
This practical guide to modern encryption 
breaks down the fundamental mathematical 
concepts at the heart of cryptography without 
shying away from meaty discussions of how 
they work. You’ll learn about authenticated 
encryption, secure randomness, hash functions, 
block ciphers, and public-key techniques such 
as RSA and elliptic curve cryptography.

You’ll also learn:

🔑	 Key concepts in cryptography, such as 
computational security, attacker models, 
and forward secrecy

🔑	 The strengths and limitations of the TLS 
protocol behind HTTPS secure websites

🔑	 Quantum computation and post-quantum 
cryptography

🔑	 About various vulnerabilities by examining 
numerous code examples and use cases

🔑	 How to choose the best algorithm or protocol 
and ask vendors the right questions

Each chapter includes a discussion of common 
implementation mistakes using real-world 
examples and details what could go wrong 
and how to avoid these pitfalls. 

Whether you’re a seasoned practitioner or a 
beginner looking to dive into the field, Serious 
Cryptography will provide a complete survey 
of modern encryption and its applications. 
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F o r e w o r d

If you’ve read a book or two on computer security, you 
may have encountered a common perspective on the 
field of cryptography. “Cryptography,” they say, “is 
the strongest link in the chain.” Strong praise indeed, 
but it’s also somewhat dismissive. If cryptography is in 
fact the strongest part of your system, why invest time 
improving it when there are so many other areas of the 
system that will benefit more from your attention?

If there’s one thing that I hope you take away from this book, it’s that 
this view of cryptography is idealized; it’s largely a myth. Cryptography in 
theory is strong, but cryptography in practice is as prone to failure as any 
other aspect of a security system. This is particularly true when crypto-
graphic implementations are developed by non-experts without sufficient 
care or experience, as is the case with many cryptographic systems deployed 
today. And it gets worse: when cryptographic implementations fail, they 
often do so in uniquely spectacular ways.

But why should you care, and why this book?



xvi   Foreword

When I began working in the field of applied cryptography nearly two 
decades ago, the information available to software developers was often 
piecemeal and outdated. Cryptographers developed algorithms and pro-
tocols, and cryptographic engineers implemented them to create opaque, 
poorly documented cryptographic libraries designed mainly for other 
experts. There was—and there has been—a huge divide between those 
who know and understand cryptographic algorithms and those who use 
them (or ignore them at their peril). There are a few decent textbooks on 
the market, but even fewer have provided useful tools for the practitioner. 

The results have not been pretty. I’m talking about compromises with 
labels like “CVE” and “Severity: High,” and in a few alarming cases, attacks 
on slide decks marked “TOP SECRET.” You may be familiar with some of 
the more famous examples if only because they’ve affected systems that you 
rely on. Many of these problems occur because cryptography is subtle and 
mathematically elegant, and because cryptographic experts have failed to 
share their knowledge with the engineers who actually write the software. 

Thankfully, this has begun to change and this book is a symptom of 
that change. 

Serious Cryptography was written by one of the foremost experts in 
applied cryptography, but it’s not targeted at other experts. Nor, for that 
matter, is it intended as a superficial overview of the field. On the contrary, 
it contains a thorough and up-to-date discussion of cryptographic engineer-
ing, designed to help practitioners who plan to work in this field do better. 
In these pages, you’ll learn not only how cryptographic algorithms work, 
but how to use them in real systems. 

The book begins with an exploration of many of the key cryptographic 
primitives, including basic algorithms like block ciphers, public encryption 
schemes, hash functions, and random number generators. Each chapter pro-
vides working examples of how the algorithms work and what you should or 
should not do. Final chapters cover advanced subjects such as TLS, as well as 
the future of cryptography—what to do after quantum computers arrive to 
complicate our lives.

While no single book can solve all our problems, a bit of knowledge can 
go a long way. This book contains plenty of knowledge. Perhaps enough to 
make real, deployed cryptography live up to the high expectations that so 
many have of it. 

Happy reading.

Matthew D. Green
Professor
Information Security Institute
Johns Hopkins University     



P r e f a c e

I wrote this book to be the one I wish I 
had when I started learning crypto. In 

2005, I was studying for my masters degree 
near Paris, and I eagerly registered for the 

crypto class in the upcoming semester. Unfortunately, 
the class was canceled because too few students had 
registered. “Crypto is too hard,” the students argued, 
and instead, they enrolled en masse in the computer 
graphics and database classes. 

I’ve heard “crypto is hard” more than a dozen times since then. But 
is crypto really that hard? To play an instrument, master a programming 
language, or put the applications of any fascinating field into practice, you 
need to learn some concepts and symbols, but doing so doesn’t take a PhD. 
I think the same applies to becoming a competent cryptographer. I also 
believe that crypto is perceived as hard because cryptographers haven’t 
done a good job of teaching it.
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Another reason why I felt the need for this book is that crypto is no lon-
ger just about crypto—it has expanded into a multidisciplinary field. To do 
anything useful and relevant in crypto, you’ll need some understanding of 
the concepts around crypto: how networks and computers work, what users 
and systems need, and how attackers can abuse algorithms and their imple-
mentations. In other words, you need a connection to reality.

This Book’s Approach
The initial title of this book was Crypto for Real to stress the practice-oriented, 
real-world, no-nonsense approach I aimed to follow. I didn’t want to make 
cryptography approachable by dumbing it down, but instead tie it to real 
applications. I provide source code examples and describe real bugs and hor-
ror stories. 

Along with a clear connection to reality, other cornerstones of this book 
are its simplicity and modernity. I focus on simplicity in form more than in 
substance: I present many non-trivial concepts, but without the dull math-
ematical formalism. Instead, I attempt to impart an understanding of cryp-
tography’s core ideas, which are more important than remembering a bunch 
of equations. To ensure the book’s modernity, I cover the latest developments 
and applications of cryptography, such as TLS 1.3 and post-quantum cryp-
tography. I don’t discuss the details of obsolete or insecure algorithms such 
as DES or MD5. An exception to this is RC4, but it’s only included to explain 
how weak it is and to show how a stream cipher of its kind works.

Serious Cryptography isn’t a guide for crypto software, nor is it a com-
pendium of technical specifications—stuff that you’ll easily find online. 
Instead, the foremost goal of this book is to get you excited about crypto 
and to teach you its fundamental concepts along the way. 

Who This Book Is For
While writing, I often imagined the reader as a developer who’d been 
exposed to crypto but still felt clueless and frustrated after attempting to 
read abstruse textbooks and research papers. Developers often need—and 
want—a better grasp of crypto to avoid unfortunate design choices, and I 
hope this book will help. 

But if you aren’t a developer, don’t worry! The book doesn’t require 
any coding skills, and is accessible to anyone who understands the basics of 
computer science and college-level math (notions of probabilities, modular 
arithmetic, and so on). 

This book can nonetheless be intimidating, and despite its relative 
accessibility, it requires some effort to get the most out of it. I like the 
mountaineering analogy: the author paves the way, providing you with 
ropes and ice axes to facilitate your work, but you make the ascent your-
self. Learning the concepts in this book will take an effort, but there will 
be a reward at the end.
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How This Book Is Organized
The book has fourteen chapters, loosely split into four parts. The chapters 
are mostly independent from one another, except for Chapter 9, which lays 
the foundations for the three subsequent chapters. I also recommend read-
ing the first three chapters before anything else.

Fundamentals
•	 Chapter 1: Encryption introduces the notion of secure encryption, 

from weak pen-and-paper ciphers to strong, randomized encryption.

•	 Chapter 2: Randomness describes how a pseudorandom generator 
works, what it takes for one to be secure, and how to use one securely.

•	 Chapter 3: Cryptographic Security discusses theoretical and practi-
cal notions of security, and compares provable security with probable 
security.

Symmetric Crypto
•	 Chapter 4: Block Ciphers deals with ciphers that process messages 

block per block, focusing on the most famous one, the Advanced 
Encryption Standard (AES).

•	 Chapter 5: Stream Ciphers presents ciphers that produce a stream of 
random-looking bits that are XORed with messages to be encrypted.

•	 Chapter 6: Hash Functions is about the only algorithms that don’t work 
with a secret key, which turn out to be the most ubiquitous crypto build-
ing blocks.

•	 Chapter 7: Keyed Hashing explains what happens if you combine a hash 
function with a secret key, and how this serves to authenticate messages.

•	 Chapter 8: Authenticated Encryption shows how some algorithms can 
both encrypt and authenticate a message with examples, such as the 
standard AES-GCM.

Asymmetric Crypto
•	 Chapter 9: Hard Problems lays out the fundamental concepts behind 

public-key encryption, using notions from computational complexity.

•	 Chapter 10: RSA leverages the factoring problem in order to build 
secure encryption and signature schemes with a simple arithmetic 
operation.

•	 Chapter 11: Diffie–Hellman extends asymmetric cryptography to the 
notion of key agreement, wherein two parties establish a secret value 
using only non-secret values.

•	 Chapter 12: Elliptic Curves provides a gentle introduction to ellip-
tic curve cryptography, which is the fastest kind of asymmetric 
cryptography.
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Applications
•	 Chapter 13: TLS focuses on Transport Layer Security (TLS), arguably 

the most important protocol in network security.

•	 Chapter 14: Quantum and Post-Quantum concludes with a note of 
science fiction by covering the concepts of quantum computing and 
a new kind of cryptography.
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1
E n c r y p t i o n

Encryption is the principal application of 
cryptography; it makes data incomprehen-

sible in order to ensure its confidentiality. 
Encryption uses an algorithm called a cipher 

and a secret value called the key; if you don’t know 
the secret key, you can’t decrypt, nor can you learn 
any bit of information on the encrypted message—
and neither can any attacker.

This chapter will focus on symmetric encryption, which is the simplest 
kind of encryption. In symmetric encryption, the key used to decrypt is the 
same as the key used to encrypt (unlike asymmetric encryption, or public-key 
encryption, in which the key used to decrypt is different from the key used 
to encrypt). You’ll start by learning about the weakest forms of symmetric 
encryption, classical ciphers that are secure against only the most illiterate 
attacker, and then move on to the strongest forms that are secure forever.
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The Basics
When we’re encrypting a message, plaintext refers to the unencrypted mes-
sage and ciphertext to the encrypted message. A cipher is therefore composed 
of two functions: encryption turns a plaintext into a ciphertext, and decryption 
turns a ciphertext back into a plaintext. But we’ll often say “cipher” when we 
actually mean “encryption.” For example, Figure 1-1 shows a cipher, E, repre-
sented as a box taking as input a plaintext, P, and a key, K, and producing a 
ciphertext, C, as output. I’ll write this relation as C = E(K, P). Similarly, when 
the cipher is in decryption mode, I’ll write D(K, C). 

E D

K K

PCP C

Figure 1-1: Basic encryption and decryption

N o t e 	 For some ciphers, the ciphertext is the same size as the plaintext; for some others, the 
ciphertext is slightly longer. However, ciphertexts can never be shorter than plaintexts.

Classical Ciphers
Classical ciphers are ciphers that predate computers and therefore work on 
letters rather than on bits. They are much simpler than a modern cipher 
like DES—for example, in ancient Rome or during WWI, you couldn’t use a 
computer chip’s power to scramble a message, so you had to do everything 
with only pen and paper. There are many classical ciphers, but the most 
famous are the Caesar cipher and Vigenère cipher.

The Caesar Cipher
The Caesar cipher is so named because the Roman historian Suetonius 
reported that Julius Caesar used it. It encrypts a message by shifting each 
of the letters down three positions in the alphabet, wrapping back around 
to A if the shift reaches Z. For example, ZOO encrypts to CRR, FDHVDU 
decrypts to CAESAR, and so on, as shown in Figure 1-2. There’s nothing spe-
cial about the value 3; it’s just easier to compute in one’s head than 11 or 23.

The Caesar cipher is super easy to break: to decrypt a given ciphertext, 
simply shift the letters three positions back to retrieve the plaintext. That 
said, the Caesar cipher may have been strong enough during the time of 
Crassus and Cicero. Because no secret key is involved (it’s always 3), users of 
Caesar’s cipher only had to assume that attackers were illiterate or too unedu-
cated to figure it out—an assumption that’s much less realistic today. (In fact, 
in 2006, the Italian police arrested a mafia boss after decrypting messages 
written on small scraps of paper that were encrypted using a variant of the 
Caesar cipher: ABC was encrypted to 456 instead of DEF, for example.)
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>>>3
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>>>3
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<<<3
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>>>3
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<<<3
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>>>3
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V

<<<3
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>>>3

A

D

<<<3

A

>>>3

R

U

<<<3

R

Figure 1-2: The Caesar cipher

Could the Caesar cipher be made more secure? You can, for example, 
imagine a version that uses a secret shift value instead of always using 3, but 
that wouldn’t help much because an attacker could easily try all 25 possible 
shift values until the decrypted message makes sense.

The Vigenère Cipher
It took about 1500 years to see a meaningful improvement of the Caesar 
cipher in the form of the Vigenère cipher, created in the 16th century by an 
Italian named Giovan Battista Bellaso. The name “Vigenère” comes from 
the Frenchman Blaise de Vigenère, who invented a different cipher in the 
16th century, but due to historical misattribution, Vigenère’s name stuck. 
Nevertheless, the Vigenère cipher became popular and was later used dur-
ing the American Civil War by Confederate forces and during WWI by the 
Swiss Army, among others.

The Vigenère cipher is similar to the Caesar cipher, except that letters 
aren’t shifted by three places but rather by values defined by a key, a collec-
tion of letters that represent numbers based on their position in the alphabet. 
For example, if the key is DUH, letters in the plaintext are shifted using the 
values 3, 20, 7 because D is three letters after A, U is 20 letters after A, and H 
is seven letters after A. The 3, 20, 7 pattern repeats until you’ve encrypted the 
entire plaintext. For example, the word CRYPTO would encrypt to FLFSNV 
using DUH as the key: C is shifted three positions to F, R is shifted 20 posi-
tions to L, and so on. Figure 1-3 illustrates this principle when encrypting the 
sentence THEY DRINK THE TEA.

D ~ 3
>>>3

T

W

U ~ 20
>>>20

H

B

H ~ 7
>>>7

E

L

D ~ 3
>>>3

Y

B

U ~ 20
>>>20

D

X

H ~ 7
>>>7

R

Y

D ~ 3
>>>3

I

L

U ~ 20
>>>20

N

H

H ~ 7
>>>7

K

R

D ~ 3
>>>3

T

W

U ~ 20
>>>20

H

B

H ~ 7
>>>7

E

L

D ~ 3
>>>3

T

W

U ~ 20
>>>20

E

Y

H ~ 7
>>>7

A

H

Figure 1-3: The Vigenère cipher
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The Vigenère cipher is clearly more secure than the Caesar cipher, 
yet it’s still fairly easy to break. The first step to breaking it is to figure out 
the key’s length. For example, take the example in Figure 1-3, wherein 
THEY DRINK THE TEA encrypts to WBLBXYLHRWBLWYH with the 
key DUH. (Spaces are usually removed to hide word boundaries.) Notice 
that in the ciphertext WBLBXYLHRWBLWYH, the group of three letters 
WBL appears twice in the ciphertext at nine-letter intervals. This sug-
gests that the same three-letter word was encrypted using the same shift 
values, producing WBL each time. A cryptanalyst can then deduce that 
the key’s length is either nine or a value that divides nine (that is, three). 
Furthermore, they may guess that this repeated three-letter word is THE 
and therefore determine DUH as a possible encryption key.

The second step to breaking the Vigenère cipher is to determine the 
actual key using a method called frequency analysis, which exploits the uneven 
distribution of letters in languages. For example, in English, E is the most 
common letter, so if you find that X is the most common letter in a cipher-
text, then the most likely plaintext value at this position is E.

Despite its relative weakness, the Vigenère cipher may have been good 
enough to securely encrypt messages when it was used. First, because the 
attack just outlined needs messages of at least a few sentences, it wouldn’t 
work if the cipher was used to encrypt only short messages. Second, most mes-
sages needed to be secret only for short periods of time, so it didn’t matter if 
ciphertexts were eventually decrypted by the enemy. (The 19th-century cryp-
tographer Auguste Kerckhoffs estimated that most encrypted wartime mes-
sages required confidentiality for only three to four hours.)

How Ciphers Work
Based on simplistic ciphers like the Caesar and Vigenère ciphers, we can 
try to abstract out the workings of a cipher, first by identifying its two main 
components: a permutation and a mode of operation. A permutation is a 
function that transforms an item (in cryptography, a letter or a group of 
bits) such that each item has a unique inverse (for example, the Caesar 
cipher’s three-letter shift). A mode of operation is an algorithm that uses a 
permutation to process messages of arbitrary size. The mode of the Caesar 
cipher is trivial: it just repeats the same permutation for each letter, but as 
you’ve seen, the Vigenère cipher has a more complex mode, where letters at 
different positions undergo different permutations.

In the following sections, I discuss in more detail what these are and 
how they relate to a cipher’s security. I use each component to show why 
classical ciphers are doomed to be insecure, unlike modern ciphers that 
run on high-speed computers.

The Permutation
Most classical ciphers work by replacing each letter with another letter—
in other words, by performing a substitution. In the Caesar and Vigenère 
ciphers, the substitution is a shift in the alphabet, though the alphabet or 
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set of symbols can vary: instead of the English alphabet, it could be the 
Arabic alphabet; instead of letters, it could be words, numbers, or ideo-
grams, for example. The representation or encoding of information is a 
separate matter that is mostly irrelevant to security. (We’re just considering 
Latin letters because that’s what classical ciphers use.)

A cipher’s substitution can’t be just any substitution. It should be a 
permutation, which is a rearrangement of the letters A to Z, such that each 
letter has a unique inverse. For example, a substitution that transforms 
the letters A, B, C, and D, respectively to C, A, D, and B is a permutation, 
because each letter maps onto another single letter. But a substitution that 
transforms A, B, C, D to D, A, A, C is not a permutation, because both B and 
C map onto A. With a permutation, each letter has exactly one inverse.

Still, not every permutation is secure. In order to be secure, a cipher’s 
permutation should satisfy three criteria:

•	 The permutation should be determined by the key, so as to keep the 
permutation secret as long as the key is secret. In the Vigenère cipher, 
if you don’t know the key, you don’t know which of the 26 permutations 
was used; hence, you can’t easily decrypt.

•	 Different keys should result in different permutations. Otherwise, it 
becomes easier to decrypt without the key: if different keys result in 
identical permutations, that means there are fewer distinct keys than 
distinct permutations, and therefore fewer possibilities to try when 
decrypting without the key. In the Vigenère cipher, each letter from the 
key determines a substitution; there are 26 distinct letters, and as many 
distinct permutations.

•	 The permutation should look random, loosely speaking. There should 
be no pattern in the ciphertext after performing a permutation, because 
patterns make a permutation predictable for an attacker, and therefore 
less secure. For example, the Vigenère cipher’s substitution is pretty pre-
dictable: if you determine that A encrypts to F, you could conclude that 
the shift value is 5 and you would also know that B encrypts to G, that 
C encrypts to H, and so on. However, with a randomly chosen permuta-
tion, knowing that A encrypts to F would only tell you that B does not 
encrypt to F.

We’ll call a permutation that satisfies these criteria a secure permutation. 
But as you’ll see next, a secure permutation is necessary but not sufficient 
on its own for building a secure cipher. A cipher will also need a mode of 
operation to support messages of any length.

The Mode of Operation
Say we have a secure permutation that transforms A to X, B to M, and N to 
L, for example. The word BANANA therefore encrypts to MXLXLX, where 
each occurrence of A is replaced by an X. Using the same permutation for 
all the letters in the plaintext thus reveals any duplicate letters in the plain-
text. By analyzing these duplicates, you might not learn the entire message, 
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but you’ll learn something about the message. In the BANANA example, you 
don’t need the key to guess that the plaintext has the same letter at the three 
X positions and another same letter at the two L positions. So if you know, 
for example, that the message is a fruit’s name, you could determine that it’s 
BANANA rather than CHERRY, LYCHEE, or another six-letter fruit.

The mode of operation (or just mode) of a cipher mitigates the expo-
sure of duplicate letters in the plaintext by using different permutations for 
duplicate letters. The mode of the Vigenère cipher partially addresses this: 
if the key is N letters long, then N different permutations will be used for 
every N consecutive letters. However, this can still result in patterns in the 
ciphertext because every Nth letter of the message uses the same permuta-
tion. That’s why frequency analysis works to break the Vigenère cipher, as 
you saw earlier.

Frequency analysis can be defeated if the Vigenère cipher only encrypts 
plaintexts that are of the same length as the key. But even then, there’s 
another problem: reusing the same key several times exposes similarities 
between plaintexts. For example, with the key KYN, the words TIE and 
PIE encrypt to DGR and ZGR, respectively. Both end with the same two 
letters (GR), revealing that both plaintexts share their last two letters as 
well. Finding these patterns shouldn’t be possible with a secure cipher.

To build a secure cipher, you must combine a secure permutation with 
a secure mode. Ideally, this combination prevents attackers from learning 
anything about a message other than its length.

Why Classical Ciphers Are Insecure
Classical ciphers are doomed to be insecure because they’re limited to 
operations you can do in your head or on a piece of paper. They lack the 
computational power of a computer and are easily broken by simple com-
puter programs. Let’s see the fundamental reason why that simplicity makes 
them insecure in today’s world.

Remember that a cipher’s permutation should look random in order to 
be secure. Of course, the best way to look random is to be random—that is, 
to select every permutation randomly from the set of all permutations. And 
there are many permutations to choose from. In the case of the 26-letter 
English alphabet, there are approximately 288 permutations:

26! = ≈403291461126605635584000000 288

Here, the exclamation point (!) is the factorial symbol, defined as 
follows:

n n n n! − −= × ( ) × ( ) × × ×1 2 3 2. . .

(To see why we end up with this number, count the permutations as 
lists of reordered letters: there are 26 choices for the first possible letter, 
then 25 possibilities for the second, 24 for the third, and so on.) This num-
ber is huge: it’s of the same order of magnitude as the number of atoms in 
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the human body. But classical ciphers can only use a small fraction of those 
permutations—namely, those that need only simple operations (such as 
shifts) and that have a short description (like a short algorithm or a small 
look-up table). The problem is that a secure permutation can’t accommo-
date both of these limitations.

You can get secure permutations using simple operations by picking a 
random permutation, representing it as a table of 25 letters (enough to rep-
resent a permutation of 26 letters, with the 26th one missing), and apply-
ing it by looking up letters in this table. But then you wouldn’t have a short 
description. For example, it would take 250 letters to describe 10 different 
permutations, rather than just the 10 letters used in the Vigenère cipher.

You can also produce secure permutations with a short description. 
Instead of just shifting the alphabet, you could use more complex operations 
such as addition, multiplication, and so on. That’s how modern ciphers work: 
given a key of typically 128 or 256 bits, they perform hundreds of bit opera-
tions to encrypt a single letter. This process is fast on a computer that can do 
billions of bit operations per second, but it would take hours to do by hand, 
and would still be vulnerable to frequency analysis.

Perfect Encryption: The One-Time Pad
Essentially, a classical cipher can’t be secure unless it comes with a huge key, 
but encrypting with a huge key is impractical. However, the one-time pad is 
such a cipher, and it is the most secure cipher. In fact, it guarantees perfect 
secrecy: even if an attacker has unlimited computing power, it’s impossible to 
learn anything about the plaintext except for its length.

In the next sections, I’ll show you how a one-time pad works and then 
offer a sketch of its security proof.

Encrypting with the One-Time Pad
The one-time pad takes a plaintext, P, and a random key, K, that’s the same 
length as P and produces a ciphertext C, defined as

C P K= ⊕

where C, P, and K are bit strings of the same length and where ⊕ is the 
bitwise exclusive OR operation (XOR), defined as 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 
1 ⊕ 0 = 1, 1 ⊕ 1 = 0.

N o t e 	 I’m presenting the one-time pad in its usual form, as working on bits, but it can be 
adapted to other symbols. With letters, for example, you would end up with a variant 
of the Caesar cipher with a shift index picked at random for each letter.

The one-time pad’s decryption is identical to encryption; it’s just 
an XOR: P = C ⊕ K. Indeed, we can verify C ⊕ K = P ⊕ K ⊕ K = P because 
XORing K with itself gives the all-zero string 000 . . . 000. That’s it—even 
simpler than the Caesar cipher.
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For example, if P = 01101101 and K = 10110100, then we can calculate 
the following:

C P K= ⊕ = ⊕ =01101101 10110100 11011001

Decryption retrieves P by computing the following:

P C K= ⊕ = ⊕ =11011001 10110100 01101101

The important thing is that a one-time pad can only be used one time : 
each key K should be used only once. If the same K is used to encrypt P1 
and P2 to C1 and C2, then an eavesdropper can compute the following:

C C P K P K P P K K P P1 2 1 2 1 2 1 2⊕ = ⊕( ) ⊕ ⊕( ) = ⊕ ⊕ ⊕ = ⊕

An eavesdropper would thus learn the XOR difference of P1 and P2, 
information that should be kept secret. Moreover, if either plaintext mes-
sage is known, then the other message can be recovered.

Of course, the one-time pad is utterly inconvenient to use because it 
requires a key as long as the plaintext and a new random key for each new 
message or group of data. To encrypt a one-terabyte hard drive, you’d need 
another one-terabyte drive to store the key! Nonetheless, the one-time pad 
has been used throughout history. For example, it was used by the British 
Special Operations Executive during WWII, by KGB spies, by the NSA, 
and is still used today in specific contexts. (I’ve heard of Swiss bankers who 
couldn’t agree on a cipher trusted by both parties and ended up using one-
time pads, but I don’t recommend doing this.)

Why Is the One-Time Pad Secure?
Although the one-time pad is not practical, it’s important to understand 
what makes it secure. In the 1940s, American mathematician Claude 
Shannon proved that the one-time pad’s key must be at least as long as 
the message to achieve perfect secrecy. The proof’s idea is fairly simple. 
You assume that the attacker has unlimited power, and thus can try all the 
keys. The goal is to encrypt such that the attacker can’t rule out any pos-
sible plaintext given some ciphertext.

The intuition behind the one-time pad’s perfect secrecy goes as follows: 
if K is random, the resulting C looks as random as K to an attacker because 
the XOR of a random string with any fixed string yields a random string. 
To see this, consider the probability of getting 0 as the first bit of a random 
string (namely, a probability of 1/2). What’s the probability that a random 
bit XORed with the second bit is 0? Right, 1/2 again. The same argument 
can be iterated over bit strings of any length. The ciphertext C thus looks 
random to an attacker that doesn’t know K, so it’s literally impossible to 
learn anything about P given C, even for an attacker with unlimited time 
and power. In other words, knowing the ciphertext gives no information 
whatsoever about the plaintext except its length—pretty much the defini-
tion of a secure cipher.
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For example, if a ciphertext is 128 bits long (meaning the plaintext is 
128 bits as well), there are 2128 possible ciphertexts; therefore, there should 
be 2128 possible plaintexts from the attacker’s point of view. But if there are 
fewer than 2128 possible keys, the attacker can rule out some plaintexts. If 
the key is only 64 bits, for example, the attacker can determine the 264 pos-
sible plaintexts and rule out the overwhelming majority of 128-bit strings. 
The attacker wouldn’t learn what the plaintext is, but they would learn what 
the plaintext is not, which makes the encryption’s secrecy imperfect.

As you can see, you must have a key as long as the plaintext to achieve 
perfect security, but this quickly becomes impractical for real-world use. 
Next, I’ll discuss the approaches taken in modern-day encryption to 
achieve the best security that’s both possible and practical.

Encryption Security
You’ve seen that classical ciphers aren’t secure and that a perfectly secure 
cipher like the one-time pad is impractical. We’ll thus have to give a little 
in terms of security if we want secure and usable ciphers. But what does 
“secure” really mean, besides the obvious and informal “eavesdroppers 
can’t decrypt secure messages”?

Proba bil i t y in Cry p togr a ph y

A probability is a number that expresses the likelihood, or chance, of some 
event happening. It’s expressed as a number between 0 and 1, where 0 
means “never” and 1 means “always.” The higher the probability, the greater 
the chance. You’ll find many explanations of probability, usually in terms of 
white balls and red balls in a bag and the probability of picking a ball of 
either color.

Cryptography often uses probabilities to measure an attack’s chances of 
success, by 1) counting the number of successful events (for example, the event 
“find the one correct secret key”) and 2) counting the total number of possible 
events (for example, the total number of keys is 2n if we deal with n-bit keys). In 
this example, the probability that a randomly chosen key is the correct one is 
1/2n, or the count of successful events (1 secret key) and the count of possible 
events (2n possible keys). The number 1/2n is negligibly small for common key 
lengths such as 128 and 256.

The probability of an event not happening is 1 – p, if the event’s prob-
ability is p. The probability of getting a wrong key in our previous example is 
therefore 1 – 1/2n, a number very close to 1, meaning almost certainty.
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Intuitively, a cipher is secure if, even given a large number of plaintext–
ciphertext pairs, nothing can be learned about the cipher’s behavior when 
applied to other plaintexts or ciphertexts. This opens up new questions:

•	 How does an attacker come by these pairs? How large is a “large num-
ber”? This is all defined by attack models, assumptions about what the 
attacker can and cannot do.

•	 What could be “learned” and what “cipher’s behavior” are we talking 
about? This is defined by security goals, descriptions of what is consid-
ered a successful attack.

Attack models and security goals must go together; you can’t claim that 
a system is secure without explaining against whom or from what it’s safe. 
A security notion is thus the combination of some security goal with some 
attack model. We’ll say that a cipher achieves a certain security notion if any 
attacker working in a given model can’t achieve the security goal.

Attack Models
An attack model is a set of assumptions about how attackers might interact 
with a cipher and what they can and can’t do. The goals of an attack model 
are as follows:

•	 To set requirements for cryptographers who design ciphers, so that they 
know what attackers and what kinds of attacks to protect against.

•	 To give guidelines to users, about whether a cipher will be safe to use in 
their environment.

•	 To provide clues for cryptanalysts who attempt to break ciphers, so they 
know whether a given attack is valid. An attack is only valid if it’s doable 
in the model considered.

Attack models don’t need to match reality exactly; they’re an approxi-
mation. As the statistician George E. P. Box put it, “all models are wrong; 
the practical question is how wrong do they have to be to not be useful.” To 
be useful in cryptography, attack models should at least encompass what 
attackers can actually do to attack a cipher. It’s okay and a good thing if 
a model overestimates attackers’ capabilities, because it helps anticipate 
future attack techniques—only the paranoid cryptographers survive. A bad 
model underestimates attackers and provides false confidence in a cipher 
by making it seem secure in theory when it’s not secure in reality.

Kerckhoffs’s Principle

One assumption made in all models is the so-called Kerckhoffs’s principle, 
which states that the security of a cipher should rely only on the secrecy of 
the key and not on the secrecy of the cipher. This may sound obvious today, 
when ciphers and protocols are publicly specified and used by everyone. 
But historically, Dutch linguist Auguste Kerckhoffs was referring to mili-
tary encryption machines specifically designed for a given army or division. 
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Quoting from his 1883 essay “La Cryptographie Militaire,” where he listed 
six requirements of a military encryption system: “The system must not 
require secrecy and can be stolen by the enemy without causing trouble.”

Black-Box Models

Let’s now consider some useful attack models expressed in terms of what the 
attacker can observe and what queries they can make to the cipher. A query 
for our purposes is the operation that sends an input value to some function 
and gets the output in return, without exposing the details of that function.

An encryption query, for example, takes a plaintext and returns a corre-
sponding ciphertext, without revealing the secret key.

We call these models black-box models, because the attacker only sees 
what goes in and out of the cipher. For example, some smart card chips 
securely protect a cipher’s internals as well as its keys, yet you’re allowed to 
connect to the chip and ask it to decrypt any ciphertext. The attacker would 
then receive the corresponding plaintext, which may help them determine 
the key. That’s a real example where decryption queries are possible.

There are several different black-box attack models. Here, I list them in 
order from weakest to strongest, describing attackers’ capabilities for each 
model:

•	 Ciphertext-only attackers (COA) observe ciphertexts but don’t know the 
associated plaintexts, and don’t know how the plaintexts were selected. 
Attackers in the COA model are passive and can’t perform encryption 
or decryption queries.

•	 Known-plaintext attackers (KPA) observe ciphertexts and do know the 
associated plaintexts. Attackers in the KPA model thus get a list of 
plaintext–ciphertext pairs, where plaintexts are assumed to be ran-
domly selected. Again, KPA is a passive attacker model.

•	 Chosen-plaintext attackers (CPA) can perform encryption queries for 
plaintexts of their choice and observe the resulting ciphertexts. This 
model captures situations where attackers can choose all or part of 
the plaintexts that are encrypted and then get to see the ciphertexts. 
Unlike COA or KPA, which are passive models, CPA are active attackers, 
because they influence the encryption processes rather than passively 
eavesdropping.

•	 Chosen-ciphertext attackers (CCA) can both encrypt and decrypt; that is, 
they get to perform encryption queries and decryption queries. The 
CCA model may sound ludicrous at first—if you can decrypt, what else 
do you need?—but like the CPA model, it aims to represent situations 
where attackers can have some influence on the ciphertext and later get 
access to the plaintext. Moreover, decrypting something is not always 
enough to break a system. For example, some video-protection devices 
allow attackers to perform encryption queries and decryption queries 
using the device’s chip, but in that context attackers are interested in 
the key in order to redistribute it; in this case, being able to decrypt 
“for free” isn’t sufficient to break the system.
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In the preceding models, ciphertexts that are observed as well as queried 
don’t come for free. Each ciphertext comes from the computation of the 
encryption function. This means that generating 2N plaintext–ciphertext 
pairs through encryption queries takes about as much computation as trying 
2N keys, for example. The cost of queries should be taken into account when 
you’re computing the cost of an attack.

Gray-Box Models

In a gray-box model, the attacker has access to a cipher’s implementation. This 
makes gray-box models more realistic than black-box models for applica-
tions such as smart cards, embedded systems, and virtualized systems, to 
which attackers often have physical access and can thus tamper with the 
algorithms’ internals. By the same token, gray-box models are more dif-
ficult to define than black-box ones because they depend on physical, ana-
log properties rather than just on an algorithm’s input and outputs, and 
crypto theory will often fail to abstract the complexity of the real world.

Side-channel attacks are a family of attacks within gray-box models. A 
side channel is a source of information that depends on the implementa-
tion of the cipher, be it in software or hardware. Side-channel attackers 
observe or measure analog characteristics of a cipher’s implementation but 
don’t alter its integrity; they are noninvasive. For pure software implementa-
tions, typical side channels are the execution time and the behavior of the 
system that surrounds the cipher, such as error messages, return values, 
branches, and so on. In the case of implementations on smart cards, for 
example, typical side-channel attackers measure power consumption, elec-
tromagnetic emanations, or acoustic noise.

Invasive attacks are a family of attacks on cipher implementations that 
are more powerful than side-channel attacks, and more expensive because 
they require sophisticated equipment. You can run basic side-channel attacks 
with a standard PC and an off-the-shelf oscilloscope, but invasive attacks 
require tools such as a high-resolution microscopes and a chemical lab. 
Invasive attacks thus consist of a whole set of techniques and procedures, 
from using nitric acid to remove a chip’s packaging to microscopic imagery 
acquisition, partial reverse engineering, and possible modification of the 
chip’s behavior with something like laser fault injection.

Security Goals
I’ve informally defined the goal of security as “nothing can be learned about 
the cipher’s behavior.” To turn this idea into a rigorous mathematical defini-
tion, cryptographers define two main security goals that correspond to differ-
ent ideas of what it means to learn something about a cipher’s behavior:

Indistinguishability (IND)   Ciphertexts should be indistinguishable 
from random strings. This is usually illustrated with this hypothetical 
game: if an attacker picks two plaintexts and then receives a ciphertext 
of one of the two (chosen at random), they shouldn’t be able to tell 
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which plaintext was encrypted, even by performing encryption queries 
with the two plaintexts (and decryption queries, if the model is CCA 
rather than CPA).

Non-malleability (NM)   Given a ciphertext C1 = E(K, P1), it should 
be impossible to create another ciphertext, C2, whose correspond-
ing plaintext, P2, is related to P1 in a meaningful way (for example, to 
create a P2 that is equal to P1 ⊕ 1 or to P1 ⊕ X for some known value 
X). Surprisingly, the one-time pad is malleable: given a ciphertext 
C1 = P1 ⊕ K, you can define C2 = C1 ⊕ 1, which is a valid ciphertext 
of P2 = P1 ⊕ 1 under the same key K. Oops, so much for our perfect 
cipher.

Next, I’ll discuss these security goals in the context of different attack 
models.

Security Notions
Security goals are only useful when combined with an attack model. The 
convention is to write a security notion as GOAL -MODEL. For example, 
IND-CPA denotes indistinguishability against chosen-plaintext attackers, 
NM-CCA denotes nonmalleability against chosen-ciphertext attackers, and 
so on. Let’s start with the security goals for an attacker.

Semantic Security and Randomized Encryption: IND-CPA

The most important security notion is IND-CPA, also called semantic 
security. It captures the intuition that ciphertexts shouldn’t leak any infor-
mation about plaintexts as long as the key is secret. To achieve IND-CPA 
security, encryption must return different ciphertexts if called twice on 
the same plaintext; otherwise, an attacker could identify duplicate plain-
texts from their ciphertexts, contradicting the definition that ciphertexts 
shouldn’t reveal any information.

One way to achieve IND-CPA security is to use randomized encryption. As 
the name suggests, it randomizes the encryption process and returns differ-
ent ciphertexts when the same plaintext is encrypted twice. Encryption can 
then be expressed as C = E(K, R, P), where R is fresh random bits. Decryption 
remains deterministic, however, because given D(K, R, C), you should always 
get P, regardless of the value of R.

What if encryption isn’t randomized? In the IND game introduced 
in “Security Goals” on page 12, the attacker picks two plaintexts, P1 and 
P2, and receives a ciphertext of one of the two, but doesn’t know which 
plaintext the ciphertext corresponds to. That is, they get Ci = E(K, Pi) 
and have to guess whether i is 1 or 2. In the CPA model, the attacker can 
perform encryption queries to determine both C1 = E(K, P1) and C2 = 
E(K, P2). If encryption isn’t randomized, it suffices to see if Ci is equal 
to C1 or to C2 in order to determine which plaintext was encrypted and 
thereby win the IND game. Therefore, randomization is key to the IND-
CPA notion.
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N O T E 	 With randomized encryption, ciphertexts must be slightly longer than plaintexts in 
order to allow for more than one possible ciphertext per plaintext. For example, if there 
are 264 possible ciphertexts per plaintext, ciphertexts must be at least 64 bits longer 
than plaintexts.

Achieving Semantically Secure Encryption

One of the simplest constructions of a semantically secure cipher uses a 
deterministic random bit generator (DRBG), an algorithm that returns random-
looking bits given some secret value:

E DRBGK R P K R P R, , , � � � � � �� ��

Here, R is a string randomly chosen for each new encryption and given 
to a DRBG along with the key (K || R denotes the string consisting of K fol-
lowed by R). This approach is reminiscent of the one-time pad: instead of 
picking a random key of the same length as the message, we leverage a ran-
dom bit generator to get a random-looking string.

The proof that this cipher is IND-CPA secure is simple, if we assume 
that the DRBG produces random bits. The proof works ad absurdum: if 
you can distinguish ciphertexts from random strings, which means that you 
can distinguish DRBG(K || R) ⊕ P from random, then this means that 
you can distinguish DRBG(K || R) from random. Remember that the CPA 
model lets you get ciphertexts for chosen values of P, so you can XOR P to 
DRBG(K || R) ⊕ P and get DRBG(K || R). But now we have a contradic-
tion, because we started by assuming that DRBG(K || R) can’t be distin-
guished from random, producing random strings. So we conclude that 
ciphertexts can’t be distinguished from random strings, and therefore 
that the cipher is secure.

N O T E 	 As an exercise, try to determine what other security notions are satisfied by the above 
cipher E(K, R, P) = (DRBG(K || R) ⊕ P, R). Is it NM-CPA? IND-CCA? You’ll find 
the answers in the next section.

Comparing Security Notions

You’ve learned that attack models such as CPA and CCA are combined with 
security goals such as NM and IND to build the security notions NM-CPA, 
NM-CCA, IND-CPA, and IND-CCA. How are these notions related? Can we 
prove that satisfying notion X implies satisfying notion Y?

Some relations are obvious: IND-CCA implies IND-CPA, and NM-CCA 
implies NM-CPA, because anything a CPA attacker can do, a CCA attacker 
can do as well. That is, if you can’t break a cipher by performing chosen-
ciphertext and chosen-plaintext queries, you can’t break it by performing 
chosen-plaintext queries only.

A less obvious relation is that IND-CPA does not imply NM-CPA. 
To understand this, observe that the previous IND-CPA construction 
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(DRBG(K, R) ⊕ P, R) is not NM-CPA: given a ciphertext (X, R), you can 
create the ciphertext (X ⊕ 1, R), which is a valid ciphertext of P ⊕ 1, thus 
contradicting the notion of non-malleability.

But the opposite relation does hold: NM-CPA implies IND-CPA. The 
intuition is that IND-CPA encryption is like putting items in a bag: you 
don’t get to see them, but you can rearrange their positions in the bag by 
shaking it up and down. NM-CPA is more like a safe: once inside, you can’t 
interact with what you put in there. But this analogy doesn’t work for IND-
CCA and NM-CCA, which are equivalent notions that each imply the pres-
ence of the other. I’ll spare you the proof, which is pretty technical.

T wo T y pe s of E ncry p t ion A ppl ic at ions

There are two main types of encryption applications. In-transit encryption 
protects data sent from one machine to another: data is encrypted before 
being sent and decrypted after being received, as in encrypted connections 
to e-commerce websites. At-rest encryption protects data stored on an informa-
tion system. Data is encrypted before being written to memory and decrypted 
before being read. Examples include disk encryption systems on laptops as 
well as virtual machine encryption for cloud virtual instances. The security 
notions we’ve seen apply to both types of applications, but the right notion to 
consider may depend on the application.

Asymmetric Encryption
So far we’ve considered only symmetric encryption, where two parties share a 
key. In asymmetric encryption, there are two keys: one to encrypt and another to 
decrypt. The encryption key is called a public key and is generally considered 
publicly available to anyone who wants to send you encrypted messages. The 
decryption key, however, must remain secret and is called a private key.

The public key can be computed from the private key, but obviously the 
private key can’t be computed from the public key. In other words, it’s easy 
to compute in one direction, but not in the other—and that’s the point of 
public-key cryptography, whose functions are easy to compute in one direction 
but practically impossible to invert.

The attack models and security goals for asymmetric encryption are 
about the same as for symmetric encryption, except that because the encryp-
tion key is public, any attacker can make encryption queries by using the 
public key to encrypt. The default model for asymmetric encryption is 
therefore the chosen-plaintext attacker (CPA).

Symmetric and asymmetric encryption are the two main types of encryp-
tion, and they are usually combined to build secure communication systems. 
They’re also used to form the basis of more sophisticated schemes, as you’ll 
see next.



16   Chapter 1

When Ciphers Do More Than Encryption
Basic encryption turns plaintexts into ciphertexts and ciphertexts into plain-
texts, with no requirements other than security. However, some applications 
often need more than that, be it extra security features or extra function-
alities. That’s why cryptographers created variants of symmetric and asym-
metric encryption. Some are well-understood, efficient, and widely deployed, 
while others are experimental, hardly used, and offer poor performance.

Authenticated Encryption
Authenticated encryption (AE) is a type of symmetric 
encryption that returns an authentication tag in 
addition to a ciphertext. Figure 1-4 shows authen-
ticated encryption sets AE(K, P) = (C, T), where 
the authentication tag T is a short string that’s 
impossible to guess without the key. Decryption 
takes K, C, and T and returns the plaintext P only 
if it verifies that T is a valid tag for that plaintext–
ciphertext pair; otherwise, it aborts and returns 
some error.

The tag ensures the integrity of the message and serves as evidence 
that the ciphertext received is identical to the one sent in the first place 
by a legitimate party that knows the key K. When K is shared with only 
one other party, the tag also guarantees that the message was sent by that 
party; that is, it implicitly authenticates the expected sender as the actual 
creator of the message.

N o t e 	 I use “creator” rather than “sender” here because an eavesdropper can record some 
(C, T) pairs sent by party A to party B and then send them again to B, pretending to 
be A. This is called a replay attack, and it can be prevented, for example, by includ-
ing a counter number in the message. When a message is decrypted, its counter i is 
increased by one: i + 1. In this way, one could check the counter to see if a message 
has been sent twice, indicating that an attacker is attempting a replay attack by 
resending the message. This also enables the detection of lost messages.

Authenticated encryption with associated data (AEAD) is an extension of 
authenticated encryption that takes some cleartext and unencrypted data 
and uses it to generate the authentication tag AEAD(K, P, A) = (C, T). A 
typical application of AEAD is used to protect protocols’ datagrams with 
a cleartext header and an encrypted payload. In such cases, at least some 
header data has to remain in the clear; for example, destination addresses 
need to be clear in order to route network packets.

For more on authenticated encryption, jump to Chapter 8.

Format-Preserving Encryption
A basic cipher takes bits and returns bits; it doesn’t care whether bits rep-
resents text, an image, or a PDF document. The ciphertext may in turn be 

AE

K

C
P

T

Figure 1-4: Authenticated 
encryption
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encoded as raw bytes, hexadecimal characters, base64, and other formats. 
But what if you need the ciphertext to have the same format as the plain-
text, as is sometimes required by database systems that can only record data 
in a prescribed format?

Format-preserving encryption (FPE) solves this problem. It can create 
ciphertexts that have the same format as the plaintext. For example, FPE 
can encrypt IP addresses to IP addresses (as shown in Figure 1-5), ZIP 
codes to ZIP codes, credit card numbers to credit card numbers with a 
valid checksum, and so on.

FPE

K

127.0.0.1 212.91.12.2

Figure 1-5: Format-preserving encryption 
for IP addresses

Fully Homomorphic Encryption
Fully homomorphic encryption (FHE) is the holy grail to cryptographers: it 
enables its users to replace a ciphertext, C = E(K, P), with another cipher-
text, C ′ = E(K, F(P)), for F(P) can be any function of P, and without ever 
decrypting the initial ciphertext C. For example, P can be a text document, 
and F can be the modification of part of the text. You can imagine a cloud 
application that stores your encrypted data, but where the cloud provider 
doesn’t know what the data is or the type of changes made when you 
change that data. Sounds amazing, doesn’t it?

But there’s a flip side: this type of encryption is slow—so slow that even 
the most basic operation would take an unacceptably long time. The first 
FHE scheme was created in 2009, and since then more efficient variants 
appeared, but it remains unclear whether FHE will ever be fast enough to 
be useful.

Searchable Encryption
Searchable encryption enables searching over an encrypted database without 
leaking the searched terms by encrypting the search query itself. Like fully 
homomorphic encryption, searchable encryption could enhance the privacy 
of many cloud-based applications by hiding your searches from your cloud 
provider. Some commercial solutions claim to offer searchable encryption, 
though they’re mostly based on standard cryptography with a few tricks to 
enable partial searchability. As of this writing, however, searchable encryp-
tion remains experimental within the research community.

Tweakable Encryption
Tweakable encryption (TE) is similar to basic encryption, except for an addi-
tional parameter called the tweak, which aims to simulate different versions 
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of a cipher (see Figure 1-6). The tweak might be 
a unique per-customer value to ensure that a cus-
tomer’s cipher can’t be cloned by other parties using 
the same product, but the main application of TE is 
disk encryption. However, TE is not bound to a single 
application and is a lower-level type of encryption 
used to build other schemes, such as authentication 
encryption modes.

In disk encryption, TE encrypts the content 
of storage devices such as hard drives or solid-state 
drives. (Randomized encryption can’t be used 
because it increases the size of the data, which is unacceptable for files on 
storage media.) To make encryption unpredictable, TE uses a tweak value 
that depends on the position of the data encrypted, which is usually a sector 
number or a block index.

How Things Can Go Wrong
Encryption algorithms or implementations thereof can fail to protect con-
fidentiality in many ways. This can be due to a failure to match the secu-
rity requirements (such as “be IND-CPA secure”) or to set requirements 
matching reality (if you target only IND-CPA security when attackers can 
actually perform chosen-ciphertext queries). Alas, many engineers don’t 
even think about cryptographic security requirements and just want to be 
“secure” without understanding what that actually means. That’s usually a 
recipe for disaster. Let’s look at two examples.

Weak Cipher
Our first example concerns ciphers that can be attacked using cryptanalysis 
techniques, as occurred with the 2G mobile communication standard. 
Encryption in 2G mobile phones used a cipher called A5/1 that turned 
out to be weaker than expected, enabling the interception of calls by any-
one with the right skills and tools. Telecommunication operators had to 
find workarounds to prevent the attack.

N o t e 	 The 2G standard also defined A5/2, a cipher for areas other than the EU and US. 
A5/2 was purposefully weaker to prevent the use of strong encryption everywhere.

That said, attacking A5/1 isn’t trivial, and it took more than 10 years for 
researchers to come up with an effective cryptanalysis method. Furthermore, 
the attack is a time-memory trade-off (TMTO), a type of method that first runs 
computations for days or weeks in order to build large look-up tables, which 
are subsequently used for the actual attack. For A5/1, the precomputed 
tables are more than 1TB. Later standards for mobile encryption, such as 3G 
and LTE, specify stronger ciphers, but that doesn’t mean that their encryp-
tion won’t be compromised; rather, it simply means that the encryption won’t 
be compromised by breaking the symmetric cipher that’s part of the system.

Figure 1-6: Tweakable 
encryption
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Wrong Model
The next example concerns an invalid attack model that overlooked some 
side channels.

Many communication protocols that use encryption ensure that they 
use ciphers considered secure in the CPA or CCA model. However, some 
attacks don’t require encryption queries, as in the CPA model, nor do they 
require decryption queries, as in the CCA model. They simply need valid-
ity queries to tell whether a ciphertext is valid, and these queries are usually 
sent to the system responsible for decrypting ciphertexts. Padding oracle 
attacks are an example of such attacks, wherein an attacker learns whether 
a ciphertext conforms to the required format.

Specifically, in the case of padding oracle attacks, a ciphertext is valid 
only if its plaintext has the proper padding, a sequence of bytes appended 
to the plaintext to simplify encryption. Decryption fails if the padding is 
incorrect, and attackers can often detect decryption failures and attempt to 
exploit them. For example, the presence of the Java exception javax.crypto 
.BadPaddingException would indicate that an incorrect padding was observed.

In 2010, researchers found padding oracle attacks in several web applica-
tion servers. The validity queries consisted of sending a ciphertext to some 
system and observing whether it threw an error. Thanks to these queries, they 
could decrypt otherwise secure ciphertexts without knowing the key.

Cryptographers often overlook attacks like padding oracle attacks 
because they usually depend on an application’s behavior and on how 
users can interact with the application. But if you don’t anticipate such 
attacks and fail to include them in your model when designing and 
deploying cryptography, you may have some nasty surprises.

Further Reading
We discuss encryption and its various forms in more detail throughout 
this book, especially how modern, secure ciphers work. Still, we can’t 
cover everything, and many fascinating topics won’t be discussed. For 
example, to learn the theoretical foundations of encryption and gain a 
deeper understanding of the notion of indistinguishability (IND), you 
should read the 1982 paper that introduced the idea of semantic security, 
“Probabilistic Encryption and How to Play Mental Poker Keeping Secret 
All Partial Information” by Goldwasser and Micali. If you’re interested 
in physical attacks and cryptographic hardware, the proceedings of the 
CHES conference are the main reference.

There are also many more types of encryption than those presented in 
this chapter, including attribute-based encryption, broadcast encryption, 
functional encryption, identity-based encryption, message-locked encryp-
tion, and proxy re-encryption, to cite but a few. For the latest research on 
those topics, you should check https://eprint.iacr.org/, an electronic archive of 
cryptography research papers.
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R a n d o m n e s s

Randomness is found everywhere in cryp-
tography: in the generation of secret keys, 

in encryption schemes, and even in the 
attacks on cryptosystems. Without random-

ness, cryptography would be impossible because all 
operations would become predictable, and therefore 
insecure.

This chapter introduces you to the concept of randomness in the context 
of cryptography and its applications. We discuss pseudorandom number 
generators and how operating systems can produce reliable randomness, and 
we conclude with real examples showing how flawed randomness can impact 
security.
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Random or Non-Random?
You’ve probably already heard the phrase “random bits,” but strictly speaking 
there is no such thing as a series of random bits. What is random is actually 
the algorithm or process that produces a series of random bits; therefore, 
when we say “random bits,” we actually mean randomly generated bits.

What do random bits look like? For example, to most people, the 8-bit 
string 11010110 is more random than 00000000, although both have the 
same chance of being generated (namely, 1/256). The value 11010110 looks 
more random than 00000000 because it has the signs typical of a randomly 
generated value. That is, 11010110 has no obvious pattern.

When we see the string 11010110, our brain registers that it has about 
as many zeros (three) as it does ones (five), just like 55 other 8-bit strings 
(11111000, 11110100, 11110010, and so on), but only one 8-bit string has 
eight zeros. Because the pattern three-zeros-and-five-ones is more likely 
to occur than the pattern eight-zeros, we identify 11010110 as random and 
00000000 as non-random, and if a program produces the bits 11010110, you 
may think that it’s random, even if it’s not. Conversely, if a randomized pro-
gram produces 00000000, you’ll probably doubt that it’s random.

This example illustrates two types of errors people often make when 
identifying randomness:

Mistaking non-randomness for randomness  Thinking that an object 
was randomly generated simply because it looks random.

Mistaking randomness for non-randomness  Thinking that patterns 
appearing by chance are there for a reason other than chance.

The distinction between random-looking and actually random is crucial. 
Indeed, in crypto, non-randomness is often synonymous with insecurity.

Randomness as a Probability Distribution
Any randomized process is characterized by a probability distribution, which 
gives all there is to know about the randomness of the process. A probabil-
ity distribution, or simply distribution, lists the outcomes of a randomized 
process where each outcome is assigned a probability.

A probability measures the likelihood of an event occurring. It’s 
expressed as a real number between 0 and 1 where a probability 0 means 
impossible and a probability of 1 means certain. For example, when tossing 
a two-sided coin, each side has a probability of landing face up of 1/2, and 
we usually assume that landing on the edge of the coin has probability zero.

A probability distribution must include all possible outcomes, such 
that the sum of all probabilities is 1. Specifically, if there are N possible 
events, there are N probabilities p1, p2, . . . , pN with p1 + p2 + . . . + pN = 1. In 
the case of the coin toss, the distribution is 1/2 for heads and 1/2 for tails. 
The sum of both probabilities is equal to 1/2 + 1/2 = 1, because the coin 
will fall on one of its two faces.
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A uniform distribution occurs when all probabilities in the distribution 
are equal, meaning that all outcomes are equally likely to occur. If there are 
N events, then each event has probability 1/N. For example, if a 128-bit key 
is picked uniformly at random—that is, according to a uniform distribu-
tion—then each of the 2128 possible keys should have a probability of 1/2128.

In contrast, when a distribution is non-uniform, probabilities aren’t all 
equal. A coin toss with a non-uniform distribution is said to be biased, 
and may yield heads with probability 1/4 and tails with probability 3/4, for 
example.

Entropy: A Measure of Uncertainty
Entropy is the measure of uncertainty, or disorder in a system. You might 
think of entropy as the amount of surprise found in the result of a random-
ized process: the higher the entropy, the less the certainty found in the result.

We can compute the entropy of a probability distribution. If your distri-
bution consists of probabilities p1, p2, . . . , pN, then its entropy is the nega-
tive sum of all probabilities multiplied by their logarithm, as shown in this 
expression:

− − −p p p p p pN N1 1 2 2× ( ) × ( ) × ( )log log log. . . 

Here the function log is the binary logarithm, or logarithm in base two. 
Unlike the natural logarithm, the binary logarithm expresses the informa-
tion in bits and yields integer values when probabilities are powers of two. 
For example, log(1/2) = –1, log(1/4) = –2, and more generally log(1/2n) = –n. 
(That’s why we actually take the negative sum, in order to end up with a posi-
tive number.) Random 128-bit keys produced using a uniform distribution 
therefore have the following entropy:

2 2 2 2128 128 128 128× × ( )( ) = ( ) =− −− − −log log 128 bits

If you replace 128 by any integer n you will find that the entropy of a 
uniformly distributed n-bit string will be n bits.

Entropy is maximized when the distribution is uniform because a uni-
form distribution maximizes uncertainty: no outcome is more likely than 
the others. Therefore, n-bit values can’t have more than n bits of entropy.

By the same token, when the distribution is not uniform, entropy is lower. 
Consider the coin toss example. The entropy of a fair toss is the following:

− −1 2 1 2 1 2 1 2 1 2 1 2( ) × ( ) ( ) × ( ) = + =log log 1 bit

What if one side of the coin has a higher probability of landing face up 
than the other? Say heads has a probability of 1/4 and tails 3/4 (remember 
that the sum of all probabilities should be 1).
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The entropy of such a biased toss is this:

− − − − − −3 4 3 4 1 4 1 4 3 4 0 415 1 4 2( ) × ( ) ( ) × ( ) ≈ ( ) × .( ) ( ) × ( ) ≈log log 0.81 biit

The fact that 0.81 is less than the 1-bit entropy of a fair toss tells us that 
the more biased the coin, the less uniform the distribution and the lower the 
entropy. Taking this example further, if heads has a probability of 1/10, the 
entropy is 0.469; if the probability drops to 1/100, the entropy drops to 0.081.

N o t e 	 Entropy can also be viewed as a measure of information. For example, the result of 
a fair coin toss gives you exactly one bit of information—heads or tails—and you’re 
unable to predict the result of the toss in advance. In the case of the unfair coin toss, 
you know in advance that tails is more probable, so you can usually predict the out-
come of the toss. The result of the coin toss gives you the information needed to predict 
the result with certainty.

Random Number Generators (RNGs) and  
Pseudorandom Number Generators (PRNGs)

Cryptosystems need randomness to be secure and therefore need a compo-
nent from which to get their randomness. The job of this component is to 
return random bits when requested to do so. How is this randomness gen-
eration done? You’ll need two things:

•	 A source of uncertainty, or source of entropy, provided by random number 
generators (RNGs).

•	 A cryptographic algorithm to produce high-quality random bits from the 
source of entropy. This is found in pseudorandom number generators 
(PRNGs).

Using RNGs and PRNGs is the key to making cryptography practical 
and secure. Let’s briefly look at how RNGs work before exploring PRNGs 
in depth.

Randomness comes from the environment, which is analog, chaotic, 
uncertain, and hence unpredictable. Randomness can’t be generated by 
computer-based algorithms alone. In cryptography, randomness usually 
comes from random number generators (RNGs), which are software or hard-
ware components that leverage entropy in the analog world to produce 
unpredictable bits in a digital system. For example, an RNG might directly 
sample bits from measurements of temperature, acoustic noise, air turbu-
lence, or electrical static. Unfortunately, such analog entropy sources aren’t 
always available, and their entropy is often difficult to estimate.

RNGs can also harvest the entropy in a running operating system by 
drawing from attached sensors, I/O devices, network or disk activity, system 
logs, running processes, and user activities such as key presses and mouse 
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movement. Such system- and human-generated activities can be a good 
source of entropy, but they can be fragile and manipulated by an attacker. 
Also, they’re slow to yield random bits.

Quantum random number generators (QRNGs) are a type of RNG that relies 
on the randomness arising from quantum mechanical phenomena such as 
radioactive decay, vacuum fluctuations, and observing photons’ polariza-
tion. These can provide real randomness, rather than just apparent random-
ness. However, in practice, QRNGs may be biased and don’t produce bits 
quickly; like the previously cited entropy sources, they need an additional 
component to produce reliably at high speed.

Pseudorandom number generators (PRNGs) address the challenge we face 
in generating randomness by reliably producing many artificial random bits 
from a few true random bits. For example, an RNG that translates mouse 
movements to random bits would stop working if you stop moving the mouse, 
whereas a PRNG always returns pseudorandom bits when requested to do so.

PRNGs rely on RNGs but behave differently: RNGs produce true 
random bits relatively slowly from analog sources, in a nondeterministic 
way, and with no guarantee of high entropy. In contrast, PRNGs produce 
random-looking bits quickly from digital sources, in a deterministic way, 
and with maximum entropy. Essentially, PRNGs transform a few unreliable 
random bits into a long stream of reliable pseudorandom bits suitable for 
crypto applications, as shown in Figure 2-1.

RNG 100 . . . 01 PRNG 1011001 . . . 10110

Figure 2-1: RNGs produce few unreliable bits from analog sources, whereas  
PRNGs expand those bits to a long stream of reliable bits.

How PRNGs Work
A PRNG receives random bits from an RNG at regular intervals and uses 
them to update the contents of a large memory buffer, called the entropy pool. 
The entropy pool is the PRNG’s source of entropy, just like the physical envi-
ronment is to an RNG. When the PRNG updates the entropy pool, it mixes 
the pool’s bits together to help remove any statistical bias.

In order to generate pseudorandom bits, the PRNG runs a deterministic 
random bit generator (DRBG) algorithm that expands some bits from the 
entropy pool into a much longer sequence. As its name suggests, a DRBG is 
deterministic, not randomized: given one input you will always get the same 
output. The PRNG ensures that its DRBG never receives the same input 
twice, in order to generate unique pseudorandom sequences.

In the course of its work, the PRNG performs three operations, as follows:

init()  Initializes the entropy pool and the internal state of the PRNG

refresh(R)  Updates the entropy pool using some data, R, usually 
sourced from an RNG

next(N)  Returns N pseudorandom bits and updates the entropy pool
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The init operation resets the PRNG to a fresh state, reinitializes the 
entropy pool to some default value, and initializes any variables or memory 
buffers used by the PRNG to carry out the refresh and next operations.

The refresh operation is often called reseeding, and its argument R is 
called a seed. When no RNG is available, seeds may be unique values hard-
coded in a system. The refresh operation is typically called by the operating 
system, whereas next is typically called or requested by applications. The 
next operation runs the DRBG and modifies the entropy pool to ensure 
that the next call will yield different pseudorandom bits.

Security Concerns
Let’s talk briefly about the way that PRNGs address some high-level security 
concerns. Specifically, PRNGs should guarantee backtracking resistance and 
prediction resistance. Backtracking resistance (also called forward secrecy) means 
that previously generated bits are impossible to recover, whereas prediction 
resistance (backward secrecy) means that future bits should be impossible to 
predict.

In order to achieve backtracking resistance, the PRNG should ensure 
that the transformations performed when updating the state through the 
refresh and next operations are irreversible so that if an attacker compromises 
the system and obtains the entropy pool’s value, they can’t determine the 
previous values of the pool or the previously generated bits. To achieve pre-
diction resistance, the PRNG should call refresh regularly with R values that 
are unknown to an attacker and that are difficult to guess, thus preventing 
an attacker from determining future values of the entropy pool, even if the 
whole pool is compromised. (Even if the list of R values used were known, 
you’d need to know the order in which refresh and next calls were made in 
order to reconstruct the pool.)

The PRNG Fortuna
Fortuna is a PRNG construction used in Windows originally designed in 2003 
by Niels Ferguson and Bruce Schneier. Fortuna superseded Yarrow, a 1998 
design by Kelsey and Schneier now used in the macOS and iOS operating 
systems. I won’t provide the Fortuna specification here or show you how to 
implement it, but I will try to explain how it works. You’ll find a complete 
description of Fortuna in Chapter 9 of Cryptography Engineering by Ferguson, 
Schneier, and Kohno (Wiley, 2010).

Fortuna’s internal memory includes the following:

•	 Thirty-two entropy pools, P1, P2, . . . , P32, such that Pi is used every 2i 
reseeds.

•	 A key, K, and a counter, C (both 16 bytes). These form the internal state 
of Fortuna’s DRBG.
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In simplest terms, Fortuna works like this:

•	 init() sets K and C to zero and empties the 32 entropy pools Pi, where 
i = 1 . . . 32.

•	 refresh(R) appends the data, R, to one of the entropy pools. The system 
chooses the RNGs used to produce R values, and it should call refresh 
regularly.

•	 next(N) updates K using data from one or more entropy pools, where 
the choice of the entropy pools depends mainly on how many updates 
of K have already been done. The N bits requested are then produced 
by encrypting C using K as a key. If encrypting C is not enough, Fortuna 
encrypts C + 1, then C + 2, and so on, to get enough bits.

Although Fortuna’s operations look fairly simple, implementing them 
correctly is hard. For one thing, you need to get all the details of the algo-
rithm right—namely, how entropy pools are chosen, the type of cipher to be 
used in next, how to behave when no entropy is received, and so on. Although 
the specs define most of the details, they don’t include a comprehensive test 
suite to check that an implementation is correct, which makes it difficult to 
ensure that your implementation of Fortuna will behave as expected.

Even if Fortuna is correctly implemented, security failures may occur 
for reasons other than the use of an incorrect algorithm. For example, 
Fortuna might not notice if the RNGs fail to produce enough random bits, 
and as a result Fortuna will produce lower-quality pseudorandom bits, or it 
may stop delivering pseudorandom bits altogether.

Another risk inherent in Fortuna implementations lies in the possibil-
ity of exposing associated seed files to attackers. The data in Fortuna seed 
files is used to feed entropy to Fortuna through refresh calls when an RNG 
is not immediately available, such as immediately after a system reboot and 
before the system’s RNGs have recorded any unpredictable events. However, 
if an identical seed file is used twice, then Fortuna will produce the same 
bit sequence twice. Seed files should therefore be erased after being used to 
ensure that they aren’t reused.

Finally, if two Fortuna instances are in the same state because they are 
sharing a seed file (meaning they are sharing the same data in the entropy 
pools, including the same C and K), then the next operation will return the 
same bits in both instances.

Cryptographic vs. Non-Cryptographic PRNGs
There are both cryptographic and non-cryptographic PRNGs. Non-crypto 
PRNGs are designed to produce uniform distributions for applications such 
as scientific simulations or video games. However, you should never use non-
crypto PRNGs in crypto applications, because they’re insecure—they’re only 
concerned with the quality of the bits’ probability distribution and not with 
their predictability. Crypto PRNGs, on the other hand, are unpredictable, 
because they’re also concerned with the strength of the underlying operations 
used to deliver well-distributed bits.
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Unfortunately, most PRNGs exposed by programming languages, such as 
libc’s rand and drand48, PHP’s rand and mt_rand, Python’s random module, Ruby’s 
Random class, and so on, are non-cryptographic. Defaulting to a non-crypto 
PRNG is a recipe for disaster because it often ends up being used in crypto 
applications, so be sure to use only crypto PRNGs in crypto applications.

A Popular Non-Crypto PRNG: Mersenne Twister

The Mersenne Twister (MT) algorithm is a non-cryptographic PRNG used (at 
the time of this writing) in PHP, Python, R, Ruby, and many other systems. 
MT will generate uniformly distributed random bits without statistical bias, 
but it’s predictable: given a few bits produced by MT, it’s easy enough to tell 
which bits will follow.

Let’s look under the hood to see what makes the Mersenne Twister 
insecure. The MT algorithm is much simpler than that of crypto PRNGs: 
its internal state is an array, S, consisting of 624 32-bit words. This array is 
initially set to S1, S2, . . . , S624 and evolves to S2, . . . , S625, then S3, . . . , S626, 
and so on, according to this equation:

S S S Sk k k k      
x x7fffffff� � �� � �� � � �� �� �624 397 10 80000000 0A

Here, ⊕ denotes the bitwise XOR (^ in the C programming language), 
∧ denotes the bitwise AND (& in C), ∨ denotes the bitwise OR (| in C), and 
A is a function that transforms some 32-bit word, x, to (x >> 1), if x’s most 
significant bit is 0, or to (x >> 1) ⊕ 0x9908b0df otherwise.

Notice in this equation that bits of S interact with each other only 
through XORs. The operators ∧ and ∨ never combine two bits of S together, 
but just bits of S with bits from the constants 0x80000000 and 0x7fffffff. 
This way, any bit from S625 can be expressed as an XOR of bits from S398, S1, 
and S2, and any bit from any future state can be expressed as an XOR com-
bination of bits from the initial state S1, . . . , S624. (When you express, say, 
S228 + 624 = S852 as a function of S625, S228, and S229, you can in turn replace 
S625 by its expression in terms of S398, S1, and S2.)

Because there are exactly 624 × 32 = 19,968 bits in the initial state (or 
624 32-bit words), any output bit can be expressed as an equation with at 
most 19,969 terms (19,968 bits plus one constant bit). That’s just about 
2.5 kilobytes of data. The converse is also true: bits from the initial state 
can be expressed as an XOR of output bits.

Linearity Insecurity

We call an XOR combination of bits a linear combination. For example, if X, 
Y, and Z are bits, then the expression X ⊕ Y ⊕ Z is a linear combination, 
whereas (X ∧ Y) ⊕ Z is not because there’s an AND (∧). If you flip a bit of X 
in X ⊕ Y ⊕ Z, then the result changes as well, regardless of the value of the 
Y and Z. In contrast, if you flip a bit of X in (X ∧ Y) ⊕ Z, the result changes 
only if Y’s bit at the same position is 1. The upshot is that linear combina-
tions are predictable, because you don’t need to know the value of the bits 
in order to predict how a change in their value will affect the result.
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For comparison, if the MT algorithm were cryptographically strong, its 
equations would be nonlinear and would involve not only single bits but also 
AND-combinations (products) of bits, such as S1S15S182 or S17S256S257S354S498S601. 
Although linear combinations of those bits include at most 624 variables, 
nonlinear combinations allow for up to 2624 variables. It would be impos-
sible to solve, let alone write down the whole of these equations. (Note that 
2305, a much smaller number, is the estimated information capacity of the 
observable universe.)

The key here is that linear transformations lead to short equations 
(comparable in size to the number of variables), which are easy to solve, 
whereas nonlinear transformations give rise to equations of exponential 
size, which are practically unsolvable. The game of cryptographers is thus 
to design PRNG algorithms that emulate such complex nonlinear transfor-
mations using only a small number of simple operations.

N o t e 	 Linearity is just one of many security criteria. Although necessary, nonlinearity alone 
does not make a PRNG cryptographically secure.

The Uselessness of Statistical Tests
Statistical test suites like TestU01, Diehard, or the National Institute of 
Standards and Technology (NIST) test suite are one way to test the qual-
ity of pseudorandom bits. These tests take a sample of pseudorandom bits 
produced by a PRNG (say, one megabyte worth), compute some statistics 
on the distribution of certain patterns in the bits, and compare the results 
with the typical results obtained for a perfect, uniform distribution. For 
example, some tests count the number of 1 bits versus the number of 0 bits, 
or the distribution of 8-bit patterns. But statistical tests are largely irrelevant 
to cryptographic security, and it’s possible to design a cryptographically 
weak PRNG that will fool any statistical test.

When you run statistical tests on randomly generated data, you will 
usually see a bunch of statistical indicators as a result. These are typically 
p -values, a common statistical indicator. These results aren’t always easy 
to interpret, because they’re rarely as simple as passed or failed. If your 
first results seem abnormal, don’t worry: they may be the result of some 
accidental deviation, or you may be testing too few samples. To ensure 
that the results you see are normal, compare them with those obtained for 
some reliable sample of identical size; for example, one generated with the 
OpenSSL toolkit using the following command:

$ openssl rand <number of bytes> -out <output file>

Real-World PRNGs
Let’s turn our attention to how to implement PRNGs in the real world. 
You’ll find crypto PRNGs in the operating systems (OSs) of most platforms, 
from desktops and laptops to embedded systems such as routers and set-top 
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boxes, as well as virtual machines, mobile phones, and so on. Most of these 
PRNGs are software based, but some are pure hardware. Those PRNGs are 
used by applications running on the OS, and sometimes other PRNGs run-
ning on top of cryptographic libraries or applications.

Next we’ll look at the most widely deployed PRNGs: the one for Linux, 
Android, and many other Unix-based systems; the one in Windows; and the 
one in recent Intel microprocessors, which is hardware based.

Generating Random Bits in Unix-Based Systems
The device file /dev/urandom is the userland interface to the crypto PRNG 
of common *nix systems, and it’s what you will typically use to generate 
reliable random bits. Because it’s a device file, requesting random bits from 
/dev/urandom is done by reading it as a file. For example, the following com-
mand uses /dev/urandom to write 10MB of random bits to a file:

$ dd if=/dev/urandom of=<output file> bs=1M count=10

The Wrong Way to Use /dev/urandom

You could write a naive and insecure C program like the one shown in 
Listing 2-1 to read random bits, and hope for the best, but that would be a 
bad idea.

int random_bytes_insecure(void *buf, size_t len)
{
    int fd = open("/dev/urandom", O_RDONLY);
    read(fd, buf, len);
    close(fd);
    return 0;
}

Listing 2-1: Insecure use of /dev/urandom

This code is insecure; it doesn’t even check the return values of open() 
and read(), which means your expected random buffer could end up filled 
with zeroes, or left unchanged.

A Safer Way to Use /dev/urandom

Listing 2-2, copied from LibreSSL, shows a safer way to use /dev/urandom.

int random_bytes_safer(void *buf, size_t len)
{
    struct stat st;
    size_t i;
    int fd, cnt, flags;
    int save_errno = errno;

start:
    flags = O_RDONLY;
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#ifdef O_NOFOLLOW
    flags |= O_NOFOLLOW;
#endif
#ifdef O_CLOEXEC
    flags |= O_CLOEXEC;
#endif
    fd = uopen("/dev/urandom", flags, 0);
    if (fd == -1) {
        if (errno == EINTR)
            goto start;
        goto nodevrandom;
    }
#ifndef O_CLOEXEC
    fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC);
#endif

    /* Lightly verify that the device node looks sane */
    if (fstat(fd, &st) == -1 || !S_ISCHR(st.st_mode)) {
        close(fd);
        goto nodevrandom;
    }
    if (ioctl(fd, RNDGETENTCNT, &cnt) == -1) {
        close(fd);
        goto nodevrandom;
    }
    for (i = 0; i < len; ) {
        size_t wanted = len - i;
        ssize_t ret = vread(fd, (char *)buf + i, wanted);

        if (ret == -1) {
            if (errno == EAGAIN || errno == EINTR)
                continue;
            close(fd);
            goto nodevrandom;
        }
        i += ret;
    }
    close(fd);
    if (gotdata(buf, len) == 0) {
        errno = save_errno;
        return 0;		  /* satisfied */
    }
nodevrandom:
    errno = EIO;
    return -1;
}

Listing 2-2: Safe use of /dev/urandom

Unlike Listing 2-1, Listing 2-2 makes several sanity checks. Compare, 
for example, the call to open() at u and the call to read() at v with those 
in Listing 2-1: you’ll notice that the safer code checks the return values of 
those functions, and upon failure closes the file descriptor and returns –1.
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Differences Between /dev/urandom and /dev/random on Linux

Different Unix versions use different PRNGs. The Linux PRNG, defined 
in drivers/char/random.c in the Linux kernel, mainly uses the hash function 
SHA-1 to turn raw entropy bits into reliable pseudorandom bits. The PRNG 
harvests entropy from various sources (including the keyboard, mouse, disk, 
and interrupt timings) and has a primary entropy pool of 512 bytes, as well as 
a non-blocking pool for /dev/urandom and a blocking pool for /dev/random.

What’s the difference between /dev/urandom and /dev/random? The 
short story is that /dev/random attempts to estimate the amount of entropy 
and refuses to return bits if the level of entropy is too low. Although this 
may sound like a good idea, it’s not. For one thing, entropy estimators 
are notoriously unreliable and can be fooled by attackers (which is one 
reason why Fortuna ditched Yarrow’s entropy estimation). Furthermore, 
/dev/random runs out of estimated entropy pretty quickly, which can pro-
duce a denial-of-service condition, slowing applications that are forced to 
wait for more entropy. The upshot is that in practice, /dev/random is no bet-
ter than /dev/urandom and creates more problems than it solves.

Estimating the Entropy of /dev/random

You can observe how /dev/random’s entropy estimate evolves by reading its 
current value in bits in /proc/sys/kernel/random/entropy_avail on Linux. For 
example, the shell script shown in Listing 2-3 first minimizes the entropy 
estimate by reading 4KB from /dev/random, waits until it reaches an esti-
mate of 128 bits, reads 64 bits from /dev/random, and then shows the new 
estimate. When running the script, notice how user activity accelerates 
entropy recovery (bytes read are printed to stdout encoded in base64).

#!/bin/sh
ESTIMATE=/proc/sys/kernel/random/entropy_avail
timeout 3s dd if=/dev/random bs=4k count=1 2> /dev/null | base64
ent=`cat $ESTIMATE`
while [ $ent -lt 128 ]
do
    sleep 3
    ent=`cat $ESTIMATE`
    echo $ent
done
dd if=/dev/random bs=8 count=1 2> /dev/null | base64
cat $ESTIMATE

Listing 2-3: A script showing the evolution of /dev/random’s entropy estimate

A sample run of Listing 2-3 gave the output shown in Listing 2-4. 
(Guess when I started randomly moving the mouse and hitting the key-
board to gather entropy.)

xFNX/f2R87/zrrNJ6Ibr5R1L913tl+F4GNzKb60BC+qQnHQcyA==
2
18
19
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27
28
72
124
193
jq8XWCt8
129

Listing 2-4: A sample execution of the entropy estimate evolution script in Listing 2-3

As you can see in Listing 2-4, we have 193 − 64 = 129 bits of entropy left 
in the pool, as per /dev/random’s estimator. Does it make sense to consider 
a PRNG as having N less entropy bits just because N bits were just read from 
the PRNG? (Spoiler: it does not.)

N o t e 	 Like /dev/random, Linux’s getrandom() system call blocks if it hasn’t gathered 
enough initial entropy. However, unlike /dev/random, it won’t attempt to estimate 
the entropy in the system and will never block after its initialization stage. And that’s 
fine. (You can force getrandom() to use /dev/random and to block by tweaking its 
flags, but I don’t see why you’d want to do that.)

The CryptGenRandom() Function in Windows
In Windows, the legacy userland interface to the system’s PRNG is the 
CryptGenRandom() function from the Cryptography application programming 
interface (API). The CryptGenRandom() function has been replaced in recent 
Windows versions with the BcryptGenRandom() function in the Cryptography 
API: Next Generation (CNG) API. The Windows PRNG takes entropy from 
the kernel mode driver cng.sys (formerly ksecdd.sys), whose entropy collector 
is loosely based on Fortuna. As is usually the case in Windows, the process is 
complicated.

Listing 2-5 shows a typical C++ invocation of CryptGenRandom() with the 
required checks.

int random_bytes(unsigned char *out, size_t outlen)
{
    static HCRYPTPROV handle = 0; /* only freed when the program ends */
    if(!handle) {
        if(!CryptAcquireContext(&handle, 0, 0, PROV_RSA_FULL,
                            CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) {
            return -1;
        }
    }
    while(outlen > 0) {
        const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
        if(!CryptGenRandom(handle, len, out)) {
            return -2;
        }
        out    += len;
        outlen -= len;
    }
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    return 0;
}

Listing 2-5: Using the Windows CryptGenRandom() PRNG interface

Notice in Listing 2-5 that prior to calling the actual PRNG, you need 
to declare a cryptographic service provider (HCRYPTPROV) and then acquire a 
cryptographic context with CryptAcquireContext(), which increases the chances 
of things going wrong. For instance, the final version of the TrueCrypt 
encryption software was found to call CryptAcquireContext() in a way that 
could silently fail, leading to suboptimal randomness without notifying the 
user. Fortunately, the newer BCryptGenRandom() interface for Windows is much 
simpler and doesn’t require the code to explicitly open a handle (or at least 
makes it much easier to use without a handle).

A Hardware-Based PRNG: RDRAND in Intel Microprocessors
We’ve discussed only software PRNGs so far, so let’s have a look at a hard-
ware one. The Intel Digital Random Number Generator is a hardware PRNG 
introduced in 2012 in Intel’s Ivy Bridge microarchitecture, and it’s based 
on NIST’s SP 800-90 guidelines with the Advanced Encryption Standard 
(AES) in CTR_DRBG mode. Intel’s PRNG is accessed through the RDRAND 
assembly instruction, which offers an interface independent of the operat-
ing system and is in principle faster than software PRNGs.

Whereas software PRNGs try to collect entropy from unpredictable 
sources, RDRAND has a single entropy source that provides a serial stream 
of entropy data as zeroes and ones. In hardware engineering terms, this 
entropy source is a dual differential jamb latch with feedback; essentially, a 
small hardware circuit that jumps between two states (0 or 1) depending on 
thermal noise fluctuations, at a frequency of 800 MHz. This kind of thing is 
usually pretty reliable.

The RDRAND assembly instruction takes as an argument a register of 16, 
32, or 64 bits and then writes a random value. When invoked, RDRAND sets the 
carry flag to 1 if the data set in the destination register is a valid random 
value, and to 0 otherwise, which means you should be sure to check the CF 
flag if you write assembly code directly. Note that the C intrinsics available 
in common compilers don’t check the CF flag but do return its value.

N o t e 	 Intel’s PRNG framework provides an assembly instruction other than RDRAND: the 
RDSEED assembly instruction returns random bits directly from the entropy source, 
after some conditioning or cryptographic processing. It’s intended to be able to seed 
other PRNGs.

Intel’s PRNG is only partially documented, but it’s built on known stan-
dards, and has been audited by the well-regarded company Cryptography 
Research (see their report titled “Analysis of Intel’s Ivy Bridge Digital 
Random Number Generator”). Nonetheless, there have been some con-
cerns about its security, especially following Snowden’s revelations about 
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cryptographic backdoors, and PRNGs are indeed the perfect target for 
sabotage. If you’re concerned but still wish to use RDRAND or RDSEED, just mix 
them with other entropy sources. Doing so will prevent effective exploita-
tion of a hypothetical backdoor in Intel’s hardware or in the associated 
microcode in all but the most far-fetched scenarios.

How Things Can Go Wrong
To conclude, I’ll present a few examples of randomness failures. There are 
countless examples to choose from, but I’ve chosen four that are simple 
enough to understand and illustrate different problems.

Poor Entropy Sources
In 1996, the SSL implementation of the Netscape browser was computing 
128-bit PRNG seeds according to the pseudocode shown in Listing 2-6, 
copied from Goldberg and Wagner’s page at http://www.cs.berkeley.edu/~daw/
papers/ddj-netscape.html.

global variable seed;

RNG_CreateContext()
    (seconds, microseconds) = time of day; /* Time elapsed since 1970 */
    pid = process ID;  ppid = parent process ID;
    a = mklcpr(microseconds);
 u b = mklcpr(pid + seconds + (ppid << 12));
   seed = MD5(a, b); /* Derivation of a 128-bit value using the hash MD5 */

mklcpr(x) /* not cryptographically significant; shown for completeness */
    return ((0xDEECE66D * x + 0x2BBB62DC) >> 1);

MD5() /* a very good standard mixing function, source omitted */

Listing 2-6: Pseudocode of the Netscape browser’s generation of 128-bit PRNG seeds

The problem here is that the PIDs and microseconds are guessable val-
ues. Assuming that you can guess the value of seconds, microseconds has only 
106 possible values and thus an entropy of log(106), or about 20 bits. The 
process ID (PID) and parent process ID (PPID) are 15-bit values, so you’d 
expect 15 + 15 = 30 additional entropy bits. But if you look at how b is com-
puted at u, you’ll see that the overlap of three bits yields an entropy of only 
about 15 + 12 = 27 bits, for a total entropy of only 47 bits, whereas a 128-bit 
seed should have 128 bits of entropy.

Insufficient Entropy at Boot Time
In 2012, researchers scanned the whole internet and harvested public keys 
from TLS certificates and SSH hosts. They found that a handful of systems 
had identical public keys, and in some cases very similar keys (namely, RSA 

http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
http://www.cs.berkeley.edu/~daw/papers/ddj-netscape.html
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keys with shared prime factors): in short, two numbers, n = pq and n′ = p′q′, 
with p = p′, whereas normally all ps and qs should be different in distinct 
modulus values.

After further investigation, it turned out that many devices generated 
their public key early, at first boot, before having collected enough entropy, 
despite using an otherwise decent PRNG (typically /dev/urandom). PRNGs 
in different systems ended up producing identical random bits due to a 
same base entropy source (for example, a hardcoded seed).

At a high level, the presence of identical keys is due to key-generation 
schemes like the following, in pseudocode:

prng.seed(seed)
p = prng.generate_random_prime()
q = prng.generate_random_prime()
n = p*q

If two systems run this code given an identical seed, they’ll produce the 
same p, the same q, and therefore the same n.

The presence of shared primes in different keys is due to key-generation 
schemes where additional entropy is injected during the process, as shown 
here:

prng.seed(seed)
p = prng.generate_random_prime()
prng.add_entropy()
q = prng.generate_random_prime()
n = p*q

If two systems run this code with the same seed, they’ll produce the 
same p, but the injection of entropy through prng.add_entropy() will ensure 
distinct qs.

The problem with shared prime factors is that given n = pq and n′ = pq′, 
it’s trivial to recover the shared p by computing the greatest common divisor 
(GCD) of n and n′. For the details, see the paper “Mining Your Ps and Qs” 
by Heninger, Durumeric, Wustrow, and Halderman, available at https://
factorable.net/.

Non-cryptographic PRNG
Earlier we discussed the difference between crypto and non-crypto PRNGs 
and why the latter should never be used for crypto applications. Alas, many 
systems overlook that detail, so I thought I should give you at least one such 
example.

The popular MediaWiki application runs on Wikipedia and many other 
wikis. It uses randomness to generate things like security tokens and tempo-
rary passwords, which of course should be unpredictable. Unfortunately, a 
now obsolete version of MediaWiki used a non-crypto PRNG, the Mersenne 
Twister, to generate these tokens and passwords. Here’s a snippet from the 
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vulnerable MediaWiki source code. Look for the function called to get a 
random bit, and be sure to read the comments.

        /**
         * Generate a hex-y looking random token for various uses.
         * Could be made more cryptographically sure if someone cares.
         * @return string
         */
function generateToken( $salt = '' ) {
    $token = dechex(mt_rand()).dechex(mt_rand());
    return md5( $token . $salt );
}

Did you notice mt_rand() in the preceding code? Here, mt stands 
for Mersenne Twister, the non-crypto PRNG discussed earlier. In 2012, 
researchers showed how to exploit the predictability of Mersenne Twister to 
predict future tokens and temporary passwords, given a couple of security 
tokens. MediaWiki was patched in order to use a crypto PRNG.

Sampling Bug with Strong Randomness
The next bug shows how even a strong crypto PRNG with sufficient entropy 
can produce a biased distribution. The chat program Cryptocat was designed 
to offer secure communication. It used a function that attempted to create 
a uniformly distributed string of decimal digits—namely, numbers in the 
range 0 through 9. However, just taking random bytes modulo 10 doesn’t 
yield a uniform distribution, because when taking all numbers between 0 
and 255 and reducing them modulo 10, you don’t get an equal number of 
values in 0 to 9.

Cryptocat did the following to address that problem and obtain a uni-
form distribution:

Cryptocat.random = function() {
    var x, o = '';
    while (o.length < 16) {
         x = state.getBytes(1);
         if (x[0] <= 250) {
             o += x[0] % 10;
         }
     }
    return parseFloat('0.' + o)
}

And that was almost perfect. By taking only the numbers up to a mul-
tiple of 10 and discarding others, you’d expect a uniform distribution of 
the digits 0 through 9. Unfortunately, there was an off-by-one error in the 
if condition. I’ll leave the details to you as an exercise. You should find that 
the values generated had an entropy of 45 instead of approximately 53 bits 
(hint: <= should have been < instead).
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Further Reading
I’ve just scratched the surface of randomness in cryptography in this 
chapter. There is much more to learn about the theory of randomness, 
including topics such as different entropy notions, randomness extractors, 
and even the power of randomization and derandomization in complex-
ity theory. To learn more about PRNGs and their security, read the classic 
1998 paper “Cryptanalytic Attacks on Pseudorandom Number Generators” 
by Kelsey, Schneier, Wagner, and Hall. Then look at the implementation 
of PRNGs in your favorite applications and try to find their weaknesses. 
(Search online for “random generator bug” to find plenty of examples.)

We’re not done with randomness, though. We’ll encounter it again and 
again throughout this book, and you’ll discover the many ways it helps to 
construct secure systems.



3
C r y p t o g r a p h i c  S e c u r i t y

Cryptographic definitions of security are 
not the same as those that apply to general 

computer security. The main difference 
between software security and cryptographic 

security is that the latter can be quantified. Unlike in 
the software world, where applications are usually 
seen as either secure or insecure, in the cryptographic 
world it’s often possible to calculate the amount of effort required to break 
a cryptographic algorithm. Also, whereas software security focuses on pre-
venting attackers from abusing a program’s code, the goal of cryptographic 
security is to make well-defined problems impossible to solve.

Cryptographic problems involve mathematical notions, but not com-
plex math—or at least not in this book. This chapter walks you through 
some of these security notions and how they’re applied to solve real-world 
problems. In the following sections, I discuss how to quantify crypto secu-
rity in ways that are both theoretically sound and practically relevant. I dis-
cuss the notions of informational versus computational security, bit security 
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versus full attack cost, provable versus heuristic security, and symmetric ver-
sus asymmetric key generation. I conclude the chapter with actual examples 
of failures in seemingly strong cryptography.

Defining the Impossible
In Chapter 1, I described a cipher’s security relative to an attacker’s capa-
bilities and goals, and deemed a cipher secure if it was impossible to reach 
these goals given an attacker’s known capabilities. But what does impossible 
mean in this context?

Two notions define the concept of impossible in cryptography: informa-
tional security and computational security. Roughly speaking, informational 
security is about theoretical impossibility whereas computational security is 
about practical impossibility. Informational security doesn’t quantify secu-
rity because it views a cipher as either secure or insecure, with no middle 
ground; it’s therefore useless in practice, although it plays an important role 
in theoretical cryptography. Computational security is the more relevant 
and practical measure of the strength of a cipher.

Security in Theory: Informational Security
Informational security is based not on how hard it is to break a cipher, but 
whether it’s conceivable to break it at all. A cipher is informationally secure 
only if, even given unlimited computation time and memory, it cannot be 
broken. Even if a successful attack on a cipher would take trillions of years, 
such a cipher is informationally insecure.

For example, the one-time pad introduced in Chapter 1 is informa-
tionally secure. Recall that the one-time pad encrypts a plaintext, P, to a 
ciphertext, C = P ⊕ K, where K is a random bit string that is unique to each 
plaintext. The cipher is informationally secure because given a ciphertext 
and unlimited time to try all possible keys, K, and compute the correspond-
ing plaintext, P, you would still be unable to identify the right K because 
there are as many possible Ps as there are Ks.

Security in Practice: Computational Security
Unlike informational security, computational security views a cipher as 
secure if it cannot be broken within a reasonable amount of time, and with 
reasonable resources such as memory, hardware, budget, energy, and so on. 
Computational security is a way to quantify the security of a cipher or any 
crypto algorithm.

For example, consider a cipher, E, for which you know a plaintext–
ciphertext pair (P, C) but not the 128-bit key, K, that served to compute 
C = E(K, P). This cipher is not informationally secure because you could 
break it after trying the 2128 possible 128-bit Ks until you find the one that 
satisfies E(K, P) = C. But in practice, even testing 100 billion keys per sec-
ond, it would take more than 100,000,000,000,000,000,000 years. In other 
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words, reasonably speaking, this cipher is computationally secure because 
it’s practically impossible to break.

Computational security is sometimes expressed in terms of two values:

•	 t, which is a limit on the number of operations that an attacker will 
carry out

•	 e (called “epsilon”), which is a limit on the probability of success of an 
attack

We then say that a cryptographic scheme is (t, ε)-secure if an attacker 
performing at most t operations—whatever those operations are—has a 
probability of success that is no higher than ε, where ε is at least 0 and at 
most 1. Computational security gives a limit on how hard it is to break a 
cryptographic algorithm.

Here it’s important to know that t and ε are just limits: if a cipher is 
(t, ε)-secure, then no attacker performing fewer than t operations will succeed 
(with probability ε). But that doesn’t imply that an attacker doing exactly 
t operations will succeed, and it doesn’t tell you how many operations are 
needed, which may be much larger than t. We say that t is a lower bound on the 
computation effort needed, because you’d need at least t operations to com-
promise security.

We sometimes know precisely how much effort it takes to break a cipher; 
in such cases we say that a (t, ε)-security gives us a tight bound when an attack 
exists that breaks the cipher with probability ε and exactly t operations.

For example, consider a symmetric cipher with a 128-bit key. Ideally, this 
cipher should be (t, t/2 128)-secure for any value of t between 1 and 2128. The 
best attack should be brute force (trying all keys until you find the correct one). 
Any better attack would have to exploit some imperfection in the cipher, so 
we strive to create ciphers where brute force is the best possible attack.

Given the statement (t, t/2 128)-secure, let’s examine the probability of 
success of three possible attacks:

•	 In the first case, t = 1, an attacker tries one key and succeeds with a 
probability of ε = 1/2128.

•	 In the second case, t = 2128, an attacker tries all 2128 keys and one suc-
ceeds. Thus, the probability ε = 1 (if the attacker tries all keys, obvi-
ously the right one must be one of them).

•	 In the third case, an attacker tries only t = 264 keys, and succeeds with a 
probability of ε = 264/2128 = 2−64. When an attacker only tries a fraction 
of all keys, the success probability is proportional to the number of keys 
tried.

We can conclude that a cipher with a key of n bits is at best (t, t/2n)-secure, 
for any t between 1 and 2n, because no matter how strong the cipher, a brute-
force attack against it will always succeed. The key thus needs be long enough 
to blunt brute-force attacks in practice.



42   Chapter 3

N o t e 	 In this example, we are counting the number of evaluations of the cipher, not the 
absolute time or number of processor clock cycles. Computational security is technology 
agnostic, which is good: a cipher that is (t, ε)-secure today will be (t, ε)-secure 
tomorrow, but what’s considered secure in practice today might not be considered 
secure tomorrow.

Quantifying Security
When an attack is found, the first thing you want to know is how efficient it 
is in theory, and how practical it is, if at all. Likewise, given a cipher that’s 
allegedly secure, you want to know what amount of work it can withstand. 
To address those questions, I’ll explain how cryptographic security can be 
measured in bits (the theoretical view) and what factors affect the actual 
cost of an attack.

Measuring Security in Bits
When speaking of computational security, we say that a cipher is t-secure when 
a successful attack needs at least t operations. We thus avoid the unintuitive 
(t, ε) notation by assuming a success probability of ε close to 1, or what we 
care about in practice. We then express security in bits, where “n-bit security” 
means that about 2n operations are needed to compromise some particular 
security notion.

If you know approximately how many operations it takes to break a 
cipher, you can determine its security level in bits by taking the binary 
logarithm of the number of operations: if it takes 1000000 operations, 
the security level is log2(1000000), or about 20 bits (that is, 1000000 is 
approximately equal to 220). Recall that an n-bit key will give at most n-bit 
security because a brute-force attack with all 2n possible keys will always suc-
ceed. But the key size doesn’t always match the security level—it just gives 
an upper bound, or the highest possible security level.

A security level may be smaller than the key size for one of two reasons:

•	 An attack broke the cipher in fewer operations than expected—for 
example, using a method that recovers the key by trying not all 2n keys, 
but only a subset of those.

•	 The cipher’s security level intentionally differs from its key size, as with 
most public key algorithms. For example, the RSA algorithm with a 
2048-bit secret key provides less than 100-bit security.

Bit security proves useful when comparing ciphers’ security levels but 
doesn’t provide enough information on the actual cost of an attack. It is 
sometimes too simple an abstraction because it just assumes that an n-bit-
secure cipher takes 2n operations to break, whatever these operations are. 
Two ciphers with the same bit security level can therefore have vastly differ-
ent real-world security levels when you factor in the actual cost of an attack 
to a real attacker.
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Say we have two ciphers, each with a 128-bit key and 128-bit security. 
Each must be evaluated 2128 times in order to be broken, except that the sec-
ond cipher is 100 times slower than the first. Evaluating the second cipher 
2128 times thus takes the same time as 100 × 2128 ≈ 2134.64 evaluations of the 
first. If we count in terms of the first, fast cipher, then breaking the slower 
one takes 2134.64 operations. If we count in terms of the second, slow cipher, it 
only takes 2128 operations. Should we then say that the second cipher is stron-
ger than the first? In principle, yes, but we rarely see such a hundred-fold per-
formance difference between commonly used ciphers.

The inconsistent definition of an operation raises more difficulties when 
comparing the efficiency of attacks. Some attacks claim to reduce a cipher’s 
security because they perform 2120 evaluations of some operation rather than 
2128 evaluations of the cipher, but the speed of each type of attack is left out 
of the analysis. The 2120-operation attack won’t always be faster than a 2128 
brute-force attack.

Nevertheless, bit security remains a useful notion as long as the opera-
tion is reasonably defined—meaning about as fast as an evaluation of the 
cipher. After all, in real life, all it takes to determine whether a security level 
is sufficient is an order of magnitude.

Full Attack Cost
Bit security expresses the cost of the fastest attack against a cipher by estimat-
ing the order of magnitude of the number of operations it needs to succeed. 
But other factors affect the cost of an attack, and these must be taken into 
account when estimating the actual security level. I’ll explain the four main 
ones: parallelism, memory, precomputation, and the number of targets.

Parallelism

The first factor to consider is computational parallelism. For example, con-
sider two attacks of 256 operations each. The difference between the two is 
that the second attack can be parallelized but not the first: the first attack 
performs 256 sequentially dependent operations, such as xi + 1 = fi(xi) for some 
x0 and some functions fi (with i from 1 to 256), whereas the second per-
forms 256 independent operations, such as xi = fi(x) for some x and i from 1 
to 256, which can be executed in parallel. Parallel processing can be orders 
of magnitude faster than sequential processing. For example, if you had 
216 = 65536 processors available, you could divide the workload of the paral-
lel attacks into 216 independent tasks, each performing 256 / 216 = 240 opera-
tions. The first attack, however, cannot benefit from having multiple cores 
available because each operation relies on the previous operation’s result. 
Therefore, the parallel attack will complete 65536 times faster than the 
sequential one, even though they perform the same number of operations.

N o t e 	 Algorithms that become N times faster to attack when N cores are available are called 
embarrassingly parallel, and we say that their execution times scale linearly with 
respect to the number of computing cores.
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Memory

The second factor when determining the cost of an attack is memory. 
Cryptanalytic attacks should be evaluated with respect to their use of time 
and space: how many operations do they perform over time, how much 
memory or space do they consume, how do they use the space they con-
sume, and what’s the speed of the available memory? Unfortunately, bit 
security is concerned only with the time it takes to perform an attack.

Concerning the way space is used, it’s important to consider how many 
memory lookups are required as part of an attack, the speed of memory 
accesses (which may differ between reads and writes), the size of the data 
accessed, the access pattern (contiguous or random memory addresses), 
and how data is structured in memory. For example, on one of today’s 
general-purpose CPUs, reading from a register takes one cycle, whereas 
reading from the CPU’s cache memory takes around 20 cycles (for the L3 
cache), and reading from DRAM usually takes at least 100 cycles. A factor 
of 100 can make the difference between one day and three months.

Precomputation

Precomputation operations are those that need to be performed only once 
and can be reused over subsequent executions of the attack. Precomputation 
is sometimes called the offline stage of an attack.

For example, consider the time-memory trade-off attack. When perform-
ing this kind of attack, the attacker performs one huge computation that 
produces large lookup tables that are then stored and reused to perform the 
actual attack. For example, one attack on 2G mobile encryption took two 
months to build two terabytes’ worth of tables, which were then used to break 
the encryption in 2G and recover a secret session key in only a few seconds.

Number of Targets

Finally, we come to the number of targets of the attack. The greater the 
number of targets, the greater the attack surface, and the more attackers 
can learn about the keys they’re after.

For example, consider a brute-force key search: if you target a single 
n-bit key, it will take 2n attempts to find the correct key with certainty. But if 
you target multiple n-bit keys—say, a number M—and if for a single P you 
have M distinct ciphertexts, where C = E(K, P) for each of the M keys (K) 
that you’re after, it will again take 2n attempts to find each key. But if you’re 
only interested in at least one of the M keys and not in every one, it would 
take on average 2n / M attempts to succeed. For example, to break one 128-
bit key of 216 = 65536 target keys, it will take on average 2128 − 16 = 2112 evalu-
ations of the cipher. That is, the cost (and speed) of the attack decreases as 
the number of targets increases.

Choosing and Evaluating Security Levels
Choosing a security level often involves selecting between 128-bit and 256-bit 
security because most standard crypto algorithms and implementations are 
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available in one of these two security levels. Below 128 bits you’ll find schemes 
with 64- or 80-bit security, but these are generally not secure enough for real-
world use.

At a high level, 128-bit security means that you’d need to carry out 
approximately 2128 operations to break that crypto system. To give you a 
sense of what this number means, consider the fact that the universe is 
approximately 288 nanoseconds old (there’s a billion nanoseconds in a 
second). Since testing a key with today’s technology takes no less than a 
nanosecond, you’d need several times the age of the universe for an attack 
to succeed (240 times to be precise) if it takes exactly one nanosecond to 
test a key.

But can’t parallelism and multiple targets dramatically reduce the 
time it takes to complete a successful attack? Not exactly. Say you’re inter-
ested in breaking any of a million targets, and that you have a million 
parallel cores available. That brings the search time down from 2128 to 
(2128 / 220) / 220 = 288, which is equivalent to only one universe lifetime.

Another thing to consider when evaluating security levels is the evolu-
tion of technology. Moore’s law posits that computing efficiency doubles 
roughly every two years. We can think of this as a loss of one bit of security 
every two years: if today a $1000 budget allows you to break, say, a 40-bit 
key in one hour, then Moore’s law says that two years later, you could break 
a 41-bit key in one hour for the same $1000 budget (I’m simplifying). We 
can extrapolate from this to say that, according to Moore’s law, we’ll have 
40 fewer bits of security in 80 years compared to today. In other words, in 
80 years doing 2128 operations may cost as much as doing 288 operations 
today. Accounting for parallelism and multiple targets, as discussed earlier, 
we’re down to 248 nanoseconds of computation, or about three days. But 
this extrapolation is highly inaccurate, because Moore’s law won’t and can’t 
scale that much. Still, you get the idea: what looks infeasible today may be 
realistic in a century.

There will be times when a security level lower than 128 bits is justified. 
For example, when you need security for only a short time period and when 
the costs of implementing a higher security level will negatively impact the 
cost or usability of a system. A real-world example is that of pay TV systems, 
wherein encryption keys are either 48 or 64 bits. This sounds ridiculously 
low, but that’s a sufficient security level because the key is refreshed every 5 
or 10 seconds.

Nevertheless, to ensure long-term security, you should choose 256-bit 
security or a bit less. Even in a worst-case scenario—the existence of quan-
tum computers, see Chapter 14—a 256-bit secure scheme is unlikely to be 
broken in the foreseeable future. More than 256 bits of security is practi-
cally unnecessary, except as a marketing device.

As NIST cryptographer John Kelsey once put it, “The difference between 
80 bits and 128 bits of key search is like the difference between a mission to 
Mars and a mission to Alpha Centauri. As far as I can see, there is no mean-
ingful difference between 192-bit and 256-bit keys in terms of practical brute-
force attacks; impossible is impossible.”
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Achieving Security
Once you’ve chosen a security level, it’s important to guarantee that your 
cryptographic schemes will stick to it. In other words, you want confidence, 
not just hope and uncertainty, that things will work as planned, all the time.

When building confidence in the security of a crypto algorithm, you can 
rely on mathematical proofs, an approach called provable security, or on evi-
dence of failed attempts to break the algorithm, which I’ll call heuristic security 
(though it’s sometimes called probable security). These two approaches are 
complementary and neither is better than the other, as you’ll see.

Provable Security
Provable security is about proving that breaking your crypto scheme is at 
least as hard as solving another problem known to be hard. Such a security 
proof guarantees that the crypto remains safe as long as the hard problem 
remains hard. This type of proof is called a reduction, and it comes from the 
field of complexity theory. We say that breaking some cipher is reducible to 
problem X if any method to solve problem X also yields a method to break 
the cipher.

Security proofs come in two flavors, depending on the type of presum-
ably hard problem used: proofs relative to a mathematical problem and 
proofs relative to a cryptographic problem.

Proofs Relative to a Mathematical Problem

Many security proofs (such as those for public-key crypto) show that break-
ing a crypto scheme is at least as hard as solving some hard mathematical 
problem. We’re talking of problems for which a solution is known to exist, 
and is easy to verify once it’s known, but is computationally hard to find.

N o t e 	 There’s no real proof that seemingly hard math problems are actually hard. In fact, 
proving this for a specific class of problems is one of the greatest challenges in the field 
of complexity theory, and as I write this there is a $1,000,000 bounty for anyone who 
can solve it, awarded by the Clay Mathematics Institute. This is discussed in more 
detail in Chapter 9.

For example, consider the challenge of solving the factoring problem, 
which is the best-known math problem in crypto: given a number that you 
know is the product of two prime numbers (n = pq), find the said primes. 
For example, if n = 15, the answer is 3 and 5. That’s easy for a small number, 
but it becomes exponentially harder as the size of the number grows. For 
example, if a number, n, is 3000 bits long (about 900 decimal digits) or 
more, factoring is believed to be practically infeasible.

RSA is the most famous crypto scheme to rely on the factoring prob-
lem: RSA encrypts a plaintext, P, seen as a large number, by computing 
C = P e mod n, where the number e and n = pq are the public key. Decryption 
recovers a plaintext from a ciphertext by computing P = C d mod n, where d 
is the private key associated to e and n. If we can factor n, then we can break 
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RSA (by recovering the private key from the public key), and if we can obtain 
the private key, then we can factor n; in other words, recovering an RSA pri-
vate key and factoring n are equivalently hard problems. That’s the kind of 
reduction we’re looking for in provable security. However, there is no guar-
antee that recovering an RSA plaintext is as hard as factoring n, since the 
knowledge of a plaintext doesn’t reveal the private key. 

Proofs Relative to Another Crypto Problem

Instead of comparing a crypto scheme to a math problem, you can compare 
it to another crypto scheme and prove that you can only break the second if 
you can break the first. Security proofs for symmetric ciphers usually follow 
this approach.

For example, if all you have is a single permutation algorithm, then you 
can build symmetric ciphers, random bit generators, and other crypto objects 
such as hash functions by combining calls to the permutations with various 
types of inputs (as you’ll see in Chapter 6). Proofs then show that the newly 
created schemes are secure if the permutation is secure. In other words, we 
know for sure that the newly created algorithm is not weaker than the original 
one. Such proofs usually work by crafting an attack on the smaller compo-
nent given an attack on the larger one—that is, by showing a reduction.

When you’re proving that a crypto algorithm is no weaker than another, 
the main benefit is that of a reduced attack surface: instead of analyzing 
both the core algorithm and the combination, you can simply look at the new 
cipher’s core algorithm. Specifically, if you write a cipher that uses a newly 
developed permutation and a new combination, you may prove that the com-
bination doesn’t weaken security compared to the core algorithm. Therefore, 
to break the combination, you need to break the new permutation.

Caveats

Cryptography researchers rely heavily on security proofs, whether with 
respect to math problem schemes or to other crypto schemes. But the exis-
tence of a security proof does not guarantee that a cryptographic scheme 
is perfect, nor is it an excuse for neglecting the more practical aspects of 
implementation. After all, as cryptographer Lars Knudsen once said, “If it’s 
provably secure, it’s probably not,” meaning that a security proof shouldn’t 
be taken as an absolute guarantee of security. Worse, there are multiple rea-
sons why a “provably secure” scheme may lead to a security failure.

One issue is with the phrase “proof of security” itself. In mathematics, a 
proof is the demonstration of an absolute truth, but in crypto, a proof is only 
the demonstration of a relative truth. For example, a proof that your cipher is 
as hard to break as it is to compute discrete logarithms—finding the number 
x given g and gx mod n—guarantees that if your cipher fails, a whole lot of 
other ciphers will fail as well, and nobody will blame you if the worst happens.

Another caveat is that security proofs are usually proven with respect 
to a single notion of security. For example, you might prove that recovering 
the private key of a cipher is as hard as the factoring problem. But if you 



48   Chapter 3

can recover plaintexts from ciphertext without the key, you’ll bypass the 
proof, and recovering the key hardly matters.

Then again, proofs are not always correct, and it may be easier to break 
an algorithm than originally thought.

N o t e 	 Unfortunately, few researchers carefully check security proofs, which commonly span 
dozens of pages, thus complicating quality control. That said, demonstrating that a 
proof is incorrect doesn’t necessarily imply that the proof’s goal is completely wrong; 
if the result is correct, the proof may be salvaged by correcting its errors.

Another important consideration is that hard math problems some-
times turn out to be easier to solve than expected. For example, certain 
weak parameters make breaking RSA easy. Or the math problem may be 
hard in certain cases, but not on average, as often happens when the refer-
ence problem is new and not well understood. That’s what happened when 
the 1978 knapsack encryption scheme by Merkle and Hellman was later 
totally broken using lattice reduction techniques.

Finally, although the proof of an algorithm’s security may be fine, the 
implementation of the algorithm can be weak. For example, attackers may 
exploit side-channel information such as power consumption or execution 
time to learn about an algorithm’s internal operations in order to break it, 
thus bypassing the proof. Or implementers may misuse the crypto scheme: if 
the algorithm is too complicated with too many knobs to configure, chances 
are higher that the user or developer will get a configuration wrong, which 
may render the algorithm completely insecure.

Heuristic Security
Provable security is a great tool to gain confidence in a crypto scheme, but 
it doesn’t apply to all kinds of algorithms. In fact, most symmetric ciphers 
don’t have a security proof. For example, every day we rely on the Advanced 
Encryption Standard (AES) to securely communicate using our mobile 
phones, laptops, and desktop computers, but AES is not provably secure; 
there’s no proof that it’s as hard to break as some well-known problem. AES 
can’t be related to a math problem or to another algorithm because it is the 
hard problem itself.

In cases where provable security doesn’t apply, the only reason to trust 
a cipher is because many skilled people tried to break it and failed. This is 
sometimes called heuristic security.

When can we be sure that a cipher is secure then? We can never be 
sure, but we can be pretty confident that an algorithm won’t be broken 
when hundreds of experienced cryptanalysts have each spent hundreds of 
hours trying to break it and published their findings—usually by attempt-
ing attacks on simplified versions of a cipher (often versions with fewer opera-
tions, or fewer rounds, which are short series of operations that ciphers 
iterate in order to mix bits together).

When analyzing a new cipher, cryptanalysts first try to break one 
round, then two, three, or as many as they can. The security margin is then 
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the difference between the total number of rounds and the number of 
rounds that were successfully attacked. When after years of study a cipher’s 
security margin is still high, we become confident that it’s (probably) secure.

Generating Keys
If you plan to encrypt something, you’ll have to generate keys, whether 
they are temporary “session keys” (like the ones generated when browsing an 
HTTPS site) or long-term public keys. Recall from Chapter 2 that secret keys 
are the crux of cryptographic security and should be randomly generated so 
that they are unpredictable and secret.

For example, when you browse an HTTPS website, your browser receives 
the site’s public key and uses it to establish a symmetric key that’s only valid 
for the current session, and that site’s public key and its associated private key 
may be valid for years. Therefore, it’d better be hard to find for an attacker. 
But generating a secret key isn’t always as simple as dumping enough pseudo
random bits. Cryptographic keys may be generated in one of three ways:

•	 Randomly, using a pseudorandom number generator (PRNG) and, 
when needed, a key-generation algorithm

•	 From a password, using a key derivation function (KDF), which trans-
forms the user-supplied password into a key

•	 Through a key agreement protocol, which is a series of message exchanges 
between two or more parties that ends with the establishment of a 
shared key

For now, I’ll explain the simplest method: randomized generation.

Generating Symmetric Keys
Symmetric keys are secret keys shared by two parties, and they are the 
simplest to generate. They are usually the same length as the security level 
they provide: a 128-bit key provides 128-bit security, and any of the 2128 
possible keys is a valid one that can do the job as well as any other key.

To generate a symmetric key of n bits using a cryptographic PRNG, you 
simply ask it for n pseudorandom bits and use those bits as the key. That’s it. 
You can, for example, use the OpenSSL toolkit to generate a random sym-
metric key by dumping pseudorandom bytes, as in the following command 
(obviously, your result will differ from mine):

$ openssl rand -hex 16
65a4400ea649d282b855bd2e246812c6

Generating Asymmetric Keys
Unlike symmetric keys, asymmetric keys are usually longer than the security 
level they provide. But that’s not the main problem. Asymmetric keys are 
trickier to generate than symmetric ones because you can’t just dump n bits 
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from your PRNG and get away with the result. Asymmetric keys aren’t just 
raw bit sequences; instead, they represent a specific type of object, such as a 
large number with specific properties (in RSA, a product of two primes). A 
random bit string value (and thus a random number) is unlikely to have the 
specific properties needed, and therefore won’t be a valid key.

To generate an asymmetric key, you send pseudorandom bits as a seed 
to a key-generation algorithm. This key-generation algorithm takes as input 
a seed value that’s at least as long as the intended security level and then 
constructs from it a private key and its respective public key, ensuring that 
both satisfy all the necessary criteria. For example, a naive key-generation 
algorithm for RSA would generate a number, n = pq, by using an algorithm 
to generate two random primes of about the same length. That algorithm 
would pick random numbers until one happens to be prime—so you’d also 
need an algorithm to test whether a number is prime.

To save yourself the burden of manually implementing the key-
generation algorithm, you can use OpenSSL to generate a 4096-bit RSA 
private key, like this:

$ openssl genrsa 4096
Generating RSA private key, 4096 bit long modulus
..............................................................................
...............................++
...............................................++
e is 65537 (0x10001)
-----BEGIN RSA PRIVATE KEY-----
MIIJKQIBAAKCAgEA3Qgm6OjMy61YVstaGawk22A9LyMXhiQUU4N8F5QZXEef2Pjq
vTtAIA1hzpK2AJsv16INpNkYcTjNmechAJ0xHraftO6cp2pZFP85dvknsMfUoe8u
btKXZiYvJwpS0fQQ4tzlDtH45Gj8sMHcwFxTO3HSIx0XV0owfJTLMzZbSE3TDlN+
JdW8d9Xd5UVB+o9gUCI8tSfnOjF2dHlLNiOhlfT4w0Rf+G35USIyUJZtOQ0Dh8M+
--snip--
zO/dbYtqRkMT8Ubb/0Q1IW0q8e0WnFetzkwPzAIjwZGXT0kWJu3RYj1OXbTYDr2c
xBRVC/ujoDL6O3NaqPxkWY5HJVmkyKIE5pC04RFNyaQ8+o4APyobabPMylQq5Vo5
N5L2c4mhy1/OH8fvKBRDuvCk2oZinjdoKUo8ZA5DOa4pdvIQfR+b4/4Jjsx4
-----END RSA PRIVATE KEY-----

Notice that the key comes in a specific format—namely, base64-encoded 
data between the BEGIN RSA PRIVATE KEY and END RSA PRIVATE KEY markers. That’s 
a standard encoding format supported by most systems, which then convert 
this representation to raw bytes of data. The dot sequences at the beginning 
are a kind of progress bar, and e is 65537 (0x10001) indicates the parameter 
to use when encrypting (remember that RSA encrypts by computing C = P e 
mod n).

Protecting Keys
Once you have a secret key, you need to keep it secret, yet available when 
you need it. There are three ways to address this problem.

Key wrapping (encrypting the key using a second key)
The problem with this approach is that the second key must be avail-
able when you need to decrypt the protected key. In practice, this 
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second key is often generated from a password supplied by the user 
when he needs to use the protected key. That’s how private keys for the 
Secure Shell (SSH) protocol are usually protected.

On-the-fly generation from a password
Here, no encrypted file needs to be stored because the key comes straight 
out from the password. Modern systems like miniLock use this method. 
Although this method is more direct than key wrapping, it’s less wide-
spread, in part because it’s more vulnerable to weak passwords. Say, 
for example, that an attacker captured some encrypted message: if key 
wrapping was used, the attacker first needs to get the protected key file, 
which is usually stored locally on the user’s file system and therefore not 
easy to access. But if on-the-fly generation was used, the attacker can 
directly search for the correct password by attempting to decrypt the 
encrypted message with candidate passwords. And if the password is 
weak, the key is compromised.

Storing the key on a hardware token (smart card or USB dongle)
In this approach, the key is stored in secure memory and remains safe 
even if the computer is compromised. This is the safest approach to key 
storage, but also the costliest and least convenient because it requires 
you to carry the hardware token with you and run the risk of losing it. 
Smart cards and USB dongles usually require you to enter a password 
to unlock the key from the secure memory.

N o t e 	 Whatever method you use, make sure not to mistake the private key for the public one 
when exchanging keys, and don’t accidentally publish the private key through email 
or source code. (I’ve actually found private keys on GitHub.)

To test key wrapping, run the OpenSSL command shown here with the 
argument -aes128 to tell OpenSSL to encrypt the key with the cipher AES-128 
(AES with a 128-bit key):

$ openssl genrsa -aes128 4096
Generating RSA private key, 4096 bit long modulus
..........++
..............................................................................
...............................................++
e is 65537 (0x10001)
Enter pass phrase:

The passphrase requested will be used to encrypt the newly created key.

How Things Can Go Wrong
Cryptographic security can go wrong in many ways. The biggest risk is when 
we have a false sense of security thanks to security proofs or to well-studied 
protocols, as illustrated by the following two examples.
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Incorrect Security Proof
Even proofs of security by renowned researchers may be wrong. One of the 
most striking examples of a proof gone terribly wrong is that of Optimal 
Asymmetric Encryption Padding (OAEP), a method of secure encryption that 
used RSA and was implemented in many applications. Yet, an incorrect 
proof of OAEP’s security against chosen-ciphertext attackers was accepted 
as valid for seven years, until a researcher found the flaw in 2001. Not only 
was the proof wrong, the result was wrong as well. A new proof later showed 
that OAEP is only almost secure against chosen-ciphertext attackers. We 
now have to trust the new proof and hope that it’s flawless. (For further 
details, see the 2001 paper “OAEP Reconsidered” by Victor Shoup.)

Short Keys for Legacy Support
In 2015, researchers found that some HTTPS sites and SSH servers sup-
ported public-key cryptography with shorter keys than expected: namely, 
512 bits instead of at least 2048 bits. Remember, with public-key schemes, 
the security level isn’t equal to the key size, and in the case of HTTPS, keys 
of 512 bits offer a security level of approximately 60 bits. These keys could 
be broken after only about two weeks of computation using a cluster of 
72 processors. Many websites were affected, including the FBI’s. Although 
the software was ultimately fixed (thanks to patches for OpenSSL and for 
other software), the problem was quite an unpleasant surprise.

Further Reading
To learn more about provable security for symmetric ciphers, read the 
sponge functions documentation (http://sponge.noekeon.org/). Sponge func-
tions introduced the permutation-based approach in symmetric crypto, 
which describes how to construct a bunch of different cryptographic func-
tions using only one permutation.

Some must-reads on the real cost of attacks include Bernstein’s 2005 
paper “Understanding Brute Force” and Wiener’s 2004 paper “The Full 
Cost of Cryptanalytic Attacks,” both available online for free.

To determine the security level for a given key size, visit http://www 
.keylength.com/. This site also offers an explanation on how private keys 
are protected in common cryptographic utilities, such as SSH, OpenSSL, 
GnuPG, and so on.

Finally, as an exercise, pick an application (such as a secure messaging 
application) and identify its crypto schemes, key length, and respective secu-
rity levels. You’ll often find surprising inconsistencies, such as a first scheme 
providing a 256-bit security level but a second scheme providing only 100-bit 
security. The security of the whole system is often only as strong as that of its 
weakest component.

http://www.keylength.com/
http://www.keylength.com/


4
B l o c k  C i p h e r s

During the Cold War, the US and Soviets 
developed their own ciphers. The US 

government created the Data Encryption 
Standard (DES), which was adopted as a 

federal standard from 1979 to 2005, while the KGB 
developed GOST 28147-89, an algorithm kept secret 
until 1990 and still used today. In 2000, the US-based 
National Institute of Standards and Technology (NIST) selected the suc-
cessor to DES, called the Advanced Encryption Standard (AES), an algorithm 
developed in Belgium and now found in most electronic devices. AES, DES, 
and GOST 28147-89 have something in common: they’re all block ciphers, a 
type of cipher that combines a core algorithm working on blocks of data 
with a mode of operation, or a technique to process sequences of data 
blocks.
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This chapter reviews the core algorithms that underlie block ciphers, 
discusses their modes of operation, and explains how they all work 
together. It also discusses how AES works and concludes with coverage 
of a classic attack tool from the 1970s, the meet-in-the-middle attack, and 
a favorite attack technique of the 2000s—padding oracles.

What Is a Block Cipher?
A block cipher consists of an encryption algorithm and a decryption 
algorithm:

•	 The encryption algorithm (E) takes a key, K, and a plaintext block, P, and 
produces a ciphertext block, C. We write an encryption operation as 
C = E(K, P).

•	 The decryption algorithm (D) is the inverse of the encryption algorithm 
and decrypts a message to the original plaintext, P. This operation is 
written as P = D(K, C).

Since they’re the inverse of each other, the encryption and decryption 
algorithms usually involve similar operations.

Security Goals
If you’ve followed earlier discussions about encryption, randomness, and 
indistinguishability, the definition of a secure block cipher will come as no 
surprise. Again, we’ll define security as random-lookingness, so to speak.

In order for a block cipher to be secure, it should be a pseudorandom 
permutation (PRP), meaning that as long as the key is secret, an attacker 
shouldn’t be able to compute an output of the block cipher from any input. 
That is, as long as K is secret and random from an attacker’s perspective, 
they should have no clue about what E(K, P) looks like, for any given P.

More generally, attackers should be unable to discover any pattern in 
the input/output values of a block cipher. In other words, it should be 
impossible to tell a block cipher from a truly random permutation, given 
black-box access to the encryption and decryption functions for some fixed 
and unknown key. By the same token, they should be unable to recover a 
secure block cipher’s secret key; otherwise, they would be able to use that 
key to tell the block cipher from a random permutation. Of course that also 
implies that attackers can’t predict the plaintext that corresponds to a given 
ciphertext produced by the block cipher.

Block Size
Two values characterize a block cipher: the block size and the key size. 
Security depends on both values. Most block ciphers have either 64-bit 
or 128-bit blocks—DES’s blocks have 64 (26) bits, and AES’s blocks have 
128 (27) bits. In computing, lengths that are powers of two simplify data 
processing, storage, and addressing. But why 26 and 27 and not 24 or 216 bits?
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For one thing, it’s important that blocks are not too large in order to 
minimize both the length of ciphertext and the memory footprint. With 
regard to the length of the ciphertext, block ciphers process blocks, not 
bits. This means that in order to encrypt a 16-bit message when blocks are 
128 bits, you’ll first need to convert the message into a 128-bit block, and 
only then will the block cipher process it and return a 128-bit ciphertext. 
The wider the blocks, the longer this overhead. As for the memory footprint, in 
order to process a 128-bit block, you need at least 128 bits of memory. This 
is small enough to fit in the registers of most CPUs or to be implemented 
using dedicated hardware circuits. Blocks of 64, 128, or even 512 bits are 
short enough to allow for efficient implementations in most cases. But 
larger blocks (for example, several kilobytes long) can have a noticeable 
impact on the cost and performance of implementations.

When ciphertexts’ length or memory footprint is critical, you may have 
to use 64-bit blocks, because these will produce shorter ciphertexts and 
consume less memory. Otherwise, 128-bit or larger blocks are better, mainly 
because 128-bit blocks can be processed more efficiently than 64-bit ones 
on modern CPUs and are also more secure. In particular, CPUs can leverage 
special CPU instructions in order to efficiently process one or more 128-bit 
blocks in parallel—for example, the Advanced Vector Extensions (AVX) 
family of instructions in Intel CPUs.

The Codebook Attack
While blocks shouldn’t be too large, they also shouldn’t be too small; 
otherwise, they may be susceptible to codebook attacks, which are attacks 
against block ciphers that are only efficient when smaller blocks are used. 
The codebook attack works like this with 16-bit blocks:

1.	 Get the 65536 (216) ciphertexts corresponding to each 16-bit plaintext 
block.

2.	 Build a lookup table—the codebook—mapping each ciphertext block to 
its corresponding plaintext block.

3.	 To decrypt an unknown ciphertext block, look up its corresponding 
plaintext block in the table.

When 16-bit blocks are used, the lookup table needs only 216 × 16 = 220 
bits of memory, or 128 kilobytes. With 32-bit blocks, memory needs grow to 
16 gigabytes, which is still manageable. But with 64-bit blocks, you’d have 
to store 270 bits (a zetabit, or 128 exabytes), so forget about it. Codebook 
attacks won’t be an issue for larger blocks.

How to Construct Block Ciphers
There are hundreds of block ciphers but only a handful of techniques to 
construct one. First, a block cipher used in practice isn’t a gigantic algorithm 
but a repetition of rounds, a short sequence of operations that is weak on its 
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own but strong in number. Second, there are two main techniques to con-
struct a round: substitution–permutation networks (as in AES) and Feistel 
schemes (as in DES). In this section, we look at how these work, after view-
ing an attack that works when all rounds are identical to each other.

A Block Cipher’s Rounds
Computing a block cipher boils down to computing a sequence of rounds. 
In a block cipher, a round is a basic transformation that is simple to specify 
and to implement, and which is iterated several times to form the block 
cipher’s algorithm. This construction, consisting of a small component 
repeated many times, is simpler to implement and to analyze than a con-
struction that would consist of a single huge algorithm.

For example, a block cipher with three rounds encrypts a plaintext 
by computing C = R3(R2(R1(P))), where the rounds are R1, R2, and R3 
and P is a plaintext. Each round should also have an inverse in order to 
make it possible for a recipient to compute back to plaintext. Specifically, 
P = iR1(iR2(iR3(C))), where iR1 is the inverse of R1, and so on.

The round functions—R1, R2, and so on—are usually identical algo-
rithms, but they are parameterized by a value called the round key. Two 
round functions with two distinct round keys will behave differently, and 
therefore will produce distinct outputs if fed with the same input.

Round keys are keys derived from the main key, K, using an algorithm 
called a key schedule. For example, R1 takes the round key K1, R2 takes the 
round key K2, and so on.

Round keys should always be different from each other in every round. 
For that matter, not all round keys should be equal to the key K. Otherwise, 
all the rounds would be identical and the block cipher would be less secure, 
as described next.

The Slide Attack and Round Keys
In a block cipher, no round should be identical to another round in order 
to avoid a slide attack. Slide attacks look for two plaintext/ciphertext pairs 
(P1, C1) and (P2, C2), where P2 = R(P1) if R is the cipher’s round (see 
Figure 4-1). When rounds are identical, the relation between the two 
plaintexts, P2 = R(P1), implies the relation C2 = R(C1) between their 
respective ciphertexts. Figure 4-1 shows three rounds, but the relation 
C2 = R(C1) will hold no matter the number of rounds, be it 3, 10, or 100. 
The problem is that knowing the input and output of a single round often 
helps recover the key. (For details, read the 1999 paper by Biryukov and 
Wagner called “Advanced Slide Attacks,” available at https://www.iacr.org/
archive/eurocrypt2000/1807/18070595-new.pdf)

The use of different round keys as parameters ensures that the rounds 
will behave differently and thus foil slide attacks.

https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf
https://www.iacr.org/archive/eurocrypt2000/1807/18070595-new.pdf
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R R R C2

R R RP1 C1

P2

C1R(P1) = P2

Figure 4-1: The principle of the slide attack, against block ciphers  
with identical rounds

N o t e 	 One potential byproduct and benefit of using round keys is protection against side-
channel attacks, or attacks that exploit information leaked from the implementation 
of a cipher (for example, electromagnetic emanations). If the transformation from 
the main key, K, to a round key, Ki, is not invertible, then if an attacker finds Ki, 
they can’t use that key to find K. Unfortunately, few block ciphers have a one-way key 
schedule. The key schedule of AES allows attackers to compute K from any round key, 
Ki, for example.

Substitution–Permutation Networks
If you’ve read textbooks about cryptography, you’ll undoubtedly have read 
about confusion and diffusion. Confusion means that the input (plaintext 
and encryption key) undergoes complex transformations, and diffusion 
means that these transformations depend equally on all bits of the input. 
At a high level, confusion is about depth whereas diffusion is about breadth. 
In the design of a block cipher, confusion and diffusion take the form 
of substitution and permutation operations, which are combined within 
substitution–permutation networks (SPNs).

Substitution often appears in the form of S-boxes, or substitution boxes, 
which are small lookup tables that transform chunks of 4 or 8 bits. For 
example, the first of the eight S-boxes of the block cipher Serpent is com-
posed of the 16 elements (3 8 f 1 a 6 5 b e d 4 2 7 0 9 c), where each element 
represents a 4-bit nibble. This particular S-box maps the 4-bit nibble 0000 
to 3 (0011), the 4-bit nibble 0101 (5 in decimal) to 6 (0110), and so on.

N o t e 	 S-boxes must be carefully chosen to be cryptographically strong: they should be as 
nonlinear as possible (inputs and outputs should be related with complex equations) 
and have no statistical bias (meaning, for example, that flipping an input bit should 
potentially affect any of the output bits).

The permutation in a substitution–permutation network can be as simple 
as changing the order of the bits, which is easy to implement but doesn’t 
mix up the bits very much. Instead of a reordering of the bits, some ciphers 
use basic linear algebra and matrix multiplications to mix up the bits: they 
perform a series of multiplication operations with fixed values (the matrix’s 
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coefficients) and then add the results. Such linear algebra operations can 
quickly create dependencies between all the bits within a cipher and thus 
ensure strong diffusion. For example, the block cipher FOX transforms a 
4-byte vector (a, b, c, d) to (a′, b′, c′, d′), defined as follows:

a a b c d

b a b c d

c a b c d

d

′
′
′
′

= + + + ×
= + × + × +
= × + × + +
=

( )
( ) ( )

( ) ( )

2

253 2

253 2

2 ×× + + × +( ) ( )a b c d253

In the above equations, the numbers 2 and 253 are interpreted as binary 
polynomials rather than integers; hence, additions and multiplications are 
defined a bit differently than what we’re used to. For example, instead of hav-
ing 2 + 2 = 4, we have 2 + 2 = 0. Regardless, the point is that each byte in the 
initial state affects all 4 bytes in the final state.

Feistel Schemes
In the 1970s, IBM engineer Horst Feistel designed a block cipher called 
Lucifer that works as follows:

1.	 Split the 64-bit block into two 32-bit halves, L and R.

2.	 Set L to L ⊕ F(R), where F is a substitution–permutation round.

3.	 Swap the values of L and R.

4.	 Go to step 2 and repeat 15 times.

5.	 Merge L and R into the 64-bit output block.

This construction became known as a Feistel scheme, as shown in 
Figure 4-2. The left side is the scheme as just described; the right side is a 
functionally equivalent representation where, instead of swapping L and R, 
rounds alternate the operations L = L ⊕ F(R) and R = R ⊕ F(L).

I’ve omitted the keys from Figure 4-2 
to simplify the diagrams, but note that the 
first F takes a first round key, K1, and the 
second F takes another round key, K2. In 
DES, the F functions take a 48-bit round 
key, which is derived from the 56-bit key, K.

In a Feistel scheme, the F function can be 
either a pseudorandom permutation (PRP) 
or a pseudorandom function (PRF). A PRP 
yields distinct outputs for any two distinct 
inputs, whereas a PRF will have values X and 
Y for which F(X) = F(Y). But in a Feistel 
scheme, that difference doesn’t matter as 
long as F is cryptographically strong.

P
L R

F

F

P
L R

F

F

Figure 4-2: The Feistel scheme 
block cipher construction in two 
equivalent forms
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How many rounds should there be in a Feistel scheme? Well, DES 
performs 16 rounds, whereas GOST 28147-89 performs 32 rounds. If the 
F function is as strong as possible, four rounds are in theory sufficient, but 
real ciphers use more rounds to defend against potential weaknesses in F.

The Advanced Encryption Standard (AES)
AES is the most-used cipher in the universe. Prior to the adoption of AES, 
the standard cipher in use was DES, with its ridiculous 56-bit security, as 
well as the upgraded version of DES known as Triple DES, or 3DES.

Although 3DES provides a higher level of security (112-bit security), it’s 
inefficient because the key needs to be 168 bits long in order to get 112-bit 
security, and it’s slow in software (DES was created to be fast in integrated 
circuits, not on mainstream CPUs). AES fixes both issues.

NIST standardized AES in 2000 as a replacement for DES, at which 
point it became the world’s de facto encryption standard. Most commercial 
encryption products today support AES, and the NSA has approved it for 
protecting top-secret information. (Some countries do prefer to use their 
own cipher, largely because they don’t want to use a US standard, but AES is 
actually more Belgian than it is American.)

N o t e 	 AES used to be called Rijndael (a portmanteau for its inventors’ names, Rijmen and 
Daemen, pronounced like “rain-dull”) when it was one of the 15 candidates in the 
AES competition, the process held by NIST from 1997 to 2000 to specify “an unclas-
sified, publicly disclosed encryption algorithm capable of protecting sensitive govern-
ment information well into the next century,” as stated in the 1997 announcement 
of the competition in the Federal Register. The AES competition was kind of a “Got 
Talent” competition for cryptographers, where anyone could participate by submitting 
a cipher or breaking other contestants’ ciphers.

AES Internals
AES processes blocks of 128 bits using a secret key of 128, 192, or 256 bits, 
with the 128-bit key being the most common because it makes encryption 
slightly faster and because the difference between 128- and 256-bit security 
is meaningless for most applications.

Whereas some ciphers work with individual 
bits or 64-bit words, AES manipulates bytes. It views 
a 16-byte plaintext as a two-dimensional array of 
bytes (s = s0, s1, . . . , s15), as shown in Figure 4-3. 
(The letter s is used because this array is called 
the internal state, or just state.) AES transforms the 
bytes, columns, and rows of this array to produce 
a final value that is the ciphertext.

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

Figure 4-3: The internal 
state of AES viewed as a 
4 × 4 array of 16 bytes
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In order to transform its state, AES uses an SPN structure like the one 
shown in Figure 4-4, with 10 rounds for 128-bit keys, 12 for 192-bit keys,  
and 14 for 256-bit keys.

P

AddRoundKey

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

MixColumns
AddRoundKey

SubBytes
ShiftRows

AddRoundKey

C

K0

K1

K9

K10

K

KeyExpansion

(7 rounds . . . )

Figure 4-4: The internal operations  
of AES

Figure 4-4 shows the four building blocks of an AES round (note that 
all but the last round are a sequence of SubBytes, ShiftRows, MixColumns, 
and AddRoundKey):

AddRoundKey  XORs a round key to the internal state.

SubBytes  Replaces each byte (s0, s1, . . . , s15) with another byte 
according to an S-box. In this example, the S-box is a lookup table 
of 256 elements.

ShiftRows  Shifts the ith row of i positions, for i ranging from 0 to 3 
(see Figure 4-5).

MixColumns  Applies the same linear transformation to each of the 
four columns of the state (that is, each group of cells with the same 
shade of gray, as shown on the left side of Figure 4-5).

Remember that in an SPN, the S stands for substitution and the P for 
permutation. Here, the substitution layer is SubBytes and the permutation 
layer is the combination of ShiftRows and MixColumns.

The key schedule function KeyExpansion, shown in Figure 4-4, is the 
AES key schedule algorithm. This expansion creates 11 round keys (K0, 
K1, . . . , K10) of 16 bytes each from the 16-byte key, using the same S-box 
as SubBytes and a combination of XORs. One important property of 
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KeyExpansion is that given any round key, Ki, an attacker can determine 
all other round keys as well as the main key, K, by reversing the algorithm. 
The ability to get the key from any round key is usually seen as an imperfect 
defense against side-channel attacks, where an attacker may easily recover a 
round key.

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s0

s5

s10

s15

s4

s9

s14

s3

s8

s13

s2

s7

s12

s1

s6

s11

Figure 4-5: ShiftRows rotates bytes within each row of the  
internal state.

Without these operations, AES would be totally insecure. Each operation 
contributes to AES’s security in a specific way:

•	 Without KeyExpansion, all rounds would use the same key, K, and AES 
would be vulnerable to slide attacks.

•	 Without AddRoundKey, encryption wouldn’t depend on the key; hence, 
anyone could decrypt any ciphertext without the key.

•	 SubBytes brings nonlinear operations, which add cryptographic 
strength. Without it, AES would just be a large system of linear equa-
tions that is solvable using high-school algebra.

•	 Without ShiftRows, changes in a given column would never affect 
the other columns, meaning you could break AES by building four 
232-element codebooks for each column. (Remember that in a secure 
block cipher, flipping a bit in the input should affect all the output bits.)

•	 Without MixColumns, changes in a byte would not affect any other 
bytes of the state. A chosen-plaintext attacker could then decrypt any 
ciphertext after storing 16 lookup tables of 256 bytes each that hold the 
encrypted values of each possible value of a byte.

Notice in Figure 4-4 that the last round of AES doesn’t include the 
MixColumns operation. That operation is omitted in order to save useless 
computation: because MixColumns is linear (meaning, predictable), you 
could cancel its effect in the very last round by combining bits in a way 
that doesn’t depend on their value or the key. SubBytes, however, can’t be 
inverted without the state’s value being known prior to AddRoundKey.

To decrypt a ciphertext, AES unwinds each operation by taking 
its inverse function: the inverse lookup table of SubBytes reverses the 
SubBytes transformation, ShiftRow shifts in the opposite direction, 
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MixColumns’s inverse is applied (as in the matrix inverse of the matrix 
encoding its operation), and AddRoundKey’s XOR is unchanged because 
the inverse of an XOR is another XOR.

AES in Action
To try encrypting and decrypting with AES, you can use Python’s crypto
graphy library, as in Listing 4-1.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from binascii import hexlify as hexa
from os import urandom

# pick a random 16-byte key using Python's crypto PRNG
k = urandom(16)
print "k = %s" % hexa(k)
# create an instance of AES-128 to encrypt a single block
cipher = Cipher(algorithms.AES(k), modes.ECB(), backend = default_backend())
aes_encrypt = cipher.encryptor()

# set plaintext block p to the all-zero string
p = '\x00'*16
# encrypt plaintext p to ciphertext c
c = aes_encrypt.update(p) + aes_encrypt.finalize()
print "enc(%s) = %s" % (hexa(p), hexa(c))
# decrypt ciphertext c to plaintext p
aes_decrypt = cipher.decryptor()
p = aes_decrypt.update(c) + aes_decrypt.finalize()
print "dec(%s) = %s" % (hexa(c), hexa(p))

Listing 4-1: Trying AES with Python’s cryptography library

Running this script produces something like the following output:

$ ./aes_block.py
k = 2c6202f9a582668aa96d511862d8a279
enc(00000000000000000000000000000000) = 12b620bb5eddcde9a07523e59292a6d7
dec(12b620bb5eddcde9a07523e59292a6d7) = 00000000000000000000000000000000

You’ll get different results because the key is randomized at every new 
execution.

Implementing AES
Real AES software works differently than the algorithm shown in Figure 4-4. 
You won’t find production-level AES code calling a SubBytes() function, then 
a ShiftRows() function, and then a MixColumns() function because that would 
be inefficient. Instead, fast AES software uses special techniques called table-
based implementations and native instructions.
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Table-Based Implementations
Table-based implementations of AES replace the sequence SubBytes-
ShiftRows-MixColumns with a combination of XORs and lookups in tables 
hardcoded into the program and loaded in memory at execution time. This 
is possible because MixColumns is equivalent to XORing four 32-bit values, 
where each depends on a single byte from the state and on SubBytes. Thus, 
you can build four tables with 256 entries each, one for each byte value, and 
implement the sequence SubBytes-MixColumns by looking up four 32-bit 
values and XORing them together.

For example, the table-based C implementation in the OpenSSL toolkit 
looks like Listing 4-2.

    /* round 1: */
    t0 = Te0[s0 >> 24] ^ Te1[(s1 >> 16) & 0xff] ^ Te2[(s2 >> 8) & 0xff] ^ Te3[s3 & 0xff] ^ rk[ 4];
    t1 = Te0[s1 >> 24] ^ Te1[(s2 >> 16) & 0xff] ^ Te2[(s3 >> 8) & 0xff] ^ Te3[s0 & 0xff] ^ rk[ 5];
    t2 = Te0[s2 >> 24] ^ Te1[(s3 >> 16) & 0xff] ^ Te2[(s0 >> 8) & 0xff] ^ Te3[s1 & 0xff] ^ rk[ 6];
    t3 = Te0[s3 >> 24] ^ Te1[(s0 >> 16) & 0xff] ^ Te2[(s1 >> 8) & 0xff] ^ Te3[s2 & 0xff] ^ rk[ 7];
    /* round 2: */
    s0 = Te0[t0 >> 24] ^ Te1[(t1 >> 16) & 0xff] ^ Te2[(t2 >> 8) & 0xff] ^ Te3[t3 & 0xff] ^ rk[ 8];
    s1 = Te0[t1 >> 24] ^ Te1[(t2 >> 16) & 0xff] ^ Te2[(t3 >> 8) & 0xff] ^ Te3[t0 & 0xff] ^ rk[ 9];
    s2 = Te0[t2 >> 24] ^ Te1[(t3 >> 16) & 0xff] ^ Te2[(t0 >> 8) & 0xff] ^ Te3[t1 & 0xff] ^ rk[10];
    s3 = Te0[t3 >> 24] ^ Te1[(t0 >> 16) & 0xff] ^ Te2[(t1 >> 8) & 0xff] ^ Te3[t2 & 0xff] ^ rk[11];
--snip--

Listing 4-2: The table-based C implementation of AES in OpenSSL

A basic table-based implementation of AES encryption needs four 
kilobytes’ worth of tables because each table stores 256 32-bit values, 
which occupy 256 × 32 = 8192 bits, or one kilobyte. Decryption requires 
another four tables, and thus four more kilobytes. But there are tricks to 
reduce the storage from four kilobytes to one, or even fewer.

Alas, table-based implementations are vulnerable to cache-timing attacks, 
which exploit timing variations when a program reads or writes elements in 
cache memory. Depending on the relative position in cache memory of the 
elements accessed, access time varies. Timings thus leak information about 
which element was accessed, which in turn leaks information on the secrets 
involved.

Cache-timing attacks are difficult to avoid. One obvious solution would 
be to ditch lookup tables altogether by writing a program whose execution 
time doesn’t depend on its inputs, but that’s almost impossible to do and 
still retain the same speed, so chip manufacturers have opted for a radical 
solution: instead of relying on potentially vulnerable software, they rely on 
hardware.

Native Instructions
AES native instructions (AES-NI) solve the problem of cache-timing attacks 
on AES software implementations. To understand how AES-NI works, you 
need to think about the way software runs on hardware: to run a program, a 



64   Chapter 4

microprocessor translates binary code into a series of instructions executed 
by integrated circuit components. For example, a MUL assembly instruction 
between two 32-bit values will activate the transistors implementing a 32-bit 
multiplier in the microprocessor. To implement a crypto algorithm, we 
usually just express a combination of such basic operations—additions, 
multiplications, XORs, and so on—and the microprocessor activates its 
adders, multipliers, and XOR circuits in the prescribed order.

AES native instructions take this to a whole new level by providing devel-
opers with dedicated assembly instructions that compute AES. Instead of 
coding an AES round as a sequence of assembly instructions, when using 
AES-NI, you just call the instruction AESENC and the chip will compute the 
round for you. Native instructions allow you to just tell the processor to run 
an AES round instead of requiring you to program rounds as a combination 
of basic operations.

A typical assembly implementation of AES using native instructions 
looks like Listing 4-3.

PXOR       %xmm5,  %xmm0
AESENC     %xmm6,  %xmm0
AESENC     %xmm7,  %xmm0
AESENC     %xmm8,  %xmm0
AESENC     %xmm9,  %xmm0
AESENC     %xmm10, %xmm0
AESENC     %xmm11, %xmm0
AESENC     %xmm12, %xmm0
AESENC     %xmm13, %xmm0
AESENC     %xmm14, %xmm0
AESENCLAST %xmm15, %xmm0

Listing 4-3: AES native instructions

This code encrypts the 128-bit plaintext initially in the register xmm0, 
assuming that registers xmm5 to xmm15 hold the precomputed round keys, 
with each instruction writing its result into xmm0. The initial PXOR instruction 
XORs the first round key prior to computing the first round, and the final 
AESENCLAST instruction performs the last round slightly different from the 
others (MixColumns is omitted).

N o t e 	 AES is about ten times faster on platforms that implement native instructions, which 
as I write this, are virtually all laptop, desktop, and server microprocessors, as well as 
most mobile phones and tablets. In fact, on the latest Intel microarchitecture the AESENC 
instruction has a latency of four cycles with a reciprocal throughput of one cycle, mean-
ing that a call to AESENC takes four cycles to complete and that a new call can be made 
every cycle. To encrypt a series of blocks consecutively it thus takes 4 × 10 = 40 cycles to 
complete the 10 rounds or 40 / 16 = 2.5 cycles per byte. At 2 GHz (2 × 10 9 cycles per 
second), that gives a throughput of about 736 megabytes per second. If the blocks to 
encrypt or decrypt are independent of each other, as certain modes of operation allow, 
then four blocks can be processed in parallel to take full advantage of the AESENC circuit 
in order to reach a latency of 10 cycles per block instead of 40, or about 3 gigabytes 
per second.
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Is AES Secure?
AES is as secure as a block cipher can be, and it will never be broken. 
Fundamentally, AES is secure because all output bits depend on all input 
bits in some complex, pseudorandom way. To achieve this, the design-
ers of AES carefully chose each component for a particular reason—
MixColumns for its maximal diffusion properties and SubBytes for its 
optimal non-linearity—and they have shown that this composition pro-
tects AES against whole classes of cryptanalytic attacks.

But there’s no proof that AES is immune to all possible attacks. For one 
thing, we don’t know what all possible attacks are, and we don’t always know 
how to prove that a cipher is secure against a given attack. The only way to 
really gain confidence in the security of AES is to crowdsource attacks: have 
many skilled people attempt to break AES and, hopefully, fail to do so.

After more than 15 years and hundreds of research publications, the 
theoretical security of AES has only been scratched. In 2011 cryptanalysts 
found a way to recover an AES-128 key by performing about 2126 operations 
instead of 2128, a speed-up of a factor four. But this “attack” requires an 
insane amount of plaintext–ciphertext pairs—about 288 bits worth. In other 
words, it’s a nice finding but not one you need to worry about.

The upshot is that you should care about a million things when imple-
menting and deploying crypto, but AES security is not one of those. The 
biggest threat to block ciphers isn’t in their core algorithms but in their 
modes of operation. When an incorrect mode is chosen, or when the right 
one is misused, even a strong cipher like AES won’t save you.

Modes of Operation
In Chapter 1, I explained how encryption schemes combine a permutation 
with a mode of operation to handle messages of any length. In this section, 
I’ll cover the main modes of operations used by block ciphers, their secu-
rity and function properties, and how (not) to use them. I’ll begin with the 
dumbest one: electronic codebook.

The Electronic Codebook (ECB) Mode
The simplest of the block cipher encryption 
modes is electronic codebook (ECB), which is 
barely a mode of operation at all. ECB takes 
plaintext blocks P1, P2, . . . , PN and processes 
each independently by computing C1 = E(K, P1), 
C2 = E(K, P2), and so on, as shown in Figure 4-6. 
It’s a simple operation but also an insecure one. I 
repeat: ECB is insecure and you should not use it!

Marsh Ray, a cryptographer at Microsoft, 
once said, “Everybody knows ECB mode is bad 
because we can see the penguin.” He was refer-
ring to a famous illustration of ECB’s insecurity 
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Figure 4-6: The ECB mode
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that uses an image of Linux’s mascot, Tux, as shown in Figure 4-7. You can 
see the original image of Tux on the left, and the image encrypted in ECB 
mode using AES (though the underlying cipher doesn’t matter) on the 
right. It’s easy to see the penguin’s shape in the encrypted version because 
all the blocks of one shade of gray in the original image are encrypted 
to the same new shade of gray in the new image; in other words, ECB 
encryption just gives you the same image but with different colors.

 

Figure 4-7: The original image (left) and the ECB-encrypted image (right)

The Python program in Listing 4-4 also shows ECB’s insecurity. It 
picks a pseudorandom key and encrypts a 32-byte message p containing 
two blocks of null bytes. Notice that encryption yields two identical blocks 
and that repeating encryption with the same key and the same plaintext 
yields the same two blocks again.

#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from binascii import hexlify as hexa
from os import urandom

BLOCKLEN = 16
def blocks(data):
    split = [hexa(data[i:i+BLOCKLEN]) for i in range(0, len(data), BLOCKLEN)]
    return ' '.join(split)

k = urandom(16)
print "k = %s" % hexa(k)

# create an instance of AES-128 to encrypt and decrypt
cipher = Cipher(algorithms.AES(k), modes.ECB(), backend=default_backend())
aes_encrypt = cipher.encryptor()
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# set plaintext block p to the all-zero string
p = '\x00'*BLOCKLEN*2

# encrypt plaintext p to ciphertext c
c = aes_encrypt.update(p) + aes_encrypt.finalize()
print "enc(%s) = %s" % (blocks(p), blocks(c))

Listing 4-4: Using AES in ECB mode in Python

Running this script gives ciphertext blocks like this, for example:

$ ./aes_ecb.py
k = 50a0ebeff8001250e87d31d72a86e46d
enc(00000000000000000000000000000000 00000000000000000000000000000000) = 
5eb4b7af094ef7aca472bbd3cd72f1ed 5eb4b7af094ef7aca472bbd3cd72f1ed

As you can see, when the ECB mode is used, identical ciphertext blocks 
reveal identical plaintext blocks to an attacker, whether those are blocks 
within a single ciphertext or across different ciphertexts. This shows that 
block ciphers in ECB mode aren’t semantically secure.

Another problem with ECB is that it only takes complete blocks of 
data, so if blocks were 16 bytes, as in AES, you could only encrypt chunks 
of 16 bytes, 32 bytes, 48 bytes, or any other multiple of 16 bytes. There are 
a few ways to deal with this, as you’ll see with the next mode, CBC. (I won’t 
tell you how these tricks work with ECB because you shouldn’t be using 
ECB in the first place.)

The Cipher Block Chaining (CBC) Mode
Cipher block chaining (CBC) is like ECB but with a small twist that makes a 
big difference: instead of encrypting the ith block, Pi, as Ci = E(K, Pi), CBC 
sets Ci = E(K, Pi ⊕ Ci − 1), where Ci − 1 is the previous ciphertext block—thereby 
chaining the blocks Ci − 1 and Ci. When encrypting the first block, P1, there is 
no previous ciphertext block to use, so CBC takes a random initial value (IV), 
as shown in Figure 4-8.

The CBC mode makes each ciphertext 
block dependent on all the previous blocks, 
and ensures that identical plaintext blocks 
won’t be identical ciphertext blocks. The 
random initial value guarantees that two 
identical plaintexts will encrypt to distinct 
ciphertexts when calling the cipher twice 
with two distinct initial values.

Listing 4-5 illustrates these two 
benefits. This program takes an all-
zero, 32-byte message (like the one in 
Listing 4-4), encrypts it twice with CBC, and shows the two ciphertexts. 
The line iv = urandom(16), shown in bold, picks a new random IV for each 
new encryption.
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Figure 4-8: The CBC mode
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#!/usr/bin/env python

from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
from binascii import hexlify as hexa
from os import urandom

BLOCKLEN = 16
# the blocks() function splits a data string into space-separated blocks
def blocks(data):
    split = [hexa(data[i:i+BLOCKLEN]) for i in range(0, len(data), BLOCKLEN)]
    return ' '.join(split)
k = urandom(16)
print "k = %s" % hexa(k)
# pick a random IV
iv = urandom(16)
print "iv = %s" % hexa(iv)
# pick an instance of AES in CBC mode
aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()

p = '\x00'*BLOCKLEN*2
c = aes.update(p) + aes.finalize()
print "enc(%s) = %s" % (blocks(p), blocks(c))
# now with a different IV and the same key
iv = urandom(16)
print "iv = %s" % hexa(iv)
aes = Cipher(algorithms.AES(k), modes.CBC(iv), backend=default_backend()).encryptor()
c = aes.update(p) + aes.finalize()
print "enc(%s) = %s" % (blocks(p), blocks(c))

Listing 4-5: Using AES in CBC mode

The two plaintexts are the same (two all-zero blocks), but the 
encrypted blocks should be distinct, as in this example execution:

$ ./aes_cbc.py
k = 9cf0d31ad2df24f3cbbefc1e6933c872
iv = 0a75c4283b4539c094fc262aff0d17af
enc(00000000000000000000000000000000 00000000000000000000000000000000) = 
370404dcab6e9ecbc3d24ca5573d2920 3b9e5d70e597db225609541f6ae9804a
iv = a6016a6698c3996be13e8739d9e793e2
enc(00000000000000000000000000000000 00000000000000000000000000000000) = 
655e1bb3e74ee8cf9ec1540afd8b2204 b59db5ac28de43b25612dfd6f031087a

Alas, CBC is often used with a constant IV instead of a random one, 
which exposes identical plaintexts and plaintexts that start with identical 
blocks. For example, say the two-block plaintext P1 || P2 is encrypted in CBC 
mode to the two-block ciphertext C1 || C2. If P1 || P2′ is encrypted with the 
same IV, where P2′ is some block distinct from P2, then the ciphertext will 
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look like C1 || C2′, with C2′ different from C2 but with the same first block C1. 
Thus, an attacker can guess that the first block is the same for both plain-
texts, even though they only see the ciphertexts.

N o t e 	 In CBC mode, decryption needs to know the IV used to encrypt, so the IV is sent along 
with the ciphertext, in the clear.

With CBC, decryption can be much faster than encryption due to 
parallelism. While encryption of a new block, Pi, needs to wait for the 
previous block, Ci − 1, decryption of a block computes Pi = D(K, Ci) ⊕ Ci − 1, 
where there’s no need for the previous plaintext block, Pi − 1. This means 
that all blocks can be decrypted in parallel simultaneously, as long as you 
also know the previous ciphertext block, which you usually do.

How to Encrypt Any Message in CBC Mode
Let’s circle back to the block termination issue and look at how to process 
a plaintext whose length is not a multiple of the block length. For example, 
how would we encrypt an 18-byte plaintext with AES-CBC when blocks are 
16 bytes? What do we do with the two bytes left? We’ll look at two widely 
used techniques to deal with this problem. The first one, padding, makes 
the ciphertext a bit longer than the plaintext, while the second one, cipher-
text stealing, produces a ciphertext of the same length as the plaintext.

Padding a Message

Padding is a technique that allows you to encrypt a message of any length, 
even one smaller than a single block. Padding for block ciphers is specified 
in the PKCS#7 standard and in RFC 5652, and is used almost everywhere 
CBC is used, such as in some HTTPS connections.

Padding is used to expand a message to fill a complete block by adding 
extra bytes to the plaintext. Here are the rules for padding 16-byte blocks:

•	 If there’s one byte left—for example, if the plaintext is 1 byte, 17 bytes, 
or 33 bytes long—pad the message with 15 bytes 0f (15 in decimal).

•	 If there are two bytes left, pad the message with 14 bytes 0e (14 in 
decimal).

•	 If there are three bytes left, pad the message with 13 bytes 0d (13 in 
decimal).

If there are 15 plaintext bytes and a single byte missing to fill a block, 
padding adds a single 01 byte. If the plaintext is already a multiple of 16, 
the block length, add 16 bytes 10 (16 in decimal). You get the idea. The 
trick generalizes to any block length up to 255 bytes (for larger blocks, a 
byte is too small to encode values greater than 255).
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Decryption of a padded message works like this:

1.	 Decrypt all the blocks as with unpadded CBC.

2.	 Make sure that the last bytes of the last block conform to the padding 
rule: that they finish with at least one 01 byte, at least two 02 bytes, or at 
least three 03 bytes, and so on. If the padding isn’t valid—for example, if 
the last bytes are 01 02 03—the message is rejected. Otherwise, decryp-
tion strips the padding bytes and returns the plaintext bytes left.

One downside of padding is that it makes ciphertext longer by at least 
one byte and at most a block.

Ciphertext Stealing

Ciphertext stealing is another trick used to encrypt a message whose length 
isn’t a multiple of the block size. Ciphertext stealing is more complex and 
less popular than padding, but it offers at least three benefits:

•	 Plaintexts can be of any bit length, not just bytes. You can, for example, 
encrypt a message of 131 bits.

•	 Ciphertexts are exactly the same length as plaintexts.

•	 Ciphertext stealing is not vulnerable to padding oracle attacks, power-
ful attacks that sometimes work against CBC with padding (as we’ll see 
in “Padding Oracle Attacks” on page 74).

In CBC mode, ciphertext stealing extends the last incomplete plaintext 
block with bits from the previous ciphertext block, and then encrypts the 
resulting block. The last, incomplete ciphertext block is made up of the first 
bits from the previous ciphertext block; that is, the bits that have not been 
appended to the last plaintext block.

In Figure 4-9, we have three blocks, 
where the last block, P3, is incomplete 
(represented by a zero). P3 is XORed with 
the last bits from the previous ciphertext 
block, and the encrypted result is returned 
as C2. The last ciphertext block, C3, then 
consists of the first bits from the previous 
ciphertext block. Decryption is simply the 
inverse of this operation.

There aren’t any major problems with 
ciphertext stealing, but it’s inelegant and 
hard to get right, especially when NIST’s 
standard specifies three different ways 
to implement it (see Special Publication 
800-38A).
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Figure 4-9: Ciphertext stealing for 
CBC-mode encryption
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The Counter (CTR) Mode
To avoid the troubles and retain the benefits of ciphertext stealing, you 
should use counter mode (CTR). CTR is hardly a block cipher mode: it 
turns a block cipher into a stream cipher that just takes bits in and spits bits 
out and doesn’t embarrass itself with the notion of blocks. (I’ll discuss 
stream ciphers in detail in Chapter 5.)

In CTR mode (see Figure 4-10), the 
block cipher algorithm won’t transform 
plaintext data. Instead, it will encrypt 
blocks composed of a counter and a nonce. 
A counter is an integer that is incre-
mented for each block. No two blocks 
should use the same counter within a 
message, but different messages can use 
the same sequence of counter values 
(1, 2, 3, . . .). A nonce is a number used 
only once. It is the same for all blocks in a 
single message, but no two messages should use the same nonce.

As shown in Figure 4-10, in CTR mode, encryption XORs the plaintext 
and the stream taken from “encrypting” the nonce, N, and counter, Ctr. 
Decryption is the same, so you only need the encryption algorithm for both 
encryption and decryption. The Python script in Listing 4-6 gives you a 
hands-on example.

#!/usr/bin/env python

from Crypto.Cipher import AES
from Crypto.Util import Counter
from binascii import hexlify as hexa
from os import urandom
from struct import unpack

k = urandom(16)
print "k = %s" % hexa(k)

# pick a starting value for the counter
nonce = unpack('<Q', urandom(8))[0]
# instantiate a counter function
ctr = Counter.new(128, initial_value=nonce)

# pick an instance of AES in CTR mode, using ctr as counter
aes = AES.new(k, AES.MODE_CTR, counter=ctr)

# no need for an entire block with CTR
p = '\x00\x01\x02\x03'

# encrypt p
c = aes.encrypt(p)
print "enc(%s) = %s" % (hexa(p), hexa(c))
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Figure 4-10: The CTR mode
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# decrypt using the encrypt function
ctr = Counter.new(128, initial_value=nonce)
aes = AES.new(k, AES.MODE_CTR, counter=ctr)
p = aes.encrypt(c)
print "enc(%s) = %s" % (hexa(c), hexa(p))

Listing 4-6: Using AES in CTR mode

The example execution encrypts a 4-byte plaintext and gets a 4-byte 
ciphertext. It then decrypts that ciphertext using the encryption function:

$ ./aes_ctr.py
k = 130a1aa77fa58335272156421cb2a3ea
enc(00010203) = b23d284e
enc(b23d284e) = 00010203

As with the initial value in CBC, CTR’s nonce is supplied by the encryp-
ter and sent with the ciphertext in the clear. But unlike CBC’s initial value, 
CTR’s nonce doesn’t need to be random, it simply needs to be unique. A 
nonce should be unique for the same reason that a one-time pad shouldn’t 
be reused: when calling the pseudorandom stream, S, if you encrypt P1 to 
C1 = P1 ⊕ S and P2 to C2 = P2 ⊕ S using the same nonce, then C1 ⊕ C2 reveals 
P1 ⊕ P2.

A random nonce will do the trick only if it’s long enough; for example, 
if the nonce is n bits, chances are that after 2n / 2 encryptions and as many 
nonces you’ll run into duplicates. Sixty-four bits are therefore insufficient 
for a random nonce, since you can expect a repetition after approximately 
232 nonces, which is an unacceptably low number.

The counter is guaranteed unique if it’s incremented for every new 
plaintext, and if it’s long enough; for example, a 64-bit counter. 

One particular benefit to CTR is that it can be faster than in any other 
mode. Not only is it parallelizable, but you can also start encrypting even 
before knowing the message by picking a nonce and computing the stream 
that you’ll later XOR with the plaintext.

How Things Can Go Wrong
There are two must-know attacks on block ciphers: meet-in-the-middle 
attacks, a technique discovered in the 1970s but still used in many crypt-
analytic attacks (not to be confused with man-in-the-middle attacks), and 
padding oracle attacks, a class of attacks discovered in 2002 by academic 
cryptographers, then mostly ignored, and finally rediscovered a decade 
later along with several vulnerable applications.

Meet-in-the-Middle Attacks
The 3DES block cipher is an upgraded version of the 1970s standard DES 
that takes a key of 56 × 3 = 168 bits (an improvement on DES’s 56-bit key). 
But the security level of 3DES is 112 bits instead of 168 bits, because of the 
meet-in-the-middle (MitM) attack.
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As you can see in Figure 4-11, 3DES encrypts a block using the DES 
encryption and decryption functions: first encryption with a key, K1, then 
decryption with a key, K2, and finally encryption with another key, K3. If 
K1 = K2, the first two calls cancel themselves out and 3DES boils down to 
a single DES with key K3. 3DES does encrypt-decrypt-encrypt rather than 
encrypting thrice to allow systems to emulate DES when necessary using the 
new 3DES interface.

P

K1

DES’ E

K2

DES’ D

K3

DES’ E C

Figure 4-11: The 3DES block cipher construction

Why use triple DES and not just double DES, that is, E(K2, E(K1, P))? It 
turns out that the MitM attack makes double DES only as secure as single 
DES. Figure 4-12 shows the MitM attack in action.

P

K1

E D

K2

C?

Figure 4-12: The meet-in-the-middle attack

The meet-in-the-middle attack works as follows to attack double DES:

1.	 Say you have P and C = E(K2, E(K1, P)) with two unknown 56-bit keys, 
K1 and K2. (DES takes 56-bit keys, so double DES takes 112 key bits in 
total.) You build a key–value table with 256 entries of E(K1, P), where E 
is the DES encryption function and K1 is the value stored.

2.	 For all 256 values of K2, compute D(K2, C) and check whether the 
resulting value appears in the table as an index (thus as a middle 
value, represented by a question mark in Figure 4-12).

3.	 If a middle value is found as an index of the table, you fetch the cor-
responding K1 from the table and verify that the (K1, K2) found is the 
right one by using other pairs of P and C. Encrypt P using K1 and K2 
and then check that the ciphertext obtained is the given C.

This method recovers K1 and K2 by performing about 257 instead of 
2112 operations: step 1 encrypts 256 blocks and then step 2 decrypts at most 
256 blocks, for 256 + 256 = 257 operations in total. You also need to store 256 
elements of 15 bytes each, or about 1 exabyte. That’s a lot, but there’s a 
trick that allows you to run the same attack with only negligible memory 
(as you’ll see in Chapter 6).



74   Chapter 4

As you can see, you can apply the MitM attack to 3DES in almost the 
same way you would to double DES, except that the third stage will go 
through all 2112 values of K2 and K3. The whole attack thus succeeds after 
performing about 2112 operations, meaning that 3DES gets only 112-bit 
security despite having 168 bits of key material.

Padding Oracle Attacks
Let’s conclude this chapter with one of the simplest and yet most devastating 
attacks of the 2000s: the padding oracle attack. Remember that padding fills 
the plaintext with extra bytes in order to fill a block. A plaintext of 111 bytes, 
for example, is a sequence of six 16-byte blocks followed by 15 bytes. To form 
a complete block, padding adds a 01 byte. For a 110-byte plaintext, padding 
adds two 02 bytes, and so on.

A padding oracle is a system that behaves differently depending on whether 
the padding in a CBC-encrypted ciphertext is valid. You can see it as a black 
box or an API that returns either a success or an error value. A padding oracle 
can be found in a service on a remote host sending error messages when it 
receives malformed ciphertexts. Given a padding oracle, padding oracle 
attacks record which inputs have a valid padding and which don’t, and 
exploit this information to decrypt chosen ciphertext values.

Say you want to decrypt ciphertext block C2. 
I’ll call X the value you’re looking for, namely 
D(K, C2), and P2 the block obtained after decrypt-
ing in CBC mode (see Figure 4-13). If you pick a 
random block C1 and send the two-block cipher-
text C1 || C2 to the oracle, decryption will only 
succeed if C1 ⊕ X = P2 ends with valid padding—a 
single 01 byte, two 02 bytes, or three 03 bytes, and 
so on. 

Based on this observation, padding oracle 
attacks on CBC encryption can decrypt a block 
C2 like this (bytes are denoted in array notation: 
C1[0] is C1’s first byte, C1[1] its second byte, and so 
on up to C1[15], C1’s last byte):

1.	 Pick a random block C1 and vary its last byte until the padding 
oracle accepts the ciphertext as valid. Usually, in a valid ciphertext, 
C1[15] ⊕ X[15] = 01, so you’ll find X[15] after trying around 128 values 
of C1[15].

2.	 Find the value X[14] by setting C1[15] to X[15] ⊕ 02 and searching 
for the C1[14] that gives correct padding. When the oracle accepts 
the ciphertext as valid, it means you have found C1[14] such that 
C1[14] ⊕ X[14] = 02. 

3.	 Repeat steps 1 and 2 for all 16 bytes.
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IV X

Figure 4-13: Padding 
oracle attacks recover 
X by choosing C1 and 
checking the validity of 
padding.
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The attack needs on average 128 queries to the oracle for each of the 
16 bytes, which is about 2000 queries in total. (Note that each query must 
use the same initial value.)

N o t e 	 In practice, implementing a padding oracle attack is a bit more complicated than 
what I’ve described, because you have to deal with wrong guesses at step 1. A cipher-
text may have valid padding not because P2 ends with a single 01 but because it ends 
with two 02 bytes or three 03 bytes. But that’s easily managed by testing the validity of 
ciphertexts where more bytes are modified.

Further Reading
There’s a lot to say about block ciphers, be it in how algorithms work or in 
how they can be attacked. For instance, Feistel networks and SPNs aren’t the 
only ways to build a block cipher. The block ciphers IDEA and FOX use the 
Lai–Massey construction, and Threefish uses ARX networks, a combination 
of addition, word rotations, and XORs.

There are also many more modes than just ECB, CBC, and CTR. Some 
modes are folklore techniques that nobody uses, like CFB and OFB, while 
others are for specific applications, like XTS for tweakable encryption or 
GCM for authenticated encryption.

I’ve discussed Rijndael, the AES winner, but there were 14 other 
algorithms in the race: CAST-256, CRYPTON, DEAL, DFC, E2, FROG, 
HPC, LOKI97, Magenta, MARS, RC6, SAFER+, Serpent, and Twofish. I 
recommend that you look them up to see how they work, how they were 
designed, how they have been attacked, and how fast they are. It’s also 
worth checking out the NSA’s designs (Skipjack, and more recently, SIMON 
and SPECK) and more recent “lightweight” block ciphers such as KATAN, 
PRESENT, or PRINCE.





5
S t r e a m  C i p h e r s

Symmetric ciphers can be either block 
ciphers or stream ciphers. Recall from 

Chapter 4 that block ciphers mix chunks 
of plaintext bits together with key bits to pro-

duce chunks of ciphertext of the same size, usually 64 
or 128 bits. Stream ciphers, on the other hand, don’t 
mix plaintext and key bits; instead, they generate pseu-
dorandom bits from the key and encrypt the plaintext 
by XORing it with the pseudorandom bits, in the same 
fashion as the one-time pad explained in Chapter 1.

Stream ciphers are sometimes shunned because historically they’ve 
been more fragile than block ciphers and are more often broken—both 
the experimental ones designed by amateurs and the ciphers deployed in 
systems used by millions, including mobile phones, Wi-Fi, and public trans-
port smart cards. But that’s all history. Fortunately, although it has taken 



78   Chapter 5

20 years, we now know how to design secure stream ciphers, and we trust 
them to protect things like Bluetooth connections, mobile 4G communica-
tions, TLS connections, and more.

This chapter first presents how stream ciphers work and discusses the 
two main classes of stream ciphers: stateful and counter-based ciphers. 
We’ll then study hardware- and software-oriented stream ciphers and look 
at some insecure ciphers (such as A5/1 in GSM mobile communications 
and RC4 in TLS) and some secure, state-of-the-art ones (such as Grain-128a 
for hardware and Salsa20 for software).

How Stream Ciphers Work
Stream ciphers are more akin to deterministic random bit generators 
(DRBGs) than they are to full-fledged pseudorandom number generators 
(PRNGs) because, like DRBGs, stream ciphers are deterministic. Stream 
ciphers’ determinism allows you to decrypt by regenerating the pseudo-
random bits used to encrypt. With a PRNG, you could encrypt but never 
decrypt—which is secure, but useless.

What sets stream ciphers apart from DRBGs is that DRBGs take a single 
input value whereas stream ciphers take two values: a key and a nonce. The 
key should be secret and is usually 128 or 256 bits. The nonce doesn’t have 
to be secret, but it should be unique for each key and is usually between 64 
and 128 bits.

Stream ciphers produce a pseudoran-
dom stream of bits called the keystream. The 
keystream is XORed to a plaintext to encrypt 
it and then XORed again to the ciphertext to 
decrypt it. Figure 5-1 shows the basic stream 
cipher encryption operation, where SC is the 
stream cipher algorithm, KS the keystream, P 
the plaintext, and C the ciphertext.

A stream cipher computes KS = SC(K, N), 
encrypts as C = P ⊕ KS, and decrypts as 
P = C ⊕ KS. The encryption and decryption functions are the same because 
both do the same thing—namely, XOR bits with the keystream. That’s why, 
for example, certain cryptographic libraries provide a single encrypt func-
tion that’s used for both encryption and decryption.

Stream ciphers allow you to encrypt a message with key K1 and nonce 
N1 and then encrypt another message with key K1 and nonce N2 that is 
different from N1, or with key K2, which is different from K1 and nonce 
N1. However, you should never again encrypt with K1 and N1, because you 
would then use twice the same keystream KS. You would then have a first 
ciphertext C1 = P1 ⊕ KS, a second ciphertext C2 = P2 ⊕ KS, and if you know 
P1, then you could determine P2 = C1 ⊕ C2 ⊕ P1.

N o t e 	 The name nonce is actually short for number used only once. In the context of 
stream ciphers, it’s sometimes called the IV, for initial value.

SCK

N P

KS
C

Figure 5-1: How stream 
ciphers encrypt, taking a 
secret key, K, and a public 
nonce, N
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Stateful and Counter-Based Stream Ciphers
From a high-level perspective, there are two types of stream ciphers: state-
ful and counter based. Stateful stream ciphers have a secret internal state that 
evolves throughout keystream generation. The cipher initializes the state 
from the key and the nonce and then calls an update function to update 
the state value and produce one or more keystream bits from the state, as 
shown in Figure 5-2. For example, the famous RC4 is a stateful cipher.

InitK

N

P1

C1

Update Update Update

P2

C2

P3

C3

Figure 5-2: The stateful stream cipher

Counter-based stream ciphers produce chunks of keystream from a key, a 
nonce, and a counter value, as shown in Figure 5-3. Unlike stateful stream 
ciphers, such as Salsa20, no secret state is memorized during keystream 
generation.

K, N, Ctr

P1

C1

SC

K, N, Ctr + 1

P2

C2

SC

K, N, Ctr + 2

P3

C3

SC

Figure 5-3: The counter-based stream cipher

These two approaches define the high-level architecture of the stream 
cipher, regardless of how the core algorithms work. The internals of the 
stream cipher also fall into two categories, depending on the target plat-
form of the cipher: hardware oriented and software oriented.

Hardware-Oriented Stream Ciphers
When cryptographers talk about hardware, they mean application-specific 
integrated circuits (ASICs), programmable logic devices (PLDs), and field-
programmable gate arrays (FPGAs). A cipher’s hardware implementation 
is an electronic circuit that implements the cryptographic algorithm at the 
bit level and that can’t be used for anything else; in other words, the cir-
cuit is dedicated hardware. On the other hand, software implementations of 
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cryptographic algorithms simply tell a microprocessor what instructions to 
execute in order to run the algorithm. These instructions operate on bytes 
or words and then call pieces of electronic circuit that implement general-
purpose operations such as addition and multiplication. Software deals 
with bytes or words of 32 or 64 bits, whereas hardware deals with bits. The 
first stream ciphers worked with bits in order to save complex word-wise 
operations and thus be more efficient in hardware, their target platform at 
the time.

The main reason why stream ciphers were commonly used for hard-
ware implementations is that they were cheaper than block ciphers. Stream 
ciphers needed less memory and fewer logical gates than block ciphers, and 
therefore occupied a smaller area on an integrated circuit, which reduced 
fabrication costs. For example, counting in gate-equivalents, the standard 
area metric for integrated circuits, you could find stream ciphers taking 
less than 1000 gate-equivalents; by contrast, typical software-oriented block 
ciphers needed at least 10000 gate-equivalents, making crypto an order of 
magnitude more expensive than with stream ciphers.

Today, however, block ciphers are no longer more expensive than stream 
ciphers—first, because there are now hardware-friendly block ciphers about 
as small as stream ciphers, and second, because the cost of hardware has 
plunged. Yet stream ciphers are often associated with hardware because they 
used to be the best option.

In the next section, I’ll explain the basic mechanism behind hardware 
stream ciphers, called feedback shift registers (FSRs). Almost all hardware stream 
ciphers rely on FSRs in some way, whether that’s the A5/1 cipher used in 2G 
mobile phones or the more recent cipher Grain-128a. 

N o t e 	 The first standard block cipher, the Data Encryption Standard (DES), was optimized 
for hardware rather than for software. When the US government standardized DES 
in the 1970s, most target applications were hardware implementations. It’s therefore 
no surprise that the S-boxes in DES are small and fast to compute when implemented 
as a logical circuit in hardware but inefficient in software. Unlike DES, the current 
Advanced Encryption Standard (AES) deals with bytes and is therefore more efficient 
in software than DES.

Feedback Shift Registers
Countless stream ciphers have used FSRs because they’re simple and well 
understood. An FSR is simply an array of bits equipped with an update feed-
back function, which I’ll denote as f. The FSR’s state is stored in the array, or 
register, and each update of the FSR uses the feedback function to change 
the state’s value and to produce one output bit.

In practice, an FSR works like this: if R0 is the initial value of the FSR, 
the next state, R1, is defined as R0 left-shifted by 1 bit, where the bit leav-
ing the register is returned as output, and where the empty position is 
filled with f(R0).
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The same rule is repeated to compute the subsequent state values R2, 
R3, and so on. That is, given Rt, the FSR’s state at time t, the next state, Rt + 1, 
is the following:

R R Rt t t  + = <<1 1( ) | f( )

In this equation, | is the logical OR operator and << is the shift opera-
tor, as used in the C language. For example, given the 8-bit string 00001111, 
we have this:

00001111 1 00011110

00011110 1 00111100

00111100 1 011110

<< =
<< =
<< = 000

The bit shift moves the bits to the left, losing the leftmost bit in order 
to retain the state’s bit length, and zeroing the rightmost bit. The update 
operation of an FSR is identical, except that instead of being set to 0, the 
rightmost bit is set to f(Rt).

Consider, for example, a 4-bit FSR whose feedback function f XORs all 
4 bits together. Initialize the state to the following:

1 1 0 0   

Now shift the bits to the left, where 1 is output and the rightmost bit is 
set to the following:

f 1100 1 1 0 0 0( ) = ⊕ ⊕ ⊕ =

Now the state becomes this:

1 0 0 0   

The next update outputs 1, left-shifts the state, and sets the rightmost 
bit to the following:

f 1000 1 0 0 0 1( ) = ⊕ ⊕ ⊕ =

Now the state is this:

0 0 0 1   

The next three updates return three 0 bits and give the following state 
values:

0 0 1 1

0 1 1 0

1 1 0 0
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We thus return to our initial state of 1100 after five iterations, and we 
can see that updating the state five times from any of the values observed 
throughout this cycle will return us to this initial value. We say that 5 is the 
period of the FSR given any one of the values 1100, 1000, 0001, 0011, or 0110. 
Because the period of this FSR is 5, clocking the register 10 times will yield 
twice the same 5-bit sequence. Likewise, if you clock the register 20 times, 
starting from 1100, the output bits will be 11000110001100011000, or four 
times the same 5-bit sequence of 11000. Intuitively, such repeating patterns 
should be avoided, and a longer period is better for security.

N o t e 	 If you plan to use an FSR in a stream cipher, avoid using one with short periods, 
which make the output more predictable. Some types of FSRs make it easy to figure  
out their period, but it’s almost impossible to do so with others.

Figure 5-4 shows the structure of this cycle, along with the other cycles 
of that FSR, with each cycle shown as a circle whose dots represent a state of 
the register.

1100

10000110

00010011

0100

10011010

00100101

1111

11100111

11011011

0000

Figure 5-4: Cycles of the FSR whose feedback function XORs  
the 4 bits together

Indeed, this particular FSR has two other period-5 cycles—namely, 
{0100, 1001, 0010, 0101, 1010} and {1111, 1110, 1101, 1011, 0111}. Note that 
any given state can belong to only one cycle of states. Here, we have three 
cycles of five states each, covering 15 of all the 24 = 16 possible values of our 
4-bit register. The 16th possible value is 0000, which, as Figure 5-4 shows, is 
a period-1 cycle because the FSR will transform 0000 to 0000.

You’ve seen that an FSR is essentially a register of bits, where each update 
of the register outputs a bit (the leftmost bit of the register) and where a 
function computes the new rightmost bit of the register. (All other bits are 
left-shifted.) The period of an FSR, from some initial state, is the number 
of updates needed until the FSR enters the same state again. If it takes N 
updates to do so, the FSR will produce the same N bits again and again.
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Linear Feedback Shift Registers

Linear feedback shift registers (LFSRs) are FSRs with a linear feedback 
function—namely, a function that’s the XOR of some bits of the state, such 
as the example of a 4-bit FSR in the previous section and its feedback func-
tion returning the XOR of the register’s 4 bits. Recall that in cryptography, 
linearity is synonymous with predictability and suggestive of a simple under-
lying mathematical structure. And, as you might expect, thanks to this 
linearity, LFSRs can be analyzed using notions like linear complexity, finite 
fields, and primitive polynomials—but I’ll skip the math details and just 
give you the essential facts.

The choice of which bits are XORed together is crucial for the period 
of the LFSR and thus for its cryptographic value. The good news is that we 
know how to select the position of the bits in order to guarantee a maxi-
mal period, of 2n – 1. Specifically, we take the indices of the bits, from 1 for 
the rightmost to n for the leftmost, and write the polynomial expression 
1 + X + X 2 + . . . + X n, where the term X  i is only included if the ith bit is one 
of the bits XORed in the feedback function. The period is maximal if and 
only if that polynomial is primitive. To be primitive, the polynomial must 
have the following qualities:

•	 The polynomial must be irreducible, meaning that it can’t be factor-
ized; that is, written as a product of smaller polynomials. For example, 
X + X 3 is not irreducible because it’s equal to (1 + X)(X + X2):

1 2 2 2 3 3+ + + + + = +( )( ) =X X X X X X X XX

•	 The polynomial must satisfy certain other mathematical properties that 
cannot be easily explained without nontrivial mathematical notions but 
are easy to test.

N o t e 	 The maximal period of an n-bit LFSR is 2n – 1, not 2n, because the all-zero state 
always loops on itself infinitely. Because the XOR of any number of zeros is zero, new 
bits entering the state from the feedback functions will always be zero; hence, the all-
zero state is doomed to stay all zeros.

For example, Figure 5-5 shows a 4-bit LFSR with the feedback polyno-
mial 1 + X + X 3 + X 4 in which the bits at positions 1, 3, and 4 are XORed 
together to compute the new bit set to L1. However, this polynomial isn’t 
primitive because it can be factorized into (1 + X 3)(1 + X).

L1L2L3L4

Figure 5-5: An LFSR with the feedback polynomial  
1 + X + X3 + X4

Indeed, the period of the LFSR shown in Figure 5-5 isn’t maximal. To 
prove that, start from the state 0001.
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0 0 0 1     

Now left-shift by 1 bit and set the new bit to 0 + 0 + 1 = 1:

0 0 1 1     

Repeating the operation four times gives the following state values:

0 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

And as you can see, the state after six updates is the same as the initial 
one, demonstrating that we’re in a period-6 cycle and proving that the 
LFSR’s period isn’t the maximal value of 15.

Now, by way of contrast, consider the LFSR shown in Figure 5-6.

L1L2L3L4

Figure 5-6: An LFSR with the feedback polynomial  
1 + X3 + X4, a primitive polynomial, ensuring  
a maximal period

This feedback polynomial is a primitive polynomial described by 
1 + X 3 + X 4, and you can verify that its period is indeed maximal (namely 
15). Specifically, from an initial value, the state evolves as follows:

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 1

0 0 1 1
0 1 1 0
1 1 0 1
1 0 1 0

0 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1

1 1 1 0
1 1 0 0
1 0 0 0
0 0 0 1

The state spans all possible values except 0000 with no repetition until 
it eventually loops. This demonstrates that the period is maximal and proves 
that the feedback polynomial is primitive.

Alas, using an LFSR as a stream cipher is insecure. If n is the LFSR’s 
bit length, an attacker needs only n output bits to recover the LFSR’s initial 
state, allowing them to determine all previous bits and predict all future 
bits. This attack is possible because the Berlekamp–Massey algorithm can 
be used to solve the equations defined by the LFSR’s mathematical struc-
ture to find not only the LFSR’s initial state but also its feedback polyno-
mial. In fact, you don’t even need to know the exact length of the LFSR to 
succeed; you can repeat the Berlekamp–Massey algorithm for all possible 
values of n until you hit the right one.
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The upshot is that LFSRs are cryptographically weak because they’re 
linear. Output bits and initial state bits are related by simple and short equa-
tions that can be easily solved with high-school linear algebra techniques.

To strengthen LFSRs, let’s thus add a pinch of nonlinearity.

Filtered LFSRs

To mitigate the insecurity of 
LFSRs, you can hide their linear-
ity by passing their output bits 
through a nonlinear function 
before returning them to produce 
what is called a filtered LFSR (see 
Figure 5-7).

The g function in Figure 5-7 
must be a nonlinear function—one 
that both XORs bits together and 
combines them with logical AND 
or OR operations. For example, 
L1L2 + L3L4 is a nonlinear function (I’ve omitted the multiply sign, so L1L2 
means L1 × L2, or L1 & L2 using C syntax).

N o t e 	 You can write feedback functions either directly in terms of an FSR’s bits, like 
L1L2 + L3L4, or using the equivalent polynomial notation 1 + XX 2 + X3 X4. The 
direct notation is easier to grasp, but the polynomial notation better serves the math-
ematical analysis of an FSR’s properties. We’ll now stick to the direct notation unless 
we care about the mathematical properties.

Filtered LFSRs are stronger than plain LFSRs because their nonlinear 
function thwarts straightforward attacks. Still, more complex attacks such 
as the following will break the system:

•	 Algebraic attacks will solve the nonlinear equation systems deduced 
from the output bits, where unknowns in the equations are bits from 
the LFSR state.

•	 Cube attacks will compute derivatives of the nonlinear equations in 
order to reduce the degree of the system down to one and then solve 
it efficiently like a linear system.

•	 Fast correlation attacks will exploit filtering functions that, despite their 
nonlinearity, tend to behave like linear functions.

The lesson here, as we’ve seen in previous examples, is that Band-Aids 
don’t fix bullet holes. Patching a broken algorithm with a slightly stronger 
layer won’t make the whole thing secure. The problem has to be fixed at 
the core.

L1L2L3L4

g

Figure 5-7: A filtered LFSR
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Nonlinear FSRs

Nonlinear FSRs (NFSRs) are like LFSRs but with a nonlinear feedback 
function instead of a linear one. That is, instead of just bitwise XORs, the 
feedback function can include bitwise AND and OR operations—a feature 
with both pros and cons.

One benefit of the addition of nonlinear feedback functions is that they 
make NFSRs cryptographically stronger than LFSRs because the output 
bits depend on the initial secret state in a complex fashion, according to 
equations of exponential size. The LFSRs’ linear function keeps the rela-
tions simple, with at most n terms (N1, N2, . . . , Nn, if the Nis are the NFSR’s 
state bits). For example, a 4-bit NFSR with an initial secret state (N1, N2, N3, 
N4) and a feedback function (N1 + N2 + N1N2 + N3N4) will produce a first 
output bit equal to the following:

N N N N N N1 2 1 2 3 4+ + +

The second iteration replaces the N1 value with that new bit. Expressing 
the second output bit in terms of the initial state, we get the following 
equation:

N N N N N N N N N N N N N N N N

N N N N N
1 2 3 4 1 2 1 1 2 3 4 1 2 1 2 3

1 3 4 1 2

+ + + + + + + + +

= + +
( ) ( )

NN N N N N N2 3 3 4 1 2+ + +

This new equation has algebraic degree 3 (the highest number of bits 
multiplied together, here in N1N3N4) rather than degree 2 of the feedback 
function, and it has six terms instead of four. As a result, iterating the non-
linear function quickly yields unmanageable equations because the size 
of the output grows exponentially. Although you’ll never compute those 
equations when running the NFSR, an attacker would have to solve them in 
order to break the system.

One downside to NFSRs is that there’s no efficient way to determine 
an NFSR’s period, or simply to know whether its period is maximal. For an 
NFSR of n bits, you’d need to run close to 2n trials to verify that its period is 
maximal. This calculation is impossible for large NFSRs of 80 bits or more.

Fortunately, there’s a trick to using an NFSR without worrying about 
short periods: you can combine LFSRs and NFSRs to get both a guaranteed 
maximal period and the cryptographic strength—and that’s exactly how 
Grain-128a works.

Grain-128a
Remember the AES competition discussed in Chapter 4, in the context of 
the AES block cipher? The stream cipher Grain is the offspring of a simi-
lar project called the eSTREAM competition. This competition closed in 
2008 with a shortlist of recommended stream ciphers, which included four 
hardware-oriented ciphers and four software-oriented ones. Grain is one 
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of these hardware ciphers, and Grain-128a is an upgraded version from 
the original authors of Grain. Figure 5-8 shows the action mechanism of 
Grain-128a.

NFSR LFSR

g f

h

Figure 5-8: The mechanism of Grain-128a, with a  
128-bit NFSR and a 128-bit LFSR

As you can see in Figure 5-8, Grain-128a is about as simple as a stream 
cipher can be, combining a 128-bit LFSR, a 128-bit NFSR, and a filter func-
tion, h. The LFSR has a maximal period of 2128 – 1, which ensures that the 
period of the whole system is at least 2128 – 1 to protect against potential 
short cycles in the NFSR. At the same time, the NFSR and the nonlinear 
filter function h add cryptographic strength.

Grain-128a takes a 128-bit key and a 96-bit nonce. It copies the 128 key 
bits into the NFSR’s 128 bits and copies the 96 nonce bits into the first 96 
LFSR bits, filling the 32 bits left with ones and a single zero bit at the end. 
The initialization phase updates the whole system 256 times before return-
ing the first keystream bit. During initialization, the bit returned by the h 
function is thus not output as a keystream, but instead goes into the LFSR 
to ensure that its subsequent state depends on both the key and the nonce.

Grain-128a’s LFSR feedback function is

f L L L L L L L( ) = + + + + +
      32 47 58 90 121 128

where L1, L2, . . . , L128 are the bits of the LFSR. This feedback function takes 
only 6 bits from the 128-bit LFSR, but that’s enough to get a primitive poly-
nomial that guarantees a maximal period. The small number of bits mini-
mizes the cost of a hardware implementation.

Here is the feedback polynomial of Grain-128a’s NFSR (N1, . . . , N128):

g N N N N N N N N N N N N N N( ) = + + + + + + + +

+
32 37 72 102 128 44 60 61 125 63 67 69 101

 NN N N N N N N N N N N N N N N80 88 110 111 115 117 46 50 58 103 104 106 33 35 36+ + + + + NN 40

This function was carefully chosen to maximize its cryptographic 
strength while minimizing its implementation cost. It has an algebraic 
degree of 4 because its term with the most variables has four variables 
(namely, N33N35N36N40). Moreover, g can’t be approximated by a linear 
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function because it is highly nonlinear. Also, in addition to g, Grain-128a 
XORs the bit coming out from the LFSRs to feed the result back as the 
NFSR’s new, rightmost bit.

The filter function h is another nonlinear function; it takes 9 bits 
from the NFSR and 7 bits from the LFSR and combines them in a way  
that ensures good cryptographic properties.

As I write this, there is no known attack on Grain-128a, and I’m 
confident that it will remain secure. Grain-128a is used in some low-end 
embedded systems that need a compact and fast stream cipher—typically 
industrial proprietary systems—which is why Grain-128a is little known in 
the open-source software community.

A5/1
A5/1 is a stream cipher that was used to encrypt voice communications 
in the 2G mobile standard. The A5/1 standard was created in 1987 but 
only published in the late 1990s after it was reverse engineered. Attacks 
appeared in the early 2000s, and A5/1 was eventually broken in a way that 
allows actual (rather than theoretical) decryption of encrypted communi-
cations. Let’s see why and how.

A5/1’s Mechanism

A5/1 relies on three LFSRs and uses a trick that looks clever at first glance 
but actually fails to be secure (see Figure 5-9).

LFSR 1 (19 bits)

f1

LFSR 2 (22 bits)

f2

LFSR 3 (23 bits)

f3

Figure 5-9: The A5/1 cipher

As you can see in Figure 5-9, A5/1 uses LFSRs of 19, 22, and 23 bits, 
with the polynomials for each as follows:
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1

1

1

14 17 18 19

21 22

8 21 22 23

+ + + +
+ +
+ + + +

X X X X

X X

X X X X

How could this be seen as secure with only LFSRs and no NFSR? The 
trick lies in A5/1’s update mechanism. Instead of updating all three LFSRs 
at each clock cycle, the designers of A5/1 added a clocking rule that does 
the following:

1.	 Checks the value of the ninth bit of LFSR 1, the 11th bit of LFSR 2, and 
the 11th bit of LFSR 3, called the clocking bits. Of those three bits, either 
all have the same value (1 or 0) or exactly two have the same value.

2.	 Clocks the registers whose clocking bits are equal to the majority value, 
0 or 1. Either two or three LFSRs are clocked at each update.

Without this simple rule, A5/1 would provide no security whatsoever, 
and bypassing this rule is enough to break the cipher. However, that is eas-
ier said than done, as you’ll see.

N o t e 	 In A5/1’s irregular clocking rule, each register is clocked with a probability of 3/4 at 
any update. Namely, the probability that at least one other register has the same bit 
value is 1 – (1/2)2, where (1/2)2 is the chance that both of the other two registers have 
a different bit value.

2G communications use A5/1 with a key of 64 bits and a 22-bit nonce, 
which is changed for every new data frame. Attacks on A5/1 recover the 
64-bit initial state of the system (the 19 + 22 + 23 LFSR initial value), thus 
in turn revealing the nonce (if it was not already known) and the key, by 
unwinding the initialization mechanism. The attacks are referred to as 
known-plaintext attacks (KPAs) because part of the encrypted data is known, 
which allows attackers to determine the corresponding keystream parts by 
XORing the ciphertext with the known plaintext chunks.

There are two main types of attacks on A5/1:

Subtle attacks  Exploit the internal linearity of A5/1 and its simple 
irregular clocking system

Brutal attacks  Only exploit the short key of A5/1 and the invertibility 
of the frame number injection

Let’s see how these attacks work.

Subtle Attacks

In a subtle attack called a guess-and-determine attack, an attacker guesses cer-
tain secret values of the state in order to determine others. In cryptanalysis, 
“guessing” means brute-forcing: for each possible value of LFSRs 1 and 2, 
and all possible values of LFSR 3’s clocking bit during the first 11 clocks, the 
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attack reconstructs LFSR 3’s bits by solving equations that depend on the 
bits guessed. When the guess is correct, the attacker gets the right value for 
LFSR 3.

The attack’s pseudocode looks like this:

For all 219 values of LFSR 1's initial state
    For all 222 values of LFSR 2's initial state
        For all 211 values of LFSR 3's clocking bit during the first 11 clocks
            Reconstruct LFSR 3's initial state
            Test whether guess is correct; if yes, return; else continue

How efficient is this attack compared to the 264-trial brute-force search 
discussed in Chapter 3? This attack makes at most 219 × 222 × 211 = 252 opera-
tions in the worst case, when the algorithm only succeeds at the very last 
test. That’s 212 (or about 4000) times faster than in the brute-force search, 
assuming that the last two operations in the above pseudocode require 
about as much computation as testing a 64-bit key in a brute-force search. 
But is this assumption correct?

Recall our discussion of the full attack cost in Chapter 3. When evaluat-
ing the cost of an attack, we need to consider not only the amount of com-
putation required to perform the attack but also parallelism and memory 
consumption. Neither are issues here: as with any brute-force attack, the 
guess-and-determine attack is embarrassingly parallel (or N times faster 
when run on N cores) and doesn’t need more memory than just running 
the cipher itself.

Our 252 attack cost estimate is inaccurate for another reason. In fact, 
each of the 252 operations (testing a key candidate) takes about four times as 
many clock cycles as does testing a key in a brute-force attack. The upshot is 
that the real cost of this particular attack is closer to 4 × 252 = 254 operations, 
when compared to a brute-force attack.

The guess-and-determine attack on A5/1 can decrypt encrypted mobile 
communications, but it takes a couple of hours to recover the key when run 
on a cluster of dedicated hardware devices. In other words, it’s nowhere 
near real-time decryption. For that, we have another type of attack.

Brutal Attacks

The time-memory trade-off (TMTO) attack is the brutal attack on A5/1. 
This attack doesn’t care about A5/1’s internals; it cares only that its state is 
64 bits long. The TMTO attack sees A5/1 as a black box that takes in a 64-bit 
value (the state) and spits out a 64-bit value (the first 64 keystream bits).

The idea behind the attack is to reduce the cost of a brute-force search 
in exchange for using lots of memory. The simplest type of TMTO is the 
codebook attack. In a codebook attack, you precompute a table of 264 ele-
ments containing a combination of key and value pairs (key:value), and 
store the output value for each of the 264 possible keys. To use this precom-
puted table for the attack, you simply collect the output of an A5/1 instance 
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and then look up in the table which key corresponds to that output. The 
attack itself is fast—taking only the amount of time necessary to look up 
a value in memory—but the creation of the table takes 264 computations 
of A5/1. Worse, codebook attacks require an insane amount of memory: 
264 × (64 + 64) bits, which is 268 bytes or 256 exabytes. That’s dozens of data 
centers, so we can forget about it.

TMTO attacks reduce the memory required by a codebook attack at the 
price of increased computation during the online phase of the attack; the 
smaller the table, the more computations required to crack a key. Regardless, 
it will still cost about 264 operations to prepare the table, but that needs to be 
done only once.

In 2010, researchers took about two months to generate two tera-
bytes’ worth of tables, using graphics processing units (GPUs) and run-
ning 100000 instances of A5/1 in parallel. With the help of such large 
tables, calls encrypted with A5/1 could be decrypted almost in real time. 
Telecommunication operators have implemented workarounds to mitigate 
the attack, but a real solution came with the later 3G and 4G mobile tele-
phony standards, which ditched A5/1 altogether.

Software-Oriented Stream Ciphers
Software stream ciphers work with bytes or 32- or 64-bit words instead of 
individual bits, which proves to be more efficient on modern CPUs where 
instructions can perform arithmetic operations on a word in the same 
amount of time as on a bit. Software stream ciphers are therefore better 
suited than hardware ciphers for servers or browsers running on personal 
computers, where powerful general-purpose processors run the cipher as 
native software.

Today, there is considerable interest in software stream ciphers for a few 
reasons. First, because many devices embed powerful CPUs and hardware 
has become cheaper, there’s less of a need for small bit-oriented ciphers. 
For example, the two stream ciphers in the mobile communications stan-
dard 4G (the European SNOW3G and the Chinese ZUC) work with 32-bit 
words and not bits, unlike the older A5/1.

Second, stream ciphers have gained popularity in software at the expense 
of block ciphers, notably following the fiasco of the padding oracle attack 
against block ciphers in CBC mode. In addition, stream ciphers are easier to 
specify and to implement than block ciphers: instead of mixing message and 
key bits together, stream ciphers just ingest key bits as a secret. In fact, one of 
the most popular stream ciphers is actually a block cipher in disguise: AES in 
counter mode (CTR).

One software stream cipher design, used by SNOW3G and ZUC, cop-
ies hardware ciphers and their FSRs, replacing bits with bytes or words. But 
these aren’t the most interesting designs for a cryptographer. As of this writ-
ing, the two designs of most interest are RC4 and Salsa20, which are used in 
numerous systems, despite the fact that one is completely broken.
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RC4
Designed in 1987 by Ron Rivest of RSA Security, then reverse engineered 
and leaked in 1994, RC4 has long been the most widely used stream cipher. 
RC4 has been used in countless applications, most famously in the first 
Wi-Fi encryption standard Wired Equivalent Privacy (WEP) and in the 
Transport Layer Security (TLS) protocol used to establish HTTPS connec-
tions. Unfortunately, RC4 isn’t secure enough for most applications, includ-
ing WEP and TLS. To understand why, let’s see how RC4 works.

How RC4 Works

RC4 is among the simplest ciphers ever created. It doesn’t perform 
any crypto-​like operations, and it has no XORs, no multiplications, no 
S-boxes . . . nada. It simply swaps bytes. RC4’s internal state is an array, S, 
of 256 bytes, first set to S[0] = 0, S[1] = 1, S[2] = 2, . . . , S[255] = 255, and 
then initialized from an n -byte K using its key scheduling algorithm (KSA), 
which works as shown in the Python code in Listing 5-1.

j = 0
# set S to the array S[0] = 0, S[1] = 1, . . . , S[255] = 255
S = range(256)
# iterate over i from 0 to 255
for i in range(256):
    # compute the sum of v
    j = (j + S[i] + K[i % n]) % 256
    # swap S[i] and S[j]
    S[i], S[j] = S[j], S[i]

Listing 5-1: The key scheduling algorithm of RC4

Once this algorithm completes, array S still contains all the byte values 
from 0 to 255, but now in a random-looking order. For example, with the 
all-zero 128-bit key, the state S (from S[0] to S[255]) becomes this:

0, 35, 3, 43, 9, 11, 65, 229, (. . .), 233, 169, 117, 184,   31, 39

However, if I flip the first key bit and run the KSA again, I get a totally 
different, apparently random state:

32, 116, 131, 134, 138, 143, 149, (. . .), 152, 235, 111, 448, 80, 12

Given the initial state S, RC4 generates a keystream, KS, of the same 
length as the plaintext, P, in order to compute a ciphertext: C = P ⊕ KS. The 
bytes of the keystream KS are computed from S according to the Python 
code in Listing 5-2, if P is m bytes long.

i = 0
j = 0
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for b in range(m):
    i = (i + 1) % 256
    j = (j + S[i]) % 256
    S[i], S[j] = S[j], S[i]
    KS[b] = S[(S[i] + S[j]) % 256]

Listing 5-2: The keystream generation of RC4, where S is the state initialized in Listing 5-1

In Listing 5-2, each iteration of the for loop modifies up to 2 bytes of 
RC4’s internal state S : the S[i] and S[j] whose values are swapped. That is, 
if i = 0 and j = 4, and if S[0] = 56 and S[4] = 78, then the swap operation 
sets S[0] to 78 and S[4] to 56. If j equals i, then S[i] isn’t modified.

This looks too simple to be secure, yet it took 20 years for cryptanalysts 
to find exploitable flaws. Before the flaws were revealed, we only knew RC4’s 
weaknesses in specific implementations, as in the first Wi-Fi encryption 
standard, WEP.

RC4 in WEP

WEP, the first generation Wi-Fi security protocol, is now completely broken 
due to weaknesses in the protocol’s design and in RC4.

In its WEP implementation, RC4 encrypts payload data of 802.11 frames, 
the datagrams (or packets) that transport data over the wireless network. 
All payloads delivered in the same session use the same secret key of 40 or 
104 bits but have what is a supposedly unique 3-byte nonce encoded in the 
frame header (the part of the frame that encodes metadata and comes before 
the actual payload). See the problem?

The problem is that RC4 doesn’t support a nonce, at least not in its offi-
cial specification, and a stream cipher can’t be used without a nonce. The 
WEP designers addressed this limitation with a workaround: they included 
a 24-bit nonce in the wireless frame’s header and prepended it to the WEP 
key to be used as RC4’s secret key. That is, if the nonce is the bytes N[0], 
N[1], N[2] and the WEP key is K[0], K[1], K[2], K[3], K[4], the actual 
RC4 key is N[0], N[1], N[2], K[0], K[1], K[2], K[3], K[4]. The net effect 
is to have 40-bit secret keys yield 64-bit effective keys, and 104-bit keys yield 
128-bit effective keys. The result? The advertised 128-bit WEP protocol 
actually offers only 104-bit security, at best.

But here are the real problems with WEP’s nonce trick:

•	 The nonces are too small at only 24 bits. This means that if a nonce 
is chosen randomly for each new message, you’ll have to wait about 
224/2 = 212 packets, or a few megabytes’ worth of traffic, until you can 
find two packets encrypted with the same nonce, and thus the same 
keystream. Even if the nonce is a counter running from 0 to 224 – 1, 
it will take a few gigabytes’ worth of data until a rollover, when the 
repeated nonce can allow the attacker to decrypt packets. But there’s a 
bigger problem.
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•	 Combining the nonce and key in this fashion helps recover the key. 
WEP’s three non-secret nonce bytes let an attacker determine the value 
of S after three iterations of the key scheduling algorithm. Because of 
this, cryptanalysts found that the first keystream byte strongly depends 
on the first secret key byte—the fourth byte ingested by the KSA—and 
that this bias can be exploited to recover the secret key.

Exploiting those weaknesses requires access to both ciphertexts 
and the keystream; that is, known or chosen plaintexts. But that’s easy 
enough: known plaintexts occur when the Wi-Fi frames encapsulate data 
with a known header, and chosen plaintexts occur when the attacker 
injects known plaintext encrypted with the target key. The upshot is that 
the attacks work in practice, not just on paper.

Following the appearance of the first attacks on WEP in 2001, research-
ers found faster attacks that required fewer ciphertexts. Today, you can even 
find tools such as aircrack-ng that implement the entire attack, from net-
work sniffing to cryptanalysis.

WEP’s insecurity is due to both weaknesses in RC4, which takes a single 
one-use key instead of a key and nonce (as in any decent stream cipher), 
and weaknesses in the WEP design itself.

Now let’s look at the second biggest failure of RC4.

RC4 in TLS

TLS is the single most important security protocol used on the internet. 
It is best known for underlying HTTPS connections, but it’s also used to 
protect some virtual private network (VPN) connections, as well as email 
servers, mobile applications, and many others. And sadly, TLS has long 
supported RC4.

Unlike WEP, the TLS implementation doesn’t make the same blatant 
mistake of tweaking the RC4 specs in order to use a public nonce. Instead, 
TLS just feeds RC4 a unique 128-bit session key, which means it’s a bit less 
broken than WEP.

The weakness in TLS is due only to RC4 and its inexcusable flaws: statis-
tical biases, or non-randomness, which we know is a total deal breaker for a 
stream cipher. For example, the second keystream byte produced by RC4 is 
zero, with a probability of 1/128, whereas it should be 1/256 ideally. (Recall 
that a byte can take 256 values from 0 to 255; hence, a truly random byte 
is zero with a chance of 1/256.) Crazier still is the fact that most experts 
continued to trust RC4 as late as 2013, even though its statistical biases have 
been known since 2001.

RC4’s known statistical biases should have been enough to ditch the 
cipher altogether, even if we didn’t know how to exploit the biases to com-
promise actual applications. In TLS, RC4’s flaws weren’t publicly exploited 
until 2011, but the NSA allegedly managed to exploit RC4’s weaknesses to 
compromise TLS’s RC4 connections well before then.
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As it turned out, not only was RC4’s second keystream byte biased, but 
all of the first 256 bytes were biased as well. In 2011, researchers found that 
the probability that one of those bytes comes to zero equals 1/256 + c/2562, 
for some constant, c, taking values between 0.24 and 1.34. It’s not just for 
the byte zero but for other byte values as well. The amazing thing about 
RC4 is that it fails where even many noncryptographic PRNGs succeed—
namely, at producing uniformly distributed pseudorandom bytes (that is, 
where each of the 256 bytes has a chance of 1/256 of showing up).

Even the weakest attack model can be used to exploit RC4’s flawed TLS 
implementation: basically, you collect ciphertexts and look for the plaintext, 
not the key. But there’s a caveat: you’ll need many ciphertexts, encrypting 
the same plaintext several times using different secret keys. This attack model 
is sometimes called the broadcast model, because it’s akin to broadcasting the 
same message to multiple recipients.

For example, say you want to decrypt the plaintext byte P1 given many 
ciphertext bytes obtained by intercepting the different ciphertexts of the 
same message. The first four ciphertext bytes will therefore look like this:

C P KS

C P KS

C P KS

1
2

1 1
2

1
3

1 1
3

1
4

1 1
4

= ⊕

= ⊕

= ⊕

Because of RC4’s bias, keystream bytes KS1
i are more likely to be zero 

than any other byte value. Therefore, C1
i bytes are more likely to be equal to 

P1 than to any other value. In order to determine P1 given the C1
i  bytes, you 

simply count the number of occurrences of each byte value and return the 
most frequent one as P1. However, because the statistical bias is very small, 
you’ll need millions of values to get it right with any certainty.

The attack generalizes to recover more than one plaintext byte and 
to exploit more than one biased value (zero here). The algorithm just 
becomes a bit more complicated. However, this attack is hard to put into 
practice because it needs to collect many ciphertexts encrypting the same 
plaintext but using different keys. For example, the attack can’t break all 
TLS-protected connections that use RC4 because you need to trick the 
server into encrypting the same plaintext to many different recipients, or 
many times to the same recipient with different keys.

Salsa20
Salsa20 is a simple, software-oriented cipher optimized for modern CPUs that 
has been implemented in numerous protocols and libraries, along with its 
variant, ChaCha. Its designer, respected cryptographer Daniel J. Bernstein, 
submitted Salsa20 to the eSTREAM competition in 2005 and won a place in 
eSTREAM’s software portfolio. Salsa20’s simplicity  
and speed have made it popular among developers.
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Salsa20 is a counter-based stream cipher—it  
generates its keystream by repeatedly processing 
a counter incremented for each block. As you can 
see in Figure 5-10, the Salsa20 core algorithm trans-
forms a 512-bit block using a key (K), a nonce (N), 
and a counter value (Ctr). Salsa20 then adds the 
result to the original value of the block to pro-
duce a keystream block. (If the algorithm were to 
return the core’s permutation directly as an out-
put, Salsa20 would be totally insecure, because it 
could be inverted. The final addition of the ini-
tial secret state K || N || Ctr makes the transform 
key-to-keystream-block non-invertible.)

The Quarter-Round Function

Salsa20’s core permutation uses a function called quarter-round (QR) to 
transform four 32-bit words (a, b, c, and d), as shown here:

b b a d

c c b a

d d c b

a a d

= ⊕ + <<< 
= ⊕ + <<< 
= ⊕ + <<< 
= ⊕ +

( )
( )
( )

7

9

13

cc( ) <<< 18

These four lines are computed from top to bottom, meaning that the 
new value of b depends on a and d, the new value of c depends on a and on 
the new value of b (and thus d as well), and so on.

The operation <<< is wordwise left-rotation by the specified number of 
bits, which can be any value between 1 and 31 (for 32-bit words). For exam-
ple, <<< 8 rotates a word’s bits of eight positions toward the left, as shown in 
these examples:

0 01234567 8 0 23456701

0 01234567 16

0 01234

x x

x 0x45670123

x

<<< =
<<< =

5567 22 0 59 048 1<<< = x c d

Transforming Salsa20’s 512-bit State

Salsa20’s core permutation transforms a 512-bit internal state viewed as a 
4 × 4 array of 32-bit words. Figure 5-11 shows the initial state, using a key 
of eight words (256 bits), a nonce of two words (64 bits), a counter of two 
words (64 bits), and four fixed constant words (128 bits) that are identical 
for each encryption/decryption and all blocks.

Salsa20
core

P

K || N || Ctr

C

Figure 5-10: Salsa20’s 
encryption scheme for a 
512-bit plaintext block
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To transform the initial 512-bit state, Salsa20 first applies the QR trans-
form to all four columns independently (known as the column-round) and 
then to all four rows independently (the row-round), as shown in Figure 5-12. 
The sequence column-round/row-round is called a double-round. Salsa20 
repeats 10 double-rounds, for 20 rounds in total, thus the 20 in Salsa20.

The column-round transforms the four columns like so:

QR

QR

QR

x x x x

x x x x

x x x x

0 4 8 12

1 5 9 13

2 6 10 14

, , , 

, , , 

, , , 

( )
( )
( )

QQR x x x x3 7 11 15, , , ( )

The row-round transforms the rows by doing the following:

QR

QR

QR

QR

x x x x

x x x x

x x x x

0 1 2 3

5 6 7 4

10 11 8 9

, , , 

, , , 

, , , 

( )
( )
( )
xx x x x15 12 13 14, , , ( )

Notice that in a column-round, each QR takes xi arguments ordered 
from the top to the bottom line, whereas a row-round’s QR takes as a first 
argument the words on the diagonal (as shown in the array on the right in 
Figure 5-12) rather than words from the first column.

Evaluating Salsa20

Listing 5-3 shows Salsa20’s initial states for the first and second blocks when 
initialized with an all-zero key (00 bytes) and an all-one nonce (ff bytes). 
These two states differ in only one bit, in the counter, as shown in bold: spe-
cifically, 0 for the first block and 1 for the second.

Figure 5-11: The initializa-
tion of Salsa20’s state

c0

k3

t0

k5

k0

c1

t1

k6

k1

v0

c2

k7

k2

v1

k4

c3

x0

x4

x8

x12

x1

x5

x9

x13

x2

x6

x10

x14

x3

x7

x11

x15

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

Figure 5-12: Columns and rows transformed by Salsa20’s 
quarter-round (QR) function
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61707865 00000000 00000000 00000000      61707865 00000000 00000000 00000000
00000000 3320646e ffffffff ffffffff      00000000 3320646e ffffffff ffffffff
00000000 00000000 79622d32 00000000      00000001 00000000 79622d32 00000000
00000000 00000000 00000000 6b206574      00000000 00000000 00000000 6b206574

Listing 5-3: Salsa20’s initial states for the first two blocks with an all-zero key and an all-
one nonce

Yet, despite only a one-bit difference, the respective internal states after 
10 double-rounds are totally different from each other, as Listing 5-4 shows.

e98680bc f730ba7a 38663ce0 5f376d93      1ba4d492 c14270c3 9fb05306 ff808c64
85683b75 a56ca873 26501592 64144b6d      b49a4100 f5d8fbbd 614234a0 e20663d1
6dcb46fd 58178f93 8cf54cfe cfdc27d7      12e1e116 6a61bc8f 86f01bcb 2efead4a
68bbe09e 17b403a1 38aa1f27 54323fe0      77775a13 d17b99d5 eb773f5b 2c3a5e7d

Listing 5-4: The states from Listing 5-3 after 10 Salsa20 double-rounds

But remember, even though word values in the keystream block may 
look random, we’ve seen that it’s far from a guarantee of security. RC4’s 
output looks random, but it has blatant biases. Fortunately, Salsa20 is much 
more secure than RC4 and doesn’t have statistical biases.

Differential Cryptanalysis

To demonstrate why Salsa20 is more secure than RC4, let’s have a look at 
the basics of differential cryptanalysis, the study of the differences between 
states rather than their actual values. For example, the two initial states in 
Figure 5-13 differ by one bit in the counter, or by the word x8 in the Salsa20 
state array. The bitwise difference between these two states is thus shown in 
this array:

00000000 00000000 00000000 00000000

00000000 00000000 000000000 00000000

 00000000 00000000 00000000

00000000 0

00000001

00000000 00000000 00000000

The difference between the two states is actually the XOR of these states. 
The 1 bit shown in bold corresponds to a 1-bit difference between the two 
states. In the XOR of the two states, any nonzero bits indicate differences.

To see how fast changes propagate in the initial state as a result of 
Salsa20’s core algorithm, let’s look at the difference between two states 
throughout the rounds iteration. After one round, the difference propa-
gates across the first column to two of the three other words in that 
column:

80040003

00000000

 00000000 00000000 00000000

 00000000 000000000 00000000

 00000000 00000000 00000000

 0

00000001

00002000 00000000 00000000 00000000



Stream Ciphers   99

After two rounds, differences further propagate across the rows that 
already include a difference, which is all but the second row. At this point 
the differences between the states are rather sparse; not many bits have 
changed within a word as shown here:

9ed7eb7f 060002c0 18028b0c 57ca83c0

00000000 00000000 000000000 00000000

 0000000000000001 0000e000 801c0006

00002000 000400000 04000008 0060f300

After three rounds, the differences between the states become more 
dense, though the many zero nibbles indicate that many bit positions are 
still not affected by the initial difference:

3ab3c25d 9f40a5c9 10070e30 07bd03c0

db1ee2ce 43ee9401 21a7022c3 48fd800c

403c1e72 00034003 4dc843be 700b8857

5625b75b 099c00e00 06000348 23f712d4

After four rounds, differences look random to a human observer, and 
they are also almost random statistically as well, as shown here:

d93bed6d a267bf47 760c2f9f 4a41d54b

0e03d792 7340e010 119e6aa00 e90186af

7fa9617e b6aca0d7 4f6e9a4a 564b34fd

98be796d 644908d32 4897f7ca a684a2df

So after only four rounds, a single difference propagates to most of the 
bits in the 512-bit state. In cryptography, this is called full diffusion.

We’ve seen that differences propagate quickly throughout Salsa20 
rounds. But not only do differences propagate across all states, they also 
do so according to complex equations that make future differences hard to 
predict because highly nonlinear relations drive the state’s evolution, thanks 
to the mix of XOR, addition, and rotation. If only XORs were used, we’d 
still have many differences propagating, but the process would be linear 
and therefore insecure.

Attacking Salsa20/8

Salsa20 makes 20 rounds by default, but it’s sometimes used with only 
12 rounds, in a version called Salsa20/12, to make it faster. Although 
Salsa20/12 uses eight fewer rounds than Salsa20, it’s still significantly 
stronger than the weaker Salsa20/8, another version with eight rounds, 
which is more rarely used.

Breaking Salsa20 should ideally take 2256 operations, thanks to its use 
of a 256-bit key. If the key can be recovered by performing any fewer than 
2256 operations, the cipher is in theory broken. That’s exactly the case with 
Salsa20/8.
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The attack on Salsa20/8 (published in the 2008 paper New Features 
of Latin Dances: Analysis of Salsa, ChaCha, and Rumba, of which I’m a 
co-author, and for which we won a cryptanalysis prize from Daniel J. 
Bernstein) exploits a statistical bias in Salsa’s core algorithm after four 
rounds to recover the key of eight-round Salsa20. In reality, this is mostly 
a theoretical attack: we estimate its complexity at 2251 operations of the 
core function—impossible, but less so than breaking the expected 2256 
complexity.

The attack exploits not only a bias over the first four rounds of Salsa20/8, 
but also a property of the last four rounds: knowing the nonce, N, and the 
counter, Ctr (refer back to Figure 5-10), the only value needed to invert the 
computation from the keystream back to the initial state is the key, K. But 
as shown in Figure 5-13, if you only know some part of K, you can partially 
invert the computation up until the fourth round and observe some bits of 
that intermediate state—including the biased bit! You’ll only observe the 
bias if you have the correct guess of the partial key; hence, the bias serves as 
an indicator that you’ve got the correct key.

4 rounds
Bias here

K || N || Ctr

S

4 rounds

Guess
part of K

4 inverse
rounds

Bias here?
If yes, the guess was correct

S

Figure 5-13: The principle of the attack on Salsa20/8

In the actual attack on Salsa20/8, in order to determine the correct 
guess, we need to guess 220 bits of the key, and we need 231 pairs of key-
stream blocks, all with the same specific difference in the nonce. Once 
we’ve singled out the correct 220 bits, we simply need to brute-force 36 bits. 
The brute-forcing takes 236 operations, a computation that is dwarfed by the 
unrealistic 2220 × 231 = 2251 trials needed to find the 220 bits to complete the 
first part of the attack.

How Things Can Go Wrong
Alas, many things can go wrong with stream ciphers, from brittle, insecure 
designs to strong algorithms incorrectly implemented. I’ll explore each cat-
egory of potential problems in the following sections.
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Nonce Reuse
The most common failure seen with stream ciphers is an amateur mistake: 
it occurs when a nonce is reused more than once with the same key. This 
produces identical keystreams, allowing you to break the encryption by 
XORing two ciphertexts together. The keystream then vanishes, and you’re 
left with the XOR of the two plaintexts.

For example, older versions of Microsoft Word and Excel used a unique 
nonce for each document, but the nonce wasn’t changed once the docu-
ment was modified. As a result, the clear and encrypted text of an older 
version of a document could be used to decrypt later encrypted versions. If 
even Microsoft made this kind of blunder, you can imagine how large the 
problem might be.

Certain stream ciphers designed in the 2010s tried to mitigate the risk 
of nonce reuse by building “misuse-resistant” constructions, or ciphers that 
remain secure even if a nonce is used twice. However, achieving this level 
of security comes with a performance penalty, as we’ll see in Chapter 8 with 
the SIV mode.

Broken RC4 Implementation
Though it’s already weak, RC4 can become even weaker if you blindly opti-
mize its implementation. For example, consider the following entry in the 
2007 Underhanded C Contest, an informal competition where program-
mers write benign-looking code that actually includes a malicious function.

Here’s how it works. The naive way to implement the line swap(S[i], S[j]) 
in RC4’s algorithm is to do the following, as expressed in this Python code:

buf = S[i]
S[i] = S[j]
S[j] = buf

This way of swapping two variables obviously works, but you need to 
create a new variable, buf. To avoid this, programmers often use the XOR-
swap trick, shown here, to swap the values of the variables x and y:

x = x ⊕ y
y = x ⊕ y
x = x ⊕ y

This trick works because the second line sets y to x ⊕ y ⊕ y = x, and 
the third line sets x to x ⊕ y ⊕ x ⊕ y ⊕ y = y. Using this trick to imple-
ment RC4 gives the implementation shown in Listing 5-5 (adapted from 
Wagner and Biondi’s program submitted to the Underhanded C Contest, 
and online at http://www.underhanded-c.org/_page_id_16.html).

# define TOBYTE(x) (x) & 255
# define SWAP(x,y) do { x^=y; y^=x; x^=y; } while (0)
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static unsigned char S[256];
static int i=0, j=0;

void init(char *passphrase) {
    int passlen = strlen(passphrase);
    for (i=0; i<256; i++)
        S[i] = i;
    for (i=0; i<256; i++) {
        j = TOBYTE(j + S[TOBYTE(i)] + passphrase[j % passlen]);
        SWAP(S[TOBYTE(i)], S[j]);
    }
    i = 0; j = 0;
}

unsigned char encrypt_one_byte(unsigned char c) {
    int k;
    i = TOBYTE(i+1);
    j = TOBYTE(j + S[i]);
    SWAP(S[i], S[j]);
    k = TOBYTE(S[i] + S[j]);
    return c ^ S[k];
}

Listing 5-5: Incorrect C implementation of RC4, due to its use of an XOR swap

Now stop reading, and try to spot the problem with the XOR swap in 
Listing 5-5.

Things will go south when i = j. Instead of leaving the state unchanged, 
the XOR swap will set S[i] to S[i] ⊕ S[i] = 0. In effect, a byte of the state will 
be set to zero each time i equals j in the key schedule or during encryption, 
ultimately leading to an all-zero state and thus to an all-zero keystream. For 
example, after 68KB of data have been processed, most of the bytes in the 
256-byte state are zero, and the output keystream looks like this:

00 00 00 00 00 00 00 53 53 00 00 00 00 00 00 00 00 00 00 000 13 13 00 5c 00 a5 00 00 . . .

The lesson here is to refrain from over-optimizing your crypto 
implementations. Clarity and confidence always trump performance 
in cryptography.

Weak Ciphers Baked Into Hardware
When a cryptosystem fails to be secure, some systems can quickly respond 
by silently updating the affected software remotely (as with some pay-TV 
systems) or by releasing a new version and prompting the users to upgrade 
(as with mobile applications). Some other systems are not so lucky and need 
to stick to the compromised cryptosystem for a while before upgrading to a 
secure version, as is the case with certain satellite phones.

In the early 2000s, US and European telecommunication standardiza-
tion institutes (TIA and ETSI) jointly developed two standards for satellite 
phone (satphone) communications. Satphones are like mobile phones, 
except that their signal goes through satellites rather than terrestrial 
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stations. The advantage is that you can use them pretty much everywhere 
in the world. Their downsides are the price, quality, latency, and, as it turns 
out, security.

GMR-1 and GMR-2 are the two satphone standards adopted by most 
commercial vendors, such as Thuraya and Inmarsat. Both include stream 
ciphers to encrypt voice communications. GMR-1’s cipher is hardware ori-
ented, with a combination of four LFSRs, similar to A5/2, the deliberately 
insecure cipher in the 2G mobile standard aimed at non-Western coun-
tries. GMR-2’s cipher is software oriented, with an 8-byte state and the use 
of S-boxes. Both stream ciphers are insecure, and will only protect users 
against amateurs, not against state agencies.

This story should remind us that stream ciphers used to be easier to 
break than block ciphers and that they’re easier to sabotage. Why? Well, if 
you design a weak stream cipher on purpose, when the flaw is found, you 
can still blame it on the weakness of stream ciphers and deny any malicious 
intent.

Further Reading
To learn more about stream ciphers, begin with the archives of the 
eSTREAM competition at http://www.ecrypt.eu.org/stream/project.html, 
where you’ll find hundreds of papers on stream ciphers, including details 
of more than 30 candidates and many attacks. Some of the most interesting 
attacks are the correlation attacks, algebraic attacks, and cube attacks. See 
in particular the work of Courtois and Meier for the first two attack types 
and that of Dinur and Shamir for cube attacks.

For more information on RC4, see the work of Paterson and his team at 
http://www.isg.rhul.ac.uk/tls/ on the security of RC4 as used in TLS and WPA. 
Also see Spritz, the RC4-like cipher created in 2014 by Rivest, who designed 
RC4 in the 1980s.

Salsa20’s legacy deserves your attention, too. The stream cipher ChaCha 
is similar to Salsa20, but with a slightly different core permutation that was 
later used in the hash function BLAKE, as you’ll see in Chapter 6. These 
algorithms all leverage Salsa20’s software implementation techniques using 
parallelized instructions, as discussed at https://cr.yp.to/snuffle.html.





6
H a s h  F u n c t i o n s

Hash functions—such as MD5, SHA-1, 
SHA-256, SHA-3, and BLAKE2—com-

prise the cryptographer’s Swiss Army 
Knife: they are used in digital signatures, 

public-key encryption, integrity verification, message 
authentication, password protection, key agreement 
protocols, and many other cryptographic protocols. 
Whether you’re encrypting an email, sending a message on your mobile 
phone, connecting to an HTTPS website, or connecting to a remote machine 
through IPSec or SSH, there’s a hash function somewhere under the hood.

Hash functions are by far the most versatile and ubiquitous of all crypto 
algorithms. There are many examples of their use in the real world: cloud 
storage systems use them to identify identical files and to detect modified 
files; the Git revision control system uses them to identify files in a reposi-
tory; host-based intrusion detection systems (HIDS) use them to detect modi-
fied files; network-based intrusion detection systems (NIDS) use hashes to 
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detect known-malicious data going through a network; forensic analysts use 
hash values to prove that digital artifacts have not been modified; Bitcoin 
uses a hash function in its proof-of-work systems—and there are many more.

Unlike stream ciphers, which 
create a long output from a short one, 
hash functions take a long input and 
produce a short output, called a hash 
value or digest (see Figure 6-1).

This chapter revolves around 
two main topics. First, security: what 
does it mean for a hash function to 
be secure? To that end, I introduce two essential notions—namely, collision 
resistance and preimage resistance. The second big topic revolves around 
hash functions construction. We look at the high-level techniques used by 
modern hash functions and then review the internals of the most common 
hash functions: SHA-1, SHA-2, SHA-3, and BLAKE2. Lastly, we see how 
secure hash functions can behave insecurely if misused.

N o t e 	 Do not confuse cryptographic hash functions with noncryptographic ones. 
Noncryptographic hash functions are used in data structures such as hash tables 
or to detect accidental errors, and they provide no security whatsoever. For example, 
cyclic redundancy checks (CRCs) are noncryptographic hashes used to detect acciden-
tal modifications of a file.

Secure Hash Functions
The notion of security for hash functions is different from what we’ve seen 
thus far. Whereas ciphers protect data confidentiality in an effort to guar-
antee that data sent in the clear can’t be read, hash functions protect data 
integrity in an effort to guarantee that data—whether sent in the clear or 
encrypted—hasn’t been modified. If a hash function is secure, two distinct 
pieces of data should always have different hashes. A file’s hash can thus 
serve as its identifier.

Consider the most common applica-
tion of a hash function: digital signatures, 
or just signatures. When digital signatures 
are used, applications process the hash of 
the message to be signed rather than the 
message itself, as shown in Figure 6-2. The 
hash acts as an identifier for the message. 
If even a single bit is changed in the mes-
sage, the hash of the message will be totally different. The hash function 
thus helps ensure that the message has not been modified. Signing a mes-
sage’s hash is as secure as signing the message itself, and signing a short 
hash of, say, 256 bits is much faster than signing a message that may be very 
large. In fact, most signature algorithms can only work on short inputs such 
as hash values.

M Hash H

Any length Short, fixed length:
usually 256 or 512 bits

Figure 6-1: A hash function’s input and 
output

M Hash Sign S

SK

Figure 6-2: A hash function in a 
digital signature scheme. The hash 
acts as a proxy for the message.
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Unpredictability Again
All of the cryptographic strength of hash functions stems from the unpre-
dictability of their outputs. Take the 256-bit hexadecimal values shown 
next; these hashes are computed using the NIST standard hash function 
SHA-256 with the ASCII letters a, b, and c as inputs. As you can see, though 
the values a, b, and c differ by only one or two bits (a is the bit sequence 
01100001, b is 01100010, and c is 01100011), their hash values are completely 
different.

SHA-256 "a"  = 87428fc522803d31065e7bce3cf03fe475096631e5e( ) 007bbd7a0fde60c4cf25c7

SHA-256 "b"  = a63d8014dba891345b301( ) 774df2b2a57efbb65b4f9f09b98f245d1b3192277ece

SHA-256 "c"  =( )   edeaaff3f1774ad2888673770c6d64097e391bc362d7d6fb34982ddf00efd18cb

Given only these three hashes, it would be impossible to predict the value 
of the SHA-256 hash of d or any of its bits. Why? Because hash values of a 
secure hash function are unpredictable. A secure hash function should be 
like a black box that returns a random string each time it receives an input.

The general, theoretical definition of a secure hash function is that it 
behaves like a truly random function (sometimes called a random oracle). 
Specifically, a secure hash function shouldn’t have any property or pattern 
that a random function wouldn’t have. This definition is helpful for theo-
reticians, but in practice we need more specific notions: namely, preimage 
resistance and collision resistance.

Preimage Resistance
A preimage of a given hash value, H, is any message, M, such that 
Hash(M) = H. Preimage resistance describes the security guarantee 
that given a random hash value, an attacker will never find a preimage 
of that hash value. Indeed, hash functions are sometimes called one-way 
functions because you can go from the message to its hash, but not the 
other way.

First, note that a hash function can’t be inverted, even given unlimited 
computing power. For example, suppose that I hash some message using 
the SHA-256 hash function and get this 256-bit hash value:

f67a58184cef99d6dfc3045f08645e844f2837ee4bfcc6c949c9f76743667adfd

Even given unlimited computing power, you would never be able to 
determine the message that I picked to produce this particular hash, since 
there are many messages hashing to the same value. You would therefore 
find some messages that produce this hash value (possibly including the one 
I picked), but would be unable to determine the message that I used.

For example, there are 2256 possible values of a 256-bit hash (a typical 
length with hash functions used in practice), but there are many more 
values of, say, 1024-bit messages (namely, 21024 possible values). Therefore, 
it follows that, on average, each possible 256-bit hash value will have 
21024 / 2256 = 21024 – 256 = 2768 preimages of 1024 bits each.
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In practice, we must be sure that it is practically impossible to find any 
message that maps to a given hash value, not just the message that was used, 
which is what preimage resistance actually stands for. Specifically, we speak 
of first-preimage and second-preimage resistance. First-preimage resistance (or 
just preimage resistance) describes cases where it is practically impossible to 
find a message that hashes to a given value. Second-preimage resistance, on the 
other hand, describes the case that when given a message, M1, it’s practi-
cally impossible to find another message, M2, that hashes to the same value 
that M1 does.

The Cost of Preimages

Given a hash function and a hash value, you can search for first preimages 
by trying different messages until one hits the target hash. You would do 
this using an algorithm similar to find-preimage() in Listing 6-1.

find-preimage(H) {
    repeat {
        M = random_message()
        if Hash(M) == H then return M
     }
}

Listing 6-1: The optimal preimage search algorithm for a secure hash function

In Listing 6-1, random_message() generates a random message (say, a 
random 1024-bit value). Obviously, find-preimage() will never complete if 
the hash’s bit length, n, is large enough, because it will take on average 2n 
attempts before finding a preimage. That’s a hopeless situation when work-
ing with n = 256, as in modern hashes like SHA-256 and BLAKE2.

From Preimages to Second Preimages

I claim that if you can find first preimages, you can find second preimages as 
well (for the same hash function). As proof, if the algorithm find-preimage() 
returns a preimage of a given hash value, you can use the algorithm in 
Listing 6-2 to find a second preimage of some message, M.

find-second-preimage(M) {
    H = Hash(M)
    return find-preimage(H)
}

Listing 6-2: How to find second preimages if you can find first preimages

That is, you’ll find the second preimage by seeing it as a preimage 
problem and applying the preimage attack. It follows that any second-
preimage resistant hash function is also preimage resistant. (Were it not, 
it wouldn’t be second preimage resistant either, per the preceding solve-
second-preimage algorithm.) In other words, the best attack we can use to 
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find second preimages is almost identical to the best attack we can use  
to find first preimages (unless the hash function has some defect that 
allows for more efficient attacks). Also note that a preimage search attack 
is essentially the same as a key recovery attack on a block cipher or stream 
cipher—namely, a brute-force search for a single magic value.

Collision Resistance
Whatever hash function you choose to use, collisions will inevitably exist 
due to the pigeonhole principle, which states that if you have m holes and n 
pigeons to put into those holes, and if n is greater than m, at least one hole 
must contain more than one pigeon.

N o t e 	 This can be generalized to other items and containers as well. For example, any 
27-word sequence in the US Constitution includes at least two words that start with 
the same letter. In the world of hash functions, holes are the hash values, and pigeons 
are the messages. Because we know that there are many more possible messages than 
hash values, collisions must exist.

However, despite the inevitable, collisions should be as hard to find as 
the original message in order for a hash function to be considered collision 
resistant—in other words, attackers shouldn’t be able to find two distinct 
messages that hash to the same value.

The notion of collision resistance is related to the notion of second-
preimage resistance: if you can find second preimages for a hash function, 
you can also find collisions, as shown in Listing 6-3.

solve-collision() {
    M = random_message()
    return (M, solve-second-preimage(M))
}

Listing 6-3: The naive collision search algorithm

That is, any collision-resistant hash is also second preimage resistant. 
If this were not the case, there would be an efficient solve-second-preimage 
algorithm that could be used to break collision resistance.

Finding Collisions
It’s faster to find collisions than it is to find preimages, on the order of 
about 2n/2 operations instead of 2n, thanks to the birthday attack, whose key 
idea is the following: given N messages and as many hash values, you can 
produce a total of N × (N – 1) / 2 potential collisions by considering each 
pair of two hash values (a number of the same order of magnitude as N 2). 
It’s called birthday attack because it’s usually illustrated using the so-called 
birthday paradox, or the fact that a group of only 23 persons will include two 
persons having the same birth date with probability 1/2.
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N o t e 	 N × (N – 1) / 2 is the count of pairs of two distinct messages, where we divide by 2 
because we view (M1, M2) and (M2, M1) as a same pair. In other words, we don’t 
care about the ordering.

For the sake of comparison, in the case of a preimage search, N mes-
sages only get you N candidate preimages, whereas the same N messages 
give approximately N 2 potential collisions, as just discussed. With N 2 instead 
of N, we say that there are quadratically more chances to find a solution. The 
complexity of the search is in turn quadratically lower: in order to find 
a collision, you’ll need to use the square root of 2n messages; that is, 2n/2 
instead of 2n.

The Naive Birthday Attack

Here’s the simplest way to carry out the birthday attack in order to find 
collisions:

1.	 Compute 2n/2 hashes of 2n/2 arbitrarily chosen messages and store all 
the message/hash pairs in a list.

2.	 Sort the list with respect to the hash value to move any identical hash 
values next to each other.

3.	 Search the sorted list to find two consecutive entries with the same 
hash value.

Unfortunately, this method requires a lot of memory (enough to store 
2n/2 message/hash pairs), and sorting lots of elements slows down the search, 
requiring about n2n basic operations on average using even the quicksort 
algorithm.

Low-Memory Collision Search: The Rho Method

The Rho method is an algorithm for finding collisions that, unlike the naive 
birthday attack, requires only a small amount of memory. It works like this:

1.	 Given a hash function with n-bit hash values, pick some random hash 
value (H1), and define H1 = H ′1. 

2.	 Compute H2 = Hash(H1), and H ′2 = Hash(Hash(H ′1)); that is, in the 
first case we apply the hash function once, while in the second case we 
apply it twice.

3.	 Iterate the process and compute Hi + 1 = Hash(Hi), H ′i + 1 
= Hash(Hash(H ′i)), until you reach i such that Hi + 1 = H ′i + 1. 

Figure 6-3 will help you to visualize the attack, where an arrow from, 
say, H1 to H2 means H2 = Hash(H1). Observe that the sequence of His 
eventually enters a loop, also called a cycle, which resembles the Greek 
letter rho (ρ) in shape. The cycle starts at H5 and is characterized by the 
collision Hash(H4) = Hash(H10) = H5. The key observation here is that in 
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order to find a collision, you simply need to find such a cycle. The algo-
rithm above allows an attacker to detect the position of the cycle, and 
therefore to find the collision.

H5

H8

H10

H9

H6

H7

H4

H3

H2

H1

Figure 6-3: The structure of the Rho hash function. Each  
arrow represents an evaluation of the hash function. The  
cycle beginning at H5 corresponds to a collision,  
Hash(H4) = Hash(H10) = H5.

Advanced collision-finding techniques work by first detecting the start 
of the cycle and then finding the collision, without storing numerous values 
in memory and without needing to sort a long list. The Rho method takes 
about 2n/2 operations to succeed. Indeed, Figure 6-3 has many fewer hash 
values than would an actual function with digests of 256 bits or more. 
On average, the cycle and the tail (the part that extends from H1 to H5 in 
Figure 6-3) each include about 2n/2 hash values, where n is the bit length 
of the hash values. Therefore, you’ll need at least 2n/2 + 2n/2 evaluations of 
the hash to find a collision.

Building Hash Functions
In the 1980s, cryptographers realized that the simplest way to hash a message 
is to split it into chunks and process each chunk consecutively using a simi-
lar algorithm. This strategy is called iterative hashing, and it comes in two 
main forms:

•	 Iterative hashing using a compression function that transforms an input 
to a smaller output, as shown in Figure 6-4. This technique is also known 
as the Merkle–Damgård construction (named after the cryptographers 
Ralph Merkle and Ivan Damgård).

•	 Iterative hashing using a function that transforms an input to an output 
of the same size, such that any two different inputs give two different out-
puts (that is, a permutation), as shown in Figure 6-7. Such functions are 
called sponge functions.

We’ll now discuss how these constructions actually work and how com-
pression functions look in practice.
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Compression-Based Hash Functions: The Merkle–Damgård Construction
All hash functions developed from the 1980s through the 2010s are based 
on the Merkle–Damgård (M–D) construction: MD4, MD5, SHA-1, and the 
SHA-2 family, as well as the lesser-known RIPEMD and Whirlpool hash 
functions. The M–D construction isn’t perfect, but it is simple and has 
proven to be secure enough for many applications.

N o t e 	 In MD4, MD5, and RIPEMD, the MD stands for message digest, not 
Merkle–Damgård.

To hash a message, the M–D construction splits the message into 
blocks of identical size and mixes these blocks with an internal state using 
a compression function, as shown in Figure 6-4. Here, H0 is the initial value 
(denoted IV) of the internal state, the values H1, H2, . . . are called the chain-
ing values, and the final value of the internal state is the message’s hash value.

CompressH0

M1

H1
Compress

M2

H2 . . .

Figure 6-4: The Merkle–Damgård construction using a  
compression function called Compress

The message blocks are usually 512 or 1024 bits, but they can, in prin-
ciple, be of any size. However, the block length is fixed for a given hash 
function. For example, SHA-256 works with 512-bit blocks and SHA-512 
works with 1024-bit blocks.

Padding Blocks

What happens if you want to hash a message that can’t be split into a 
sequence of complete blocks? For example, if blocks are 512 bits, then a 
520-bit message will consist of one 512-bit block plus 8 bits. In such a case, 
the M–D construction forms the last block as follows: take the chunk of 
bits left (8 in our example), append 1 bit, then append 0 bits, and finally 
append the length of the original message, encoded on a fixed number of 
bits. This padding trick guarantees that any two distinct messages will give 
a distinct sequence of blocks, and thus a distinct hash value.

For example, if you hash the 8-bit string 10101010 using SHA-256, which 
is a hash function with 512-bit message blocks, the first and only block will 
appear, in bits, as follows:

101010101000000000000000  0000000000001000( )

Here, the message bits are the first eight bits (10101010), and the pad-
ding bits are all the subsequent bits (shown in italic). The 1000 at the end 
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of the block (underlined) is the message’s length, or 8 encoded in binary. 
The padding thus produces a 512-bit message composed of a single 512-bit 
block, ready to be processed by SHA-256’s compression function.

Security Guarantees

The Merkle–Damgård construction is essentially a way to turn a secure 
compression function that takes small, fixed-length inputs into a secure 
hash function that takes inputs of arbitrary lengths. If a compression 
function is preimage and collision resistant, then a hash function built 
on it using the M–D construction will also be preimage and collision 
resistant. This is true because any successful preimage attack for the M–D 
hash could be turned into a successful preimage attack for the compression 
function, as Merkle and Damgård both demonstrated in their 1989 papers 
(see “Further Reading” on page 126). The same is true for collisions: an 
attacker can’t break the hash’s collision resistance without breaking the 
underlying compression function’s collision resistance; hence, the security 
of the latter guarantees the security of the hash.

Note that the converse argument is wrong, because a collision for the 
compression function doesn’t necessarily give a collision for the hash. A 
collision, Compress(X, M1) = Compress(Y, M2), for chaining values X and 
Y, both distinct from H0, won’t get you a collision for the hash because you 
can’t plug the collision into the iterative chain of hashes—except if one of 
the chaining values happens to be X and the other Y, but that’s unlikely to 
happen.

Finding Multicollisions

A multicollision occurs when a set of three or more messages hash to the same 
value. For example, the triplet (X, Y, Z), such that Hash(X) = Hash(Y) = 
Hash(Z) is called a 3-collision. Ideally, multicollisions should be much harder 
to find than collisions, but there is a simple trick for finding them at almost 
the same cost as that of a single collision. Here’s how it works:

1.	 Find a first collision: Compress(H0, M1.1) = Compress(H0, M1.2) = H1. 
Now you have a 2-collision, or two messages hashing to the same value.

2.	 Find a second collision with H1 as a starting chaining value: 
Compress(H1, M2.1) = Compress(H1, M2.2) = H2. Now you have 
a 4-collision, with four messages hashing to the same value H2: 
M1.1 || M2.1, M1.1 || M2.2, M1.2 || M2.1, and M1.2 || M2.2.

3.	 Repeat and find N times a collision, and you’ll have 2N N -block mes-
sages hashing to the same value, or a 2N -collision, at the cost of “only” 
about N2N hash computations.

In practice, this trick isn’t all that practical because it requires you to 
find a basic 2-collision in the first place.
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Building Compression Functions: The Davies–Meyer Construction

All compression functions used in real hash 
functions such as SHA-256 and BLAKE2 are 
based on block ciphers, because that is the 
simplest way to build a compression function. 
Figure 6-5 shows the most common of the block 
cipher–based compression functions, the Davies–
Meyer construction.

Given a message block, Mi, and the previ-
ous chaining value Hi − 1, the Davies–Meyer 
compression function uses a block cipher, E, to 
compute the new chaining value as

H M H Hi i i i    , = ⊕( )− −E 1 1

The message block Mi acts as the block cipher key, and the chaining 
value Hi – 1 acts as its plaintext block. As long as the block cipher is secure, 
the resulting compression function is secure as well as collision and preim-
age resistant. Without the XOR of the preceding chaining value (⊕ Hi – 1), 
Davies–Meyer would be insecure because you could invert it, going from 
the new chaining value to the previous one using the block cipher’s decryp-
tion function.

N o t e 	 The Davies–Meyer construction has a surprising property: you can find fixed points, 
or chaining values, that are unchanged after applying the compression function with a 
given message block. It suffices to take Hi – 1 = D(Mi, 0) as a chaining value, where D 
is the decryption function corresponding to E. The new chaining value Hi is therefore 
equal to the original Hi – 1:
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We get Hi = Hi – 1 because plugging the decryption of zero into the encryption 
function yields zero—the term E(Mi, D(Mi, 0))—leaving only the ⊕ Hi – 1 part of 
the equation in the expression of the compression function’s output. You can then 
find fixed points for the compression functions of the SHA-2 functions, as with the 
standards MD5 and SHA-1, which are also based on the Davies–Meyer construction. 
Fortunately, fixed points aren’t a security risk.

There are many block cipher–based compression functions other than 
Davies–Meyer, such as those shown in Figure 6-6, but they are less popular 
because they’re more complex or require the message block to be the same 
length as the chaining value.

E Hi

Mi

Hi � 1

Figure 6-5: The Davies–
Meyer construction. The 
dark triangle shows where 
the block cipher's key is 
input.
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E Hi

Mi

E

Mi

HiHi � 1 Hi � 1

Figure 6-6: Other secure block cipher–based compression  
function constructions

Permutation-Based Hash Functions: Sponge Functions
After decades of research, cryptographers know everything there is to know 
about block cipher–based hashing techniques. Still, shouldn’t there be a sim-
pler way to hash? Why bother with a block cipher, an algorithm that takes a 
secret key, when hash functions don’t take a secret key? Why not build hash 
functions with a fixed-key block cipher, a single permutation algorithm?

Those simpler hash functions are called sponge functions, and they 
use a single permutation instead of a compression function and a block 
cipher (see Figure 6-7). Instead of using a block cipher to mix message bits 
with the internal state, sponge functions just do an XOR operation. Sponge 
functions are not only simpler than Merkle–Damgård functions, they’re 
also more versatile. You will find them used as hash functions and also as 
deterministic random bit generators, stream ciphers, pseudorandom func-
tions (see Chapter 7), and authenticated ciphers (see Chapter 8). The most 
famous sponge function is Keccak, also known as SHA-3.

PH0 P P P P

M1 M2 M3

. . .

. . .

absorbing
phase

squeezing
phase

H

Figure 6-7: The sponge construction

A sponge function works as follows:

1.	 It XORs the first message block, M1, to H0, a predefined initial value of 
the internal state (for example, the all-zero string). Message blocks are 
all the same size and smaller than the internal state.

2.	 A permutation, P, transforms the internal state to another value of the 
same size.

3.	 It XORs block M2 and applies P again, and then repeats this for the 
message blocks M3, M4, and so on. This is called the absorbing phase.
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4.	 After injecting all the message blocks, it applies P again and extracts a 
block of bits from the state to form the hash. (If you need a longer hash, 
apply P again and extract a block.) This is called the squeezing phase.

The security of a sponge function depends on the length of its internal 
state and the length of the blocks. If message blocks are r-bit long and the 
internal state is w -bit long, then there are c = w – r bits of the internal state 
that can’t be modified by message blocks. The value of c is called a sponge’s 
capacity, and the security level guaranteed by the sponge function is c/2. For 
example, to reach 256-bit security with 64-bit message blocks, the internal 
state should be w = 2 × 256 + 64 = 576 bits. Of course, the security level also 
depends on the length, n, of the hash value. The complexity of a collision 
attack is therefore the smallest value between 2n/2 and 2c/2, while the com-
plexity of a second preimage attack is the smallest value between 2n and 2c/2.

To be secure, the permutation P should behave like a random permuta-
tion, without statistical bias and without a mathematical structure that would 
allow an attacker to predict outputs. As in compression function–based 
hashes, sponge functions also pad messages, but the padding is simpler 
because it doesn’t need to include the message’s length. The last message bit 
is simply followed by a 1 bit and as many zeroes as necessary.

The SHA Family of Hash Functions
The Secure Hash Algorithm (SHA) hash functions are standards defined 
by NIST for use by non-military federal government agencies in the US. 
They are considered worldwide standards, and only certain non-US govern-
ments opt for their own hash algorithms (such as China’s SM3, Russia’s 
Streebog, and Ukraine’s Kupyna) for reasons of sovereignty rather than a 
lack of trust in SHA’s security. The US SHAs have been more extensively 
reviewed by cryptanalysts than the non-US ones.

N o t e 	 Message Digest 5 (MD5) was the most popular hash function from 1992 until it was 
broken around 2005, and many applications then switched to one of the SHA hash 
functions. MD5 processes 512-bit block messages and updates a 128-bit internal state 
to produce a 128-bit hash, thus providing at best 128-bit preimage security and 64-bit 
collision security. In 1996, cryptanalysts warned of a collision for MD5’s compression 
function, but their warning went unheeded until 2005 when a team of Chinese crypt-
analysts discovered how to compute collisions for the full MD5 hash. As I write this, 
it takes only seconds to find a collision for MD5, yet many systems still use or support 
MD5, often for reasons of backward compatibility.

SHA-1
The SHA-1 standard arose from a failure in the NSA’s original SHA-0 hash 
function. In 1993, NIST standardized the NSA’s SHA-0 hash algorithm, 
but in 1995 the NSA released SHA-1 to fix an unidentified security issue in 
SHA-0. The reason for the tweak became clear when in 1998 two researchers 
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discovered how to find collisions for SHA-0 in about 260 operations instead of 
the 280 expected for 160-bit hash functions such as SHA-0 and SHA-1. Later 
attacks reduced the complexity to around 233 operations, leading to actual 
collisions in less than an hour for SHA-0.

SHA-1 Internals

SHA-1 combines a Merkle–Damgård hash function with a Davies–Meyer 
compression function based on a specially crafted block cipher, sometimes 
called SHACAL. That is, SHA-1 works by iterating the following operation 
over 512-bit message blocks (M):

H M H H  ,   = +( )E

Here, the use of a plus sign (+) rather than ⊕ (XOR) is intentional. 
E(M, H) and H are viewed as arrays of 32-bit integers, and each two words 
at a same position are added together: the first 32-bit word of E(M, H) 
with the first 32-bit word of H, and so on. The initial value of H is constant 
for any message, then H is modified as per the above equation, and the 
final value of H after processing all blocks is returned as the hash of the 
message.

Once the block cipher is run using the message block as a key and the 
current 160-bit chaining value as a plaintext block, the 160-bit result is seen 
as an array of five 32-bit words, each of which is added to its 32-bit counter-
part in the initial H value.

Listing 6-4 shows SHA-1’s compression function, SHA1-compress():

SHA1-compress(H, M) {
    (a0, b0, c0, d0, e0) = H   // parsing H as five 32-bit big endian words
    (a, b, c, d, e) = SHA1-blockcipher(a0, b0, c0, d0, e0, M)
    return (a + a0, b + b0, c + c0, d + d0, e + e0)
}

Listing 6-4: SHA-1’s compression function

SHA-1’s block cipher SHA1-blockcipher(), shown in bold in Listing 6-5, 
takes a 512-bit message block, M, as a key and transforms the five 32-bit 
words (a, b, c, d, and e) by iterating 80 steps of a short sequence of opera-
tions to replace the word a with a combination of all five words. It then 
shifts the other words in the array, as in a shift register.

SHA1-blockcipher(a, b, c, d, e, M) {
    W = expand(M)
    for i = 0 to 79 {
        new = (a <<< 5) + f(i, b, c, d) + e + K[i] + W[i]
        (a, b, c, d, e) = (new, a, b >>> 2, c, d)
    }
    return (a, b, c, d, e)
}

Listing 6-5: SHA-1’s block cipher
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The expand() function shown in Listing 6-6 creates an array of eighty 
32-bit words, W, from the 16-word message block by setting W ’s first 16 words 
to M and the subsequent ones to an XOR combination of previous words, 
rotated one bit to the left.

expand(M) {
    // the 512-bit M is seen as an array of sixteen 32-bit words
    W = empty array of eighty 32-bit words
    for i = 0 to 79 {
        if i < 16 then W[i] = M[i]
        else
            W[i] = (W[i – 3] ⊕ W[i – 8] ⊕ W[i – 14] ⊕ W[i – 16]) <<< 1
    }
    return W
}

Listing 6-6: SHA-1’s expand() function

The <<< 1 operation in Listing 6-6 is the only difference between the 
SHA-1 and SHA-0 functions.

Finally, the f() function (see Listing 6-7) in SHA1-blockcipher() is a 
sequence of basic bitwise logical operations (a Boolean function) that 
depends on the round number.

f(i, b, c, d) {
    if i < 20 then return ((b & c) ⊕ (~b & d))
    if i < 40 then return (b ⊕ c ⊕ d)
    if i < 60 then return ((b & c) ⊕ (b & d) ⊕ (c & d))
    if i < 80 then return (b ⊕ c ⊕ d)
}

Listing 6-7: SHA-1’s f() function.

The second and fourth Boolean functions in Listing 6-7 simply XOR 
the three input words together, which is a linear operation. In contrast, the 
first and third functions use the non-linear & operator (logical AND) to 
protect against differential cryptanalysis, which as you recall, exploits the 
predictable propagation of bitwise difference. Without the & operator (in 
other words, if f() were always b ⊕ c ⊕ d, for example), SHA-1 would be 
easy to break by tracing patterns within its internal state.

Attacks on SHA-1

Though more secure than SHA-0, SHA-1 is still insecure, which is why the 
Chrome browser marks websites using SHA-1 in their HTTPS connection 
as insecure. Although its 160-bit hash should grant it 80-bit collision resis-
tance, in 2005 researchers found weaknesses in SHA-1 and estimated that 
finding a collision would take approximately 263 calculations. (That number 
would be 280 if the algorithm were flawless.) A real SHA-1 collision only came 
twelve years later when after years of cryptanalysis, Marc Stevens and other 
researchers presented two colliding PDF documents through a joint work 
with Google researchers (see https://shattered.io/). 
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The upshot is that you should not use SHA-1. As mentioned, internet 
browsers now mark SHA-1 as insecure, and SHA-1 is no longer recommended 
by NIST. Use SHA-2 hash functions instead, or BLAKE2 or SHA-3.

SHA-2
SHA-2, the successor to SHA-1, was designed by the NSA and standardized by 
NIST. SHA-2 is a family of four hash functions: SHA-224, SHA-256, SHA-384, 
and SHA-512, of which SHA-256 and SHA-512 are the two main algorithms. 
The three-digit numbers represent the bit lengths of each hash.

SHA-256

The initial motivation behind the development of SHA-2 was to generate 
longer hashes and thus deliver higher security levels than SHA-1. For 
example, whereas SHA-1 has 160-bit chaining values, SHA-256 has 256-bit 
chaining values or eight 32-bit words. Both SHA-1 and SHA-256 have 512-bit 
message blocks; however, whereas SHA-1 makes 80 rounds, SHA-256 makes 
64 rounds, expanding the 16-word message block to a 64-word message 
block using the expand256() function shown in Listing 6-8.

expand256(M) {
    // the 512-bit M is seen as an array of sixteen 32-bit words
    W = empty array of sixty-four 32-bit words
    for i = 0 to 63 {
        if i < 16 then W[i] = M[i]
        else {
            // the ">>" shifts instead of a ">>>" rotates and is not a typo
            s0 = (W[i – 15] >>> 7) ⊕ (W[i – 15] >>> 18) ⊕ (W[i – 15] >> 3)
            s1 = (W[i – 2] >>> 17) ⊕ (W[i – 2] >>> 19) ⊕ (W[i – 2] >> 10)
            W[i] = W[i – 16] + s0 + W[i – 7] + s1
        }
    }
    return W
}

Listing 6-8: SHA-256’s expand256() function

Note how SHA-2’s expand256() message expansion is more complex 
than SHA-1’s expand(), shown previously in Listing 6-6, which in contrast 
simply performs XORs and a 1-bit rotation. The main loop of SHA-256’s 
compression function is also more complex than that of SHA-1, performing 
26 arithmetic operations per iteration compared to 11 for SHA-1. Again, 
these operations are XORs, logical ANDs, and word rotations.

Other SHA-2 Algorithms

The SHA-2 family includes SHA-224, which is algorithmically identical to 
SHA-256 except that its initial value is a different set of eight 32-bit words, 
and its hash value length is 224 bits, instead of 256 bits, and is taken as the 
first 224 bits of the final chaining value.
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The SHA-2 family also includes the algorithms SHA-512 and SHA-384. 
SHA-512 is similar to SHA-256 except that it works with 64-bit words instead 
of 32-bit words. As a result, it uses 512-bit chaining values (eight 64-bit words) 
and ingests 1024-bit message blocks (sixteen 64-bit words), and it makes 80 
rounds instead of 64. The compression function is otherwise almost the same 
as that of SHA-256, though with different rotation distances to cope with 
the wider word size. (For example, SHA-512 includes the operation a >>> 34, 
which wouldn’t make sense with SHA-256’s 32-bit words.) SHA-384 is to 
SHA-512 what SHA-224 is to SHA-256—namely, the same algorithm but with 
a different initial value and a final hash truncated to 384 bits.

Security-wise, all four SHA-2 versions have lived up to their promises so 
far: SHA-256 guarantees 256-bit preimage resistance, SHA-512 guarantees 
about 256-bit collision resistance, and so on. Still, there is no genuine proof 
that SHA-2 functions are secure; we’re talking about probable security.

That said, after practical attacks on MD5 and on SHA-1, researchers 
and NIST grew concerned about SHA-2’s long-term security due to its simi-
larity to SHA-1, and many believed that attacks on SHA-2 were just a matter 
of time. As I write this, though, we have yet to see a successful attack on 
SHA-2. Regardless, NIST developed a backup plan: SHA-3.

The SHA-3 Competition
Announced in 2007, the NIST Hash Function Competition (the official 
name of the SHA-3 competition) began with a call for submissions and 
some basic requirements: hash submissions were to be at least as secure and 
as fast as SHA-2, and they should be able to do at least as much as SHA-2. 
SHA-3 candidates also shouldn’t look too much like SHA-1 and SHA-2 in 
order to be immune to attacks that would break SHA-1 and potentially 
SHA-2. By 2008, NIST had received 64 submissions from around the world, 
including from universities and large corporations (BT, IBM, Microsoft, 
Qualcomm, and Sony, to name a few). Of these 64 submissions, 51 matched 
the requirements and entered the first round of the competition.

During the first weeks of the competition, cryptanalysts mercilessly 
attacked the submissions. In July 2009, NIST announced 14 second-round 
candidates. After spending 15 months analyzing and evaluating the perfor-
mance of these candidates, NIST chose five finalists:

BLAKE  An enhanced Merkle–Damgård hash whose compression 
function is based on a block cipher, which is in turn based on the 
core function of the stream cipher ChaCha, a chain of additions, 
XORs, and word rotations. BLAKE was designed by a team of aca-
demic researchers based in Switzerland and the UK, including myself.

Grøstl  An enhanced Merkle–Damgård hash whose compression func-
tion uses two permutations (or fixed-key block ciphers) based on the 
core function of the AES block cipher. Grøstl was designed by a team of 
seven academic researchers from Denmark and Austria.

JH  A tweaked sponge function construction wherein message blocks 
are injected before and after the permutation rather than just before. 
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The permutation also performs operations similar to a substitution–
permutation block cipher (as discussed in Chapter 4). JH was designed 
by a cryptographer from a university in Singapore.

Keccak  A sponge function whose permutation performs only bitwise 
operations. Keccak was designed by a team of four cryptographers 
working for a semiconductor company based in Belgium and Italy, and 
included one of the two designers of AES.

Skein  A hash function based on a different mode of operation than 
Merkle–Damgård, and whose compression function is based on a novel 
block cipher that uses only integer addition, XOR, and word rotation. 
Skein was designed by a team of eight cryptographers from academia 
and industry, all but one of whom is based in the US, including the 
renowned Bruce Schneier.

After extensive analysis of the five finalists, NIST announced a winner: 
Keccak. NIST’s report rewarded Keccak for its “elegant design, large security 
margin, good general performance, excellent efficiency in hardware, and its 
flexibility.” Let’s see how Keccak works.

Keccak (SHA-3)
One of the reasons that NIST chose Keccak is that it’s completely different 
from SHA-1 and SHA-2. For one thing, it’s a sponge function. Keccak’s core 
algorithm is a permutation of a 1600-bit state that ingests blocks of 1152, 
1088, 832, or 576 bits, producing hash values of 224, 256, 384, or 512 bits, 
respectively—the same four lengths produced by SHA-2 hash functions. But 
unlike SHA-2, SHA-3 uses a single core algorithm rather than two algorithms 
for all four hash lengths.

Another reason is that Keccak is more than just a hash. The SHA-3 
standard document FIPS 202 defines four hashes—SHA3-224, SHA3-256, 
SHA3-384, and SHA3-512—and two algorithms called SHAKE128 and 
SHAKE256. (The name SHAKE stands for Secure Hash Algorithm with Keccak.) 
These two algorithms are extendable-output functions (XOFs), or hash functions 
that can produce hashes of variable length, even very long ones. The num-
bers 128 and 256 represent the security level of each algorithm.

The FIPS 202 standard itself is lengthy and hard to parse, but you’ll 
find open-source implementations that are reasonably fast and make the 
algorithm easier to understand than the specifications. For example, the 
MIT-licensed tiny_sha3 (https://github.com/mjosaarinen/tiny_sha3/) by 
Markku-Juhani O. Saarinen, explains Keccak’s core algorithm in 19 lines  
of C, as partially reproduced in Listing 6-9.

static void sha3_keccakf(uint64_t st[25], int rounds)
{
    (⊕)
    for (r = 0; r < rounds; r++) {

     u // Theta
        for (i = 0; i < 5; i++)
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            bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];

        for (i = 0; i < 5; i++) {
            t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
            for (j = 0; j < 25; j += 5)
                st[j + i] ^= t;
        }

     v // Rho Pi
        t = st[1];
        for (i = 0; i < 24; i++) {
            j = keccakf_piln[i];
            bc[0] = st[j];
            st[j] = ROTL64(t, keccakf_rotc[i]);
            t = bc[0];
        }

     w // Chi
        for (j = 0; j < 25; j += 5) {
            for (i = 0; i < 5; i++)
                bc[i] = st[j + i];
            for (i = 0; i < 5; i++)
                st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
        }

     x // Iota
        st[0] ^= keccakf_rndc[r]; 
    }
    (⊕)
}

Listing 6-9: The tiny_sha3 implementation

The tiny_sha3 program implements the permutation, P, of Keccak, an 
invertible transformation of a 1600-bit state viewed as an array of twenty-
five 64-bit words. As you review the code, notice that it iterates a series of 
rounds, where each round consists of four main steps (as marked by u, v, 
w, and x):

•	 The first step, Theta u, includes XORs between 64-bit words or a 1-bit 
rotated value of the words (the ROTL64(w, 1) operation left-rotates a 
word w of 1 bit).

•	 The second step, Rho Pi v, includes rotations of 64-bit words by con-
stants hardcoded in the keccakf_rotc[] array.

•	 The third step, Chi w, includes more XORs, but also logical ANDs 
(the & operator) between 64-bit words. These ANDs are the only non-
linear operations in Keccak, and they bring with them cryptographic 
strength.

•	 The fourth step, Iota x, includes a XOR with a 64-bit constant, hard-
coded in the keccakf_rndc[].
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These operations provide SHA-3 with a strong permutation algorithm 
free of any bias or exploitable structure. SHA-3 is the product of more than 
a decade of research, and hundreds of skilled cryptanalysts have failed to 
break it. It’s unlikely to be broken anytime soon.

The BLAKE2 Hash Function
Security may matter most, but speed comes second. I’ve seen many cases 
where a developer wouldn’t switch from MD5 to SHA-1 simply because MD5 
is faster, or from SHA-1 to SHA-2 because SHA-2 is noticeably slower than 
SHA-1. Unfortunately, SHA-3 isn’t faster than SHA-2, and because SHA-2 
is still secure, there are few incentives to upgrade to SHA-3. So how to hash 
faster than SHA-1 and SHA-2 and be even more secure? The answer lies in 
the hash function BLAKE2, released after the SHA-3 competition.

N o t e 	 Full disclosure: I’m a designer of BLAKE2, together with Samuel Neves, Zooko 
Wilcox-O’Hearn, and Christian Winnerlein.

BLAKE2 was designed with the following ideas in mind:

•	 It should be least as secure as SHA-3, if not stronger.

•	 It should be faster than all previous hash standards, including MD5.

•	 It should be suited for use in modern applications, and able to hash 
large amounts of data either as a few large messages or many small 
ones, with or without a secret key.

•	 It should be suited for use on modern CPUs supporting parallel com-
puting on multicore systems as well as instruction-level parallelism 
within a single core.

The outcome of the engineering process is a pair of main hash functions:

•	 BLAKE2b (or just BLAKE2), optimized for 64-bit platforms, produces 
digests ranging from 1 to 64 bytes.

•	 BLAKE2s, optimized for 8- to 32-bit platforms, can produce digests 
ranging from 1 to 32 bytes.

Each function has a parallel variant that can leverage multiple CPU 
cores. The parallel counterpart of BLAKE2b, BLAKE2bp, runs on four 
cores, whereas BLAKE2sp runs on eight cores. The former is the fastest on 
modern server and laptop CPUs and can hash at close to 2 Gbps on a laptop 
CPU. In fact, BLAKE2 is the fastest secure hash available today, and its 
speed and features have made it the most popular non-NIST-standard hash. 
BLAKE2 is used in countless software applications and has been integrated 
into major cryptography libraries such as OpenSSL and Sodium.



124   Chapter 6

N o t e 	 You can find BLAKE2’s specifications and reference code at https://blake2.net/, 
and you can download optimized code and libraries from https://github.com/
BLAKE2/. The reference code also provides BLAKE2X, an extension of BLAKE2 
that can produce hash values of arbitrary length.

BLAKE2’s compression function, shown 
in Figure 6-8, is a variant of the Davies–
Meyer construction that takes parameters as 
additional input—namely, a counter (which 
ensures that each compression function 
behaves like a different function) and a flag 
(which indicates whether the compression 
function is processing the last message block, 
for increased security).

The block cipher in BLAKE2’s com-
pression function is based on the stream 
cipher ChaCha, itself a variant of the Salsa20 stream cipher discussed in 
Chapter 5. Within this block cipher, BLAKE2b’s core operation is com-
posed of the following chain of operations, which transforms a state of four 
64-bit words using two message words, Mi and Mj:

a a b M

d d a

c c d

b b c

a a b M

d d a

i

j

= + +

= ⊕ >>>( )
= +

= ⊕ >>>( )
= + +

= ⊕ >>

( )

( )

( )

32

24

>>( )
= +

= ⊕ >>>( )( )

16

63

c c d

b b c

BLAKE2s’s core operation is similar but works with 32-bit instead of 
64-bit words (and thus uses different rotation values).

How Things Can Go Wrong
Despite their apparent simplicity, hash functions can cause major security 
troubles when used at the wrong place or in the wrong way—for example, 
when weak checksum algorithms like CRCs are used instead of a crypto 
hash to check file integrity in applications transmitting data over a network. 
However, this weakness pales in comparison to some others, which can cause 
total compromise in seemingly secure hash functions. We’ll see two examples 
of failures: the first one applies to SHA-1 and SHA-2, but not to BLAKE2 or 
SHA-3, whereas the second one applies to all of these four functions.

E
Hi

Mi

Parameters
Hi � 1

Figure 6-8: BLAKE2’s compression 
function. The two halves of the 
state are XORed together after 
the block cipher.

https://github.com/BLAKE2/
https://github.com/BLAKE2/
https://blake2.net/
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The Length-Extension Attack
The length-extension attack, shown in Figure 6-9, is the main threat to the 
Merkle–Damgård construction.

CompressH0

M1

H1 Compress

M2

H = Hash(M1 || M2)

Compress
M3

= Hash(M1 || M2 || M3)

Figure 6-9: The length-extension attack

Basically, if you know Hash(M) for some unknown message, M, composed 
of blocks M1 and M2 (after padding), you can determine Hash(M1 || M2 || M3) 
for any block, M3. Because the hash of M1 || M2 is the chaining value that 
follows immediately after M2, you can add another block, M3, to the hashed 
message, even though you don’t know the data that was hashed. What’s more, 
this trick generalizes to any number of blocks in the unknown message 
(M1 || M2 here) or in the suffix (M3).

The length-extension attack won’t affect most applications of hash func-
tions, but it can compromise security if the hash is used a bit too creatively. 
Unfortunately, SHA-2 hash functions are vulnerable to the length-extension 
attack, even though the NSA designed the functions and NIST standardized 
them while both were well aware of the flaw. This flaw could have been 
avoided simply by making the last compression function call different from 
all others (for example, by taking a 1 bit as an extra parameter while the 
previous calls take a 0 bit). And that is in fact what BLAKE2 does.

Fooling Proof-of-Storage Protocols
Cloud computing applications have used hash functions within proof-of-storage 
protocols—that is, protocols where a server (the cloud provider) proves to 
a client (a user of a cloud storage service) that the server does in fact store 
the files that it’s supposed to store on behalf of the client.

In 2007, the paper “SafeStore: A Durable and Practical Storage System” 
(https://www.cs.utexas.edu/~lorenzo/papers/p129-kotla.pdf) by Ramakrishna 
Kotla, Lorenzo Alvisi, and Mike Dahlin proposed a proof-of-storage proto-
col to verify the storage of some file, M, as follows:

1.	 The client picks a random value, C, as a challenge.

2.	 The server computes Hash(M || C) as a response and sends the result to 
the client.

3.	 The client also computes Hash(M || C) and checks that it matches the 
value received from the server.

The premise of the paper is that the server shouldn’t be able to fool 
the client because if the server doesn’t know M, it can’t guess Hash(M || C). 
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But there’s a catch: in reality, Hash will be an iterated hash that processes 
its input block by block, computing intermediate chaining values between 
each block. For example, if Hash is SHA-256 and M is 512 bits long (the 
size of a block in SHA-256), the server can cheat. How? The first time the 
server receives M, it computes H1 =  Compress(H0, M1), the chaining value 
obtained from SHA-256’s initial value, H0, and from the 512-bit M. It then 
records H1 in memory and discards M, at which point it no longer stores M.

Now when the client sends a random value, C, the server computes 
Compress(H1, C), after adding the padding to C to fill a complete block, 
and returns the result as Hash(M || C). The client then believes that, 
because the server returned the correct value of Hash(M || C), it holds  
the complete message—except that it may not, as you’ve seen.

This trick will work for SHA-1, SHA-2, as well as SHA-3 and BLAKE2. 
The solution is simple: ask for Hash(C || M) instead of Hash(M || C).

Further Reading
To learn more about hash functions, read the classics from the 1980s and 
90s: research articles like Ralph Merkle’s “One Way Hash Functions and 
DES” and Ivan Damgård’s “A Design Principle for Hash Functions.” Also 
read the first thorough study of block cipher-based hashing, “Hash Functions 
Based on Block Ciphers: A Synthetic Approach” by Preneel, Govaerts, and 
Vandewalle.

For more on collision search, read the 1997 paper “Parallel Collision 
Search with Cryptanalytic Applications” by van Oorschot and Wiener. To 
learn more about the theoretical security notions that underpin preimage 
resistance and collision resistance, as well as length-extension attacks, 
search for indifferentiability.

For more recent research on hash functions, see the archives of the 
SHA-3 competition, which include all the different algorithms and how 
they were broken. You’ll find many references on the SHA-3 Zoo at http://
ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo, and on NIST’s page, http://csrc 
.nist.gov/groups/ST/hash/sha-3/.

For more on the SHA-3 winner Keccak and sponge functions, see 
http://keccak.noekeon.org/ and http://sponge.noekeon.org/, the official pages  
of the Keccak designers.

Last but not least, research these two real exploitations of weak hash 
functions:

•	 The nation-state malware Flame exploited an MD5 collision to make a 
counterfeit certificate and appear to be a legitimate piece of software.

•	 The Xbox game console used a weak block cipher (called TEA) to build 
a hash function, which was exploited to hack the console and run arbi-
trary code on it.

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/
http://sponge.noekeon.org/


7
K e y e d  H a s h i n g

The hash functions discussed in Chapter 6 
take a message and return its hash value—

typically a short string of 256 or 512 bits. 
Anyone can compute the hash value of a 

message and verify that a particular message hashes 
to a particular value because there’s no secret value 
involved, but sometimes you don’t want to let just any-
one do that. That’s where keyed hash functions come 
in, or hashing with secret keys.

Keyed hashing forms the basis of two types of important cryptographic 
algorithms: message authentication codes (MACs), which authenticate a mes-
sage and protect its integrity, and pseudorandom functions (PRFs), which pro-
duce random-looking hash-sized values. We’ll look at how and why MACs 
and PRFs are similar in the first section of this chapter; then we’ll review 
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how real MACs and PRFs work. Some MACs and PRFs are based on hash 
functions, some are based on block ciphers, and still others are original 
designs. Finally, we’ll review examples of attacks on otherwise secure MACs. 

Message Authentication Codes (MACs)
A MAC protects a message’s integrity and authenticity by creating a value 
T = MAC(K, M), called the authentication tag of the message, M (often 
confusingly called the MAC of M). Just as you can decrypt a message if 
you know a cipher’s key, you can validate that a message has not been 
modified if you know a MAC’s key.

For example, say Alex and Bill share a key, K, and Alex sends a message, 
M, to Bill along with its authentication tag, T = MAC(K, M). Upon receiving 
the message and its authentication tag, Bill recomputes MAC(K, M) and 
checks that it is equal to the authentication tag received. Because only 
Alex could have computed this value, Bill knows that the message wasn’t 
corrupted in transit (confirming integrity), whether accidentally or mali-
ciously, and that Alex sent that message (confirming authenticity).

MACs in Secure Communication
Secure communication systems often combine a cipher and a MAC to pro-
tect a message’s confidentiality, integrity, and authenticity. For example, the 
protocols in Internet Protocol Security (IPSec), Secure Shell (SSH), and 
Transport Layer Security (TLS) generate a MAC for each network packet 
transmitted. 

Not all communication systems use MACs. Sometimes an authentication 
tag can add unacceptable overhead to each packet, typically in the range 
of 64 to 128 bits. For example, the 3G and 4G mobile telephony standards 
encrypt packets encoding voice calls but they don’t authenticate them. An 
attacker can modify the encrypted audio signal and the recipient wouldn’t 
notice. Thus, if an attacker damages an encrypted voice packet, it will decrypt 
to noise, which would sound like static.

Forgery and Chosen-Message Attacks 
What does it mean for a MAC to be secure? First of all, as with a cipher, the 
secret key should remain secret. If a MAC is secure, an attacker shouldn’t 
be able to create a tag of some message if they don’t know the key. Such a 
made-up message/tag pair is called a forgery, and recovering a key is just 
a specific case of a more general class of attacks called forgery attacks. The 
security notion that posits that forgeries should be impossible to find is 
called unforgeability. Obviously, it should be impossible to recover the secret 
key from a list of tags; otherwise, attackers could forge tags using the key. 

What can an attacker do to break a MAC? In other words, what’s the 
attack model? The most basic model is the known-message attack, which pas-
sively collects messages and their associated tags (for example, by eaves-
dropping on a network). But real attackers often launch more powerful 
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attacks because they can often choose the messages to be authenticated, 
and therefore get the MAC of the message they want. The standard model 
is therefore that of chosen-message attacks, wherein attackers get tags for 
messages of their choice.

Replay Attacks
MACs aren’t safe from attacks involving replays of tags. For example, if you 
were to eavesdrop on Alex and Bill’s communications, you could capture a 
message and its tag sent by Alex to Bill, and later send them again to Bill pre-
tending to be Alex. To prevent such replay attacks, protocols include a message 
number in each message. This number is incremented for each new message 
and authenticated along with the message. The receiving party gets messages 
numbered 1, 2, 3, 4, and so on. Thus, if an attacker tries to send message 
number 1 again, the receiver will notice that this message is out of order and 
that it’s a potential replay of the earlier message number 1.

Pseudorandom Functions (PRFs)
A PRF is a function that uses a secret key to return PRF(K, M), such that 
the output looks random. Because the key is secret, the output values are 
unpredictable to an attacker. 

Unlike MACs, PRFs are not meant to be used on their own but as 
part of a cryptographic algorithm or protocol. For example, PRFs can be 
used to create block ciphers within the Feistel construction discussed in 
“How to Construct Block Ciphers” on page 55. Key derivation schemes 
use PRFs to generate cryptographic keys from a master key or a password, 
and identification schemes use PRFs to generate a response from a random 
challenge. (Basically, a server sends a random challenge message, M, and 
the client returns PRF(K, M) in its response to prove that it knows K.) The 
4G telephony standard uses a PRF to authenticate a SIM card and its service 
provider, and a similar PRF also serves to generate the encryption key and 
MAC key to be used during a phone call. The TLS protocol uses a PRF to 
generate key material from a master secret as well as session-specific random 
values. There’s even a PRF in the noncryptographic hash() function built 
into the Python language to compare objects.

PRF Security
In order to be secure, a pseudorandom function should have no pattern that 
sets its outputs apart from truly random values. An attacker who doesn’t know 
the key, K, shouldn’t be able to distinguish the outputs of PRF(K, M) from 
random values. Viewed differently, an attacker shouldn’t have any means of 
knowing whether they’re talking to a PRF algorithm or to a random func-
tion. The erudite phrase for that security notion is indistinguishability from a 
random function. (To learn more about the theoretical foundations of PRFs, 
see Volume 1, Section 3.6 of Goldreich’s Foundations of Cryptography.)
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Why PRFs Are Stronger Than MACs
PRFs and MACs are both keyed hashes, but PRFs are fundamentally stron-
ger than MACs, largely because MACs have weaker security requirements. 
Whereas a MAC is considered secure if tags can’t be forged—that is, if the 
MAC’s outputs can’t be guessed—a PRF is only secure if its outputs are 
indistinguishable random strings, which is a stronger requirement. If a 
PRF’s outputs can’t be distinguished from random strings, the implication 
is that their values can’t be guessed; in other words, any secure PRF is also a 
secure MAC.

The converse is not true, however: a secure MAC isn’t necessarily a 
secure PRF. For example, say you start with a secure PRF, PRF1, and you 
want to build a second PRF, PRF2, from it, like this:

PRF 2 PRF1 ||K M K M,   ,   ( ) ( )= 0

Because PRF2’s output is defined as PRF1’s output followed by one 
0 bit, it doesn’t look as random as a true random string, and you can dis-
tinguish its outputs by that last 0 bit. Hence, PRF2 is not a secure PRF. 
However, because PRF1 is secure, PRF2 would still make a secure MAC. 
Why? Because if you were able to forge a tag, T = PRF2(K, M), for some M, 
then you’d also be able to forge a tag for PRF1, which we know to be impos-
sible in the first place because PRF1 is a secure MAC. Thus, PRF2 is a keyed 
hash that’s a secure MAC but not a secure PRF. 

But don’t worry: you won’t find such MAC constructions in real applica-
tions. In fact, many of the MACs deployed or standardized are also secure 
PRFs and are often used as either. For example, TLS uses the algorithm 
HMAC-SHA-256 both as a MAC and as a PRF. 

Creating Keyed Hashes from Unkeyed Hashes
Throughout the history of cryptography, MACs and PRFs have rarely been 
designed from scratch but rather have been built from existing algorithms, 
usually hash functions or block ciphers. One seemingly obvious way to pro-
duce a keyed hash function would be to feed an (unkeyed) hash function a 
key and a message, but that’s easier said than done, as I discuss next.

The Secret-Prefix Construction
The first technique we’ll examine, called the secret-prefix construction, turns 
a normal hash function into a keyed hash one by prepending the key to 
the message and returning Hash(K || M). Although this approach is not 
always wrong, it can be insecure when the hash function is vulnerable to 
length-extension attacks (as discussed in “The Length-Extension Attack” 
on page 125) and when the hash supports keys of different lengths.
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Insecurity Against Length-Extension Attacks

Recall from Chapter 6 that hash functions of the SHA-2 family allow attackers 
to compute the hash of a partially unknown message when given a hash of 
a shorter version of that message. In formal terms, the length-extension attack 
allows attackers to compute Hash(K || M1 || M2) given only Hash(K || M1) 
and neither M1 nor K. These functions allow attackers to forge valid MAC 
tags for free because they’re not supposed to be able to guess the MAC of 
M1 || M2 given only the MAC of M1. This fact makes the secret-prefix con-
struction as insecure as a MAC and PRF when, for example, it’s used with 
SHA-256 or SHA-512. It is a weakness of Merkle–Damgård to allow length-
extension attacks, and none of the SHA-3 finalists do. The ability to thwart 
length-extension attacks was mandatory for SHA-3 submissions.

Insecurity with Different Key Lengths

The secret-prefix construction is also insecure when it allows the use 
of keys of different lengths. For example, if the key K is the 24-bit hexa
decimal string 123abc and M is def00, then Hash() will process the value 
K || M = 123abcdef00. If K is instead the 16-bit string 123a and M is bcdef000, 
then Hash() will process K || M = 123abcdef00, too. Therefore, the result of 
the secret-prefix construction Hash(K || M) will be the same for both keys. 

This problem is independent of the underlying hash and can be fixed 
by hashing the key’s length along with the key and the message, for exam-
ple, by encoding the key’s bit length as a 16-bit integer, L, and then hashing 
Hash(L || K || M). But you shouldn’t have to do this. Modern hash functions 
such as BLAKE2 and SHA-3 include a keyed mode that avoids those pitfalls 
and yields a secure PRF, and thus a secure MAC as well.

The Secret-Suffix Construction
Instead of hashing the key before the message as in the secret-prefix con-
struction, we can hash it after. And that’s exactly how the secret-suffix construc-
tion works: by building a PRF from a hash function as Hash(M || K). 

Putting the key at the end makes quite a difference. For one thing, the 
length-extension attack that works against secret-prefix MACs won’t work 
against the secret suffix. Applying length extension to a secret-suffix MAC, 
you’d get Hash(M1 || K || M2) from Hash(M1 || K), but that wouldn’t be a 
valid attack because Hash(M1 || K || M2) isn’t a valid secret-suffix MAC; the 
key needs to be at the end. 

However, the secret-suffix construction is weaker against another type 
of attack. Say you’ve got a collision for the hash Hash(M1) = Hash(M2), 
where M1 and M2 are two distinct messages, possibly of different sizes. In 
the case of a hash function such as SHA-256, this implies that Hash(M1 || K) 
and Hash(M2 || K) will be equal too, because internally K will be processed 
based on the data hashed previously, namely Hash(M1), equal to Hash(M2). 
Hence, you’d get the same hash value whether you hash K after M1 or after 
M2, regardless of the value of K. 
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To exploit this property, an attacker would:

1.	 Find two colliding messages, M1 and M2

2.	 Request the MAC tag of M1 Hash(M1 || K)

3.	 Guess that Hash(M2 || K) is the same, thereby forging a valid tag and 
breaking the MAC’s security

The HMAC Construction
The hash-based MAC (HMAC) construction allows us to build a MAC from a 
hash function, which is more secure than either secret prefix or secret suffix. 
HMAC yields a secure PRF as long as the underlying hash is collision resis-
tant, but even if that’s not the case, HMAC will still yield a secure PRF if the 
hash’s compression function is a PRF. The secure communication protocols 
IPSec, SSH, and TLS have all used HMAC. (You’ll find HMAC specifica-
tions in NIST’s FIPS 198-1 standard and in RFC 2104.) 

HMAC uses a hash function, Hash, to compute a MAC tag, as shown in 
Figure 7-1 and according to the following expression:

Hash(( ) Hash(( ) ))K opad K ipad M⊕ ⊕� �

The term opad (outer padding) is a string (5c5c5c . . . 5c) that is as long 
as Hash’s block size. The key, K, is usually shorter than one block that is 
filled with 00 bytes and XORed with opad. For example, if K is the 1-byte 
string 00, then K ⊕ opad = opad. (The same is true if K is the all-zero string 
of any length up to a block’s length.) K ⊕ opad is the first block processed 
by the outer call to Hash—namely, the leftmost Hash in the preceding 
equation, or the bottom hash in Figure 7-1. 

The term ipad (inner padding) is a string (363636 . . . 36) that is as long 
as the Hash’s block size and that is also completed with 00 bytes. The result-
ing block is the first block processed by the inner call to Hash—namely, the 
rightmost Hash in the equation, or the top hash in Figure 7-1.

CompressH0

K ⊕ ipad

H1’ Compress

M

CompressH0

K ⊕ opad

H1 Compress HMAC-H(K, M)

Figure 7-1: The HMAC hash-based MAC construction
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N o t e 	 The envelope method is an even more secure construction than secret prefix and secret 
suffix. It’s expressed as Hash(K || M || K), something called a sandwich MAC, but 
it’s theoretically less secure than HMAC.

If SHA-256 is the hash function used as Hash, then we call the HMAC 
instance HMAC-SHA-256. More generally, we call HMAC-Hash an HMAC 
instance using the hash function Hash. That means if someone asks you to 
use HMAC, you should always ask, “Which hash function?”

A Generic Attack Against Hash-Based MACs
There is one attack that works against all MACs based on an iterated hash 
function. Recall the attack in “The Secret-Suffix Construction” on page 131 
where we used a hash collision to get a collision of MACs. You can use the 
same strategy to attack a secret-prefix MAC or HMAC, though the conse-
quences are less devastating.

To illustrate the attack, consider the secret-prefix MAC Hash(K || M), 
as shown in Figure 7-2. If the digest is n bits, you can find two messages, 
M1 and M2, such that Hash(K || M1) = Hash(K || M2), by requesting 
approximately 2n/2 MAC tags to the system holding the key. (Recall the 
birthday attack from Chapter 6.) If the hash lends itself to length exten-
sion, as SHA-256 does, you can then use M1 and M2 to forge MACs by 
choosing some arbitrary data, M3, and then querying the MAC oracle for 
Hash(K || M1 || M3), which is the MAC of message M1 || M3. As it turns out, 
this is also the MAC of message M2 || M3, because the hash’s internal state 
of M1 and M3 and M2 and M3 is the same, and you’ve successfully forged a 
MAC tag. (The effort becomes infeasible as n grows beyond, say, 128 bits.) 

Hashing...H0

K

H1 Compress

M1

MAC(K, M1 || M3)
= MAC(K, M2 || M3)H2

M3 (one or more blocks)

Hashing...

Hashing...H0

K

H1 Compress

M2

Collision

Figure 7-2: The principle of the generic forgery attack on hash-based MACs

This attack will work even if the hash function is not vulnerable to length 
extension, and it will work for HMAC, too. The cost of the attack depends 
on both the size of the chaining value and the MAC’s length: if a MAC’s 
chaining value is 512 bits and its tags are 128 bits, a 264 computation would 
find a MAC collision but probably not a collision in the internal state, since 
finding such a collision would require 2512/2 = 2256 operations on average.



134   Chapter 7

Creating Keyed Hashes from Block Ciphers: CMAC
Recall from Chapter 6 that the compression functions in many hash func-
tions are built on block ciphers. For example, HMAC-SHA-256 PRF is a 
series of calls to SHA-256’s compression function, which itself is a block 
cipher that repeats a sequence of rounds. In other words, HMAC-SHA-256 
is a block cipher inside a compression function inside a hash inside the 
HMAC construction. So why not use a block cipher directly rather than 
build such a layered construction?

CMAC (which stands for cipher-based MAC) is such a construction: it 
creates a MAC given only a block cipher, such as AES. Though less popular 
than HMAC, CMAC is deployed in many systems, including the Internet 
Key Exchange (IKE) protocol, which is part of the IPSec suite. IKE, for 
example, generates key material using a construction called AES-CMAC-
PRF-128 as a core algorithm (or CMAC based on AES with 128-bit output). 
CMAC is specified in RFC 4493.

Breaking CBC-MAC
CMAC was designed in 2005 as an improved version of CBC-MAC, a sim-
pler block cipher–based MAC derived from the cipher block chaining 
(CBC) block cipher mode of operation (see “Modes of Operation” on 
page 65). 

CBC-MAC, the ancestor of CMAC, is simple: to compute the tag of a 
message, M, given a block cipher, E, you encrypt M in CBC mode with an 
all-zero initial value (IV) and discard all but the last ciphertext block. That 
is, you compute C1 = E(K, M1), C2 = E(K, M2 ⊕ C1), C3 = E(K, M3 ⊕ C2), and 
so on for each of M’s blocks and keep only the last Ci, your CBC-MAC tag 
for M—simple, and simple to attack.

To understand why CBC-MAC is insecure, consider the CBC-MAC tag, 
T1 = E(K, M1), of a single-block message, M1, and the tag, T2 = E(K, M2), 
of another single-block message, M2. Given these two pairs, (M1, T1) and 
(M2, T2), you can deduce that T2 is also the tag of the two-block message 
M1 || (M2 ⊕ T1). Indeed, if you apply CBC-MAC to M1 || (M2 ⊕ T1) and com-
pute C1 = E(K, M1) = T1 followed by C2 = E(K, (M2 ⊕ T1) ⊕ T1) = E(K, M2)  
= T2, you can create a third message/tag pair from two message/tag pairs 
without knowing the key. That is, you can forge CBC-MAC tags, thereby 
breaking CBC-MAC’s security.

Fixing CBC-MAC
CMAC fixes CBC-MAC by processing the last block using a different key 
from the preceding blocks. To do this, CMAC first derives two keys, K1 and 
K2, from the main key, K, such that K, K1, and K2 will be distinct. In CMAC, 
the last block is processed using either K1 or K2, while the preceding blocks 
use K.

To determine K1 and K2, CMAC first computes a temporary value, 
L = E(0, K), where 0 acts as the key of the block cipher and K acts as the 
plaintext block. Then CMAC sets the value of K1 equal to (L << 1) if L’s 
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most significant bit (MSB) is 0, or equal to (L << 1) ⊕ 87 if L’s MSB is 1. 
(The number 87 is carefully chosen for its mathematical properties when 
data blocks are 128 bits; a value other than 87 is needed when blocks aren’t 
128 bits.) 

The value of K2 is set equal to (K1 << 1) if K1’s MSB is 0, or K2 = (K1 << 1) 
⊕ 87 otherwise.

Given K1 and K2, CMAC works like CBC-MAC, except for the last block. 
If the final message chunk Mn is exactly the size of a block, CMAC returns 
the value E(K, Mn ⊕ Cn − 1 ⊕ K1) as a tag, as shown in Figure 7-3. But if Mn has 
fewer bits than a block, CMAC pads it with a 1 bit and zeros, and returns the 
value E(K, Mn ⊕ Cn − 1 ⊕ K2) as a tag, as shown in Figure 7-4. Notice that the 
first case uses only K1 and the second only K2, but both use only the main 
key K to process the message chunks that precede the final one. 

Note that unlike the CBC encryption mode, CMAC does not take an IV 
as a parameter and is deterministic: CMAC will always return the same tag 
for a given message, M, because the computation of CMAC(M) is not ran-
domized—and that’s fine, because unlike encryption, MAC computation 
doesn’t have to be randomized to be secure, which eliminates the burden of 
having to choose random IV.

Dedicated MAC Designs
You’ve seen how to recycle hash functions and block ciphers to build 
PRFs that are secure as long as their underlying hash or cipher is secure. 
Schemes such as HMAC and CMAC simply combine available hash func-
tions or block ciphers to yield a secure PRF or MAC. Reusing available algo-
rithms is convenient, but is it the most efficient approach?

Intuitively, PRFs and MACs should require less work than unkeyed hash 
functions in order to be secure—their use of a secret key prevents attackers 
from playing with the algorithm because they don’t have the key. Also, PRFs 
and MACs only expose a short tag to attackers, unlike block ciphers, which 
expose a ciphertext that is as long as the message. Hence, PRFs and MACs 
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Figure 7-3: The CMAC block cipher–
based MAC construction when the mes-
sage is a sequence of integral blocks

Figure 7-4: The CMAC block cipher–
based MAC construction when the last 
block of the message has to be padded 
with a 1 bit and zeros to fill a block
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should not need the whole power of hash functions or block ciphers, which 
is the point of dedicated design—that is, algorithms created solely to serve as 
PRFs and/or MACs. 

The sections that follow focus on two such algorithms that are widely 
used: Poly1305 and SipHash. I’ll explain their design principles and why 
they are likely secure.

Poly1305
The Poly1305 algorithm (pronounced poly -thirteen-o-five) was designed 
in 2005 by Daniel J. Bernstein (creator of the Salsa20 stream cipher dis-
cussed in Chapter 5 and the ChaCha cipher that inspired the BLAKE and 
BLAKE2 hash functions discussed in Chapter 6). Poly1305 is optimized to 
be super fast on modern CPUs, and as I write this, it is used by Google to 
secure HTTPS (HTTP over TLS) connections and by OpenSSH, among 
many other applications. Unlike Salsa20, the design of Poly1305 is built on 
techniques dating back to the 1970s—namely, universal hash functions and 
the Wegman–Carter construction. 

Universal Hash Functions

The Poly1305 MAC uses a universal hash function internally that is much 
weaker than a cryptographic hash function, but also much faster. Universal 
hash functions don’t have to be collision resistant, for example. That means 
less work is required to achieve their security goals.

Like a PRF, a universal hash is parameterized by a secret key: given 
a message, M, and key, K, we write UH(K, M), which is the computation 
of the output of a universal hash function, denoted UH. A universal hash 
function has only one security requirement: for any two messages, M1 and 
M2, the probability that UH(K, M1) = UH(K, M2) must be negligible for a 
random key, K. Unlike a PRF, a universal hash doesn’t need to be pseudo-
random; there simply should be no pair (M1, M2) that gives the same hash 
for many different keys. Because their security requirements are easier to 
satisfy, fewer operations are required and therefore universal hash func-
tions are considerably faster than PRFs.

You can use a universal hash as a MAC to authenticate no more than 
one message, however. For example, consider the universal hash used in 
Poly1305, called a polynomial-evaluation hash. (See the seminal 1974 article 
“Codes Which Detect Deception” by Gilbert, MacWilliams, and Sloane for 
more on this notion.) This kind of polynomial-evaluation hash is param-
eterized by a prime number, p, and takes as input a key consisting of two 
numbers, R and K, in the range [1, p] and a message, M, consisting of n 
blocks (M1, M2, . . . , Mn). The output of the universal hash is then com-
puted as the following:

UH R K M R M K M K M K M K pn
n, ,  . . .  mod ( ) = + + + + +1 2

2
3

3
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The plus sign (+) denotes the addition of positive integers, K i is the 
number K raised to the power i, and “mod p” denotes the reduction modulo 
p of the result (that is, the remainder of the division of the result by p; for 
example, 12 mod 10 = 2, 10 mod 10 = 0, 8 mod 10 = 8, and so on). 

Because we want the hash to be as fast as possible, universal hash-based 
MACs often work with message blocks of 128 bits and with a prime number, 
p, that is slightly larger than 2128, such as 2128 + 51. The 128-bit width allows 
for very fast implementations by efficiently using the 32- and 64-bit arithme-
tic units of common CPUs.

Potential Vulnerabilities

Universal hashes have one weakness: because a universal hash is only 
able to securely authenticate one message, an attacker could break the 
preceding polynomial-evaluation MAC by requesting the tags of only two 
messages. Specifically, they could request the tags for a message where 
M1 = M2 = . . . = 0 (that is, whose tag is UH(R, K, 0) = R) and then use the 
tags to find the secret value R. Alternatively, they could request the tags for 
a message where M1 = 1 and where M2 = M3 = . . . = 0 (that is, whose tag is 
T = R + K), which would allow them to find K by subtracting R from T. Now 
the attacker knows the whole key (R, K) and they can forge MACs for any 
message.

Fortunately, there’s a way to go from single-message security to multi-
message security. 

Wegman–Carter MACs

The trick to authenticating multiple messages using a universal hash function 
arrived thanks to IBM researchers Wegman and Carter and their 1981 paper 
“New Hash Functions and Their Use in Authentication and Set Equality.” 
The so-called Wegman–Carter construction builds a MAC from a universal 
hash function and a PRF, using two keys, K1 and K2, and it returns 

MAC UH PRFK K N M K M K N1 2 1 2, , , , , ( ) ( ) ( )= +

where N is a nonce that should be unique for each key, K2, and where PRF’s 
output is as large as that of the universal hash function UH. By adding these 
two values, PRF’s strong pseudorandom output masks the cryptographic 
weakness of UH. You can see this as the encryption of the universal hash’s 
result, where the PRF acts as a stream cipher and prevents the preceding 
attack by making it possible to authenticate multiple messages with the 
same key, K1. 

To recap, the Wegman–Carter construction UH(K1, M) + PRF(K2, N) 
gives a secure MAC if we assume the following:

•	 UH is a secure universal hash.

•	 PRF is a secure PRF.
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•	 Each nonce N is used only once for each key K2.

•	 The output values of UH and PRF are long enough to ensure high 
enough security. 

Now let’s see how Poly1305 leverages the Wegman–Carter construction 
to build a secure and fast MAC. 

Poly1305-AES

Poly1305 was initially proposed as Poly1305-AES, combining the Poly1305 
universal hash with the AES block cipher. Poly1305-AES is much faster than 
HMAC-based MACs, or even than CMACs, since it only computes one block 
of AES and processes the message in parallel through a series of simple 
arithmetic operations. 

Given a 128-bit K1, K2, and N, and message, M, Poly1305-AES returns 
the following:

Poly1305 AESK M K N1 2
1282, ,  mod ( ) ( )+

The mod 2128 reduction ensures that the result fits in 128 bits. The mes-
sage M is parsed as a sequence of 128-bit blocks (M1, M2, . . . , Mn), and a 
129th bit is appended to each block’s most significant bit to make all blocks 
129 bits long. (If the last block is smaller than 16 bytes, it’s padded with a 
1 bit followed by 0 bits before the final 129th bit.) Next, Poly1305 evaluates 
the polynomial to compute the following:

Poly1305 K M M K M K M Kn n
n1 1 1 2 1

1
1

1302 5,  . . . mod   ( ) = + + + −−

The result of this expression is an integer that is at most 129-bits long. 
When added to the 128-bit value AES(K2, N), the result is reduced modulo 
2128 to produce a 128-bit MAC. 

N o t e 	 AES isn’t a PRF; instead, it’s a pseudorandom permutation (PRP). However, that 
doesn’t matter much here because the Wegman–Carter construction works with a PRP 
as well as with a PRF. This is because if you’re given a function that is either a PRF 
of a PRP, it’s hard to determine whether it’s a PRF of a PRP just by looking at the 
function’s output values.

The security analysis of Poly1305-AES (see “The Poly1305-AES Message-
Authentication Code” at http://cr.yp.to/mac/poly1305-20050329.pdf) shows that 
Poly1305-AES is 128-bit secure as long as AES is a secure block cipher—and, 
of course, as long as everything is implemented correctly, as with any crypto-
graphic algorithm.

The Poly1305 universal hash can be combined with algorithms other 
than AES. For example, Poly1305 was used with the stream cipher ChaCha 
(see RFC 7539, “ChaCha20 and Poly1305 for IETF Protocols”). There’s no 
doubt that Poly1305 will keep being used wherever a fast MAC is needed.
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SipHash
Although Poly1305 is fast and secure, it has several downsides. For one, its 
polynomial evaluation is difficult to implement efficiently, especially in 
the hands of many who are unfamiliar with the associated mathematical 
notions. (See examples at https://github.com/floodyberry/poly1305-donna/). 
Second, on its own, it’s secure for only one message unless you use the 
Wegman–Carter construction. But in that case, it requires a nonce, and if 
the nonce is repeated, the algorithm becomes insecure. Finally, Poly1305 is 
optimized for long messages, but it’s overkill if you process only small mes-
sages (say, fewer than 128 bytes). In such cases, SipHash is the solution.

I designed SipHash in 2012 with Dan Bernstein initially to address a 
noncryptographic problem: denial-of-service attacks on hash tables. Hash 
tables are data structures used to efficiently store elements in programming 
languages. Prior to the advent of SipHash, hash tables relied on noncryp-
tographic keyed hash functions for which collisions were easy to find, and 
it was easy to exploit a remote system using a hash table by slowing it down 
with a denial-of-service attack. We determined that a PRF would address 
this problem and thus set out to design SipHash, a PRF suitable for hash 
tables. Because hash tables process mostly short inputs, SipHash is opti-
mized for short messages. However, SipHash can be used for more than 
hash tables: it’s a full-blown PRF and MAC that shines where most inputs 
are short.

How SipHash Works 

SipHash uses a trick that makes it more secure than basic sponge func-
tions: instead of XORing message blocks only once before the permuta-
tion, SipHash XORs them before and after the permutation, as shown in 
Figure 7-5. The 128-bit key of SipHash is seen as two 64-bit words, K1 and 
K2, XORed to a 256-bit fixed initial state that is seen as four 64-bit words. 
Next, the keys are discarded, and computing SipHash boils down to iterat-
ing through a core function called SipRound and then XORing message 
chunks to modify the four-word internal state. Finally, SipHash returns a 
64-bit tag by XORing the four-state words together. 
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Figure 7-5: SipHash-2-4 processing a 15-byte message (a block, M1, of 8  
bytes and a block, M2, of 7 bytes, plus 1 byte of padding)
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The SipRound function uses a bunch of XORs together with additions 
and word rotations to make the function secure. SipRound transforms a 
state of four 64-bit words (a, b, c, d) by performing the following operations, 
top to bottom. The operations on the left and right are independent and 
can be carried out in parallel: 

a b c d

b d

b a

 =                 = 

=          = 

 = 

+ +
<<< <<<
⊕

13 16

                 = 
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 =                  =  
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a

c b a
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<<<
+ +

32

dd

b d

b c d a

c

<<< <<<
⊕ ⊕
<

=          = 

 =                 =   

17 21

<<< = 32

Here, a += b is shorthand for a = a + b, and b <<< = 13 is shorthand for 
b = b <<< 13 (the 64-bit word b left-rotated 13 bits.)

These simple operations on 64-bit words are almost all you need to 
implement in order to compute SipHash—although you won’t have to imple-
ment it yourself. You can find readily available implementations in most lan-
guages, including C, Go, Java, JavaScript, and Python. 

N o t e 	 We write SipHash-x-y as the SipHash version, meaning it makes x SipRounds 
between each message block injection and then y rounds. More rounds require more 
operations, which slows down operations but also increases security. The default ver-
sion is SipHash-2-4 (simply noted as SipHash), and it has so far resisted cryptanaly-
sis. However, you may want to be conservative and opt for SipHash-4-8 instead, 
which makes twice as many rounds and is therefore twice as slow.

How Things Can Go Wrong
Like ciphers and unkeyed hash functions, MACs and PRFs that are secure 
on paper can be vulnerable to attacks when used in a real setting, against 
realistic attackers. Let’s see two examples.

Timing Attacks on MAC Verification
Side-channel attacks target the implementation of a cryptographic algorithm 
rather than the algorithm itself. In particular, timing attacks use an algo-
rithm’s execution time to determine secret information, such as keys, plain-
text, and secret random values. As you might imagine, variable-time string 
comparison induces vulnerabilities not only in MAC verification, but also in 
many other cryptographic and security functionalities. 
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MACs can be vulnerable to timing attacks when a remote system 
verifies tags in a period of time that depends on the tag’s value, thereby 
allowing an attacker to determine the correct message tag by trying many 
incorrect ones to determine the one that takes the longest amount of time 
to complete. The problem occurs when a server compares the correct tag 
with an incorrect one by comparing the two strings byte per byte, in order, 
until the bytes differ. For example, the Python code in Listing 7-1 compares 
two strings byte per byte, in variable time: if the first bytes differ, the func-
tion will return after only one comparison; if the strings x and y are identi-
cal, the function will make n comparisons against the length of the strings.

def compare_mac(x, y, n):
    for i in range(n):
        if x[i] != y[i]:
            return False
    return True

Listing 7-1: Comparison of two n-byte strings, taking variable time

To demonstrate the vulnerability of the verify_mac() function, let’s write 
a program that measures the execution time of 100000 calls to verify_mac(), 
first with identical 10-byte x and y values and then with x and y values that 
differ in their third byte. We should expect the latter comparison to take 
noticeably less time than the former because verify_mac() will compare 
fewer bytes than the identical x and y would, as shown in Listing 7-2.

from time import time

MAC1 = '0123456789abcdef'
MAC2 = '01X3456789abcdef'
TRIALS = 100000

# each call to verify_mac() will look at all sixteen bytes
start = time()
for i in range(TRIALS):
    compare_mac(MAC1, MAC1, len(MAC1))
end = time()
print("%0.5f" % (end-start))

# each call to verify_mac() will look at three bytes
start = time()
for i in range(TRIALS):
    compare_mac(MAC1, MAC2, len(MAC1))
end = time()
print("%0.5f" % (end-start))

Listing 7-2: Measuring timing differences when executing compare_mac() from Listing 7-1

In my test environment, typical execution of the program in Listing 7-2 
prints execution times of around 0.215 and 0.095 seconds, respectively. 
That difference is significant enough for you to identify what’s happening 
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within the algorithm. Now move the difference to other offsets in the string, 
and you’ll observe different execution times for different offsets. If MAC1 is 
the correct MAC tag and MAC2 is the one tried by the attacker, you can easily 
identify the position of the first difference, which is the number of correctly 
guessed bytes.

Of course, if execution time doesn’t depend on a secret timing, timing 
attacks won’t work, which is why implementers strive to write constant-time 
implementations—that is, code that takes exactly the same time to com-
plete for any secret input value. For example, the C function in Listing 7-3 
compares two buffers of size bytes in constant time: the temporary variable 
result will be nonzero if and only if there’s a difference somewhere in the 
two buffers.

int cmp_const(const void *a, const void *b, const size_t size) 
{
  const unsigned char *_a = (const unsigned char *) a;
  const unsigned char *_b = (const unsigned char *) b;
  unsigned char result = 0;
  size_t i;
 
  for (i = 0; i < size; i++) {
    result |= _a[i] ^ _b[i];
  }
 
  return result; /* returns 0 if *a and *b are equal, nonzero otherwise */
}

Listing 7-3: Constant-time comparison of two buffers, for safer MAC verification

When Sponges Leak
Permutation-based algorithms like SHA-3 and SipHash are simple, easy to 
implement, and come with compact implementations, but they’re fragile 
in the face of side-channel attacks that recover a snapshot of the system’s 
state. For example, if a process can read the RAM and registers’ values at 
any time, or read a core dump of the memory, an attacker can determine 
the internal state of SHA-3 in MAC mode, or the internal state of SipHash, 
and then compute the reverse of the permutation to recover the initial 
secret state. They can then forge tags for any message, breaking the MAC’s 
security.

Fortunately, this attack will not work against compression function–
based MACs such as HMAC-SHA-256 and keyed BLAKE2 because the 
attacker would need a snapshot of memory at the exact time when the key 
is used. The upshot is that if you’re in an environment where parts of a pro-
cess’s memory may leak, you can use a MAC based on a noninvertible trans-
form compression function rather than a permutation.
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Further Reading
The venerable HMAC deserves more attention than I have space for here, 
and even more for the train of thought that led to its wide adoption, and 
eventually to its demise when combined with a weak hash function. I recom-
mend the 1996 paper “Keying Hash Functions for Message Authentication” 
by Bellare, Canetti, and Krawczyk, which introduced HMAC and its cousin 
NMAC, and the 2006 follow-up paper by Bellare called “New Proofs for 
NMAC and HMAC: Security Without Collision-Resistance,” which proves 
that HMAC doesn’t need a collision-resistant hash, but only a hash with a 
compression function that is a PRF. On the offensive side, the 2007 paper 
“Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5” by 
Fouque, Leurent, and Nguyen shows how to attack HMAC and NMAC when 
they’re built on top of a brittle hash function such as MD4 or MD5. (By the 
way, HMAC-MD5 and HMAC-SHA-1 aren’t totally broken, but the risk is 
high enough.)

The Wegman–Carter MACs are also worth more attention, both for 
their practical interest and underlying theory. The seminal papers by 
Wegman and Carter are available at http://cr.yp.to/bib/entries.html. Other 
state-of-the-art designs include UMAC and VMAC, which are among the 
fastest MACs on long messages.

One type of MAC not discussed in this chapter is Pelican, which uses the 
AES block cipher reduced to four rounds (down from 10 in the full block 
cipher) to authenticate chunks of messages within a simplistic construction, 
as described in https://eprint.iacr.org/2005/088/. Pelican is more of a curiosity, 
though, and it’s rarely used in practice.

Last but not least, if you’re interested in finding vulnerabilities in cryp-
tographic software, look for uses of CBC-MAC, or for weaknesses caused 
by HMAC handling keys of arbitrary sizes—taking Hash(K) as the key 
rather than K if K is too long, thus making K and Hash(K) equivalent keys. 
Or just look for systems than don’t use MAC when they should—a frequent 
occurrence.

In Chapter 8, we’ll look at how to combine MACs with ciphers to protect 
a message’s authenticity, integrity, and confidentiality. We’ll also look at how 
to do it without MACs, thanks to authenticated ciphers, which are ciphers 
that combine the functionality of a basic cipher with that of a MAC by 
returning a tag along with each ciphertext.





8
A u t h e n t i c a t e d  E n c r y p t i o n

This chapter is about a type of algorithm 
that protects not only a message’s confi-

dentiality but also its authenticity. Recall 
from Chapter 7 that message authentication 

codes (MACs) are algorithms that protect a message’s 
authenticity by creating a tag, which is a kind of signa-
ture. Like MACs, the authenticated encryption (AE) 
algorithms we’ll discuss in this chapter produce an 
authentication tag, but they also encrypt the message. 
In other words, a single AE algorithm offers the fea-
tures of both a normal cipher and a MAC.

Combining a cipher and a MAC can achieve varying levels of authenti-
cated encryption, as you’ll learn throughout this chapter. I’ll review several 
possible ways to combine MACs with ciphers, explain which methods are the 
most secure, and introduce you to ciphers that produce both a ciphertext 
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and an authentication tag. We’ll then look at four important authenticated 
ciphers: three block cipher–based constructions, with a focus on the popular 
Advanced Encryption Standard in Galois Counter Mode (AES-GCM), and a 
cipher that uses only a permutation algorithm.

Authenticated Encryption Using MACs
As shown in Figure 8-1, MACs and ciphers can be combined in one of three 
ways to both encrypt and authenticate a plaintext: encrypt-and-MAC, 
MAC-then-encrypt, and encrypt-then-MAC.
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Encrypt-and-MAC

P

E

MAC

C

MAC-then-encrypt
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E

MAC

C T

Encrypt-then-MAC

Figure 8-1: Cipher and MAC combinations

The three combinations differ in the order in which encryption is 
applied and the authentication tag is generated. However, the choice of a 
specific MAC or cipher algorithm is unimportant as long as each is secure 
in its own right, and the MAC and cipher use distinct keys.

As you can see in Figure 8-1, in the encrypt-and-MAC composition, 
the plaintext is encrypted and an authentication tag is generated from the 
plaintext directly, such that the two operations (encryption and authenti-
cation) are independent of each other and can therefore be computed in 
parallel. In the MAC-then-encrypt scheme, the tag is generated from the 
plaintext first, and then the plaintext and MAC are encrypted together. 
In contrast, in the case of the encrypt-then-MAC method, the plaintext is 
encrypted first, and then the tag is generated from the ciphertext.

All three approaches are about equally resource intensive. Let’s see 
which method is likely to be the most secure.

Encrypt-and-MAC
The encrypt-and-MAC approach computes a ciphertext and a MAC tag sepa-
rately. Given a plaintext (P), the sender computes a ciphertext C = E(K1, P), 
where E is an encryption algorithm and C is the resulting ciphertext. The 
authentication tag (T) is calculated from the plaintext as T = MAC(K2, P). 
You can compute C and T first or in parallel.

Once the ciphertext and authentication tag have been generated, 
the sender transmits both to the intended recipient. When the recipient 
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receives C and T, they decrypt C to obtain the plaintext P by computing 
P = D(K1, C). Next, they compute MAC(K2, P) using the decrypted plain-
text and compare the result to the T received. This verification will fail if 
either C or T was corrupted, and the message will be deemed invalid.

At least in theory, encrypt-and-MAC is the least secure MAC and cipher 
composition because even a secure MAC could leak information on P, which 
would make P easier to recover. Because the goal of using MACs is simply to 
make tags unforgeable, and because tags aren’t necessarily random looking, 
the authentication tag (T) of a plaintext (P) could still leak information even 
though the MAC is considered secure! (Of course, if the MAC is a pseudo-
random function, the tag won’t leak anything on P.)

Still, despite its relative weakness, encrypt-and-MAC continues to be 
supported by many systems, including the secure transport layer protocol 
SSH, wherein each encrypted packet C is followed by the tag T = MAC(K, 
N || P) sent in the unencrypted plaintext packet P. N in this equation is a 
32-bit sequence number that is incremented for each sent packet, in order 
to help ensure that the received packets are processed in the right order. 
In practice, encrypt-and-MAC has proven good enough for use with SSH, 
thanks to the use of strong MAC algorithms like HMAC-SHA-256 that don’t 
leak information on P.

MAC-then-Encrypt
The MAC-then-encrypt composition protects a message, P, by first computing 
the authentication tag T = MAC(K2, P). Next, it creates the ciphertext by 
encrypting the plaintext and tag together, according to C = E(K1, P || T). 

Once these steps have been completed, the sender transmits only C, 
which contains both the encrypted plaintext and tag. Upon receipt, the 
recipient decrypts C by computing P || T = D(K1, C) to obtain the plaintext 
and tag T. Next, the recipient verifies the received tag T by computing a tag 
directly from the plaintext according to MAC(K2, P) in order to confirm 
that the computed tag is equal to the tag T.

As with encrypt-and-MAC, when MAC-then-encrypt is used, the recipi-
ent must decrypt C before they can determine whether they are receiving 
corrupted packets—a process that exposes potentially corrupted plain-
texts to the receiver. Nevertheless, MAC-then-encrypt is more secure than 
encrypt-and-MAC because it hides the plaintext’s authentication tag, thus 
preventing the tag from leaking information on the plaintext.

MAC-then-encrypt has been used in the TLS protocol for years, but 
TLS 1.3 replaced MAC-then-encrypt with authenticated ciphers (see 
Chapter 13 for more on TLS 1.3).

Encrypt-then-MAC
The encrypt-then-MAC composition sends two values to the recipient: the 
ciphertext produced by C = E(K1, P) and a tag based on the ciphertext, 
T = MAC(K2, C). The receiver computes the tag using MAC(K2, C) and veri-
fies that it equals the T received. If the values are equal, the plaintext is com-
puted as P = D(K1, C); if they are not equal, the ciphertext is discarded.
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One advantage with this method is that the receiver only needs to com-
pute a MAC in order to detect corrupt messages, meaning that there is no 
need to decrypt a corrupt ciphertext. Another advantage is that attackers 
can’t send pairs of C and T to the receiver to decrypt unless they have bro-
ken the MAC, which makes it harder for attackers to transmit malicious 
data to the recipient.

This combination of features makes encrypt-then-MAC stronger than the 
encrypt-and-MAC and MAC-then-encrypt approaches. This is one reason why 
the widely used IPSec secure communications protocol suite uses it to protect 
packets (for example, within VPN tunnels).

But then why don’t SSH and TLS use encrypt-then-MAC? The simple 
answer is that when SSH and TLS were created, other approaches appeared 
adequate—not because theoretical weaknesses didn’t exist but because 
theoretical weaknesses don’t necessarily become actual vulnerabilities.

Authenticated Ciphers
Authenticated ciphers are an alternative to the cipher and MAC combinations. 
They are like normal ciphers except that they return an authentication tag 
together with the ciphertext.

The authenticated cipher encryption is represented as AE(K, P) = (C, T). 
The term AE stands for authenticated encryption, which as you can see from 
this equation is based on a key (K) and a plaintext (P) and returns a cipher-
text (C) and a generated authentication tag pair (T). In other words, a sin-
gle authenticated cipher algorithm does the same job as a cipher and MAC 
combination, making it simpler, faster, and often more secure.

Authenticated cipher decryption is represented by AD(K, C, T) = P. 
Here, AD stands for authenticated decryption, which returns a plaintext (P) 
given a ciphertext (C), tag (T), and key (K). If either or both C and T are 
invalid, AD will return an error to prevent the recipient from processing 
a plaintext that may have been forged. By the same token, if AD returns a 
plaintext, you can be sure that it has been encrypted by someone or some-
thing that knows the secret key.

The basic security requirements of an authenticated cipher are simple: 
its authentication should be as strong as a MAC’s, meaning that it should 
be impossible to forge a ciphertext and tag pair (C, T) that the decryption 
function AD will accept and decrypt.

As far as confidentiality is concerned, an authenticated cipher is fun-
damentally stronger than a basic cipher because systems holding the secret 
key will only decrypt a ciphertext if the authentication tag is valid. If the 
tag is invalid, the plaintext will be discarded. This characteristic prevents 
attackers from performing chosen-ciphertext queries, an attack where they 
create ciphertexts and ask for the corresponding plaintext.
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Authenticated Encryption with Associated Data
Cryptographers define associated data as any data processed by an authenti-
cated cipher such that the data is authenticated (thanks to the authentica-
tion tag) but not encrypted. Indeed, by default, all plaintext data fed to an 
authenticated cipher is encrypted and authenticated.

But what if you simply want to authenticate all of a message, including 
its unencrypted parts, but not encrypt the entire message? That is, you 
want to authenticate and transmit data in addition to an encrypted message. 
For example, if a cipher processes a network packet composed of a header 
followed by a payload, you might choose to encrypt the payload to hide the 
actual data transmitted, but not encrypt the header since it contains informa-
tion required to deliver the packet to its final recipient. At the same time, 
you might still like to authenticate the header’s data to make sure that it is 
received from the expected sender.

In order to accomplish these goals, cryptographers have created the 
notion of authenticated encryption with associated data (AEAD). An AEAD 
algorithm allows you to attach cleartext data to a ciphertext in such a way 
that if the cleartext data is corrupted, the authentication tag will not validate 
and the ciphertext will not be decrypted.

We can write an AEAD operation as AEAD(K, P, A) = (C, A, T). Given 
a key (K), plaintext (P), and associated data (A), AEAD returns the cipher-
text, the unencrypted associated data A, and an authentication tag. AEAD 
leaves the unencrypted associated data unchanged, and the ciphertext is 
the encryption of plaintext. The authentication tag depends on both P and 
A, and will only be verified as valid if neither C nor A has been modified.

Because the authenticated tag depends on A, decryption with associ-
ated data is computed by ADAD(K, C, A, T) = (P, A). Decryption requires 
the key, ciphertext, associated data, and tag in order to compute the plain-
text and associated data, and it will fail if either C or A has been corrupted.

One thing to note when using AEAD is that you can leave A or P empty. 
If the associated data A is empty, AEAD becomes a normal authenticated 
cipher; if P is empty, it’s just a MAC.

N o t e 	 As of this writing, AEAD is the current norm for authenticated encryption. Because 
nearly all authenticated ciphers in use today support associated data, when referring 
to authenticated ciphers throughout this book, I am referring to AEAD unless stated 
otherwise. When discussing AEAD operations of encryption and decryption, I’ll refer 
to them as AE and AD, respectively.

Avoiding Predictability with Nonces
Recall from Chapter 1 that in order to be secure, encryption schemes must 
be unpredictable and return different ciphertexts when called repeatedly to 
encrypt the same plaintext—otherwise, an attacker can determine whether 
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the same plaintext was encrypted twice. In order to be unpredictable, block 
ciphers and stream ciphers feed the cipher an extra parameter: the initial 
value (IV) or nonce—a number that can be used only once. Authenticated 
ciphers use the same trick. Thus, authenticated encryption can be expressed 
as AE(K, P, A, N), where N is a nonce. It’s up to the encryption operation to 
pick a nonce that has never been used before with the same key.

As with block and stream ciphers, decryption with an authenticated 
cipher requires the nonce used for encryption in order to perform correctly. 
We can thus express decryption as AD(K, C, A, T, N) = (P, A), where N is the 
nonce used to create C and T.

What Makes a Good Authenticated Cipher?
Researchers have been struggling since the early 2000s to define what 
makes a good authenticated cipher, and as I write this, the answer is still 
elusive. Because of AEAD’s many inputs that play different roles, it’s harder 
to define a notion of security than it is for basic ciphers that only encrypt a 
message. Nevertheless, in this section, I’ll summarize the most important 
criteria to consider when evaluating the security, performance, and func-
tionality of an authenticated cipher.

Security Criteria

The most important criteria used to measure the strength of an authenti-
cated cipher are its ability to protect the confidentiality of data (that is, the 
secrecy of the plaintext) and the authenticity and integrity of the communi-
cation (as with the MAC’s ability to detect corrupted messages). An authen-
ticated cipher must compete in both leagues: its confidentiality must be as 
strong as that of the strongest cipher, and its authenticity as strong as that 
of the best MAC. In other words, if you remove the authentication part in 
an AEAD, you should get a secure cipher, and if you remove the encryption 
part, you should get a strong MAC.

Another measure of the strength of an authenticated cipher’s security is 
based on something a bit more subtle—namely, its fragility when faced with 
repeated nonces. For example, if a nonce is reused, can an attacker decrypt 
ciphertexts or learn the difference between plaintexts?

Researchers call this notion of robustness misuse resistance, and have 
designed misuse-resistant authenticated ciphers to weigh the impact of a 
repeated nonce and attempt to determine whether confidentiality, authen-
ticity, or both would be compromised in the face of such an attack, as well 
as what information about the encrypted data would likely be leaked.

Performance Criteria

As with every cryptographic algorithm, the throughput of an authenticated 
cipher can be measured in bits processed per second. This speed depends 
on the number of operations performed by the cipher’s algorithm and on 
the extra cost of the authentication functionality. As you might imagine, the 
extra security features of authenticated ciphers come with a performance 
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hit. However, the measure of a cipher’s performance isn’t just about pure 
speed. It’s also about parallelizability, structure, and whether the cipher is 
streamable. Let’s examine these notions more closely. 

A cipher’s parallelizability is a measure of its ability to process multiple 
data blocks simultaneously without waiting for the previous block’s process-
ing to complete. Block cipher–based designs can be easily parallelizable 
when each block can be processed independently of the other blocks. For 
example, the CTR block cipher mode discussed in Chapter 4 is paralleliz-
able, whereas the CBC encryption mode is not, because blocks are chained.

The internal structure of an authenticated cipher is another important 
performance criteria. There are two main types of structure: one-layer 
and two-layer. In a two-layer structure (for example, in the widely used 
AES-GCM), one algorithm processes the plaintext and then a second 
algorithm processes the result. Typically, the first layer is the encryption 
layer and the second is the authentication layer. But as you might expect, 
a two-layer structure complicates implementation and tends to slow down 
computations.

An authenticated cipher is streamable (also called an online cipher) when 
it can process a message block-by-block and discard any already-processed 
blocks. In contrast, nonstreamable ciphers must store the entire message, 
typically because they need to make two consecutive passes over the data: 
one from the start to the end, and the other from the end to the start of the 
data obtained from the first pass.

Due to potentially high memory requirements, some applications won’t 
work with nonstreamable ciphers. For example, a router could receive an 
encrypted block of data, decrypt it, and then return the plaintext block 
before moving on to decrypt the subsequent block of the message, though 
the recipient of the decrypted message would still have to verify the authen-
tication tag sent at the end of the decrypted data stream.

Functional Criteria

Functional criteria are the features of a cipher or its implementation that 
don’t directly relate to either security or performance. For example, some 
authenticated ciphers only allow associated data to precede the data to be 
encrypted (because they need access to it in order to start encryption). 
Others require associated data to follow the data to be encrypted or sup-
port the inclusion of associated data anywhere—even between chunks of 
plaintext. This last case is the best, because it enables users to protect their 
data in any possible situation, but it’s also the hardest to design securely: as 
always, more features often bring more complexity—and more potential 
vulnerabilities.

Another piece of functional criteria to consider relates to whether 
you can use the same core algorithm for both encryption and decryption. 
For example, many authenticated ciphers are based on the AES block 
cipher, which specifies the use of two similar algorithms for encrypting 
and decrypting a block. As discussed in Chapter 4, the CBC block cipher 
mode requires both algorithms, but the CTR mode requires only the 
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encryption algorithm. Likewise, authenticated ciphers may not need both 
algorithms. Although the extra cost of implementing both encryption and 
decryption algorithms won’t impact most software, it’s often noticeable on 
low-cost dedicated hardware, where implementation cost is measured in 
terms of logic gates, or the silicon area occupied by the cryptography.

AES-GCM: The Authenticated Cipher Standard
AES-GCM is the most widely used authenticated cipher. AES-GCM is, 
of course, based on the AES algorithm, and the Galois counter mode 
(GCM) of operation is essentially a tweak of the CTR mode that incorpo-
rates a small and efficient component to compute an authentication tag. 
As I write this, AES-GCM is the only authenticated cipher that is a NIST 
standard (SP 800-38D). AES-GCM is also part of NSA’s Suite B and of the 
Internet Engineering Task Force (IETF) for the secure network protocols 
IPSec, SSH, and TLS 1.2.

N O T E 	 Although GCM works with any block cipher, you’ll probably only see it used with 
AES. Some people don’t want to use AES because it’s American, but they won’t use 
GCM either, for the same reason. Therefore, GCM is rarely paired with other ciphers.

GCM Internals: CTR and GHASH
Figure 8-2 shows how AES-GCM works: AES 
instances parameterized by a secret key (K) 
transform a block composed of the nonce 
(N) concatenated with a counter (starting 
here at 1, then incremented to 2, 3, and so 
on) and then XOR the result with a plain-
text block to obtain a ciphertext block. So 
far, that’s nothing new compared to the 
CTR mode.

Next, the ciphertext blocks are mixed 
using a combination of XORs and multipli-
cations (as you’ll see next). You can see AES-
GCM as doing 1) an encryption in CTR 
mode and 2) a MAC over the ciphertext 
blocks. Therefore, AES-GCM is essentially 
an encrypt-then-MAC construction, where 
AES-CTR encrypts using a 128-bit key (K) 
and a 96-bit nonce (N), with the minor dif-
ference that the counter starts from 1, not 0, 
as in normal CTR mode (which doesn’t mat-
ter, as far as security is concerned).

To authenticate the ciphertext, 
GCM uses a Wegman–Carter MAC 
(see Chapter 7), which XORs the value 
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AESK

N || 1
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AESK

N || 2
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C2

A1 H H H

H

len(A) || len(C)

AESKN || 0

Figure 8-2: The AES-GCM mode, 
applied to one associated data 
block, A1, and two plaintext 
blocks, P1 and P2. The circled 
multiplication sign represents poly-
nomial multiplication by H, the 
authentication key derived from K.
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AES(K, N || 0) with the output of a universal hash function called GHASH. 
In Figure 8-2, GHASH corresponds to the series of operations “⊗H” fol-
lowed by the XOR with len(A) || len(C), or the bit length of A (the associ-
ated data) followed by the bit length of C (the ciphertext).

We can thus express the authentication tag’s value as T = GHASH(H, 
C) ⊕ AES(K, N || 0), where C is the ciphertext and H is the hash key, or 
authentication key. This key is determined as H = AES(K, 0), which is the 
encryption of the block equal to a sequence of null bytes (this step does 
not appear in Figure 8-2, for clarity).

N O T E 	 In GCM, GHASH doesn’t use K directly in order to ensure that if GHASH’s key is 
compromised, the master key K remains secret. Given K, you can get H by computing 
AES(K, 0), but you can’t recover K from that value since K acts here as AES’s key.

As Figure 8-2 shows, GHASH uses polynomial notation to multiply each 
ciphertext block with the authentication key H. This use of polynomial mul-
tiplication makes GHASH fast in hardware as well as in software, thanks to 
a special polynomial multiplication instruction available in many common 
microprocessors (CLMUL, for carry-less multiplication).

Alas, GHASH is far from ideal. For one thing, its speed is suboptimal. 
Even when the CLMUL instruction is used, the AES-CTR layer that encrypts the 
plaintext remains faster than the GHASH MAC. Second, GHASH is painful 
to implement correctly. In fact, even the experienced developers of the 
OpenSSL project, by far the most-used cryptographic piece of software in the 
world, got AES-GCM’s GHASH wrong. One commit had a bug in a function 
called gcm_ghash_clmul that allowed attackers to forge valid MACs for the AES-
GCM. (Fortunately, the error was spotted by Intel engineers before the bug 
entered the next OpenSSL release.)

POLY NOMI A L MULT IPL IC AT ION

While clearly more complicated for us than classic integer arithmetic, polyno-
mial multiplication is simpler for computers because there are no carries. For 
example, say we want to compute the product of the polynomials (1 + X + X 2) 
and (X + X 3). We first multiply the two polynomials (1 + X + X 2) and (X + X 3) 
as though we were doing normal polynomial multiplication, thus giving us the 
following (the two terms X 3 cancel each other out):

1 + + +  = + + + + + = + + +2 3 3 2 4 3 5 2 4 5X X X X X X X X X X X X X X� � � ��

We now apply modulo reduction, reducing X + X 2 + X 4 + X 5 modulo 
1 + X 3 +X 4 to give us X 2, because X + X 2 + X 4 + X 5 can be written as 
X + X 2 + X 4 + X 5 = X ⊗ (1 + X 3 + X 4) + X 2. In more general terms, A + BC 
modulo B is equal to A, by definition of modular reduction.
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GCM Security
AES-GCM’s biggest weakness is its fragility in the face of nonce repetition. 
If the same nonce N is used twice in an AES-GCM implementation, an 
attacker can get the authentication key H and use it to forge tags for any 
ciphertext, associated data, or combination thereof.

A look at the basic algebra behind AES-GCM’s computations (as shown 
in Figure 8-2) will help make this fragility clear. Specifically, a tag (T) is 
computed as T = GHASH(H, A, C) ⊕ AES(K, N || 0), where GHASH is a 
universal hash function with linearly related inputs and outputs.

Now what happens if you get two tags, T1 and T2, computed with the 
same nonce N ? Right, the AES part will vanish. If we have two tags, T1 
= GHASH(H, A1, C1) ⊕ AES(K, N || 0) and T2 = GHASH(H, A2, C2) ⊕ 
AES(K, N || 0), then XORing them together gives the following:

GHASH AES GHASH AESH A C K N H A C K N, , , , , , 1 1 2 20 0� � ��� � � � ���� � � ��
� � � � ��� � �� � � �GHASH GHASH AES AESH A C H A C K N K N, , , , , , 1 1 2 2 0 ��� �

� � � �
� �

� �
0

1 1 2 2GHASH GHASHH A C H A C, , , , 

If the same nonce is used twice, an attacker can thus recover the value 
GHASH(H, A1, C1) ⊕ GHASH(H, A2, C2) for some known A1, C1, A2, and C2. 
The linearity of GHASH then allows an attacker to easily determine H. (It 
would have been worse if GHASH had used the same key K as the encryption 
part, but because H = AES(K, 0), there’s no way to find K from H.)

As recently as 2016, researchers scanned the internet for instances of 
AES-GCM exposed through HTTPS servers, in search of systems with repeat-
ing nonces (see https://eprint.iacr.org/2016/475/). They found 184 servers with 
repeating nonces, including 23 that always used the all-zero string as a nonce.

GCM Efficiency
One advantage of GCM mode is that both GCM encryption and decryption 
are parallelizable, allowing you to encrypt or decrypt different plaintext 
blocks independently. However, the AES-GCM MAC computation isn’t par-
allelizable, because it must be computed from the beginning to the end of 
the ciphertext once GHASH has processed any associated data. This lack of 
parallelizability means that any system that receives the plaintext first and 
then the associated data will have to wait until all associated data is read 
and hashed before hashing the first ciphertext block.

Nevertheless, GCM is streamable: since the computations in its two layers 
can be pipelined, there’s no need to store all ciphertext blocks before com-
puting GHASH because GHASH will process each block as it’s encrypted. 
In other words, P1 is encrypted to C1, then GHASH processes C1 while P2 is 
encrypted to C2, then P1 and C1 are no longer needed, and so on.
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OCB: An Authenticated Cipher Faster than GCM
The acronym OCB stands for offset codebook (though its designer, Phil Rogaway, 
prefers to simply call it OCB). First developed in 2001, OCB predates GCM, 
and like GCM it produces an authenticated cipher from a block cipher, 
though it does so faster and more simply. Then why hasn’t OCB seen wider 
adoption? Unfortunately, until 2013, all uses of OCB required a license from 
the inventor. Fortunately, as I write this, Rogaway grants free licenses for non-
military software implementations (see http://web.cs.ucdavis.edu/~rogaway/ocb/
license.htm). Therefore, although OCB is not yet a formal standard, perhaps 
we will begin to see wider adoption.

Unlike GCM, OCB blends encryption and authentication into one pro-
cessing layer that uses only one key. There’s no separate authentication com-
ponent, so OCB gets you authentication mostly for free and performs almost 
as many block cipher calls as a non-authenticated cipher. Actually, OCB is 
almost as simple as the ECB mode (see Chapter 4), except that it’s secure.

OCB Internals
Figure 8-3 shows how OCB works: OCB encrypts each plaintext block P to a 
ciphertext block C = E(K, P ⊕ O) ⊕ O, where E is a block cipher encryption 
function. Here, O (called the offset) is a value that depends on the key and 
the nonce incremented for each new block processed.

To produce the authentication tag, OCB first XORs the plaintext blocks 
together to compute S = P1 ⊕ P2 ⊕ P3 ⊕ . . . (that is, the XOR of all plaintext 
blocks). The authentication tag is then T = E(K, S ⊕ O*), where O* is an off-
set value computed from the offset of the last plaintext block processed.

P1

EKEKEK

P2

C1 C2

O1

O1

O2

O2 O*
P1

⊕ P2

T

Figure 8-3: The OCB encryption process when run  
on two plaintext blocks, with no associated data

Like AES-GCM, OCB also supports associated data as a series of blocks, 
A1, A2, and so on. When an OCB encrypted message contains associated 
data, the authentication tag is calculated according to the formula

T K S O K A O K A O= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕∗E E E( ) ( ) ( ), , , . . .1 1 2 2

where OCB specifies offset values that are different from those used to 
encrypt P.

http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
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Unlike GCM and encrypt-then-MAC, which create an authentication 
tag by combining ciphertext, OCB calculates the authentication tag by com-
bining plaintext data. There’s nothing wrong with this approach, and OCB 
is backed by solid security proofs.

N o t e 	 For more on how to implement OCB correctly, see either RFC 7253 or the 2011 
paper “The Software Performance of Authenticated-Encryption Modes” by Krovetz 
and Rogaway, which covers the latest and best version of OCB, OCB3. For further 
details on OCB, see the OCB FAQ at http://web.cs.ucdavis.edu/~rogaway/
ocb/ocb-faq.htm.

OCB Security
OCB is a bit less fragile than GCM against repeated nonces. For example, 
if a nonce is used twice, an attacker that sees the two ciphertexts will notice 
that, say, the third plaintext block of the first message is identical to the third 
plaintext block of the second message. With GCM, attackers can find not only 
duplicates but also XOR differences between blocks at the same position. The 
impact of repeated nonces is therefore worse with GCM than it is with OCB.

As with GCM, repeated nonces can break the authenticity of OCB, 
though less effectively. For example, an attacker could combine blocks from 
two messages authenticated with OCB to create another encrypted message 
with the same checksum and tag as one of the original two messages, but 
the attacker would not be able to recover a secret key as with GCM.

OCB Efficiency
OCB and GCM are about equally fast. Like GCM, OCB is parallelizable and 
streamable. In terms of raw efficiency, GCM and OCB will make about as 
many calls to the underlying block cipher (usually AES), but OCB is slightly 
more efficient than GCM because it simply XORs the plaintext rather than 
performing something like the relatively expensive GHASH computation. 
(In earlier generations of Intel microprocessors, AES-GCM used to be more 
than three times slower than AES-OCB because AES and GHASH instruc-
tions had to compete for CPU resources and couldn’t be run in parallel.)

One important difference between OCB and GCM implementations is 
that OCB needs both the block cipher’s encryption and decryption functions 
in order to encrypt and decrypt, which increases the cost of hardware imple-
mentations when only limited silicon is available for crypto components. In 
contrast, GCM uses only the encryption function for both encryption and 
decryption.

SIV: The Safest Authenticated Cipher?
Synthetic IV, also known as SIV, is an authenticated cipher mode typically used 
with AES. Unlike GCM and OCB, SIV is secure even if you use the same 
nonce twice: if an attacker gets two ciphertexts encrypted using the same 

http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm
http://web.cs.ucdavis.edu/~rogaway/ocb/ocb-faq.htm
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nonce, they’ll only be able to learn whether the same plaintext was encrypted 
twice. Unlike with messages encrypted with GCM or OCB, the attacker would 
be unable to tell whether the first block of the two messages is the same 
because the nonce used to encrypt is first computed as a combination of the 
given nonce and the plaintext.

The SIV construction specification is more general than that of GCM. 
Instead of specifying detailed internals as with GCM’s GHASH, SIV simply 
tells you how to combine a cipher (E) and a pseudorandom function (PRF) 
to get an authenticated cipher. Specifically, you compute the tag T = PRF(K1, 
N || P) and then compute the ciphertext C = E(K2, T, P), where T acts as the 
nonce of E. Thus, SIV needs two keys (K1 and K2) and a nonce (N).

The major problem with SIV is that it’s not streamable: after computing 
T, it must keep the entire plaintext P in memory. In other words, in order to 
encrypt a 100GB plaintext with SIV, you must first store the 100GB of plain-
text so that SIV encryption can read it.

The document RFC 5297, based on the 2006 paper “Deterministic 
Authenticated-Encryption” by Rogaway and Shrimpton, specifies SIV as 
using CMAC-AES (a MAC construction using AES) as a PRF and AES-CTR 
as a cipher. In 2015, a more efficient version of SIV was proposed, called 
GCM-SIV, that combines GCM’s fast GHASH function and SIV’s mode 
and is nearly as fast as GCM. Like the original SIV, however, GCM-SIV isn’t 
streamable. (For more information, see https://eprint.iacr​.org/2015/102/.)

Permutation-Based AEAD
Now for a totally different approach to building an authenticated cipher: 
instead of building a mode of operation around a block cipher like AES, 
we’ll look at a cipher that builds a mode around a permutation. A permuta-
tion simply transforms an input to an output of the same size, reversibly, 
without using a key, that’s the simplest component imaginable. Better still, 
the resulting AEAD is fast, provably secure, and more resistant to nonce 
reuse than GCM and OCB.

Figure 8-4 shows how a permutation-based AEAD works: from some 
fixed initial state H0, you XOR the key K followed by the nonce N to the 
internal state, to obtain a new value of the internal state that is the same size 
as the original. You then transform the new state with P and get another new 
value of the state. Now you XOR the first plaintext block P1 to the current 
state and take the resulting value as the first ciphertext block C1, where P1 
and C1 are equal in size but smaller than the state.

To encrypt a second block, you transform the state with P, XOR the 
next plaintext block P2 to the current state, and take the resulting value as 
C2. You then iterate over all plaintext blocks and, following the last call to P, 
take bits from the internal state as the authentication tag T, as shown at the 
right of Figure 8-4.

https://eprint.iacr.org/2015/102/
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PH0 P P

K || N P1 P2C1 C2 T

Figure 8-4: Permutation-based authenticated cipher

N o t e 	 The mode shown in Figure 8-4 can be adapted to support associated data, but the 
process is a bit more complicated, so we’ll skip its description.

Designing permutation-based authenticated ciphers has certain require-
ments in order to ensure security. For one thing, note that you only XOR 
input values to a part of the state: the larger this part, the more control a suc-
cessful attacker has on the internal state, and thus the lower the cipher’s secu-
rity. Indeed, all security relies on the secrecy of the internal state.

Also, blocks must be padded properly with extra bits, in a way that 
ensures that any two different messages will yield different results. As a 
counterexample, if the last plaintext block is shorter than a complete block, 
it should not just be padded with zeroes; otherwise, a plaintext block of, say, 
two bytes (0000) would result in a complete plaintext block (0000 . . . 0000), 
as would a block of three bytes (000000). As a result, you’d get the same tag 
for both messages, although they differ in size.

What if a nonce is reused in such a permutation-based cipher? The 
good news is that the impact isn’t as bad as with GCM or OCB—the 
strength of the authentication tag won’t be compromised. If a nonce is 
repeated, a successful attacker would only be able to learn whether the 
two encrypted messages begin with the same value, as well as the length 
of this common value, or prefix. For example, although encrypting the 
two six-block messages ABCXYZ and ABCDYZ (each letter symbolizing a 
block here) with the same nonce might yield the two ciphertexts JKLTUV 
and JKLMNO, which have identical prefixes, attackers would not be able 
to learn that the two plaintexts shared the same final two blocks (YZ).

In terms of performance, permutation-based ciphers offer the ben-
efits of a single layer of operations, streamable processing, and the use of a 
single core algorithm for encryption and decryption. However, they are not 
parallelizable like GCM or OCB because new calls to P need to wait for the 
previous call to complete.

N o t e 	 If you’re tempted to pick your favorite permutation and make up your own authenti-
cated cipher, don’t. You’re likely to get the details wrong and end up with an insecure 
cipher. Read the specifications written by experienced cryptographers for algorithms 
such as Keyak (an algorithm derived from Keccak) and NORX (designed by Philipp 
Jovanovic, Samuel Neves, and myself), and you’ll see that permutation-based ciphers 
are way more complex than they may first appear.
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How Things Can Go Wrong
Authenticated ciphers have a larger attack surface than hash functions or 
block ciphers because they aim to achieve both confidentiality and authen-
ticity. They take several different input values, and must remain secure 
regardless of the input—whether that contains only associated data and 
no encrypted data, extremely large plaintexts, or different key sizes. They 
must also be secure for all nonce values against attackers who collect 
numerous message/tag pairs and, to some extent, against accidental rep-
etition of nonces.

That’s a lot to ask, and as you’ll see next, even AES-GCM has several 
imperfections.

AES-GCM and Weak Hash Keys
One of AES-GCM’s weaknesses is found in its authentication algorithm 
GHASH: certain values of the hash key H greatly simplify attacks against 
GCM’s authentication mechanism. Specifically, if the value H belongs to 
some specific, mathematically defined subgroups of all 128-bit strings, 
attackers might be able to guess a valid authentication tag for some mes-
sage simply by shuffling the blocks of a previous message.

In order to understand this weakness, let’s look at how GHASH works.

GHASH Internals

As you saw in Figure 8-2, GHASH starts with a 128-bit value, H, initially set 
to AES(K, 0), and then repeatedly computes

X X C Hi i i= ⊕( )
  − ⊗1

starting from X0 = 0 and processing ciphertext blocks C1, C2, and so on. The 
final Xi is returned by GHASH to compute the final tag.

Now say for the sake of simplicity that all Ci values are equal to 1, so that 
for any i we have this:

C H H Hi ⊗ ⊗= =1

Next, from the GHASH equation

X X C Hi i i= ⊕( )
  − ⊗1

we derive

X X C H H H1 0 1 0 1= ⊕ = ⊕ =( ) ( )⊗ ⊗

substituting X0 with 0 and C1 with 1, to yield the following:

( )0 1 1⊕ =
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Thanks to the distributive property of ⊗ over ⊕, we substitute X with H 
and C2 with 1 and then compute the next value X2 as

X X C H H H H H2 1 2
21= ⊕ = ⊕ = ⊕( ) ( )⊗ ⊗

where H 2 is H squared, or H ⊗ H.
Now we derive X3 by substituting X2 for its derivation, and obtain the 

following:

X X C H H H H H H H3 2 3
2 3 21= ⊕ = ⊕ ⊕ = ⊕ ⊕( ) ( )⊗ ⊗

Next, we derive X4 to be X4 = H 4 ⊕ H 3 ⊕ H 2 ⊕ H, and so on, and even-
tually the last Xi is this:

X H H H H Hn
n n n= ⊕ ⊕ ⊕ ⊕ ⊕    . . .− −1 2 2

Remember that we set all blocks Ci equal to 1. If instead those values 
were arbitrary values, we would end up with the following:

X C H C H C H C H C Hn
n n n

n n= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕1 2
1

3
2

1
2    

  
. . .− −

−

GHASH then would XOR the message’s length to this last Xn, multiply 
the result by H, and then XOR this value with AES(K, N || 0) to create the 
final authentication tag, T.

Where Things Break

What can go wrong from here? Let’s look first at the two simplest cases:

•	 If H = 0, then Xn = 0 regardless of the Ci values, and thus regardless of 
the message. That is, all messages will have the same authentication tag 
if H is 0.

•	 If H = 1, then the tag is just an XOR of the ciphertext blocks, and reor-
dering the ciphertext blocks will give the same authentication tag.

Of course, 0 and 1 are only two values of 2128 possible values of H, so 
there is only a 2/2128 = 1/2127 chance of these occurring. But there are other 
weak values as well—namely, all values of H that belong to a short cycle when 
raised to ith powers. For example, the value H = 10d04d25f93556e69f58​
ce2f8d035a4 belongs to a cycle of length five, as it satisfies H 5 = H, and 
therefore H e = H for any e that is a multiple of five (the very definition of 
cycle with respect to fifth powers). Consequently, in the preceding expres-
sion of the final GHASH value Xn, swapping the blocks Cn (multiplied to H) 
and the block Cn – 4 (multiplied to H 5) will leave the authentication tag 
unchanged, which amounts to a forgery. An attacker may exploit this prop-
erty to construct a new message and its valid tag without knowing the key, 
which should be impossible for a secure authenticated cipher.

The preceding example is based on a cycle of length five, but there 
are many cycles of greater length and therefore many values of H that are 
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weaker than they should be. The upshot is that, in the unlikely case that H 
belongs to a short cycle of values and attackers can forge as many authenti-
cation tags as they want, unless they know H or K, they cannot determine 
H’s cycle length. So although this vulnerability can’t be exploited, it could 
have been avoided by more carefully choosing the polynomial used for 
modulo reductions.

N o t e 	 For further details on this attack, read “Cycling Attacks on GCM, GHASH and 
Other Polynomial MACs and Hashes” by Markku-Juhani O. Saarinen, available at 
https://eprint.iacr.org/2011/202/.

AES-GCM and Small Tags
In practice, AES-GCM usually returns 128-bit tags, but it can produce tags 
of any length. Unfortunately, when shorter tags are used, the probability of 
forgery increases significantly.

When a 128-bit tag is used, an attacker who attempts a forgery should 
succeed with a probability of 1/2128 because there are 2128 possible 128-bit 
tags. (Generally, with an n-bit tag, the probability of success should be 1/2n, 
where 2n is the number of possible values of an n-bit tag.) But when shorter 
tags are used, the probability of forgery is much higher than 1/2n due to 
weaknesses in the structure of GCM that are beyond the scope of this 
discussion. For example, a 32-bit tag will allow an attacker who knows the 
authentication tag of some 2MB message to succeed with a chance of 1/216 

instead of 1/232.
Generally, with n-bit tags, the probability of forgery isn’t 1/2n but rather 

2m/2n, where 2m is the number of blocks of the longest message for which a 
successful attacker observed the tag. For example, if you use 48-bit tags and 
process messages of 4GB (or 228 blocks of 16 bytes each), the probability of 
a forgery will be 228/248 = 1/220, or about one chance in a million. That’s a 
relatively high chance as far as cryptography is concerned. (For more infor-
mation on this attack, see the 2005 paper “Authentication Weaknesses in 
GCM” by Niels Ferguson.)

Further Reading
To learn more about authenticated ciphers, visit the home page of CAESAR, 
the Competition for Authenticated Encryption: Security, Applicability, and 
Robustness (http://competitions.cr.yp.to/caesar.html). Begun in 2012, CAESAR is 
a crypto competition in the style of the AES and SHA-3 competitions, though 
it isn’t organized by NIST.

The CAESAR competition has attracted an impressive number of inno-
vative designs: from OCB-like modes to permutation-based modes, as well 
as new core algorithms. Examples include the previously mentioned NORX 
and Keyak permutation-based authenticated ciphers; AEZ (as in AEasy), 
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which is built on a nonstreamable two-layer mode that makes it misuse resis-
tant; AEGIS, a beautifully simple authenticated cipher that leverages AES’s 
round function.

In this chapter, I’ve focused on GCM, but a handful of other modes are 
used in real applications as well. Specifically, the counter with CBC-MAC 
(CCM) and EAX modes competed with GCM for standardization in the 
early 2000s, and although GCM was selected, the two competitors are used 
in a few applications. For example, CCM is used in the WPA2 Wi-Fi encryp-
tion protocol. You may want to read these ciphers’ specifications and review 
their relative security and performance merits.

This concludes our discussion of symmetric-key cryptography! You’ve 
seen block ciphers, stream ciphers, (keyed) hash functions, and now authen-
ticated ciphers—or all the main cryptography components that work with 
a symmetric key, or no key at all. Before we move to asymmetric cryptogra-
phy, Chapter 9 will focus more on computer science and math, to provide 
background for asymmetric schemes such as RSA (Chapter 10) and Diffie–
Hellman (Chapter 11).



9
H a r d  P r o b l e m s

Hard computational problems are the cor-
nerstone of modern cryptography. They’re 

problems that are simple to describe yet 
practically impossible to solve. These are 

problems for which even the best algorithm wouldn’t 
find a solution before the sun burns out.

In the 1970s, the rigorous study of hard problems gave rise to a new 
field of science called computational complexity theory, which would dra-
matically impact cryptography and many other fields, including econom-
ics, physics, and biology. In this chapter, I’ll give you the conceptual tools 
from complexity theory necessary to understand the foundations of cryp-
tographic security, and I’ll introduce the hard problems behind public-
key schemes such as RSA encryption and Diffie–Hellman key agreement. 
We’ll touch on some deep concepts, but I’ll minimize the technical details 
and only scratch the surface. Still, I hope you’ll see the beauty in the way 
cryptography leverages computational complexity theory to maximize 
security.
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Computational Hardness
A computational problem is a question that can be answered by doing 
enough computation, for example, “Is 2017 a prime number?” or “How 
many i letters are there in incomprehensibilities?” Computational hardness is 
the property of computational problems for which there is no algorithm 
that will run in a reasonable amount of time. Such problems are also 
called intractable problems and are often practically impossible to solve.

Surprisingly, computational hardness is independent of the type of 
computing device used, be it a general-purpose CPU, an integrated circuit, 
or a mechanical Turing machine. Indeed, one of the first findings of com-
putational complexity theory is that all computing models are equivalent. 
If a problem can be solved efficiently with one computing device, it can 
be solved efficiently on any other device by porting the algorithm to the 
other device’s language—an exception is quantum computers, but these do 
not exist (yet). The upshot is that we won’t need to specify the underlying 
computing device or hardware when discussing computational hardness; 
instead, we’ll just discuss algorithms.

To evaluate hardness, we’ll first find a way to measure the complexity of 
an algorithm, or its running time. We’ll then categorize running times as 
hard or easy.

Measuring Running Time
Most developers are familiar with computational complexity, or the approximate 
number of operations done by an algorithm as a function of its input size. 
The size is counted in bits or in the number of elements taken as input. For 
example, take the algorithm shown in Listing 9-1, written in pseudocode. 
It searches for a value, x, within an array of n elements and then returns 
its index position.

search(x, array, n):
    for i from 1 to n {
        if (array[i] == x) {
            return i;
        }
    }
    return 0;
}

Listing 9-1: A simple search algorithm, written in pseudocode, of complexity linear with 
respect to the array length n. The algorithm returns the index where the value x is found in 
[1, n], or 0 if x isn’t found in the array.

In this algorithm, we use a for loop to find a specific value, x, by iterat-
ing through an array. On each iteration, we assign the variable i a number 
starting with 1. Then we check whether the value of position i in array is 
equal to the value of x. If it is, we return the position i. Otherwise, we incre-
ment i and try the next position until we reach n, the length of the array, at 
which point we return 0.
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For this kind of algorithm, we count complexity as the number of itera-
tions of the for loop: 1 in the best case (if x is equal to array[1]), n in the 
worst case (if x is equal to array[n] or if x is not in found in array), and n/2 
on average if x is randomly distributed in one of the n cells of the array. 
With an array 10 times as large, the algorithm will be 10 times as slow. 
Complexity is therefore proportional to n, or “linear” in n. A complexity 
linear in n is considered fast, as opposed to complexities exponential in n. 
Although processing larger input values will be slower, it will make a differ-
ence of at most just seconds for most practical uses.

But many useful algorithms are slower than that and have a complex-
ity higher than linear. The textbook example is sorting algorithms: given 
a list of n values in a random order, you’ll need on average n × log n basic 
operations to sort the list, which is sometimes called linearithmic complexity. 
Since n × log n grows faster than n, sorting speed will slow down faster than 
proportionally to n. Yet such sorting algorithms will remain in the realm of 
practical computation, or computation that can be carried out in a reason-
able amount of time.

At some point, we’ll hit the ceiling of what’s feasible even for relatively 
small input lengths. Take the simplest example from cryptanalysis: the 
brute-force search for a secret key. Recall from Chapter 1 that given a plain-
text P and a ciphertext C = E(K, P), it takes at most 2n attempts to recover 
an n-bit symmetric key because there are 2n possible keys—an example of 
a complexity that grows exponentially. For complexity theorists, exponential 
complexity means a problem that is practically impossible to solve, because as 
n grows, the effort very rapidly becomes infeasible.

You may object that we’re comparing oranges and apples here: in the 
search() function in Listing 9-1, we counted the number of if (array[i] == x) 
operations, whereas key recovery counts the number of encryptions, each 
thousands of times slower than a single == comparison. This inconsistency can 
make a difference if you compare two algorithms with very similar complexi-
ties, but most of the time it won’t matter because the number of operations 
will have a greater impact than the cost of an individual operation. Also, 
complexity estimates ignore constant factors: when we say that an algorithm 
takes time in the order of n3 operations (which is cubic complexity), it may actu-
ally take 41 × n3 operations, or 12345 × n3 operations—but again, as n grows, 
the constant factors lose significance to the point that we can ignore them. 
Complexity analysis is about theoretical hardness as a function of the input 
size; it doesn’t care about the exact number of CPU cycles it will take on your 
computer.

You’ll often find the O() notation (“big O”) used to express complexities. 
For example, O(n3) means that complexity grows no faster than n3, ignoring 
potential constant factors. O() denotes the upper bound of an algorithm’s 
complexity. The notation O(1) means that an algorithm runs in constant 
time—that is, the running time doesn’t depend on the input length! For 
example, the algorithm that determines an integer’s parity by looking at its 
least significant bit (LSB) and returning “even” if it’s zero and “odd” other-
wise will do the same thing at the same cost whatever the integer’s length.
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To see the difference between linear, quadratic, and exponential time 
complexities, look at how complexity grows for O(n) (linear) versus O(n2) 
(quadratic) versus O(2n) (exponential) in Figure 9-1. 
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Figure 9-1: Growth of exponential, quadratic, and linear complexities, from the fastest to 
the slowest growing

Exponential complexity means the problem is practically impossible to 
solve, and linear complexity means the solution is feasible, whereas quadratic 
complexity is somewhere between the two. 

Polynomial vs. Superpolynomial Time
The O(n2) complexity discussed in the last section (the middle curve in 
Figure 9-1) is a special case of the broader class of polynomial complexi-
ties, or O(nk), where k is some fixed number such as 3, 2.373, 7/10, or the 
square root of 17. Polynomial-time algorithms are eminently important 
in complexity theory and in crypto because they’re the very definition of 
practically feasible. When an algorithm runs in polynomial time, or polytime 
for short, it will complete in a decent amount of time even if the input is 
large. That’s why polynomial time is synonymous with “efficient” for com-
plexity theorists and cryptographers.

In contrast, algorithms running in superpolynomial time—that is, in 
O(f(n)), where f(n) is any function that grows faster than any polynomial—
are viewed as impractical. I’m saying superpolynomial, and not just expo-
nential, because there are complexities in between polynomial and the 
well-known exponential complexity O(2n), such as O(nlog(n)), as Figure 9-2 
shows.
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Figure 9-2: Growth of the 2 n, nlog(n), and n2 functions, from the fastest to the slowest 
growing

N o t e 	 Exponential complexity O(2 n) is not the worst you can get. Some complexities grow 
even faster and thus characterize algorithms even slower to compute—for example, the 
complexity O(nn) or the exponential factorial O(nf(n – 1)), where for any x, the func-
tion f is here recursively defined as f(x) = xf(x – 1). In practice, you’ll never encounter 
algorithms with such preposterous complexities.

O(n2) or O(n3) may be efficient, but O(n99999999999) obviously isn’t. 
In other words, polytime is fast as long as the exponent isn’t too large. 
Fortunately, all polynomial-time algorithms found to solve actual problems 
do have small exponents. For example, O(n1.465) is the time for multiplying 
two n-bit integers, or O(n2.373) for multiplying two n × n matrices. The 2002 
breakthrough polytime algorithm for identifying prime numbers initially 
had a complexity O(n12), but it was later improved to O(n6). Polynomial 
time thus may not be the perfect definition of a practical time for an algo-
rithm, but it’s the best we have.

By extension, a problem that can’t be solved by a polynomial-time algo-
rithm is considered impractical, or hard. For example, for a straightforward 
key search, there’s no way to beat the O(2n) complexity unless the cipher is 
somehow broken.

We know for sure that there’s no way to beat the O(2n) complexity of a 
brute-force key search (as long as the cipher is secure), but we don’t always 
know what the fastest way to solve a problem is. A large portion of the 
research in complexity theory is about proving complexity bounds on the 
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running time of algorithms solving a given problem. To make their job eas-
ier, complexity theorists have categorized computational problems in differ-
ent groups, or classes, according to the effort needed to solve them.

Complexity Classes
In mathematics, a class is a group of objects with some similar attribute. For 
example, all computational problems solvable in time O(n2), which complex-
ity theorists simply denote TIME(n2), are one class. Likewise, TIME(n3) is the 
class of problems solvable in time O(n3), TIME(2n) is the class of problems 
solvable in time O(2n), and so on. For the same reason that a supercomputer 
can compute whatever a laptop can compute, any problem solvable in O(n2) 
is also solvable in O(n3). Hence, any problem in the class TIME(n2) also 
belongs to the class TIME(n3), which both also belong to the class TIME(n4), 
and so on. The union of all these classes of problems, TIME(nk), where k is a 
constant, is called P, which stands for polynomial time.

If you’ve ever programmed a computer, you’ll know that seemingly fast 
algorithms may still crash your system by eating all its memory resources. 
When selecting an algorithm, you should not only consider its time com-
plexity but also how much memory it uses, or its space complexity. This is 
especially important because a single memory access is usually orders of 
magnitudes slower than a basic arithmetic operation in a CPU.

Formally, you can define an algorithm’s memory consumption as a 
function of its input length, n, in the same way we defined time complexity. 
The class of problems solvable using f(n) bits of memory is SPACE(f(n)). 
For example, SPACE(n3) is the class of problems solvable using of the order 
of n3 bits of memory. Just as we had P as the union of all TIME(nk), the 
union of all SPACE(nk) problems is called PSPACE.

Obviously, the lower the memory the better, but a polynomial amount of 
memory doesn’t necessarily imply that an algorithm is practical. Why? Well, 
take for example a brute-force key search: again, it takes only negligible mem-
ory but is slow as hell. More generally, an algorithm can take forever, even if it 
uses just a few bytes of memory.

Any problem solvable in time f(n) needs at most f(n) memory, so 
TIME(f(n)) is included in SPACE(f(n)). In time f(n), you can only write 
up to f(n) bits, and no more, because writing (or reading) 1 bit is assumed 
to take one unit of time; therefore, any problem in TIME(f(n)) can’t use 
more than f(n) space. As a consequence, P is a subset of PSPACE.

Nondeterministic Polynomial Time
NP is the second most important complexity class, after the class P of all 
polynomial-time algorithms. No, NP doesn’t stand for non-polynomial 
time, but for nondeterministic polynomial time. What does that mean?

NP is the class of problems for which a solution can be verified in 
polynomial time—that is, efficiently—even though the solution may be 
hard to find. By verified, I mean that given a potential solution, you can 
run some polynomial-time algorithm that will verify whether you’ve found 
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an actual solution. For example, the problem of recovering a secret key 
with a known plaintext is in NP, because given P, C = E(K, P), and some 
candidate key K0, you can check that K0 is the correct key by verifying that 
E(K0, P) equals C. The process of finding a potential key (the solution) 
can’t be done in polynomial time, but checking whether the key is correct 
is done using a polynomial-time algorithm.

Now for a counterexample: what about known-ciphertext attacks? This 
time, you only get some E(K, P) values for random unknown plaintext Ps. 
If you don’t know what the Ps are, then there’s no way to verify whether a 
potential key, K0, is the right one. In other words, the key-recovery problem 
under known-ciphertext attacks is not in NP (let alone in P).

Another example of a problem not in NP is that of verifying the absence 
of a solution to a problem. Verifying that a solution is correct boils down to 
computing some algorithm with the candidate solution as an input and then 
checking the return value. However, to verify that no solution exists, you may 
need to go through all possible inputs. And if there’s an exponential number 
of inputs, you won’t be able to efficiently prove that no solution exists. The 
absence of a solution is hard to show for the hardest problems in the class 
NP—the so-called NP-complete problems, which we’ll discuss next.

NP-Complete Problems 
The hardest problems in the class NP are called NP-complete; we don’t 
know how to solve these problems in polynomial time. And as complexity 
theorists discovered in the 1970s when they developed the theory of 
NP-completeness, NP’s hardest problems are all equally hard. This was 
proven by showing that any efficient solution to any of the NP-complete 
problems can be turned into an efficient solution for any of the other 
NP-complete problems. In other words, if you can solve any NP-complete 
problem efficiently, you can solve all of them, as well as all problems in 
NP. How can this be?

NP-complete problems come in different disguises, but they’re funda-
mentally similar from a mathematical perspective. In fact, you can reduce 
any NP-complete problem to any other NP-complete problem such that 
solving the first one depends on solving the second.

Here are some examples of NP-complete problems:

The traveling salesman problem  Given a set of points on a map 
(cities, addresses, or other geographic locations) and the distances 
between each point from each other point, find a path that visits every 
point such that the total distance is smaller than a given distance of x.

The clique problem  Given a number, x, and a graph (a set of nodes 
connected by edges, as in Figure 9-3), determine if there’s a set of x 
points or less such that all points are connected to each other.

The knapsack problem  Given two numbers, x and y, and a set of 
items, each of a known value and weight, can we pick a group of items 
such that the total value is at least x and the total weight at most y?
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Figure 9-3: A graph containing a clique of  
four points. The general problem of finding  
a clique (set of nodes all connected to each  
other) of given size in a graph is NP-complete.

Such NP-complete problems are found everywhere, from scheduling 
problems (given jobs of some priority and duration, and one or more proces-
sors, assign jobs to the processors by respecting the priority while minimizing 
total execution time) to constraint-satisfaction problems (determine values 
that satisfy a set of mathematical constraints, such as logical equations). Even 
the task of winning in certain video games can sometimes be proven to be 
NP-complete (for famous games including Tetris, Super Mario Bros., Pokémon, 
and Candy Crush Saga). For example, the article “Classic Nintendo Games 
Are (Computationally) Hard” (https://arxiv.org/abs/1203.1895) considers “the 
decision problem of reachability” to determine the possibility of reaching the 
goal point from a particular starting point.

Some of these video game problems are actually even harder than 
NP-complete and are called NP-hard. We say that a problem is NP-hard 
when it’s at least as hard as NP-complete problems. More formally, a 
problem is NP-hard if what it takes to solve it can be proven to also solve 
NP-complete problems.

I have to mention an important caveat. Not all instances of NP-complete 
problems are actually hard to solve. Some specific instances, because they’re 
small or because they have a specific structure, may be solved efficiently. 
Take, for example, the graph in Figure 9-3. By just looking at it for a few 
seconds you’ll spot the clique, which is the top four connected nodes—even 
though the aforementioned clique problem is NP-hard, there’s nothing hard 
here. So being NP-complete doesn’t mean that all instances of a given prob-
lem are hard, but that as the problem size grows, many of them are.

The P vs. NP Problem
If you could solve the hardest NP problems in polynomial time, then you 
could solve all NP problems in polynomial time, and therefore NP would 
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equal P. That sounds preposterous; isn’t it obvious that there are problems 
for which a solution is easy to verify but hard to find? For example, isn’t it 
obvious that exponential-time brute force is the fastest way to recover the 
key of a symmetric cipher, and therefore that the problem can’t be in P? It 
turns out that, as crazy as it sounds, no one has proved that P is different 
from NP, despite a bounty of literally one million dollars.

The Clay Mathematics Institute will award this bounty to anyone who 
proves that either P ≠ NP or P = NP. This problem, known as P vs. NP, was 
called “one of the deepest questions that human beings have ever asked” by 
renowned complexity theorist Scott Aaronson. Think about it: if P were equal 
to NP, then any easily checked solution would also be easy to find. All cryp-
tography used in practice would be insecure, because you could recover sym-
metric keys and invert hash functions efficiently.

But don’t panic: most complexity theo-
rists believe P isn’t equal to NP, and there-
fore that P is instead a strict subset of NP, 
as Figure 9-4 shows, where NP-complete 
problems are another subset of NP not 
overlapping with P. In other words, prob-
lems that look hard actually are hard. 
It’s just difficult to prove this mathemati-
cally. While proving that P = NP would 
only need a polynomial-time algorithm 
for an NP-complete problem, proving 
the nonexistence of such an algorithm is 
fundamentally harder. But this didn’t stop 
wacky mathematicians from coming up with simple proofs that, while usu-
ally obviously wrong, often make for funny reads; for an example, see “The 
P-versus-NP page” (https://www.win.tue.nl/~gwoegi/P-versus-NP.htm).

Now if we’re almost sure that hard problems do exist, what about 
leveraging them to build strong, provably secure crypto? Imagine a proof 
that breaking some cipher is NP-complete, and therefore that the cipher 
is unbreakable as long as P isn’t equal to NP. But reality is disappointing: 
NP-complete problems have proved difficult to use for crypto purposes 
because the very structure that makes them hard in general can make them 
easy in specific cases—cases that sometimes occur in crypto. Instead, cryp-
tography often relies on problems that are probably not NP-hard.

The Factoring Problem
The factoring problem consists of finding the prime numbers p and q given 
a large number, N = p × q. The widely used RSA algorithms are based on the 
fact that factoring a number is difficult. In fact, the hardness of the factor-
ing problem is what makes RSA encryption and signature schemes secure. 
But before we see how RSA leverages the factoring problem in Chapter 10, 
I’d like to convince you that this problem is indeed hard, yet probably not 
NP-complete.

NP

NP-complete

Factoring
P

Figure 9-4: The classes NP, P, and 
the set of NP-complete problems
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First, some kindergarten math. A prime number is a number that isn’t 
divisible by any other number but itself and 1. For example, the numbers 3, 7, 
and 11 are prime; the numbers 4 = 2 × 2, 6 = 2 × 3, and 12 = 2 × 2 × 3 are not 
prime. A fundamental theorem of number theory says that any integer num-
ber can be uniquely written as a product of primes, a representation called 
the factorization of that number. For example, the factorization of 123456 is 
26 × 3 × 643; the factorization of 1234567 is = 127 × 9721; and so on. Any 
integer has a unique factorization, or a unique way to write it as a product 
of prime numbers. But how do we know that a given factorization contains 
only prime numbers or that a given number is prime? The answer is found 
through polynomial-time primality testing algorithms, which allow us to effi-
ciently test whether a given number is prime. Getting from a number to its 
prime factors, however, is another matter.

Factoring Large Numbers in Practice
So how do we go from a number to its factorization—namely, its decomposi-
tion as a product of prime numbers? The most basic way to factor a number, 
N, is to try dividing it by all the numbers lower than it until you find a num-
ber, x, that divides N. Then attempt to divide N with the next number, x + 1, 
and so on. You’ll end up with a list of factors of N. What’s the time complex-
ity of this? First, remember that we express complexities as a function of 
the input’s length. The bit length of the number N is n = log2 N. By the basic 
definition of logarithm, this means that N = 2n. Because all the numbers less 
than N/2 are reasonable guesses for possible factors of N, there are about 
N/2 = 2n/2 values to try. The complexity of our naive factoring algorithm is 
therefore O(2n), ignoring the 1/2 coefficient in the O() notation.

Of course, many numbers are easy to factor by first finding any small 
factors (2, 3, 5, and so on) and then iteratively factoring any other nonprime 
factors. But here we’re interested in numbers of the form N = p × q, where p 
and q are large, as found in cryptography.

Let’s be a bit smarter. We don’t need to test all numbers lower than 
N/2, but rather only the prime numbers, and we can start by trying only 
those smaller than the square root of N. Indeed, if N is not a prime num-
ber, then it has to have at least one factor lower than its square root √N. 
This is because if both of N ’s factors p and q are greater than √N, then 
their product would be greater than √N × √N = N, which is impossible. For 
example, if we say N = 100, then its factors p and q can’t both be greater 
than 10 because that would result in a product greater than 100. Either p 
or q has to be smaller than √N.

So what’s the complexity of testing only the primes less than √N? 
The prime number theorem states that there are approximately N/log N 
primes less than N. Hence, there are approximately √N/log √N primes 
less than √N. Expressing this value, we get approximately 2n/2/n possible 
prime factors and therefore a complexity of O(2n/2/n), since √N = 2n/2 and 
1/log√N = 1/(n/2) = 2n. This is faster than testing all prime numbers, but 
it’s still painfully slow—on the order of 2120 operations for a 256-bit num-
ber. That’s quite an impractical computational effort.
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The fastest factoring algorithm is the general number field sieve (GNFS), 
which I won’t describe here because it requires the introduction of several 
advanced mathematical concepts. A rough estimate of GNFS’s complexity 
is exp(1.91 × n1/3 (log n)2/3), where exp(. . .) is just a different notation for 
the exponential function ex, with e the exponential constant approximately 
equal to 2.718. However, it’s difficult to get an accurate estimate of GNFS’s 
actual complexity for a given number size. Therefore, we have to rely on 
heuristical complexity estimates, which show how security increases with a 
longer n. For example:

•	 Factoring a 1024-bit number, which would have two prime factors 
of approximately 500 bits each, will take on the order of 270 basic 
operations.

•	 Factoring a 2048-bit number, which would have two prime factors of 
approximately 1000 bits each, will take on the order of 290 basic opera-
tions, which is about a million times slower than for a 1024-bit number.

And we estimate that at least 4096 bits are needed to reach 128-bit 
security. Note that these values should be taken with a grain of salt, and 
researchers don’t always agree on these estimates. Take a look at these 
experimental results to see the actual cost of factoring:

•	 In 2005, after about 18 months of computation—and thanks to the 
power of a cluster of 80 processors, with a total effort equivalent to 
75 years of computation on a single processor—a group of researchers 
factored a 663-bit (200-decimal digit) number.

•	 In 2009, after about two years and using several hundred processors, 
with a total effort equivalent to about 2,000 years of computation on 
a single processor, another group of researchers factored a 768-bit 
(232-decimal digit) number.

As you can see, the numbers actually factored by academic researchers 
are shorter than those in real applications, which are at least 1024-bit and 
often more than 2048-bit. As I write this, no one has reported the factoring 
of a 1024-bit number, but many speculate that well-funded organizations 
such as the NSA can do it.

In sum, 1024-bit RSA should be viewed as insecure, and RSA should be 
used with at least a 2048-bit value—and preferably a 4096-bit one to ensure 
higher security.

Is Factoring NP-Complete?
We don’t know how to factor large numbers efficiently, which suggests that 
the factoring problem doesn’t belong to P. However, factoring is clearly in 
NP, because given a factorization, we can verify the solution by checking 
that all factors are prime numbers, thanks to the aforementioned primality 
testing algorithm, and that when multiplied together, the factors do give 
the expected number. For example, to check that 3 × 5 is the factorization 
of 15, you’ll check that both 3 and 5 are prime and that 3 times 5 equals 15.
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So we have a problem that is in NP and that looks hard, but is it as hard 
as the hardest NP problems? In other words, is factoring NP-complete? 
Spoiler alert: probably not.

There’s no mathematical proof that factoring isn’t NP-complete, but 
we have a few pieces of soft evidence. First, all known NP-complete prob-
lems can have one solution, but can also have more than one solution, or 
no solution at all. In contrast, factoring always has exactly one solution. 
Also, the factoring problem has a mathematical structure that allows for the 
GNFS algorithm to significantly outperform a naive algorithm, a structure 
that NP-complete problems don’t have. Factoring would be easy if we had 
a quantum computer, a computing model that exploits quantum mechanical 
phenomena to run different kinds of algorithms and that would have the 
capability to factor large numbers efficiently (not because it’d run the algo-
rithm faster, but because it could run a quantum algorithm dedicated to 
factoring large numbers). A quantum computer doesn’t exist yet, though—
and might never exist. Regardless, a quantum computer would be useless 
in tackling NP-complete problems because it’d be no faster than a classical 
one (see Chapter 14).

Factoring may then be slightly easier than NP-complete in theory, but 
as far as cryptography is concerned, it’s hard enough, and even more reli-
able than NP-complete problems. Indeed, it’s easier to build cryptosystems 
on top of the factoring problem than NP-complete problems, because it’s 
hard to know exactly how hard it is to break a cryptosystem based on some 
NP-complete problems—in other words, how many bits of security you’d get.

The factoring problem is just one of several problems used in cryptog-
raphy as a hardness assumption, which is an assumption that some problem is 
computationally hard. This assumption is used when proving that breaking 
a cryptosystem’s security is at least as hard as solving said problem. Another 
problem used as a hardness assumption, the discrete logarithm problem (DLP), 
is actually a family of problems, which we’ll discuss next.

The Discrete Logarithm Problem
The DLP predates the factoring problem in the official history of cryp-
tography. Whereas RSA appeared in 1977, a second cryptographic break-
through, the Diffie–Hellman key agreement (covered in Chapter 11), came 
about a year earlier, grounding its security on the hardness of the DLP. Like 
the factoring problem, the DLP deals with large numbers, but it’s a bit less 
straightforward—it will take you a few minutes rather than a few seconds to 
get it and requires a bit more math than factoring. So let me introduce the 
mathematical notion of a group in the context of discrete logarithms.

What Is a Group?
In mathematical context, a group is a set of elements (typically, numbers) that 
are related to each other according to certain well-defined rules. An example 
of a group is the set of nonzero integers (between 1 and p – 1) modulo some 
prime number p, which we write Zp

*. For p = 5, we get the group Z5
* = {1,2,3,4}. 
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In the group Z5
*, operations are carried out modulo 5; hence, we don’t have 

3 × 4 = 12 but instead have 3 × 4 = 2, because 12 mod 5 = 2. We nonetheless 
use the same sign (×) that we use for normal integer multiplication. Likewise, 
we also use the exponent notation to denote a group element’s multiplication 
with itself mod p, a common operation in cryptography. For example, in the 
context of Z5

*, 23 = 2 × 2 × 2 = 3 rather than 8, because 8 mod 5 is equal to 3.
To be a group, a mathematical set should have the following character-

istics, called group axioms:

Closure  For any two x and y in the group, x × y is in the group too. 
In Z5

*, 2 × 3 = 1 (because 6 = 1 mod 5), 2 × 4 = 3, and so on.

Associativity  For any x, y, z in the group, (x × y) × z = x × (y × z). In Z5
*, 

(2 × 3) × 4 = 1 × 4 = 2 × (3 × 4) = 2 × 2 = 4.

Identity existence  There’s an element e such that e × x = x × e = x. In 
any Zp

*, the identity element is 1.

Inverse existence  For any x in the group, there’s a y such that x × y = y 
× x = e. In Z5

*, the inverse of 2 is 3, and the inverse of 3 is 2, while 4 is its 
own inverse because 4 × 4 = 16 = 1 mod 5.

In addition, a group is called commutative if x × y = y × x for any group 
elements x and y. That’s also true for any multiplicative group of integers 
Zp

*. In particular, Z5
* is commutative: 3 × 4 = 4 × 3, 2 × 3 = 3 × 2, and so on.

A group is called cyclic if there’s at least one element g such that its 
powers (g1, g2, g3, and so on) mod p span all distinct group elements. The 
element g is then called a generator of the group. Z5

* is cyclic and has two 
generators, 2 and 3, because 21 = 2, 22 = 4, 23 = 3, 24 = 1, and 31 = 3, 32 = 4, 
33 = 2, 34 = 1.

Note that I’m using multiplication as a group operator, but you can 
also get groups from other operators. For example, the most straightfor-
ward group is the set of all integers, positive and negative, with addition as 
a group operation. Let’s check that the group axioms hold with addition, 
in the preceding order: clearly, the number x + y is an integer if x and y are 
integers (closure); (x + y) + z = x + (y + z) for any x, y, and z (associativity); 
zero is the identity element; and the inverse of any number x in the group 
is –x because x + (–x) = 0 for any integer x. A big difference, though, is that 
this group of integers is of infinite size, whereas in crypto we’ll only deal 
with finite groups, or groups with a finite number of elements. Typically, 
we’ll use groups Zp

*, where p is thousands of bits long (that is, groups that 
contain on the order of 2m numbers if p is m -bit long).

The Hard Thing
The DLP consists of finding the y for which g y = x, given a base number g 
within some group Zp

*, where p is a prime number, and given a group ele-
ment x. The DLP is called discrete because we’re dealing with integers as 
opposed to real numbers (continuous), and it’s called a logarithm because 
we’re looking for the logarithm of x in base g. (For example, the logarithm 
of 256 in base 2 is 8 because 28 = 256.)
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People often ask me whether factoring or a discrete logarithm is more 
secure—or in other words, which problem is the hardest? My answer is that 
they’re about equally hard. In fact, algorithms to solve DLP bear similarities 
with those factoring integers, and you get about the same security level with 
n-bit hard-to-factor numbers as with discrete logarithms in an n-bit group. 
And for the same reason as factoring, DLP isn’t NP-complete. (Note that 
there are certain groups where the DLP is easier to solve, but here I’m only 
referring to the case of DLP groups consisting of a number modulo a prime.)

How Things Can Go Wrong
More than 40 years later, we still don’t know how to efficiently factor large 
numbers or solve discrete logarithms. Amateurs may argue that someone 
may eventually break factoring—and we have no proof that it’ll never be 
broken—but we also don’t have proof that P ≠ NP. Likewise, you can specu-
late that P may be equal to NP; however, according to experts, that surprise 
is unlikely. So there’s no need to worry. And indeed all the public-key crypto 
deployed today relies on either factoring (RSA) or DLP (Diffie–Hellman, 
ElGamal, elliptic curve cryptography). However, although math may not fail 
us, real-world concerns and human error can sneak in.

When Factoring Is Easy
Factoring large numbers isn’t always hard. For example, take the 1024-bit 
number N, which is equal to the following: 

1797693134862315907729305190789024733617976978942306572734330081157739343819933

8429869825571741982572789172586381937009265819186026626180659730665062710995556

57863944771560841151868956528416919829211072023171653691248904815123885580339053

4271250992903154492623247093152632560831325404614070552872832790915388014592

For 1024-bit numbers used in RSA encryption or signature schemes 
where N = pq, we expect the best factoring algorithms to need around 270 
operations, as we discussed earlier. But you can factor this sample number 
in seconds using SageMath, a piece of Python-based mathematical software. 
Using SageMath’s factor() function on my 2015 MacBook, it took less than 
five seconds to find the following factorization: 

2 641 6700417 167773885276849215533569

374140571

800 × × ×
×
      

 661322375957408148834323969

Right, I cheated. This number isn’t of the form N = pq because it doesn’t 
have just two large prime factors but rather five, including very small ones, 
which makes it easy to factor. First, you’ll identify the 2800 × 641 × 6700417 
part by trying small primes from a precomputed list of prime numbers, 
which leaves you with a 192-bit number that’s much easier to factor than a 
1024-bit number with two large factors.
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But factoring can be easy not only when n has no small prime factors, 
but also when N or its factors p and q have particular forms—for example, 
when N = pq with p and q both close to some 2b, when N = pq and some bits 
of p or q are known, or when N is of the form N = prqs and r is greater than 
log p. However, detailing the reasons for these weaknesses is way too techni-
cal for this book.

The upshot here is that the RSA encryption and signature algorithms 
(covered in Chapter 10) will need to work with a value of N = pq, where p 
and q are carefully chosen, to avoid easy factorization of N, which can result 
in security disaster.

Small Hard Problems Aren’t Hard
Computationally hard problems become easy when they’re small enough, 
and even exponential-time algorithms become practical as the problem size 
shrinks. A symmetric cipher may be secure in the sense that there’s no faster 
attack than the 2n-time brute force, but if the key length is n = 32, you’ll 
break the cipher in minutes. This sounds obvious, and you’d think that no 
one would be naive enough to use small keys, but in reality there are plenty of 
reasons why this could happen. The following are two true stories.

Say you’re a developer who knows nothing about crypto but has some API 
to encrypt with RSA and has been told to encrypt with 128-bit security. What 
RSA key size would you pick? I’ve seen real cases of 128-bit RSA, or RSA 
based on a 128-bit number N = pq. However, although factoring is impracti-
cally hard for an N thousands of bits long, factoring a 128-bit number is 
easy. Using the SageMath software, the commands shown in Listing 9-2 
complete instantaneously.

sage: p = random_prime(2**64)
sage: q = random_prime(2**64)
sage: factor(p*q)
6822485253121677229 * 17596998848870549923

Listing 9-2: Generating an RSA modulus by picking two random prime numbers and fac-
toring it instantaneously

Listing 9-2 shows that a 128-bit number taken randomly as the product of 
two 64-bit prime numbers can be easily factored on a typical laptop. However, 
if I chose 1024-bit prime numbers instead by using p = random_prime(2**1024), 
the command factor(p*q) would never complete, at least not in my lifetime.

To be fair, the tools available don’t help prevent the naive use of inse-
curely short parameters. For example, the OpenSSL toolkit lets you gener-
ate RSA keys as short as 31 bits without any warning; obviously, such short 
keys are totally insecure, as shown in Listing 9-3.

$ openssl genrsa 31
Generating RSA private key, 31 bit long modulus
.+++++++++++++++++++++++++++
.+++++++++++++++++++++++++++
e is 65537 (0x10001)
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-----BEGIN RSA PRIVATE KEY-----
MCsCAQACBHHqFuUCAwEAAQIEP6zEJQIDANATAgMAjCcCAwCSBwICTGsCAhpp
-----END RSA PRIVATE KEY-----

Listing 9-3: Generating an insecure RSA private key using the OpenSSL toolkit

When reviewing cryptography, you should not only check the type of 
algorithms used, but also their parameters and the length of their secret 
values. However, as you’ll see in the following story, what’s secure enough 
today may be insecure tomorrow.

In 2015, researchers discovered that many HTTPS servers and email 
servers still supported an older, insecure version of the Diffie–Hellman key 
agreement protocol. Namely, the underlying TLS implementation supported 
Diffie–Hellman within a group, Zp

*, defined by a prime number, p, of only 
512 bits, where the discrete logarithm problem was no longer practically 
impossible to compute.

Not only did servers support a weak algorithm, but attackers could force 
a benign client to use that algorithm by injecting malicious traffic within the 
client’s session. Even better for attackers, the largest part of the attack could 
be carried out once and recycled to attack multiple clients. After about a 
week of computations to attack a specific group, Zp

*, it took only 70 seconds 
to break individual sessions of different users.

A secure protocol is worthless if it’s undermined by a weakened algo-
rithm, and a reliable algorithm is useless if sabotaged by weak parameters. 
In cryptography, you should always read the fine print.

For more details about this story, check the research article “Imperfect 
Forward Secrecy: How Diffie–Hellman Fails in Practice” (https://weakdh.org/
imperfect-forward-secrecy-ccs15.pdf).

Further Reading
I encourage you to look deeper into the foundational aspects of computa-
tion in the context of computability (what functions can be computed?) 
and complexity (at what cost?), and how they relate to cryptography. 
I’ve mostly talked about the classes P and NP, but there are many more 
classes and points of interest for cryptographers. I highly recommend the 
book Quantum Computing Since Democritus by Scott Aaronson (Cambridge 
University Press, 2013). It’s in large part about quantum computing, but 
its first chapters brilliantly introduce complexity theory and cryptography.

In the cryptography research literature you’ll also find other hard 
computational problems. I’ll mention them in later chapters, but here 
are some examples that illustrate the diversity of problems leveraged by 
cryptographers:

•	 The Diffie–Hellman problem (given gx and g y, find gxy) is a variant of 
the discrete logarithm problem, and is widely used in key agreement 
protocols.
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•	 Lattice problems, such as the shortest vector problem (SVP) and the 
learning with errors (LWE) problem, are the only examples of NP-hard 
problems successfully used in cryptography.

•	 Coding problems rely on the hardness of decoding error-correcting 
codes with insufficient information, and have been studied since the 
late 1970s.

•	 Multivariate problems are about solving nonlinear systems of equations 
and are potentially NP-hard, but they’ve failed to provide reliable cryp-
tosystems because hard versions are too big and slow, and practical ver-
sions were found to be insecure.

In Chapter 10, we’ll keep talking about hard problems, especially fac-
toring and its main variant, the RSA problem.





10
R S A

The Rivest–Shamir–Adleman (RSA) cryp-
tosystem revolutionized cryptography 

when it emerged in 1977 as the first public-
key encryption scheme; whereas classical, 

symmetric-key encryption schemes use the same secret 
key to encrypt and decrypt messages, public-key encryp-
tion (also called asymmetric encryption) uses two keys: 
one is your public key, which can be used by anyone who wants to encrypt 
messages for you, and the other is your private key, which is required in 
order to decrypt messages encrypted using the public key. This magic is 
the reason why RSA came as a real breakthrough, and 40 years later, it’s 
still the paragon of public-key encryption and a workhorse of internet 
security. (One year prior to RSA, Diffie and Hellman had introduced the 
concept of public-key cryptography, but their scheme was unable to per-
form public-key signatures.)

RSA is above all an arithmetic trick. It works by creating a mathematical 
object called a trapdoor permutation, a function that transforms a number x 
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to a number y in the same range, such that computing y from x is easy using 
the public key, but computing x from y is practically impossible unless you 
know the private key—the trapdoor. (Think of x as a plaintext and y as a 
ciphertext.)

In addition to encryption, RSA is also used to build digital signatures, 
wherein the owner of the private key is the only one able to sign a message, 
and the public key enables anyone to verify the signature’s validity.

In this chapter, I explain how the RSA trapdoor permutation works, dis-
cuss RSA’s security relative to the factoring problem (discussed in Chapter 9), 
and then explain why the RSA trapdoor permutation alone isn’t enough to 
build secure encryption and signatures. I also discuss ways to implement RSA 
and demonstrate how to attack it.

We begin with an explanation of the basic mathematical notions 
behind RSA.

The Math Behind RSA
When encrypting a message, RSA sees the message as a big number, and 
encryption consists essentially of multiplications of big numbers. Therefore, 
in order to understand how RSA works, we need to know what kind of big 
numbers it manipulates and how multiplication works on those numbers.

RSA sees the plaintext that it’s encrypting as a positive integer between 
1 and n – 1, where n is a large number called the modulus. Such numbers, 
when multiplied together, yield another number that satisfies these criteria. 
We say that these numbers form a group, denoted Zn

*, and call it the multi-
plicative group of integers modulo n. (See the mathematical definition of a 
group in “What Is a Group?” on page 174.)

For example, consider the group Z4
* of integers modulo 4. Recall 

from Chapter 9 that a group must include an identity element (that is, 1) 
and that each number x in the group must have an inverse, a number y 
such that x × y = 1. How do we determine that set that makes up Z4

*? Based 
on our definitions, we know that 0 is not in the group Z4

* because mul-
tiplying any number by 0 can never give 1, so 0 has no inverse. By the 
same token, the number 1 belongs to Z4

* because 1 × 1 = 1, so 1 is its own 
inverse. However, the number 2 does not belong in this group because we 
can’t obtain 1 by multiplying 2 with another element of Z4

* (the reason is 
that 2 isn’t co-prime with 4, because 4 and 2 share the factor of 2.) The 
number 3 belongs in the group Z4

* because it is its own inverse within Z4
*. 

Thus, we have Z4
* = {1, 3}.

Now consider Z5
*, the multiplicative group of integers modulo 5. What 

numbers does this set contain? The number 5 is prime, and 1, 2, 3, and 
4 are all co-prime with 5, so the set of Z5

* is {1, 2, 3, 4}. Let’s verify this: 
2 × 3 mod 5 = 1, therefore, 2 is 3’s inverse, and 3 is 2’s inverse; note that 4 
is its own inverse because 4 × 4 mod 5 = 1; finally, 1 is again its own inverse 
in the group.
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In order to find the number of elements in a group Zn
* when n isn’t 

prime, we use Euler’s totient function, which is written as φ(n), with φ repre-
senting the Greek letter phi. This function gives the number of elements 
co-prime with n, which is the number of elements in Zn

*. As a rule, if n is a 
product of prime numbers n = p1 × p2 × . . . × pm, the number of elements in 
the group Zn

* is the following:

� n p p p m� � � � � � � �� � � � � � �        . . .   1 21 1 1

RSA only deals with numbers n that are the product of two large primes, 
usually noted as n = pq. The associated group Zn

* will then contain φ(n) = 
(p – 1)(q – 1) elements. By expanding this expression, we get the equivalent 
definition φ(n) = n – p – q + 1, or φ(n) = (n + 1) – (p + q), which expresses 
more intuitively the value of φ(n) relative to n. 

The RSA Trapdoor Permutation
The RSA trapdoor permutation is the core algorithm behind RSA-based 
encryption and signatures. Given a modulus n and number e, called the 
public exponent, the RSA trapdoor permutation transforms a number x from 
the set Zn

* into a number y = xe mod n. In other words, it calculates the value 
that’s equal to x multiplied by itself e times modulo n and then returns the 
result. When we use the RSA trapdoor permutation to encrypt, the modu-
lus n and the exponent e make up the RSA public key.

In order to get x back from y, we use another number, denoted d, to 
compute the following:

y n x n x n xd e d ed mod mod  mod   � � �� �

Because d is the trapdoor that allows us to decrypt, it is part of the pri-
vate key in an RSA key pair, and, unlike the public key, it should always be 
kept secret. The number d is also called the secret exponent.

Obviously, d isn’t just any number; it’s the number such that e multiplied 
by d is equivalent to 1, and therefore such that xed mod n = x for any x. More 
precisely, we must have ed = 1 mod φ(n) in order to get xed = x1 = x and to 
decrypt the message correctly. Note that we compute modulo φ(n) and not 
modulo n here because exponents behave like the indexes of elements of 
Zn

* rather than as the elements themselves. Because Zn
* has φ(n) elements, 

the index must be less than φ(n).
The number φ(n) is crucial to RSA’s security. In fact, finding φ(n) for 

an RSA modulus n is equivalent to breaking RSA, because the secret expo-
nent d can easily be derived from φ(n) and e, by computing e’s inverse. 
Hence p and q should also be secret, since knowing p or q gives φ(n) by 
computing (p – 1)(q – 1) = φ(n).
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N O T E 	 φ(n) is also called the order of the group Zn
*; the order is an important characteristic 

of a group, which is also essential to other public-key systems such as Diffie–Hellman 
and elliptic curve cryptography.

RSA Key Generation and Security
Key generation is the process by which an RSA key pair is created, namely a 
public key (modulus n and public exponent e) and its private key (secret 
exponent d). The numbers p and q (such that n = pq) and the order φ(n) 
should also be secret, so they’re often seen as part of the private key.

In order to generate an RSA key pair, we first pick two random prime 
numbers, p and q, and then compute φ(n) from these, and we compute d as 
the inverse of e. To show how this works, Listing 10-1 uses SageMath (http://
www.sagemath.org/), an open-source Python-like environment that includes 
many mathematical packages.

 sage: p = random_prime(2^32); p
1103222539

 sage: q = random_prime(2^32); q
17870599

 sage: n = p*q; n
19715247602230861

 sage: phi = (p-1)*(q-1); phi
19715246481137724

 sage: e = random_prime(phi); e
13771927877214701

 sage: d = e.inverse_mod(phi); d
11417851791646385

 sage: mod(d*e, phi)
1

Listing 10-1: Generating RSA parameters using SageMath

N O T E 	 In order to avoid multiple pages of output, I’ve used a 64-bit modulus n in 
Listing 10-1, but in practice an RSA modulus should be at least 2048 bits.

We use the random_prime() function to pick random primes p  and q , 
which are lower than a given argument. Next, we multiply p and q to get the 
modulus n  and φ(n), which is the variable phi . We then generate a ran-
dom public exponent, e , by picking a random prime less than phi in order 
to ensure that e will have an inverse modulo phi. We then generate the asso-
ciated private exponent d by using the inverse_mod() function from Sage . 
This function computes the numbers s and t given two numbers, a and b, with 
the extended Euclidean algorithm such that as + bt = GCD(a, b). Finally, we 
check that ed mod φ(n) = 1 , to ensure that d will work correctly to invert 
the RSA permutation.

Now we can apply the trapdoor permutation, as shown in Listing 10-2.
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 sage: x = 1234567
 sage: y = power_mod(x, e, n); y

19048323055755904
 sage: power_mod(y, d, n)

1234567

Listing 10-2: Computing the RSA trapdoor permutation back and forth

We assign the integer 1234567 to x  and then use the function 
power_mod(x, e, n), the exponentiation modulo n, or xe mod n in equa-
tion form, to calculate y . Having computed y = xe mod n, we compute 
yd mod n  with the trapdoor d to return the original x.

But how hard is it to find x without the trapdoor d? An attacker who 
can factor big numbers can break RSA by recovering p and q and then φ(n) 
in order to compute d from e. But that’s not the only risk. Another risk to 
RSA lies in an attacker’s ability to compute x from xe mod n, or e th roots 
modulo n, without necessarily factoring n. Both risks seem closely con-
nected, though we don’t know for sure whether they are equivalent.

Assuming that factoring is indeed hard and that finding e th roots is 
about as hard, RSA’s security level depends on three factors: the size of n, 
the choice of p and q, and how the trapdoor permutation is used. If n is 
too small, it could be factored in a realistic amount of time, revealing the 
private key. To be safe, n should at least be 2048 bits long (a security level of 
about 90 bits, requiring a computational effort of about 290 operations), but 
preferably 4096 bits long (a security level of approximately 128 bits). The 
values p and q should be unrelated random prime numbers of similar size. 
If they are too small, or too close together, it becomes easier to determine 
their value from n. Finally, the RSA trapdoor permutation should not be 
used directly for encryption or signing, as I’ll discuss shortly.

Encrypting with RSA
Typically, RSA is used in combination with a symmetric encryption scheme, 
where RSA is used to encrypt a symmetric key that is then used to encrypt 
a message with a cipher such as the Advanced Encryption Standard (AES). 
But encrypting a message or symmetric key with RSA is more complicated 
than simply converting the target to a number x and computing xe mod n.

In the following subsections, I explain why a naive application of the 
RSA trapdoor permutation is insecure, and how strong RSA-based encryp-
tion works.

Breaking Textbook RSA Encryption’s Malleability
Textbook RSA encryption is the phrase used to describe the simplistic RSA 
encryption scheme wherein the plaintext contains only the message you 
want to encrypt. For example, to encrypt the string RSA, we would first 
convert it to a number by concatenating the ASCII encodings of each of 
the three letters as a byte: R (byte 52), S (byte 53), and A (byte 41). The 
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resulting byte string 525341 is equal to 5395265 when converted to decimal, 
which we might then encrypt by computing 5395265e mod n. Without know-
ing the secret key, there would be no way to decrypt the message.

However, textbook RSA encryption is deterministic: if you encrypt the 
same plaintext twice, you’ll get the same ciphertext twice. That’s one prob-
lem, but there’s a bigger problem—given two textbook RSA ciphertexts 
y1 = x1

e mod n and y2 = x2
e mod n, you can derive the ciphertext of x1

 × x2 by 
multiplying these two ciphertexts together, like this:

y y n x x n x x ne e e

1 2 1 2 1 2× = × = ×( )  mod   mod   mod 

The result is (x1 × x2)
e mod n, the ciphertext of the message x1 × x2 mod n. 

Thus an attacker could create a new valid ciphertext from two RSA cipher-
texts, allowing them to compromise the security of your encryption by letting 
them deduce information about the original message. We say that this weak-
ness makes textbook RSA encryption malleable. (Of course, if you know x1 and 
x2, you can compute (x1 × x2)

e mod n, too, but if you only know y1 and y2, you 
should not be able to multiply ciphertexts and get a ciphertext of the multi-
plied plaintexts.)

Strong RSA Encryption: OAEP
In order to make RSA ciphertexts nonmalleable, the ciphertext should con-
sist of the message data and some additional data called padding, as shown 
in Figure 10-1. The standard way to encrypt with RSA in this fashion is to 
use Optimal Asymmetric Encryption Padding (OAEP), commonly referred 
to as RSA-OAEP. This scheme involves creating a bit string as large as the 
modulus by padding the message with extra data and randomness before 
applying the RSA function.

P

K

CPadding
algorithm RSA(n,e)

Figure 10-1: Encrypting a symmetric key, K, with RSA using  
(n, e) as a public key

N o t e 	 OAEP is referred to as RSAES-OAEP in official documents such as the PKCS#1 stan-
dard by the RSA company and NIST’s Special Publication 800-56B. OAEP improves 
on the earlier method now called PKCS#1 v1.5, which is one of the first in a series of 
Public-Key Cryptography Standards (PKCS) created by RSA. It is markedly less secure 
than OAEP, yet is still used in many systems.
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OAEP’s Security

OAEP uses a pseudorandom number generator (PRNG) to ensure the indis-
tinguishability and nonmalleability of ciphertexts by making the encryption 
probabilistic. It has been proven secure as long as the RSA function and the 
PRNG are secure and, to a lesser extent, as long as the hash functions aren’t 
too weak. You should use OAEP whenever you need to encrypt with RSA.

How OAEP Encryption Works

In order to encrypt with RSA in OAEP mode, you need a message (typi-
cally a symmetric key, K), a PRNG, and two hash functions. To create the 
ciphertext, you use a given modulus n long of m bytes (that is, 8m bits, and 
therefore an n lower than 28m). To encrypt K, the encoded message is formed 
as M = H || 00 . . . 00 || 01 || K, where H is an h-byte constant defined by the 
OAEP scheme, followed by as many 00 bytes as needed and a 01 byte. This 
encoded message, M, is then processed as described next and as depicted in 
Figure 10-2.

R

Hash1

H || 000000 . . . 0001 || K

Hash2

00P =

Figure 10-2: Encrypting a symmetric key, K, with  
RSA-OAEP, where H is a fixed parameter and R is  
random bits

Next, you generate an h-byte random string R and set M = M ⊕ Hash1(R), 
where Hash1(R) is as long as M. You then set R = R ⊕ Hash2(M), where 
Hash2(M) is as long as R . Now you use these new values of M and R to 
form an m-byte string P = 00 || M || R, which is as long as the modulus n and 
which can be converted to an integer number less than n. The result of this 
conversion is the number x, which is then used to compute the RSA func-
tion xe mod n to get the ciphertext.

To decrypt a ciphertext y, you would first compute x = yd mod n and, 
from this, recover the final values of M and R. Next, you would retrieve M’s 
initial value by computing M ⊕ Hash1(R ⊕ Hash2(M)). Finally, you would 
verify that M is of the form H || 00 . . . 00 || 01 || K, with an h-byte H and 00 
bytes followed by a 01 byte.
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In practice, the parameters m and h (the length of the modulus and 
the length of Hash2’s output, respectively) are typically m = 256 bytes 
(for 2048-bit RSA) and h = 32 (using SHA-256 as Hash2). This leaves 
m – h – 1 = 223 bytes for M, of which up to m – 2h – 2 = 190 bytes are avail-
able for K (the “– 2” is due to the separator 01 byte in M). The Hash1 
hash value is then composed of m – h – 1 = 223 bytes, which is longer than 
the hash value of any common hash function.

N o t e 	 In order to build a hash with such an unusual output length, the RSA standard 
documents specify the use of the mask generating function technique to create 
hash functions that return arbitrarily large hash values from any hash function.

Signing with RSA
Digital signatures can prove that the holder of the private key tied to a 
particular digital signature signed some message and that the signature is 
authentic. Because no one other than the private key holder knows the pri-
vate exponent d, no one can compute a signature y = xd mod n from some 
value x, but everyone can verify ye mod n = x given the public exponent e. 
That verified signature can be used in a court of law to demonstrate that 
the private-key holder did sign some particular message—a property of 
undeniability called nonrepudiation.

It’s tempting to see RSA signatures as the converse of encryption, but 
they are not. Signing with RSA is not the same as encrypting with the private 
key. Encryption provides confidentiality whereas a digital signature is used to 
prevent forgeries. The most salient example of this difference is that it’s okay 
for a signature scheme to leak information on the message signed, because 
the message is not secret. For example, a scheme that reveals parts of the 
messages could be a secure signature scheme but not a secure encryption 
scheme.

Due to the processing overhead required, public-key encryption can 
only process short messages, which are usually secret keys rather than 
actual messages. A signature scheme, however, can process messages of 
arbitrary sizes by using their hash values Hash(M) as a proxy, and it can be 
deterministic yet secure. Like RSA-OAEP, RSA-based signature schemes 
can use a padding scheme, but they can also use the maximal message 
space allowed by the RSA modulus.

Breaking Textbook RSA Signatures
What we call a textbook RSA signature is the method that signs a message, x, by 
directly computing y = xd mod n, where x can be any number between 0 and 
n – 1. Like textbook encryption, textbook RSA signing is simple to specify 
and implement but also insecure in the face of several attacks. One such 
attack involves a trivial forgery: upon noticing that 0d mod n = 0, 1d mod n = 1, 
and (n – 1)d mod n = n – 1, regardless of the value of the private key d, an 
attacker can forge signatures of 0, 1, or n – 1 without knowing d.
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More worrying is the blinding attack. For example, say you want to get a 
third party’s signature on some incriminating message, M, that you know 
they would never knowingly sign. To launch this attack, you could first find 
some value, R, such that R eM mod n is a message that your victim would 
knowingly sign. Next, you would convince them to sign that message and to 
show you their signature, which is equal to S = (R eM)d mod n, or the message 
raised to the power d. Now, given that signature, you can derive the signature 
of M, namely M d, with the aid of some straightforward computations.

Here’s how this works: because S can be written as (R eM)d = R edM d, and 
because R ed = R (by definition), we have S = (R eM)d = RM d. To obtain M d, we 
simply divide S by R, as follows, to obtain the signature:

S R RM R Md d  = =

As you can see, this is a practical and powerful attack.

The PSS Signature Standard
The RSA Probabilistic Signature Scheme (PSS) is to RSA signatures what OAEP 
is to RSA encryption. It was designed to make message signing more secure, 
thanks to the addition of padding data.

As shown in Figure 10-3, PSS combines a message narrower than the 
modulus with some random and fixed bits before RSAing the results of this 
padding process.

P

Hash(M)

SPadding
algorithm RSA(n,d )

Figure 10-3: Signing a message, M, with RSA and with the PSS standard,  
where (n, d) is the private key

Like all public-key signature schemes, PSS works on a message’s hash 
rather than on the message itself. Signing Hash(M) is secure as long as the 
hash function is collision resistant. One particular benefit of PSS is that you 
can use it to sign messages of any length, because after hashing a message, 
you’ll obtain a hash value of the same length regardless of the message’s 
original length. The hash’s length is typically 256 bits, with the hash func-
tion SHA-256.

Why not sign by just running OAEP on Hash(M)? Unfortunately, you 
can’t. Although similar to PSS, OAEP has only been proven secure for 
encryption, not for signatures.

Like OAEP, PSS also requires a PRNG and two hash functions. One, 
Hash1, is a typical hash with h-byte hash values such as SHA-256. The other, 
Hash2, is a wide-output hash like OAEP’s Hash2.
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The PSS signing procedure for message M works as follows (where h is 
Hash1’s output length):

1.	 Pick an r-byte random string R using the PRNG.

2.	 Form an encoded message M ′ = 0000000000000000 || Hash1(M) || R, 
long of h + r + 8 bytes (with eight zero bytes at the beginning).

3.	 Compute the h-byte string H = Hash1(M ′).

4.	 Set L = 00 . . . 00 || 01 || R, or a sequence of 00 bytes followed by a 
01 byte and then R, with a number of 00 bytes such that L is long of 
m – h – 1 bytes (the byte width m of the modulus minus the hash length  
h minus 1).

5.	 Set L = L ⊕ Hash2(H), thus replacing the previous value of L with a 
new value.

6.	 Convert the m -byte string P = L || H || BC to a number, x, lower than n. 
Here, the byte BC is a fixed value appended after H.

7.	 Given the value of x just obtained, compute the RSA function xd mod n 
to obtain the signature.

To verify a signature given a message, M, you compute Hash1(M) and 
use the public exponent e to retrieve L and H and then M ′ from the signa-
ture, checking the padding’s correctness at each step.

In practice, the random string R (called a salt in the RSA-PSS standard) 
is usually as long as the hash value. For example, if you use n = 2048 bits and 
SHA-256 as the hash, the value L is long of m – h – 1 = 256 – 32 – 1 =223 bytes, 
and the random string R would typically be 32 bytes.

Like OAEP, PSS is provably secure, standardized, and widely deployed. 
Also like OAEP, it looks needlessly complex and is prone to implementation 
errors and mishandled corner cases. But unlike RSA encryption, there’s 
a way to get around this extra complexity with a signature scheme that 
doesn’t even need a PRNG, thus reducing the risk of insecure RSA signa-
tures caused by an insecure PRNG, as discussed next.

Full Domain Hash Signatures
Full Domain Hash (FDH) is the simplest signature scheme you can imagine. 
To implement it, you simply convert the byte string Hash(M) to a number, 
x, and create the signature y = xd mod n, as shown in Figure 10-4.

Hash(M) SRSA(n,d )

Figure 10-4: Signing a message with RSA  
using the Full Domain Hash technique
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Signature verification is straightforward, too. Given a signature that is a 
number y, you compute x = ye mod n and compare the result with Hash(M). 
It’s boringly simple, deterministic, yet secure. So why bother with the com-
plexity of PSS?

The main reason is that PSS was released after FDH, in 1996, and it has a 
security proof that inspires more confidence than FDH. Specifically, its proof 
offers slightly higher security guarantees than the proof of FDH, and its use 
of randomness helped strengthen that proof.

These stronger theoretical guarantees are the main reason cryptogra-
phers prefer PSS over FDH, but most applications using PSS today could 
switch to FDH with no meaningful security loss. In some contexts, however, 
a viable reason to use PSS instead of FDH is that PSS’s randomness protects 
it from some attacks on its implementation, such as the fault attacks we’ll 
discuss in “How Things Can Go Wrong” on page 196.

RSA Implementations
I sincerely hope you’ll never have to implement RSA from scratch. If 
you’re asked to, run as fast as you can and question the sanity of the per-
son who asked you to do so. It took decades for cryptographers and engi-
neers to develop RSA implementations that are fast, sufficiently secure, and 
hopefully free of debilitating bugs, so you really don’t want to reinvent RSA. 
Even with all the documentation available, it would take months to com-
plete this daunting task.

Typically, when implementing RSA, you’ll use a library or API that pro-
vides the necessary functions to carry out RSA operations. For example, the 
Go language has the following function in its crypto package (from https://
www.golang.org/src/crypto/rsa/rsa.go):

func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte,
label []byte) (out []byte, err error)

The function EncryptOAEP() takes a hash function, a PRNG, a public key,  
a message, and a label (an optional parameter of OAEP), and returns a 
ciphertext and an error code. When you call EncryptOAEP(), it calls encrypt() to 
compute the RSA function given the padded data, as shown in Listing 10-3.

func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
    e := big.NewInt(int64(pub.E))
    c.Exp(m, e, pub.N)
    return c
  }

Listing 10-3: Implementing the core RSA encryption function from the Go language cryp-
tography library

The main operation shown in Listing 10-3 is c.Exp(m, e, pub.N), which 
raises a message, m, to the power e modulo pub.N, and assigns the result to 
the variable c.

https://www.golang.org/src/crypto/rsa/rsa.go
https://www.golang.org/src/crypto/rsa/rsa.go
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If you choose to implement RSA instead of using a readily available 
library function, be sure to rely on an existing big-number library, which is 
a set of functions and types that allow you to define and compute arithme-
tic operations on large numbers thousands of bits long. For example, you 
might use the GNU Multiple Precision (GMP) arithmetic library in C, or 
Go’s big package. (Believe me, you don’t want to implement big-number 
arithmetic yourself.)

Even if you just use a library function when implementing RSA, be sure 
that you understand how the internals work in order to measure the risks.

Fast Exponentiation Algorithm: Square-and-Multiply
The operation of raising x to the power e, when computing xe mod n, is 
called exponentiation. When we’re working with big numbers, as with RSA, 
this operation can be extremely slow if naively implemented. But how do we 
do this efficiently?

The naive way to compute xe mod n takes e – 1 multiplications, as shown 
in the pseudocode algorithm in Listing 10-4.

expModNaive(x, e, n) {
    y = x
    for i = 1 to e – 1 {
        y = y * x  mod n
    }
    return y
}

Listing 10-4: A naive exponentiation algorithm in pseudocode

This algorithm is simple but highly inefficient. One way to get the same 
result exponentially faster is to square rather than multiply exponents until 
the correct value is reached. This family of methods is called square-and-
multiply, or exponentiation by squaring or binary exponentiation.

For example, say that we want to compute 365537 mod 36567232109354321. 
(The number 65537 is the public exponent used in most RSA implementa-
tions.) We could multiply the number 3 by itself 65536 times, or we could 
approach this problem with the understanding that 65537 can be written 
as 216 + 1 and use a series of squaring operations. Essentially, we do the 
following:

Initialize a variable, y = 3, and then compute the following squaring (y2) 
operations:

1.	 Set y = y2 mod n (now y = 32 mod n).

2.	 Set y = y2 mod n (now y = (32)2 mod n = 34 mod n).

3.	 Set y = y2 mod n (now y = (34)2 = 38 mod n).

4.	 Set y = y2 mod n (now y = (38)2 = 316 mod n).

5.	 Set y = y2 mod n (now y = (316)2= 332 mod n).

And so on until y = 365536, by performing 16 squarings.
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To get the final result, we return 3 × y mod n = 365537 mod n = 
26652909283612267. In other words, we compute the result with only 
17 multiplications rather than 65536 with the naive method.

More generally, a square-and-multiply method works by scanning the 
exponent’s bits one by one, from left to right, computing the square for 
each exponent’s bit to double the exponent’s value, and multiplying by the 
original number for each bit with a value of 1 encountered. In the preced-
ing example, the exponent 65537 is 10000000000000001 in binary, and we 
squared y for each new bit and multiplied by the original number 3 only for 
the very first and last bits.

Listing 10-5 shows how this would work as a general algorithm in 
pseudocode to compute xe mod n when the exponent e consists of bits 
em – 1em – 2 . . . e1e0, where e0 is the least significant bit.

expMod(x, e, n) {
    y = x
    for i = m – 2 to 0 {
        y = y * y  mod n
        if ei == 1 then
            y = y * x  mod n
    }
    return y
}

Listing 10-5: A fast exponentiation algorithm in pseudocode

The expMod() algorithm shown in Listing 10-5 runs in time O(m), 
whereas the naive algorithm runs in time O(2m), where m is the bit length of 
the exponent. Here, O() is the asymptotic complexity notation introduced 
in Chapter 9.

Real systems often implement variants of this simplest square-and-
multiply method. One such variant is the sliding window method, which 
considers blocks of bits rather than individual bits to perform a given mul-
tiplication operation. For example, see the function expNN() of the Go lan-
guage, whose source code is available at https://golang.org/src/math/big/nat.go.

How secure are these square-and-multiply exponentiation algorithms? 
Unfortunately, the tricks to speed the process up often result in increased 
vulnerability against some attacks. Let’s see what can go wrong.

The weakness in these algorithms is due to the fact that the exponen-
tiation operations are heavily dependent on the exponent’s value. The if 
operation shown in Listing 10-5 takes a different branch based on whether 
an exponent’s bit is 0 or 1. If a bit is 1, an iteration of the for loop will be 
slower than it will be for 0, and attackers who monitor the execution time 
of the RSA operation can exploit this time difference to recover a private 
exponent. This is called a timing attack. Attacks on hardware can distin-
guish 1 bit from 0 bits by monitoring the device’s power consumption and 
observing which iterations perform an extra multiplication to reveal which 
bits of the private exponent are 1.

Only a minority of cryptographic libraries implement effective defenses 
against timing attacks, let alone against such power-analysis attacks.
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Small Exponents for Faster Public-Key Operations
Because an RSA computation is essentially the computation of an expo-
nentiation, its performance depends on the value of the exponents used. 
Smaller exponents require fewer multiplications and therefore can make 
the exponentiation computation much faster.

The public exponent e can in principle be any value between 3 and 
φ(n) – 1, as long as e and φ(n) are co-prime. But in practice you’ll only find 
small values of e, and most of the time e = 65537 due to concerns with encryp-
tion and signature verification speed. For example, the Microsoft Windows 
CryptoAPI only supports public exponents that fit in a 32-bit integer. The 
larger the e, the slower it is to compute xe mod n.

Unlike the size of the public exponent, the private exponent d will be 
about as large as n, making decryption much slower than encryption, and 
signing much slower than verification. Indeed, because d is secret, it must 
be unpredictable and therefore can’t be restricted to a small value. For 
example, if e is fixed to 65537, the corresponding d will usually be of the 
same order of magnitude as the modulus n, which would be close to 22048 
if n is 2048 bits long.

As discussed in “Fast Exponentiation Algorithm: Square-and-Multiply” 
on page 192, raising a number to the power 65537 will only take 17 multi-
plications, whereas raising a number to the power of some 2048-bit number 
will take on the order of 3000 multiplications.

One way to determine the actual speed of RSA is to use the OpenSSL 
toolkit. For example, Listing 10-6 shows the results of 512-, 1024-, 2048-, 
and 4096-bit RSA operations on my MacBook, which is equipped with an 
Intel Core i5-5257U clocked at 2.7 GHz.

$ openssl speed rsa512 rsa1024 rsa2048 rsa4096
Doing 512 bit private rsa's for 10s: 161476 512 bit private RSA's in 9.59s
Doing 512 bit public rsa's for 10s: 1875805 512 bit public RSA's in 9.68s
Doing 1024 bit private rsa's for 10s: 51500 1024 bit private RSA's in 8.97s
Doing 1024 bit public rsa's for 10s: 715835 1024 bit public RSA's in 8.45s
Doing 2048 bit private rsa's for 10s: 13111 2048 bit private RSA's in 9.65s
Doing 2048 bit public rsa's for 10s: 288772 2048 bit public RSA's in 9.68s
Doing 4096 bit private rsa's for 10s: 1273 4096 bit private RSA's in 9.71s
Doing 4096 bit public rsa's for 10s: 63987 4096 bit public RSA's in 8.50s
OpenSSL 1.0.2g  1 Mar 2016
--snip--
                  sign    verify    sign/s verify/s
rsa  512 bits 0.000059s 0.000005s  16838.0 193781.5
rsa 1024 bits 0.000174s 0.000012s   5741.4  84714.2
rsa 2048 bits 0.000736s 0.000034s   1358.7  29831.8
rsa 4096 bits 0.007628s 0.000133s    131.1   7527.9

Listing 10-6: Benchmarks of RSA operations using the OpenSSL toolkit

How much slower is verification compared to signature genera-
tion? To get an idea, we can compute the ratio of the verification time 
over signature time. The benchmarks in Listing 10-6 show that I’ve got 
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verification-over-signature speed ratios of approximately 11.51, 14.75, 21.96, 
and 57.42 for 512-, 1024-, 2048-, and 4096-bit moduli sizes, respectively. The 
gap grows with the modulus size because the number of multiplications 
for e operations will remain constant with respect to the modulus size (for 
example, 17 when e = 65537), while private-key operations will always need 
more multiplications for a greater modulus because d will grow accordingly.

But if small exponents are so nice, why use 65537 and not something 
like 3? It would actually be fine (and faster) to use 3 as an exponent when 
implementing RSA with a secure scheme such as OAEP, PSS, or FDH. 
Cryptographers avoid doing so, however, because when e = 3, less secure 
schemes make certain types of mathematical attacks possible. The num-
ber 65537 is large enough to avoid such low-exponent attacks, and it has just 
one instance in which a bit is 1, thanks to its low Hamming weight, which 
decreases the computational time. 65537 is also special for mathematicians: 
it’s the fourth Fermat number, or a number of the form

2 12( )n

+  

because it’s equal to 216 + 1, where 16 = 24, but that’s just a curiosity mostly 
irrelevant for cryptographic engineers.

The Chinese Remainder Theorem
The most common trick to speed up decryption and signature generation 
(that is, the computation of yd mod n) is the Chinese remainder theorem (CRT). 
It makes RSA about four times faster.

The Chinese remainder theorem allows for faster decryption by com-
puting two exponentiations, modulo p and modulo q, rather than simply 
modulo n. Because p and q are much smaller than n, it’s faster to perform 
two “small” exponentiations than a single “big” one.

The Chinese remainder theorem isn’t specific to RSA. It’s a general 
arithmetic result that, in its simplest form, states that if n = n1n2n3 . . . , 
where the nis are pairwise co-prime (that is, GCD(ni, nj) = 1 for any distinct 
i and j), then the value x mod n can be computed from the values x mod n1, 
x mod n2, x mod n3, . . . . For example, say we have n = 1155, which we write as 
the product of prime factors 3 × 5 × 7 × 11. We want to determine the number 
x that satisfies x mod 3 = 2, x mod 5 = 1, x mod 7 = 6, and x mod 11 = 8. (I’ve 
chosen 2, 1, 6, and 8 arbitrarily.)

To find x using the Chinese remainder theorem, we can compute the 
sum P(n1) + P(n2) + . . . , where P(ni) is defined as follows:

P n x n n n n n n ni i i i i� � � � � �� �� � �   mod      mod  mod / / /1

Note that the second term, n/ni, is equal to the product of all other fac-
tors than this ni.
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To apply this formula to our example and recover our x mod 1155, we 
take the arbitrary values 2, 1, 6, and 8; we compute P(3), P(5), P(7), and 
P(11); and then we add them together to get the following expression:

      mod        mod    

  

2 385 1 385 3 1 231 1 231 5 6� � � � � �

�

� � � �/ /

1165 1 165 7 8 105 1 105 11   mod        mod  
 m

� � � �� � � �
�

�
�
�

�

�
�
�/ /

ood n

Here, I’ve just applied the preceding definition of P(ni). (The math 
behind the way each number was found is straightforward, but I won’t detail 
it here.) This expression can then be reduced to [770 + 231 + 1980 + 1680] 
mod n = 41, and indeed 41 is the number I had picked for this example, so 
we’ve got the correct result.

Applying the CRT to RSA is simpler than the previous example, 
because there are only two factors for each n (namely p and q). Given a 
ciphertext y to decrypt, instead of computing yd mod n, you use the CRT 
to compute xp = ys mod p, where s = d mod (p – 1) and xq = yt mod q, where 
t = d mod (q – 1). You now combine these two expressions and compute x 
to be the following:

x x q q p x p p q np q� � � � � �� � � �   /  mod       /  mod  mod 1 1

And that’s it. This is faster than square-and-multiply because the multi-
plication-heavy operations are carried out on modulo p and q, numbers that 
are twice as small as n.

N O T E 	 In the final operation, the two numbers q × (1/q mod p) and p × (1/p mod q) can 
be computed in advance, which means only two multiplications and an addition of 
modulo n need to be computed to find x.

Unfortunately, there’s a security caveat attached to these techniques, as 
I’ll discuss next.

How Things Can Go Wrong
Even more beautiful than the RSA scheme itself is the range of attacks that 
work either because the implementation leaks (or can be made to leak) 
information on its internals or because RSA is used insecurely. I discuss two 
classic examples of these types of attacks in the sections that follow.

The Bellcore Attack on RSA-CRT
The Bellcore attack on RSA is one of the most important attacks in the his-
tory of RSA. When first discovered in 1996, it stood out because it exploited 
RSA’s vulnerability to fault injections—attacks that force a part of the algo-
rithm to misbehave and thus yield incorrect results. For example, hardware 
circuits or embedded systems can be temporarily perturbed by suddenly 
altering their voltage supply or by beaming a laser pulse to a carefully 
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chosen part of a chip. Attackers can then exploit the resulting faults in an 
algorithm’s internal operation by observing the impact on the final result. 
For example, comparing the correct result with a faulty one can provide 
information on the algorithm’s internal values, including secret values.

The Bellcore attack is such a fault attack. It works on RSA signature 
schemes that use the Chinese remainder theorem and that are deterministic—
meaning that it works on FDH, but not on PSS, which is probabilistic.

To understand how the Bellcore attack works, recall from the previous 
section that with CRT, the result that is equal to xd mod n is obtained by 
computing the following, where xp = ys mod p and xq = yt mod q:

x x q q p x p p q np q      /  mod       /  mod  mod = × × + × ×( ) ( )1 1

Now assume that an attacker induces a fault in the computation of xq 
so that you end up with some incorrect value, which differs from the actual 
xq. Let’s call this incorrect value xq′ and call the final result obtained x′. The 
attacker can then subtract the incorrect signature x′ from the correct signa-
ture x to factor n, which results in the following:

–x x x x p p q nq q          /  mod  mod − = × ×( ) ( )′ ′ 1

The value x – x′ is therefore a multiple of p, so p is a divisor of x – x′. 
Because p is also a divisor of n, the greatest common divisor of n and x – x′ 
yields p, GCD(x – x′, n) = p. We can then compute q = n/p and d, resulting 
in a total break of RSA signatures.

A variant of this attack works when you don’t know the correct signa-
ture but only know the message is signed. There’s also a similar fault attack 
on the modulus value, rather than on the CRT values computation, but I 
won’t go into detail on that here.

Sharing Private Exponents or Moduli
Now I’ll show you why your public key shouldn’t have the same modulus n as 
that of someone else.

Different private keys belonging to different systems or persons should 
obviously have different private exponents, d, even if the keys use different 
moduli, or you could try your own value of d to decrypt messages encrypted 
for other entities, until you hit one that shares the same d. By the same token, 
different key pairs should have different n values, even if they have different 
ds, because p and q are usually part of the private key. Hence, if we share the 
same n and thus the same p and q, I can compute your private key from your 
public key e using p and q.

What if my private key is simply the pair (n, d1), and your private key is 
(n, d2) and your public key is (n, e2)? Say that I know n but not p and q, so I 
can’t directly compute your private exponent d2 from your public exponent 
e2. How would you compute p and q from a private exponent d only? The 
solution is a bit technical, but elegant.
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Remember that d and e satisfy ed = kφ(n) + 1, where φ(n) is secret and 
could give us p and q directly. We don’t know k or φ(n), but we can compute 
kφ(n) = ed – 1.

What can we do with this value kφ(n)? A first observation is that, 
according to Euler’s theorem, we know that for any number a co-prime  
with n, aφ(n) = 1 mod n. Therefore, modulo n we have the following:

a ak n n k k� �( ) ( )� � �� �    1 1

A second observation is that, because kφ(n) is an even number, we 
can write it as 2st for some numbers s and t. That is, we’ll be able to write 
akφ(n) = 1 mod n under the form x2 = 1 mod n for some x easily computed 
from kφ(n). Such an x is called a root of unity.

The key observation is that x2 = 1 mod n is equivalent to saying that the 
value x2 – 1 = (x – 1)(x + 1) divides n. In other words, x – 1 or x + 1 must have 
a common factor with n, which can give us the factorization of n.

Listing 10-7 shows a Python implementation of this method where, in 
order to find the factors p and q from n and d, we use small, 64-bit numbers 
for the sake of simplicity.

from math import gcd

n = 36567232109354321
e = 13771927877214701
d = 15417970063428857

 kphi = d*e - 1
t = kphi

 while t % 2 == 0:
    t = divmod(t, 2)[0]

 a = 2
while a < 100:
  k = t
    while k < kphi:
        x = pow(a, k, n)
      if x != 1 and x != (n - 1) and pow(x, 2, n) == 1:
          p = gcd(x - 1, n)
            break
        k = k*2
    a = a + 2

q = n//p
 assert (p*q) == n

print('p = ', p)
print('q = ', q)

Listing 10-7: A python program that computes the prime factors p and q from the private 
exponent d
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This program determines kφ(n) from e and d  by finding the number 
t such that kφ(n) = 2st, for some s . Then it looks for a and k such that 
(ak)2 = 1 mod n , using t as a starting point for k . When this condition 
is satisfied , we’ve found a solution. It then determines the factor p  
and verifies  that the value of pq equals the value of n. It then prints the 
resulting values of p and q :

p = 2046223079
q = 17870599

The program correctly returns the two factors.

Further Reading
RSA deserves a book by itself. I had to omit many important and interesting 
topics, such as Bleichenbacher’s padding oracle attack on OAEP’s predeces-
sor (the standard PKCS#1 v1.5), an attack similar in spirit to the padding 
oracle attack on block ciphers seen in Chapter 4. There’s also Wiener’s 
attack on RSA with low private exponents, and attacks using Coppersmith’s 
method on RSA with small exponents that potentially also have insecure 
padding.

To see research results related to side-channel attacks and defenses, 
view the CHES workshop proceedings that have run since 1999 at http://
www.chesworkshop.org/. One of the most useful references while writing this 
chapter was Boneh’s “Twenty Years of Attacks on the RSA Cryptosystem,” 
a survey that reviews and explains the most important attacks on RSA. For 
reference specifically on timing attacks, the paper “Remote Timing Attacks 
Are Practical” by Brumley and Boneh, is a must-read, both for its analytical 
and experimental contributions. To learn more about fault attacks, read the 
full version of the Bellcore attack paper “On the Importance of Eliminating 
Errors in Cryptographic Computations” by Boneh, DeMillo, and Lipton.

The best way to learn how RSA implementations work, though some-
times painful and frustrating, is to review the source code of widely used 
implementations. For example, see RSA and its underlying big-number 
arithmetic implementations in OpenSSL, in NSS (the library used by the 
Mozilla Firefox browser), in Crypto++, or in other popular software, and 
examine their implementations of arithmetic operations as well as their 
defenses against timing and fault attacks.





11
D i f f i e – H e l l m a n

In November 1976, Stanford researchers 
Whitfield Diffie and Martin Hellman 

published a research paper titled “New 
Directions in Cryptography” that revolu-

tionized cryptography forever. In their paper, they 
introduced the notion of public-key encryption and 
signatures, though they didn’t actually have any of 
those schemes; they simply had what they termed a public-key distribution 
scheme, a protocol that allows two parties to establish a shared secret by 
exchanging information visible to an eavesdropper. This protocol is now 
known as the Diffie–Hellman (DH) protocol. 

Prior to Diffie–Hellman, establishing a shared secret required per-
forming tedious procedures such as manually exchanging sealed enve-
lopes. Once communicating parties have established a shared secret value 
with the DH protocol, that secret can be used to establish a secure channel by 
turning the secret into one or more symmetric keys that are then used to 
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encrypt and authenticate subsequent communication. The DH protocol—
and its variants—are therefore called key agreement protocols.

In the first part of this chapter, I review the mathematical foundations 
of the Diffie–Hellman protocol, including the computational problems that 
DH relies on to perform its magic. I then describe different versions of the 
Diffie–Hellman protocol used to create secure channels in the second part 
of this chapter. Finally, because Diffie–Hellman schemes are only secure 
when their parameters are well chosen, I conclude the chapter by examin-
ing scenarios where Diffie–Hellman can fail.

N o t e 	 Diffie and Hellman received the prestigious Turing Award in 2015 for their inven-
tion of public-key cryptography and digital signatures, but others deserve credit as 
well. In 1974, two years before the seminal Diffie–Hellman paper, computer scientist 
Ralph Merkle introduced the idea of public-key cryptography with what are now 
called Merkle’s puzzles. Around that same year, researchers at GCHQ (Government 
Communications Headquarters), the British equivalent of the NSA, had also discov-
ered the principles behind RSA and Diffie–Hellman key agreement, though that fact 
would only be declassified decades later.

The Diffie–Hellman Function
In order to understand DH key agreement protocols, you must first under-
stand their core operation, the DH function. The DH function will usually 
work with groups denoted Zp

*. Recall from Chapter 9 that these groups are 
formed of nonzero integer numbers modulo a prime number, denoted p. 
Another public parameter is the base number, g. All arithmetic operations 
are performed modulo p.

The DH function involves two private values chosen randomly by the 
two communicating parties from the group Zp

*, denoted a and b. A pri-
vate value a has a public value associated with A = ga  mod p, or g raised 
to the power a modulo p. This value is sent to the other party through a 
message that is visible to eavesdroppers. The public value associated with 
b is B = gb  mod p, or g raised to the power b modulo p, which is sent to the 
owner of a through a publicly readable message.

DH works its magic by combining either public value with the other 
private value, such that the result is the same in both cases: Ab = (ga)b = gab 
and B a = (gb)a = gba = gab. The resulting value, gab, is the shared secret; it is then 
passed to a key derivation function (KDF) in order to generate one or more 
shared symmetric keys. A KDF is a kind of hash function that will return a 
random-looking string the size of the desired key length.

And that’s it. Like many great scientific discoveries (gravity, relativity, 
quantum computing, or RSA), the Diffie–Hellman trick is terribly simple in 
hindsight.

Diffie–Hellman’s simplicity can be deceiving, however. For one thing, 
it won’t work with just any prime p or base number g. For example, some 
values of g will restrict the shared secrets gab to a small subset of possible 
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values, whereas you’d expect to have about as many possible values as ele-
ments in Zp

*, and therefore as many possible values for the shared secret. To 
ensure the highest security, safe DH parameters should work with a prime 
p such that (p – 1) / 2 is also prime. Such a safe prime guarantees that the 
group doesn’t have small subgroups that would make DH easier to break. 
With a safe prime, DH can notably work with g = 2, which makes computa-
tions slightly faster. But generating a safe prime p takes more time than gen-
erating a totally random prime.

For example, the dhparam command of the OpenSSL toolkit will only 
generate safe DH parameters, but the extra checks built into the algorithm 
result increase the execution time considerably, as shown in Listing 11-1.

$ time openssl dhparam 2048
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time
--snip--
-----BEGIN DH PARAMETERS-----
MIIBCAKCAQEAoSIbyA9e844q7V89rcoEV8vd/l2svwhIIjG9EPwWWr7FkfYhYkU9
fRNttmilGCTfxc9EDf+4dzw+AbRBc6oOL9gxUoPnOd1/G/YDYgyplF5M3xeswqea
SD+B7628pWTaCZGKZham7vmiN8azGeaYAucckTkjVWceHVIVXe5fvU74k7+C2wKk
iiyMFm8th2zm9W/shiKNV2+SsHtD6r3ZC2/hfu7XdOI4iT6ise83YicU/cRaDmK6
zgBKn3SlCjwL4M3+m1J+Vh0UFz/nWTJ1IWAVC+aoLK8upqRgApOgHkVqzP/CgwBw
XAOE8ncQqroJ0mUSB5eLqfpAvyBWpkrwQwIBAg==
-----END DH PARAMETERS-----
openssl dhparam 2048  154.53s user 0.86s system 99% cpu 2:36.85 total

Listing 11-1: Measuring the execution time of generating 2048-bit Diffie–Hellman param-
eters with the OpenSSL toolkit

As you can see in Listing 11-1, it took 154.53 seconds to generate the DH 
parameters using the OpenSSL toolkit. Now, for the sake of comparison, 
Listing 11-2 shows how long it takes on the same system to generate RSA 
parameters of the same size (that is, two prime numbers, p and q, each half 
the size of the p used for DH).

$ time openssl genrsa 2048
Generating RSA private key, 2048 bit long modulus
...................................................+++
.............................................................+++
e is 65537 (0x10001)
-----BEGIN RSA PRIVATE KEY-----
--snip--
-----END RSA PRIVATE KEY-----
openssl genrsa 2048  0.16s user 0.01s system 95% cpu 0.171 total

Listing 11-2: Generating 2048-bit RSA parameters while measuring the execution time

Generating DH parameters took about 1000 times longer than generat-
ing RSA parameters of the same security level, mainly due to the extra con-
straint imposed on the prime generated to create DH parameters.



204   Chapter 11

The Diffie–Hellman Problems
The security of DH protocols relies on the hardness of computational prob-
lems, especially on that of the discrete logarithm problem (DLP) introduced 
in Chapter 9. Clearly, DH can be broken by recovering the private value a 
from its public value ga, which boils down to solving a DLP instance. But 
we don’t care only about the discrete logarithm problem when using DH to 
compute shared secrets. We also care about two DH-specific problems, as 
explained next.

The Computational Diffie–Hellman Problem
The computational Diffie–Hellman (CDH) problem is that of computing the 
shared secret gab given only the public values ga and gb, and not any of the 
secret values a or b. The motivation is obviously to ensure that even if an 
eavesdropper captures ga and gb, they should not be able to determine the 
shared secret gab.

If you can solve DLP, then you can also solve CDH; to put it simply, if 
you can solve DLP, then given ga and gb, you’ll be able to derive a and b to 
compute gab. In other words, DLP is at least as hard as CDH. But we don’t 
know for sure whether CDH is at least as hard as DLP, which would make 
the problems equally hard. In other words, DLP is to CDH what the factor-
ing problem is to the RSA problem. (Recall that factoring allows you to 
solve the RSA problem, but not necessarily the converse.)

Diffie–Hellman shares another similarity with RSA in that DH will 
deliver the same security level as RSA for a given modulus size. For example, 
the DH protocol with a 2048-bit prime p will get you about the same security 
that RSA with a 2048-bit modulus n offers, which is about 90 bits. Indeed, the 
fastest way we know to break CDH is to solve DLP using an algorithm called 
the number field sieve, a method similar but not identical to the fastest one that 
breaks RSA by factoring its modulus: the general number field sieve (GNFS).

The Decisional Diffie–Hellman Problem
Sometimes we need something stronger than CDH’s hardness assumption. 
For example, imagine that an attacker can compute the first 32 bits of gab 
given the 2048-bit values of ga and gb, but that they can’t compute all 2048 
bits. Although CDH would still be unbroken because 32 bits aren’t enough 
to completely recover gab, the attacker would still have learned something 
about the shared secret, which might still allow them to compromise an 
application’s security.

To ensure that an attacker can’t learn anything about the shared 
secret gab, this value needs only to be indistinguishable from a random 
group element, just as an encryption scheme is secure when ciphertexts 
are indistinguishable from random strings. The computational problem 
formalizing this intuition is called the decisional Diffie–Hellman (DDH) 
problem. Given ga, gb, and a value that is either gab or gc for some random 
c (each of the two with a chance of 1/2), the DDH problem consists of 
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determining whether gab (the shared secret corresponding to ga and gb) 
was chosen. The assumption that no attacker can solve DDH efficiently is 
called the decisional Diffie–Hellman assumption.

If DDH is hard, then CDH is also hard, and you can’t learn anything 
about gab. But if you can solve CDH, you can also solve DDH: given a triplet 
(ga, gb, gc), you would be able to derive gab from ga and gb and check whether 
the result is equal to the given gc. The bottom line is that DDH is funda-
mentally less hard than CDH, yet DDH hardness is a prime assumption in 
cryptography, and one of the most studied. We can be confident that both 
CDH and DDH are hard when Diffie–Hellman parameters are well chosen.

More Diffie–Hellman Problems
Sometimes cryptographers devise new schemes and prove that they are at 
least as hard to break as it is to solve some problem related to CDH or DDH 
but not identical to either of these. Ideally, we’d like to demonstrate that 
breaking a cryptosystem is as hard as solving CDH or DDH, but this isn’t 
always possible with advanced cryptographic mechanisms, typically because 
such schemes involve more complex operations than basic Diffie–Hellman 
protocols.

For example, in one DH-like problem, given ga, an attacker would 
attempt to compute g1 / a, where 1 / a is the inverse of a in the group (typi-
cally Zp

* for some prime p). In another, an attacker might distinguish the 
pairs (ga, gb) from the pairs (ga, g1 / a) for random a and b. Finally, in what is 
called the twin Diffie–Hellman problem, given ga, gb, and gc, an attacker would 
attempt to compute the two values gab and gac. Sometimes such DH variants 
turn out to be as hard as CDH or DDH, and sometimes they’re fundamen-
tally easier—and therefore provide lower security guarantees. As an exer-
cise, try to find connections between the hardness of these problems and 
that of CDH and DDH. (Twin Diffie–Hellman is actually as hard as CDH, 
but that isn’t easy to prove!)

Key Agreement Protocols
The Diffie–Hellman problem is designed to build secure key agreement 
protocols—protocols designed to secure communication between two or 
more parties communicating over a network with the aid of a shared 
secret. This secret is turned into one or more session keys—symmetric keys 
used to encrypt and authenticate the information exchanged for the dura-
tion of the session. But before studying actual DH protocols, you should 
know what makes a key agreement protocol secure or insecure, and how 
simpler protocols work. We’ll begin our discussion with a widely used key 
agreement protocol that doesn’t rely on DH.

An Example of Non-DH Key Agreement
To give you a sense of how a key agreement protocol works and what it 
means for it to be secure, let’s look at the protocol used in the 3G and 4G 



206   Chapter 11

telecommunications standards to establish communication between a SIM 
card and a telecom operator. The protocol is often referred to as AKA, for 
authenticated key agreement. It doesn’t use the Diffie–Hellman function, but 
instead uses only symmetric-key operations. The details are a bit boring, but 
essentially the protocol works as shown in Figure 11-1.

Operator 
(knows the SIM’s key, K )

Messages visible 
to an attacker

Pick a random value, R.

SIM card 
(holds a secret key, K )

Compute the two values:
SK = PRF0 (K, R)
V1 = PRF1 (K, R)

Send R and V1.
Using R, compute SK = PRF0 (K, R)
and verify that V1 = PRF1 (K, R).

Compute V2 = PRF2 (K, R).Send V2.Verify that V2 = PRF2 (K, R).

Enable communications 
using keys SK.

Figure 11-1: The authenticated key agreement protocol in 3G and 4G telecommunication

In this implementation of the protocol, the SIM card has a secret key, 
K, that the operator knows. The operator begins the session by selecting 
a random value, R, and then computes two values, SK and V1, based on 
two pseudorandom functions, PRF0 and PRF1. Next, the operator sends 
a message to the SIM card containing the values R and V1, which are vis-
ible to attackers. Once the SIM card has R, it has what it needs in order to 
compute SK with PRF0, and it does so. The two parties in this session end 
up with a shared key, SK, that attackers are unable to determine by simply 
looking at the messages exchanged between the parties, or even by modify-
ing them or injecting new ones. The SIM card verifies that it’s talking to 
the operator by recomputing V1 with PRF1, K, and R, and then checking to 
make sure that the calculated V1 matches the V1 sent by the operator. The 
SIM card then computes a verification value, V2, with a new function, PRF2, 
with K and R as input, and sends V2 to the operator. The operator verifies 
that the SIM card knows K by computing V2 and checking that the com-
puted value matches the V2 it received.

But this protocol is not immune to all kinds of attacks: in principle 
there’s a way to fool the SIM card with a replay attack. Essentially, if an 
attacker captures a pair (R, V1), they may send it to the SIM card and trick 
the SIM into believing that the pair came from a legitimate operator that 
knows K. To prevent this attack, the protocol includes additional checks to 
ensure that the same R isn’t reused.

Problems can also arise if K is compromised. For example, an attacker 
who compromises K can perform a man-in-the-middle attack and listen 
to all cleartext communication. Such an attacker could send messages 



Diffie–Hellman   207

between the two parties while pretending to be both the legitimate SIM 
card operator and the SIM card. The greater risk is that an attacker can 
record communications and any messages exchanged during the key 
agreement, and later decrypt those communications by using the cap-
tured R values. An attacker could then determine the past session keys 
and use them to decrypt the recorded traffic.

Attack Models for Key Agreement Protocols
There is no single definition of security for key agreement protocols, and 
you can never say that a key protocol is completely secure without context 
and without considering the attack model and the security goals. You can, 
for example, argue that the previous 3G/4G protocol is secure because a 
passive attacker won’t find the session keys, but you could also argue that it’s 
insecure because once the key K leaks, then all previous and future commu-
nications are compromised.

There are different notions of security in key agreement protocols as well 
as three main attack models that depend on the information the protocol 
leaks. From weakest to strongest, these are the eavesdropper, the data leak, and 
the breach:

The eavesdropper  This attacker observes the messages exchanged 
between the two legitimate parties running a key agreement protocol 
and can record, modify, drop, or inject messages. To protect against an 
eavesdropper, a key agreement protocol must not leak any information 
on the shared secret established.

The data leak  In this model, the attacker acquires the session key 
and all temporary secrets (such as SK in the telecom protocol example 
discussed previously) from one or more executions of the protocol, but 
not the long-term secrets (like K in that same protocol). 

The breach (or corruption)  In this model, the attacker learns the 
long-term key of one or more of the parties. Once a breach occurs, 
security is no longer attainable because the attacker can impersonate 
one or both parties in subsequent sessions of the protocol. Nonetheless, 
the attacker shouldn’t be able to recover secrets from sessions executed 
before gathering the key.

Now that we’ve looked at the attack models and seen what an attacker 
can do, let’s explore the security goals—that is, the security guarantees that 
the protocol should offer. A key agreement protocol can be designed to sat-
isfy several security goals. The four most relevant ones are described here, 
in order from simplest to most sophisticated.

Authentication  Each party should be able to authenticate the other 
party. That is, the protocol should allow for mutual authentication. 
Authenticated key agreement (AKA) occurs when a protocol authen
ticates both parties.
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Key control   Neither party should be able to choose the final shared 
secret or coerce it to be in a specific subset. The 3G/4G key agreement 
protocol discussed earlier lacks this property because the operator 
chooses the value for R that entirely determines the final shared key.

Forward secrecy  This is the assurance that even if all long-term 
secrets are exposed, shared secrets from previous executions of the 
protocol won’t be able to be computed, even if an attacker records 
all previous executions or is able to inject or modify messages from 
previous executions. A forward-secret protocol guarantees that even if 
you have to deliver your devices and their secrets to some authority or 
other, they won’t be able to decrypt your prior encrypted communica-
tions. (The 3G/4G key agreement protocol doesn’t provide forward 
secrecy.)

Resistance to key-compromise impersonation (KCI)  KCI occurs 
when an attacker compromises a party’s long-term key and is able 
to use it to impersonate another party. For example, the 3G/4G key 
agreement protocol allows trivial key-compromise impersonation 
because both parties share the same key K. A key agreement protocol 
should ideally prevent this kind of attack.

Performance
To be useful, a key agreement protocol should be not only secure but also 
efficient. Several factors should be taken into account when considering 
a key agreement protocol’s efficiency, including the number of messages 
exchanged, the length and number of messages, the computational effort 
to implement the protocol, and whether precomputations can be made to 
save time. A protocol is generally more efficient if fewer, shorter messages 
are exchanged, and it’s best if interactivity is kept minimal so that neither 
party has to wait to receive a message before sending the next one. A com-
mon measure of a protocol’s efficiency is its duration in terms of round trips, 
or the time it takes to send a message and receive a response.

Round-trip time is usually the main cause of latency in protocols, but 
the amount of computation to be carried out also counts; the fewer the 
computations required the better, and the more precomputations that can 
be done in advance, the better.

For example, the 3G/4G key agreement protocol discussed earlier 
exchanges two messages of a few hundred bits each, which must be sent 
in a certain order. Pre-computation can be used with this protocol to save 
time since the operator can pick many values of R in advance; precompute 
the matching values of SK, V1, and V2; and store them all in a database. In 
this case, precomputation has the advantage of reducing the exposure of 
the long-term key.
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Diffie–Hellman Protocols
The Diffie–Hellman function is the core of most of the deployed public-key 
agreement protocols. However, there is no single Diffie–Hellman protocol, 
but rather a variety of ways to use the DH function in order to establish a 
shared secret. We’ll review three of those protocols in the sections that fol-
low. In each discussion, I’ll stick to the usual crypto placeholder names and 
call the two parties Alice and Bob, and the attacker Eve. I’ll write g as the 
basis of the group used for arithmetic operations, a value fixed and known 
in advance to Alice and Bob.

Anonymous Diffie–Hellman
Anonymous Diffie–Hellman is the simplest of the Diffie–Hellman protocols. 
It’s called anonymous because it’s not authenticated; the participants have 
no identity that can be verified by either party, and neither party holds a 
long-term key. Alice can’t prove to Bob that she’s Alice, and vice versa. 

In anonymous Diffie–Hellman, each party picks a random value (a for 
Alice and b for Bob) to use as a private key, and sends the corresponding pub-
lic key to the other peer. Figure 11-2 shows the process in a bit more detail.

Alice Messages visible 
to an attackerPick a random 

exponent a.

Bob

Set A = ga. Send A. Compute Ab = (ga)b = gab.

Send B.

Pick a random 
exponent b.

Set B = gb.Compute Ba = (gb)a = gba = gab.

Figure 11-2: The anonymous Diffie–Hellman protocol

As you can see, Alice uses her exponent a and the group basis g to 
compute A = ga, which she sends to Bob. Bob receives A and computes Ab, 
which is equal to (ga)b. Bob now obtains the value gab and computes B from 
his random exponent b and the value g. He then sends B to Alice and she 
uses it to compute gab. Alice and Bob end up with the same value, gab, after 
performing similar operations, which involve raising both g and the value 
received to their private exponent’s power. Pure, simple, but only secure 
against the laziest of attackers.

Anonymous DH can be taken down with a man-in-the-middle attack. 
An eavesdropper simply needs to intercept messages and pretend to be Bob 
(to Alice) and pretend to be Alice (to Bob), as shown in Figure 11-3.
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Alice Attacker Eve

Pick a random 
exponent a.

Bob

Set A = ga. Drop A.

Believes he received 
C from Alice.

Compute Cb = (gc)b = gbc.

Pick a random 
exponent b.

Set B = gb.

Compute Da = (gd)a = gad.

Pick a random 
exponent c.

Send C = gc to Bob.

Drop B.
Compute Bc = gbc.

Pick a random 
exponent d.

Compute Ad = gad.
Send D = gd to Alice.

Figure 11-3: A man-in-the-middle attack on the anonymous Diffie–Hellman protocol

As in the previous exchange, Alice and Bob pick random exponents, 
a and b. Alice now computes and sends A, but Eve intercepts and drops 
the message. Eve then picks a random exponent, c, and computes C = gc to 
send to Bob. Because this protocol has no authentication, Bob believes he 
is receiving C from Alice and goes on to compute gbc. Bob then computes 
B and sends that value to Alice, but Eve intercepts and drops the message 
again. Eve now computes gbc, picks a new exponent, d, computes gad, com-
putes D from gd, and sends D to Alice. Alice then computes gad as well.

As a result of this attack, the attacker Eve ends up sharing a secret 
with Alice (gad) and another secret with Bob (gbc), though Alice and Bob 
believe that they’re sharing a single secret with each other. After complet-
ing the protocol execution, Alice will derive symmetric keys from gad in 
order to encrypt data sent to Bob, but Eve will intercept the encrypted 
messages, decrypt them, and re-encrypt them to Bob using another set 
of keys derived from gbc—after potentially modifying the cleartext. All of 
this happens with Alice and Bob unaware. That is, they’re doomed.

To foil this attack, you need a way to authenticate the parties so that 
Alice can prove that she’s the real Alice and Bob can prove that he’s the 
real Bob. Fortunately, there is a way to do so.

Authenticated Diffie–Hellman
Authenticated Diffie–Hellman was developed to address the sort of man-in-the-
middle attacks that can affect anonymous DH. Authenticated DH equips 
the two parties with both a private and a public key, thereby allowing Alice 
and Bob to sign their messages in order to stop Eve from sending messages 
on their behalf. Here, the signatures aren’t computed with a DH function, 
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but a public-key signature scheme such as RSA-PSS. As a result, in order to 
successfully send messages on behalf of Alice, an attacker would need to 
forge a valid signature, which is impossible with a secure signature scheme.

Figure 11-4 shows how authenticated DH works.

Alice (privA, pubB) Messages visible 
to EvePick a random 

exponent a.

Bob (privB, pubA)

Set A = ga.
Set sigA = sign(privA, A). Send A and sigA.

Verify sigA using pubA.
Abort if the signature is invalid.

Compute Ab = (ga)b = gab.

Pick a random 
exponent b.

Set B = gb.
Set sigB = sign(privB, B).Send B and sigB.

Verify sigB using pubB.
Abort if the signature is invalid.
Compute Ba = (gb)a = gba = gab.

Figure 11-4: The authenticated Diffie–Hellman protocol

The Alice (privA, pubB) label on the first line means that Alice holds her 
own private key, privA, as well as Bob’s public key, pubB. This sort of priv/pub 
key pair is called a long-term key because it’s fixed in advance and remains 
constant through consecutive runs of the protocol. Of course, these long-
term private keys should be kept secret, while the public keys are consid-
ered to be known to an attacker.

Alice and Bob begin by picking random exponents, a and b, as in anon-
ymous DH. Alice then calculates A and a signature sigA based on a combina-
tion of her signing function sign, her private key privA, and A. Now Alice 
sends A and sigA to Bob, who verifies sigA with her public key pubA. If the sig-
nature is invalid, Bob knows that the message didn’t come from Alice, and 
he discards A.

If the signature is correct, Bob will compute gab from A and his random 
exponent b. He would then compute B and his own signature from a combi-
nation of the sign function, his private key privB, and B. Now he sends B and 
sigB to Alice, who attempts to verify sigB with Bob’s public key pubB. Alice will 
only compute gab if Bob’s signature is successfully verified.

Security Against Eavesdroppers

Authenticated DH is secure against eavesdroppers because attackers can’t 
learn any bit of information on the shared secret gab since they ignore the 
DH exponents. Authenticated DH also provides forward secrecy: even if an 
attacker corrupts any of the parties at some point, as in the breach attack 
model discussed earlier, they would learn the private signing keys but not 
any of the ephemeral DH exponents; hence, they’d be unable to learn the 
value of any previously shared secrets.

Authenticated DH also prevents any party from controlling the value 
of the shared secret. Alice can’t craft a special value of a in order to predict 
the value of gab because she doesn’t control b, which influences gab as much 
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as a does. (One exception would be if Alice were to choose a = 0, in which 
case we’d have gab = 1 for any b. But 0 isn’t an authorized value and should 
be rejected by the protocol.)

That said, authenticated DH isn’t secure against all types of attack. For 
one thing, Eve can record previous values of A and sigA and replay them later 
to Bob, in order to pretend to be Alice. Bob will then believe that he’s sharing 
a secret with Alice when he isn’t, even though Eve would not be able to learn 
that secret. This risk is eliminated in practice by adding a procedure called 
key confirmation, wherein Alice and Bob prove to each other that they own the 
shared secret. For example, Alice and Bob may perform key confirmation 
by sending respectively Hash(pubA || pubB, gab) and Hash(pubB || pubA, gab) 
for some hash function Hash; when Bob receives Hash(pubA || pubB, gab) 
and Alice receives Hash(pubB || pubA, gab), both can verify the correctness 
of these hash values using pubA, pubB, and gab. The different order of pub-
lic keys (pubA || pubB and pubB || pubA) ensures that Alice and Bob will send 
different values, and that an attacker can’t pretend to be Alice by copying 
Bob’s hash value.

Security Against Data Leaks

Authenticated DH’s vulnerability to data leak attackers is of greater concern. 
In this type of attack, the attacker learns the value of ephemeral, short-term 
secrets (namely, the exponents a and b) and uses that information to imper-
sonate one of the communicating parties. If Eve is able to learn the value 
of an exponent a along with the matching values of A and sigA sent to Bob, 
she could initiate a new execution of the protocol and impersonate Alice, as 
shown in Figure 11-5.

Bob (privB, pubA)

Send A and sigA.
Verify sigA using pubA.

Abort if the signature is invalid.
Compute Ab = (ga)b = gab.

Pick a random 
exponent b.

Set B = gb.
Set sigB = sign(privB, B).Send B and sigB.

Verify sigB using pubB.
Abort if the signature is invalid.
Compute Ba = (gb)a = gba = gab.

Attacker Eve (a, A, sigA, pubB)

Figure 11-5: An impersonation attack on the authenticated Diffie–Hellman protocol

In this attack scenario, Eve learns the value of an a and replays the 
corresponding A and its signature sigA, pretending to be Alice. Bob veri-
fies the signature and computes gab from A and sends B and sigB, which Eve 
then uses to compute gab, using the stolen a. This results in the two having 
a shared secret. Bob now believes he is talking to Alice.
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One way to make authenticated DH secure against the leak of ephem-
eral secrets is to integrate the long-term keys into the shared secret compu-
tation so that the shared secret can’t be determined without knowing the 
long-term secret.

Menezes–Qu–Vanstone (MQV)
The Menezes–Qu–Vanstone (MQV) protocol is a milestone in the history of 
DH-based protocols. Designed in 1998, MQV had been approved to protect 
most critical assets when the NSA included it in its Suite B, a portfolio of algo-
rithms designed to protect classified information. (NSA eventually dropped 
MQV, allegedly because it wasn’t used. I’ll discuss the reasons why in a bit.)

MQV is Diffie–Hellman on steroids. It’s more secure than authenticated 
DH, and it improves on authenticated DH’s performance properties. In par-
ticular, MQV allows users to send only two messages, independently of each 
other, in arbitrary order. Other benefits are that users can send shorter mes-
sages than they would be able to with authenticated DH, and they don’t need 
to send explicit signature or verification messages. In other words, you don’t 
need to use a signature scheme in addition to the Diffie–Hellman function.

As with authenticated DH, in MQV Alice and Bob each hold a long-
term private key as well as the long-term public key of the other party. The 
difference is that the MQV keys aren’t signing keys: the keys used in MQV 
are composed of a private exponent, x, and a public value, gx. Figure 11-6 
shows the operation of the MQV protocol.

Alice (x, Y = gy) Messages visible 
to an attackerPick a random 

exponent a.

Bob (y, X = gx)

Set A = ga. Send A.

Send B.

Pick a random 
exponent b.

Set B = gb.

Compute (B × YB)a + xA. Compute (A × YA)b + yB.

Figure 11-6: The MQV protocol

The x and y in Figure 11-6 are Alice and Bob’s respective long-term 
private keys, and X and Y are their public keys. Bob and Alice start out 
with their own private keys and each other’s public keys, which are g to 
the power of a private key. Each chooses a random exponent, and then 
Alice calculates A and sends it to Bob. Bob then calculates B and sends it 
to Alice. Once Alice gets Bob’s ephemeral public key B, she combines it 
with her long-term private key x, her ephemeral private key a, and Bob’s 
long-term public key Y by calculating the result of (B × Y B)a + xA, as defined 
in Figure 11-6. Developing this expression, we obtain the following:

B Y g g g gB a xA b y B a xA
b yB a xA b yB a×( ) = × ( )( ) = ( ) =

+ +
+ + +  

  

  
  

   ( )( ++  xA)
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Meanwhile, Bob calculates the result of (A × XA)b + yB, and we can verify 
that it’s equal to the value calculated by Alice:

A X g g g gA b yB a x A b yB
a xA b yB a xA b× ×( ) = ( )( ) = ( ) =

+ +
+ + +  

  

  
  

   ( )( ++ + +=     yB b yB a xAg) ( )( )

As you can see, we get the same value for both Alice and Bob, namely 
g(b + yB)(a + xA). This tells us that Alice and Bob share the same secret.

Unlike authenticated DH, MQV can’t be broken by a mere leak of the 
ephemeral secrets. Knowledge of a or b won’t let an attacker determine the 
final shared secret because they would need the long-term private keys to 
compute it.

What happens in the strongest attack model, the breach model, where 
a long-term key is compromised? If Eve compromises Alice’s long-term pri-
vate key x, the previously established shared secrets are safe because their 
computation also involved Alice’s ephemeral private keys.

However, MQV doesn’t provide perfect forward secrecy because of the 
following attack. Say, for example, that Eve intercepts Alice’s A message 
and replaces it with her A = ga for some a that Eve has chosen. In the mean-
time, Bob sends B to Alice (and Eve records B’s value) and computes the 
shared key. If Eve later compromises Alice’s long-term private key x, she 
can determine the key that Bob had computed during this session. This 
breaks forward secrecy, since Eve has now recovered the shared secret of 
a previous execution of the protocol. In practice, however, the risk can be 
eliminated by a key-confirmation step that would have Alice and Bob real-
ize that they don’t share the same key, and they would therefore abort the 
protocol before deriving any session keys.

Despite its elegance and security, MQV is rarely used in practice. One 
reason is because it used to be encumbered by patents, which hampered its 
widespread adoption. Another reason is that it’s harder than it looks to get 
MQV right in practice. In fact, when weighed against its increased complex-
ity, MQV’s security benefits are often perceived as low in comparison to the 
simpler authenticated DH.

How Things Can Go Wrong
Diffie–Hellman protocols can fail spectacularly in a variety of ways. I high-
light some of the most common ones in the next sections.

Not Hashing the Shared Secret
I’ve alluded to the fact that the shared secret that concludes a DH session 
exchange (gab in our examples) is taken as input to derive session keys but is 
not a key itself. And it shouldn’t be. A symmetric key should look random, 
and each bit should either be 0 or 1 with the same probability. But gab is not 
a random string; it’s a random element within some mathematical group 
whose bits may be biased toward 0 or 1. And a random group element is dif-
ferent from a random string of bits.
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Imagine, for example, that we’re working within the multiplicative group 
Z13

* = {1, 2, 3, . . . , 12} using g = 2 as a generator of the group, meaning 
that gi spans all values of Z13

* for i in 1, 2, . . . 12: g1 = 2, g2 = 4, g3 = 8, g4 = 3, 
and so on. If g’s exponent is random, you’ll get a random element of Z13

*, 
but the encoding of a Z13

* element as a 4-bit string won’t be uniformly ran-
dom: not all bits will have the same probability of being a 0 or a 1. In Z13

*, 
seven values have 0 as their most significant bit (the numbers from 1 to 7 
in the group), but only five have 1 as their most significant bit (from 8 to 
12). That is, this bit is 0 with probability 7 / 12 ≈ 0.58, whereas, ideally, a 
random bit should be 0 with probability 0.5. Moreover, the 4-bit sequences 
1101, 1110, and 1111 will never appear.

To avoid such biases in the session keys derived from a DH shared secret, 
you should use a cryptographic hash function such as BLAKE2 or SHA-3—
or, better yet, a key derivation function (KDF). An example of KDF construc-
tion is HKDF, or HMAC-based KDF (as specified in RFC 5869), but today 
BLAKE2 and SHA-3 feature dedicated modes to behave as KDFs.

Legacy Diffie–Hellman in TLS
The TLS protocol is the security behind HTTPS secure websites as well as 
the Simple Mail Transfer Protocol (SMTP). TLS takes several parameters, 
including the type of Diffie–Hellman protocol it will use, though most TLS 
implementations still support anonymous DH for legacy reasons, despite its 
insecurity.

Unsafe Group Parameters
In January 2016, the maintainers of the OpenSSL toolkit fixed a high-
severity vulnerability (CVE-2016-0701) that allowed an attacker to exploit 
unsafe Diffie–Hellman parameters. The root cause of the vulnerability 
was that OpenSSL allowed users to work with unsafe DH group param-
eters (namely, an unsafe prime p) instead of throwing an error and abort-
ing the protocol altogether before performing any arithmetic operation.

Essentially, OpenSSL accepted a prime number p whose multiplicative 
group Zp

* (where all DH operations happen) contained small subgroups. 
As you learned at the beginning of this chapter, the existence of small sub-
groups within a larger group in a cryptographic protocol is bad because 
it confines shared secrets to a much smaller set of possible values than if it 
were to use the whole group Zp

*. Worse still, an attacker can craft a DH expo-
nent x that, when combined with the victim’s public key gy, will reveal infor-
mation on the private key y and eventually its entirety.

Although the actual vulnerability is from 2016, the principle the attack 
used dates back to the 1997 paper “A Key Recovery Attack on Discrete Log-
based Schemes Using a Prime Order Subgroup” by Lim and Lee. The fix 
for the vulnerability is simple: when accepting a prime p as group modulus, 
the protocol must check that p is a safe prime by verifying that (p – 1) / 2 
is prime as well in order to ensure that the group Zp

* won’t have small sub-
groups, and that an attack on this vulnerability will fail.
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Further Reading
Here’s a rundown of some things that I didn’t cover in this chapter but are 
useful to learn about.

You can dig deeper into the DH key agreement protocols by reading 
a number of standards and official publications, including ANSI X9.42, 
RFC 2631 and RFC 5114, IEEE 1363, and NIST SP 800-56A. These serve as 
references to ensure interoperability, and to provide recommendations for 
group parameters.

To learn more about advanced DH protocols (such as MQV and its 
cousins HMQV and OAKE, among others) and their security notions (such 
as unknown-key share attacks and group representation attacks), read the 
2005 article “HMQV: A High-Performance Secure Diffie–Hellman Protocol” 
by Hugo Krawczyk (https://eprint.iacr.org/2005/176/) and the 2011 article 
“A New Family of Implicitly Authenticated Diffie–Hellman Protocols” by 
by Andrew C. Yao and Yunlei Zhao (https://eprint.iacr.org/2011/035/). You’ll 
notice in these articles that Diffie–Hellman operations are expressed differ-
ently than in this chapter. For example, instead of gx, you’ll find the shared 
secret represented as xP. Generally, you’ll find multiplication replaced with 
addition and exponentiation replaced with multiplication. The reason is that 
those protocols are usually not defined over groups of integers, but over ellip-
tic curves, as discussed in Chapter 12.
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E l l i p t i c  C u r v e s

The introduction of elliptic curve cryptog-
raphy (ECC) in 1985 revolutionized the 

way we do public-key cryptography. ECC is 
more powerful and efficient than alternatives 

like RSA and classical Diffie–Hellman (ECC with a 
256-bit key is stronger than RSA with a 4096-bit key), 
but it’s also more complex.

Like RSA, ECC multiplies large numbers, but unlike RSA it does so in 
order to combine points on a mathematical curve, called an elliptic curve 
(which has nothing to do with an ellipse, by the way). To complicate mat-
ters, there are many different types of elliptic curves—simple and sophisti-
cated ones, efficient and inefficient ones, and secure and insecure ones.

Although first introduced in 1985, ECC wasn’t adopted by standardiza-
tion bodies until the early 2000s, and it wasn’t seen in major toolkits until 
much later: OpenSSL added ECC in 2005, and the OpenSSH secure con-
nectivity tool waited until 2011. But modern systems have few reasons not to 
use ECC, and you’ll find it used in Bitcoin and many security components 
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in Apple devices. Indeed, elliptic curves allow you to perform common 
public-key cryptography operations such as encryption, signature, and key 
agreement faster than their classical counterparts. Most cryptographic 
applications that rely on the discrete logarithm problem (DLP) will also 
work when based on its elliptic curve counterpart, ECDLP, with one notable 
exception: the Secure Remote Password (SRP) protocol.

This chapter focuses on applications of ECC and discusses why you 
would use ECC rather than RSA or classical Diffie–Hellman, as well as how 
to choose the right elliptic curve for your application.

What Is an Elliptic Curve?
An elliptic curve is a curve on a plane—a group of points with x and y coor-
dinates. A curve’s equation defines all the points that belong to that curve. 
For example, the curve y = 3 is a horizontal line with the vertical coordi-
nate 3, curves of the form y = ax + b with fixed numbers a and b are straight 
lines, x2 + y2 = 1 is a circle of radius 1 centered on the origin, and so on. 
Whatever the type of curve, the points on a curve are all (x, y) pairs that 
satisfy the curve’s equation.

An elliptic curve as used in cryptography is typically a curve whose 
equation is of the form y2 = x3 + ax + b (known as the Weierstrass form), 
where the constants a and b define the shape of the curve. For example, 
Figure 12-1 shows the elliptic curve that satisfies the equation y2 = x3 – 4x.
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Figure 12-1: An elliptic curve with the equation y2 = x3 – 4x, shown over the real numbers
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N o t e 	 In this chapter, I focus on the simplest, most common type of elliptic curves—namely, 
those with an equation that looks like y2 = x3 + ax + b—but there are types of ellip-
tic curves with equations in other forms. For example, Edwards curves are elliptic 
curves whose equation is of the form x2 + y2 = 1 + dx2y2. Edwards curves are some-
times used in cryptography (for example, in the Ed25519 scheme).

Figure 12-1 shows all the points that make up the curve for x between 
–3 and 4, be they points on the left side of the curve, which looks like a cir-
cle, or on the right side, which looks like a parabola. All these points have 
(x, y) coordinates that satisfy the curve’s equation y2 = x3 – 4x. For example, 
when x = 0, then y2 = x3 – 4x = 03 – 4 × 0 = 0; hence, y = 0 is a solution, and 
the point (0, 0) belongs to the curve. Likewise, if x = 2, the solution to the 
equation is y = 0, meaning that the point (2, 0) belongs to the curve.

It is crucial to distinguish points that belong to the curve from other 
points, because when using elliptic curves for cryptography, we’ll be work-
ing with points from the curve, and points off the curve often present 
a security risk. However, note that the curve’s equation doesn’t always 
admit solutions, at least not in the natural number plane. For example, to 
find points with the horizontal coordinate x = 1, we solve y2 = x3 – 4x for 
y2 with x3 – 4x = 13 – 4 × 1, giving a result of –3. But y2 = –3 doesn’t have a 
solution because there is no number for which y2 = –3. (There is a solution 
in the complex numbers, but elliptic curve cryptography will only deal 
with natural numbers—more precisely, integers modulo a prime.) Because 
there is no solution to the curve’s equation for x = 1, the curve has no point 
at that position on the x-axis, as you can see in Figure 12-1.

What if we try to solve for x = –1? In this case, we get the equation 
y2 = –1 + 4 = 3, which has two solutions (y = √3 and y = –√3), the square root 
of three and its negative value. Squaring a number always gives a positive 
number, so y2 = (–y)2 for any real number y, and as you can see, the curve in 
Figure 12-1 is symmetric with respect to the x-axis for all points that solve its 
equation (as are all elliptic curves of the form y2 = x3 + ax + b).

Elliptic Curves over Integers
Now here’s a bit of a twist: the curves used in elliptic curve cryptography 
actually don’t look like the curve shown in Figure 12-1. They look instead 
like Figure 12-2, which is a cloud of points rather than a curve. What’s 
going on here?

Figures 12-1 and 12-2 are actually based on the same curve equation, 
y2 = x3 – 4x, but they show the curve’s points with respect to different sets of 
numbers: Figure 12-1 shows the curve’s points over the set of real numbers, 
which includes negative numbers, decimals, and so on. For example, as a 
continuous curve, it shows the points at x = 2.0, x = 2.1, x = 2.00002, and so on. 
Figure 12-2, on the other hand, shows only integers that satisfy this equation, 
which excludes decimal numbers. Specifically, Figure 12-2 shows the curve 
y2 = x3 – 4x with respect to the integers modulo 191: 0, 1, 2, 3, up to 190. This 
set of numbers is denoted Z191. (There’s nothing special with 191 here, except 
that it’s a prime number. I picked a small number to avoid having too many 
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points on the graph.) The points shown on Figure 12-2 therefore all have x 
and y coordinates that are integers modulo 191 and that satisfy the equation 
y2 = x3 – 4x. For example, for x = 2, we have y2 = 0, for which y = 0 is a valid 
solution. This tells us that the point (2, 0) belongs to the curve.

0
0

50

50

100

100

150

150

Figure 12-2: The elliptic curve with the equation y2 = x3 – 4x over Z191, the set of integers 
modulo 191

What if x = 3? We get the equation y2 = 27 – 12 = 15, which admits two 
solutions to y2 = 15 (namely, 46 and 145), because 462 mod 191 = 15 and 
1452 mod 191 = 15 both equal 15 in Z191. Thus, the points (3, 46) and (3, 145) 
belong to the curve and appear as shown in Figure 12-2 (the two points high-
lighted at the left).

N O T E 	 Figure 12-2 considers points from the set denoted Z191 = {0, 1, 2, . . . , 190}, which 
includes zero. This differs from the groups denoted Zp

* (with a star superscript) that 
we discussed in the context of RSA and Diffie–Hellman. The reason for this difference 
is that we’ll both multiply and add numbers, and we therefore need to ensure that the 
set of numbers includes addition’s identity element (namely 0, such that x + 0 = x for 
every x in Z191). Also, every number x has an inverse with respect to addition, denoted 
–x, such that x + (–x) = 0. For example, the inverse of 100 in Z191 is 91, because 
100 + 91 mod 191 = 0. Such a set of numbers, where addition and multiplication are 
possible and where each element x admits an inverse with respect to addition (denoted 
–x) as well as an inverse (except for the element zero) with respect to multiplication 
(denoted 1 / x), is called a field. When a field has a finite number of elements, as in 
Z191 and as with all fields used for elliptic curve cryptography, it is called a finite field.
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Adding and Multiplying Points
We’ve seen that the points on an elliptic curve are all coordinates (x, y) that 
satisfy the curve’s equation, y2 = x3 + ax + b. In this section, we look at how to 
add elliptic curve points, a rule called the addition law.

Adding Two Points

Say that we want to add two points on the elliptic curve, P and Q , to give a 
new point, R, that is the sum of these two points. The simplest way to under-
stand point addition is to determine the position of R = P + Q on the curve 
relative to P and Q based on a geometric rule: draw the line that connects 
P and Q , find the other point of the curve that intersects with this line, 
and R is the reflection of this point with respect to the x-axis. For example, 
in Figure 12-3, the line connecting P and Q intersects the curve at a third 
point between P and Q , and the point P + Q is the point at the same x coor-
dinate but the inverse y coordinate.
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Figure 12-3: A general case of the geometric rule for adding points over an elliptic curve

This geometric rule is simple, but it won’t directly give you the coordi-
nates of the point R. We compute the coordinates (xR, yR) of R using the coor-
dinates (xP , yP) of P and the coordinates (xQ, yQ) of Q using the formulas xR = 
m2 – xP – xQ and yR = m(xP – xR) – yP , where the value m = (yQ – yP) / (xQ – xP) is 
the slope of the line connecting P and Q.

Unfortunately, these formulas and the line-drawing trick shown in 
Figure 12-3 don’t always work. If, for example, P = Q , you can’t draw a line 
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between two points (there’s only one), and if Q = –P, the line doesn’t cross 
the curve again, so there is no point on the curve to mirror. We’ll explore 
these in the next section.

Adding a Point and Its Negative

The negative of a point P = (xP , yP) is the point –P = (xP , –yP), which is the 
point mirrored around the x-axis. For any P, we say that P + (–P) = O, where 
O is called the point at infinity. And as you can see in Figure 12-4, the line 
between P and –P runs to infinity and never intersects the curve. (The 
point at infinity is a virtual point that belongs to any elliptic curve; it is to 
elliptic curves what zero is to integers.)
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Figure 12-4: The geometric rule for adding points on an elliptic curve with the operation 
P + (–P) = O when the line between the points never intersects the curve

Doubling a Point

When P = Q (that is, P and Q are at the same position), adding P and Q is 
equivalent to computing P + P, also denoted 2P. This addition operation is 
therefore called a doubling.

However, to find the coordinates of the result R = 2P, we can’t use the 
geometric rule from the previous section, because we can’t draw a line 
between P and itself. Instead, we draw the line tangent to the curve at P, 
and 2P is the negation of the point where this line intersects the curve, as 
shown on Figure 12-5.
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Figure 12-5: The geometric rule for adding points over an elliptic curve using the doubling 
operation P + P

The formula for determining the coordinates (xR, yR) of R = P + P is 
slightly different from the formula we would use for a distinct P and Q. Again, 
the basic formula is xR = m2 – xP – xQ and yR = m(xP – xR) – yP , but the value of 
m is different; it becomes (3xP

2 + a) / 2yP , where a is the curve’s parameter, as 
in y2 = x3 + ax + b.

Multiplication

In order to multiply points on elliptic curves by a given number k, where k 
is an integer, we determine the point kP by adding P to itself k – 1 times. In 
other words, 2P = P + P, 3P = P + P + P, and so on. To obtain the x and y coor-
dinates of kP, repeatedly add P to itself and apply the preceding addition law.

To compute kP efficiently, however, the naive technique of adding P by 
applying the addition law k – 1 times is far from optimal. For example, if k 
is large (of the order of, say, 2256) as it occurs in elliptic curve–based crypto 
schemes, then computing k – 1 additions is downright infeasible.

But there’s a trick: you can gain an exponential speed-up by adapting 
the technique discussed in “Fast Exponentiation Algorithm: Square-and-
Multiply” on page 192 to compute xe mod n. For example, to compute 8P 
in three additions instead of seven using the naive method, you would first 
compute P2 = P + P, then P4 = P2 + P2, and finally P4 + P4 = 8P.
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Elliptic Curve Groups
Because points can be added together, the set of points on an elliptic 
curve forms a group. According to the definition of a group (see “What Is 
a Group?” on page 174), if the points P and Q belong to a given curve, 
then P + Q also belongs to the curve.

Furthermore, because addition is associative, we have (P + Q) + R = P + 
(Q + R) for any points P, Q , and R. In a group of elliptic curve points, the 
identity element is called the point at infinity, and denoted O, such that 
P + O = P for any P. Every point P = (xP , yP) has an inverse, –P = (xP , –yP), 
such that P + (–P) = O.

In practice, most elliptic curve–based cryptosystems work with x and y 
coordinates that are numbers modulo a prime number, p (in other words, 
numbers in the finite field Zp). Just as the security of RSA depends on the 
size of the numbers used, the security of an elliptic curve–based cryptosys-
tem depends on the number of points on the curve. But how do we know 
the number of points on an elliptic curve, or its cardinality? Well, it depends 
on the curve and the value of p.

One rule of thumb is that there are approximately p points on the 
curve, but you can compute the exact number of points with Schoof’s algo-
rithm, which counts points on elliptic curves over finite fields. You’ll find 
this algorithm built in to SageMath. For example, Listing 12-1 shows how to 
use this algorithm to count the number of points on the curve y2 = x3 – 4x 
over Z191 shown in Figure 12-1.

sage: Z = Zmod(191)
sage: E = EllipticCurve(Z, (-4,0))
sage: E.cardinality()
192

Listing 12-1: Computing the cardinality, or number of points on a curve

In Listing 12-1, we’ve first defined the variable Z as the set over integers 
modulo 191; then we defined the variable E as the elliptic curve over Z with 
the coefficients –4 and 0. Finally, we computed the number of points on the 
curve, also known as its cardinality, group order, or just order. Note that this 
count includes the point at infinity O.

The ECDLP Problem
Chapter 9 introduced the DLP: that of finding the number y given some base 
number g, where x = g y mod p for some large prime number p. Cryptography 
with elliptic curves has a similar problem: the problem of finding the num-
ber k given a base point P where the point Q = kP. This is called the elliptic 
curve discrete logarithm problem, or ECDLP. (Instead of numbers, the elliptic 
curve’s problems operate on points, and multiplication is used instead of 
exponentiation.)

All elliptic curve cryptography is built on the ECDLP problem, which, 
like DLP, is believed to be hard and has withstood cryptanalysis since its 
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introduction into cryptography in 1985. One important difference between 
ECDLP and the classical DLP is that ECDLP allows you to work with smaller 
numbers and still enjoy a similar level of security.

Generally, when p is n bits, you’ll get a security level of about n / 2 bits. 
For example, an elliptic curve taken over numbers modulo p, with a 256-bit 
p, will give a security level of about 128 bits. For the sake of comparison, 
to achieve a similar security level with DLP or RSA, you would need to 
use numbers of several thousands of bits. The smaller numbers used for 
ECC arithmetic are one reason why it’s often faster than RSA or classical 
Diffie–Hellman.

One way of solving ECDLP is to find a collision between two outputs, 
c1P + d1Q and c2P + d2Q. The points P and Q in these equations are such that 
Q = kP for some unknown k, and c1, d1, c2, and d2 are the numbers you will 
need in order to find k.

As with the hash function discussed in Chapter 6, a collision occurs 
when two different inputs produce the same output. Therefore, in order to 
solve ECDLP, we need to find points where the following is true:

c P d Q c P d Q1 1 2 2� � �

In order to find these points, we replace Q with the value kP, and we 
have the following:

c P d kP c d k P c P d kP c d k P1 1 1 1 2 2 2 2� � �� � � � � �� �

This tells us that (c1 + d1k) equals (c2 + d2k) when taken modulo the 
number of points on the curve, which is not a secret.

From this, we can deduce the following:
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And we’ve found k, the solution to ECDLP.
Of course, that’s only the big picture—the details are more complex 

and interesting. In practice, elliptic curves extend over numbers of at least 
256 bits, which makes attacking elliptic curve cryptography by finding a 
collision impractical because doing so takes up to 2128 operations (the cost 
of finding a collision over 256-bit numbers, as you learned in Chapter 6).

Diffie–Hellman Key Agreement over Elliptic Curves
Recall from Chapter 11 that in the classical Diffie–Hellman (DH) key 
agreement protocol, two parties establish a shared secret by exchanging 
non-secret values. Given some fixed number g, Alice picks a secret random 
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number a, computes A = ga, sends A to Bob, and Bob picks a secret random 
b and sends B = gb to Alice. Both then combine their secret key with the 
other’s public key to produce the same Ab = Ba = gab.

The elliptic curve version of DH is identical to that of classical DH but 
with different notations. In the case of ECC, for some fixed point G, Alice 
picks a secret random number dA, computes PA = dAG (the point G multiplied 
by dA), and sends PA to Bob. Bob picks a secret random dB, computes the 
point PB = dBG, and sends it to Alice. Then both compute the same shared 
secret, dAPB = dBPA = dAdBG. This method is called elliptic curve Diffie–Hellman, 
or ECDH.

ECDH is to the ECDLP problem what DH is to DLP: it’s secure as long 
as ECDLP is hard. DH protocols that rely on DLP can therefore be adapted 
to work with elliptic curves and rely on ECDLP as a hardness assumption. 
For example, authenticated DH and Menezes–Qu–Vanstone (MQV) will also 
be secure when used with elliptic curves. (In fact, MQV was first defined as 
working over elliptic curves.)

Signing with Elliptic Curves
The standard algorithm used for signing with ECC is ECDSA, which stands 
for elliptic curve digital signature algorithm. This algorithm has replaced RSA 
signatures and classical DSA signatures in many applications. It is, for exam-
ple, the only signature algorithm used in Bitcoin and is supported by many 
TLS and SSH implementations.

As with all signature schemes, ECDSA consists of a signature generation 
algorithm that the signer uses to create a signature using their private key 
and a verification algorithm that a verifier uses to check a signature’s correct-
ness given the signer’s public key. The signer holds a number, d, as a private 
key, and verifiers hold the public key, P = dG. Both know in advance what 
elliptic curve to use, its order (n, the number of points in the curve), as well 
as the coordinates of a base point, G.

ECDSA Signature Generation
In order to sign a message, the signer first hashes the message with a crypto-
graphic hash function such as SHA-256 or BLAKE2 to generate a hash value, 
h, that is interpreted as a number between 0 and n – 1. Next, the signer picks 
a random number, k, between 1 and n – 1 and computes kG, a point with the 
coordinates (x, y). The signer now sets r = x mod n and computes s = (h + rd) / 
k mod n, and then uses these values as the signature (r, s).

The length of the signature will depend on the coordinate lengths 
being used. For example, when you’re working with a curve where coordi-
nates are 256-bit numbers, r and s would both be 256 bits long, yielding a 
512-bit-long signature.

ECDSA Signature Verification
The ECDSA verification algorithm uses a signer’s public key to verify the 
validity of a signature.
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In order to verify an ECDSA signature (r, s) and a message’s hash, h, 
the verifier first computes w = 1 / s, the inverse of s in the signature, which 
is equal to k / (h + rd) mod n, since s is defined as s = (h + rd) / k. Next, the 
verifier multiplies w with h to find u according to the following formula:

wh hk h rd u= +( ) =  

The verifier then multiplies w with r to find v:

wr rk h rd v= +( ) =/

Given u and v, the verifier computes the point Q according to the fol-
lowing formula:

Q uG vP= +

Here, P is the signer’s public key, which is equal to dG, and the verifier 
only accepts the signature if the x coordinate of Q is equal to the value r 
from the signature.

This process works because, as a last step, we compute the point Q by 
substituting the public key P with its actual value dG:

uG vdG u vd G+ = +( )

When we replace u and v with their actual values, we obtain the 
following:

u vd hk h rd drk h rd hk drk h rd k h dr h rd+ = +( ) + +( ) = +( ) +( ) = +( ) +(/       )) = k

This tells us that (u + vd) is equal to the value k, chosen during signa-
ture generation, and that uG + vdG is equal to the point kG. In other words, 
the verification algorithm succeeds in computing point kG, the same point 
computed during signature generation. Validation is complete once a veri-
fier confirms that kG’s x coordinate is equal to the r received; otherwise, the 
signature is rejected as invalid.

ECDSA vs. RSA Signatures
Elliptic curve cryptography is often viewed as an alternative to RSA for 
public-key cryptography, but ECC and RSA don’t have much in common. 
RSA is only used for encryption and signatures, whereas ECC is a family of 
algorithms that can be used to perform encryption, generate signatures, 
perform key agreement, and offer advanced cryptographic functionalities 
such as identity-based encryption (a kind of encryption that uses encryp-
tion keys derived from a personal identifier, such as an email address).

When comparing RSA and ECC’s signature algorithms, recall that in 
RSA signatures, the signer uses their private key d to compute a signature 
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as y = xd mod n, where x is the data to be signed and y is the signature. 
Verification uses the public key e to confirm that ye mod n equals x—a 
process that’s clearly simpler than that of ECDSA.

RSA’s verification process is often faster than ECC’s signature verifica-
tion because it uses a small public key e. But ECC has two major advantages 
over RSA: shorter signatures and signing speed. Because ECC works with 
shorter numbers, it produces shorter signatures than RSA (hundreds of 
bits long, not thousands of bits), which is an obvious benefit if you have to 
store or transmit numerous signatures. Signing with ECDSA is also much 
faster than signing with RSA (though signature verification is about as fast) 
because ECDSA works with much smaller numbers than RSA does for a 
similar security level. For example, Listing 12-2 shows that ECDSA is about 
150 times faster at signing and a little faster at verifying. Note that ECDSA 
signatures are also shorter than RSA signatures because they’re 512 bits 
(two elements of 256 bits each) rather than 4096 bits.

$ openssl speed ecdsap256 rsa4096
                              sign     verify     sign/s     verify/s
rsa 4096 bits            0.007267s  0.000116s      137.6       8648.0
                              sign     verify     sign/s     verify/s
256 bit ecdsa (nistp256)   0.0000s    0.0001s    21074.6       9675.7

Listing 12-2: Comparing the speed of 4096-bit RSA signatures with 256-bit ECDSA 
signatures

It’s fair to compare the performance of these differently sized signa-
tures because they provide a similar security level. However, in practice, 
many systems use RSA signatures with 2048 bits, which is orders of magni-
tude less secure than 256-bit ECDSA. Thanks to its smaller modulus size, 
2048-bit RSA is faster than 256-bit ECDSA at verifying, yet still slower at 
signing, as shown in Listing 12-3.

$ openssl speed rsa2048
                          sign         verify     sign/s     verify/s
rsa 2048 bits            0.000696s  0.000032s     1436.1      30967.1

Listing 12-3: The speed of 2048-bit RSA signatures

The upshot is that you should prefer ECDSA to RSA except when sig-
nature verification is critical and you don’t care about signing speed, as in a 
sign-once, verify-many situation (for example, when a Windows executable 
application is signed once and then verified by all the systems executing it).

Encrypting with Elliptic Curves
Although elliptic curves are more commonly used for signing, you can 
still encrypt with them. But you’ll rarely see people do so in practice due 
to restrictions in the size of the plaintext that can be encrypted: you can 
fit only about 100 bits of plaintext, as compared to almost 4000 in RSA 
with the same security level.



Elliptic Curves   229

One simple way to encrypt with elliptic curves is to use the integrated 
encryption scheme (IES), a hybrid asymmetric–symmetric key encryption algo-
rithm based on the Diffie–Hellman key exchange. Essentially, IES encrypts 
a message by generating a Diffie–Hellman key pair, combining the private 
key with the recipient’s own public key, deriving a symmetric key from the 
shared secret obtained, and then using an authenticated cipher to encrypt 
the message.

When used with elliptic curves, IES relies on ECDLP’s hardness and 
is called elliptic-curve integrated encryption scheme (ECIES). Given a recipient’s 
public key, P, ECIES encrypts a message, M, as follows:

1.	 Pick a random number, d, and compute the point Q = dG, where the 
base point G is a fixed parameter. Here, (d, Q) acts as an ephemeral key 
pair, used only for encrypting M.

2.	 Compute an ECDH shared secret by computing S = dP.

3.	 Use a key derivation scheme (KDF) to derive a symmetric key, K, from S.

4.	 Encrypt M using K and a symmetric authenticated cipher, obtaining a 
ciphertext, C, and an authentication tag, T.

The ECIES ciphertext then consists of the ephemeral public key Q fol-
lowed by C and T. Decryption is straightforward: the recipient computes S 
by multiplying Q with their private exponent to obtain S, and then derives 
the key K and decrypts C and verifies T.

Choosing a Curve
Criteria used to assess the safety of an elliptic curve include the order of 
the group used (that is, its number of points), its addition formulas, and 
its origins.

There are several types of elliptic curves, but not all are equally good 
for cryptographic purposes. When making your selection, be sure to choose 
coefficients a and b in the curve’s equation y2 = x3 + ax + b carefully; other-
wise, you may end up with an insecure curve. In practice, you’ll use some de 
facto standard curve for encryption, but knowing what makes a safe curve 
will help you choose among the several available ones and better understand 
any associated risks. Here are some points to keep in mind:

•	 The order of the group should not be a product of small numbers; 
otherwise solving ECDLP becomes much easier.

•	 In “Adding and Multiplying Points” on page 221, you learned that 
adding points P + Q required a specific addition formula when Q = P. 
Unfortunately, treating this case differently from the general one may 
leak critical information if an attacker is able to distinguish doublings 
from additions between distinct points. Some curves are secure because 
they use a single formula for all point addition. (When a curve does not 
require a specific formula for doublings, we say that it admits a unified 
addition law.)
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•	 If the creators of a curve don’t explain the origin of a and b, they may 
be suspected of foul play because you can’t know whether they may 
have chosen weaker values that enable some yet-unknown attack on 
the cryptosystem.

Let’s review some of the most commonly used curves, especially ones 
used for signatures or Diffie–Hellman key agreement.

N o t e 	 You’ll find more criteria and more details about curves on the dedicated website 
https://safecurves.cr.yp.to/.

NIST Curves
In 2000, the NIST curves were standardized by the US NIST in the 
FIPS 186 document under “Recommended Elliptic Curves for Federal 
Government Use.” Five NIST curves work modulo a prime number (as dis-
cussed in “Elliptic Curves over Integers” on page 219), called prime curves. 
Ten other NIST curves work with binary polynomials, which are mathe-
matical objects that make implementation in hardware more efficient. (We 
won’t cover binary polynomials in further detail because they’re seldom 
used with elliptic curves.)

The most common NIST curves are the prime curves. Of these, one 
of the most common is P-256, a curve that works over numbers modulo 
the 256-bit number p = 2256 – 2224 + 2192 + 296 – 1. The equation for P-256 
is y2 = x3 – 3x + b, where b is a 256-bit number. NIST also provides prime 
curves of 192 bits, 224 bits, 384 bits, and 521 bits.

NIST curves are sometimes criticized because only the NSA, creator 
of the curves, knows the origin of the b coefficient in their equations. The 
only explanation we’ve been given is that b results from hashing a random-
looking constant with SHA-1. For example, P-256’s b parameter comes from 
the following constant: c49d3608 86e70493 6a6678e1 139d26b7 819f7e90.

No one knows why the NSA picked this particular constant, but most 
experts don’t believe the curve’s origin hides any weakness.

Curve25519
Daniel J. Bernstein brought Curve25519 (pronounced curve-twenty-five-five-
nineteen) to the world in 2006. Motivated by performance, he designed 
Curve25519 to be faster and use shorter keys than the standard curves. 
But Curve25519 also brings security benefits, because unlike the NIST 
curves it has no suspicious constants and can use the same unified for-
mula for adding distinct points or for doubling a point.

The form of Curve25519’s equation, y2 = x3 + 486662x2 + x, is slightly 
different from that of the other equations you’ve seen in this chapter, but it 
still belongs to the elliptic curve family. The unusual form of this equation 
allows for specific implementation techniques that make Curve25519 fast in 
software.
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Curve25519 works with numbers modulo the prime number 2255 – 19, 
a 256-bit prime number that is as close as possible to 2255. The b coeffi-
cient 486662 is the smallest integer that satisfies the security criteria set by 
Bernstein. Taken together, these features make Curve25519 more trust
worthy than NIST curves and their fishy coefficients.

Curve25519 is used everywhere: in Google Chrome, Apple systems, 
OpenSSH, and many other systems. However, because Curve25519 isn’t a 
NIST standard, some applications stick to NIST curves.

N o t e 	 To learn all the details and rationale behind Curve25519, view the 2016 presen-
tation “The first 10 years of Curve25519” by Daniel J. Bernstein, available at 
http://cr.yp.to/talks.html#2016.03.09/.

Other Curves
As I write this, most cryptographic applications use NIST curves or 
Curve25519, but there are other legacy standards in use, and newer curves 
are being promoted and pushed within standardization committees. Some 
of the old national standards include France’s ANSSI curves and Germany’s 
Brainpool curves: two families that don’t support complete addition formu-
las and that use constants of unknown origins.

Some newer curves are more efficient than the older ones and are clear 
of any suspicion; they offer different security levels and various efficiency 
optimizations. Examples include Curve41417, a variant of Curve25519, which 
works with larger numbers and offers a higher level of security (approxi-
mately 200 bits); Ed448-Goldilocks, a 448-bit curve first proposed in 2014 
and considered to be an internet standard; as well as six curves proposed 
by Aranha et al. in “A note on high-security general-purpose elliptic curves” 
(see http://eprint.iacr.org/2013/647/), though these curves are rarely used. The 
details specific to all these curves are beyond the scope of this book.

How Things Can Go Wrong
Elliptic curves have their downsides due to their complexity and large attack 
surface. Their use of more parameters than classical Diffie–Hellman brings 
with it a greater attack surface with more opportunities for mistakes and 
abuse—and possible software bugs that might affect their implementation. 
Elliptic curve software may also be vulnerable to side-channel attacks due 
to the large numbers used in their arithmetic. If the speed of calculations 
depends on inputs, attackers may be able to obtain information about the 
formulas being used to encrypt.

In the following sections, I discuss two examples of vulnerabilities that 
can occur with elliptic curves, even when the implementation is safe. These 
are protocol vulnerabilities rather than implementation vulnerabilities.
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ECDSA with Bad Randomness
ECDSA signing is randomized, as it involves a secret random number k 
when setting s = (h + rd) / k mod n. However, if the same k is reused to sign 
a second message, an attacker could combine the resulting two values, 
s1 = (h1 + rd) / k and s2 = (h2 + rd) / k, to get s1 – s2 = (h1 – h2) / k and then 
k = (h1 – h2) / (s1 – s2). When k is known, the private key d is easily recov-
ered by computing the following:

ks h r h rd h r rd r d1 1 1 1− = −( ) +( )( ) = =      

Unlike RSA signatures, which won’t allow the key to be recovered if a 
weak pseudorandom number generator (PRNG) is used, the use of non-
random numbers can lead to ECDSA’s k being recoverable, as happened 
with the attack on the PlayStation 3 game console in 2010, presented by 
the fail0verflow team at the 27th Chaos Communication Congress in 
Berlin, Germany.

Breaking ECDH Using Another Curve
ECDH can be elegantly broken if you fail to validate input points. The 
primary reason is that the formulas that give the coordinates for the sum 
of points P + Q never involve the b coefficient of the curve; instead, they 
rely only on the coordinates of P and Q and the a coefficient (when dou-
bling a point). The unfortunate consequence of this is that when adding 
two points, you can never be sure that you’re working on the right curve 
because you may actually be adding points on a different curve with a dif-
ferent b coefficient. That means you can break ECDH as described in the 
following scenario, called the invalid curve attack.

Say that Alice and Bob are running ECDH and have agreed on a curve 
and a base point, G. Bob sends his public key dBG to Alice. Alice, instead 
of sending a public key dAG on the agreed upon curve, sends a point on a 
different curve, either intentionally or accidentally. Unfortunately, this new 
curve is weak and allows Alice to choose a point P for which solving ECDLP 
is easy. She chooses a point of low order, for which there is a relatively small 
k such that kP = O.

Now Bob, believing that he has a legitimate public key, computes what 
he thinks is the shared secret dBP, hashes it, and uses the resulting key to 
encrypt data sent to Alice. The problem is that when Bob computes dBP, he 
is unknowingly computing on the weaker curve. As a result, because P was 
chosen to belong to a small subgroup within the larger group of points, the 
result dBP will also belong to that small subgroup, allowing an attacker to 
determine the shared secret dBP efficiently if they know the order of P.

One way to prevent this is to make sure that points P and Q belong to 
the right curve by ensuring that their coordinates satisfy the curve’s equa-
tion. Doing so would prevent this attack by making sure that you’re only 
able to work on the secure curve.
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Such an invalid curve attack was found in 2015 on certain implementa-
tions of the TLS protocol, which uses ECDH to negotiate session keys. (For 
details, see the paper “Practical Invalid Curve Attacks on TLS-ECDH” by 
Jager, Schwenk, and Somorovsky.)

Further Reading
Elliptic curve cryptography is a fascinating and complex topic that involves 
lots of mathematics. I’ve not discussed important notions such as a point’s 
order, a curve’s cofactor, projective coordinates, torsion points, and methods 
for solving the ECDLP problem. If you are mathematically inclined, you’ll 
find information on these and other related topics in the Handbook of Elliptic 
and Hyperelliptic Curve Cryptography by Cohen and Frey (Chapman and Hall/
CRC, 2005). The 2013 survey “Elliptic Curve Cryptography in Practice” 
by Bos, Halderman, Heninger, Moore, Naehrig, and Wustrow also gives 
a good illustrated introduction with practical examples (https://eprint.iacr​
.org/2013/734/).
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TLS 

The Transport Layer Security (TLS) protocol, 
also known as Secure Socket Layer (SSL), 

which is the name of its predecessor, is the 
workhorse of internet security. TLS protects 

connections between servers and clients, whether that 
connection is between a website and its visitors, email 
servers, a mobile application and its servers, or video 
game servers and players. Without TLS, there would 
be no secure online commerce, secure online bank-
ing, or for that matter secure online anything. 

TLS is application agnostic; it doesn’t care about the type of content 
encrypted. This means that you can use it for web-based applications that 
rely on the HTTP protocol, as well as for any system where a client com-
puter or device needs to initiate a connection with a remote server. For 
example, TLS is widely used for machine-to-machine communications in 
so-called internet of things (IoT) applications.



236   Chapter 13

This chapter provides you with an abbreviated view of TLS. As you’ll 
see, TLS has become increasingly complex over the years. Unfortunately, 
complexity and bloat brought multiple vulnerabilities, and bugs found in 
its cluttered implementations have made headlines—think Heartbleed, 
BEAST, CRIME, and POODLE, all vulnerabilities that impacted millions 
of web servers.

In 2013, engineers tired of fixing new cryptographic vulnerabilities 
in TLS overhauled it and started working on TLS 1.3. As you’ll learn in 
this chapter, TLS 1.3 ditched unnecessary features and insecure ones, and 
replaced old algorithms with state-of-the-art ciphers. The result is a simpler, 
faster, and more secure protocol. 

But before we explore how TLS 1.3 works, let’s review the problem that 
TLS aims to solve in the first place, and the reason for its very existence.

Target Applications and Requirements
TLS is best known for being the S in HTTPS websites, and the padlock 
in a browser’s address bar indicating that a page is secure. The primary 
driver for creating TLS was to enable secure browsing in applications such 
as e-commerce or e-banking by encrypting website connections to protect 
credit card numbers, user credentials, and other sensitive information.

TLS also helps to protect internet-based communication in general by 
establishing a secure channel between a client and a server that ensures the 
data transferred is confidential, authenticated, and unmodified. 

One of TLS’s security goals is to prevent man-in-the-middle attacks, 
wherein an attacker intercepts encrypted traffic from the transmitting 
party, decrypts the traffic to capture the clear content, and re-encrypts 
it to send to the receiving party. TLS defeats man-in-the-middle attacks 
by authenticating servers (and optionally clients) using certificates and 
trusted certificate authorities, as we’ll discuss in more detail in the section 
“Certificates and Certificate Authorities” on page 238.

To ensure wide adoption, TLS needed to satisfy four more require-
ments: it needed to be efficient, interoperable, extensible, and versatile.

For TLS, efficiency means minimizing the performance penalty com-
pared with unencrypted connections. This is good for both the server (to 
reduce the cost of hardware for the service providers) and for clients (to 
avoid perceptible delays or the reduction of mobile devices’ battery life). The 
protocol needed to be interoperable so that it would work on any hardware 
and any operating system. It was to be extensible so that it could support addi-
tional features or algorithms. And it had to be versatile—that is, not bound 
to a specific application (this parallels something like Transport Control 
Protocol, which doesn’t care about the application protocol used on top of it).

The TLS Protocol Suite
To protect client–server communications, TLS is made up of multiple ver-
sions of several protocols that together form the TLS protocol suite. And 



TLS   237

although TLS stands for Transport Layer Security, it’s actually not a transport 
protocol. TLS usually sits between the transport protocol TCP and an appli-
cation layer protocol such as HTTP or SMTP, in order to secure data trans-
mitted over a TCP connection. 

TLS can also work over the User Datagram Protocol (UDP) transport 
protocol, which is used for “connectionless” transmissions such as voice or 
video traffic. However, unlike TCP, UDP doesn’t guarantee delivery or cor-
rect packet ordering. The UDP version of TLS is therefore slightly different 
and is called DTLS (Datagram Transport Layer Security). For more on TCP and 
UDP, see Charles Kozierok’s The TCP/IP Guide (No Starch Press, 2005.)

The TLS and SSL Family of Protocols: A Brief History
TLS began life in 1995 when Netscape, developer of the Netscape browser, 
developed TLS’s ancestor, the Secure Socket Layer (SSL) protocol. SSL 
was far from perfect, and both SSL 2.0 and SSL 3.0 had security flaws. The 
upshot is that you should never use SSL, you should always use TLS—what 
adds to the confusion is that TLS is often referred to as “SSL,” even by secu-
rity experts. 

Moreover, not all versions of TLS are secure. TLS 1.0 (1999) is the least 
secure TLS version, though it’s still more secure than SSL 3.0. TLS 1.1 (2006) 
is better but includes a number of algorithms known today to be weak. 
TLS 1.2 (2008) is better yet, but it’s complex and only gets you high secu-
rity if configured correctly (which is no simple matter). Also, its complex-
ity increases the risk of bugs in implementations and the risk of incorrect 
configurations. For example, TLS 1.2 supports AES in CBC mode, which is 
often vulnerable to padding oracle attacks.

TLS 1.2 inherited dozens of features and design choices from earlier 
versions of TLS that make it suboptimal, both in terms of security and 
performance. To clean up this mess, cryptography engineers reinvented 
TLS—keeping only the good parts and adding security features. The result 
is TLS 1.3, an overhaul that has simplified a bloated design and made it more 
secure, more efficient, and simpler. Essentially, TLS 1.3 is mature TLS.

TLS in a Nutshell
TLS has two main protocols: one determines how to transmit data, and the 
other what data to transmit. The record protocol defines a packet format to 
encapsulate data from higher-level protocols and sends this data to another 
party. It’s a simple protocol that people often forget is part of TLS. 

The handshake protocol—or just handshake—is TLS’s key agreement pro-
tocol. It’s often mistaken for “the” TLS protocol but the record protocol and 
the handshake can’t be separated. 

The handshake is started by a client to initiate a secure connection with a 
server. The client sends an initial message called ClientHello with parameters 
that include the cipher it wants to use. The server checks this message and its 
parameters and then responds with a message called ServerHello. Once both 
the client and the server have processed each other’s messages, they’re ready 
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to exchange encrypted data using session keys established through the hand-
shake protocol, as you’ll see in the section “The TLS Handshake Protocol” on 
page 241.

Certificates and Certificate Authorities
The most critical step in the TLS handshake, and the crux of TLS’s security, 
is the certificate validation step, wherein a server uses a certificate to authenticate 
itself to a client.

A certificate is essentially a public key accompanied by a signature of that 
key and associated information (including the domain name). For example, 
when connecting to https://www.google.com/, your browser will receive a certifi-
cate from some network host and will then verify the certificate’s signature, 
which reads something like “I am google.com and my public key is [key].” If 
the signature is verified, the certificate (and its public key) are said to be 
trusted, and the browser can proceed with establishing the connection. (See 
Chapters 10 and 12 for details about signatures.) 

How does the browser know the public key needed to verify the sig-
nature? That’s where the concept of certificate authority (CA) comes in. A 
CA is essentially a public key hard coded in your browser or operating 
system. The public key’s private key (that is, its signing capability) belongs 
to a trusted organization that ensures the public keys in certificates that it 
issues belong to the website or entity that claims them. That is, a CA acts as 
a trusted third party. Without CAs, there would be no way to verify that the 
public key served by google.com belongs to Google and not to an eavesdrop-
per performing a man-in-the-middle attack. 

For example, the command shown in Listing 13-1 shows what happens 
when we use the OpenSSL command-line tool to initiate a TLS connection 
to www.google.com on port 443, the network port used for TLS-based HTTP 
connections (that is, HTTPS.):

$ openssl s_client -connect www.google.com:443
CONNECTED(00000003)
--snip--
---
Certificate chain
 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
   i:/C=US/O=Google Inc/CN=Google Internet Authority G2
 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2
   i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA
   i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority
---
Server certificate
-----BEGIN CERTIFICATE-----
MIIEgDCCA2igAwIBAgIISCr6QCbz5rowDQYJKoZIhvcNAQELBQAwSTELMAkGA1UE
BhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2dsZSBJbnRl
--snip--
cb9reU8in8yCaH8dtzrFyUracpMureWnBeajOYXRPTdCFccejAh/xyH5SKDOOZ4v
3TP9GBtClAH1mSXoPhX73dp7jipZqgbY4kiEDNx+hformTUFBDHD0eO/s2nqwuWL
pBH6XQ==
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-----END CERTIFICATE-----
subject=/C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
issuer=/C=US/O=Google Inc/CN=Google Internet Authority G2
--snip--

Listing 13-1: Establishing a TLS connection with www.google.com and receiving certifi-
cates to authenticate the connection

I’ve trimmed the output to show only the interesting part, which is the 
certificate. Notice that before the first certificate (which starts with the 
BEGIN CERTIFICATE tag) is a description of the certificate chain, where the line 
starting with s: describes the subject name and the line starting with i: 
describes the issuer of the signature. Here, certificate 0 is the one received 
by google.com , certificate 1  belongs to the entity that signed certificate 0, 
and certificate 2  belongs to the entity that signed certificate 1. The orga-
nization that issued certificate 1 (GeoTrust) granted permission to Google 
Internet Authority to issue a certificate (certificate 0) for the domain name 
www.google.com, thereby transferring trust to Google Internet Authority. 

Obviously, these CA organizations must be trustworthy and only issue 
certificates to trustworthy entities, and they must protect their private keys 
in order to prevent an attacker from issuing certificates on their behalf (for 
example, in order to impersonate a legitimate google.com server).

To see what’s in a certificate, we enter the command shown in Listing 13-2 
into a Linux terminal and then paste the first certificate shown in Listing 13-1.

$ openssl x509 –text –noout
-----BEGIN CERTIFICATE-----
--snip--
-----END CERTIFICATE-----
Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 5200243873191028410 (0x482afa4026f3e6ba)
    Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=US, O=Google Inc, CN=Google Internet Authority G2
        Validity
            Not Before: Dec 15 14:07:56 2016 GMT
            Not After : Mar  9 13:35:00 2017 GMT
        Subject: C=US, ST=California, L=Mountain View, O=Google Inc,  
CN=www.google.com
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                Public-Key: (2048 bit)
                Modulus:
                    00:bc:bc:b2:f3:1a:16:3b:c6:f6:9d:28:e1:ef:8e:
                    92:9b:13:b2:ae:7b:50:8f:f0:b4:e0:36:8d:09:00:
--snip--
                    8f:e6:96:fe:41:41:85:9d:a9:10:9a:09:6e:fc:bd:
                    43:fa:4d:c6:a3:55:9a:9e:07:8b:f9:b1:1e:ce:d1:
                    22:49
                Exponent: 65537 (0x10001)
--snip--
    Signature Algorithm: sha256WithRSAEncryption
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         94:cd:66:55:83:f1:16:7d:46:d8:66:21:06:ec:c6:9d:7c:1c:
         2b:c1:f6:4f:b7:3e:cd:01:ad:69:bd:a1:81:6a:7c:96:f5:9c:
         --snip--
         85:fa:2b:99:35:05:04:31:c3:d1:e3:bf:b3:69:ea:c2:e5:8b:
         a4:11:fa:5d

Listing 13-2: Decoding a certificate received from www.google.com

What you see in Listing 13-2 is the command openssl x509 decoding a 
certificate, originally provided as a block of base64-encoded data. Because 
OpenSSL knows how this block of data is structured, it can tell us what’s 
inside the certificate, including a serial number and version information, 
identifying information, validity dates (the Not Before and Not After lines), a 
public key (here as an RSA modulus and its public exponent), and a signa-
ture of the preceding information.

Although security experts and cryptographers often claim the whole cer-
tificate system is broken by design, it’s one of the best solutions we have, along 
with the trust-on-first-use (TOFU) policy adopted by SSH, for example.

The Record Protocol
All data exchanged through TLS 1.3 communications is transmitted as 
sequences of TLS records, the data packets used by TLS. The TLS record pro-
tocol (the record layer) is essentially a transport protocol, agnostic of the trans-
ported data’s meaning; this is what makes TLS suitable for any application. 

The TLS record protocol is first used to carry the data exchanged during 
the handshake. Once the handshake is complete and both parties share a 
secret key, application data is fragmented into chunks that are transmitted as 
part of the TLS records.

Structure of a TLS Record

A TLS record is a chunk of data of at most 16 kilobytes, structured as follows:

•	 The first byte represents the type of data transmitted and is set to the 
value 22 for handshake data, 23 for encrypted data, and 21 for alerts. 
In the TLS 1.3 specifications, this value is called ContentType.

•	 The second and third byte are set to 3 and 1, respectively. These bytes 
are fixed for historical reasons and are not unique to TLS version 1.3. 
In the specifications, this 2-byte value is called ProtocolVersion.

•	 The fourth and fifth bytes encode the length of the data to transmit as 
a 16-bit integer, which can be no larger than 214 bytes (16KB).

•	 The rest of the bytes are the data to transmit (also called the payload), 
of a length equal to the value encoded by the record’s fourth and fifth 
bytes.

N o t e 	 A TLS record has a relatively simple structure. As we’ve seen, a TLS record’s header 
includes only three fields. For comparison, an IPv4 packet includes 14 fields before its 
payload and a TCP segment includes 13 fields. 
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When the first byte of a TLS 1.3 record (ContentType) is set to 23, its 
payload is encrypted and authenticated using an authenticated cipher. 
The payload consists of a ciphertext followed by an authentication tag, 
which the receiving end will decrypt. But then how does the recipient 
know which cipher and key to decrypt with? That’s the magic of TLS: if 
you receive an encrypted TLS record, you already know the cipher and key, 
because they are established when the TLS handshake protocol is executed. 

Nonces

Unlike many other protocols such as IPsec’s Encapsulating Security Payload 
(ESP), TLS records don’t specify the nonce to be used by the authenticated 
cipher. 

The nonces used to encrypt and decrypt TLS records are derived from 
64-bit sequence numbers, maintained locally by each party, and incremented 
for each new record. When the client encrypts data, it derives a nonce by 
XORing the sequence number with a value called client_write_iv, itself 
derived from the shared secret. The server uses a similar method but with 
a different value, called server_write_iv.

For example, if you transmit three TLS records, you’ll derive a nonce 
from 0 for the first record, from 1 for the second, and from 2 for the third; 
if you then receive three records, you’ll also use nonces 0, 1, and 2, in this 
order. Reuse of the same sequence numbers values for encrypting trans
mitted data and decrypting receiving data isn’t a weakness because they are 
XORed with different constants (client_write_iv and server_write_iv) and 
because you use different secret keys for each direction.

Zero Padding

TLS 1.3 records support a nice feature known as zero padding that mitigates 
traffic analysis attacks. Traffic analysis is a method that attackers use to extract 
information from traffic patterns using timing, volume of data transferred, 
and so on. For example, because ciphertexts are approximately the same size 
as plaintexts, even when strong encryption is used, attackers can determine 
the approximate size of your messages simply by looking at the length of their 
ciphertext. 

Zero padding adds zeros to the plaintext in order to inflate the cipher-
text’s size, and thus to fool observers into thinking that an encrypted mes-
sage is longer than it really is.

The TLS Handshake Protocol
The handshake is the key TLS agreement protocol—the process by which 
a client and server establish shared secret keys in order to initiate secure 
communications. During the course of a TLS handshake, the client and 
server play different roles. The client proposes some configurations (the TLS 
version and a suite of ciphers, in order of preference) and the server chooses 
the configuration to be used. The server should follow the client’s prefer-
ences, but it may do otherwise. In order to ensure interoperability between 
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implementations and to guarantee that any server implementing TLS 1.3 will 
be able to read TLS 1.3 data sent by any client implementing TLS 1.3 (even if 
it’s using a different library or programming language), the TLS 1.3 specifica-
tions also describe the format in which data should be sent.

Figure 13-1 shows how data is exchanged in the handshake process, as 
described in the TLS 1.3 specifications. As you can see, in the TLS 1.3 hand-
shake, the client sends a message to the server saying, “I want to establish a 
TLS connection with you. Here are the ciphers that I support to encrypt TLS 
records, and here is a Diffie–Hellman public key.” The public key must be 
generated specifically for this TLS session, and the client keeps the associated 
private key. The message sent by the client also includes a 32-byte random 
value and optional information (additional parameters and such). This first 
message is called ClientHello, and it must follow a specific format when trans-
mitted as a series of bytes, as defined in the TLS 1.3 specification.

Client Server

Generate key pair (c, C = cQ)

ClientHello
- ciphers supported
- public key C

Generate key pair (s, S = sQ)
Compute secret = DH(s, C)
Derive keys = KDF(secret )

ServerHello
- ciphers selected
- public key S

Certificate

Signature
over ClientHello, ServerHello, 
certificate

MAC
over ClientHello, ServerHello, 
certificate, signature

Verify certificate
Verify signature
Compute secret = DH(c, S)
Derive keys = KDF(secret )
Verify MAC using keys

Figure 13-1: The TLS 1.3 handshake process when connecting to HTTPS websites

The server receives the ClientHello message, verifies that it’s correctly 
formatted, and responds with a message called ServerHello. The ServerHello 
message is loaded with information: it contains the cipher to be used to 
encrypt TLS records, a Diffie–Hellman public key, a 32-byte random value 
(discussed in “Downgrade Protection” on page 244), a certificate, a sig-
nature of all the previous information in ClientHello and ServerHello 
messages (computed using the private key associated with the certificate’s 
public key), a MAC of that same information plus the signature. The MAC 
is computed using a symmetric key derived from the Diffie–Hellman shared 
secret, which the server computes from its Diffie–Hellman private key and 
the client’s public key.

When the client receives the ServerHello message, it verifies the certifi-
cate’s validity, verifies the signature, computes the shared Diffie–Hellman 
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secret and derives symmetric keys from it, and verifies the MAC sent by 
the server. Once everything has been verified, the client is ready to send 
encrypted messages to the server.

NO T E 	 TLS 1.3 supports many options and extensions, so it may behave differently than 
what has been described here (and shown in Figure 13-1). You can, for example, con-
figure the TLS 1.3 handshake to require a client certificate so that the server verifies 
the identity of the client. TLS 1.3 also supports a handshake with pre-shared keys.

Let’s look at this in practice. Say you’ve deployed TLS 1.3 to provide 
secure access to the website https://www.nostarch.com/. When you point your 
browser (the client) to this site, your browser sends a ClientHello message 
to the site’s server that includes the ciphers that it supports. The website 
responds with a ServerHello message and a certificate that includes a pub-
lic key associated with the domain www.nostarch.com. The client verifies the 
certificate’s validity using one of the certificate authorities embedded in the 
browser (the received certificate should be signed by a trusted certificate 
authority, whose certificate should be included in the browser’s certificate 
store in order to be validated). Once all checks are passed, the browser 
requests the site’s initial page from the www.nostarch.com server. 

Upon a successful TLS 1.3 handshake, all communications between the 
client and the server are encrypted and authenticated. An eavesdropper can 
learn that a client at a given IP address is talking to a server at another given 
IP address, and can observe the encrypted content exchanged, but won’t be 
able to learn the underlying plaintext or modify the encrypted messages (if 
they do, the receiving party will notice that the communication has been 
tampered with, because messages are not only encrypted but also authenti-
cated). That’s enough security for many applications.

TLS 1.3 Cryptographic Algorithms
We know that TLS 1.3 uses authenticated encryption algorithms, a key deriva-
tion function (a hash function that derives secret keys from a shared secret), 
as well as a Diffie–Hellman operation. But how exactly do these work, what 
algorithms are used, and how secure are they?

With regard to the choice of authenticated ciphers, TLS 1.3 supports 
only three algorithms: AES-GCM, AES-CCM (a slightly less efficient mode 
than GCM), and the ChaCha20 stream cipher combined with the Poly1305 
MAC (as defined in RFC 7539). Because TLS 1.3 prevents you from using 
an unsafe key length such as 64 or 80 bits (which are both too short), the 
secret key can be either 128 bits (AES-GCM or AES-CCM) or 256 bits 
(AES-GCM or ChaCha20-Poly1305).

The key derivation operation (KDF) in Figure 13-1 is based on HKDF, 
a construction based on HMAC (discussed in Chapter 7) and defined in 
RFC 5869 that uses either the SHA-256 or the SHA-384 hash function. 

Your options for performing the Diffie–Hellman operation (the core 
of the TLS 1.3 handshake) are limited to elliptic curve cryptography and a 
multiplicative group of integers modulo a prime number (as in traditional 
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Diffie–Hellman). But you can’t use just any elliptic curve or group: the sup-
ported curves include three NIST curves as well as Curve25519 (discussed 
in Chapter 12) and Curve448, both defined in RFC 7748. TLS 1.3 also sup-
ports DH over groups of integers, as opposed to elliptic curves. The groups 
supported are the five groups defined in RFC 7919: groups of 2048, 3072, 
4096, 6144, and 8192 bits. 

The 2048-bit group may be TLS 1.3’s weakest link. Whereas the other 
options provide at least 128-bit security, 2048-bit Diffie–Hellman is believed 
to provide less than 100-bit security. Supporting a 2048-bit group can there-
fore be seen as inconsistent with other TLS 1.3 design choices. 

TLS 1.3 Improvements over TLS 1.2
TLS 1.3 is very different from its predecessor. For one thing, it gets rid 
of weak algorithms like MD5, SHA-1, RC4, and AES in CBC mode. Also, 
whereas TLS 1.2 often protected records using a combination of a cipher 
and a MAC (such as HMAC-SHA-1) within a MAC-then-encrypt construc-
tion, TLS 1.3 only supports the more efficient and more secure authenticated 
ciphers. TLS 1.3 also ditches elliptic curve point encoding negotiation, and 
defines a single point format for each curve.

One of the main development goals of TLS 1.3 was to remove features 
in 1.2 that weakened the protocol and to reduce the protocol’s overall com-
plexity and thereby its attack surface. For example, TLS 1.3 ditches optional 
data compression, a feature that enabled the CRIME attack on TLS 1.2. This 
attack exploited the fact that the length of the compressed version of a mes-
sage leaks information on the content of the message. 

But TLS 1.3 also brings new features that make connections either more 
secure or more efficient. I’ll discuss three of these features briefly: down-
grade protection, the single round-trip handshake, and session resumption. 

Downgrade Protection
TLS 1.3’s downgrade protection feature is designed as a defense against down-
grade attacks, wherein an attacker forces the client and server to use a weaker 
version of TLS than 1.3. To carry out a downgrade attack, an attacker forces 
the server to use a weaker version of TLS by intercepting and modifying the 
ClientHello message to tell the server that the client doesn’t support TLS 1.3. 
Now the attacker can exploit vulnerabilities in earlier versions of TLS. 

In an effort to defeat downgrade attacks, the TLS 1.3 server uses three 
types of patterns in the 32-byte random value sent within the ServerHello 
message to identify the type of connection requested. The pattern should 
match the client’s request for a specific type of TLS connection. If the client 
receives the wrong pattern, it knows that something is up.

Specifically, if the client asks for a TLS 1.2 connection, the first eight 
of the 32 bytes are set to 44 4F 57 4E 47 52 44 01, and if it asks for a TLS 1.1 
connection, they’re set to 44 4F 57 4E 47 52 44 00. However, if the client 
requests a TLS 1.3 connection, these first eight bits should be random. For 
example, if a client sends a ClientHello asking for a TLS 1.3 connection, but 
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an attacker on the network modifies it to ask for a TLS 1.1 connection, when 
the client receives the ServerHello with the wrong pattern, it will know that its 
ClientHello message was modified. (The attacker can’t arbitrarily modify the 
server’s 32-byte random value because this value is cryptographically signed.)

Single Round-Trip Handshake
In a typical TLS 1.2 handshake, the client sends some data to the server, waits 
for a response, and then sends more data and waits for the server’s response 
before sending encrypted messages. The delay is that of two round-trip times 
(RTT). In contrast, TLS 1.3’s handshake takes a single round-trip time, as 
shown in Figure 13-1. The time saved can be in the hundreds of milliseconds. 
That may sound small, but its actually significant when you consider that serv-
ers of popular services handle thousands of connections per second.

Session Resumption
TLS 1.3 is faster than 1.2, but it can be made even faster (on the order 
of hundreds of milliseconds) by completely eliminating the round trips 
that precede an encrypted session. The trick is to use session resumption, a 
method that leverages the pre-shared key exchanged between the client 
and server in a previous session to bootstrap a new session. Session resump-
tion brings two major benefits: the client can start encrypting immediately, 
and there is no need to use certificates in these subsequent sessions.

Figure 13-2 shows how session resumption works. First, the client sends 
a ClientHello message that includes the identifier of the key already shared 
(denoted PSK for pre-shared key) with the server, along with a fresh DH public 
key. The client can also include encrypted data in this first message (such 
data is known as 0-RTT data). When the server responds to a ClientHello 
message, it provides a MAC over the data exchange. The client verifies the 
MAC and knows that it’s talking to the same server as it did previously, thus 
rendering certificate validation somewhat superfluous. The client and the 
server perform a Diffie–Hellman key agreement as in the normal hand-
shake, and subsequent messages are encrypted using keys that depend on 
both the PSK and the newly computed Diffie–Hellman shared secret. 

Client Server

Generate key pair (c, C = cQ)

ClientHello
- pre-shared key (PSK) ID
- public key C
- 0-RTT data

Generate key pair (s, S = sQ)
Derive keys = KDF(PSK, DH(s, C ))

ServerHello
- pre-shared key (PSK) ID
- public key S

MAC
over ClientHello, ServerHello

Derive keys = KDF(PSK, DH(c, S ))
Verify MAC using keys

Figure 13-2: The TLS 1.3 session resumption handshake. The 0-RTT data is  
the session resumption data sent along with the ClientHello.



246   Chapter 13

The Strengths of TLS Security
We’ll evaluate the strengths of TLS 1.3 with respect to two main security 
notions discussed in Chapter 11: authentication and forward secrecy.

Authentication
During the TLS 1.3 handshake, the server authenticates to the client using 
the certificate mechanism. However, the client is not authenticated, and 
clients may authenticate with a server-based application (such as Gmail) by 
providing a username and password in a TLS record after performing the 
handshake. If the client has already established a session with the remote 
service, it may authenticate by sending a secure cookie, one that can only be 
sent through a TLS connection. 

In certain cases, clients can authenticate to a server using a certificate-
based mechanism similar to what the server uses in order to authenticate 
to the client: the client sends a client certificate to the server, which in turn 
verifies this certificate before authorizing the client. However, client certifi-
cates are rarely used because they complicate things for both clients and 
the server (that is, the certificate issuer): clients need to perform complex 
operations in order to integrate the certificate into their system and to pro-
tect its private key, while the issuer needs to make sure that only authorized 
clients received a certificate, among other requirements. 

Forward Secrecy
Recall from “Key Agreement Protocols” on page 205 that a key agreement 
is said to provide forward secrecy if previous sessions aren’t compromised 
when the present session is compromised. In the data leak model, only tem-
porary secrets are compromised, whereas in the breach model, long-term 
secrets are exposed. 

Thankfully, TLS 1.3 forward secrecy holds up in the face of both a data 
leak and a breach. In the case of the data leak model, the attacker recovers 
temporary secrets such as the session keys or Diffie–Hellman private keys of 
a specific session (the values c, s, secret, and keys in Figure 13-1 on page 242). 
However, they can only use these values to decrypt communications from the 
present session, but not from previous sessions, because different values of c 
and s were used (thus yielding different keys).

In the breach model, the attacker also recovers long-term secrets 
(namely, the private key that corresponds to the public key in the certifi-
cate). However, this is no more useful when decrypting previous sessions 
than temporary secrets, because this private key only serves to authenticate 
the server, and forward secrecy holds up again.

But what happens in practice? Say an attacker compromises a client’s 
machine and gains access to all of its memory. Now the attacker may recover 
the client’s TLS session keys and secrets for the current session from memory. 
But more importantly, if previous keys are still in memory, the attacker may 
be able to find them too and use them to decrypt previous sessions, thereby 
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bypassing the theoretical forward secrecy. Therefore, in order for a TLS 
implementation to ensure forward secrecy, it must properly erase keys from 
memory once they are no longer used, typically by zeroing out the memory.

How Things Can Go Wrong
TLS 1.3 fits the bill as a general-purpose secure communications protocol, 
but it’s not bulletproof. Like any security system, it can fail under certain 
circumstances (for example, when the assumptions made by its designers 
about real attacks turn out to be wrong). Unfortunately, even the latest 
version of TLS 1.3, configured with the most secure ciphers, can still be 
compromised. For example, TLS 1.3 security relies on the assumption that 
all three parties (the client, the server, and the certificate authority) will 
behave honestly, but what if one party is compromised or the TLS imple-
mentation itself is poorly implemented?

Compromised Certificate Authority
Root certificate authorities (root CAs) are organizations that are trusted by 
browsers to validate certificates served by remote hosts. For example, if your 
browser accepts the certificate provided by www.google.com, the assumption 
is that a trusted CA has verified the legitimacy of the certificate owner. The 
browser verifies the certificate by checking its CA-issued signature. Since only 
the CA knows the private key required to create this signature, we assume 
that others can’t create valid certificates on behalf of the CA. Very often a 
website’s certificate won’t be signed by a root CA but by an intermediate CA, 
which is connected to the root CA through a certificate chain.

But let’s say that a CA’s private key is compromised. Now the attacker will 
be able to use the CA’s private key to create a certificate for any URLs in, 
say, the google.com domain without Google’s approval. What happens then? 
The attacker can use those certificates to pretend to host a legitimate server 
or subdomain like mail.google.com and intercept a user’s credentials and com-
munications. That’s exactly what happened in 2011 when an attacker hacked 
into the network of the Dutch certificate authority DigiNotar and was able 
to create certificates that appeared to have been legitimate DigiNotar cer-
tificates. The attacker then used these fake certificates for several Google 
services.

Compromised Server
If a server is compromised and fully controlled by an attacker, all is lost: the 
attacker will be able to see all transmitted data before it’s encrypted, and all 
received data once it has been decrypted. They will also be able to get their 
hands on the server’s private key, which could allow them to impersonate 
the legitimate server using their own malicious server. Obviously, TLS won’t 
save you in this case.

Fortunately, such security disasters are rarely seen in high-profile appli-
cations such as Gmail and iCloud, which are well protected and sometimes 

http://www.google.com/
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have their private keys stored in a separate security module. Attacks on web 
applications via vulnerabilities such as database query injections and cross-
site scripting are more common, because they are mostly independent of 
TLS’s security and are carried out by attackers over a legitimate TLS con-
nection. Such attacks may compromise usernames, passwords, and so on.

Compromised Client
TLS security is also compromised when a client, such as a browser, is com-
promised by a remote attacker. Having compromised the client, the attacker 
will be able to capture session keys, read any decrypted data, and so on. They 
could even install a rogue CA certificate in the client’s browser to have it 
silently accept otherwise invalid certificates, thereby letting attackers inter-
cept TLS connections. 

The big difference between the compromised CA or server scenarios 
and the compromised client scenario is that in the case of the compromised 
client, only the targeted client will be affected, instead of potentially all the 
clients.

Bugs in Implementations
As with any cryptographic system, TLS can fail when there are bugs in 
its implementation. The poster child for TLS bugs is Heartbleed (see 
Figure 13-3), a buffer overflow in the OpenSSL implementation of a 
minor TLS feature known as heartbeat. Heartbleed was discovered in 
2014, independently by a Google researcher and by the Codenomicon 
company, and affected millions of TLS servers and clients.

As you can see in Figure 13-3, a client first sends a buffer along with 
a buffer length to the server to check whether the server is online. In this 
example, the buffer is the string BANANAS, and the client explicitly says 
that this word is seven letters long. The server reads the seven-letter word 
and returns it to the client. 

Client Server

Send me the 7-letter word BANANAS if you are there.

BANANAS

BANANAS..PRIVATE_KEY = 192812491283192838129

Send me the 200-letter word BANANAS if you are there.

CLIENT_WANTS_7_LETTERS:
BANANAS..PRIVATE_KEY=1928
1249128319283812994851123
189123123812312312... 

CLIENT_WANTS_200_LETTERS:
BANANAS..PRIVATE_KEY=1928
1249128319283812994851123
189123123812312312... 

Server’s memory:

Server’s memory:

Figure 13-3: The Heartbleed bug in OpenSSL implementations of TLS
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The problem is that the server doesn’t confirm that the length is cor-
rect, and will attempt to read as many characters as the client tells it to. 
Consequently, if the client provides a length that is longer than the string’s 
actual length, the server reads too much data from memory and will return 
it to the client, together with any extra data that may contain sensitive infor-
mation, such as private keys or session cookies.

It won’t surprise you to hear that the Heartbleed bug came as a shock. 
To avoid similar future bugs, OpenSSL and other major TLS implementa-
tions now perform rigorous code reviews and use automated tools such as 
fuzzers in order to identify potential issues. 

Further Reading
As I stated at the outset, this chapter is not a comprehensive guide to TLS, 
and you may want to dig deeper into TLS 1.3. For starters, the complete 
TLS 1.3 specifications include everything about the protocol (though not 
necessarily about its underlying rationale). You can find that on the home 
page of the TLS Working Group (TLSWG) here: https://tlswg.github.io/.

In addition, let me cite two important TLS initiatives: 

•	 SSL Labs TLS test (https://www.ssllabs.com/ssltest/) is a free service by 
Qualys that lets you test a browser’s or a server’s TLS configuration, 
providing a security rating as well as improvement suggestions. If you 
set up your own TLS server, use this test to make sure that everything is 
safe and that you get an “A” rating.

•	 Let’s Encrypt (https://letsencrypt.org/) is a nonprofit that offers a service to 
“automagically” deploy TLS on your HTTP servers. It includes features to 
automatically generate a certificate and configure the TLS server, and it 
supports all the common web servers and operating systems.

https://tools.ietf.org/html/draft-ietf-tls-tls13
https://tools.ietf.org/html/draft-ietf-tls-tls13




14
Q u a n t u m  a n d  P o s t - Q u a n t u m

Previous chapters focused on cryptography 
today, but in this chapter I’ll examine the 

future of cryptography over a time horizon 
of, say, a century or more—one in which 

quantum computers exist. Quantum computers are 
computers that leverage phenomena from quantum 
physics in order to run different kinds of algorithms 
than the ones we’re used to. Quantum computers don’t exist yet and look 
very hard to build, but if they do exist one day, then they’ll have the poten-
tial to break RSA, Diffie–Hellman, and elliptic curve cryptography—that is, 
all the public-key crypto deployed or standardized as of this writing.

To insure against the risk posed by quantum computers, cryptography 
researchers have developed alternative public-key crypto algorithms called 
post-quantum algorithms that would resist quantum computers. In 2015, the 
NSA called for a transition to quantum-resistant algorithms designed to be 



252   Chapter 14

safe even in the face of quantum computers, and in 2017 the US standard-
ization agency NIST began a process that will eventually standardize post-
quantum algorithms.

This chapter will thus give you a nontechnical overview of the principles 
behind quantum computers as well as a glimpse of post-quantum algorithms. 
There’s some math involved, but nothing more than basic arithmetic and 
linear algebra, so don’t be scared by the unusual notations.

How Quantum Computers Work
Quantum computing is a model of computing that uses quantum physics 
to compute differently and do things that classical computers can’t, such 
as breaking RSA and elliptic curve cryptography efficiently. But a quantum 
computer is not a super-fast normal computer. In fact, quantum computers 
can’t solve any problem that is too hard for a classical computer, such as brute 
force search or NP-complete problems. 

Quantum computers are based on quantum mechanics, the branch of 
physics that studies the behavior of subatomic particles, which behave truly 
randomly. Unlike classical computers, which operate on bits that are either 
0 or 1, quantum computers are based on quantum bits (or qubits), which can 
be both 0 and 1 simultaneously—a state of ambiguity called superposition. 
Physicists discovered that in this microscopic world, particles such as elec-
trons and photons behave in a highly counterintuitive way: before you 
observe an electron, the electron is not at a definite location in space, but 
in several locations at the same time (that is, in a state of superposition). But 
once you observe it—an operation called measurement in quantum physics—
then it stops at a fixed, random location and is no longer in superposition. 
This quantum magic is what enables the creation of qubits in a quantum 
computer.

But quantum computers only work because of a crazier phenomenon 
called entanglement : two particles can be connected (entangled) in a way 
that observing the value of one gives the value of the other, even if the two 
particles are widely separated (kilometers or even light-years away from 
each other). This behavior is illustrated by the Einstein–Podolsky–Rosen 
(EPR) paradox and is the reason why Albert Einstein initially dismissed 
quantum mechanics. (See https://plato.stanford.edu/entries/qt-epr/ for an in-
depth explanation of why.)

To best explain how a quantum computer works, we should distinguish 
the actual quantum computer (the hardware, composed of quantum bits) 
from quantum algorithms (the software that runs on it, composed of 
quantum gates). The next two sections discuss these two notions.

Quantum Bits
Quantum bits (qubits), or groups thereof, are characterized with numbers 
called amplitudes, which are akin to probabilities but aren’t exactly probabili-
ties. Whereas a probability is a number between 0 and 1, an amplitude is a 
complex number of the form a + b × i, or simply a + bi, where a and b are real 
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numbers, and i is an imaginary unit. The number i is used to form imaginary 
numbers, which are of the form bi, with b a real number. When i is multiplied 
by a real number, we get another imaginary number, and when it is multi-
plied by itself it gives –1; that is i 2 = –1. 

Unlike real numbers, which can be seen as belonging to a line (see 
Figure 14-1), complex numbers can be seen as belonging to a plane (a space 
with two dimensions), as shown in Figure 14-2. Here, the x-axis in the figure 
corresponds to the a in a + bi, the y-axis corresponds to the b, and the dotted 
lines correspond to the real and imaginary part of each number. For exam-
ple, the vertical dotted line going from the point 3 + 2i down to 3 is two units 
long (the 2 in the imaginary part 2i). 

−2 1.50 1

Figure 14-1: View of real numbers as points on an  
infinite straight line

0

Imaginary (i )

Real

2

2
3

−1 2 − i

3 + 2i

√(3
2  + 2

2 ) =
 √1

3

Figure 14-2: A view of complex numbers as points in a  
two-dimensional space

As you can see in Figure 14-2, you can use the Pythagorean theorem to 
compute the length of the line going from the origin (0) to the point a + bi 
by viewing this line as the diagonal of a triangle. The length of this diago-
nal is equal to the square root of the sum of the squared coordinates of the 
point, or √(a2 + b2), which we call the modulus of the complex number a + bi. 
We denote the modulus as |a + bi| and can use it as the length of a complex 
number.

In a quantum computer, registers consist of 1 or more qubits in a state of 
superposition characterized by a set of such complex numbers. But as we’ll 
see, these complex numbers—the amplitudes—can’t be any numbers.
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Amplitudes of a Single Qubit

A single qubit is characterized by two amplitudes that I’ll call α (alpha) and 
β (beta). We can then express a qubit’s state as α |0⟩ + β |1⟩, where the “| ⟩” 
notation is used to denote vectors in a quantum state. This notation then 
means that when you observe this qubit it will appear as 0 with a probability 
|α|2 and 1 with a probability |β|2. Of course, in order for these to be actual 
probabilities, |α|2 and |β|2 must be numbers between 0 and 1, and |α|2 + |β|2 
must be equal to 1. 

For example, say we have the qubit Ψ (psi) with amplitudes of α = 1/√2 
and β = 1/√2. We can express this as follows:

� � � � � � � � �� �1 2 0 1 2 1 0 1 2/ / /

This notation means that in the qubit Ψ, the value 0 has an ampli-
tude of 1/√2, and the value 1 has the same amplitude, 1/√2. To get the 
actual probability from the amplitudes, we compute the modulus of 1/√2 
(which is equal to 1/√2, because it has no imaginary part), then square it: 
(1/√2)2 = 1/2. That is, if you observe the qubit Ψ, you’ll have a 1/2 chance 
of seeing a 0, and the same chance of seeing a 1.

Now consider the qubit Φ (phi), where 

� � � �� � � � � � � � � � � �i i i/ / / / /2 0 1 2 1 0 1 2 2 1 2, or , 

The qubit Φ is fundamentally distinct from Ψ because unlike Ψ, where 
amplitudes have equal values, the qubit Φ has distinct amplitudes of α = i/√2 
(a positive imaginary number) and β = –1/√2 (a negative real number). If, 
however, you observe Φ, the chance of your seeing a 0 or 1 is 1/2, the same as 
it is with Ψ. Indeed, we can compute the probability of seeing a 0 as follows, 
based on the preceding rules:

� 2 2
2

2
1 2 1 2 1 2� � ��

�
�

�
�
� � �/ / /

N O T E 	 Because α = i/√2, α can be written as a + bi with a = 0 and b = 1/√2, and comput-
ing |α| = √(a2 + b2) yields 1/√2.

The upshot is that different qubits can behave similarly to an observer 
(with the same probability of seeing a 0 for both qubits) but have differ-
ent amplitudes. This tells us that the actual probabilities of seeing a 0 or a 
1 only partially characterize a qubit; just as when you observe the shadow 
of an object on a wall, the shape of the shadow will give you an idea of the 
object’s width and height, but not of its depth. In the case of qubits, this 
hidden dimension is the value of its amplitude: Is it positive or negative? Is 
it a real number or an imaginary number? 
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N o t e 	 To simplify notations, a qubit is often simply written as its pair of amplitudes (α, β). 
Our previous example can then be written |Ψ⟩ = (1/√2, 1/√2).

Amplitudes of Groups of Qubits

We’ve explored single qubits, but how do we understand multiple qubits? 
For example, a quantum byte can be formed with 8 qubits, when put into a 
state where the quantum states of these 8 qubits are somehow connected to 
each other (we say that the qubits are entangled, which is a complex physical 
phenomenon). Such a quantum byte can be described as follows, where the 
αs are the amplitudes associated with each of the 256 possible values of the 
group of 8 qubits:

α α α α α0 1 2 3 25500000000 00000001 00000010 00000011 1111+ + + + . . . + 11111

Note that we must have |α0|
2 + |α1|

2 + . . . + |α255|
2 = 1, so that all prob-

abilities sum to 1. 
Our group of 8 qubits can be viewed as a set of 28 = 256 amplitudes, 

because it has 256 possible configurations, each with its own amplitude. In 
physical reality, however, you’d only have eight physical objects, not 256. 
The 256 amplitudes are an implicit characteristic of the group of 8 qubits; 
each of these 256 numbers can take any of infinitely many different values. 
Generalizing, a group of n qubits is characterized by a set of 2n complex 
numbers, a number that grows exponentially with the numbers of qubits.

This encoding of exponentially many high-precision complex numbers 
is a core reason why a classical computer can’t simulate a quantum com-
puter: in order to do so, it would need an unfathomably high amount of 
memory (of size around 2n) to store the same amount of information con-
tained in only n qubits.

Quantum Gates
The concepts of amplitude and quantum gates are unique to quantum 
computing. Whereas a classical computer uses registers, memory, and a 
microprocessor to perform a sequence of instructions on data, a quan-
tum computer transforms a group of qubits reversibly by applying a series 
of quantum gates, and then measures the value of one or more qubits. 
Quantum computers promise more computing power because with only n 
qubits, they can process 2n numbers (the qubits’ amplitudes). This property 
has profound implications.

From a mathematical standpoint, quantum algorithms are essentially 
a circuit of quantum gates that transforms a set of complex numbers (the 
amplitudes) before a final measurement where the value of 1 or more 
qubits is observed (see Figure 14-3). You’ll also see quantum algorithms 
referred to as quantum gate arrays or quantum circuits. 
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n qubits:

( )α0
α1
α2
. . .
α2n − 1

Circuit of
quantum 

gates

Measurement

Figure 14-3: Principle of a quantum algorithm

Quantum Gates as Matrix Multiplications

Unlike the Boolean gates of a classical computer (AND, XOR, and so on), 
a quantum gate acts on a group of amplitudes just as a matrix acts when 
multiplied with a vector. For example, in order to apply the simplest quan-
tum gate, the identity gate, to the qubit Φ, we see I as a 2 × 2 matrix and 
multiply it with the column vector consisting of the two amplitudes of Φ, 
as shown here:
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The result of this matrix–vector multiplication is another column vec-
tor with two elements, where the top value is equal to the dot product of the 
I matrix’s first line with the input vector (the result of adding the product 
of the first elements 1 and i/√2 to the product of the second elements 0 and 
–1/√2), and likewise for the bottom value.

N o t e 	 In practice, a quantum computer wouldn’t explicitly compute matrix–vector multiplica-
tions because the matrices would be way too large. (That’s why quantum computing 
can’t be simulated by a classical computer.) Instead, a quantum computer would trans-
form qubits as physical particles through physical transformations that are equivalent to 
a matrix multiplication. Confused? Here’s what Richard Feynman had to say: “If you 
are not completely confused by quantum mechanics, you do not understand it.”

The Hadamard Quantum Gate

The only quantum gate we’ve seen so far, the identity gate I, is pretty useless 
because it doesn’t do anything and leaves a qubit unchanged. Now we’re 
going to see one of the most useful quantum gates, called the Hadamard 
gate, usually denoted H. The Hadamard gate is defined as follows (note the 
negative value in the bottom-right position):

H =








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1 2 1 2

1 2 1 2

/ /

/ /−
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Let’s see what happens if we apply this gate to the qubit |Ψ⟩ = (1/√2, 1/√2):
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By applying the Hadamard gate H to |Ψ⟩, we obtain the qubit |0⟩ for 
which the value |0⟩ has amplitude 1, and |1⟩ has amplitude 0. This tells us 
that the qubit will behave deterministically: that is, if you observe this qubit, 
you would always see a 0 and never a 1. In other words, we’ve lost the ran-
domness of the initial qubit |Ψ⟩.

What happens if we apply the Hadamard gate again to the qubit |0⟩?

H 0
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This brings us back to the qubit |Ψ⟩ and a randomized state. Indeed, 
the Hadamard gate is often used in quantum algorithms to go from a deter-
ministic state to a uniformly random one.

Not All Matrices are Quantum Gates

Although quantum gates can be seen as matrix multiplications, not all 
matrices correspond to quantum gates. Recall that a qubit consists of the 
complex numbers α and β and the amplitudes of the qubit, such that they 
satisfy the condition |α|2 + |β|2 = 1. If after multiplying a qubit by a matrix 
we get two amplitudes that don’t match this condition, the result can’t be 
a qubit. Quantum gates can only correspond to matrices that preserve the 
property |α|2 + |β|2 = 1, and matrices that satisfy this condition are called 
unitary matrices. 

Unitary matrices (and quantum gates by definition) are invertible, 
meaning that given the result of an operation, you can compute back the 
original qubit by applying the inverse matrix. This is the reason why quan-
tum computing is said to be a kind of reversible computing.

Quantum Speed-Up
A quantum speed-up occurs when a problem can be solved faster by a quantum 
computer than by a classical one. For example, in order to search for an item 
among n items of an unordered list on a classical computer, you need on 
average n/2 operations, because you need to look at each item in the list 
before finding the one you’re looking for. (On average, you’ll find that item 
after searching half of the list.) No classical algorithm can do better than 
n/2. However, a quantum algorithm exists to search for an item in only about 
√n operations, which is orders of magnitude smaller than n/2. For example, 
if n is equal to 1000000, then n/2 is 500000, whereas √n is 1000. 

We attempt to quantify the difference between quantum and classical 
algorithms in terms of time complexity, which is represented by O() notation. 
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In the previous example, the quantum algorithm runs in time O(√n) but 
the classical algorithm can’t be faster than O(n). Because the difference in 
time complexity here is due to the square exponent, we call this quadratic 
speed-up. But while such a speed-up will likely make a difference, there are 
much more powerful ones.

Exponential Speed-Up and Simon’s Problem
Exponential speed-ups are the Holy Grail of quantum computing. They 
occur when a task that takes an exponential amount of time on a classical 
computer, such as O(2n), can be performed on a quantum computer with 
polynomial complexity—namely O(nk) for some fixed number k. This expo-
nential speed-up can turn a practically impossible task into a possible one. 
(Recall from Chapter 9 that cryptographers and complexity theorists asso-
ciate exponential time with the impossible, and they associate polynomial 
time with the practical.)

The poster child of exponential speed-ups is Simon’s problem. In this com-
putational problem, a function, f(), transforms n-bit strings to n-bit strings, 
such that the output of f() looks random except that there is a value, m, such 
that any two values x, y that satisfies f(x) = f(y), then y = x ⊕ m. The way to 
solve this problem is to find m. 

The route to take when solving Simon’s problem with a classical algo-
rithm boils down to finding a collision, which takes approximately 2n/2 que-
ries to f(). However, a quantum algorithm (shown in Figure 14-4) can solve 
Simon’s problem in approximately n queries, with the extremely efficient 
time complexity of O(n). 

M
ea

su
re

m
en

t

|0⟩ H

Qf

H

H

...
...

|0⟩

|0⟩

|0⟩
|0⟩

H

H

H

...
...

n 
qu

bi
ts

n 
qu

bi
ts

Figure 14-4: The circuit of the quantum algorithm that solves  
Simon’s problem efficiently

As you can see in Figure 14-4, you initialize 2n qubits to |0⟩, apply 
Hadamard gates (H) to the first n qubits, then apply the gate Qf to the 
two groups of all n qubits. Given two n -qubit groups x and y, the gate Qf 
transforms the quantum state |x⟩|y⟩ to the state |x⟩|f(x) ⊕ y⟩. That is, it 
computes the function f() on the quantum state reversibly, because you 
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can go from the new state to the old one by computing f(x) and XORing 
it to f(x) ⊕ y. (Unfortunately, explaining why all of this works is beyond 
the scope of this book.)

The exponential speed-up for Simon’s problem can be used against 
symmetric ciphers only in very specific cases, but in the next section you’ll 
see some real crypto-killer applications of quantum computing.

The Threat of Shor’s Algorithm
In 1995, AT&T researcher Peter Shor published an eye-opening article 
titled “Polynomial-Time Algorithms for Prime Factorization and Discrete 
Logarithms on a Quantum Computer.” Shor’s algorithm is a quantum algo-
rithm that causes an exponential speed-up when solving the factoring, 
discrete logarithm (DLP), and elliptic curve discrete logarithm (ECDLP) 
problems. You can’t solve these problems with a classical computer, but you 
could with a quantum computer. That means that you could use a quantum 
computer to solve any cryptographic algorithm that relies on those prob-
lems, including RSA, Diffie–Hellman, elliptic curve cryptography, and all 
currently deployed public-key cryptography mechanisms. In other words, 
you could reduce the security of RSA or elliptic curve cryptography to that 
of Caesar’s cipher. (Shor might as well have titled his article “Breaking All 
Public-Key Crypto on a Quantum Computer.”) Shor’s algorithm has been 
called “one of the major scientific achievements of the late 20th century” by 
renowned complexity theorist Scott Aaronson.

Shor’s algorithm actually solves a more general class of problems than 
factoring and discrete logarithms. Specifically, if a function f() is periodic—
that is, if there’s a ω (the period) such that f(x + ω) = f(x) for any x, Shor’s 
algorithm will efficiently find ω. (This looks very similar to Simon’s problem 
discussed previously, and indeed Simon’s algorithm was a major inspiration 
for Shor’s algorithm.) The ability of Shor’s algorithm to efficiently compute 
the period of a function is important to cryptographers because that ability 
can be used to attack public-key cryptography, as I’ll discuss next. 

A discussion of the details of how Shor’s algorithm achieves its speed-up 
is far too technical for this book, but in this section I’ll show how you could 
use Shor’s algorithm to attack public-key cryptography. Let’s see how Shor’s 
algorithm could be used to solve the factoring and discrete logarithm prob-
lems (as discussed in Chapter 9), which are respectively the hard problems 
behind RSA and Diffie–Hellman.

Shor’s Algorithm Solves the Factoring Problem
Say you want to factor a large number, N = pq. It’s easy to factor N if you 
can compute the period of ax mod N, a task that is hard to do with a clas-
sical computer but easy to do on a quantum one. You first pick a random 
number a less than N, and ask Shor’s algorithm to find the period ω of 
the function f(x) = ax mod N. Once you’ve found the period, you’ll have 
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ax mod N = ax + ω mod N (that is, ax mod N = axaω mod N), which means 
that aω mod N = 1, or aω – 1 mod N = 0. In other words, aω – 1 is a multiple 
of N, or aω – 1 = kN for some unknown number k. 

The key observation here is that you can easily factor the number 
aω – 1 as the product of two terms, where aω – 1 = (aω / 2 – 1)(aω / 2 + 1). You 
can then compute the greatest common divisor (GCD) between (aω / 2 – 1) 
and N, and check to see if you’ve obtained a nontrivial factor of N (that is, 
a value other than 1 or N). If not, you can just rerun the same algorithm 
with another value of a. After a few trials, you’ll get a factor of N. You’ve 
now recovered the private RSA key from its public key, which allows you to 
decrypt messages or forge signatures.

But just how easy is this computation? Note that the best classical algo-
rithm to use to factor a number N runs in time exponential in n, the bit 
length of N (that is, n = log2 N). However, Shor’s algorithm runs in time 
polynomial in n—namely, O(n2(log n)(log log n)). This means that if we 
had a quantum computer, we could run Shor’s algorithm and see the result 
within a reasonable amount of time (days? weeks? months, maybe?) instead 
of thousands of years. 

Shor’s Algorithm and the Discrete Logarithm Problem
The challenge in the discrete logarithm problem is to find x, given y = gx 
mod p, for some known numbers g and p. Solving this problem takes an 
exponential amount of time on a classical computer, but Shor’s algorithm 
lets you find x easily thanks to its efficient period-finding technique. 

For example, consider the function f(a, b) = gayb. Say we want to find 
the period of this function, the numbers ω and ω′, such that f(a + ω, b + ω′) 
= f(a, b) for any a and b. The solution we seek is then x = –ω / ω′ modulo q, 
the order of g, which is a known parameter. The equality f(a + ω, b + ω′) 
= f(a, b) implies gωyω′ mod p = 1. By substituting y with gx, we have gω + xω′ 
mod p = 1, which is equivalent to ω + xω′ mod q = 0, from which we derive 
x = – ω / ω′. 

Again, the overall complexity is O(n2(log n)(log log n)), with n the bit 
length of p. This algorithm generalizes to find discrete logarithms in any 
commutative group, not just the group of numbers modulo a prime number.

Grover’s Algorithm
After Shor’s algorithm exponential speed-up for factoring, another impor-
tant form of quantum speed-up is the ability to search among n items in time 
proportional to the square root of n, whereas any classical algorithm would 
take time proportional to n. This quadratic speed-up is possible thanks to 
Grover’s algorithm, a quantum algorithm discovered in 1996 (after Shor’s 
algorithm). I won’t cover the internals of Grover’s algorithm because they’re 
essentially a bunch of Hadamard gates, but I’ll explain what kind of problem 
Grover solves and its potential impact on cryptographic security. I’ll also show 
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why you can salvage a symmetric crypto algorithm from quantum computers 
by doubling the key or hash value size, whereas asymmetric algorithms are 
destroyed for good. 

Think of Grover’s algorithm as a way to find the value x among n pos-
sible values, such that f(x) = 1, and where f(x) = 0 for most other values. If 
m values of x satisfy f(x) = 1, Grover will find a solution in time O(√(n / m)); 
that is, in time proportional to the square root of n divided by m. In com-
parison, a classical algorithm can’t do better than O(n / m). 

Now consider the fact that f() can be any function. It could be, for exam-
ple, “f(x) = 1 if and only if x is equal to the unknown secret key K such that 
E(K, P) = C” for some known plaintext P and ciphertext C, and where E() 
is some encryption function. In practice, this means that if you’re looking 
for a 128-bit AES key with a quantum computer, you’ll find the key in time 
proportional to 264, rather than 2128 if you had only classical computers. You 
would need a large enough plaintext to ensure the uniqueness of the key. 
(If the plaintext and ciphertext are, say, 32 bits, many candidate keys would 
map that plaintext to that ciphertext.) The complexity 264 is much smaller 
than 2128, meaning that a secret key would be much easier to recover. But 
there’s an easy solution: to restore 128-bit security, just use 256-bit keys! 
Grover’s algorithm will then reduce the complexity of searching a key to 
“only” 2256 / 2 = 2128 operations.

Grover’s algorithm can also find preimages of hash functions (a notion 
discussed in Chapter 6). To find a preimage of some value h, the f() func-
tion is defined as “f(x) = 1 if and only if Hash(x) = h, otherwise f(x) = 0.” 
Grover thus gets you preimages of n-bit hashes at the cost of the order of 
2n/2 operations. As with encryption, to ensure 2n post-quantum security, just 
use hash values twice as large, since Grover’s algorithm will find a preimage 
of a 2n-bit value in at least 2n operations. 

The bottom line is that you can salvage symmetric crypto algorithms 
from quantum computers by doubling the key or hash value size, whereas 
asymmetric algorithms are destroyed for good. 

N o t e 	 There is a quantum algorithm that finds hash function collisions in time O(2n/3), 
instead of O(2n/2), as with the classic birthday attack. This would suggest that 
quantum computers can outperform classical computers for finding hash function 
collisions, except that the O(2n/3)-time quantum algorithm also requires O(2n/3) 
space, or memory, in order to run. Give O(2n/3) worth of computer space to a clas-
sic algorithm and it can run a parallel collision search algorithm with a collision 
time of only O(2n/6), which is much faster than the O(2n/3) quantum algorithm. (For 
details of this attack, see “Cost Analysis of Hash Collisions” by Daniel J. Bernstein 
at http://cr.yp.to/papers.html#collisioncost.)

Why Is It So Hard to Build a Quantum Computer?
Although quantum computers can in principle be built, we don’t know 
how hard it will be or when that might happen, if at all. And so far, it 
looks really hard. As of early 2017, the record holder is a machine that 
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is able to keep 14 (fourteen!) qubits stable for only a few milliseconds, 
whereas we’d need to keep millions of qubits stable for weeks in order to 
break any crypto. The point is, we’re not there yet.

Why is it so hard to build a quantum computer? Because you need 
extremely small things to play the role of qubits—about the size of elec-
trons or photons. And because qubits must be so small, they’re also 
extremely fragile. 

Qubits must also be kept at extremely low temperatures (close to abso-
lute zero) in order to remain stable. But even at such a freezing tempera-
ture, the state of the qubits decays, and they eventually become useless. As 
of this writing, we don’t yet know how to make qubits that will last for more 
than a couple of seconds.

Another challenge is that qubits can be affected by the environment, 
such as heat and magnetic fields, which can create noise in the system, and 
hence computation errors. In theory, it’s possible to deal with these errors 
(as long as the error rate isn’t too high), but it’s hard to do so. Correcting 
qubits’ errors requires specific techniques called quantum error-correcting 
codes, which in turn require additional qubits and a low enough rate of 
error. But we don’t know how to build systems with such a low error rate.

At the moment, there are two main approaches to forming qubits, and 
therefore to building quantum computers: superconducting circuits and 
ion traps. Using superconducting circuits is the approach championed by labs 
at Google and IBM. It’s based on forming qubits as tiny electrical circuits 
that rely on quantum phenomena from superconductor materials, where 
charge carriers are pairs of electrons. Qubits made of superconducting cir-
cuits need to be kept at temperatures close to absolute zero, and they have 
a very short lifetime. The record as of this writing is nine qubits kept stable 
for a few microseconds.

Ion traps, or trapped ions, are made up of ions (charged atoms) and are 
manipulated using lasers in order to prepare the qubits in specific initial 
states. Using ion traps was one of the first approaches to building qubits, 
and they tend to be more stable than superconducting circuits. The record 
as of this writing is 14 qubits stable for a few milliseconds. But ion traps are 
slower to operate and seem harder to scale than superconducting circuits.

Building a quantum computer is really a moonshot effort. The chal-
lenge comes down to 1) building a system with a handful of qubits that is 
stable, fault tolerant, and capable of applying basic quantum gates, and 2) 
scaling such a system to thousands or millions of qubits to make it useful. 
From a purely physical standpoint, and to the best of our knowledge, there 
is nothing to prevent the creation of large fault-tolerant quantum comput-
ers. But many things are possible in theory and prove hard or too costly to 
realize in practice (like secure computers). Of course, the future will tell 
who is right—the quantum optimists (who sometimes predict a large quan-
tum computer in ten years) or the quantum skeptics (who argue that the 
human race will never see a quantum computer).
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Post-Quantum Cryptographic Algorithms
The field of post-quantum cryptography is about designing public-key algo-
rithms that cannot be broken by a quantum computer; that is, they would 
be quantum safe and able to replace RSA and elliptic curve–based algo-
rithms in a future where off-the-shelf quantum computers could break 
4096-bit RSA moduli in a snap. 

Such algorithms should not rely on a hard problem known to be effi-
ciently solvable by Shor’s algorithm, which kills the hardness in factoring 
and discrete logarithm problems. Symmetric algorithms such as block 
ciphers and hash functions would lose only half their theoretical security 
in the face of a quantum computer but would not be badly broken as RSA. 
They might constitute the basis for a post-quantum scheme.

In the following sections, I explain the four main types of post-quantum 
algorithms: code-based, lattice-based, multivariate, and hash-based. Of 
these, hash-based is my favorite because of its simplicity and strong security 
guarantees.

Code-Based Cryptography
Code-based post-quantum cryptographic algorithms are based on error-
correcting codes, which are techniques designed to transmit bits over a noisy 
channel. The basic theory of error-correcting codes dates back to the 1950s. 
The first code-based encryption scheme (the McEliece cryptosystem) was 
developed in 1978 and is still unbroken. Code-based crypto schemes can be 
used for both encryption and signatures. Their main limitation is the size 
of their public key, which is typically on the order of a hundred kilobytes. 
But is that really a problem when the average size of a web page is around 
two megabytes?

Let me first explain what error-correcting codes are. Say you want to 
transmit a sequence of bits as a sequence of (say) 3-bit words, but the trans-
mission is unreliable and you’re concerned that 1 or more bits may be incor-
rectly transmitted: you send 010, but the receiver gets 011. One simple way 
to address this would be to use a very basic error-correction code: instead 
of transmitting 010 you would transmit 000111000 (repeating each bit three 
times), and the receiver would decode the received word by taking the major-
ity value for each of the three bits. For example, 100110111 would be decoded 
to 011 because that pattern appears twice. But as you can see, this particular 
error-correcting code would allow a receiver to correct only up to one error 
per 3-bit chunk, because if two errors occur in the same 3-bit chunk, the 
majority value would be the wrong one. 

Linear codes are an example of less trivial error-correcting codes. In 
the case of linear codes, a word to encode is seen as an n-bit vector v, and 
encoding consists of multiplying v with an m × n matrix G to compute the 
code word w = vG. (In this example, m is greater than n, meaning that 
the code word is longer than the original word.) The value G can be struc-
tured such that for a given number t, any t-bit error in w allows the recipient 
to recover the correct v. In other words, t is the maximum number of errors 
that can be corrected.
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In order to encrypt data using linear codes, the McEliece cryptosystem 
constructs G as a secret combination of three matrices, and encrypts by com-
puting w = vG plus some random value, e, which is a fixed number of 1 bit. 
Here, G is the public key, and the private key is composed of the matrices A, 
B, and C such that G = ABC. Knowing A, B, and C allows one to decode a mes-
sage reliably and retrieve w. (You’ll find the decoding step described online.) 

The security of the McEliece encryption scheme relies on the hardness 
of decoding a linear code with insufficient information, a problem known 
to be NP-complete and therefore out of reach of quantum computers.

Lattice-Based Cryptography
Lattices are mathematical structures that essentially consist of a set of points 
in an n-dimensional space, with some periodic structure. For example, in 
dimension two (n = 2), a lattice can be viewed as the set of points shown in 
Figure 14-5. 

s
w

v

Figure 14-5: Points of a two-dimensional lattice, where v  
and w are basis vectors of the lattice, and s is the closest  
vector to the star-shaped point

Lattice theory has led to deceptively simple cryptography schemes. I’ll 
give you the gist of it. 

A first hard problem found in lattice-based crypto is known as short integer 
solution (SIS). SIS consists of finding the secret vector s of n numbers given 
(A, b) such that b = As mod q, where A is a random m × n matrix and q is a 
prime number.

The second hard problem in lattice-based cryptography is called learning 
with errors (LWE). LWE consists of finding the secret vector s of n numbers 
given (A, b), where b = As + e mod q, with A being a random m × n matrix, e 
a random vector of noise, and q a prime number. This problem looks a lot 
like noisy decoding in code-based cryptography.

SIS and LWE are somewhat equivalent, and can be restated as instances 
of the closest vector problem (CVP) on a lattice, or the problem of finding the 
vector in a lattice closest to a given point, by combining a set of basis vec-
tors. The dotted vector s in Figure 14-5 shows how we would find the closest 
vector to the star-shaped point by combining the basis vectors v and w.
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CVP and other lattice problems are believed to be hard both for classical 
and quantum computers. But this doesn’t directly transfer to secure crypto-
systems, because some problems are only hard in the worst case (that is, for 
their hardest instance) rather than the average case (which is what we need 
for crypto). Furthermore, while finding the exact solution to CVP is hard, 
finding an approximation of the solution can be considerably easier.

Multivariate Cryptography
Multivariate cryptography is about building cryptographic schemes that are as 
hard to break as it is to solve systems of multivariate equations, or equations 
involving multiple unknowns. Consider, for example, the following system 
of equations involving four unknowns x1, x2, x3, x4: 

x x x x x

x x x x x x

x x x

x x x x x x

1 2 3 4 2

1 3 1 4 2 3
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These equations consist of the sum of terms that are either a single 
unknown, such as x4 (or terms of degree one), or the product of two 
unknown values, such as x2x3 (terms of degree two or quadratic terms). To 
solve this system, we need to find the values of x1, x2, x3, x4 that satisfy all four 
equations. Equations may be over all real numbers, integers only, or over 
finite sets of numbers. In cryptography, however, equations are typically over 
numbers modulo some prime numbers, or over binary values (0 and 1). 

The problem here is to find a solution that is NP-hard given a random 
quadratic system of equations. This hard problem, known as multivariate 
quadratics (MQ) equations, is therefore a potential basis for post-quantum sys-
tems because quantum computers won’t solve NP-hard problems efficiently. 

Unfortunately, building a cryptosystem on top on MQ isn’t so straight-
forward. For example, if we were to use MQ for signatures, the private key 
might consist of three systems of equations, L1, N, and L2, which when com-
bined in this order would give another system of equations that we’ll call 
P, the public key. Applying the transformations L1, N, and L2 consecutively 
(that is, transforming a group of values as per the system of equations) is 
then equivalent to applying P by transforming x1, x2, x3, x4 to y1, y2, y3, y4, 
defined as follows:
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In such a cryptosystem, L1, N, and L2 are chosen such that L1 and 
L2 are linear transformations (that is, having equations where terms are 
only added, not multiplied) that are invertible, and where N is a quadratic 
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system of equations that is also invertible. This makes the combination of 
the three a quadratic system that’s also invertible, but whose inverse is hard 
to determine without knowing the inverses of L1, N, and L2.

Computing a signature then consists of computing the inverses of L1, 
N, and L2 applied to some message, M, seen as a sequence of variables, x1, 
x2, . . . . 

S L N L M= ( )( )( )  

    
2

1 1
1

1− − −

Verifying a signature then consists of verifying that P(S) = M. 
Attackers could break such a cryptosystem if they manage to compute 

the inverse of P, or to determine L1, N, and L2 from P. The actual hardness 
of solving such problems depends on the parameters of the scheme, such as 
the number of equations used, the size and type of the numbers, and so on. 
But choosing secure parameters is hard, and more than one multivariate 
scheme considered safe has been broken.

Multivariate cryptography isn’t used in major applications due to con-
cerns about the scheme’s security and because it’s often slow or requires tons 
of memory. A practical benefit of multivariate signature schemes, however, is 
that it produces short signatures.

Hash-Based Cryptography
Unlike the previous schemes, hash-based cryptography is based on the well-
established security of cryptographic hash functions rather than on the 
hardness of mathematical problems. Because quantum computers cannot 
break hash functions, they cannot break anything that relies on the difficulty 
of finding collisions, which is the key idea of hash function–based signature 
schemes. 

Hash-based cryptographic schemes are pretty complex, so we’ll just 
take a look at their simplest building block: the one-time signature, a trick 
discovered around 1979, and known as Winternitz one-time signature (WOTS), 
after its inventor. Here “one-time” means that a private key can be used to 
sign only one message; otherwise, the signature scheme becomes insecure. 
(WOTS can be combined with other methods to sign multiple messages, as 
you’ll see in the subsequent section.)

But first, let’s see how WOTS works. Say you want to sign a message 
viewed as a number between 0 and w – 1, where w is some parameter of the 
scheme. The private key is a random string, K. To sign a message, M, with 
0 ≤ M < w, you compute Hash(Hash(. . .(Hash(K))), where the hash function 
Hash is repeated M times. We denote this value as HashM(K). The public key 
is Hashw(K), or the result of w nested iterations of Hash, starting from K. 

A WOTS signature, S, is verified by checking that Hashw – M(S) is equal 
to the public key Hashw(K). Note that S is K after M applications of Hash, 
so if we do another w – M applications of Hash, we’ll get a value equal to K 
hashed M + (w – M) = w times, which is the public key.
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This scheme looks rather dumb, and it has significant limitations:

Signatures can be forged
From HashM(K), the signature of M, you can compute Hash(HashM(K)) 
= HashM + 1(K), which is a valid signature of the message M + 1. This 
problem can be fixed by signing not only M, but also w – M, using a sec-
ond key.

It only works for short messages
If messages are 8 bits long, there are up to 28 – 1 = 255 possible messages, 
so you’ll have to compute Hash up to 255 times in order to create a sig-
nature. That might work for short messages, but not for longer ones: for 
example, with 128-bit messages, signing the message 2128 – 1 would take 
forever. A workaround is to split longer messages into shorter ones.

It works only once
If a private key is used to sign more than one message, an attacker can 
recover enough information to forge a signature. For example, if w = 8 
and you sign the numbers 1 and 7 using the preceding trick to avoid 
trivial forgeries, the attacker gets Hash1(K) and Hash7(K ′) as a signa-
ture of 1, and Hash7(K) and Hash1(K ′) as a signature of 7. From these 
values, the attacker can compute Hashx(K) and Hashx(K ′) for any x 
in [1;7] and thus forge a signature on behalf of the owner of K and K ′. 
There is no simple way to fix this.

State-of-the-art hash-based schemes rely on more complex versions of 
WOTS, combined with tree data structures and sophisticated techniques 
designed to sign different messages with different keys. Unfortunately, the 
resulting schemes produce large signatures (on the order of dozens of kilo-
bytes, as with SPHINCS, a state-of-the-art scheme at the time of this writing), 
and they sometimes have a limit on the number of messages they can sign.

How Things Can Go Wrong 
Post-quantum cryptography may be fundamentally stronger than RSA 
or elliptic curve cryptography, but it’s not infallible or omnipotent. Our 
understanding of the security of post-quantum schemes and their imple-
mentations is more limited than for not-post-quantum cryptography, which 
brings with it increased risk, as summarized in the following sections.

Unclear Security Level
Post-quantum schemes can appear deceptively strong yet prove insecure 
against both quantum and classical attacks. Lattice-based algorithms, 
such as the ring-LWE family of computational problems (versions of the 
LWE problem that work with polynomials), are sometimes problematic. 
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Ring-LWE is attractive for cryptographers because it can be leveraged to 
build cryptosystems that are in principle as hard to break as it is to solve 
the hardest instances of Ring-LWE problems, which can be NP-hard. But 
when security looks too good to be true, it often is.

One problem with security proofs is that they are often asymptotic, 
meaning that they’re true only for a large number of parameters such 
as the dimension of the underlying lattice. However, in practice, a much 
smaller number of parameters is used. 

Even when a lattice-based scheme looks to be as hard to break as some 
NP-hard problem, its security remains hard to quantify. In the case of lattice-
based algorithms, we rarely have a clear picture of the best attacks against 
them and the cost of such an attack in terms of computation or hardware, 
because of our lack of understanding of these recent constructions. This 
uncertainty makes lattice-based schemes harder to compare against better-
understood constructions such as RSA, and this scares potential users. 
However, researchers have been making progress on this front and hope-
fully in a few years, lattice problems will be as well understood as RSA. (For 
more technical details on the Ring-LWE problem, read Peikert’s excellent 
survey at https://eprint.iacr.org/2016/351/.)

Fast Forward: What Happens if It’s Too Late?
Imagine this CNN headline: April 2, 2048: “ACME, Inc. reveals its secretly 
built quantum computer, launches break-crypto-as-a-service platform.” 
Okay, RSA and elliptic curve crypto are screwed. Now what?

The bottom line is that post-quantum encryption is way more critical 
than post-quantum signatures. Let’s look at the case of signatures first. If 
you were still using RSA-PSS or ECDSA as a signature scheme, you could 
just issue new signatures using a post-quantum signature scheme in order 
to restore your signatures’ trust. You would revoke your older, quantum-
unsafe public keys and compute fresh signatures for every message you had 
signed. After a bit of work, you’d be fine.

You would only need to panic if you were encrypting data using quantum- 
unsafe schemes, such as RSA-OAEP. In this case all transmitted ciphertext 
could be compromised. Obviously, it would be pointless to encrypt that plain-
text again with a post-quantum algorithm since your data’s confidentiality is 
already gone. 

But what about key agreement, with Diffie–Hellman (DH) and its elliptic 
curve counterpart (ECDH)? 

Well, at first glance, the situation looks to be as bad as with encryption: 
attackers who’ve collected public keys ga and gb could use their shiny new 
quantum computer to compute the secret exponent a or b and compute 
the shared secret gab, and then derive from it the keys used to encrypt your 
traffic. But in practice, Diffie–Hellman isn’t always used in such a simplistic 
fashion. The actual session keys used to encrypt your data may be derived 
from both the Diffie–Hellman shared secret and some internal state of your 
system.
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For example, that’s how state-of-the-art mobile messaging systems work, 
thanks to a protocol pioneered with the Signal application. When you send 
a new message to a peer with Signal, a new Diffie–Hellman shared secret 
is computed and combined with some internal secrets that depend on the 
previous messages sent within that session (which can span long periods of 
time). Such advanced use of Diffie–Hellman makes the work of an attacker 
much harder, even one with a quantum computer.

Implementation Issues
In practice, post-quantum schemes will be code, not algorithms; that is, 
software running on some physical processor. And however strong the 
algorithms may be on paper, they won’t be immune to implementation 
errors, software bugs, or side-channel attacks. An algorithm may be com-
pletely post-quantum in theory but may still be broken by a simple classical 
computer program because a programmer forgot to enter a semicolon.

Furthermore, schemes such as code-based and lattice-based algorithms 
rely heavily on mathematical operations, the implementation of which uses a 
variety of tricks to make those operations as fast as possible. But by the same 
token, the complexity of the code in these algorithms makes implementa-
tion more vulnerable to side-channel attacks, such as timing attacks, which 
infer information about secret values based on measurement of execution 
times. In fact, such attacks have already been applied to code-based encryp-
tion (see https://eprint.iacr.org/2010/479/) and to lattice-based signature 
schemes (see https://eprint.iacr.org/2016/300/).

The upshot is that, ironically, post-quantum schemes will be less secure 
in practice at first than non-post-quantum ones, due to vulnerabilities in 
their implementations.

Further Reading
To learn the basics of quantum computation, read the classic Quantum 
Computation and Quantum Information by Nielsen and Chuang (Cambridge, 
2000). Aaronson’s Quantum Computing Since Democritus (Cambridge, 2013), 
a less technical and more entertaining read, covers more than quantum 
computing.

Several software simulators will allow you to experiment with quantum 
computing. The Quantum Computing Playground at http://www.quantum 
playground.net/ is particularly well designed, with a simple programming lan-
guage and intuitive visualizations.

For the latest research in post-quantum cryptography, see https://pqcrypto 
.org/ and the associated conference PQCrypto. 

The coming years promise to be particularly exciting for post-quantum 
crypto thanks to NIST’s Post-Quantum Crypto Project, a community effort 
to develop the future post-quantum standard. Be sure to check the project’s 
website http://csrc.nist.gov/groups/ST/post-quantum-crypto/ for the related algo-
rithms, research papers, and workshops.

http://www.quantumplayground.net/
http://www.quantumplayground.net/
https://pqcrypto.org/
https://pqcrypto.org/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
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