
 * FUNCTION *
 **
 undefined4 __stdcall main(void)
 undefined4 EAX:4 <RETURN>
 undefined4 Stack[-0x8]:4 ptr uXREF[3]: 00401014(W),
 0040101b(R),
 00401026(R)
 main vXREF[1]: entry:0040121e(c)

You can clearly identify the three XREFs associated with the stack
variable  as well as the XREF associated with the function itself . Let’s
decode the meaning of the XREF, entry:0040121e(c). The address (or in this
case, identifier) before the colon indicates the referring (or source) entity.
In this case, control is transferred from entry. To the right of the colon is
the specific address within entry that is the source of the cross-reference.
The suffix (c) indicates that this is a CALL to main. Stated simply, the cross-
reference says, “main is called from address 0040121e within entry.”

If we double-click the cross-reference address to follow the link, we are
taken to the specified address within entry where we can examine the call.
While the XREF is a unidirectional link, we can quickly return to main by
double-clicking the function name (main) or using the backward navigation
arrow in the CodeBrowser toolbar:

0040121e CALL main

In the following listing, the (j) suffix on the XREF indicates that this
labeled location is the target of a JUMP:

004011fe JZ LAB_00401207
00401200 PUSH EAX
00401201 CALL __amsg_exit
00401206 POP ECX
 LAB_00401207 XREF[1]: 004011fe(j)v
00401207 MOV EAX,[DAT_0040acf0]

Similar to the previous example, we can double-click the XREF
address  to navigate to the statement that transferred control. We can
return by double-clicking the associated label .

188 Chapter 9

References Example
Let’s walk through an example from source code to disassembly to demon-
strate many types of cross-references. The following program, simple_flows.c,
contains various operations that exercise Ghidra’s cross-referencing fea-
tures, as noted in the comment text:

int read_it; // integer variable read in main
int write_it; // integer variable written 3 times in main
int ref_it; // integer variable whose address is taken in main
void callflow() {} // function called twice from main

int main() {
 int *ptr = &ref_it; // results in a "pointer" style data reference (*)
 *ptr = read_it; // results in a "read" style data reference (R)
 write_it = *ptr; // results in a "write" style data reference (W)
 callflow(); // results in a "call" style code reference (c)
 if (read_it == 3) { // results in "jump" style code reference (j)
 write_it = 2; // results in a "write" style data reference (W)
 }
 else { // results in an "jump" style code reference (j)
 write_it = 1; // results in a "write" style data reference (W)
 }
 callflow(); // results in an "call" style code reference (c)
}

Code Cross-References

Listing 9-1 shows the disassembly of the preceding program.

 undefined4 __stdcall main(void)
 undefined4 EAX:4 <RETURN>
 undefined4 Stack[-0x8]:4 ptr XREF[3]: 00401014(W),
 0040101b(R),
 00401026(R)
 main XREF[1]: entry:0040121e(c)
00401010 PUSH EBP
00401011 MOV EBP,ESP
00401013 PUSH ECX
00401014 MOV dword ptr [EBP + ptr],ref_it
0040101b MOV EAX,dword ptr [EBP + ptr]
0040101e MOV ECX,dword ptr [read_it]
00401024 MOV dword ptr [EAX]=>ref_it,ECX
00401026 MOV EDX,dword ptr [EBP + ptr]
00401029 MOV EAX=>ref_it,dword ptr [EDX]
0040102b MOV [write_it],EAX
00401030 CALL callflow
00401035 CMP dword ptr [read_it],3
0040103c JNZ LAB_0040104a
0040103e MOV dword ptr [write_it],2
00401048 JMP LAB_00401054

 LAB_0040104a XREF[1]:y0040103c(j)
0040104a MOV dword ptr [write_it],1

Cross-References 189

 LAB_00401054 XREF[1]: 00401048(j)
00401054 CALL callflow
00401059 XOR EAX,EAX
0040105b MOV ESP,EBP
0040105d POP EBP
0040105e RETz

Listing 9-1: Disassembly of main in simple_flows.exe

Every instruction other than JMP  and RET  has an associated sequen-
tial flow to its immediate successor. Instructions used to invoke functions,
such as the x86 CALL instruction , are assigned a call flow, indicating trans-
fer of control to the target function. Call flows are noted by XREFs at the
target function (the destination address of the flow). The disassembly of
the callflow function referenced in Listing 9-1 is shown in Listing 9-2.

 undefined __stdcall callflow(void)
 undefined AL:1 <RETURN>
 callflow XREF[4]: 0040010c(*),
 004001e4(*),
 main:00401030(c),
 main:00401054(c)
00401000 PUSH EBP
00401001 MOV EBP,ESP
00401003 POP EBP
00401004 RET

Listing 9-2: Disassembly of the callflow function

E X T R A X R E F S?

Every now and again, you see something in a listing that seems anomalous.
Listing 9-2 has two pointer XREFs, 0040010c(*) and 004001e4(*), that are not
easily explained. We immediately understood the two XREFs that we could
trace back to the calls to callflow in main. What are the other two XREFs?
It turns out that these are an interesting artifact of this particular code. This
program was compiled for Windows, which results in a PE file, and the two
anomalous XREFs take us to the PE header in the Headers section of the listing.
The two reference addresses (including the associated bytes) are shown here:

0040010c 00 10 00 00 ibo32 callflow BaseOfCode
 . . .
004001e4 00 10 00 00 ibo32 callflow VirtualAddress

Why is this function referenced in the PE header? A quick Google search can
help us understand what is happening: callflow just happens to be the very first
thing in the text section, and the two PE fields indirectly reference the start of the
text section, hence the unanticipated XREFs associated with the callflow function.

190 Chapter 9

In this example, we see that callflow is called twice from main: once
from address 00401030 and again from address 00401054. Cross-references
resulting from function calls are distinguished by the suffix (c). The source
location displayed in the cross-references indicates both the address from
which the call is being made and the function that contains the call.

A jump flow is assigned to each unconditional and conditional branch
instruction. Conditional branches are also assigned sequential flows to
account for control flow when the branch is not taken; unconditional
branches have no associated sequential flow because the branch is always
taken. Jump flows are associated with jump-style cross-references displayed at
the target of the JNZ  in Listing 9-1. As with call-style cross-references, jump
cross-references display the address of the referring location (the source of
the jump). Jump cross-references are distinguished by the (j) suffix.

BA SIC BLOCKS

In program analysis, a basic block is a maximal sequence of instructions that
executes, without branching, from beginning to end. Each basic block therefore
has a single entry point (the first instruction in the block) and a single exit point
(the last instruction in the block). The first instruction in a basic block is often
the target of a branching instruction, while the last instruction is often a branch
instruction. The first instruction may be the target of multiple code cross-refer-
ences. Other than the first instruction, no other instruction within a basic block
can be the target of a code cross-reference. The last instruction of a basic block
may be the source of multiple code cross-references, such as a conditional
jump, or it may flow into an instruction that is the target of multiple code cross-
references (which, by definition, must begin a new basic block).

Data Cross-References

Data cross-references are used to track how data is accessed within a binary.
The three most commonly encountered types of data cross-references indi-
cate when a location is being read, when a location is being written, and
when the address of a location is being taken. The global variables from the
previous sample program are shown in Listing 9-3, as they provide several
examples of data cross-references.

 read_it XREF[2]: main:0040101e(R),
 main:00401035(R)
0040b720 undefined4 ??
 write_it XREF[3]: main:0040102b(W),
 main:0040103e(W),
 main:0040104a(W)

Cross-References 191

0040b724 ?? ??
0040b725 ?? ??
0040b726 ?? ??
0040b727 ?? ??
 ref_it XREF[3]: main:00401014(*),
 main:00401024(W),
 main:00401029(R)
0040b728 undefined4 ??

Listing 9-3: Global variables referenced in simple_flows.c

A read cross-reference indicates that the contents of a memory location are
being read. Read cross-references can originate only from an instruction
address but may refer to any program location. The global variable read_it
is read twice in Listing 9-1. The associated cross-reference comments shown
in this listing indicate exactly which locations in main are referencing read_it
and are recognizable as read cross-references from the (R) suffix. The read
performed on read_it  in Listing 9-1 is a 32-bit read into the ECX register,
which leads Ghidra to format read_it as an undefined4 (a 4-byte value of
unspecified type). Ghidra often attempts to infer the size of a data item
based on how the item is manipulated by code throughout a binary.

The global variable write_it is referenced three times in Listing 9-1.
Associated write cross-references are generated and displayed as comments
for the write_it variable, indicating the program locations that modify the
contents of the variable. Write cross-references utilize the (W) suffix. In this
case, Ghidra did not format write_it as a 4-byte variable even though there
seems to be enough information to do so. As with read cross-references,
write cross-references can originate only from a program instruction but
may reference any program location. Generally, a write cross-reference that
targets a program instruction byte is indicative of self-modifying code and
is frequently encountered in malware de-obfuscation routines.

The third type of data cross-reference, a pointer cross-reference, indicates
that the address of a location is being used (rather than the content of the
location). The address of global variable ref_it is taken  in Listing 9-1,
resulting in the pointer cross-reference at ref_it in Listing 9-3, as indicated by
the suffix (*). Pointer cross-references are commonly the result of address
derivations either in code or in data. As you saw in Chapter 8, array access
operations are typically implemented by adding an offset to the starting
address of the array, and the first address in most global arrays can often
be recognized by the presence of a pointer cross-reference. For this reason,
most string literals (strings being arrays of characters in C/C++) are the
targets of pointer cross-references.

Unlike read and write cross-references, which can originate only
from instruction locations, pointer cross-references can originate from
either instruction locations or data locations. An example of pointers that
can originate from a program’s data section is any table of addresses (such
as a vftable, which results in the generation of a pointer cross-reference
from each entry in the table to the corresponding virtual function). Let’s

192 Chapter 9

see this in context using the SubClass example from Chapter 8. The disas-
sembly for the vftable for SubClass is shown here:

 SubClass::vftable XREF[1]: SubClass_Constructor:00401062(*)
00408148 void * SubClass::vfunc1 vfunc1

 0040814c void * BaseClass::vfunc2 vfunc2
00408150 void * SubClass::vfunc3 vfunc3
00408154 void * BaseClass::vfunc4 vfunc4
00408158 void * SubClass::vfunc5 vfunc5

Here you see that the data item at location 0040814c  is a pointer to
BaseClass::vfunc2. Navigating to BaseClass::vfunc2 presents us with the follow-
ing listing:

 **
 * FUNCTION *
 **
 undefined __stdcall vfunc2(void)
 undefined AL:1 <RETURN>
 undefined4 Stack[-0x8]:4 local_8 XREF[1]: 00401024(W)
 BaseClass::vfunc2 XREF[2]: 00408138(*)u,
 0040814c(*)v
00401020 PUSH EBP
00401021 MOV EBP,ESP
00401023 PUSH ECX
00401024 MOV dword ptr [EBP + local_8],ECX
00401027 MOV ESP,EBP
00401029 POP EBP
0040102a RET

Unlike most functions, this function has no code cross-references.
Instead, we see two pointer cross-references indicating that the address of
the function is derived in two locations. The second XREF  refers back
to the SubClass vftable entry discussed earlier. Following the first XREF 
would lead us to the vftable for BaseClass, which also contains a pointer to
this virtual function.

This example demonstrates that C++ virtual functions are rarely called
directly and are usually not the target of a call cross-reference. Because
of the way vftables are created, all C++ virtual functions will be referred
to by at least one vftable entry and will always be the target of at least one
pointer cross-reference. (Remember that overriding a virtual function is
not mandatory.)

When a binary contains sufficient information, Ghidra is able to locate
vftables for you. Any vftables that Ghidra finds are listed as an entry under
the vftable’s corresponding class entry within the Classes folder of the
Symbol Tree. Clicking a vftable in the Symbol Tree window navigates you
to the vftable location in the program’s data section.

Cross-References 193

Reference Management Windows
By now, you’ve probably noticed that XREF annotations are quite common
in the Listing window. This is no accident, as the links formed by cross-
references are the glue that hold a program together. Cross-references tell
the story of intra- and inter-functional dependencies, and most successful
reverse engineering efforts demand a comprehensive understanding of
their behavior. The sections that follow move beyond the basic display and
navigational usefulness of cross-references to introduce several options for
managing cross-references within Ghidra.

XRefs Window
You can use XREF headers to learn more about a particular cross-reference,
as shown in the following listing:

 undefined4 Stack[-0x10]:4 local_10 XREF[1]: 0804847c(W)
 undefined4 Stack[-0x14]:4 local_14 XREF[2]:u08048482(W),
 08048493(R)

Double-clicking the XREF[2] header  will bring up the associated
XRefs window shown in Figure 9-3 with a more detailed listing of the cross-
references. By default, the window shows the location, label (if applicable),
referring disassembly, and reference type.

Figure 9-3: XRefs window

194 Chapter 9

References To
Another window that can be helpful in understanding the program flow is
the References To window. Right-clicking any address in the Listing window
and choosing References4Show Reference to Address brings up the
window shown in Figure 9-4.

Figure 9-4: References To window

In this example, we have selected the starting address of the helper func-
tion. Within this window, you can navigate to the associated location by
clicking any entry in the window.

Symbol References
Another reference view that was introduced in “The Symbol Table and Symbol
References Windows” on page 82 is the combination of the Symbol
Table and Symbol Reference windows. By default, when you choose
Window4Symbol References, you get two related windows. One displays
every symbol in the entire symbol table. The other displays the associated
references to the symbols. Selecting any entry in the Symbol Table window
(function, vftable, and so on) causes the associated symbol references to be
displayed in the Symbol References window.

Reference lists can be used to rapidly identify every location from
which a particular function is called. For example, many people consider
the C strcpy function to be dangerous as it copies a source array of char-
acters, up to and including the associated null termination character, to a
destination array, with no checks whatsoever that the destination array is
large enough to hold all of the characters from the source. You could locate
any one call to strcpy in your listing and use the aforementioned method
to open the References To window, but if you don’t want to take the time

Cross-References 195

to find strcpy used somewhere in the binary, you can open the Symbol
References window and quickly locate strcpy and all associated references.

Advanced Reference Manipulation
At the start of this chapter, we equated the term back reference with cross-
reference and briefly mentioned that Ghidra also has forward references, of
which there are two types. Inferred forward references are generally added to
the listing automatically and correspond one-for-one to back references,
although inferred forward references are travelled in the opposite direc-
tion. In other words, we traverse back references from a target address back
to a source address, and we traverse inferred forward references from a
source address forward to a target address.

The second type is an explicit forward reference. There are several types
of explicit forward references, and their management is much more com-
plex than other cross-references. The types of explicit forward references
include memory references, external references, stack references, and reg-
ister references. In addition to viewing references, Ghidra allows you to add
and edit a variety of reference types.

You may need to add your own cross-references when Ghidra’s static
analysis cannot determine jump or call targets that are computed at run-
time, but you know the target from other analysis. In the following code,
which we last saw in Chapter 8, a virtual function is called.

0001072e PUSH EBP
0001072f MOV EBP,ESP
00010731 SUB ESP,8
00010734 MOV EAX,dword ptr [EBP + param_1]
00010737 MOV EAX,dword ptr [EAX]
00010739 ADD EAX,8
0001073c MOV EAX,dword ptr [EAX]
0001073e SUB ESP,12
00010741 PUSH dword ptr [EBP + param_1]
00010744 CALL EAX
00010746 ADD ESP,16
00010749 NOP
0001074a LEAVE
0001074b RET

The value held in EAX  depends on the value of the pointer passed
in param_1 . As a result, Ghidra does not have enough information to
create a cross-reference linking 00010744 (the address of the CALL instruc-
tion) to the target of the call. Manually adding a cross-reference (to
SubClass::vfunc3 for example) would, among other things, link the tar-
get functions into a call graph, thereby improving Ghidra’s analysis of
the program. Right-clicking the call  and selecting ReferencesAdd
Reference from opens the dialog shown in Figure 9-5. This dialog is also
available through the ReferencesAdd/Edit option.

196 Chapter 9

Figure 9-5: The Add Reference dialog

Specify the address of the target function as the To Address setting and
make sure that the correct setting for Ref-Type is selected. When you close
the dialog with the Add button, Ghidra creates the reference, and a new (c)
cross-reference appears at the target address. More information on forward
references, including the remaining reference types as well as reference
manipulation, can be found in Ghidra Help.

Summary
References are powerful tools to help you understand how artifacts within
a binary are related. We discussed cross-references in detail and introduced
some other capabilities associated with references that will be visited again
in later chapters. In the next chapter, we look at visual representations of
references and how the resulting graphs can help us better understand the
control flows within functions and the relationships between functions in
our binaries.

Visually representing data with graphs,
as we did in the previous chapter (see

Figure 9-1), provides a concise and clear
mechanism to demonstrate the many connec-

tions between the nodes within a graph as well as helps
us recognize patterns that might otherwise be difficult
to discover when operating on a graph as an abstract data type. Ghidra’s
graph views offer a new perspective (in addition to disassembly and decom-
piler listings) for viewing the contents of a binary. They let you quickly see
the control flow in a function and the relationships between functions in
a file, by representing functions and other types of blocks as nodes and by
representing flows and cross-references as edges (the lines that connect
nodes). With enough practice, you may find that common control struc-
tures, such as switch statements and nested if/else structures, are easier to
recognize in graph form than in a long text listing. In Chapter 5, we briefly
introduced the Function Graph and Function Call Graph windows. In this
chapter, we take a deeper dive into Ghidra’s graph capabilities.

10
G R A P H S

198 Chapter 10

Because cross-references relate one address to another, they are a
natural place to begin graphing our binaries. By restricting ourselves to
sequential flows and specific types of cross-references, we can derive a num-
ber of useful graphs for analyzing our binaries. While the flows and cross-
references serve as the edges in our graphs, the meaning behind nodes can
vary. Depending on the type of graph we wish to generate, nodes may con-
tain one or more instructions, or entire functions. Let’s start our discussion
about graphs by looking at the ways that Ghidra organizes code into blocks
and then move on to the types of graphs available in Ghidra.

Basic Blocks
In a computer program, a basic block is a grouping of one or more instructions
with a single entry at the beginning of the block and a single exit from the
end of the block. Other than the last instruction, every instruction within
a basic block transfers control to exactly one successor instruction within
the block. Similarly, other than the first instruction, every instruction in a
basic block receives control from exactly one predecessor instruction within
the block. In “Cross-References (Back References)” on page 185, we iden-
tified this as sequential flow. You may notice, from time to time, a function call
being made in the middle of a basic block and think to yourself, “Isn’t this
precisely the type of instruction, like a jump, that should terminate a block?”
For the purposes of basic block determination, the fact that function calls
transfer control outside the current block is generally ignored, unless it is
known that the function being called does not return normally.

Once the first instruction in a basic block is executed, the remainder of
the block is guaranteed to execute to completion. This can factor significantly
into runtime instrumentation of a program, since it is no longer necessary
to set a breakpoint on every instruction in a program or even single-step
the program in order to record which instructions have executed. Instead,
breakpoints can be set on the first instruction of each basic block, and as
each breakpoint is hit, it can be assumed that every instruction in the associ-
ated block will be executed. Let’s shift our focus to Ghidra’s Function Graph
capabilities to provide another perspective on blocks.

Function Graphs
The Function Graph window, introduced in Chapter 5, displays a single func-
tion in a graphical format. The following program comprises a single function
that is composed of a single basic block, so it’s a useful starting point to dem-
onstrate Ghidra’s function graphs:

int global_array[3];

int main() {
 int idx = 2;
 global_array[0] = 10;
 global_array[1] = 20;

Graphs 199

 global_array[2] = 30;
 global_array[idx] = 40;
}

When you open the Function Graph window (WindowFunction
Graph) with main selected, you are presented with a function graph with
only one basic block, as shown in Figure 10-1.

Figure 10-1: A single-block Function Graph window with satellite view at lower right

200 Chapter 10

The Function Graph window and the Listing window have a useful
bidirectional link. If you view the windows side by side, the concurrent list-
ing and graphical representation can help you better understand the func-
tion’s control flow. Changes you make in the Function Graph window (for
example, renaming functions, variables, and so on) will be immediately
reflected in the Listing window. Changes you make in the Listing window
will also be reflected in the Function Graph window, although you may have
to refresh the window to see the change.

A R T ICUL AT ION

As your functions become more complex, the number of blocks in each will
likely increase. When you first generate a function graph, the edges connect-
ing the blocks are articulated. This means that they bend neatly at 90-degree
angles so that they are not hidden behind nodes. This results in a neat grid
layout where all components of all edges are either horizontal or vertical. If
you decide to change the layout of the graph by dragging nodes around, the
edges may lose their articulation and revert to straight lines that route behind
other nodes in the graph. Figure 10-2 demonstrates the contrast between the
articulated representation on the left and the unarticulated version on the right.
You can revert to the original layout at any time by refreshing the Function
Graph window.

If/Else If/Else

If/Else If/Else

Figure 10-2: Function graph with articulated and unarticulated edges

Graphs 201

If you click any line of text in the Function Graph window, the cursor in
the Listing window moves to the corresponding location in the disassembly
listing. If you double-click data in a function graph, the Listing window will
navigate to the associated data in the data section of the listing, while the
Function Graph window retains focus on the function. (Although Ghidra
does not currently provide graph-based visualization of data or relation-
ships among data components, it does allow you to concurrently view the
data in listing view and associated code in graph view.)

Let’s look at a quick example to demonstrate the relationship between
the Listing window and the Function Graph window. Suppose you see the
global_array variable in Figure 10-1 and want to know more about its type.
When you navigate to it by double-clicking the name in the graph view,
you can see that Ghidra has classified global_array as an array of undefined
bytes (undefined1), accessed with indices to the fourth and eighth elements.
If you change the array definition in the data section of the Listing window
from undefined1[12] to int[3] (respectively shown in the upper and lower
halves of Figure 10-3), you can immediately see the effects of the decla-
ration on the disassembly in the Function Graph window (as well as the
Decompiler window): the index values change to 1 and 2 to reflect the new
4-byte size of each array element.

global_array [4]

global_array [8]

global_array

dword ptr [RBP + local_c],EAX

dword ptr [global_array],10

dword ptr [global_array[4]] ,20

dword ptr [global_array[8]] ,30

dword ptr [RBP + local_c],EAX

dword ptr [global_array],10

dword ptr [global_array[1]],20

dword ptr [global_array[2]],30

global_array [1]

global_array [2]

global_array

Figure 10-3: Effect of modifying an array declaration on Function Graph and
Listing windows

Navigating in the Listing window is flexible, provided you do not click
a different function. You can scroll through the entire Listing window con-
tents, click and make changes in the data section, make changes within the
function, and so on. If you click within another function, the graph view
will be updated to display the graph of the newly selected function.

202 Chapter 10

Figure 10-4 highlights the menus and toolbars available in the Function
Graph window.

Figure 10-4: Function Graph toolbars

A function graph is really nothing more than a graphical presentation of
the Listing window isolated to a single function, so it should not be surpris-
ing that all of the menus from the CodeBrowser (with the exception of the
Window menu) are available  in the Function Graph window. The avail-
able subset of the CodeBrowser toolbar  includes the capability to save the
current state of the open file, undo and redo, and navigate forward and back-
ward within the current navigation chain. It is important to note that, since
the windows are linked, this may navigate you out of (and back into) the cur-
rent function, which will change the contents of the Function Graph window.

The Function Graph toolbar icons  and their default behaviors are
described in Figure 10-5.

W H AT IS A N IN T E R AC T ION T HR E SHOL D?

When interacting with the Function Graph window, particularly with a com-
plex function, you may zoom out because you cannot see everything you
want to see. When the individual nodes become too small to interact with in
a meaningful way, you have passed the interaction threshold. Drop shadows
on each node in the Function Graph are used to indicate this condition. Virtual
addresses may show only the least significant values, and the sheer number of
nodes in the graph display can become unwieldy. An attempt to select content
within a node ends up selecting the entire block. Don’t despair if the complex-
ity of your function pushes you beyond this threshold. You can click any of the
nodes to bring them into focus, or double-click a node to zoom in on it.

Graphs 203

Copy to Ghidra clipboard

Paste from Ghidra clipboard

Go to function entry point

Reload graph

Nested code layout

Edit code block fields

Block hover mode

Block focus mode

Snapshot

This functionality is available in a number of Ghidra windows and varies
based on the window in which they appear as well as the content that is
selected when the operation is activated. In some cases with incompatible
content, you will see an error message.

These options help you to control the appearances of the graph as you are
exploring the flow of control. The block that is currently selected is the focus
block. The block that the mouse is hovering over is the hover block. This
functionality allows you to closely examine relationships between blocks.

This button takes you to the entry point block in the Function Graph window.

When you reload a graph, all positioning and grouping information is lost.
The operation reverts to the original view.

Nested code layout allows you to retain the grouping information while
changing the associated layout.

This edits the code block fields in the Function Graph window. It does not
affect the code block fields in the Listing window.

This button creates and opens a disconnected copy of the current Function
Graph window that is not linked to the listing.

Figure 10-5: Function Graph toolbar operations

Each basic block also has a toolbar  that lets you modify the block
and group it with other blocks by combining several blocks (vertices) into
a single block (see Figure 10-6 for an explanation of the toolbar’s icons
and their default behaviors). This feature is extremely useful for reducing
the complexity of graphs that results from highly nested functions. For
example, you might elect to collapse all of the blocks nested within a loop
statement into a single graph node after you understand the behavior of the
loop and feel less need to see the code within the loop. Depending on the
number of nested blocks that you group, the readability of the graph may
be enhanced significantly. To group nodes, you must select all nodes that
will belong to the group by using ctrl-click to select all member nodes, and
then click the Combine vertices tool of the node you consider to lie at the
root of the group. Restore group is a particularly helpful button that lets you
quickly look inside a group and then re-collapse it.

204 Chapter 10

Background color

Jump to XREF

Fullscreen/Graph view

Combine vertices

Restore group

Ungroup vertices

Add vertex to group

Select a background color for a block or group of
blocks. This color is reflected in the Function Graph
window as well as the Listing window.

This button displays a list of cross-references to
the entry point of the function.

This is a toggle button that allows you to view the
graph block in a full window.

This option is displayed only after you have
ungrouped vertices, and it provides the option to
regroup them.

This option is available only if vertices have been
grouped and allows you to ungroup the vertices.

This option is available only if vertices have been
grouped and allows you to add a vertex to a
group.

This button will combine selected vertices into a
single group.

Figure 10-6: Function Graph basic block toolbar

To see some of the other features associated with a function graph, you
will need to look at examples with more than one basic block. The follow-
ing program is used in the examples that follow:

int do_random() {
 int r;
 srand(time(0));
 r = rand();
 if (r % 2 == 0) {
 printf("The random value %d is even\n", r);
 }
 else {
 printf("The random value %d is odd\n", r);
 }
 return r;
}
int main() {
 do_random();
}

Graphs 205

The do_random function contains control structures (if/else) that result
in a graph with four basic blocks, which we have labeled in Figure 10-8.
Viewing a function with more than one block makes it more obvious that a
function graph is a control flow graph, with edges indicating possible flows
from one block to another. Note that Ghidra’s layout for function graphs is
called nested code layout and closely resembles the flow of C code. This makes
it easy to view a graphical representation of your Listing and Decompiler
windows within the context of a larger program. To maintain this view, we
highly recommend changing your graph options to route edges around ver-
tices (Edit4Tool OptionsFunction Graph4Nested Code Layout4Route
Edges Around Vertices). By default, Ghidra has the unfortunate tendency
to route edges behind nodes, which can often paint a misleading picture of
the relationships between nodes.

T HIS GR A PH IS S TA L E

While some changes in the listing are immediately reflected in the Function
Graph window, in other cases the graph can become stale (not synchronized
with the listing view). When this happens, Ghidra displays the message shown
in Figure 10-7 at the bottom of the graph window.

Figure 10-7: Stale graph warning message

The recycle icon to the left of the message allows you to refresh the graph
without reverting to the original layout. (Of course, you can also choose to
refresh and lay out again.)

In the graph shown in Figure 10-8, BLOCK-1 is the single point of entry
into the function. This block, like all basic blocks, exhibits sequential flow
from instruction to instruction within the block. None of the three func-
tion calls within the block (to time, srand, and rand) “break” the basic block,
since Ghidra assumes that all of them return to continue sequential execu-
tion of the remaining instructions. BLOCK-2 is entered if the JNZ condition
at the end of BLOCK-1 evaluates to false, meaning that the random value is
even. BLOCK-3 is entered if the JNZ condition evaluates to true, indicating
that the random value is odd. The final block, BLOCK-4, is entered follow
ing the completion of BLOCK-2 or BLOCK-3. Note that clicking an edge
brings it into focus and causes it to appear thicker than the rest of the edges.
In the figure, the edge that connects BLOCK-1 and BLOCK-3 is the active
edge and appears bolded.

206 Chapter 10

BLOCK-1

BLOCK-2

BLOCK-3

BLOCK-4

BLOCK-1

BLOCK-2

BLOCK-3

BLOCK-4

If/Else

If/Else

If/Else

If/Else

Figure 10-8: Function graph with dark line selected to show flow when condition is met

If you have a particularly long basic block and wish to break it into
smaller blocks or wish to visually isolate a section of code for further
analysis, you can split a basic block within a function graph by introducing
new labels into the block. Using the hotkey L to insert a new label at line
0010072e in BLOCK-1 before the call to srand results in the addition of a fifth
block to the function graph in Figure 10-9. The new edge that is introduced
represents flow and is not associated with a cross-reference.

Graphs 207

If/Else

If/Else

Figure 10-9: Function graph with new label introducing new basic block

IN T E R AC T ING W I T H F UNC T ION GR A PHS

While it isn’t easy to show in a book, the Function Graph window includes
color, animation, and informational pop-ups as you interact with the various
components in the graph:

Edges
The edges are colored based on the nature of the transition represented by
the edge. You can control the colors through the Edit4Tool Options window,
as shown in Figure 10-10. By default, a green edge indicates a condi-
tional jump when the condition is true (jump taken), a red edge indicates
a fallthrough (jump not taken), and a blue edge indicates an unconditional
jump. Clicking an individual edge or set of edges increases the thickness of
the edge and changes to a highlighted shade of the same color.

(continued)

208 Chapter 10

Function Call Graphs
A function call graph is useful for gaining a quick understanding of the
hierarchy of function calls made within a program. Function call graphs
are similar to function graphs, but each block represents an entire function
body, and each edge represents a call cross-reference from one function
to another.

Figure 10-10: Function Graph color customization options

Nodes
The content of each node is a disassembly listing of the corresponding
basic block. The way you interact with the listing code is identical to the
way you interact with code in the Listing window. For example, hovering
over names opens a pop-up that displays disassembly at the named loca-
tion. When you hover over a node, Ghidra utilizes a path-highlighting
animation on associated edges to indicate the control flow direction con-
sistent with the currently selected path highlight options. This functionality
can be disabled in Edit4Tool Options.

Satellite
The satellite (a small overview of the graph) has a yellow halo around the
block that is currently in focus, as does the Function Graph window. For
easy identification, the function’s entry block (which contains the function’s
entry point address) is green in the satellite, and any return blocks (blocks
containing a ret, or equivalent) are red. Even if you change the back-
ground color of the associated block in the graph, the entry and exit colors
don’t change in the satellite. All other blocks will mirror the color assigned
to them in the Function Graph window.

Graphs 209

To discuss function call graphs, we make use of the following trivial
program that creates a simple hierarchy of function calls:

#include <stdio.h>
void depth_2_1() {
 printf("inside depth_2_1\n");
}
void depth_2_2() {
 fprintf(stderr, "inside depth_2_2\n");
}
void depth_1() {
 depth_2_1();
 depth_2_2();
 printf("inside depth_1\n");
}
int main() {
 depth_1();
}

After compiling a dynamically linked version of this program using
GNU gcc and loading the binary with Ghidra, we can generate a function
call graph by using WindowFunction Call Graph. By default, this creates
a function call graph centered around the function that is currently selected.
The function call graph when main is selected is shown in Figure 10-11. (The
satellite view is hidden in these examples for clarity. To unhide the satellite
view, use the icon in the bottom right of Figure 10-11.)

Figure 10-11: Simple function call graph with focus on main

210 Chapter 10

The string main (3 functions; 2 edges) in the title
bar of the graph lets us know what function we are
in, along with the number of functions and edges
displayed. Hovering over a node in the graph displays
+ and/or – icons at the top and/or bottom of the
node, as shown in Figure 10-12.

A + icon at the top or bottom means you can
display additional incoming or outgoing functions.
Conversely, the – icon provides the ability to contract
nodes. For instance, clicking a – symbol at the bot-
tom of the function depth_1 when it is expanded will
change the function call graph from the one shown
in Figure 10-13 to the one in Figure 10-11.

Figure 10-13: Function call graph expanded from main

The right-click context menu associated with each node provides you
with options to expand or contract all outgoing edges for all nodes, on the
same horizontal level, simultaneously. This is equivalent to clicking the

Figure 10-12: Function
Call graph node with
expand/collapse icons

Graphs 211

+ or – icon on all nodes in the same rank at the same time. Finally, double-
clicking a node in the graph centers the graph on the selected node and
fully expands all incoming and outgoing edges. An option that is disabled
by default, but that many find helpful, provides you with the ability to zoom
out and back in. This option can be enabled through Edit4Tool Options by
checking the Scroll Wheel Pans option. Ghidra maintains a short history of
graphs in a cache as you shift focus to retain graph state upon return. This
allows you to expand and contract nodes, navigate away, and then return to
find your graph just the way you left it to continue your analysis.

Figure 10-14 shows the same program, with the focus on _start rather
than main and most nodes fully expanded to show the full extent of the
graph. In addition to our main function and associated subroutines, we can
see wrapper code that was inserted by the compiler. This code is responsi-
ble for library initialization and termination as well as configuring the envi-
ronment properly prior to transferring control to the main function. (Alert
readers may notice that the compiler has substituted calls to puts and fwrite
for printf and fprintf, respectively, as they are more efficient when printing
static strings.)

Figure 10-14: Expanded function call graph expanded from _start

212 Chapter 10

T H UNK

You may notice that the graph in Figure 10-14 shows multiple (apparently recur-
sive) calls to puts. Welcome to the magical world of thunk functions. A thunk
function is a compiler device that facilitates calls to functions whose address
is unknown at compile time (such as a dynamically linked library function).
Ghidra refers to the function whose address is unknown as the thunked func-
tion. The compiler replaces all calls the program makes to thunked functions
with a call to a thunk function stub that the compiler inserts into the executable.
The thunk function stub typically performs a table lookup to learn the runtime
address of the thunked function before transferring control to the thunked func-
tion. The table consulted by a thunk stub is populated at runtime after the asso-
ciated thunked function addresses become known. In Windows executables,
this table is typically called the import table. In ELF binaries, this table is typi-
cally called the global offset table (or got).

If we navigate to puts from the function depth_1 in the Listing window, we
find ourselves in the following listing:

 **
 * THUNK FUNCTION *
 **
 thunk int puts(char * __s)
 Thunked-Function: <EXTERNAL>::puts
 int EAX:4 <RETURN>
 char * RDI:8 __s
 puts@@GLIBC_2.2.5
 puts XREF[2]: puts:00100590(T),
 puts:00100590(c), 00300fc8(*)
00302008 ?? ??
00302009 ?? ??
0030200a ?? ??

This thunk function listing appears in a program section that Ghidra names
EXTERNAL. Ghidra thunked function listings such as this are a consequence of
the way in which external libraries are dynamically loaded and linked into
processes at runtime, which means the libraries are generally not available dur-
ing static analysis. While the listing provides you an indication of the function
and library being called, the function code is not directly accessible (unless the
library is also loaded into Ghidra, which is easily accomplished via the options
page during the import process).

Here we also observe a new type of XREF. The (T) suffix on the first XREF
indicates that this XREF is a link to the thunked function.

Graphs 213

Now, let’s revisit a statically linked version of the call_tree program. The
initial graph generated from the main function is identical to the dynamically
linked version shown in Figure 10-11. However, to get an idea of the potential
complexity associated with graphs of statically linked binaries, let’s investigate
two expansions that seem relatively benign. Figure 10-15 shows the outgoing
calls from the puts function. The title bar shows puts(9 functions; 11 edges).
Note that the title bar totals may be inaccurate until the program has been
fully analyzed.

Figure 10-15: Function call graph in a statically linked binary

When we shift the focus to _lll_lock_wait_private, we are presented with
an overwhelming graph with 70 nodes and over 200 edges, a portion of
which is shown in Figure 10-16.

Figure 10-16: Expanded function call graph in a statically linked binary

214 Chapter 10

While statically linked binaries are complex and working with the associ-
ated graphs can be challenging, two features make this tenable. First, you can
usually locate main by using the hotkey G or by navigating from the program’s
entry symbol. Second, once you have located main in the listing, you can open
and easily control what is displayed in the associated function call graph.

Trees
Ghidra presents many hierarchical concepts associated with a particular
binary as a tree-like structure. While not always trees in a pure graph-
theoretical sense, these structures provide the capability to expand and
collapse nodes and to see the hierarchical relationship between nodes of
varying types. When we discussed the CodeBrowser window in Chapter 5,
you were introduced to Program Trees, Symbol Tree, Function Call Tree,
and the Data Type Manager (which is also presented as a tree). These
tree views can be used concurrently with other views to provide additional
insight into the binary you are analyzing.

Summary
Graphs are a powerful tool available to assist you in analyzing any binary.
If you are accustomed to viewing disassemblies in pure text format, it may
take some time to adjust to using a graph-based display. In Ghidra, it is gen-
erally a matter of realizing that all of the information that was available in
the text display remains available in the graph display; however, it may be
formatted somewhat differently. Cross-references, for example, become the
edges that connect the blocks in a graph display.

Which graph you view depends on what you want to know about a binary.
If you want to know how a particular function is reached, you are probably
interested in a function call graph. If you want to know how a specific instruc-
tion is reached, you are probably more interested in a function graph. Both
can provide valuable insight into how the program works.

Now that you have seen the basic functionality available when running
Ghidra as a standalone instance with you as the only reverse engineer, it is
time to investigate options for using Ghidra as a collaborative tool. In the
next chapter, we look at Ghidra Server and the environment it provides to
support collaborative reverse engineering.

PART III
M A K I N G G H I D R A W O R K F O R Y O U

At this point, you should be comfortable
navigating the Ghidra project environ-

ment and the many available tools and win-
dows. You know how to create a project, import

files, navigate, and manipulate the disassembly. You
understand Ghidra data types, data structures, and
cross-references. But do you understand scale? A 200MB binary is likely to
generate a disassembly that is millions of lines long and consists of hundreds
of thousands of functions. Even with the largest, portrait-oriented monitor
you can find, you’ll be able to view only a few hundred lines of that disas-
sembly at any one time.

One way to take on such a monumental task is to assign a team of people
to it, but that introduces an additional problem: how will you synchronize
everyone’s efforts so that people aren’t walking all over one another with
their changes? It’s time to extend our discussion of using Ghidra to cover
a collaborative team working together on a shared project. Ghidra’s sup-
port for collaborative reverse engineering alone makes it unique among
software analysis tools. In this chapter, we introduce Ghidra’s collaboration

11
C O L L A B O R A T I V E S R E

218 Chapter 11

server, which is included with the standard Ghidra distribution. We discuss
its installation, configuration, and use to help you get more eyes focused on
your most challenging RE problems.

Teamwork
SRE is a complex process, and few individuals are experts in all of its
intricacies. The ability to have analysts with different skill sets simultane-
ously analyzing a single binary can drastically reduce the amount of time
needed to obtain the desired results. A rock star in navigating control flows
through a complex program may dread having to analyze and document
the associated data structures. An expert in malware analysis may be ill-
suited for vulnerability discovery work, and anyone who is pressed for time
is less likely to use that time inserting the inevitable plethora of comments
that will certainly be useful down the road, but may in the short run keep
them from analyzing additional code. Five colleagues may want to individu-
ally analyze the same binary but recognize that there are certain steps in
the process that they will all need to do. An individual may need to pass
off an assignment to a colleague for expert input or while on vacation.
Sometimes, it is just helpful to have multiple sets of eyes looking at the same
thing for sanity checks. Regardless of the motivation, the shared project
capability within Ghidra supports collaborative SRE in many forms.

Ghidra Server Setup
Collaboration in Ghidra is facilitated by a shared Ghidra Server instance.
If you are the system administrator responsible for setting up the Ghidra
Server, you have a lot of choices to make, like whether to deploy it on a bare-
metal server or in a virtual environment for ease of migration and repeat-
able installation. The deployment we use in this chapter to demonstrate
Ghidra’s collaborative features is suitable for development and experimen-
tation only. If you are configuring a Ghidra Server for production use, you
should carefully read the Ghidra Server documentation and determine an
appropriate configuration for your environment and specific use case. (An
entire book could be written to describe Ghidra Server setup and all the
installation options and associated approaches, but that isn’t this book.)

Although Ghidra Server can be configured on all platforms that sup-
port Ghidra, we will describe running a Ghidra Server instance in a Linux
environment and assume some familiarity with the Linux command line
and system administration. We will make a few minor modifications to the
Ghidra Server configuration file (specified in server/server.conf) to facilitate
the concepts that we want to demonstrate in this chapter so that we are not
overly reliant on use of the Linux command line interface after we complete
the initial installation, configuration, administration, and access control.
Modifications include changing the default Ghidra repository directory to
one of our own choosing, as recommended in the Ghidra Server documenta-
tion, and tuning user management and access control settings.

Collaborative SRE 219

The following steps walk you through a scripting process to create an envi-
ronment and initial set of Ghidra users on an Ubuntu host.

1.	 Define some environment variables used throughout the script includ-
ing the Ghidra version you are installing:

#set some environment variables
OWNER=ghidrasrv
SVRROOT=/opt/${OWNER}
REPODIR=/opt/ghidra-repos
GHIDRA_URL=https://ghidra-sre.org/ghidra_version.zip
GHIDRA_ZIP=/tmp/ghidra.zip

2.	 Install the two packages (unzip and OpenJDK), which are needed to
complete the installation and run the server:

sudo apt update && sudo apt install -y openjdk-version-jdk unzip

3.	 Create a nonprivileged user to run the server and create a directory
for hosting shared Ghidra repositories outside the directory in which
Ghidra Server will be installed. Keeping the server executables and
your repositories in separate directories is recommended in the server
configuration guide and facilitates future server updates. The Ghidra
Server administration tool (svrAdmin) will use the home directory of
the server admin user.

GHIDR A SE RV E R SPECI A L S

Your Ghidra Server is happy to offer you the following installation options:

Platforms  Bare metal, virtual machine, containers, and more!
Operating systems  Multiple flavors of Windows, Linux, and macOS.
Something to suit every taste.
Authentication methods  Choose how friends and colleagues are able to
access your offerings—from “open to the general public” to “PKI only” and
everything in between.
Preparation  You can install from a container, a script, .bat files, or detailed
instructions, or you can make your own recipe by banging away at the console
until something exciting happens.

If you don’t see what you like, don’t worry, as this is just a subset of what is
available. Ghidra Server options can meet the needs of even the most discrimi-
nating guests to provide them with the Ghidra installation of their dreams. Thank
you for visiting your Ghidra Server. For more information, see the extended
server menu, server/svrREADME.html, available in a Ghidra directory near you.

220 Chapter 11

sudo useradd -r -m -d /home/${OWNER} -s /usr/sbin/nologin -U ${OWNER}
sudo mkdir ${REPODIR}
sudo chown ${OWNER}.${OWNER} ${REPODIR}

4.	 Download Ghidra, unzip it, and move it to the server root directory.
Make sure that you grab the latest public release when you are down-
loading Ghidra (the release date is in the .zip filename):

wget ${GHIDRA_URL} -O ${GHIDRA_ZIP}
mkdir /tmp/ghidra && cd /tmp/ghidra && unzip ${GHIDRA_ZIP}
sudo mv ghidra_* ${SVRROOT}
cd /tmp && rm -f ${GHIDRA_ZIP} && rmdir ghidra

5.	 Create a backup of the original server configuration file and change
the location in which the repositories will be saved:

cd ${SVRROOT}/server && cp server.conf server.conf.orig
REPOVAR=ghidra.repositories.dir
sed -i "s@^$REPOVAR=.*\$@$REPOVAR=$REPODIR@g" server.conf

6.	 Add the -u parameter to your Ghidra Server launch parameters, so
users can specify a username when connecting, instead of being forced
to use their local username. This option allows us to log in as several
different users from a single machine for demonstration purposes, and
allows us to log in to the same account from several machines. (Some
versions of Ghidra expect the repository path to be the last command
line parameter, so we changed parameter.2 to parameter.3 and then
added the new parameter.2=-u before that updated line.)

PARM=wrapper.app.parameter.
sed -i "s/^${PARM}2=/${PARM}3=/" server.conf
sed -i "/^${PARM}3=/i ${PARM}2=-u" server.conf

7.	 Change the ownership of the Ghidra Server process and the Ghidra
Server directory to the ghidrasvr user. (Because this was just a demon-
stration server, we left all other parameters unchanged. You are strongly
advised to read server/svrREADME.html to determine the configurations
appropriate for a production deployment.)

ACCT=wrapper.app.account
sed -i "s/^.*$ACCT=.*/$ACCT=$OWNER/" server.conf
sudo chown -R ${OWNER}.${OWNER} ${SVRROOT}

8.	 Finally, install the Ghidra Server as a service and add users authorized
to connect to the server:

sudo ./svrInstall
sudo ${SVRROOT}/server/svrAdmin -add user1

Collaborative SRE 221

sudo ${SVRROOT}/server/svrAdmin -add user2
sudo ${SVRROOT}/server/svrAdmin -add user3

While a more detailed discussion of access control comes later in
the chapter, it is important to mention here since the users need to
exist in the authentication system that your Ghidra Server instance
uses. This happens on the Ghidra Server itself. By default, each user
must log in from a Ghidra client within 24 hours by using the default
password changeme (which must be changed during the initial login).
If a user does not activate their account within 24 hours, the account
is locked and must be reset. Ghidra provides the Ghidra Server System
Administrator with several options for authentication, ranging from
simple passwords to public key infrastructure(PKI). We chose to use
a local Ghidra password (which is the default).

If you want to install your own Ghidra Server or just need a
more in-depth description of the various installation options, see
server/svrREADME.html in your Ghidra directory.

T HE PROJEC T R E POSI TORY

One advantage of working together as a team is that multiple people can work
on the same binary at the same time. One disadvantage of working together
as a team is that multiple people can work on the same binary at the same
time. Whenever multiple users are interacting with the same content, there is a
potential to introduce race conditions. In a race condition, the order in which
the operations (such as saving an updated file) are performed can affect the
final outcome. Ghidra has a project repository and versioning system to control
which changes are committed, when, and by whom.

The Ghidra repository checks files in and out, tracks version history, and
lets you see what is currently checked out. When you check out a file, you get a
copy of the file. When you have finished working with the file and check the file
back in, a new version of the file is created and becomes part of the file’s legacy,
and if someone else has also checked in a new version of the file, the repository
helps resolve any conflicts. We demonstrate interactions with the repository later
in the chapter.

Shared Projects
Up to this point, we have created and worked with only standalone Ghidra
projects, suitable for use by a single analyst working on a single computer.
Now that you have configured and given yourself access to a Ghidra Server,
let’s walk through the process of creating a shared project. A shared project
can be made accessible to any users who are authorized to connect to your
Ghidra Server and facilitates collaborative, concurrent access to the project.

222 Chapter 11

Creating a Shared Project
When you create a new project (File4New Project) and select Shared
Project, you must specify the server information associated with your
Ghidra Server, as shown on the left in Figure 11-1. The default port num-
ber (13100) is provided, but you must supply the server’s hostname or IP
address, and may need to authenticate yourself, depending on the configu-
ration of your Ghidra Server.

Figure 11-1: Logging in to a Ghidra Server repository

On the right side of the figure, we log in as one of the users created by
our installation script (user1). If this is the first time logging in as this user,
you will need to change the password from changeme, as discussed earlier.

Next, select an existing repository or create a new one by entering a
new repository name, as shown in Figure 11-2. For this example, we will
create a new repository named CH11.

Figure 11-2: The New Project dialog

Collaborative SRE 223

Clicking Next creates a new repository and a new project and takes you
to the now-familiar Project window (Figure 11-3).

�

�

� ���

Figure 11-3: Project window for shared project showing Table View

We have imported some files  and are displaying them using a table
instead of the default tree structure for project files. The Table View, which
is one of the tabbed layout choices , provides much more information
about each of the project’s files. The Project window shows the name of
the project repository (CH11), your role on the project (Administrator),
and an icon to the right to provide information about your connection to
the server . In this case, hovering over the icon  displays the message
“Connected as user1 to 172.16.4.35.” If you were not connected, the icon
would be a broken link rather than the connected link shown in the image.

Project Management
Once a project has been created and has an administrator, authorized users
can log in to the server and work with the project. A successful login takes
you to the Ghidra Project window, where you will have access to your autho-
rized projects.

224 Chapter 11

Project Window Menus
Now that we have created and connected to a Ghidra Server, the options
available in the Project window become more meaningful, as some of the
previously unavailable options now have a new context. Here, as well as in
Chapter 12, we discuss the individual menu components and how they can
be used to improve your analysis process.

File
The File menu is shown in Figure 11-4. The first five options in the File
menu are pretty standard file-type operations, and their behavior is what
you would expect from menu-driven applications. We’ll discuss the notable
options, marked with numerals, in detail.

W HO’S T HE BOSS A ROUND HE R E?

The server administrator is responsible for creating Ghidra Server accounts
and configuring an authentication protocol for connections to the server. Server
administration is an inherently command line–oriented activity, and there is no
requirement for the server administrator to be a Ghidra user themselves. On the
client side, any authorized user may create repositories on the Ghidra Server,
automatically becoming the administrator of each repository they create. This
gives them complete control of the repository, including who can access it and
the type of access each user can have. After creation, administrators may grant
access to additional authorized users via Ghidra’s Project window.

I DON’T WA N T TO SH A R E

Using a Ghidra Server installation for nonshared projects has advantages as
well. Your initial introduction to Ghidra focused on installing Ghidra on a single
computer and using that computer to access your projects and files (which were
all stored on that computer). This means all analysis work depends on that com-
puter. Ghidra Server facilitates multipoint access to your files from a wide vari-
ety of devices. You can require authentication before your files are accessed,
and you can convert your projects from nonshared to shared if desired. One
limitation is that you need to be connected to the Ghidra Server to check out or
check in files.

Collaborative SRE 225

Creates a new shared or nonshared project

Opens an existing shared or nonshared project

Provides a list of recently opened projects to reopen

Closes the current project

Saves the current project

Deletes the current project (asks for confirmation)

Archives the current project

Restores an archived project

Displays Ghidra configuration options (see Chapter 12)

Discussed in Chapter 15

Adds a file to the project (see Chapter 2)

Adds multiple files to the project

Opens a tree view of a filesystem in a new window

Exits the Ghidra application

Figure 11-4: File menu

Deleting Projects

Deleting a project u is a permanent action in Ghidra that cannot be
undone. Fortunately, it takes effort and requires confirmation. First, you
cannot delete your active project. This minimizes the danger of an acci-
dental deletion. To delete a project, you must complete the following
three steps:

1.	 Choose FileDelete Project from the menu.

2.	 Browse to (or enter the name of) the project to be deleted.

3.	 Confirm that you want to delete the project in the resulting confirma-
tion window.

Deleting a project deletes all of its associated files. For that reason,
it may be wise to first archive the project via the Archive Current Project
option .

Archiving Projects

Archiving a project allows you to save a snapshot of the project, its associ-
ated files, and associated tool configurations. Reasons for archiving a pro
ject include the following:

•	 You are going to delete the project but want to preserve a copy “ just
in case.”

•	 You want to package a project for migration to another server.

226 Chapter 11

•	 You want a version you can easily transfer between Ghidra versions.

•	 You want to create a backup of a project.

Follow these steps to archive a project:

1.	 Close the CodeBrowser window and all associated tools.

2.	 Choose FileArchive Current Project from the menu.

3.	 Choose a location and name for the archive file on your local machine.

If you choose the name of an existing file, you will have the opportunity
to change the name or overwrite the existing file. Archived files can easily
be restored through the Restore Project option.

Batch Import

The Batch Import option (at  in Figure 11-4) allows you to import a
collection of files into a project in a single operation. When you choose
FileBatch Import, Ghidra presents a file browser window similar to the
one shown in Figure 11-5. This window allows you to navigate to the direc-
tory containing the files you wish to import.

Figure 11-5: Batch file import selection window with files selected

You can select a file (or files) from a single directory, or an entire direc-
tory, to add to the batch import list. After you highlight the files and click the
Select files button, you are taken to the Batch Import window, which shows
you the files you have already selected for import. In Figure 11-6, the files
from the directory BinBatchImport1 were loaded as individual files, and the
directory BinBatchImport2 was added as a directory with five files, as shown
to the right of the directory name. You can add/remove files to refine your

Collaborative SRE 227

import list and control several options, including the depth of recursion to
search for files in a directory.

To determine the appropriate depth limit in the Batch Import window,
or simply to explore the filesystem, use the Open File System menu option
(at  in Figure 11-4). This option opens the selected file system container
(.zip file, .tar file, directory, and so on) in a separate window. (It is best
to determine the depth beforehand because you would need a second
Ghidra instance open to operate both windows simultaneously. Each win-
dow blocks access to the other in a single instance.)

Figure 11-6: Batch file import confirmation dialog

Edit
The Edit menu is shown in Figure 11-7. The Tool Options and Plugin Path
options are be discussed in Chapter 12, but the PKI options are related to the
Ghidra Server setup and merit discussion in this chapter.

Edit options associated with tools (see Chapter 12)

Plugin options (see Chapter 12)

Set and clear PKI certificates for authentication

Figure 11-7: Edit menu

228 Chapter 11

PKI Certificates

As mentioned at the start of this chapter, when you set up a Ghidra Server,
you can choose from several authentication methods. We set up a simple
server that uses a username and password for authentication. PKI certifi-
cates are more complex. While PKI implementations can vary, the follow-
ing example represents a reasonable PKI client authentication process for
Ghidra Server:

User1 wants to be authenticated so she can work on her Ghidra Server
project. She has a client certificate that includes her username and a
public cryptographic key. She also has a private cryptographic key cor-
responding to the public key contained in the certificate, which she
keeps safely hidden away for important occasions such as this. Her cer-
tificate was cryptographically signed by a certificate authority (CA) that
is trusted by the Ghidra Server.

User1 presents the server with her certificate, from which the server
can extract the public key and username. The server runs checks to
confirm the certificate is valid (for example, is not on a Certificate
Revocation List, is within a valid date range, and has a valid signature
from a trusted CA, and possibly others). If all checks pass, the server
confirms a valid certificate and binds User1’s identity to a public key.
Now User1 needs to prove she has the corresponding private key so the
Ghidra Server can verify it against the extracted public key. As long as
the private key is truly held by only User1, the Ghidra Server correctly
validates her certificate, and the server verifies that User1 actually pos-
sesses the private key, so User1 is considered to be authenticated.

The process for managing PKI certificate authorities is described
in the Ghidra Server readme file (server/svrREADME.html). The Set PKI
Certificate and Clear PKI Certificate menu options enable a user to associ-
ate (or disassociate) themselves with a key file (*.pfx, *.pks, *.p12). When
setting a PKI certificate, the user will be provided a file navigation window
to identify the appropriate keystore. The certificate can be cleared at any
time with the Clear PKI Certificate option. Should you choose to enable
PKI authentication, Java’s keytool utility may be used to manage keys, certifi-
cates, and Java keystores.

Collaborative SRE 229

Project
The Project menu, shown in Figure 11-8, provides facilities for managing
project-level activities, including viewing and copying from other proj-
ects, changing your password, and managing user access to projects that
you administer.

v

Provides a list of recently opened projects and repositories

Closes a selected read-only view of a project or repository

Provides a menu of workspace options (see Chapter 12)

Allows users on shared projects to change password

Provides detailed information about the current project

Displays editable access control table for project
administrators and a read-only version for all others

Opens a read-only view of a project or repository

Figure 11-8: Project menu

Viewing Projects and Repositories

The first four options  are related to viewing projects and repositories. The
first two, View Project and View Repository, open read-only versions of a
project (local) or repository (remote server) in a new window adjacent to
the Active Project window. In Figure 11-9, the local project ExtraFiles has
been opened beside the active project. You can explore the read-only proj-
ect or drag any file or directory from the Read-Only Project Data window
to the Active Project window. In Figure 11-9, the three selected files (with
the extension NEW) have been copied from the Project Data window to the
active project: CH11.

The next option, View Recent, provides a list of recent projects that
can speed up the process of locating a project or repository. Close View
closes the read-only view (although in some versions of Ghidra, this option
appears to be inactive). A simpler reliable alternative is to click the X at the
bottom of the project tab you wish to close, as seen in the bottom right of
Figure 11-9.

230 Chapter 11

Figure 11-9: Using Project window to view another project

Changing Passwords and Project Access

The Change Password option (at  in Figure 11-8) is available only to users
on shared projects, provided that the Ghidra Server is configured with an
authentication method that allows a password change. This is a two-step
process with an initial confirmation dialog, as shown in Figure 11-10, fol-
lowed by the same password change option dialog used for the initial man-
datory password change.

Figure 11-10: Password change initial confirmation dialog

Collaborative SRE 231

While users can each control their own passwords, shared projects also
offer the capability to control who can access a project and what permissions
are granted to each user. As mentioned earlier in the chapter, the Ghidra
Server system administrator has some control over access. Specifically, an
administrator can assign an administrator to a repository and create and
delete user accounts.

On the client side, if you are an administrator, you can also control
access through the Edit Project Access List option (at  in Figure 11-8)
from the Project menu. When it is selected, you will see the dialog shown
in Figure 11-11, which allows you to add and remove users from the project
and to control their associated permissions. Each user can be placed in
exactly one privilege class, from least privileged (Read Only to the left)
to most privileged (Admin on the right).

Figure 11-11: Access control window

Viewing Project Information

The final menu option is View Project Info (at  in Figure 11-8). The options
available in the resulting dialog depend on the whether the project is hosted
on a Ghidra Server. Examples of nonserver-based (left) and server-based
(right) project information dialogs are shown in Figure 11-12. While the
information displayed is pretty straightforward, buttons at the bottom of
each window allow you to convert a nonshared project to a shared project
(with the Convert to Shared button) or change project information.

Clicking the Convert to Shared button opens a dialog that asks you to
specify the server information and enter the user ID and password for the
project administrator. The subsequent steps allow you to specify a reposi-
tory, add users, set their permissions, and confirm that you want to convert
the project. Note that this operation cannot be undone and removes all
existing local version history.

232 Chapter 11

Figure 11-12: Project information windows for nonshared and shared projects

Project Repository
At this point, you may be wondering how projects can be shared while
maintaining project integrity. This section covers the process that Ghidra
uses to ensure that everyone’s work is retained in a shared project that a
team can work on concurrently. Before we delve too deeply into the process,
let’s investigate the file types associated with a shared Ghidra project. We
start with discussing the relationship between a project and a repository.

A repository is the key facilitator of the versioning process. When you
create a new nonshared project, a project file (.gpr file) and a repository
directory, with a .rep extension, are created to facilitate version control.
Additional files are created to control locks, versioning, and so on, but
understanding the purpose of each file is not critical to successful Ghidra
usage. For nonshared projects, all files reside on your computer within the
directories that you specify at project creation time (refer to Chapter 4).

When you create a shared project, you have the option of creating a
new repository or selecting from existing repositories, as discussed earlier
in the chapter (refer to Figure 11-2). If you create a new project and a new
repository at the same time, a one-to-one relationship exists between the
project and its repository, and you become the project administrator. If you
choose an existing repository, you are creating a new project for which
you are not the project administrator (unless you owned the repository).
In either case, the .gpr file and the .rep directory share the same base name.
If the repository is named RepoExample, the project file will be named
RepoExample.gpr and the repository folder will be named RepoExample.rep.
(Despite having an extension, the repository is a directory rather than a file.)

Collaborative SRE 233

To sum it up: if you create the repository, you are the project admin-
istrator and can choose who else can access your repository. If you use an
existing repository, you are a user with the rights and privileges that have
been assigned to you by the project administrator. So what happens when
multiple users want to make changes to the same project? That’s where ver-
sion control comes into play.

V E RSION CON T ROL V S. V E RSION T R ACKING

Ghidra includes two very different versioning systems. In this chapter, we
are discussing version control, and hopefully that concept will become quite
clear shortly. Ghidra also has a version tracking capability. Version tracking is
used to identify differences (and similarities) between two binaries. In the SRE
community, this process is generally known as binary differencing. The goals
may include identifying updates in different versions of a binary, identifying
functions used by a malware family, identifying signatures, and so on. This
functionality can be important given that the associated source code may not
be available to allow for source-based diffing. Ghidra version tracking is dis-
cussed in more detail in Chapter 23.

Version Control
Version control is an important concept in any system where changes can
be made by multiple users or a recorded history of changes is desirable.
Version control allows you to manage updates to the system, effectively con-
trolling race conditions. The Project window has a version control toolbar
(Figure 11-13). Many of the operations require that the file(s) in question
be closed in order to complete the action.

Figure 11-13: Ghidra Project window
version control toolbar

The icons are enabled for valid version control operations based on the
selected file(s). The basic actions that make up the version control workflow
are shown in Figure 11-14. (We have included a column that provides the
rough Git equivalents for all the Git fans.)

234 Chapter 11

Special option(s) Similar git commandsAction

None

Keep File Checked Out

Create .keep file

Keep File Checked Out

Create .keep file

None

Check out file

Keep File Checked OutAdd file to version control

Update checked-out file
with latest version

Check in file

Find my checkouts recursively

Save Copy with .keep extensionUndo checkout

git clone (ish)

git add
git commit

git pull

git commit
git push

git status

git checkout

Icon

Figure 11-14: Ghidra version control toolbar actions

In addition to using the toolbar icons, you can perform the version con-
trol actions via the right-click context menu.

Merging Files

When a collaborative team member decides to check in changes they have
made to the project, one of two conditions will be true:

No conflict  In this case, no new versions of the file have been checked
in since the user checked out the file. Since no potential conflict exists
(no committed, conflicting changes that the user is not already aware
of), the file that is being checked in will become the new version of the
file. The old version will be retained in an archival fashion and the ver-
sion number incremented to ensure that a continuous chain of versions
can be tracked.

Potential conflict  In this case, another user has committed new
changes while the user had the file checked out. The order in which the
files are checked in can affect the resulting “current version.” In this
case, Ghidra begins a merge process. If no conflicts are introduced by
the submissions, Ghidra continues with its automatic merge process. If
conflicts are detected, each must be manually resolved by the user.

As an example of a conflict, assume that user1 and user2 both have the
same file checked out and that user2 changes the name of FUN_00123456 to
hash_something and checks in their change. Meanwhile, user1 analyzes the
same function and renames it to compute_hash. When user1 finally checks
their changes in (after user2), they will be informed of a naming conflict

Collaborative SRE 235

and will be asked to choose the correct name of the function, between hash​
_something and compute_hash, before the check-in operation may be completed.
Additional information about this process can be found in Ghidra Help.

V E RSION CON T ROL COMME N T S

When you add or modify a file under version control, you should add a com-
ment explaining what you’ve done. Each version control action displays a dia-
log with a comment field and special options. Figure 11-15 shows the Add File
to Version Control comment dialog.

Figure 11-15: Ghidra’s Add File to Version Control comment dialog

The title bar displays the action being performed and is supplemented
below by the associated icon as well as a description of what you should be
entering in the Comments text box. If more than one file has been selected,
any comments will be associated with only the first file unless the Apply to All
button is clicked. Below the Comments text box are specific options associated
with the action being performed that the user can select or deselect. See the
third column of Figure 11-14 for the special options for each of the actions.

Example Scenario
A lot of intricacies, options, and overloaded terminology are associated with
shared projects. To clarify some of the concepts associated with Ghidra
Server and shared projects, let’s walk through an example that demonstrates
the concepts we have been discussing, starting with the concept of a project.

A project is the local entity that lives on the client machine (like a local
Git repo). Shared projects are also associated with a repository on a Ghidra
Server (like a Git remote), and that repository is where all of the collab-
orative analysis effort results are stored. Files are shared after they have

236 Chapter 11

been imported and added to version control, and are private before that.
Therefore, a user can import files into a project, at which point they are
private, and then choose to add them to version control, at which point they
are shared.

HE L P! M Y F IL E H A S BE E N HIJ ACKE D!

Ghidra has a special term (and associated Project Data Tree icon) for a situa-
tion that can frequently occur in a shared project environment. If you have a
private file (imported but not yet added to version control) in your project and
another user adds a file of the same name to the repository, your file will be
hijacked! This is such a frequent occurrence that Ghidra provides a right-click
context menu option to handle the situation. You will need to close the hijacked
file and then select the Undo Hijack option from the context menu. This will pro-
vide you with the option to accept the file in the repository and keep a copy of
your own file, if desired. Other options for resolving a hijack include renaming
the file, moving it to another project, and deleting it.

In reality, project permissions are really repository permissions. If you
create a project using an existing repository, you’re really saying, “This
project locally is backed remotely by that repository on the server” (like a
Git clone). Let’s walk through a sequence of shared project activities and
observe how they affect the shared project environment:

1.	 user1 creates a new shared project (and associated new repository)
called CH11-Example, adds user2 and user3, and assigns them permis-
sions (see Figure 11-16).

Figure 11-16: Example scenario, step 1

Collaborative SRE 237

2.	 user2 creates a new shared project associated with the existing CH11-
Example repository (that is, user2 clones CH11-Example). Note that
the project is not the same name as user1’s project, but the repository
(remote) is the same. In addition, user2’s permissions for the repository
are shown at the bottom of the window (see Figure 11-17).

Figure 11-17: Example scenario, step 2

3.	 user1 imports a file and adds it to version control, which user2 can then
also see (roughly equivalent to git add/commit/push). This is shown in
Figure 11-18.

Figure 11-18: Example scenario, step 3

238 Chapter 11

4.	 user1 and user2 then each import the same file to their projects but don’t
add them to version control. These are private files (see Figure 11-19).

Figure 11-19: Example scenario, step 4

5.	 user2 adds this second file to version control (which checks it in). As a
result, the file is no longer private. user1 now sees this as a hijacked file
(see Figure 11-20).

Figure 11-20: Example scenario, step 5

6.	 user1 chooses Undo Hijack from the right-click context menu and has
the option to replace her file with the version in the repository and
keep a copy of her own file if desired. She chooses to accept the reposi-
tory version and to keep a copy of her own file (which she has moved to
another project, and it now has the extension .keep). Now everything is
good again. In this case, user1 is now seeing the state of the second file
as it was when user2 added it to version control (see Figure 11-21).

Collaborative SRE 239

Figure 11-21: Example scenario, step 6

7.	 user1 checks out the second file, analyzes it, and then checks it in. Both
user1 and user2 now see the analyzed version of the file (version 2), as
shown in Figure 11-22.

Figure 11-22: Example scenario, step 7

8.	 user3 creates a project and associates it with the same repository (see
Figure 11-23). user3 can now see all of the files and can make changes
locally (including adding private files), but has no option to commit to
the repository, because she was not given write permissions. (The proj-
ect is noted as “Read Only” at the bottom of the window.)

240 Chapter 11

Figure 11-23: Example scenario, step 8

9.	 user2 checks in all of her files before leaving work. This is important
because she knows that she wants to continue working on her project
by using her home computer. Because the project does not exist on her
home computer, she needs to log in to the Ghidra Server and create a
new project by using the existing repository. This will create the proj-
ect on her home computer, where she can continue working. (Had she
not checked in all of her files before leaving work, she would not have
access to her latest work while at home.)

10.	 The remaining users go home confident that their collaborative Ghidra
Server is working as intended.

Summary
Not everyone will require a Ghidra Server or shared projects to facilitate
collaborative reverse engineering, but many of the associated capabilities
can also be applied to nonshared projects. The remaining chapters focus
on nonshared projects, with references to shared projects and Ghidra
Server when appropriate. Regardless of the configuration of your Ghidra
installation, there is a good chance the default configurations, tools, and
views may not be perfect for your workflow. The next chapter focuses on
Ghidra configurations, tools, and workspaces and how you can make them
work better for you.

After spending time with Ghidra, you may
prefer some settings that you wish to use as

defaults every time you open a new project
or that you want to apply to all files within a

particular project. At this point, you may be confused
as to why some of the options you have changed carry
over from session to session, while other options need
resetting every time you load a new project or file. In
this chapter, we examine the ways in which you can
customize Ghidra’s default appearance and behavior
to better serve your reverse engineering needs.

12
C U S T O M I Z I N G G H I D R A

242 Chapter 12

To understand the scope of some customizations, it’s useful to under-
stand the (fuzzy) distinction between the terms plugin and tool. In a general
sense, the following is true:

Plugin  A plugin is a software component (for example, Byte Viewer,
Listing window, and so on) that adds functionality to Ghidra. Plugins
frequently present themselves as windows, but many plugins do their
work behind the scenes (for example, analyzers).

Tool  A tool can be a single plugin or a set of plugins that work together.
They generally present as a useful graphical user interface (GUI) to
help users accomplish tasks. A tool that we have been working with
extensively, CodeBrowser, is a window that serves as a GUI framework.
Function Graph is also a tool.

Don’t panic if these definitions are not strictly adhered to. In many
cases, distinguishing between the two simply doesn’t matter. For example,
some menus, such as the Tool Options menu discussed later in this chapter,
include options that can be applied to both tools and plugins despite using
the term Tool. In that context, as well as many others, the distinction is not
important, as both are treated the same. You should be able to successfully
navigate the customization process even when the usage of the terms varies.

In addition to Ghidra customizations, we’ll also discuss Ghidra workspaces
to round out the chapter. Workspaces couple a tool with a configuration and
provide the capability to design and use a personalized virtual desktop.

CodeBrowser
In Chapters 4 and 5, we introduced the CodeBrowser and many of its
associated windows. We already covered some of the basic customization
options; now we will walk through a more thorough example of customiza-
tions in the CodeBrowser before moving on to the Ghidra Project window
and workspaces.

Rearranging Windows
The following six basic operations allow you to control where the individual
windows appear in relation to the CodeBrowser window:

Open  Windows are generally opened using the CodeBrowser’s Window
menu. Each window has defaults that determine where it opens.

Close  Windows can be closed by clicking the X in the upper right
of the window. (If you reopen a closed window, it will reappear at the
same location rather than its original default location.)

Customizing Ghidra 243

Move  Move windows around by dragging and dropping them.

Stack  Use the drag-and-drop functionality to stack and unstack
windows.

Resize  Hovering on a border between two windows reveals an arrow
that allows to you grow and shrink the windows adjacent to the border.

Undock  You can undock a tool from the CodeBrowser window, but
redocking is not as straightforward as you might wish, as shown in
Figure 12-1.

�

�

Figure 12-1: Redocking the Decompiler window

To redock a window, you can’t click the title bar , as you’ll just drag the
window around in front of the CodeBrowser. Instead, click the internal title
bar  to redock or stack a window. Now that we can rearrange windows, let’s
customize the windows themselves by using the Edit4Tool Options menu.

Editing Tool Options
When you choose Edit4Tool Options, a CodeBrowser option window
opens, as shown in Figure 12-2. This window allows you to control options
associated with individual CodeBrowser components.

Available options are determined by the developers of each component,
and the significant variability between available options reflects the spe-
cific nature of the individual tools. Because describing every available tool
option would take up an entire book, we’ll look at a few edits that affect
tools we have discussed in previous chapters and some that are similar for
many tools.

244 Chapter 12

Figure 12-2: Default CodeBrowser Edit4Tool Options window

While it may not be apparent when rendered in grayscale, many of
the tools use color to identify attributes, and the associated color palette is
configurable. Clicking a default color within the Options window opens a
standard Color Editor dialog, as shown in the Byte Viewer options panels
in Figure 12-3. This provides you with the option to control the color of a
plethora of items within your CodeBrowser.

Figure 12-3: Edit4Tool Options Color Editor dialog

Customizing Ghidra 245

In Figure 12-3, you can select colors for six items in the Byte Viewer win-
dow: Block Separator, Current View Cursor, Cursor, Edit Cursor, Highlight
Cursor Line, and Non-Focus Cursor. In addition to customizing color in the
Byte Viewer window, you can also select the font and choose to highlight
the cursor line. Conveniently, any CodeBrowser tool’s option panel includes
a Restore Defaults option in the lower right. This enables you to use special
color schemes during some analysis steps and then revert to the default color
scheme for the tool when done.

Beyond cosmetic changes, many tools provide the ability to set param-
eters in the edit options. We have hinted at this potential as we introduced
new functionality in previous chapters, such as the ability to control which
analyzers are included in auto analysis. In general, anytime something has a
default, there is a way to change it to something else.

The settings for some overarching tools are also accessible and modifi-
able through the Options window. For example, key bindings are used to
specify mappings between Ghidra actions and hotkey sequences, and there
are over 550 actions in the default CodeBrowser window for which you can
create or reassign a hotkey binding using the Options window. Hotkey reas-
signment is useful in many instances, including making additional com-
mands available via hotkeys, changing default sequences to sequences that
are easier to remember, and changing sequences that might conflict with
others in use by the operating system or your terminal application. You
might even remap all hotkeys to match those of other disassemblers.

Three fields are associated with each key binding, as shown in Figure 12-4.
The first field is Action Name. In some cases, the action name corresponds
to a menu command (for example, AnalysisAuto Analyze). In other cases,
it is a parameter associated with a menu command (for example, Aggressive
Instruction Finder within Analysis Options).

Figure 12-4: Edit4Tool Options Key Bindings option

246 Chapter 12

The second column is the actual key binding (hotkey) that is associated
with the action. The final column holds the name of the plugin in which
the action is implemented.1 Not all actions have associated hotkeys, but you
can easily assign hotkeys by selecting an action and entering the desired
hotkey in the text box. A list of all other uses of that hotkey is displayed if
the hotkey has already been associated with another action. When you use
a hotkey that has multiple key bindings, you will be provided a list of poten-
tial actions and will need to choose the appropriate one.

Editing the Tool
At the bottom of the Edit4Tool Options window is an option called
Tool. The meaning of Tool changes depending on the tool whose menu
was used to reach the Options dialog. Generally this will be either the
CodeBrowser or the Project window. Figure 12-5 shows the default con-
figuration options for the CodeBrowser tool. The title bar of the Options
dialog provides the most prominent clue that we are looking at the
options page for the CodeBrowser.

Figure 12-5: Using Edit4Tool Options4Tool to edit CodeBrowser options

1. This provides another example of synonymous use of terms when the distinction is not impor-
tant. Most entries in the Plugin Name column are plugins, but tools such as the Configure tool
are also included in the list. In this context also, you can apply a key binding to either.

Customizing Ghidra 247

Special Tool Editing Features
Some tools have editing features integrated within their individual windows
so that you can immediately see the effect of the options on the associated
contents. The most extensive set of built-in editing features is available in
the Listing window. The Listing window contains the textual contents of the
disassembly and is highly configurable using the Browser Field Formatter
introduced in “Changing Code Display Options” on page 133. Figure 12-6
shows a Listing window with the default Browser Field Formatter open.

Figure 12-6: Listing window with default Browser Field Formatter open

A row of tabs  representing the various field types present in the
disassembly appears at the top of the formatter. In this case, we are look-
ing at instructions, so the Instruction/Data tab is selected. The remainder
of the formatter  displays bars for each individual field associated with
an address in an Instruction/Data section. In this case, the cursor is on an
address within the Listing window, so the Address field is highlighted.

You can use the Browser Field Formatter to change the appearance of
the listing. The capabilities are extensive, and each field has its own asso-
ciated options. We will investigate only some of the simpler capabilities,
many of which are similar to editing the appearance of windows in the
CodeBrowser. You can rearrange fields by dragging them to new locations;

248 Chapter 12

increase or decrease the width of a field; and add, remove, enable, or dis-
able individual fields.

Figure 12-7 shows the same listing contents after removing the Bytes
field. We have removed the Bytes field in many of the listing images in
previous chapters to condense the listing and show more content in the
available space.

Figure 12-7: Listing window with customized Browser Field Formatter selections

Saving the CodeBrowser Layout
When closing the CodeBrowser, you can save any layout changes associated
with a file. Alternatively, you can exit without saving, which generates a warn-
ing message to make sure you understand the implications. If you use the
File4Save Tool option in the CodeBrowser window, the current CodeBrowser
appearance will be associated with the current file within the active project.
The next time you open the file, Ghidra will use the saved CodeBrowser lay-
out. When you have multiple CodeBrowser instances open at the same time
and have modified some (or all) of them, this can result in conflicting tool
configurations. Ghidra will then display a new Save Tool dialog, as shown in
Figure 12-8.

Figure 12-8: Ghidra’s Save Tool – Possible Conflict dialog

Customizing Ghidra 249

Later in this chapter, we will show you how to use this and similar cus-
tomization functionality to create a new powerful suite of tools that are
tuned to your individual reverse engineering tasks and tastes.

Ghidra Project Window
Let’s switch gears (or windows anyway) and venture back to the Ghidra
Project window, shown in Figure 12-9. The main menu was discussed in the
preceding chapter. Before we discuss Project window customizations, let’s
look at two areas of the window that we have not yet discussed.

Figure 12-9: Ghidra Project window

The Tool Chest  displays icons for all of the tools capable of operating
on the binaries that you have imported into your projects. By default, two
tools are available. The dragon icon is the default for the CodeBrowser,
and the footprints icon is associated with Ghidra’s version control tool. We
demonstrate how to supplement the Tool Chest by modifying and import-
ing tools, as well as building our own, a little later in this chapter.

The Running Tools  contains icons for each running tool instance.
In this example, we have opened each of the project files in a separate
CodeBrowser window. As a result, four instances of CodeBrowser are

250 Chapter 12

currently running. Clicking any of the Running Tools icons brings the
associated tool to the foreground of your desktop.

Let’s return to the Ghidra Project window menu  and look at some
of the options to customize the window. We will start by investigating the four
Edit4Tool Options actions for the Ghidra project shown in Figure 12-10.
Two of the options are the same as in CodeBrowser: Key Bindings and Tool.

In Figure 12-10, the Key Bindings option has been selected. The Ghidra
Project tool has significantly fewer actions than the CodeBrowser tool
does, and therefore fewer options for key binding. If you’re playing along
at home, you may notice that most of the actions are associated with
the FrontEndPlugin. (The Ghidra Project tool is also called the Ghidra
Frontend, and these terms are used interchangeably throughout the
Ghidra environment, including Ghidra Help.)

Figure 12-10: Ghidra Project window (aka Ghidra Frontend), via Edit4Tool Options

Eclipse Integration is the focus of Chapter 15, so we will postpone dis-
cussion of this particular option for now. Recovery simply allows you to set a
frequency for snapshots. The default value is 5 minutes. Setting this value to
0 disables snapshots.

The final option, Tool, can be quite fun to experiment with. As men-
tioned earlier in the chapter, the generic term tool, in this context, refers
to the active tool. In this case, it is the Ghidra Project tool. The associated
options are shown in Figure 12-11, and we will focus on the Swing Look
And Feel and Use Inverted Colors options, which change the appearance
of the Ghidra windows.

Customizing Ghidra 251

Figure 12-11: Ghidra Project tool edit options

The combination of Use Inverted Colors with the selection of Metal
for the Swing Look And Feel results in a dark theme that is popular with
many reverse engineers. Your changes will take effect after you restart
Ghidra, and the new styles will be used for all Ghidra windows, including
the CodeBrowser and Decompiler. A portion of the resulting CodeBrowser
window is shown in Figure 12-12.

Figure 12-12: Portion of the CodeBrowser window using a dark theme

252 Chapter 12

Now that you know how to change the look and feel of Ghidra to better
suit your personality, let’s return to the File menu and investigate what con-
figuration means in that context. The FileConfigure option displays three
categories of Ghidra plugin collections, as shown in Figure 12-13. Each cat-
egory has a different purpose.

Ghidra Core contains the set of plugins that we have been using in
our default Ghidra configuration. These provide the basic functionality
that is essential to reverse engineering. The Developer category provides
plugins that assist you in the process of developing new plugins. This is a
good starting point if you want to learn more about Ghidra development.
The final group of plugins is Experimental. These plugins have not been
thoroughly tested and could destabilize your Ghidra instance, so use them
with caution.

Figure 12-13: Ghidra project configuration options

While only Ghidra Core is enabled as part of the default Ghidra instal-
lation, you can check the box next to the other options to enable them as
well. Use the Configure option beneath a category to select (or deselect) the
individual plugins that appear in the category list. Figure 12-14 displays
the Ghidra Core plugins list, including a description and category for each.
If you click a Ghidra plugin within this menu, a window at the bottom of
the screen will provide additional information about the plugin.

Two additional Ghidra Project menu options are available for Ghidra
configuration. The first is FileInstall Extensions, which we discuss in
Chapter 15. The other option, Edit4Plugin Path, allows you to add, modify,
and delete new user plugin paths, which tell Ghidra where to look for addi-
tional Java classes beyond its installed defaults. Through this option, you
can include additional plugins and classes in your Ghidra instance. Editing
the plugin path requires that you restart Ghidra in order to see the results.

Customizing Ghidra 253

Figure 12-14: Ghidra Core configuration window with ImporterPlugin selected

Now that you have seen the potential to modify plugin options, we can
move on to extend plugin use. The Tools menu option allows you to per-
form operations associated with tools, including creating new tools (if none
of the existing tools exactly fit your needs). In this case, we will build and
work with tools that are collections of existing plugins, rather than coding
plugins from scratch.

Tools
Most of the tool options are provided in the Ghidra Project window Tools
menu, shown in Figure 12-15. Until now, you have been using and modify-
ing the default tool, CodeBrowser, as your primary analysis tool. We will
now demonstrate how you can create custom tools in Ghidra.

254 Chapter 12

Creates an empty tool that you can populate with plugins

Launches a tool from your Tool Chest

Removes a tool from your Tool Chest

Allows you to export a tool to share

Imports default tools to your Tool Chest

Imports a tool into your Tool Chest

Creates associations between tools (see Chapter 5)

Allows you to associate file types with specific tools

Figure 12-15: Ghidra Tools menu options

If you have experimented with modifying the CodeBrowser tool, you
may have become frustrated when the default tool is modified for sub
sequent files you open. Let’s consider a specialized case where you want
to examine a file, with many function calls, that is complicated to navigate.
In Chapter 10, we demonstrated the use of function call graphs and func-
tion graphs to help you understand the control flow of a program. Both of
these graphs open in their own windows, which can cause challenges if you
have many files open. Let’s address these challenges with a specialized tool
called ExamineControlFlow that you can use to analyze the flow of control in
a program.

When you choose the ToolsCreate Tool… menu option, you are
presented with two windows (shown stacked in Figure 12-16). The upper
window in the figure presents plugin options similar to those you saw in
Figure 12-13, but with one additional category, Function ID, which we dis-
cuss in Chapter 13. The lower window in the figure is an empty, untitled
tool development window that you can customize to create your tool,
ExamineControlFlow.

Customizing Ghidra 255

Figure 12-16: Ghidra Configure Tool window

You can compose your new tool by using plugins from Ghidra Core.
When you select the Ghidra Core category, your tool development window
populates with options from Ghidra Core, as shown in Figure 12-17. The
resulting window has a lot in common with the CodeBrowser. This makes
sense, as the CodeBrowser is also based on Ghidra Core.

Figure 12-17: New, untitled tool before configuration

256 Chapter 12

You will need to remove some of the plugins that you don’t want in
your new tool and then specify the windows that you do want. Click the
Configure option under Ghidra Core and delete the following plugins you
don’t need (you could remove many others, but we have chosen not to for
the sake of brevity):

•	 Console

•	 DataTypeManagerPlugin

•	 EclipseIntegrationPlugin

•	 ProgramTreePlugin

Each of these is associated with other plugins, so, as you remove each
one from your new tool, Ghidra will display a warning message with the list
of additional plugins that are being removed. You can add plugins back in
by choosing FileConfigure from your new tool at any time. An example of
the warning message associated with removing DataTypeManagerPlugin is
shown in Figure 12-18.

Figure 12-18: Plugin dependency warning for DataTypeManagerPlugin

You can also control the layout of your new tool. In this case, you want
to be able to see the Listing, Function Call Graph, and Function Graph win-
dows in the same tool. Using the techniques described in previous chapters,
you open the desired windows by using the Window menu in your new tool
and then drag them into the desired locations. The new, untitled tool is
shown in Figure 12-19.

Customizing Ghidra 257

Figure 12-19: New, untitled tool

Since you plan to use this tool frequently and share it with your collabo-
rators, you should save the tool by selecting File4Save Tool As, which pres-
ents you with the options to name the tool and associate an icon with it (see
Figure 12-20). You can choose from among the provided icons or select your
own image file in a supported format (for example, .jpg, .png, .gif, and so on).

Figure 12-20: Icon options for new tools

This new tool (and other tools you create) becomes part of your Tool
Chest and will be displayed as an option in your projects, as shown in
Figure 12-21.

To share a new tool with others, export it using ToolsExport Tools.
Ghidra will ask you to choose a folder in which to save the tool and then
create a .tool file containing your tool specification. To import a tool, use
the ToolsImport Tool option.

258 Chapter 12

Figure 12-21: New project with new tool
options displayed in Tool Chest

While double-clicking a file in the Ghidra Project window opens the file
in the CodeBrowser by default, you can choose any tool in your Tool Chest
by right-clicking the file and then choosing the tool from the context menu.
Alternatively, you can drag the filename and drop it onto a tool.

The more you use Ghidra, the more you will realize that there is no
one-size-fits-all Ghidra interface that provides exactly the tools you need for
each RE task you undertake. As a reverse engineer, the approach to analyz-
ing a particular file largely depends on the file itself, the goal of the analy-
sis, and the progress toward that goal.

We have devoted much of this chapter and earlier chapters to describ-
ing how you might change Ghidra’s look and feel as well as the tools avail-
able to meet your needs. A final step in customizing Ghidra is the ability
to save these configurations you have created so that you can choose the
correct configuration based on the analysis project you are undertaking.
This is accomplished through the creation and preservation of Ghidra
workspaces.

Workspaces
A Ghidra workspace can be viewed as a virtual desktop that includes the tools
as they are currently configured and the associated files. Imagine that you
are analyzing a binary. While you are looking at the file, you notice charac-
teristics that are similar to another file you analyzed last week. You would
like to compare the two files to identify the similarities between the two
functions, but you also want to continue analyzing the file. These are two
unique problems that have a file in common.

One way to proceed down these two paths concurrently is to create a
workspace associated with each analysis problem. You can preserve your
current analysis by selecting Project4WorkspaceAdd from the Ghidra
Project window and giving the new workspace a name. In this example, we
will call this workspace FileAnalysis. You can then open another tool from

Customizing Ghidra 259

the Tool Chest and perhaps compare the two files using a specialized tool
that utilizes the Diff View (see Chapter 23), then create a second workspace
(FileComparison) using the same method. You can now easily switch between
the workspaces by selecting the workspace in the pull-down menu shown in
Figure 12-22 or by using the Switch option in the Project4Workspace menu,
which cycles you through the available workspaces.

Figure 12-22: Workspace options within Ghidra Project window

Summary
When starting out with Ghidra, you may be perfectly satisfied with its
default behaviors and its default CodeBrowser layout. However, as you
become more comfortable with Ghidra’s basic features, you are certain to
find ways to customize Ghidra for your reverse engineering workflow. While
there is no way for a single chapter to provide complete coverage of every
possible option Ghidra offers, we have introduced and provided examples
for the customization capabilities that you will most likely need at some
point in your SRE experience. Discovering additional useful tools and
options is left as a matter of exploration for inquisitive readers.

13
E X T E N D I N G G H I D R A’ S

W O R L D V I E W

One of the things we hope for from a high-
quality reverse engineering tool is fully

automated identification and annotation of
as much of a binary as possible. In ideal cases,

100 percent of instructions are identified and grouped
into 100 percent of the original functions that compose
the binary. Each of these functions would have a name and a full proto-
type, and all data manipulated by the functions would also be identified to
include full understanding of the original data types used by the program-
mers. This is precisely Ghidra’s goal, beginning with the initial import of a
binary and continuing through auto analysis, at which point anything that
Ghidra was unable to accomplish becomes an exercise for its user.

In this chapter, we look at the techniques Ghidra uses to identify vari-
ous constructs within binaries and discuss how you can enhance its abil-
ity to do so. We begin with a discussion of the initial loading and analysis
processes. The choices you make during these steps help determine what
resources Ghidra will bring to the table for the file you are analyzing. This
is your opportunity to provide Ghidra with information that it may have

262 Chapter 13

failed to detect automatically so that Ghidra’s analysis stages can make more
informed decisions. Following that, we will look at how Ghidra utilizes word
models, data types, and function identification algorithms, and how each
of these may be enhanced to tailor its performance to your particular
RE application.

Importing Files
During the import, the dialog shown in Figure 13-1 presents Ghidra’s initial
analysis of the file’s identity, which will guide the file-loading process. You
can override any of the fields or proceed with the recommendations Ghidra
has made. The additional options, accessed with the Options . . . button, are
specific to the type of file being loaded. Figure 13-1 shows options for a PE
file, and Figure 13-2 shows options for loading an ELF binary.

Figure 13-1: Import dialog and options for a PE file

Figure 13-2: Import dialog and options for an ELF binary

Extending Ghidra’s Worldview 263

The Format option specifies which loader Ghidra will use to import
the file. Ghidra relies on a loader’s detailed knowledge of a particular file
format to identify characteristics of the file and choose the proper plugins
to use for analysis. A well-written loader recognizes specific content or
structural features to identify the file’s type, architecture, and, hopefully,
the compiler that was used to create the binary. Information about the
compiler can enhance function identification. To fingerprint a compiler,
a loader examines the structure of a binary to look for compiler-specific
characteristics (like number, name, position, and ordering of program
sections) or searches the binary for compiler-specific byte sequences (like
blocks of code or strings). For example, it is not uncommon to find ver-
sion strings in binaries compiled using gcc—for example, GCC: (Ubuntu
7.3.0-27ubuntu1~18.04) 7.3.0.

L A NGUAGE/COMPIL E R SPECIF IC AT IONS

The Language field in Figures 13-1 and 13-2 dictates exactly how Ghidra will
interpret any bytes recognized as machine code within the file you are loading.
The language/compiler specification is composed of three to five colon-
separated subfields, as described here:

•	 The processor name field names the processor type for which the binary was
built. It directs Ghidra to a specific subdirectory under Ghidra/Processors.

•	 The endian field indicates the endianness of the binary’s processor, which
is either little-endian (LE) or big-endian (BE).

•	 The architecture size (bitness) field usually coincides with the size of a
pointer for the chosen processor (16/32/64 bits).

•	 The processor variant/mode field is used to choose a specific model of
the selected processor or identify a specific mode of operation. For exam-
ple, when the x86 processor is selected, we can choose modes System
Management Mode, Real Mode, Protected Mode, or default. For the ARM
processor, we can choose models v4, v4T, v5, v5T, v6, Cortex, v7, v8 or
v8T, among others.

•	 When known, the compiler field names the compiler, or in some cases
a calling convention, that was used to compile the binary. Valid names
include windows, gcc, borlandcpp, borlanddelphi, and default.

Figure 13-3 breaks down the language identifier ARM:LE:32:v7:default into
its component subfields. One of a loader’s most important jobs is to infer a cor-
rect language/compiler specification.

Processor Endian

ARM

Compiler
Language

VariantSize

LE 32 v7 Default

Figure 13-3: Language/compiler specification example

264 Chapter 13

When Ghidra has completed the loading process, an Import Results
Summary window is displayed, as shown in Figure 13-4.

�

Figure 13-4: Import Results Summary window for an ELF binary

This summary identifies an ELF Required Library, lib.so.6 . (Note
that this library would not be listed as a requirement if the file were stati-
cally linked.) More than one library file may be listed when an executable
depends on multiple shared libraries. Understanding which libraries a
program depends on can help direct you to resources you may need while
analyzing the program. For example, if libssl.so or libcrypto.so appears in the
list of required libraries, you might want to locate OpenSSL documentation
and possibly source code. We discuss how Ghidra can make use of source
code later in this chapter. Once a file has been successfully imported, you
can auto analyze the file.

Extending Ghidra’s Worldview 265

Analyzers
Auto analysis is accomplished by a collection of cooperating analysis tools
(analyzers) that are activated either manually (for example, when open-
ing a new file) or automatically when a change that can affect the resulting
disassembly is detected. Analyzers run sequentially in a prioritized order
based on the type of analyzer because the changes an analyzer makes can
affect subsequent analyzers. For example, the stack analyzers cannot look
at functions until a function analyzer has looked at all calls and created the
functions. We investigate this hierarchy in more detail in Chapter 15 when
we build an analyzer.

When you open a new file in the CodeBrowser and choose to auto
analyze it, Ghidra presents a list of analyzers that can be run on that file.
The list of default and optional analyzers is dependent on file information
provided by the loader (which is also displayed to the user as part of the
import summary, as shown in Figure 13-4). For example, the Windows x86
PE RTTI Analyzer would not be of much use in analyzing an ELF or ARM
binary. Default analyzer selections can be modified using the Edit4Tool
Options menu.

Some analyzers are also available as one-shot options by using the
Analysis4One Shot menu in the CodeBrowser. An analyzer appears in the
list if it supports one-shot use and applies to the type of file being analyzed.
One-shot analysis is useful for running analyzers that were not selected dur-
ing the initial auto analysis, or for rerunning an analyzer after new infor-
mation has been located that might benefit from additional analysis. For
example, if you receive a missing PDB error message during initial analysis,
you can locate the PDB file and then run the PDB analyzer.

The Analyze All Open option on the CodeBrowserAnalysis menu ana-
lyzes all open files in the project at once, using the list of analyzers selected
in Edit4Tool Options. If all of the open files in the project have the same
architecture (language/compiler specification), all of the files will be ana-
lyzed. Any files that do not match the architecture of the current file will
not be included in the analysis. This ensures that the analyzers are consis-
tent with the type of file being analyzed.

Many CodeBrowser tools, including analyzers, rely on various artifacts
in order to identify important constructs in a file. Fortunately for us, we can
extend many of these artifacts to improve Ghidra’s capabilities. We will start
with a discussion of word model files and how they are used to identify spe-
cial strings and types of strings within search results.

Word Models
A word model provides a way to identify special strings and types of strings
you’re interested in searching for, such as known identifiers, email addresses,
directory pathnames, file extensions, and so on. When your string search
is associated with a word model, the String Search results window will
include a column called IsWord that specifies whether the found string is
a word according to the word model. Defining strings of interest as valid

266 Chapter 13

words and then filtering for valid words is a good way to prioritize strings
for further inspection.

At a high level, a word model uses training sets of valid strings to
determine that “if trigram X (a sequence of three characters) appears in
a sequence Y of length Z, then there is a probability, P, that Y is a word.”
The resulting probability is used indirectly as a threshold to determine if
the string should be considered a valid word during analysis.

StringModel.sng, seen in Figure 13-5, is the default word model file for
string searches in Ghidra.

Figure 13-5: Search for Strings dialog

The following excerpt from the StringModel.sng file shows the format of
a valid word model file:

 # Model Type: lowercase
 # Training file: contractions.txt

Training file: uniqueStrings_012615_minLen8.edited.txt
Training file: connectives
Training file: propernames
Training file: web2
Training file: web2a
Training file: words

 # [^] denotes beginning of string
[$] denotes end of string
[SP] denotes space
[HT] denotes horizontal tab

 [HT] [HT] [HT] 17
[HT] [HT] [SP] 8
[HT] [HT] (1

Extending Ghidra’s Worldview 267

[HT] [HT] ; 1
[HT] [HT] \ 25
[HT] [HT] a 2
[HT] [HT] b 1
[HT] [HT] c 1

The first 12 lines in the file are metadata comments about the model.
In this example, the model type  is lowercase, which likely means the
model does not distinguish between upper- and lowercase letters. The
names of the training files used for this model are listed . The names
generally indicate the content: contractions.txt is likely a file of valid contrac-
tions, like can’t. Four lines  describe the notation for some nonprinting
ASCII characters used in the trigrams. The actual trigram list starts ,
where each entry row contains the three characters in the trigram followed
by a value that is used in determining the probability that the trigram is
part of a word.

You can supplement or replace the default word model by editing String​
Model.sng or creating new model files and storing them in Ghidra/Features​
/Base/data/stringngrams and then selecting the new file in the Word Model
field in the Search for Strings dialog. There are many reasons to modify
word models, like including strings specific to known malware families or
detecting words in languages other than English. Ultimately, word models
provide a powerful means to control the types of strings that Ghidra recog-
nizes as higher priority by tagging them in the Strings window.

In a similar manner, we can edit and extend the data types that Ghidra
recognizes.

Data Types
The Data Type Manager allows us to manage all of the data types associ-
ated with a file. Ghidra lets you reuse data type definitions by storing them
in data type archive files. Each root node in the Data Type Manager window
is a data type archive. Figure 13-6 shows a Data Type Manager window with
three data type archives selected by the Ghidra loader.

Figure 13-6: Data Type Manager window

268 Chapter 13

The BuiltInTypes archive is always listed. This archive includes all (and
only) types that are modeled within Ghidra by Java classes that implement
the ghidra.program.model.data.BuiltInDataType interface. Ghidra searches for
every such class within its classpath in order to populate this archive.

The second archive is specific to the file that is being analyzed, and
the archive shares the file’s name. In this case, the archive is associated
with the file global_array_demo_x64. The checkmark next to the archive
indicates that it is associated with the active file. Initially, Ghidra populates
this archive with data types specific to the file’s format (for example, PE- or
ELF-related data types). During auto analysis, Ghidra copies additional
types, from the other archives, into this one when they are recognized to
be in use in the program. In other words, this archive contains the subset
of all data types, known to the Data Type Manager, that happen to be in
use in the current program. This archive is also the home to any custom
data types that you choose to create in Ghidra, as discussed in “Creating
Structures with Ghidra” on page 166.

The third archive provides the 64-bit ANSI C function prototypes and
C library data types. This particular archive contains information extracted
from the standard C library headers of a 64-bit Linux system and is one of
several platform-specific archives in a default Ghidra installation. It is pres-
ent because this particular binary has a library dependency on libc.so.6, as
indicated in Figure 13-4. A default Ghidra installation has four additional
platform-specific data archives, located in the Ghidra/Features/Base/data​
/typeinfo directory under a subdirectory specific to the platform. The file-
names indicate the platforms they support: generic_clib.gdt, generic_clib_64.gdt,
mac_osx.gdt, windows_vs12_32.gdt, and windows_vs12_64.gdt. (The .gdt exten-
sion is used for all Ghidra data type archives.)

In addition to the archives that the Ghidra loader selects automati-
cally, you can add your own data type archives as nodes in the Data Type
Manager window. For demonstration purposes, Figure 13-7 shows the Data
Type Manager window after all of the default .gdt files have been added to
the Data Types list. The right side of the figure shows the menu for manipu-
lating archives and data types. Additional archives are loaded using the
Open File Archive menu option, which opens a file browser for you to select
an archive of interest.

To add new built-in types to the BuiltInTypes archive, add correspond-
ing .class files to Ghidra’s classpath. If you add types while Ghidra is run-
ning, you must Refresh BuiltInTypes (see Figure 13-7) in order for them to
appear. The refresh operation causes Ghidra to rescan its classpath to find
any newly added BuiltInDataType classes. The inquisitive reader may find
numerous examples of built-in types in their Ghidra source distribution at
Ghidra/Framework/SoftwareModeling/src/main/java/ghidra/program/model/data.

Extending Ghidra’s Worldview 269

Figure 13-7: Data Type Manager with all standard archives loaded and options
menu expanded

Creating New Data Type Archives
It’s impossible to anticipate every data type that you may encounter while
analyzing binaries. The archives included in your Ghidra distribution include
data types culled from the most commonly used libraries on Windows
(Windows SDK) and Unix (C library) systems. When Ghidra doesn’t contain
information on the data types used in a program you’re analyzing, it offers
you the ability to create new data type archives, populate them in a variety
of ways, and share them with others. In the following sections, we discuss the
three ways you are likely to create new data type archives.

Parsing C Header Files

One of the most common sources for data type information is C header
files. Assuming you have the header files you need, or take the time to
create them yourself, you can create your own data type archive by using
the C-Parser plugin to extract the information from an existing C header
file. For example, if you frequently find yourself analyzing binaries that

270 Chapter 13

link against the OpenSSL cryptographic library, you might download the
OpenSSL source code and ask Ghidra to parse the included header files to
create an archive of OpenSSL data types and function signatures.

This process is not nearly as straightforward as it might seem. Header
files are often littered with macros designed to influence the behavior of a
compiler based on the compiler being used and the operating system and
architecture being targeted. For example, the C structure

struct parse_demo {
 uint32_t int_member;
 char *ptr_member;
};

occupies 8 bytes when compiled on a 32-bit system and 16 bytes when com-
piled on a 64-bit system. This variability poses a problem for Ghidra, which
is attempting to act as the universal preprocessor, and it is up to you to guide
Ghidra through the parsing process to create a useful archive. When the
time comes to use your archive with Ghidra, you must have ensured that the
archive was created in a manner compatible with the binary you are analyz-
ing (that is, don’t load 64-bit archives to help you analyze a 32-bit file).

To parse one or more C header files, select File4Parse C Source in the
CodeBrowser to open the dialog shown in Figure 13-8. The source files to
parse section provides an ordered list of header files for the plugin to parse.
The order is important, as the data types and preprocessor directives from
one file become available for the next file.

The Parse Options box provides a list of options, similar to compiler
command line options, that influence the behavior of the C-Parser plu-
gin. The parser recognizes only the -I (include directory) and -D (define a
macro) options understood by most compilers. Ghidra offers a number of
preprocessor configurations, in the form of .prf files, that you can choose
from to provide reasonable defaults for common operating system and com-
piler combinations. You can also customize any of the available configura-
tions or create your own from scratch and save them to your own .prf for
future use. A common change to the parser options is to correctly set the
architecture that you want the C-Parser to target, as all of the supplied con-
figurations target x86. For example, you might change -D_X86_ in a Linux-
oriented configuration to -D__ARMEL__ if you are analyzing little-endian ARM
binaries.

The plugin’s output can be merged into the current active file with the
Parse to Program button or stored in a separate Ghidra data type archive
file (.gdt) with Parse to File. Additional information about the C-Parser can
be found in Ghidra Help.

Extending Ghidra’s Worldview 271

Figure 13-8: Parse C Source dialog

Creating a New File Archive

As an alternative to parsing C headers files, you might want to capture cus-
tom data types that you create while analyzing a file into an archive that
can be shared with other Ghidra users or used in other Ghidra projects.
The Data Type Manager’s New File Archive option (refer to Figure 13-7)
asks you to select a filename and save location, and then creates a new,
empty archive that is listed in the Data Type Manager window. You can add
new types to the archive by using the techniques described in “Creating
Structures with Ghidra” on page 166. Once your archive is created, you
may share it with other Ghidra users or use it in your other Ghidra projects.

272 Chapter 13

Creating a New Project Archive

A project data archive exists only within the project in which it was created.
This may be useful if you expect to reuse custom data types in more than
one file within a project but never expect to use the data types outside your
project. Within the Data Type Manager, the New Project Archive option
(refer to Figure 13-7) asks you to select a folder within your project to hold
your new archive, and then creates a new, empty archive that is listed in the
Data Type Manager window. As with the other data type archives, you can
add new types to the archive as needed.

Function IDs
When you set out to reverse engineer any binary, the last thing you want to
do is waste time reverse engineering library functions whose behavior you
could learn much more easily by simply reading a man page, reading some
source code, or doing a little internet research. Unfortunately, statically
linked binaries blur the distinction between application code and library
code: entire libraries are combined with application code to form a single,
monolithic executable file. Fortunately for us, Ghidra has tools to recognize
and mark library code, regardless of whether the code was taken from a
library archive or is simply the result of code reuse across multiple binaries,
allowing us to focus our attention on the unique code within the applica-
tion. The Function ID analyzer recognizes many common library functions
using function signatures included with Ghidra, and you can extend the
function signature databases by using the Function ID plugin.

The Function ID analyzer works with Function ID databases (FidDbs)
that use a hierarchy of hash values to characterize functions. A full hash
(which is intended to be resilient against changes that might be introduced
by the linker) and a specific hash (which helps differentiate between vari-
ants of functions) are computed for each function. The major difference
between the two is that the specific hash may include the specific values of
any constant operands (based on a heuristic), whereas the full hash does
not. The combination of the two hashes coupled with information about any
associated parent and child functions forms a fingerprint for each library
function, which is recorded in an FidDb. The Function ID analyzer derives
the same type of fingerprint for each function in the binary you are analyz-
ing and compares it against all known fingerprints in relevant FidDbs. When
a match is found, Ghidra recovers the function’s original name from the
FidDb, applies the appropriate label to the function under analysis, adds the
function to the Symbol Tree window, and updates the function’s plate com-
ment. The following is a sample plate comment for the _malloc function:

 **
 * Library Function – SingleMatch *
 * Name: _malloc *
 * Library: Visual Studio 2005 Release *
 **

Extending Ghidra’s Worldview 273

Information about functions in a FidDb are stored hierarchically and
include a name, version, and variant. The variant field is used to encode
information such as compiler settings, which affect the hashes but aren’t
part of the version number.

The Function ID analyzer offers several options, accessible when you
select the analyzer in the Auto Analysis dialog, to control its behavior, as
shown in Figure 13-9. Instruction count threshold is a tunable threshold
designed to reduce false positives from random matches against small
functions. False positives occur when a function is incorrectly matched to
a library function. False negatives occur when a function is not matched
to a library function but should be. The threshold roughly represents
the minimum number of instructions that a function, its parents, and its
children must contain (combined) in order to be considered for a match.
Refer to Scoring and Disambiguation in Ghidra Help for more information
on match scores.

Figure 13-9: Auto analysis options

Since the actual functionality within a binary is generally contained in
functions, the ability to extend function signatures is paramount to mini-
mizing duplication of effort, and this work is facilitated by the Function
ID plugin.

Function ID Plugin
The Function ID plugin (not to be confused with the Function ID analyzer)
allows you to create, modify, and control associations for FidDbs. This
plugin is not enabled in a default Ghidra installation. To enable it, select
FileConfigure from the CodeBrowser window and then click the check-
box for Function ID. Choose Configure within the Function ID description

274 Chapter 13

and select the FidPlugin to see additional information about actions associ-
ated with the plugin, as shown in Figure 13-10.

Figure 13-10: FidPlugin details

Once enabled, the Function ID plugin is controlled via the
CodeBrowser’s ToolsFunction ID menu, as shown in Figure 13-11.

Figure 13-11: CodeBrowser Function ID submenu

Extending Ghidra’s Worldview 275

Before we walk through an example of using the Function ID plugin to
extend Ghidra signatures, let’s briefly discuss the five new menu options:

Choose active FidDbs  Displays a list of active Function ID databases.
Each may be selected or deselected using an associated checkbox.

Create new empty FidDb  Allows you to create and name a new
Function ID database. The new FidDb will be listed when Choose active
FidDbs is selected.

Attach existing FidDb  Displays a file chooser dialog that lets you add
an existing FidDb to the list of active FidDbs. After you add the FidDb,
you can select Choose active FidDbs to see the added FidDb listed.

Detach existing FidDb  Can be applied to only FidDbs that have been
manually attached. The operation removes the association between the
selected FidDb and the current Ghidra instance.

Populate FidDb from programs  Generates new function fingerprints
to add to an existing FidDb. The dialog in Figure 13-12 is used to con-
trol this process, and its use will be discussed shortly.

Figure 13-12: Populate Fid Database dialog

Function ID Plugin Example: UPX
When we auto analyze binaries that contain very few functions outside of
library functions that Ghidra recognizes, our reverse engineering task is
somewhat simplified. We can focus on the subset of functions that Ghidra
fails to recognize under the assumption that this is where the new, inter-
esting functionality lies. Our task is much more challenging when Ghidra
can’t identify any functions. When we (human analysts) recognize func-
tions and extend Ghidra’s ability to recognize those same functions in the
future, we reduce our future workload. Let’s walk through a demonstration
of how powerful this sort of extension can be.

276 Chapter 13

Let’s assume we load a 64-bit Linux ELF binary into Ghidra and auto
analyze the file. The resulting Symbol Tree entries are shown in Figure 13-13.
We use the Symbol Tree to navigate to the entry point and examine the code.
Our initial analysis leads us to believe that the binary is packed using the
Ultimate Packer for eXecutatbles (UPX) and that the functions we are seeing
were added by the UPX packer to unpack the binary at runtime. We con-
firm this hypothesis by comparing the bytes we see in entry with published
bytes for the UPX entry point function. (Alternatively, we could create our
own UPX-packed binary for comparison.) Now, we add this information to
our FidDb so that we don’t have to perform this same analysis should we
ever encounter another UPX-packed 64-bit Linux binary.

Figure 13-13: Suspected UPX packer
functions for upx_demo1_x64_static.upx

Functions you add to an FidDb should have meaningful names.
Accordingly, we change the names of the functions in our example to indi-
cate that they are part of a UPX packer, as shown in Figure 13-14, and then
add these functions to a new Function ID database so that Ghidra can label
the functions appropriately in the future.

Figure 13-14: Labeled UPX packer functions
for upx_demo1_x64_static.upx

Extending Ghidra’s Worldview 277

We create a new FidDb by selecting ToolsFunction IDCreate new
empty FidDb and then name the new FidDb UPX.fidb. Next, we populate our
new database with information extracted from the updated binary by select-
ing ToolsFunction ID4Populate FidDb from programs. Enter informa-
tion about the FidDb in the resulting dialog, as shown in Figure 13-15.

Figure 13-15: Populate Fid Database dialog

The purpose of each field and the values we have entered are
described here:

Fid Database  UPX.fidb is the name of our new FidDb. The pull-down
list allows you to choose from among all of the FidDbs you have created.

Library Family Name  Choose a name that describes the library from
which you are extracting function data. In our case, we have input UPX.

Library Version  This can be a version number or a platform name or
a combination of both. Since UPX is available for many platforms, we
chose the library version based on the architecture of the binary.

Library Variant  This field may be used for any additional information
that distinguishes this library from others of the same version. In this
example, we used the commit ID for this version of UPX from the UPX
repository on GitHub (https://github.com/upx/).

Base Library  Here you may reference another FidDb that Ghidra
will use to establish parent/child relationships. We did not use a base
library, as UPX is completely self-contained.

Root Folder  This field names a Ghidra project folder. All files in the
chosen folder will be processed during the function ingest process. In
this case, we chose /UPX from the pull-down menu.

Language  This contains the Ghidra language identifier associated
with the new FidDb. To be processed from the root folder, a file’s lan-
guage identifier must match this value. This entry is populated from
the Imports Results Summary window for the binary, but may be modi-
fied using the button to the right of the text box.

278 Chapter 13

Common Symbols File  This field names a file containing a list of
functions that should be excluded from the ingest process. This field
is unused in this case.

When we click OK, the ingest process begins. When it’s complete, we
see the results of the FidDb population (Figure 13-16).

Figure 13-16: Results window from UPX FidDb population

Once the new FidDb is created, Ghidra can use it to identify functions
in any binary you are analyzing. We demonstrate this by loading a new UPX
packed 64-bit Linux ELF binary, upx_demo2_x64_static.upx, and auto ana-
lyze the file without the Function ID analyzer. The resulting Symbol Tree,
shown in Figure 13-17, shows five unidentified functions, as we expect.

Figure 13-17: Symbol Tree entry for
upx_demo2_x64_static.upx before
Function ID analyzer

Extending Ghidra’s Worldview 279

Running Function ID as a one-shot analyzer (Analysis4One
ShotFunction ID) results in the Symbol Tree shown in Figure 13-18,
which includes the UPX function names.

Figure 13-18: Symbol Tree entry for
upx_demo2_x64_static.upx after
Function ID analyzer

The analyzer also updates the Listing window with new function
names and plate comments, like the plate comment for UPX_1 shown next.
This plate comment contains the information that we provided when cre-
ating the FidDb:

 **
 * Library Function - Single Match *
 * Name: UPX_1 *
 * Library: UPX AMD64 021c8db *
 **
 undefined UPX_1()
 undefined AL:1 <RETURN>
 UPX_1 XREF[1]: UPX_2:00457c08(c)
00457b1a 48 8d 04 2f LEA RAX,[RDI + RBP*0x1]
00457b1e 83 f9 05 CMP ECX,0x5

Creating new FidDbs is only the beginning of extending Ghidra’s func-
tion identification capabilities. You can analyze parameters associated with
a function and save them in a Data Type archive. Then, when Function ID
correctly identifies the function, you can drag the appropriate Data Type
Manager entry onto the function in the Listing window, and the function
prototype will be updated with the appropriate parameters.

Function ID Plugin Example: Profiling a Static Library
When you are reverse engineering a statically linked binary, one of the
first things you may wish for is an FidDb that matches the functions linked
into that binary, so that Ghidra can identify the library code and save you
the effort of analyzing it. The following example addresses two important

280 Chapter 13

questions: (1) how can you know whether you have such an FidDb, and (2)
what can you do if you don’t have one? The answer to the first question is
simple: Ghidra ships with at least a dozen FidDbs (in the form of .fidbf files),
all related to Visual Studio library code. If the binary is not a Windows
binary and you have not yet created or imported any FidDbs, you’ll need
to make your own FidDb by using the Ghidra Function ID plugin (which
addresses the second question).

The most important thing to understand when populating a new FidDb
is that you need an input source that has a high probability of match-
ing against any binaries you plan to apply the FidDb against. In the UPX
example, we had a binary that contained code that our intuition told us we
might see again in the future. In a common static linking case, we have a
binary and we simply want to match as much code in that binary as possible.

There are a variety of ways to recognize that you’re dealing with a stati-
cally linked binary. Within Ghidra, look at the Imports folder within the
Symbol Tree. This folder will be empty for a fully statically linked binary
with no need for imported functions. A partially statically linked binary
may have some imports, so you can look for copyright or version strings
from well-known libraries in the Defined Strings window.

On the command line, you can use simple utilities like file and strings:

$ file upx_demo2_x64_static_stripped
 upx_demo2_x64_static_stripped: ELF 64-bit LSB executable, x86-64,
 version 1 (GNU/Linux), statically linked, for GNU/Linux 3.2.0,
 BuildID[sha1]=54e3569c298166521438938cc2b7a4dda7ab7f5c, stripped
$ strings upx_demo2_x64_static_stripped | grep GCC
 GCC: (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0

The output of file informs us that the binary is statically linked, stripped
of any symbols, and from a Linux system. (A stripped binary contains no
familiar names to clue us in to the behavior of any of the functions.) Filtering
the output of strings using grep GCC identifies the compiler, GCC 7.4.0, as well
as the Linux distribution, Ubuntu 18.04.1, used to build the binary. (You
can locate the same information with CodeBrowser’s Search4Program Text
functionality using GCC as a qualifier.) It’s likely this binary was linked with
libc.a,1 so we take a copy of libc.a from Ubuntu 18.04.1 and use it as the start-
ing point for recovering symbols in our stripped binary. (Additional strings in
the binary might lead us to select additional static libraries for the Function
ID analysis; however, we limit this example to libc.a.)

To use libc.a to populate an FidDb, Ghidra must identify the instruc-
tions and functions that it contains. The archive (hence .a) file format
defines a container for other files, most commonly for object files (.o) that
a compiler might extract and link into an executable. Ghidra’s process
for importing container files differs from its process for importing single
binaries, so when we import libc.a with FileImport, as we usually do when

1. An archive of C standard library functions, libc.a is used in statically linked binaries on
Unix-style systems.

Extending Ghidra’s Worldview 281

importing a single file, Ghidra offers alternate import modes, as shown in
Figure 13-19. (These other options are also available from the File menu.)

Figure 13-19: Importing a container file

Single File mode asks Ghidra to import the container as if it was a
single file. Since the container is not an executable file, Ghidra is likely
to suggest the Raw Binary format for your import and perform minimal
automated analysis. In File System mode, Ghidra opens a file browser
window (see Figure 13-20) to display the contents of the container file. In
this mode, you may choose any combination of files from the container to
import into Ghidra using options from context menus.

Figure 13-20: File System import mode

282 Chapter 13

In Batch mode, Ghidra automatically imports files in the container
without pausing to display individual file information. After initially pro-
cessing the container’s contents, Ghidra displays the Batch Import dialog
shown in Figure 13-21. Before clicking OK, you can view information on
each file being imported, add more files to the batch import, set import
options, and choose the destination folder within your Ghidra project.
Figure 13-21 shows that we are about to import 1690 files from the libc.a
archive into our CH13 project’s root directory.

Figure 13-21: Ghidra’s Batch Import dialog

Click OK to kick off the import process (which may take some time).
Once the import is complete, you will be able to browse the newly imported
files in the Ghidra Project window. Because libc.a is a container file, it will
appear as a folder in the Project window, and you can navigate its contents
to open and analyze any one of the files contained in the folder.

At this point, we can finally capture fingerprints of each libc function
into an FidDb and use that FidDb to perform Function ID analysis against
our sample statically linked binary. This process parallels the UPX example,
beginning with creating a new empty FidDb that will then be populated
from programs. The programs in this case will be the entire contents of our
newly import libc.a folder. Here we run into a significant challenge.

Extending Ghidra’s Worldview 283

When we select the files to populate our new FidDb, we must ensure
that every file has been properly analyzed by Ghidra to identify functions
and their associated instructions (the input to the Function ID hashing
process). Up to this point, we have seen Ghidra analyze programs only
when we open them in the CodeBrowser, but with libc.a, we are faced with
the daunting task of analyzing 1690 individual files within the libc.a archive.
Opening and analyzing them one at a time is not a good use of our time.
Even selecting to open all files on import and using Ghidra’s Analyze All
Open option will still take us a while to work through all 1690 files (and will
likely require manual intervention to adjust our tool options and resource
allocations to accommodate a task of this size within our Ghidra instance).

If this problem seems unwieldy, you are correct. This is not the sort of
task that we should be solving manually through the Ghidra GUI. This is
a well-defined repetitive task that shouldn’t require human intervention.
Fortunately for us, the next three chapters introduce methods we can use to
automate this and other tasks. When we get to “Automated FidDb Creation”
on page 359, we will revisit this specific task and demonstrate how easily
batch processing can be accomplished using Ghidra’s headless mode of
operation.

Regardless of the method we use to process libc.a, once complete, it’s
a simple matter to return to the Function ID plugin and populate our new
FidDb, yielding the following results:

FidDb Populate Results

2905 total functions visited
2638 total functions added
267 total functions excluded
Breakdown of exclusions: FAILS_MINIMUM_SHORTHASH_LENGTH: 234
 DUPLICATE_INFO: 9
 FAILED_FUNCTION_FILTER: 0
 IS_THUNK: 16
 NO_DEFINED_SYMBOL: 8
 MEMORY_ACCESS_EXCEPTION: 0
Most referenced functions by name:
749 __stack_chk_fail
431 free
304 malloc
...

Our new FidDb is now available for use and allows the Function ID
analyzer to match many of the functions contained in upx_demo2_x64_static​
_stripped, significantly reducing our reverse engineering workload for this
particular binary.

284 Chapter 13

Summary
This chapter demonstrated some of the ways that Ghidra can be extended
by parsing C source files, extending word models, and extracting function
fingerprints using the Function ID plugin. When a binary contains statically
linked code or code reused from previously analyzed binaries, matching
those functions against Ghidra FidDbs can save you the hassle of manually
wading through a mountain of code. Predictably, so many static link libraries
exist that it is not possible for Ghidra to include FidDb files that cover every
possible use case. The ability to create your own FidDb files when necessary
allows you to build up a collection of FidDbs that are tuned to your particular
needs. In Chapters 14 and 15, we introduce Ghidra’s powerful scripting
capabilities to further extend Ghidra’s functionality.

No application can meet every need of
every user. It is just not possible to antici-

pate every potential use case that may arise.
Ghidra’s open source model facilitates feature

requests and innovative contributions by developers.
However, sometimes you need to immediately address
a problem at hand and can’t wait for someone else to implement new func-
tionality. To support unanticipated use cases and programmatic control of
Ghidra’s actions, Ghidra includes integrated scripting features.

Uses for scripts are infinite and can range from simple one-liners to
full-blown programs that automate common tasks or perform complex
analysis. In this chapter, we focus on the basic scripting that is provided
through the CodeBrowser interface. We introduce the internal scripting
environment, discuss script development using Java and Python, and then
move on to other integrated scripting options in Chapter 15.

14
B A S I C G H I D R A S C R I P T I N G

286 Chapter 14

Script Manager
The Ghidra Script Manager is available through the CodeBrowser menu.
Choosing Window4Script Manager opens the window shown in Figure 14-1.
The window can also be opened using the Script Manager icon in the
CodeBrowser toolbar (a green circle with an arrow inside, also shown in
the top left of the Script Manager window).

Figure 14-1: Script Manager window

Script Manager Window
In a new Ghidra installation, the Script Manager loads with over 240 scripts
organized in a category tree, as seen on the left side of Figure 14-1. Some of
the folders contain subfolders to provide even more detailed classification
of the scripts. You can expand and collapse the folders to see the organiza-
tion of the scripts. Selecting an individual folder or subfolder limits the
display to the scripts within the selected folder. To populate this window,
Ghidra locates and indexes all scripts in subdirectories named ghidra_scripts
within the Ghidra distribution folder. Ghidra also looks for a ghidra_scripts
directory within your home directory and indexes any scripts it finds there.

The default set of scripts covers a wide range of functionality. Some of
the scripts are intended to demonstrate fundamental scripting concepts.
The columns in the script list table provide additional detail about the
purpose of each script. As with most Ghidra tables, you can control which

Basic Ghidra Scripting 287

columns are displayed as well as the sort order for individual columns.
By default, all available fields for the table are displayed except Created
and Path. The six information columns provide the following insight into
a script:

Status  Indicates the status of the script. The field is generally blank
but can contain a red icon to indicate an error in the script. If you
have associated a toolbar icon with the script, the icon will appear in
this column.

Name  Contains the filename of the script, including its extension.

Description  A description pulled from the metadata comment within
the script. This field can be quite lengthy, but you can read the entire
contents by hovering over the field. This field is discussed in more
depth in “Script Development” on page 289.

Key  Indicates if there is a key binding assigned for running the script.

Category  Specifies the path at which the script will be listed in the
Script Manager’s topic hierarchy. This is a logical hierarchy, not a filesys-
tem directory hierarchy.

Modified  The date the script was last saved. For the default scripts the
date is the installation date of the Ghidra instance.

The filter field on the left side of the window searches through the script
categories. The filter on the right searches the script names and descriptions.
Finally, at the bottom, an additional window is initially empty. This window
displays metadata about a selected script in an easy-to-process format that
includes the field extracted from the metadata within the script. The format
and meaning of the metadata fields are discussed in “Writing Java Scripts
(Not JavaScript!)” on page 289.

While the Script Manager provides a significant amount of information,
the main power of this window comes from the toolbar it provides. An over-
view of the toolbar is provided in Figure 14-2.

Script Manager Toolbar
The Script Manager has no menus to help you manage your scripts. Instead,
all script management actions are associated with tools on the Script
Manager toolbar (Figure 14-2).

While most of the menu options are pretty clear from the descriptions
in Figure 14-2, the Edit options merit additional discussion. Editing with
Eclipse is covered in Chapter 15, as it facilitates more advanced scripting
capabilities. The Edit Script option opens a primitive text editor window
with its own toolbar, shown in Figure 14-3. The associated actions provide
the basic functionality for editing files. With an editor in hand, we can get
down to the business of writing actual scripts.

288 Chapter 14

Run script

Rerun last script

Edit script

Assign key binding

Delete script

Rename script

Create new script

Script directories

Help

Edit script with Eclipse

Refresh script list

Runs a selected script. The script will be recompiled if necessary, and
will display the error icon in the status field and an error message in
the console if the script does not compile.

Runs the last script run. This option is also available in the
CodeBrowser window after a script is run.

Opens the selected script in a window for editing.

Opens a script in Eclipse for editing. See Chapter 15.

Allows assignment of a shortcut key combination for the script.

Allows you to rename a user-created script. System-provided
scripts cannot be renamed using this method.

Permanently deletes a user-created script. System-provided scripts
cannot be deleted using this method.

Opens an empty script template in a basic editor window.

Rescans the script directories and regenerates the list of scripts.

Provides a list of script directories that you can select/deselect. You
also have the option to add new directories to the list.

Opens the Javadoc for the GhidraScript class. The first time this is
selected, Ghidra automatically builds the Javadoc content.

Figure 14-2: Script Manager toolbar

Refresh

Save

Save as

Run script

Select font

Undo/Redo

Refreshes the script contents. This is helpful if
you are using an external editor.

Saves the latest changes back to the script file.
You cannot save changes to system scripts.

Saves the script as a new script file. This option
can be used to edit system scripts by creating
new versions of the scripts.

Allows you to back out of modifications and
reapply if desired. (Up to 50 actions are
retained for this functionality.)

Runs the script. This option will recompile if
necessary and display an error message in the
console if the script does not compile.

Allows you to specify the font type, size, and
style for the editor.

Figure 14-3: Edit Script toolbar

Basic Ghidra Scripting 289

Script Development
There are several methods for developing scripts within Ghidra. In this
chapter, we focus on scripting using Java and Python, as these are lan-
guages used by the existing scripts in the Script Manager window. Most of
the 240+ system scripts are written in Java, so we begin with editing and
developing scripts in Java.

Writing Java Scripts (Not JavaScript!)
In Ghidra, a script written in Java is actually a complete class specification
designed to be seamlessly compiled, dynamically loaded into your running
Ghidra instance, invoked, and finally unloaded. The class must extend the
class Ghidra.app.script.GhidraScript, implement a run() method, and be
annotated with comments that provide Javadoc-format metadata about
the script. We’ll show the structure of a script file, describe the metadata
requirements, look at some of the system scripts, and then move on to edit-
ing existing scripts and building our own scripts.

Figure 14-4 shows the script editor opened when the Create New Script
option (refer to Figure 14-2) is selected to create a new Java script. We have
named the new script CH14_NewScript.

Figure 14-4: A new, empty script

290 Chapter 14

At the top of the file are the metadata comments and tags used to pro-
duce the expected Javadoc information. This information is also used to
populate the fields in the Script Manager window (refer to Figure 14-1).
Any comments starting with // before the class, field, or method declara-
tions will become part of the Javadoc Description for the script. Additional
comments can be embedded within the script and will not be included in
the description. In addition, the following tags within the metadata com-
ments are supported:

@author  Provides information about the author of the script. The infor-
mation is provided at the discretion of the author and can include any
pertinent details (for example, name, contact information, date of cre-
ation, and so on).

@category  Determines where the script appears within the category
tree. This is the only mandatory tag and must be present in all Ghidra
scripts. The period (dot) character acts as a path separator for category
names (for example, @category Ghidrabook.CH14).

@keybinding  Documents a shortcut for accessing the script from the
CodeBrowser window (for example, @keybinding K).

@menupath  Defines a period-delimited menu path for the script as well
as provides a means to run the script from a CodeBrowser menu (for
example, @menupath File.Run.ThisScript).

@toolbar  Associates an icon with the script. This icon is displayed as a
toolbar button in the CodeBrowser window and may be used to run the
script. If Ghidra cannot find the image in the script directory or the
Ghidra installation, a default image will be used (for example, @toolbar
myImage.png).

When confronted with a new API (such as the Ghidra API), it may take
some time before you’re comfortable writing scripts without constantly
consulting available API documentation. Java in particular is very sensitive
to classpath issues and the proper inclusion of required support packages.
A time- and sanity-saving option is to edit an existing program rather
than creating a new program. We adopt this approach in presenting a sim-
ple example of a script.

Edit Script Example: Regex Search
Assume that you are tasked with developing a script to accept a regular
expression as input from the user and output matching strings to the con-
sole. Further, this script needs to appear in the Script Manager for a par-
ticular project. While Ghidra offers many ways to accomplish this task, you
have been asked to produce a script. To find a script with similar functional-
ity to use as a base, you look through the categories in the Script Manager
and check the contents of the Strings and Search categories, and then filter
for the term strings and find other options. Using filters produces a more
comprehensive list of string-related scripts for your consideration. For this
example, you will edit the first script in the list that shares some functionality
with what you want your script to do—CountAndSaveStrings.java.

Basic Ghidra Scripting 291

Open the script in the editor to confirm that it’s a good starting
point for our new functionality by right-clicking the desired script and
selecting Edit with basic editor; then save this script with the new name,
FindStringsByRegex.java, using the Save As option. Ghidra does not allow
you to edit the system scripts provided as part of your Ghidra installation
within the Script Manager window (although you can in Eclipse and other
editors). You could also edit the file prior to using Save As since Ghidra
prevents you from accidentally writing any modified content to the exist-
ing CountAndSaveStrings.java script.

The original CountAndSaveStrings.java contains the following metadata:

  /* ###
 * IP: GHIDRA
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

  //Counts the number of defined strings in the current selection,
 //or current program if no selection is made,
 //and saves the results to a file.

  //@category CustomerSubmission.Strings

We can leave, modify, or delete the licensing agreement  for the script
without impacting the execution of the script or the associated Javadoc. We’ll
modify the description of the script  so that the information displayed in
Javadoc and the Script Manager accurately describes the script. The script
author has included only one of the five available tags , so we’ll add place-
holders for the unpopulated tags and revise the description, as follows:

// Counts the number of defined strings that match a regex in the current
// selection, or current program if no selection is made, and displays the
// number of matching strings to the console.
//
//@author Ghidrabook
//@category Ghidrabook.CH14
//@keybinding
//@menupath
//@toolbar

The category tag Ghidrabook.CH14 will be added to the Script Manager’s
tree display, as shown in Figure 14-5.

The next portion of the original script contains Java import statements.
Of the long list of imports Ghidra includes when you create a new script, as

292 Chapter 14

shown in Figure 14-4, only the following imports are necessary for string
searching, so we’ll keep the same list as the original CountAndSaveStrings.java:

import ghidra.app.script.GhidraScript;
import ghidra.program.model.listing.*;
import ghidra.program.util.ProgramSelection;

import java.io.*;

Save the new script and then select it in the Script Manager to see the
content shown in Figure 14-5. Our new category is included in the script
tree, and the script’s metadata is displayed in the information window and
script table. The table contains only one script, Ghidrabook.CH14, as it is the
only script in the selected category.

Figure 14-5: New script information displayed in the Script Manager window

As this book is not intended to be a Java tutorial, we summarize the
changes we made to the script rather than explaining Java syntax and func-
tionality. The following list describes the behavior of CountAndSaveStrings.java:

1.	 Get the program listing content to search.

2.	 Get the file to save results to.

3.	 Open the file.

4.	 Iterate through the program listing: count the number of qualifying
strings and write each qualifying string to the file.

5.	 Close the file.

6.	 Write the number of qualifying strings to the console.

Basic Ghidra Scripting 293

The functionality we desire in our modified script is described next:

1.	 Get the program listing content to search.

2.	 Ask the user for a regular expression (regex) to search for.

3.	 Iterate through the program listing: count the number of qualifying
strings and write each qualifying string to the console.

4.	 Write the number of qualifying strings to the console.

Our new script will be significantly shorter than the original script,
as there is no need to interact with the filesystem and perform associated
error checking. Our implementation follows:

public class FindStringsByRegex extends GhidraScript {
 @Override
 public void run() throws Exception {
 String regex =
 askString("Please enter the regex",
 Please enter the regex you're looking to match:);

 Listing listing = currentProgram.getListing();

 DataIterator dataIt;
 if (currentSelection != null) {
 dataIt = listing.getDefinedData(currentSelection, true);
 }
 else {
 dataIt = listing.getDefinedData(true);
 }

 Data data;
 String type;
 int counter = 0;
 while (dataIt.hasNext() && !monitor.isCancelled()) {
 data = dataIt.next();
 type = data.getDataType().getName().toLowerCase();
 if (type.contains("unicode") || type.contains("string")) {
 String s = data.getDefaultValueRepresentation();
 if (s.matches(regex)) {
 counter++;
 println(s);
 }
 }
 }
 println(counter + " matching strings were found");
 }
}

294 Chapter 14

All Java scripts that you write for Ghidra must extend (inherit from) an
existing class named Ghidra.app.script.GhidraScript . After saving the final
version of the script, select it from within the Script Manager and execute
it. When the script executes, we see the prompt shown in Figure 14-6. This
figure includes the regular expression that we will be searching for to test
our script.

Figure 14-6: New script prompt to enter a regex

The CodeBrowser console displays the following content when our new
script has completed execution:

FindStringsByRegex.java> Running...
FindStringsByRegex.java> "Fatal error: glibc detected an invalid stdio handle\n"
FindStringsByRegex.java> "Unknown error "
FindStringsByRegex.java> "internal error"
FindStringsByRegex.java> "relocation error"
FindStringsByRegex.java> "symbol lookup error"
FindStringsByRegex.java> "Fatal error: length accounting in _dl_exception_create_format\n"
FindStringsByRegex.java> "Fatal error: invalid format in exception string\n"
FindStringsByRegex.java> "error while loading shared libraries"
FindStringsByRegex.java> "Unknown error"
FindStringsByRegex.java> "version lookup error"
FindStringsByRegex.java> "sdlerror.o"
FindStringsByRegex.java> "dl-error.o"
FindStringsByRegex.java> "fatal_error"
FindStringsByRegex.java> "strerror.o"
FindStringsByRegex.java> "strerror"
FindStringsByRegex.java> "__strerror_r"
FindStringsByRegex.java> "_dl_signal_error"
FindStringsByRegex.java> "__dlerror"
FindStringsByRegex.java> "_dlerror_run"
FindStringsByRegex.java> "_dl_catch_error"
FindStringsByRegex.java> 20 matching strings were found
FindStringsByRegex.java> Finished!

This simple example demonstrates the low barrier to entry of Ghidra’s
extensive Java scripting capabilities. Existing scripts can be easily modified
and new scripts can be built from the ground up using the Script Manager.
We present some more complex Java scripting capabilities in Chapters 15 and
16, but Java is just one of the scripting options provided by Ghidra. Ghidra
also allows you to author scripts in Python.

Basic Ghidra Scripting 295

Python Scripts
Of the 240+ scripts in the Script Manager, only a handful are written in
Python. You can easily locate the Python scripts by filtering for the .py
extension in the Script Manager. The majority of the Python scripts can
be found in the Examples.Python category in the tree and includes a dis-
claimer similar to the one shown in Figure 14-7.

Figure 14-7: Sample Python script with disclaimer

Of the examples in this directory, the following three provide a good
starting point if you prefer to use Python:

ghidra_basic.py  This script includes examples of basic Python script-
ing as related to Ghidra.

python_basics.py  This is a very basic introduction to many of the
Python commands that you might want to use.

jython_basic.py  This extends the basic Python commands to demon-
strate content that is specific to Jython.

The Ghidra features demonstrated in these examples barely scratch the
surface of the available Ghidra APIs. You’ll likely still need to spend some
time reading through Ghidra’s library of Java examples before you’ll be
ready to access Ghidra’s full Java API from your Python scripts.

In addition to running Python scripts, Ghidra provides the Python
Interpreter to allow you to use Python/Jython to directly access the Java
objects associated with Ghidra, as shown in Figure 14-8.

296 Chapter 14

Figure 14-8: Python Interpreter print example

The Python Interpreter is accessible through the CodeBrowser by
selecting Windows4Python. For more information about using the inter-
preter, see Ghidra Help. To get API information when using Python and
the Python Interpreter, choose HelpGhidra API Help at the top left of the
Interpreter window shown in Figure 14-8, which opens the Javadoc content
on the GhidraScript class. Alternatively, Python has a built-in function, help(
), that has been modified in Ghidra to provide direct access to Ghidra’s
Javadoc. To use the function, type help(object) in the interpreter, as shown
in Figure 14-9. For example, help(currentProgram) displays the Ghidra
Javadoc content describing the Ghidra API class ProgramDB.

GHIDR A’S PY T HON F U T UR E

Python is popular for creating scripts because of its simplicity and numerous
available libraries. While the majority of the scripts in the Ghidra release are
written in Java, the open source RE community likely will use Python as a pri-
mary scripting language within Ghidra. Ghidra is reliant on Jython for Python
support (which provides the advantage of allowing direct access to Ghidra’s
Java objects). Jython is compatible with Python 2 (specifically 2.7.1) but not
Python 3. Although Python 2 went end-of-life in January 2020, Python 2
scripts will continue to function within Ghidra, and any new Ghidra Python 2
scripts should be written in a way that makes them as portable as possible to
Python 3.

Basic Ghidra Scripting 297

Figure 14-9: Python Interpreter Help example

Support for Other Languages
Finally, Ghidra can support scripts from languages other than Java and
Python, which lets you bring existing scripts from your reverse engineering
toolkit into your Ghidra workflow. This functionality is discussed further in
Ghidra Help.

Introduction to the Ghidra API
At this point, you have all the information required to edit and run Ghidra
scripts. Now it’s time to use the Ghidra API to extend your scripting capa-
bilities and interact more directly with Ghidra artifacts. Ghidra exposes its
API in two rather different styles.

The Program API defines an object hierarchy, many levels deep, rooted
at the top by the Program class. This API may change from one version of
Ghidra to another. The Flat API flattens out the Program API by exposing
all levels of that API from a single class, FlatProgramAPI. The Flat API is often
the most convenient way to access many Ghidra constructs. Additionally, it
is less likely to change from one version of Ghidra to the next.

For the remainder of the chapter, we highlight some of the more useful
Flat API functionality. When necessary, we also provide detail about specific
classes from the Program API. We use Java as the language for this discus-
sion, as it is the native language of Ghidra.

298 Chapter 14

The Ghidra API contains many packages, classes, and associated func-
tions to interface with your Ghidra projects and associated files, all detailed
in Javadoc-style documentation supplied with Ghidra that can be accessed
by clicking the red plus in the Script Manager window. This documenta-
tion, in conjunction with the sample scripts supplied with Ghidra, is your
primary reference about the APIs and how to use them. The most common
way to figure out how to do something is to browse the Ghidra classes look-
ing for one that, based on its name, appears to do what you need. As you
gain more experience with Ghidra, your increased understanding of the
naming conventions and file organization will help you identify appropriate
classes more quickly.

Ghidra adheres to the Java Swing model-delegate architecture in which
data values and characteristics are stored in model objects and displayed by
user interface delegate objects such as tree, list, and table views. Delegates
handle events, such as mouse clicks, to update and refresh data and views.
In the overwhelming majority of cases, your scripts will focus on the data
encapsulated in the model classes used to represent various program and
reverse engineering constructs.

The remainder of this section focuses on commonly used model classes,
their relationships to each other, and useful APIs for interacting with them.
We make no attempt to cover the entire Ghidra API, and many more func-
tions and classes are available. The authoritative documentation for the
entire Ghidra API is the Javadoc that ships with Ghidra, and ultimately the
Java source code from which Ghidra is built.

The Address Interface
The Address interface describes a model for an address within an address
space. All addresses are represented by an offset up to 64 bits in size.
Segmented addresses may be further qualified by a segment value. In many
cases, an address’s offset is equivalent to a virtual address within a program
listing. The getOffset method retrieves the long offset value from an Address
instance. Many Ghidra API functions require Address objects as arguments
or return an Address object as a result.

The Symbol Interface
The Symbol interface defines properties common to all symbols. At a mini-
mum, a symbol is composed of a name and an address. These attributes
may be retrieved with the following member functions:

Address getAddress()

Returns the address of the Symbol

String getName()

Returns the name of the Symbol

Basic Ghidra Scripting 299

The Reference Interface
A Reference models a cross-reference relationship (as described in Chapter 9)
between a source address and a destination address and is characterized by a
reference type. Useful functions associated with a Reference include these:

public Address getFromAddress()

Returns the source address for this reference

public Address getToAddress()

Returns the destination address for this reference

public RefType getReferenceType()

Returns a RefType object that describes the nature of the link between
the source and destination addresses

The GhidraScript Class
Although this class doesn’t model a specific attribute in a binary, every
script that you write must be a subclass of GhidraScript, which, in turn, is a
subclass of FlatProgramAPI. As a result, your scripts have instantaneous access
to the entire Flat API and your only obligation is to provide an implementa-
tion of

protected abstract void run() throws Exception;

which, hopefully, makes your script do something interesting. The remain-
der of the GhidraScript class gives you access to the most common resources
for interacting with the Ghidra user and the program that is being ana-
lyzed. Some of the more useful functions and data members of this class
(including some inherited from FlatProgramAPI) are summarized in the fol-
lowing sections.

Useful Data Members

The GhidraScript class provides convenient access to a number of objects
commonly referenced in scripts, including the following:

protected Program currentProgram;

This is the current open program. The Program class is discussed later. This
data member is likely your gateway to retrieving more interesting infor-
mation, such as instruction and symbol lists.

protected Address currentAddress;

This is the address of the current cursor location. The Address class is
discussed later.

protected ProgramLocation currentLocation;

A ProgramLocation object that describes the current cursor location,
including its address, cursor row, column, and other information.

300 Chapter 14

protected ProgramSelection currentSelection;

A ProgramSelection object representing a range of addresses selected in
the Ghidra GUI.

protected TaskMonitor monitor;

The TaskMonitor class updates the status of long-running tasks and checks
to determine whether a long-running task has been cancelled by the user
(monitor.is​Cancelled()). Any long-running loops that you write should
incorporate a call to monitor.isCancelled as an additional termination con-
dition to recognize that the user has attempted to cancel your script.

User Interface Functions

The GhidraScript class provides convenience functions for basic user inter-
face operations, ranging from simple message output to more interactive
dialog elements. Some of the more common user interface functions are
described here:

public void println(String message)

Prints message followed by a linefeed to Ghidra’s console window. This
function is useful for printing status messages or results of your scripts
in a nonintrusive manner.

public void printf(String message, Object... args)

Uses message as a Java format string and prints the resulting string of
formatted args to Ghidra’s console window.

public void popup(final String message)

Displays message in a pop-up dialog that requires the user to click OK
before script execution can continue. This is a more intrusive way to
display status messages to a user.

public String askString(String title, String message)

One of many available ask functions. askString displays a text input dia-
log, using message as a prompt, and returns the text entered by the user.

public boolean askYesNo(String title, String question)

Uses a dialog to ask the user a yes-or-no question. Returns true for yes,
and false for no.

public Address askAddress(String title, String message)

Displays a dialog, using message as a prompt, that parses the user’s input
into an Address object.

public int askInt(String title, String message)

Displays a dialog, using message as a prompt, that parses the user’s input
into an int.

Basic Ghidra Scripting 301

public File askFile(final String title, final String approveButtonText)

Displays a system file chooser dialog and returns a Java File object
representing the file selected by the user.

public File askDirectory(final String title, final String approveButtonText)

Displays a system file chooser dialog and returns a Java File object
representing the directory selected by the user.

public boolean goTo(Address address)

Repositions all connected Ghidra disassembly windows to address.
Overloaded versions of this function take a Symbol or a Function argu-
ment and navigate the displays accordingly.

Address-Related Functions

For a processor, an address is typically just a number that happens to refer
to a memory location. Ghidra models addresses using the Address class.
GhidraScript provides a wrapper function that offers easy conversion from
numbers to Ghidra Address objects:

public Address toAddr(long offset)

Convenience function to create an Address object in the default
address space

Reading Program Memory

The Memory class represents contiguous ranges of byte values, such as the
contents of an executable file loaded into Ghidra. Within a Memory object,
every byte value is associated with an address, though addresses may be
tagged as uninitialized and have no value to retrieve. Ghidra throws a
MemoryAccessException if you attempt to access a location within a memory
object with an invalid address. Consult the documentation for the Memory
class for a full description of available API functions. The following conve-
nience functions expose some of the Memory class via the Flat API:

public byte getByte(Address addr)

Returns the single byte value retrieved from addr. Data type byte is a
signed type in Java, so this value will be in the range –128..127.

public byte[] getBytes(Address addr, int length)

Returns length bytes from memory, beginning at addr.

public int getInt(Address addr)

Returns the 4-byte value, beginning at addr, as a Java int. This function
is endianness-aware and respects the binary’s underlying architecture
when reconstituting the int value.

302 Chapter 14

public long getLong(Address addr)

Returns the 8-byte value, beginning at addr, as a Java long. This function
is endianness-aware and respects the binary’s underlying architecture
when reconstituting the long value.

Program Search Functions

Ghidra’s search capabilities reside within different Program API classes
according to the type of item being searched for. The Memory class contains
raw byte search functionality. Code units (such as Data and Instruction),
comment text, and associated iterators are obtained from the Listing class.
Symbols/labels and associated iterators are accessed via the SymbolTable
class. The following convenience functions expose some of the available
search functionality via the Flat API:

public Data getFirstData()

Returns the first data item in the program.

public Data getDataAfter(Data data)

Returns the next data item after data, or null if no such data exists.

public Data getDataAt(Address address)

Returns the data item at address, or null if no such data exists.

public Instruction getFirstInstruction()

Returns the first instruction in the program.

public Instruction getInstructionAfter(Instruction instruction)

Returns the next instruction item after instruction, or null if no such
instruction exists.

public Instruction getInstructionAt(Address address)

Returns the instruction at address, or null if no such instruction exists.

public Address find(String text)

Searches for a text string within the Listing window. Listing compo-
nents are searched in the following order:

1.	 Plate comments

2.	 Pre comments

3.	 Labels

4.	 Code unit mnemonics and operands

5.	 EOL comments

6.	 Repeatable comments

7.	 Post comments

Basic Ghidra Scripting 303

A successful search returns the address containing the match. Note
that as a result of the search order, the returned address may not repre-
sent the first occurrence of text in the disassembly listing when consid-
ered in strictly increasing address order.

public Address find(Address start, byte[] values);

Searches memory, beginning at addr, for a specified sequence of byte
values. When addr is null, the search begins at the lowest valid address
in the binary. A successful search returns the address of the first byte in
the matching sequence.

public Address findBytes(Address start, String byteString)

Searches memory, beginning at addr, for a specified byteString that may
contain regular expressions. When addr is null, the search begins at the
lowest valid address in the binary. A successful search returns the address
of the first byte in the matching sequence.

Manipulating Label and Symbols

The need to manipulate named locations arises fairly often in scripts. The
following functions are available for working with named locations in a
Ghidra database:

public Symbol getSymbolAt(Address address)

Returns the Symbol associated with the given address, or null if the
location has no Symbol.

public Symbol createLabel(Address address, String name, boolean makePrimary)

Assigns the given name to the given address. Ghidra allows multiple
names to be assigned to a single address. If makePrimary is true, the
new name will become the primary name associated with address.

public List<Symbol> getSymbols(String name, Namespace namespace)

Returns a list of all symbols named name in namespace. When namespace is
null, the global namespace is searched. If the result is empty, the named
symbol does not exist. If the result contains only one element, the name
is unique.

Working with Functions

Many scripts are designed to analyze functions within a program. The follow-
ing functions can be used to access information about program functions:

public final Function getFirstFunction()

Returns the first Function object in the program

304 Chapter 14

public Function getGlobalFunctions(String name)

Returns the first Function object for the named function, or null if no
such function exists

public Function getFunctionAt(Address entryPoint)

Returns the Function object for the function at entryPoint, or null if no
such function exists

public Function getFunctionAfter(Function function)

Returns the Function object for the successor to function, or null if no
such function exists

public Function getFunctionAfter(Address address)

Returns the Function object for the function that starts after address,
or null if no such function exists

Working with Cross-References

Cross-references were covered in Chapter 9. In the Ghidra Program API,
the top-level Program object contains a ReferenceManager, which, unsurpris-
ingly, manages the references within the program. As with many other
program constructs, the Flat API offers convenience functions for access-
ing cross-references, some of which are detailed here:

public Reference[] getReferencesFrom(Address address)

Returns an array of all Reference objects originating from address

public Reference[] getReferencesTo(Address address)

Returns an array of all Reference objects terminating at address

Program Manipulation Functions

When automating your analysis tasks, you may find yourself wanting to add
new information into a program. The Flat API provides a variety of func-
tions for modifying the contents of a program, including the following:

public final void clearListing(Address address)

Removes any instruction or data defined at address.

public void removeFunctionAt(Address address)

Removes the function at address.

public boolean disassemble(Address address)

Performs a recursive descent disassembly beginning at address. Returns
true if the operation is successful.

public Data createByte(Address address)

Converts the item at the specified address into a data byte. Also,
createWord, createDword, createQword, and other data creation functions
are available.

Basic Ghidra Scripting 305

public boolean setEOLComment(Address address, String comment)

Adds an EOL comment at the given address. Additional comment-related
functions include setPlateComment, setPreComment, and setPostComment.

public Function createFunction(Address entryPoint, String name)

Creates a function with the given name at entryPoint. Ghidra attempts to
automatically identify the end of the function by locating the function’s
return instruction.

public Data createAsciiString(Address address)

Creates a null-terminated ASCII string at address.

public Data createAsciiString(Address address, int length)

Creates an ASCII string of the specified length at address. If length is
zero or less, Ghidra attempts to automatically locate the string’s null
terminator.

public Data createUnicodeString(Address address)

Creates a null-terminated Unicode string at address.

The Program Class
The Program class represents the root of the Program API hierarchy and
outermost layer of the data model of a binary file. You will commonly use a
Program object (often currentProgram) to access the binary model. Commonly
used Program class member functions include the following:

public Listing getListing()

Retrieves the Listing object for the current program.

public FunctionManager getFunctionManager()

Retrieves the program’s FunctionManager, which provides access to all of
the functions that have been identified within the binary. This class
provides the functionality to map an Address back to its containing
Function (Function getFunction​Containing (Address addr)). In addition, it
provides a FunctionIterator, which is useful when you want to process
every function in the program.

public SymbolTable getSymbolTable()

Retrieves the program’s SymbolTable object. Using a SymbolTable, you
can work with individual symbols or iterate over every symbol in
the program.

public Memory getMemory()

Retrieves the Memory object associated with this program, which allows
you to work with raw program byte content.

file:///C:\cygwin64\home\cseagle\ghidra_9.1_PUBLIC\docs\GhidraAPI_javadoc\api\ghidra\program\model\listing\Function.html
file:///C:\cygwin64\home\cseagle\ghidra_9.1_PUBLIC\docs\GhidraAPI_javadoc\api\ghidra\program\model\address\Address.html

306 Chapter 14

public ReferenceManager getReferenceManager()

Retrieves the program’s ReferenceManager object. A ReferenceManager may
be used to add and remove references as well as retrieve iterators for
many types of references.

public Address getMinAddress()

Returns the lowest valid address within the program. This is most often
the binary’s base memory address.

public Address getMaxAddress()

Returns the highest valid address within the program.

public LanguageID getLanguageID()

Returns the object representation of the binary’s language specifica-
tion. The language specification itself may then be retrieved using the
getIdAsString() function.

The Function Interface
The Function interface defines the required Program API behaviors of
function objects. Member functions provide access to various attributes
commonly associated with functions and include the following:

public String getPrototypeString(boolean formalSignature,

 boolean includeCallingConvention)

Returns the Function object’s prototype as a string. The two arguments
influence the format of the returned prototype string.

public AddressSetView getBody()

Returns the address set that contains the function’s body of code. An
address set is composed of one or more address ranges, and allows for
situations in which a function’s code is distributed among several non-
contiguous ranges of memory. Obtain an AddressIterator to visit all
addresses in the set or an AddressRangeIterator to iterate over each range.
Note that you must use a Listing object to retrieve the actual instruc-
tions contained in the function’s body (see getInstructions).

public StackFrame getStackFrame()

Returns the stack frame associated with the function. The result may be
used to retrieve detailed information about the layout of the function’s
local variables and stack-based arguments.

The Instruction Interface
The Instruction interface defines the required Program API behaviors of
instruction objects. Member functions provide access to various attributes
commonly associated with instructions and include the following:

public String getMnemonicString()

Returns the instruction’s mnemonic.

Basic Ghidra Scripting 307

public String getComment(int commentType)

Returns the commentType comment associated with the instruction or
null if no comment of the given type is associated with the instruc-
tion. A commentType may be one of EOL_COMMENT, PRE_COMMENT, POST_COMMENT,
or REPEATABLE_COMMENT.

public int getNumOperands()

Returns the number of operands associated with this instruction.

public int getOperandType(int opIndex)

Returns a bitmask of operand type flags defined in class OperandType.

public String toString()

Returns the string representation of the instruction.

Ghidra Scripting Examples
For the remainder of the chapter, we present some fairly common situations
in which a script can be used to answer a question about a program. For
brevity, only the body of each script’s run function is shown.

Example 1: Enumerating Functions
Many scripts operate on individual functions. Examples include generat-
ing the call tree rooted at a specific function, generating the control flow
graph of a function, and analyzing the stack frames of every function in
a program. Listing 14-1 iterates through every function in a program and
prints basic information about each function, including the start and end
addresses of the function, the size of the function’s arguments, and the size
of the function’s local variables. All output is sent to the console window.

// ch14_1_flat.java
void run() throws Exception {
 int ptrSize = currentProgram.getDefaultPointerSize();

  Function func = getFirstFunction();
 while (func != null && !monitor.isCancelled()) {
 String name = func.getName();
 long addr = func.getBody().getMinAddress().getOffset();
 long end = func.getBody().getMaxAddress().getOffset();

  StackFrame frame = func.getStackFrame();
  int locals = frame.getLocalSize();
  int args = frame.getParameterSize();

 printf("Function: %s, starts at %x, ends at %x\n", name, addr, end);
 printf(" Local variable area is %d bytes\n", locals);
 printf(" Arguments use %d bytes (%d args)\n", args, args / ptrSize);

  func = getFunctionAfter(func);
 }
}

Listing 14-1: Function enumeration script

308 Chapter 14

The script uses Ghidra’s Flat API to iterate over all functions from the
first  and advancing through each in succession . A reference to each
function’s stack frame is obtained , and the size of the local variables 
and the stack-based arguments  retrieved. A summary for each function is
printed before continuing the iteration.

Example 2: Enumerating Instructions
Within a given function, you may want to enumerate every instruction.
Listing 14-2 counts the number of instructions contained in the function
identified by the current cursor position:

// ch14_2_flat.java
public void run() throws Exception {
 Listing plist = currentProgram.getListing();

  Function func = getFunctionContaining(currentAddress);
 if (func != null) {

  InstructionIterator iter = plist.getInstructions(func.getBody(), true);
 int count = 0;
 while (iter.hasNext() && !monitor.isCancelled()) {
 count++;
 Instruction ins = iter.next();
 }

  popup(String.format("%s contains %d instructions\n",
 func.getName(), count));
 }
 else {
 popup(String.format("No function found at location %x",
 currentAddress.getOffset()));
 }
}

Listing 14-2: Instruction enumeration script

The function begins by obtaining a reference to the function contain-
ing the cursor . If a function is found, the next step is to use the pro-
gram’s Listing object to obtain an InstructionIterator over the function .
The iteration loop counts the number of instructions retrieved, and the
total is reported to the user with a pop-up message dialog .

Example 3: Enumerating Cross-References
Iterating through cross-references can be confusing because of the number
of functions available for accessing cross-reference data and the fact that
code cross-references are bidirectional. To get the data you want, you need
to access the proper type of cross-reference for your situation.

In our first cross-reference example, shown in Listing 14-3, we retrieve
the list of all function calls made within a function by iterating through each
instruction in the function to determine if the instruction calls another
function. One method of doing this might be to parse the results of the get-
MnemonicString function to look for call instructions. This would not be a very
portable or efficient solution because the instruction used to call a function

Basic Ghidra Scripting 309

varies among processor types, and additional parsing would be required
to determine exactly which function was being called. Cross-references
avoid each of these difficulties because they are processor-independent and
directly inform us about the target of the cross-reference.

// ch14_3_flat.java
void run() throws Exception {
 Listing plist = currentProgram.getListing();

  Function func = getFunctionContaining(currentAddress);
 if (func != null) {
 String fname = func.getName();
 InstructionIterator iter = plist.getInstructions(func.getBody(), true);

  while (iter.hasNext() && !monitor.isCancelled()) {
 Instruction ins = iter.next();
 Address addr = ins.getMinAddress();
 Reference refs[] = ins.getReferencesFrom();

  for (int i = 0; i < refs.length; i++) {
  if (refs[i].getReferenceType().isCall()) {

 Address tgt = refs[i].getToAddress();
 Symbol sym = getSymbolAt(tgt);
 String sname = sym.getName();
 long offset = addr.getOffset();
 printf("%s calls %s at 0x%x\n", fname, sname, offset);
 }
 }
 }
 }
}

Listing 14-3: Enumerating function calls

DA NGE ROUS F UNC T IONS

The C functions strcpy and sprintf are considered dangerous to use because
they allow unbounded copying into destination buffers. While each may be
safely used by programmers who check the size of source and destination buf-
fers, such checks are all too often forgotten by programmers unaware of the dan-
gers of these functions. The strcpy function, for example, is declared as follows:

char *strcpy(char *dest, const char *source);

The strcpy function copies all characters up to and including the first null
termination character encountered in the source buffer to the given destination
buffer (dest). The fundamental problem is that there is no way to determine, at
runtime, the size of any array, and strcpy can’t determine whether the capacity
of the destination buffer is sufficient to hold all of the data to be copied from
source. Such unchecked copy operations are a major cause of buffer overflow
vulnerabilities.

310 Chapter 14

We begin by obtaining a reference to the function containing the cur-
sor . Next, we iterate through each instruction in the function , and for
each instruction, we iterate through each cross-reference from the instruc-
tion . We are interested only in cross-references that call other functions,
so we must test the return value of getReferenceType  to determine whether
isCall is true.

Example 4: Finding Function Calls
Cross-references are also useful for identifying every instruction that refer-
ences a particular location. In Listing 14-4, we iterate across all of the cross-
references to a particular symbol (as opposed to from in the previous example).

// ch14_4_flat.java
 public void list_calls(Function tgtfunc) {

 String fname = tgtfunc.getName();
 Address addr = tgtfunc.getEntryPoint();
 Reference refs[] = getReferencesTo(addr);

  for (int i = 0; i < refs.length; i++) {
  if (refs[i].getReferenceType().isCall()) {

 Address src = refs[i].getFromAddress();
  Function func = getFunctionContaining(src);

 if (func.isThunk()) {
 continue;
 }
 String caller = func.getName();
 long offset = src.getOffset();

  printf("%s is called from 0x%x in %s\n", fname, offset, caller);
 }
 }
}

 public void getFunctions(String name, List<Function> list) {
 SymbolTable symtab = currentProgram.getSymbolTable();
 SymbolIterator si = symtab.getSymbolIterator();
 while (si.hasNext()) {
 Symbol s = si.next();
 if (s.getSymbolType() != SymbolType.FUNCTION || s.isExternal()) {
 continue;
 }
 if (s.getName().equals(name)) {
 list.add(getFunctionAt(s.getAddress()));
 }
 }
}
public void run() throws Exception {
 List<Function> funcs = new ArrayList<Function>();
 getFunctions("strcpy", funcs);
 getFunctions("sprintf", funcs);
 funcs.forEach((f) -> list_calls(f));
}

Listing 14-4: Enumerating a function’s callers

Basic Ghidra Scripting 311

In this example, we have written the helper function getFunctions 
to collect Function objects associated with our functions of interest. For
each function of interest, we call a second helper function, list_calls , to
process all cross-references  to the function. If the cross-reference type
is determined to be a call-type cross-reference , the calling function is
retrieved  and its name is displayed to the user . Among other things,
this approach could be used to create a low-budget security analyzer by
highlighting all calls to functions such as strcpy and sprintf.

Example 5: Emulating Assembly Language Behavior
There are a number of reasons you might need to write a script that emulates
the behavior of a program you are analyzing. For example, the program you
are studying may be self-modifying, as many malware programs are, or the
program may contain some encoded data that gets decoded when needed at
runtime. Without running the program and pulling the modified data out
of the running process’s memory, how can you understand the behavior of
the program?

If the decoding process is not terribly complex, you may be able to
quickly write a script that performs the same actions that are performed by
the program when it runs. Using a script to decode data in this way elimi-
nates the need to run the program when you don’t know what the program
does or you don’t have access to a platform on which you can run the pro-
gram. For example, without a MIPS execution environment, you cannot
execute a MIPS binary and observe any data decoding it might perform.
You could, however, write a Ghidra script to mimic the behavior of the
binary and make the required changes within your Ghidra project, all
with no need for a MIPS execution environment.

The following x86 code was extracted from a DEFCON Capture the
Flag binary:1

08049ede MOV dword ptr [EBP + local_8],0x0
 LAB_08049ee5
08049ee5 CMP dword ptr [EBP + local_8],0x3c1
08049eec JA LAB_08049f0d
08049eee MOV EDX,dword ptr [EBP + local_8]
08049ef1 ADD EDX,DAT_0804b880
08049ef7 MOV EAX,dword ptr [EBP + local_8]
08049efa ADD EAX,DAT_0804b880
08049eff MOV AL,byte ptr [EAX]=>DAT_0804b880
08049f01 XOR EAX,0x4b
08049f04 MOV byte ptr [EDX],AL=>DAT_0804b880
08049f06 LEA EAX=>local_8,[EBP + -0x4]
08049f09 INC dword ptr [EAX]=>local_8
08049f0b JMP LAB_08049ee5

1. Courtesy of Kenshoto, the organizers of CTF at DEFCON 15. DEFCON Capture the Flag is
an annual hacking competition held at DEFCON (http://www.defcon.org/).

312 Chapter 14

This code decodes a private key that has been embedded within the
program binary. Using the script in Listing 14-5, we can extract the private
key without running the program.

// ch14_5_flat.java
public void run() throws Exception {
 int local_8 = 0;
 while (local_8 <= 0x3C1) {
 long edx = local_8;
 edx = edx + 0x804B880;
 long eax = local_8;
 eax = eax + 0x804B880;
 int al = getByte(toAddr(eax));
 al = al ^ 0x4B;
 setByte(toAddr(edx), (byte)al);
 local_8++;
 }
}

Listing 14-5: Emulating assembly language with a Ghidra script

Listing 14-5 is a fairly literal translation of the preceding assembly lan-
guage sequence generated according to the following mechanical rules:

•	 For each stack variable and register used in the assembly code, declare
an appropriately typed script variable.

•	 For each assembly language statement, write a statement that mimics
its behavior.

•	 Emulate reading and writing stack variables by reading and writing the
corresponding variable declared in your script.

•	 Emulate reading from a nonstack location using the getByte, getWord,
getDword, or getQword function, depending on the amount of data being
read (1, 2, 4, or 8 bytes).

•	 Emulate writing to a nonstack location using the setByte, setWord, setDword,
or setQword function, depending on the amount of data being written.

•	 If the code contains a loop for which the termination condition is not
immediately obvious, begin with an infinite loop such as while(true){...}
and then insert a break statement when you encounter statements that
cause the loop to terminate.

•	 When the assembly code calls functions, things get complicated. To
properly simulate the behavior of the assembly code, you must mimic
the behavior of the function that has been called, including provid-
ing a return value that makes sense within the context of the code
being simulated.

As the complexity of the assembly code increases, it becomes more chal-
lenging to write a script that emulates all aspects of an assembly language
sequence, but you don’t have to fully understand how the code you are emu-
lating works. Translate one or two instructions at a time. If each instruction

Basic Ghidra Scripting 313

has been correctly translated, the script as a whole should properly mimic
the complete functionality of the original assembly code. After the script
has been completed, you can use the script to better understand the under-
lying assembly. You will see this approach, and more generic emulation
functionality, used again in Chapter 21 when we discuss the analysis of
obfuscated binaries.

For example, once we translate the sample algorithm and spend some
time considering how it works, we can shorten the emulation script as follows:

public void run() throws Exception {
 for (int local_8 = 0; local_8 <= 0x3C1; local_8++) {
 Address addr = toAddr(0x804B880 + local_8);
 setByte(addr, (byte)(getByte(addr) ^ 0x4B));
 }
}

Once the script executes, you can see the decoded private key starting
at address 0x804B880. If you don’t want to modify the Ghidra database when
emulating code, replace the setByte function call with a call to printf, which
will output the results to the CodeBrowser console, or write the data to a
disk file for binary data. Don’t forget that in addition to Ghidra’s Java API,
you have access to all of the standard Java API classes as well as any other
Java packages that you’ve chosen to install on your system.

Summary
Scripting provides a powerful means for automating repetitive tasks and
extending Ghidra’s capabilities. This chapter has introduced Ghidra’s func-
tionality for editing and building new scripts using both Java and Python.
The integrated ability to build, compile, and run Java-based scripts within
the CodeBrowser environment lets you extend Ghidra’s capabilities without
requiring an in-depth understanding of the underlying intricacies of the
Ghidra development environment. Chapters 15 and 16 introduce Eclipse
integration and the ability to run Ghidra in headless mode.

The scripts that are distributed with Ghidra
and the scripts we created in Chapter 14

are relatively simple. The coding required
was minimal, which greatly simplified the devel-

opment and testing phases. The basic script editor
provided by Ghidra’s Script Manager is fine for quick-
and-dirty work, but it lacks the sophistication to manage complex projects.
For more substantial tasks, Ghidra provides a plugin that facilitates develop-
ment using the Eclipse development environment. In this chapter, we look at
Eclipse and the role it can play in the development of more advanced Ghidra
scripts. We also show how Eclipse can be used to create new Ghidra modules
and revisit this topic in later chapters as we expand Ghidra’s inventory of
loaders and discuss the inner workings of Ghidra processor modules.

15
E C L I P S E A N D G H I D R A D E V

316 Chapter 15

Eclipse
Eclipse is an integrated development environment (IDE) that is used by
many Java developers, which makes it a natural fit for Ghidra development.
While it is possible to run both Eclipse and Ghidra on the same machine
without any interaction between them, the integration of the two can
greatly simplify Ghidra development. Without integration, Eclipse would
just be another script editing option outside the Ghidra environment. By
integrating Eclipse with Ghidra, you suddenly have a rich IDE that includes
Ghidra-specific functionality, resources, and templates to facilitate your
Ghidra development process. Integrating Eclipse and Ghidra does not
require significant effort; you just need to provide each with some informa-
tion about the other so that they can be used together.

Eclipse Integration
In order for Ghidra to work with Eclipse, Eclipse needs to have the GhidraDev
plugin installed. You can integrate the two applications from within
either Ghidra or Eclipse. Instructions for both integration approaches
are included in the GhidraDev_README.html document found in the
Extensions/Eclipse/GhidraDev directory of your Ghidra installation.

While the written documentation does walk you through the details
of the process, the easiest starting point is to select a Ghidra action that
requires Eclipse, such as Edit Script with Eclipse (refer to Figure 14-2).
If you select this option and have not previously integrated Eclipse and
Ghidra, you will be prompted for the directory information required to
make the connection. Depending on your configuration, you may need to
provide the path to your Eclipse installation directory, your Eclipse work-
space directory, your Ghidra installation directory, your Eclipse drop-in
directory, and possibly the port number used to communicate with Eclipse
for script editing.

Ghidra’s documentation will help you overcome any obstacles that
you encounter during the integration process. The truly adventurous can
explore the integration plugins in the Ghidra/Features/Base/src/main/java​
/ghidra/app/plugin/core/eclipse directory in Ghidra’s source repository.

Starting Eclipse
Once Ghidra and Eclipse are successfully integrated, you can use them for
writing Ghidra scripts and plugins. The first time you launch Eclipse after
it has been integrated with Ghidra, you are likely to see the dialog shown
in Figure 15-1, requesting to establish a communication path between your
Ghidra instance and your Eclipse GhidraDev instance.

Venturing onward, you will see the Eclipse IDE welcome screen, as
shown in Figure 15-2. This instance of Eclipse has a new addition on the
menu bar: GhidraDev. This is the menu we will use to create more complex
scripts and Ghidra tools.

The landing page for Ghidra Eclipse, the Welcome to the Eclipse
IDE for Java Developers workbench, includes links to numerous tutorials,

Eclipse and GhidraDev 317

documentation, and information about the Eclipse IDE and Java that
should provide the necessary background support to users new to Eclipse
as well as an optional refresher for experienced users. To move ahead with
Ghidra, we will focus our discussion on how the GhidraDev menu can be
used to augment Ghidra’s existing capabilities, build new capabilities, and
customize Ghidra to improve our reverse engineering workflow.

Figure 15-1: GhidraDevUser Consent dialog

Figure 15-2: Eclipse IDE welcome screen

Editing Scripts with Eclipse
Once the GhidraDev plugin has been installed in Eclipse, you are ready
to create new scripts, or edit existing ones using the Eclipse IDE. As we
migrate from using Ghidra’s Script Manager to create and edit scripts, to
using Eclipse, it’s worth remembering that while it is possible to launch
Eclipse from Script Manager, it is possible to do so only to edit an exist-
ing script (see Figure 14-2). If you want to edit a new script using Eclipse,
you’ll need to first launch Eclipse and then use the GhidraDev menu to
create the new script. Whether you launch Eclipse yourself, or arrive in
Eclipse via Ghidra’s Script Manager, for the remainder of this chapter, we
use Eclipse rather than the Script Manager’s basic editor to create and
modify scripts and modules for Ghidra.

To edit the first script we created in “Edit Script Example: Regex
Search” on page 290, select File4Open File from the Eclipse menu and
navigate to the script FindStringByRegex.java. This opens the script in the

318 Chapter 15

Eclipse IDE, and you can begin using Eclipse’s rich set of editing options.
Figure 15-3 shows the first few lines of the script with the comments and
imports collapsed. Collapsing lines is a default feature of the Eclipse IDE
that could cause some confusion if you are switching between the basic edi-
tor provided by Ghidra and Eclipse.

Figure 15-3: Eclipse editor presentation of FindStringsByRegex

Only one line of comments is displayed by default. You can click an icon
to expand (the + icon at the left of line 2) the content and display all of the
comments as well as to collapse (the – icon at the left of line 34) the content
if desired. The same is true on line 26 with the import statements. Hovering
over the icon for any section that is collapsed displays the hidden content in a
pop-up window.

Before we can start building examples that expand Ghidra’s capabili-
ties, you need to understand more about the GhidraDev menu and the
Eclipse IDE. Let’s shift our focus back to the GhidraDev menu and investi-
gate the various options and how they can be used in context.

GhidraDev Menu
The expanded GhidraDev menu is shown in Figure 15-4 and includes five
options that you can use to control your development environment and
work with files. In this chapter, we focus on developing in Java, although
Python is an option in several of the windows.

Figure 15-4: GhidraDev menu options

Eclipse and GhidraDev 319

GhidraDev4New
The GhidraDev4New menu provides you with three submenu options, as
shown in Figure 15-5. All three of the options launch wizards that guide
you through an associated creation process. We start with the simplest
option, which is to create a new Ghidra script. This is an alternative path
to creating scripts from that discussed in Chapter 14.

Figure 15-5: GhidraDev4New submenu

Creating a Script

Creating a new script using GhidraDev4NewGhidra Script results in
a dialog that allows you to enter information about your new script. An
example of the dialog populated with content is shown in Figure 15-6.
In addition to the directory and file information, the dialog collects the
same metadata that we manually entered into our script files in the Script
Manager’s basic editor.

Figure 15-6: Create Ghidra Script dialog

320 Chapter 15

The Finish button at the bottom of the dialog produces the script tem-
plate shown in Figure 15-7. The metadata entered in Figure 15-6 is included
in the comment section at the top of the script. This content is in the same
format as the metadata we saw in Chapter 14 (see the top of Figure 14-4).
When you edit this script in Eclipse, the task tag (clipboard icon, seen on
the left side of line 14 in Figure 15-7) associated with each TODO item in the
script identifies locations where there is work to be done. You can delete
and insert task tags at will.

Figure 15-7: GhidraDev4NewScript script shell

Eclipse does not preload your script with the list of import statements
like the Ghidra basic editor does (refer to Figure 14-4). Not to worry.
Eclipse helps you to manage your import statements by letting you know
when you use something that requires an associated import statement. For
example, if we replace the TODO comment in Figure 15-7 with the declara-
tion of a Java ArrayList, Eclipse adds an error tag to the line and underlines
ArrayList in red. Hovering over the error tag or ArrayList displays a pop-up
window suggesting quick fixes to solve the issue, as shown in Figure 15-8.

Figure 15-8: Eclipse Quick Fix options

Eclipse and GhidraDev 321

Choosing the first option in the suggestion list instructs Eclipse to add the
selected import statement to the script, as shown in Figure 15-9. While it was
helpful to have the list of potential import statements loaded when creating a
new script in the CodeBrowser Script Manager, it is not as essential in Eclipse.

Figure 15-9: Eclipse after Quick Fix import is applied

Creating a Script Project

The second option in the GhidraDev4New menu creates a new script
project, as shown in Figure 15-10. We name our first script project
CH15_ProjectExample_linked and place it in the default directory that we
have set up for Eclipse. The Create run configuration checkbox allows
you to create a run configuration, which provides Eclipse with the necessary
information (command line arguments, directory paths, and so on) to
launch Ghidra and allows us to use Eclipse to run and debug the script in
Ghidra. Leave this checkbox in its default state, selected. Click Finish to
complete creation of the script using the default format, which links the
script project to your home directory.

Figure 15-10: Eclipse Ghidra Script Project dialog

322 Chapter 15

We will create a second script project CH15_ProjectExample and this
time will choose the Next button. Choosing Next yields the dialog with two
Link options that are set by default (hence the _linked extension on our first
project name). The first option creates a link to your home script directory.
The second lets you link to the Ghidra installation script directories. Link,
in this case, is a way of saying that folders representing your home script
directory and/or Ghidra’s own script directories will be added to your new
project, making any script in those directories easily accessible to you while
working on your project.

The results of selecting or deselecting these options and then clicking
the Finish button will become clear later in the chapter when we discuss the
Eclipse Package Explorer. For this second script project, de-select the first
link checkbox as shown in Figure 15-11.

Figure 15-11: Eclipse configuration options for script projects

Creating a Module Project

The final option in the GhidraDev4New menu creates a Ghidra module
project.1 Not to be confused with a Ghidra module (for example, analyzer,
loader, and so on), a Ghidra module project aggregates code for a new Ghidra
module with associated help files, documentation, and other resources,
such as icons. Further, it allows you some control over how your new module
interacts with the other modules within Ghidra. We demonstrate Ghidra
modules in context in this and future chapters.

Choosing NewGhidra Module Project displays the dialog shown in
Figure 15-12, which should be familiar because it is exactly the same as the
Script Project dialog. We name our new project CH15_ModuleExample to
make it easy to identify in the Package Explorer.

1. Both types of Ghidra modules are distinct from Java modules, which were introduced in
Java 9 as a means to encapsulate packages and other resources and provide the capability
to keep packages private or choose to share individual packages with select other modules,
effectively allowing modules to control the sharing of services. Additional documentation
about modules and other Java topics is available at https://www.oracle.com/technetwork/java/
javase/java-tutorial-downloads-2005894.html.

https://www.oracle.com/technetwork/java/javase/java-tutorial-downloads-2005894.html
https://www.oracle.com/technetwork/java/javase/java-tutorial-downloads-2005894.html

Eclipse and GhidraDev 323

Figure 15-12: Eclipse Module Project dialog

Clicking Next at this point allows you to base your module on existing
Ghidra templates, as shown in Figure 15-13. By default, all of the options
are selected. You can change this to include none, some, or all of the templates,
depending on your development goals. Any of the options you choose will
be grouped together in a project within the Package Explorer. In our case,
we have deselected all of the options.

While most of the selections will produce an associated source code tem-
plate with task tags, there are two exceptions. First, if you do not select any
of the module templates, you will not have a template file. In addition, the
processor module does not produce a template file but does generate other
supporting content. (Processor modules are discussed in Chapter 18.)

Figure 15-13: Template options for Ghidra module projects

324 Chapter 15

Now that you know how to create Ghidra scripts, script projects, and
module projects, let’s shift our focus to the Eclipse Package Explorer to
better understand how we can work with our new creations.2

Navigating the Package Explorer
Eclipse’s Package Explorer is the gateway to the Ghidra files you need to
complete your Ghidra extension. Here, we present the hierarchical orga-
nization and then drill down into examples of Ghidra projects and mod-
ules created through the GhidraDev menu. Figure 15-14 displays a sample
Eclipse Package Explorer window containing the items we created earlier in
this chapter as well as a few others we created to demonstrate the effect of
various options on the resulting Package Explorer contents.

Figure 15-14: Package Explorer populated with example modules and project

We start by looking at the two script projects. CH15_ProjectExample​
_linked is the script project we created with both link options checked
(refer to Figure 15-11). Immediately below it, we see a similar project,
CH15_ProjectExample, but in this case, neither link option was checked.
A partially expanded Package Explorer entry for CH15_ProjectExample is
shown in Figure 15-15.

The following four components are included in this script project:

JUnit4  This is an open source unit-testing framework for Java.
More information is available at https://junit.org/junit4/index.html.

JRE System Library  This is the Java Runtime Environment
System Library.

Referenced Libraries  These are referenced libraries that are not part
of the JRE System Library, but are part of our Ghidra installation.

Ghidra  This is the directory for your current Ghidra installation. We
have expanded this directory so that you can see the familiar file structure
introduced in Chapter 3 (see Figure 3-1) and used throughout this book.

2. Package Explorer has been around for a while, whereas modules are a more recent addi-
tion to Java. In the default configuration, Package Explorer can be thought of as a project
explorer for the Java project you have created or imported.

Eclipse and GhidraDev 325

Figure 15-15: Package Explorer script project
entries without links

Compare the contents of Figure 15-15 with the expanded contents from
CH15_ProjectExample_linked shown in Figure 15-16. For this script project,
we selected both link options. Linking the user home script directory results
in the Home scripts entry in the project hierarchy and provides us easy access
to the scripts we have previously written to use as examples or to modify.

Figure 15-16: Package Explorer script project
entries with links

326 Chapter 15

Linking Ghidra installation script directories results in all of the folders
in Figure 15-16 that start with Ghidra and end with scripts. Each one of these
corresponds to a script directory within in the Ghidra/Features directory in
your Ghidra installation.3 Expanding any of these folders provides access
to the source code for each of the scripts included in your Ghidra installa-
tion. Like the home scripts, these can serve as examples to modify or use
as a base for creating new scripts. While you are not permitted to overwrite
these scripts from within the Ghidra Script Manager basic editor, you can
edit them in Eclipse and other editors outside of the Ghidra Project envi-
ronment. When you have finished creating or editing a new script, you can
save it in the appropriate script directory within your script project, and it
will be available to use the next time you open the Ghidra Script Manager.

Now that we have looked at scripts within the Eclipse Package Explorer,
let’s see how the Ghidra module project we built is represented. The par-
tially expanded content of our project in the Package Explorer is shown in
Figure 15-17.

Figure 15-17: Package Explorer hierarchy for
CH15_ModuleExampleModule

3. The location of a script within Eclipse Package Explorer (and Ghidra/Features directory)
does not necessarily coincide with the organization of the scripts within the Script Manager.
This is to be expected as the scripts within the Ghidra/Features directory are organized into
folders that share a common functionality. The organization of scripts within the Ghidra
Script Manager is based on the category metadata within each script.

Eclipse and GhidraDev 327

Module projects include the following new elements:

src/main/java  This is the location for the source code. If you created a
module type that has a template available, the associated .java files are
placed in this directory.

src/main/help  When you create or extend content, you have the oppor-
tunity to add useful information to Ghidra Help by using the files and
information in this directory.

A R E W E BUIL DING T H AT SCR IP T AG A IN?

In Chapter 14, we presented a toy example within the Ghidra Script Manager
environment where we modified the existing script CountAndSaveStrings and
used it to build a new script called FindStringsByRegex. The following steps do
the same task within the Eclipse IDE:

1.	 Search for CountAndSaveStrings.java in Eclipse (ctrl-shift-R).

2.	 Double-click to open the file in the Eclipse editor.

3.	 Replace the existing class and comments with the new class and comments.

4.	 Save the file (EclipseFindStringByRegex.java) in the recommended
ghidra_scripts directory.

5.	 Run the new script from the Script Manager window in Ghidra.

You can launch Ghidra manually to get access to the Script Manager win-
dow. Alternatively, you can select the Run As option in the Eclipse IDE, which
will show the dialog in Figure 15-18. The first option launches Ghidra for you.
The second option launches a non-GUI version of Ghidra, which is the topic of
Chapter 16.

Figure 15-18: Eclipse Run As options

Once Ghidra has been launched, you can run your script from the Script
Manager and edit it using Eclipse.

328 Chapter 15

src/main/resources  As with many of the other entries in the src/main
directory, expanding this content will lead you to a README.txt file
that provides additional information about the purpose of the direc-
tory and how it should be used. For example, the src/main/resources​
/images/ README.txt file lets you know that it is the location in which
any image or icon files associated with the module should be stored.

ghidra_scripts  This is where Ghidra scripts that are specific to this
module are stored.

data  This folder holds any independent data files that are used
with this module. (While not prohibited from use with other module
types, this folder is primarily used with processor modules and is
discussed in Chapter 18.)

lib  Any .jar files required by the module should be stored in this folder.

os  There are subdirectories within this folder for linux64, oxs64, and
win64 to hold any native binaries that the module may depend upon.

src  This directory is used to hold unit test cases.

build.gradle  Gradle is an open source build system. This file is used to
build your Ghidra extension.

extension.properties  This file stores metadata about the extension.

Module.manifest  You can enter information about the module such as
configuration information in this file.

You may have noticed in Figure 15-14 that we created additional Test
modules (AnalyzerTest, AllTypeTest, and LoaderTest). Each was created using
a different combination of Module Template options (see Figure 15-13),
which results in a different set of files being instantiated for each project.
When using these templates as a starting point for your projects, it’s useful
to know just how much work Eclipse and Ghidra have done for you—and
how much work is left for you to complete.

Let’s begin by looking in the AnalyzerTest directory that we created to
demonstrate an analyzer template. Expand the src/main/java directory to find
a file called AnalyzerTestAnalyzer.java. The name is a concatenation of the mod-
ule name (AnalyzerTest) with the template type (Analyzer). Double-click this
file to open it in the editor and see the code shown in Figure 15-19. Like the
script templates earlier in the chapter, the Eclipse IDE provides task tags with
associated comments to guide us through building our analyzer as well as the
options to expand and collapse content. The LoaderTest module contains the
template for building a loader, which is discussed further in Chapter 17. The
remaining module, AllTypeTest, is the default module that results when you
bypass the module template options. This populates the src/main/java direc-
tory with all of the templates, as shown in Figure 15-20.

Now that we have seen how helpful Ghidra and Eclipse can be when we
create new modules, let's use this information to build a new analyzer.

Eclipse and GhidraDev 329

Figure 15-19: Default analyzer template for a module (comments, imports, and functions collapsed)

Figure 15-20: Sample default module
source code content

Example: Ghidra Analyzer Module Project
With the Eclipse integration basics behind us, let’s walk through building a
simple Ghidra analyzer to identify potential ROP gadgets in our listing. We
will use a simplified software development process, as this is just a simple
demonstration project. Our process includes the following steps:

1.	 Define the problem.

2.	 Create the Eclipse module.

3.	 Build the analyzer.

4.	 Add the analyzer to our Ghidra installation.

5.	 Test the analyzer from our Ghidra installation.

330 Chapter 15

Step 1: Define the Problem
Our task is to design and develop an instruction analyzer that will
identify simple ROP gadgets within a binary. The analyzer needs to be
added to Ghidra and be available as a selectable analyzer in the Ghidra
Analyzer menu.

W H AT’S A ROP G A DGE T A ND W H Y DO W E C A R E?

For those unfamiliar with exploit development, ROP stands for return-oriented
programming. One software security mitigation that aims to defeat raw shell-
code injection is to ensure that no memory region that is writable is, at the
same time, also executable. Such mitigations are often referred to as Non-
eXecutable (NX) or Data Execution Prevention (DEP)) because it becomes
impossible to inject shellcode into memory (must be writable) and then transfer
control to that shellcode (must be executable).

ROP techniques aim to hijack a program’s stack (often through a stack-
based buffer overflow) to place a carefully crafted sequence of return addresses
and data into the stack. At some point after the overflow, the program begins
using the attacker-supplied return addresses rather than return addresses placed
on the stack by normal program execution. The return addresses the attacker
places on the stack point to program memory locations that already contain
code as a result of normal program and library loading operations. Because
the original author of the exploited program did not design the program to
do the attacker’s work for them, the attacker often needs to pick and choose
small portions of this existing code to sequence together.

A ROP gadget is a single one of these code fragments, and the sequenc-
ing mechanism often relies on the gadget terminating in a return (hence return-
oriented) instruction, which retrieves an address from the now attacker-controlled
stack to transfer control to the next gadget. A gadget often performs a very
simple task such as loading a register from the stack. The following simple gad-
get could be used to initialize RAX on an x86-64 system:

POP RAX ; pop the next item on the attacker-controlled stack into RAX
RET ; transfer control to the address contained in the next stack item

Because every exploitable program is different, attackers can’t depend
on a specific set of gadgets being present in any given binary. Automated
gadget finders are tools that search a binary for instruction sequences that
may be used as gadgets and present these gadgets to the attacker, who must
decide which ones are useful in crafting their attack. The most sophisticated
gadget finders infer the semantics of a gadget and automatically sequence
gadgets to perform a specified action, saving the attacker the trouble of doing
it themselves.

Eclipse and GhidraDev 331

Step 2: Create the Eclipse Module
We use GhidraDev4NewGhidra Module Project to create a module called
SimpleROP using the analyzer module template. This creates a file called
SimpleROPAnalyzer.java in the src/main/java folder within the SimpleROP
module. The resulting Package Explorer view is shown in Figure 15-21.

Figure 15-21: Package Explorer src/main
entries for SimpleROP

Step 3: Build the Analyzer
A portion of the generated SimpleROPAnalyzer.java code is shown in Figure 15-22.
The functions have been collapsed so that we can see all of the analyzer
methods that are provided. Eclipse will recommend imports if we need
them as we develop our code so we can jump right into coding the tasks
we need to perform and add the recommended import statements when
Eclipse detects that we need them.

Figure 15-22: SimpleROPAnalyzer template

332 Chapter 15

The six task tags (to the left of the line numbers) in Figure 15-22 indi-
cate where we should start our development. We will expand the associated
sections as we address each task and include the before and after content
associated with each task. (Note that some content will be wrapped or
reformatted for readability and comments minimized to conserve space.)

For functionality, we will rely on the following class-level declarations:

 private int gadgetCount = 0; // Counts the number of gadgets
 private BufferedWriter outFile; // Output file
// List of "interesting" instructions
 private List<String> usefulInstructions = Arrays.asList(
 "NOP", "POP", "PUSH", "MOV", "ADD", "SUB", "MUL", "DIV", "XOR");
// List of "interesting" instructions that don’t have operands
 private List<String> require0Operands = Arrays.asList("NOP");
// List of "interesting" instructions that have one operand
 private List<String> require1RegOperand = Arrays.asList("POP", "PUSH");
// List of "interesting" instructions for which we want the first
// parameter to be a register
 private List<String> requireFirstRegOperand = Arrays.asList(
 "MOV", "ADD", "SUB", "MUL", "DIV", "XOR");
// List of "start" instructions that have ZERO operands
 private List<String> startInstr0Params = Arrays.asList("RET");
// List of "start" instructions that have ONE register operand
 private List<String> startInstr1RegParam = Arrays.asList("JMP", "CALL");

Comments associated with each declaration describe the purpose of
each variable. The various List variables contain the instructions from which
our gadgets will be composed and classify those instructions based on the
number and type of operands they require, and whether the instruction is a
legal start instruction for one of our gadgets. Because our gadget construc-
tion algorithm works its way backward in memory, start here actually means
a starting point for our algorithm. At runtime, these same start instructions
would actually be the last instructions executed in a given gadget.

Step 3-1: Document the Class

When we expand the first task tag, we see the following task description:

/**
 * TODO: Provide class-level documentation that describes what this
 * analyzer does.
 */

Replace the existing TODO comments with comments that describe what
the analyzer does:

/**
 * This analyzer searches through a binary for ROP gadgets.
 * The address and contents of each gadget are written to a
 * file called inputfilename_gadgets.txt in the user’s home directory.
 */

Eclipse and GhidraDev 333

Step 3-2: Name and Describe Our Analyzer

Expanding the next task tag provides us with a TODO comment and the line
of code that we need to edit. Within the Eclipse IDE, the code to be modi-
fied appears in purple font and has a name indicative of the associated task.
The second task contains the following:

// TODO: Name the analyzer and give it a description.
public SimpleROPAnalyzer() {
 super("My Analyzer",
 "Analyzer description goes here",
 AnalyzerType.BYTE_ANALYZER);
}

The two strings need to be replaced with meaningful content. In addi-
tion, the analyzer type needs to be specified. To facilitate dependency
resolution across analyzers, Ghidra groups analyzers into the following
categories: byte, data, function, function modifiers, function signatures,
and instruction. In this case, we are building an instruction analyzer. The
resulting code is as follows:

public SimpleROPAnalyzer() {
 super("SimpleROP",
 "Search a binary for ROP gadgets",
 AnalyzerType.INSTRUCTION_ANALYZER);
}

Step 3-3: Determine If Our Analyzer Should Be a Default Analyzer

The third task asks us to return true if the analyzer should be enabled
by default:

public boolean getDefaultEnablement(Program program) {
 // TODO: Return true if analyzer should be enabled by default
 return false;
}

We do not want this analyzer enabled by default; therefore, no code
modifications are required.

Step 3-4: Determine If the Input Is Appropriate for This Analyzer

The fourth task requires us to determine whether our analyzer is compat-
ible with the program content:

public boolean canAnalyze(Program program) {
 // TODO: Examine 'program' to determine of this analyzer
 // should analyze it.
 // Return true if it can.
 return false;
}

334 Chapter 15

Since this analyzer is only for demonstration purposes, we assume that
the input file is compatible with our analysis and simply return true. In real-
ity, we would add code to verify compatibility of the analysis file prior to
using our analyzer. For example, we might return true only after we have
determined that file is an x86 binary. Worked examples of this verifica-
tion can be found in most analyzers included in your Ghidra installation
(Ghidra/Features/Base/lib/Base-src/Ghidra/app/analyzers), accessible through
your module directory within Eclipse:

public boolean canAnalyze(Program program) {
 return true;
}

Step 3-5: Register Analyzer Options

The fifth task offers us the opportunity to specify any special options we
wish to present to users of our analyzer:

public void registerOptions(Options options, Program program) {
 // TODO: If this analyzer has custom options, register them here
 options.registerOption("Option name goes here", false, null,
 "Option description goes here");
}

Since this analyzer is only for demonstration purposes, we will not add
any options. Options might include user-controlled choices (for example,
choose output file, optionally annotate the listing, and so on). Options for
each analyzer are displayed in the Analyzer window when an individual
analyzer is selected:

public void registerOptions(Options options, Program program) {
}

Step 3-6: Perform the Analysis

The sixth task highlights the function that gets called when our analyzer
gets invoked:

public boolean added(Program program, AddressSetView set, TaskMonitor
 monitor, MessageLog log) throws CancelledException {
 // TODO: Perform analysis when things get added to the 'program'.
 // Return true if the analysis succeeded.
 return false;
}

Eclipse and GhidraDev 335

This is the part of the module that does the work. Four methods are
used by this module, each of which is detailed next:

//***
// This method is called when the analyzer is invoked.
//***

 public boolean added(Program program, AddressSetView set, TaskMonitor
 monitor, MessageLog log) throws CancelledException {
 gadgetCount = 0;
 String outFileName = System.getProperty("user.home") + "/" +
 program.getName() + "_gadgets.txt";
 monitor.setMessage("Searching for ROP Gadgets");
 try {
 outFile = new BufferedWriter(new FileWriter(outFileName));
 } catch (IOException e) {/* pass */}
 // iterate through each instruction in the binary
 Listing code = program.getListing();
 InstructionIterator instructions = code.getInstructions(set, true);

  while (instructions.hasNext() && !monitor.isCancelled()) {
 Instruction inst = instructions.next();

  if (isStartInstruction(inst)) {
 // We found a "start" instruction. This will be the last
 // instruction in the potential ROP gadget so we will try to
 // build the gadget from here
 ArrayList<Instruction> gadgetInstructions =
 new ArrayList<Instruction>();
 gadgetInstructions.add(inst);
 Instruction prevInstr = inst.getPrevious();

  buildGadget(program, monitor, prevInstr, gadgetInstructions);
 }
 }
 try {
 outFile.close();
 } catch (IOException e) {/* pass */}
 return true;
}
//***
// This method is called recursively until it finds an instruction that
// we don't want in the ROP gadget.
//***
private void buildGadget(Program program, TaskMonitor monitor,
 Instruction inst,
 ArrayList<Instruction> gadgetInstructions) {
 if (inst == null || !isUsefulInstruction(inst) ||
 monitor.isCancelled()) {
 return;
 }
 gadgetInstructions.add(inst);

  buildGadget(program, monitor, inst.getPrevious(){, gadgetInstructions);
 gadgetCount += 1;

336 Chapter 15

  for (int ii = gadgetInstructions.size() - 1; ii >= 0; ii--) {
 try {
 Instruction insn = gadgetInstructions.get(ii);
 if (ii == gadgetInstructions.size() - 1) {
 outFile.write(insn.getMinAddress() + ";");
 }
 outFile.write(insn.toString() + ";");
 } catch (IOException e) {/* pass */}
 }
 try {
 outFile.write("\n");
 } catch (IOException e) {/* pass */}
 // Report count to monitor every 100th gadget
 if (gadgetCount % 100 == 0) {
 monitor.setMessage("Found " + gadgetCount + " ROP Gadgets");
 }
 gadgetInstructions.remove(gadgetInstructions.size() - 1);
}
//***
// This method determines if an instruction is useful in the context of
// a ROP gadget
//***
private boolean isUsefulInstruction(Instruction inst) {
 if (!usefulInstructions.contains(inst.getMnemonicString())) {
 return false;
 }
 if (require0Operands.contains(inst.getMnemonicString())) {
 return true;
 }
 if (require1RegOperand.contains(inst.getMnemonicString()) &&
 inst.getNumOperands() == 1) {
 Object[] opObjects0 = inst.getOpObjects(0);
 for (int ii = 0; ii < opObjects0.length; ii++) {
 if (opObjects0[ii] instanceof Register) {
 return true;
 }
 }
 }
 if (requireFirstRegOperand.contains(inst.getMnemonicString()) &&
 inst.getNumOperands() >= 1) {
 Object[] opObjects0 = inst.getOpObjects(0);
 for (int ii = 0; ii < opObjects0.length; ii++) {
 if (opObjects0[ii] instanceof Register) {
 return true;
 }
 }
 }
 return false;
}
//***
// This method determines if an instruction is the "start" of a
// potential ROP gadget
//***

Eclipse and GhidraDev 337

private boolean isStartInstruction(Instruction inst) {
 if (startInstr0Params.contains(inst.getMnemonicString())) {
 return true;
 }
 if (startInstr1RegParam.contains(inst.getMnemonicString()) &&
 inst.getNumOperands() >= 1) {
 Object[] opObjects0 = inst.getOpObjects(0);
 for (int ii = 0; ii < opObjects0.length; ii++) {
 if (opObjects0[ii] instanceof Register) {
 return true;
 }
 }
 }
 return false;
}

Ghidra invokes an analyzer’s added method  to initiate analysis. Our
algorithm tests every instruction  in the binary to determine whether the
instruction is a valid “start” point  for our gadget builder. Each time a
valid start instruction is found, our gadget creation function, buildGadget,
is invoked . Gadget creation is a recursive  walk backward  through
the instruction list that continues as long as an instruction is considered
useful  to us. Finally, each gadget is printed, by iterating over its instruc-
tions , as it is completed.

Step 4: Test the Analyzer Within Eclipse
During the development process, it is common to test and modify code
frequently. As you are building your analyzer, you can test its functionality
within Eclipse by using the Run As option and choosing Ghidra. This opens
Ghidra with the current version of the module temporarily installed. If the
results are not what you expect when you test the module, you can edit
the file within Eclipse and retest. When you are satisfied with your result,
you should move on to step 5. Using this method to test your code within
Eclipse can be a great time-saver during the development process.

Step 5: Add the Analyzer to Our Ghidra Installation
To add this analyzer to our Ghidra installation, we need to export our mod-
ule from Eclipse and then install the extension in Ghidra. Exporting
is accomplished by selecting GhidraDevExportGhidra Module
Extension, choosing your module, and clicking Next. In the next window,
select the Gradle Wrapper option shown in Figure 15-23 if you do not have
a local Gradle installation (note that an internet connection is required in
order for the wrapper to reach out to gradle.org). Click Finish to complete
the export process. If this is your first time exporting the module, a dist
directory will be added to your module within Eclipse and a .zip file of the
exported content will be saved to the folder.

338 Chapter 15

Figure 15-23: Configure Gradle dialog

In the Ghidra Project window, add the new analyzer by selecting
FileInstall Extensions. A window similar to that shown in Figure 15-24
will be displayed showing all of the existing extensions that have not
been installed.

Figure 15-24: Install Extensions window

Add the new analyzer SimpleROP by selecting the + icon at the top right
and navigating to our newly created .zip file in the associated dist directory.
Once our analyzer appears in the list, we can select it and click OK (not
shown). Restart Ghidra to use the new functionality from the Analysis menu.

Step 6: Test the Analyzer Within Ghidra
As with our limited development plan, we used a limited scope test plan just
to demonstrate functionality. SimpleROP passed acceptance testing as the
analyzer met the following criteria:

1.	 (Pass) SimpleROP appears in the Analysis Options in the CodeBrowser
Analysis menu.

Eclipse and GhidraDev 339

2.	 (Pass) The description of SimpleROP appears in the Analysis Options
description window when selected.

Test cases 1 and 2 passed, as shown in Figure 15-25. (Had we chosen to
register and program associated options in step 3-5, they would have
been displayed in the Options panel on the right side of the window).

Figure 15-25: Analysis Options window

3.	 (Pass) SimpleROP executes when selected.

In this case, we ran SimpleROP on an analyzed file, and as part of auto
analysis. Running SimpleROP on an unanalyzed file would not yield
any results, as INSTRUCTION_ANALYZER extensions require instructions to
have been previously identified (a default part of auto analysis). When
SimpleROP is run as part of the auto analysis, it is prioritized appropri-
ately because of the analyzer type we assigned in step 3-2. Figure 15-26
shows the Ghidra Log confirmation that the SimpleROP analyzer ran.

Figure 15-26: Ghidra User Log window showing analysis confirmation

340 Chapter 15

4.	 (Pass) SimpleROP writes each gadget to a file called fileZZZ_gadgets.txt
when analyzing fileZZZ.

The following excerpt from the file call_tree_x64_static_gadgets.txt shows
that many of the gadgets are taken from the portion of the call_tree_x64_static
listing shown in Figure 15-27:

00400412;ADD RSP,0x8;RET;
004004ce;NOP;RET;
00400679;ADD RSP,0x8;POP RBX;POP RBP;POP R12;POP R13;POP R14;POP R15;RET;
0040067d;POP RBX;POP RBP;POP R12;POP R13;POP R14;POP R15;RET;
0040067e;POP RBP;POP R12;POP R13;POP R14;POP R15;RET;
0040067f;POP R12;POP R13;POP R14;POP R15;RET;
00400681;POP R13;POP R14;POP R15;RET;
00400683;POP R14;POP R15;RET;
00400685;POP R15;RET;
00400a8b;POP RBP;MOV EDI,0x6babd0;JMP RAX;
00400a8c;MOV EDI,0x6babd0;JMP RAX;
00400a98;POP RBP;RET;

Figure 15-27: CodeBrowser listing of
call_tree_x64_static

Summary
In Chapter 14, we introduced scripting as a means of extending Ghidra’s
capabilities. In this chapter, we introduced Ghidra extension modules along
with Ghidra’s Eclipse integration capabilities. While Eclipse is not your only
option for editing Ghidra extensions, the integration of Ghidra and the
Eclipse IDE provides an incredibly powerful environment for developers
extending Ghidra’s capabilities. The development wizards and templates
lower the bar for authoring extensions as they present coders with a guided
approach to modifying existing content and building new extensions. In
Chapter 16, we take a look at headless Ghidra, an option that appeared in
Figure 15-18. Subsequent chapters build on the integration of Ghidra and
the Eclipse IDE to further extend Ghidra’s capabilities and provide a solid
foundation for making Ghidra into the optimal tool for your reverse engi-
neering workflow.

In earlier chapters, we focused on explor-
ing a single file within a single project,

facilitated by the Ghidra GUI. In addition
to the GUI, Ghidra has a command line inter-

face called the Ghidra headless analyzer. The headless
analyzer provides some of the same capabilities as
the Ghidra GUI, including the ability to work with projects and files, but
it’s better suited for batch processing and scripted control of Ghidra. In this
chapter, we discuss Ghidra’s headless mode and how it can help you perform
repetitive tasks across a larger number of files. We start with a familiar
example and then expand our discussion to more complex options.

16
G H I D R A I N H E A D L E S S M O D E

342 Chapter 16

Getting Started
Let’s start by recalling our first use of Ghidra in Chapter 4. We successfully
accomplished the following steps:

1.	 Launch Ghidra.

2.	 Create a new Ghidra project.

3.	 Identify a location for the project.

4.	 Import a file to the project.

5.	 Auto analyze the file.

6.	 Save and exit.

Let’s replicate these tasks using the Ghidra headless analyzer’s com-
mand line interface. The headless analyzer (analyzeHeadless or analyzeHead​
less.bat) as well as a helpful file called analyzeHeadlessREADME.html can
be found in the support directory of your Ghidra installation. To simplify
file paths, we have temporarily placed the file global_array_demo_x64 in
the same directory. First, we will identify the commands and parameters
needed for each of the individual tasks and then we will put them all
together to accomplish our goal. While it hasn’t made a significant differ-
ence in previous chapters, there are more distinctions between the three
Ghidra platforms when we are operating from the command line. In our
examples, we use the Windows installation and make note of significant dif-
ferences on other platforms.

TO SL A SH OR BACKSL A SH?

A major difference among the operating system platforms that support Ghidra
is the manner in which they identify filesystem paths. While the syntax is con-
sistent, different platforms use different directory separators. Windows uses a
backward slash, whereas Linux and macOS use a forward slash. A path looks
like this in Windows:

D:\GhidraProjects\ch16\demo_stackframe_32

And it looks like this in Linux and macOS:

/GhidraProjects/ch16/demo_stackframe_32

This syntax can be even more confusing for Windows users as forward
slashes are used in URLs and command line switches (and Ghidra documen-
tation). Operating systems recognize this issue and try to accept either, but
not always in a predictable manner. For the examples in this chapter, we use
the Windows convention so readers can enjoy being backward compatible
with DOS.

Ghidra in Headless Mode 343

Step 1: Launch Ghidra
This step is accomplished using the analyzeHeadless command. All additional
steps will be accomplished using the parameters and options associated
with this command. Running analyzeHeadless without any parameters dis-
plays a usage message with the command’s syntax and options, as shown in
Figure 16-1. To launch Ghidra, we need to add some of these parameters to
the command.

Figure 16-1: Headless analyzer syntax

Steps 2 and 3: Create a New Ghidra Project in a Specified Location
In headless mode, Ghidra creates a project for you if the project does not
already exist. If the project already exists in the specified location, Ghidra
opens the existing project. As a result, two parameters are required: the
project location and the project name. The following command creates
a project named CH16 in our D:\GhidraProjects directory:

analyzeHeadless D:\GhidraProjects CH16

This is a minimal launch of headless Ghidra to open a project and
accomplishes nothing more. In fact, the response message from Ghidra
tells you exactly that:

Nothing to do...must specify -import, -process, or prescript and/or postscript.

344 Chapter 16

Step 4: Import a File to the Project
To import a file, Ghidra requires the -import option and the name of the file
to import. We will import global_array_demo_x64, which we have used in the
past. As mentioned, for simplicity in this initial example, we have placed the
file in the support directory. Alternatively, we could specify the full path to
the file on the command line. We add the -import option to our command:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64

Steps 5 and 6: Auto Analyze the File, Save, and Exit
In headless mode, auto analysis and saving happen by default, so the com-
mand in step 4 accomplishes everything we want. An option is required to
not analyze the file (-noanalysis), and there are options available to control
how the project and associated files are saved.

Here is our completed command to accomplish our six objectives:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64

As with many console commands, you may be asking yourself, “How can
I be sure anything has happened?” Your first sign of success (or failure) is
the messages displayed at the console. Informational messages that start
with the prefix INFO provide progress reports as the headless analyzer starts
its work. Error messages start with the prefix ERROR. Listing 16-1 includes a
subset of the messages, including an error message.

  INFO HEADLESS Script Paths:
 C:\Users\Ghidrabook\ghidra_scripts

  D:\ghidra_PUBLIC\Ghidra\Extensions\SimpleROP\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Base\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\BytePatterns\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Decompiler\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\FileFormats\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\FunctionID\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\GnuDemangler\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Python\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\VersionTracking\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\8051\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\DATA\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\PIC\ghidra_scripts(HeadlessAnalyzer)
 INFO HEADLESS: execution starts (HeadlessAnalyzer)
 INFO Opening existing project: D:\GhidraProjects\CH16 (HeadlessAnalyzer)

  ERROR Abort due to Headless analyzer error:
 ghidra.framework.store.LockException:
 Unable to lock project! D:\GhidraProjects\CH16 (HeadlessAnalyzer)
 java.io.IOException: ghidra.framework.store.LockException:
 Unable to lock project! D:\GhidraProjects\CH16
 ...

Listing 16-1: Headless analyzer with error condition

Ghidra in Headless Mode 345

The script paths used in headless mode are listed . Later in the chap-
ter, we show how to use additional scripts with our headless commands.
The extension we created in the preceding chapter, SimpleROP, is included
in the script path  because every extension adds a new path to the script
path. The LockException  is perhaps the most common error associated
with the headless analyzer. The headless analyzer fails if you attempt to
run it on a project that you already have open in another Ghidra instance.
When this occurs, the headless analyzer is unable to lock the project for its
own, exclusive use, so the command fails.

To fix the error, close any running Ghidra instance that has the CH16
project open and run the command again. Figure 16-2 shows the tail end of
the output for successful execution of our command, which is similar to the
pop-up windows that we see when analyzing files in the Ghidra GUI.

Figure 16-2: Headless analyzer results displayed to the console

To verify the results in the Ghidra GUI, open the project and confirm
that the file has been loaded, as shown in Figure 16-3, and then open the
file in the CodeBrowser to confirm analysis.

346 Chapter 16

Figure 16-3: Ghidra GUI confirmation that the project has
been created and the file loaded

Now that we have replicated our earlier analysis using Ghidra in head-
less mode, let’s investigate some situations where headless mode has an
advantage over the GUI. To create a project and load and analyze all of the
files shown in Figure 16-4 using the Ghidra GUI, we could create the proj-
ect and then load each file individually, or select files to include in a batch
import operation, as discussed in “Batch Import” on page 226. Headless
Ghidra allows us to name a directory and analyze all contained files.

Figure 16-4: Input directory for headless
Ghidra examples

Ghidra in Headless Mode 347

The following command tells the headless analyzer to open or create a
project named CH16 in the D:\GhidraProjects directory and import and ana-
lyze all of the files in the D:\ch16 directory:

analyzeHeadless D:\GhidraProjects CH16 -import D:\ch16

After the command is executed, we can load the new project into the
Ghidra GUI and see its associated files, as shown in Figure 16-5. The sub-
directory D:\ch16\CH16_subdirectory does not appear in the project, nor do
any of the files within the subdirectory. We will come back to this when we
discuss additional options and parameters that can be used with headless
Ghidra in the following section.

Figure 16-5: Project resulting from pointing headless Ghidra
at a directory

Options and Parameters
The simple examples of using headless Ghidra to create a project, load and
analyze a single file, and use batch processing to import an entire directory
are just the beginning of what is possible. While we will not be able to dis-
cuss all capabilities of headless Ghidra, we will provide a brief introduction
to each of the options currently available.

General Options

The following are brief descriptions with related examples of additional
options that we could use to further control what is happening in our sim-
ple examples. (Wrapped lines are indented.) When encountered, common
error conditions are discussed. Specialized error conditions are left as an
exercise for the reader in the comfort of the Ghidra Help file.

348 Chapter 16

-log logfilepath

Many things can go wrong (and right) when executing from the com-
mand line. Fortunately, Ghidra plugins provide continuous feedback
as to what is happening while Ghidra is running. While this feedback
is less vital in the Ghidra GUI (because you have visual cues as to
what is happening), it is important in headless Ghidra.

By default, a logfile is written to .ghidra/.ghidra_<VER>_PUBLIC​
/application.log in the user’s home directory. You may select a new
location by adding the -log option to your command line. To create
a directory, CH16-logs, and write a logfile to CH16-logfile, use the
following command:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -log D:\GhidraProjects\CH16-logs\CH16-Logfile

-noanalysis

This option instructs Ghidra not to analyze any files that you import
from the command line. Opening the file global_array_demo_x64 in
the Ghidra GUI after the following statement is executed would pres-
ent you with a loaded, but not analyzed, version of the file within the
CH16 project:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -noanalysis

-overwrite

In Listing 16-1, we saw an error condition when Ghidra tried to open
a project that was already open. A second common error occurs when
Ghidra tries to import a file into a project and the file has already been
imported. To import a new version of the file, or overwrite the existing
file regardless of contents, use the -overwrite option. Without this option,
running the following headless command twice would result in an
error during the second execution. With this option, we can rerun the
command as many times as we wish:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -overwrite

-readOnly

To import a file without saving the file in the project, use the -readOnly
option. If you use this option, the -overwrite option will be ignored (if
present). This option also has meaning when used with the -process
option rather than the -import command. The -process option is cov-
ered later in the chapter.

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -readOnly

Ghidra in Headless Mode 349

-deleteProject

This option instructs Ghidra not to save any project being created with
the –import option. This option can be used with any of the other options
but is assumed (even if omitted) when using -readOnly. The newly created
project is deleted after analysis is complete. This option will not delete an
existing project:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -deleteProject

-recursive

By default, Ghidra does not recurse into subdirectories when asked to
process an entire directory. Use this option when you do want Ghidra
to perform recursive directory processing (that is, process any subdirec-
tories it finds along the way). To demonstrate this functionality, we will
point Ghidra at the same ch16 directory we processed earlier, but this
time will use the -recursive option:

analyzeHeadless D:\GhidraProjects CH16 -import D:\ch16 -recursive

Opening the project, CH16, after running this command results in
the project structure shown in Figure 16-6. In contrast to Figure 16-5, the
CH16_subdirectory is included in the project as well as its associated file,
and the directory hierarchy is retained within the project hierarchy.

Figure 16-6: Headless Ghidra project resulting from the
-recursive option

350 Chapter 16

-analysisTimeoutPerFile seconds

As you have analyzed (or sat and watched Ghidra analyze) files, you
may have noticed several factors that impact the analysis time, like the
size of the file, whether it’s statically linked, and the decompiler analysis
options. Regardless of the file contents and options, you can’t know in
advance exactly how long it may take to analyze a file.

In headless Ghidra, particularly when you are processing a large num-
ber of files, you can use the -analysisTimeoutPerFile option to ensure
that your task ends in a reasonable amount of time. With this option,
you specify a time-out in seconds, and analysis will be interrupted
should time expire. For example, our existing headless Ghidra com-
mand takes a little over one second to analyze on our system (refer to

W IL DC A R DS!

Wildcards provide an easy method to select multiple files for headless Ghidra
without listing each one separately. In short, an asterisk (*) matches any sequence
of characters, and a question mark (?) matches a single character. To load and
analyze only the 32-bit files from Figure 16-7, use a wildcard as follows:

analyzeHeadless D:\GhidraProjects CH16 -import D:\ch16\demo_stackframe_32*

This creates the CH16 project and loads and analyzes all of the 32-bit
files in the ch16 directory. The resulting project is shown in Figure 16-7. See
analyzeHeadlessREADME.html for detailed information about using wildcards
to specify files for import and processing. You will also see wildcards in future
headless Ghidra scripting examples.

Figure 16-7: Project files resulting from the wildcard demo_stackframe_32*

Ghidra in Headless Mode 351

Figure 16-2). If we had really limited time to execute this script, the fol-
lowing headless command would stop analysis after one second:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -analysisTimeoutPerFile 1

This would result in the console display shown in Figure 16-8.

Figure 16-8: Console warning that analysis timed out

-processor languageID and -cspec compilerSpecID
As shown in previous examples, Ghidra is generally quite good at iden-
tifying information about a file and making import recommendations.
A sample window showing the recommendations for a particular file is
shown in Figure 16-9. This window is displayed every time you use the
GUI to import a file into a project.

Figure 16-9: Ghidra GUI import confirmation dialog

If you feel that you have additional insight into the appropriate
language or compiler, you can expand the box to the right of the
Language specification. This presents you with the window shown in
Figure 16-10, which gives you the opportunity to select a language and
compiler specification.

352 Chapter 16

Figure 16-10: Ghidra language/compiler specification selection window

To do the same in headless Ghidra, use the -cspec and/or processor
options, as shown next. You cannot use the -cspec option without using
the -processor option. You can use the -processor option without the
-cspec option, in which case Ghidra will choose the default compiler
associated with the processor.

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -processor "x86:LE:64:default" -cspec "gcc"

-loader loadername

The -loader option can be the most complex of the headless Ghidra
options. The loadername argument names one of Ghidra’s loader modules
(discussed in Chapter 17) that will be used to import a new file into the
named project. Sample loader names include PeLoader, ElfLoader, and
MachoLoader. Each loader module may recognize additional command
line arguments of its own. These additional arguments are discussed in
support/analyzeHeadlessREADME.html.

-max-cpu number

This option allows to you to put an upper limit on the number of pro-
cessor (CPU) cores used to process the headless Ghidra command. The
option requires an integer value as an argument. If the value is less
than 1, the maximum number of cores is set to 1.

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -max-cpu 5

Server Options

Some commands are used only when interacting with a Ghidra Server. As this
is not the focus of this book, we will mention these commands only briefly.
Additional information can be found in analyzeheadlessREADME.html.

Ghidra in Headless Mode 353

ghidra://server[:port]/repository_name[/folder_path]

The previous examples have all specified a project location or project
name. This alternative allows you to specify a Ghidra Server repository
and optional folder path.

-p

With Ghidra Server, this option forces a password prompt via the
console.

-connect [userID]

This option provides a userID to override the default userID when con-
necting to a Ghidra Server.

-keystore path

This option allows you to specify a private keystore file when using PKI
or SSH authentication.

-commit ["comment"]

While commit is enabled by default, this option allows you to associate a
comment with a commit.

Script Options

Perhaps the most powerful applications for headless Ghidra are associated
with Ghidra’s scripting abilities. Chapters 14 and 15 both demonstrated
how scripts can be created and used with the Ghidra GUI. After we present
script options, we will demonstrate how powerful headless Ghidra can be
in a scripting context.

-process [project_file]

This option processes select files (as opposed to importing them).
If you do not specify a file, all files in the project folder will be pro-
cessed. All specified files will also be analyzed unless you use the
-noanalysis option. Ghidra accepts two wildcard characters (* and ?)
for the –process option in order to simplify selection of multiple files.
For this option, unlike with the –import option, you are naming Ghidra
imported project files, not local filesystem files, so you need to quote
any filenames that contain these wildcards in order to prevent your
shell from expanding them prematurely.

-scriptPath "path1[;path2...]"

By default, headless Ghidra includes many default script paths as well
as script paths for imported extensions, as seen in Listing 16-1. To
extend the list of paths that Ghidra searches for available scripts, use
the –scriptPath option, which requires a quoted path list argument.
Within the quotes, multiple paths must be separated using a semicolon.
Two special prefix designators are recognized in path components:

354 Chapter 16

$GHIDRA_HOME and $USER_HOME. $GHIDRA_HOME refers to the Ghidra installa-
tion directory, and $USER_HOME refers to the user’s home directory. Note
that these are not environment variables and that your command shell
may require you to escape the leading $ character in order for it to
be passed to Ghidra. The following example adds the D:\GhidraScripts
directory to the script path:

analyzeHeadless D:\GhidraProjects CH16 -import global_array_demo_x64
 -scriptPath "D:\GhidraScripts"

After you run the command, the new script directory, D:\GhidraScripts,
is included in the script path:

INFO HEADLESS Script Paths:
 D:\GhidraScripts
 C:\Users\Ghidrabook\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Extensions\SimpleROP\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Base\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\BytePatterns\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Decompiler\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\FileFormats\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\FunctionID\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\GnuDemangler\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\Python\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Features\VersionTracking\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\8051\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\DATA\ghidra_scripts
 D:\ghidra_PUBLIC\Ghidra\Processors\PIC\ghidra_scripts (HeadlessAnalyzer)
INFO HEADLESS: execution starts (HeadlessAnalyzer)

-preScript

This option names a script to be run before analysis. The script may
contain an optional list of arguments.

-postScript

This option names a script to be run after analysis. The script may
contain an optional list of arguments.

-propertiesPath

This option specifies the path to any property files associated with
a script. Property files provide input to scripts that are run in head-
less mode. Examples of scripts and their associated property files are
included in the headless analyzer documentation.

-okToDelete

As scripts can do whatever their creators intend, it is possible for a
script to delete (or try to delete) files within a Ghidra project. To pre-
vent this as an undesired side-effect, headless Ghidra will not allow

Ghidra in Headless Mode 355

deletion of files by a script unless the -okToDelete option is included
when the script is invoked. Note: This parameter is not required when
running in -import mode.

Writing Scripts
Now that you understand the basic components of a headless Ghidra com-
mand, let’s build some scripts to run from the command line.

HeadlessSimpleROP
Recall the SimpleROP analyzer that we wrote in Chapter 15. We wrote
the module using the Eclipse IDE and then imported the extension into
Ghidra so we could run it on any file we imported. Now we want to point
SimpleROP at a directory and have it identify ROP gadgets in every file (or
select files) in the directory. In addition to the SimpleROP output file with
ROP gadgets for each existing binary, we also want a summary file that lists
each file and the number of identified ROP gadgets in each.

For a job like this, running SimpleROP through the Ghidra GUI
would introduce a time penalty for actions like opening and closing the
CodeBrowser to display each file in the listing window, and so on. We do
not need to see any of the files in the CodeBrowser window to accomplish
our new goal. Why can’t we just write a script to find the gadgets indepen-
dent of the GUI completely? This is exactly the kind of use case appropriate
for headless Ghidra.

While we could modify the functionality of SimpleROP to accomplish
our goal, we do not want to lose the utility of an existing Ghidra extension
that other users may find useful. (We realize that we just introduced it in
the preceding chapter . . . but it might have gone viral.) Instead, we will
use some of the code from SimpleROP as a base to create our new script,
HeadlessSimpleROP, which finds all ROP gadgets in <filename> and creates and
writes them to <filename>_gadgets.txt, then appends <path>/<filename> and
the count of ROP gadgets to a HeadlessSimpleROP summary file called
gadget_summary.txt. All other functionality required (parsing directories,
files, and so on) will be provided by headless Ghidra using the options we
discussed earlier in this chapter.

To simplify development, we create a new script using the Eclipse​
GhidraDev approach presented in Chapter 15 and then copy the SimpleROP​
Analyzer.java source code into the new script template and edit the code as
needed. Finally, we will run the script using the -postScript option so that it
is invoked following the analysis phase for each opened file.

Creating the HeadlessSimpleROP Script Template

Begin by creating a template. From the GhidraDev menu, choose New​
GhidraScript and fill in the information shown in the dialog in Figure 16-11.
While we could place the script in any folder, we will place it in the ghidra​
_scripts folder within our existing SimpleROP module in Eclipse.

356 Chapter 16

Figure 16-11: Create Ghidra Script dialog

Click Finish to see the new script template, complete with metadata, as
shown in Figure 16-12. The task tag on line 14 shows you where to get started.

Figure 16-12: New HeadlessSimpleROP script template

To convert the SimpleROP analyzer into the HeadlessSimpleROP script,
we need to do the following:

1.	 Remove the unneeded import statements.

2.	 Remove the analyzer public methods.

Ghidra in Headless Mode 357

3.	 Duplicate the functionality of the added method that is called when the
SimpleROPAnalyzer is invoked with the run method, which is called
when the HeadlessSimpleROP script is invoked.

4.	 Add the functionality to append the filename and number of gadgets
found to the summary file, gadget_summary.txt.

We will place our script, HeadlessSimpleROP, in the D:\GhidraScripts
directory and use the headless analyzer to demonstrate its function-
ality. In the next sections, we will run a series of tests invoking the
HeadlessSimpleROP script using items in the directory structure shown in
Figure 16-6. These tests also demonstrate some of the options associated
with headless Ghidra.

Test Scenario 1: Load, Analyze, and Process a Single File

In the following listing, we use headless Ghidra to import, analyze, and
invoke our script to generate a gadget report for a single file (the ^ charac-
ter is the line-continuation character in a Windows command shell):

analyzeHeadless D:\GhidraProjects CH16_ROP ^
 -import D:\ch16\demo_stackframe_32 ^
 -scriptPath D:\GhidraScripts ^
 -postScript HeadlessSimpleROP.java

When executed, the Ghidra headless analyzer creates a project called
CH16_ROP in the GhidraProjects directory, then imports the file demo_stack​
frame_32, which will also be loaded and analyzed. We indicate the direc-
tory in which our script resides using scriptPath. Finally, after analysis, our
script is run on the imported and analyzed file.

Once the command has completed, we check the contents of the
gadget_summary.txt and demo_stackframe_32_gadgets.txt files to determine
if our script worked correctly. The demo_stackframe_32_gadgets.txt contains
16 potential ROP gadgets:

080482c6;ADD ESP,0x8;POP EBX;RET;
080482c9;POP EBX;RET;
08048343;MOV EBX,dword ptr [ESP];RET;
08048360;MOV EBX,dword ptr [ESP];RET;
08048518;SUB ESP,0x4;PUSH EBP;PUSH dword ptr [ESP + 0x2c];PUSH dword ptr [ESP + 0x2c];
 CALL dword ptr [EBX + EDI*0x4 + 0xffffff0c];
0804851b;PUSH EBP;PUSH dword ptr [ESP + 0x2c];PUSH dword ptr [ESP + 0x2c];
 CALL dword ptr [EBX + EDI*0x4 + 0xffffff0c];
0804851c;PUSH dword ptr [ESP + 0x2c];PUSH dword ptr [ESP + 0x2c];
 CALL dword ptr [EBX + EDI*0x4 + 0xffffff0c];
08048520;PUSH dword ptr [ESP + 0x2c];CALL dword ptr [EBX + EDI*0x4 + 0xffffff0c];
08048535;ADD ESP,0xc;POP EBX;POP ESI;POP EDI;POP EBP;RET;
08048538;POP EBX;POP ESI;POP EDI;POP EBP;RET;
08048539;POP ESI;POP EDI;POP EBP;RET;
0804853a;POP EDI;POP EBP;RET;
0804853b;POP EBP;RET;

358 Chapter 16

0804854d;ADD EBX,0x1ab3;ADD ESP,0x8;POP EBX;RET;
08048553;ADD ESP,0x8;POP EBX;RET;
08048556;POP EBX;RET;

Here is the associated entry in gadget_summary.txt:

demo_stackframe_32: Found 16 potential gadgets

Test Scenario 2: Load, Analyze, and Process All Files in a Directory

In this test, we import an entire directory, rather than a file with the import
statement:

analyzeHeadless D:\GhidraProjects CH16_ROP ^
 -import D:\ch16 ^
 -scriptPath D:\GhidraScripts ^
 -postScript HeadlessSimpleROP.java

When the headless analyzer is complete, the following contents are
found in gadget_summary.txt:

demo_stackframe_32: Found 16 potential gadgets
demo_stackframe_32_canary: Found 16 potential gadgets
demo_stackframe_32_stripped: Found 16 potential gadgets
demo_stackframe_64: Found 24 potential gadgets
demo_stackframe_64_canary: Found 24 potential gadgets
demo_stackframe_64_stripped: Found 24 potential gadgets

These are the six files in the root directory shown in Figure 16-6. In addi-
tion to the gadget summary file, we also produced individual gadget files
listing the potential ROP gadgets associated with each file. In the remain-
ing examples, we will concern ourselves only with the gadget summary file.

Test Scenario 3: Load, Analyze, and Process All Files in a Directory Recursively

In this test, we add the -recursive option. This extends the import operation
to recursively visit all files in all subdirectories within the ch16 directory:

analyzeHeadless D:\GhidraProjects CH16_ROP ^
 -import D:\ch16 ^
 -scriptPath D:\GhidraScripts ^
 -postScript HeadlessSimpleROP.java ^
 -recursive

When the headless analyzer is complete, the following contents are found
in gadget_summary.txt, with the subdirectory file appearing at the top of the list:

demo_stackframe_32_sub: Found 16 potential gadgets
demo_stackframe_32: Found 16 potential gadgets
demo_stackframe_32_canary: Found 16 potential gadgets
demo_stackframe_32_stripped: Found 16 potential gadgets

Ghidra in Headless Mode 359

demo_stackframe_64: Found 24 potential gadgets
demo_stackframe_64_canary: Found 24 potential gadgets
demo_stackframe_64_stripped: Found 24 potential gadgets

Test Scenario 4: Load, Analyze, and Process All 32-bit Files in a Directory

In this test, we use an * as a shell wildcard to restrict the import contents to
the files with the 32-bit designator:

analyzeHeadless D:\GhidraProjects CH16ROP ^
 -import D:\ch16\demo_stackframe_32* ^
 -recursive ^
 -postScript HeadlessSimpleROP.java ^
 -scriptPath D:\GhidraScripts

The resulting gadget_summary file contains the following:

demo_stackframe_32: Found 16 potential gadgets
demo_stackframe_32_canary: Found 16 potential gadgets
demo_stackframe_32_stripped: Found 16 potential gadgets

If you know in advance that you’re interested in only the generated
gadget files, use the -readOnly option. This option instructs Ghidra not to
save imported files into the project named in the command, and is useful
for avoiding project clutter from batch-processing many files.

Automated FidDb Creation
In Chapter 13, we started creating a Function ID database (FidDb) popu-
lated with fingerprints of functions taken from a static version of libc. Using
the GUI and Ghidra’s batch file import mode, we imported 1,690 object
files from a libc.a archive. However, we ran into a roadblock when it came to
analyzing the files because the GUI has minimal support for batch analysis.
Now that you are familiar with headless Ghidra, we can use it to complete
our new FidDb.

Batch Import and Analysis

Importing and analyzing 1,690 files from an archive once seemed a daunt-
ing task, but the preceding examples have shown us everything we need to
know to make short work of this task. We consider two cases here and pro-
vide command line examples for each.

If libc.a has not yet been imported into a Ghidra project, we extract the
contents of our libc.a into a directory and then use headless Ghidra to pro-
cess the entire directory:

$ mkdir libc.a && cd libc.a
$ ar x path\to\archive && cd ..
$ analyzeHeadless D:\GhidraProjects CH16 –import libc.a ^
 -processor x86:LE:64:default –cspec gcc –loader ElfLoader ^
 -recursive

360 Chapter 16

The command results in thousands of lines of output as Ghidra reports
its progress on the 1,690 files it processes, but once the command has com-
pleted, you will have a new libc.a folder in your project that contains 1,690
analyzed files.

If we’ve used the GUI to batch import libc.a, but had not processed any
of the 1,690 imported files, the following command line would take care of
the analysis:

$ analyzeHeadless D:\GhidraProjects CH16\libc.a –process

With the entire static archive efficiently imported and analyzed, we can
now use the features of the Function ID plugin to create and populate an
FidDb, as detailed in Chapter 13.

Summary
While GUI Ghidra remains the most straightforward and fully featured
version, running Ghidra in headless mode offers tremendous flexibility in
creating complex tools built around Ghidra’s automated analysis. At this
point, we have covered all of Ghidra’s most commonly used features and
examined ways that you can make Ghidra work for you. It is time to move
on to more advanced features.

Over the course of the next few chapters, we will look at approaches for
some of the more challenging problems that arise while reverse engineer-
ing binaries, including dealing with unknown file formats and unknown
processor architectures by building sophisticated Ghidra extensions. We’ll
also spend some time investigating Ghidra’s decompiler and discuss some
of the ways that compilers can vary in their generation of code to improve
your fluency in reading disassembly listings.

PART IV
A D E E P E R D I V E

Except for a brief example demonstrat-
ing the Raw Binary loader in Chapter 4,

Ghidra has identified the file type and hap-
pily loaded and analyzed all of the files we have

thrown at it. This will not always be the case. At some
point, you are likely to be confronted with a dialog
like the one shown in Figure 17-1. (This particular file
is shellcode, which Ghidra is unable to recognize, as
there is no defined structure, meaningful file extension,
or magic number.)

17
G H I D R A L O A D E R S

364 Chapter 17

Figure 17-1: Raw Binary loader example

So what happened when we tried to import this file? Let’s start with
a high-level view of Ghidra’s process for loading a file:

1.	 In the Ghidra Project window, the user specifies a file to load into
a project.

2.	 The Ghidra Importer polls all of the Ghidra loaders, and each loader
tries to identify the file. Each then responds with a list of load specifica-
tions to populate the Import dialog if it can load the file. (An empty list
means “I can’t load this file.”)

3.	 The Importer collects responses from all of the loaders, builds a list of
loaders that recognize the file, and presents a populated Import dialog
to the user.

4.	 The user chooses a loader and associated information for loading
the file.

5.	 The Importer invokes the user-selected loader that then loads the file.

For the file in Figure 17-1, none of the format-specific loaders responded
with a “yes.” As a result, the task was passed to the only loader willing to
take any file at any time—the Raw Binary loader. This loader performs
almost no work, shifting the analysis burden to the reverse engineer. If you
ever find yourself analyzing similar files that all appear to have the “raw”
format, it may be time to build a specialized loader to help you with some
or all of the loading process. Several tasks need to be undertaken to create
a new loader that Ghidra can use to load a file in a new format.

In this chapter, we first walk you through analysis of a file whose format
is not recognized by Ghidra. This will help you understand the process of
analyzing an unknown file and also make a strong case for building a loader,
which is how we will spend the second half of the chapter.

Ghidra Loaders 365

Unknown File Analysis
Ghidra includes loader modules to recognize many of the more common
executable and archive file formats, but there is no way that Ghidra can
accommodate the ever-increasing number of file formats for storing execut-
able code. Binary images may contain executable files formatted for use
with specific operating systems, ROM images extracted from embedded sys-
tems, firmware images extracted from flash updates, or simply raw blocks of
machine language, perhaps extracted from network packet captures. The
format of these images may be dictated by the operating system (executable
files), the target processor and system architecture (ROM images), or noth-
ing at all (exploit shellcode embedded in application layer data).

Assuming that a processor module is available to disassemble the code
contained in the unknown binary, it will be your job to properly arrange the
file image within Ghidra before informing Ghidra which portions of the
binary represent code and which portions of the binary represent data. For
most processor types, the result of loading a file using the raw format is sim-
ply a list of the contents of the file piled into a single segment, beginning at
address zero, as shown in Listing 17-1.

00000000 4d ?? 4Dh M
00000001 5a ?? 5Ah Z
00000002 90 ?? 90h
00000003 00 ?? 00h
00000004 03 ?? 03h
00000005 00 ?? 00h
00000006 00 ?? 00h
00000007 00 ?? 00h

Listing 17-1: Initial lines of an unanalyzed PE file loaded using the Raw Binary loader

In some cases, depending on the sophistication of the selected proces-
sor module, some disassembly takes place. For example, a selected processor
for an embedded microcontroller can make specific assumptions about the
memory layout of ROM images, or an analyzer with knowledge of common
code sequences associated with a specific processor can optimistically for-
mat any matches as code.

When you are faced with an unrecognized file, arm yourself with as
much information about the file as you can get your hands on. Useful
resources might include notes on how and where the file was obtained, pro-
cessor references, operating system references, system design documenta-
tion, and any memory layout information obtained through debugging or
hardware-assisted analysis (such as via logic analyzers).

In the following section, for the sake of example, we assume that Ghidra
does not recognize the Windows PE file format. PE is a well-known file format
that many readers may be familiar with. More importantly, documents detail-
ing the structure of PE files are widely available, which makes dissecting an
arbitrary PE file a relatively simple task.

366 Chapter 17

Manually Loading a Windows PE File
When you can find documentation on the format of a particular file,
your life will be significantly easier as you attempt to use Ghidra to help
you make sense of the binary. Listing 17-1 shows the first few lines of an
unanalyzed PE file loaded into Ghidra using the Raw Binary loader and
x86:LE:32:default:windows as its language/compiler specification.1 The PE
specification states that a valid PE file begins with an MS-DOS header struc-
ture, beginning with the 2-byte signature, 4Dh 5Ah (MZ), which we see in the
first two lines of Listing 17-1.2 The 4-byte value located at offset 0x3C in the
file contains the offset to the next header we need to find: the PE header.

Two strategies for breaking down the fields of the MS-DOS header are
(1) to define appropriately sized data values for each field in the MS-DOS
header and (2) to use Ghidra’s Data Type Manager functionality to define
and apply an IMAGE_DOS_HEADER structure in accordance with the PE file specifi-
cation. We will look at the challenges associated with option 1 in an example
later in the chapter. In this case, option 2 requires significantly less effort.

When using the Raw Binary loader, Ghidra does not load the Data
Type Manager with the Windows data types, so we can load the archive
containing MS-DOS types, windows_vs12_32.gdt, ourselves. Locate the
IMAGE_DOS_HEADER either by navigating to it within the archive or choosing
ctrl-F to find it in the Data Type Manager window; then drag and drop the
header onto the start of the file. You can also place the cursor on the first
address in the listing and choose DataChoose Data Type (or hotkey T)
from the right-click context menu and enter, or navigate to, the data type in
the resulting Data Type Chooser dialog. Any of these options yields the fol-
lowing listing, with descriptive end-of-line comments describing each field:

00000000 4d 5a WORD 5A4Dh e_magic
00000002 90 00 WORD 90h e_cblp
00000004 03 00 WORD 3h e_cp
00000006 00 00 WORD 0h e_crlc
00000008 04 00 WORD 4h e_cparhdr
0000000a 00 00 WORD 0h e_minalloc
0000000c ff ff WORD FFFFh e_maxalloc
0000000e 00 00 WORD 0h e_ss
00000010 b8 00 WORD B8h e_sp
00000012 00 00 WORD 0h e_csum
00000014 00 00 WORD 0h e_ip
00000016 00 00 WORD 0h e_cs
00000018 40 00 WORD 40h e_lfarlc
0000001a 00 00 WORD 0h e_ovno
0000001c 00 00 00 WORD[4] e_res
 00 00 00
 00 00

1. Choosing Visual Studio as your compiler results in windows being inserted in your language/
compiler specification. For most other compilers, the selection name more closely matches
the display name.

2. Please see https://docs.microsoft.com/en-us/windows/win32/debug/pe-format.

https://docs.microsoft.com/en-us/windows/win32/debug/pe-format

Ghidra Loaders 367

00000024 00 00 WORD 0h e_oemid
00000026 00 00 WORD 0h e_oeminfo
00000028 00 00 00 WORD[10] e_res2
 00 00 00
 00 00 00
0000003c d8 00 00 LONG D8h e_lfanew

The e_lfanew field in the final line of the previous listing has a value of
D8h, indicating that a PE header should be found at offset D8h (216 bytes)
into the binary. Examining the bytes at offset D8h should reveal the magic
number for a PE header, 50h 45h (PE), which indicates that we should apply
an IMAGE_NT_HEADERS structure at offset D8h into the binary. Here is a portion
of the resulting expanded Ghidra listing:

000000d8 IMAGE_NT_HEADERS
 000000d8 DWORD 4550h Signature
 000000dc IMAGE_FILE_HEADER FileHeader
 000000dc WORD 14Ch Machineu
 000000de WORD 5h NumberOfSectionsv
 000000e0 DWORD 40FDFD TimeDateStamp
 000000e4 DWORD 0h PointerToSymbolTable
 000000e8 DWORD 0h NumberOfSymbols
 000000ec WORD E0h SizeOfOptionalHeader
 000000ee WORD 10Fh Characteristics
 000000f0 IMAGE_OPTIONAL_HEADER32 OptionalHeader
 000000f0 WORD 10Bh Magic
 000000f2 BYTE '\u0006' MajorLinkerVersion
 000000f3 BYTE '\0' MinorLinkerVersion
 000000f4 DWORD 21000h SizeOfCode
 000000f8 DWORD A000h SizeOfInitializedData
 000000fc DWORD 0h SizeOfUninitializedData
 00000100 DWORD 14E0h AddressOfEntryPointw
 00000104 DWORD 1000h BaseOfCode
 00000108 DWORD 1000h BaseOfData
 0000010c DWORD 400000h ImageBasex
 00000110 DWORD 1000h SectionAlignmenty
 00000114 DWORD 1000h FileAlignmentz

At this point, we have revealed a number of interesting pieces of infor-
mation that will help us to further refine the layout of the binary. First, the
Machine field  in a PE header indicates the target processor type for which
the file was built. The value 14Ch indicates that the file is for use with x86
processor types. Had the machine type been something else, such as 1C0h
(ARM), we would need to close the CodeBrowser, right-click our file in the
Project window to select the Set Language option, and choose the correct
language setting.

The ImageBase field  indicates the base virtual address for the loaded
file image. Using this information, we can incorporate some virtual address
information into the CodeBrowser. Using the WindowMemory Map menu
option, we are shown the list of memory blocks (Figure 17-2) that make up
the current program. In this case, a single memory block contains all of the

368 Chapter 17

program’s content. The Raw Binary loader has no means of determining
appropriate memory addresses for any of our program’s content, so it places
all of the content in a single memory block starting at address zero.

Figure 17-2: The Memory Map window

The Memory Map window’s tool buttons, shown in Figure 17-3, are
used to manipulate memory blocks. In order to properly map our image
into memory, the first thing we need to do is set the base address specified
in the PE header.

Add Block
This button displays the Add Memory Block dialog to allow you
to add information needed to create a new memory block.

Move Block
When a memory block is selected, this option allows you to
modify the start of the end address of the block, effectively
moving it.

Split Block
When a memory block is selected, this option allows you to
split the memory block into two memory blocks.

Expand Up
When a memory block is selected, this option allows you to
append additional bytes before the memory block.

Expand Down
When a memory block is selected, this option allows you to
append additional bytes after the memory block.

Merge Blocks
When two (or more) memory blocks are selected, this option
merges them into one.

Delete Block Deletes all selected memory blocks.

Set Image Base
This option allows you to choose (or modify) the base address
of a program.

Figure 17-3: Memory Map window tools

Ghidra Loaders 369

The ImageBase field  tells us that the correct base address for this binary
is 00400000. We can use the Set Image Base option to adjust the image base
from the default to this value. Once we click OK, all Ghidra windows will
be updated to reflect the new memory layout of the program, as shown in
Figure 17-4. (Be careful using this option after you already have multiple
memory blocks defined; it will shift every memory block the same distance
as the base memory block.)

Figure 17-4: Memory Map after setting image base

The AddressOfEntryPoint field  specifies the relative virtual address
(RVA) of the program entry point. In the PE file specification, an RVA is a
relative offset from the program’s base virtual address, while the program
entry point is the address of the first instruction within the program file
that will be executed. In this case, an entry point RVA of 14E0h indicates
that the program will begin execution at virtual address 4014E0h (400000h
+ 14E0h). This is our first indication of where we should begin looking for
code within the program. Before we can do that, however, we need to prop-
erly map the remainder of the program to appropriate virtual addresses.

The PE format uses sections to describe the mapping of file content
to memory ranges. By parsing the section headers for each section in the
file, we can complete the basic virtual memory layout of the program. The
NumberOfSections field  indicates the number of sections contained in a PE
file (in this case, five). According to the PE specification, an array of sec-
tion header structures immediately follows the IMAGE_NT_HEADERS structure.
Individual elements in the array are IMAGE_SECTION_HEADER structures, which
we define in the Ghidra structures editor and apply (five times, in this case)
to the bytes following the IMAGE_NT_HEADERS structure. Alternatively, you
can select the first byte of the first section header and set its type to IMAGE​
_SECTION_HEADER[n], where n is 5 in this example, to collapse the entire array
into a single Ghidra display line.

The FileAlignment field  and the SectionAlignment field  indicate how
the data for each section is aligned within the file and how that same data
will be aligned when mapped into memory. In our example, both fields are
set to align on 1000h byte offsets.3 In the PE format, there is no requirement

3. Alignment describes the starting address or offset of a block of data. The address or offset
must be an even multiple of the alignment value. For example, when data is aligned to a 200h
(512) byte boundary, it must begin at an address (or offset) that is divisible by 200h.

370 Chapter 17

that these two numbers be the same. The fact that they are the same does make
our lives easier, however, as it means that offsets to content within the disk file
are identical to offsets to the corresponding bytes in the loaded memory image
of the file. Understanding how sections are aligned is important in helping us
avoid errors when we manually create sections for our program.

After structuring each of the section headers, we have enough infor-
mation to create additional segments within the program. Applying an
IMAGE_SECTION_HEADER template to the bytes immediately following the IMAGE​
_NT_HEADERS structure yields the first section header in our Ghidra listing:

004001d0 IMAGE_SECTION_HEADER
 004001d0 BYTE[8] ".text" Nameu
 004001d8 _union_226 Misc
 004001d8 DWORD 20A80h PhysicalAddress
 004001d8 DWORD 20A80h VirtualSize
 004001dc DWORD 1000h VirtualAddressv
 004001e0 DWORD 21000h SizeOfRawDataw
 004001e4 DWORD 1000h PointerToRawDatax
 004001e8 DWORD 0h PointerToRelocations
 004001ec DWORD 0h PointerToLinenumbers
 004001f0 WORD 0h NumberOfRelocations
 004001f2 WORD 0h NumberOfLinenumbers

The Name field  informs us that this header describes the .text sec-
tion. All of the remaining fields are potentially useful in formatting the
listing, but we will focus on the three that describe the layout of the sec-
tion. The PointerToRawData field  (1000h) indicates the file offset at which
the content of the section can be found. Note that this value is a multiple
of the file alignment value, 1000h. Sections within a PE file are arranged in
increasing file offset (and virtual address) order. Since this section begins
at file offset 1000h, the first 1000h bytes of the file contain file header data
and padding (if there are fewer than 1000h bytes of header data, the sec-
tion must be padded to a 1000h byte boundary). Therefore, even though the
header bytes do not, strictly speaking, constitute a section, we can highlight
the fact that they are logically related by grouping them into a memory
block in the Ghidra listing.

Ghidra offers two ways to create new memory blocks, both accessed
through the Memory Map window from Figure 17-2. The Add Block tool
(refer to Figure 17-3) opens the dialog shown in Figure 17-5, which is used to
add new memory blocks that do not overlap with any existing memory block.
The dialog asks for the name of the new memory block, its start address, and
its length. The block may be initialized with a constant value (zero-filled, for
example), initialized with content from the current file (you indicate the file
offset from which the content is taken), or left uninitialized.

The second way to create a new block is to split an existing block. To split
a block in Ghidra, you must first select the block to split in the Memory Map
window and then use the Split Block tool (refer to Figure 17-3) to open the dia-
log shown in Figure 17-6. We are just starting out, so we have only one block to
split. We start by splitting the file at the beginning of the .text section to carve
the program headers off of the beginning of the existing block. When we enter

Ghidra Loaders 371

the length (1000h) of our block to split (the header section), Ghidra automati-
cally computes the remaining address and length fields. All that is left is to pro-
vide a name for the new block being created at the split point. Here, we use the
name contained in the first section header: .text.

Figure 17-5: The Add Memory Block dialog

Figure 17-6: The Split Block dialog

372 Chapter 17

We now have two blocks in our memory map. The first block contains
the correctly sized program headers. The second block contains the correctly
named, but not correctly sized, .text section. This situation is reflected in
Figure 17-7, where we can see that the size of the .text section is 0x29000 bytes.

Figure 17-7: Memory Map window after splitting a block

Returning to the header for the .text section, we see that the Virtual​
Address field  (1000h) is an RVA that specifies the memory offset (from
ImageBase) at which the section content begins and that the SizeOfRawData
field  (21000h) indicates how many bytes of data are present in the file. In
other words, this particular section header tells us that the .text section is
created by mapping the 21000h bytes from file offsets 1000h-21FFFh to virtual
addresses 401000h-421FFFh.

Because we split the original memory block at the beginning of the .text
section, the newly created .text section temporarily contains all remaining
sections, since its current size of 0x29000 is greater than the correct size of
0x21000. By consulting the remaining section headers and repeatedly splitting
the last memory block, we make progress toward a correct final memory map
for the program. However, a problem arises when we reach the following pair
of section headers:

00400220 IMAGE_SECTION_HEADER
 00400220 BYTE[8] ".data" Name
 00400228 _union_226 Misc
 00400228 DWORD 5624h PhysicalAddress
 00400228 DWORD 5624h VirtualSizeu
 0040022c DWORD 24000h VirtualAddressv
 00400230 DWORD 4000h SizeOfRawDataw
 00400234 DWORD 24000h PointerToRawData
 00400238 DWORD 0h PointerToRelocations
 0040023c DWORD 0h PointerToLinenumbers
 00400240 WORD 0h NumberOfRelocations
 00400242 WORD 0h NumberOfLinenumbers
 00400244 DWORD C0000040h Characteristics
00400248 IMAGE_SECTION_HEADER
 00400248 BYTE[8] ".idata" Name
 00400250 _union_226 Misc
 00400250 DWORD 75Ch PhysicalAddress
 00400250 DWORD 75Ch VirtualSize

Ghidra Loaders 373

 00400254 DWORD 2A000h VirtualAddressx
 00400258 DWORD 1000h SizeOfRawData
 0040025c DWORD 28000h PointerToRawDatay
 00400260 DWORD 0h PointerToRelocations
 00400264 DWORD 0h PointerToLinenumbers
 00400268 WORD 0h NumberOfRelocations
 0040026a WORD 0h NumberOfLinenumbers
 0040026c DWORD C0000040h Characteristics

The .data section’s virtual size u is larger than its file size . What does
this mean and how does it impact our memory map? The compiler has
concluded that the program requires 5624h bytes of runtime static data, but
supplies only 4000h bytes to initialize that data. The remaining 1624h bytes of
runtime data will not be initialized with content from the executable file, as
they are allocated for uninitialized global variables. (It is not uncommon to
see such variables allocated within a dedicated program section named .bss.)

To finalize our memory map, we must choose an appropriate size for
the .data section and ensure that subsequent sections are correctly mapped
as well. The .data section maps 4000h bytes of file data from file offset 24000h
to memory address 424000h  (ImageBase + VirtualAddress). The next sec-
tion (.idata) maps 1000h bytes from file offset 28000h  to memory address
42A000h . If you’re paying close attention, you may have noticed that the
.data section appears to occupy 6000h bytes in memory (42A000h–424000h),
and in fact it does. The reasoning behind this size is that the .data section
requires 5624h bytes, but this is not an even multiple of 1000h, so the section
will be padded up to 6000h bytes so that the .idata section properly adheres
to the section alignment requirement specified in the PE header. In order to
finish our memory map, we must carry out the following actions:

1.	 Split the .data section using a length of 4000h. The resulting .idata
section will, for the moment, start at 428000h.

2.	 Move the .idata section to address 42A000h by clicking the Move Block
icon (Figure 17-3) and setting the start address to 42A000h.

3.	 Split off, and, if necessary, move any remaining sections to achieve the
final program layout.

4.	 Optionally, expand any sections whose virtual size aligns to a higher
boundary than their file size. In our example, the .data section’s virtual
size, 5624h, aligns to 6000h, while its file size, 4000h, aligns to 4000h. Once
we have created room by moving the .idata section to its proper loca-
tion, we will expand the .data section from 4000h to 6000h bytes.

To expand the .data section, highlight the .data section in the Memory
Map window and then select the Expand Down tool (refer to Figure 17-3)
to modify the end address (or length) of the section. The Expand Block
Down dialog is shown in Figure 17-8. (This operation will add the .exp
extension to the section name.)

374 Chapter 17

Figure 17-8: The Expand Block Down dialog

Our final memory map, obtained after the series of block moves, splits,
and expansions, appears in Figure 17-9. In addition to the section name,
start and end addresses, and length columns, read (R), write (W), and exe-
cute (X) permissions are shown for each section in the form of checkboxes.
For PE files, these values are specified via bits in the Characteristics field of
each section header. Consult the PE specification for information on pars-
ing the Characteristics field to properly set permissions for each section.

Figure 17-9: Final Memory Map window after creating all sections

With all program sections properly mapped, we need to locate some
bytes that have a high likelihood of being code. The AddressOfEntryPoint
(RVA 14E0h, or virtual address 4014E0h) leads us to the program’s entry point,
which is known to be code. Navigating to this location, we see the following
raw byte listing:

004014e0 ?? 55h U
004014e1 ?? 8Bh
004014e2 ?? ECh
...

Using the context menu to disassemble (hotkey D) from address 004014e0
starts the recursive descent process (whose progress may be tracked in the
lower-right corner of the Code Browser) and causes the bytes above to be
reformatted as the code seen here:

 FUN_004014e0
004014e0 PUSH EBP

Ghidra Loaders 375

004014e1 MOV EBP,ESP
004014e3 PUSH -0x1
004014e5 PUSH DAT_004221b8
004014ea PUSH LAB_004065f0
004014ef MOV EAX,FS:[0x0]
004014f5 PUSH EAX

At this point, we would hope that we had enough code to perform a
comprehensive analysis of the binary. If we had fewer clues regarding the
memory layout of the binary, or the separation between code and data
within the file, we would need to rely on other sources of information to
guide our analysis. Some potential approaches to determining correct
memory layout and locating code include the following:

•	 Use processor reference manuals to understand where reset vectors may
be found.

•	 Search for strings in the binary that might suggest the architecture,
operating system, or compiler used to build the binary.

•	 Search for common code sequences such as function prologues associ-
ated with the processor for which the binary was built.

•	 Perform statistical analysis over portions of the binary to find regions
that look statistically similar to known binaries.

•	 Look for repetitive data sequences that might be tables of addresses
(for example, many nontrivial 32-bit integers that all share the same
upper 12 bits).4 These may be pointers and may provide clues regarding
the memory layout of the binary.

In rounding out our discussion of loading raw binaries, consider that
you would need to repeat each step covered in this section every time you
open a binary with the same format that remains unknown to Ghidra.
Along the way, you might automate some of your actions by writing scripts
that perform some of the header parsing and segment creation for you.
This is exactly the purpose of a Ghidra loader module! In the next section,
we’ll write a simple loader module to introduce Ghidra’s loader module
architecture, before moving on to more sophisticated loader modules that
perform some common tasks associated with loading files that adhere to a
structured format.

Example 1: SimpleShellcode Loader Module
At the beginning of this chapter, we tried to load a shellcode file into Ghidra
and were referred to the Raw Binary loader. In Chapter 15, we used Eclipse and
GhidraDev to create an analyzer module and then added it as an extension

4. Trivial numbers typically have very few significant digits, and include –1, 0, and other
small integers. Interesting numbers tend to have many significant digits, usually on the
order of an architecture’s bit size, and as such are more likely to yield more relevant
search results.

376 Chapter 17

to Ghidra. Recall that one of the module options provided by Ghidra was to
create a loader module. In this chapter, we will build a simple loader mod-
ule as an extension to Ghidra to load shellcode. As in our Chapter 15 exam-
ple, we will use a simplified software development process, as this is just a
simple demonstration project. Our process will include the following steps:

1.	 Define the problem.

2.	 Create the Eclipse module.

3.	 Build the loader.

4.	 Add the loader to our Ghidra installation.

5.	 Test the loader from our Ghidra installation.

W H AT IS SHE L LCODE A ND W H Y DO W E C A R E?

To be pedantic, shellcode is raw machine code whose sole purpose is to
spawn a user space shell process (for example, /bin/sh), most often by commu-
nicating directly with the operating system kernel using system calls. The use of
system calls eliminates any dependencies on user space libraries such as libc.
The term raw in this case should not be confused with a Ghidra Raw Binary
loader. Raw machine code is code that has no packaging in the form of file
headers and is quite compact when compared to a compiled executable that
carries out the same actions. Compact shellcode for x86-64 on Linux may be
as small as 30 bytes, but a compiled version of the following C program, which
also spawns a shell, is still over 6000 bytes, even after it has been stripped:

#include <stdlib.h>
int main(int argc, char **argv, char **envp) {
 execve("/bin/sh", NULL, NULL);
}

The drawback to shellcode is that it can’t be run directly from the command
line. Instead, it is typically injected into an existing process, and action is taken
to transfer control to the shellcode. Attackers may attempt to place shellcode into
a process’s memory space, in conjunction with other input consumed by the pro-
cess, and then trigger a control flow hijack vulnerability that allows the attacker
to redirect the process’s execution to their injected shellcode. Because shellcode
is often embedded within other input intended for a process, shellcode may be
observed in network traffic intended for a vulnerable server process, or within a
file meant to be opened by a vulnerable viewing application.

Over time, the term shellcode has come to be used generically to describe
any raw machine code incorporated into an exploit, regardless of whether the
execution of that machine code spawns a user space shell on the target system.

Ghidra Loaders 377

Step 0: Take a Step Back
Before we can even start to define the problem, we need to understand (a)
what Ghidra currently does with a shellcode file and (b) what we would like
Ghidra to do with a shellcode file. Basically, we have to load and analyze a
shellcode file as a raw binary and then use the information we discover to
inform the development of our shellcode loader (and potentially an ana-
lyzer). Fortunately for us, most shellcode is not nearly as complicated as a
PE file. Let’s take a deep breath and dive into the world of shellcode.

Let’s start by analyzing the shellcode file we tried to load at the beginning
of the chapter. We loaded the file and were referred to the Raw Binary loader
as our only option, as shown earlier in Figure 17-1. There was no recommenda-
tion for a language as the Raw Binary loader just “inherited” our file because
none of the other loaders wanted it. Let’s select a relatively common language/​
compiler specification, x86:LE:32:default:gcc, as shown in Figure 17-10.

Figure 17-10: Import dialog with language/compiler specification

We click OK and get an Import Results Summary window that includes
the content shown in Figure 17-11.

Figure 17-11: Import Results Summary for shellcode file

378 Chapter 17

Based on the contents of the enlarged block in the summary, we know
that there are only 78 bytes in the file in one memory/data block, and that
is about all the help we get from the Raw Binary loader. If we open the file
in the CodeBrowser, Ghidra will offer to auto analyze the file. Regardless
of whether or not Ghidra auto analyzes the file, the Listing window in the
CodeBrowser displays the content shown in Figure 17-12. Note that there is
only one section in Program Trees, the Symbol Tree is empty, and the Data
Type Manager has no entries in the folder specific to the file. In addition,
the Decompiler window remains empty, as no functions have been identi-
fied in the file.

Figure 17-12: CodeBrowser window after loading (or analyzing)
the shellcode file

Right-click the first address in the file and choose Disassemble (hotkey D)
from the context menu. In the Listing window, we now see something we can
work with—a list of instructions! Listing 17-2 shows the instructions after
disassembly and after we have done some analysis on the file. The end-of-line
comments document some of the analysis of this short file.

0000002b INC EBX
0000002c MOV AL,0x66 ; 0x66 is Linux sys_socketcall
0000002e INT 0x80 ; transfers flow to kernel to
 ; execute system call

Ghidra Loaders 379

00000030 XCHG EAX,EBX
00000031 POP ECX
 LAB_00000032 XREF[1]: 00000038(j)
00000032 PUSH 0x3f ; 0x3f is Linux sys_dup2
00000034 POP EAX
00000035 INT 0x80 ; transfers flow to kernel to
 ; execute system call
00000037 DEC ECX
00000038 JNS LAB_00000
0000003a PUSH 0x68732f2f ; 0x68732f2f converts to "//sh"
0000003f PUSH 0x6e69622f ; 0x6e69622f converts to "/bin"
00000044 MOV EBX,ESP
00000046 PUSH EAX
00000047 PUSH EBX
00000048 MOV ECX,ESP
0000004a MOV AL,0xb ; 0xb is Linux sys_execve which
 ; executes a specified program
0000004c INT 0x80 ; transfers flow to kernel to
 ; execute system call

Listing 17-2: Disassembled 32-bit Linux shellcode

Based on our analysis, the shellcode invokes the Linux execve system call
(at 0000004c) to launch /bin/sh (which was pushed onto the stack at 0000003a
and 000003f). The fact that these instructions have meaning to us indicates
that we likely chose an appropriate language and disassembly starting point.

We now know enough about the loading process to define our loader.
(We also have enough information to build a simple shellcode analyzer, but
that is a task for another day.)

Step 1: Define the Problem
Our task is to design and develop a simple loader that will load shellcode
into our Listing window and set the entry point, which will facilitate auto
analysis. The loader needs to be added to Ghidra and be available as a
Ghidra Loader option. It also needs to be able to respond to the Ghidra
Importer poll in an appropriate manner: the same way as the Raw Binary
loader does. This will make our new loader a second catchall loader option.
As a side note, all of the examples will utilize the FlatProgramAPI. While
the FlatProgramAPI is not generally used for building extensions, its use
will reinforce the scripting concepts presented in Chapter 14 that you are
likely to use when developing Ghidra scripts in Java.

Step 2: Create the Eclipse Module
As discussed in Chapter 15, use GhidraDev4NewGhidra Module Project
to create a module called SimpleShellcode that uses the Loader Module
template. This will create a file called SimpleShellcodeLoader.java in the src​
/main/java folder within the SimpleShellcode module. This folder hierarchy
is shown in context in Figure 17-13.

380 Chapter 17

Figure 17-13: SimpleShellcode hierarchy

Step 3: Build the Loader
A partial image of the loader template SimpleShellcodeLoader.java is shown
in Figure 17-14. The functions have been collapsed so that you can see all
of the loader methods provided in the loader template. Recall that Eclipse
will recommend imports if you need them as you develop your code, so you
can jump right into coding and accept the recommended import statements
when Eclipse detects that you need them.

Figure 17-14: SimpleShellcodeLoader template

Within the loader template in Figure 17-14 are six task tags to the left of
the line numbers that indicate where you should start your development.
We will expand each section as we address specific tasks and include the
before and after content associated with each task so you will understand
how you need to modify the template. (Some content will be wrapped or
reformatted for readability and comments minimized to conserve space.)
Unlike the analyzer module you wrote in Chapter 15, this module does not
require any obvious class member variables, so you can jump right into the
tasks at hand.

Step 3-1: Document the Class

When you expand the first task tag, you see the following task description:

/**
 * TODO: Provide class-level documentation that describes what this
 * loader does.
 */

Ghidra Loaders 381

This task involves replacing the existing TODO comments with comments
that describe what the loader does:

/*
 * This loader loads shellcode binaries into Ghidra,
 * including setting an entry point.
 */

Step 3-2: Name and Describe the Loader

Expanding the next task tag reveals a TODO comment and the string you
need to edit. This makes it easy to identify where you should start working.
The second task contains the following:

public String getName() {
 // TODO: Name the loader. This name must match the name
 // of the loader in the .opinion files
 return "My loader";
}

Change the string  to something meaningful. You don’t need to worry
about matching the name in the .opinion files, as they are not applicable to
loaders that will accept any files. You will see .opinion files when you get
to the third example. Ignoring the .opinion file comment in the template
results in the following code:

public String getName() {
 return "Simple Shellcode Loader";
}

Step 3-3: Determine If the Loader Can Load This File

The second step in the loading process we described at the beginning of
the chapter involved the Importer loader poll. This task requires you to
determine if your loader can load the file and provide a response to the
Importer through your method’s return value:

public Collection<LoadSpec> findSupportedLoadSpecs(ByteProvider provider)
 throws IOException {
 List<LoadSpec> loadSpecs = new ArrayList<>();

 // TODO: Examine the bytes in 'provider' to determine if this loader
 // can load it. If it can load it, return the appropriate load
 // specifications.
 return loadSpecs;
}

Most loaders do this by examining the content of the file to find a
magic number or header structure. The ByteProvider input parameter is a
Ghidra-provided read-only wrapper around an input file stream. We are

382 Chapter 17

going to simplify our task and adopt the LoadSpec list that the Raw Binary
loader uses, which ignores file content and simply lists all possible LoadSpecs.
We will then give our loader a lower priority than the Raw Binary loader so
that if a more specific loader exists, it will automatically have a higher prior-
ity in the Ghidra Import dialog.

public Collection<LoadSpec> findSupportedLoadSpecs(ByteProvider provider)
 throws IOException {

 // The List of load specs supported by this loader
 List<LoadSpec> loadSpecs = new ArrayList<>();
 List<LanguageDescription> languageDescriptions =
 getLanguageService().getLanguageDescriptions(false);
 for (LanguageDescription languageDescription : languageDescriptions) {
 Collection<CompilerSpecDescription> compilerSpecDescriptions =
 languageDescription.getCompatibleCompilerSpecDescriptions();

 for (CompilerSpecDescription compilerSpecDescription :
 compilerSpecDescriptions) {
 LanguageCompilerSpecPair lcs =
 new LanguageCompilerSpecPair(languageDescription.getLanguageID(),
 compilerSpecDescription.getCompilerSpecID());
 loadSpecs.add(new LoadSpec(this, 0, lcs, false));
 }
 }
 return loadSpecs;
}

Every loader has an associated tier and tier priority. Ghidra defines four
tiers of loaders, ranging from highly specialized (tier 0) to format agnostic
(tier 3). When multiple loaders are willing to accept a file, Ghidra sorts the
loader list displayed to the user in increasing tier order. Loaders within
the same tier are further sorted in increasing tier priority order (that is,
tier priority 10 is listed before tier priority 20).

For example, the PE loader and the Raw Binary loader are both willing
to load PE files, but the PE loader is a better choice to load this format (its
tier is 1), so it will appear before the Raw Binary loader (tier 3, tier priority
100) in the list. We set the Simple Shellcode Loader’s tier to 3 (LoaderTier.
UNTARGETED_LOADER) and priority to 101, so it will be given the lowest priority
by the Importer when populating the Import window with candidate load-
ers. To accomplish this, add the following two methods to your loader:

@Override
public LoaderTier getTier() {
 return LoaderTier.UNTARGETED_LOADER;
}
@Override
public int getTierPriority() {
 return 101;
}

Ghidra Loaders 383

Step 3-4: Load the Bytes

The following method shown before and after we edit the content does
the heavy lifting of loading content from the file being imported into our
Ghidra project (in this case, it loads the shellcode):

protected void load(ByteProvider provider, LoadSpec loadSpec,
 List<Option> options, Program program, TaskMonitor monitor,
 MessageLog log) throws CancelledException, IOException {

 // TODO: Load the bytes from 'provider' into the 'program'.
}

protected void load(ByteProvider provider, LoadSpec loadSpec,
 List<Option> options, Program program, TaskMonitor monitor,
 MessageLog log) throws CancelledException, IOException {

  FlatProgramAPI flatAPI = new FlatProgramAPI(program);
 try {
 monitor.setMessage("Simple Shellcode: Starting loading");
 // create the memory block we're going to load the shellcode into
 Address start_addr = flatAPI.toAddr(0x0);

  MemoryBlock block = flatAPI.createMemoryBlock("SHELLCODE",
 start_addr, provider.readBytes(0, provider.length()), false);
 // make this memory block read/execute but not writeable

  block.setRead(true);
 block.setWrite(false);
 block.setExecute(true);
 // set the entry point for the shellcode to the start address

  flatAPI.addEntryPoint(start_addr);
 monitor.setMessage("Simple Shellcode: Completed loading");
 } catch (Exception e) {
 e.printStackTrace();
 throw new IOException("Failed to load shellcode");
 }
}

Note that, unlike the scripts in Chapters 14 and 15, which inherit from
GhidraScript (and ultimately FlatProgramAPI), our loader class has no direct
access to the Flat API. Therefore, to simplify our access to some commonly
used API classes, we instantiate our own FlatProgramAPI object . Next, we
create a MemoryBlock named SHELLCODE at address zero  and populate it with
the entire contents of the input file. We take the time to set some reason-
able permissions  on the new memory region before adding an entry
point  that informs Ghidra where it should begin its disassembly.

Adding an entry point is a very important step for a loader. The
presence of entry points is the primary means by which Ghidra locates
addresses known to contain code (as opposed to data). As it parses the
input file, the loader is ideally suited to discover any entry points and
identify them to Ghidra.

384 Chapter 17

Step 3-5: Register Custom Loader Options

Some loaders offer users the option to modify various parameters asso-
ciated with the loading process. You may override the getDefaultOptions
function to provide Ghidra with a list of custom options available for
your loader:

public List<Option> getDefaultOptions(ByteProvider provider, LoadSpec
 loadSpec,DomainObject domainObject, boolean isLoadIntoProgram) {
 List<Option> list = super.getDefaultOptions(provider, loadSpec,

 domainObject, isLoadIntoProgram);
 // TODO: If this loader has custom options, add them to 'list'
 list.add(new Option("Option name goes here",
 Default option value goes here));
 return list;
}

Since this loader is just for demonstration purposes, we will not add any
options. Options for a loader might include setting an offset into the file
at which to start reading, and setting the base address at which to load the
binary. To view the options associated with any loader, click the Options . . .
button on the bottom right of the Import dialog (refer to Figure 17-1).

public List<Option> getDefaultOptions(ByteProvider provider, LoadSpec
 loadSpec,DomainObject domainObject, boolean isLoadIntoProgram) {
 // no options
 List<Option> list = new ArrayList<Option>();
 return list;
}

Step 3-6: Validate Options

The next task is to validate the options:

public String validateOptions(ByteProvider provider, LoadSpec loadSpec,
 List<Option> options, Program program) {

 // TODO: If this loader has custom options, validate them here.
 // Not all options require validation.
 return super.validateOptions(provider, loadSpec, options, program);
}

As we do not have any options, we just return null:

public String validateOptions(ByteProvider provider, LoadSpec loadSpec,
 List<Option> options, Program program) {

 // No options, so no need to validate
 return null;
}

Ghidra Loaders 385

T E S T ING MODUL E S F ROM ECL IP SE

If you are one of those programmers who doesn’t always get the code exactly
right on the first try, you can avoid the multiple “export, start Ghidra, import
extension, add extension to import list, choose extension, restart Ghidra,
test extension” cycles by running the new code from Eclipse. If you choose
RunRun As from the Eclipse menu, you will be given the option to run as
Ghidra (or as Ghidra Headless). This will launch Ghidra, and you can import
a file to the current project. Your loader will be included in the import options,
and all console feedback will be provided in the Eclipse console. You can inter-
act with the file in Ghidra, just like any other file. You can then exit out of your
Ghidra project without saving and either (1) adjust the code, or (2) “export,
start Ghidra, import extension, add extension to import list, choose extension,
restart Ghidra, and test extension” just one time.

Step 4: Add the Loader to Our Ghidra Installation
After confirming that this module functions correctly, export the Ghidra
module extension from Eclipse and then install the extension in Ghidra,
just as we did with the SimpleROPAnalyzer module in Chapter 15.
Select GhidraDevExportGhidra Module Extension, choosing the
SimpleShellcode module, and follow the same click-through process that
you did in Chapter 15.

To import the extension into Ghidra, choose FileInstall Extensions
from the Ghidra Project window. Add the new loader to the list and select
it. Once you restart Ghidra, the new loader should be available as an
option, but you should test to be sure.

Step 5: Test the Loader Within Ghidra
Our simplified test plan is just to demonstrate functionality. SimpleShellcode
passed an acceptance test consisting of the following criteria:

1.	 (Pass) SimpleShellcode appears as a loader option with lower priority
than Raw Binary.

2.	 (Pass) SimpleShellcode loads a file and sets the entry point.

Test case 1 passed, as shown in Figure 17-15. A second confirmation
is shown in Figure 17-16, where the PE file analyzed earlier in the chapter
is being loaded. In both cases, we see that the Simple Shellcode Loader
option has the lowest priority in the Format list.

386 Chapter 17

Figure 17-15: Import window with our new loader listed as an option

Figure 17-16: Import window with our new loader listed as an option
for a PE file

Choose the language specification based on the information available
about the binary and how it was obtained. Let’s assume that the shellcode
was captured from packets headed for an x86 box. In that case, selecting
x86:LE:32:default:gcc for our language/compiler specification is probably
a good starting point.

Ghidra Loaders 387

After we select a language and click OK for the file shown in Figure 17-15,
the binary will be imported into our Ghidra project. We can then open the
program in the CodeBrowser, and Ghidra will provide us an option to ana-
lyze the file. If we accept the analysis, we will see the following listing:

 undefined FUN_00000000()
 undefined AL:1 <RETURN>
 undefined4 Stack[-0x10]:4 local_10 XREF[1]: 00000022(W)
 FUN_00000000 XREF[1]: Entry Point(*)u
00000000 31 db XOR EBX,EBX
00000002 f7 e3 MUL EBX
00000004 53 PUSH EBX
00000005 43 INC EBX
00000006 53 PUSH EBX
00000007 6a 02 PUSH 0x2
00000009 89 e1 MOV ECX,ESP
0000000b b0 66 MOV AL,0x66
0000000d cd 80 INT 0x80
0000000f 5b POP EBX
00000010 5e POP ESI
00000011 52 PUSH EDX
00000012 68 02 00 11 5c PUSH 0x5c110002

An entry point  is identified, so Ghidra is able to provide us with a
disassembly to begin our analysis.

SimpleShellcodeLoader was a trivial example, as shellcode is generally
found embedded within some other data. For demonstration purposes, we
will use our loader module as a base to create a loader module that extracts
shellcode from C source files and loads the shellcode for analysis. This may,
for example, allow us to build shellcode signatures that Ghidra can recog-
nize in other binaries. We will not go into great depth for each step, as we
are just augmenting the capabilities of our existing shellcode loader.

Example 2: Simple Shellcode Source Loader
Since modules provide a way to organize code, and the SimpleShellcode
module you created has everything required to create a loader, you don’t
need to create a new module. Simply choose File4NewFile from the
Eclipse menu and add a new file (SimpleShellcodeSourceLoader.java) to your
SimpleShellcode src/main/java folder. By doing this, all of your new loaders
will be included in your new Ghidra extension.

To make life simple, paste the contents of your existing SimpleShellcode​
Loader.java into this new file and update the comments about what the
loader does. The following steps highlight the parts of the existing loader
that you need to change to make the new loader work as expected. For the
most part, you will be adding onto the existing code.

388 Chapter 17

Update 1: Modify the Response to the Importer Poll
The simple source loader is going to make its decision based strictly on the
file extension. If the file does not end in .c, the loader will return an empty
loadSpecs list. If the file does end with .c, it will return the same loadSpecs list
that it did for the previous loader. To make this work, you need to add the
following test to the findSupportLoadSpecs method:

// The List of load specs supported by this loader
List<LoadSpec> loadSpecs = new ArrayList<>();
// Activate loader if the filename ends in a .c extension
if (!provider.getName().endsWith(".c")) {
 return loadSpecs;
}

We’ve also decided that our loader deserves a higher priority than the
Raw Binary loader because ours identifies a particular type of file to accept
and is better suited for that type of file. This is done by returning a higher
priority (lower value) from our getTierPriority method:

public int getTierPriority() {
 // priority of this loader
 return 99;
}

Update 2: Find the Shellcode in the Source Code
Recall that shellcode is just raw machine code that does something useful
for us. The individual bytes in the shellcode will lie in the range 0..255, and
many of these values fall outside the range of ASCII printable characters.
Therefore, when shellcode is embedded into a source file, much of it must
be represented using hex escape sequences such as \xFF. Strings of this sort
are rather unique, and we can build a regular expression to help our loader
identify them. The following instance variable declaration describes the
regular expression that all of the functions in our loader may use to find
shellcode bytes with the selected C file:

private String pattern = "\\\\x[0-9a-fA-F]{1,2}";

Within the load method, the loader parses the file looking for patterns
that match the regular expression to help calculate the amount of memory
needed when loading the file into Ghidra. As shellcode is frequently not
contiguous, the loader should parse the entire file looking for shellcode
regions to load from the file.

// set up the regex matcher
CharSequence provider_char_seq =
 new String(provider.readBytes(0, provider.length()), "UTF-8");
Pattern p = Pattern.compile(pattern);
Matcher m = p.matcher(provider_char_seq);

Ghidra Loaders 389

// Determine how many matches (shellcode bytes) were found so that we can
// correctly size the memory region, then reset the matcher
int match_count = 0;
while (m.find()) {

  match_count++;
}
m.reset();

After loading the entire contents of the input file , we count all of the
matches  against our regular expression .

Update 3: Convert Shellcode to Byte Values
The load() method next needs to convert the hex escape sequences into
byte values and put them in a byte array:

byte[] shellcode = new byte[match_count];
// convert the hex representation of bytes in the source code to actual
// byte values in the binary we're creating in Ghidra
int ii = 0;
while (m.find()) {
 // strip out the \x
 String hex_digits = m.group().replaceAll("[^0-9a-fA-F]+", "")u;
 // parse what's left into an integer and cast it to a byte, then
 // set current byte in byte array to that value
 shellcode[ii++]v = (byte)Integer.parseInt(hex_digits, 16)w;
}

The hex digits are extracted from each matching string u and con-
verted into byte values w that get appended to our shellcode array v.

Update 4: Load Converted Byte Array
Finally, because the shellcode is in a byte array, the load() method needs to
copy it from the byte array into the program’s memory. This is the actual
loading step and the last required step for your loader to accomplish the goal:

// create the memory block and populate it with the shellcode
Address start_addr = flatAPI.toAddr(0x0);
MemoryBlock block =
 flatAPI.createMemoryBlock("SHELLCODE", start_addr, shellcode, false);

Results
To test our new loader, we create a C source file that contains the following
escaped representation of x86 shellcode:

unsigned char buf[] =
 "\x31\xdb\xf7\xe3\x53\x43\x53\x6a\x02\x89\xe1\xb0\x66\xcd\x80"
 "\x5b\x5e\x52\x68\x02\x00\x11\x5c\x6a\x10\x51\x50\x89\xe1\x6a"
 "\x66\x58\xcd\x80\x89\x41\x04\xb3\x04\xb0\x66\xcd\x80\x43\xb0"

390 Chapter 17

 "\x66\xcd\x80\x93\x59\x6a\x3f\x58\xcd\x80\x49\x79\xf8\x68\x2f"
 "\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0"
 "\x0b\xcd\x80";

Because our source file’s name ends in .c, our loader appears in the list
as the top selection, with higher priority than the Raw Binary and Simple
Shellcode loaders, as shown in Figure 17-17.

Figure 17-17: Import dialog for shellcode source file

Selecting this loader, using the same default compiler/language speci-
fication as the previous example (x86:LE:32:default:gcc), and letting Ghidra
auto analyze the file yields the following function in the disassembly listing:

 **
 * FUNCTION *
 **
 undefined FUN_00000000()
 undefined AL:1 <RETURN>
 undefined4 Stack[-0x10]:4 local_10
 FUN_00000000 XREF[1]: Entry Point(*)
00000000 XOR EBX,EBX
00000002 MUL EBX
00000004 PUSH EBX
00000005 INC EBX
00000006 PUSH EBX

Scrolling down through the listing leads us to the familiar content (see
Listing 17-2) shown here (with comments added for clarity):

 LAB_00000032
00000032 PUSH 0x3f
00000034 POP EAX

Ghidra Loaders 391

00000035 INT 0x80
00000037 DEC ECX
00000038 JNS LAB_00000
0000003a PUSH 0x68732f2f ; 0x68732f2f converts to "//sh"
0000003f PUSH 0x6e69622f ; 0x6e69622f converts to "/bin"

Most reverse engineering efforts focus on binaries. In this case, we have
stepped outside that box and used Ghidra to load shellcode for analysis
as well as to extract shellcode from C source files. Our goal was to demon-
strate the flexibility and simplicity of creating loaders for Ghidra. Now, let’s
step back into that box and create a loader for a structured file format.

Assume that our target shellcode is contained within an ELF binary and
that, for the sake of this example, Ghidra does not recognize ELF binaries.
Further, none of us have ever heard of an ELF binary. Let the adventure begin.

Example 3: Simple ELF Shellcode Loader
Congratulations! You are now the resident RE expert on shellcode, and col-
leagues are reporting what they suspect is shellcode contained in binaries
and are being referred by Ghidra to the Raw Binary loader. Since this does
not appear to be a one-off problem, and you think there is a good chance
you will see more binaries with similar characteristics, you decide to build a
loader that will handle this new type of file. As discussed in Chapter 13, you
can use tools internal or external to Ghidra to capture information about
the file. If you once again turn to the command line, file provides helpful
information to start building your loader:

$ file elf_shellcode_min
 elf_shellcode_min: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
 statically linked, corrupted section header size
$

The file command provides information about a format you have never
heard of before, ELF. Your first step is to do some research to see if you can
locate any information about this type of binary. Your friend Google will hap-
pily point you to several references about the ELF format, which you can use
to locate the information you need to build your loader. Anything that pro-
vides enough accurate information to solve the problem works.5

As this is a bigger challenge than the previous two loader examples, we
will break this into sections associated with the individual files within your
Eclipse SimpleShellcode module that you will need to create/modify/delete
to complete your new SimpleELFShellcodeLoader. We will start off with some
simple housekeeping.

5. While man pages usually provide a definitive resource, in this case Wikipedia also provides
the needed information. Use the resources at hand to answer the questions at hand.

392 Chapter 17

Housekeeping
The first step is to create a SimpleELFShellcodeLoader.java file within the
SimpleShellcode module in Eclipse. As you don’t want to start from noth-
ing, you should use Save As with SimpleShellcodeLoader.java to create this new
file. Once you have done this, there are a few minor modifications to make
to the new file before you can start focusing on the new challenge:

•	 Change the name of the class to SimpleELFShellcodeLoader.

•	 Modify the getTier method return value from UNTARGETED_LOADER to
GENERIC_TARGET_LOADER.

•	 Delete the getTierPriority method.

•	 Modify the getName method to return "Simple ELF Shellcode Loader".

Once you have completed the housekeeping tasks, let’s apply the infor-
mation you learned from your research about the new header format.

ELF Header Format
While researching this new format, you discover that the ELF format con-
tains three types of headers: the file header (or ELF header), the program
header(s), and the section header(s). You can start by focusing on the ELF
header. Associated with each field in the ELF header is an offset as well as
other information about the field. Since you need to access only a few of
these fields and you won’t be modifying the offsets, declare the following
constants as instance variables within your loader class to help your loader
correctly parse this new header format:

private final byte[] ELF_MAGIC = {0x7f, 0x45, 0x4c, 0x46};
private final long EH_MAGIC_OFFSET = 0x00;
private final long EH_MAGIC_LEN = 4;

private final long EH_CLASS_OFFSET = 0x04;
private final byte EH_CLASS_32BIT = 0x01;

private final long EH_DATA_OFFSET = 0x05;
private final byte EH_DATA_LITTLE_ENDIAN = 0x01;

private final long EH_ETYPE_OFFSET = 0x10;
private final long EH_ETYPE_LEN = 0x02;
private final short EH_ETYPE_EXEC = 0x02;

private final long EH_EMACHINE_OFFSET = 0x12;
private final long EH_EMACHINE_LEN = 0x02;
private final short EH_EMACHINE_X86 = 0x03;

private final long EH_EFLAGS_OFFSET = 0x24;
private final long EN_EFLAGS_LEN = 4;

private final long EH_EEHSIZE_OFFSET = 0x28;
private final long EH_PHENTSIZE_OFFSET = 0x2A;
private final long EH_PHNUM_OFFSET = 0x2C;

Ghidra Loaders 393

With a description of the ELF header in hand, the next step is to deter-
mine how to respond to the Importer poll to ensure that the new ELF
loader is capable of loading only files that adhere to the ELF format. In the
previous two examples, the shellcode loaders did not look at file contents to
determine if they could load a file. This simplified coding these examples
significantly. Now things are a bit more complicated. Fortunately, the ELF
documentation provides important clues to help determine the appropriate
loader specifications.

Find Supported Load Specifications
The loader can’t load anything that isn’t in the right format and can reject
any file by returning an empty loadSpecs list. Within the findSupportedLoad​
Specs() method, immediately eliminate all binaries that don’t have the
expected magic number by using the following code:

byte[] magic = provider.readBytes(EH_MAGIC_OFFSET, EH_MAGIC_LEN);
if (!Arrays.equals(magic, ELF_MAGIC)) {
 // the binary is not an ELF
 return loadSpecs;
}

Once the undesirables have been eliminated, the loader can check the
bit width and endianness to see if the architecture is reasonable for an ELF
binary. For this demonstration, let’s further limit the types of binaries the
loader will accept to 32-bit little-endian:

byte ei_class = provider.readByte(EH_CLASS_OFFSET);
byte ei_data = provider.readByte(EH_DATA_OFFSET);
if ((ei_class != EH_CLASS_32BIT) || (ei_data != EH_DATA_LITTLE_ENDIAN)) {
 // not an ELF we want to accept
 return loadSpecs;
}

To round out the verification process, the following code checks if
this is an ELF executable file (as opposed to a shared library) for the x86
architecture:

byte[] etyp = provider.readBytes(EH_ETYPE_OFFSET, EH_ETYPE_LEN);
short e_type =
 ByteBuffer.wrap(etyp).order(ByteOrder.LITTLE_ENDIAN).getShort();
byte[] emach = provider.readBytes(EH_EMACHINE_OFFSET, EH_EMACHINE_LEN);
short e_machine =
 ByteBuffer.wrap(emach).order(ByteOrder.LITTLE_ENDIAN).getShort();
if ((e_type != EH_ETYPE_EXEC) || (e_machine != EH_EMACHINE_X86)) {
 // not an ELF we want to accept
 return loadSpecs;
}

Now that you have limited your file types, you can query the opinion ser-
vice for matching language and compiler specifications. Conceptually, you

394 Chapter 17

query the opinion services with values extracted from the file you are loading
(for example, the ELF header e_machine field), and in response you receive a
list of language/compiler specifications that your loader is willing to accept.
(The “behind the scenes” actions that take place when you query the opinion
service are described in more detail in the following sections.)

byte[] eflag = provider.readBytes(EH_EFLAGS_OFFSET, EN_EFLAGS_LEN);
int e_flags = ByteBuffer.wrap(eflag).order(ByteOrder.LITTLE_ENDIAN).getInt();
List<QueryResult> results =
 QueryOpinionService.query(getName(), Short.toString(e_machine),
 Integer.toString(e_flags));

Let’s assume that the opinion service is likely to yield more results than
you want to handle with this loader. You can pare the list further by exclud-
ing results based on the attributes specified in the associated language/
compiler specifications. The following code filters out a compiler and a
processor variant:

for (QueryResult result : results) {
 CompilerSpecID cspec = result.pair.getCompilerSpec().getCompilerSpecID();
 if (cspec.toString().equals("borlanddelphi")) {
 // ignore anything created by Delphi
 continue;
 }
 String variant = result.pair.getLanguageDescription().getVariant();
 if (variant.equals("System Management Mode")) {
 // ignore anything where the variant is "System Management Mode"
 continue;
 }
 // valid load spec, so add it to the list

  loadSpecs.add(new LoadSpec(this, 0, result));
}
return loadSpecs;

The above examples (which you are free to include in your loader) spe-
cifically exclude the Delphi compiler  and x86 system management mode . You
can exclude others if you wish. All of the results you have not excluded need
to be added to your loadSpecs list .

Load File Content into Ghidra
The load() method of your simplified loader assumes the file consists of a
minimal ELF header and a short program header, followed by the shellcode
in a text section. You need to determine the total length of the header to
allocate the correct amount of space for it. The following code determines
the required size by using the EH_EEHSIZE_OFFSET, EH_PHENTSIZE_OFFSET, and
EH_PHNUM_OFFSET fields from the ELF header:

// Get some values from the header needed for the load process
//
// How big is the ELF header?

Ghidra Loaders 395

byte[] ehsz = provider.readBytes(EH_EEHSIZE_OFFSET, 2);
e_ehsize = ByteBuffer.wrap(ehsz).order(ByteOrder.LITTLE_ENDIAN).getShort();

// How big is a single program header?
byte[] phsz = provider.readBytes(EH_PHENTSIZE_OFFSET, 2);
e_phentsize =
 ByteBuffer.wrap(phsz).order(ByteOrder.LITTLE_ENDIAN).getShort();

// How many program headers are there?
byte[] phnum = provider.readBytes(EH_PHNUM_OFFSET, 2);
e_phnum = ByteBuffer.wrap(phunm).order(ByteOrder.LITTLE_ENDIAN).getShort();

// What is the total header size for our simplified ELF format
// (This includes the ELF Header plus program headers.)
long hdr_size = e_ehsize + e_phentsize * e_phnum;

Now that you know the size, create and populate the memory blocks for
the ELF header section and the text section as follows:

// Create the memory block for the ELF header
long LOAD_BASE = 0x10000000;
Address hdr_start_adr = flatAPI.toAddr(LOAD_BASE);
MemoryBlock hdr_block =
 flatAPI.createMemoryBlock(".elf_header", hdr_start_adr,
 provider.readBytes(0, hdr_size), false);
// Make this memory block read-only
hdr_block.setRead(true);
hdr_block.setWrite(false);
hdr_block.setExecute(false);

// Create the memory block for the text from the simplified ELF binary
Address txt_start_adr = flatAPI.toAddr(LOAD_BASE + hdr_size);
MemoryBlock txt_block =
 flatAPI.createMemoryBlock(".text", txt_start_adr,
 provider.readBytes(hdr_size, provider.length() – hdr_size),
 false);

// Make this memory block read & execute
txt_block.setRead(true);
txt_block.setWrite(false);
txt_block.setExecute(true);

Format Data Bytes and Add an Entry Point
A few more steps, and you will be done. Loaders often apply data types and
create cross-references for information derived from file headers. It is also
the loader’s job to identify any entry points in the binary. Creating a list of
entry points at load time provides the disassembler with a list of locations it
should consider code. Our loader follows these practices:

// Add structure to the ELF HEADER
 flatAPI.createData(hdr_start_adr, new ElfDataType());

396 Chapter 17

// Add label and entry point at start of shellcode
 flatAPI.createLabel(txt_start_adr, "shellcode", true);
 flatAPI.addEntryPoint(txt_start_adr);

// Add a cross reference from the ELF header to the entrypoint
Data d = flatAPI.getDataAt(hdr_start_adr).getComponent(0).getComponent(9);

 flatAPI.createMemoryReference(d, txt_start_adr, RefType.DATA);

First, the Ghidra ELF header data type is applied at the start of the
ELF headers .6 Second, a label  and an entry point  are created for the
shellcode. Finally, we create a cross-reference between the entry point field
in the ELF header and the start of the shellcode .

Congratulations! You are done writing the Java code for your loader,
but we need to address a couple of issues to ensure that you understand all
of the dependencies between your new loader and some important related
files in order for your loader to operate as expected.

This example leverages an existing processor architecture (x86), and
some work was done behind the scenes that helped this loader work cor-
rectly. Recall that the Importer polled the loaders and magically produced
acceptable language/compiler specifications. The following two files
provided information critical to the loader. The first of these files is the
x86 language definition file x86.ldefs, is a component of the x86 processor
module.

Language Definition Files
Every processer has an associated language definition file. This is an XML-
formatted file that includes all of the information required to generate
language/compiler specifications for the processor. Language definitions
from the x86.ldefs file that meet the requirements for a 32-bit ELF binary
are shown in the following listing:

<language processor="x86"
 endian="little"
 size="32"
 variant="default"
 version="2.8"
 slafile="x86.sla"
 processorspec="x86.pspec"
 manualindexfile="../manuals/x86.idx"
 id="x86:LE:32:default">
 <description>Intel/AMD 32-bit x86</description>
 <compiler name="Visual Studio" spec="x86win.cspec" id="windows"/>
 <compiler name="gcc" spec="x86gcc.cspec" id="gcc"/>
 <compiler name="Borland C++" spec="x86borland.cspec" id="borlandcpp"/>

  <compiler name="Delphi" spec="x86delphi.cspec" id="borlanddelphi"/>
</language>

6. If this were truly a new format, you would probably have to create this structure within
Ghidra based on your research. For this example, use the one in the Ghidra Data Type
Manager window.

Ghidra Loaders 397

<language processor="x86"
 endian="little"
 size="32"

  variant="System Management Mode"
 version="2.8"
 slafile="x86.sla"
 processorspec="x86-16.pspec"
 manualindexfile="../manuals/x86.idx"
 id="x86:LE:32:System Management Mode">
 <description>Intel/AMD 32-bit x86 System Management Mode</description>
 <compiler name="default" spec="x86-16.cspec" id="default"/>
</language>

This file is used to populate the recommended language/compiler
specs presented as import options. In this case, there are five recommended
specifications (each starting with the compiler tag), which will be returned
based on information associated with the ELF binary, but our loader elimi-
nates two from consideration based on the compiler  and the variant .

Opinion Files
Another type of support file is the .opinion file. This is an XML-formatted
file that contains constraints associated with your loader. To be recognized
by the opinion query service, each loader must have an entry in an opinion
file. The following listing shows a suitable opinion file entry for the loader
you just built:

<opinions>
 <constraint loader="Simple ELF Shellcode Loader" compilerSpecID="gcc">
 <constraint primary="3" processor="x86" endian="little" size="32" />
 <constraint primary="62" processor="x86" endian="little" size="64" />
 </constraint>
</opinions>

Everything in the entry should be familiar, except possibly the primary
field . This field is the primary key for a search that identifies the machine
as defined in the ELF header. Within the ELF header, the value 0x03 in the
e_machine field means x86, and 0x3E in the e_machine field means amd64. A
<constraint> tag  defines an association between a primary key ("3"/x86)
and the remaining attributes of the <constraint> tag. This information is
used by the query service to locate the appropriate entries in the language
definition files.

Our only remaining task is to place our opinion data in an appropriate
place where Ghidra will find it. The only opinion files that ship with Ghidra
reside in the data/languages subdirectory of a Ghidra processor module.
Although you could insert your opinion data into an existing opinion file, it’s
a good idea to avoid modifying any processor opinion files, as your modifica-
tions will need to be reapplied anytime you upgrade your Ghidra installation.

Instead, create a new opinion file containing our opinion data. You can
name the file anything you wish, but SimpleShellcode.opinion seems reasonable.
Our Eclipse Loader Module template contains its own data subdirectory. Save

398 Chapter 17

your opinion file in this location so it will be associated with your loader mod-
ule. Ghidra will locate it when looking for opinion files, and any upgrades to
the Ghidra installation should not affect your module.

Now that you understand what is going on behind the scenes, it is time
to test your loader and see if it behaves as anticipated.

Results
To demonstrate the success of the new simplified ELF loader (one pro-
gram header and no sections), let’s walk through the loading process and
observe how the loader performs at each step of the process.

From the Ghidra Project window, import a file. The importer will poll
all of Ghidra’s loaders, including yours, to see which are willing to load this
file. Recall that your loader is expecting a file that fits the following profile:

•	 ELF magic number at the start of the file

•	 32-bit little endian

•	 ELF executable for the x86 architecture

•	 Cannot have been compiled by Delphi

•	 Cannot have the variant “System Management Mode”

If you load a file that fits that profile, you should see an Import dialog
similar to the one in Figure 17-18 that displays a prioritized list of the load-
ers willing to process this file.

Figure 17-18: Import options for elf_shellcode_min

The loader with the highest priority is Ghidra’s ELF loader. Let’s
compare the language/compiler specifications that it will accept (top of
Figure 17-19) with the ones that your new loader will accept at the bottom
of the figure.

Ghidra Loaders 399

Figure 17-19: Acceptable language/compiler specifications for two
different loaders

The Delphi compiler and the System Management Mode variant are
accepted by the stock ELF loader but not by your loader, as they have been
filtered out. When you select your loader for the file elf_shellcode_min, you
should see a summary similar to Figure 17-20.

Figure 17-20: Import Results Summary window for the new ELF
Shellcode Loader

400 Chapter 17

If you open the file in the CodeBrowser and allow Ghidra to auto ana-
lyze the file, you should see the following ELF header definition at the top
of the file:

10000000 7f db 7Fh e_ident_magic_num
10000001 45 4c 46 ds "ELF" e_ident_magic_str
10000004 01 db 1h e_ident_class
10000005 01 db 1h e_ident_data
10000006 01 db 1h e_ident_version
10000007 00 00 00 00 00 db[9] e_ident_pad
 00 00 00 00
10000010 02 00 dw 2h e_type
10000012 03 00 dw 3h e_machine
10000014 01 00 00 00 ddw 1h e_version
10000018 54 00 00 10 ddw shellcode e_entry
1000001c 34 00 00 00 ddw 34h e_phoff
10000020 00 00 00 00 ddw 0h e_shoff
10000024 00 00 00 00 ddw 0h e_flags
10000028 34 00 dw 34h e_ehsize

Within the listing, the shellcode label  is clearly associated with the
entry point. Double-clicking the shellcode label takes you to a function,
named shellcode, that contains the same shellcode contents we’ve seen in
our previous two examples, including the following:

1000008c JNS LAB_10000086
1000008e PUSH "//sh"
10000093 PUSH "/bin"
10000098 MOV EBX,ESP
1000009a PUSH EAX

Now that you have confirmed that your new loader works, you can add it
as an extension to your Ghidra installation and share it with your colleagues
who have been anxiously awaiting this functionality.

Summary
In this chapter, we focused on the challenges associated with dealing with
unrecognized binary files. We walked through examples of the loading and
analysis processes that we can use within Ghidra to help us with these chal-
lenging reverse engineering scenarios. Finally, we extended our module
creation capabilities to the world of Ghidra loaders.

While the examples that we built were trivial, they provided the founda-
tion and introduced all of the components required to write more complex
loader modules in Ghidra. In the next chapter, we round out our discussion
of Ghidra modules with an introduction to processor modules—the compo-
nents most responsible for the overall formatting of a disassembled binary.

Processor modules, the most complex of
Ghidra’s module types, are responsible

for all of the disassembly operations that
take place within Ghidra. Beyond the obvious

conversion of machine language opcodes into their
assembly language equivalents, processor modules also
support the creation of functions, cross-references,
and stack frames.

While the number of processors supported by Ghidra is impressive
and increases with every major release, development of a new Ghidra pro-
cessor module is required in some circumstances. The obvious case for
developing a processor module is reverse engineering a binary for which
no processor module exists in Ghidra. Among other things, such a binary
might represent a firmware image for an embedded microcontroller or
an executable image pulled from handheld or Internet of Things (IoT)

18
G H I D R A P R O C E S S O R S

402 Chapter 18

devices. A less-obvious use for a processor module is to disassemble the
instructions of a custom virtual machine embedded within an obfuscated
x86 executable. In such cases, the existing Ghidra x86 processor module
would help you understand only the virtual machine itself, not the virtual
machine’s underlying byte code.

Should you undertake this arduous task, we want to be sure you have a
strong foothold to help support you in this endeavor. Each of our previous
module examples (analyzer and loader) required modifying a single Java
file. If you created these modules within the Eclipse GhidraDev environ-
ment, you were given a module template and task tags within each template
to help you complete your task. Processor modules are more complex, and
relationships between different files must be maintained for the processor
module to work correctly. While we will not build a processor module from
scratch in this chapter, we will provide you with a solid foundation to help
you understand Ghidra processor modules and demonstrate creating and
modifying components within those modules.

W HO IS L IKE LY TO AUGME N T GHIDR A?

Based on a thoroughly unscientific study, we strongly suspect that the following
categories exist:

Category 1  A small percentage of people who use Ghidra will modify or
write a script to customize or automate some functionality related to Ghidra.
Category 2  Of the people in Category 1, a small percentage will choose to
modify or develop a plugin to customize some functionality related to Ghidra.
Category 3  Of the people in Category 2, an even smaller percentage will
choose to modify or write an analyzer to extend Ghidra’s analysis capabilities.
Category 4  Of the people in Category 3, a small percentage will choose to
modify or write a loader for a new file format.
Category 5  A very small percentage of the people in Category 4 will choose
to modify or write a Ghidra processor module because the number of instruc-
tion sets that require decoding is much smaller than the number of file formats
that make use of those instruction sets. Thus, the demand for new processor
modules is comparatively low.

As you get deeper into the list of categories, the nature of the associated
tasks tends to become more and more specialized. However, just because you
don’t currently envision yourself authoring a Ghidra processor module doesn’t
mean there isn’t some utility in learning how they are built. Processor modules
form the foundation on which Ghidra’s disassembly, assembly, and decompila-
tion capabilities are built, and having some insight into their inner workings just
might elevate you to Ghidra wizard status in the eyes of your colleagues.

Ghidra Processors 403

Understanding Ghidra Processor Modules
Creating a processor module for a real-world architecture is a highly spe-
cialized, time-consuming effort and is beyond the scope of this book.
However, some fundamental understanding of how processors and their
associated instruction sets are represented in Ghidra will help you identify
where to look so that you have the right resources at your fingertips when
you need information about a Ghidra processor module.

Eclipse Processor Modules
We will start in somewhat familiar territory. When you use EclipseGhidraDev
to create a processor module, the resulting folder structure is basically the
same as every other module type, but a processor module does not provide
a Java source file, complete with comments, task tags, and a TODO list, in the
src/main/java folder, as seen in Figure 18-1.

Figure 18-1: Processor module contents

404 Chapter 18

Instead, the data folder (expanded in the figure) contains a lot more
than the brief README.txt provided in the data folder for other module
types. Let’s briefly meet the nine files contained in the data folder with a
focus on their file extensions. (The skel prefix lets us know we are working
with a skeleton.)

skel.cspec  This is an XML-formatted, initially overwhelming compiler
specification file.

skel.ldefs  This is an XML-formatted language definition file. The skel-
eton has a commented-out template for defining a language.

skel.opinion  This is an XML-formatted importer opinion file. The skel-
eton has a commented-out template for defining a language/compiler
specification.

skel.pspec  This is an XML-formatted processor specification file.

skel.sinc  This is generally a SLEIGH file for language instructions.1

skel.slaspec  This is a SLEIGH specification file.

buildLanguage.xml  This XML file describes the build process for the
files in the data/languages directory.

README.txt  This file is the same in all of the modules, but within
this module it finally makes sense as it focuses on the contents of the
data/ directory.

sleighArgs.txt  This file holds SLEIGH compiler options.

The .ldefs and .opinion files were used in Chapter 17 when building
your ELF shellcode loader. Other file extensions will be seen in context as
you work through examples. You will learn how to work with these files to
modify a processor module, but first let’s discuss a new term specific to pro-
cessor modules—SLEIGH.

SLEIGH
SLEIGH is a language specific to Ghidra that describes microprocessor
instruction sets to support the Ghidra disassembly and decompilation pro-
cesses.2 Files within the languages directory (see Figure 18-1) are either writ-
ten in SLEIGH or presented in XML format, so you will definitely need to
learn a little about SLEIGH to create or modify a processor module.

The specification of how instructions are encoded and how they are
interpreted by a processor is contained in a .slaspec file (somewhat analogous
to the role of a .c file). When a processor family has a number of distinct
variants, each variant may have its own .slaspec file, while common behaviors
across variants may be factored out into separate .sinc files (similar to the

1. For large instruction sets, such as the x86 instruction set, the .sinc file may be broken into
multiple .sinc files. In this case, some of the files may be used as header files with definitions
and include statements.

2. Detailed information about the SLEIGH language can be found in your Ghidra installa-
tion in docs/languages/html/sleigh.html.

Ghidra Processors 405

role of .h files), which may be included in many .slaspec files. Ghidra’s ARM
processor is an excellent example of this, with over a dozen .slaspec files, each
referencing one or more of five .sinc files. These files constitute the SLEIGH
source code for a processor module, and it is the SLEIGH compiler’s job to
compile them into a .sla file suitable for use by Ghidra.

Rather than taking a deep dive into SLEIGH from a theoretical per-
spective, we will introduce various components of the SLEIGH language as
we encounter and require them in our examples, but first let’s look at the
sort of information that a SLEIGH file contains about instructions.

To see additional information associated with an instruction in a
CodeBrowser listing, right-click and select Instruction Info from the con-
text menu. The displayed information is derived from SLEIGH file specifi-
cations for the selected instruction. Figure 18-2 shows the Instruction Info
window for an x86-64 PUSH instruction.

Figure 18-2: Instruction Info window for x86-64 PUSH instruction

The Instruction Info window combines information about the PUSH
instruction from the SLEIGH file with details about the specific use of PUSH
at address 00100736. Later in the chapter, we will work with instruction defi-
nitions within a SLEIGH file and will revisit this window in the context of
the instructions we are working with.

406 Chapter 18

Processor Manuals
The documentation provided by the manufacturer of a processor is an
important resource for obtaining information about the instruction set.
While these copyrighted materials cannot be included within your Ghidra
distribution, you can easily incorporate them through a right-click context
menu option in the Listing window. If you right-click any instruction and
select Processor Manual, you are likely to see a message similar to that
shown in Figure 18-3, informing you that the manual for the current pro-
cessor is not available in the expected location.

Figure 18-3: Missing Processor Manual dialog

Here, Ghidra provides you the information needed to resolve the miss-
ing manual situation. In this particular example, you first need to locate the
x86 manual online and then save it with the specified name and location.

N O T E 	 There are many processor manuals associated with the x86. Find the correct manual
online by searching for the identifier provided at the end of the manual information:
325383-060US.

Once you have a manual properly installed, selecting Processor Manual
will display the manual. Since processor manuals tend to be large (this
particular manual for the x86 processor weighs in at almost 2,200 pages),
Ghidra helpfully includes the capability to process index files that map an
instruction to a specific page in a manual. Fortunately, the index for this
specific x86 manual has already been created for you.

Processor manuals should be placed in the Ghidra/Processors/<proc>​
/data/manuals directory appropriate for your processor. Index files should
reside in the same directory as their associated manual. The format of an
index file is relatively straightforward. The first few lines of Ghidra’s x86.idx
file are shown in the following listing:

@Intel64_IA32_SoftwareDevelopersManual.pdf [Intel 64 and IA-32 Architectures
 Software Developer's Manual Volume 2 (2A, 2B, 2C & 2D): Instruction Set
 Reference, A-Z, Sep 2016 (325383-060US)]
AAA, 120
AAD, 122
BLENDPS, 123
AAM, 124

Ghidra Processors 407

The first line in the file (which has been wrapped across three lines in
this listing) pairs the manual’s local filename with descriptive text displayed
to the user when the manual is not present on the system. The format of the
line is as follows:

@FilenameInGhidraManualDirectory [Description of manual file]

Each additional line is of the form INSTRUCTION, page. The instruction
must be uppercase, and the page number is counted from the first page of
the .pdf file. (This is not necessarily the page number that appears on any
given page of the document.)

Several manuals can be referenced in a single .idx file. Simply use
additional @ directives to delineate each additional manual’s instruction
map. More information about processor manual index files may be found
in docs/languages/manual_index.txt in your Ghidra installation directory.

Once you have a manual saved and indexed, selecting Processor
Manual for any instruction in the Listing window should take you to its cor-
responding page within the manual. If the manual does not appear, you
may need to choose Edit4Tools Options4Processor Manuals to configure
an appropriate viewer application for your manual. A sample viewer setting
to open the manual using Firefox is shown in Figure 18-4.

Figure 18-4: Processor Manuals tool options

Now that you have some basic processor module terminology under
your belt, it’s time to dive into the internals of a processor module
implementation.

Modifying a Ghidra Processor Module
Building a processor module from scratch is a significant undertaking.
Rather than jumping in headfirst, we are going to start, as we did in in pre-
vious examples, by modifying an existing module. Since we want to demon-
strate concepts related to real-world problems, we will start by identifying a
hypothetical issue regarding Ghidra’s x86 processor module. We will walk
through some examples that address the issue and then use what we have
learned to create a big picture view of how all of the various components
work together to form a complete Ghidra processor module.

408 Chapter 18

Problem Statement
A quick search of the Ghidra/Processors directory in your local installa-
tion shows that the x86 processor module includes many instructions but
appears to be missing a hypothetical virtual machine extension (VMX)
management instruction for the IA32 and IA64 architectures.3 This instruc-
tion (which we just invented for this example) is called VMXPLODE. Its behavior
is similar to the VMXOFF instruction, which Ghidra does support. While the
existing VMXOFF instruction causes the processor to leave VMX operation,
VMXPLODE leaves with a flourish! We will walk you through adding this very
important instruction to the existing Ghidra x86 processor module in order

3. Section 30-1 of the following describes the existing VMCS-maintenance instructions:
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures​
-software-developer-vol-3c-part-3-manual.pdf.

GHIDR A’S SL E IGH E DI TOR

To assist you in modifying and building processor modules, Ghidra includes a
SLEIGH editor that easily integrates into the Eclipse environment. The installa-
tion instructions for the editor are part of the SLEIGH readme file referenced in
the preceding section and take only a few steps. Special functionality that the
editor supports includes the following:

Syntax highlight  Colorizes content that has special meaning (for example,
comments, tokens, strings, variables, and so on).
Validation  Marks many syntax errors and generates warnings for errors that
would otherwise remain undetected until compilation.
QuickFix  Provides recommendations for resolving issues detected by the editor.
(This is similar to the QuickFix options for import statements we saw in Chapter 15.)
Hover  Provides additional information for many constructs when you hover
over the construct.
Navigation  Provides navigation functionality specific to SLEIGH (for example,
subconstructors, tokens, registers, pcodeops, and so on).
Find references  Quickly finds all uses of a variable.
Renaming  Rather than traditional string-based search and replace, this
renames an actual variable in the file and other related .sinc and .slaspec files.
Code formatting  Reformats files specific to the structure of the SLEIGH lan-
guage (for example, lines up constructors based on keywords, lines up entries
within attach, and so on). This functionality can be applied to an entire file or a
selected section.

While we recommend using this editor, especially for the helpful early
syntax checking, the development of our examples in this chapter are not spe-
cific to this editor.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.pdf

Ghidra Processors 409

to introduce some of the concepts associated with building and modifying
a processor module.

Example 1: Adding an Instruction to a Processor Module
Our first goal is to locate the files we need to modify to support the
VMXPLODE instruction. The Ghidra/Processors directory contains subdirecto-
ries for all processors supported by Ghidra, one of which is the x86. You
can open the x86 processor module (or any other processor module)
directly in Eclipse using File4Open Projects from File System or Archive
and providing the path to the processor folder (Ghidra/Processors/x86).
This will link your Eclipse instance to Ghidra’s x86 processor module,
meaning that changes you make within Eclipse will be directly reflected
in your Ghidra processor module.

A partially expanded version of the x86 module in Eclipse, which
exactly reflects the associated Ghidra directory structure, is shown in
Figure 18-5. The processor manual you downloaded is present along with
the x86 index file.

Figure 18-5: x86 processor module in Eclipse Package Explorer

The x86 folder contains a data folder, like the one you saw in the proces-
sor module we created using EclipseGhidraDev. Within this folder is the
languages folder, which contains over 40 files, including 19 .sinc files that
define language instructions. Because the x86 instruction set is rather
large, the instruction set is broken up into files grouping similar instruc-
tions. Instead of creating a new .sinc file for our instruction, we’ll add it to an
existing x86 .sinc file. If we were adding a new group of instructions to Ghidra
(for example, the x86 SGX instruction set), we might create a new .sinc file to
group them all together. (In fact, the SGX instructions are grouped in a com-
mon file called sgx.sinc. That accounts for one of the many .sinc files!)

By searching the .sinc files, we find that ia.sinc contains the definitions
of the existing VMX instruction set. We’ll use the definition of VMXOFF in ia.sinc
as a model to define VMXPLODE. VMXOFF is referenced in two different sections

410 Chapter 18

within ia.sinc. The first section is the definitions for the Intel IA hardware-
assisted virtualization instructions:

MFL: definitions for Intel IA hardware assisted virtualization instructions
define pcodeop invept; # Invalidate Translations Derived from extended page
 # tables (EPT); opcode 66 0f 38 80
-----CONTENT OMITTED HERE-----
define pcodeop vmread; # Read field from virtual-machine control structure;
 # opcode 0f 78
define pcodeop vmwrite; # Write field to virtual-machine control structure;
 # opcode 0f 79
define pcodeop vmxoff; # Leave VMX operation; opcode 0f 01 c4
define pcodeop vmxon; # Enter VMX operation; opcode f3 0f C7 /6

Each entry in the definitions section defines a pcodeop, which is a new
microcode operation for the x86 architecture.

The definition includes a name and, in this case, a comment that
includes a description and an opcode. We will need to populate the com-
ment for our new command. A quick, alt-reality, web search (with a side
of testing) confirms that the opcode 0f 01 c5 has long been reserved for
VMXPLODE. We now have the information necessary to add our new instruction
to the file. The following shows our new definition in context:

define pcodeop vmxoff; # Leave VMX operation; opcode 0f 01 c4
define pcodeop vmxplode; # Explode (Fake) VMX operation; opcode 0f 01 c5
define pcodeop vmxon; # Enter VMX operation; opcode f3 0f C7 /6

The second location we encounter VMXOFF within ia.sinc (and where we
will insert our new instruction) is the opcode definition section. (We omit-
ted part of this content for clarity and wrapped some instruction definition
lines for readability.) While we won’t completely dissect the 8,000+ lines of
code in the ia.sinc file, there are several interesting points to make regard-
ing the following listing:

Intel hardware assisted virtualization opcodes
-----CONTENT OMITTED HERE-----
TODO: invokes a VM function specified in EAXu
:VMFUNC EAX is vexMode=0 & byte=0x0f; byte=0x01; byte=0xd4 & EAX { vmfunc(EAX); }
TODO: this launches the VM managed by the current VMCS. How is the
VMCS expressed for the emulator? For Ghidra analysis?
:VMLAUNCH is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc2 { vmlaunch(); }
TODO: this resumes the VM managed by the current VMCS. How is the
VMCS expressed for the emulator? For Ghidra analysis?
:VMRESUME is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc3 { vmresume(); }
-----CONTENT OMITTED HERE-----
:VMWRITE Reg32, rm32 is vexMode=0 & opsize=1 & byte=0x0f; byte=0x79;v
 rm32 & Reg32 ... & check_Reg32_dest ... { vmwrite(rm32,Reg32); build check_Reg32_dest; }
@ifdef IA64w
:VMWRITE Reg64, rm64 is vexMode=0 & opsize=2 & byte=0x0f; byte=0x79;
 rm64 & Reg64 ... { vmwrite(rm64,Reg64); }
@endif
:VMXOFF is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc4 { vmxoff(); }x

Ghidra Processors 411

:VMXPLODE is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5 { vmxplode(); }y
-----CONTENT OMITTED HERE-----
#END of changes for VMX opcodes

TODO comments , found in many Ghidra files, identify tasks that have
yet to be done. Searching for TODO tasks in Ghidra files is a great way to iden-
tify opportunities to contribute to this open source project.

Next, we see the VMWRITE instruction for 32-bit  and 64-bit archi-
tectures. The 64-bit instruction is surrounded by a test  to ensure it is
included in only the 64-bit .sla file. While 32-bit instructions are valid in a
64-bit world (for example, EAX is the 32 least-significant bits of RAX), the con-
verse is not true. The conditional statement ensures that instructions that
operate on 64-bit registers are included for only 64-bit builds.

The VMXOFF instruction  doesn’t directly involve registers, so there is
no need to distinguish between 32- and 64-bit versions of the instruction.
The constructor for our new instruction, VMXPLODE , complete with its new
opcode, is very similar to the constructor for VMXOFF. Let’s break this into the
components that make up the line:

:VMXPLODE

This is the instruction being defined and is displayed in the disassembly
listing.

is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5

These are the bit patterns associated with the instruction and provide
a constraint for the instruction. The & represents a logical AND opera-
tion. The semicolons serve a dual purpose of concatenation and logical
AND. This part says, “If we are not in VEX mode and the opcode is
these 3 bytes in this order, then this constraint is met.” 4

{ vmxplode(); }

Curly brackets enclose the semantic actions section of an instruction.
The SLEIGH compiler translates these actions into an internal Ghidra
form known as p-code (discussed later in this chapter). Defining an
instruction requires understanding SLEIGH operators and syntax.
This portion of the constructor, where the real work associated with
most instructions is done, can quickly become a complex sequence of
multiple statements separated by semicolons. In this case, since we have
defined VMXPLODE as a new p-code operation (define pcodeop vmxplode;),
we can invoke the instruction here. In future examples, we will add
additional SLEIGH semantic actions to this section.

The largest x86 .sinc file is ia.sinc because a lot of instructions are
defined within this file (including our new VMXPLODE instruction) and a sig-
nificant amount of content to define the attributes of the x86 processor

4. The VEX coding scheme is described in section 2.3 of https://www.intel.com/content/dam​
/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set​
-reference-manual-325383.pdf.

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

412 Chapter 18

(for example, endianness, registers, contexts, tokens, variables, and so on).
Much of this x86-specific content within ia.sinc is not replicated in the other
.sinc files in this directory, since all the .sinc files are, in turn, included in a
SLEIGH specification (.slaspec) file.

The two .slaspec files for x86, x86.slaspec and x86-64.slaspec, each contain
include statements for the required .sinc files. (Note that you could forego
the use of .sinc files and directly include the content in the .slaspec file, which
might make sense for a processor with a small instruction set.) The contents
of x86-64.slaspec are shown in the following listing:

@define IA64 "IA64" # Only in x86-64.slaspec
 @include "ia.sinc"

@include "avx.sinc"
@include "avx_manual.sinc"
@include "avx2.sinc"
@include "avx2_manual.sinc"
@include "rdrand.sinc" # Only in x86-64.slaspec
@include "rdseed.sinc" # Only in x86-64.slaspec
@include "sgx.sinc" # Only in x86-64.slaspec
@include "adx.sinc"
@include "clwb.sinc"
@include "pclmulqdq.sinc"
@include "mpx.sinc"
@include "lzcnt.sinc"
@include "bmi1.sinc"
@include "bmi2.sinc"
@include "sha.sinc"
@include "smx.sinc"
@include "cet.sinc"
@include "fma.sinc" # Only in x86-64.slaspec

We have added EOL comments to denote the content that is unique to
the x86-64.slaspec file. (The x86.slaspec file is a subset of the x86-64.slaspec
file.) Among the included files is ia.sinc , in which we defined VMXPLODE, so
we don’t need to add anything. If you create a new .sinc file, you need to add
an include statement in both x86.slaspec and x86-64.slaspec in order for the
instruction to be recognized in both 32- and 64-bit binaries.

To test if Ghidra can recognize the new instruction when it is used
in a binary, we construct a test file. The file will first verify that the VMXOFF
instruction is still recognized and then verify that VMXPLODE has been added
successfully. The C source file for testing VMXOFF contains the following:

#include <stdio.h>

// The following function declares an assembly block and tells the
// compiler that it should execute the code without moving or changing it.

void do_vmx(int v) {
 asm volatile (
 "vmxon %0;" // Enable hypervisor operation
 "vmxoff;" // Disable hypervisor operation
 "nop;" // Tiny nop slide to accommodate examples

Ghidra Processors 413

 "nop;"
 "nop;"
 "nop;"
 "nop;"
 "nop;"
 "nop;"
 "vmxoff;" // Disable hypervisor operation
 :
 :"m"(v) // Holds the input variable
 :
);
}
int main() {
 int x;
 printf("Enter an int: ");
 scanf("%d", &x);
 printf("After input, x=%d\n", x);
 do_vmx(x);
 printf("After do_vmx, x=%d\n", x);
 return 0;
}

When we load the compiled binary into Ghidra, we see the following
body of the function do_vmx in the Listing window:

0010071a 55 PUSH RBP
0010071b 48 89 e5 MOV RBP,RSP
0010071e 89 7d fc MOV dword ptr [RBP + local_c],EDI
00100721 f3 0f c7 VMXON qword ptr [RBP + local_c]
 75 fc

 00100726 0f 01 c4 VMXOFF
00100729 90 NOP
0010072a 90 NOP
0010072b 90 NOP
0010072c 90 NOP
0010072d 90 NOP
0010072e 90 NOP
0010072f 90 NOP

 00100730 0f 01 c4 VMXOFF
00100733 90 NOP
00100734 5d POP RBP
00100735 c3 RET

The bytes displayed for the opcode (0f 01 c4) in the two calls to VMXOFF u
match the opcode we observed in ia.sinc for this command. The following
listing from the Decompiler window is consistent with what we know about
the source code and the associated disassembly:

void do_vmx(undefined4 param_1)
{
 undefined4 unaff_EBP;

 vmxon(CONCAT44(unaff_EBP,param_1));

414 Chapter 18

 vmxoff();
 vmxoff();
 return;
}

To test that Ghidra detects the VMXPLODE instruction, we replace the first
occurrence of VMXOFF in the do_vmx test function with VMXPLODE. However, the
VMXPLODE instruction is missing not only from Ghidra’s processor definition,
but also from our compiler’s knowledge base. In order for the assembler to
accept our code, we hand-assembled the instruction using a data declara-
tion instead of using the instruction mnemonic directly so that the assem-
bler can process the new instruction:

 //"vmxoff;" // replace this line
 ".byte 0x0f, 0x01, 0xc5;" // with this hand assembled one

When you load your updated binary into Ghidra, you see the following
in the Listing window:

0010071a 55 PUSH RBP
0010071b 48 89 e5 MOV RBP,RSP
0010071e 89 7d fc MOV dword ptr [RBP + local_c],EDI
00100721 f3 0f c7 VMXON qword ptr [RBP + local_c]
 75 fc

 00100726 0f 01 c5 VMXPLODE
00100729 90 NOP
0010072a 90 NOP
0010072b 90 NOP
0010072c 90 NOP
0010072d 90 NOP
0010072e 90 NOP
0010072f 90 NOP
00100730 0f 01 c4 VMXOFF
00100733 90 NOP
00100734 5d POP RBP
00100735 c3 RET

Your new instruction  appears along with the opcode (0f 01 c5)
that we have assigned to it. The Decompiler window also shows the new
instruction:

void do_vmx(undefined4 param_1)
{
 undefined4 unaff_EBP;

 vmxon(CONCAT44(unaff_EBP,param_1));
 vmxplode();
 vmxoff();
 return;
}

Ghidra Processors 415

So, what work has Ghidra undertaken in the background to add our new
instruction to its x86 processor instruction set? When Ghidra is restarted (as
it needs to be for these changes to take effect), it detects that the underlying
.sinc file changed and generates a new .sla file when one is needed.

In this example, when we were loading the original compiled 64-bit
binary file, Ghidra detected the change in the ia.sinc file and displayed the
window shown in Figure 18-6 while it was recompiling the ia.sinc file. (Note
that it recompiles only when needed, not automatically on restart.) Because
we loaded a 64-bit file, only x86-64.sla was updated, and not x86.sla. Later,
when we loaded the updated file, complete with the VMXPLODE command,
Ghidra did not recompile, as no changes were made to any underlying
SLEIGH source files since the previous load.

Figure 18-6: Ghidra window displayed while
recompiling a language file

Here is a summary of the steps to add a new instruction to a processor
module:

1.	 Locate the languages directory for the target processor (for example,
Ghidra/Processor/<<targetprocessor>>/data/languages).

2.	 Add the instruction to a selected processor .sinc file, or create a new
.sinc file (for example, Ghidra/Processor/<targetprocessor>/data/languages​
/<targetprocessor>.sinc).

3.	 If you created a new .sinc file, make sure it is included in the .slaspec ​
file (for example, Ghidra/Processor/<targetprocessor>/data/languages​
/<targetprocessor>.slaspec).

Example 2: Modifying an Instruction in a Processor Module
We have now successfully added an instruction to the Ghidra x86 proces-
sor module, but we have not yet accomplished our goal of making VMXPLODE
leave with a flourish. Currently, it just exits without any excitement whatso-
ever. While it is challenging to make an assembly language instruction do
anything that would qualify as a flourish, we can make our instruction dab

416 Chapter 18

when it exits.5 In this example, we will step through three options for mak-
ing VMXPLODE dab for us. For our first option, we will exit after setting EAX to a
hardcoded value: 0xDAB.

Option 1: Set EAX to a Constant Value

Having the VMXPLODE instruction set the value of EAX to 0xDAB prior to exit-
ing requires only a minor modification to one instruction in the same file
(ia.sinc) that we worked with in Example 1. The following listing shows the
VMXOFF and VMXPLODE instructions as we left them after Example 1:

:VMXOFF is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc4 { vmxoff(); }
:VMXPLODE is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5 { vmxplode(); }

Within the instruction contents, add the assignment to EAX immediately
before the vmxplode action, as shown in the following listing:

:VMXOFF is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc4 { vmxoff(); }
:VMXPLODE is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5 { EAX=0xDAB; vmxplode(); }

When we reopen Ghidra and load our test file, Ghidra once again dis-
plays the window shown in Figure 18-6 to let us know that it has detected a
change in an associated language file and is regenerating x86-64.sla. The
Listing window doesn’t show any changes after Ghidra auto analyzes the
file, but the difference is apparent in the Decompiler window:

undefined4 do_vmx(undefined4 param_1)
{
 undefined4 unaff_EBP;

 vmxon(CONCAT44(unaff_EBP,param_1));
 vmxplode();
 vmxoff();
 return 0xdab;
}

In the Decompiler window, the return statement now returns the con-
tents of EAX (0xDAB). This is interesting because we know this is a void func-
tion and doesn’t have a return value. The Listing window entry for the
new instruction doesn’t show that the VMXPLODE command has changed in
any way:

00100726 0f 01 c5 VMXPLODE

5. A dab (or dabbing) was a celebratory dance move used by international sports figures start-
ing in 2012. It was chosen for this example as it is one of the few dance moves that can be
spelled correctly using only hexadecimal digits.

Ghidra Processors 417

An important distinction between decompilers and disassemblers is
that decompilers understand and incorporate the full semantic behavior of
each instruction as part of their analysis, while disassemblers are focused
largely on the proper syntactic representation of each instruction. In this
example, VMXPLODE takes no operands and is correctly displayed by the dis-
assembler, providing no visual cue that EAX has changed. When reading a
disassembly, it is entirely your responsibility to understand the semantic
behavior of each instruction. This example also demonstrates the value
of the decompiler, which, understanding the full semantics of VMXPLODE, is
able to recognize that EAX is changed as a side effect of the instruction. The
decompiler also recognizes that EAX is not used for the remainder of the
function and assumes that the value is intended to be returned to the call-
ing function.

Ghidra offers you the opportunity to dive a little deeper into how instruc-
tions work and allows you to detect and test subtle differences in instructions
like this one. First, let’s look at the some of the instruction information asso-
ciated with VMXPLODE, shown in Figure 18-7.

�

�

Figure 18-7: VMXPLODE instruction info

On the left is our original VMXPLODE instruction, and on the right is
the modified version, with 0xdab listed in the Input Objects  section and
EAX under Result Objects . We can obtain additional insight about any
instruction by looking at underlying information, called p-code, that we
haven’t looked at previously.6 The p-code associated with an instruction
can be very informative about what exactly an instruction does.

6. P-code appears without the hyphen (pcode) in Ghidra Help, and with the hyphen in most
other locations including the p-code documentation. If you are having trouble finding infor-
mation about p-code within Ghidra, try searching for pcode without the hyphen.

418 Chapter 18

P- CODE: HOW LOW C A N YOU GO?

The Ghidra documentation describes p-code as a “register transfer language
designed for reverse engineering applications.” A register transfer language
(RTL) is an architecture-independent, assembly-language-like language often
used as an intermediate representation (IR, or IL for intermediate language)
between a high-level language such as C and a target assembly language
such as x86 or ARM. Compilers are often composed of a language-specific
frontend that translates source code into an IR, and an architecture-specific
backend that translates IR into a specific assembly language. This modular-
ity allows a C frontend to be combined with an x86 backend to create a C
compiler that produces x86 code and offers the flexibility to replace the back-
end with an ARM module to instantly have a C compiler that generates ARM
code. Swap out the C frontend for a FORTRAN frontend and now you have a
FORTRAN compiler for ARM.

Working at the IR level allows us to build tools that operate on our IR
rather than maintaining a set of C-specific or ARM-specific tools that are use-
less to us with other languages or architectures. For example, once we have
an optimizer that operates on IR, we can reuse that optimizer with any of our
frontend/backend combinations without rewriting the optimizer in each case.

A reverse engineering toolchain, not unsurprisingly, runs in the opposite
direction of a traditional software build chain. An RE frontend needs to trans-
late machine code to IR (a process often called lifting), while an RE backend
translates IR to a high-level language such as C. A pure disassembler doesn’t
qualify as a frontend under this definition as it gets us only from machine code
to assembly language. Ghidra’s decompiler is an IR-to-C backend. Ghidra pro-
cessor modules are machine-code-to-IR frontends.

When you build or modify a Ghidra processor module in SLEIGH, one of
the first things you do is let the SLEIGH compiler know about any new p-code
operations that you need to introduce in order to describe the semantic actions
of any new or modified instructions. For example, the operation definition

define pcodeop vmxplode

that we added to our ia.sinc file instructs the SLEIGH compiler that vmxplode is
a valid semantic action available for describing the behavior of any instruction
in our architecture. One of the most difficult challenges that you will face is
describing each new or changed instruction using a sequence of syntactically
correct SLEIGH statements that correctly describe the actions associated with
the instruction. All of this information is captured in the .slaspec and included
.sinc files that make up your processor. If you do a good enough job, Ghidra
will hand you the decompiler backend for free.

Ghidra Processors 419

To view the p-code within the Listing window, open the Browser Field
Formatter and choose the Instruction/Data tab, right-click the P-code bar,
and enable the field. Once the Listing window displays the p-code associated
with each instruction, we can compare the previous two listings to observe
any differences. With p-code enabled, our first implementation of VMXPLODE
appears as follows with the p-code displayed after each instruction:

0010071b 48 89 e5 MOV RBP,RSP
 RBP = COPY RSP
 $U620:8 = INT_ADD RBP, -4:8
 $U1fd0:4 = COPY EDI
 STORE ram($U620), $U1fd0
00100721 f3 0f c7 75 fc VMXON qword ptr [RBP + local_c]

 $U620:8 = INT_ADD RBP, -4:8
 $Ua50:8 = LOAD ram($U620)
 CALLOTHER "vmxon", $Ua50
00100726 0f 01 c5 VMXPLODE
 CALLOTHER "vmxplode"
00100729 90 NOP

And here is the modified VMXPLODE:

00100726 0f 01 c5 VMXPLODE
  EAX = COPY 0xdab:4

 CALLOTHER "vmxplode"

The associated p-code now shows the constant value (0xdab) being
moved into EAX .

Option 2: Set a Register (Determined by an Operand) to a Constant Value

Instruction sets are typically made up of a mix of instructions that operate
on zero or more operands. As the number and types of operands associ-
ated with an instruction increase, so does the level of difficulty in describ-
ing the instruction’s semantics. In this example, we’ll extend the behavior
of VMXPLODE to require a single register operand, which will be made to dab.
This will require us to visit sections of the ia.sinc file that we have not pre-
viously encountered. This time, let’s start with a modified version of the
instruction and then work backward. The following listing shows the modi-
fications we need to make to our instruction definition to accept an oper-
and that will identify the register that ultimately will hold 0xDAB:

:VMXPLODE Reg32 is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5; Reg32v
 { Reg32=0xDAB; vmxplode(); }

Here, Reg32  is declared as a local identifier and then concatenated
with the opcode  to become part of the constraints associated with the
instruction. Rather than assigning 0xDAB directly into EAX as we did previ-
ously, the instruction now assigns the value into Reg32 . To accomplish our

420 Chapter 18

goal, we will need to determine a way to associate the value in Reg32 with
the x86 register of our choosing. Let’s investigate other components within
ia.sinc to help us understand how to correctly map an operand to a specific
x86 general-purpose register.

Near the start of ia.sinc, we see all of the definitions that will be needed
by the entire specification, as shown in Listing 18-1.

SLA specification file for Intel x86
@ifdef IA64u
@define SIZE "8"
@define STACKPTR "RSP"
@else
@define SIZE "4"
@define STACKPTR "ESP"
@endif
define endian=little;v
define space ram type=ram_space size=$(SIZE) default;
define space register type=register_space size=4;
General purpose registersw
@ifdef IA64
define register offset=0 size=8 [RAX RCX RDX RBX RSP RBP RSI RDI];
define register offset=0 size=4 [EAX _ ECX _ EDX _ EBX _ ESP _ EBP _ ESI _ EDI];
define register offset=0 size=2 [AX _ _ _ CX _ _ _ DX _ _ _ BX]; # truncated
define register offset=0 size=1 [AL AH _ _ _ _ _ _ CL CH _ _ _ _ _ _]; # truncated y
define register offset=0x80 size=8 [R8 R9 R10 R11 R12 R13 R14 R15];
define register offset=0x80 size=4 [R8D _ R9D _ R10D _ R11D _ R12D _ R13D _ R14D _ R15D];
define register offset=0x80 size=2 [R8W _ _ _ R9W _ _ _ R10W _ _ _ R11W]; # truncated
define register offset=0x80 size=1 [R8B _ _ _ _ _ _ _ R9B _ _ _ _ _ _ _]; # truncated
@else
define register offset=0 size=4 [EAX ECX EDX EBX ESP EBP ESI EDI];
define register offset=0 size=2 [AX _ CX _ DX _ BX _ SP _ BP _ SI _ DI];
define register offset=0 size=1 [AL AH _ _ CL CH _ _ DL DH _ _ BL BH];
@endif

Listing 18-1: Partial SLEIGH specification for x86 registers (adapted from ia.sinc)

At the top of the file, we see the name and size of the stack pointer for
32- and 64-bit builds , as well as the endianness  for the x86. A com-
ment  introduces the start of the definitions of the general-purpose regis-
ters. As with all its other components, SLEIGH has a special convention for
naming and defining registers: registers reside in a special address space
named register, and every register (which may span 1 or more bytes) is
assigned an offset within the address space. A SLEIGH register definition
indicates the offset at which a list of registers begins within the register
address space. All registers in a register list are contiguous unless an under-
score is used to create space between them. The address space layout of the
64-bit RAX and RCX registers  is shown in more detail in Figure 18-8.

Ghidra Processors 421

size offset

0

8 RAX RCX

4 EAX _

_ _ _ _ _ _

_ECX

2 AX CX

1 AL AH _ _ _ _ _ _ CL CH _ _ _ _ _ _

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 18-8: Register layout for x86-64 RAX and RCX registers

The register named AL occupies exactly the same location as the least
significant byte of RAX, EAX, and AX (since x86 is a little-endian). Similarly, EAX
occupies the low 4 bytes of RAX. An underscore indicates that no name is asso-
ciated with a given range of bytes for the given size. In this case, there is no
name for the 4-byte block at offsets four to seven, although these bytes are
synonymous with the upper half of the RAX register. Listing 18-1 describes a
separate block of registers beginning with R8 at offset 0x80 . The 1-byte regis-
ter at offset 0x80 is known as R8B, and the 1-byte register at offset 0x88 is known
as R9B. Hopefully, the similarity between the textual register definition in
Listing 18-1 and the tabular representation in Figure 18-8 are obvious, since
the register definitions in a SLEIGH file are nothing more than the textual
representation of an architecture’s register address space.

If you are writing a SLEIGH description of an architecture that is entirely
unsupported by Ghidra, it will be your job to lay out the register address
space for that architecture, ensuring no overlap between registers unless
the architecture requires it (such as RAX, EAX, AX, AH, AL in the x86-64
architecture).

Now that you understand how registers are represented in SLEIGH,
let’s return to our objective of choosing a register to dab! In order for our
instruction to function properly, it needs to map the identifier Reg32 to a
general-purpose register. To accomplish this task, we can use an existing
definition in ia.sinc that is found within the following lines of code:

 define token modrm (8)
 mod = (6,7)
 reg_opcode = (3,5)
 reg_opcode_hb = (5,5)
 r_m = (0,2)
 row = (4,7)
 col = (0,2)
 page = (3,3)
 cond = (0,3)
 reg8 = (3,5)
 reg16 = (3,5)

  reg32 = (3,5)
 reg64 = (3,5)
 reg8_x0 = (3,5)

422 Chapter 18

The define statement  is declaring an 8-bit token called modrm. A
SLEIGH token is a syntactic element used to represent byte-sized compo-
nents that make up the instructions being modeled.7 SLEIGH allows the
definition of any number of bitfields (a range of one or more contiguous
bits) within a token. When you’re defining instructions in SLEIGH, these
bitfields provide a convenient, symbolic means of specifying the associated
operands. In this listing, a bitfield named reg32  spans bits 3 through 5
of modrm. This 3-bit field can take on the values 0 to 7 and can be used to
choose one of the eight 32-bit x86 registers.

If we move to the next reference of reg32 in the file, we see the following
interesting lines of code:

attach variables fieldlist registerlist;
 attach variables [r32 reg32 base index] [EAX ECX EDX EBX ESP EBP ESI EDI];
0 1 2 3 4 5 6 7

The first and last lines of the listing contain comments that show the
SLEIGH syntax for this statement and the ordinal values for each register.
The attach variables statement associates the field with a list (in this case,
a list of the x86 general-purpose registers). A rough interpretation of the
line of code, taking the preceding modrm definition into account, is the fol-
lowing: The value of reg32 is determined by looking at bits 3 to 5 of the
token modrm. The resulting value (0 to 7) is then used as an index to select
a register from the list.

We now have a way to identify the general-purpose registers to target
for 0xDAB. Our next encounter with Reg32 within the file finds the following
code, which contains the constructor for Reg32 for both 32- and 64-bit regis-
ters, and now we can see the association between reg32 and Reg32:8

Reg32: reg32 is rexRprefix=0 & reg32 { export reg32; } #64-bit Reg32
Reg32: reg32 is reg32 { export reg32; } #32-bit Reg32

Let’s return to the command that started this little adventure:

:VMXPLODE Reg32is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5; Reg32
 { Reg32=0xDAB; vmxplode(); }

We are going to include an operand with our call to VMXPLODE that will
determine which register gets the value 0xDAB. We will update our test binary
further by removing the first NOP and appending the value 0x08 to our hand-
assembled instruction. The first 3 bytes are the opcode (0f 01 c5), and the
following byte (08) will be the operand that specifies the register to use:

".byte 0x0f, 0x01, 0xc5, 0x08;" // hand assembled with operand

7. This concept is described in detail in the Tokens and Fields (6) section of the SLEIGH
documentation.

8. This concept is described in detail in the Constructors (7) section of the SLEIGH
documentation.

Ghidra Processors 423

Figure 18-9 demonstrates the step-by-step translation from the operand
through to the determination of the register based on the information in
the ia.sinc file.

�
�
�
�
�
�

Operand

Value 0 0 0 0 1 0 0 0

modrm bits 7 6 5 4 3 2 1 0

Reg32

Ordinals 0 1 2 3 4 5 6 7

Registers EAX ECX EDX EBX ESP EBP ESI EDI

08

001

Figure 18-9: Translation path from operand to register

The original operand value, shown in the first row, is 0x08 . The value
is decoded into its binary  form and overlaid with the fields of the modrm
token . Bits 3 to 5 are extracted, yielding the Reg32 value 001 . This value
is used to index the ordinal map  to select the ECX register . Therefore,
the operand 0x08 specifies that ECX will get the value 0xDAB.

When we save the updated ia.sinc file, restart Ghidra, and then load
and analyze the file, the following listing is generated, showing the use of
our new instruction. As expected, ECX is the register selected to hold 0xDAB:

00100721 f3 0f c7 75 fc VMXON qword ptr [RBP + local_c]

 $U620:8 = INT_ADD RBP, -4:8
 $Ua50:8 = LOAD ram($U620)
 CALLOTHER "vmxon", $Ua50
00100726 0f 01 c5 08 VMXPLODE ECX
 ECX = COPY 0xdab:4
 CALLOTHER "vmxplode"
0010072a 90 NOP

The value 0xDAB no longer appears in the Decompiler window because
the decompiler assumes that the return value is in EAX. In this case, we are
using ECX so the decompiler does not identify a return value.

Now that we can make a selected register dab, let’s add a 32-bit immedi-
ate value as a second operand. This will double our celebratory potential.

Option 3: The Register and Value Operands

To extend the syntax of our instruction to take two operands (a destina-
tion register and a source constant), update the definition of VMXPLODE as
shown here:

:VMXPLODE Reg32,imm32 is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5;
 Reg32; imm32 { Reg32=imm32; vmxplode(); }

424 Chapter 18

The addition of an immediate 32-bit constant to the instruction requires
4 additional bytes to encode. Accordingly, we replace the next four NOPs with
values that correctly encode our imm32 in little-endian order, as seen here:

".byte 0x0f, 0x01, 0xc5, 0x08, 0xb8, 0xdb, 0xee, 0x0f;"
"nop;"
"nop;"

When we reload the file, VMXPLODE exits with another flourish. As shown in
the following listing (with p-code displayed), ECX now has the value 0xFEEDBB8
(which might be a more appealing exit flourish for science fiction fans):

00100726 0f 01 c5 VMXPLODE ECX,0xfeedbb8
 08 b8 db
 ee 0f
 ECX = COPY 0xfeedbb8:4
 CALLOTHER "vmxplode"

Example 3: Adding a Register to a Processor Module
We close out our processor module examples by extending an architecture
with two entirely new registers.9 Recall the definition of the 32-bit general-
purpose registers from earlier in the chapter:

define register offset=0 size=4 [EAX ECX EDX EBX ESP EBP ESI EDI];

The definition of a register requires an offset, a size, and the list of
registers. We chose a starting offset into the registry memory address space
after reviewing the currently allocated offsets and finding the space we
need for two 4-byte registers. We can use this information to define two
new 32-bit registers in the ia.sinc file called VMID and VMVER, as shown in the
following listing:

Define VMID and VMVER
define register offset=0x1500 size=4 [VMID VMVER];

Our instructions need a means to identify which new register (VMID or
VMVER) they are operating on. In the previous example, we used a 3-bit field to
select one of eight registers. To select between the two new registers requires
only a single bit. The following statement defines a 1-bit field within the modrm
token and associates the field with vmreg:

Associate vmreg with a single bit in the modrm token.
vmreg = (3, 3)

9. This concept is described in detail starting in the Naming Registers (4.4) section of the
SLEIGH documentation.

Ghidra Processors 425

The following statement attaches vmreg to the ordinal set containing the
two registers, with 0 representing VMID and 1 representing VMVER:

attach variables [vmreg] [VMID VMVER];

Instruction definitions may refer to vmreg when any of the attached
registers are valid within the instruction, while assembly language program-
mers may refer to VMID and VMER as operands in any instruction that allows a
vmreg operand. Let’s compare the following two definitions of VMXPLODE. The
first is from our previous example, where we chose the register from among
the general-purpose registers, and the second selects one of our two regis-
ters rather than any of the general-purpose registers:

:VMXPLODE Reg32,imm32 is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5;
 Reg32, imm32 { Reg32=imm32; vmxplode(); }
:VMXPLODE vmreg,imm32 is vexMode=0 & byte=0x0f; byte=0x01; byte=0xc5;
 vmreg, imm32 { vmreg=imm32; vmxplode(); }

Reg32 is replaced with vmreg in the second listing. If we use the same
input file with test instruction vmxplode 0x08,0xFEEDBB8, the immediate oper-
and 0xFEEDBB8 will be loaded into VMVER, since the input value 0x08 maps to
an ordinal value of 1 (because bit 3 is set), as we show in Figure 18-10, and
VMVER is register 1 in vmreg. After loading the test file (after saving ia.sinc and
restarting Ghidra), we see that the p-code in the Listing window shows that
the immediate operand is loaded into VMVER:

00100726 0f 01 c5 VMXPLODE VMVER,0xfeedbb8
 08 b8 db
 ee 0f
 VMVER = COPY 0xfeedbb8:4
 CALLOTHER "vmxplode"

The associated instruction information, shown in Figure 18-10, con-
firms the change as well.

Figure 18-10: Instruction Info for VMXPLODE with new register VMVER selected

426 Chapter 18

Summary
While we introduced only a small fraction of the x86 processor file contents
in this chapter, we looked at the major components of a processor module,
including instruction definitions, register definitions, and tokens, as well as
how the Ghidra-specific language, SLEIGH, can be used to build, modify,
and augment Ghidra processor modules. If you have a desire (or need) to
add a new processor to Ghidra, we highly recommend looking at some of
the more recent processors added to Ghidra. (The SuperH4.sinc file is par-
ticularly well-documented and the processor is significantly less complex
than the x86 processor.)

We cannot emphasize enough the role that patience and experimen-
tation play in any processor-development situation. The hard work more
than pays off when you are able to reuse your processor module with each
new binary you collect and potentially contribute the module back to the
Ghidra project for the benefit of other reverse engineers.

In the next chapter, we take a deep dive into the functionality associ-
ated with the Ghidra Decompiler.

Until now, we’ve focused our reverse engi-
neering analysis on the Listing window

and presented Ghidra’s features through
the disassembly listing lens. In this chapter, we

shift our focus to the Decompiler window and investi-
gate how we can accomplish familiar analysis tasks
(and some new ones) with the Decompiler and its associated functionality.
We start with a brief overview of the decompilation process before moving
on to the functionality available in the Decompiler window. We then walk
through some examples to help you identify ways that the Decompiler win-
dow can be used to improve your reverse engineering process.

19
T H E G H I D R A D E C O M P I L E R

428 Chapter 19

Decompiler Analysis
It’s logical to assume that the content in the Decompiler window is derived
from the Listing window, but, surprisingly, the contents of the Listing win-
dow and Decompiler window are derived independently, which is why they
sometimes disagree and why both should be evaluated in context when
you’re trying to determine ground truth. The main function of Ghidra’s
Decompiler is to convert machine language instructions into p-code (see
Chapter 18) and then to convert the p-code to C and present it in the
Decompiler window.

In a simplified view, the decompilation process includes three distinct
phases. In the first phase, the Decompiler uses the SLEIGH specification
file to create a draft of the p-code and derive associated basic blocks and
flows. The second phase focuses on simplification: unneeded content such
as unreachable code is eliminated, and then control flows are adjusted
and tuned in response to the changes. In the wrap-up phase, finishing
touches are added, some final checks are made, and the final results are
sent through a pretty-printing algorithm before being presented in the
Decompiler window. Of course, this greatly simplifies a very complex pro-
cess, but the main takeaways are the following:1

•	 The Decompiler is an analyzer.

•	 It starts its work with the binary and produces p-code.

•	 It converts the p-code to C.

•	 The C code and any associated messages are displayed in the
Decompiler window.

We discuss some of these steps in more detail as we navigate through
Ghidra’s decompilation functionality. Let’s start our investigation with the
analysis process and the primary capabilities it unleashes.

Analysis Options
During the auto analysis process, there are several analyzers that pertain
to the Decompiler window. Decompiler analysis options are managed through
the Edit4Tool Options menu, shown in Figure 19-1 with defaults selected.

We discuss two of these options, Eliminate unreachable code and
Simplify predication, next. For the remaining options, you can experiment
with their results or refer to Ghidra Help.

1. The Ghidra decompilation workflow is broken into 15 steps that include subcomponents.
The comprehensive internal documentation for the Ghidra Decompiler can be extracted
using Doxygen.

The Ghidra Decompiler 429

Figure 19-1: Ghidra Decompiler analysis options with
defaults selected

Eliminate Unreachable Code

The Eliminate unreachable code option excludes unreachable code from
the Decompiler listing. For example, the following C function has two con-
ditions that can never be met, which makes the corresponding conditional
blocks unreachable:

int demo_unreachable(volatile int a) {
 volatile int b = a ^ a;

  if (b) {
 printf("This is unreachable\n");
 a += 1;
 }

  if (a - a > 0) {
 printf("This should be unreachable too\n");
 a += 1;
 } else {
 printf("We should always see this\n");
 a += 2;
 }
 printf("End of demo_unreachable()\n");
 return a;
}

The variable b is initialized to zero in a perhaps less than obvious man-
ner. When b is tested , its value can never be non zero, and the body of
the corresponding if statement will never be executed. Similarly a - a can
never be greater than zero, and the condition in the second if statement 
can also never evaluate to true. When the Eliminate unreachable code
option is selected, the Decompiler window displays warning messages to let
us know it has removed unreachable code.

430 Chapter 19

/* WARNING: Removing unreachable block (ram,0x00100777) */
/* WARNING: Removing unreachable block (ram,0x0010079a) */
ulong demo_unreachable(int param_1)
{
 puts("We should always see this");
 puts("End of demo_unreachable()");
 return (ulong)(param_1 + 2);
}

Simplify Predication

This option optimizes if/else blocks by merging blocks that share the same
condition. In the following listing, the first two if statements share the same
condition:

int demo_simppred(int a) {
 if (a > 0) {
 printf("A is > 0\n");
 }
 if (a > 0) {
 printf("Yes, A is definitely > 0!\n");
 }
 if (a > 2) {
 printf("A > 2\n");
 }
 return a * 10;
}

With Simplify predication enabled, the resulting Decompiler listing
shows the combined blocks:

ulong demo_simppred(int param_1)
{
 if (0 < param_1) {
 puts("A is > 0");
 puts("Yes, A is definitely > 0!");
 }
 if (2 < param_1) {
 puts("A > 2");
 }
 return (ulong)(uint)(param_1 * 10);
}

The Decompiler Window
Now that you understand how the Decompiler Analysis Engine populates the
Decompiler window, let’s see how you can use the window to facilitate your
analysis. Navigating the Decompiler window is relatively easy, as it displays
only one function at a time. To move between functions or see the function
in context, it is helpful to correlate with the Listing window. Because the

The Ghidra Decompiler 431

Decompiler window and the Listing window are linked by default, you can
navigate both by using the available options in the CodeBrowser toolbar.

The function displayed in the Decompiler window helps with analysis,
but it may not be so easy to read at first. Any lack of information about the
data types used by the functions that it decompiles requires Ghidra to infer
those data types itself. As a result, the decompiler may overuse type casts, as
you can see in the following sample statements:

printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n", (ulong)param_1,
 (ulong)param_2,(ulong)uVar1,(ulong)uVar2,(ulong)(uVar1 + param_1),
 (ulong)(uVar2 * 100),(ulong)uVar4);

uStack44 = *(undefined4 *)**(undefined4 **)(iStack24 + 0x10);

As you provide more accurate type information using the Decompiler
editing options, you will notice that the Decompiler relies less and less on
type casts, and the generated C code become easier to read. In the exam-
ples that follow, we’ll discuss some of the Decompiler window’s most useful
features to clean up the generated source code. The ultimate goal is read-
able source code that is easier to comprehend, which reduces the amount
of time needed to understand the behavior of the code.

Example 1: Editing in the Decompiler Window
Consider a program that accepts two integer values from the user and then
calls the following function:

int do_math(int a, int b) {

 int c, d, e, f, g;
 srand(time(0));

 c = rand();
 printf("c=%d\n", c);

 d = a + b + c;
 printf("d=%d\n", d);

 e = a + c;
 printf("e=%d\n", e);

 f = d * 100;
 printf("f=%d\n", f);

 g = rand() - e;
 printf("g=%d\n", g);

 printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n", a, b, c, d, e, f, g);

 return g;
}

432 Chapter 19

The function uses two integer parameters with five local variables to
generate its output. The interdependencies can be summed up as follows:

•	 Variable c depends on the rand() return value, influences d and e
directly, and influences f and g indirectly.

•	 Variable d depends on a, b, and c, and influences f directly.

•	 Variable e depends on a and c, and influences g directly.

•	 Variable f depends on d directly and on a, b, and c indirectly, and influ-
ences nothing.

•	 Variable g depends on e directly and on a and c indirectly, and influ-
ences nothing.

When the associated binary is loaded into Ghidra and the function is
analyzed, you see the following representation of the do_math function in the
Decompiler window:

ulong do_math(uint param_1,uint param_2)
{
 uint uVar1;
 uint uVar2;
 int iVar3;
 uint uVar4;
 time_t tVar5;

 tVar5 = time((time_t *)0x0);
 srand((uint)tVar5);
 uVar1 = rand();
 printf("c=%d\n");
 uVar2 = uVar1 + param_1 + param_2;

  printf("d=%d\n");
 printf("e=%d\n");
 printf("f=%d\n");
 iVar3 = rand();
 uVar4 = iVar3 - (uVar1 + param_1);
 printf("g=%d\n");
 printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n", (ulong)param_1,
 (ulong)param_2,(ulong)uVar1,(ulong)uVar2,(ulong)(uVar1 + param_1),
 (ulong)(uVar2 * 100),(ulong)uVar4);
 return (ulong)uVar4;
}

If you want to do your analysis using the Decompiler, you’ll want to
make sure the code the Decompiler is generating is as accurate as pos-
sible. Usually, this is done by providing as much information as possible
about data types and function prototypes. Functions that accept a vari-
able number of arguments, such as printf, are especially tricky for the
Decompiler since the Decompiler would need to fully understand the
semantics of the required arguments in order to estimate the number of
supplied optional arguments.

The Ghidra Decompiler 433

Overriding Function Signatures

You can see a number of printf statements  that don’t look quite right.
Each one has a format string but no additional arguments. Since printf
takes a variable number of arguments, you can override the function sig-
nature at each calling location and (based on the format string) indicate
that the printf statement should take one integer argument.2 To make this
change, right-click a printf statement and choose Override Signature from
the context menu to open the dialog shown in Figure 19-2.

Figure 19-2: The Override Signature dialog

Adding the second parameter type, int, to the signature (as shown in
the figure) for each of the printf statements results in the following listing:

ulong do_math(uint param_1,uint param_2)
{

  uint uVar1;
 uint uVar2;
 uint uVar3;
 int iVar4;
 uint uVar5;
 time_t tVar6;

 tVar6 = time((time_t *)0x0);
 srand((uint)tVar6);
 uVar1 = rand();
 printf("c=%d\n",uVar1);
 uVar2 = uVar1 + param_1 + param_2;
 printf("d=%d\n",uVar2);

  uVar3 = uVar1 + param_1;
 printf("e=%d\n",uVar3);
 printf("f=%d\n",uVar2 * 100);
 iVar4 = rand();

  uVar5 = iVar4 - uVar3;
 printf("g=%d\n",uVar5);

  printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n", (ulong)param_1,

2. For functions that do not have a variable number of arguments, you should change the
function signature rather than overriding it from the call.

434 Chapter 19

 (ulong)param_2,(ulong)uVar1,(ulong)uVar2,(ulong)(uVar1 + param_1),
 (ulong)(uVar2 * 100),(ulong)uVar4);
 return (ulong)uVar4;
}

In addition to the updated calls to printf with the correct arguments,
two new lines have been added to the Decompiler listing as a result of
overriding the printf function v. These statements weren’t included
previously because Ghidra believed the results were not used. Once the
Decompiler understands that the results are used in each printf, the state-
ments become meaningful and are displayed in the Decompiler window.

Editing Variable Types and Names

After correcting the function calls, you can continue cleaning up the list-
ing by renaming (hotkey L) and retyping (hotkey ctrl-L) the parameters
and the variables  based on the names found in the printf format strings.
As an aside, format strings are an extremely valuable source of information
regarding the type and purpose of variables in any program.

After these changes have been completed, the final printf statement 
is still a bit cumbersome:

printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n", (ulong)a,
 (ulong)(uint)b, (ulong)(uint)c, (ulong)(uint)d, (ulong)(uint)e,
 (ulong)(uint)(d * 100),(ulong)(uint)g);

Right-clicking this statement allows you to override the function sig-
nature. The first argument in this printf statement is the format string,
and it doesn’t need to be modified. Changing the rest of the arguments
to type int results in the following cleaner code (Listing 19-1) in the
Decompiler window.

int do_math(int a, int b)
{
 int c;
 int d;
 int e;
 int g;
 time_t tVar1;

 tVar1 = time((time_t *)0x0);
 srand((uint)tVar1);
 c = rand();
 printf("c=%d\n",c);
 d = c + a + b;
 printf("d=%d\n",d);
 e = c + a;
 printf("e=%d\n",e);
 printf("f=%d\n",d * 100);
 g = rand();
 g = g - e;
 printf("g=%d\n",g);

The Ghidra Decompiler 435

 printf("a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d\n",a,b,c,d,e,d * 100,g);
 return g;
}

Listing 19-1: Decompiled function with updated signatures

This is very similar to our original source code and much easier to read
than the original Decompiler listing as the modifications of the function
arguments have been propagated throughout the listing. One difference
between the Decompiler listing and our original source code is that the
variable f has been replaced by an equivalent expression .

Highlighting Slices

Now that you have a more understandable Decompiler window, you can
begin further analysis. Suppose that you want to know how individual
variables affect and are affected by other variables. A program slice is a col-
lection of statements that contribute to the value of a variable (backward
slice) or are affected by a variable (forward slice). In vulnerability analysis
scenarios, this might manifest as “I have control of this variable; where
does its value get used?”

Ghidra provides five options in its right-click context menu to highlight
relationships between variables and instructions in a function. If you right-
click a variable in the Decompiler window, you can choose from the follow-
ing options:

Highlight Def-use  This option highlights all uses of the variable within
the function. (You can use a middle mouse click to get the same effect.)

Highlight Forward Slice  This option highlights everything that is
impacted by the value in the selected variable. For example, if you select
variable b in Listing 19-1 and choose this option, all occurrences of b
and d will be highlighted in the listing, because a change in the value of
b could also result in a change in the value of d.

Highlight Backward Slice  This is the inverse of the previous option
and highlights all of the variables that contribute to a particular value.
If you right-click variable e in the final printf statement in Listing 19-1
and choose this option, all of the variables that affect the value of e (in
this case e, a, and c) will be highlighted. Changing a or c could also
change the value of e.

Highlight Forward Inst Slice  This option highlights the entire state-
ment associated with the Highlight Forward Slice option. In Listing 19-1,
if you use this option while variable b is selected, all statements in which b
or d appear will be highlighted.

Highlight Backward Inst Slice  This option highlights the entire
statement associated with the Highlight Backward Slice option. In
Listing 19-1, selecting this option while highlighting variable e in the
final printf statement will cause all statements in which a, c, or e appear
to be highlighted.

436 Chapter 19

Now that we have a general understanding of some approaches to work
with the Decompiler window and use it in our analysis, let’s look at a more
specific example.

Example 2: Non-Returning Functions
In general, Ghidra can safely assume function calls return and therefore
treat function calls as if they exhibit sequential flow within basic blocks.
However, some functions, such as those marked with the noreturn keyword
in source code, or ended with an obfuscated jump instruction in malware,
do not return, and Ghidra may generate inaccurate disassembled or decom-
piled code. Ghidra offers three approaches for dealing with non-returning
functions: two non-returning function analyzers and the capability to edit
function signatures manually.

Ghidra can identify non-returning functions based on a list of known
noreturn functions such as exit and abort using the Non-Returning Functions-
Known analyzer. This analyzer is selected by default as part of auto analysis,
and its job is straightforward: if a function name appears in its list, it marks
the function as non-returning and does its best to correct any associated
issues (for example, set associated calls to non-returning, find flows that
might need repairing, and so on).

The Non-Returning Functions-Discovered analyzer looks for clues
that might indicate that a function doesn’t return (for example, data or
bad instructions right after the call). What it does with the information
is largely controlled by the three options associated with the analyzer, as
shown in Figure 19-3.

Figure 19-3: Analysis options for Non-Returning Functions-Discovered

The first option  allows the automatic creation of analysis book-
marks (which appear on the Listing window’s bookmark bar). The sec-
ond option  allows you to specify a threshold that determines whether
to designate a function as non-returning based on a series of checks for

The Ghidra Decompiler 437

characteristics that are likely to indicate a non-returning function. Finally,
there is a checkbox  to repair the associated flow damage.

When Ghidra is unable to identify a non-returning function, you have
the option to edit the function signature yourself. If you complete analysis
and have error bookmarks, which are used to flag bad instructions, then
that is a good indication that something is not quite right with Ghidra’s own
analysis. If the bad instruction follows a CALL, as in

00100839 CALL noReturnA
0010083e ?? FFh

then you are likely to see an associated post-comment warning you about
the situation in the Decompiler window, like this:

 noReturnA(1);
 /* WARNING: Bad instruction - Truncating control flow here */
 halt_baddata();

If you click the function name (noReturnA in this case) in the Decompiler
window and then choose Edit Function Signature, you will have the option
to modify attributes associated with the function, as shown in Figure 19-4.

Figure 19-4: Editing function attributes

Check the No Return box to mark the function as non-returning. Ghidra
then inserts a pre comment, shown next, in the Decompiler window as well as
a post comment in the Listing window:

 /* WARNING: Subroutine does not return */
 noReturnA(1);

With this error corrected, you can move on to other issues.

Example 3: Automated Structure Creation
When analyzing decompiled C source code, you’re likely to come across
statements that appear to contain structure field references. Ghidra helps
you create a structure and populate it based on the associated references

438 Chapter 19

that the Decompiler has detected. Let’s walk through an example starting
with the source code and Ghidra’s initial decompilation of the code.

Suppose you have source code that defines two struct types and then
creates a global instance of each:

 struct s1 {
 int a;
 int b;
 int c;
};

 typedef struct s2 {
 int x;
 char y;
 float z;
} s2_type;

struct s1 GLOBAL_S1;
s2_type GLOBAL_S2;

One structure  contains homogeneous elements, and the other 
contains a heterogeneous collection of types. The source code also contains
three functions, one of which (do_struct_demo) declares a local instance of
each structure type:

void display_s1(struct s1* s) {
 printf("The fields in s1 = %d, %d, and %d\n", s->a, s->b, s->c);
}

void update_s2(s2_type* s, int v) {
 s->x = v;
 s->y = (char)('A' + v);
 s->z = v * 2.0;
}

void do_struct_demo() {
 s2_type local_s2;
 struct s1 local_s1;

 printf("Enter six ints: ");
 scanf("%d %d %d %d %d %d", (int *)&local_s1, &local_s1.b, &local_s1.c,
 &GLOBAL_S1.a, &GLOBAL_S1.b, &GLOBAL_S1.c);

 printf("You entered: %d and %d\n", local_s1.a, GLOBAL_S1.a);
 display_s1(&local_s1);
 display_s1(&GLOBAL_S1);

 update_s2(&local_s2, local_s1.a);
}

The Ghidra Decompiler 439

The decompiled version of do_struct_demo appears in Listing 19-2.

void do_struct_demo(void)
{
 undefined8 uVar1;
 uint local_20;
 undefined local_1c [4];
 undefined local_18 [4];
 undefined local_14 [12];

 uVar1 = 0x100735;
 printf("Enter six ints: ");
 __isoc99_scanf("%d %d %d %d %d %d", &local_20, local_1c, local_18,
 GLOBAL_S1,0x30101c,0x301020,uVar1);
 printf("You entered: %d and %d\n",(ulong)local_20,(ulong)GLOBAL_S1._0_4_);

  display_s1(&local_20);
  display_s1(GLOBAL_S1);

 update_s2(local_14,(ulong)local_20,(ulong)local_20);
 return;
}

Listing 19-2: Initial decompilation of do_struct_demo

Navigating to the display_s1 function from either function call u by
double-clicking it in the Decompiler window yields the following:

void display_s1(uint *param_1)
{
 printf("The fields in s1 = %d, %d, and %d\n", (ulong)*param_1,
 (ulong)param_1[1],(ulong)param_1[2]);
 return;
}

Because you suspect the argument to display_s1 might be a structure
pointer, you can ask Ghidra to automate the process of creating a struct for
you by right-clicking param_1 in the function’s argument list and selecting
Auto Create Structure from the context menu. In response, Ghidra tracks
all uses of param_1, treats all arithmetic performed on the pointer as refer-
encing a member of a struct, and automatically creates a new struct type
containing fields at each referenced offset. This changes a few things in the
Decompiler listing:

void display_s1(astruct *param_1)
{
 printf("The fields in s1 = %d, %d, and %d\n",(ulong)param_1->field_0x0,
 (ulong)param_1->field_0x4,(ulong)param_1->field_0x8);
 return;
}

440 Chapter 19

The type of the parameter has changed and is now astruct*, and the
call to printf now contains field references. The new type has also been
added to the Data Type Manager, and hovering over the structure name
displays the field definitions, as shown in Figure 19-5.

Figure 19-5: Automatic structs in the
Data Type Manager

You can update the type for local_20 and GLOBAL_S1 to astruct by using
the Retype Variable option from the right-click context menu. The results
are shown in the following listing:

void do_struct_demo(void)
{
 undefined8 uVar1;

  astruct local_20;
 undefined local_14 [12];

 uVar1 = 0x100735;
 printf("Enter six ints: ");
 __isoc99_scanf("%d %d %d %d %d %d", &local_20, &local_20.field_0x4,

  &local_20.field_0x8, &GLOBAL_S1, 0x30101c, 0x301020, uVar1);
 printf("You entered: %d and %d\n", (ulong)local_20.field_0x0,

  (ulong)GLOBAL_S1.field_0x0);
 display_s1(&local_20);
 display_s1(&GLOBAL_S1);
 update_s2(local_14,(ulong)local_20.field_0x0,(ulong)local_20.field_0x0);
 return;
}

Comparing this with Listing 19-2 shows the modification of the type for
local_20  and the addition of field references for both local_20 v and
GLOBAL_S1 .

The Ghidra Decompiler 441

Let’s shift focus to the decompilation of the third function, update_s2,
shown in Listing 19-3.

void update_s2(int *param_1,int param_2)
{
 *param_1 = param_2;
 *(char *)(param_1 + 1) = (char)param_2 + 'A';
 *(float *)(param_1 + 2) = (float)param_2 + (float)param_2;
 return;
}

Listing 19-3: Initial decompilation of update_s2

You can use the previous approach to automatically create a structure
for param_1. Simply right-click param_1 in the function and choose Auto Create
Structure from the context menu.

void update_s2(astruct_1 *param_1,int param_2)
{
 param_1->field_0x0 = param_2;
 param_1->field_0x4 = (char)param_2 + 'A';
 param_1->field_0x8 = (float)param_2 + (float)param_2;
 return;
}

The Data Type Manager now has a second struct definition associated
with this file, as shown in Figure 19-6.

Figure 19-6: Additional automatic structs
in the Data Type Manager window

442 Chapter 19

This structure has an int, a char, three undefined bytes (likely padding
inserted by the compiler), and a float. To edit the structure, right-click
astruct_1 and choose Edit from the context menu, which opens the Structure
Editor window. If we choose to name the int field x, the char field y, and the
float field z, and then save the changes, the new field names will be reflected
in the Decompiler listing:

void update_s2(astruct_1 *param_1,int param_2)
{
 param_1->x = param_2;
 param_1->y = (char)param_2 + 'A';
 param_1->z = (float)param_2 + (float)param_2;
 return;
}

This listing is much easier to read and understand than the original
decompilation in Listing 19-3.

Summary
The Decompiler window, like the Listing window, provides you with a view
into a binary, and each has its associated strengths and weaknesses. The
Decompiler provides a higher-level view that can help you understand the
general structure and functionality of a single function more quickly than
looking at the disassembly (particularly for those who do not have years of
experience reading disassembly listings). The Listing window provides a
lower-level view of the entire binary, with all of the available detail, but this
can make it more difficult to gain insight into the big picture.

Ghidra’s Decompiler can be used effectively with the Listing window
and all of the other tools we have introduced throughout the book to aid
you in your reverse engineering process. In the end, it is the reverse engi-
neer’s role to determine the best approach to solving the problem at hand.

This chapter focused on the Decompiler window and issues associated with
decompilation. Many of challenges can be traced to the wide variety of compil-
ers and associated compiler options that directly influence the resulting binary.
In the next chapter, we take a look at some compiler-specific behaviors and
compiler build options to better understand the resulting binaries.

At this point, if we have done our job
properly, you now possess the essential

skills to use Ghidra effectively and, more
importantly, to bend it to your will. The next

step is to learn to adapt to the challenges that binaries
(as opposed to Ghidra) will throw at you. Depending
on your motives for staring at assembly language, either you may be very
familiar with what you are looking at or you may never know what you are
going to be faced with. If you spend all of your time examining code that
was compiled using gcc on a Linux platform, you’ll become quite familiar
with the style of code that it generates, but you may be baffled by a debug
version of a program compiled using the Microsoft C/C++ compiler. If
you are a malware analyst, you may see code created using gcc, clang,
Microsoft's C++ compiler, Delphi, and others, all in the same afternoon.

Like you, Ghidra is more familiar with the output of some compilers
than other compilers, and familiarity with code generated by one compiler
in no way guarantees that you will recognize high-level constructs compiled
using an entirely different compiler (or even different versions of the same

20
C O M P I L E R V A R I A T I O N S

444 Chapter 20

compiler family). Rather than relying entirely on Ghidra’s analysis capa-
bilities to recognize commonly used code and data constructs, you should
always be prepared to utilize your own skills: your familiarity with a given
assembly language, your knowledge of compilers, and your research skills to
properly interpret a disassembly.

In this chapter, we cover some of the ways that compiler differences
manifest themselves in disassembly listings. We primarily use compiled C
code for our examples, as the variability of C compilers and target plat-
forms provides foundational concepts that can be extended to other com-
piled languages.

High-Level Constructs
In some cases, the differences between compilers may just be cosmetic,
but in other cases, they are much more significant. In this section, we look
at high-level language constructs and demonstrate how different compilers
and compiler options may significantly impact the resulting disassembly
listing. We begin with switch statements and the two mechanisms most com-
monly employed to resolve switch case selection. Following that, we look at
the way that compiler options affect code generation for common expres-
sions before moving on to discuss how different compilers implement C++-
specific constructs and handle program startup.

switch Statements
The C switch statement is a frequent target for compiler optimizations. The
goal of these optimizations is to match the switch variable to a valid case
label in the most efficient manner possible, but the distribution of the
switch statement’s case labels constrains the type of search that can be used.

Since the efficiency of a search is measured by the number of compari-
sons required to find the correct case, we can trace the logic a compiler
might use to determine the best way to represent a switch table. A constant
time algorithm, such as a table lookup, is the most efficient.1 At the other
end of the continuum is linear search, which, in the worst case, requires
comparing the switch variable against every case label before finding a
match or resolving to the default and thus is the least efficient.2 The effi-
ciency of a binary search is much better, on average, than linear search but
introduces additional constraints, as it requires a sorted list.3

In order to select the most efficient implementation for a particular
switch statement, it helps to understand how the case label distribution
affects the compiler’s decision-making process. When case labels are closely
clustered, as in the source code in Listing 20-1, compilers generally resolve

1. For you algorithm analysis fans, the use of a table lookup allows the target case to be found
in a constant number of operations regardless of the size of the search space—which, as you
may recall from your algorithms class, is also called constant time, or O(1).

2. Linear time algorithms are O(n) and fortunately are not used in switch statements.

3. Binary search is O(log n).

Compiler Variations 445

the switch variable by performing a table lookup to match the switch vari-
able to the address of its associated case—specifically by using a jump table.

switch (a) {
/** NOTE: case bodies omitted for brevity **/
 case 1: /*...*/ break;
 case 2: /*...*/ break;
 case 3: /*...*/ break;
 case 4: /*...*/ break;
 case 5: /*...*/ break;
 case 6: /*...*/ break;
 case 7: /*...*/ break;
 case 8: /*...*/ break;
 case 9: /*...*/ break;
 case 10: /*...*/ break;
 case 11: /*...*/ break;
 case 12: /*...*/ break;
}

Listing 20-1: A switch statement with consecutive case labels

A jump table is an array of pointers, with each pointer in the array refer-
encing a possible jump target. At runtime, a dynamic index into the table
chooses one of the many potential jumps each time the jump table is ref-
erenced. Jump tables work well when switch case labels are closely spaced
(dense), with most of the cases falling into a consecutive number sequence.
Compilers take this into account when deciding whether to utilize a jump
table. For any switch statement, we can compute the minimum number of
entries an associated jump table will contain as follows:

num_entries = max_case_value – min_case_value + 1

The density, or utilization rate, of the jump tables can then be com-
puted as follows:

density = num_cases / num_entries

A completely contiguous list with every value represented would have
a density value of 100 percent (1.0). Finally, the total amount of space
required to store the jump table is as follows:

table_size = num_entries * sizeof(void*)

A switch statement with 100 percent density will be implemented using
a jump table. A set of cases with a density of 30 percent might not be imple-
mented using a jump table, since jump table entries would still need to be
allocated for the absent cases, which would be 70 percent of the jump table.
If num_entries is 30, the jump table would contain entries for 21 unreferenced
case labels. On a 64-bit system, this is 168 of the 240 bytes allocated to the
table, which is not a lot of overhead, but if num_entries jumps to 300, then
the overhead becomes 1680 bytes, which may not be worth the trade-off for

446 Chapter 20

90 possible cases. A compiler that is optimizing for speed may favor jump
table implementations, while a compiler that is optimizing for size may choose
an alternative implementation with lower memory overhead: binary search.

Binary search is efficient when the case labels are widely spread (low
density), as seen in Listing 20-2 (density 0.0008).4 Because binary search
works only on sorted lists, the compiler must ensure that the case labels are
ordered before it begins the search with the median value. This may result
in the reordering of case blocks when viewed in a disassembly, as compared
to the order they appear in the corresponding source.5

switch (a) {
/** NOTE: case bodies omitted for brevity **/
 case 1: /*...*/ break;
 case 211: /*...*/ break;
 case 295: /*...*/ break;
 case 462: /*...*/ break;
 case 528: /*...*/ break;
 case 719: /*...*/ break;
 case 995: /*...*/ break;
 case 1024: /*...*/ break;
 case 8000: /*...*/ break;
 case 13531: /*...*/ break;
 case 13532: /*...*/ break;
 case 15027: /*...*/ break;
}

Listing 20-2: Sample switch statement with nonconsecutive case labels

Listing 20-3 shows an outline for a non-iterative binary search through
a fixed number of constant values. This is the rough framework that the
compiler uses to implement the switch from Listing 20-2.

if (value < median) {
 // value is in [0-50) percentile
 if (value < lower_half_median) {
 // value is in [0-25) percentile
 // ... continue successive halving until value is resolved
 } else {
 // value is in [25-50) percentile
 // ... continue successive halving until value is resolved
 }
} else {
 // value is in [50-100) percentile
 if (value < upper_half_median) {
 // value is in [50-75) percentile

4. For those analyzing algorithms at home, this means that the switch variable is matched
after at most log2N comparisons, where N is the number of cases contained in the switch state-
ment. This is O(log n).

5. While the complexity of sorting is very high compared with the complexity of searching,
it is important to note the sorting would occur only once at compilation time, whereas the
search would take place every time the switch statement is used during execution.

Compiler Variations 447

 // ... continue successive halving until value is resolved
 } else {
 // value is in [75-100) percentile
 // ... continue successive halving until value is resolved
 }
}

Listing 20-3: Non-iterative binary search through a fixed number of constant values

Compilers are also capable of performing more fine-grained optimiza-
tions across a range of case labels. For example, when confronted with the
case labels

label_set = [1, 2, 3, 4, 5, 6, 7, 8, 50, 80, 200, 500, 1000, 5000, 10000]

a less aggressive compiler might see a density of 0.0015 here and generate a
binary search through all 15 cases. A more aggressive compiler might emit
a jump table to resolve cases 1 to 8, and a binary search for the remaining
cases, achieving optimal performance for over half of the cases.

Before we look at the disassembled versions of Listings 20-1 and 20-2,
let’s look at the Ghidra Function Graph windows corresponding to the list-
ings, shown side by side in Figure 20-1.

Figure 20-1: Ghidra Function Graph switch statement examples

448 Chapter 20

On the left, the graph for Listing 20-1 shows a nice vertical stack of
cases. Each stacked code block resides at the same nesting depth, as is true
for cases in a switch statement. The stack suggests that we can use an index
to quickly select one block from the many (think array access). This is pre-
cisely how jump table resolution works, and the left-hand graph provides us
with a visual hint that this is the case, even before we have looked at a single
line of the disassembly.

The right-hand graph is Ghidra’s result based solely on its understanding
of the disassembly of Listing 20-2. The lack of a jump table makes it much
more challenging to identify this as a switch statement. What you are see-
ing is a visual representation of the switch statement using Ghidra’s Nested
Code Layout. This is the default layout for function graphs in Ghidra and
is intended to represent the flow structures in a program. The horizontal
branching in this graph suggests conditional execution (if/else) branch-
ing to mutually exclusive alternatives. The vertical symmetry suggests that
the alternative execution paths have been very carefully balanced to place
equal numbers of blocks in each vertical half of the graph. Finally, the
distance that the graph traverses horizontally is an indicator of the depth
reached by the search, which in turn is dictated by the total number of case
labels present in the switch. For a binary search, this depth will always be
on the order of log2(num_cases). The similarity between the indentation of
the graphical representation and the algorithm outlined in Listing 20-3 is
easily observable.

Turning our attention to the Decompiler window, Figure 20-2 shows
the partial decompilation of the functions displayed in Figure 20-1. On the
left is the decompiled version of Listing 20-1. As with the graph, the pres-
ence of a jump table in the binary helps Ghidra identify the code as a
switch statement.

On the right is the decompiled version of Listing 20-2. The decompiler
has presented the switch statement as a nested if/else structure consis-
tent with a binary search, and similar in structure to Listing 20-3. You can
see that first comparison is against 719, the median value in the list, and
that subsequent comparisons continue to divide the search space in half.
Referring to Figure 20-1 (as well as Listing 20-3), we can again observe that
the graphical representations of each function closely correspond to the
indentation patterns observed in the Decompiler window.

Now that you have an idea of what is happening from a high level, let’s
look inside the binaries and investigate what is happening at a low level.
Since our objective in this chapter is to observe differences between compil-
ers, we present this example as a series of comparisons between two compil-
ers, gcc and Microsoft C/C++.6

6. <gcc> accepts a large number of command line arguments, and each may affect the resulting
generated code. For our starting point, the following gcc command was used to compile the
example: <gcc switch_demo_1.c -m32 -fno-pie -fno-pic -fno-stack-protector -o switch_demo_1_x86>.
The Microsoft C/C++ example is an unmodified x86 debug build. Additional options will be
introduced in subsequent examples.

Compiler Variations 449

Figure 20-2: Ghidra decompiled switch statement examples

Example: Comparing gcc with Microsoft C/C++ Compiler
In this example, we compare two 32-bit x86 binaries generated for Listing 20-1
by two distinct compilers. We will attempt to identify components of a switch
statement in each binary, locate the associated jump table in each binary,
and point out significant differences between the two binaries. Let’s start by
looking at the switch-related components for Listing 20-1 in the binary built
with gcc:

0001075a CMP dword ptr [EBP + value],12
0001075e JA switchD_00010771::caseD_0v
00010764 MOV EAX,dword ptr [EBP + a]
00010767 SHL EAX,0x2
0001076a ADD EAX,switchD_00010771::switchdataD_00010ee0 = 00010805
0001076f MOV EAX,dword ptr [EAX]=>->switchD_00010771::caseD_0 = 00010805
 switchD_00010771::switchD
00010771 JMP EAX
 switchD_00010771::caseD_1 XREF[2]: 00010771(j), 00010ee4(*)

450 Chapter 20

00010773 MOV EDX,dword ptr [EBP + a]
00010776 MOV EAX,dword ptr [EBP + b]
00010779 ADD EAX,EDX
0001077b MOV dword ptr [EBP + result],EAX
0001077e JMP switchD_00010771::caseD_0
;--content omitted for remaining cases--
 switchD_00010771::switchdataD_00010ee0 XREF[2]: switch_version_1:0001076a(*),
 switch_version_1:0001076f(R)
00010ee0 addr switchD_00010771::caseD_0y
00010ee4 addr switchD_00010771::caseD_1
00010ee8 addr switchD_00010771::caseD_2
00010eec addr switchD_00010771::caseD_3
00010ef0 addr switchD_00010771::caseD_4
00010ef4 addr switchD_00010771::caseD_5
00010ef8 addr switchD_00010771::caseD_6
00010efc addr switchD_00010771::caseD_7
00010f00 addr switchD_00010771::caseD_8
00010f04 addr switchD_00010771::caseD_9
00010f08 addr switchD_00010771::caseD_a
00010f0c addr switchD_00010771::caseD_b
00010f10 addr switchD_00010771::caseD_c

Ghidra recognizes the switch bounds test , the jump table , and indi-
vidual case blocks by value, such as the one at switchD_00010771::caseD_1 .
The compiler generated a jump table with 13 entries, although Listing 20-1
contained only 12 cases. The additional case, case 0 (the first entry  in the
jump table), shares a target address with every value outside the range 1 to 12.
In other words, case 0 is part of the default case. While it may seem that nega-
tive numbers are being excluded from the default, the CMP, JA sequence works
as a comparison on unsigned values; thus, -1 (0xFFFFFFFF) would be seen as
4294967295, which is much larger than 12 and therefore excluded from the
valid range for indexing the jump table. The JA instruction directs all such
cases to the default location: switchD_00010771::caseD_0 .

Now that we understand the basic components of the code generated
by the gcc compiler, let’s shift our focus to the same components in code
generated by the Microsoft C/C++ compiler in debug mode:

00411e88 MOV ECX,dword ptr [EBP + local_d4]
00411e8e SUB ECX,0x1
00411e91 MOV dword ptr [EBP + local_d4],ECX
00411e97 CMP dword ptr [EBP + local_d4],11
00411e9e JA switchD_00411eaa::caseD_c
00411ea4 MOV EDX,dword ptr [EBP + local_d4]
 switchD_00411eaa::switchD
00411eaa JMP dword ptr [EDX*0x4 + ->switchD_00411eaa::caseD = 00411eb1
 switchD_00411eaa::caseD_1 XREF[2]: 00411eaa(j), 00411f4c(*)
00411eb1 MOV EAX,dword ptr [EBP + param_1]
00411eb4 ADD EAX,dword ptr [EBP + param_2]

Compiler Variations 451

00411eb7 MOV dword ptr [EBP + local_c],EAX
00411eba JMP switchD_00411eaa::caseD_c
;--content omitted for remaining cases--
 switchD_00411eaa::switchdataD_00411f4c XREF[1]: switch_version_1:00411eaa(R)
00411f4c addr switchD_00411eaa::caseD_1w
00411f50 addr switchD_00411eaa::caseD_2
00411f54 addr switchD_00411eaa::caseD_3
00411f58 addr switchD_00411eaa::caseD_4
00411f5c addr switchD_00411eaa::caseD_5
00411f60 addr switchD_00411eaa::caseD_6
00411f64 addr switchD_00411eaa::caseD_7
00411f68 addr switchD_00411eaa::caseD_8
00411f6c addr switchD_00411eaa::caseD_9
00411f70 addr switchD_00411eaa::caseD_a
00411f74 addr switchD_00411eaa::caseD_b
00411f78 addr switchD_00411eaa::caseD_c

Here, the switch variable (local_d4 in this case) is decremented  to
shift the range of valid values from 0 to 11 , eliminating the need for a
dummy table entry for the value 0. As a result, the first entry (or 0 index
entry) in the jump table  actually refers to the code for switch case 1.

Another, perhaps more subtle difference between the two listings is the
location of the jump table within the file. The gcc compiler places switch
jump tables in the read-only data (.rodata) section of the binary, providing
a logical separation between the code associated with the switch statement
and the data required to implement the jump table. The Microsoft C/C++
compiler, on the other hand, inserts jump tables into the .text section,
immediately following the function containing the associated switch state-
ment. Positioning the jump table in this manner has little effect on the
behavior of the program. In this example, Ghidra is able to recognize the
switch statements for both compilers and uses the term switch within the
associated labels.

One of the key points here is that there is no single correct way to
compile source to assembly. As a result, you cannot assume that something
is not a switch statement simply because Ghidra fails to label it as such.
Understanding the switch statement characteristics that factor into the com-
piler implementation can help you make a more accurate inference about
the original source code.

Compiler Build Options
A compiler converts high-level code that solves a particular problem into
low-level code that solves the same problem. Multiple compilers may solve
the same problem in rather different ways. Further, a single compiler may
solve a problem very differently based on the associated compiler options.
In this section, we look at the assembly language code that results from
using different compilers and different command line options. (Some dif-
ferences will have a clear explanation; others will not.)

452 Chapter 20

Microsoft’s Visual Studio can build either debug or release versions of
program binaries.7 To see how the two versions are different, compare the
build options specified for each. Release versions are generally optimized,
while debug versions are not, and debug versions are linked with additional
symbol information and debugging versions of the runtime library, while
release versions are not.8 Debugging-related symbols allow debuggers to
map assembly language statements back to their source code counterparts
and to determine the names of local variables (such information is oth-
erwise lost during the compilation process). The debugging versions of
Microsoft’s runtime libraries have also been compiled with debugging sym-
bols included, optimizations disabled, and additional safety checks enabled
to verify that some function parameters are valid.

When disassembled using Ghidra, debug builds of Visual Studio projects
look significantly different from release builds. This is a result of compiler
and linker options specified only in debug builds, such as basic runtime
checks (/RTCx), which introduce extra code into the resulting binary.9 Let’s
jump right in and look at some of these differences in disassemblies.

Example 1: Modulo Operator
We begin our examples with a simple mathematical operation, modulo.
The following listing contains the source code for a program whose only
goal is to accept an integer value from the user and demonstrate integer
division and the modulo operator:

int main(int argc, char **argv) {
 int x;
 printf("Enter an integer: ");
 scanf("%d", &x);
 printf("%d %% 10 = %d\n", x, x % 10);
}

Let’s investigate how the disassembly varies across compilers for the
modulo operator in this example.

7. Other compilers, such as gcc, also offer the ability to insert debugging symbols during the
compilation process.

8. Optimization generally involves elimination of redundancy in code or selection of faster
but potentially larger sequences of code in order to satisfy a developer’s desire to create either
faster or smaller executable files. Optimized code may not be as straightforward to analyze as
unoptimized code and may therefore be considered a bad choice for use during a program’s
development and debugging phases.

9. Please see https://docs.microsoft.com/en-us/cpp/build/reference/rtc-run-time-error-checks.

https://docs.microsoft.com/en-us/cpp/build/reference/rtc-run-time-error-checks

Compiler Variations 453

Modulo with Microsoft C/C++ Win x64 Debug

The following listing shows the code that Visual Studio generates when con-
figured to build a debug version of the binary:

1400119c6 MOV EAX,dword ptr [RBP + local_f4]
1400119c9 CDQ
1400119ca MOV ECX,0xa
1400119cf IDIV ECX
1400119d1 MOV EAX,EDX
1400119d3 MOV R8D,EAX
1400119d6 MOV EDX,dword ptr [RBP + local_f4]
1400119d9 LEA RCX,[s_%d_%%_10_=_%d_140019d60]
1400119e0 CALL printf

A straightforward x86 IDIV instruction  leaves the quotient in EAX
and the remainder of the division in EDX. The result is then moved to lower
32 bits of R8 (R8D) , which is the third argument in the call to printf.

Modulo with Microsoft C/C++ Win x64 Release

Release builds optimize software for speed and size in order to enhance
performance and minimize storage requirements. When optimizing for
speed, compiler writers may resort to non-obvious implementations of com-
mon operations. The following listing shows us how Visual Studio generates
the same modulo operation in a release binary:

140001136 MOV ECX,dword ptr [RSP + local_18]
14000113a MOV EAX,0x66666667
14000113f IMUL ECX
140001141 MOV R8D,ECX
140001144 SAR EDX,0x2
140001147 MOV EAX,EDX
140001149 SHR EAX,0x1f
14000114c ADD EDX,EAX
14000114e LEA EAX,[RDX + RDX*0x4]
140001151 MOV EDX,ECX
140001153 ADD EAX,EAX
140001155 LEA RCX,[s_%d_%%_10_=_%d_140002238]
14000115c SUB R8D,EAX
14000115f CALL printf

In this case, multiplication  is used rather than division, and after
a long sequence of arithmetic operations, what must be the result of the
modulo operation ends up in R8D  (again the third argument in the
call to printf ). Intuitive, right? An explanation of this code follows our
next example.

Modulo with gcc for Linux x64

We’ve seen how differently one compiler can behave simply by changing
the compile-time options used to generate a binary. We might expect that

454 Chapter 20

a completely unrelated compiler would generate entirely different code yet
again. The following disassembly shows us the gcc version of the same mod-
ulus operation, and it turns out to look somewhat familiar:

00100708 MOV ECX,dword ptr [RBP + x]
0010070b MOV EDX,0x66666667
00100710 MOV EAX,ECX
00100712 IMUL EDX
00100714 SAR EDX,0x2
00100717 MOV EAX,ECX
00100719 SAR EAX,0x1f
0010071c SUB EDX,EAX
0010071e MOV EAX,EDX
00100720 SHL EAX,0x2
00100723 ADD EAX,EDX
00100725 ADD EAX,EAX
00100727 SUB ECX,EAX
00100729 MOV EDX,ECX

The code is very similar to the assembly produced by the Visual Studio
release version. We again see multiplication  rather than division followed
by a sequence of arithmetic operations that eventually leaves the result in
EDX  (where it is eventually used as the third argument to printf).

The code is using a multiplicative inverse to perform division by mul-
tiplying because hardware multiplication is faster than hardware division.
You may also see multiplication implemented using a series of additions and
arithmetic shifts, as each of these operations is significantly faster in hard-
ware than multiplication.

Your ability to recognize this code as modulo 10 depends on your
experience, patience, and creativity. If you’ve seen similar code sequences
in the past, you are probably more apt to recognize what’s taking place
here. Lacking that experience, you might instead work through the code
manually with sample values, hoping to recognize a pattern in the results.
You might even take the time to extract the assembly language, wrap it in
a C test harness, and do some high-speed data generation to assist you.
Ghidra’s decompiler can be another useful resource for reducing complex
or unusual code sequences to their more recognizable C equivalents.

As a last resort, or first resort (don’t be ashamed), you might turn to
the internet for answers. But what should you be searching for? Usually,
unique, specific searches yield the most relevant results, and the most
unique feature in the sequence of code is the integer constant 0x66666667.
When we searched for this constant, the top three results were all helpful,
but one in particular was worth bookmarking: http://flaviojslab.blogspot.com​
/2008/02/integer-division​.html. Unique constants are also used rather fre-
quently in cryptographic algorithms, and a quick internet search may be
all it takes to identify exactly what crypto routine you are staring at.

http://flaviojslab.blogspot.com/2008/02/integer-division.html
http://flaviojslab.blogspot.com/2008/02/integer-division.html

Compiler Variations 455

Example 2: The Ternary Operator
The ternary operator evaluates an expression and then yields one of
two possible results, depending on the boolean value of that expression.
Conceptually, the ternary operator can be thought of as an if/else state-
ment (and can even be replaced with an if/else statement). The follow-
ing intentionally unoptimized source code demonstrates the use of this
operator:

int main() {
 volatile int x = 3;
 volatile int y = x * 13;

  volatile int z = y == 30 ? 0 : -1;
}

N O T E 	 The volatile keyword asks the compiler not to optimize code involving the associated
variables. Without its use here, some compilers will optimize away the entire body of this
function since none of the statements contribute to the function’s result. This is one of
the challenges you might face when coding examples for yourself or for others.

As for the behavior of the unoptimized code, the assignment into vari-
able z  could be replaced with the following if/else statement without
changing the semantics of the program:

 if (y == 30) {
 z = 0;
 } else {
 z = -1;
 }

Let’s see how the ternary operator code is handled by different compil-
ers and different compiler options.

Ternary Operator with gcc on Linux x64

gcc, with no options, generated the following assembly for the initializa-
tion of z:

00100616 MOV EAX,dword ptr [RBP + y]
00100619 CMP EAX,0x1e
0010061c JNZ LAB_00100625
0010061e MOV EAX,0x0
00100623 JMP LAB_0010062a
 LAB_00100625
00100625 MOV EAX,0xffffffff
 LAB_0010062a
0010062a MOV dword ptr [RBP + z],EAX

456 Chapter 20

This code uses the if/else implementation. Local variable y is com-
pared to 30  to decide whether to set EAX to 0 or 0xffffffff in opposing
branches of the if/else before assigning the result into z .

Ternary Operator with Microsoft C/C++ Win x64 Release

Visual Studio yields a very different implementation of the statement con-
taining the ternary operator. Here, the compiler recognizes that a single
instruction can be used to conditionally generate either 0 or -1 (and no
other possible value) and uses this instruction in lieu of the if/else con-
struct we saw earlier:

140001013 MOV EAX,dword ptr [RSP + local_res8]
140001017 SUB EAX,0x1e
14000101a NEG EAX
14000101c SBB EAX,EAX
14000101e MOV dword ptr [RSP + local_res8],EAX

The SBB instruction  (subtract with borrow) subtracts the second oper-
and from the first operand and then subtracts the carry flag, CF (which can
be only 0 or 1). The equivalent arithmetic expression to SBB EAX,EAX is EAX
– EAX – CF, which reduces to 0 – CF. This, in turn, can result only in 0 (when
CF == 0) or -1 (when CF == 1). For this trick to work, the compiler must set
the carry properly prior to executing the SBB instruction. This is accom-
plished by comparing EAX to the constant 0x1e (30)  using a subtraction
that leaves EAX equal to 0 only when EAX was initially 0x1e. The NEG instruc-
tion  then sets the carry flag for the SBB instruction that follows.10

Ternary Operator with gcc on Linux x64 (Optimized)

When we ask gcc to try a little harder by optimizing its code (-O2), the result
is not unlike the Visual Studio code in the previous example:

00100506 MOV EAX,dword ptr [RSP + y]
0010050a CMP EAX,0x1e
0010050d SETNZAL
00100510 MOVZX EAX,AL
00100513 NEG EAX
00100515 MOV dword ptr [RSP + z],EAX

In this case, gcc uses SETNZ  to conditionally set the AL register to either
0 or 1 based on the state of the zero flag resulting from the preceding
comparison. The result is then negated  to become either 0 or -1 before
assignment into variable z .

10. The NEG instruction clears the carry flag (CF) when its operand is zero and sets the carry
flag in all other cases.

Compiler Variations 457

Example 3: Function Inlining
When a programmer marks a function inline, they are suggesting to the
compiler that any calls to the function should be replaced with a copy of
the entire function body. The intent is to speed up the function call by
eliminating parameter and stack frame setup and teardown. The trade-off
is that many copies of an inlined function make the binary larger. Inlined
functions can be very difficult to recognize in binaries because the distinc-
tive call instruction is eliminated.

Even when the inline keyword has not been used, compilers may elect
to inline a function on their own initiative. In our third example, we are
making a call to the following function:

int maybe_inline() {
 return 0x12abcdef;
}
int main() {
 int v = maybe_inline();
 printf("after maybe_inline: v = %08x\n", v);return 0;
}

Function Call with gcc on Linux x86

After building a Linux x86 binary using gcc with no optimizations, we disas-
semble it to see the following listing:

00010775 PUSH EBP
00010776 MOV EBP,ESP
00010778 PUSH ECX
00010779 SUB ESP,0x14
0001077c CALL maybe_inline
00010781 MOV dword ptr [EBP + local_14],EAX
00010784 SUB ESP,0x8
00010787 PUSH dword ptr [EBP + local_14]
0001078a PUSH s_after_maybe_inline:_v_=_%08x_000108e2
0001078f CALL printf

We can clearly see the call  to the maybe_inline function in this disas-
sembly, even though it is just a single line of code returning a constant value.

Optimized Function Call with gcc on Linux x86

Next, we look at an optimized (-O2) version of the same source code:

0001058a PUSH EBP
0001058b MOV EBP,ESP
0001058d PUSH ECX
0001058e SUB ESP,0x8
00010591 PUSH 0x12abcdef
00010596 PUSH s_after_maybe_inline:_v_=_%08x_000108c2
0001059b PUSH 0x1
0001059d CALL __printf_chk

458 Chapter 20

Contrasting this code with the unoptimized code, we see that the call
to maybe_inline has been eliminated, and the constant value  returned by
maybe_inline is pushed directly onto the stack to be used as an argument for
the call to printf. This optimized version of the function call is identical to
what you would see if the function had been designated inline.

Having examined some of the ways that optimizations can influence
the code generated by compilers, let’s turn our attention to the different
ways that compiler designers choose to implement language-specific fea-
tures when language designers leave implementation details to the com-
piler writers.

Compiler-Specific C++ Implementation
Programming languages are designed by programmers for programmers.
Once the dust of the design process has settled, it’s up to compiler writers
to build the tools that faithfully translate programs written in the new high-
level language into semantically equivalent machine language programs.
When a language permits a programmer to do A, B, and C, it’s up to the
compiler writers to find a way to make these things possible.

C++ gives us three excellent examples of behaviors required by the lan-
guage, but whose implementation details were left to the compiler writer to
sort out:

•	 Within a nonstatic member function of a class, programmers may refer
to a variable named this, which is never explicitly declared anywhere.
(See Chapters 6 and 8 for compilers’ treatment of this.)

•	 Function overloading is allowed. Programmers are free to reuse func-
tion names as often as they like, subject to restrictions on their param-
eter lists.

•	 Type introspection is supported through the use of the dynamic_cast and
typeid operators.

Function Overloading
Function overloading in C++ allows programmers to name functions identi-
cally, with the caveat that any two functions that share a name must have
different parameter sequences. Name mangling, introduced in Chapter 8, is
the under-the-hood mechanism that allows overloading to work by ensuring
that no two symbols share the same name by the time the linker is asked to
do its job.

Often, one of the earliest signs that you are working with a C++ binary
is the presence of mangled names. The two most popular name mangling
schemes are Microsoft’s and the Intel Itanium ABI.11 The Intel standard

11. See https://docs.microsoft.com/en-us/cpp/build/reference/decorated-names for Microsoft and
https://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling for Intel.

Compiler Variations 459

has been widely adopted by other Unix compilers such as g++ and clang.
The following shows a C++ function name and the mangled version of that
name under both the Microsoft and Intel schemes:

Function  void SubClass::vfunc1()

Microsoft scheme  ?vfunc1@SubClass@@UAEXXZ

Intel scheme  _ZN8SubClass6vfunc1Ev

Most languages that permit overloading, including Objective-C, Swift,
and Rust, incorporate some form of name mangling at the implementation
level. A passing familiarity with name-mangling styles can provide you with
clues about a program’s original source language as well as the compiler
used to build the program.

RTTI Implementations
In Chapter 8, we discussed C++ Runtime Type Identification (RTTI) and
the lack of a standard for implementing RTTI by a compiler. In fact, run-
time type identification is not mentioned anywhere in the C++ standard,
so it should be no surprise that implementations differ. To support the
dynamic_cast operator, RTTI data structures record not only a class’s name,
but its entire inheritance hierarchy, including any multiple inheritance
relationships. Locating RTTI data structures can be extremely useful in
recovering the object model of a program. Automatic recognition of RTTI-
related constructs within a binary is another area in which Ghidra’s capa-
bilities vary across compilers.

Microsoft C++ programs contain no embedded symbol information, but
Microsoft’s RTTI data structures are well understood, and Ghidra will locate
them when present. Any RTTI-related information Ghidra does locate will be
summarized in the Symbol Tree’s Classes folder, which will contain an entry
for each class that Ghidra locates using its RTTI analyzer.

Programs built with g++ include symbol table information unless they
have been stripped. For unstripped g++ binaries, Ghidra relies exclusively on
the mangled names it finds in the binary, and it uses those names to iden-
tify RTTI-related data structures and the classes they are associated with.
As with Microsoft binaries, any RTTI-related information will be included
in the Symbol Tree’s Classes folder.

One strategy for understanding how a specific compiler embeds type
information for C++ classes is to write a simple program that uses classes
containing virtual functions. After compiling the program, you can load
the resulting executable into Ghidra and search for instances of strings that
contain the names of classes used in the program. Regardless of the compiler
used to build a binary, one thing that RTTI data structures have in common
is that they all reference, in some manner, a string containing the mangled
name of the class that they represent. Using extracted strings and data
cross-references, it should be possible to locate candidate RTTI-related
data structures within the binary. The last step is to link a candidate RTTI
structure back to the associated class’s vftable, which is best accomplished

460 Chapter 20

by following data cross-references backward from the candidate RTTI struc-
ture until a table of function pointers (the vftable) is reached. Let’s walk
through an example that uses this method.

Example: Locating RTTI Information in a Linux x86-64 g++ Binary

To demonstrate these concepts, we created a small program with a
BaseClass, a SubClass, a SubSubClass, and a collection of virtual functions
unique to each. The following listing shows part of the main program we
used to reference our classes and functions:

 BaseClass *bc_ptr_2;
 srand(time(0));
 if (rand() % 2) {
 bc_ptr_2 = dynamic_cast<SubClass*>(new SubClass());
 }
 else {
 bc_ptr_2 = dynamic_cast<SubClass*>(new SubSubClass());
 }

We compiled the program using g++ to build a 64-bit Linux binary with
symbols. After we analyze the program, the Symbol Tree provides the infor-
mation shown in Figure 20-3.

Figure 20-3: Symbol Tree classes for an unstripped binary

The Classes folder contains entries for all three of our classes. The
expanded SubClass entry reveals additional information that Ghidra has
uncovered about it. The stripped version of the same binary contains a lot
less information, as shown in Figure 20-4.

Compiler Variations 461

Figure 20-4: Symbol Tree classes for a stripped binary

In this case, we might, incorrectly, assume that the binary contains no
C++ classes of interest, although it is likely a C++ binary based on the refer-
ence to a core C++ class (basic_ostream). Since stripping removes only sym-
bol information, we may still be able to find RTTI information by searching
for class names in the program’s strings and walking our way back to any
RTTI data structure. A string search yields the results shown in Figure 20-5.

Figure 20-5: String Search results revealing class names

If we click the "8SubClass" string, we are taken to this portion of the
Listing window:

 s_8SubClass_00101818 XREF[1]: 00301d20(*)
00101818 ds "8SubClass"

In g++ binaries, RTTI-related structures contain references to the corre-
sponding class name string. If we follow the cross-reference on the first line
to its source, we arrive at the following section of the disassembly listing:

 PTR___gxx_personality_v0_00301d18 XREF[2]: FUN_00101241:00101316(*),
 00301d10(*)

 00301d18 addr __gxx_personality_v0 = ??
 00301d20 addr s_8SubClass_00101818 = "8SubClass"

00301d28 addr PTR_time_00301d30 = 00303028

462 Chapter 20

The source of the cross-reference  is the second field within SubClass’s
typeinfo structure, which starts at address 00301d18 . Unfortunately, unless
you are willing to dive into the source code for g++, structure layouts like
this are just something you need to learn by experience. Our last remaining
task is to locate SubClass’s vftable. In this example, if we follow the lone cross-
reference to the typeinfo structure that originates from a data region  (the
other cross-reference  originates from a function and can’t possibly be the
vftable), we hit a dead end. A little math tells us that the cross-reference origi-
nates from the location immediately preceding the typeinfo struct (00301d18
– 8 == 00301d10). Under normal circumstances, a cross-reference would exist
from the vftable to the typeinfo structure; however, lacking symbols, Ghidra
fails to create that reference. Since we know that another pointer to our
typeinfo structure must exist somewhere, we can ask Ghidra for help. With
the cursor positioned at the start of the structure , we can use the menu
option SearchFor Direct References, which asks Ghidra to find the current
address in memory for us. The results are shown in Figure 20-6.

Figure 20-6: Results of direct reference search

Ghidra has found two additional references to this typeinfo structure.
Investigating each of them finally leads us to a vftable:

 00301c60 ?? 18h ? -> 00301d18
00301c61 ?? 1Dh
00301c62 ?? 30h 0
00301c63 ?? 00h
00301c64 ?? 00h
00301c65 ?? 00h
00301c66 ?? 00h
00301c67 ?? 00h
 PTR_FUN_00301c68 XREF[2]: FUN_00101098:001010b0(*),
 FUN_00101098:001010bb(*)

 00301c68 addr FUN_001010ea
00301c70 addr FUN_00100ff0
00301c78 addr FUN_00101122
00301c80 addr FUN_00101060
00301c88 addr FUN_0010115a

Compiler Variations 463

Ghidra has not formatted the source  of the typeinfo cross-reference as
a pointer (which explains the lack of a cross-reference), but it does provide
an EOL comment that hints at it being a pointer . The vftable itself begins
8 bytes later  and contains five pointers to virtual functions belonging
to SubClass. The table contains no mangled names because the binary has
been stripped.

In the next section, we apply this “follow the bread crumbs” analysis
technique to help identify the main function in C binaries generated by sev-
eral compilers.

Locating the main Function
From a programmer’s perspective, program execution typically begins
with the main function, so it’s not a bad strategy to start analyzing a binary
from the main function. However, compilers and linkers (and the use of
libraries) add code that executes before main is reached. Thus, it’s often
inaccurate to assume that the entry point of a binary corresponds to the
main function written by the program’s author. In fact, the notion that
all programs have a main function is a C/C++ compiler convention rather
than a hard-and-fast rule for writing programs. If you have ever written a
Windows GUI application, you may be familiar with the WinMain variation
on main. Once you step away from C/C++, you may find that other lan-
guages use other names for their primary entry-point function. We refer
to this function generically as the main function.

If there is a symbol named main in your binary, you can simply ask
Ghidra to take you there, but if you happen to be analyzing a stripped
binary, you will be dropped at the file header and have to find main on your
own. With a little understanding of how executables operate, and a little
experience, this shouldn’t prove too daunting a task.

All executables must designate an address within the binary as the first
instruction to execute after the binary file has been mapped into memory.
Ghidra refers to this address as entry or _start, depending on the file type
and the availability of symbols. Most executable file formats specify this
address within the file’s header region, and Ghidra loaders know exactly
how to find it. In an ELF file, the entry point address is specified in a field
named e_entry, while PE files contain a field named AddressOfEntryPoint. A
compiled C program, regardless of the platform the executable is running
on, has code at the entry point, inserted by the compiler, to make the tran-
sition from a brand-new process to a running C program. Part of this transi-
tion involves ensuring that arguments and environment variables provided
to the kernel at process creation are gathered and provided to main utilizing
the C calling convention.

N O T E 	 Your operating system kernel neither knows nor cares in what language any execut-
able was written. Your kernel knows exactly one way to pass parameters to a new pro-
cess, and that way may not be compatible with your program’s entry function. It is the
compiler’s job to bridge this gap.

464 Chapter 20

Now that we know that execution begins at a published entry point and
eventually reaches the main function, we can take a look at some compiler-
specific code for effecting this transition.

Example 1: _start to main with gcc on Linux x86-64
By examining the start code in an unstripped executable, we can learn
exactly how main is reached for a given compiler on a given operating sys-
tem. Linux gcc offers one of the simpler approaches for this:

 _start
004003b0 XOR EBP,EBP
004003b2 MOV R9,RDX
004003b5 POP RSI
004003b6 MOV RDX,RSP
004003b9 AND RSP,-0x10
004003bd PUSH RAX
004003be PUSH RSP=>local_10
004003bf MOV R8=>__libc_csu_fini,__libc_csu_fini
004003c6 MOV RCX=>__libc_csu_init,__libc_csu_init
004003cd MOV RDI=>main,mainu
004003d4 CALL qword ptr [->__libc_start_main]

The address of main is loaded into RDI  immediately before a call 
is made to a library function named __libc_start_main, which means that
the address of main is passed as the first argument to __libc_start_main.
Armed with this knowledge, we can easily locate main in a stripped binary.
The following listing shows the lead-up to the call to __libc_start_main in a
stripped binary:

004003bf MOV R8=>FUN_004008a0,FUN_004008a0
004003c6 MOV RCX=>FUN_00400830,FUN_00400830
004003cd MOV RDI=>FUN_0040080a,FUN_0040080au
004003d4 CALL qword ptr [->__libc_start_main]

Though the code contains references to three generically named func-
tions, we conclude that FUN_0040080a must be main because it is being passed
as the first argument to __libc_start_main .

Example 2: _start to main with clang on FreeBSD x86-64
On current versions of FreeBSD, clang is the default C compiler, and the
_start function is somewhat more substantial and harder to follow than the
simple Linux _start stub. To keep things simple, we’ll use Ghidra’s decom-
piler to look at the tail end of _start.

Compiler Variations 465

 //~40 lines of code omitted for brevity
 atexit((__func *)cleanup);
 handle_static_init(argc,ap,env);
 argc = main((ulong)pcVar2 & 0xffffffff,ap,env);
 /* WARNING: Subroutine does not return */
 exit(argc);
}

In this case, main is the penultimate function called in _start, and the
return value from main is immediately passed to exit to terminate the pro-
gram. Using Ghidra’s decompiler on a stripped version of the same binary
yields the following listing:

 // 40 lines of code omitted for brevity
 atexit(param_2);
 FUN_00201120(uVar2 & 0xffffffff,ppcVar5,puVar4);
 __status = FUN_00201a80(uVar2 & 0xffffffff,ppcVar5,puVar4);
 /* WARNING: Subroutine does not return */
 exit(__status);
}

Once again, we can pick main  out of the crowd, even when the binary
has been stripped. If you are wondering why this listing shows two function
names that have not been stripped, the reason is that this particular binary
is dynamically linked. The functions atexit and exit are not symbols in the
binary; they are external dependencies. These external dependencies
remain, even after stripping, and continue to be visible in the decompiled
code. The corresponding code for a statically linked, stripped version of
this binary is shown here:

 FUN_0021cc70();
 FUN_0021c120(uVar2 & 0xffffffff,ppcVar13,puVar11);
 uVar7 = FUN_0021caa0(uVar2 & 0xffffffff,ppcVar13,puVar11);
 /* WARNING: Subroutine does not return */
 FUN_00266d30((ulong)uVar7);
}

Example 3: _start to main with Microsoft’s C/C++ compiler
The Microsoft C/C++ compiler’s startup stub is a bit more complicated
because the primary interface to the Windows kernel is via kernel32.dll (rather
than libc on most Unix systems), which provides no C library functions. As
a result, the compiler often statically links many C library functions directly
into executables. The startup stub uses these and other functions to interface
with the kernel to set up your C program’s runtime environment.

However, in the end, the startup stub still needs to call main and exit
after it returns. Tracking down main among all of the startup code is usually
a matter of identifying a three-argument function (main) whose return value

466 Chapter 20

is passed to a one-argument function (exit). The following excerpt from
this type of binary contains calls to the two functions we are looking for:

140001272 CALL _amsg_exitu
140001277 MOV R8,qword ptr [DAT_14000d310]
14000127e MOV qword ptr [DAT_14000d318],R8
140001285 MOV RDX,qword ptr [DAT_14000d300]
14000128c MOV ECX,dword ptr [DAT_14000d2fc]
140001292 CALL FUN_140001060
140001297 MOV EDI,EAX
140001299 MOV dword ptr [RSP + Stack[-0x18]],EAX
14000129d TEST EBX,EBX
14000129f JNZ LAB_1400012a8
1400012a1 MOV ECX,EAX
1400012a3 CALL FUN_140002b30

Here, FUN_140001060  is the three-argument function that turns out to
be main, and FUN_140002b30  is the one-argument exit. Note that Ghidra has
been able to recover the name  of one of the statically linked functions
called by the startup stub because the function matches an FidDb entry. We
can use clues provided by any identified symbols to save some time in our
search for main.

Summary
The sheer volume of compiler-specific behaviors is too numerous to cover
in a single chapter (or even a single book, for that matter). Among other
behaviors, compilers differ in the algorithms they select to implement vari-
ous high-level constructs and the manner in which they optimize generated
code. Because a compiler’s behavior is heavily influenced by the arguments
supplied to the compiler during the build process, it is possible for one
compiler to generate radically different binaries when fed the same source
with different build options selected.

Unfortunately, coping with all of these variations only comes with expe-
rience, and it is often very difficult to search for help on specific assembly
language constructs, as it is very difficult to craft search expressions that
will yield results applicable to your particular case. When this happens,
your best resource is generally a forum dedicated to reverse engineering
in which you can post code and benefit from the knowledge of others who
have had similar experiences.

PART V
R E A L - W O R L D A P P L I C A T I O N S

Even under ideal circumstances, compre-
hending a disassembly listing is a difficult

task. High-quality disassemblies are essential
for anyone trying to understand the inner work-

ings of a binary, which is precisely why we have spent the
last 20 chapters discussing Ghidra and its associated
capabilities. It can be argued that Ghidra is so effective at what it does that
it has lowered the barrier for entry into the binary analysis field. While cer-
tainly not attributable to Ghidra alone, recent advances in binary reverse
engineering are not lost on anyone who does not want their software to be
analyzed. Thus, over the last several years, an arms race of sorts has been
taking place between programmers who wish to keep their code secret and
reverse engineers

In this chapter, we examine Ghidra’s role in this arms race and dis-
cuss some of the measures that have been taken to protect code, along
with approaches to defeating those measures. We wrap up the chapter by
introducing Ghidra’s Emulator class and provide examples of how emulation
scripts can give us an edge in this arms race.

21
O B F U S C A T E D C O D E A N A LY S I S

470 Chapter 21

Anti–Reverse Engineering
Anti–reverse engineering is an umbrella topic that covers all techniques that
software developers might employ to make reverse engineering their prod-
ucts more challenging. Many tools and techniques exist to assist developers
with this goal, with more appearing every day. The RE/anti-RE ecosystem
is similar to the escalating dynamic that plays out between malware authors
and antivirus vendors.

As a reverse engineer, you are likely to encounter techniques ranging
from trivial to nearly impossible to defeat. The approaches that you will be
required to use will also vary depending on the nature of the anti-reversing
techniques you encounter, and may require some level of comfort with both
static and dynamic analysis techniques. In the sections that follow, we dis-
cuss some of the more common anti-reversing techniques, why they are
employed, and approaches for defeating them.

Obfuscation
Various dictionary definitions will inform you that obfuscation is the act of
making something obscure, perplexing, confusing, or bewildering in order
to prevent others from understanding the obfuscated item. In the context
of this book and the use of Ghidra, the items being obfuscated are binary
executable files (as opposed to source files or silicon chips, for example).

Obfuscation, by itself, is too broad to be considered an anti–reverse
engineering technique. It also fails to cover all known anti–reverse engi-
neering techniques. Specific, individual techniques can often be described
as obfuscating or non-obfuscating techniques and, where applicable, we
point these out in the sections that follow. It is important to note that there
is no one correct way to categorize techniques, as the general categories
often overlap in their descriptions. In addition, new anti–reverse engineer-
ing techniques are under continuous development, and it is not possible to
provide a single all-inclusive list.

Because Ghidra is primarily a static analysis tool, we find it more useful
to divide our discussion of techniques into two, broad categories: anti–static
analysis and anti–dynamic analysis. Both categories may contain obfuscating
techniques, but the former is more likely to confound static tools, while the
latter generally targets debuggers and other runtime analysis tools.

Anti–Static Analysis Techniques
Anti–static analysis techniques aim to prevent an analyst from understanding
the nature of a program without actually running the program. These are
precisely the types of techniques that target disassemblers such as Ghidra
and are thus of greatest concern whenever you are using Ghidra to reverse
engineer binaries. Several types of anti–static analysis techniques are dis-
cussed here.

Obfuscated Code Analysis 471

Disassembly Desynchronization

One of the older techniques designed to frustrate the disassembly process
involves the creative use of instructions and data to prevent the disassem-
bler from finding the correct starting address for one or more instruc-
tions. Forcing the disassembler to lose track of itself usually results in a
failed or, at a minimum, incorrect disassembly listing. Listing 21-1 shows
Ghidra’s efforts to disassemble a portion of the Shiva anti–reverse engi-
neering tool.1

0a04b0d1 e8 01 00 00 00 CALL FUN_0a04b0d7
0a04b0d6 c7 ?? C7hv
 **
 * FUNCTION *
 **
 undefined FUN_0a04b0d7()
 undefined AL:1 <RETURN>
 FUN_0a04b0d7 XREF[1]: FUN_0a04b0c4:0a04b0d1(c)
0a04b0d7 58 POP EAX
0a04b0d8 8d 40 0a LEA EAX,[EAX + 0xa]
 LAB_0a04b0db+1 XREF[0,1]: 0a04b0db(j)

 0a04b0db eb ff JMP LAB_0a04b0db+1
0a04b0dd e0 ?? E0h

Listing 21-1: Sample of initial Shiva disassembly

This example executes a CALL  that is immediately followed by a POP .
This sequence is not uncommon in self-modifying code and is used by
the code to discover where it is running memory. The return address 
for the call instruction is 0a04b0d6 and sits on the top of the stack as execu-
tion arrives at the POP instruction. The POP instruction removes the return
address from the stack and loads it into EAX, while the LEA that follows 
immediately adds 0xa (10) to EAX so that EAX now holds 0a04b0e0 (keep this
value handy, as we’ll use it in a few moments).

The called function is unlikely to ever return to the original call point,
as the original return address is no longer on top of the stack (it would
need to be replaced in order to RET to the original return location), and
Ghidra cannot form an instruction at the return address  because C7h is
not a valid start byte for an instruction.

So far, the code may be a little unusual or difficult to follow, but Ghidra
is presenting a correct disassembly. This all changes when the JMP  instruc-
tion is reached. This jump instruction is 2 bytes long, its address is 0a04b0db,
and the jump target is LAB_0a04b0db+1. The +1 suffix in the label is new to us.
The address component of the label is the same as the address of the jump
itself. The +1 is telling you that the jump target is 1 byte past LAB_0a04b0db.
In other words, the jump lands right in the middle of the 2-byte jump
instruction. While the processor doesn’t care about this unusual situation
(it will happily fetch whatever the instruction pointer points to), Ghidra

1. Several presentations related to Shiva have been given over the years, beginning with this
one: http://cansecwest.com/core03/shiva.ppt.

http://cansecwest.com/core03/shiva.ppt

472 Chapter 21

just can’t make it work. Ghidra has no means to concurrently display the
byte at 0a04b0db (ff) as both the second byte of the jump and the first byte
of another instruction. As a result, Ghidra is suddenly unable to continue
with the disassembly, as indicated by the undefined data value at 0a04b0dd .
(This behavior is not restricted to Ghidra: virtually all disassemblers, whether
they utilize a recursive descent algorithm or a linear sweep algorithm, fall
victim to this technique.)

Ghidra makes note of any problems it encounters during disassembly by
creating error bookmarks in the disassembly. Figure 21-1 shows two such book-
marks (X icon to the left of the offending addresses) in the left margin of
the Listing window. Hovering over an error bookmark displays an associ-
ated detail message. In addition, you can open a listing of all bookmarks in
the current binary by using WindowBookmarks.

Ghidra’s message for the first error is “Unable to resolve construc-
tor at 0a04b0d6 (flow from 0a04b0d1),” which means roughly “I think an
instruction is supposed to exist at 0a04b0d6, but I couldn’t create one.”
Ghidra’s message for the second error is “Failed to disassemble at 0a04b0dc
due to conflicting instruction at 0a04b0db (flow from 0a04b0db),” which
means roughly “I cannot disassemble an instruction within an existing
instruction.”

Figure 21-1: Ghidra error bookmarks

As a Ghidra user, you have no solution for the first error. A byte sequence
is either a valid instruction or it isn’t. With a bit of effort on your part, you
can deal with the second error. The proper way to deal with this situation is
to undefine the instruction that contains the bytes that are the target of the
call and then define an instruction at the call target address in an attempt
to resynchronize the disassembly. You will lose the original instruction,
but you can leave yourself a comment to remind you of what the original
instruction was. The following portion of the previous listing contains the
overlapping instruction error:

 LAB_0a04b0db+1 XREF[0,1]: 0a04b0db(j)
 0a04b0db eb ff JMP LAB_0a04b0db+1

0a04b0dd e0 ?? E0h

Obfuscated Code Analysis 473

Right-clicking the JMP instruction  and selecting Clear Code Bytes (hot-
key C) from the context menu yields the following listing of undefined bytes:

0a04b0db eb ?? EBh
u 0a04b0dc ff ?? FFh

0a04b0dd e0 ?? E0h

The byte that is the target u of the JMP is now accessible for reformat-
ting. Raw bytes are changed to code by right-clicking the start byte of
an instruction and selecting Disassemble (hotkey D). The listing is now
updated to the following:

u 0a04b0dc ff e0 JMP EAX
0a04b0de 90 ?? 90h
0a04b0df c7 ?? C7h

The target of the jump instruction turns out to be yet another jump
instruction u. In this case, however, the jump is impossible for a disas-
sembler (and potentially confusing to the human analyst) to follow, as the
target of the jump is contained in a register (EAX) and computed at runtime.
This is an example of another type of anti–static analysis technique, dis-
cussed in the following section, “Dynamically Computed Target Addresses.”
We previously determined that EAX contains the value 0a04b0e0 by the time
we reach this jump, and this is the address at which we must resume the dis-
assembly process. Lather, rinse, repeat.

Referring back to Listing 21-1, as an alternative to manually moving to
address 0a04b0e0 to resume the disassembly, you can set the value of EAX to
the known value by right-clicking the address  and selecting Set Register
Values. Ghidra will then add a special markup called a register transition
around the instruction to indicate the assumed value of the JMP target, EAX.
Subsequent clearing (hotkey C) and disassembling (hotkey D) from this
location will restart the recursive descent disassembly process from the JMP
to the target, 0a04b0e0, and beyond (including creating the XREFs between
those code blocks).

An advantage of this approach is that the code is annotated to show the
target of the JMP, allowing other analysts to easily follow the effective control
flow through this section. (This is even clearer when combined with an over-
ride to the fallthrough for the LEA instruction at 0a04b0d8 in Listing 21-1). This
alternative approach results in the following listing:

0a04b0d7 58 POP EAX
0a04b0d8 8d 40 0a LEA EAX,[EAX + 0xa]
 -- Fallthrough Override: 0a04b0dc
0a04b0db eb ?? EBh
 assume EAX = 0xa04b0e0
 LAB_0a04b0dc XREF[1]: 0a04b0d8
0a04b0dc ff e0 JMP EAX=>LAB_0a04b0e0
 assume EAX = <UNKNOWN>
0a04b0de 90 ?? 90h
0a04b0df c7 ?? C7h

474 Chapter 21

 LAB_0a04b0e0 XREF[1]: 0a04b0dc(j)
0a04b0e0 58 POP EAX 0a04b0e0 POP EAX

Another example of desynchronization taken from a different binary
demonstrates how processor flags may be utilized to turn conditional jumps
into absolute jumps. The following disassembly demonstrates the use of the
x86 Z flag for just such a purpose:

00401000 XOR EAX,EAX
00401002 JZ LAB_00401009+1
00401004 MOV EBX,dword ptr [EAX]
00401006 MOV dword ptr [param_1 + -0x4],EBX

  LAB_00401009+1 XREF[0,1]: 00401002(j)
 00401009 CALL SUB_adfeffc6

0040100e FICOM word ptr [EAX + 0x59]

Here, the XOR instruction  is used to zero the EAX register and set the
x86 Z flag. The programmer, knowing that the Z flag is set, utilizes a jump-
on-zero (JZ) instruction , which will always be taken, to attain the effect
of an unconditional jump. As a result, the instructions between the jump 
and the jump target  will never be executed and serve only to confuse
any analyst who fails to realize this fact. This example also obscures the
actual jump target by jumping into the middle of the CALL instruction at
00401009 . Properly disassembled, the code should read as follows:

00401000 XOR EAX,EAX
00401002 JZ LAB_0040100a
00401004 MOV EBX,dword ptr [EAX]
00401006 MOV dword ptr [param_1 + -0x4],EBX

 00401009 ?? E8h
 LAB_0040100a XREF[1]: 00401002(j)

 0040100a MOV EAX,0xdeadbeef
0040100f PUSH EAX
00401010 POP param_1

The actual target of the jump  has been revealed, as has the extra
byte  that caused the desynchronization in the first place. It is certainly
possible to use far more roundabout ways of setting and testing flags prior
to executing a conditional jump. The level of difficulty for analyzing such
code increases with the number of operations that may affect the processor
flag bits prior to testing their value.

Dynamically Computed Target Addresses

The phrase dynamically computed simply means that an address to which
execution will flow is computed at runtime. In this section, we discuss sev-
eral ways in which such an address can be derived. The intent of such tech-
niques is to hide (obfuscate) the actual control flow path that a binary will
follow from the prying eyes of the static analysis process.

One example of this technique was shown in the preceding section.
The example used a call instruction to place a return address on the stack.

Obfuscated Code Analysis 475

The return address was popped directly off the stack into a register, and a
constant value was added to the register to derive the final target address,
which was ultimately reached by performing a jump to the location speci-
fied by the register contents.

An infinite number of similar code sequences can be developed for
deriving a target address and transferring control to that address. The
following code, also used in Shiva, demonstrates an alternate method for
dynamically computing target addresses:

0a04b3be MOV ECX,0x7f131760 ; ECX = 7F131760
0a04b3c3 XOR EDI,EDI ; EDI = 00000000
0a04b3c5 MOV DI,0x1156 ; EDI = 00001156
0a04b3c9 ADD EDI,0x133ac000 ; EDI = 133AD156
0a04b3cf XOR ECX,EDI ; ECX = 6C29C636
0a04b3d1 SUB ECX,0x622545ce ; ECX = 0A048068
0a04b3d7 MOV EDI,ECX ; EDI = 0A048068
0a04b3d9 POP EAX
0a04b3da POP ESI
0a04b3db POP EBX
0a04b3dc POP EDX
0a04b3dd POP ECX

 0a04b3de XCHG dword ptr [ESP],EDI ; TOS = 0A048068
0a04b3e1 RET ; return to 0A048068

The comments to the right of the semicolons document the changes
being made to various processor registers at each instruction. The process
culminates in a derived value being moved into the top position of the stack
(TOS) , which causes the return instruction to transfer control to the com-
puted location (0A048068 in this case). An analyst must essentially run the code
by hand to determine the actual control flow path taken in the program.

Obfuscated Control Flow

Much more complex methods to hide control flow have been developed
and utilized in recent years. In the most complex cases, a program will use
multiple threads or child processes to compute control flow information and
receive that information via some form of interprocess communication (for
child processes) or synchronization primitives (for multiple threads).

In such cases, static analysis can become extremely difficult, as it becomes
necessary to understand not only the behavior of multiple executable entities
but also the exact manner by which those entities exchange information. For
example, one thread may wait on a shared semaphore object, while a second
thread computes values or modifies code that the first thread will make use
of after the second thread signals its completion via the semaphore.2

2. Think of a semaphore as a token that must be in your possession before you can enter a room
to perform an action. While you hold the token, no other person may enter the room. When
you have finished with your task in the room, you may leave and give the token to someone
else, who may then enter the room and take advantage of the work you have done (without
your knowledge because you are no longer in the room). Semaphores are often used to
enforce mutual exclusion locks around code or data in a program.

476 Chapter 21

Another technique, frequently used within Windows malware, involves
configuring an exception handler,3 intentionally triggering an exception,
and then manipulating the state of the process’s registers while handling
the exception. The following example is used by the tElock anti–reverse
engineering tool to obscure the program’s actual control flow:

 0041d07a CALL LAB_0041d07f
 LAB_0041d07f XREF[1]: 0041d07a(j)

 0041d07f POP EBP
 0041d080 LEA EAX,[EBP + 0x46]
 0041d083 PUSH EAX

0041d084 XOR EAX,EAX
 0041d086 PUSH dword ptr FS:[EAX]
 0041d089 MOV dword ptr FS:[EAX],ESP
 0041d08c INT 3

0041d08d NOP
0041d08e MOV EAX,EAX
0041d090 STC
0041d091 NOP
0041d092 LEA EAX,[EBX*0x2 + 0x1234]
0041d099 CLC
0041d09a NOP
0041d09b SHR EBX,0x5
0041d09e CLD
0041d09f NOP
0041d0a0 ROL EAX,0x7
0041d0a3 NOP
0041d0a4 NOP

 0041d0a5 XOR EBX,EBX
 0041d0a7 DIV EBX

0041d0a9 POP dword ptr FS:[0x0]

The sequence begins by using a CALL  to the next instruction ; the
CALL instruction pushes 0041d07f onto the stack as a return address, which
is promptly popped off the stack into the EBP register . Next, the EAX regis-
ter  is set to the sum of EBP and 46h, or 0041d0c5, and this address is pushed
onto the stack  as the address of an exception handler function. The
remainder of the exception handler setup takes place at  and , which
complete the process of linking the new exception handler into the existing
chain of exception handlers referenced by FS:[0].4

The next step is to intentionally generate an exception , in this case
an INT 3, which is a software trap (interrupt) to the debugger. (In x86 pro-
grams, the INT 3 instruction is used by debuggers to implement a software
breakpoint.) Normally at this point, an attached debugger would gain con-
trol, as debuggers are given the first opportunity to handle the exception.

3. For more information on Windows Structured Exception Handling (SEH), see
http://bytepointer.com/resources/pietrek_crash_course_depths_of_win32_seh.htm.

4. Windows configures the FS register to point to the base address of the current thread’s envi-
ronment block (TEB). The first field in a TEB is the head of a linked list of pointers to exception
handler functions, which are called as appropriate when an exception is raised in a process.

http://bytepointer.com/resources/pietrek_crash_course_depths_of_win32_seh.htm

Obfuscated Code Analysis 477

In this case, the program fully expects to handle the exception, so any
attached debugger must be instructed to pass the exception along to the
program. Not allowing the program to handle the exception may cause the
program to operate incorrectly or crash. Without understanding how the
INT 3 exception is handled, it is impossible to know what may happen next
in this program. If we assume that execution simply resumes following the
INT 3, then it appears that a divide-by-zero exception will eventually be trig-
gered by instructions  and .

The decompiled version of the exception handler associated with the
preceding code begins at address 0041d0c5. The first portion of this function
is shown here:

int FUN_0041d0c5(EXCEPTION_RECORD *param_1,void *frame,CONTEXT *ctx) {
 DWORD code;

  ctx->Eip = ctx->Eip + 1;
  code = param_1->ExceptionCode;
  if (code == EXCEPTION_INT_DIVIDE_BY_ZERO) {

 ctx->Eip = ctx->Eip + 1;
  ctx->Dr0 = 0;

 ctx->Dr1 = 0;
 ctx->Dr2 = 0;
 ctx->Dr3 = 0;
 ctx->Dr6 = ctx->Dr6 & 0xffff0ff0;
 ctx->Dr7 = ctx->Dr7 & 0xdc00;
 }

The third argument to the exception handler function  is a pointer
to a Windows CONTEXT structure (defined in the Windows API header file
winnt.h). The CONTEXT structure is initialized with the contents of all proces-
sor registers as they existed at the time of the exception. An exception han-
dler has the opportunity to inspect and, if desired, modify the contents of
the CONTEXT structure. If the exception handler feels that it has corrected the
problem that led to the exception, it can notify the operating system that
the offending thread should be allowed to continue. At this point, the oper-
ating system reloads the processor registers for the thread from the CONTEXT
structure that was provided to the exception handler, and execution of the
thread resumes as if nothing had ever happened.

In the preceding example, the exception handler begins by accessing
the thread’s CONTEXT in order to increment the instruction pointer , to
allow execution to resume at the instruction following the one that gen-
erated the exception. Next, the exception’s type code (a field within the
provided EXCEPTION_RECORD) is retrieved  in order to determine the nature
of the exception. This portion of the exception handler handles the divide-
by-zero error , generated in the previous example, by zeroing  all of the
x86 hardware debugging registers and disabling hardware breakpoints.5

5. In the x86 architecture, debug registers 0 to 7 (DR0–DR7) are used to control the use of
hardware-assisted breakpoints. DR0 to DR3 are used to specify breakpoint addresses, while
DR6 and DR7 are used to enable and disable specific hardware breakpoints.

478 Chapter 21

Without examining the remainder of the tElock code, it is not immediately
apparent why the debug registers are being cleared. In this case, tElock
is clearing values from a previous operation in which it used the debug
registers to set four breakpoints in addition to the INT 3 seen previously. In
addition to obfuscating the true flow of the program, clearing or modify-
ing the x86 debug registers can wreak havoc for software debuggers such as
OllyDbg or GDB. Such anti-debugging techniques are discussed in “Anti–
Dynamic Analysis Techniques” on page 487.

Opcode Obfuscation

While the techniques described to this point may provide—in fact, are
intended to provide—a hindrance to understanding a program’s control
flow, none prevent you from observing the correct disassembled form of a
program you are analyzing. Desynchronization had the greatest impact on
the disassembly, but it was easily defeated by reformatting the disassembly
to reflect the correct instruction flow.

A more effective technique for preventing correct disassembly is
to encode or encrypt the actual instructions when the executable file is
being created. The obfuscated instructions must be deobfuscated back to
their original form before they are fetched for execution by the processor.
Therefore, at least some portion of the program must remain unencrypted
in order to serve as the startup routine, which, in the case of an obfuscated
program, is usually responsible for deobfuscating some or all of the remain-
der of the program. A very generic overview of the obfuscation process is
shown in Figure 21-2.

Header

Code

Data

Header

Obfuscated code

Obfuscated data

Deobfuscation stub

Entry point Obfuscator

Modified entry
point

Transfer to
original entry
point (OEP)

Original program

Obfuscated program

Figure 21-2: Generic obfuscation process

As shown, the input to the process is a program to be obfuscated. In
many cases, the input program is written using standard programming lan-
guages and build tools (editors, compiler, and the like) with little thought
required about the obfuscation to come. The resulting executable file is fed
into an obfuscation utility that transforms the binary into a functionally

Obfuscated Code Analysis 479

equivalent, yet obfuscated, binary. As depicted, the obfuscation utility is
responsible for obfuscating the original program’s code and data sections
and adding additional code (a deobfuscation stub) that performs the task
of deobfuscating the code and data before the original functionality can be
accessed at runtime. The obfuscation utility also modifies the program head-
ers to redirect the program entry point to the deobfuscation stub, ensuring
that execution begins with the deobfuscation process. Following deobfusca-
tion, execution typically transfers to the entry point of the original program,
which begins execution as if it had never been obfuscated at all.

This oversimplified process varies widely based on the obfuscation utility
that is used to create the obfuscated binary. An ever-increasing number of
utilities are available to handle the obfuscation process. Such utilities offer
features ranging from compression to anti-disassembly and anti-debugging
techniques. Examples include programs such as UPX (compressor, also
works with ELF; https://upx.github.io/), ASPack (compressor; http://www.aspack​
.com/), ASProtect (anti–reverse engineering by the makers of ASPack), and
tElock (compression and anti–reverse engineering; http://www.softpedia.com​
/get/Programming/Packers-Crypters-Protectors/Telock.shtml.) for Windows PE
files. The capabilities of obfuscation utilities have advanced to the point
that some anti–reverse engineering tools such as VMProtect integrate with
the entire build process, allowing programmers to integrate anti–reverse
engineering features at every stage of development, from source code
through post-processing the compiled binary file (https://vmpsoft.com/).

S A NDBOX E N V IRONME N T S

The purpose of a sandbox environment for reverse engineering is to allow you to
execute programs in a manner that allows observation of the program’s behavior
without allowing that behavior to adversely impact critical components of your
reverse engineering platform or anything it is connected to. Sandbox environ-
ments are commonly constructed using platform virtualization software, but they
may be constructed on dedicated systems that are capable of being restored to a
known-good state following the execution of any malware.

Sandbox systems are typically heavily instrumented in order to observe
and collect information on the behavior of programs run within the sandbox.
Collected data may include information on the filesystem activity of a program,
the registry activity of a (Windows) program, and information about any
networking activity generated by the program. One example of a complete
sandbox environment is Cuckoo (https://cuckoosandbox.org/), a popular open
source sandbox specifically oriented toward malware analysis.

http://www.aspack.com/
http://www.aspack.com/
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/Telock.shtml
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/Telock.shtml

480 Chapter 21

As with any offensive technology, defensive measures have been devel-
oped to counter many anti–reverse engineering tools. In most cases, the
goal of such tools is to recover the original, unprotected executable file (or
a reasonable facsimile), which can then be analyzed using more traditional
tools such as disassemblers and debuggers.

One such tool designed to deobfuscate Windows executables is
called QuickUnpack (http://qunpack.ahteam.org/?p=458 ; site is in Russian).
QuickUnpack, like many other automated unpackers, operates by function-
ing as a debugger and allowing an obfuscated binary to execute through its
deobfuscation phase and then capturing the process image from memory.
Beware that this type of tool actually runs potentially malicious programs
in the hope of intercepting the execution of those programs after they have
unpacked or deobfuscated themselves but before they have a chance to do
anything malicious. Thus, you should always execute such programs in a
sandbox-type environment.

Using a purely static analysis environment to analyze obfuscated code
is a challenging task. Without being able to execute the deobfuscation
stub, the obfuscated portions of the binary must be unpacked or decrypted
before disassembly can begin. The Ghidra Address Type overview bar, at
right in Figure 21-3, shows the layout of an executable that has been packed
using the UPX packer. Ghidra color-codes content in the overview bar to
give you an indication of the associated content in the binary. The general
categories for the overview bar include the following:

•	 Function

•	 Uninitialized

•	 External Reference

•	 Instruction

•	 Data

•	 Undefined

Focusing on the overview bar in the figure, we can see Ghidra’s pre-
liminary assessment of various parts of the binary. Hovering over any of the
sections in the overview bar will provide additional information about the
corresponding region of the binary. The unusual appearance of this partic-
ular navigation bar is a tip-off that this binary has been obfuscated in some
manner. Let’s take a closer look at some of the sections in the overview bar.

Ghidra has identified a data section  at the start of the file.
Examining this content reveals the headers for the file along with informa-
tive content that is indicative of the type of obfuscation used on this file:

 This file is packed with the UPX executable packer http://upx.tsx.org
 UPX 1.07 Copyright (C) 1996-2001 the UPX Team. All Rights Reserved.

http://upx.tsx.org

Obfuscated Code Analysis 481

�

�

�

�

�

Figure 21-3: Ghidra Listing window and Address Type overview bar for a
binary packed using UPX

This section is followed by a block of undefined content  similar to
the following, which appears in the Listing window:

004008a3 72 ?? 72h r
004008a4 85 ?? 85h
004008a5 6c ?? 6Ch l

482 Chapter 21

The largest section  contains uninitialized data, which appears as
follows in the Listing window:

004034e3 ?? ??
004034e4 ?? ??

A little farther in the file, Ghidra has identified another block of
undefined content . At the end of this data is a region that Ghidra has
identified as a function . This function is easily recognizable as the UPX
decompression stub, which Ghidra has identified as the entry point for
the binary, as shown in the Listing window on the left in Figure 21-3. The
undefined content segments we observed v are the result of the UPX
compression process. The job of the decompression stub is to unpack that
data into the uninitialized region  before finally transferring control to
the unpacked code.

The information presented by the Address Type overview bar can be
correlated with the properties of each segment within the binary to deter-
mine whether the information presented in each display is consistent. The
memory map for this binary is shown in Figure 21-4.

�
�

Figure 21-4: Memory map of a UPX packed binary

In this particular binary, the entire range of addresses contained in
segment UPX0  and segment UPX1  (00401000–00408fff) is marked as execut-
able (the X flag is set). Given this fact, we should expect to see the entire
Address Type overview bar colorized to represent functions. The fact that
we do not, coupled with the fact that the entire range of UPX0 is uninitialized
and writable, should be considered highly suspicious and provides valuable
clues about the binary and how we might proceed with analysis.

Techniques for using Ghidra to perform the decompression operation
in a static context (without actually executing the binary) on files such as
this one are discussed in “Static Deobfuscation of Binaries Using Ghidra”
on page 491.

Imported Function Obfuscation
Anti–static analysis techniques may also hide which shared libraries and
library functions a binary uses in order to avoid leaking information about

Obfuscated Code Analysis 483

potential actions that the binary may perform. In most cases, it is possible
to render tools such as dumpbin, ldd, and objdump ineffective for the purposes
of listing library dependencies.

The effect of such obfuscations on Ghidra is most obvious in the
Symbol Tree. The entire Symbol Tree for our earlier tElock example is
shown in Figure 21-5.

Figure 21-5: Symbol Tree for obfuscated
binary

Only two imported functions are referenced: GetModulehandleA (from
kernel32.dll) and MessageBoxA (from user32.dll). Virtually nothing about the
behavior of the program can be inferred from this short list. Here again
the techniques are varied but essentially boil down to the fact that the pro-
gram itself must load any additional libraries that it depends on, and once
the libraries are loaded, the program must locate any required functions
within those libraries. In most cases, these tasks are performed by the deob-
fuscation stub prior to transferring control to the deobfuscated program.
The end goal is for the program’s import table to have been properly initial-
ized, just as if the process had been performed by the operating system’s
own loader.

For Windows binaries, a simple approach is to use the LoadLibrary func-
tion to load required libraries by name and then use the GetProcAddress
function to perform function address lookups within each library. To use
these functions, a program must either be explicitly linked to them or have
an alternate means of looking them up. The Symbol Tree for the tElock
example does not include either of these functions, while the Symbol Tree
for the UPX example, shown in Figure 21-6, includes both.

484 Chapter 21

Figure 21-6: Symbol Tree for UPX example

The actual UPX code responsible for rebuilding the import table is
shown in Listing 21-2.

 LAB_0040886c XREF[1]: 0040888e(j)
0040886c MOV EAX,dword ptr [EDI]
0040886e OR EAX,EAX
00408870 JZ LAB_004088ae
00408872 MOV EBX,dword ptr [EDI + 0x4]
00408875 LEA EAX,[EAX + ESI*0x1 + 0x8000]
0040887c ADD EBX,ESI
0040887e PUSH EAX
0040887f ADD EDI,0x8
00408882 CALL dword ptr [ESI + 0x808c]=>KERNEL32.DLL::LoadLibraryA
00408888 XCHG EAX,EBP
 LAB_00408889 XREF[1]: 004088a6(j)
00408889 MOV AL,byte ptr [EDI]
0040888b INC EDI
0040888c OR AL,AL
0040888e JZ LAB_0040886c
00408890 MOV ECX,EDI
00408892 PUSH EDI
00408893 DEC EAX
00408894 SCASB.REPNE ES:EDI
00408896 PUSH EBP
00408897 CALL dword ptr [ESI + 0x8090]=>KERNEL32.DLL::GetProcAddress
0040889d OR EAX,EAX

Obfuscated Code Analysis 485

0040889f JZ LAB_004088a8
004088a1 MOV dword ptr [EBX],EAX ; save to import table
004088a3 ADD EBX,0x4
004088a6 JMP LAB_00408889

Listing 21-2: Import table reconstruction in UPX

This example contains an outer loop responsible for calling LoadLibrary 
and an inner loop responsible for calling GetProcAddress . Following each
successful call to GetProcAddress, the newly retrieved function address is
stored into the reconstructed import table .

These loops are executed as the last portion of the UPX deobfuscation
stub, because each function takes string pointer parameters that point to
either a library name or a function name, and the associated strings are
held within the compressed data region to avoid detection by the strings
utility. As a result, library loading in UPX cannot take place until the
required strings have been decompressed.

Returning to the tElock example, a different problem presents itself.
With only two imported functions, neither of which is LoadLibrary or
GetProcAddress, how can the tElock utility perform the function-resolution
tasks that were performed by UPX? All Windows processes depend on
kernel32.dll, which means that it is present in memory for all processes. If a
program can locate kernel32.dll, a relatively straightforward process may be
followed to locate any function within the DLL, including LoadLibrary and
GetProcAddress. As shown previously, with these two functions in hand, it is
possible to load any additional libraries required by the process and locate
all required functions within those libraries.

In his paper “Understanding Windows Shellcode,” Skape discusses tech-
niques for doing exactly this.6 While tElock does not use the exact techniques
detailed by Skape, there are many parallels, and the net effect is to obscure the
details of the loading and linking process. Without carefully tracing the pro-
gram’s instructions, it is extremely easy to overlook the loading of a library or
the lookup of a function address. The following small code fragment illustrates
the manner in which tElock attempts to locate the address of LoadLibrary:

0041d1e4 CMP dword ptr [EAX],0x64616f4c
0041d1ea JNZ LAB_0041d226
0041d1ec CMP dword ptr [EAX + 0x4],0x7262694c
0041d1f3 JNZ LAB_0041d226
0041d1f5 CMP dword ptr [EAX + 0x8],0x41797261
0041d1fc JNZ LAB_0041d226

It is immediately obvious that several comparisons are taking place
in rapid succession. What may not be immediately clear is the purpose
of these comparisons. Reformatting the operands (right-click and then
choose ConvertChar Sequence) used in each comparison sheds a little
light on the code, as seen in the following listing.

6. See http://www.hick.org/code/skape/papers/win32-shellcode.pdf, specifically Chapter 3,
“Shellcode Basics,” and Section 3.3, “Resolving Symbol Addresses.”

486 Chapter 21

0041d1e4 CMP dword ptr [EAX],"Load"
0041d1ea JNZ LAB_0041d226
0041d1ec CMP dword ptr [EAX + 0x4],"Libr"
0041d1f3 JNZ LAB_0041d226
0041d1f5 CMP dword ptr [EAX + 0x8],"aryA"
0041d1fc JNZ LAB_0041d226

Each hexadecimal constant is actually a sequence of four ASCII charac-
ters, which Ghidra is capable of displaying as quoted ASCII and, together,
spell LoadLibraryA.7 If the three comparisons succeed, tElock has located
the export table entry for LoadLibraryA and in a few short operations will
obtain the address of this function for loading additional libraries. tElock’s
approach to function lookup is somewhat resistant to string analysis because
the 4-byte constants embedded directly in the program’s instructions do
not look like standard, null-terminated strings and thus do not get included
in the list of strings generated by Ghidra unless you change the defaults
(for example, unchecking the Require Null Termination option during
your string search).

Manually reconstructing a program’s import table through careful
analysis of the program’s code is made easier in the case of UPX and tElock
because, ultimately, both contain ASCII character data that you can use
to determine exactly which libraries and which functions are being ref-
erenced. Skape’s paper details a function-resolution process in which no
strings at all appear within the code. The basic idea discussed in the paper
is to precompute a unique hash value for the name of each function that
you need to resolve.8 To resolve each function, you can search through a
library’s exported names table. Each name in the table is hashed, and you
can compare the resulting hash against the precomputed hash value for the
desired function. If the hashes match, you have located the desired func-
tion, and can easily locate its address in the library’s export address table.

To statically analyze binaries obfuscated in this manner, you need to
understand the hashing algorithm used for each function name and apply
that algorithm to all the names exported by the library the program is
searching. With a complete table of hashes in hand, you can do a simple
lookup of each hash you encounter in the program to determine which
function the hash references. A portion of such a table, generated for ker-
nel32.dll, might look like this:

  GetProcAddress : 8A0FB5E2
 GetProcessAffinityMask : B9756EFE
 GetProcessHandleCount : B50EB87C
 GetProcessHeap : C246DA44

7. Many Windows functions that accept string arguments come in two versions: one that
accepts ASCII strings and one that accepts Unicode strings. The ASCII versions of these func-
tions carry an A suffix, while the Unicode versions carry a W suffix.

8. A hash function is a mathematical process that can derive a fixed-size result (4 bytes, for
example) from an arbitrary-sized input (such as a string).

Obfuscated Code Analysis 487

 GetProcessHeaps : A18AAB23
 GetProcessId : BE05ED07

Note that the hash values are specific to the hash function being used
within a particular binary and are likely to vary from one binary to another.
Using this particular table, if the hash value 8A0FB5E2  were encountered
within a program, you could quickly determine that the program was
attempting to look up the address of the GetProcAddress function.

Skape’s use of hash values to resolve function names was originally devel-
oped and documented for use in exploit payloads for Windows vulnerabili-
ties; however, they have been adopted for use in obfuscated programs as well.

Anti–Dynamic Analysis Techniques
None of the anti–static analysis techniques covered in the past few sections
have any effect whatsoever on whether a program will actually execute.
In fact, while anti–static analysis techniques may make it difficult for you
to comprehend the true behavior of a program using static analysis tech-
niques alone, they can’t prevent the program from executing, or they would
render a program useless from the start and therefore eliminate the need
to analyze the program at all.

Given that a program must run in order to do any useful work, dynamic
analysis aims to observe the behavior of a program in motion (while it is
running) rather than observe the program at rest (using static analysis
while the program is not running). In this section, we briefly summarize
some of the more common anti–dynamic analysis techniques. For the most
part, these techniques have little effect on static analysis tools; however,
where there is overlap, we point this out.

Detecting Virtualization

Sandbox environments commonly use virtualization software, such as
VMware, to provide an execution environment for malicious software (or
any other software of interest). The advantage of such environments is that
they typically offer checkpoint and rollback capabilities that facilitate rapid
restoration of the sandbox to a known-clean state. The primary disadvan-
tage is that malware may be able to detect the sandbox. Under the assump-
tion that virtualization equates to observation, many programs that want to
remain undetected simply shut after once they determine that they are run-
ning within a virtual machine. Given the widespread use of virtualization
for production purposes, this assumption is less valid today than it has been
historically.

The following list describes a few of the techniques that have been used
by programs running in virtualized environments to determine that they
are running within a virtual machine rather than on native hardware:

Detection of virtualization-specific software
Users often install helper applications within virtual machines to facili-
tate communications between a virtual machine and its host operating
system or simply to improve performance within the virtual machine.

488 Chapter 21

The VMware Tools collection is one example of this kind of software. The
presence of such software is easily detected by programs running within
the virtual machine. For example, when VMware Tools is installed into
a Microsoft Windows virtual machine, it creates Windows registry keys
that can be read by any program. Malware detecting these keys may elect
to shut down before exhibiting any noteworthy behaviors. On the other
hand, virtualization is so widely used today that a VMware image found
without VMware Tools installed might be considered equally suspicious
in the eyes of a piece of malware.

Detection of virtualization-specific hardware
Virtual machines use virtual hardware abstraction layers to provide
the interface between the virtual machine and the host computer’s
native hardware. Characteristics of the virtual hardware are often
easily detectable by software running within the virtual machine. For
example, VMware has been assigned its own organizationally unique
identifiers (OUIs) for its virtualized network adapters.9 Observing a
VMware-specific OUI is a good indication that a program is running
within a virtual machine. Software that shuts down for this reason may
be coaxed into executing by modifying the MAC address assigned to
any virtual network adapters associated with the virtual machine.

Detection of processor-specific behavioral changes
Perfect virtualization is difficult to achieve. Ideally, a program should
not be able to detect any difference between a virtualized environ-
ment and native hardware. However, this is seldom the case. Joanna
Rutkowska developed her Red Pill VMware-detection technique after
observing behavioral differences between the operation of the x86
sidt instruction on native hardware and the same instruction executed
within a virtual machine environment.10

Detecting Instrumentation

Following creation of your sandbox environment and prior to executing any
program you want to observe, you need to ensure that instrumentation is
in place to properly collect and record information about the behavior of
the program you are analyzing. A wide variety of tools exist for performing
such monitoring tasks. Two widely used examples are Process Monitor from
the Sysinternals group at Microsoft and Wireshark.11 Process Monitor is a
utility capable of monitoring certain activities associated with any running
Windows process, including accesses to the Windows registry and filesystem

9. An OUI makes up the first 3 bytes of a network adapter’s factory-assigned MAC address.

10. See https://web.archive.org/web/20041130172213/http://invisiblethings.org/papers/redpill.html.

11. See https://docs.microsoft.com/en-us/sysinternals/downloads/procmon for Process Monitor and
http://www.wireshark.org/ for Wireshark.

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://web.archive.org/web/20041130172213/http://invisiblethings.org/papers/redpill.html

Obfuscated Code Analysis 489

activity. Wireshark is a network packet capture and analysis tool often used
to analyze network traffic generated by malicious software.

Malware authors with a sufficient level of paranoia may program their
software to search for running instances of such monitoring programs.
Techniques that have been employed range from scanning the active pro-
cess list for process names associated with such monitoring software to
scanning the title bar text for all active Windows applications to search
for known strings. Deeper searches can be performed, with some software
going so far as to search for specific characteristics associated with Windows
GUI components used within certain instrumentation software.

Detecting Debuggers

Moving beyond simple observation of a program, a debugger allows an ana-
lyst to take complete control of the execution of a program that requires
analysis. Debuggers are commonly used to run an obfuscated program just
long enough to complete any decompression or decryption tasks, and then
the debuggers’ memory-access features are used to extract the deobfus-
cated process image from memory. In most cases, standard static analysis
tools and techniques can be used to complete the analysis of the extracted
process image.

The authors of obfuscation utilities are well aware of such debugger-
assisted deobfuscation techniques and so have developed measures to
attempt to defeat the use of debuggers for execution of their obfuscated
programs. Programs that detect the presence of a debugger often choose
to terminate rather than proceed with any operations that might allow an
analyst to determine the behavior of the program.

Techniques for detecting the presence of debuggers range from simple
queries to the operating system via well-known API functions such as the
Windows IsDebuggerPresent function, to lower-level checks for memory or
processor artifacts resulting from the use of a debugger. An example of the
latter includes detecting that a processor’s trace (single step) flag is set.

As long as you know what to look for, there is nothing terribly tricky
about trying to detect a debugger, and attempts to do so are easily observed
during static analysis (unless anti–static analysis techniques are employed
simultaneously). For more information on debugger detection, please consult
the article “Anti Debugging Detection Techniques with Examples,” which
provides a comprehensive overview of Windows anti-debugging techniques.12

Preventing Debugging

Even an undetectable debugger can be thwarted using additional tech-
niques that attempt to confound the debugger by introducing spurious
breakpoints, clearing hardware breakpoints, hindering disassembly to
make selection of appropriate breakpoint addresses difficult, or prevent-
ing the debugger from attaching to a process in the first place. Many of the

12. See https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques​
-to-use-before-releasing-software.

https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software
https://www.apriorit.com/dev-blog/367-anti-reverse-engineering-protection-techniques-to-use-before-releasing-software

490 Chapter 21

techniques discussed in the previously referenced anti-debugging article
are geared toward preventing debuggers from operating correctly.

Intentionally generating exceptions is one way a program may attempt
to hinder debugging. In most cases, an attached debugger will catch the
exception, and the user of the debugger must analyze why the exception
occurred and whether to pass the exception along to the program being
debugged. In the case of a software breakpoint such as the x86 INT 3, it may
be difficult to distinguish a software interrupt generated by the underlying
program from one that results from an actual debugger breakpoint. This
confusion is exactly the effect that is desired by the creator of the obfus-
cated program. In such cases, it’s possible, though harder, to understand
the true program flow by using careful analysis of the disassembly listing.

Encoding portions of a program has the dual effect of hindering static
analysis because disassembly is not possible and hindering debugging
because placing breakpoints is difficult. Even if the start of each instruction
is known, software breakpoints cannot be placed until the instructions have
actually been decoded, as altering the instructions by inserting a software
breakpoint is likely to result in a failed decryption of the obfuscated code
and then a crash of the program when execution reaches the intended
breakpoint.

The Shiva ELF obfuscation tool for Linux uses a technique called
mutual ptrace as a means of preventing the use of a debugger in analyzing
Shiva’s behavior.

PROCE SS T R ACING

The ptrace, or process tracing, API available on many Unix-like systems pro-
vides a mechanism for one process to monitor and control the execution of
another process. The GNU debugger (gdb) is one of the more well-known
applications that uses the ptrace API. Using the ptrace API, a ptrace parent
process may attach to and control the execution of a ptrace child process.
To begin controlling a process, a parent process must first attach to the child
process that it seeks to control. Once the parent process is attached, the child
process is stopped anytime it receives a signal, and the parent is notified of this
fact via the POSIX wait function, at which point the parent may choose to alter
or inspect the state of the child process before instructing the child process to
continue execution. Once a parent process has attached to a child process,
no other process may attach to the same child process until the tracing parent
chooses to detach from the child process.

Shiva takes advantage of the fact that only one other process may be
attached to a process at any given time. Early in its execution, the Shiva pro-
cess forks to create a copy of itself. The original Shiva process immediately
performs a ptrace attach operation on the newly forked child. The newly

Obfuscated Code Analysis 491

forked child process, in turn, immediately attaches to its parent process. If
either attach operation fails, Shiva terminates under the assumption that
a debugger is being used to monitor the Shiva process. If both operations
succeed, no other debugger can attach to the running Shiva pair, and Shiva
can continue to run without fear of being observed. While operating in this
manner, either Shiva process may alter the state of the other, making it dif-
ficult to determine, using static analysis techniques, what the exact control
flow path is through the Shiva binary.

Static Deobfuscation of Binaries Using Ghidra
At this point, you may be wondering how, given all of the anti–reverse
engineering techniques available, it is possible to analyze software that a
programmer is intent on keeping secret. Given that these techniques tar-
get both static analysis tools and dynamic analysis tools, what is the best
approach to take in revealing a program’s hidden behavior? Unfortunately,
no single solution fits all cases equally well.

In most cases, the solution depends on your skill set and the tools avail-
able to you. If your analysis tool of choice is a debugger, you will need to
develop strategies for circumventing debugger detection and prevention
protections. If your preferred analysis tool is a disassembler, you will need
to develop strategies for obtaining an accurate disassembly and, in cases in
which self-modifying code is encountered, for mimicking the behavior of
that code in order to properly update your disassembly listings.

In this section, we discuss two techniques for dealing with self-modifying
code in a static analysis environment (that is, without executing the code).
Static analysis may be your only option when you are unwilling (because of
hostile code) or unable (because of lack of hardware) to analyze a program
while controlling it with a debugger. If these concepts make you feel like
you are going down a rabbit hole, don’t be discouraged. Ghidra has secret
(or not-so-secret) weapons that we can leverage in the static deobfuscation
arms race.

Script-Oriented Deobfuscation
Because Ghidra can be used to disassemble binaries for an ever-increasing
set of processors, it is not uncommon to analyze a binary developed for an
entirely different platform than the one on which you are running Ghidra.
For example, you may be asked to analyze a Linux x86 binary even though
you happen to be running Ghidra on macOS, or you may be asked to ana-
lyze a MIPS or ARM binary even though you are running Ghidra on an
x86 platform.

In such cases, you may not have access to appropriate tools, such as
debuggers, for dynamically analyzing the binary. When such a binary has
been obfuscated by encoding portions of the program, you may have no
other option than to create a Ghidra script that will mimic the deobfuscat-
ing stage of the program in order to properly decode the program and dis-
assemble the decoded instructions and data.

492 Chapter 21

This may seem like a daunting task; however, in many cases, the decod-
ing stages of an obfuscated program use only a small subset of a processor’s
instruction set, so familiarizing yourself with the necessary operations may
not require understanding the entire instruction set for the target processor.

Chapter 14 presented an algorithm for developing scripts that emulate
the behavior of portions of a program. In the following example, we will
utilize those steps to develop a simple Ghidra script to decode a program
that has been encrypted with the Burneye ELF encryption tool. In our
sample program, execution begins with the instructions in Listing 21-3.

 05371035 PUSH dword ptr [DAT_05371008]
 0537103b PUSHFD
 0537103c PUSHAD
 0537103d MOV ECX,dword ptr [DAT_05371000]

05371043 JMP LAB_05371082
...
 LAB_05371082 XREF[1]: 05371043(j)

 05371082 CALL FUN_05371048
05371087 SHL byte ptr [EBX + -0x2b],1
0537108a PUSHFD
0537108b XCHG byte ptr [EDX + -0x11],AL
0537108e POP SS
0537108f XCHG EAX,ESP
05371090 CWDE
05371091 AAD 0x8e
05371093 PUSH ECX

 05371094 OUT DX,EAX
05371095 ADD byte ptr [EDX + 0xa81bee60],BH
0537109b PUSH SS
0537109c RCR dword ptr [ESI + 0xc],CL
0537109f PUSH CS
053710a0 SUB AL,0x70
053710a2 CMP CH,byte ptr [EAX + 0x6e]
053710a5 CMP dword ptr [DAT_cbd35372],0x9c38a8bc
053710af AND AL,0xf4
053710b1 SBB EBP,ESP
053710b4 POP DS

 053710b5 ?? C6h

Listing 21-3: Burneye startup sequence and obfuscated code

The program begins by pushing the contents of memory location
05371008h onto the stack  before pushing the processor flags  and all
processor registers . The purpose of these instructions is not immediately
clear, so we simply file this information away for later. Next, the ECX regis-
ter is loaded with the contents of memory location 05371000h . According
to the algorithm presented in Chapter 14, we need to declare a variable
named ECX at this point and initialize it from memory by using Ghidra’s
getInt function, as shown here:

int ECX = getInt(toAddr(0x5371000)); // from instruction 0537103d

Obfuscated Code Analysis 493

Following an absolute jump, the program calls function FUN_05371048 ,
which pushes address 05371087h (the return address) onto the stack. The dis-
assembled instructions that follow the CALL instruction begin to make less
and less sense. The OUT instruction  is not generally encountered in user-
space code, and Ghidra is unable to disassemble an instruction at address
053710B5h . These are both indications that something is not quite right
with this binary (that and the fact that the Symbol Tree lists only two func-
tions: entry and FUN_05371048).

At this point, analysis needs to continue with the call to function
FUN_05371048, which is shown in Listing 21-4.

FUN_05371048 XREF[1]: entry:05371082(c)
 05371048 POP ESI
 05371049 MOV EDI,ESI
 0537104b MOV EBX,dword ptr [DAT_05371004] = C09657B0h

05371051 OR EBX,EBX
 05371053 JZ LAB_0537107f
 05371059 XOR EDX,EDX
  LAB_0537105b XREF[1]: 0537107d(j)

0537105b MOV EAX,0x8
  LAB_05371060 XREF[1]: 05371073(j)

05371060 SHRD EDX,EBX,0x1
05371064 SHR EBX,1
05371066 JNC LAB_05371072
0537106c XOR EBX,0xc0000057
 LAB_05371072 XREF[1]: 05371066(j)
05371072 DEC EAX
05371073 JNZ LAB_05371060
05371075 SHR EDX,0x18
05371078 LODSB ESI
05371079 XOR AL,DL
0537107b STOSB ES:EDI
0537107c DEC ECX
0537107d JNZ LAB_0537105b
 LAB_0537107f XREF[1]: 05371053(j)
0537107f POPAD
05371080 POPFD
05371081 RET

Listing 21-4: Main Burneye decoding function

This is not a typical function: it begins by immediately popping the return
address off the stack into the ESI register . Recalling that the saved
return address was 05371087h, and taking into account the initialization of
EDI , EBX , and EDX , our script grows to the following:

int ECX = getInt(toAddr(0x5371000)); // from instruction 0537103D
int ESI = 0x05371087; // from instruction 05371048
int EDI = ESI; // from instruction 05371049
int EBX = getInt(toAddr(0x5371004)); // from instruction 0537104B
int EDX = 0; // from instruction 05371059

494 Chapter 21

Following these initializations, the function performs a test on the value
contained in the EBX register  before entering an outer loop  and an
inner loop . The remaining logic of the function is captured in the follow-
ing completed script. Within the script, comments are used to relate script
actions to the corresponding actions in the preceding disassembly listing.

public void run() throws Exception {
 int ECX = getInt(toAddr(0x5371000)); // from instruction 0537103D
 int ESI = 0x05371087; // from instruction 05371048
 int EDI = ESI; // from instruction 05371049
 int EBX = getInt(toAddr(0x5371004)); // from instruction 0537104B

 if (EBX != 0) { // from instructions 05371051
 // and 05371053
 int EDX = 0; // from instruction 05371059
 do {
 int EAX = 8; // from instruction 0537105B
 do {
 // mimic x86 shrd instruction
 // using several operations
 EDX = EDX >>> 1; // unsigned shift right one bit
 int CF = EBX & 1; // remember the low bit of EBX
 if (CF == 1) { // CF represents the x86 carry flag
 EDX = EDX | 0x80000000; // shift in low bit of EBX if it's 1
 }
 EBX = EBX >>> 1; // unsigned shift right one bit
 if (CF == 1) { // from instruction 05371066
 EBX = EBX ^ 0xC0000057; // from instruction 0537106C
 }
 EAX--; // from instruction 05371072
 } while (EAX != 0); // from instruction 05371073
 EDX = EDX >>> 24; // unsigned shift right 24 bits
  EAX = getByte(toAddr(ESI)); // from instruction 05371078
 ESI++;
 EAX = EAX ^ EDX; // from instruction 05371079
 clearListing(toAddr(EDI)); // clear byte so we can change it
  setByte(toAddr(EDI), (byte)EAX); // from instruction 0537107B
 EDI++;
 ECX--; // from instruction 0537107C
 } while (ECX != 0); // from instruction 0537107D
 }
}

Whenever you are trying to emulate an instruction, you should pay
particular attention to data sizes and register aliasing. In this example, we
need to select an appropriate data size and variable to properly implement
the x86 LODSB (load string byte) and STOSB (store string byte) instructions.
These instructions write to (LODSB) and read from (STOSB) the low-order 8
bits of the EAX register,13 leaving the upper 24 bits unchanged. In Java, there

13. The low-order 8 bits of the EAX register are also referred to as the AL register.

Obfuscated Code Analysis 495

is no way to partition a variable into bit-sized portions other than using vari-
ous bitwise operations to mask off and recombine portions of the variable.
Specifically, in the case of the LODSB instruction , a more faithful emula-
tion would read as follows:

EAX = (EAX & 0xFFFFFF00) | (getByte(toAddr(ESI)) & 0xFF);

This example first clears the low 8 bits of the EAX variable and then
merges in the new value for the low 8 bits using an OR operation. In the
Burneye decoding example, the entire EAX register is set to 8 at the begin-
ning of each outer loop, which has the effect of zeroing the upper 24 bits of
EAX. As a result, we have elected to simplify our implementation of LODSB 
by ignoring the effect of the assignment on the upper 24 bits of EAX. No
thought need be given to our implementation of STOSB , as the setByte
function requires us to cast the second argument to a byte.

Following execution of the Burneye decoding script, our disassembly
would reflect all of the changes that would normally not be observable
until the obfuscated program was executed on a Linux system. If the
deobfuscation process was carried out properly, we are very likely to see
many more legible strings within Ghidra’s Search“For Strings... option” .
To observe this fact, you may need to select the Refresh icon in the String
Search window.

Remaining tasks include (1) determining where the decoding func-
tion will return to, given that it popped its return address in the very first
instruction of the function, and (2) coaxing Ghidra to properly display the
decoded byte values as instructions or data as appropriate. The Burneye
decoding function ends with the following three instructions:

0537107f POPAD
05371080 POPFD
05371081 RET

Recall that the function began by popping its own return address,
which means that the remaining stack values were set up by the caller. The
POPAD and POPFD instructions used here are the counterparts to the PUSHAD
and PUSHFD instructions used at the beginning of Burneye’s start routine,
as shown here:

 entry
 05371035 PUSH dword ptr [DAT_05371008]

0537103b PUSHFD
0537103c PUSHAD

The net result is that the only value that remains on the stack is the
one that was pushed at the first line of entry . It is to this location that the
Burneye decoding routine returns, and it is at this location that further
analysis of the Burneye protected binary would need to continue.

The preceding example may make it seem like writing a script to decode
or unpack an obfuscated binary is a relatively easy thing to do. This is true

496 Chapter 21

in the case of Burneye, which does not use a terribly sophisticated initial
obfuscation algorithm. The deobfuscation stub of more sophisticated
utilities such as ASPack and tElock would require somewhat more effort to
implement using Ghidra.

Advantages to script-based deobfuscation include that the binary
being analyzed need never be executed and that it is possible to create a
functional script without ever developing a complete understanding of
the exact algorithm used to deobfuscate the binary. This latter statement
may seem counterintuitive, as it would seem that you would need to have
a complete understanding of the deobfuscation before you could emulate
the algorithm using a script. Using the development process described here
and in Chapter 14, however, all you really need is a complete understand-
ing of each processor instruction involved in the deobfuscation process. By
faithfully implementing each processor action using Ghidra and properly
sequencing each action according to the disassembly listing, you will have
a script that mimics the program’s actions even if you do not fully compre-
hend the higher-level algorithm that those actions, as a whole, implement.

Disadvantages of using a script-based approach include that the scripts
are rather fragile. If a deobfuscation algorithm changes as a result of an
upgrade to a deobfuscation tool or through the use of alternate command
line settings supplied to the obfuscation tool, a script that had been effec-
tive against that tool will likely need to be modified accordingly. For exam-
ple, it is possible to develop generic unpacking scripts for use with binaries
packed using UPX, but such scripts require constant tuning as UPX evolves.

Finally, scripted deobfuscation suffers from the lack of a one-size-fits-all
solution to deobfuscation. There is no mega-script capable of deobfuscat-
ing all binaries. In a sense, scripted deobfuscation suffers from many of the
same shortcomings as signature-based intrusion detection and antivirus
systems. A new script must be developed for each new type of packer, and
subtle changes in existing packers are likely to break existing scripts. Let’s
shift focus and look at a more generic approach to deobfuscation.

Emulation-Oriented Deobfuscation
A recurring theme encountered when creating scripts to perform deobfus-
cation tasks is the need to emulate a processor’s instruction set in order to
behave identically to the program being deobfuscated. Instruction emula-
tors allow us to shift some or all of the work performed by these scripts
over to the emulator and drastically reduce the amount of time required
for Ghidra to deobfuscate. Emulators can fill the void between scripts and
debuggers and can be more flexible than debuggers. An emulator can, for
example, emulate a MIPS binary on an x86 platform or emulate instruc-
tions from a Linux ELF binary on a Windows platform.

Emulators vary in capabilities. At a minimum, an emulator requires a
stream of instruction bytes and sufficient memory to dedicate to stack oper-
ations and processor registers. More sophisticated emulators may provide
access to emulated hardware devices and operating system services.

Obfuscated Code Analysis 497

Ghidra’s Emulator Class

Fortunately, Ghidra provides a rich Emulator class as well as an EmulatorHelper,
which provides a higher-level abstraction of common emulator functionality
and facilitates the quick-and-easy creation of emulation scripts. In Chapter
18, we introduced p-code as an intermediate representation of the underly-
ing assembly and described how this allows the decompiler to work against
a variety of target architectures. Similarly, p-code supports emulator func-
tionality as well, and Ghidra’s ghidra.pcode.emulate.Emulate class provides
the ability to emulate a single p-code instruction.

We can use Ghidra’s emulator-related classes to build emulators that
allow us to emulate a wide variety of processors. As with other Ghidra pack-
ages and classes, this functionality is documented in the Javadoc supplied
with Ghidra and can be pulled up as a reference by clicking the red plus
tool in the Script Manager window. If you are interested in writing emula-
tors, we encourage you to check out the Javadoc associated with the emula-
tor methods used in the following example.

CR ACKME, CR ACK YOURSE L F

A crackme is a puzzle built by reverse engineers, for reverse engineers. The
name derives from cracking a piece of software to bypass copy or usage
restrictions—one of the more nefarious uses of reverse engineering skills.
Crackmes provide a legal means to practice these skills as well as provide both
the author of the crackme and the person analyzing the crackme a chance to
show off their talent.

A common style of crackme receives a user input, transforms that input
in some way, and then compares the result of the transformation to a precom-
puted output. When you attempt to solve a crackme, you are generally given
only a compiled executable that contains both the code that performs the trans-
formation and the final output for an unknown input. The crackme is solved
when you derive the input that was used to generate the output contained in
the binary, which typically requires understanding the transformation so well
that you can derive the inverse transformation function.

Example: SimpleEmulator

Assume that we have a binary associated with the following crackme chal-
lenge, including some encoded content at the start of the file that eventu-
ally serves as the body of a function. In this example, we build an emulator
script to automate the process of decoding the information needed to solve
the crackme:

 unsigned char check_access[] = {
 0xf0, 0xed, 0x2c, 0x40, 0x2c, 0xd8, 0x59, 0x26, 0xd8,
 0x59, 0xc1, 0xaa, 0x31, 0x65, 0xaa, 0x13, 0x65, 0xf8, 0x66
};

498 Chapter 21

unsigned char key = 0xa5;
void unpack() {
 for (int ii = 0; ii < sizeof(check_access); ii++) {

  check_access[ii] ^= key;
 }
}
void do_challenge() {
 int guess;
 int access_allowed;
 int (*check_access_func)(int);

  unpack();
 printf("Enter the correct integer: ");
 scanf("%d", &guess);
 check_access_func = (int (*)(int))check_access;
 access_allowed = check_access_func(guess);
 if (access_allowed) {
 printf("Access granted!\n");
 } else {
 printf("Access denied!\n");
 }
}
int main() {
 do_challenge();
 return 0;
}

Even with the source code available, this crackme would require some
effort to solve because of the encoded content . Ghidra’s decompiler is fre-
quently an awesome partner for solving crackme challenges, but this one
has interesting characteristics that complicate the process. Ghidra sees only
the encoded function body, but we need to know the function’s actual pur-
pose before we can solve the challenge. At runtime, the unpack  function
call results in the decoding of the check_access  function before check_access
is called . The answer to this crackme is obfuscated, and we can build an
emulator script in Ghidra to help us attack this challenge. Unlike the previ-
ous example, this emulator will not just solve the problem for this specific
case, but will be capable of emulating somewhat arbitrary code.

Step 1: Define the Problem
Our task is to design and develop a simple emulator that will allow us to
choose a region of a disassembly and will emulate the instructions in that
region. The emulator needs to be added to Ghidra and be available as a
script. For example, if we select the unpack function for the crackme challenge
and run the script, our emulator should use the key to unpack the check_access
array and let us know the solution to the crackme challenge. The script will
write the unpacked code bytes into the program’s memory in Ghidra.

Step 2: Create the Eclipse Script Project
We can create a project called SimpleEmulator using GhidraDev4NewGhidra
Script Project. This gives us a SimpleEmulator folder in Eclipse with a folder

Obfuscated Code Analysis 499

called Home scripts (refer to Figure 15-16 on page 325) waiting for our new
script. We still need to create the actual script and enter the associated meta-
data to ensure that our script is documented and can be catalogued. The
metadata collected in the script creation dialog is included in the file and,
as Figure 21-7 shows, we have only one thing to do: Add script code here.

Figure 21-7: Script template for SimpleEmulator

Step 3: Build the Emulator
We know that Eclipse will recommend imports if we need them as we develop
our code, so we can jump right into the coding tasks we need to perform and
add the recommended import statements when Eclipse detects that we need
them. For functionality, we will rely on the following instance variable dec-
larations throughout our SimpleEmulator class:

private EmulatorHelper emuHelper; // EmulatorHelper member variable object
private Address executionAddress; // Initially the start of the selection
private Address endAddress; // End of the selected region

Comments associated with each declaration describe the purpose of
each variable. The executionAddress will initially be set to the start of the
selected range, but will also be used to advance through the selection.

Step 3-1: Set Up the Emulator

The first thing we will do in our script’s run method is instantiate our
emulator helper object and activate the tracking of any memory written
in the emulator so that we can write updated values back into the current

500 Chapter 21

program. The instantiation acts as a lock, similar to the lock that the
CodeBrowser places on an open binary:

emuHelper = new EmulatorHelper(currentProgram);
emuHelper.enableMemoryWriteTracking(true);

Step 3-2: Select the Address Range to Be Emulated

Since we want the user to choose the section of code to be emulated,
we need to ensure they have selected something in the Listing window.
Otherwise, we will generate an error message.

if (currentSelection != null) {
 executionAddress = currentSelection.getMinAddress();
 endAddress = currentSelection.getMaxAddress().next();
} else {
 println("Nothing selected");
 return;
}

Step 3-3: Get Ready to Emulate

Within the selection, we want to ensure we are looking at an instruction in
order to establish the initial processor context, initialize the stack pointer,
and set up a breakpoint at the end of the selected region. The continuing flag
indicates whether we are just starting the emulation or continuing the emula-
tion, and determines which version of emuHelper.run is called in step 3-4:

Instruction executionInstr = getInstructionAt(executionAddress);
if (executionInstr == null) {
 printerr("Instruction not found at: " + executionAddress);
 return;
}
long stackOffset = (executionInstr.getAddress().getAddressSpace().
 getMaxAddress().getOffset() >>> 1) - 0x7fff;
emuHelper.writeRegister(emuHelper.getStackPointerRegister(), stackOffset);
// Setup breakpoint at the end address
emuHelper.setBreakpoint(endAddress);
// Set continuing to false as we are just starting the emulation
boolean continuing = false;;

Step 3-4: Perform Emulation

In this section, you should recognize the use of some Ghidra API functions
introduced in Chapter 14 (such as monitor.isCancelled). We need a loop to
drive the emulation until a termination condition that we define is reached:

 while (!monitor.isCancelled() &&
 !emuHelper.getExecutionAddress().equals(endAddress)) {
 if (continuing) {

Obfuscated Code Analysis 501

 emuHelper.run(monitor);
 } else {
 emuHelper.run(executionAddress, executionInstr, monitor);
 }

  executionAddress = emuHelper.getExecutionAddress();

 // determine why the emulator stopped, and handle each possible reason
  if (emuHelper.getEmulateExecutionState() ==

 EmulateExecutionState.BREAKPOINT) {
 continuing = true;
 } else if (monitor.isCancelled()) {
 println("Emulation cancelled at 0x" + executionAddress);
 continuing = false;
 } else {
 println("Emulation Error at 0x" + executionAddress +
 ": " + emuHelper.getLastError());
 continuing = false;
 }

  writeBackMemory();
 if (!continuing) {
 break;
 }
}

For this example, emulation continues as long as the monitor hasn’t
detected a user cancellation, we haven’t reached the end of the selected
range of instructions, or an error condition hasn’t been triggered . When
the emulator stops, we need to update the current execution address  and
then handle the stop condition appropriately . The final step is to call the
writeBackMemory()method .

Step 3-5: Write Memory Back to the Program

The implementation of writeBackMemory()  is shown here. This emulator
is going to be tested on an unpack routine, which ultimately changes the
bytes in memory. The memory changes that the emulator has made exist
only in its working memory. The content needs to be written back to the
binary in order to allow the listing and other user interfaces to accurately
reflect the changes that result from executing the instructions in the
unpack routine. Ghidra provides functionality within its emulatorHelper to
facilitate this process.

private void writeBackMemory() {
 AddressSetView memWrites = emuHelper.getTrackedMemoryWriteSet();
 AddressIterator aIter = memWrites.getAddresses(true);
 Memory mem = currentProgram.getMemory();
 while (aIter.hasNext()) {
 Address a = aIter.next();
 MemoryBlock mb = getMemoryBlock(a);
 if (mb == null) {
 continue;
 }

502 Chapter 21

 if (!mb.isInitialized()) {
 // initialize memory
 try {
 mem.convertToInitialized(mb, (byte)0x00);
 } catch (Exception e) {
 println(e.toString());
 }
 }
 try {
 mem.setByte(a, emuHelper.readMemoryByte(a));
 } catch (Exception e) {
 println(e.toString());
 }
 }
}

Step 3-6: Clean Up Resources

In this step, we need to clean up resources and release the lock that we have
on the current program. Both can be accomplished in one easy statement:

emuHelper.dispose();

Since this emulator is only for demonstration purposes, we took some
liberties in what was included in the script. To conserve space, we mini-
mized the comments, functionality, error checking, and error handling
that we would normally include in a production script. All that remains is to
confirm that our emulator script is able to accomplish our goal.

Step 4: Add the Script to Our Ghidra Installation
Adding a script to our Ghidra installation just requires dropping it some-
where that Ghidra will find it. If you set up the script project as a linked
project, Ghidra knows where to find it already. If you did not link your script
project (or if you created your emulator script in another editor), you need
to save it in one of Ghidra’s script directories, as discussed in Chapter 14.

Step 5: Test the Script Within Ghidra
To test the script, we will load the binary associated with the crackme
challenge source code. When we load the binary and navigate to the unpack
function, we note that it contains references to the check_access label:

0010077d 48 8d 05 8c 08 20 00 LEA RAX,[check_access]

The code in the Decompiler window contains the following, which does
not get us any closer to solving our crackme:

check_access[(int)local_c] = check_access[(int)local_c] ^ key;

Obfuscated Code Analysis 503

Double-clicking check_access within the Listing window leads us to
address 00301010, which does not look like instructions within a function.

00301010 f0 ed 2c 40 2c d8 59 undefined1[19]
 26 d8 59 c1 aa 31 65
 aa 13 65 f8 66

If we chose to disassemble this content, we would receive a bad data
error in Ghidra. The Decompiler window also provides no help for this
location. So let’s use our script to see if we can emulate the unpack function.
We select the instructions that make up the unpack function and open the
Script Manager and run our script. We see no observable change in the
unpack function or in the Decompiler window. But if we navigate to check_
access (00301010), the content has changed!

00301010 55 48 89 e5 89 7d undefined1[19]
 fc 83 7d fc 64 0f
 94 c0 0f b6 c0 5d c3

We can clear these code bytes (hotkey C) and then disassemble (hot-
key D) and obtain the following results:

 check_access
00301010 55 PUSH RBP
00301011 48 89 e5 MOV RBP,RSP
00301014 89 7d fc MOV dword ptr [RBP + -0x4],EDI
00301017 83 7d fc 64 CMP dword ptr [RBP + -0x4],100
0030101b 0f 94 c0 SETZ AL
0030101e 0f b6 c0 MOVZX EAX,AL
00301021 5d POP RBP
00301022 c3 RET

Here is the corresponding code in the Decompiler window:

ulong UndefinedFunction_00301010(int param_1)
{
 return (ulong)(param_1 == 100);
}

This was just a proof-of-concept script to demonstrate the use of emula-
tors to aid in code deobfuscation, but it does show how a relatively general-
purpose emulator can be built within Ghidra by using its emulator support
classes. There are other situations where developing and using emulators
are an appropriate course of action. An immediate advantage of emulation
over debugging is that potentially malicious code is never actually executed
by an emulator, whereas debugger-assisted deobfuscation must allow at least
some portion of the malicious program to execute in order to obtain the
deobfuscated version of the program.

504 Chapter 21

Summary
Obfuscated programs are the rule rather than the exception when it comes
to malware these days. Any attempts to study the internal operations of a
malware sample are almost certain to require some type of deobfuscation.
Whether you take a debugger-assisted, dynamic approach to deobfuscation
or you prefer not to run potentially malicious code and instead choose to
use scripts or emulation to deobfuscate your binaries, the ultimate goal is
to produce a deobfuscated binary that can be fully disassembled and prop-
erly analyzed.

In most cases, this final analysis will be performed using a tool such as
Ghidra. Given this ultimate goal (of using Ghidra for analysis), it makes
sense to attempt to use Ghidra from start to finish. The techniques pre-
sented in this chapter are intended to demonstrate that Ghidra is capable
of far more than simply generating disassembly listings, and we build on
this in the next chapter as we look at how we can use Ghidra to patch our
disassembly listings.

Occasionally when reverse engineering a
binary, you may decide that you want to

modify the behavior of the original binary.
Behavioral modification is usually accomplished

by patching the binary to insert, remove, or modify
existing instructions. Many motivations exist for mak-
ing such modifications—some more controversial
than others—including the following:

•	 Modifying a malware sample to eliminate anti-debug techniques that
prevent the malware from being studied

•	 Patching vulnerabilities in software for which you have no source code

•	 Customizing an application’s splash screen or string content

•	 Modifying game logic for the purposes of cheating

•	 Unlocking hidden features

•	 Bypassing licensing checks or other anti-piracy protections

22
P A T C H I N G B I N A R I E S

506 Chapter 22

In this chapter, we have no intention of teaching you how to do any-
thing unethical, but we discuss the high-level challenges of modifying a
binary to reflect any changes that you have made within Ghidra. Chapter 14
introduced the setByte API function, and Chapter 21 showed how different
styles of emulation scripts were able to modify the content of a program
loaded into Ghidra. These techniques modify the content that has been
imported into Ghidra and have no effect whatsoever on the original binary
file that Ghidra processed during the import process. To complete the
patching process, you’ll learn how to get Ghidra to write changes back to
a file on disk. We also discuss the challenges that different types of patches
might pose.

Planning Your Patch
The patching process typically involves the following steps:

1.	 Determine the type of patch you intend to make. This will often be
determined by your rationale for patching, as discussed previously.

2.	 Identify the exact program location(s) that needs to be patched. This
typically involves some amount of research and analysis of the program
to be patched.

3.	 Plan the content of your patch. Content changes may require new data,
new machine code, or both. In any case, your changes must be well
thought out to prevent the program from exhibiting any unintended
behavior.

4.	 Use Ghidra to replace existing program content (data or code)
with your replacement content.

5.	 Use Ghidra to verify that your changes appear to be correctly
implemented.

6.	 Use Ghidra to export your changes into a new binary file.

7.	 Verify that the new binary file behaves as intended, repeating from
step 2 as necessary.

In some patching scenarios, many of these steps will be almost trivial;
in others, they will be much more challenging. In the sections that follow,
we review those steps that Ghidra can help you with and discuss situations
that may push you or Ghidra to your limits. We’ll start with step 2 and
review some of the ways that Ghidra helps you locate items of interest in a
patching context.

Finding Things to Change
The exact nature of your patch will dictate what you need to patch. Custom
izing splash screens or strings requires that you locate the original data that
needs changing. Changing the logic of a program requires modifying or
inserting code to change the program’s behavior. In this case, a significant

Patching Binaries 507

amount of reverse engineering may be required just to find any program
locations that need to be modified. Many of Ghidra’s capabilities that facili-
tate these activities have been covered in previous chapters. Let’s review
some of the capabilities useful for patching.

Searching Memory
When your patch involves modifying program data, your primary means of
identifying where to apply your patches will be some form of memory search.
The most general memory search is the CodeBrowser’s SearchMemory menu
option (hotkey S), shown in Figure 22-1 (with Advanced options expanded).
The Search Memory dialog was previously discussed in Chapter 6.

Figure 22-1: The Search Memory dialog

The Search Memory dialog is most useful in a patching context when
you are searching for specific, known data within the binary, such as known
strings or hex sequences. A successful search will reposition all linked dis-
plays to the location of the matching bytes, or in the case of Search All,
open a new dialog containing a list of all addresses at which the matched
content may be found. For very large binaries, it may be useful to limit
the scope of your search to specific regions (Instructions, Defined Data,
Undefined Data, and so on) within the program that are likely to contain
a match by deselecting any uninteresting code unit types.

508 Chapter 22

N O T E 	 While SearchMemory provides the most configurable general-purpose search capa-
bility in Ghidra, it is a search across the raw byte content of the database, and other
search types may be more suited to the type of data you are looking for. For example,
SearchMemory is the wrong choice if you want to search within the body of com-
ments that you have entered into the program. Refer to “Search Program Text” on
page 115 for more information on searching within the disassembly listing itself.

Searching for Direct References
In Chapter 20, we used SearchFor Direct References to scan the program’s
binary content for all occurrences of a specific address. The most common
use for this search type is to locate pointers to interesting data when Ghidra
has failed to create a cross-reference to the data. In a patching context, this
is most often used to fully understand and update all references to a data or
code location to maintain proper relationships between code and data in the
patched binary.

Searching for Instruction Patterns
Ghidra’s SearchFor Instruction Patterns feature finds a specific sequence
of instructions by matching a pattern. When defining an instruction pat-
tern, you need to strike a delicate balance between patterns that are too
specific and patterns that are too general. Let’s look at an example to illus-
trate this idea. Assume we have a listing that includes a cleanup_and_exit
function that exits the program:

int test_even(int v) {
 return (v % 2 == 0);
}
int test_multiple_10(int v) {
 return (v % 10 == 0);
}
int test_lt_100(int v) {
 return v < 100;
}
int test_gte_20(int v) {
 return v >= 20;
}

 void cleanup_and_exit(int rv, char* s) {
 printf("Result: %s\n", s);
 exit(rv);
}
void do_testing() {
 int v;
 srand(time(0));
 v = rand() % 150;
 printf("Testing %d\n", v);

  if (!test_even(v)) {
 cleanup_and_exit(-1, "failed even test");
 }
 if (test_multiple_10(v)) {
 cleanup_and_exit(-2, "failed not multiple of 10 test");

Patching Binaries 509

 }
 if (!test_lt_100(v)) {
 cleanup_and_exit(-3, "failed <100 test");
 }
 if (!test_gte_20(v)) {
 cleanup_and_exit(-4, "failed > 20 test");
 }
 // all tests passed so do interesting work here

  system("/bin/sh");
 cleanup_and_exit(0, "success!");
}
int main() {
 do_testing();
 return 0;
}

The function do_testing conducts a series of tests . If any of the tests
fail, the cleanup_and_exit function  is called and execution ends. If all tests
succeed, some very interesting code  will execute. Our patching challenge
is to determine where we need to patch to ensure that all of the tests pass so
that we can reach the interesting code.

If we load the binary into Ghidra, we can search for all calls to cleanup​
_and_exit to determine what we need to patch in order for all of the tests to
pass regardless of the number of tests. We have several options to consider:

•	 We could just go to that function and patch it to return so that a failed
test doesn’t exit the program but rather continues. This isn’t an optimal
solution because the function is also used for a legitimate exit at the
end of the program after it completes the interesting work.

•	 We could use search functionality or XREFs to cleanup_and_exit. This
would give us all of the calls, but we wish to patch only some of them.

•	 We could identify an instruction pattern that the calls have in com-
mon and use SearchFor Instruction Patterns to find the correct calls
to patch.

To use this search functionality, we need to identify a useful pattern.
Each test we are trying to pass takes the following form in the Listing window:

001008af CALL test_even
001008b4 TEST EAX,EAX
001008b6 JNZ LAB_001008c9
001008b8 LEA RSI,[s_failed_even_test_00100a00]
001008bf MOV EDI,0xffffffff
001008c4 CALL cleanup_and_exit

Let’s try searching for that sequence by selecting the instruction
sequence and SearchFor Instruction Patterns. This automatically popu-
lates the Instruction Pattern Search dialog, as shown in Figure 22-2.

510 Chapter 22

Figure 22-2: Instruction Pattern Search dialog with all fields selected

If we click Search All, we see only one result (the specific location that
we selected when we started the search), as shown in Figure 22-3.

Figure 22-3: Instruction pattern search results from all fields selected

Our issue is that we are including operands that do not remain con-
stant between the test cases. For example, the operand to the first call is the
address of a specific test function. We can deselect individual components
(mnemonics and operands) of any instruction in the pattern to make it
more general, as shown in Figure 22-4. Anything that has been deselected is
treated as a wildcard in subsequent searches.

Patching Binaries 511

Figure 22-4: Instruction Pattern Search dialog with some operands deselected

If we click Search All with operand fields disabled, we see the three
results shown in Figure 22-5.

Figure 22-5: Instruction pattern search results with some operands deselected

The search still fails to identify the call to test_multiple_10, which uses
a JZ rather than a JNZ instruction. Deselecting the mnemonic field for
the JNZ instruction and rerunning the search yields the results shown in
Figure 22-6, which includes the four calls we wish to patch and does not
include the final call to cleanup_and_exit that we do not want to patch.

512 Chapter 22

Figure 22-6: Instruction pattern search results with JNZ and some operands deselected

This search functionality has a number of uses beyond locating candi-
date instruction patterns for patching. It can be used for vulnerability anal-
ysis, finding specific functionality, and other searches to identify instruction
patterns important to reverse engineers.

Finding Specific Behaviors
A program’s behavior is defined by the instructions that it executes combined
with the data on which it executes. When your patching task involves modify-
ing a program’s behavior, locating the exact behavior that you want to modify
is usually much more difficult than locating data that you wish to change.
Because we can never predict the exact instruction sequence that a compiler
might generate for any source code, it is challenging to use Ghidra’s auto-
mated search features to pinpoint an exact location to apply a code patch.
Locating specific behaviors boils down to plain-old analysis of the functions
in the program using techniques covered throughout this book.

Other than a careful analysis of all functions in the binary or a care-
ful traversal of the call tree, beginning with a well-known function such as
main, the two most common techniques for identifying functions of inter-
est are relying on the function’s name (assuming the binary has symbols)
and using cross-references from “interesting” data to backtrack to poten-
tially interesting functions. For example, if we are interested in locating
the authentication-related functions within a binary, we might search for
common strings associated with authentication such as "Please enter your
password:" and "Authentication failed". Strings similar to these often book-
end an authentication process, and locating functions that reference these
strings may significantly reduce our search space for other authentication-
related functions.

Here again, the nature of the data that might lead you to find interest-
ing functions will depend on your particular patching scenario. Regardless
of the approaches you use to locate a function that is a candidate for your

Patching Binaries 513

patch, you should always verify that the function does in fact implement the
behavior you wish to modify. In particular, you should always be wary of the
names that programmers assign to functions, as there is no requirement for
a function’s behavior to match its name.

Applying Your Patch
At long last, your hard work and perseverance have paid off, and you have
located the code or data that you wish to modify. What now? Assuming you
have already developed the replacement content that you intend to patch
into the binary, and know precisely where you want to place it, it’s time to
exercise the Ghidra features that modify the program.

The first thing you need to consider is the size of your new content rela-
tive to the content you are replacing. If the new content’s size is less than
or equal to the original content’s size, you are in good shape because your
patch will fit within the memory footprint of the original content. However,
things get a bit tricky when your patch is larger than the original content,
and we will dedicate some time to this case shortly.

Making Basic Changes
Whether you have a pile of bytes in hand or need some help from an assem-
bler, you’ll eventually need to get your content into Ghidra. For short runs
of bytes, you may find it easier to use Ghidra’s built-in byte editor or assem-
bler. For longer runs, you’ll probably want to automate. The next few sec-
tions describe some of Ghidra’s byte-level editing features.

Byte Viewer

The Ghidra Byte Viewer (WindowBytes), shown in Figure 22-7, provides a
standard hex dump view of the raw byte content at the current listing loca-
tion, synchronized with every other linked window.

� �

Figure 22-7: The Ghidra Byte Viewer

The Byte Viewer can also double as a hex editor by toggling the Edit
Mode tool , and it’s a convenient option when you need to change a few
bytes at a time.

514 Chapter 22

Inconveniently, Ghidra will not allow you to edit any bytes that are part
of an existing instruction. The workaround for this limitation is to clear the
associated instruction in the Listing window (right-click Clear Code Bytes or
press hotkey C). The Byte Viewer Options tool  is used to open the dialog
shown in Figure 22-8, which allows you to customize your Byte Viewer display.

Figure 22-8: Byte Viewer Options dialog

Selecting the Ascii option adds an ASCII dump to the Byte Viewer (see
Figure 22-9), which then doubles as an ASCII editor while in edit mode.

Figure 22-9: Byte Viewer with ASCII dump enabled

Once you have finished entering your new values, you should toggle out
of Edit Mode and return to the Listing window to verify that your changes
are correct.

Patching Binaries 515

Scripting Your Changes

Unless your patch is very short, the most efficient means of modifying the
original bytes in Ghidra is to have a script do it for you. Given a patch in the
form of a byte array, and the start address of the patch, the following func-
tion applies the patch within Ghidra:

public void patchBytes(Address start, byte[] patch) throws Exception {
 Address end = start.add(patch.length);

  clearListing(start, end);
 setBytes(start, patch);
}

You may include this function in a script that creates the array of patch
bytes from a source of your choosing (for example, by declaring an initial-
ized array or by loading the contents of a file). The clearListing call  is
necessary as Ghidra will not allow you to modify bytes that are part of an
existing instruction or data item. Once the script completes, you will need
to manually format the patched bytes as either code or data and verify the
correctness of your patch.

Using the Assembler

When you want to patch the code in a binary, you will most likely find your-
self thinking in terms of replacing one assembly language instruction with
another (for example, replacing CALL _exit with NOP), which is not neces-
sarily incorrect but tends to gloss over some of the complexities associated
with patching code. When the time comes to actually apply your patch to
the program, you can’t paste in your replacement assembly language state-
ments; instead, you must paste in the corresponding machine code bytes,
which means you’ll probably want to use an assembler to generate machine
code versions of all your replacement instructions.

One approach is to use an external editor to write your replacement
assembly statements, assemble them with an external assembler (for example,
nasm or as), extract the raw machine code,1 and finally patch them into the
program, perhaps using a script as discussed earlier. An alternative approach
is to use Ghidra’s built-in assembler capability, which is accessed by right-
clicking any instruction and selecting the Patch Instruction menu option.

Just as SLEIGH specifications tell Ghidra how to translate machine
code into assembly language, they also enable Ghidra to perform assembly-
to-machine-code translations—that is, act like an assembler. The first time
you choose the Patch Instruction option for a given architecture, Ghidra
will build an assembler based on that architecture’s SLEIGH specification.
You will initially be presented with a message similar to the one shown in
Figure 22-10.

1. When using nasm, the –f bin option instructs nasm to emit raw machine code with no file
headers. When using as, a second utility such as objcopy is required to extract the raw bytes
from the resulting object file.

516 Chapter 22

Figure 22-10: The Assembler Rating dialog

The Ghidra developers have run tests on the accuracy of Ghidra-generated
assemblers. If a processor’s assembler has been tested, it is assigned one of
the following ratings (in decreasing order of accuracy): platinum, gold, sil-
ver, bronze, and poor. Any untested assemblers are marked unrated. More
information about Ghidra assembler ratings, along with the current rating
for all available assemblers, may be found in Ghidra Help.

Once you dismiss the Assembler Rating dialog, Ghidra builds the
required assembler capability from the current processor’s SLEIGH speci-
fication. While you wait for the assembler to be built, Ghidra displays the
informative wait dialog similar to the one shown in Figure 22-11.

Figure 22-11: The Assemble wait dialog

Once your assembler has been built, Ghidra replaces the selected instruc-
tion in the Listing window with two text input boxes (see Figure 22-12) that
allow you to edit the instruction’s mnemonic and operands. The esc key dis-
cards your changes before they are assembled, while the enter key assembles
your new instruction and replaces the old instruction’s machine code bytes
with those of the new instruction.

Patching Binaries 517

Figure 22-12: Assembling a new instruction

Because they derive from the same specification as the corresponding
disassembler, Ghidra’s assemblers recognize the same assembly syntax used
in the Ghidra Listing window. Ghidra’s assemblers are case sensitive and
provide auto-completion options as you enter your new instructions. After
you enter an instruction, Ghidra returns you to the normal Listing window
view, and you can reselect Patch Instruction if there are additional instruc-
tions you want to modify. For short patches, Ghidra’s assembler offers a
convenient way to simultaneously assemble your instructions and modify
the program.

Instruction Replacement Pitfalls

While Ghidra’s assembler makes quick work of modifying a single instruc-
tion, the new replacement instruction can be shorter, longer, or the same
size as the old instruction. The third case, in which the replacement and
original instructions are the same size, is not interesting. (The first two
problems can arise only on architectures without a fixed instruction size,
such as x86.)

Consider the first case, in which your replacement instruction is shorter
than the original instruction, as reflected in the following listing:

;BEFORE:
0804851b 83 45 f4 01 ADD dword ptr [EBP + local_10],0x1
0804851f 83 45 f0 01 ADD dword ptr [EBP + local_14],0x1

;AFTER
0804851b 66 90 NOPw
0804851d f4 ?? F4h
0804851e 01 ?? 01h
0804851f 83 45 f0 01 ADD dword ptr [EBP + local_14],0x1

;FIXED:
0804851b 66 90 NOP
0804851d 90 NOP
0804851e 90 NOP
0804851f 83 45 f0 01 ADD dword ptr [EBP + local_14],0x1

518 Chapter 22

In this case, a 4-byte ADD instruction  is being replaced by a 2-byte
NOP . Ghidra’s assembler has done its best to fill the available space by
inserting an x86 prefix byte (66)  ahead of the x86 opcode for NOP (90).
Unfortunately, the replacement instruction is still too short to account for
the two remaining bytes  of the original instruction, one of which trans-
lates to a HLT (use the hotkey D to disassemble it), and the other that Ghidra
can’t disassemble, indicating that it does not represent a valid instruction. If
you were to patch the original binary in this way and run it, it would almost
certainly crash upon reaching this location.

Ghidra provides no clues—other than the ?? characters that appear
in the listing—that a problem may exist, as Ghidra does not understand
your motivation for making this change and the “correct” solution depends
on your particular use case. If you are modifying instructions within the
listing without the intention to export, you could use Ghidra’s fallthrough
override option from the right-click context menu to bypass the unneeded
bytes.2 Alternatively, you can ask Ghidra to disassemble the undefined bytes,
but it’s highly unlikely that they will disassemble into an instruction that
you will find useful. The most common solution in this situation is to replace
all excess bytes from the original instruction with NOPs  to pad to the start
of the next instruction.

When your replacement instruction is longer than the original instruc-
tion, it introduces a new set of challenges, as shown here:

;BEFORE:
08048502 6a 01 PUSH 0x1
08048504 ff 75 f0 PUSH dword ptr [EBP + local_14]
08048507 ff 75 08 PUSH dword ptr [EBP + param_1]
0804850a e8 51 fe ff ff CALL read

;AFTER:
08048502 68 00 01 00 00 PUSH 0x100
08048507 ff 75 08 PUSH dword ptr [EBP + param_1]
0804850a e8 51 fe ff ff CALL read

In this case, the goal of the patch is to read 256 (0x100) bytes rather
than 1 byte. The original, 2-byte PUSH instruction  that places the third
argument to read (the length argument) onto the stack is replaced by a
5-byte PUSH  to push a larger constant. The additional bytes in the replace-
ment instruction completely overwrite the instruction that was responsible
for the second argument to read (the read buffer) .

The resulting code not only fails to provide read with enough arguments,
but also passes an integer where a pointer is expected. As with the previous
example, this will almost certainly cause the patched program to crash.
Potential solutions to this particular patching problem are nontrivial and
are discussed in the next section.

2. Fall-through also has an additional option that allows you to bypass portions of a disassem-
bly by identifying start and end addresses to bypass.

Patching Binaries 519

Making Nontrivial Changes
The moment the size of your patch grows larger than the instruction(s)
or data that you are replacing, your life gets more complicated. In most
cases, this doesn’t mean that your patch will be impossible to implement,
but considerably more thought and effort will be needed to implement
the patch properly. In this section, we discuss several approaches for han-
dling this “patch is too large” problem, based on whether the patch con-
tains code or data.

Oversized Code Patches

When your patch is too big to fit on top of the instructions you want to
modify, you have no choice but to locate or create an unused region of suf-
ficient size, patch your code into this empty region, and then insert a jump
(known as a hook) at the original patch location to transfer control to your
actual patch. In most cases, you will also need to append a jump to your
replacement code to transfer control back to an appropriate location in the
hooked function. Figure 22-13 shows the notional flow of a patched func-
tion with a jump hook installed.

Function Jump hook

Patch.
.
.

.

.

.

.

.

.

. Patch return

Figure 22-13: Function with installed patch

The available unused space for your oversized code patch must

•	 Be at least as large as your patch

•	 Reside at an address that will be executable at runtime

•	 Be initialized from file content; otherwise, your patch won’t get loaded
at runtime

The easiest place to begin your search for large, unused, executable
blocks of bytes is with any code caves that may be present in the binary. A
code cave exists when an executable section in a binary, such as the .text
section, is padded to adhere to section alignment requirements mandated
by the executable file’s format. Code caves are very common in Windows PE
binaries, as they frequently require every section of the binary to be a mul-
tiple of 512 bytes in size.

The first place to look for a code cave is usually the end of the .text
section. You can easily navigate to the end of the .text section (or any
other section) by double-clicking the section name in the CodeBrowser’s
Program Trees window and then scrolling to the end of the Listing window.

520 Chapter 22

In our sample PE binary, the Listing window shows the following at the
end of the .text section:

140012df8 ?? 00h
140012df9 ?? 00h
140012dfa ?? 00h
140012dfb ?? 00h
140012dfc ?? 00h
140012dfd ?? 00h
140012dfe ?? 00h
140012dff ?? 00h

The listing tells us the following:

•	 The bytes are unclassified by Ghidra (??).

•	 The bytes are initialized to 00h.

•	 The .text section ends at address 140012dff, which satisfies the file align-
ment requirement that the section is a multiple of 512 bytes in size
(140012e00 is a multiple of 0x200).

Navigating to the previous instruction by scrolling up (or choosing the
I tool in the CodeBrowser with search direction set to Up), we arrive at the
following:

140012cbd POP RBP
140012cbe RET
140012cbf ?? CCh
140012cc0 ?? 00h

The RET  is the last meaningful instruction in this particular binary,
and we can now compute the size of this binary’s code cave as 0x140012e00
- 0x140012cbf = 0x141 (or 321 bytes). This means that we can easily patch as
many as 321 bytes of new code into this binary. Assuming that we patched
our new code in at address 0x140012cbf, we would need to patch a jump to
0x140012cbf somewhere in the binary’s existing code to ensure that execu-
tion flow eventually reaches our patch.

When a code cave can’t be found, or isn’t large enough to hold your
patch, you will need to get a little creative in order to find enough space to
fit your patch. Depending on the compiler options used to build the binary,
you may be able to spread your patch across space gathered from inter-
function alignment gaps. Inter-function alignment gaps exist when compilers
choose to align the start of every function to an address that is a multiple
of 2 (often 16). When function alignment is being forced, there will be an
average of align / 2 bytes and as many as align – 1 bytes of padding inserted
between each function in the binary. The following listing shows an opti-
mal (from a patching perspective) alignment gap (align = 16) between two
adjacent functions:

1400010a0 RET
 1400010a1 ?? CCh

Patching Binaries 521

1400010a2 ?? CCh
1400010a3 ?? CCh
1400010a4 ?? CCh
1400010a5 ?? CCh
1400010a6 ?? CCh
1400010a7 ?? CCh
1400010a8 ?? CCh
1400010a9 ?? CCh
1400010aa ?? CCh
1400010ab ?? CCh
1400010ac ?? CCh
1400010ad ?? CCh
1400010ae ?? CCh

 1400010af ?? CCh
 **
 * FUNCTION *
 **

All of the bytes from 1400010a1  through 1400010af  may be safely
overwritten with patch code.

Additional methods exist for squeezing patch code into a binary—
some involving expanding existing program sections or injecting entirely
new ones. Any technique that manipulates sections in such a manner also
requires you to update the binary’s section headers to make sure they remain
consistent with any modifications that have been made. Accordingly, these
techniques are very file-format specific and require a detailed understand-
ing of file header data structures.

Oversized Data Patches

Patching data is easier than patching code in some respects, and more diffi-
cult in others. For structured data types, your primary concerns are correct
size and byte ordering of each member of the structure, and since the size
of a structure is determined at compile time, you don’t need to worry about
oversized replacement structures. When patching string data, it is recom-
mended that any replacement data fit entirely within the footprint of the
original string. If your new string is larger than the original string, you may
be fortunate to find a few bytes of padding between the end of the string
and the next data item, but you must be careful not to corrupt any data that
the program depends upon. If your data simply does not fit into the mem-
ory footprint of the original data, you will be forced to find a new location
for it, but moving data properly can be difficult.

All global data items are referred to by their offsets from the program’s
code or data sections. To relocate a data item, in addition to finding suf-
ficient unused space, you’ll need to locate every reference to the original
data item and patch it to refer to the new data item. Ghidra cross-references
go a long way toward identifying every reference to a global, but will fail to
identify derived pointers (pointers resulting from pointer arithmetic).

Once all of your patches have been entered in Ghidra and you’re happy
with the resulting program listing, you’ll want to push your changes into
the original binary to verify that your patches behave as expected.

522 Chapter 22

Exporting Files
To confirm that any of your changes will have the desired effect on the
binary’s behavior, you’ll need to update the original binary to reflect your
changes. In this section, we discuss some of Ghidra’s export features as they
relate to patching.

Ghidra’s FileExport Program menu option offers the capability to
export a program’s information in any of several formats. The resulting
Export dialog is shown in Figure 22-14.

Figure 22-14: The Ghidra Export dialog

The Export dialog is also accessible from the Project Manager by right-
clicking the file you wish to export and selecting Export from the context
menu. In the dialog, you are asked to specify the export format and the
output file location, and to indicate whether you wish to limit the scope of
your export to a range you have selected in the CodeBrowser. Some export
formats offer additional options for more fine-grained control over the
export process.

Ghidra Export Formats
Ghidra supports the following export formats, though only one (binary) is
particularly useful for binary patching:

Ascii  The Ascii export format can be used to save a textual represen-
tation of the program, similar to what is displayed in the Listing win-
dow, with options to choose which fields to include in the output file.

Binary  The Binary export format, which produces a binary file,
is the most useful for patching applications and is discussed in its
own section.

C/C++  The C/C++ export format is used to save the Decompiler-
generated source representation of the program along with declara-
tions for all types known to the Data Type Manager. This option is also
available from the Decompiler window.

Ghidra Zip File  A Ghidra zip file is a serialized Java object representa-
tion of your program suitable for import into other Ghidra instances.

Patching Binaries 523

HTML  The HTML export format generates an HTML representation
of the program listing. Options similar to those available in the Ascii
exporter allow you to choose which fields to include in the output file.
Labels and cross-references are represented as hyperlinks to provide a
basic navigational capability throughout the generated output.

Intel Hex  The Intel Hex format defines an ASCII representation for
binary data, commonly used for programming EEPROM.

XML  The XML exporter outputs the contents of the program in a
structured XML format, with options to choose which program con-
structs should be included in the generated file. This functionality is
also available for individual functions in the Decompiler window to
facilitate debugging function decompilation. Although Ghidra includes
a corresponding XML loader, this exporter includes the following
warning: “Warning: XML is lossy and intended only for transferring
data to external tools. GZF is the recommended format for saving and
sharing program data.”

The Binary Export Format
Ghidra’s Binary export is used to write a program’s underlying binary con-
tent to a file. All of the program’s initialized memory blocks (see Window​
Memory Map) are concatenated to form the output file. Whether the
output file is identical to the original file that was imported depends on
the loader module used to import the file. The Raw Binary loader is guar-
anteed to re-create the original input file because it loads every byte of
the original file into a single memory block. Other loaders may or may not
load every file byte (for example, the PE loader does, while the ELF loader
does not).

When it comes time to apply any changes you have made with Ghidra,
you need to ensure that the file you generate contains your patches and that
it will execute. If you are patching a PE file, a Binary export will generate a
patched version of the original binary. Similarly, if you imported your pro-
gram using the Raw Binary loader, a Binary export will generate a patched
version of the original binary. Of course, as discussed in Chapter 17, when
using the Raw Binary loader, you may need to perform most of the memory
layout for the program manually, so there is a trade-off. Fortunately, it’s
possible to script up a solution that works with any loader.

Script-Assisted Export
Rather than performing an exhaustive test of every Ghidra loader to under-
stand whether the memory blocks created by the loader span the entire
range of file bytes, we can create a Ghidra script that will save a patched ver-
sion of our program for us. This script provides a loader-agnostic capability
for generating patched files with Ghidra. It will always process the entire
range of original file bytes regardless of the current memory map layout
known to Ghidra.

524 Chapter 22

public void run() throws Exception {
 Memory mem = currentProgram.getMemory();

  java.util.List<FileBytes> fbytes = mem.getAllFileBytes();
 if (fbytes.size() != 1) {
 return;
 }

  FileBytes fb = fbytes.get(0);
  File of = askFile("Choose output file", "Save");

 FileOutputStream fos = new FileOutputStream(of, false);
 writePatchFile(fb, fos);
 fos.close();
}

The script begins by obtaining the program’s list of FileBytes . A
FileBytes object encapsulates all of the bytes from the imported program file
and tracks both the original and modified value of each byte in the file. As
Ghidra allows you to import several files into a single program, this script
processes only the bytes from the first file you imported into the program
(first range of file bytes) .

After prompting for an output file , the FileBytes object and open
OutputStream are passed to our writePatchFile function to handle the finer
details of generating the patched executable.

To present a mapped memory view of a program, Ghidra loaders may
process a program’s relocation table entries in a manner similar to a run-
time loader. The result of this processing is that program locations marked
for fixup (locations that have relocation table entries) are modified by
Ghidra from their original file values to proper relocated values. When we
generate the patched version of the binary, we do not want to include any
bytes that Ghidra has modified for relocation purposes.

The writePatchFile function, shown next, begins by generating the set of
addresses that are patched at runtime (and by Ghidra) in accordance with
the program’s relocation table:

public void writePatchFile(FileBytes fb, OutputStream os) throws Exception {
 Memory mem = currentProgram.getMemory();
 Iterator<Relocation> relocs;

  relocs = currentProgram.getRelocationTable().getRelocations();
 HashSet<Long> exclusions = new HashSet<Long>();
 while (relocs.hasNext()) {
 Relocation r = relocs.next();

  AddressSourceInfo info = mem.getAddressSourceInfo(r.getAddress());
 for (long offset = 0; offset < r.getBytes().length; offset++) {

  exclusions.add(info.getFileOffset() + offset);
 }
 }

  saveBytes(fb, os, exclusions);
}

After obtaining an iterator over the program’s relocation table , the
AddressSourceInfo for each relocation entry is obtained .

Patching Binaries 525

An AddressSourceInfo object provides a mapping of a program address
to the disk file and the offset into that file from which the corresponding
program byte was loaded. The file offset of each relocation byte is added
to a set of offsets  to be ignored when generating the final patched file.
The function concludes by calling the saveBytes function  to write the
final patched version of the current program file. The saveBytes function
is shown in the following listing:

public void saveBytes(FileBytes fb, OutputStream os, Set<Long> exclusions)
 throws Exception {
 long begin = fb.getFileOffset();
 long end = begin + fb.getSize();

  for (long offset = begin; offset < end; offset++) {
  int orig = fb.getOriginalByte(offset) & 0xff;
  int mod = fb.getModifiedByte(offset) & 0xff;

 if (!exclusions.contains(offset) && orig != mod) {
  os.write(mod);

 }
 else {

  os.write(orig);
 }
 }
}

The function iterates over the entire range of file bytes  to determine
whether to save the original or modified byte to the output file.

At each file offset, methods of the FileBytes class are used to obtain the
original byte value , loaded from the imported file, and the current byte
value , which may have been modified by Ghidra or the Ghidra user. If
the original value differs from the current value and the byte is not asso-
ciated with a relocation entry, the modified byte is written to the output
file ; otherwise, the original byte is written to the output file .

To wrap up this section, let’s look at an example of patching a binary
and confirming that the patch runs as we expect it to.

Example: Patching a Binary
Let’s look at an example that demonstrates patching in context. Assume
that you have a piece of malware that checks for a debugger and, if one is
present, exits without allowing you to examine its behavior. The following
source code outlines that functionality in a trivial program:

int is_debugger_present() {
 return ptrace(PTRACE_TRACEME, 0, 0, 0) == -1;
}
void do_work() {

  if (is_debugger_present()) {
 printf("No debugging allowed - exiting!\n\n");
 exit(-1);
 }

526 Chapter 22

 // do interesting things here
 printf("Confirmed that there is no debugger, so do\n"
 "interesting things here that we don't want\n"
 "analysts to see!\n\n");
}
int main() {
 do_work();
 return 0;
}

The code checks for a debugger  and exits if it finds one. Otherwise,
it goes about its nefarious business. The following shows the output of the
program running alone (without a debugger):

./debug_check_x64
 Confirmed that there is no debugger, so do
 interesting things here that we don't want
 analysts to see!

When the program runs under a debugger, we see a different response:

gdb ./debug_check_x64
 Reading symbols from ./debug_check_x64...(no debugging symbols found)...done.
 (gdb) run
 Starting program: /ghidrabook/CH22/debug_check_x64
 No debugging allowed - exiting!
 [Inferior 1 (process 434) exited with code 0377]
 (gdb)

If we load the binary into Ghidra, we see the following in the Listing
window:

 undefined do_work()
 undefined AL:1 <RETURN>
001006f8 PUSH RBP
001006f9 MOV RBP,RSP
001006fc MOV EAX,0x0
00100701 CALL is_debugger_present
00100706 TEST EAX,EAX
00100708 JZ LAB_00100720
0010070a LEA RDI,[s_No_debugging_allowed_-_exiting!_001007d8]
00100711 CALL puts
00100716 MOV EDI,0xffffffff
0010071b CALL exit
 -- Flow Override: CALL_RETURN (CALL_TERMINATOR)
 LAB_00100720
00100720 LEA RDI,[s_Confirmed_that_there_is_no_debug_001008
00100727 CALL puts
0010072c NOP
0010072d POP RBP
0010072e RET

Patching Binaries 527

The Decompiler window provides the following corresponding code:

void do_work(void)
{
 int iVar1;

 iVar1 = is_debugger_present();
 if (iVar1 != 0) {
 puts("No debugging allowed - exiting!\n");
 /* WARNING: Subroutine does not return */
 exit(-1);
 }
 puts("Confirmed that there is no debugger, so do\n"
 "interesting things here that we don't want\n"
 "analysts to see!\n"
);
 return;
}

To patch this binary to bypass the check, you could NOP the call to the
is_debugger_present function, change the test condition, or change the con-
tents of the is_debugger_present function. If you use the Patch Instruction
option from the right-click context menu, it is easy to replace the JZ with a
JNZ (effectively flipping the condition to run only if it is being debugged),
as shown in Figure 22-15.

Figure 22-15: Patch Instruction option after replacing JZ with JNZ

This would result in the following code in the Decompiler window:

void do_work(void)
{
 int iVar1;

 iVar1 = is_debugger_present();
 if (iVar1 == 0) {
 puts("No debugging allowed - exiting!\n");
 /* WARNING: Subroutine does not return */

528 Chapter 22

 exit(-1);
 }
 puts("Confirmed that there is no debugger, so do\n"
 "interesting things here that we don't want\n"
 "analysts to see!\n"
);
 return;
}

If we then export the file as a binary using our export script and run it
again, we see the following two listings, which demonstrate the behavior we
were hoping to accomplish with our patch:

./debug_check_x64.patched
 No debugging allowed - exiting!

gdb ./debug_check_x64.patched
 Reading symbols from ./debug_check_x64.patched...(no debugging symbols found)...done.
 (gdb) run
 Starting program: /ghidrabook/CH22/debug_check_x64.patched
 Confirmed that there is no debugger, so do
 interesting things here that we don't want
 analysts to see!

 [Inferior 1 (process 445) exited normally]
 (gdb)

While there are many external tools (for example, VBinDiff) available to
confirm that only 1 byte was changed within the file for this example, you
can also use Ghidra's internal tools to reach the same conclusion. The next
chapter focuses on methods to accomplish this goal.

Summary
Regardless of your particular motivation for patching a binary, your patch
will require careful planning and deployment. Ghidra provides everything
you need to plan your patch; to draft your patch using hex editing, Ghidra’s
built-in assembler, or scripting; to view the effects of each change; and to
possibly revert changes using Undo before generating a patch version of
your original binary. The next chapter demonstrates how you can use Ghidra
to compare the unpatched and patched versions of your binaries as well as
discusses Ghidra’s capabilities for more advanced binary differencing and
version tracking.

23
B I N A R Y D I F F E R E N C I N G A N D

V E R S I O N T R A C K I N G

We have spent the previous chapters intro-
ducing you to ways that Ghidra can assist

your reverse engineering analysis efforts.
Throughout this journey, we have introduced

many ways to transform and annotate your work to
document and facilitate understanding of the binary.

In this chapter, we introduce binary differencing and Ghidra’s Version
Tracking tool to help you identify similarities and differences between files
and functions and facilitate the application of previous analysis results to
new files. We also discuss file differences from three perspectives: binary
differencing, function comparison, and version tracking.

Binary Differencing
In the preceding chapter, we patched a binary to modify the flow of a func-
tion to bypass a call to exit by changing a single byte in a single instruction:
JZ (74) to JNZ (75). To confirm the change and document exactly what was

530 Chapter 23

changed, we could use an external tool such as VBinDiff or WinDiff to com-
pare the two files at the byte level. However, to compare files at the instruc-
tion level, we need a much more sophisticated tool: the Program Diff tool
available in Ghidra’s Listing window. Once the differences have been com-
puted, they can be viewed using custom displays designed to emphasize the
differences, facilitate understanding of each change, and provide opportu-
nities to take action based on the type of difference.

To compare two files that have been imported to a project and are in the
same state (for example, both analyzed or neither analyzed), open one of the
files in the CodeBrowser and then choose ToolsProgram Differences and
select another file within the current project for comparison. Alternatively,
you can use the Listing window tool icon shown in Figure 23-1. This icon
serves as a toggle to open or close the Program Diff tool.

Diff View Toggle used to open and close Program Diff tool

Figure 23-1: CodeBrowser Diff View toggle icon

For this example, we will start by opening the unpatched version of the
file, selecting the Diff View icon, and choosing the patched version of the file.
This opens the Determine Program Differences dialog shown in Figure 23-2.

Figure 23-2: The Diff tool’s Determine Program Differences dialog

While all available differences fields will be selected by default, in this
case Bytes is the appropriate choice to confirm that the patch worked cor-
rectly, so it is the only difference option selected. When you click OK, you

Binary Differencing and Version Tracking 531

can see the two binaries in the Listing window, which has been split into
side-by-side listings, with one file displayed in each. By default, the listings
are synchronized, so navigating in one also navigates the other. There are
several ways to navigate the detected differences within this tool, which we
present later in the chapter.

When you open two files for diffing, Ghidra initially positions the Listing
view at the beginning of each file. The down arrow tool on the Listing win-
dow toolbar (or ctrl-alt-N) may be used to navigate to the first difference
between the two files. To call your attention to the differing code, changes
are indicated with color-highlighted disassembly lines in each file’s Listing
window as well as in the Decompiler window if the difference is within a
function. (The Decompiler window is synchronized with the first of the two
files.) Navigating to the first detected difference reveals the single byte that
is JZ (74) in the original listing and JNZ (75) in the second listing.

To view more details, choose WindowDiffDiff Details. You will
see the following report in the Diff Details window at the bottom of the
CodeBrowser window:

Diff address range 1 of 1.
Difference details for address range: [00100708 - 00100709]

Byte Diffs :
 Address Program1 Program2
 00100708 0x74 0x75

Code Unit Diffs :
 Program1 CH23:/DiffDemo/debug_check_x64 :
 00100708 - 00100709 JZ 0x00100720
 Instruction Prototype hash = 16af243b
 Program2 CH23:/DiffDemo/debug_check_x64.patched :
 00100708 - 00100709 JNZ 0x00100720
 Instruction Prototype hash = 176d4e0c

The first line indicates the number of address ranges that contain dif-
ferences. In this case, only one range in the file contains differences, so you
can be confident that the two programs differ by only a single byte. This
simple example barely scratches the surface of the capabilities associated
with Ghidra’s Program Diff tool, so let’s take some time to investigate other
capabilities that this tool provides.

Program Diff Tool
The nine options at the top of Figure 23-2 form the basis of your compari-
son, and you can select any or all of them. By default, the Program Diff
tool operates on the entire program for each file. If you wish to limit your
comparison to a specific address range, you must highlight the range in the
first file before opening the tool. Once you have made your selections and
clicked OK, the split Listing window you see is called a Program Diff.

532 Chapter 23

Program Diff

Program Diff View lets you view both files simultaneously. Basically, the
Listing window now has two listings, one on the left side and one on the
right. When you open the Diff Details window, it opens at the bottom of
the CodeBrowser window. Within the Diff Details window, the left file is
considered Program1 (the file you opened originally), while the right file
is considered Program2 (the file you chose to compare to Program1). The
Decompiler window reflects the contents of Program1. When you are com-
paring two files, Ghidra can compute the differences in either direction.
It is up to you to remember which file is which as you use the Program
Diff tool.

A common workflow is to begin analyzing a file and then realize that
some or all of the code looks familiar, which may prompt you to open a
file you have previously analyzed in order to begin diffing. Fortunately,
Program Diff maintains alignment between the two files by inserting blank
lines when necessary. Differences are highlighted, and the Program Diff
toolbar provides you navigational capability and the means to determine
how you wish to handle the differences.

Program Diff Toolbar

The Program Diff toolbar extends the Listing window toolbar options by
adding the tools shown in Figure 23-3.

Apply Differences Applies the selected settings and remains in the same location

Apply Differences
and Move

Applies the selected settings and moves you to the next
highlighted difference

Ignore Differences
and Move

Ignores the selected settings and moves you to the next
highlighted difference

Show Details Opens the Diff Details window and provides information
about the selected difference

Go to Next Moves you to the next highlighted difference

Go to Previous Moves you to the previous highlighted difference

Display Diff Apply
settings

Opens the Diff Apply Settings window and allows you to modify
the settings.

Determine Program
Differences

Reopens the Determine Program Differences dialog to allow you
to change selection fields and the range

Figure 23-3: Program Diff toolbar options

Binary Differencing and Version Tracking 533

Diff Apply Settings

The Diff Apply Settings define the actions that you would like to take when
there is a difference between the two files. Choosing the Display Diff Apply
Settings option displays the window shown in Figure 23-4.

Figure 23-4: Diff Apply Settings window

Each setting specifies a default action you would like to apply from the
second program to the first program you opened and how you would like
that option applied. The following four options are available from each
drop-down:

Ignore  Do not change the first program (available for all cases).

Replace  Change the first program’s content to match the second pro-
gram’s content (available for all cases).

Merge  Add the difference from the second program to the first pro-
gram. If applied to a label, this will not change which label is set to pri-
mary (available for only Comments and Labels).

Merge & Set Primary  The action is the same as Merge, but the pri-
mary label is set to the second program label if that is possible (avail-
able for only Labels).

At the top of Figure 23-4, there are two toolbar icons. The Save as Default
icon saves the current Diff Apply Settings. The arrow opens a menu that
allows you to make changes to all of the settings at one time by choosing
one of the options shown in Figure 23-5.

Figure 23-5: Diff Apply Settings pull-down menu

534 Chapter 23

If you select the Set Merge option and Merge is not a valid choice for
a particular setting, it will be changed to Set Replace. For labels, it will be
changed to Merge & Set Primary.

Choose Apply Differences from the toolbar if you wish to apply all of
the default changes. When you have finished with the Program Diff tool,
toggle the Diff View icon in the Listing window and you will see the dialog
displayed in Figure 23-6.

Figure 23-6: Close Diff Session confirmation dialog

Confirming that you wish to close the current diff session will close the
display of the second file and return you to a normal Listing window with
the first file (and all of the changes that you have selected from the diff
analysis) displayed.

The Program Diff tool was designed for two primary use cases: first,
to compare files analyzed by two different users who don’t share a Ghidra
Server instance; second, to compare code generated from different versions
of the same source code base (for example, unpatched and patched ver-
sions of a shared library). In the following example, we walk through the
process of using this tool to reconcile two copies of the same binary, each of
which was analyzed independently.

Example: Merging Two Analyzed Files
Assume that you are analyzing a binary that contains a crypto routine. A
colleague mentions that she is midway through analyzing a binary that also
appears to have a crypto routine and is likely from the same malware family.
She agrees to provide you with her project so that you can compare the two
files. When you look at the files in Diff View, you immediately notice that the
two of you appear to be analyzing the same binary.

The challenge is that you have each made progress and have modi-
fied the contents of the file based on your individual analysis. You need to
merge the two analyzed files so that you can each benefit from the other’s
analysis. You have agreed to take on this responsibility and have opened
your binary in the CodeBrowser and initiated a Program Diff session, add-
ing your colleague’s binary for comparison.

Choosing the down arrow on the Program Diff toolbar takes you to
the first difference in this file. At this point, you can open the Diff Details
window by choosing the option from the Program Diff toolbar (or hotkey

Binary Differencing and Version Tracking 535

F5). This provides you with the following listing (broken into two sections
to facilitate discussion). In the first section at the top of the Diff Details,
you see the following:

Diff address range 1 of 4. u
Difference details for address: 0010075a v

Function Diffs : w
 Program1 CH23:/Crypto/diff_sample1 :
 Signature: void encrypt_rot13(char * inbuffer, char * outbuffer) x
 Thunk? : no
 Stack Frame:
 Parameters: y
 DataType Storage FirstUse Name Size Source
 /char * RDI:8 0x0 inbuffer 8 USER_DEFINED
 /char * RSI:8 0x0 outbuffer 8 USER_DEFINED
 Local Variables: z
 DataType Storage FirstUse Name Size Source
 /int EAX:4 0xc0 length 4 USER_DEFINED
 /int Stack[-0x1c]:4 0x0 idx 4 USER_DEFINED
 /char Stack[-0x1d]:1 0x0 curr_char 1 USER_DEFINED
 Program2 CH23:/Crypto/diff_sample1a : {
 Signature: void encrypt(char * param_1, long param_2)
 Thunk? : no
 Stack Frame:
 Parameters:
 DataType Storage FirstUse Name Size Source
 /char * RDI:8 0x0 param_1 8 DEFAULT
 /long RSI:8 0x0 param_2 8 DEFAULT
 Local Variables:
 DataType Storage FirstUse Name Size Source
 /undefined4 Stack[-0x1c]:4 0x0 local_1c 4 DEFAULT
 /undefined1 Stack[-0x1d]:1 0x0 local_1d 1 DEFAULT

The first of four identified difference address ranges  in this file is
being displayed and is associated with the current address, 0010075a . The
listing begins by detailing a difference in the function headers of the two
binaries . For your binary, you have provided a meaningful name for the
function and the parameters in the function signature . Further, each
parameter has an appropriately defined type . Likewise, the local vari-
ables have been given meaningful names and types . In the second pro-
gram , the analyst did not make any changes to the default Ghidra header
for the corresponding function.

You want to retain your version of the changes for the function defini-
tion and local variables. You could use the toolbar icon to reject the change,
but this would reject all of the differences associated with this address. Since
you have not yet reviewed all of the differences, just scroll down to the next
difference in the Diff Details window.

The next section of the differences associated with the first address
range contains the label and comment differences.

536 Chapter 23

 Label Diffs :
 Program1 CH23:/Crypto/diff_sample1 at 0010075a :
 0010075a is an External Entry Point.
 Name Type Primary Source Namespace

  encrypt_rot13 Function yes USER_DEFINED Global

 Program2 CH23:/Crypto/diff_sample1a at 0010075a :
 0010075a is an External Entry Point.
 Name Type Primary Source Namespace

  encrypt Function yes USER_DEFINED Global

 Plate-Comment Diffs :
  Program1 CH23:/Crypto/diff_sample1 at 0010075a :

 **
 * FUNCTION *
 * This is a crypto function originally named cryptor. Renamed *
 * to use our standard format encrypt_rot13. Changed the *
 * function parameters to char *. Added meaningful variable *
 * names. Function first seen in fileC13d by Ken H *
 **
 Program2 CH23:/Crypto/diff_sample1a at 0010075a :
 No Plate-Comment.

 EOL-Comment Diffs :
 Program1 CH23:/Crypto/diff_sample1 at 0010075a :
 No EOL-Comment.

  Program2 CH23:/Crypto/diff_sample1a at 0010075a :
 This looks like an encryption routine. TODO: Analyze to get more information.

Within the label differences , the only difference is the name of the
function v, which has already been discussed. In the Plate-Comment sec-
tion , your file has a detailed comment , but the other file has no plate
comments. In the EOL-Comment section , there is a brief comment by the
other analyst  but none in your file. When you examine the comment, you
see that it is a TODO action item that you have already done in your file.

After evaluating all of the differences between the two files, your deci-
sion is to retain your content and not accept any new content from the other
binary. You accomplish this by choosing the Ignore Differences and Move
icon. This takes you to the next difference. Since you already have the Diff
Details window open, its contents are updated as soon as you navigate, and
you see the following:

Diff address range 1 of 3. u
Difference details for address range: [0010081a - 0010081e]

Reference Diffs :
 Program1 CH23:/Crypto/diff_sample1 at 0010081a :
 Reference Type: WRITE From: 0010081a Mnemonic To: register:
 RAX USER_DEFINED Primary

 Program2 CH23:/Crypto/diff_sample1a at 0010081a :
 No unmatched references.

Binary Differencing and Version Tracking 537

You have decreased the number of ranges containing differences by
rejecting the previous difference . Once again, your file has more infor-
mation than the second file. This time you will navigate to the next differ-
ence by clicking the down arrow. This takes you to the following:

Diff address range 2 of 3. u
Difference details for address: 00100830

Function Diffs :
 Program1 CH23:/Crypto/diff_sample1 :
 Signature: undefined display_message()
 Thunk? : no
 Calling Convention: unknown
 Return Value :
 DataType Storage FirstUse Name Size Source
 /undefined AL:1 0x0 <RETURN> 1 IMPORTED
 Parameters:
 No parameters.
 Program2 CH23:/Crypto/diff_sample1a :
 Signature: void display_message(char * message) v
 Thunk? : no
 Calling Convention: __stdcall
 Return Value :
 DataType Storage FirstUse Name Size Source
 /void <VOID> 0x0 <RETURN> 0 IMPORTED
 Parameters:
 DataType Storage FirstUse Name Size Source
 /char * RDI:8 0x0 message 8 USER_DEFINED

Notice that the number of ranges has not changed . You have just
been moved to the next difference range without impacting the total
number of difference ranges. Evaluating this new difference shows that
the second file contains information provided by the other analyst that is
not available in your file. The function signature has a return type, and a
parameter has been added to the function signature . You can include
this in your binary by right-clicking the difference in the right-hand Listing
window and choosing Apply Selection (hotkey F3), or by clicking the Apply
Differences icon on the toolbar.

Navigating to the next difference, you see the following details:

 Diff address range 2 of 2.
Difference details for address range: [00100848 - 0010084c]

Pre-Comment Diffs :
 Program1 CH23:/Crypto/diff_sample1 at 00100848 :
 No Pre-Comment.

 Program2 CH23:/Crypto/diff_sample1a at 00100848 :
  This is a potential vulnerability. The parameter is being passed

 in to printf as the first/only parameter which may result in a format
 string vulnerability.

538 Chapter 23

The number of difference ranges has decreased because you applied
the differences in the previous range . In this final difference, you see
an interesting entry in the Pre-Comment section  in the other file. The ana-
lyst has detected a potential vulnerability. To be sure this information is
included in your file, you choose Apply Differences.

Now that you have completed the comparison of the two files, you can
click the Diff View icon and confirm that you want to close the current
Program Diff session. Your listing view now reflects the combined analysis
from both binaries, and you can save and close your file.

The Ghidra Program Diff tool provides the ability to investigate the
differences between two versions of the same file. While it will attempt
to diff two unrelated files, any results are likely to reflect only coincidental
similarities. Let’s shift our focus to a different tool that facilitates compari-
sons between selected functions within the same or different programs.

Comparing Functions
If you see a function that is reminiscent of a function you have analyzed
in the past, it can be helpful to directly compare the two functions so the
outcome of your initial analysis can be applied to the current function
when appropriate. Ghidra provides this capability through its Function
Comparison window which allows you to view two functions at the same
time as shown in Figure 23-7.

�
� �

� �

�

�

Figure 23-7: Listing view in Function Comparison window

Function Comparison Window
To use the Function Comparison window, open the one or more binaries
that contain the functions in the CodeBrowser, load an initial function by

Binary Differencing and Version Tracking 539

highlighting a function in the active CodeBrowser tab, and select Compare
Selected Functions (hotkey shift-C) from the right-click context menu. The
Function Comparison window shows two functions side by side with poten-
tial differences highlighted, as shown in Figure 23-7. (If you have selected
only one function, it will be displayed in both windows until you load more
functions.)

To add additional functions to compare, choose the Add Functions
icon . This will display a list of all functions in the active program in
the CodeBrowser. You can select a function from the list or switch to the
CodeBrowser window to change the active program by selecting another
program tab in the Listing window.

To the left of the active listing (indicated by a box around the listing )
is a cursor arrow . If the functions match, the arrow will also appear at the
same location in the other window. In Figure 23-7, the instruction in the
primary window does not match the instruction in the other window, so the
cursor arrow is not shown in both windows.

The Function Comparison window provides the opportunity to load
more than two functions from more than two binaries. You can add and
remove functions from each panel when needed. A helpful pull-down menu
lets you choose the function to be displayed in the associated window v.

This window lets you easily switch between Decompile View  and
Listing View  for the two functions and change the function displayed in
either window. The Decompile View for this example is shown in Figure 23-8.

Figure 23-8: Decompile view in the Function Comparison window

540 Chapter 23

The exploratory capabilities available in this window overlap signifi-
cantly with the Program Diff tool, except you are comparing only two func-
tions at a time and you can easily switch between the decompiled code and
the listing. The toolbar menu for this window is shown in Figure 23-9.

Marker Selection
Toggle between All Area Marker, Unmatched Area Marker, and
Area Markers.

Go to Next Go to next unmatched area.

Go to Previous Go to previous unmatched area.

Byte Differences If toggled on, do not highlight byte differences.

Constant
Differences

If toggled on, do not highlight operand constants.

Register Differences If toggled on, do not highlight operand registers.

Mouse Hover If toggled on, show information when hovering over an item.

Add Functions Add a new function to the comparison.

Next Function Go to the next function for the side that is in focus.

Previous Function Go to the previous function for the side that is in focus.

Remove Function Close the current function for the side that is in focus.

Scroll Lock Toggle between lock and unlock for synchronized scrolling.

Synchronized
Navigation

When toggled on, navigate the other panel to the same function
when a new function is selected.

Listing Options Allows you to set listing options such as listing headings.

Diff View Toggle to open and close Program Diff view.

Figure 23-9: Function Comparison toolbar options

Let’s walk through an example that demonstrates some additional
Function Comparison tool capabilities.

Binary Differencing and Version Tracking 541

Example: Comparing Crypto Routines
Congratulations on your promotion! Based on your successful analysis and
use of the Program Diff tool for crypto routines, you have now been labeled
the crypto expert in your shop. Every time one of your colleagues suspects
that they have a crypto routine, they send you the binary to see if it is a
crypto routine you recognize.

You now have a new file from a colleague and wish to determine whether
the crypto routine used in this file is something new or is a routine you
have identified in the past. Rather than loading and comparing each crypto
routine against the new function, you have set up a special Ghidra project
that contains all of your previously analyzed and documented crypto rou-
tines. Your goal is to load your crypto routines on one side of the Function
Comparison window and then import the new file on the other side to
compare against the existing crypto routines. (To simplify this example,
you currently have only one analyzed crypto routine in your collection: the
ROT13 routine that you merged in the previous example.)

After you load your complete collection of analyzed crypto files into
the CodeBrowser and have loaded your function, encrypt_rot13, in the
Function Comparison window, you need to load the new file into the
same CodeBrowser instance (File4Open) and make it the active file. At
this point, you can explore the file, but it isn’t necessary. You can always
switch back to the CodeBrowser window if you can’t find the function you
need. In this case, choosing the Add Functions option from the Function
Comparison toolbar, you see the complete list of functions in the new
binary, and halfway down the list is a function with a name that intrigues
you, encrypt, as shown in Figure 23-10.

Figure 23-10: Select Functions window with the encrypt function selected

542 Chapter 23

A cursory glance at the loaded files in the Decompile View of the
functions, shown in Figure 23-11, suggests that these two functions are
quite different.

Figure 23-11: Decompile View of Function Comparison window for two crypto routines

The Listing View, shown in Figure 23-12, confirms that these two func-
tions have significant differences.

Binary Differencing and Version Tracking 543

Figure 23-12: Listing View of Function Comparison window for two crypto routines with differences highlighted

On further analysis, you discover that the new routine XORs each byte
with the constant value 0xa5. This is definitely different from the current
crypto routine that you have, so you name and document this new function
and add it to your collection (which will then have two members!). Returning
to the CodeBrowser, you update the function signature and add comments
to document the new crypto routine. The changes you make are reflected
in the Function Comparison window as well.

As you are documenting, you notice the new binary has a function called
display_message, as does the binary you are comparing it against. You recall
that this function was identified as having a vulnerability in your current
binary, so you decide to compare these two functions. You load them into
the Function Comparison window to see if they have similarities beyond
the common name. They seem different in both the Decompile and Listing
Views, as shown in Figure 23-13.

544 Chapter 23

Figure 23-13: Decompile and Listing views for display_message functions

In the second example, param_1 is being passed to puts for output, which
fixes the vulnerability.

Now that you have documented this crypto routine, you see that you
have received yet another binary from your colleagues. To reset to the start
of your crypto comparison process, you can use the Function Comparison
toolbar icon to remove the display_message functions from the window, leav-
ing you with your crypto routine collection, which now has two distinct
members: encrypt_rot13 and encrypt_XOR_a5.

Binary Differencing and Version Tracking 545

An initial exploration of this new file indicates that three functions seem
to involve encryption: encrypt, encrypt_strong, and encrypt_super_strong. You
load these into the Function Comparison window so you can compare them
to your existing crypto routines. After comparing encrypt_rot13 against each
of the new functions, you notice the following:

encrypt_rot13 vs. encrypt  Almost entirely different. The encrypt routine
is just a test that may call one of the other two encryption routines.

encrypt_rot13 vs. encrypt_strong  Almost entirely the same.

encrypt_rot13 vs. encrypt_super_strong  Very different. A closer look at
the differences between these two functions leads you to believe that
they are not the same function.

A closer look at the differences shows that the instructions in encrypt​
_rot13 and encrypt_strong are identical—the differences primarily consist of
address labels, as shown in Figure 23-14.

Figure 23-14: Function Comparison window with address label differences

You would not expect address labels to match perfectly in this case, as
the locations of the functions within the binaries are different. The loca-
tions are consistent relative to the current address, so we are likely dealing
with the same function. The only other difference is 1 byte associated with
the call to strlen, as shown in Figure 23-15. This is a similar issue and can
be explained by the difference in the relative positions of the encryption
function and strlen in each binary.

546 Chapter 23

Figure 23-15: Function Comparison window with byte difference in call to strlen

After determining that these are the same function, you can right-click
the previously analyzed function and choose Apply Function Signature To
Other Side from the right-click context window. This will update the func-
tion signature in all needed locations, including the Listing window and
Symbol Tree. Note that the Function Comparison window does not provide
all of the capabilities available in the Diff View. To copy additional informa-
tion (such as the detailed comments associated with the function), use the
Program Diff tool.

Having completed your comparative analysis of encrypt_rot13, you turn
your attention to encrypt_XOR_a5 and observe the following relationships with
each of the new functions:

encrypt_XOR_a5 vs. encrypt  Almost entirely different.

encrypt_XOR_a5 vs. encrypt_strong  Very different. A closer look at the dif-
ferences between these two functions also leads you to believe that they
are not the same function.

encrypt_XOR_a5 vs. encrypt_super_strong  Almost entirely the same.

The identified differences between encrypt_XOR_a5 and encrypt_super_strong
are also just address labels and some bytes in the call to strlen. You can han-
dle this situation the same way you did the previous matching functions.

While this is a trivial example (and not likely consistent with the actual
crypto routines you might see in the wild), it does demonstrate how Function
Comparison can be used to minimize the duplication of analysis effort when
you encounter familiar routines in new binaries.

The final tool for investigating two files is the most complex: the Version
Tracking tool.

Version Tracking
Imagine that you have spent months analyzing a very large binary. The
binary has hundreds or thousands of functions and no symbols. As part
of your effort, you have provided meaningful names to the majority of the

Binary Differencing and Version Tracking 547

functions; renamed data, local variables, and function parameters; and
added a mountain of comments that would take days or longer to re-create.

Now imagine that a new version of the binary is released, and the world
stops using the version you know so much about. You could continue to
analyze the old version to learn more about it under the assumption that
the new version behaves similarly, but you would fail to learn about any new
or modified behaviors in the updated binary. Instead, you decide to begin
working on the newer version of the binary and quickly realize that you
spend significant amounts of time reading the markup in the older binary
to help guide you through the new binary.

Alternating back and forth between two CodeBrowser windows is not
an optimal use of your time. It’s time to switch from the CodeBrowser to
the other default tool that Ghidra provides in the Project Tool Chest, as
shown in Figure 23-16.

Figure 23-16: The Version Tracking tool (footprints)
in the Project Tool Chest

Ghidra’s Version Tracking tool is designed to help you with precisely
this situation. Through the use of various correlators, Ghidra attempts to
match items, such as functions or data, in a source binary with their cor-
responding versions in a destination binary. Once functions have been
matched between the two binaries, Ghidra can automatically migrate infor-
mation, including your labels and comments, from the source binary to the
destination binary. In addition to rapidly migrating your existing analysis,
the Version Tracking tool makes it easy to identify which things haven’t
changed, which things have only minor changes (detected by diffing), and
which things are entirely new.

The Version Tracking tool is one of the most configurable tools in
Ghidra, which makes it easy to adapt to a particular line of inquiry. It is also
a challenging tool to present in its entirety. In the following sections, we
walk you through the version tracking process at a very high level and point
you to resources that can help you discover the correct settings and compo-
nents to use when using the Version Tracking tool to assist you in discover-
ing the relationship between two files.

Version Tracking Concepts
While Function Comparison and Program Diff tools answered specific
questions about the atomic differences between two files or functions, the
Version Tracking tool provides you with functionality to answer a more

548 Chapter 23

holistic question: how similar are these two binaries, and can you highlight
and provide insight about the similarities between them? The foundational
work unit is called a session, and each session is configured to identify and
handle correlations between two files.

Correlators

At a high level, the Version Tracking tool is looking for correlations
between two files. There are seven types of correlators that generate
matches between two binaries:

•	 Data Match correlators

•	 Function Match correlators

•	 Legacy Import correlators

•	 Implied correlators

•	 Manual Match correlators

•	 Symbol Name Match correlators

•	 Reference correlators

Rather than just counting and compiling a list of specific differences
in each of the categories, the Version Tracking tool extends correlations
between the two files to identify matches with varying levels of exactness:

Exact matches  These are one-to-one matches between the two files
and can match data, function bytes, function instructions, or function
mnemonics (for example, when two binaries contain the exact same
function).

Duplicate data match  These are exact matches that are not one-to-
one matches (for example, when a string appears once in one file and
seven times in the other file).

Similar matches  These are matches that pass a user-controlled simi-
larity threshold. The matching is similar to the approach used for word
models described in Chapter 13, but uses 4-grams as well as trigrams.

With the ability to introduce thresholds, and accept and reject matches,
this tool offers a powerful capability to migrate your previous analysis to
new versions of a binary. Further, the information associated with each
session provides an effective analysis audit trail that can help capture the
incremental changes of a binary or the evolution of a malware family.

Sessions

While an in-depth walk-through of a complete session would take a signifi-
cant amount of time, a basic version tracking session might include the fol-
lowing steps:

1.	 Open Ghidra's Version Tracking tool.

2.	 Create a new session by choosing a source file and a destination file.

Binary Differencing and Version Tracking 549

3.	 For all appropriate correlators: add to the existing session, choose the
correlator, select all resulting matches, and accept all matches and
apply their markup items.

4.	 Save the session.

5.	 Close the session.

The preceding workflow provides a very general overview, and the com-
binatorial potential associated with the correlator step is extensive. The
potential of and the nuances associated with this tool cannot be covered in
a single chapter. The Ghidra team has provided sample workflows (as well
as significant documentation about the Version Tracking tool) in Ghidra
Help. It is up to you to determine how best to apply the capabilities of this
tool in your reverse engineering workflow.

Summary
In this chapter, we stepped away from a single binary to begin looking at
ways to identify differences and similarities between binaries by using the
Program Diff, Function Comparison, and Version Tracking tools. These
tools are valuable time-savers for porting existing work to new binaries,
merging annotations from your colleagues, and rapidly identifying exactly
what has changed between two versions of the same program.

As we wrap up our tour of Ghidra’s vast landscape of features, know
that we have only scratched the surface of Ghidra’s capabilities. You should
now have a deeper understanding of Ghidra and how it can be applied to
the reverse engineering challenges you face. When you have questions, the
Ghidra community is there to help through resources like GitHub, Stack
Exchange, Reddit, YouTube, and many other forums.

More importantly, you should now be in a position to contribute by
answering questions and providing help to others. Ghidra is community-
supported software and continually evolving. We hope you participate by
posting tutorials, writing and publishing Ghidra scripts and modules, iden-
tifying and addressing issues, or perhaps even developing new functionality
for Ghidra itself. The future of Ghidra will be determined by the commu-
nity, and that now includes you. Welcome, and happy reversing!

If you are an experienced IDA Pro user
interested in giving Ghidra a test run,

either as a curiosity or as a more permanent
transition, you may be familiar with many of

the concepts presented in this book. This appendix is
intended to map IDA terminology and usage to similar
functionality in Ghidra, without providing instruction on Ghidra functional-
ity. For specific usage of any Ghidra feature mentioned here, please refer to
the relevant chapters in this book that discuss the features in far more detail.

We make no attempt to compare the performance of the two tools, nor
do we argue for the superiority of one over the other. Your choice of which
to use might be motivated by price or a specific feature offered by one and
not the other. What follows is a whirlwind tour through the topics of the
book from the perspective of an IDA user.

G H I D R A F O R I D A U S E R S

552 Appendix

The Basics
As you begin your journey, you may find it useful to bring along a guide
to help you learn an entirely new set of hotkeys. The Ghidra Cheat Sheet
(https://ghidra-sre.org/CheatSheet.html) is a useful trifold that lists common
user actions and their associated hotkeys and/or tool buttons. Shortly,
we’ll cover how to remap hotkeys in the event that you miss your trusted
IDA favorites.

Database Creation
Whereas IDA imports one binary into one database and is inherently single
user, Ghidra is project oriented, can contain multiple files per project, and
can support collaborative reversing by many users working together on the
same project. The concept of an IDA database most closely maps to a single
program within a Ghidra project. Ghidra’s user interface is split into two
main components: Project and CodeBrowser.

Your first interaction with Ghidra is to create projects (shared or non-
shared) and import “programs” (binaries) into those projects through the
Project window. When you use IDA to open a new binary, and ultimately
create a new database, you and IDA perform the following actions:

1.	 (IDA) Query every available loader to learn which loaders recognize
the newly selected file.

2.	 (IDA) Display the load file dialog, presenting a list of acceptable load-
ers, processor modules, and analysis options.

3.	 (User) Choose the loader module that should be used to load file con-
tent into the new database, or accept IDA’s default choice.

4.	 (User) Choose the processor module that should be used when disas-
sembling database content, or accept IDA’s default choice (which may
be dictated by a loader module).

5.	 (User) Choose any analysis options that should be used when creating
the initial database, or accept IDA’s default choices. You may also elect
to disable analysis altogether at this point.

6.	 (User) Confirm your choices by clicking OK.

7.	 (IDA) The selected loader module populates the database with byte
content taken from the original file. IDA loaders generally do not load
the entire file into the database, and it is generally not possible to re-
create the original file from content available in the new database.

8.	 (IDA) If analysis is enabled, the selected processor module is used to
disassemble code identified by the loader and any selected analyzers
(IDA calls analyzers kernel options).

9.	 (IDA) The resulting database is displayed in IDA’s user interface.

Ghidra has analogues for each of the listed steps; however, the process
is broken into two distinct phases: import and analysis. The Ghidra import

Ghidra for IDA Users 553

process is generally initiated from the Project window and includes the fol-
lowing steps:

1.	 (Ghidra) Query every available loader to learn which loaders recognize
the newly selected file.

2.	 (Ghidra) Display the import dialog, presenting a list of acceptable for-
mats (roughly loaders) and languages (roughly processor modules).

3.	 (User) Choose the format for importing the file into the current
project, or accept Ghidra’s default choice.

4.	 (User) Choose the language for disassembling program content, or
accept Ghidra’s default choice.

5.	 (User) Confirm your choices by clicking OK.

6.	 (Ghidra) The loader associated with the selected format loads byte con-
tent taken from the original file into a new “program” in the current
project. The loader creates program sections and processes the binary’s
symbol, import, and export tables, but performs no analysis involving
disassembly. Ghidra loaders generally load the entire file into your
Ghidra project, though some portions of the file may not be displayed
by the CodeBrowser.

Though this process is similar to IDA database creation, some steps are
missing. With Ghidra, analysis takes place in the CodeBrowser. Once you
have successfully imported a file, double-clicking that file in the Project
view opens the file in Ghidra’s CodeBrowser. When you open a program for
the first time, Ghidra performs the following steps:

1.	 (Ghidra) Open the CodeBrowser and display the results of the import
process, asking whether you would like to analyze the file.

2.	 (User) Decide whether to analyze the file. If you elect not to analyze
the file, you are dropped into the CodeBrowser, where you can scroll
through byte content but will have no disassembly. In this case, you may
choose AnalysisAuto Analyze to analyze the file at any time. In either
case, when you decide to analyze the file, Ghidra displays a list of “analyz-
ers” compatible with the current file format and language setting. You
may choose which analyzers to run and then modify any options the
analyzer utilizes before allowing Ghidra to perform its initial analysis.

3.	 (Ghidra) Execute all selected analyzers and drop the user into the
CodeBrowser to begin working with the fully analyzed program.

For more information about the import and analysis stages, refer to
the appropriate chapters in this book. IDA has neither an analogy for
Project view nor any collaborative reversing capabilities other than the
shared Lumina database. Project view is introduced in Chapter 4. Shared
projects and support for collaborative reverse engineering are discussed
in Chapter 11. The CodeBrowser is introduced in Chapter 4, with more
depth beginning in Chapter 5 and continuing through the remainder of
the book.

554 Appendix

The CodeBrowser is a Ghidra tool and is your primary interface for
analyzing programs. As such, it is the Ghidra component most similar to
IDA’s user interface, so we will spend some time relating IDA user-interface
elements to their CodeBrowser equivalents.

Basic Windows and Navigation
In its default configuration, the CodeBrowser is a container for multiple
specialty windows that display information about features of a program.
Detailed discussion about the CodeBrowser begins in Chapter 5 and contin-
ues, with coverage of related data displays, through Chapter 10.

Listing View

At the center of the CodeBrowser is the Ghidra Listing window, which
provides a classic disassembly similar to your IDA View in text mode. To
customize the format of your listings, the Browser Field Formatter enables
you to modify, rearrange, and delete individual listing elements. As in IDA,
navigation within the Listing windows is primarily accomplished by double-
clicking labels (IDA names) to navigate to the address associated with a label.
Right-click, context-sensitive menus provide access to common operations
associated with labels, including renaming and retyping.

Similar to IDA, each function in the listing has a header comment that
lists the function’s prototype, provides a summary of the function’s local
variables, and displays cross-references that target the function. The Ghidra
equivalent of IDA’s Stack view is accessible only by right-clicking in a func-
tion’s header and selecting FunctionEdit Stack Frame.

If you enjoy IDA highlighting all occurrences of a string that you click
(such as a register name or instruction mnemonic), you may be disap-
pointed to learn that this is not a default behavior in Ghidra. To enable this
behavior, visit EditTool OptionsListing FieldsCursor Text Highlight
and change Mouse Button to Activate from MIDDLE to LEFT. Another
feature you may love or hate is Markup Register Variable References, which
causes Ghidra to automatically rename registers that are used to hold
a function’s incoming parameters. To disable this behavior and have
Ghidra use register name instruction operands, navigate to EditTool
OptionsListing FieldsOperands Fields and uncheck Markup Register
Variable References.

Finally, if you are longing for Ghidra to “do the right thing” when
muscle memory causes you to use your favorite IDA hotkey sequences, you’ll
want to spend some time in EditTool OptionsKey Bindings to reassign
default Ghidra hotkeys to match those that you use in IDA. This is such
a common task for IDA users that third-party key binding files have been
published to automate reassignment of all your favorite hotkey sequences.1

1. Try https://github.com/enovella/ida2ghidra-kb/ or https://github.com/JeremyBlackthorne​
/Ghidra-Keybindings/.

https://github.com/JeremyBlackthorne/Ghidra-Keybindings/
https://github.com/JeremyBlackthorne/Ghidra-Keybindings/

Ghidra for IDA Users 555

Graph View

Ghidra’s Listing window is a text-only view. If you prefer working in IDA’s
graph view, you’ll need to open a separate Function Graph window in
Ghidra. Like IDA’s graph view, Ghidra’s Function Graph window can dis-
play a single function at any one time, and you can manipulate the items in
the Function Graph window just as you would in the Listing window.

By default, Ghidra’s graph layout algorithm may route edges behind
basic block nodes, which may make tracing the edge more difficult. You
can disable this behavior by visiting EditTool OptionsFunction Graph
Nested Code Layout and checking Route Edges Around Vertices.

The Decompiler

Ghidra includes decompilation capability for all supported processors. By
default, the Decompiler window appears to the right of the Listing window
and will display decompiled C source code whenever your cursor is posi-
tioned within a function in the Listing view. If you like to add and view end-
of-line comments in the generated C source, you’ll need to enable them at
EditTool OptionsDecompilerDisplay by checking Display EOL com-
ments. On the same options tab, you’ll also find Disable printing of type
casts, which can improve readability in some cases by dramatically declut-
tering the resulting code.

The decompiler also has a tendency to aggressively optimize the code
it generates. If you find yourself reading the disassembled version of a
function and feel like behaviors are missing in the decompiled version, the
decompiler may have eliminated what it believes to be dead code within
the function. To display that code in the Decompiler window, navigate to
EditTool OptionsDecompilerAnalysis and deselect Eliminate dead
code. The decompiler is discussed further in Chapter 19.

The Symbol Tree

The CodeBrowser’s Symbol Tree window provides a hierarchical view of all
symbols contained in a program. The Symbol Tree contains six top-level
folders representing six classes of symbols that may exist within a program.
Clicking a name in any Symbol Tree folder will navigate the Listing window
to the corresponding address:

Imports  The Imports folder is relevant for dynamically linked binaries
and provides a listing of external functions and libraries referenced by
the program. This most closely correlates to IDA’s Imports tab.

Exports  The Exports folder lists any symbols in the program that are
publicly visible outside the program. The symbols in this folder are
often similar to those output by the nm utility.

Functions  This folder contains an entry for each function in the pro-
gram listing.

Labels  This folder contains entries for any additional nonlocal labels
within the program.

556 Appendix

Classes  This folder contains the names of any C++ classes for which
Ghidra has located Runtime Type Identification (RTTI).

Namespaces  This folder contains an entry for each namespace cre-
ated by Ghidra during program analysis. Refer to Ghidra Help for more
information on Ghidra namespaces.

Data Type Manager

The Data Type Manager maintains all of Ghidra’s knowledge about data
structures and function prototypes. Each folder in the Data Type Manager
is the rough equivalent of an IDA type library (.til). The Data Type Manager
fills the role of IDA’s Structures, Enums, Local Types, and Type Libraries
windows and is discussed in detail in Chapter 8.

Scripting
Ghidra is implemented in Java, and its natural scripting language is Java. In
addition to routine scripts, the primary Java extensions to Ghidra include
analyzers, plugins, and loaders. Ghidra analyzers and plugins together take
on the role that IDA’s plugins fill, while Ghidra loaders perform essentially
the same role as IDA loaders. Ghidra supports the concept of processor mod-
ules; however, Ghidra processors are defined using a specification language
known as SLEIGH.

Ghidra includes a basic script editor for routine scripting tasks as well as
an Eclipse plugin to facilitate the creation of more complex Ghidra scripts
and extensions. The use of Python is supported via Jython. The Ghidra API
is implemented as a class hierarchy that represents the features of a binary
as Java objects, and convenience classes are provided for easy access to some
of the most commonly used API classes. Ghidra scripts are discussed in
Chapters 14 and 15 and extensions are discussed in Chapters 15, 17, and 18.

Summary
Ghidra’s capabilities are quite clearly similar to those of IDA. In some cases,
Ghidra’s displays are similar enough to IDA’s that the only things that will
slow you down are new hotkeys, tool buttons, and menus. In other cases,
information is presented in a different manner than in IDA, and your
learning curve will be steeper. In either case, whether you take advantage
of Ghidra’s customization capabilities to make it drive like IDA or you take
the time to learn a new way of doing things, you’re likely to find that Ghidra
meets most of your reverse engineering needs and in some cases opens up
entirely new ways of getting things done.

I N D E X

A
ABI (application binary interface),

100, 101, 103, 458
About Ghidra, 34
abstract base class (C++), 174
abstract function, 174
access control (Ghidra Server),

218, 221, 231
activation records. See stack frame.
Add Block (Memory Map toolbar), 370
addEntryPoint method, 383, 396
Add File to Version Control, 235
Add Functions, 539, 541
adding an analyzer module (Eclipse),

329, 337–339
Add Reference dialog, 196
Add Reference from, 195
Address Interface, 298

getOffset method, 307–310
AddressOfEntryPoint field, 369
address ranges, 531, 535
AddressSourceInfo object, 524, 525
address table, 10
Address Type overview bar, 480
addrinfo data type, 148, 149, 172
ai_socktype, 149
alignment gap, 520
alt-left arrow hotkey (Go To Previous

Location), 92, 93
alt-right arrow hotkey (Go To Next

Location), 92, 93
analysis

dynamic, 6, 491
static, 6, 12

analysis engine (Decompiler), 430
Analysis menu (CodeBrowser), 57
analysis options, 428, 429

analyzers, 50, 436
Analysis Options, 48, 49, 51
-analysisTimeoutPerFile (headless

analyzer), 350, 351
Analyze All Open, 265, 283
analyzeHeadless, 342–360

analyzeHeadlessREADME.html, 34, 342,
350, 352

analyzer, 428, 436
analyzer modules

example
ROP gadget, 329

template (Eclipse), 323, 328, 331
testing with Eclipse, 337

analyzers
creating with Eclipse, 329
decompiler, 428, 436
Decompiler, 428–430
Decompiler Parameter ID, 50, 53,

109, 113
PE files, 110

Decompiler Switch Analysis, 50, 53
Function ID, 73, 272, 273, 278,

279, 283
headless, 340–345, 347, 354,

357, 358
non-returning functions, 436
one shot, 265, 279
results, 51
RTTI, 181
Stack, 94

annotation, 128, 132, 153
anti-debug techniques, 505
anti-piracy protections, 505
anti-reverse engineering, 470
anti-reverse engineering tools,

471, 475, 490, 491
API (application programming

interface), 52, 477, 489,
490, 500

application binary interface (ABI),
100, 101, 103, 458

application programming interface
(API), 52, 477, 489, 490, 500

Apply Differences, 534, 537, 538
Apply Function Signature To Other

Side, 546
applying structure layouts, 171
Apply Selection (hotkey F3), 537
architecture size, 263

558 Index

Archive Current Project (Ghidra), 225
archives

creating data type archives, 269
creating new file archives, 271
creating new project archives, 272
data type archives, 268

arguments. See also parameters, 94–113,
453, 454, 458, 464-466

ARM, 405, 418, 491
instructions, 94–96, 113

arrays, 140, 144
Array type option (Ghidra), 156
base address, 150, 152, 153, 158,

159, 160, 170
bounds, 151
constant indices, 153, 154, 159, 160
create, 139
elements, 150–153, 156, 158, 159, 169
globally allocated, 150, 154, 161
heap-allocated, 157, 158
index value, 150, 153, 156, 160,

161, 165
member access, 150
reference, 150, 160
stack-allocated, 154, 162

example, 155
static assignments, 156
of structures, 164
variable indices, 151, 153

Array type option (Ghidra), 156
articulation, 200
ASCII, 16, 28, 111, 183, 486
ASCII format export (Ghidra),

514, 522, 523
askAddress method, 300
askDirectory method, 301
askFile method, 301
askInt method, 300
askString method, 293, 300
askYesNo method, 300
ASPack, 19, 479, 496
ASProtect, 479
assembler (Ghidra), 513, 515–518, 528
Assembler Rating, 516
assemblers, 4, 7, 9
assembly language

directives, 4
-a strings option, 29
Attach existing FidDb, 275
attaching FidDbs, 275
authentication

functions, 512
Ghidra Server, 219, 221, 227, 228,

230, 231

auto analysis, 52–53, 90, 107, 110, 261,
265, 268, 273

Analysis Options, 48, 49, 51
options, 50
results, 51

Auto Analysis Summary dialog, 50
Auto Create Structure, 439, 441
automated structure creation, 437
automatic storage class (C++), 177

B
back references, 184, 185, 195
backward navigation (Go To Previous

Location)
hotkey alt-left arrow, 92, 93
hotkey option-left arrow (Mac), 93

backward slice, 435
base address, 47
base address (array), 150, 152, 153, 158,

159, 160, 170
Base Library (FidDb), 277
base virtual address (PE files), 367, 369
basic block, 66, 67, 190, 198, 199,

203–208, 428, 436
basic data transformations, 140
basic disassembly algorithm, 8
batch import, 226, 227, 346, 359
Batch Import dialog, 282
batch import (Ghidra), 282
batch import (headless analyzer),

346, 347, 359
Batch mode (import), 226, 227, 282
binaries, 4

ELF, 92
importing, 262, 264, 276, 278
stripped, 18, 152, 461, 465

binary differencing, 529
Binary format export (Ghidra),

522, 523, 525
binary search, 444, 446–448
bitness, 263
breakpoints

hardware, 477, 489
software, 490

Browser Field Formatter, 65, 66, 133,
134, 247, 248, 419

.bss section, 71, 150, 153
buffer overflow, 184, 330
buildLanguage.xml, 404
build options (compiler), 152, 444,

451, 455
BuiltInTypes, 268
Burneye, 492, 493, 495, 496
byte code, 4

Index 559

Byte Viewer, 514
editing, 513

Byte Viewer Options, 78, 514
Bytes window, 78, 79, 513, 514

options, 244

C
C/C++ format export (Ghidra), 522
C hotkey (Clear Code Bytes),

139, 473, 503
C language

calling conventions, 96
compilers, 160, 173, 176, 178, 181,

443, 448–451, 453, 456, 459,
463, 465

format export (Ghidra), 522
malloc function, 157
strcpy function, 194

C++
abstract base class, 174
calling conventions, 99
compilers, 160, 443, 448–451,

453–457, 463–465
compiler variations

function overloading, 458
RTTI, 459

constructor, 173, 177, 178, 181
delete operator, 178
destructors, 177, 179
dynamic_cast, 180, 181, 458–460
inheritance, 172, 173, 179–182, 459
multiple inheritance, 180
name mangling, 27, 179–181,

458, 459
new operator, 157, 175, 178
object life cycle, 177
polymorphism, 172, 180
pure virtual function, 174, 175
reversing, 172
RTTI analyzer, 181
RTTI (Runtime Type

Identification), 180, 181,
459–461

storage class, 177
this pointer, 173, 176, 181
typeid, 180, 181, 458
vftable pointer, 173–176, 178, 179
vftables, 173–179, 181, 182, 191, 192,

194, 459, 460, 462, 463
vftables indexing, 176
virtual functions, 173–176, 178, 179,

191, 192, 195, 459, 460, 463
c++filt, 26, 27
call flow, 186, 189

callee-saved registers. See no-clobber
register, 100, 101

caller-saved registers. See clobber
register, 100, 101

calling conventions, 94–95, 100–101,
113, 139

C, 96
C++

thiscall, 99, 173
cdecl, 96, 97, 99, 102, 103, 105
fastcall, 98, 99
standard calling convention, 98
stdcall, 98, 99, 102

call mechanics, 94
cdecl, 96, 97, 99, 102, 103, 105
changing appearance (windows),

250, 251
Characteristics field (PE files), 374
CheatSheet.html, 35
checkpoint, 487
child processes, 475
Choose active FidDbs, 275
Choose Data Type (hotkey T), 366
clang, 443, 459, 464
Classes folder (Symbol Tree), 74, 75,

192, 459, 460
classification tools, 15
Clear Code Bytes (hotkey C),

139, 473, 503
clearListing method, 304, 515
clipboard icon (Eclipse), 320
clobber register, 101, 104
Close (display windows), 242
Close View (Ghidra Project), 229
code caves, 519
code cross-reference, 186, 187, 190, 192
code display options, 133
code optimization, 99, 109, 453,

455, 466
CodeBrowser, 48, 49, 50, 52–54
CodeBrowser menu

Analysis menu, 57
Analyze All Open, 261, 265,

268, 273, 283
auto analysis, 90, 107
Auto Analyze, 48–53, 261, 265,

268, 273
One Shot, 110

Edit menu, 57, 59, 62
Tool Options, 54, 244, 246

File menu, 56
Export Program, 522
Parse C Source, 270, 271

Help menu, 58
About Ghidra, 34

560 Index

CodeBrowser menu (continued)
Search menu, 58

For Direct References, 508
For Instruction Patterns,

508–511
Memory, 116, 117, 507

Tools menu, 56, 58, 68
Function ID menu, 274
Program Differences, 530

Window menu. See also CodeBrowser
windows, 58–87

CodeBrowser toolbar
Navigation toolbar, 70, 92, 93
Redo, 120
Undo, 120

CodeBrowser windows
Bytes, 78, 79, 513, 514

options, 244
Console, 75
Data Type Manager, 48, 52, 75,

148, 149, 167, 169, 176, 214,
267–269, 271, 272, 279

Decompiler, 59, 75–78, 427–432,
434–437, 439, 442

Defined Data, 75, 80, 81
Defined Strings, 81, 82
Function Call Graph, 86, 87
Function Call Tree, 87, 214
Function Graph, 66–69, 197–202,

205, 207, 208
Listing, 52, 472, 481, 482, 500, 503,

509, 514–522, 526
Memory Map, 48, 85, 86, 368–374
Program Trees, 71, 214, 519
Script Manager, 286–297, 314–319,

321, 326, 327
Symbol References, 82–85, 90
Symbol Table, 82, 83, 85
Symbol Tree, 48, 49, 58–60, 72–75,

90–92, 121–124, 148, 181,
192, 214, 272–280, 459–461

collaborative SRE, 33, 37, 217–222, 224,
227, 228, 230, 231, 235, 240

collapse sections (Eclipse), 318
collapsing blocks (Function Graph

View), 68, 69
color customization (Function

Graph), 208
Color Editor, 244
command line options (headless

analyzer), 347
comments (Eclipse), 332
comments (Ghidra), 125, 137, 145

annotation, 128, 132
Symbol option, 153

EOL (end-of-line) comments,
128, 129, 132, 134, 302, 463

plate comments, 130, 279, 302
post comments, 130, 302
pre comments, 130, 131, 302
repeatable comments, 128, 131, 302
set comment, 128, 129, 132

-commit (headless analyzer), 353
Common Symbols File, 278
Compare Selected Functions (hotkey

shift-C), 538, 539, 541–543,
545, 546

comparing functions, 538, 539,
541–543, 545, 546

compilers
build options, 444, 451, 455
clang, 443, 459, 464
compiler field, 263
compiler options, 452
debug versions, 443, 450, 452, 453
Delphi, 443
GNU gcc/g++, 160, 443, 448–451,

453–455, 464
-O2 option, 456, 457

identification, 52
linker options, 452
Microsoft C/C++, 160, 173, 176,

178, 181, 443, 448–451, 453,
456, 459, 463, 465

release versions, 452
validation, 7

compiler-specific behavior, 466
compiler variations, 443

build options, 444, 451, 455
compiler-specific behavior, 466
C++, 458
C++ Function Overloading, 458
C++ RTTI, 459
inline functions, 457, 458
main(), 463
modulo operator, 452–454
switch statement, 444–451
ternary operator, 455, 456

conditional branching instructions, 11
conditional jump, 474
configurations (Ghidra)

Configure Tool window, 255
Developer, 34, 252
Experimental, 34, 252
Function ID, 34, 73, 74, 254
Ghidra Core, 34, 252, 255, 256

ImporterPlugin, 253
Configure Gradle (Eclipse), 338
Configure Tool (Ghidra), 255
-connect (headless analyzer), 353

Index 561

Console window (CodeBrowser), 75
constant indices, 153, 154, 159, 160
constructors

C++, 173, 177, 178, 181
inline, 181
SLEIGH, 408

control flow, 197, 200, 205, 208
converting data and code

Clear Code Bytes (hotkey C),
139, 473, 503

Disassemble (hotkey D), 140, 374,
378, 473, 503

Convert to Shared (Ghidra Server), 231
correlators, 547–549
C-Parser plugin, 269, 270
crackme, 497, 498, 502
createAsciiString method, 305
createByte method, 304
createData method, 395
Create Function (hotkey F), 137
createFunction method, 305
Create Ghidra Script, 356
createLabel method, 303, 396
createMemoryBlock method,

383, 389, 395
createMemoryReference method, 396
Create new empty FidDb, 275, 277
Create Tool

example, 254
createUnicodeString method, 305
creating

analyzer modules (Eclipse), 329
Create Array (hotkey [), 144
Create Structure (hotkey shift-[),

166, 167
Create Structure window, 166, 167
data type archives, 269
FidDbs, 275, 277
file archives, 271
Ghidra tools, 253

example, 254
loader modules, 376, 379
module projects (Eclipse), 322
project archives, 272
projects (Ghidra), 43
script projects (Eclipse), 321
scripts (Eclipse), 317, 319, 321
shared projects (Ghidra Server),

221, 222
Close View, 229

structures, 160, 166
cross-references, 64, 69, 80, 86,

183–184, 188–189, 193, 195,
196, 401, 461–463, 508, 512,
521, 523

code, 186, 187, 190, 192
data, 185, 187, 190, 191, 459, 460
enumerating, 308
jump, 190
pointer, 191, 192
read, 191
suffix (*), 185, 191, 212
suffix (R), 185
suffix (T), 212
suffix (W), 185
write, 191

-cspec (headless analyzer), 351, 352
C-style structs. See structures.
ctrl-L hotkey (Retype), 434
ctrl-shift-Z hotkey (redo), 120
ctrl-Z hotkey (undo), 120
Cuckoo Sandbox, 479
currentAddress, 299, 308, 309
current file location, 64
currentLocation, 299
currentProgram, 293, 296, 299, 305,

307–310
currentSelection, 293, 300
customizing (Function Graph View), 69
customizing Ghidra, 241, 258
cycle groups, 141
Cygwin, 16, 25

D
data cross-reference, 185, 187, 190, 191,

459, 460
Data Execution Prevention (DEP), 330
data/languages directory, 397
.data section, 71, 150, 373
data structures, 147, 150, 164, 172, 182
data type archives, 267, 269, 272

BuiltInTypes, 268
opening, 268

Data Type Manager window, 48, 52, 75,
148, 149, 167, 169, 176, 214,
267, 279

BuiltInTypes, 268
data type archives, 268

creating, 269
opening, 268

New File Archive, 271
New Project Archive, 272

data types, 147, 150, 153, 169, 182,
431, 432

addrinfo, 148, 149, 172
DAT_ prefix, 91, 120, 126, 144
dead listings, 90
debug mode, 443, 450, 452, 453

562 Index

debuggers, 280, 476, 477, 480, 490–491,
503, 504, 525–528

GNU debugger (GDB), 11, 478
OllyDbg, 478
preventing debugging, 489
WinDbg, 11

debugging displays, 7
debugging registers (x86), 477
decode, 491, 492, 495
Decompiler analyzer, 428–430
decompiler-assisted stack frame

analysis, 109
Decompiler Parameter ID, 50, 53,

109, 113
PE files, 110

decompilers, 5
Decompiler Switch Analysis, 50, 53
Decompiler window, 59, 75–78, 427

analysis engine, 430
analysis options, 436

Eliminate unreachable code,
428, 429

Simplify predication, 428, 430
Auto Create Structure, 439, 441
automated structure creation, 437
backward slice, 435
data types, 431, 432
Edit Function Signature, 437
editing in the Decompiler

window, 431
editing variable types and

names, 434
error bookmark, 437
forward slice, 435
function prototypes, 432
highlighting slices, 435
non-returning function, 436, 437
Override Signature, 433
overriding function signatures, 433
program slice, 435
Retype variables, 434, 440
Structure Editor window, 442

Decompile View (Function
Comparison), 539, 542

decompression, 482, 489
deep inspection tools, 27
defined data, 507
Defined Data window, 75, 80, 81
Defined Strings window, 81, 82, 144
Delete Function (hotkey del), 137
delete operator (C++), 178
Delete Project (Ghidra), 225
-deleteProject (headless analyzer), 349
Delphi, 443

density, 445–447
deobfuscation, 479–490, 492–495,

503, 504
emulation-oriented, 496
script-oriented, 491

deobfuscation stub, 479, 480, 483,
485, 496

DEP (Data Execution Prevention), 330
Destination Folder field (Import File), 45
destructors (C++), 177, 179
desynchronization, 471, 474, 478
Detach existing FidDb, 275
detaching FidDbs, 275
Determine Program Differences

dialog, 530
Developer configuration, 34
Developer configuration (Ghidra), 252
D hotkey (Disassemble), 140, 374, 378,

473, 503
Diff Details window, 531, 532, 534–535

EOL-Comment section, 536
Pre-Comment section, 537, 538

Diff View, 259, 530, 532, 534, 538, 546
directives, 4
direct references search, 462, 508
Disassemble (hotkey D), 140, 374, 378,

473, 503
disassemble method, 304
disassemblers, 5, 7, 12, 13

diStorm, 29
MASM, 9
NASM, 29
ndisasm, 29, 30

disassembly
basic algorithm, 8
conditional branching

instructions, 11
desynchronization, 471
function call instructions, 12
introduction to, 3–14
linear sweep, 9–13
navigation, 90
recursive descent, 11, 13
return instructions, 13
sequential flow, 11
theory, 4
tools, 15
unconditional branching

instructions, 11
dist directory, 337, 338
diStorm, 29
divide-by-zero exception, 477
DLL (dynamic link library), 484, 485
docs directory, 34–37

Index 563

downloading Ghidra, 35
-d strings option, 29
dumpbin, 24–26, 29, 483
dynamic analysis, 6, 491
dynamic_cast, 180, 181, 458–460
dynamic linking, 22, 23, 209, 212, 213
dynamic link library (DLL), 484, 485
dynamic memory allocation, 157, 178

E
Eclipse

analyzer module template,
323, 328, 331

clipboard icon, 320
collapse sections, 318
comments, 332
Create Ghidra Script dialog,

319, 321
creating module projects, 322
creating modules, 376, 379
creating script projects, 321
creating scripts, 317, 319, 321
directories

module projects, 327
edit script, 316, 317
error tag, 320
expand lines, 318, 328
Exporter, 337
exporter module template, 323
export module, 337
file system module template, 323
GhidraDev, 315–322, 324, 331, 337,

402, 403, 409
Home scripts, 325, 499
integration, 316, 329, 340
Link options, 322, 324, 325
loader module template, 323, 328
module templates, 379, 397
Package Explorer, 322–326, 331
plugins module template, 323
processor module template, 323
Quick Fix options, 315, 320, 321
Run options, 327, 337
task tag, 320, 323, 328, 332, 333
testing modules, 385
TODO comments, 320, 332–334, 403,

410, 411
tutorials, 316

Eclipse menus
GhidraDev, 317, 318, 324

edge color (Function Graph), 207
edges, 184
Edit function (hotkey F), 137–139
Edit Function Signature, 437

editing
in the decompiler window, 431
labels, 125, 126
scripts (Eclipse), 316, 317
structure members, 169
the tool (Tool Options), 246
variable types and names, 434

Edit menu (CodeBrowser), 57, 59, 62
Edit menu (Ghidra Project), 227
Edit Plugin Path (Ghidra Project), 227
Edit Tool Options (Ghidra Project), 227
educational content, 36
EEPROM, 523
E hotkey (Set Equate), 136
ELF binaries

analyzing, 265, 463
file format, 8, 17, 23, 25, 268, 392
importing, 262, 264, 276, 278
locating main, 463, 464
loader example, 391–400
obfuscation, 276–279, 479, 490,

492, 496
utilities 17, 23, 25, 28, 29, 280

Eliminate unreachable code, 428, 429
emulating assembly language

behavior, 311
emulation, 469, 495–497, 500, 501,

503, 504
emulation-oriented deobfuscation, 496
emulator, 496, 503

SimpleEmulator example, 497–499
Emulator class, 469, 497, 499
EmulatorHelper, 497, 499

dispose method, 502
enableMemoryWriteTracking

method, 500
getEmulateExecutionState

method, 501
getTrackedMemoryWriteSet

method, 501
readMemoryByte method, 502
run method, 494, 501
setBreakpoint method, 500

encode, 478
encrypt, 478
endianness, 263
end-of-line (EOL) comment, 128, 129,

132, 134, 302, 463
end-user license agreement (EULA), 37
Entropy bar (Ghidra), 62
entry point, 8, 73, 85, 463, 464
enumerating cross-references, 308
enumerating functions, 307
enumerating instructions, 308
EOL-Comment section, 536

564 Index

EOL (end-of-line) comment, 128, 129,
132, 134, 302, 463

epilogue, 95, 100, 103, 105
error bookmark, 437, 472
error messages (headless analyzer), 344
error tag (Eclipse), 320
-e strings option, 29
EULA (end-user license agreement), 37
exception handler, 476, 477
exceptions, 476, 477, 490, 494, 502, 504
Executable and Linkable Format.

See ELF.
Expand Down (Memory Map toolbar),

373, 374
expand lines (Eclipse), 318, 328
Experimental configuration (Ghidra),

34, 252
explicit forward reference, 195
exploit, 184, 330, 487
Export dialog, 522
Exporter (Eclipse), 337
exporter module template (Eclipse), 323
exporting files (Ghidra), 506

ASCII format, 514, 522, 523
Binary format, 522, 523, 525
C/C++ format, 522
HTML format, 523
Intel Hex format, 523
XML format, 523
zip format, 522

export module (Eclipse), 337
Export Program menu

(CodeBrowser), 522
Exports folder (Symbol Tree), 73
Export Tool, 257
Extensions directory, 34, 37
external references, 195
EXT_ prefix, 91, 120, 126

F
Failed to disassemble (Ghidra error

message), 472
fallthrough, 518

override, 473
fastcall, 98, 99
F hotkey (Create/Edit Function),

137–139
F1 hotkey (Ghidra Help), 34, 58, 186,

196, 270, 273, 506, 516, 549
F2 hotkey (Apply Selection), 537
F5 hotkey (Program Diff toolbar),

532, 534

FidDbs (Function ID databases),
272, 273, 276, 278–280,
282–284, 466

attaching, 275
creating, 275, 277
detaching, 275
populating FidDbs from programs,

275, 277
FidPlugin, 274
FileBytes object, 524, 525
file extensions, 16
File menu (CodeBrowser), 56, 522
File menu (Ghidra Project), 224, 225
file offset, 47
files

extensions, 363
.a, 280, 282, 283
.class, 268
.cspec, 404
.dll, 23, 26, 73, 98, 483–486
.drv, 26
.fidb, 277
.fidbf, 74, 280
.gdt, 268, 270
.gif, 257
.gpr, 232
.h, 405, 412
.idx, 406, 407
.jpg, 257
.keep, 238
.ldefs, 396, 404
.o, 280
.opinion, 380, 397–398, 404
.pdf, 406, 407
.png, 257
.prf, 270
.pspec, 397–398, 404
.py, 295–296
.rep, 220, 232
.sinc, 404, 405, 408–426
.sla, 404, 405, 408–418
.slaspec, 404, 405, 408, 412,

415, 418
.sng, 266, 267
.so, 23
.tar, 227
.tool, 255– 257
.txt, 404, 407
.xml, 404
.zip, 219, 220, 227, 337, 338

hijacked (Ghidra Server), 236, 238
loading (Ghidra), 44
private (Ghidra Server), 238, 239

filesystem paths, 342

Index 565

file system mode (import), 281
file system module template

(Eclipse), 323
filesystem paths, 342
file utility, 16, 18, 280
findBytes method, 303
find method, 302, 303
findSupportedLoadSpecs method,

381, 382
first-generation languages, 4
Flat API, 297, 299, 301, 302, 304, 308
FlatProgramAPI class, 297–300, 306

addEntryPoint method, 383, 396
clearListing method, 304
createAsciiString method, 305
createByte method, 304
createData method, 395
createFunction method, 305
createLabel method, 303, 396
createMemoryBlock method, 383, 389,

395
createMemoryReference method, 396
createUnicodeString method, 305
disassemble method, 304
findBytes method, 303
find method, 302, 303
getByte method, 301, 312, 313
getBytes method, 301
getDataAfter method, 302
getDataAt method, 302, 396
getFirstData method, 302
getFirstFunction method, 303, 307
getFirstInstruction method, 302
getFunctionAfter method, 304, 307
getFunctionAt method, 304, 310
getInstructionAfter method, 302
getInstructionAt method, 302
getInt method, 301
getLong method, 302
getReferencesFrom method, 304, 309
getReferencesTo method, 304, 310
getSymbolAt method, 303, 309
getSymbols method, 303
removeFunctionAt method, 304
setEOLComment method, 305

flow, 186, 187, 189, 190, 194
flow arrow, 64
flow types

call, 186, 189
jump, 190
sequential, 186, 187, 189, 190,

198, 205
footprints icon (Version Tracking), 547
forbidden labels and names, 123

For Direct References (Search
menu), 462

For Instruction Patterns (Search
menu), 508, 509, 512

Format option, 263
formatting instruction operands,

133, 135
formatting XREFs, 186
forward navigation (Go To Next

Location)
hotkey alt-right arrow, 92, 93
hotkey option-right arrow (Mac), 93

forward references, 184, 195, 196
forward slice, 435
fourth-generation languages, 4
fragment, 71
frame pointer, 95, 103–106, 113, 114
FrontEndPlugin. See Ghidra

Project window.
full hash, 272
Function Call Graph window, 86, 87,

197, 210–211, 213, 214
satellite view, 67, 68, 199, 208, 209

function call instructions, 12
Function Call Tree window, 87, 214
Function Comparison toolbar, 540
Function Comparison window

Add Functions, 539, 541
Decompile View, 539, 542
Listing View, 539, 542, 543
toolbar, 538–543, 545, 546

Function Graph View, 66
Function Graph window, 66, 197–198,

201, 205, 207, 447
articulation, 200
basic block toolbar

background color, 208
combine vertices, 203
restore group, 203

collapsing blocks, 68, 69
color customization, 208
edge color, 207
Function Graph View zooming,

58, 60, 68
grouping blocks, 68, 203
interaction threshold, 202
nodes, 199, 208, 209
panning, 68, 69
satellite view, 67, 68, 199, 208, 209
toolbar, 202, 203

Function ID analyzer, 73, 272–283
Function ID configuration (Ghidra),

34, 73, 74, 254
Function ID database (FidDb),

272–283, 466

566 Index

Function ID menu, 274
Attach existing FidDb, 275
Choose active FidDbs, 275
Create new empty FidDb, 275, 277
Detach existing FidDb, 275
Function ID plugin

example, 275, 279
Populate FidDb from programs,

275, 277
Function ID plugin, 273

example, 275, 279
Function IDs, 272
Function interface

getBody method, 306–309
getPrototypeString method, 306
getStackFrame method, 306, 307

functions
arguments, 94, 96, 98, 105, 106, 110

identifying, 52
attributes, 137, 138
call mechanics, 94
comparing, 538, 539, 541–543,

545, 546
Create (hotkey F), 137
Delete (hotkey del), 137
Edit (hotkey F), 137–139
epilogue, 95, 100, 103, 105
header, 535
inline, 181, 457, 458
library, 52, 178, 212, 482, 483

getaddrinfo, 148, 149
locating main, 452, 455, 457, 460,

463–466
manipulating, 133, 137
modifying signatures, 433, 434,

436, 437
namespace, 124
non-returning, 436, 437
overloading, 26, 179, 458
parameters, 148, 158, 173, 179,

457, 458
prologue, 95, 100, 102, 104, 105,

110, 375
prototypes, 127, 140, 148, 179, 432
signature, 434, 437, 535, 537,

543, 546
modifying, 433, 435, 436

thunk, 149, 212
variable number of arguments,

97, 179, 432, 433
Functions folder (Symbol Tree), 73, 74
FUN_ prefix, 91, 120, 126
fuzzing, 6

G
Gaobot worm, 19
gcc, 443, 448–451, 453–457, 464
gcc/ld (-s option), 152
GDB (GNU debugger), 11, 478
getAddress method, 298, 310
getaddrinfo, 148, 149
getBody method, 306–309
getByte method, 301, 312, 313
getBytes method, 301
getComment method, 307
getDataAfter method, 302
getDataAt method, 302, 396
getDefaultOptions method, 384
getFirstData method, 302
getFirstFunction method, 303, 307
getFirstInstruction method, 302
getFromAddress method, 299, 310
getFunctionAfter method, 304, 307
getFunctionAt method, 304, 310
getFunctionManager method, 305
getInstructionAfter method, 302
getInstructionAt method, 302
getInt method, 301
getLanguageID method, 306
getListing method, 293, 305, 308, 309
getLong method, 302
getMaxAddress method, 306, 307
getMemory method, 305
getMinAddress method, 306, 307, 309
getMnemonicString method, 306
getName method, 293, 298, 307–310, 381,

388, 392, 394
getNumOperands method, 307
getOffset method, 307–310
getOperandType method, 307
GetProcAddress function (Windows),

483–487
getPrototypeString method, 306
getReferenceManager method, 306
getReferencesFrom method, 304, 309
getReferencesTo method, 304, 310
getReferenceType method, 299, 309, 310
getStackFrame method, 306, 307
getSymbolAt method, 303, 309
getSymbols method, 303
getSymbolTable method, 305, 310
getTier method, 382, 392
getTierPriority method, 382, 388
getToAddress method, 299, 309
Ghidra

Address Type overview bar, 480
CheatSheet.html, 35
directory structure, 36

Index 567

download
releases, 35

educational content, 36
Entropy bar, 62
error

bookmarks, 502
error message

Failed to disassemble, 472
file loading, 44
for IDA users, 551–556
icon, 37
known structure layouts, 171
licenses, 34, 37
logfile, 46, 52
Module

Install Extension, 329, 337
server

directory, 35
installation, 35

source code, 35
source repository, 316
startup script, 37
support documentation, 34–37
tutorials, 35
versions, 35

Ghidra.app.script.GhidraScript,
289, 294

Ghidra Core configuration,
34, 255, 256

Plugin Path, 252
ImporterPlugin, 253

Ghidra data displays, 55
GhidraDev, 315–316, 318, 324, 337, 402,

403, 409
New menu

Ghidra Module Project,
319, 322, 323, 331

Ghidra Script, 317, 319, 321,
326, 327

Ghidra Script Project, 319, 321
GhidraDev menu, 317, 318, 324
GhidraDev_README.html, 316
GhidraDevUser Consent, 317
Ghidra directories

data, 397
data/languages, 397
dist, 337, 338
Ghidra/Features, 316, 326, 334
languages, 397, 404, 407, 409, 415, 418

Ghidra directory structure, 36
docs, 34–37
Extensions, 34, 37
Ghidra, 37
GPL, 37
licenses, 37

server, 37
support, 37

Ghidra extensions
Gradle, 337
install, 338

Ghidra/Features directory, 316, 326, 334
Ghidra GUI, 341, 345–348, 351, 353, 355
Ghidra Help (F1 hotkey), 58, 186, 196,

270, 273, 506, 516, 549
Ghidra Help menu

About, 51
Contents (F1 hotkey), 34

$GHIDRA_HOME, 354
ghidra.ico, 37
Ghidra installation directory, 354
Ghidra Module Extension

Export, 337
Ghidra Module Project, 322

templates, 320, 327, 329
Analyzer, 323, 328, 331
Exporter, 323
FileSystem, 323
Loader, 323, 328
plugins, 323
Processor, 323

Ghidra modules, 315, 322
Ghidra Project menu

Edit
Plugin Path, 227

Edit menu
Tool Options, 227

File menu, 224
Archive Current Project, 225
Delete Project, 225
Import File, 44
New Project, 43, 222

Help menu
About Ghidra, 34

Project
View Project, 229, 231
View Recent, 229
View Repository, 229

Project menu, 229, 231
Ghidra Project window, 41–42, 48, 52,

242, 253
creating projects, 43
Running Tools, 249, 250
Table View, 223
Tool Chest, 249, 257–259, 547
Tool Options

Eclipse Integration, 250
Key Bindings, 245, 250
Recovery, 250
Tool, 250

window, 364, 385, 398

568 Index

Ghidra releases, 35
ghidraRun, 37
Ghidra Script, 319, 321, 326, 327
GhidraScript class, 289, 292, 294, 296

askAddress method, 300
askDirectory method, 301
askFile method, 301
askInt method, 300
askString method, 293, 300
askYesNo method, 300
currentAddress instance variable,

299, 308, 309
currentLocation instance

variable, 299
currentProgram instance variable,

293, 296, 299, 305, 307–310
currentSelection instance variable,

293, 300
goTo method, 301
popup method, 300, 308
printf method, 293, 300, 307,

309, 310
toAddr method, 301, 312, 313

Ghidra Script Project, 321
ghidra_scripts, 286
Ghidra Server, 217, 230, 235, 240

access control, 218, 221, 231
authentication methods, 219, 221,

227, 228
configuration file, 218
Convert to Shared, 231
example, 219
headless analyzer options, 352–353
hostname, 222
installation, 219
IP address, 222
platforms, 219
race condition, 221, 233
server administrator, 224
-u parameter, 220

Ghidra Server project, 235
Ghidra site, 35
Ghidra source code, 35, 316, 549
Ghidra Tools

CodeBrowser, 48–50, 52–54
Version Tracking, 529, 546–549

Ghidra Tools menu
Create Tool

example, 254
Export Tool, 257
Import Tool, 257

Ghidra User Agreement, 34, 37, 38
Ghidra versions, 34
Ghidra workspace, 242, 258

G hotkey (Go To Address/Label),
92, 93, 214

GitHub, 277, 479, 549
Ghidra source code, 35

global arrays, 150, 154, 161
global namespace, 124
global structures, 161, 162, 166
global variable, 151–153, 161, 167
GNU debugger (GDB), 11, 478
GNU gcc/g++, 443, 448–451,

453–457, 464
packed attribute, 160
pack pragma, 160

Go To (hotkey G), 92, 93, 214
goTo method, 301
GPL directory, 37
GPL (GNU General Public License),

34, 37
Gradle Wrapper option, 337
grep, 280
grouping blocks

Function Graph window, 68, 203

H
hardware breakpoints, 477, 489
hashing

full hash, 272
hash function, 272, 487
hash values, 487
specific hash, 272

headless analyzer, 340–341, 345
batch import, 347

example, 346, 359
command line options, 347
error messages, 344
example

launching, 342, 343
Ghidra Server options, 352
launching, 342–344, 347–352, 354,

357–360
readme file, 342, 350, 352
scripting, 355
syntax, 343, 351, 355, 356
wildcards, 350

headless analyzer options
general

-analysisTimeoutPerFile,
350, 351

-cspec, 351, 352
-deleteProject, 349
-import, 343, 344, 347–352, 354,

355, 357–359
-loader, 352
-log, 348

Index 569

-max-cpu, 352
-noanalysis, 344, 348, 353
-overwrite, 348
-processor, 351, 352, 359
-readOnly, 348, 349, 359
-recursive, 349, 358, 359

script
-okToDelete, 354, 355
-postScript, 354, 355, 357–359
-preScript, 354
-process, 343, 348, 351–353, 359
-propertiesPath, 354
-scriptPath, 353, 354, 357–359

server
-commit, 353
-connect, 353
-keystore, 353
-p, 353

headless Ghidra. See headless analyzer.
headless mode. See headless analyzer.
heap-allocated array, 157, 158
heap-allocated structures, 162, 163
Help menu

About Ghidra, 34
Help menu (CodeBrowser), 58
hex editor. See Byte Viewer, 513, 528
H hotkey (Label History), 123, 127
highlighting slices, 435
hijacked file (Ghidra Server), 236, 238
Home scripts (Eclipse), 325, 499
hostname (Ghidra Server), 222
hotkeys, 59

alt-left arrow (Go To Previous
Location), 92, 93

alt-right arrow (Go To Next
Location), 92, 93

C (Clear Code Bytes), 139, 473, 503
[(Create Array), 144
ctrl-L (Retype), 434
ctrl-shift-Z (Redo), 120
ctrl-Z (Undo), 120
D (Disassemble), 140, 374, 378,

473, 503
E (Set Equate), 136
F (Create/Edit Function), 137–139
F1 (Ghidra Help), 34, 58, 186, 196,

270, 273, 506, 516, 549
F3 (Apply Selection), 537
F5 (Program Diff toolbar), 532, 534
G (Go To Address/Label),

92, 93, 214
H (Label History), 123, 127
L (Label), 120, 123–128, 206, 434
option-left arrow (Go To Previous

Location; Mac), 93

option-right arrow (Go To Next
Location; Mac), 93

; (Set Comment), 128–132, 279
shift-C (Compare Selected

Functions), 538, 539,
541–543, 545, 546

shift-[(Create Structure), 166, 167
S (Search), 58, 116, 117, 507–511
T (Choose Data Type), 366

hotkey shift-C (Compare Selected
Functions), 538, 539,
541–543, 545, 546

HTML format export (Ghidra), 523

I
ia.sinc, 409–413, 415, 416, 418–421,

423–425
IDA

Ghidra for IDA users, 551–556
.idata section, 373
IDE (integrated development

environment), 316–318, 327,
328, 333, 340

IL (intermediate language), 418
ImageBase field, 367, 369
IMAGE_DOS_HEADER, 366
IMAGE_NT_HEADERS, 367, 369
IMAGE_SECTION_HEADER, 369, 370, 372
Import dialog, 262, 282
imported function obfuscation, 482
Imported libraries (Symbol Tree), 73
importer loader poll, 364, 381
ImporterPlugin, 253
Import File (Ghidra), 44
-import (headless analyzer), 343, 344,

347–352, 354, 355, 357–359
importing

Batch Import dialog, 282
Batch mode, 226, 227, 282
ELF binaries, 262, 264, 276, 278
files

override recommendations, 262
File System mode, 281
PE files, 262

Import Results Summary, 45, 46, 264
Imports folder (Symbol Tree), 72, 73, 280
Import Tool, 257
index (array), 150, 153, 156, 160, 161, 165
inheritance (C++), 172, 173, 179, 180,

181, 182, 459
inline constructors, 181
inline functions, 181, 457, 458
inlining (compiler variations), 457

570 Index

installing Ghidra
Installation Guide, 35–37
on Linux, 34, 37
on macOS, 34, 37
on Windows, 34, 36

Instruction Info window, 405
Instruction interface

getComment method, 307
getMnemonicString method, 306
getNumOperands method, 307
getOperandType method, 307
toString method, 307

instruction patching, 505, 507, 508,
512, 515, 517, 518, 519

instruction patterns, 508, 509, 512
instruction pattern search, 508–511
Instruction Pattern Search dialog,

509–511
instruction pointer, 471, 477
instruction set architectures, 33
integrated development environment

(IDE), 316–318, 327, 328,
333, 340

Intel Hex format export (Ghidra), 523
Intel x86. See x86, 8
interaction threshold, 202
inter-function alignment gap, 520
intermediate language (IL), 418
intermediate representation (IR), 418
interprocess communication (IPC), 475
IP address, 148
IP address (Ghidra Server), 222
IPC (interprocess communication), 475
IR (intermediate representation), 418
IsDebuggerPresent, 489

J
JDK (Java Development Kit), 37
jump

conditional, 474
cross-reference, 190
flow, 190
hook, 519
table, 7, 10, 11, 445–451
target, 471, 474
to XREF (Function Graph), 208

Jython, 295, 296

K
kernel32.dll, 465

GetModulehandleA, 483, 485, 486
GetProcAddress function, 483–487
LoadLibrary function, 483, 485

key bindings, 245, 246, 250
-keystore (headless analyzer), 353

L
Label, 120, 123–128
Label History, 123, 127
labels, 90, 302

adding, 125, 126, 206
manipulating, 120
navigating, 128
pinned, 127
prefix

DAT_, 91, 120, 126, 144
EXT_, 91, 120, 126
FUN_, 91, 120, 126
LAB_, 91, 120, 126, 131
OFF_, 91, 120, 126
SUB_, 126
UNK_, 91, 120, 126

removing, 127
rules for, 123

Labels folder (Symbol Tree), 74
LAB_ prefix, 91, 120, 126, 131
language/compiler specification,

44, 265, 366, 377, 386, 394,
396–399

architecture size, 263
compiler field, 263
endian field, 263
language field, 263
processor name field, 263
processor variant/mode field, 263

language definition file (ldef), 396, 397
Language field, 263
Language field (Import File), 44
language generations, 4
languages directory, 397, 404, 407, 409,

415, 418
launching headless, 342, 343
layouts, 171
ldd (list dynamic dependencies), 22–26,

483
ldef (language definition file), 396, 397
L hotkey (Label), 120, 123–128,

206, 434
libc, 464, 465
libraries

functions, 52, 148, 178, 482, 483
dynamically linked, 212

imported, 73
libc, 282
libc.a, 280, 282, 283
libcrypto.so, 264
lib.so.6, 264

Index 571

libssl.so, 264
loading external, 45
shared, 482
type libraries, 149

Library Family Name (populating
FidDbs), 277

library functions
getaddrinfo, 148, 149

Library Variant (populating
FidDbs), 277

Library Version (populating
FidDbs), 277

licenses, 34, 37
licenses directory, 37
lifting, 418
linear sweep disassembly, 9–13
linker, 152
Link options (Eclipse), 322, 324, 325
Linux, 490, 491, 495, 496
list dynamic dependencies (ldd), 22–26,

483
Listing View (Function Comparison),

539, 542, 543
Listing window, 52, 427, 428, 430, 431,

436, 437, 442, 472, 481, 482,
500, 503, 509, 514, 516, 517,
519, 520, 522, 526

editing, 247
rearranging fields, 247

Listing window toolbar
Browser Field Formatter, 65, 66,

133, 134, 247, 248, 419
little-endian architecture, 11
liveness, 173
-loader (headless analyzer), 352
loader module, 365, 375, 376, 379, 387,

397, 398, 400
example, 381–384, 388, 392–394

loader module template (Eclipse),
323, 328, 379, 397

loaders, 44, 263
creating modules, 376, 379
examples

unknown file type (PE),
366–375

shellcode loader, 391–400
importer poll, 364, 381
module template, 379, 397
option fields, 47
Raw Binary, 46, 48, 363–366, 368,

375–379, 382, 388, 391, 523
unknown file types, 365

load external libraries, 45
LoadLibrary function, 483, 485
load method, 383, 388

loadSpecs list, 388, 393, 394
local_ prefix, 120, 122, 123, 135, 136
local variables, 89, 94, 95, 102–108, 110,

111, 114, 152, 154, 156, 158,
535, 547

identifying, 52
layout, 101

locating main function, 452, 455, 457,
460, 463–466

log file, 46, 52
-log (headless analyzer), 348
lossy, 5, 523

M
MAC address, 488
machine language, 4
macOS, 34, 37, 93, 491
magic file, 16
magic number, 16, 18, 363, 367, 381,

393, 398
main

locating, 452, 455, 457, 460, 463,
464, 465, 466

Make Char Array, 144
Make String, 144
malloc function (C), 157
malware, 6, 470, 476, 479, 487–489, 504
malware analysis, 6
manipulating functions, 133, 137
MASM (Microsoft Assembler), 9
-max-cpu (headless analyzer), 352
meaningful names, 120, 125
member functions

nonstatic, 99, 173, 458
static, 90, 99, 105

memory allocation, 158, 175
dynamic, 157, 178

memory blocks, 85, 367–372, 383,
389, 395

Memory class, 301, 302
memory footprint, 513, 521
memory layout

base address, 47
file offset, 47

memory leaks, 177
Memory Map window, 48, 85, 86

Add Block, 370
Expand Down, 373, 374
Move Block, 373
Set Image Base, 369
Split Block tool, 370
toolbar, 368

memory references, 195
memory (search), 507

572 Index

memory search, 115, 117, 507
merging analyzed files, 534
Metasploit, 30
Microsoft Assembler (MASM), 9
Microsoft C/C++, 173, 176, 178, 181,

443, 448–451, 453, 456, 459,
463, 465

pack pragma, 160
MIPS, 10, 491, 496

instruction, 94, 95, 113
mnemonics, 4, 8, 302, 511, 516
modifying word models, 267
modules

analyzer, 323, 328, 329, 331, 337
loader, 365, 375, 376, 379, 387, 397,

398, 400
processor, 401–405, 407–409, 415,

418, 424, 426
modulo operator (compiler variations),

452, 453, 454
monitor, 293, 300, 307–309
monitor.isCancelled, 293, 300, 307–309
Move Block (Memory Map toolbar), 373
Move (display windows), 243
MS-DOS header, 366
multiple inheritance, 180

N
name decoration. See name

mangling, 179
name mangling (C++), 27, 179, 180,

181, 458, 459
names, 92, 108–110, 112, 116, 124, 127,

132, 145
examples, 126
manipulating, 120
meaningful, 120, 125
prefix

local_, 120, 122, 123, 135, 136
param_, 120–123, 130, 131, 139

rules for, 123
symbolic, 90, 111

namespace, 125–127
function, 124
global, 124

Namespaces folder (Symbol Tree), 75
naming convention, 91

Ghidra decompiler, 109
NASM (Netwide Assembler), 29
National Security Agency (NSA), 33
navigable objects, 185
navigating labels, 128
navigating Package Explorer, 324

Navigation bar, 62
navigation history, 92, 93
navigation marker, 62
Navigation toolbar (CodeBrowser), 70
navigational target, 90–93, 471, 474
ndisasm, 29, 30
Netwide Assembler (NASM), 29
New File Archive, 271
new operator (C++), 157, 175, 178
New Project Archive, 272
New Project (Ghidra), 43, 222
nm utility, 20, 21, 25, 27
-noanalysis (headless analyzer),

344, 348, 353
no-clobber register, 101, 104
nodes (Function Graph), 184, 199, 203,

205, 208, 209
nonbranching instruction, 186
Non-eXecutable (NX), 330
nonlinear flow, 64
non-returning functions, 437

Non-Returning Functions-
Discovered, 436

Non-Returning Functions-
Known, 436

nonshared projects, 34, 224, 232, 240
nonstatic, 99, 173, 458
NSA (National Security Agency), 33
NX (Non-eXecutable), 330

O
-O2 option (gcc), 456, 457
obfuscation, 18, 470, 482, 489, 490

imported function, 482
obfuscated control flow, 475
obfuscated instruction, 478
utilities

ASPack, 19, 479, 496
ASProtect, 479
tElock, 476, 478, 479, 483, 485,

486, 496
UPX, 275–280, 282, 479–486, 496
VMProtect, 479

objdump, 11, 24, 25, 29, 90, 111, 483
object file, 152
object life cycle (C++), 177
object-oriented, 172, 174
OFF_ prefix, 91, 120, 126
offsets, 150, 153, 158–164, 166, 168,

170–172
-okToDelete (headless analyzer), 354, 355
OllyDbg, 478
one-shot analyzers, 265, 279

Index 573

opcode, 8, 410, 411, 413, 414, 419,
421, 422

opcode obfuscation, 478
Open (display windows), 242
Open File Archive, 268
OpenJDK, 219
open source, 33
OpenSSL, 264, 270
operating systems

Linux, 34, 37, 490, 491, 495, 496
macOS, 34, 37, 491
Windows, 34, 36, 47, 476, 477, 479,

480, 483, 485, 487–489, 496
opinion file, 381, 397, 398
opinion service, 393, 394
optimized code, 99, 109, 453, 455, 466
option-left arrow hotkey (Go To

Previous Location; Mac), 93
option-right arrow hotkey (Go To Next

Location; Mac), 93
Options frame (analyzers), 50
organizationally unique identifier

(OUI), 488
otool, 24, 25, 29
OUI (organizationally unique

identifier), 488
overloaded functions, 26, 179
Override fallthrough, 473
overriding function signatures

Override Signature, 433
oversized code patches, 519
overview bar, 62, 480, 481, 482
-overwrite (headless analyzer), 348

P
Package Explorer, 322–323, 325–326, 331

navigating, 324
packed attribute, 160
packet captures, 46
pack pragma, 160
padding bytes, 160, 170
panning (Function Graph View), 68
parameters. See also arguments. 94–112,

148, 158, 179, 457, 458
register-based, 113

liveness, 173
renaming, 121–125, 153, 434

param_ prefix, 120–123, 130, 131, 139
parsing C header files

Parse C Source, 269–271
Parse to File, 270
Parse to Program, 270

passwords, 221, 230, 231

patching, 506, 509, 520–522, 525, 528
basic patches

assembler, 515
byte viewer, 513
scripting, 515

complex patches, 519
example, 525
export formats, 522
generating patched files, 523
instructions, 505, 507, 508, 512,

515, 517–519
oversized code patches, 519
patched file, 529–531, 534
Patch Instruction, 515, 517, 527
script-assisted export, 523
scripted exports, 523

p-code, 411, 417–419, 424, 425, 428
pcodeop, 410, 411, 418
PDB (Program Database), 50, 53
PE files,

analyzing, 110
base virtual address, 367, 369
code caves, 519, 520
Characteristics field, 374
file format, 8, 17, 365
headers, 18, 189
IMAGE_DOS_HEADER, 366
IMAGE_NT_HEADERS, 367, 369
IMAGE_SECTION_HEADER, 369, 370, 372
importing, 262
loader priority, 382, 385, 386
loading (manually) example,

366–375
loading options, 45, 50
locating main, 463, 465, 466
patching, 523
PDB (Program Database), 50, 53
utilities, 17, 25, 26, 29

PEiD (tool), 19, 20
PE Tools (tool), 18, 19, 20
-p (headless analyzer), 353
pinned labels, 127
PKI certificates, 219, 221, 227, 228
plate comments, 130, 279, 302
Platforms (Ghidra Server), 219
plugin path, 252
plugins, 33, 34, 48, 242, 316, 402

C-Parser, 269, 270
dependencies, 256
FidDbPlugin, 274
FrontEndPlugin, 250
module template (Eclipse), 323
Plugin Path, 227

pointer arithmetic, 172

574 Index

pointer cross-reference, 191, 192
PointerToRawData, 370
polymorphism (C++), 172, 180
Populate Fid Database, 275, 277
Populate FidDb from programs,

275, 277
populating FidDbs

Populate Fid Database
Base Library, 277
Common Symbols File, 278
Fid Database, 275, 277
Language, 263, 277
Library Family Name, 277
Library Variant, 277
Library Version, 277
Root Folder, 277

Populate FidDb from programs,
275, 277

popup method, 300, 308
Portable Executable (PE) format.

See PE files, 8
post comments, 130, 302
-postScript (headless analyzer), 354,

355, 357–359
pre comments, 130, 131, 302
Pre-Comment section, 537, 538
prefixes, 120, 126
-preScript (headless analyzer), 354
preventing debugging, 489
printf method, 300, 307, 309, 310
println method, 293, 300
private files (Ghidra Server), 238, 239
private headers, 24
-process (headless analyzer), 343, 348,

351–353, 359
Process Monitor (procmon), 488
-processor (headless analyzer), 351,

352, 359
processor manuals, 5, 58, 375, 406,

407, 409
processor modules, 401–403, 405, 408,

418, 426
adding an instruction, 409
adding a register, 424
files

buildLanguage.xml, 404
README.txt, 404
sleighArgs.txt, 404

modifying, 407
modifying an instruction, 415
template (Eclipse), 323

processor name field, 263

processors
ARM, 94–96, 113, 405, 418, 491
MIPS, 491, 496
SuperH, 426
x86, 474, 476–478, 488, 490, 491,

494, 496
processor specification language, 36
processor type, 263
processor variant/mode field, 263
process tracing. See ptrace, 490
procmon (Process Monitor), 488
Program API, 297, 302, 304–306
Program class, 297, 299

getFunctionManager method, 305
getLanguageID method, 306
getListing method, 293, 305,

308, 309
getMaxAddress method, 306, 307
getMemory method, 305
getMinAddress method, 306, 307, 309
getReferenceManager method, 306
getSymbolTable method, 305, 310

Program Database (PDB), 50, 53
Program Differences, 530
Program Diff tool, 530–532, 534, 538,

540, 541, 546, 547, 549
Program Diff toolbar (hotkey F5), 532

Apply Differences, 534, 537, 538
Program Diff View, 532
program entry point, 8
program section, 71
program slice, 435
program stack pointer, 94, 95, 97, 98,

101–106, 108, 111, 113, 500
program text search, 115, 508
Program Trees window, 71, 214, 519
project (Ghidra Server), 235
Project menu (Ghidra Project), 229, 231
project repository, 221, 223, 232
projects

nonshared, 34, 224, 232, 240
shared, 34
shared (Ghidra Server), 225

prologue, 95, 100, 102, 104, 105, 110, 375
-propertiesPath (headless analyzer), 354
ptrace, 490
pure virtual function, 174, 175
python_basics.py, 295

Q
Quick Fix options (Eclipse), 315, 320, 321
QuickUnpack, 480

Index 575

R
race condition (Ghidra Server), 221, 233
Raw Binary loader, 46, 48, 363–366,

368, 375–379, 382, 388,
391, 523

option fields, 47
read cross-reference, 191
readelf, 25
Readme files

analyzeHeadlessREADME.html, 34,
342, 350, 352

GhidraDev_README.html, 316
server/svrREADME.html, 219–221, 228

README.txt (processor module), 404
-readOnly (headless analyzer),

348, 349, 359
rearranging windows, 60, 68

Close, 242
Move, 243
Open, 242
redock, 243
Resize, 243
Stack, 243
Undock, 243

recognizing data structure use, 150
recursion, 94, 337
recursive descent disassembly,

11, 13, 140
-recursive (headless analyzer),

349, 358, 359
Red Pill, 488
redock (display windows), 243
Redo (ctrl-shift-Z hotkey), 120
reference (array), 150, 160
Reference Interface

getFromAddress method, 299, 310
getReferenceType method,

299, 309, 310
getToAddress method, 299, 309

references
Add/Edit references, 195
Add Reference dialog, 196
Add Reference from, 195
back, 184, 185, 195
cross-references, 64, 80, 86,

183–188, 190–193, 195, 196,
401, 459–463, 508, 512,
521, 523

explicit forward, 195
external, 195
formatting XREFs, 186
forward, 184, 195, 196
memory, 195
register, 195

stack, 195
to symbols, 153
XREF, 64, 69, 185–193

References To window, 194
Refresh BuiltInTypes, 268
register-based parameters, 113

liveness, 173
register references, 195
register transfer language (RTL), 418
register transition, 473
register-to-memory transfer

instructions, 11
registry, 479, 488
registry keys, 488
RegOpenKey, 148
regparm, 100
relative virtual address (RVA),

369, 372, 374
release versions, 452
relocation table, 524
removeFunctionAt method, 304
removing a label, 127
renaming parameters, 153, 434
renaming parameters and variables,

121, 122, 124, 125
renaming variables, 153
repeatable comments, 128, 131, 302
Resize (display windows), 243
Restore Defaults, 245
restore group (Function Graph), 203
return address, 94, 98, 103, 105, 106,

108, 112, 113
return instructions, 13
retyping variables, 434, 440
reversing

C++, 172
tools, 15

rollback capabilities, 487
ROM images, 30
Root Folder (populating FidDbs), 277
ROP gadget

analyzer module example, 329, 330,
332, 333, 335, 336

RTL (register transfer language), 418
RTTI (Runtime Type Identification),

460, 461
analyzer, 180, 181
inheritance, 459

Running Tools, 249, 250
Run options (Eclipse), 327, 337
runtime stack, 94, 95, 100
Runtime Type Identification. See RTTI.
RVA (relative virtual address),

369, 372, 374

576 Index

S
sandbox, 479, 480, 487, 488
satellite view (Graphs), 67, 68, 199,

208, 209
save layout changes, 248
Save Tool As, 257
scripting

headless mode, 355
Jython, 295, 296

Script Manager, 315, 317, 319, 321,
326, 327

Script Manager window, 286, 288–290,
292, 294, 295, 298

basic editor, 291
Eclipse, 287, 291, 313

script-oriented deobfuscation, 491
-scriptPath (headless analyzer), 353,

354, 357–359
Search Memory, 116, 117
Search menu (CodeBrowser), 58, 114

For Direct References, 462, 508
For Instruction Patterns,

508, 509, 512
Search All, 510, 511

For Strings, 142, 266, 267
Memory, 116, 117, 507
Program Text, 115, 508

Next, 115
Previous, 115
Search All, 115

second-generation languages, 4
section headers, 24
sections

.bss, 71, 150, 153

.data, 71, 150, 373

.idata, 373

.text, 62, 71, 370, 372
self-modifying code, 471, 491
semaphore, 475
sequential flow, 186, 187, 189, 190,

198, 205
sequential flow instructions, 11
server administrator (Ghidra

Server), 224
server directory, 35
server/server.conf (Ghidra Server), 218
server/svrREADME.html, 219–221, 228
sessions, 548
setByte, 506
Set Comment, 128, 129, 132
Set Data Type submenu, 141

Array, 156
setEOLComment method, 305
Set Equate, 136

Set Image Base (Memory Map toolbar),
369

Set Language, 367
Set Register Values, 473
-s (gcc/ld), 152
shared projects, 34, 217, 218, 224,

235–237, 240
accessing, 221, 230, 231
archiving, 225
authentication, 219, 221, 227, 228,

230, 231
creating (Ghidra Server), 221, 222
deleting, 225
merging files

no conflict, 234
potential conflict, 234

passwords, 221, 230, 231
PKI, 219, 221, 227, 228
project information, 231
projects and repositories, 221, 223,

229, 232
version control, 232–238
viewing project information, 231

shellcode, 363, 365, 375–379, 381–383,
385–394, 396–400, 485

shift-[hotkey (Create Structure),
166, 167

Shiva, 471, 475, 490, 491
S hotkey (Search), 58, 116, 117, 507–511
Simplify predication, 428, 430
.sinc file, 400–425
slaspec, 428, 515, 516
.slaspec file, 404, 405, 408, 412
SLEIGH, 36, 404, 405

attaching variables, 422, 425
constructors, 408
Editor (Eclipse), 408
ia.sinc, 409–425
register address space, 420
register definitions, 420
specification (slaspec), 428, 515, 516
tokens, 422
tokens and fields, 421–424

sleighArgs.txt, 404
Snapshot icon, 64, 76, 79
software breakpoints, 490
software Interoperability, 7
source code, 444, 451, 452, 455, 457, 462
source code (Ghidra), 316
source code recovery, 5
source repository (Ghidra), 316
specific hash, 272
specifying data types

Create Array (hotkey [), 144
cycle groups, 141

Index 577

Split Block tool (Memory Map
toolbar), 370

stack, 471, 474–476, 492, 493, 495,
496, 500

stack-allocated array, 154, 162
example, 155

stack-allocated parameters, 172
stack-allocated structures, 162
Stack analyzer, 94
Stack (display windows), 243
stack frame, 52, 93–95, 100–106,

108–114, 401
stack frame analysis

decompiler-assisted, 109
Decompiler Parameter ID, 109, 113

PE files, 110
frame pointer, 95, 103–106, 113, 114
in Listing view, 106
register-based parameters, 113
Stack Frame Editor, 111, 112

stack-manipulation operations, 11
stack pointer, 94–98, 101–106, 108, 111,

113, 500
stack references, 195
stack variables, 120–124, 132
stack view, 105, 108, 111, 112
stale graph, 205
standard calling convention, 98
_start, 463–465
static analysis, 6, 12, 90, 105, 486
static array assignments, 156
static linking, 22, 23, 213, 214, 465, 466
static member functions (C++), 99
static storage class (C++), 177
stdcall, 98, 99, 102
storage class, 177
strcpy function (C), 194
stream disassemblers

diStorm, 29
NASM (Netwide Assembler), 29
ndisasm, 29, 30

stream socket, 149
String Search results window, 265, 461
strings utility, 28

options, 29
stripped binary, 18, 152, 461, 465
structs. See structures.
Structure Editor window, 168–171, 442
structure pointers, 171
structures, 147, 182

applying structure layouts, 171
arrays of, 164
creating, 160, 166, 167
decompiled, 160
disassembled, 157, 160, 163, 165

editing, 168–171
editing members, 169
field access, 159, 163
field alignment, 160, 170
globally allocated, 161, 162, 166
heap-allocated, 162

disassembled, 157, 163, 165
layouts, 163, 164, 171
member access, 159, 171
offsets, 150, 153, 158–164, 166, 168,

170–172
recognizing use, 150
size, 163
stack-allocated, 162
starting address, 153, 158, 162
Structure Editor window,

168–169, 171
Byte Offset, 170
Component Bits, 170

symbolic references, 150, 153,
158–164, 166, 168, 170–172

Union Editor window, 168
within structures, 164

SUB_ prefix, 126
superclasses, 175
SuperH4, 426
support directory (Ghidra), 37
support documentation, 34–37
svrAdmin, 219–221
Swing Look And Feel, 250, 251
switch statement

compiler variations, 444–451
symbolic names, 90, 111
Symbol Interface

getAddress method, 298, 310
getName method, 293, 298, 307–310

Symbol option (annotations), 153
Symbol References window, 82–85, 90,

194, 195
symbols

renaming, 121, 122, 124, 125, 153
symbol table, 25, 52, 152
Symbol Table window, 82–86, 194
Symbol Tree window, 48, 49, 58–60,

90–92, 121–124, 148, 149,
181, 192, 214, 272–280,
459–461

Classes folder, 74, 75, 192, 459, 460
Exports folder, 73
Functions folder, 73, 74
imported libraries, 73
Imports folder, 72, 73, 280
Labels folder, 74
Namespaces folder, 75

synchronization primitives, 475

578 Index

syntax (headless analyzer), 343, 351,
355, 356

Sysinternals, 488
system call, 99, 100

T
table lookup, 444
Table View (Ghidra Project window), 223
targets (navigational), 90–93, 471, 474
TaskMonitor, 300
task tag (Eclipse), 320, 323, 328,

332, 333
tElock, 476, 478, 479, 483, 485,

486, 496
ternary operator (compiler variations),

455, 456
testing modules (Eclipse), 337, 385
.text section, 62, 71, 370, 372, 519, 520
third-generation languages, 4
third-party components, 34, 37
thiscall, 99, 173
this pointer, 99, 173, 176, 178, 181
T hotkey (Choose Data Type), 366
threads, 475
thunk function, 149, 212
Tip of the Day, 42
toAddr method, 301, 312, 313
TODO comments, 320, 332–334, 403,

410, 411
Toggle Overview Margin, 62
token (SLEIGH), 421–424
Tool Chest, 249, 257–259, 547
Tool Options

Restore Defaults, 245
Tool, 250

Tool Options window, 54, 244, 246
tools, 242

connecting Ghidra tools, 68
c++filt utility, 26, 27
dumpbin utility, 24–26, 29, 483
file utility, 16, 18, 280
Ghidra

Program Diff, 530–532, 534,
538, 540, 541, 546, 547, 549

GNU debugger (GDB), 11, 478
ldd utility, 22–26, 483
nm utility, 20, 21, 25, 27
objdump utility, 11, 24, 25, 29, 90,

111, 483
otool utility, 24, 25, 29
PeID (utility), 19, 20
PE Tools (utility), 18–20
Running Tools, 249, 250

strings utility, 28, 29, 280
Tool Chest, 249, 257–259, 547
VBinDiff, 528, 530
WinDbg, 11
WinDiff, 530

Tools menu (Ghidra)
Create, 253, 254
custom, 253
Save Tool As, 257

Tools menu (CodeBrowser), 56, 58, 68
Tools Options

Color Editor, 244
toString method, 307
-t strings option, 29
tutorials

Python scripting, 295
Eclipse, 316, 317
Ghidra, 35
Java, 316, 317

typeid, 180, 181, 458
type libraries, 149

U
Ultimate Packer for eXecutables.

See UPX.
unconditional branching

instructions, 11
undefined data, 507
Undock (display windows), 243
Undo (ctrl-Z hotkey), 120
ungroup vertices (Function Graph), 203
union construct, 168
Union Editor window, 168
union type, 168
unknown file analysis, 365
unknown file formats, 360
unknown processor architectures, 360
UNK_ prefix, 91, 120, 126
unpack, 482, 495, 498, 501–503
unpatched file, 530, 534
unzip, 219, 220
-u parameter (Ghidra Server), 220
UPX, 275–280, 282, 479, 481,

483–486, 496
decompression stub, 482
packer, 276, 480
unpacker, 482

user32.dll
MessageBoxA, 483

user agreement (Ghidra), 34, 37, 38
$USER_HOME, 354
user home directory, 354
utilization rate, 445

Index 579

V
validateOptions method, 384
variable indices, 151, 153
variable number of arguments, 97, 179,

432, 433
variables

global, 151–153, 161, 167
layout, 101
local, 89, 94, 95, 101–108, 110, 111,

114, 152, 154, 156, 158
renaming, 121, 122, 124, 125, 153

VBinDiff, 528, 530
version control, 232–233, 235–238

merging files, 234
no conflict, 234
potential conflict, 234

version tracking, 233
Version Tracking tool (Ghidra), 529, 546

correlators, 547–549
footprints icon, 547
sessions, 548
Tool Chest, 547

vertices. See nodes.
vftables (C++), 181, 182, 191, 192, 194,

459, 460, 462, 463
indexing, 176
pointer, 173–176, 178, 179

viewing
project information, 231
projects, 229
repositories, 229

View Project (Ghidra Project), 229, 231
View Recent (Ghidra Project), 229
View Repository (Ghidra Project), 229
virtual functions (C++), 173–179, 191,

192, 195, 459, 460, 463
virtualization, 479

detecting
processor-specific behavioral

changes, 488
virtualization-specific

hardware, 488
virtualization-specific

software, 487
virtual machine extension (VMX),

408–411
virtual machine (VM), 487, 488
Visual Studio. See Microsoft C/C++,

452, 453, 454, 456
VM. See virtual machine.
VMProtect, 479
VMware, 487, 488

VMware Tools, 488
VMX (virtual machine extension),

408–411
volatile keyword, 455
vulnerabilities, 6, 505
vulnerability analysis, 6

W
wildcards, 350, 510
WinDbg, 11
WinDiff, 530
windows

changing appearance, 250, 251
rearranging, 60, 68, 242

Windows, 47, 476, 477, 480, 483, 485,
487, 496

API, 166
GUI, 489
registry

RegOpenKey, 148
registry keys, 479, 488
SDK, 269
Sysinternals, 488

Windows Subsystem for Linux (WSL),
16, 17, 25

WinMain, 463
winnt.h, 477
Wireshark, 488, 489
word models, 142, 262, 265–266, 284

modifying, 267
workspace

example, 258
write cross-reference, 191

X
x86

assembly syntax
AT&T vs. Intel, 9

instruction set, 8, 29
obfuscated binaries, 474–496
processor files

ia.sinc, 409–425
x86.idx, 406
x86-64.sla, 412, 415, 416
x86-64.slaspec, 412
x86.slaspec, 412

registers
debugging (DR0–DR7), 477
register-based parameters, 113

stack frame analysis, 94–105
Z flag, 474

580 Index

XML format export (Ghidra), 523
XREF, 64, 69, 185–193
XREFs Field edit window, 186
XRefs window, 193

Z
Z flag (x86), 474
zip export format (Ghidra), 522
zooming (Function Graph View),

58, 60, 68

RESOURCES
Visit https://nostarch.com/ghidrabook/ for errata and more information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

PRACTICAL MALWARE
ANALYSIS
The Hands-On Guide to Dissecting
Malicious Software
by michael sikorski and
andrew honig

february 2012, 800 pp., $59.95
isbn 978-1-59327-290-6

ROOTKITS AND BOOTKITS
Reversing Modern Malware and Next
Generation Threats
by alex matrosov, eugene
rodionov, and sergey bratus

may 2019, 448 pp., $49.95
isbn 978-1-59327-716-1

A BUG HUNTER'S DIARY
A Guided Tour Through the Wilds of
Software Security
by tobias klein

november 2011, 208 pp., $39.95
isbn 978-1-59327-385-9

PRACTICAL BINARY ANALYSIS
Build Your Own Linux Tools for Binary
Instrumentation, Analysis, and
Disassembly
by dennis andriesse

december 2018, 456 pp., $49.95
isbn 978-1-59327-912-7

More no-nonsense books from NO STARCH PRESS

THE IDA PRO BOOK, 2ND
EDITION
The Unofficial Guide to the World's Most
Popular Disassembler
by chris eagle

july 2011, 672 pp., $69.95
isbn 978-1-59327-289-0

MALWARE DATA SCIENCE
Attack Detection and Attribution
by joshua saxe and hillary
sanders

september 2018, 272 pp., $49.95
isbn 978-1-59327-859-5

Index 323

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

The result of more than a decade of research and
development within the NSA, the Ghidra platform
was developed to address some of the agency’s most
challenging reverse-engineering problems. With the
open-source release of this formerly restricted tool
suite, one of the world’s most capable disassemblers
and intuitive decompilers is now in the hands of
cybersecurity defenders everywhere — and The Ghidra
Book is the one and only guide you need to master it.

In addition to discussing RE techniques useful in
analyzing software and malware of all kinds, the book
thoroughly introduces Ghidra’s components, features,
and unique capacity for group collaboration. You’ll
learn how to:

•	Navigate a disassembly

•	Use Ghidra’s built-in decompiler to expedite analysis

•	Analyze obfuscated binaries

•	Extend Ghidra to recognize new data types

•	Build new Ghidra analyzers and loaders

•	Add support for new processors and instruction sets

•	Script Ghidra tasks to automate workflows

•	Set up and use a collaborative reverse engineering
environment

Designed for beginner and advanced users alike,
The Ghidra Book will effectively prepare you to meet
the needs and challenges of RE, so you can analyze
files like a pro.

A B O U T T H E A U T H O R S

Chris Eagle has been reverse engineering software
for 40 years. He is the author of The IDA Pro Book
(No Starch Press) and is a highly sought-after provider
of reverse engineering training.

Dr. Kara Nance is a private security consultant and has
been a professor of computer science for many years.
She has given numerous talks at conferences around
the world and enjoys building Ghidra extensions as
well as providing Ghidra training.

D A N C E
W I T H T H E
D R A G O N

$59.95 ($78.95 CDN)

	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	About This Book
	Who Should Read This Book?
	What’s in This Book?
	Part I: Introduction
	Part II: Basic Ghidra Usage
	Part III: Making Ghidra Work for You
	Part IV: A Deeper Dive
	Part V: Real-World Application

	Part I: Introduction
	Chapter 1: Introduction to Disassembly
	Disassembly Theory
	The What of Disassembly
	The Why of Disassembly
	Malware Analysis
	Vulnerability Analysis
	Software Interoperability
	Compiler Validation
	Debugging Displays

	The How of Disassembly
	A Basic Disassembly Algorithm
	Linear Sweep Disassembly
	Recursive Descent Disassembly

	Summary

	Chapter 2: Reversing and Disassembly Tools
	Classification Tools
	file
	PE Tools
	PEiD

	Summary Tools
	nm
	ldd
	objdump
	otool
	dumpbin
	c++filt

	Deep Inspection Tools
	strings
	Disassemblers

	Summary

	Chapter 3: Meet Ghidra
	Ghidra Licenses
	Ghidra Versions
	Ghidra Support Resources
	Downloading Ghidra
	Installing Ghidra
	The Ghidra Directory Layout
	Starting Ghidra

	Summary

	Part II: Basic Ghidra Usage
	Chapter 4: Getting Started with Ghidra
	Launching Ghidra
	Creating a New Project
	Ghidra File Loading
	Using the Raw Binary Loader

	Analyzing Files with Ghidra
	Auto Analysis Results

	Desktop Behavior During Initial Analysis
	Saving Your Work and Exiting

	Ghidra Desktop Tips and Tricks
	Summary

	Chapter 5: Ghidra Data Displays
	CodeBrowser
	CodeBrowser Windows
	The Listing Window
	Creating Additional Disassembly Windows
	Ghidra Function Graph View
	The Program Trees Window
	The Symbol Tree Window
	The Data Type Manager Window
	The Console Window
	The Decompiler Window

	Other Ghidra Windows
	The Bytes Window
	The Defined Data Window
	The Defined Strings Window
	The Symbol Table and Symbol References Windows
	The Memory Map Window
	The Function Call Graph Window

	Summary

	Chapter 6: Making Sense of a Ghidra Disassembly
	Disassembly Navigation
	Names and Labels
	Navigation in Ghidra
	Go To
	Navigation History

	Stack Frames
	Function Call Mechanics
	Calling Conventions
	Additional Stack Frame Considerations
	Local Variable Layout
	Stack Frame Examples

	Ghidra Stack Views
	Ghidra Stack Frame Analysis
	Stack Frames in Listing View
	Decompiler-Assisted Stack Frame Analysis
	Local Variables as Operands
	The Ghidra Stack Frame Editor

	Searching
	Search Program Text
	Search Memory

	Summary

	Chapter 7: Disassembly Manipulation
	Manipulating Names and Labels
	Renaming Parameters and Local Variables
	Renaming Labels
	Adding a New Label
	Editing Labels
	Removing a Label
	Navigating Labels

	Comments
	End-of-Line Comments
	Pre and Post Comments
	Plate Comments
	Repeatable Comments
	Parameter and Local Variable Comments
	Annotations

	Basic Code Transformations
	Changing Code Display Options
	Formatting Instruction Operands
	Manipulating Functions
	Converting Data to Code (and Vice Versa)

	Basic Data Transformations
	Specifying Data Types
	Working with Strings
	Defining Arrays

	Summary

	Chapter 8: Data Types and Data Structures
	Making Sense of Data
	Recognizing Data Structure Use
	Array Member Access
	Structure Member Access

	Creating Structures with Ghidra
	Creating a New Structure
	Editing Structure Members
	Applying Structure Layouts

	C++ Reversing Primer
	The this Pointer
	Virtual Functions and Vftables
	The Object Life Cycle
	Name Mangling
	Runtime Type Identification
	Inheritance Relationships
	C++ Reverse Engineering References

	Summary

	Chapter 9: Cross-References
	Referencing Basics
	Cross-References (Back References)
	References Example

	Reference Management Windows
	XRefs Window
	References To
	Symbol References
	Advanced Reference Manipulation

	Summary

	Chapter 10: Graphs
	Basic Blocks
	Function Graphs
	Function Call Graphs
	Trees
	Summary

	Part III: Making Ghidra Work for You
	Chapter 11: Collaborative SRE
	Teamwork
	Ghidra Server Setup
	Shared Projects
	Creating a Shared Project
	Project Management

	Project Window Menus
	File
	Edit
	Project

	Project Repository
	Version Control
	Example Scenario

	Summary

	Chapter 12: Customizing Ghidra
	CodeBrowser
	Rearranging Windows
	Editing Tool Options
	Editing the Tool
	Special Tool Editing Features
	Saving the CodeBrowser Layout

	Ghidra Project Window
	Tools
	Workspaces
	Summary

	Chapter 13: Extending Ghidra’s Worldview
	Importing Files
	Analyzers
	Word Models
	Data Types
	Creating New Data Type Archives

	Function IDs
	Function ID Plugin
	Function ID Plugin Example: UPX
	Function ID Plugin Example: Profiling a Static Library

	Summary

	Chapter 14: Basic Ghidra Scripting
	Script Manager
	Script Manager Window
	Script Manager Toolbar

	Script Development
	Writing Java Scripts (Not JavaScript!)
	Edit Script Example: Regex Search
	Python Scripts
	Support for Other Languages

	Introduction to the Ghidra API
	The Address Interface
	The Symbol Interface
	The Reference Interface
	The GhidraScript Class
	The Program Class
	The Function Interface
	The Instruction Interface

	Ghidra Scripting Examples
	Example 1: Enumerating Functions
	Example 2: Enumerating Instructions
	Example 3: Enumerating Cross-References
	Example 4: Finding Function Calls
	Example 5: Emulating Assembly Language Behavior

	Summary

	Chapter 15: Eclipse and GhidraDev
	Eclipse
	Eclipse Integration
	Starting Eclipse
	Editing Scripts with Eclipse

	GhidraDev Menu
	GhidraDev > New
	Navigating the Package Explorer

	Example: Ghidra Analyzer Module Project
	Step 1: Define the Problem
	Step 2: Create the Eclipse Module
	Step 3: Build the Analyzer
	Step 4: Test the Analyzer Within Eclipse
	Step 5: Add the Analyzer to Our Ghidra Installation
	Step 6: Test the Analyzer Within Ghidra

	Summary

	Chapter 16: Ghidra in Headless Mode
	Getting Started
	Step 1: Launch Ghidra
	Steps 2 and 3: Create a New Ghidra Project in a Specified Location
	Step 4: Import a File to the Project
	Steps 5 and 6: Auto Analyze the File, Save, and Exit
	Options and Parameters

	Writing Scripts
	HeadlessSimpleROP
	Automated FidDb Creation

	Summary

	Part IV: A Deeper Dive
	Chapter 17: Ghidra Loaders
	Unknown File Analysis
	Manually Loading a Windows PE File
	Example 1: SimpleShellcode Loader Module
	Step 0: Take a Step Back
	Step 1: Define the Problem
	Step 2: Create the Eclipse Module
	Step 3: Build the Loader
	Step 4: Add the Loader to Our Ghidra Installation
	Step 5: Test the Loader Within Ghidra

	Example 2: Simple Shellcode Source Loader
	Update 1: Modify the Response to the Importer Poll
	Update 2: Find the Shellcode in the Source Code
	Update 3: Convert Shellcode to Byte Values
	Update 4: Load Converted Byte Array
	Results

	Example 3: Simple ELF Shellcode Loader
	Housekeeping
	ELF Header Format
	Find Supported Load Specifications
	Load File Content into Ghidra
	Format Data Bytes and Add an Entry Point
	Language Definition Files
	Opinion Files
	Results

	Summary

	Chapter 18: Ghidra Processors
	Understanding Ghidra Processor Modules
	Eclipse Processor Modules
	SLEIGH
	Processor Manuals

	Modifying a Ghidra Processor Module
	Problem Statement
	Example 1: Adding an Instruction to a Processor Module
	Example 2: Modifying an Instruction in a Processor Module
	Example 3: Adding a Register to a Processor Module

	Summary

	Chapter 19: The Ghidra Decompiler
	Decompiler Analysis
	Analysis Options

	The Decompiler Window
	Example 1: Editing in the Decompiler Window
	Example 2: Non-Returning Functions
	Example 3: Automated Structure Creation

	Summary

	Chapter 20: Compiler Variations
	High-Level Constructs
	switch Statements
	Example: Comparing gcc with Microsoft C/C++ Compiler

	Compiler Build Options
	Example 1: Modulo Operator
	Example 2: The Ternary Operator
	Example 3: Function Inlining

	Compiler-Specific C++ Implementation
	Function Overloading
	RTTI Implementations

	Locating the main Function
	Example 1: _start to main with gcc on Linux x86-64
	Example 2: _start to main with clang on FreeBSD x86-64
	Example 3: _start to main with Microsoft’s C/C++ compiler

	Summary

	Part V: Real-World Applications
	Chapter 21: Obfuscated Code Analysis
	Anti–Reverse Engineering
	Obfuscation
	Anti–Static Analysis Techniques
	Imported Function Obfuscation
	Anti–Dynamic Analysis Techniques

	Static Deobfuscation of Binaries Using Ghidra
	Script-Oriented Deobfuscation
	Emulation-Oriented Deobfuscation
	Step 1: Define the Problem
	Step 2: Create the Eclipse Script Project
	Step 3: Build the Emulator
	Step 4: Add the Script to Our Ghidra Installation
	Step 5: Test the Script Within Ghidra

	Summary

	Chapter 22: Patching Binaries
	Planning Your Patch
	Finding Things to Change
	Searching Memory
	Searching for Direct References
	Searching for Instruction Patterns
	Finding Specific Behaviors

	Applying Your Patch
	Making Basic Changes
	Making Nontrivial Changes

	Exporting Files
	Ghidra Export Formats
	The Binary Export Format
	Script-Assisted Export

	Example: Patching a Binary
	Summary

	Chapter 23: Binary Differencing and Version Tracking
	Binary Differencing
	Program Diff Tool
	Example: Merging Two Analyzed Files

	Comparing Functions
	Function Comparison Window
	Example: Comparing Crypto Routines

	Version Tracking
	Version Tracking Concepts

	Summary

	Ghidra for IDA Users
	The Basics
	Database Creation
	Basic Windows and Navigation

	Scripting
	Summary

	Index

