
M o r e F r o m
 No Starch Press

malware data science
joshua saxe with h illary sanders

•

Practical binary anaLysis
Dennis Andriesse

•

Real-world bug hunting
Peter Yaworski

•

rootkits and bootkits
alex matrosov, eugene rodionov,

and sergey bratus

•

linux basics for hackers
occupytheweb

•

serious python
jul ien danjou

Read sample chapters from
these No Starch books!

6
U n d e r s t a n d i n g M a c h i n e

L e a r n i n g – B a s e d M a l w a r e
D e t e c t o r s

With the open source machine learning
tools available today, you can build cus-

tom, machine learning–based malware
detection tools, whether as your primary

detection tool or to supplement commercial solu-
tions, with relatively little effort.

But why build your own machine learning tools when commercial anti-
virus solutions are already available? When you have access to examples of
particular threats, such as malware used by a certain group of attackers tar-
geting your network, building your own machine learning–based detection
technologies can allow you to catch new examples of these threats.

In contrast, commercial antivirus engines might miss these threats unless
they already include signatures for them. Commercial tools are also “closed
books”—that is, we don’t necessarily know how they work and we have limited
ability to tune them. When we build our own detection methods, we know
how they work and can tune them to our liking to reduce false positives or
false negatives. This is helpful because in some applications you might be
willing to tolerate more false positives in exchange for fewer false negatives

90 Chapter 6

(for example, when you’re searching your network for suspicious files so that
you can hand-inspect them to determine if they are malicious), and in other
applications you might be willing to tolerate more false negatives in exchange
for fewer false positives (for example, if your application blocks programs
from executing if it determines they are malicious, meaning that false posi-
tives are disruptive to users).

In this chapter, you learn the process of developing your own detection
tools at a high level. I start by explaining the big ideas behind machine learn-
ing, including feature spaces, decision boundaries, training data, underfit-
ting, and overfitting. Then I focus on four foundational approaches—logistic
regression, k-nearest neighbors, decision trees, and random forest—and how
these can be applied to perform detection.

You’ll then use what you learned in this chapter to learn how to evalu-
ate the accuracy of machine learning systems in Chapter 7 and implement
machine learning systems in Python in Chapter 8. Let’s get started.

Steps for Building a Machine Learning–Based Detector
There is a fundamental difference between machine learning and other
kinds of computer algorithms. Whereas traditional algorithms tell the com-
puter what to do, machine-learning systems learn how to solve a problem by
example. For instance, rather than simply pulling from a set of preconfig-
ured rules, machine learning security detection systems can be trained to
determine whether a file is bad or good by learning from examples of good
and bad files.

The promise of machine learning systems for computer security is that
they automate the work of creating signatures, and they have the potential
to perform more accurately than signature-based approaches to malware
detection, especially on new, previously unseen malware.

Essentially, the workflow we follow to build any machine learning–
based detector, including a decision tree, boils down to these steps:

1.	 Collect examples of malware and benignware. We will use these
examples (called training examples) to train the machine learning
system to recognize malware.

2.	 Extract features from each training example to represent the example
as an array of numbers. This step also includes research to design good
features that will help your machine learning system make accurate
inferences.

3.	 Train the machine learning system to recognize malware using the fea-
tures we have extracted.

4.	 Test the approach on some data not included in our training examples
to see how well our detection system works.

Let’s discuss each of these steps in more detail in the following sections.

Understanding Machine Learning–Based Malware Detectors 91

Gathering Training Examples
Machine learning detectors live or die by the training data provided to them.
Your malware detector’s ability to recognize suspicious binaries depends
heavily on the quantity and quality of training examples you provide. Be pre-
pared to spend much of your time gathering training examples when build-
ing machine learning–based detectors, because the more examples you feed
your system, the more accurate it’s likely to be.

The quality of your training examples is also important. The malware
and benignware you collect should mirror the kind of malware and benign-
ware you expect your detector to see when you ask it to decide whether new
files are malicious or benign.

For example, if you want to detect malware from a specific threat actor
group, you must collect as much malware as possible from that group for
use in training your system. If your goal is to detect a broad class of mal-
ware (such as ransomware), it’s essential to collect as many representative
samples of this class as possible.

By the same token, the benign training examples you feed your system
should mirror the kinds of benign files you will ask your detector to analyze
once you deploy it. For example, if you are working on detecting malware
on a university network, you should train your system with a broad sampling
of the benignware that students and university employees use, in order to
avoid false positives. These benign examples would include computer games,
document editors, custom software written by the university IT department,
and other types of nonmalicious programs.

To give a real-world example, at my current day job, we built a detector
that detects malicious Office documents. We spent about half the time on
this project gathering training data, and this included collecting benign
documents generated by more than a thousand of my company’s employees.
Using these examples to train our system significantly reduced our false
positive rate.

Extracting Features
To classify files as good or bad, we train machine learning systems by show-
ing them features of software binaries; these are file attributes that will help
the system distinguish between good and bad files. For example, here are
some features we might use to determine whether a file is good or bad:

•	 Whether it’s digitally signed

•	 The presence of malformed headers

•	 The presence of encrypted data

•	 Whether it has been seen on more than 100 network workstations

To obtain these features, we need to extract them from files. For
example, we might write code to determine whether a file is digitally
signed, has malformed headers, contains encrypted data, and so on.

5
BASIC BINARY ANALYSIS IN LINUX

Even in the most complex binary analysis, you can
accomplish surprisingly advanced feats by combining
a set of basic tools in the right way. This can save you
hours of work implementing equivalent functionality
on your own. In this chapter, you’ll learn the funda-
mental tools you’ll need to perform binary analysis on
Linux.

Instead of simply showing you a list of tools and explaining what they
do, I’ll use a Capture the Flag (CTF) challenge to illustrate how they work. In
computer security and hacking, CTF challenges are often played as contests,
where the goal is typically to analyze or exploit a given binary (or a running
process or server) until you manage to capture a flag hidden in the binary.
The flag is usually a hexadecimal string, which you can use to prove that you
completed the challenge as well as unlock new challenges.

In this CTF, you start with a mysterious file called payload, which you
can find on the VM in the directory for this chapter. The goal is to figure
out how to extract the hidden flag from payload. In the process of analyzing
payload and looking for the flag, you’ll learn to use a wide range of basic
binary analysis tools that are available on virtually any Linux-based system
(most of them as part of GNU coreutils or binutils). I encourage you to fol-
low along.

Most of the tools you’ll see have a number of useful options, but there
are far too many to cover exhaustively in this chapter. Thus, it’s a good idea
to check out the man page for every tool using the command man tool on the
VM. At the end of the chapter, you’ll use the recovered flag to unlock a new
challenge, which you can complete on your own!

5.1 Resolving Identity Crises Using file
Because you received absolutely no hints about the contents of payload, you
have no idea what to do with this file. When this happens (for instance, in
reverse engineering or forensics scenarios), a good first step is to figure
out what you can about the file type and its contents. The file utility was
designed for this purpose; it takes a number of files as input and then tells
you what type each file is. You may remember it from Chapter 2, where I
used file to find out the type of an ELF file.

The nice thing about file is that it isn’t fooled by extensions. Instead,
it searches for other telltale patterns in the file, such as magic bytes like the
0x7f ELF sequence at the start of ELF files, to find out the file type. This is
perfect here because the payload file doesn’t have an extension. Here’s what
file tells you about payload:

$ file payload

payload: ASCII text

As you can see, payload contains ASCII text. To examine the text in
detail, you can use the head utility, which dumps the first few lines (10 by
default) of a text file to stdout. There’s also an analogous utility called tail,
which shows you the last few lines of a file. Here’s what the head utility’s out-
put shows:

$ head payload

H4sIAKiT61gAA+xaD3RTVZq/Sf9TSKL8aflnn56ioNJJSiktDpqUlL5o0UpbYEVI0zRtI2naSV5K

YV0HTig21jqojH9mnRV35syZPWd35ZzZ00XHxWBHYJydXf4ckRldZRUxBRzxz2CFQvb77ru3ee81

AZdZZ92z+XrS733fu993v/v/vnt/bqmVfNNkBlq0cCFyy6KFZiUHKi1buMhMLAvMi0oXWSzlZYtA

v2hRWRkRzN94ZEChoOQKCAJp8fdcNt2V3v8fpe9X1y7T63Rjsp7cTlCKGq1UtjL9yPUJGyupIHnw

/zoym2SDnKVIZyVWFR9hrjnPZeky4JcJvwq9LFforSo+i6XjXKfgWaoSWFX8mclExQkRxuww1uOz

Ze3x2U0qfpDFcUyvttMzuxFmN8LSc054er26fJns18D0DaxcnNtZOrsiPVLdh1ILPudey/xda1Xx

MpauTGN3L9hlk69PJsZXsPxS1YvA4uect8N3fN7m8rLv+Frm+7z+UM/8nory+eVlJcHOklIak4ml

rbm7kabn9SiwmKcQuQ/g+3n/OJj/byfuqjv09uKVj8889O6TvxXM+G4qSbRbX1TQCZnWPNQVwG86

/F7+4IkHl1a/eebY91bPemngU8OpI58YNjrWD16u3P3wuzaJ3kh4i6vpuhT6g7rkfs6k0DtS6P8l

hf6NFPocfXL9yRTpS0ny+NtJ8vR3p0hfl8J/bgr9Vyn0b6bQkxTl+ixF+p+m0N+qx743k+wWmlT6

That definitely doesn’t look human-readable. Taking a closer look at the
alphabet used in the file, you can see that it consists of only alphanumeric
characters and the characters + and /, organized in neat rows. When you see
a file that looks like this, it’s usually safe to assume that it’s a Base64 file.

90 Chapter 5

Base64 is a widely used method of encoding binary data as ASCII text.
Among other things, it’s commonly used in email and on the web to ensure
that binary data transmitted over a network isn’t accidentally malformed by
services that can handle only text. Conveniently, Linux systems come with a
tool called base64 (typically as part of GNU coreutils) that can encode and
decode Base64. By default, base64 will encode any files or stdin input given to
it. But you can use the -d flag to tell base64 to decode instead. Let’s decode
payload to see what you get!

$ base64 -d payload > decoded_payload

This command decodes payload and then stores the decoded contents in
a new file called decoded_payload. Now that you’ve decoded payload, let’s use
file again to check the type of the decoded file.

$ file decoded_payload

decoded_payload: gzip compressed data, last modified: Tue Oct 22 15:46:43 2019, from Unix

Now you’re getting somewhere! It turns out that behind the layer of
Base64 encoding, the mysterious file is actually just a compressed archive
that uses gzip as the outer compression layer. This is an opportunity to intro-
duce another handy feature of file: the ability to peek inside zipped files.
You can pass the -z option to file to see what’s inside the archive without
extracting it. Here’s what you should see:

$ file -z decoded_payload

decoded_payload: POSIX tar archive (GNU) (gzip compressed data, last modified:

Tue Oct 22 19:08:12 2019, from Unix)

You can see that you’re dealing with multiple layers that you need to
extract, because the outer layer is a gzip compression layer and inside that
is a tar archive, which typically contains a bundle of files. To reveal the files
stored inside, you use tar to unzip and extract decoded_payload, like this:

$ tar xvzf decoded_payload

ctf

67b8601

As shown in the tar log, there are two files extracted from the archive:
ctf and 67b8601. Let’s use file again to see what kinds of files you’re deal-
ing with.

$ file ctf

ctf: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,

interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=29aeb60bcee44b50d1db3a56911bd1de93cd2030, stripped

Basic Binary Analysis in Linux 91

The first file, ctf , is a dynamically linked 64-bit stripped ELF executable.
The second file, called 67b8601, is a bitmap (BMP) file of 512 × 512 pixels.
Again, you can see this using file as follows:

$ file 67b8601

67b8601: PC bitmap, Windows 3.x format, 512 x 512 x 24

This BMP file depicts a black square, as you can see in Figure 5-1a. If you
look carefully, you should see some irregularly colored pixels at the bottom
of the figure. Figure 5-1b shows an enlarged snippet of these pixels.

Before exploring what this all means, let’s first take a closer look at ctf,
the ELF file you just extracted.

(a) The complete figure

(b) Enlarged view of some of the colored pixels at the bottom

Figure 5-1: The extracted BMP file, 67b8601

92 Chapter 5

5.2 Using ldd to Explore Dependencies
Although it’s not wise to run unknown binaries, since you’re working in a
VM, let’s try running the extracted ctf binary. When you try to run the file,
you don’t get far.

$./ctf

./ctf: error while loading shared libraries: lib5ae9b7f.so:

cannot open shared object file: No such file or directory

Before any of the application code is even executed, the dynamic
linker complains about a missing library called lib5ae9b7f.so. That doesn’t
sound like a library you normally find on any system. Before searching for
this library, it makes sense to check whether ctf has any more unresolved
dependencies.

Linux systems come with a program called ldd, which you can use to find
out on which shared objects a binary depends and where (if anywhere) these
dependencies are on your system. You can even use ldd along with the -v

flag to find out which library versions the binary expects, which can be use-
ful for debugging. As mentioned in the ldd man page, ldd may run the binary
to figure out the dependencies, so it’s not safe to use on untrusted binaries
unless you’re running it in a VM or another isolated environment. Here’s
the ldd output for the ctf binary:

$ ldd ctf

linux-vdso.so.1 => (0x00007fff6edd4000)

lib5ae9b7f.so => not found

libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f67c2cbe000)

libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f67c2aa7000)

libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f67c26de000)

libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f67c23d5000)

/lib64/ld-linux-x86-64.so.2 (0x0000561e62fe5000)

Luckily, there are no unresolved dependencies besides the missing
library identified earlier, lib5ae9b7f.so. Now you can focus on figuring out
what this mysterious library is and how you can obtain it in order to capture
the flag!

Because it’s obvious from the library name that you won’t find it in any
standard repository, it must reside somewhere in the files you’ve been given
so far. Recall from Chapter 2 that all ELF binaries and libraries begin with
the magic sequence 0x7f ELF. This is a handy string to look for in search
of your missing library; as long as the library is not encrypted, you should
be able to find the ELF header this way. Let’s try a simple grep for the
string 'ELF'.

$ grep 'ELF' *
Binary file 67b8601 matches

Binary file ctf matches

Basic Binary Analysis in Linux 93

2
O p e n R e d i r e c t V u l n e r a b i l i t y

We’ll begin our discussion with open redirect
vulnerabilities, which occur when a target

visits a website and that website sends their
browser to a different URL, potentially on a

separate domain. Open redirects exploit the trust of
a given domain to lure victims to a malicious website.
A phishing attack can also accompany a redirect to trick users into believing
they’re submitting information to a trusted site when their valuable infor-
mation is being sent to a malicious site. When combined with other attacks,
open redirects can also enable attackers to distribute malware from the
malicious site or to steal OAuth tokens (a topic we explore in Chapter 17).

Because open redirects only redirect users, they’re sometimes consid-
ered low impact and not deserving of a bounty. For example, the Google
bug bounty program typically considers open redirects too low risk to
reward. The Open Web Application Security Project (OWASP), which is
a community that focuses on application security and curates a list of the
most critical security flaws in web applications, has also removed open redi-
rects from their 2017 list of top ten vulnerabilities.

2 Chapter 2

Although these are low-impact vulnerabilities, they’re great for learning
how browsers handle redirects in general. In this chapter you’ll learn how
open redirects can be exploited and how to identify key parameters, using
three bug reports as examples.

How Open Redirects Work
Intended redirects often work by accepting a destination URL as a param-
eter in a URL. This parameter tells a browser to send a GET request to the
destination URL. A site is vulnerable to an open redirect when it doesn’t
check that the redirect address is a safe URL, or it redirects the user with-
out notifying them that they’re being redirected. When you’re looking for
these vulnerabilities, keep an eye out for URL parameters that include
certain names, such as url=, redirect=, next=, and so on, which might denote
URLs that users will be redirected to. For example, suppose Google had
functionality to redirect users to Gmail by visiting the following URL:

https://www.google.com/?redirect_to=https://www.gmail.com

In this scenario, when you visit this URL, Google receives a GET HTTP
request and uses the redirect_to parameter’s value to determine where
to redirect your browser. After doing so, Google servers return an HTTP
response with a status code instructing the browser to redirect the user.
Typically, the status code is 302, but in some cases it could be 301, 303,
307, or 308. These HTTP response codes tell your browser that a page has
been found; however, the codes also specify that the browser make a GET
request to the redirect_to parameter’s value, https://www.gmail.com/, which
is denoted in the 30x HTTP responses’ Location header. The Location header
specifies where to redirect GET requests.

Now, suppose we change the original URL to the following:

https://www.google.com/?redirect_to=https://www.<attacker>.com

If Google isn’t validating that the redirect_to parameter is for one of
its own legitimate sites where it intends to send visitors, an attacker could
substitute the parameter with another URL. As a result, an HTTP response
could instruct your browser to make a GET request to https://www.<attacker>​
.com/. After the attacker has you on their malicious site, they could carry
out other attacks.

Although the parameter in this example was clearly labeled, keep in
mind that redirect parameters might not always be obviously named: param-
eters will vary from site to site or even within a site. In some cases, parameters
might be labeled with just single characters, such as r= or u=.

In addition to parameter-based attacks, HTML meta refresh tags and
JavaScript can redirect browsers. HTML <meta> tags can tell browsers to
refresh a web page and make a GET request to a URL defined in the tag’s
content attribute. Here is what one might look like:

<meta http-equiv="refresh" content="0; url=https://www.google.com/"

http://www.google.com?redirect_to=https://www.gmail.com
http://www.gmail.com

Open Redirect Vulnerability 3

The content attribute defines how browsers make an HTTP request in
two ways. First, the content attribute defines how long the browser waits
before making the HTTP request to the URL; in this case, 0 seconds.
Secondly, the content attribute also specifies the url parameter in the web-
site the browser makes the GET request to; in this case, https://www.google​
.com.Attackers can use this redirect behavior in situations where they have
the ability to control the content attribute of a <meta> tag or to inject their
own tag via some other vulnerability.

An attacker can also use JavaScript to redirect users by modifying
the window’s location property through the Document Object Model (DOM).
The DOM is an API for HTML and XML documents that allows develop-
ers to modify the structure, style, and content of a web page. Because the
Location header denotes where a request should be redirected to, browsers
will immediately interpret this JavaScript and redirect to the specified
URL. An attacker can modify the window’s location property by using any
of the following JavaScript:

window.location = https://www.google.com/
window.location.href = https://www.google.com
window.location.replace(https://www.google.com)

Although the differences between these approaches to changing win-
dow properties aren’t important for the purposes of this book, the key
takeaway is finding opportunities where window.location can be set to an
attacker-controlled value. Typically, this opportunity occurs only where
an attacker can execute JavaScript, either via a cross-site scripting vulner-
ability or where the website intentionally allows users to define a URL to
redirect to, as in the HackerOne interstitial redirect vulnerability detailed
later in the chapter on page XX.

When you’re searching for open redirect vulnerabilities, you’ll usually
be monitoring your proxy history for a GET request sent to the site you’re
testing which includes a parameter specifying a URL redirect.

Shopify Theme Install Open Redirect

Difficulty: Low

URL: https://apps.shopify.com/services/google/themes/preview/
supply--blue?domain_name=XX

Source: https://www.hackerone.com/reports/101962/

Date reported: November 25, 2015

Bounty paid: $500

The first example of an open redirect you’ll learn about was found on
Shopify, which is a commerce platform that allows users to set up an online
store to sell goods. Shopify allows administrators to customize the look and

https://apps.shopify.com/services/google/themes/preview/supply--blue?domain_name=XX
https://apps.shopify.com/services/google/themes/preview/supply--blue?domain_name=XX

4 Chapter 2

feel of their stores by changing their theme. As part of that functionality,
Shopify offered a feature to provide a preview for the theme by redirecting
the store owners to a URL. The redirect URL was formatted as such:

https://app.shopify.com/services/google/themes/preview/supply--blue?domain_name=<example>.com

The domain_name parameter at the end of the URL redirected to the
user’s store domain and added /admin to the end of the URL. Shopify was
expecting that the domain_name would always be a user’s store and wasn’t vali-
dating its value as part of the Shopify domain. As a result, an attacker could
exploit the parameter to redirect a victim to http://<example>.com/admin/
where the malicious attacker could carry out other attacks.

Takeaways
Not all vulnerabilities are complex. For this open redirect, simply changing
the domain_name parameter to an external site would result in the user being
redirected offsite from Shopify.

Shopify Login Open Redirect

Difficulty: Low

URL: http://mystore.myshopify.com/account/login/

Source: https://www.hackerone.com/reports/103772/

Date reported: December 6, 2015

Bounty paid: $500

This second example of an open redirect is similar to the first Shopify exam-
ple except in this case, Shopify’s parameter isn’t redirecting the user to the
domain specified by the URL parameter; instead, the open redirect tacks the
parameter’s value onto the end of a Shopify subdomain. Normally, this func-
tionality would be used to redirect a user to a specific page on a given store.
However, the URL can still be manipulated into redirecting the browser away
from Shopify’s subdomain and to an attacker’s website by adding characters
to change the meaning of the URL.

In this bug, after the user logged into Shopify, Shopify used the param-
eter checkout_url to redirect the user. For example, let’s say a victim visited
this URL:

http://mystore.myshopify.com/account/login?checkout_url=.<attacker>.com

They would have been redirected to the URL http://mystore.myshopify.
com.<attacker>.com/, which isn’t a Shopify domain.

Because the URL ends in .<attacker>.com and DNS lookups use the right-
most domain label, the redirect goes to the <attacker>.com domain. So when
http://mystore.myshopify.com.<attacker>.com/ is submitted for DNS lookup, it will
match on <attacker>.com, which Shopify doesn’t own, and not myshopify.com as

https://hackerone.com/reports/103772

Open Redirect Vulnerability 5

Shopify would have intended. Although an attacker wouldn’t be able to freely
send a victim anywhere, they could send a user to another domain by adding
special characters, such as a period, to the values they can manipulate.

Takeaways
If you can only control a portion of the final URL returned by a site, adding
special URL characters might change the meaning of the URL and redirect
a user to another domain. Let’s say you can only control the checkout_url
parameter value, and you also notice that the parameter is being combined
with a hardcoded URL on the backend of the site, such as the store URL
http://mystore.myshopify.com/. In this situation, try adding special URL charac-
ters, like a period or the @ symbol, to test the vulnerability of the parameter.

HackerOne Interstitial Redirect

Difficulty: Low

URL: N/A

Source: https://www.hackerone.com/reports/111968/

Date reported: January 20, 2016

Bounty paid: $500

An interstitial web page displays before expected content. Using one is a com-
mon method to protect against open redirect vulnerabilities. Any time
you’re redirecting a user to a URL, you can show an interstitial web page
with a message explaining to the user that they’re leaving the domain
they’re on. As a result, if the redirect page shows a fake log in or tries to
pretend to be the trusted domain, the user will know that they’re being
redirected. This is the approach HackerOne takes when following most
URLs off its site, for example, when following links in submitted reports.

Although you can use interstitial web pages to avoid redirect vulner-
abilities, complications in the way sites interact with one another can still
lead to compromised links. HackerOne uses Zendesk, a customer service
support ticketing system, for its https://support.hackerone.com/ subdomain.
When hackerone.com is followed by /zendesk_session, users are led from
HackerOne’s platform to HackerOne’s Zendesk platform without an inter-
stitial page because URLs containing the hackerone.com domain are trusted
links. However, anyone can create custom Zendesk accounts and pass them
to the /redirect_to_account?state= parameter. The custom Zendesk account
can then redirect to another website not owned by Zendesk or HackerOne.
Because Zendesk allows for redirecting between accounts without intersti-
tial pages, the user can be taken to the untrusted site without warning. As a
solution, HackerOne identified links containing zendesk_session as external
links, which rendered an interstitial warning page when clicked.

In order to make this bug report, the hacker Mahmoud Jamal cre-
ated an account on Zendesk with the subdomain http://compayn.zendesk.

https://support.hackerone.com

2
F e s t R o o t k i t : T h e M o s t

A d v a n c e d S p am a n d DD o S B o t

This chapter is devoted to one of the most
advanced spam and distributed denial of

service (DDoS) botnets discovered—the
Win32/Festi botnet, which we’ll refer to simply

as Festi from now on. Festi has powerful spam delivery
and DDoS capabilities, as well as interesting rootkit
functionality that allows it to stay under the radar by
hooking into the filesystem and system registry. Festi
also conceals its presence by actively counteracting
dynamic analysis with debugger and sandbox evasion
techniques.

From a high-level point of view, Festi has a well-designed modular
architecture implemented entirely in the kernel-mode driver. Kernel-mode
programming is, of course, fraught with danger: a single error in the code
can cause the system to crash and render it unusable, potentially leading

12 Chapter 2

the user to reinstall the system afresh, wiping the malware. For this reason
it’s rare for spam-sending malware to rely heavily on kernel-mode program-
ming. The fact that Festi was able to inflict so much damage is indicative of
the solid technical skills of its developer(s) and their in-depth understand-
ing of the Windows system. Indeed, they came up with several interesting
architectural decisions, which we’ll cover in this chapter.

The Case of Festi Botnet
The Festi botnet was first discovered in the fall of 2009, and by May 2012
it was one of the most powerful and active botnets for sending spam and
performing DDoS attacks. The botnet was initially available to anyone
for lease, but after early 2010 it was restricted to major spam partners
only, like Pavel Vrublebsky, one of the actors that used Festi botnet for
criminal activities, as detailed in the book Spam Nation by Brian Krebs
(Sourcebooks, Inc., 2014).

According to statistics from M86 Security Labs (currently Trustwave)
for 2011, shown in Figure 2-1, Festi was one of the three most active spam
botnets in the world in the reported period.

Other
sources

Gheg Cutwail
4

Cutwail
1

Donbot Festi Grum Lethic

Botnet name

Bo
tn

et
 p

re
va

le
nc

e
(%

)

13
2.1 4.3 6.7 8.9

12.9
17.2

34.8

Figure 2-1: The most prevalent spam botnets according to M86 Security Labs

Festi’s rise in popularity stemmed from a particular attack on Assist,
a payment processing company.1 Assist was one of the companies bidding
for a contract with Aeroflot, Russia’s largest airline, but a few weeks before
Aeroflot was due to make its decision, cybercriminals used Festi to launch
a massive DDoS attack against Assist. The attack rendered the processing
system unusable for an extended period of time, eventually forcing Aeroflot
to award another company the contract. This event is a prime example of
how rootkits may be used in real-world crime.

1. Brian Krebs, “Financial Mogul Linked to DDoS Attacks,” Krebs on Security blog, June 23,
2011, http://krebsonsecurity.com/2011/06/financial-mogul-linked-to-ddos-attacks

Fest Rootkit: The Most Advanced Spam and DDoS Bot 13

Dissecting the Rootkit Driver
The Festi rootkit is distributed mainly through a PPI (Pay-Per-Install)
scheme similar to the TDL3 rootkit discussed in Chapter 1. The dropper’s
rather simple functionality installs into the system a kernel-mode driver
that implements the main logic of the malware. The kernel-mode compo-
nent is registered as a “system start” kernel-mode driver with a randomly
generated name, meaning the malicious driver is loaded and executed at
system bootup during initialization.

Droppe r Inf ec tor

Dropper is a special type of infector. Droppers carry payload to the victim
system within itself. Payload is frequently compressed and encrypted or obfus-
cated. Once executed, a dropper extracts the payload from its image and
installs it on a victim system (i.e. drops it on the system – which explains the
term used for this type of infector). Unlike droppers, downloaders – another
type of infector – doesn’t carry payload within itself but rather download it
from a remote server.

The Festi botnet targets only the Microsoft Windows x86 platform and
does not have a kernel-mode driver for 64-bit platforms. This was fine at
the time of its distribution, as there were still many 32-bit operating systems
being used, but means the rootkit has largely been rendered obsolete as
64-bit systems have outnumbered 32-bit systems.

The kernel-mode driver has two main duties: requesting configuration
information from the command and control (C&C) server, and download-
ing and executing malicious modules in the form of plug-ins (illustrated in
Figure 2-2). Each plug-in is dedicated to a certain job, such as performing
DDoS attacks against a specified network resource, or sending spam to an
email list provided by the C&C server.

Install kernel-mode
driver

Download
plug-ins

Win32/Festi
kernel-mode

driver

Win32/Festi
plug-in 1

Win32/Festi
plug-in 2

Win32/Festi
plug-in N

Win32/Festi
dropper

. . .

Figure 2-2: Operation of the Festi rootkit

14 Chapter 2

Interestingly, the plug-ins aren’t stored on the system hard drive but
instead in volatile memory, meaning that when the infected computer is
powered off or rebooted, the plug-ins vanish from system memory. This
makes forensic analysis of the malware significantly harder since the only
file stored on the hard drive is the main kernel-mode driver, which contains
neither the payload nor any information on attack targets.

Festi Configuration Information for C&C Communication
To enable it to communicate with C&C server, Festi is distributed with
three pieces of predefined configuration information: the domain names
of C&C servers, the key to encrypt data transmitted between the bot and
C&C, and the bot version information

This configuration information is hardcoded into the driver’s binary.
Figure 2-3 shows a section table of the kernel-mode driver with a writable
section named .cdata, which stores the configuration data as well as strings
that are used to perform the malicious activity.

Figure 2-3: Section table of Festi kernel-mode driver

The malware obfuscates the contents with a simple algorithm that XORs
the data with a 4-byte key. The .cdata section in decrypted at the very begin-
ning of the driver initialization.

The strings within the .cdata section, listed in Table 2-1, can garner
the attention of security software, so obfuscating them helps the bot evade
detection.

Table 2-1: Encrypted Strings in the Festi Configuration Data Section

String Purpose

\Device\Tcp

\Device\Udp

Names of device objects used by the
malware to send and receive data over
the network

\REGISTRY\MACHINE\SYSTEM\

CurrentControlSet\Services\

SharedAccess\Parameters\FirewallPolicy\

StandardProfile\GloballyOpenPorts\List

Path to the registry key with the param-
eters of the Windows firewall, used by the
malware to disable the local firewall

Fest Rootkit: The Most Advanced Spam and DDoS Bot 15

String Purpose

ZwDeleteFile, ZwQueryInformationFile,

ZwLoadDriver, KdDebuggerEnabled,

ZwDeleteValueKey, ZwLoadDriver

Names of system services used by the
malware

Festi’s Object-Oriented Framework
Unlike many kernel-mode drivers, which are usually written in plain C
using the procedural programming paradigm, the Festi driver has an
object-oriented architecture. The main components (classes) of the archi-
tecture implemented by the malware are:

Memory manager  Allocates and releases memory buffers

Network sockets  Sends and receives data over the network

C&C protocol parser  Parses C&C messages and executes received
commands

Plug-in manager  Manages downloaded plug-ins

The relationship between these components is illustrated in Figure 2-4.

Win32/Festi
C&C protocol parser

Win32/Festi
plug-in manager

Win32/Festi
network socket

Win32/Festi
memory manager

Figure 2-4: Architecture of Festi kernel-mode driver

As you can see, the memory manager is the central component used
throughout the bot by all other components.

This object-oriented approach allows the malware to be easily ported
to other platforms, like Linux. To do so, an attacker would need to change
only system-specific code (like the code that calls system services for memory
management and network communication) that is isolated by the compo-
nent’s interface. Downloaded plug-ins, for instance, rely almost completely
on the interfaces provided by the main module, and rarely use routines
provided by the system to do system-specific operations.

Plug-in Management
Plug-ins downloaded from the C&C server are loaded and executed by the
malware. To manage the downloaded plug-ins efficiently, Festi maintains
an array of pointers to a specially defined PLUGIN_INTERFACE structure. Each

16 Chapter 2

structure corresponds to a particular plug-in in memory and provides the
bot with specific entry points—routines responsible for handling data
received from C&C, as shown in Figure 2-5. This way, Festi keeps track of
all the malicious plug-ins loaded in memory.

Array of pointers
to plugins

. . .

Plugin 1
struct PLUGIN_INTERFACE

Plugin1

Plugin 2
struct PLUGIN_INTERFACE

Plugin2

Plugin 3
struct PLUGIN_INTERFACE

Plugin3

Plugin N
struct PLUGIN_INTERFACE

PluginN

Figure 2-5: Layout of the array of pointers to
PLUGIN_INTERFACE structures

Listing 2-1 shows the layout of the PLUGIN_INTERFACE structure.

struct PLUGIN_INTERFACE
{
 // Initialize plug-in
 PVOID Initialize;
 // Release plug-in, perform cleanup operations
 PVOID Release;
 // Get plug-in version information
 PVOID GetVersionInfo_1;
 // Get plug-in version information
 PVOID GetVersionInfo_2;
 // Write plug-in-specific information into tcp stream
 PVOID WriteIntoTcpStream;
 // Read plug-in specific information from tcp stream and parse data
 PVOID ReadFromTcpStream;
 // Reserved fields
 PVOID Reserved_1;
 PVOID Reserved_2;
};

Listing 2-1: Defining the PLUGIN_INTERFACE structure

The first two routines, Initialize and Release, are intended for plug-in
initialization and termination, respectively. The following two routines,
GetVersionInfo_1 and GetVersionInfo_2, are used to obtain version information
for the plug-in in question.

Fest Rootkit: The Most Advanced Spam and DDoS Bot 17

The routines WriteIntoTcpStream and ReadFromTcpStream are used to exchange
data between the plug-in and the C&C server. When Festi transmits data to
the C&C server, it runs through the array of pointers to the plug-in interfaces
and executes the WriteIntoTcpStream routine of each registered plug-in, pass-
ing a pointer to a TCP stream object as a parameter. The TCP stream object
implements the functionality of the network communication interface.

On receiving data from the C&C server, the bot executes the plug-ins’
ReadFromTcpStream routine, so that the registered plug-ins can get parameters
and plug-in-specific configuration information from the network stream.
As a result, every loaded plug-in can communicate with the C&C server
independently of all other plug-ins, which means plug-ins can be developed
independently of one another, increasing the efficiency of their develop-
ment and the stability of the architecture.

Built-in Plug-ins
Upon installation, the main malicious kernel-mode driver implements two
built-in plug-ins: the configuration information manager and the bot plug-in
manager.

Configuration Manager

The configuration manager plug-in is responsible for requesting configu-
ration information and downloading plug-ins from the C&C server. This
simple plug-in periodically connects to the C&C server to download the
data. The delay between two consecutive requests is specified by the C&C
server itself, likely to avoid static patterns that security software can use to
detect infections. We describe the network communication protocol between
the bot and the C&C server in the section “Festi Network Communication
Protocol” on page XX.

Plug-in Manager

The plug-in manager is responsible for maintaining the array of downloaded
plug-ins. It receives remote commands from the C&C server and loads and
unloads specific plug-ins, delivered in compressed form, onto the system.
Each plug-in has a default entry point—DriverEntry—and also exports the
two routines CreateModule and DeleteModule, as shown in Figure 2-6.

Figure 2-6: Export Address table of a Festi plug-in

8
B a s h S c r i p t i n g

Any self-respecting hacker must be able
to write scripts. For that matter, any self-

respecting Linux administrator must be
able to script. Hackers often need to automate

commands, sometimes from multiple tools, and this
is most efficiently done through short programs they
write themselves.

In this chapter, we build a few simple bash shell scripts to start you off
with scripting. We’ll add capabilities and features as we progress, eventually
building a script capable of finding potential attack targets over a range of
IP addresses.

To become an elite hacker, you also need the ability to script in one of
the widely used scripting languages, such as Ruby (Metasploit exploits are
written in Ruby), Python (many hacking tools are Python scripts), or Perl
(Perl is the best text-manipulation scripting language). I give a brief intro-
duction to Python scripting in Chapter 17.

82 Chapter 8

A Crash Course in Bash
A shell is an interface between the user and the operating system that enables
you to manipulate files and run commands, utilities, programs, and much
more. The advantage of a shell is that you perform these tasks immediately
from the computer and not through an abstraction, like a GUI, which allows
you to customize your task to your needs. A number of different shells are
available for Linux, including the Korn shell, the Z shell, the C shell, and
the Bourne-again shell, more widely known as bash.

Because the bash shell is available on nearly all Linux and UNIX
distributions (including macOS and Kali), we’ll be using the bash shell,
exclusively.

The bash shell can run any system commands, utilities, or applications
your usual command line can run, but it also includes some of its own built-
in commands. Table 8-1 later in the chapter gives you a reference to some
useful commands that reside within the bash shell.

In earlier chapters, you used the cd, pwd, set, and umask commands. In
this section, you will be using two more commands: the echo command, first
used in Chapter 7, which displays messages to the screen, and the read com-
mand, which reads in data and stores it somewhere else. Just learning these
two commands alone will enable you to build a simple but powerful tool.

You’ll need a text editor to create shell scripts. You can use whichever
Linux text editor you like best, including vi, vim, emacs, gedit, kate, and so
on. I’ll be using Leafpad in these tutorials, as I have in previous chapters.
Using a different editor should not make any difference in your script or its
functionality.

Your First Script: “Hello, Hackers-Arise!”
For your first script, we will start with a simple program that returns a
message to the screen that says "Hello, Hackers-Arise!" Open your text
editor, and let’s go.

To start, you need to tell your operating system which interpreter you
want to use for the script. To do this, enter a shebang, which is a combina-
tion of a hash mark and an exclamation mark, like so:

#!

You then follow the shebang (#!) with /bin/bash to indicate that you want
the operating system to use the bash shell interpreter. As you’ll see in later
chapters, you could also use the shebang to use other interpreters, such
as Perl or Python. Here, you want to use the bash interpreter, so enter the
following:

#! /bin/bash

Bash Scripting 83

Next, enter the echo command, which tells the system to simply repeat
(or echo) back to your monitor whatever follows the command.

In this case, we want the system to echo back to us "Hello, Hackers-Arise!",
as done in Listing 8-1. Note that the text or message we want to echo back
must be in double quotation marks.

#! /bin/bash

This is my first bash script. Wish me luck.

echo "Hello, Hackers-Arise!"

Listing 8-1: Your “Hello, Hackers-Arise!” script

Here, you also see a line that’s preceded by a hash mark (#). This is a
comment, which is a note you leave to yourself or anyone else reading the
code to explain what you’re doing in the script. Programmers use com-
ments in every coding language. These comments are not read or executed
by the interpreter, so you don’t need to worry about messing up your code.
They are visible only to humans. The bash shell knows a line is a comment
if it starts with the # character.

Now, save this file as HelloHackersArise with no extension and exit your
text editor.

Setting Execute Permissions
By default, a newly created bash script is not executable even by you, the
owner. Let’s look at the permissions on our new file in the command line by
using cd to move into the directory and then entering ls -l. It should look
something like this:

kali >ls -l
--snip--
-rw-r--r-- 1 root root 42 Oct 22 14:32 HelloHackersArise
--snip--

As you can see, our new file has rw-r--r-- (644) permissions. As you
learned in Chapter 5, this means the owner of this file only has read (r)
and write (w) permissions, but no execute (x) permissions. The group and
all other users have only read permissions. We need to give ourselves exe-
cute permissions in order to run this script. We change the permissions
with the chmod command, as you saw in Chapter 5. To give the owner, the
group, and all others execute permissions, enter the following:

kali >chmod 755 HelloHackersArise

84 Chapter 8

Now when we do a long listing on the file, like so, we can see that we
have execute permissions:

kali >ls -l
--snip--
-rwx r-x r-x 1 root root 42 Oct 22 14:32 HelloHackersArise
--snip--

The script is now ready to execute!

Running HelloHackersArise
To run our simple script, enter the following:

kali >./HelloHackersArise

The ./ before the filename tells the system that we want to execute
this script in the file HelloHackersArise from the current directory. It also
tells the system that if there is another file in another directory named
HelloHackersArise, please ignore it and only run HelloHackersArise in the cur-
rent directory. It may seem unlikely that there’s another file with this name
on your system, but it’s good practice to use the ./ when executing files, as
this localizes the file execution to the current directory and many directo-
ries will have duplicate filenames, such as start and setup.

When we press enter, our very simple script returns our message to the
monitor:

Hello, Hackers-Arise!

Success! You just completed your first shell script!

Adding Functionality with Variables and User Input
So, now we have a simple script. All it does is echo back a message to stan-
dard output. If we want to create more advanced scripts, we will likely need
to add some variables.

A variable is an area of storage that can hold something in memory.
That “something” might be some letters or words (strings) or numbers. It’s
known as a variable because the values held within it are changeable; this is
an extremely useful feature for adding functionality to a script.

In our next script, we will add functionality to prompt the user for their
name, place whatever they input into a variable, then prompt the user for
the chapter they’re at in this book, and place that keyboard input into a
variable. After that, we’ll echo a welcome message that includes their name
and the chapter back to the user.

Open a new file in your text editor and enter the script shown in
Listing 8-2.

Bash Scripting 85

u #! /bin/bash

v # This is your second bash script. In this one, you prompt /
the user for input, place the input in a variable, and /
display the variable contents in a string.

w echo "What is your name?"

read name

x echo "What chapter are you on in Linux Basics for Hackers?"

read chapter

y echo "Welcome" $name "to Chapter" $chapter "of Linux Basics for Hackers!"

Listing 8-2: A simple script making use of variables

We open with #! /bin/bash to tell the system we want to use the bash inter-
preter for this script u. We then add a comment that describes the script and
its functionality v. After that, we prompt the user for their name and ask
the interpreter to read the input and place it into a variable we call name w.
Then we prompt the user to enter the chapter they are currently working
through in this book, and we again read the keyboard input into a variable,
this time called chapter x.

In the final line, we construct a line of output that welcomes the reader
by their name to the chapter they are on y. We use the echo command and
provide the text we want to display on the screen in double quotes. Then, to
fill in the name and chapter number the user entered, we add the variables
where they should appear in the message. As noted in Chapter 7, to use the
values contained in the variables, you must precede the variable name with
the $ symbol.

Save this file as WelcomeScript.sh. The .sh extension is the convention for
script files. You might have noticed we didn’t include the extension earlier;
it’s not strictly required, and if you leave the extension off, the file will save
as a shell script file by default.

Now, let’s run this script. Don’t forget to give yourself execute permis-
sion with chmod first; otherwise, the operating system will scold you with a
Permission denied message.

kali >./WelcomeScript.sh
What is your name?
OccupytheWeb
What chapter are you on in Linux Basics for Hackers?
8
Welcome OccupytheWeb to Chapter 8 of Linux Basics for Hackers!

As you can see, your script took input from the user, placed it into vari-
ables, and then used those inputs to make a greeting for the user.

3
D o c u m e n t a t i o n a n d

G o o d A P I P r a c t i c e

In this chapter, we’ll discuss documenta-
tion; specifically, how to automate the

trickier and more tedious aspects of docu-
menting your project with Sphinx. While you

will still have to write the documentation yourself,
Sphinx will simplify your task. As it is common to pro-
vide features using a Python library, we’ll also look
at how to manage and document your public API changes. Because your
API will have to evolve as you make changes to its features, it’s rare to get
everything built perfectly from the outset, but I’ll show you a few things you
can do to ensure your API is as user-friendly as possible.

We’ll end this chapter with an interview with Christophe de Vienne,
author of the Web Services Made Easy framework, in which he discusses
best practices for developing and maintaining APIs.

34 Chapter 3

Documenting with Sphinx
Documentation is one of the most important parts of writing software.
Unfortunately, a lot of projects don’t provide proper documentation.
Writing documentation is seen as complicated and daunting, but it doesn’t
have to be: with the tools available to Python programmers, documenting
your code can be just as easy as writing it.

One of the biggest reasons for sparse or nonexistent documentation is
that many people assume the only way to document code is by hand. Even
with multiple people on a project, this means one or more of your team will
end up having to juggle contributing code with maintaining documenta-
tion—and if you ask any developer which job they’d prefer, you can be sure
they’ll say they’d rather write software than write about software.

Sometimes the documentation process is completely separate from the
development process, meaning that the documentation is written by people
who did not write the actual code. Furthermore, any documentation pro-
duced this way is likely to be out-of-date: it’s almost impossible for manual
documentation to keep up with the pace of development, regardless of who
handles it.

Here’s the bottom line: the more degrees of separation between your
code and your documentation, the harder it will be to keep the latter prop-
erly maintained. So why keep them separate at all? It’s not only possible to
put your documentation directly in the code itself, but it’s also simple to
convert that documentation into easy-to-read HTML and PDF files.

The most common format for Python documentation is reStructuredText,
or reST for short. It’s a lightweight markup language (like Markdown) that’s
as easy to read and write for humans as it is for computers. Sphinx is the
most commonly used tool for working with this format; Sphinx can read
reST-formatted content and output documentation in a variety of other
formats.

I recommend that your project documentation always include the
following:

•	 The problem your project is intended to solve, in one or two sentences.

•	 The license your project is distributed under. If your software is open
source, you should also include this information in a header in each
code file; just because you’ve uploaded your code to the Internet
doesn’t mean that people will know what they’re allowed to do with it.

•	 A small example of how your code works.

•	 Installation instructions.

•	 Links to community support, mailing list, IRC, forums, and so on.

•	 A link to your bug tracker system.

•	 A link to your source code so that developers can download and start
delving into it right away.

Documentation and Good API Practice 35

You should also include a README.rst file that explains what your project
does. This README should be displayed on your GitHub or PyPI project
page; both sites know how to handle reST formatting.

N o t e 	 If you’re using GitHub, you can also add a CONTRIBUTING.rst file that will
be displayed when someone submits a pull request. It should provide a checklist for
users to follow before they submit the request, including things like whether your
code follows PEP 8 and reminders to run the unit tests. Read the Docs (http://
readthedocs​.org/) allows you to build and publish your documentation online
automatically. Signing up and configuring a project is straightforward. Then Read
the Docs searches for your Sphinx configuration file, builds your documentation, and
makes it available for your users to access. It’s a great companion to code-hosting sites.

Getting Started with Sphinx and reST
You can get Sphinx from http://www.sphinx-doc.org/. There are installation
instructions on the site, but the easiest method is to install with pip install
sphinx.

Once Sphinx is installed, run sphinx-quickstart in your project’s top-
level directory. This will create the directory structure that Sphinx expects
to find, along with two files in the doc/source folder: conf.py, which contains
Sphinx’s configuration settings (and is absolutely required for Sphinx to
work), and index.rst, which serves as the front page of your documentation.
Once you run the quick-start command, you’ll be taken through a series of
steps to designate naming conventions, version conventions, and options for
other useful tools and standards.

The conf.py file contains a few documented variables, such as the project
name, the author, and the theme to use for HTML output. Feel free to edit
this file at your convenience.

Once you’ve built your structure and set your defaults, you can build
your documentation in HTML by calling sphinx-build with your source
directory and output directory as arguments, as shown in Listing 3-1. The
command sphinx-build reads the conf.py file from the source directory and
parses all the .rst files from this directory. It renders them in HTML in the
output directory.

$ sphinx-build doc/source doc/build
 import pkg_resources
Running Sphinx v1.2b1
loading pickled environment... done
No builder selected, using default: html
building [html]: targets for 1 source files that are out of date
updating environment: 0 added, 0 changed, 0 removed
looking for now-outdated files... none found
preparing documents... done
writing output... [100%] index
writing additional files... genindex search

36 Chapter 3

copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.

Listing 3-1: Building a basic Sphinx HTML document

Now you can open doc/build/index.html in your favorite browser and
read your documentation.

N o t e 	 If you’re using setuptools or pbr (see Chapter 5) for packaging, Sphinx extends them
to support the command setup.py build_sphinx, which will run sphinx-build auto-
matically. The pbr integration of Sphinx has some saner defaults, such as outputting
the documentation in the /doc subdirectory.

Your documentation begins with the index.rst file, but it doesn’t have to
end there: reST supports include directives to include reST files from other
reST files, so there’s nothing stopping you from dividing your documenta-
tion into multiple files. Don’t worry too much about syntax and semantics
to start; reST offers a lot of formatting possibilities, but you’ll have plenty of
time to dive into the reference later. The complete reference (http://docutils​
.sourceforge.net/docs/ref/rst/restructuredtext.html) explains how to create titles,
bulleted lists, tables, and more.

Sphinx Modules
Sphinx is highly extensible: its basic functionality supports only manual
documentation, but it comes with a number of useful modules that enable
automatic documentation and other features. For example, sphinx.ext.autodoc
extracts reST-formatted docstrings from your modules and generates .rst files
for inclusion. This is one of the options sphinx-quickstart will ask if you want
to activate. If you didn’t select that option, however, you can still edit your
conf.py file and add it as an extension like so:

extensions = ['sphinx.ext.autodoc']

Note that autodoc will not automatically recognize and include your
modules. You need to explicitly indicate which modules you want docu-
mented by adding something like Listing 3-2 to one of your .rst files.

.. automodule:: foobar
u :members:
v :undoc-members:
w :show-inheritance:

Listing 3-2: Indicating the modules for autodoc to document

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

Documentation and Good API Practice 37

In Listing 3-2, we make three requests, all of which are optional: that
all documented members be printed u, that all undocumented members
be printed v, and that inheritance be shown w. Also note the following:

•	 If you don’t include any directives, Sphinx won’t generate any output.

•	 If you only specify :members:, undocumented nodes on your module,
class, or method tree will be skipped, even if all their members are doc-
umented. For example, if you document the methods of a class but not
the class itself, :members: will exclude both the class and its methods. To
keep this from happening, you’d have to write a docstring for the class
or specify :undoc-members: as well.

•	 Your module needs to be where Python can import it. Adding ., ..,
and/or ../.. to sys.path can help.

The autodoc extension gives you the power to include most of your docu-
mentation in your source code. You can even pick and choose which mod-
ules and methods to document—it’s not an “all-or-nothing” solution. By
maintaining your documentation directly alongside your source code, you
can easily ensure it stays up to date.

Automating the Table of Contents with autosummary

If you’re writing a Python library, you’ll usually want to format your API
documentation with a table of contents containing links to individual
pages for each module.

The sphinx.ext.autosummary module was created specifically to handle
this common use case. First, you need to enable it in your conf.py by adding
the following line:

extensions = ['sphinx.ext.autosummary']

Then, you can add something like the following to an .rst file to auto-
matically generate a table of contents for the specified modules:

.. autosummary::

 mymodule
 mymodule.submodule

This will create files called generated/mymodule.rst and generated/mymodule
.submodule.rst containing the autodoc directives described earlier. Using
this same format, you can specify which parts of your module API you want
included in your documentation.

N o t e 	 The sphinx-apidoc command can automatically create these files for you; check out
the Sphinx documentation to find out more.

Founded in 1994, No Starch Press is one of
the few remaining independent technical book
publishers. We publish the finest in geek
entertainment—unique books on technology,
with a focus on open source, security, hacking,
programming, alternative operating systems,
and LEGO. Our titles have personality, our
authors are passionate, and our books tackle
topics that people care about.

VISIT WWW.NOSTARCH.COM

FOR A COMPLETE CATALOG.

				

No Starch Press 2018 Catalog for Humble Book Bundle: happy hacker. Copyright © 2018 No Starch Press, Inc. All rights reserved.

malware data science © joshua sa xe with hill ary sanders. practical binary analysis © Dennis Andriesse. re al-world bug hunting ©

Peter Yaworski. rootkits and bootkits © ale x matrosov, eugene rodionov, and serge y bratus. l inux basics for hackers © occupy thewe b.

serious py thon © julien danjou. No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. No

part of this work may be reproduced or transmit ted in any form or by any me ans, electronic or mechanical , including photocopying,

recording, or by any information storage or retrie val system, without the prior writ ten permission of No Starch Press, Inc.

http://www.nostarch.com/

