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Preface

The use of wireless real-time communication technologies for the flexible net-
working of sensors, actuators, and controllers is a crucial building block for future
production and control systems. With WirelessHART and ISA 100.11a, two
technologies that have been conceived for industrial use are currently available.
Nevertheless, our research on wireless real-time communication systems has shown
further potential, resulting in more flexible, versatile, and robust solutions that can
be implemented on today’s low-cost and resource-constrained hardware platforms.

This monograph presents fundamentals, results, and trends of communication
protocol research that enable flexible real-time multi-hop networking in production
and control systems, using wireless communication technologies. Core function-
alities such as time synchronization, global medium slotting, automatic topology
detection, medium access schemes, deterministic arbitration, duty cycling, dynamic
quality of service multicast routing with mobility support, network clustering, and
application-specific middleware are identified and described, and suitable protocols
are presented. For real-time support, deterministic protocols, i.e., protocols with
predictable behavior, are required; this concerns, e.g., precise bounds for syn-
chronization accuracy and transfer delays, exclusiveness of medium access,
uniqueness of the winner of network-wide arbitration, and timely and reliable
delivery of packets.

While state-of-the-art and state-of-the-practice in the area are surveyed and
assessed, the focus of this monograph is on protocols that have been developed at
the Chair for Networked Systems of the University of Kaiserslautern. Each protocol
is presented in detail, and it is shown how these protocols are integrated into the
wireless real-time multi-hop communication system ProNet (Production Network)
4.0. Due to its extensive functionality, its real-time support, its application-specific
middleware, and its high degree of flexibility, ProNet 4.0 is particularly suitable for
use in future networked production and control systems. ProNet 4.0 has been
prototypically implemented on the Imote2 hardware platform equipped with the
Chipcon CC2420 radio transceiver and has been installed and operated in the
SmartFactoryKL at the German Research Center for Artificial Intelligence (DFKI) in
Kaiserslautern.
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The book focuses on core functionalities for wireless real-time multi-hop net-
working with time-division multiple access (TDMA) and their integration into a
flexible, versatile, fully operational, and self-contained communication system. The
protocols presented in the book are located on medium access control (MAC) layer
and above and build on the PHYsical (PHY) layer of standard wireless commu-
nication technologies. This is different from existing books on wireless commu-
nication, which mainly treat functionalities located on PHY and MAC layer, and
which do not focus on real-time multi-hop networks and self-contained real-time
protocol stacks.

The book is directed toward graduate students, Ph.D. students, researchers, and
technical professionals in the disciplines of computer science, control engineering,
electrical engineering, mechanical engineering, and production engineering. The
chapters of the book are largely self-contained and can be studied in any order.
However, it is recommended to read the introductory Chap. 1 first, followed
by other chapters of particular interest, preferably in the order of the book.
Chapters 2–10 present results that are put into a larger context. They all start with a
subchapter on foundations, followed by subchapters on results of the author and his
research group, related work, and conclusions. Chapter 11 is on implementation
aspects, Chap. 12 presents case studies, and Chap. 13 summarizes results and gives
an outlook.

Kaiserslautern, Germany Reinhard Gotzhein
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Chapter 1
Introduction

This chapter establishes the context and scope of this book and gives a survey of its
topics. We discuss the notion of real-time system, address control systems as an
important application area, identify technological challenges of using wireless
communication technologies, and briefly survey the state-of-the-practice.

1.1 Context and Scope

“A real-time computer system is a computer system in which the correctness of the
system behavior depends not only on the logical results of the computation, but also
on the physical instant at which these results are produced.… [It] is always part of a
larger system … called real-time system [38].” Typical real-time systems are
control systems [33] regulating the operation of dynamic technical systems, e.g., air
conditioning systems, antilock braking systems, or automated production systems.

A real-time computer system may be distributed, consisting of a set of nodes
connected via a real-time communication system. These systems exhibit specific
requirements regarding performance, reliability, guarantee, and synchronicity.
Performance addresses efficiency aspects concerning resources and timeliness, e.g.,
processing/transmission rates and delays. Reliability refers to the availability of
system operation, for instance, downtimes or packet loss rates. Guarantee defines
the degree of commitment, e.g., best effort (no commitment) or deterministic
guarantee (hard commitment). Synchronicity is another type of requirement,
referring to the coordination accuracy of concurrent activities.

To connect the nodes of a distributed real-time computer system, wired tech-
nologies are in general preferable, as the quality of links is highly predictable. On
the downside is the need for cables, which reduces flexibility in terms of node
placement and topology changes due to node mobility or replacement. Here,
wireless communication technologies can play an important role. To increase
flexibility, wireless networks should be self-organizing, as in mobile ad hoc
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networks. This raises the question whether wireless networks can be used in
real-time systems, with strong requirements on predictability of operation.

This book focuses on wireless communication in distributed real-time computer
systems. More specifically, core functionalities for wireless real-time multi-hop
networking with time-division multiple access (TDMA) and network
self-organization, and their integration into a flexible, versatile, fully operational,
and self-contained communication system are treated. The communication proto-
cols presented in the book are located on Medium Access Control (MAC) layer and
above and built on the PHYsical (PHY) layer of standard wireless communication
technologies (see Fig. 1.1). This is different from the existing books on wireless
communication, which mainly treat functionalities located on PHY and MAC layer,
and which do not focus on real-time multi-hop networks and self-contained
real-time protocol stacks.

1.2 Wireless Networked Control Systems

A specific type of real-time system is the control systems regulating the operation of
dynamic technical systems, with the objective to achieve optimal system behavior.
Modern control systems learn and memorize dynamic behavior and variable targets,
to provide stable and robust operation in the sense that defined margins of operation
are reached and maintained, despite dynamic disturbances. For instance, the sta-
bilization criterion of an air conditioning system is to reach and maintain target
temperature and moisture, in the presence of disturbances caused, for instance, by
persons and/or air exchange with the environment. Here, the quality of control can
be characterized by the ability to compensate for disturbances, stabilization delay—
the duration until a stable system state is (re-)established—oscillation behavior
during stabilization resulting in deviations from stable system states, and pre-
dictability of the stabilization process.

To achieve its objective, a control system is composed of three types of devices.
Sensors sample the state of the technical system, e.g., temperature or velocity.

Application layer
Presentation layer

Session layer
Transport layer
Network layer

Data link layer
LLC sublayer
MAC sublayer

Physical  (PHY) layer

Fig. 1.1 Extended Open
Systems Interconnection
(OSI) reference model [32]
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Actuators apply steering values to stabilize the technical system. Controllers
determine the current state of the technical system by gathering sensor values,
aggregating and processing these values, calculating appropriate steering values,
and applying these values through actuators.

A well-known example of a control system is the inverted pendulum shown in
Fig. 1.2. Here, the technical system consists of a cart that is mounted to a belt. The
belt can be (de-)accelerated by a motor in both directions such that the cart moves
back and forth, with changing velocity. Attached to the cart is a rod (pendulum)
with a weight at the end that can swing around one axis. Control objective is to
stabilize the rod in an upright position, by moving the cart. Disturbances are caused,
for instance, by frictions of the rail, reaction delays of the motor, and pushes to the
rod. The state of this technical system is characterized by position x and velocity
v of the cart, and by the angle u of the rod, and is sampled periodically, e.g., every
36 ms, by sensors. Here, it is essential that sampling of measured values occurs
synchronously. From the history of samplings, a voltage u applied to the motor to
(de-)accelerate the cart is calculated by the controller and applied. Thus, the cart is
moved to swing the rod into an upright position and keep it there. Obviously, the
ability to stabilize the rod depends on various factors, such as precision of mea-
surements, length of the rail, geometry of the pendulum, strength and reaction time
of the motor, sampling period, and sophistication of the control algorithm.

The inverted pendulum is an example of a closed-loop (or feedback) control
system, which acquires dynamic feedback about the system status to determine and
apply proper steering values to achieve defined stabilization objectives. In open-
loop control systems, there is no direct dynamic feedback from the system itself;
control action is independent of the system state, and, for instance, triggered by a
clock or a human operator. An example of this type of control system is the
collection and aggregation of production parameter values, e.g., key performance
indicators (KPIs) such as the ratio of broken and produced pieces. KPIs may then be
monitored, for instance, via an enterprise resource planning (ERP) system, without
immediate feedback to the production line.

x, v 
u 

motor

rail

belt

rod

cart

ϕ 

Fig. 1.2 Inverted pendulum (see [18], Fig. 2)
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In classical control systems, sensors and actuators are connected to controllers
by dedicated wires. This has the advantage that communication among system
components has high reliability, real-time performance, and predictability, which is
a prerequisite for many control theories and in fact greatly simplifies the devel-
opment of control algorithms. On the downside is the need for costly and individual
infrastructure, i.e., dedicated wires. To reduce cost and to increase flexibility, a
long-term trend has been to use communication networks to connect sensors,
actuators, and controllers, leading to so-called networked control systems (NCS)
[34] and wireless NCS (WNCS). Here, both wide area networks (WANs) such as
the Internet and local area networks (LANs) with shared medium access such as
variants of Ethernet or Wi-Fi are possible candidates. However, the advantages of
dedicated wires, namely high reliability, real-time performance, and predictability,
are typically lost when general-purpose technologies are applied. This calls for the
conception of more elaborate control theories, e.g., predictive controllers, con-
straints on the use of communication systems, e.g., traffic control, and customized
communication technologies.

In Fig. 1.3, the inverted pendulum is revisited. Sensor values xk (position of the
cart), vk (velocity of the cart), and uk (angle of the rod), which are sampled peri-
odically and synchronously at points in time tk, are now communicated over a
wireless network to the controller, which calculates steering values uk (voltage to be
applied to the motor) and sends them to the actuator. To determine steering values,
the controller may take the entire history of sensor values at discrete points in time
t1, …, tk into account. Due to the nature of the (wireless) network and the traffic
load, sensor values as well as steering values may be delayed, corrupted, or lost.
Furthermore, synchronicity of samplings may be reduced, as synchronization is to
be achieved by message exchange, too. Obviously, this will have an impact on the
achievable quality of control. To cope with this situation and to achieve stability of
the inverted pendulum, a more advanced control algorithm and a customized
communication system are required. Yet, if delays and/or losses exceed certain
thresholds, stability will suffer or be out of reach.

actuators controlled
system

u

sensors

x, v, ϕ 

controller
uk= U (Xk, Vk, Φk)  where Xk = (x1,…,xk), Vk = (v1,…,vk), Φk = (ϕ1,…,ϕk)

xk, vk, ϕk

uk

wireless network

Fig. 1.3 Wireless networked control system “inverted pendulum”
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1.3 Technological Challenges

Real-time computer systems exhibit specific requirements regarding performance,
reliability, and guarantee. Matching these requirements is a technological challenge.
Execution of real-time computer systems is usually decomposed into tasks, which
are triggered by the occurrence of events (event-triggered) or at determined points
in time (time-triggered). To meet hard deadlines, the worst-case execution times
(WCETs) of tasks must be known, a problem that is aggravated by measures for
efficiency improvements such as memory caches and multi-core architectures.
Furthermore, to guarantee schedulability of tasks, their occurrence in time has to be
sufficiently predictable. In distributed real-time systems such as networked control
systems, this also applies to message exchange, i.e., communication tasks. In
summary, to realize hard real-time requirements, the worst-case timing behavior of
a real-time computer system has to be entirely predictable. This calls for deter-
ministic operating system functionalities, and for deterministic communication
protocols.1

Another technological challenge is the fact that real-time computer systems often
operate under strong resource limitations, e.g., regarding computation, data storage,
signal conversion, communication, and energy. These limitations are the result of
the pressure to reduce size, weight, and cost of hardware and operation.
Furthermore, there is a strong trend toward infrastructureless systems, i.e., systems
with battery-driven nodes and wireless transceivers, which demands, in particular,
energy-efficient hardware and operation.

The trend toward wireless real-time computer systems, where nodes communi-
cate via radio, is a further technological challenge. Connectivity in wireless net-
works depends on channel quality, which can vary due to noise, interference,
terrain, and weather conditions. Furthermore, connectivity can vary due to node
mobility, node density, adaptive and heterogeneous transmission power, reflections,
and the operational mode (e.g., idle, receive, transmit, power down) of nodes.

Operation of distributed real-time computer systems over wireless communica-
tion technologies requires, among other things, predictable communication
behavior regarding packet delay and packet loss. To achieve such behavior, we
adopt three complementary measures. First, we place an assumption on network
connectivity, called “single-network property” (defined in the next paragraph).
Second, we devise and implement deterministic communication protocols that
provide reliable message exchange under this assumption (content of this book).
Third, we assume that the coupled system can cope with situations where network
connectivity is impaired, e.g., by applying predictive algorithms or by moving to a
fail-safe state (not further addressed in this book).

1Though it is feasible in practice to develop such systems, it is often sufficient to relax hard
real-time requirements to stochastic requirements, where real-time constraints are satisfied on
average or with a specified probability.
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We define the single-network property as follows: Let V be a set of nodes, and
let E be a set of directed labeled edges between subsets V � V of pairs of nodes. An
edge (v, v′) is labeled by c, if there is a communication link from v to v′, i.e., if in
the absence of interference by other nodes, v’ can receive messages sent by v reli-
ably2. It is labeled by i, if there is an interference link, i.e., v can distort receptions
of v′, and labeled by s, if there is a sensing link, i.e., v′ can detect transmission
energy of v. We assume that a communication link is also an interference link, and
that an interference link is a sensing link too. The single-network property holds if
and only if there are paths of communication links between all pairs of nodes of V,
and no nodes running a different protocol and using the same radio channel are in
interference or sensing range of any node in V.

Certainly, in wireless networks, the single-network property is a strong
assumption that needs justification. It is obvious that the property is a prerequisite to
achieve predictable communication behavior, as required for distributed real-time
systems. A straightforward solution is the use of licensed radio channels, where
license owners have complete access control (dimension “frequency”). A possible
threat is the additional use of such frequencies by cognitive radio networks with
non-perfect secondary users. Another solution is the operation of distributed
real-time computer systems on protected space—private sites with controlled
access, e.g., production facilities (dimension “space”). Here, a possible threat is the
operation of foreign transceivers in sensing range. The property can also be satisfied
by the use of protected time intervals3 (dimension “time”), with the same threat, i.e.,
foreign transceivers in sensing range. Finally, the three approaches can be com-
bined. If the mentioned possible threats cannot be ruled out, the third assumption
that the distributed real-time system can cope with situations where network con-
nectivity is impaired is needed.

1.4 State-of-the-Practice

For several years, there is an increasing drive to use wireless communication
technologies in networked control systems. With WirelessHART [40] and ISA
100.11a [37], there exist two wireless technologies that have been specifically
devised for control purposes in industrial plants. Both technologies support
time-division multiple access (TDMA) with reservations for exclusive medium

2In graph-based network models, links are assumed to be reliable. Other types of models are
physical models, which are based on propagation properties and stochastic models defining link
reliabilities.
3As supported by network slicing in the context of 5G networks.
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access and multi-hop networks. Therefore, maximal transmission delays, freedom
of frame collision4, and synchronicity can be guaranteed in principle. Nevertheless,
there are several drawbacks as follows:

• Both WirelessHART and ISA 100.11a are based on the 2450 MHz DSSS
physical layer of IEEE 802.15.4, which has a low gross data rate of only
250 Kbps per channel. Although both technologies can use multiple channels,
this strongly limits achievable net data rates.

• For the operation of wireless networks, the knowledge about communication
and interference topologies is crucial to ensure interference-free time slot
reservations. Neither WirelessHART nor ISA 100.11a supports the automatic
detection of these topologies.

• To meet real-time requirements, it is crucial that there are reliable paths of
communication links between all pairs of network nodes, and that there are no
nodes in interference range running a different protocol and using the same radio
channel(s). Neither WirelessHART nor ISA 100.11a checks this single-network
property (see Sect. 1.3). In fact, practical experiments with WirelessHART have
shown a strong increase of frame losses when WLAN nodes are operated
simultaneously [39]. ISA 100.11a devices are basically capable of detecting
medium occupancy, however, at the cost of undefined transmission delays.

• There is currently only a small number of devices compatible with
WirelessHART or ISA 100.11a.

Widely spread, available, and low cost are the digital radio technologies Wi-Fi
[35], Bluetooth [31], and ZigBee [36]. Neither of these technologies has been
developed for distributed real-time systems, therefore, their suitability is strongly
constrained:

• Using shared medium access with contention (e.g., Wi-Fi distributed coordi-
nation function (DCF), Wi-Fi enhanced distributed channel access (EDCA),
ZigBee contention access period (CAP)), upper bounds for transmission delays
cannot be guaranteed. Furthermore, due to non-exclusive medium access,
destructive frame collisions resulting in frame loss can occur.

• Controlled medium access (e.g., Wi-Fi point coordination function (PCF), Wi-Fi
hybrid coordination function (HCF), Bluetooth, and ZigBee contention free
period (CFP)) would in principle be suitable to achieve maximal transmission
delays, however, is constrained to single-hop networks.

In the scientific literature, a variety of measures to improve real-time capabilities
of wireless networks has been proposed, addressing all kinds of communication
functionalities. Due to the large number of publications, it is very difficult to
provide a reasonably concise survey. Therefore, we will provide insights into
functionalities we consider as relevant for wireless real-time communication sys-
tems and will refer to short lists of related work only.

4Transmissions overlapping in time, frequency and space are called collisions.
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1.5 Survey of the Book

The book focuses on core functionalities for wireless real-time multi-hop net-
working with TDMA and their integration into a flexible, versatile, fully opera-
tional, and self-contained communication system called Production Network
(ProNet) 4.0 [1]. The number 4.0 indicates that ProNet has been developed and
deployed in the context of Industry 4.0, a future project paving the way to the
intelligent factory and referred as the Fourth Industrial Revolution. We will now
give a survey of the book, which is structured according to the core functionalities,
based on the architecture of ProNet 4.0 as shown in Fig. 1.4.

Chapter 2. Tick and time Synchronization—ProSync

Tick synchronization establishes network-wide reference points in time. This is
needed, in particular, to structure time by creating global time slots, which can be
reserved exclusively for communication among nodes, thereby avoiding collisions.
Time synchronization, in addition, adjusts local clocks to a common time. This is
needed to timestamp measurements of sensors and to synchronize data sampling. In
this chapter, we present Black Burst Synchronization (BBS) [2–5], a deterministic
protocol with precise upper bounds for clock offset and convergence delay,
implemented in protocol module ProSync.

ProNet 4.0 

Pro-
Sync

Pro-
Res

Pro-
Cont

Pro-
Mod

Pro-
Arb

ProRoute

Pr
oS

lo
t

ProTop

Application – Sensor, Actuator, Controller

Multiplexer

ProMid

Physical Layer – IEEE 802.15.4 PHY

Fig. 1.4 Conceptual architecture of ProNet 4.0 (see [1])
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Chapter 3. Global Time Slotting—ProSlot

Global time slotting is crucial for effectively using the wireless medium by net-
worked production and control systems. Here, physical and virtual time slotting are
distinguished. Physical time slots provide a strictly periodic time structure and are
formed by micro slots and super slots. Micro slots are then combined into virtual
time regions of flexible length, purpose, and placement. In this chapter, we study
and compare the objectives and solutions of global time slotting [19, 20] (see
ProSlot).

Chapter 4. Automatic Topology Detection—ProTop

In wireless networks, information about network topology is of great importance.
Knowledge about the communication and interference topologies enables more
efficient and reliable use of the wireless medium, and some protocols even require
knowledge about nodes in sensing range. Manually measuring and configuring
topology information are very cumbersome. Rather, it is crucial to detect topology
automatically at system startup and to maintain and update the topology status
during operation. In this chapter, we present Automatic Topology Discovery
Protocol (ATDP) [6], which is capable of detecting the aforementioned topology
types in TDMA-based wireless multi-hop networks and has been implemented in
protocol module ProTop.

Chapter 5. Medium Access Schemes—ProRes, ProCont, ProMod

In TDMA-based wireless networks, time slots can be reserved exclusively, or
medium arbitration is used to resolve contention. In the wireless domain, a variety
of contention schemes is known, such as (passive) random backoff or (active) busy
tones. In addition, statistical and strict frame priorities can be enforced. In this
chapter, we study and compare different medium access schemes implemented in
protocol modules ProRes and ProCont. In addition, we present a novel access
scheme for restricted deterministic contention called mode medium access [7–9,
29], implemented in ProMod.

Chapter 6. Deterministic Arbitration—ProArb

An advanced functionality of wireless real-time communication systems is deter-
ministic arbitration. Here, an arbitrary number of nodes contend, for instance, to
determine a unique master node (leader election). Contention can be deterministi-
cally resolved, e.g., by using busy tone or binary-countdown protocols. In this
chapter, we present Arbitrating and Cooperative Transfer Protocol (ACTP) [10,
11], which classifies as a deterministic binary-countdown protocol for wireless
multi-hop networks and has been implemented in protocol module ProArb.

Chapter 7. Duty Cycling

Duty cycling is concerned with the task to switch hardware components (e.g., CPU,
memory, AD converter, transceiver) to active mode when needed, and to sleep or
idle mode when not needed, in order to reduce energy consumption and thereby
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extend node and thus network lifetime. In this chapter, we present a flexible and
energy-efficient duty cycling protocol for wireless networks [13, 14] supporting
weakly periodic activity periods.

Chapter 8. Quality of Service Multicast Routing with Mobility Support—ProRoute

In multi-hop real-time networks, quality of service (QoS) routing support is needed.
In networked control systems, where services of a single sensor may be used by
several controllers, multicast routing can save network resources. Furthermore, in a
production environment, there may also be mobile nodes such as autonomous
robots, which calls for mobility support. In this chapter, we study these aspects
further and present the QoS multicast routing (QMR) protocol [16], a specialized
routing protocol for partially mobile wireless TDMA networks implemented in
ProRoute (see also [12]).

Chapter 9. Network Clustering—ProMid

Clustering is a well-known approach to improve scalability in wireless networks by
reducing the complexity of the topology using overlay structures. Networked
control systems are typically heterogeneous, consisting of nodes with different
capabilities. This calls for specialized clustering algorithms that take constraints
regarding functionality and energy into account. In this chapter, we present
heterogeneous network clustering (HNC) [17], which we have devised for control
applications in networked production and control environments, and implemented
in production middleware (ProMid) (see also [15]).

Chapter 10. Middleware for Networked Production and Control Systems—ProMid

For the application developer, a middleware should provide suitable abstractions,
hiding, e.g., the distributed system nature, and should offer application-specific
views, thereby making the system more intuitive to use. In the context of networked
production and control systems, this means that periodic and event-triggered
real-time services offered by sensor and actuator nodes and used by controllers are
to be provided. Furthermore, the middleware should operate a distributed service
registry, where application services can be dynamically registered and looked up
[18]. In this chapter, we study these functionalities in more detail and present our
production- and control-specific service-oriented middleware called production
middleware (ProMid).

Chapter 11. Implementation Aspects of ProNet 4.0—Multiplexer, BiPS

Distributed real-time systems present a particular challenge, as stringent timing
constraints are to be observed. In particular, this concerns the implementation of
protocols for wireless multi-hop networked production and control systems. In this
chapter, we study these issues further and outline a real-time-capable implemen-
tation framework [19, 20] specifically devised for the protocols presented in pre-
vious chapters called Black burst integrated Protocol Stack (BiPS) incorporating a
component multiplexer. With this framework, time-critical protocols can be isolated
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from less preferential applications running on the same node. Finally, we show the
integration of protocols into ProNet 4.0 using this framework.

Chapter 12. ProNet 4.0 Case Studies

The communication system ProNet 4.0 devised in this book has been prototypically
implemented and deployed in an industrial context. In this chapter, we present three
case studies. The first case study [21] addresses the wireless networking of different
types of control systems, exploiting novel functionalities provided by ProNet 4.0.
The second case study [22, 23] is about the realization of Try-Once-Discard, a
protocol from the control systems domain, in a wireless multi-hop network, using
advanced functionalities of ProNet 4.0. In the third case study [24], ProNet 4.0
forms part of a setting for remote maintenance in a production plant. The case study
ranges from field level to management level, comprises a production facility, a
wireless sensor network, an autonomous robot, a multimedia system, and an
enterprise resource planning (ERP) system, and exploits various communication
functionalities of ProNet 4.0 on all protocol layers. Taken together, the case studies
provide evidence that ProNet 4.0 offers rich functionalities that cover a large variety
of real-time communication requirements.

Chapter 13. Conclusions and Future Research

In this chapter, we summarize the results reported in this book, present conclusions,
and report on our future research in the area of wireless real-time multi-hop com-
munication systems [25–28, 30].
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Chapter 2
Tick and Time Synchronization

Synchronization is a core functionality of distributed real-time computer systems. In
this chapter, we explain foundations of time synchronization and of the weaker
notion of tick synchronization, present our protocol BBS (Black Burst
Synchronization) [2–5], survey and assess related work, and draw conclusions.

2.1 Foundations

In this chapter, we establish the context of tick and time synchronization, explain
concepts and requirements, and address areas of operation.

2.1.1 Context

Time synchronization (also called clock synchronization) is essential for the oper-
ation of distributed real-time computer systems. Nodes use physical clocks, which
may deviate in clock value, speed, and speed change. The objective of time syn-
chronization is to keep the deviation of clock values of all network nodes within
tight bounds, by aligning them from time to time. This is needed, for instance, for
data fusion, where data of multiple sources are timestamped locally and combined
by another node [7], or for sampling data at specified points in time [12].

Tick synchronization (also called heartbeat synchronization) is weaker than time
synchronization, in that no clock values are exchanged. The purpose of tick syn-
chronization is rather to establish network-wide reference points in time. This is
sufficient, e.g., for network-wide medium slotting as basis for exclusive reservation
of time slots [17], and for duty cycling, where nodes change between energy modes
in a synchronized way [29].
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In distributed systems, synchronization requires the signaling of reference points
in time. This can be achieved by messages of an external reference clock (external
synchronization), as provided, for instance, by Global Positioning System
(GPS) [16] or DCF77 [11]. If clocks of nodes forming a networked system are to be
synchronized among themselves, for instance, if external synchronization is not an
option, synchronization can only be achieved by message exchange among these
nodes (internal synchronization). This calls for synchronization protocols defining
synchronization message formats, rules for their exchange, and an algorithm to
determine reference points in time locally and to adjust clocks. A prominent
example is Network Time Protocol (NTP) [22], which has become the de facto
standard for internal synchronization in the Internet and is used, among other
things, for the timely treatment of stock market orders and transaction logging of
distributed databases. Another well-known example is the highly accurate internal
synchronization of the 24 satellites of GPS [16], which is used, e.g., for position
control of vehicles and legal land surveys.

2.1.2 Concepts and Requirements

In the literature (e.g., see [27]), it is common to use the following synchronization
concepts (see Fig. 2.1). Real time denotes the actual time, with values from a
domain Time. Access to real time is by means of devices measuring time, called
clocks, which are modeled as functions cx: Time! Time. We can conceive a perfect
(reference) clock cp that always returns the current value of real time, i.e., for all t 2
Time, cp(t) = t. In practice, there are physical clocks, which measure local time
deviating from the values of a perfect clock. By local time of a node v, we refer to
the value cv(t) reported by the physical clock cv of node v at real time t. Figure 2.1
shows values reported by a perfect clock cp, a clock cv that runs fast, and a clock cv′
that loses time.

Synchronization accuracy of node v at time t is expressed by the time offset
(clock offset) dtimeOffsetðtÞ ¼ cvðtÞ � t, i.e., the difference between local time
reported by clock cv and real time (see Fig. 2.1), or relative to the clock cv0 of some

Fig. 2.1 Synchronization concepts (see [3], Fig. 1)
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node v′, i.e., cvðtÞ � cv0 ðtÞ. The clock rate of cv at time t is the speed c0vðtÞ (first
derivative) at which it progresses; for a perfect clock cp, we have c0pðtÞ ¼ 1, for all
t 2 Time. Clock skew denotes the difference between the rate of a clock cv and the
perfect clock at time t, i.e., c0vðtÞ � 1, or c0vðtÞ � c0v0 ðtÞ relative to cv′. Finally, clock
drift is the rate change c00v ðtÞ (second derivative) of clock cv at time t, or c00v ðtÞ �
c00v0 ðtÞ relative to some clock cv0 ; for a perfect clock cp, c00pðtÞ ¼ 0 for all t 2 Time.

In addition to the terminology so far, we introduce concepts for tick synchro-
nization. A real tick is a reference point in time, conceptually identified by its
location t0 in real time (see Fig. 2.1). A local tick is the point in time t0,v associated
with a corresponding real tick t0 by some node v. Since the only way to measure
time is by physical clocks, node v may record t0,v as local time cv(t0,v), which is
sufficient to refer to a global reference point in time locally. The tick offset of real
tick t0 for node v is then defined as dtickOffsetðt0Þ ¼ t0;v � t0, or as t0;v � t0;v0 relative
to some node v′.

We can now define general requirements on synchronization protocols. For tick
synchronization, the central requirement is on accuracy of the time basis, expressed
by a tick offset dtickOffset(t) that is small and/or bounded for all t 2 Time during
system operation, after an initial stabilization. It depends on the area of application
what small means, and what upper bounds may be required. Analogous constraints
on time offset dtimeOffset(t) determine the required accuracy of time synchronization.

Another important requirement is on the duration until (re-) synchronization is
achieved, expressed by a convergence delay dconv that is small and/or bounded. As
in case of tick and time offset, actual values for dconv are application-specific.
Furthermore, there may be constraints regarding the complexity of the synchro-
nization protocol regarding computation, communication, storage, energy, and
structure.1 Finally, high robustness against topology changes due to node move-
ments, node failures, and channel quality variations is desirable.

2.1.3 Areas of Operation

Tick and time synchronization are core functionalities of distributed real-time
computer systems, enabling functionalities both on user level and on system level.
User level functionalities requiring tick and/or time synchronization can be found,
for instance, in control systems, where sensor sample system states and forward
them to control nodes, which aggregate these data (data fusion) to determine
steering values communicated to actuators. Typically, it is crucial that value sam-
pling occurs at synchronized points in time, that steering values are applied in a
coordinated fashion, and that values can be time stamped using a global time basis.

1Some protocols require, e.g., a tree or ring structure to be established before synchronization can
start. This makes them highly vulnerable to topology changes.
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In [7], the authors sketch a variety of user level functionalities in the areas of
environment, home, and health that are based on tick and/or time synchronization.
An example is forest fire monitoring, where sensors record, timestamp, and com-
municate temperature readings. These values are collected in sink nodes, combined,
and evaluated to estimate locations, directions, and velocities of the fire. Regarding
synchronization requirements, a reasonably small average time offset and conver-
gence delay in the order of seconds would be sufficient. Furthermore, the protocol
for time synchronization should be of low complexity, as energy may be scarce, and
should exhibit some robustness, as some nodes may be destroyed by heat.

A crucial system level functionality of distributed real-time computer systems is
global time slotting, which is needed for both computation and communication.
Here, time is subdivided into intervals called time slots, which can then be assigned
to tasks such that deadlines are met. Thus, global time slotting is a key to achieve
predictable timing behavior.

In communication systems, time slots can be reserved exclusively for message
transfers along a route in a way that maximal packet delays composed of waiting
and transfer delays are assured. In communication technologies with shared med-
ium access, this has the additional advantage that frame collisions2 are avoided,
enabling reliable message exchange. TDMA (time-division multiple access) is a
well-known medium access method applying this scheme.

TDMA places high demands on synchronization accuracy and convergence
delay. Consider the example in Fig. 2.2, where nodes v, v′, and v″ are in mutual
range. The figure also shows a sequence of time slots, with adjacent slots i and i + 1
assigned to nodes v and v′ for transmission, respectively, and node v″ being the
receiver. We assume that nodes are tick-synchronized, and that there is a tick offset
dtickOffset > 0 µs. If nodes v and v′ fully exploit their assigned slots for transmission,
we have the situation that frames will collide for the period dtickOffset. This can only
be avoided by either node v stopping earlier or node v′ starting later. The problem
here is that network nodes do not know the exact current tick offset. To avoid
collisions, it is therefore required that an upper bound dmaxTickOffset that is known to
all nodes can be determined and enforced,3 and that nodes delay slot usage by this
value4 (see Fig. 2.2). This, however, may result in waste of bandwidth, as band-
width that would be available due to a lower current tick offset
dtickOffset < dmaxTickOffset is not used. Therefore, it is essential that dmaxTickOffset is
both very small (e.g., in the order of microseconds) and bounded. In addition,
convergence delay is required to be small (e.g., in the order of milliseconds) and
bounded, and the synchronization protocol should be of low complexity and be
robust against topology changes.

2Transmissions overlapping in time, frequency, and space are called collisions.
3The use of an average tick offset davgTickOffset, which would be smaller than dmaxTickOffset, is not
sufficient, as it would not rule out collisions.
4If it is required that all nodes associate a received frame with the same slot, it is even necessary
that sending ceases dmaxTickOffset before the slot ends.
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If nodes of a real-time system are battery-powered, energy is usually a scarce
resource. To save energy, nodes can change between energy modes, following a
joint time pattern, thereby extending network lifetime. Switching of hardware
components (e.g., CPU, memory, and transceiver) to active mode when needed, and
to sleep mode when not needed is called duty cycling. Here, it is essential that mode
switching happens coordinated, which calls for accurate tick synchronization. To
synchronize wake-up times, small and bounded tick offset, and convergence delay
(e.g., in the order of milliseconds), low complexity and high robustness are
required.

2.2 Black Burst Synchronization (BBS)

In this chapter, we present BBS (Black Burst Synchronization) [2–5], a determin-
istic protocol for internal tick and time synchronization in ad hoc networks with
precise upper bounds for offsets and convergence delay. The protocol ProSync of
the ProNet 4.0 protocol stack [1] is an implementation of BBS.

2.2.1 Overview of BBS

BBS (Black Burst Synchronization) [2–5] is a modular protocol for network-wide
internal tick and time synchronization in wireless multi-hop ad hoc networks,
located at Medium Access Control (MAC) layer (see Fig. 1.1). It classifies as a
deterministic protocol, with upper bounds for tick and time offset, and for con-
vergence delay, if the single-network property (see Sect. 1.3) holds. BBS defines
the format of synchronization messages, rules for their exchange, and an algorithm
to determine reference points in time locally and to adjust clocks. Messages are
encoded with black bursts to render collisions non-destructive.

Fig. 2.2 Network-wide medium slotting: influence of tick offset
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For tick synchronization, BBS offers master-based and decentralized versions,
referred to as BBSm and BBSd, respectively. In comparison, BBSm yields better
upper bounds for tick offset, while BBSd operates without master node. Both
versions can be combined into a hybrid version BBSh, where BBSd takes over in
case of master node failure until a new master has been found. Time synchro-
nization is provided by BBSt on top of tick synchronization.

BBS provides low and bounded tick and time offsets, e.g., 48 µs in a 10-hop
MICAz network [21]. In addition, it has very small and constant convergence delay,
e.g., 14.1 ms in the aforementioned network. Complexity of BBS in terms of
computation, storage, and energy is low and bounded, and independent of network
size. Regarding time, it is linear with the maximum network diameter in sensing
hops. No overlay network structure is required to run BBS. The protocol is robust
against topology changes caused, e.g., by node movements or node failures.

2.2.2 Encoding of Bit Sequences with Black Bursts

In wireless networks, frame collisions occur if several transmissions overlap in
time, frequency, and space. As these frame collisions are usually destructive, MAC
protocols adopt several measures to reduce the probability of their occurrence.
Carrier Sense Multiple Access (CSMA) is one such measure, where nodes listen
whether the medium is idle before starting transmission. Another measure is ran-
dom backoff, i.e., nodes wait for a random time span before accessing a medium
after it has become idle. For unicast transfers, RTS/CTS schemes are applied—a
short Request-To-Send (RTS) frame is sent to a single-hop destination, which
replies by a short Clear-To-Send (CTS) frame. This way, the hidden station
problem is reduced to some degree. Nevertheless, even the combination of all
measures cannot rule out destructive collisions.

To render frame collisions non-destructive, BBS uses the concept of black bursts
[26] to encode bit sequences. A black burst is a period of transmission energy of
defined length. Transmission of a black burst starts at a locally determined point in
time, without prior medium arbitration. If two or more nodes transmit a black burst
at almost the same time resulting in a collision, a node within sensing range of a
subset of these nodes can still detect the period of energy on the medium, i.e.,
starting and ending time. Since this is the only information carried by a black burst,
the collision is non-destructive.

Bit sequences can now be encoded with black bursts as follows: A logical 1 is
encoded by transmitting a black burst of defined length dBB > 0 µs; a logical 0 is
encoded by not transmitting a black burst, i.e., dBB = 0 µs. If several nodes in
sensing range transmit a bit, a logical 1 will dominate a logical 0, which therefore is
called recessive bit, while 1 is dominant. This feature can be used to encode a
bitwise logical OR by sending bit sequences in an aligned way.

Figure 2.3 shows a scenario where nodes v and v′ transmit bit sequences 101 and
100 of length 3 almost simultaneously, while a third node v″ in range of both v and
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v′ listens on the medium. Here, a bit time dbit, i.e., the interval required to transmit a
bit encoded as black burst, is composed of an interval drxtx to switch the transceiver
from receive (rx) mode to transmit (tx) mode, the transmission interval of length
dBB > 0 µs (in case of a logical 1), and an interval dtxrx to switch the transceiver
back to rx mode.

To transmit the bit sequences 101 and 100 (almost) simultaneously, 3 bit times
are required. During the first bit time, nodes v and v′ both send a logical 1 encoded
as a dominant transmission. As there is a (small) tick offset, transmissions are not
perfectly synchronized. Thus, the receiving node v″ detects a period of energy that
is longer than dBB and interprets this as the reception of a logical 1. During the
second bit time, nodes v and v′ both send a logical 0, encoded as “no transmission,”
which node v″ detects as idle medium and interprets as logical 0. During the third
bit time, node v sends a logical 1, while v′ sends a logical 0. Since 1 dominates 0,
node v″ detects energy of length dBB on the medium5 and decides for a logical 1.
Taken together, node v″ has correctly received the bit sequence 101 of node v,
despite collision during the first bit time.

If transmissions of bit sequences overlap, it is essential that they are correctly
timed (see [4]). Therefore, we require that they are sent almost simultaneously, with
a displacement that is bounded in time, e.g., by the maximum tick offset
dmaxTickOffset. Timing constraints on dbit and dBB have to ensure that overlapping
black bursts can be recognized by receiving nodes, and that black burst receptions
are finished within the current bit time of each receiving node.

Black burst encoding of bit sequences in the described way has a number of
interesting implications that we exploit for BBS and another protocol called ACTP
(Arbitration and Cooperative Transfer Protocol, see Chap. 6). One such implication
is that a node “transmitting” a logical 0 is not transmitting physically, but can stay

Fig. 2.3 Transmission of bit sequences encoded with black bursts (see [3], Fig. 2)

5In an implementation, v″ may detect a shorter period of energy, which is due to the operation of
the clear channel assessment (CCA) mechanism used for this purpose. Therefore, the duration dBB
has to be configured suitably.
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in receive mode.6 This way, it can witness a logical 1 sent by some other node in
sensing range. Another implication is that if several bit sequences are transmitted
almost simultaneously, receivers in sensing range will record their logical OR. This
also means that if all transmitters send the same bit sequence, it will not be modified
during transmission. Finally, using the laws of propositional logic, we can show
how a logical OR can be used to achieve a logical AND of bit sequences.

The concept of black burst can be implemented in different ways, depending on
the functionality of the transceiver. A straightforward solution is on–off keying
(OOK), where a carrier is created for a specified duration. Another solution is the
transmission of a MAC frame of defined length, with irrelevant contents, which
implicitly creates a carrier. In both cases, transmission starts at predefined points in
time, without prior clear channel assessment (CCA). To detect black bursts on the
medium, the CCA mechanism can be used.

2.2.3 Master-Based BBS (BBSm)

We now present Master-Based BBS (BBSm for short), starting with a digest fol-
lowed by a scenario, to foster an intuitive understanding. Then, we provide tech-
nical details, by semi-formalizing the algorithm of BBSm, and by analyzing
accuracy, performance, and complexity of the protocol.

2.2.3.1 Digest of BBSm

Master-based BBS (BBSm) is a self-contained protocol for tick synchronization in
multi-hop wireless ad hoc networks. It assumes that a node acting as master has
been determined.7 For this outline, we further assume that the network is stable, i.e.,
all network nodes are operational and tick synchronized with a maximum tick
offset.

To keep tick offset below an upper bound, the master node vm periodically
triggers resynchronization. A resynchronization phase consists of a constant num-
ber of rounds defined by the maximum network diameter in sensing hops.

At each local tick, i.e., at each reference point in time, vm sends a master-tick
frame (see Fig. 2.4). This frame is received by all nodes in sensing range of vm,
which associate local ticks with the start of reception. This completes synchro-
nization round 1. At this point, node vm and all nodes in sensing range of vm are
resynchronized.

6Different from wired communication, a node cannot listen while it is transmitting when using
wireless communication with a single antenna.
7For the operation of BBSm, any node can have the master role. If a master node fails, another node
can take over.
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Nodes receiving the master-tick frame in synchronization round 1 send a
master-tick frame at the beginning of round 2, where rounds have a constant
duration. Because sending nodes are already resynchronized, they send this frame
almost simultaneously. Therefore, and because master-tick frames are encoded with
black bursts, potential collisions are non-destructive.

Further synchronization rounds are needed until all nodes have received a
master-tick frame. The number of rounds is given by the maximum network
diameter in sensing hops, which is a configuration parameter. Local ticks are
determined by backward calculation with high accuracy.

2.2.3.2 Scenario of BBSm

We now present a complete scenario of BBSm, for the same sensing topology as in
Fig. 2.4, making the algorithm more precise. By convention, constants and vari-
ables denoting numbers, durations, and times have names n, d, and t, followed by a
subscript, respectively. Let V be the set of network nodes, with vm 2 V being the
master node. Each node vi 2 V records the current local tick in a variable tlt,i. The
constant nmaxHops is the maximum network diameter in sensing hops, a configu-
ration parameter that must be chosen “suitably”: if chosen too small, resynchro-
nization leaves out nodes with a sensing distance greater than nmaxHops to the master
node; if chosen too large, there is additional synchronization overhead. The
parameter dround_m is the constant duration of a synchronization round, with a
concrete value determined offline from the time needed to send, receive, and pro-
cess a master-tick frame. Furthermore, dresInt and dmaxTickOffset_m denote the duration
of the resynchronization interval and the maximum tick offset, respectively.

BBSm performs tick (re-)synchronization in nmaxHops rounds, by broadcasting
master-tick frames across the network. Round 1 is triggered by the master node vm,
which sends a master-tick frame carrying round number 1 as data at tlt,m, i.e., at its
next local tick, computed from the previous local tick by adding dresInt, the duration
of the resynchronization interval (see Fig. 2.5). Being encoded by a sequence of
black bursts, the master-tick frame is sent without prior medium arbitration. For
timely transmission, vm starts switching to tx mode at tlt,m – drxtx.

vm 

master node
non-master node
node waiting to be resynchronized
node sending a master-tick frame
node receiving a master-tick frame

Fig. 2.4 BBSm—synchronization round 1
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All nodes vi 2 Vnfvmg start listening for a master-tick frame already at
tlt;i þ dresInt � dmaxTickOffset m (see Fig. 2.5 for node vj), because this is the earliest
start of reception in case of maximal clock skew between vm and vi. Here, it is
important to ensure that tick offset has a determinable upper bound; otherwise, a
master-tick frame could be missed. Nodes vj in sensing range of vm perceive the
start of tick frame reception at local time trxTick,j (see Fig. 2.5). This time value is
recorded as new local tick and assigned to tlt,j after reception of the master-tick
frame is completed, which finishes synchronization round 1. At this point, vm and
all nodes vj in sensing range of vm are resynchronized.

Rounds 2 to nmaxHops are triggered by nodes vk 2 V that have received a
master-tick frame in the previous round nround, 1 � nround � nmaxHops –1, for the
first time during the current resynchronization phase, i.e., by the nodes that have
just been resynchronized. These nodes send a master-tick frame carrying nround +1
as data at trxTick;k þ dround m, i.e., with a constant delay after their first local tick
reception. Obviously, master-tick frames of the same round may collide. However,
sending them with a constant delay w.r.t. trxTick,k implies that they are sent almost
simultaneously by all nodes in mutual sensing range. Since master-tick frames of
the same round carry the same round number, and because they are encoded by
black bursts, collisions are non-destructive.

Nodes vk 2 V receiving a master-tick frame in round nround for the first time
record the start of tick frame reception trxTick,k. By backward calculation, they
determine their updated local tick as tlt;k :¼ trxTick;k � ðnround � 1Þ � dround m (see
Fig. 2.6). The term ðnround � 1Þ � dround m expresses the ideal delay since tlt,m,
requiring perfect detection and forwarding of master-tick frames. In this case,
backward calculation would yield tlt,k = tlt,m. However, due to variable delays dCCA
to recognize the start of tick frame reception, variable propagation delays dprop, and
clock skews, this ideal delay increases with each round, resulting in tick offsets
dtickOffset_m,k > 0 µs (see Fig. 2.6).

Figure 2.7 illustrates the progress of resynchronization, with nmaxHops set to 7. In
round 1, nodes vi 2 V in sensing range of the master node vm are resynchronized.
These nodes then become sending nodes in round 2, propagating resynchronization
one sensing hop further. In this round, two nodes perceive collisions of master-tick
frames; however, as already explained, these collisions are non-destructive. In

Fig. 2.5 BBSm—timing in synchronization round 1 (see [3], Fig. 4)
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effect, the efficiency of BBS largely depends on the possibility to send synchro-
nization frames almost simultaneously. In rounds 3 and 4, resynchronization is
propagated to all remaining nodes. If sensing topology and placement of the master
node were known to all nodes, resynchronization could stop after round 4. Since
this is not realistic, the worst case—master node placed at the network border,
network diameter equals nmaxHops—is to be considered, which means that the
remaining rounds 5–7 have to be executed, too. Thus, in round 5, we have one node

Fig. 2.6 BBSm—timing in synchronization round nround (see [3], Fig. 5)

vm 

vm 

Round 1

vm 

Round 2

vm 

Round 3 Round 4

vm 

Round 5 master node
non-master node
node waiting to be resynchronized
node sending a master-tick frame
node receiving a master-tick frame
node receiving colliding master-tick frames
node that has finished resynchronization

Fig. 2.7 BBSm—synchronization rounds 1–5, with nmaxHops = 7
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acting as sender, and no sending nodes in rounds 6 and 7. Resynchronization
always terminates after nmaxHops rounds, yielding a constant convergence delay of
nmaxHops � dround m, slightly increased by dmaxTickOffset_m.

2.2.3.3 Algorithm of BBSm

With the intuitive understanding, we can now state the algorithm of BBSm more
precisely. We assume a stabilized network, i.e., all nodes are already synchronized,
and leave out details about encoding and transmission of master-tick frames.

Listing 2.1 shows configuration parameters and variables of nodes. Parameters
nmaxHops, dresInt, dround_m, and dmaxTickOffset_m (lines 1–4) as well as variables nround
and tlt (lines 6, 8) are already known from the scenario above. Parameter dmtf (line
5) denotes the fixed time required to send a master-tick frame. Variable tclock (line
7) records clock readings; bresync is a flag indicating whether the current resyn-
chronization has been completed. The local clock is denoted as clocal (line 10), and
two timers are declared (lines 11, 12). Finally, all parameters are initialized with
configuration-specific settings (lines 13, 14).

Listing 2.2 shows the code of the master node. When-clauses (lines 2, 7) define
triggers of interrupt routines, i.e., events: When an event occurs, the associated code
is executed. In line 2, this a timer event; in line 7, the interrupt is triggered by the
network adapter when a master-tick frame is received. The timer timertxMasterTick

triggers the next resynchronization phase; it is set during network stabilization (line
1) and after expiry (line 4). At the beginning of a resynchronization phase, the
master node reads the current local time to update its local tick tlt (line 3). It then

(1) const nmaxHops: Integer; /* maximum network diameter in sensing hops
(2) dresInt: Duration; /* duration of a resynchronization interval
(3) dround m: Duration; /* duration of a synchronization round
(4) dmaxTickOffset m: Duration; /* maximum tick offset
(5) dmtf: Duration; /* sending duration of a master-tick frame

(6) var nround: Integer; /* current synchronization round number
(7) tclock: Time; /* last clock reading
(8) tlt: Time; /* local time of last local tick
(9) bresync: Boolean; /* flag: set after first tick frame reception

(10) clock clocal; /* local clock

(11) timer timertxMasterTick; /* tx of next master-tick frame
(12) timersyncPhase; /* start of next listening period

(13) initialize nmaxHops, dresInt, dround m,
(14) dmaxTickOffset m, dmtf; /* static network parameters

Listing 2.1 BBSm—configuration parameters and variables (see [3], Table 2)
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broadcasts a master-tick frame, carrying round number 1 (line 5). Master-tick
frames received subsequently are discarded (line 8), as the master node is already
resynchronized.

Listing 2.3 shows the code of non-master nodes. The timer timersyncPhase triggers
the listening period of the next resynchronization phase; it is set during network
stabilization (line 1) and after resynchronization (lines 9, 10). When timersyncPhase
expires, the flag bresync is reset to express that resynchronization is still to be
established (lines 2, 3). Further interrupts are triggered upon reception of a
master-tick frame (line 4). If bresync is false (line 5), the received frame is processed,
otherwise, it is discarded. To establish resynchronization, the local start time of
master-tick frame reception and the current round number are recorded (lines 6, 7).
Then, the local tick is updated (line 8), and the timer timersyncPhase is set (lines 9,
10). If the maximum network diameter has not yet been reached (line 11), a
master-tick frame transmission is scheduled at the beginning of the next round (line
12) and executed when the corresponding timer expires (lines 16, 17). Finally, the
flag bresync is set to indicate that resynchronization has been completed (line 13).

2.2.3.4 Format of Master-Tick Frames

Master-tick frames start with a dominant bit Master Present (MP), indicating the
presence of a master and providing a start of frame indication. This is followed by
the current round number nround, encoded as nround –1 by a sequence of m bits (see
Fig. 2.8). Here, the value of m depends on the value of nmaxHops, the maximum
round number, and is calculated as follows:

m ¼ max d1; log2nmaxHopse
� � ðiÞ

To protect master-tick frames against corruption, a checksum could be added.
We will address redundancy in Sect. 2.2.8.

(1) set timertxMasterTick; /* start of next resynchronization phase

(2) when timertxMasterTick then{ /* master-tick frame transmission triggered
(3) tclock := tlt := clocal; /* record current local time
(4) set timertxMasterTick := tclock + dresInt; /* start of next resynchronization phase
(5) broadcast masterTickFrame(1); /* send master-tick frame
(6) }

(7) when receive masterTickFrame(n) /* ignore received master-tick frames
(8) then { }

Listing 2.2 BBSm—behavior of the master node (see [3], Table 3)
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2.2.3.5 Abstract Analysis of BBSm

Accuracy, performance, and complexity of BBSm during normal operation, i.e.,
assuming a stabilized network, can be analyzed based on configuration parameters,
data structure, and algorithms as shown in Listings 2.1, 2.2, and 2.3. For a given
hardware platform, concrete values can be determined (see Sect. 2.2.9).

Synchronization accuracy is a key performance indicator of synchronization
protocols. As pointed out in [13] and [15], there are various sources reducing the
accuracy of synchronization via message exchange, for instance, message creation
delay, medium access delay, send and receive delay, and propagation delay. Delays
consist of a fixed minimum delay and a variable portion, which is zero in case of
constant delays. If the minimum delay can be determined, it can be taken into
account and does not affect synchronization accuracy. However, variable portions
contribute to inaccuracy.

To avoid message creation delays, master-tick frames are created in a timely
manner. Because they are sent at predefined points in time without prior medium
arbitration, medium access delay only consists of the duration to switch the

(1) set timersyncPhase; /* start of next resynchronization phase

(2) when timersyncPhase then /* timer expiry
(3) bresync := false; /* reset flag: not resynchronized

(4) when receive masterTickFrame(n) then { /* master-tick frame received
(5) if (!bresync) then { /* not resynchronized?
(6) tclock := clocal – dmtf; /* record local time of start of tick frame
(7) nround := n; /* record current round number
(8) tlt := tclock – (nround – 1) · dround m; /* compute local tick
(9) set timersyncPhase := /* start of next resynchronization phase
(10) tlt + dresInt − dmaxTickOffset m;
(11) if (nround < nmaxHops) then /* more rounds?
(12) set timertxMasterTick := tclock + dround m; /* next master-tick frame transmission
(13) bresync := true; /* resynchronization completed
(14) }
(15) }

(16) when timertxMasterTick then /* master-tick frame transmission triggered
(17) broadcast masterTickFrame(nround + 1); /* send master-tick frame

Listing 2.3 BBSm—behavior of non-master nodes (see [3], Table 4)

Fig. 2.8 Format of master-tick frames (see [3], Fig. 6)

28 2 Tick and Time Synchronization



transceiver from rx mode to tx mode, which is constant and therefore does not
reduce synchronization accuracy. Send and receive delays are also constant, due to
the fixed length of master-frames and constant bit times.

Nodes running BBSm synchronize to the start of a master-tick frame, which is
encoded by a sequence of black bursts. Here, the delays to detect the start of black
bursts, i.e., energy on the medium, are variable and therefore contribute to syn-
chronization inaccuracy. To detect energy, BBS uses the CCA (clear channel
assessment) mechanism, which samples and integrates energy over a moving time
window of fixed length. As soon as the amount of energy exceeds a given threshold,
the medium is considered busy; otherwise, it is idle. Depending on received signal
strength, a busy medium is detected earlier or later during the time window, leading
to a variable CCA delay dCCA in the order of microseconds. However, CCA delay
dmaxCCA is bounded by the size of the time window, which is crucial for deriving
worst-case upper bounds for tick offset.

Further factors contributing to synchronization inaccuracy are propagation delay
and clock skew. In wireless ad hoc networks, the maximum sensing range depends
on the communication technology, ranging, e.g., from 10 m to 1000 m. Given the
speed of signals, this yields propagation delays dmaxProp in the order of nanoseconds
up to microseconds. We neglect the impact of clock skews, assuming that con-
vergence delays are in the order of milliseconds.

The factors contributing to synchronization inaccuracy of BBSm, i.e., dmaxCCA

and dmaxProp, occur in every synchronization round. Therefore, the maximum base
tick offset of BBSm, dmaxBaseTickOffset_m, that is, the offset after a resynchronization
phase has terminated, is given by Eq. (2.1). Until the start of the next resynchro-
nization phase, this offset deteriorates due to relative clock skews. Assuming a
maximum clock skew rmaxClockSkew, the upper bound for this decrease is expressed
as rmaxClockSkew � dresInt for each pair of nodes, multiplied by 2 for all pairs of nodes,
yielding the maximum tick offset dmaxTickOffset_m of Eq. (2.2). Equation (2.2)
indicates that maximum tick offsets can be reduced by shortening the resynchro-
nization interval dresInt, however, at the cost of more overhead.

Statistical synchronization protocols determine average accuracies davgTickOffset,
e.g., during execution or by conducting real experiments, which typically are far
below maximum offsets; here, maximum offsets could be measured, too, but dif-
ferent from BBSm, they provide no evidence for worst-case offsets. In case of
BBSm, it is feasible to derive a worst-case maximum offset dmaxTickOffset_m offline,
without measurements at runtime.

Accuracy and performance

Synchronization accuracy

dmaxBaseTickOffset m ¼ nmaxHops � ðdmaxCCA þ dmaxPropÞ ð2:1Þ

dmaxTickOffset m ¼ dmaxBaseTickOffset m þ 2 � rmaxClockSkew � dresInt ð2:2Þ
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Convergence delay

dconv m ¼ nmaxHops � dround m þ dmaxTickOffset m ð2:3Þ

dround m ¼ ð1þmÞ � dbit m þ dproc ð2:4Þ

Relative overhead

osync m ¼ dconv m

dresInt
ð2:5Þ

Another key performance indicator of synchronization protocols is convergence
delay, i.e., the duration until resynchronization is achieved. To exploit an upper
bound for tick offset, convergence delay must be bounded, too; otherwise, there
would be uncertainty about the synchronization status of other nodes. Convergence
delay dconv_m of BBSm is bounded by the time needed to execute one resynchro-
nization phase consisting of nmaxHops rounds, as shown in Eq. (2.3). Here, round
duration dround_m is constant, consisting of the time to transmit a master-tick frame
of 1 + m bit length and a processing delay dproc (see Eq. (2.4)). Both dbit_m and
dproc have fixed durations, which is crucial to achieve an upper bound for dconv_m.
For a given hardware platform, the duration dproc can be calculated based on the
execution of the algorithms in Listings 2.2 and 2.3. We will address the calculation
of dbit_m in Sect. 2.2.9.

Given the fixed convergence delay dconv_m and the duration of a resynchro-
nization interval dresInt, relative overhead of BBSm is given by Eq. (2.5).

Complexity

Communication ccomm m ¼ Oð Vj jÞ
Time ctime m ¼ OðnmaxHopsÞ
Space cspace m ¼ Oð1Þ
Structure selection of some master node vm

Apart from performance, the complexity of BBSm is of interest. From the
algorithms in Listings 2.2 and 2.3, it is straightforward to argue that communication
complexity ccomm_m is in the order of the number of network nodes, as during each
resynchronization phase, each node sends exactly one master-tick frame. Given the
previous analysis, it follows that time complexity ctime_m is in the order of nmaxHops,
the maximum network diameter in sensing hops, because rounds have fixed
durations. From Listing 2.1, it follows that space complexity cspace_m is constant
and, in particular, independent of number of nodes and network diameter. Finally,
apart from the selection of a master node vm, there is no structural complexity.
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2.2.4 Decentralized BBS (BBSd)

Decentralized BBS (BBSd) operates without master node. We present BBSd in
several steps, starting with a digest followed by timing aspects and an analysis of its
accuracy, performance, and complexity.

2.2.4.1 Digest of BBSd

Decentralized BBS (BBSd) is a self-contained protocol for tick synchronization in
multi-hop wireless ad hoc networks. Unlike BBSm, it operates without master node.
For this outline, we assume that the network is stable, i.e., all network nodes are
operational and tick-synchronized with a maximum tick offset.

The basic idea of BBSd is to resynchronize all nodes to the local tick of the node
with the fastest clock. Resynchronization is performed periodically and started at
the next local tick, i.e., a fixed duration after the current local tick.
A resynchronization phase consists of a constant number of rounds defined by the
maximum network diameter in sensing hops.

At their next local tick, all nodes send a decentralized tick frame (see Fig. 2.9).
However, before doing so, they listen on the medium for a duration that is equal to
the maximum tick offset. If a node detects a tick frame of another node, it corrects
its local tick to the start of tick frame reception. This completes synchronization
round 1.

To propagate the earliest local tick across the network, further synchronization
rounds are needed. The number of rounds is determined by the maximum network
diameter in sensing hops. The behavior in subsequent rounds is almost the same as
in round 1. Local ticks are updated by backward calculation with high accuracy.

Operating BBSd produces frame collisions, which are non-destructive due to the
encoding of decentralized tick frames with black bursts. Frame collisions may be
observed by nodes with too slow clocks, i.e., nodes detecting tick frames of other nodes.

2.2.4.2 Timing Aspects of BBSd

In this chapter, we provide some insights into the timing of BBSd, thereby elabo-
rating on the operation of the protocol. In synchronization round 1, nodes vi 2
V start listening on the medium at t0lt;i � dmaxTickOffset d , where t0lt;i ¼ tlt;i þ dresInt is
the next local tick. If the medium remains idle until t0lt;i � drxtx, nodes switch to
transmit mode in order to start transmission of a decentralized tick frame at t0lt;i. If
the medium becomes busy, a node in sensing range has started sending its
decentralized tick frame, and vi records the start of tick frame reception trxTick,i as its
preliminary local tick t*lt,i, which replaces t0lt;i in subsequent rounds.

The timing of BBSd in synchronization round 1 is illustrated in Fig. 2.10. At
t0lt;r � dmaxTickOffset d , node vr starts listening on the medium, which remains idle.
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Therefore, vr starts switching to transmit mode at t0lt;r � drxtx, for switching duration
drxtx, and starts sending a tick frame at t0lt;r. Nodes vk and vk′ in sensing range of vr
start listening with some tick offset, as their clocks are slower than the clock of vr.
As the medium remains idle, node vk starts switching to tx mode at t0lt;k � drxtx, and
starts sending its tick frame at t0lt;k . During mode switching and transmission, nodes
cannot listen on the medium. Because the actual tick offset between vr and vk is
smaller than drxtx, node vk has already started mode switching and therefore cannot
detect the tick frame sent by vr in round 1 anymore.

The actual tick offset between vr and vk′ is greater than drxtx. Therefore, vk can
detect8 the start of tick frame transmission of vr, and records trxTick,k′ as its pre-
liminary local tick t*lt,k′. Then, it switches to transmit mode as planned and
transmits its tick frame in round 1, which is needed to sustain the synchronization
procedure. However, the start of subsequent rounds is determined based on t*lt,k′.

The behavior of BBSd in subsequent rounds is rather similar: nodes vi 2 V start
listening on the medium dmaxTickOffset_d before a round starts and send a decen-
tralized tick frame. If they detect the medium as busy before switching to tx mode,
they record t�lt;i :¼ trxTick;i � ðnround � 1Þ � dround d as their preliminary local tick,
which replaces t0lt;i in subsequent rounds. Thus, the local tick of the node with the

Fig. 2.9 BBSd—synchronization round

8To detect the medium as busy, CCA delay and propagation delay have to be taken into account,
too, so the actual tick offset needed to detect a tick frame may be as large as
drxtx þ dmaxCCA þ dmaxProp.
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fastest clock (modulo maximum tick offset) is propagated across the network.
Resynchronization of BBSd terminates after nmaxHops rounds.

If all nodes in mutual sensing range are synchronized with a maximal tick offset
of dmaxCCA þ dmaxProp þ drxtx, they will always start mode switching before detecting
a decentralized tick frame. Thus, they do not get any feedback whether other nodes
are still operational. Additional means are required to establish such feedback, e.g.,
combined use of BBSd and BBSm (hybrid BBS, see Sect. 2.2.5), or automatic
topology detection based on message exchange.

Decentralized tick frames consist of a dominant bit Decentralized Sync Header
(DSH), creating a reference point in time (Fig. 2.11). Different from BBSm, no
round number is sent. We will address redundancy in Sect. 2.2.8.

2.2.4.3 Abstract Analysis of BBSd

Synchronization accuracy of BBSd is bounded by the ability of nodes to detect the
start of a decentralized tick frame, i.e., of a black burst, before switching to transmit
mode, and by the switching delay. The upper bound to detect energy on the medium
is the sum of maximum CCA delay dmaxCCA and maximum propagation delay
dmaxProp. Since during mode switching, nodes cannot listen on the medium, and the

Fig. 2.10 BBSd—timing in synchronization round 1 (see [3], Fig. 7)

1 

DSH DSH Decentralized Sync Header

Fig. 2.11 Format of decentralized tick frames
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duration drxtx adds to the uncertainty about tick offset. These factors contribute to
synchronization inaccuracy of BBSd in every round. Therefore, the maximum base
tick offset dmaxBaseTickOffset_d of BBSd right after resynchronization has terminated is
captured by Eq. (2.6). Until the start of the next resynchronization phase, the
maximum tick offset deteriorates (see Eq. (2.7)). Comparing Eqs. (2.1) (see
Sect. 2.2.3.5) and (2.6), it is apparent that the synchronization accuracy achieved
with BBSd is lower than with BBSm. This may be seen as the price for higher
robustness, as no master node is needed.

Accuracy and performance

Synchronization accuracy

dmaxBaseTickOffset d ¼ nmaxHops � ðdmaxCCA þ dmaxProp þ drxtxÞ ð2:6Þ

dmaxTickOffset d ¼ dmaxBaseTickOffset d þ 2 � rmaxClockSkew � dresInt ð2:7Þ

Convergence delay

dconv d ¼ nmaxHops � dround d ð2:8Þ

dround d ¼ dmaxTickOffset d þ dbit d þ dproc ð2:9Þ

Relative overhead

osync d ¼ dconv d

dresInt
ð2:10Þ

Complexity

Communication ccomm d ¼ O Vj j � nmaxHops
� �

Time ctime d ¼ OðnmaxHopsÞ
Space cspace d ¼ Oð1Þ
Structure none

On an abstract level, the analysis of convergence delay and relative overhead of
BBSd is quite similar to the analysis of BBSm. Nevertheless, round and bit durations
are to be adapted when selecting a specific communication technology and differ
from the values of BBSm, which is reflected in Eqs. (2.8), (2.9), and (2.10).

Communication complexity ccomm_d of BBSd is expressed by the number of tick
frames sent in a single resynchronization phase. As each node sends a tick frame in
each round, this is the product of the number of nodes |V| and nmaxHops, the max-
imum network diameter in sensing hops. Time complexity ctime_d is in the order of
nmaxHops, and space complexity cspace_d is constant. BBSd has no structural com-
plexity. We omit the formalization of data structure and algorithm of BBSd, as this
does not provide additional insights.
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2.2.5 Hybrid BBS (BBSh)

Hybrid BBS (BBSh) is composed of BBSm and BBSd. When a master node is
present, all nodes are synchronized with dmaxTickOffset_m. If the master node fails or
if the network is partitioned due to topology changes, nodes are synchronized with
dmaxTickOffset_d, i.e., with less accuracy.

To compose BBSm and BBSd, synchronization rounds are merged, consisting of
master part and decentralized part. During the master part, the rules of BBSm (see
Sect. 2.2.3) are applied, i.e., the master node vm sends a master-tick frame in round
1, and nodes receiving a master-tick frame in round nround, 1 � nround < nmaxHops,
resynchronize their local clocks and send a master-tick frame at the beginning of
round nround + 1. During the decentralized part, the rules of BBSd (see Sect. 2.2.4)
are executed, i.e., all nodes send decentralized tick frames after listening, and
resynchronize if they detect another tick frame. Synchronization round nround of
node vi 2 V starts at tlt;i þðnround � 1Þ � dround h, where tlt,i is vi’s current perception
of the local tick, possibly corrected during this resynchronization phase, and
dround h ¼ dround m þ dround d .

Accuracy and performance

Synchronization accuracy

dmaxBaseTickOffset h ¼ dmaxBaseTickOffset m

dmaxBaseTickOffset d
if

master present
otherwise

�
ð2:11Þ

dmaxTickOffset h ¼ dmaxBaseTickOffset h þ 2 � rmaxClockSkew � dresInt ð2:12Þ

Convergence delay

dconv h ¼ nmaxHops � dround h ð2:13Þ

dround h ¼ ðdbit m þ dprocÞþ ðdmaxTickOffset d þ dbit d þ dprocÞ ð2:14Þ

Relative overhead

osync h ¼ dconv h

dresInt
ð2:15Þ

If nodes receive a master-tick frame, this implies that a master node is present;
consequently, the more accurate maximum master-tick offset dmaxTickOffset_m is
established and applied. In addition, decentralized tick frames are exchanged. If the
master node fails, this is detected by all other nodes during the next resynchro-
nization phase, i.e., with small and bounded delay dresInt. In this case, they
immediately switch to decentralized tick synchronization, applying dmaxTickOffset_d.
As soon as another master node is activated, nodes resume master-based tick
synchronization and reapply dmaxTickOffset_m.
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Without further measures, the overhead of BBSh is the combined overhead of
BBSm and BBSd, i.e., osync h ¼ ðdconv m þ dconv dÞ=dresInt. However, it is possible
to reduce this overhead by omitting the round number of master-tick frames (see
Eq. (2.14)), as non-master nodes can also determine the current round number by
counting decentralized tick frames.

During stable operation, it is even possible to derive the current round number
from the reception time of master-tick frames. However, during stabilization (see
Sect. 2.2.7), an explicit round number is needed. In addition, further redundancy to
protect tick frames against the detection of false positives is desirable (see
Sect. 2.2.8).

2.2.6 Time Sync BBS (BBSt)

Time sync BBS (BBSt) is based on a BBS module for tick synchronization, i.e.,
BBSm, BBSd, or BBSh, which establishes network-wide reference points in time.
To establish network-wide time synchronization, the local time value of a local tick
is exchanged in a time frame. Upon reception of a time frame, nodes adjust their
local clocks.

Figure 2.12 shows the operation of master-based BBSt. Let vm be the master
node, and tlt,m,n be the nth local tick of vm. The specific value of n is not important,
as it is used here for presentation purposes only, to refer to subsequent local ticks.
At tlt,m,n, node vm triggers a resynchronization phase, using BBSm. Afterward, it
sends a time frame containing the local clock reading tlt,m,n as reference time value,
which is propagated by receiving nodes across the network. In addition, receiving
nodes adjust their local clocks and correct the local time of the current local tick.

Figure 2.12 also shows the required actions of node vi upon receipt of a time
frame. The local clock cv_i is set to the master time tlt,m,n plus the time that has

Fig. 2.12 BBSt—master-based time synchronization

36 2 Tick and Time Synchronization



elapsed since the local tick tlt,i,n. Furthermore, the current local tick tlt,i,n is aligned
with the master tick. This provides the same accuracy for time synchronization as
for tick synchronization, i.e., dmaxTimeOffset m ¼ dmaxTickOffset m.

For time resynchronization, tick resynchronization and local computations are
sufficient; no further time value exchange is required. Figure 2.12 shows the
computations of master and non-master nodes, which are identical. Let j be the
count of resynchronization phases since the time value exchange. After each
resynchronization phase, nodes readjust their local clocks and correct their local
ticks. To do so, nodes refer to the exchanged reference time value tlt,m,n and add the
perfect elapsed time j � dresInt until the current local tick tlt,i,n+j and the measured
elapsed time since that tick. Then, the current local tick tlt,i,n+j is aligned with the
master tick. This preserves the same accuracy for time synchronization as for tick
synchronization.

To propagate a time frame network-wide, a regular frame could be broadcasted,
using medium arbitration. This, however, has the drawback that collisions may
occur, implying that no upper bound for convergence delay can be determined.
Furthermore, time complexity is in the order of |V|. Therefore, to propagate time
frames, we apply the same approach as for tick frames. Time frames are encoded
using black bursts (see Sect. 2.2.2) and are composed of a dominant
start-of-time-frame (SOTF) bit, followed by a time value. The number of bits
ntimeBits required to encode this value depends on the representation of time.

At a specified point in time, e.g., right after completion of a tick resynchro-
nization phase, the master node transmits a time frame. Receiving nodes adjust their
local clocks and ticks and forward the time frame after a constant delay, i.e., almost
simultaneously. Thus, collisions of time frames remain non-destructive. This is
repeated until all network nodes are time synchronized, i.e., for nmaxHops rounds.

With this approach, time synchronization accuracy is the same as that of tick
synchronization, i.e., dmaxTimeOffset m ¼ dmaxTickOffset m. Convergence delay dconv_t
is bounded by nmaxHops � dround t, where dround t ¼ ð1þ ntimeBitsÞ � dbit t þ dproc.
Since it is sufficient to exchange only one time frame, relative overhead on top of
tick resynchronization is extremely low. However, it may be useful to repeat time
frame exchange from time to time, to provide some redundancy. Complexity of
master-based BBSt is similar to BBSm.

Time synchronization can also be achieved with decentralized BBSt. At a
specified point in time, nodes vi 2 V 0, V 0�V , transmit time frames containing their
local clock readings tlt,i,n as reference time values. Again, time frames are encoded
with black bursts, so collisions are non-destructive. However, different from
master-based BBSt, time frames sent in the same round may have different values.
Thus, as explained in Sect. 2.2.2, receivers record their logical OR. At this point, we
slightly modify the algorithm for the exchange of bit sequences: nodes vi 2 V 0

“sending” a logical 0, i.e., a recessive bit, and observing a logical 1 stop trans-
mitting their own bit sequence and instead record and retransmit the rest of the bit
sequence, thereby receiving and forwarding the actual clock value of some node.
Nodes vj 2 VnV 0 in sensing range of a node vi 2 V 0 record the entire tick frame.
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This procedure is repeated in subsequent rounds until finally, the local clock value
of the node with the fastest clock has been propagated, i.e., the fastest clock “wins.”

2.2.7 Network Stabilization

So far, we have assumed a stabilized network, i.e., all network nodes are opera-
tional and tick-synchronized with a maximum tick offset. We now elaborate on
achieving and maintaining stabilization despite dynamic sensing topology changes.
Explanations address the operation of BBSm; stabilization of BBSd and BBSh is
handled analogously.

When a master node vm 2 V is switched on, it listens on the medium for a
defined number of resynchronization intervals. If the medium remains silent, vm
starts synchronization by sending master-tick frames; otherwise, vm retires. When a
non-master node vi 2 V is powered up, it listens until detecting master-tick frames,
and, after it has synchronized itself, starts transmitting master-tick frames itself,
thereby joining the network. Here, it is important that the node can derive the
current hop distance to the master node, which is contained as parameter nround in
the master-tick frame. Using the value of nround, vi can then compute its current
local tick tlt,i by backward calculation (see Sect. 2.2.3.2).

If a master node vm 2 V is no longer present, e.g., because it is switched off or is
outside sensing range of all other nodes, none of the remaining nodes receives a
master-tick frame in the next resynchronization phase. In this case, the network is
not operational until a new master node is determined and active. In case of BBSh,
decentralized tick synchronization is still available and applied, with reduced
synchronization accuracy. If a non-master node is no longer present, this will have
no effect on tick synchronization unless the network is partitioned.

If sensing topology changes due to node movement occur, two situations are to
be distinguished. If only the set of sensing links is modified, but the set of network
nodes remains the same, tick synchronization is not affected as long as the maxi-
mum network diameter in sensing hops does not exceed nmaxHops. In particular, if
the hop distance between a non-master node and the master node has changed, the
new distance is given by the parameter nround of the master-tick frame. The reason
why link changes have no further impact is that BBS does not assume a particular
network structure. However, if the topology change leads to network partitioning,
only the partition hosting the master node remains stable. In partitions without
master node, the situation is the same as in case of master node failure and treated
accordingly.

If several networks synchronized with BBS get into mutual sensing range, there
is a lack of tick synchronization among nodes belonging to different networks. This
is detected by reception of tick frames at unexpected points in time, or possibly by
collision of regular frames in reserved time slots. Nodes detecting another network
send jamming frames, i.e., distinguishable energy patterns, which are forwarded by
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receiving nodes, and cease operation. It is then the task of a dedicated master node
to reinitialize tick synchronization.

2.2.8 Redundancy

We now address redundancy measures to increase the robustness of BBS. In par-
ticular, we elaborate on the detection of bit errors of synchronization frames, false
positives and negatives of black bursts, and timing errors.

A crucial property of BBS is that collisions of synchronization frames that are
sent (almost) simultaneously are non-destructive. This is achieved by encoding bit
sequences with black bursts (see Sect. 2.2.2), which therefore can be interpreted as
a redundancy measure.

For the reliable detection of black bursts, their timing is crucial. First, the length
dBB of a black burst has to be larger than the maximum CCA delay dmaxCCA

(constraint (2.16)); otherwise, a black burst may go undetected. Second, black
bursts sent in the same bit time must overlap at the receiver, which places the
stronger constraint (2.17) on dBB.

dBB [ dmaxCCA ð2:16Þ

dBB [ dmaxCCA þ dmaxBaseTickOffset m ð2:17Þ

Constraint (2.17) is actually required in the synchronization scenario shown in
Fig. 2.13. Here, node v is in sensing range of v′ and v″, which send their master-tick
frames in the same round. At this point in time, the base tick offset accumulated at
node v″ may differ from that of v′ by at most dmaxBaseTickOffset_m. In addition, the
delay for the detection of the black burst of v″ has to be considered.

If the network is sufficiently dense, sensing topologies as in Fig. 2.13 do not
occur. Rather, if a node v receives colliding master-tick frames, the sending nodes
have been synchronized by the same node(s) in the round before. Thus, their tick
offset will differ by at most dmaxCCA, meaning that constraint (2.17) can be reduced
to (2.18), and finally to (2.16).

master node
non-master node
node waiting to be resynchronized
node sending a master-tick frame
node receiving a master-tick frame
node receiving colliding master-tick frames
node that has finished resynchronization

vm 

v‘

v“

v

Fig. 2.13 BBS—synchronization scenario
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dBB [ 2 � dmaxCCA ð2:18Þ

Additional timing constraints are required to ensure that black bursts are always
assigned to the correct bit time, and that black bursts of different bit times do not
overlap. Furthermore, the timing of the received energy pattern of synchronization
frames can be checked for consistency. A detailed treatment of timing issues can be
found in [4].

If a receiving node is located at the border of the sensing range to a sender, bit
errors of synchronization frames can occur. In this case, false negatives may be
detected, i.e., black bursts may go undetected, which is interpreted as the “recep-
tion” of a logical 0. Also, due to a noisy channel, false positives may be detected,
which is interpreted as the reception of a logical 1.

To detect bit errors, several measures can be applied. First, checksums can be
added to synchronization frames. For decentralized tick frames, it may be sufficient
to repeat the DSH bit. Second, reception times can be checked. For instance, the
start of reception of a master-tick frame carrying round number nround is expected
by node vi 2 V at tlt;i þ dresInt þðnround � 1Þ � dround m � dmaxTickOffset m. If this
constraint is not met, this indicates a bit error. In addition, the first bit of syn-
chronization frames, which is always a logical 1 and therefore dominant, can be
protected by an encoding with a black burst that has a different length d'BB > dBB.
Again, timing constraints are required to ensure that this distinction always works.

2.2.9 Analytical and Experimental Results

To assess the accuracy, performance, energy efficiency, feasibility, and reliability of
BBS, we now extend its abstract analysis (see Sects. 2.2.3–2.2.5) based on a real
hardware platform, and report on the results of real experiments conducted with an
implementation on that platform. We have decided against simulation experiments,
because the effects to be studied are of physical nature and therefore difficult to
capture completely and accurately in a simulation model.

2.2.9.1 Hardware Platform

To analyze and implement BBS, we have chosen MICAz motes [21] of Crossbow
Technologies. In a subsequent implementation, we have used Imote2 motes [19].
Both platforms host the CC2420 radio transceiver developed by Chipcon [9], which
is IEEE 802.15.4 [18] compliant and used, e.g., in ZigBee [30] protocol stacks. For
concrete analysis, we also use the Atmel AT86RF230 radio transceiver [8].

The MICAz mote has been devised for low-power wireless sensor networks. It is
equipped with Atmel ATMega 128 L microcontroller, 512 KB flash memory,
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LEDs, a connector for various sensor boards, 2.4 GHz CC2420 radio supporting a
transmission rate of 250 Kbps, and is powered by two AA batteries.

The CC2420 radio transceiver integrates PHY layer and parts of the MAC layer
as specified by IEEE 802.15.4. PHY frames consist of preamble (3 bytes), start of
frame (SOF) delimiter (1 byte), and MAC frame. When running with a data rate of
250 Kbps, PHY symbols encode four bits each, yielding a symbol duration
dsym = 16 µs. Thus, sending one byte takes dbyte = 32 µs.

For the implementation of BBS, we only use PHY layer functionality, as black
bursts are sent without prior medium contention. To generate a black burst of
defined length, we send regular PHY frames of minimal length, however, without
interpreting their content. In our implementation, a PHY frame consists of
preamble, SOF delimiter, and MAC length field with value 0, totaling 5 bytes. With
dbyte = 32 µs, the duration of a black burst is dBB = 160 µs, which satisfies con-
straint (2.16).

To detect black bursts, we use the CCA (clear channel assessment) mechanism of
the transceiver. The transceiver sets the CCA pin to 0 if the energy sampled over the
last 8 symbols exceeds a defined threshold, or if it has detected a correct preamble
and SOF delimiter. In case of high signal strength, this may occur already after one
symbol. However, as we have to consider worst-case behavior, we obtain dmaxCCA ¼
8 � dsym ¼ 128 ls for the CC2420 transceiver (dmaxCCA ¼ 1 � dsym ¼ 16 ls for the
AT86RF230). To reduce further delays, the CCA pin of the transceiver is connected
to a free external interrupt pin of the microcontroller, which avoids polling for black
bursts. For clock skew, we have measured values rclockSkew of up to 10 ppm with
the built-in MICAz processor quartz. In our concrete analysis, we assume a max-
imum clock skew rmaxClockSkew of 40 ppm.

2.2.9.2 Concrete Analytical Results

In this chapter, we extend the abstract analysis of BBS in Sects. 2.2.3–2.2.5. For
this, we insert parameters from data sheets of the CC2420 and AT86RF230
transceivers, and calculate concrete values for accuracy and performance. In
addition, we assess energy efficiency.

Synchronization accuracy

Table 2.1 shows the maximum tick offsets for BBSm and BBSd, for topologies with
a maximum network diameter nmaxHops of 1, 4, and 10 hops, respectively. We have
set the length of the resynchronization interval dresInt to 1 s (1 and 4 hops) and 5 s
(10 hops). Values dmaxCCA and drxtx are determined from the data sheets, and the
rmaxClockSkew is set to 40 ppm. Inserting these values into Eqs. (2.1), (2.2), (2.6),
and (2.7) yields the shown upper bounds for tick offset, which are also the upper
bounds for time offset when operating BBSt.

The maximum base tick offset achievable depends on symbol duration, the
parameters of the CCA mechanism, and switching delays, and accumulates with
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each hop. For the CC2420 transceiver, the resulting maximum CCA delay and
switching delay are substantial, yielding maximum base tick offsets in the order of a
millisecond. Here, the AT86RF230 performs about ten times better. By reducing
CCA delay and switching delay, synchronization accuracy can be improved. On the
other hand, accuracy decreases with increasing network size and/or resynchro-
nization interval. In Sect. 2.2.10, we present ways to mitigate these effects.

We point out that the tick offsets in Table 2.1 are upper bounds, i.e., worst-case
values. During operation, lower upper bounds may of course be observed, and
certainly, average values would typically be far below measured upper bounds. The
reason why measured worst cases are usually better is that dmaxCCA and
rmaxClockSkew are not stretched to their limits; however, they may also yield worse
results, e.g., if rmaxClockSkew is not chosen carefully.

To show this, we have conducted an experiment with five MICAz motes hosting
the CC2420 transceiver in a line topology, running BBSm. Parameters dresInt,
dmaxCCA, and rmaxClockSkew are as in Table 2.1, and experiment duration was 4 h.
Table 2.2 shows the results on measured upper bounds in comparison to calculated
worst-case values. As expected, measured worst-case values are substantially
smaller. However, to achieve deterministic timing behavior, the bounds from the
offline analysis are to be used, as measured values cannot be exchanged among
network nodes instantaneously and reliably.

Performance

We continue our concrete analysis of BBS by determining values for convergence
delay and overhead, inserting data sheet values into Eqs. (2.3, 2.8, 2.13), (2.4, 2.9,
2.14), and (2.5, 2.10, 2.15). Table 2.3 summarizes the results. Parameters nmaxHops

and dresInt are chosen as in Table 2.1; the number m of bits to encode nround is
determined using equation (i) (see Sect. 2.2.3.4). The bit duration for master bits is
the sum of black burst duration dBB and switching durations drxtx and dtxrx, and is
independent of the network diameter (see Sect. 2.2.2). For decentralized bits,
dmaxTickOffset_d is to be added; therefore, bit duration depends on network diameter,
too.

Table 2.1 Maximum tick (and time) offsets for BBSm and BBSd (see [3], Table 5)

CC2420 AT86RF230

nmaxHops 1 4 10 1 4 10

dresInt 1 s 1 s 5 s 1 s 1 s 5 s

dmaxCCA 128 µs 16 µs

drxtx 192 µs 17 µs

rmaxClockSkew 40 ppm 40 ppm

dmaxBaseTickOffset_m 0.128 ms 0.512 ms 1.280 ms 0.016 ms 0.064 ms 0.160 ms

dmaxTickOffset_m 0.208 ms 0.592 ms 1.680 ms 0.096 ms 0.144 ms 0.560 ms

dmaxBaseTickOffset_d 0.320 ms 1.280 ms 3.200 ms 0.033 ms 0.132 ms 0.330 ms

dmaxTickOffset_d 0.400 ms 1.360 ms 3.600 ms 0.113 ms 0.212 ms 0.730 ms
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With these settings, round durations, convergence delays, and synchronization
overhead are determined (see Table 2.3). It turns out that BBS has excellent per-
formance, with resynchronization phases in the order of milliseconds, and very low
synchronization overhead. We point out that at the end of each resynchronization
phase, maximum base tick offsets are reestablished, i.e., no statistics is to be col-
lected. This makes BBS highly efficient compared to statistical synchronization
approaches, which have to collect data points over a longer period of time before
synchronization is established.

Energy efficiency

When using battery-powered nodes such as the MICAz, energy efficiency is an
important concern. To extend the nodes’ and thus the network’s lifetime, nodes
switch to idle or sleep mode when not needed, which is called duty cycling (see

Table 2.2 Calculated and measured maximum tick offsets for BBSm (see [2], Table II)

1 hop (ms) 2 hops (ms) 3 hops (ms) 4 hops (ms)

dmaxTickOffset_m

(analysis)
0.208 0.336 0.464 0.592

dmaxTickOffset_m

(measurement)
0.041 0.160 0.225 0.289

Table 2.3 Convergence delays and synchronization overheads for BBSm, BBSd, and BBSh (see
[3], Table 6)

CC2420 AT86RF230

nmaxHops (m) 1 (1) 4 (2) 10 (4) 1 (1) 4 (2) 10 (4)

dresInt 1 s 1 s 5 s 1 s 1 s 5 s

dBB 160 µs 160 µs

drxtx, dtxrx 192 µs, 192 µs 17 µs, 33 µs

dbit_m 0.54 ms 0.21 ms

dbit_d 0.94 ms 1.90 ms 4.14 ms 0.32 ms 0.42 ms 0.94 ms

dproc 0.30 ms 0.30 ms

dround_m 1.39 ms 1.93 ms 3.02 ms 0.72 ms 0.93 ms 1.35 ms

dround_d 1.56 ms 3.48 ms 7.64 ms 0.66 ms 0.85 ms 1.57 ms

dround_h 2.49 ms 4.41 ms 8.89 ms 1.25 ms 1.44 ms 2.48 ms

dconv_m 1.60 ms 8.32 ms 31.88 ms 0.82 ms 3.86 ms 14.06 ms

dconv_d 1.56 ms 13.94 ms 76.44 ms 0.66 ms 3.42 ms 15.70 ms

dconv_h 2.49 ms 17.63 ms 88.88 ms 1.25 ms 5.78 ms 24.80 ms

osync_m 0.16% 0.83% 0.64% 0.08% 0.39% 0.28%

osync_d 0.16% 1.39% 1.53% 0.07% 0.34% 0.31%

osync_h 0.25% 1.76% 1.78% 0.13% 0.58% 0.50%
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Chap. 7). While this reduces energy consumption, it also downgrades the ability of
the network to perform tasks.

To assess the energy efficiency of BBS, we determine the energy consumption of
three activity profiles. The profile “idle” determines a base line, i.e., energy con-
sumption when all hardware components of nodes are in idle mode. The profile
“sync” adds energy consumption due to synchronization activities. Finally, the
profile “duty cycle” considers energy consumption of nodes performing actual
application tasks. Given a percentage of node activity for each of these profiles, the
consumed energy is calculated as follows:

econsðoactÞ ¼ oact � ðetrAct þ ecpuActÞþ ð1� oactÞ � ðetrIdle þ ecpuIdleÞ ð2:19Þ

Equation (2.19) distinguishes between energy consumption of transceiver and
CPU in active and idle modes, respectively. Concrete values to be inserted can be
found in data sheets of hardware platforms to be assessed. In the following, we will
use values from the MICAz data sheet [21]. Thus, the transceiver draws a current of
up to etrAct = 19.7 mA in tx and rx mode, and of etrIdle = 20 µA in idle mode.
The CPU consumes ecpuAct = 8.65 mA and ecpuIdle = 1 mA in active and idle
modes, respectively. External power is provided by two AA batteries with a
capacity of 2000 mAh each.

We now compare the energy consumption of BBSm and compare it to the beacon
mechanism of ZigBee [30] providing single-hop synchronization. The resynchro-
nization interval dresInt is set to 5 s, beacon tx duration is calculated to be 1.024 ms,
and the duty cycle is configured to be 4%. Table 2.4 shows the values for energy
consumption and the expected network lifetime, for each activity profile.

The activity profile “idle” determines the base line, i.e., energy consumption of
transceiver and CPU in idle mode. While the energy consumption of the CC2420 is
almost negligible, the Atmel ATMega 128 L consumes 1 mA and therefore limits
the lifetime of nodes to at most 81.7 days (assuming that the battery charge can be
consumed in a linear way). With synchronization, energy consumption slightly
increases, however, reducing the lifetime of nodes by less than one day. Here,
ZigBee beacons are slightly more efficient, but can support single-hop synchro-
nization only. With the full duty cycle of 4%, energy consumption doubles,
reducing node lifetime to about 40 days. Without duty cycling, the nodes’ lifetime
would be less than 3 days.

Table 2.4 Energy consumption—comparison of BBSm and ZigBee beacons

BBSm ZigBee beacons

Activity Idle Sync Duty
cycle

Idle Sync Duty
cycle

oact 0.00% 0.04% 4% 0.00% 0.02% 4%

econs 1.020 mA 1.031 mA 2.113 mA 1.020 mA 1.025 mA 2.113 mA

dlife 81.7 days 80.8 days 39.4 days 81.7 days 81.3 days 39.4 days
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2.2.9.3 Experimental Results

In this chapter, we report on real-world experiments that were conducted to show
feasibility and reliability of BBSm and BBSh [3, 6]. Further experiments had the
purpose of calibrating the transceiver in order to increase reliability and accuracy
[6]. Experiments were run in testbeds of MICAz [21] and Imote2 motes [19], both
hosting the CC2420 radio transceiver [9].

Feasibility experiments

To show the feasibility of BBSm and BBSh, they were implemented and executed in
representative small-scale topologies that cover scenarios occurring in larger net-
works [3]. Figure 2.14 shows three such topologies: The 4-hop line topology in
(a) checks the multi-hop capability of BBSm. Topology (b) produces master-tick
frame collisions in round 2, when nodes v and v′ resynchronized in round 1 send
them (almost) simultaneously. Finally, topology (c) represents a single-hop net-
work, where BBSd is used as backup for BBSm in case of master node failure.

Feasibility experiments were run on MICAz motes, over a period of 4 h. In all
experiments, measured tick offsets were below the predicted maximum tick offsets,
i.e., below dmaxTickOffset_m for experiments with a master node, and below
dmaxTickOffset_d when no master node was present. When running BBSh, master node
failure was recognized by all other nodes during the next resynchronization phase,
and restart of the master node led to the resumption of master-based synchro-
nization, as expected.

Collision resistance and reliability of black bursts

For the operation of BBS, it is crucial that black bursts sent (almost) simultaneously
are collision-resistant, i.e., that their collisions are non-destructive. In theory,
destruction could be caused by signal cancellation. In practice, we assume that signal
cancellation does not occur, and rather expect that overlapping black bursts cause
additive interference at receivers. This assumption is supported by the chaotic nature
of signal propagation, and by preventing nodes from sending identical signals.

When bit sequences are encoded with black bursts, two types of errors may
occur, resulting in bit errors. A false positive is detected if a black burst is detected
although nodes in sensing range are not transmitting. A false negative occurs if a
black burst transmitted by some node in sensing range is not detected.

Collision resistance and reliability experiments (see [6]) were conducted in a
controlled outdoor environment, with the single-network property (see Sect. 1.3) in
force. The topology of the experiment in Fig. 2.15 shows 8 nodes (vs1,…, vs5, vc,

master node
non-master node

(a)

(b) 
(c) 

v'

v 
v"

Fig. 2.14 Topologies for
feasibility experiments (see
[3], Fig. 9)
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vr1, vr2) of type Imote2 and 2 software-defined radio nodes (vu1, vu2) of type USRP2
[14]. Up to 5 nodes vsi act as senders, coordinated by node vc over wire to achieve
overlapping black burst transmissions. Nodes vr1, vr2, vu1, and vu2 act as receivers.
The distance between senders and receivers is given by la + lb and la + lc,
respectively (see Fig. 2.15). In the experiments, la, lb, and lc are varied as shown in
Table 2.5.

Experiments ran with five distance setups, with receivers placed in distances of
5, 10, 20, and 30 m of senders. For each distance setup, experiments with 1, 2, and
5 active senders were conducted. In each experiment, 60,000 dominant black bursts
were sent in intervals of 10 ms, with recessive black bursts in-between.

Figure 2.16 shows the success rates of dominant black bursts, i.e., true positives,
for receiver vr2. Up to a distance of 20 m, success rates are 100%, independent of
the number of senders. At a distance of 30 m and with 1 sender, the success rate
drops to about 97.9%, indicating that the transceiver’s sensitivity range has been
reached. However, with more senders, the success rate increases and reaches 100%
in case of 5 senders, which supports the expectation of additive interference and
thus collision resistance. Success rates for recessive black bursts, i.e., true nega-
tives, were 100% in all experiments, which supports the validity of the
single-network property.

vs1

vs2

vs5

vs4

vs3

vr1
vu1

lb

lc 

vu2
vr2

vc 

Fig. 2.15 Topologies for reliability and collision resistance experiments (see [6], Fig. 5.5)

Table 2.5 Variation of
distances between senders and
receivers (see [6], Table 5.1)

Experiment
series

la lb lc la + lb la + lc

1 5 m 0 m 0 m 5 m 5 m

2 5 m 0 m 5 m 5 m 10 m

3 10 m 0 m 10 m 10 m 20 m

4 10 m 10 m 10 m 20 m 20 m

5 20 m 10 m 10 m 30 m 30 m
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In addition to receivers vr1 and vr2 of type Imote2, software-defined radios vu1
and vu2 of type USRP2 recorded fine-grained energy levels. The measured
signal-to-noise ratios (SNRs) during black burst transmissions are shown in
Fig. 2.17. Here, black lines mark the median, boxes the first and third quartile, and
whiskers the minimum and maximum values. Clearly, the SNR levels drop with
increasing distance. Also, they never decrease with an increasing number of sen-
ders, which again supports the expectation of additive interference.

Further evidence for additive interference can be derived from durations of
detected dominant black bursts. Measurements show that the duration of black
bursts increases with the number of transmitters. One reason for this is that trans-
missions start with small offsets, as the synchronicity achieved through node vc is
not perfect. The main reason, however, is that black bursts with higher received
signal strength indicators (RSSIs) are detected earlier by the CCA mechanism,
leading to longer detected durations.

Transceiver calibration

For reliable detection of black bursts, calibration of the transceiver’s CCA threshold
is crucial. A high threshold reduces sensing range, and the probability to detect false
negatives grows. With a low threshold, the probability for the detection of false
positives rises, as noise may be misinterpreted as a black burst. Moreover, the
probability to detect false negatives grows, too, because detected black bursts may
be invalidated due to an unexpected length. Therefore, the CCA threshold should be
configured well above noise level, but not higher than the RSS of correctly detected
MAC frames.

In the experiments, sender vs and receiver vr were placed in a distance of 0.5 m.
Black bursts were implemented as IEEE 802.15.4 compliant MAC frames, to
enable detection as black burst (using the CCA mechanism) and reception as MAC
frame (SFD detected and checksum correct). Output power was varied from −33 to
−12 dBm (power levels 1–9). For each power level, 30,000 transmissions in
intervals of 20 ms were performed. The CCA threshold of the transceiver was set to
−97 dBm, which was just above the noise floor.

Fig. 2.16 Success rates of black burst receptions (true positives) of node vr2 (see [6], Fig. 5.6)
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Figure 2.18 shows the success ratios of black burst detections and MAC frame
receptions, respectively. With an output power of −33 dBm, 44% black bursts are
detected, whereas only 27% MAC frames are correctly received. This goes up to
almost 100% with an output power of −25 dBm and higher. In the experiments,
detection ratios of black bursts were never below the reception ratios of MAC
frames and reached 100% for output powers of −22 dBm and higher. This confirms
the usual assumption that sensing range is larger or equal to communication range.

Figure 2.19 shows the success ratio of MAC frames relative to valid black burst
detections as function of received signal strength (RSS). For RSS of −90 dBm and
higher, the ratio is roughly 1. Therefore, a CCA threshold of −90 dBm appears to
be adequate to equalize sensing and communication range.

2.2.10 Optimizations

We now address three optimizations to reduce the usable upper bound for tick and
time offset. The first optimization considers restricted node mobility. The second
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Fig. 2.17 Signal-to-noise ratio (SNR) during black burst transmissions recorded by vu1 (see [6],
Fig. 5.7)
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optimization applies current offsets instead of maximum offsets. The third opti-
mization reduces maximum tick/time offset and convergence delay of the first
synchronization round. Optimizations are complementary, i.e., they can be applied
individually or together.

Optimization 1: Restricted node mobility

So far, we have considered network-wide maximum base tick and time offsets,
determined, e.g., for BBSm (see Sect. 2.2.3.5) by

dmaxBaseTickOffset m ¼ nmaxHops � ðdmaxCCA þ dmaxPropÞ ð2:1Þ

This covers the extreme case that the network topology may change in an
arbitrary way in-between two resynchronization phases. In practice, however, node
mobility is limited, and network nodes may even be stationary. Assuming that there
is no interference among nodes that are 2 or more sensing hops apart, this can be
exploited to optimize the maximum base tick offset.

Figure 2.20 shows a scenario where nodes v1 and v3 are transmitting in adjacent
time slots i + 1 and i, respectively. Before, they have been resynchronized by
master node vm in rounds 2 (v1) and 4 (v3), i.e., their maximum base tick offset is

dmaxBaseTickOffset0 m ¼ 2 � ðdmaxCCA þ dmaxPropÞ

Since v1 is resynchronized before v3, it has the earlier local reference tick. In this
scenario, it would be sufficient if node v1 delays its transmission by

dmaxTickOffset0 m ¼ dmaxBaseTickOffset0 m þ 2 � rmaxClockSkew � dresInt

In a single-hop network, it would even be sufficient to apply dmaxCCA + dmaxProp

as maximum base tick offset. Thus, the applicable maximum base tick offset in case
of networks with stationary nodes is

1.0

0.8

0.6

0.4

0.2

0.0 x # 
va

lid
 M

A
C

 fr
am

es
# 

va
lid

 b
la

ck
 b

ur
st

s

Received Signal Strength (RSS) [dBm]
-95              -90                 -85                 -80 -75

x x x 

x 
x 

x 
x x x x  x x x x x x x x x x x x  

Fig. 2.19 Success ratio of MAC frames relative to valid black burst detections (see [6], Fig. 5.4b)
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dmaxBaseTickOffset0 m ¼ minf2; nmaxHopsg � ðdmaxCCA þ dmaxPropÞ ð2:20Þ

which substantially improves synchronization accuracy for networks with a
diameter of more than two sensing hops.

Next, we consider the impact of limited node mobility. For instance, in a factory
scenario with mobile robots, their maximum speed may be restricted for safety
reasons. Let us assume a maximum node speed of 20 km/h (i.e., about 12 mph), a
sensing range of 30 m, and a resynchronization interval of 5 s, then nodes can
move at most one hop in-between resynchronizations. For example, in Fig. 2.20,
node v5 may move into one-hop distance of node v4, which is in one-hop distance of
node v1. However, since v5 has only been synchronized in round 6, the optimized
maximum base tick offset derived for stationary nodes is not sufficient. Here,
nhopsPerResInt, the upper bound for node mobility, is to be considered, yielding the
optimized maximum base tick offset

dmaxBaseTickOffset0 m ¼ minð2 � nhopsPerResInt þ 2; nmaxHopsÞ � ðdmaxCCA þ dmaxPropÞ
ð2:21Þ

The factor 2 in Eq. (2.21) takes the scenario of nodes moving toward each other
into account. In case of stationary nodes, i.e., nhopsPerResInt = 0, Eq. (2.21) yields the
same result as Eq. (2.20).

We can now insert concrete values into Eq. (2.21). For a maximum sensing
diameter nmaxHops = 10 and the AT86RF230 transceiver [8], we have obtained
dmaxBaseTickOffset_m = 160 µs without optimization. With optimization, this is
reduced to 32 µs for stationary nodes, and to 64 µs for a maximum mobility of one
hop per resynchronization interval.

Fig. 2.20 Optimization 1—restricted node mobility
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Optimization 2: Current offsets

The second optimization is motivated by the observation that after each resyn-
chronization, the maximal tick offset (in case of BBSm) is only dmaxBaseTickOffset_m,
which then deteriorates gradually to dmaxTickOffset_m until the next resynchronization
takes place, as captured by Eq. (2.2).

dmaxTickOffset m ¼ dmaxBaseTickOffset m þ 2 � rmaxClockSkew � dresInt ð2:2Þ

Let delapsed denote the time that has elapsed since the last resynchronization.
Then, instead of dmaxTickOffset_m, it is safe to apply dmaxCurrentTickOffset_m:

dmaxCurrentTickOffset m ¼ dmaxBaseTickOffset m þ 2 � rmaxClockSkew � delapsed ð2:22Þ

Comparing Eqs. (2.2) and (2.22), the improvement is apparent: because the
elapsed time since the last resynchronization is on average 50% of the resynchro-
nization interval, the applicable maximum current tick offset is substantially smaller
than the maximum tick offset.

Figure 2.21 illustrates this for a 4-hop network and values calculated for
AT86RF230 transceivers. After an elapsed time of 24 ms, the maximum current
tick offset is only 65.92 µs, compared to 864 µs without optimization. Combining
optimizations 1 and 2 for a 4-hop network of stationary nodes, this value goes down
to 33.92 µs.

If we assume that time is structured into slots, we can determine the waste
caused by lack of synchronization accuracy. If the resynchronization interval dresInt
is structured into nslot time slots, waste without optimization can be expressed as

owaste m ¼ nslot � dmaxTickOffset m

dresInt

With optimization, the waste is

owaste m;o2 ¼
Pnslot

i¼1 dmaxBaseTickOffsetm þ 2 � rmaxClockSkew � dresIntnslot
� i

� �
dresInt

¼ nslot � dmaxBaseTickOffsetm þ 2 � rmaxClockSkew � dresIntnslot
� nslotðnslot þ 1Þ

2

dresInt

Fig. 2.21 Optimization 2—current offsets
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For the example in Fig. 2.21 and nslot = 2000, i.e., a slot length of 5 ms, we get
owaste_m = 17.28% (Eq. (2.2)), while owaste_m,o2 is only 9.28% (Eq. (2.22)). For
nslot = 5000, we even have owaste_m = 43.2%, compared to owaste_m,o2 = 23.2%.
Thus, optimization 2 increases usable bandwidth substantially.

Optimization 3: First synchronization round

When running BBSm, only the master node vm is sending a master-tick frame in
synchronization round 1. This implies that in round 1, no master-tick frame colli-
sion can occur. For this reason, nodes in communication range of vm can detect
valid MAC frames used to implement black bursts. This observation enables
optimization of synchronization accuracy and convergence delay.

Instead of transmitting a sequence of black bursts to encode master-tick frames,
it is sufficient to send one regular MAC frame carrying synchronization round
number 1. Thereby, the duration of the first synchronization round is reduced to
dround1 m;o3 ¼ dbit m þ dproc, which shortens convergence delay and reduces rela-
tive overhead (see Eqs. (2.25) to (2.27)).

To monitor the state of the medium, the CCA mechanism of the CC2420 trans-
ceiver offers two modes. With energy detection mode, it reports a busy medium when
the energy level measured over a period of 8 symbol durations, i.e., 128 µs, exceeds a
threshold. With carrier sense mode, it signals the medium as busy when detecting a
valid IEEE 802.15.4 carrier, i.e., a signal with valid modulation and spreading
characteristics. Both modes can be operated individually and combined.

Accuracy and performance

Synchronization accuracy

dmaxBaseTickOffset m;o3 ¼ dmaxSFD þ dmaxProp

þðnmaxHops � 1Þ � ðdmaxCCA þ dmaxPropÞ
ð2:23Þ

dmaxTickOffset m;o3 ¼ dmaxBaseTickOffset m;o3 þ 2 � rmaxClockSkew � dresInt ð2:24Þ

Convergence delay

dconv m;o3 ¼ dround1 m;o3 þðnmaxHops � 1Þ � dround m þ dmaxTickOffset m;o3 ð2:25Þ

dround m ¼ ð1þmÞ � dbit m þ dproc ð2:4Þ

dround1 m;o3 ¼ dbit m þ dproc ð2:26Þ

Relative overhead

osync m;o3 ¼ dconv m;o3

dresInt
ð2:27Þ
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Compared to pure energy detection, carrier sensing is far more accurate and,
according to the CC2420 data sheet, can locate the start of a valid MAC frame with
a tolerance of 3 µs only (instead of 128 µs for energy detection). The CC2420
transceiver signals medium detection with the carrier sense mode at a dedicated
SFD output pin. This improves synchronization accuracy of the first round to
dmaxSFD + dmaxProp (see Eqs. (2.23) and (2.24)).

2.3 Related Work

To place Black Burst Synchronization (BBS) into context, we now survey and
assess related work. Due to the large number of publications on synchronization,
this survey is not comprehensive, but is rather intended to identify important dif-
ferences of BBS compared to other approaches. Broad surveys are provided, for
instance, in [27, 28] and [25].

2.3.1 Remote Clock Reading Method

In [10], Cristian has published a straightforward approach to time synchronization,
to which we refer here as RCRM (remote clock reading method). The algorithm
works as follows (see Fig. 2.22):

1. At local time cv_i(t1), client vi sends a time request message reqt to a time server
vm, requesting a current timestamp.

2. After receiving reqt, vm reads its local clock to determine the current timestamp
tts ¼ cv mðt2Þ and returns a time response message respt containing tts.

3. Client vi receives message respt at local time cv_i(t3) and (re-)synchronizes with
vm by setting its local clock to tts þðcv iðt3Þ � cv iðt1ÞÞ=2.

4. To resynchronize, steps 1–3 are repeated periodically.

Synchronization accuracy of RCRM highly depends on round-trip time, reaction
delay of the time server, and asymmetry of transfer delays. Ideally, the timestamp
should be determined at t20 ¼ t1 þðt3 � t1Þ=2 (see Fig. 2.22). In fact, it is determined

client vi 

time server vm 

reqt 

t1 t3

respt(tts = cv_m(t2))

t2

t2′

Fig. 2.22 Operation of
RCRM
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somewhere between t1 and t3, yielding a potential time offset
dpotTimeOffset ¼ �ðt3 � t1Þ=2. Since dpotTimeOffset depends on the delay dreq_t,resp_t
between sending of reqt and reception of respt, which is unbounded, a maximum time
offset cannot be determined. While a small delay dreq_t,resp_t reduces dpotTimeOffset, it
will still be large compared to dmaxTimeOffset_m as achieved by BBSt, which depends on
delays for the detection of channel activity and signal propagation only.

If single clock readings are used for resynchronization,9 convergence delay
depends on the time needed to resynchronize the entire network, i.e., the period
between two resynchronizations, provided communication between clients and time
server is sufficiently reliable; nevertheless, message loss may occur, e.g., due to
collisions. In multi-hop networks, clients need routing information, which adds
further structural complexity to the approach.

2.3.2 Timing-Sync Protocol for Sensor Networks

In [15], Ganeriwal et al. have published a time synchronization protocol that
improves RCRM significantly, referred to as TPSN (Timing-sync Protocol for
Sensor Networks). The algorithm works in two phases:

Phase 1: Level discovery
In phase 1, a hierarchical overlay topology is established, where each node is
associated with a level i and comes to know the identity of its predecessor in the
hierarchy, which becomes its time source in phase 2. Phase 1 is started by a
dedicated time reference node vm, associated with level 0.

1. To start phase 1, vm broadcasts a Level Discovery Packet containing its identity,
e.g., its node address, and its level 0.

2. A node vi 6¼ vm receiving a Level Discovery Packet for the first time assigns
itself the next level and records the identity of the sender as its predecessor in the
hierarchy. Then, vi broadcasts a Level Discovery Packet containing its identifier
and its level.

3. If a node vj 6¼ vm has not received a Level Discovery Packet within a defined
time span, it broadcasts a Level Request Packet. When receiving a Level
Request Packet, a node broadcasts a Level Discovery Packet. Among received
Level Discovery Packets, node vj selects one with the lowest level, assigns itself
the next higher level and records the sender as its predecessor.

Phase 2: (Re-)Synchronization
Based on the hierarchical overlay topology established in phase 1, nodes periodi-
cally resynchronize their clocks with their time sources, i.e., with their predecessors

9To improve accuracy, multiple clock readings could be applied.
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in the hierarchy. As node vm has no predecessor, it acts as time reference node. As
soon as a node has received a Level Discovery Packet, it can start and repeat phase
2, which works as follows (see Fig. 2.23):

1. At local time cv_i(t1), node vi sends a message10 reqt containing cv_i(t1) and vi’s
level to its predecessor in the hierarchy, called vj.

2. When receiving a message reqt from a node of the next level, node vj records its local
reception time cv_j(t2), which can be expressed as (i) cv jðt2Þ ¼ cv iðt1Þþ
dtimeOffset i;j þ dtrans. Here, dtimeOffset_i,j denotes the current time offset between
nodes vi and vj; dtrans is the transfer delay composed of medium access delay,
sending delay, propagation delay, and processing delay.

3. At cv_j(t3), vj returns a response respt containing cv_i(t1), cv_j(t2), and cv_j(t3).
4. When receiving respt at cv_i(t4), which can be expressed as

(ii) cv iðt4Þ ¼ cv jðt3Þ � dtimeOffset i;j þ dtrans, vi computes11 its time offset
(iii) dtimeOffset i;j ¼ ððcv jðt2Þ � cv iðt1ÞÞ � ðcv iðt4Þ � cv jðt3ÞÞ=2 and corrects
its clock, thereby (re-)synchronizing with its time source vj.

5. To resynchronize, vi repeats steps 1–4 periodically.

TSPN assumes the same transfer delay dtrans for both message exchanges (see
Equations (i) and (ii)). This is crucial for determining dclockOffset_i,j: Without this
assumption, dtrans cannot be eliminated in equation (iii). In practice, the achievable
synchronization accuracy is reduced by the difference between transfer delays,
which cannot be determined during operation. Nevertheless, the authors report high
accuracy in their experiments, with a measured average base time offset of 17 µs
per hop in a 5-hop IEEE 802.15.4 network.

To synchronize the entire network, the clock value of the reference node has to
be propagated across all nlevel levels. Covering one level per resynchronization
interval of duration dresInt, average convergence delay can be computed as
dconv TPSN ¼ nlevel � dresInt, provided communication between clients and time ser-
ver is sufficiently reliable; nevertheless, message loss may occur, e.g., due to col-
lisions, so there actually is no upper bound for dconv_TPSN. Structural complexity is
substantial, as a hierarchical overlay topology is to be computed and maintained.

node vi 

node vj
(predecessor of vi) 

reqt (cv_i(t1))

t1 t4

respt (cv_i(t1), cv_j(t2),
cv_j(t3))

t3t2Fig. 2.23 Operation of phase
2 of TPSN

10In [15], this message is called pulse, respt is called ack.
11By resolving equations (i) and (ii) to dtimeOffset_i,j, adding, and dividing by 2.

2.3 Related Work 55



2.3.3 Reference Broadcast Synchronization

In [13], Elson et al. have presented RBS (Reference Broadcast Synchronization), a
time synchronization method building on time zone formation and clock conver-
sion. RBS exploits the property that all receivers in communication range of the
same sender receive a broadcast message of this node at about the same time
(broadcast property). The basic algorithm (re-)synchronizes nodes as follows:

1. A sender periodically broadcasts a reference beacon to a set of receivers in
communication range.

2. Each receiver records the reception time by reading its local clock.
3. All receivers exchange the observed reception times of reference beacons.
4. Each receiver computes the clock offsets to all other receivers.

To improve accuracy between resynchronizations, the clock skew between pairs
of receivers is determined, based on clock offsets over a longer period.

RBS only synchronizes nodes receiving references beacons of the same sender.
This excludes the sender, for which the broadcast property does not hold. Although
it could be argued that the sender should know the sending time, the uncertainty
about the actual start of transmission in case of shared medium access is still quite
high compared to the differences of reception times. Therefore, to synchronize the
sender, too, another node in its communication range has to take the sender role.

Network-wide time synchronization requires sender coverage, i.e., nodes are
selected as senders such that all nodes act as receivers of at least one sender.
Furthermore, the network has to be sufficiently dense. Each sender establishes a
time zone consisting of a set of synchronized nodes. In Fig. 2.24, nodes v1, v7, and
v9 act as senders, resulting in three time zones z1, z7, and z9. In time zone z1, nodes
v2 to v7 are synchronized. As sender, v1 remains unsynchronized, but also is a
receiver in time zone z7 and therefore synchronized with v5, v6, v8, v9, and v10. In
summary, all nodes are synchronized in at least one time zone. Without time zone
z7, i.e., with only two senders v1 and v9, both v1 and v9 would remain
unsynchronized.

v1

v2

v3

v4 v5

v6

v7

v10

v8

v11

v9

v12 sender (and receiver)

receiver

1-hop communication
neighborhood of v1, v7, v9

z9

z7

z1

Fig. 2.24 Operation of RBS

56 2 Tick and Time Synchronization



RBS can be applied, for instance, to convert timestamps when routing packets.
In Fig. 2.24, node v3 records and timestamps events, and then forwards these
observations to node v11 via route <v3, v4, v5, v7, v10, v11>. Here, each node vi+1
along this route converts the received timestamp to its own clock by adding the
clock offset between vi+1 and the previous hop vi. For this to work, it is necessary
that receiver vi+1 and predecessor vi belong to a common time zone, which is the
case for the route shown in Fig. 2.24. However, route <v3, v1, v5, v7, v10, v11>
would not be feasible, as v1 belonging to time zone z7 only cannot convert the
timestamp of v3 belonging to z1 only. Thus, route discovery has to consider time
zones, which mixes network functionalities that should be independent.

By exploiting the broadcast property, RBS can achieve very high average
synchronization accuracy if message receptions are timestamped early. In [13], the
authors report a measured average base clock offset of 6 µs per hop. Moreover,
clock skew is considered to improve accuracy between resynchronizations.
Drawbacks are high communication overhead up to O(n2), if all nodes act as
senders, lack of robustness against loss of reference beacons and observation frames
due to collisions, and therefore high convergence delay without upper bound. The
need to establish sender coverage requires a sufficiently dense network and leads to
high structural complexity. Finally, topology changes may impair sender coverage,
resulting in unsynchronized nodes.

2.3.4 Syncob

In [20], Krohn et al. have published Syncob, a decentralized tick synchronization
approach located on PHY layer that has similarities with BBSd. Nodes running
Syncob exchange decentralized tick frames called synchronization packets, which
are encoded as a sequence of black bursts called sync-symbols.12

Figure 2.25 (adapted from Fig. 9 of [20]) shows a simplified flow chart
describing the operation of Syncob. When not synchronized, nodes try to detect
synchronization packets (called sync-symbols in the original figure) and accept an
existing synchronization on reception. Otherwise, they start transmitting synchro-
nization packets, but remain not synchronized until detecting incoming packets.

When receiving a synchronization packet, nodes are synchronized. As before,
they try to detect synchronizations packets to resynchronize with other nodes and
transmit synchronization packets themselves. The difference to the unsynchronized
case is that these packets are now sent at aligned points in time, similar to the
exchange of decentralized tick frames in a given round of BBSd. If no tick frames
are received for some time, nodes return to the unsynchronized state.

12In Sect. III of [20], it is stated that Syncob supports time synchronization, by exchanging
reference points in time via beacon frames. Later, only sync-symbols are exchanged, which is
sufficient for tick synchronization. Time synchronization and, in particular, the resetting of local
clocks based on the reception of time values are not further addressed.
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Figure 2.25 needs some interpretation. For instance, the decision whether to
transmit or receive is taken non-deterministically, with the intention to transmit
sufficiently often in order to maintain synchronization among nodes. However, if
the decision to transmit is taken, the variable nretries is reset to the maximum,
implying that synchronization is never lost even if no synchronization packets are
received. This obviously needs some refinement.

Operation of Syncob in multi-hop networks is straightforward and briefly
addressed in [20]. The authors point out some limitations considered as future work.

Krohn et al. state that they have implemented Syncob on the pPart particle sensor
platform [23]. The built-in radio transceiver supports on–off keying, where a carrier
is created for a specified duration. With a carrier detection delay of 0.2 µs only, tick
offsets between nodes in single-hop distance are extremely small. It remains,
however, unclear how reliable this detection works in practice.

An important concern of Syncob is the non-deterministic decision about when to
transmit sync-symbols. If single-hop neighbors transmit or receive simultaneously,
they do not resynchronize. This may even lead to situations where nodes become
unsynchronized, although synchronization would be feasible. Thus, deterministic
upper bounds for tick offset and convergence delays cannot be derived.

2.3.5 BitMAC

In [24], Ringwald and Römer describe a customized MAC protocol for wireless
sensor networks called BitMAC, with an approach for tick synchronization that has
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Fig. 2.25 Operation of Syncob (see [20], Fig. 9 [The flow chart is adapted from Fig. 9 in [20],
with some corrections])
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similarities with BBSm. Here, the sink node of the sensor network takes the role of
the master node.

Before commencing regular operations, BitMAC executes a complex setup
phase (see Fig. 2.26). First, a ring structure and initial synchronization are estab-
lished. Ring formation is started by the sink node vm, which broadcasts a beacon
frame containing the current ring level nlevel, which is 1. When a non-sink node vi
receives a beacon frame for the first time, it assigns itself ring level nlevel + 1, and
determines a local tick by backward calculation. After a fixed delay, vi broadcasts a
beacon frame with its ring level. This part of the setup phase terminates after
nmaxLevel beacon rounds.

Figure 2.26 shows a topology with nmaxLevel = 3 resulting ring levels.
Obviously, there are nodes receiving beacon frames from more than one non-sink
node in the same beacon round. To prevent these collisions from being destructive,
beacon frames are encoded as sequence of black bursts (on–off keying) and sent
(almost) simultaneously.

Based on the ring structure, nodes exchange data needed to determine a spanning
tree with the sink node as root (see Fig. 2.26) and to run a coloring algorithm,
where colors represent communication channels. The spanning tree is then
decomposed into a set of connected stars, consisting of a parent node of a given
level i, 1 � i < nmaxLevel, and child nodes of the next level i + 1 in single-hop
distance of the parent node. Next, by running the coloring algorithm, channels are
assigned to each star such that communication within a star is not disturbed by
nodes belonging to other stars. Since parent nodes on levels i, 1 < i < nmaxLevel, are
also child nodes on level i–1, the protocol has to ensure that during regular oper-
ation, channels are switched in an alternating way.

After this setup phase, BitMAC commences regular operations. Based on the
initial synchronization, time is decomposed into operation rounds. The parent of a
star starts a round by transmitting a beacon frame, which resynchronizes its chil-
dren. This resynchronization is carried from sink node to all leaf nodes over a
duration of nmaxLevel operation rounds with constant duration dopRound, thus yielding

1 2 3 

sink node
non-sink node

star

Fig. 2.26 Setup phase of BitMAC
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a convergence delay dconv BitMAC ¼ nmaxLevel � dopRound, which is significantly
higher than that of BBSm. In addition, operation rounds are used for data transfer,
using the topology defined by the spanning tree and a reservation scheme.

Functionality of BitMAC goes far beyond pure tick synchronization and is
customized for wireless sensor networks with a single sink node. Tick resynchro-
nization during regular operation is achieved by forwarding beacon frames from
sink toward leaf nodes, based on ring structure, initial synchronization, spanning
tree, and channel assignments determined during the setup phase. Therefore,
BitMAC has high structural complexity. This assessment is supported by the
computation of the duration of the setup phase, which amounts to 48 s for the
BTnode3 platform hosting a Chipcon CC1000 low-power radio [24]. Although
BitMAC provides some functionality to cope with some types of topological
changes, the setup phase may have to be repeated from time to time.

A major concern is that BitMAC is highly prone to transmission errors. Bit
errors in beacon frames or in frames containing data to determine a spanning tree, to
run the coloring algorithm, and to assign channels will lead to malfunctioning.
Especially if nodes are located at the border of their communication range, the RSSI
output of the receiving node may not reflect the transmitted bit sequence reliably.

2.3.6 Comparison

In Table 2.6, we compare the synchronization approaches surveyed and discussed
in Sect. 2.3 to BBS. We assess each protocol qualitatively w.r.t. a number of
criteria, based on the information available from the published material.

• The first criterion is accuracy, with sample values for precision per hop and an
indication whether these values are upper bounds. While Syncob, which is
located on PHY layer, provides excellent precision, only BitMAC13 and BBS
provide upper bounds.

• Regarding time complexity, BitMAC and BBS perform best: The time for
resynchronization depends on the maximum network diameter d only, while in
all other approaches, it depends on the number of nodes n. Structural complexity
is substantial except for Syncob and BBS, which can operate without overlay
topologies.

• BBS delivers a very low convergence delay, as synchronization rounds are
executed consecutively. For Syncob, this delay depends on the
non-deterministic decision when to transmit sync-symbols, and thus is hard to
assess. BitMAC resynchronizes one level per operation round. Only BitMAC
and BBS provide an upper bound.

13The upper bounds reported for BitMAC are not the result of an analysis, but have been measured
during experiments; thus, they may be higher.
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• Robustness against topology changes largely depends on the structural com-
plexity. Most protocols establish overlay topologies before starting resynchro-
nization; therefore, their structural complexity is high. Here, Syncob and BBS
perform best.

• With the exception of RCRM, experiments with real hardware are reported.
Some experiments use hardware conforming to existing standards, e.g., IEEE
802.11 or IEEE 802.15.4, on top of PHY or MAC layer. Syncob and BitMAC
use specialized hardware supporting on–off keying, which may explain the high
precision. All experiments can be classified as small-scale.

In summary, only BitMAC and BBS provide upper bounds for precision, which
are derived by experiments for BitMAC, and analytically for BBS. Both protocols
have a deterministic convergence delay and low time complexity. However,
BitMAC has high structural complexity, and therefore is not robust against topol-
ogy changes.

2.4 Conclusions

In this chapter, we have explained the concepts and requirements of tick and time
synchronization, have presented our synchronization protocol Black Burst
Synchronization (BBS) for multi-hop ad hoc networks, and have surveyed and
assessed selected related work. We have argued that time synchronization is

Table 2.6 Comparison of synchronization approaches (see [3], Table 1)

Protocol Accuracy
(precision/
hop;
deterministic)

Time /
structural
complexity

Convergence
delay
(deterministic)

Robustness
against
topology
changes

Experiments
(PHY layer;
network
diameter)

RCRM
Sect. 2.3.1

very low (ms;
no)

O(n) / time
server, routing

high (no) low –

TPSN
Sect. 2.3.2

high (17 µs;
no)

O(n) /
node hierarchy

high (no) low IEEE 802.15.4
5 hops

RBS
Sect. 2.3.3

very high
(6 µs; no)

O(n2)
/ sender
coverage

high (no) low IEEE 802.11
4 hops

Syncob
Sect. 2.3.4

very high
(0.2 µs; no)

O(n) / - low (no) high specialized
1 hop

BitMAC
Sect. 2.3.5

high (20 µs;
yes)

O(d) / ring
structure, stars

low (yes) low specialized
2 hops

BBS
Sect. 2.2

high (16 µs;
yes)

O(d) / - very low (yes) high IEEE 802.15.4
4 hops
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essential for the operation of distributed real-time computer systems, and in par-
ticular for data fusion or synchronized value sampling. For network-wide medium
slotting and duty cycling, tick synchronization is already sufficient. This makes tick
and time synchronization a core functionality.

After reaching network stabilization, BBS provides the following properties: tick
and time synchronization with low upper bounds for tick offset, time offset, and
convergence delay, low complexity of computation, storage, time, and structure,
and robustness against topology changes. We have implemented BBS on com-
mercial hardware platforms (MICAz and Imote2), using the CC2420 transceiver
and its IEEE 802.15.4 PHY layer functionality, and have analytically and experi-
mentally assessed its accuracy, performance, and reliability. By optimizing the jitter
of the clear channel assessment mechanism and by reducing switching times, the
achievable accuracy and performance of BBS could even be improved.

BBS exploits three key insights. First, nodes can synchronize time slots by
agreeing on sufficiently accurate network-wide reference ticks, without synchro-
nizing their local clocks. This reduces the amount of synchronization data to be
exchanged among nodes. Second, time synchronization can be achieved on top of
tick synchronization, without much additional exchange of synchronization data.
Third, by encoding synchronization messages with black bursts, potential collisions
are non-destructive. This reduces convergence delay substantially, as nodes can
transmit messages simultaneously, and enables deterministic operation.

Some protocols reported in the literature achieve better accuracy than BBS.
However, they often are more complex in terms of computation, time, and/or
storage, which is a drawback in the context of resource-limited nodes. Furthermore,
they often lack upper bounds for clock offset and convergence delay, require the
establishment of an overlay topology, and/or depend on a modulation scheme that is
only supported by specialized transceivers.

Literature

Chair for Networked Systems

1. Gotzhein R (2014) ProNet 4.0—a wireless real-time communication system for industry 4.0.
White Paper, Networked Systems Group, Department of Computer Science, University of
Kaiserslautern, 2014, http://vs.informatik.uni-kl.de/publications/2014/Go14/whitePaperEN-
ProNet4.0.pdf. Last Accessed 27 Aug 2019

2. Gotzhein R, Kuhn T (2008) Decentralized tick synchronization for multi-hop medium slotting
in wireless Ad Hoc networks using black bursts. In: Proceedings of the 5th annual IEEE
communications society conference on sensor, mesh, and ad hoc communications and
networks (SECON 2008), San Francisco, USA, June 16–20, 2008, pp 422–431

3. Gotzhein R, Kuhn T (2011) Black burst synchronization (BBS)—a protocol for deterministic
tick and time synchronization in wireless networks. Comput Netw 55(13):3015–3031 Elsevier

62 2 Tick and Time Synchronization

http://vs.informatik.uni-kl.de/publications/2014/Go14/whitePaperEN-ProNet4.0.pdf
http://vs.informatik.uni-kl.de/publications/2014/Go14/whitePaperEN-ProNet4.0.pdf


4. Engel M, Christmann D, Gotzhein R (2014) Implementation and experimental validation of
timing constraints of BBS. In: Krishnamachari B, Murphy AL, Trigoni N (eds) 11th European
conference on wireless sensor networks (EWSN 2014), Oxford, United Kingdom, Feb 17–19,
2014. Springer LNCS 8354, pp 84–99

5. Gotzhein R, Kuhn T (2011) Method, computer program product and system for the tick
synchronization of nodes in a wireless multi-hop network. European Patent Office, Az EP
2195949, Aug 31, 2011 (date of granting)

6. Christmann D (2015) On the development of a wireless binary countdown protocol and the
applicability of SDL to such time-critical systems. Ph.D. Thesis, Computer Science
Department, University of Kaiserslautern

Further References

7. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a
survey. Comput Netw 38(4):393–422 Elsevier

8. Atmel Corporation (2009) AVR low power transceiver AT86RF230, 5131E-MCU
Wireless-02/09, http://ww1.microchip.com/downloads/en/DeviceDoc/doc5131.pdf. Last
Accessed 27 Aug 2019

9. Chipcon AS (2019) CC2420 Zigbee-ready RF transceiver, http://www-inst.eecs.berkeley.edu/
*cs150/Documents/CC2420.pdf. Last Accessed 27 Aug 2019

10. Cristian F (1989) Probabilistic clock synchronization. Distrib Comput 3:146–158 Springer
11. https://en.wikipedia.org/wiki/DCF77. Last Accessed 27 Aug 2019
12. Dorf RC, Bishop RH (2016) Modern control systems, 13th edn. Pearson Education
13. Elson J, Girod L, Estrin D (2002) Fine-grained network time synchronization using reference

broadcasts. In: Proceedings of the fifth symposium on operating systems design and
implementation (OSDI 2002), Boston, MA, USA, Dec 2002

14. Ettus Research, USRP (2013) Universal software radio peripheral 2, https://www.ettus.com/
product/category/USRP-Networked-Series/. Last Accessed 27 Aug 2019

15. Ganeriwal S, Kumar R, Srivastava MB (2003) Timing-sync protocol for sensor networks. In:
SenSys’03. Los Angeles, CA, USA

16. https://en.wikipedia.org/wiki/Global_Positioning_System. Last Accessed 27 Aug 2019
17. van Hoesel LFW, Havinga PJM (2008) Collision-free time slot reuse in multi-hop wireless

sensor networks. In: Conference on intelligent sensors, sensor networks and information
processing, Melbourne, Australia, Dec 5–8, 2008, pp 101–107

18. IEEE Standards Association: IEEE Std 802.15.4–2011: IEEE Standard for Local and
Metropolitan Area Networks, Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs), Sep 2011, 314p

19. MEMSIC Inc (2019) Imote 2 datasheet. https://vs.cs.uni-kl.de/downloads/Imote2NET_ED_
Datasheet.pdf. Last Accessed 27 Aug 2019

20. Krohn A, Beigl M, Decker C, Riedel T (2007) Syncob: collaborative time synchronization in
wireless sensor networks. In: Fourth international conference on networked sensing systems,
June 6–8, 2007

21. Crossbow Technology Inc (2019) MICAz wireless measurement system, document part Nr
6020-0060-04 Rev A http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf.
Last Accessed 27 Aug 2019

22. Mills DL (1991) Internet time synchronization: the network time protocol. IEEE Trans
Commun COM-39(10):1482–1493

23. Particle Web Site (2019) University of Karlsruhe, http://particle.teco.edu/. Last Accessed 27
Aug 2019

24. Ringwald M Römer R (2005) BitMAC: a deterministic, collision-free, and robust Mac
protocol for sensor networks. In: Proceedings of the second European workshop on wireless
sensor networks, Feb 2005

Literature 63

http://ww1.microchip.com/downloads/en/DeviceDoc/doc5131.pdf
http://www-inst.eecs.berkeley.edu/%7ecs150/Documents/CC2420.pdf
http://www-inst.eecs.berkeley.edu/%7ecs150/Documents/CC2420.pdf
https://en.wikipedia.org/wiki/DCF77
https://www.ettus.com/product/category/USRP-Networked-Series/
https://www.ettus.com/product/category/USRP-Networked-Series/
https://en.wikipedia.org/wiki/Global_Positioning_System
https://vs.cs.uni-kl.de/downloads/Imote2NET_ED_Datasheet.pdf
https://vs.cs.uni-kl.de/downloads/Imote2NET_ED_Datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://particle.teco.edu/


25. Sarvghadi MA, Wan T.-C. (2016) Message passing based time synchronization in wireless
sensor networks: a survey. Int J Distrib Sens Netw 12(5)

26. Sobrinho JL, Krishnakumar AS (1999) Quality of service in ad hoc carrier sense multiple
access networks. IEEE J Sel Areas Commun 17(8):1353–1368

27. Sundararaman B, Buy U, Kshemkalyani AD (2005) Clock synchronization for wireless sensor
networks: a survey. Ad Hoc Netw 3(3):281–323

28. Swain AR, Hansdah RC (2015) A model for the classification and survey of clock
synchronization protocols in WSNs. Ad Hoc Netw Elsevier 27:219–241

29. Ye W, Heidemann JS, Estrin D (2002) An energy-efficient mac protocol for wireless sensor
networks. In: 21st IEEE conference on computer communications (INFOCOM 2002), New
York, USA, June 23–27, 2002, pp 1567–1576

30. ZigBee™ Alliance (2019) Zigbee specification, Version 1.0, June 2005, URL: www.zigbee.
org, 378 p. Last Accessed 27 Aug 2019

64 2 Tick and Time Synchronization



Chapter 3
Global Time Slotting

Global time slotting is a key functionality for distributed real-time computer sys-
tems and in particular for deterministic medium access. In this chapter, we explain
the foundations of global time slotting, present our flexible solution ProSlot of the
ProNet 4.0 protocol stack [2, 3], survey and assess related work, and draw
conclusions.

3.1 Foundations

In this chapter, we provide the context of global time slotting, explain concepts and
requirements, and address areas of operation.

3.1.1 Context

Time slotting is essential for the operation of distributed real-time computer systems
and applied in many other areas as well. The idea of time slotting is to structure
time into a sequence of intervals called (time) slots. Slots can then be used as
scheduling units, for instance, in production, maintenance, logistics, venue man-
agement, and, of course, in computing. Operating system schedulers assign com-
putation slots called time slices to control CPU usage of tasks. Communication
systems build on time slots to control medium access.

To enable deterministic operation of communication systems, a network-wide
perception of time structuring, i.e., global time slotting, is required. The basis for
this is established by tick synchronization (see Chap. 2), which provides global
reference points in time of specified accuracy. Time slots can be associated with
specific purposes. In communication systems, time slots are typically used to
schedule medium access, for instance, exclusive access, shared access, or shared
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access restricted to a defined subset of competing nodes or messages. Time slots
may also be used to schedule resynchronization and as idle intervals to save energy.

3.1.2 Concepts and Requirements

The objective of global time slotting is to structure time into synchronized intervals.
This requires network-wide tick synchronization. Time slotting is a common
technique to enable the deterministic operation of wired and wireless communi-
cation systems.

• In the automotive domain, FlexRay [5] has become an important technology for
x-by-wire systems such as steering and braking. Here, time is structured into a
hierarchy of time slots. On top level, time is subdivided into groups of 64
subsequent communication cycles of equal length. Each communication cycle is
decomposed into 4 segments, some of which are further substructured into static
slots, mini slots, and/or dynamic slots.

• IEEE 802.15.4 [6], a wireless technology standard used by ZigBee [9], struc-
tures time into a sequence of super frames, which are decomposed into active
and inactive period. Active periods are then subdivided into 16 super frame slots
of equal length, which are composed into distinct intervals for contention and
contention-free medium access. In addition, backoff slots and guaranteed time
slots are used.

While the notions used to refer to types of time slots are different, the basic
concepts of structuring time are common to these and other technologies. We can
identify the following parameters of time slotting:

• Slot hierarchy: Structuring of time is usually done in a hierarchical way, starting
with long time intervals, which may then be decomposed into smaller slots
step-by-step.

• Slot types: Slots may be assigned different purposes, on different levels of the
slot hierarchy as well as on a given level, which is made explicit by introducing
slot types.

• Number of slots: Slots may be substructured into a number of smaller slots,
which may be fixed or bounded.

• Length of slots: Slots have a length in time, which may be fixed, bounded, or
variable.

Global time slotting is the basis for providing timely and reliable medium access
and for synchronizing the operation of nodes. The parameters of time slotting, i.e.,
slot hierarchy, slot types, number and length of slots, are derived from the intended
use on application and system level.

• In control systems, sensor values are sampled periodically, with periods deter-
mined by timing requirements to achieve control objectives such as system

66 3 Global Time Slotting



stability. In each period, measured values are sampled and communicated to the
controller, which determines steering values sent to actuators.

• Many control system theories assume that measured values are transferred
reliably at specified points in time. This can be achieved by reserving suitable
time slots exclusively.

• With time slotting, it is possible to support maximum reaction delays. Here, the
interval between reserved time slots must be chosen such that the lengths of this
interval plus event handling delays are below the specified reaction delay.
A drawback in the case of sporadic events with short maximum reaction delays
is that this consumes many time slots, which are wasted if no event occurs.

• If several control systems are operated over the same communication system,
different sampling periods may exist, which may render time slotting more
complicated.

• On system level, tick and time resynchronization is to be scheduled periodically,
with periods derived from required synchronization accuracy.

• Energy saving is another system level functionality that requires global time
slotting. Here, hardware devices such as CPU or transceiver are switched to
sleep or idle mode for defined intervals.

In addition to the considerations so far, flexibility of global time slotting is
important. For instance, fixing the number and/or length of time slots reduces
flexibility. Furthermore, a strict pattern of active and inactive periods, as found in
existing communication technologies, impedes the provision of maximum reaction
delays. In general, a flexible global time slotting supports a variable number of slots
of different slot types, lengths, and placements.

In summary, we can state that the global time slotting of the communication
medium is an important functionality that requires careful planning.

3.1.3 Areas of Operation

Global time slotting supports the operation of distributed systems both on user level
and on system level. In networked production and control systems, time slots are
reserved to provide predictable timing behavior and reliable message exchange.
Time slotting is also needed for periodic resynchronization and for duty cycling.

Figure 3.1 shows an abstract communication schedule, based on global time
slotting. Here, 4 macroslots Msi of different sizes nMs_i are distinguished, each
consisting of mini slots msk of fixed length. Mini slots are exclusively assigned to
message types1; e.g., mini slot ms3 of macroslot Ms1 is assigned to message type

1In the example, we assume that addressing is based on message types: A message type identifier
is uniquely associated with a sending node, and one or more receiving nodes.
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id7. Sizes of macroslots are derived from sampling periods and maximum reaction
delays on application level (Ms1, Ms2, Ms4), from the resynchronization period
(Ms3), and from the required length of a mini slot dms for sending a message and
receiving an acknowledgment. For instance, macroslots Ms1 and Ms4 consist of
nMs_1 = 6 and nMs_4 = 72 mini slots, yielding a length of dMs_1 = 6 � dms and
dMs_4 = 72 � dms, respectively.

Sampling periods and therefore macroslots are repeated periodically, and overlay
with each other. This means that the reservation of ms3 of Ms1 is repeated every 6
mini slots and overlays with slots ms3 and ms9 of Ms2, slots ms3, ms9, ms15, ms21,
ms27, and ms33 ofMs3, etc. Thus, these mini slots cannot be assigned to messages in
their macroslots.

In Fig. 3.1, sampling periods are chosen such that smaller periods fit into larger
periods for a multiple of whole numbers times. In other words, macroslots Msi,
1 < i � 4, can be arranged as harmonic chain: dMs_i = ki � dMs_i-1, where ki 2 N.
This has the advantage that reservations can be made with the smallest possible
waste of mini slots. Consider, for instance, macroslots Ms1’ and Ms2’ of length
dMs_1’ = 4 � dms and dMs_2′ = 6 � dms, with ms1 of Ms1’ reserved for some message
idk. This reservation not only consumes ms1 and ms5 of Ms2′, but also ms3. The
reason is that the macroslots cannot be arranged as harmonic chain, resulting in
substantial waste.

The transmission schedule in Fig. 3.1 can also be used to determine idle periods.
Only nodes involved in a scheduled communication have to be active; all other
nodes can switch to sleep mode, in order to save energy.

A drawback of the time slotting in Fig. 3.1 is that mini slots have a fixed size. If
frames of different sizes are to be sent, it is possible to reserve n > 1 consecutive
mini slots for the transmission of larger frames. However, this will produce waste,
as the nth mini slot of each reservation will not be fully used. To minimize waste,
macroslots could be structured into very short micro slots, which are then composed
into mini slots of flexible size adapted to frame lengths. This, however, would
destroy the structure of macroslots, as mini slots of different super slots would no
longer be aligned. We will revisit this problem in Sect. 3.2.

mini slot
macro slot ms1 ms2 ms3 ms4 ms5 ms6 ms7 ms8 ms9 ms10 ms11 ms12 … ms36 … ms72

Ms1 (sampling) id7
Ms2 (sampling) id23
Ms3 (resync) idr idr id35 …
Ms4 (sampling) id12 … id52 …

Fig. 3.1 Time slotting and transmission schedule
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3.2 Global Time Slotting in ProNet 4.0

Global time slotting is a basic functionality of the protocol stack ProNet 4.0 [1] and
performed by the protocol component ProSlot [2, 3]. Based on the analysis of
general timing requirements on application and system level, we have decided to
structure time physically and then compose physical time slots into virtual time
regions. We show that these design decisions provide a high degree of flexibility.

3.2.1 Physical Time Slotting

Physical time slotting divides time into a sequence of super slots consisting of
micro slots (see Fig. 3.2). The rationale behind this time structuring is the
following:

• The duration of super slots depends on sampling periods of applications and
resynchronization period. To keep bandwidth waste small, sampling and
resynchronization periods should be chosen such that they can be arranged as a
harmonic chain (see Sect. 3.1.3), with the longest period defining the (fixed)
duration of super slots.

• Each super slot is decomposed into consecutively numbered micro slots of fixed
length. Micro slots are later composed into virtual time regions of different type
and variable length. As a time region consists of an integer number of micro
slots, we can expect that to achieve a defined length, there is an average waste of
50% of a micro slot per time region. To keep this waste small, micro slots
should be very short, e.g., in the order of a few microseconds.

In summary, physical time slotting establishes a fixed, stable, and strictly peri-
odic time structure.

super slot

micro slot

… … 

Fig. 3.2 Physical time slotting
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3.2.2 Virtual Time Slotting

Virtual time slotting builds on physical time slotting and combines consecutive
micro slots into virtual time regions of different types. For tick resynchronization,
sync regions are formed and placed at the beginning of each resynchronization
interval (see Fig. 3.3). The size of a sync region depends on the amount of
resynchronization to be performed. In case of BBS (Black Burst Synchronization;
see Chap. 2), it is determined by the constant convergence delay dconv. The size
dresInt of a resynchronization interval—also called resync slot—depends on the
required tick and clock accuracy.

Figure 3.4 illustrates the versatility of virtual time slotting. Starting points are
sampling slots 1 and 2 of the application, and a resync slot on system level. In the
example, these slots can be arranged as harmonic chain, to reduce bandwidth waste
(see Sect. 3.1.3). Each sampling and resync slot has its own virtual time slotting,
with the following slot types:

• Sync regions are formed for (re-)synchronization purposes and contain a sync
slot, as already explained.

• Exclusive regions host contention-free traffic and are substructured into exclu-
sive slots that can have different length.

real tick

super slot

sync region

resync slot
… … 

Fig. 3.3 Virtual time slotting—sync regions

super slot (= sampling slot 2)

sampling slot 1 sync region

exclusive region

shared region

type A region

type B region

resync slot

exclusive slots

Fig. 3.4 Global virtual time slotting
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• Shared regions are formed for general contention-based traffic, applying, e.g.,
random backoff schemes and frame priorities.

• Type A and type B regions are placeholders for other kinds of traffic, e.g.,
restricted contention (see Sect. 5.2.3) or multi-hop arbitration (see Chap. 6).

It is important that virtual time regions of sampling slots and resync slots do not
overlap. Figure 3.5 continues the example in Fig. 3.4. Here, resync slot and sam-
pling slot 1 are repeated, to fill the super slot. Then, all virtual time regions are
projected into a single diagram. This shows that the virtual time slotting in Fig. 3.4
is feasible. Furthermore, it shows that there are periods in time that are not yet
consumed. We compose the corresponding micro slots into idle regions, which can
be used for energy saving.

3.2.3 Flexibility

The combination of physical and virtual time slotting provides a high degree of
flexibility, while reducing bandwidth waste due to unusable slot portions to a
minimum. Physical time slotting establishes a fixed, stable, and strictly periodic
time structure, consisting of super slots and (very short) micro slots. Virtual time
regions of different types and lengths can then be formed and placed into super
slots, by combining consecutive micro slots and defining the starting point as the
first of these micro slots. Depending on their usage, virtual time regions can also be
substructured into virtual slots of different length, as shown in Fig. 3.4 for an
exclusive region. In Chap. 2, sync regions (called synchronization phases) have
been substructured into sync slots (called synchronization rounds). Again, this
substructuring exploits the physical time slotting, by combining consecutive micro
slots and defining starting points of virtual slots.

Flexibility is further enhanced by the possibility to place virtual slots at arbitrary
points in time of a super slot, without considering idle periods in the first place. This
is illustrated in Fig. 3.5, where idle regions are derived after all other virtual time
regions have been placed according to application and system level requirements.
This minimizes waiting delays, because the striving for long idle periods does not
dominate the need for short sampling periods and reaction delays.

super slot (= sampling slot 2)

sampling slot 1 sampling slot 1

resync slot resync slot resync slot resync slot

sync region
exclusive region
shared region
type A region
type B region
idle region

Fig. 3.5 Global virtual time slotting (cont’d)
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In ProNet 4.0, the physical time structure is kept stable. However, virtual time
slotting can be performed statically and/or dynamically. To maintain deterministic
operation, sync regions should always be placed at the start of a resync slot, which
should have fixed length. Other virtual time regions may be adapted dynamically.
For instance, an exclusive region may be extended or shortened dynamically,
depending on the need for exclusive time slots. This also has an effect on idle
regions, which may shrink or grow.

3.3 Related Work

To place the global time slotting performed by ProSlot into context, we now survey
and discuss related work. In particular, we address how the time structure of other
wireless communication technologies can be mapped to the time slotting of ProSlot,
which further proves its flexibility.

3.3.1 IEEE 802.15.4

IEEE 802.15.4 [6] is a wireless personal area network (PAN) technology standard
for short distances supporting time slotting, which is also used by ZigBee [9]. Time
slotting is possible in so-called beaconed mode, where a master station referred to
as PAN coordinator periodically transmits beacon messages to nodes in commu-
nication range, indicating the start of a super frame. Thus, time slotting is restricted
to single-hop networks.

Figure 3.6 shows the hierarchical structuring of time defined by IEEE 802.15.4.
On top level, time is decomposed into super frames, consisting of active and
inactive period. The active period is further subdivided into 16 super frame slots of
equal length, which are composed into dynamic intervals called contention access
period (CAP) and contention free period (CFP). At the beginning of the active
period, a beacon message is sent, signaling the start and structure of the current
super frame to nodes in communication range. In the CFP, up to 7 consecutive
super frame slots are composed into Guaranteed Time Slots (GTSs) for exclusive
medium access.

Super frame slots have a minimum length of aBaseSuperframeDuration defined
by a number nsym = 60 of symbol durations dsym. For instance, when transmitting
on the ISM band, transmission rate and encoding yield a value dsym = 16 µs. By
multiplying this minimum length with 2SO (SO is the super frame order), super
frame slots and thereby the active period can be extended, yielding the super frame
duration SD2.

2Actually, SD is the duration of the active period, but referred to as super frame duration.
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The length of the inactive period is defined as length of the beacon interval BI
minus SD. BI is given as the minimum super frame slot duration multiplied by 2BO

(BO is the beacon order, with BO � SO). This implies a length of 2BO−SO − 1
times the duration of the active period, which is a very coarse super frame structure
yielding long waiting delays. On the other extreme, if BO = SO, nodes are always
active.

To cope with varying communication requirements, some of the above config-
uration parameters can be adapted dynamically. In particular, beacon order BO,
super frame order SO, and the number of super frame slots assigned to CAP and
CFP can be modified by the PAN coordinator for each super frame and commu-
nicated in the beacon message. Similarly, reservations of GTSs can be changed
during execution.

Though time slotting in IEEE 802.15.4 supports energy-saving, exclusive
reservations, medium contention, and dynamic adaption of super frame configu-
ration and reservations, it has a number of drawbacks.

• With IEEE 802.15.4, beaconing and thus time slotting are only feasible in
single-hop networks.

• A maximum of only 7 super frame slots can be assigned to the CFP, meaning
that at any point in time, only up to 7 exclusive reservations can be supported.

• Super frame slots are of equal length and rather large. Thus, if a GTS consisting
of one or more such slots is formed, on average 50% of a super frame slot are
wasted.

• Dimensioning of super frames, active periods, and inactive periods is rather
inflexible and coarse, due to the use of sizes to the power of 2.

• The size of an inactive period always is 2BO−SO − 1 times the duration of the
active period. In case of a duty cycle (fraction of active period and beacon
interval) of 3.125%, achievable by SO − BO = 5, for instance, the maximum
reaction delay is increased to 32 times the length of the active period.

super frame

active period inactive period

beacon
CAP CFP

GTS GTS inactive

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SD = aBaseSuperframeDuration ⋅ 2SO symbols

active
BI = aBaseSuperframeDuration ⋅ 2BO symbols

Fig. 3.6 Time slotting in IEEE 802.15.4—beaconed mode (see [6], Fig. 8)
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• Dynamic configuration decisions supported by IEEE 802.15.4 are not
straightforward and may lead to a timing behavior that is difficult to predict.

In comparison, ProSlot provides substantially more flexibility and avoids most
of the listed drawbacks. In particular, ProSlot is sufficiently flexible to emulate the
slot structure of IEEE 802.15.4. To see this, assume that a super slot of ProSlot has
the maximum length of a super frame of IEEE 802.15.4. Super slots of ProSlot are
then decomposed into super frames of lower beacon order BO, which in turn are
substructured into sync region, shared region, exclusive region, and idle region
corresponding to beacon, CAP, CFP, and inactive period, with lengths restricted by
the configuration parameters of IEEE 802.15.4. Finally, the exclusive region is
decomposed into exclusive slots, corresponding to GTSs.

3.3.2 WirelessHART

WirelessHART [4, 8] is a technology devised for wireless networking of intelligent
field devices, especially for process control in factories.3 It extends the wired
Highway Addressable Remote Transducer (HART) protocol developed by the
company Rosemount and has been standardized by the HART Communication
Foundation (HCF).

Communication in WirelessHART is based on global time slotting, which is
controlled by a master node vm taking the role of a network manager. Time slotting
is performed in two steps.

• First, time is structured physically into slots of fixed duration dslot = 10 ms.
Slots are numbered consecutively, by assigning an Absolute Slot Number
(ASN) with a value range of 0–240 − 1. As there is no reset of ASN, there is no
further super slot structure.

• Next, physical time slots are composed into virtual time regions called super
frames sfi of fixed length dsf_i, derived from scan periods i of the application.
Thus, the number nsf_i of physical time slots of a super frame sfi is dsf_i/dslot.

Figure 3.7 shows an example of time slotting and slot scheduling in
WirelessHART, adapted from [4]. On application level, 4 scan periods of 1, 4, 8,
and 16 s are distinguished, yielding super frames 0–3 with these durations. We
observe that super frames can be arranged as harmonic chain (see Sect. 3.1.3),
which reduces bandwidth waste. Given a slot duration of 10 ms, we obtain 100,
400, 800, and 1600 physical slots.

The figure also shows part of a slot schedule, where physical time slots tsi are
exclusively assigned for transmissions vi ! vj between pairs of nodes. In

3Another communication technology in this application field is ISA 100.11a [7]. Since time
slotting of ISA 100.11a has strong similarities with WirelessHART, we omit a detailed
presentation.
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Sect. 3.2.2, we have pointed out that it is important that after projecting all virtual
time regions—super frames of WirelessHART—into a single diagram, slot
assignments do not overlap. In the example, this constraint is not satisfied. For
instance, ts0 is assigned three times. To support multiple slot usage, the capability of
WirelessHART to use several active channels concurrently is exploited. Given an
active channel table, an index into this table is computed from ASN, channel offset
(see Fig. 3.7, first column) and table size. For different channel offsets and a suf-
ficiently large number of active channels, this computation yields different
channels.

Global time slotting in WirelessHART supports multi-hop networks.
Furthermore, time slotting is performed synchronously on multiple channels, which
increases the communication bandwidth. Another plus factor is a certain degree of
flexibility achieved by the combination of physical and virtual time structuring, and
the possibility to adapt slot schedules at runtime. On the other hand, there are a
number of drawbacks limiting flexibility:

• Physical and virtual time structures are static. In particular, physical time slots
have a fixed length dslot = 10 ms, which results in bandwidth waste if messages
fitting into a slot have different length. Furthermore, messages not fitting into a
single slot have to be split for transmission.

• Only exclusive slots are supported; other slot types, e.g., contention slots, are
not permitted.4

super frame 0 (scan period = 1 sec)
Ch. Offset ts0 ts1 ts2 ts3 ts4 ts5 ts6 … ts99

0 v2 → v1 v2 → v5 v5 → vm v1 → vm

1 v3 → v1 v3 → v4 v4 → vm v1 → vm

super frame 1 (scan period = 4 sec)
Ch. Offset ts0 ts1 ts2 ts3 ts4 ts5 ts6 ts7 … ts399

1 v4 → vm

super frame 2 (scan period = 8 sec)
Ch. Offset ts0 ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 … ts799

1 v5 → vm

super frame 3 (scan period = 16 sec)
Ch. Offset ts0 ts1 ts2 ts3 ts4 ts5 ts6 ts7 ts8 ts9 … ts1599

2 v6 → v1 v6 → v5 v1 → vm v5 → vm v1 → vm

Fig. 3.7 Time slotting and schedule in WirelessHART (adapted from [4], Fig. 7.8)

4Synchronization is achieved as a byproduct of regular message exchange; therefore, explicit sync
slots are not required.
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In comparison, ProSlot provides substantially more flexibility and avoids the
listed drawbacks. In particular, ProSlot is sufficiently flexible to emulate the slot
structure of WirelessHART.5 For this, physical time slotting can be adapted by
using micro slots of 10 ms each. Furthermore, sampling slots of ProSlot (see
Fig. 3.4) can be directly derived from super frames of WirelessHART. Finally,
sampling slots are configured as exclusive regions, consisting of exclusive slots of
one micro slot each.

3.4 Conclusions

In this chapter, we have explained the concepts and requirements of global time
slotting, have presented our time slotting protocol ProSlot of the protocol stack
ProNet 4.0 [1], and have surveyed and compared existing wireless technologies.
The idea of time slotting is to structure time into well-defined intervals called slots,
which are used by communication systems to control medium access. For instance,
by assigning time slots exclusively, deterministic medium access can be granted.

We have argued that our approach of combining fixed, strictly periodic physical
time slotting and variable, weakly periodic virtual time slotting provides a high
degree of flexibility. This minimizes waiting delays and enables customized idle
periods. We have shown how by configuring ProSlot suitably, the less general time
slotting schemes of IEEE 802.15.4 (beaconed mode) and of WirelessHART can be
emulated.
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Chapter 4
Automatic Topology Detection

Information about network topology is essential for the operation of wireless net-
works in general, and of networked control systems in particular. In this chapter, we
explain the foundations of topology detection, present our protocol1 Automatic
Topology Discovery Protocol [2] (ATDP) for topology detection in TDMA-based
wireless multi-hop networks, survey and assess related work, and draw conclusions.

4.1 Foundations

In this chapter, we provide the context of topology detection, explain concepts and
requirements, and address areas of operation.

4.1.1 Context

In wireless networks, information about network topology is of utmost importance.
Knowledge about communication, interference, and sensing topologies enables
more efficient and reliable use of the wireless medium. Manually measuring and
configuring topology information is very cumbersome, even in stationary envi-
ronments. Rather, it is crucial to detect topology automatically.

Topology information, or, more general, network status information, is needed
for various networking functionalities, e.g., for routing, clustering, and network
management. The objective of routing is to discover and operate routes between
sets of source and destination nodes. Clustering divides a network into groups of
nodes supporting, e.g., network scaling, hierarchical routing, and energy manage-

1The protocol ProTop of the ProNet 4.0 protocol stack is an implementation of ATDP.
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ment. Network management addresses performance monitoring, quality of service
provision, and analysis of network failures.

Typically, routing and clustering protocols comprise the collection of network
status information, which makes them self-contained. Different protocols may need
different views on the network, e.g., link states, aggregated path states, or n-hop
neighbor sets. To collect and update network status information, management
messages are exchanged.

For routing, the network status provides information about the communication
topology, i.e., about links for successful message exchange. In wireless networks,
there is the problem that nodes outside communication range of a receiving node
may still interfere and thereby render a message exchange unsuccessful. To address
this problem, the network status should comprise information about the interference
topology, i.e., about nodes in interference range, too. A decision which nodes may
cause interference can be made, for instance, based on previous knowledge about
their transmission intervals, which is feasible in TDMA-based wireless multi-hop
networks with transparent slot assignment. In a similar way, sensing links, i.e., links
where transmission activities can be perceived, may be detected, which is useful for
the transfer of messages encoded by black bursts (e.g., see Chap. 6) or to relax the
hidden station problem (see Sect. 4.1.2).

4.1.2 Concepts and Requirements

The objective of topology detection is to collect and disseminate information about
the nodes and links of a network. This information can then be used by other
functionalities, e.g., routing and clustering.

In the literature, different types of communication models are used:

• Physical models, also called radio propagation models, such as free-space path
loss or two-ray ground reflection.

• Stochastic models based, for instance, on geometric properties, such as the
random disk model.

• Graph-based models, with nodes and edges, where the presence and absence of
edges model the existence of links with reliability 1 and 0, respectively.

As we focus on deterministic protocols, we use graph-based models to describe
network topologies. Of course, as in all types of models, this is an abstraction from
real-world phenomena. Formally, a graph-based model G = (V, E) is given by a set
V of nodes and a set E � V � V of edges.

Among graph-based models, we distinguish the following types of topologies:

• A communication topology is modeled as a graph GC = (V, EC), where links
e = (vi, vj) express that vj is in communication range of vi, i.e., vj can success-
fully receive messages from vi.
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• An interference topology is modeled as a graph GI = (V, EI), where links e = (vi,
vj) express that vj is in interference range of vi, i.e., vi can interfere with a
reception at vj.

• A sensing topology is modeled as a graph GS = (V, ES), where links e = (vi, vj)
express that vj is in sensing range of vi, i.e., vj can determine whether vi is
currently transmitting.

We assume that a node vj in communication range of vi is also in interference
and sensing range of vi, and that a node vj in interference range of vi is also in
sensing range of vi. The graphs GC, GI, and GS can be merged into a combined
network topology G = (V, L, E), where L = {c, i, s} is a set of labels distinguishing
between different types of links. We require that the complete communication
subgraph2 GC = (V,{c}, EC) is connected, i.e., for all pairs of distinct nodes, there is
a path of communication links.

Figure 4.1 shows a symmetrical graph-based topology. Solid lines represent
communication links, which are interference and sensing links, too. To simplify
presentation, only communication links are shown in these cases. Additional
interference links, which are also sensing links, are depicted as dashed lines.
Finally, sensing links not yet captured as communication or interference links are
shown as dotted lines.

The topology in Fig. 4.1 has the additional feature that for each communication
link (vs, vr, c), nodes vi in interference range of vr are also in sensing range of vs, i.e.,
(vi, vr, i) implies (vi, vs, s). It follows that there are no hidden stations in this
topology; so, carrier sensing before transmission is sufficient. To check for this
feature, knowledge about communication, interference, and sensing topologies is
required.

Automatic topology detection and dissemination can be achieved by systematic
exchange of messages. In principle, a communication link (vi, vj, c) can be added
when vj successfully receives a message from vi and removed when there has been
no such reception for some time (concept of soft state). However, for a stable
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Fig. 4.1 Graph-based symmetrical topology (see [13], Fig. 1)

2Obtained by reducing G to the set of all nodes and all communication links.
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topology, it would be better to add only communication links that have already
proven reliable.

Communication link detection is based on successfully received messages,
which contain the required information such as sender node id and sequence
number to check for lost or corrupted messages. This is different for interference
and sensing links that are not communication links, too. Here, the problem arises
that without further measures, it cannot be determined which node is causing an
interference, or which node is sending when energy on the medium is detected. We
will solve this problem for TDMA-based wireless multi-hop networks, using a
transparent assignment of exclusive time slots during system startup.

4.1.3 Areas of Operation

Topology detection supports the operation and efficient usage of wireless multi-hop
networks. Routing protocols as well as clustering protocols require knowledge
about communication topologies. Space-division multiple access (SDMA), where
nodes with transmissions not impairing each other may use the medium simulta-
neously, is based on additional knowledge about interference topologies.
Communication via black burst encoded bit sequences (see Chaps. 2 and 6) exploits
sensing topologies.

The objective of routing is to discover and operate routes between sets of source
and destination nodes, which requires information about the communication
topology. Depending on the type of routing, this information may be global or
aggregated. Global information consists of the entire communication topology
known to one or more nodes and may comprise additional link properties such as
delay and throughput. Aggregated information reduces global information to
abstract parameters, such as global topology to hop count between pairs of nodes or
link delays to path delays.

The objective of network clustering is to divide a network into groups of nodes,
to support, e.g., network scaling and energy management. Network scaling is a
technique for the management of large networks, where, generally speaking, ded-
icated nodes act on behalf of others. On application level, this is needed for the
operation of distributed and/or replicated service registries. On system level,
clustering is the basis for hierarchical routing, which reduces routing traffic and the
size of routing tables. Energy management is a technique for extending network
lifetime, e.g., by rotating tasks between nodes of a cluster for even energy con-
sumption. Depending on clustering objectives, different information such as net-
work density of n-hop neighborhood may be deduced from knowledge about
communication topology.

In TDMA-based wireless multi-hop networks, SDMA is a well-known technique
to increase throughput. If nodes are sufficiently far apart, they may use the same
time slot for exchanging messages. Figure 4.2 shows the one-hop communication
and interference neighborhoods of node v5. Obviously, transmissions of v5 would
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interfere with receptions of v3, v4, v6, and v7 from nodes other than v5. However,
nodes outside interference neighborhood of v5 can communicate simultaneously
without destructive collisions,3 thereby increasing usable bandwidth.

Knowledge about the sensing topology can be exploited passively, to relax the
hidden station problem, and actively, to transmit messages encoded by black bursts.
Figure 4.2 shows the one-hop sensing neighborhood of node v5. Here, nodes v1 to
v4 and v6 to v8 can detect whether v5 is using the medium and refrain from using it
simultaneously, thereby avoiding possibly destructive collisions. In addition, node
v5 can reach these nodes with a single transmission of a message encoded by black
bursts, a feature applied, for instance, by Black Burst Synchronization [(BBS), see
Chap. 2] and Arbitration and Cooperative Transfer Protocol [(ACTP), see Chap. 6].

4.2 Automatic Topology Discovery Protocol (ATDP)

In this chapter, we present Automatic Topology Discovery Protocol (ATDP) [2], a
deterministic protocol for the detection and dissemination of communication,
interference, and sensing topologies in TDMA-based wireless multi-hop networks.
The protocol ProTop of the ProNet 4.0 protocol stack [1] is an implementation of
ATDP.
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Fig. 4.2 One-hop neighborhoods of node v5 (see [13], Fig. 1)

3Transmissions overlapping in time, frequency, and space are called collisions.
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4.2.1 Overview of ATDP

ATDP [2] is executed before regular network operation is started, to detect and
distribute topology information. During the topology detection phase, a dedicated
virtual time slotting is applied, with exclusive assignments of time slots to each
node. These assignments are common knowledge among all nodes, which is crucial
for the detection of interference and sensing links.

In their assigned time slots, nodes send management messages, for two pur-
poses. First, all other nodes can deduce from their observations during these time
slots whether nodes are in communication, interference, or sensing range, and can
assign a corresponding link type. Second, topology information collected so far is
disseminated across the network.

To increase the reliability of topology information, observations are repeated
throughout the topology detection phase. Only links rated as sufficiently stable
become part of the network topology. If a link is not stable after some time, it is
rated as fluctuating and treated as interference link.

Once topology information is stable and disseminated across the network, ATDP
terminates. As a result, all nodes have a consistent view of the communication,
interference, and sensing topologies. Here, we assume that ATDP is operated in a
stable environment, i.e., there are no significant topology changes after the topology
detection phase. If the environment is not stable, ATDP could be continued during
regular network operation, to detect and disseminate topology changes.

4.2.2 Virtual Time Slotting of the Topology Detection Phase

In the following, we assume that nodes vi 2 V have unique numerical node ids
i 2 {0, …, n – 1}, which may be different from the node address. It is not required
that all values of {0, …, n – 1} are used as node ids; however, a highest node id
n – 1 equal to or not significantly larger than |V| – 1 yields a shorter topology
detection phase. Based on node ids, the exclusive assignment of topology detection
slots is determined.

Figure 4.3 shows a virtual time slotting (see also Chap. 3) of the topology
detection phase. To establish this time slotting, tick synchronization (cf. Chap. 2) is
required. Therefore, the scheme depicted in Fig. 4.3 contains resynchronization
slots, with a sync region at the beginning of each resync slot. Apart from sync
regions, time intervals are free and can be used for topology detection.

In the example in Fig. 4.3, a dedicated management slot for topology detection
is introduced, which has the same size as a super slot. The size of this management
slot is chosen as a whole-numbered multiple of a resync slot, to reduce waste (see
Sect. 3.1.3). Topology detection regions are then placed in such a way that there is
no overlap with sync regions and are preceded by a termination region.
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Topology detection regions of a management slot are decomposed into topology
detection slots, with consecutive slot numbers 0 to mfact � n – 1, where n – 1 is the
highest numerical node id, and mfact > 0. The size of these slots is chosen such that
they fit management messages. Slots are then exclusively assigned to nodes, such
that slot i, 0 � i < mfact � n, is assigned to node vk, with k = i mod n. Thus, in a
management slot, each node gets an equal number of mfact slot assignments.

As virtual time slotting, highest node id and slot assignment rule are known to all
nodes, each node can determine which node is expected to send a message in a
given topology detection slot, and where this slot is located in time. In Fig. 4.3, the
topology detection regions of a management slot are decomposed into 2 � n – 1
slots, assigned to nodes vk 2 V as shown.

Before the first topology detection region, a termination region is placed. In this
region, a special protocol for the network-wide collision-protected exchange of bit
sequences is used to terminate ATDP once the topology information is stable and
disseminated across the network.

4.2.3 Link Types

The objective of ATDP is to determine stable links between pairs vj, vk 2 V of
nodes and to disseminate this information across the network. Stable links are
derived from a series of individual observations in topology detection slots. In its
assigned slots i, 0 � i < mfact � n, each node vj, with j = i mod n, locally broad-
casts MEASURE messages, which contain its node id and topology data. All other
nodes vk, k 6¼ i mod n, listen on the medium and associate a link type with each
observation of link ej,k = (vj, vk). For individual observations, we distinguish the
following link types t 2 Tlink:

• tcomm: Nodes vk, k 6¼ i mod n, receiving a frame in slot i correctly and with
received signal strength RSSm � RSScomm,min classify the link ej,k, with j = i
mod n, as communication link (link type tcomm) for this particular observation.
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Fig. 4.3 Virtual time slotting of the topology detection phase
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• tint: Nodes measuring a signal strength RSSm, RSSint,min � RSSm < RSScomm,min,
in slot i on the medium rate the link as interference link (link type tint) for this
particular observation. This classification is made independently of a possible
frame reception, either correct or corrupt. If RSSm � RSScomm,min and the frame
is received corruptly, the link is rated as interference link, too.

• tsense: Nodes measuring a signal strength RSSm, RSSsense,min � RSSm < RSSint,min,
in slot i on the medium rate the link as sensing link (link type tsense) for this
particular observation. As before, this classification is made independently of a
possible frame reception, either correct or corrupt.

• tnoLink: Nodes detecting the medium as idle or measuring a signal strength
RSSm < RSSsense,min classify the link as non-existing (link type tnoLink). In this
case, node vj is out of range, not switched on, or node id vj is not used, i.e.,
vj 62 V.

• tfluct: This link type can be assigned only after a series of observations, to links
that have not stabilized after some time.

We point out again that since virtual time slotting, highest node id, and slot assign-
ment rule are known to all nodes, each node can determine which node is expected to
send amessage in a given topology detection slot, and where this slot is located in time.

Thresholds RSScomm,min, RSSint,min, and RSSsense,min are hardware-specific, taking
the sensitivity of the transceiver into account. We will address this aspect when
presenting results of real experiments.

4.2.4 Link-State Graph

To render topology information reliable, observations are repeated until all link
states have become stable. The process of link-state stabilization is modeled, for all
nodes vk 2 V and all node ids 0, …, n – 1, by the link-state graph in Fig. 4.4.
During the topology detection phase, each link e = (vj, vk) is in one of the states
unstable, stabilizing, stable, or fluctuating.

Initially, a link is in state unstable. The start transition of the link-state graph
resets counters cevent and cunstable, which count the number of observations and the
number of transitions from other states back to unstable, respectively. A link e stays
in state unstable for a number nignore of observations event(e, t), independent of the
link type t associated with these observations. This mechanism is intended to filter
out frequent oscillations of the link state while nodes are powered up.

As soon as cevent = nignore holds, the link state changes to stabilizing, with the
link type associated with the current observation determining link type te, and cevent
being reset. A link remains in this state as long as further observations event(e,
t) yield the same link type, i.e., te = t, for a maximum number nstabilizing of events.
When cevent = nstabilizing is reached, the link state changes to stable.

After reaching state stable, a link remains in that state as long as the same link
type is observed. However, if a link type te 6¼ t is detected, the link state changes,
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depending on the link history. If the number of changes to state unstable is below
an upper bound nfluct, the link state changes to unstable, with the counter cunstable
being incremented; otherwise, the link state becomes fluctuating, with the link type
set to tfluct.

The state fluctuating is a terminal link state, as there are no transitions back to
other link states. When reaching this state, the link type of e = (vj, vk) is set to tfluct,
to express that link e is not reliable. For this reason, it is used neither as commu-
nication link nor as sensing link. Instead, it is treated as interference link, i.e.,
transmissions by node vj may result in interference at node vk. This corresponds to
the worst case, as the existence of an interference link may prevent other

unstablestable

fluctuating stabilizing

/ 
cevent := 0;
cunstable := 0

event(e,t) 
[ cevent < nignore ] /
cevent++

event(e,t) 
[ te=t ∧ cevent < nstabilizing ] /
cevent++

event(e,t) [ te=t ] /

event(e,t) [ te=t ∧
cevent ≥ nstabilizing ] 

event(e,t) 
[ te≠t ∧ cunstable < nfluct ] /
cevent := 0; cunstable++

event(e,t) 
[ te≠t ∧ cevent < nfluct ] /
cevent := 0; cunstable++event(e,t)

[cevent ≥ nignore ] /
te := t; cevent := 0 

event(e,t) 
[ te≠t ∧ cunstable ≥ nfluct ] /
te := tfluct

event(e,t) [ te≠t ∧
cunstable ≥ nfluct ] /

te := tfluct

event(e,t) [ ] /

Link types
Tlink = { tcomm, tint, tsense, tnoLink, tfluct } 
Link events
event(e,t) event for link e of type t∈Tlink

Link parameters
nstabilizing number of consecutive identical link events in state stabilizing until a link 

is considered stable
nignore number of link events to ignore after transition to state unstable
nfluct number of transitions to state unstable before a link is considered fluctuating
Link variables
te current type of link e 
cevent event counter
cunstable counter of transitions to state unstable 

Fig. 4.4 Link-state graph (see [2], Fig. 2)
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communication and sensing links from being used in case of exclusive slot
assignments, reducing the potential of SDMA. In this sense, this conceptual deci-
sion is conservative.

In state stabilizing, there are further transitions to states fluctuating and unstable.
If in state stabilizing, the observed link type t is different from the current link type
te, the link state changes back to unstable, if the number of changes to state unstable
is below the upper bound nfluct, and to fluctuating otherwise.

The process of link stabilization according to the link-state graph in Fig. 4.4 is
illustrated in Fig. 4.5. After the initial interval in state unstable, the link state
changes to stabilizing at t1, with link type tnoLink, and then to state stable at t2. This
corresponds to a scenario where the sender node of the link is either out of range of
the receiver node or not active. At t3, the sender node is detected, resulting in a
transition back to state unstable. This is followed by state changes to stabilizing at
t4 and stable at t5, with the link type now set to tcomm.

We note that link-state stabilization as specified by the link-state graph in
Fig. 4.4 is rather strict: only if the same link type is observed for nstabilizing con-
secutive observations, stabilization occurs. In other words, if there are single
observations from time to time yielding different link types, a link ends up in state
fluctuating. Furthermore, link types are treated in a disjoint way during link
detection. For instance, if a link is in state stabilizing with link type tsense, the state
changes to unstable or fluctuating if link type tint or tcomm is observed. Altogether,
this may lead to situations where all links are fluctuating or non-existing, leaving
communication, interference, and sensing topologies empty. In our experiments,
such situations did not occur; however, they may give rise to a refinement of the
link-state graph. For instance, stabilization with link type tsense may be permitted

time

tcomm
tint
tsense
tfluct
tnoLink 

tcomm
tint
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tfluct
tnoLink 

st
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Fig. 4.5 Illustration of link-state stabilization (see [2], Fig. 3)
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even if some observations yield link type tint or tcomm, without changing the link
state back to unstable.4 We leave this topic for further study.

4.2.5 Dissemination of Topology Information

In its assigned topology detection slots, each node locally broadcasts MEASURE
messages, which contain its node id and topology data. For every link e = (vj, vk),
the following information is provided:

• Node ids of sender vj and receiver vk: Links may be asymmetrical; therefore,
ratings for link (vj, vk) may differ from link (vk, vj).

• Link type te: te 2 Tlink = {tcomm, tint, tsense, tnoLink, tfluct}
• Link-state sequence number seqe: This number is defined by node vk detecting

link (vj, vk) and increased every time the link state changes. Thus, seqe char-
acterizes the up-to-dateness of link-state information contained in a MEASURE
message and helps other nodes to detect and ignore outdated link-state
information.

• Signal strength RSSavg,e: If te = tcomm, the average signal strength measured on
this link is propagated. Other protocols such as routing algorithms may use this
information to give preference to stronger links.

MEASURE messages also contain a checksum, to detect corrupt messages. For
the detection of interference and sensing links, it may be necessary to add padding
bytes in order to obtain a fixed message length.

Given the maximal node id of n – 1, topology information about n2 link states
has to be disseminated repeatedly during the topology detection phase. It can be
expected that even for a relatively small network, this information does not fit into a
single MEASURE message. Therefore, we split up this information and focus on
the dissemination of differences to previous link states, i.e., most recent changes are
sent first. As MEASURE messages are sent in exclusively assigned slots, we
assume that no frame collisions occur, if the single-network property (see Sect. 1.3)
holds.

4.2.6 Termination

Once a stable topology, where all links are in states stable or fluctuating, has been
determined and disseminated, ATDP terminates. The decision about termination is

4Note that for the operation of links, we still assume that GC � GI � GS, i.e., a node vj in
communication range of vi is also in interference and sensing range of vi, and that a node vj in
interference range of vi is also in sensing range of vi.
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based on local termination criteria and global agreement of all nodes. A node is
ready to terminate if its locally detected links are in states stable or fluctuating for at
least nmaxHops/mfact topology detection slots, and during this interval, no changes
from other nodes have been received. Here, nmaxHops denotes the maximum network
diameter in communication hops, and mfact is the number of slot assignments per
node in a management slot (see Sect. 4.2.2). This way, it is ensured that all potential
updates have been propagated across the network.

To reach global agreement on termination, nodes indirectly signal readiness to
terminate by exchanging NOTERM messages5 in termination regions, which are
placed before the first topology detection region of each management slot (see
Sect. 4.2.2). NOTERM messages are black burst encoded frames (see Sect. 2.2.2)
consisting of a dominant bit.6 If sent, a NOTERM message indicates that the local
termination criteria of a node are not yet satisfied.

All nodes not agreeing to terminate send NOTERM messages (almost) simul-
taneously in round 1 of each termination region. Due to the special transmission
procedure, collisions of NOTERM messages are non-destructive. Nodes agreeing to
terminate remain silent and listen on the medium in round 1, and thus are able to
receive NOTERM messages from nodes in range. In subsequent rounds i of the
same termination region, 1 < i � nmaxHops, nodes that have sent or received a
NOTERM message in the previous round i – 1 send a NOTERM message. This
ensures that at the end of the termination region, all nodes are aware whether there
still is at least one node that does not yet agree on termination. If no NOTERM
message is received during the termination region, ATDP terminates.

Regular termination of ATDP occurs, if a complete communication topology,
i.e., a topology with communication paths between all pairs of nodes is detected.
This detection may be delayed if nodes are switched on one-by-one. For a given
configuration, an upper bound for the duration of regular termination can be
determined. Regular termination cannot be guaranteed without complete commu-
nication topology, as topology data cannot be exchanged reliably among all nodes;
therefore, local termination criteria cannot be satisfied. In this case, ATDP uses a
timeout for termination. Further nodes could then be placed before restarting ATDP
until connectivity is finally achieved.

4.2.7 Experimental Results

To assess the feasibility and reliability of ATDP, we have implemented the protocol
on a real hardware platform and have conducted real experiments. We have decided
against simulation experiments, because the effects to be studied are of physical

5To exchange NOTERM messages, ATDP uses Arbitrating and Cooperative Transfer Protocol
(ACTP), which is presented in detail in Chap. 6.
6In an implementation, this is to be complemented by redundancy measures.
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nature and therefore difficult to capture completely and accurately in a simulation
model.

Hardware Platform

For the implementation of ATDP, we have used Imote2 motes [9], hosting the
CC2420 radio transceiver [6]. Furthermore, we have used available implementa-
tions of BBS (see Chap. 2) for tick synchronization, and of ACTP (see Chap. 6) for
the exchange of NOTERM messages.

For evaluation purposes, our implementation of ATDP provides debug infor-
mation to the UART interface, which is recorded by a PC connected to the Imote2
board. This debug information includes an output of the current local topology data
at the beginning of each management slot. Additionally, link state and type changes
are reported when they occur. Thus, the topology detection process can be moni-
tored during execution.

We have set thresholds for signal strength as follows: RSScomm,min = –82 dBm,
RSSint,min = –85 dBm, and RSSsense,min = –89 dBm. Given the transceiver’s mini-
mal sensitivity of about –90 dBm, these thresholds are expected to produce valid
link type assessments. To discover interference and sensing links, we have used the
clear channel assessment) (CCA) mechanism of CC2420, configured with a CCA
threshold of RSSsense,min. The CCA mechanism triggers a hardware interrupt when a
change of the medium state is detected. During interrupt processing, ATDP reads
the observed signal strength from the received signal strength indicator (RSSI)
register of the transceiver and determines the link type of a given observation.

Feasibility

To assess the feasibility of ATDP, we have conducted a series of real experiments, with
different node placements inside our university building. To satisfy the single-network
property (see Sect. 1.3), we have used an IEEE 802.15.4 channel that showed no
overlaps with occupied IEEE 802.11 channels. In all experiments, ATDP has terminated
within a few minutes, with meaningful detected topologies. Figure 4.6 shows one
experimental scenario, with five nodes placed in four rooms, and the topologies detected
by ATDP. All nodes are connected by paths of communication links, yielding a
complete communication topology. We note that the links between nodes v7 and v16 are
asymmetrical: (v7, v16) is an interference link, whereas (v16, v7) is a communication link.

Reliability

To assess the reliability of link detection, we have validated the thresholds of the
link rating mechanism. For this, we have conducted extensive experiments on the
detected topology shown in Fig. 4.6.

First, we have checked the reliability of detected communication links. For each
communication link, 48,100 regular MAC frames with a payload of 120 bytes each
were sent during a period of 5 min. On average, only 0.02% of these frames were
lost or corrupted, with a maximum combined loss and corruption rate of 0.13%.
This shows that the choice of RSScomm,min = –82 dBm has been suitable.
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Next, we have validated interference links. For this purpose, we have devised a
test system running on three nodes: one sender, one receiver, and one interferer.
Sender and interferer are synchronized and concurrently send regular MAC frames
of 120 bytes of payload. The receiver records the numbers of frames correctly
received from the sender and the interferer, respectively, and the numbers of cor-
rupted and lost frames. The results of these experiments are shown in Fig. 4.7.

Looking at the communication between nodes v8 and v16, we observe that the
impact of interfering node v14 is extremely high. Here, only 3% of all frames sent
by v8 were correctly received; instead, 17% of frames sent by the interferer were
received correctly, 17% of all frames were received corruptly, and 63% were
received neither correctly nor corruptly and therefore counted as lost. This shows
that (v14, v16) is indeed an interference link.

Figure 4.7 also shows that in three cases, the interferer did not have significant
impact on the reliability of the communication link. For instance, 99.99% of the
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Fig. 4.6 Floor plan, placements of nodes, and topologies detected by ATDP (see [2], Fig. 4)
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Fig. 4.7 Ratio of frames received correctly, corruptly, and lost in the presence of interference by
nodes in interference range (see [2], Fig. 5)
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frames sent by node v16 were correctly received by v13, despite concurrent trans-
missions by v8. However, the same interference link had significant impact on the
reliability of communication from node v14 to node v13, with only 63% of the
frames correctly received from the intended sender. In summary, we observe that
although interferers did not always have significant impact, there is at least one
experiment where the interferer disturbed a communication link. Therefore, all
detected interference links should be considered when applying SDMA.

Finally, we have validated the impact of sensing links on the reliability of
communication links. The experimental setup was similar to the validation of
interference links. However, this time, interfering nodes were in sensing range of
the receiver. Table 4.1 shows the results of these experiments. In most cases, all
frames of the sending node were correctly received. Only in three cases, one or
more frames were received corruptly or lost, with a maximum combined loss and
corruption ratio of 0.0008%. This again shows that these links have been correctly
classified.

4.3 Related Work

In this chapter, we survey work that addresses topology detection in wireless ad hoc
networks. Our survey is not intended to be comprehensive, but to identify a number
of protocols performing communication and interference topology detection and to
point out differences to ATDP. We are not aware of other protocols addressing the
detection of sensing topologies.

Table 4.1 Frames received correctly, corruptly, and lost in the presence of interference by nodes
in sensing range (see [2], Table 1)

Experiment
sender receiver interferer 

Received
correctly 

Received
corruptly 

Lost

v13 v14 v7 48,100 

v16 v13 v7 48,100

v14 v13 v7 48,092 6 2

v8 v7 v13 48,100

v16 v7 v13 48,063 25 12

v8 v7 v14 48,100

v16 v7 v14 48,099 1
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4.3.1 Routing Protocols

Topology information is needed for route discovery in multi-hop networks. Routing
protocols usually incorporate functionality for topology detection. Depending on
the type of protocol, the degree of detail varies. In link-state protocols, each node
collects data about its local links and exchanges them with all other nodes, yielding
a complete global topology, as in ATDP. Different from ATDP, this global
topology is usually restricted to the set of communication links. In distance vector
protocols, nodes only collect aggregated topology information, e.g., the shortest
hop distance to a destination node and the next hop on the shortest path. As this is
substantially less information compared to ATDP, we will omit these protocols in
our survey. A comprehensive survey about routing protocols for ad hoc networks
published until about 2010 can be found in [5].

Global State Routing (GSR) [7] is a well-known link-state protocol for wireless
ad hoc networks. Each node vi 2 V maintains the following network status
information:

• Ai: neighbor set containing ids of all neighbors vj of vi.
• TTi: topology table, containing, for each node vj 2 V, link-state information LSj

reported by vj and sequence number SEQj generated by vj to mark the version of
LSj.

• NEXTi: next hop table, indicating, for each vj 2 V, the next hop vk on the
shortest path to vj.

• Di: distance table, indicating, for each vj 2 V, the length of the shortest path.

Nodes vi 2 V learn about their neighbors when receiving messages containing
the sender id. These neighbors are then added to the neighbor set Ai, determining
the set of local links. GSR assumes that links are symmetrical, i.e., if a node vi
receives from vj, then vj will also receive from vi.

Periodically, each node vi copies the neighbors recorded in Ai to its local link
state LSi and increments the sequence number SEQi. It then broadcasts a network
status message containing its id vi and its topology table TTi to its neighbors. When
receiving a network status message from a neighbor, vi updates its topology table
TTi, considering only those link states LSj that have a newer sequence number.
Thus, local link-state information of all nodes is propagated across the network,
yielding a complete global topology.

Periodically, based on TTi, each node vi computes shortest paths to all other
nodes vj, using a slightly modified version of Dijkstra’s algorithm and a weight
function initially assigning 1 to all node pairs (vi, vj), with vj 2 Ai, and / to all other
node pairs. As the complete topology is available, this computation can be per-
formed locally, yielding tables NEXTi and Di.

Compared to ATDP, topology detection of GSR has a number of drawbacks.
First, link detection is based on single observations only. Node ids are added to the
neighbor set Ai already after a single successful message reception. This implies that
even weak links are recorded, if the sending node has been successful at least once.
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Furthermore, links are assumed to be symmetrical, which cannot be taken for
granted in wireless networks.

GSR explicitly addresses wireless networks with mobile nodes. This means that
the neighborhood of a node may change, implying the need to remove nodes from
the neighbor set Ai. In the algorithm, there is a function addressing this; however, it
remains unclear how non-neighbors are detected. A solution could be to assign and
update timestamps with entries in Ai and to delete outdated entries.

GSR computes shortest path routes. With this metric, links covering long dis-
tances to the destination node are preferred, as this yields shorter paths. However, in
wireless networks, such links tend to be weak. Therefore, preferred usage of these
links in route establishment may result in unreliable routes and possibly increased
traffic due to frequent retransmissions.

Finally, different from ATDP, GSR is restricted to determining the communi-
cation topology. As the originators of interference and energy cannot be identified,
interference and sensing topologies remain undetected.

Other link-state routing protocols for wireless ad hoc networks, such as
Optimized Link State Routing (OLSR) [10], work in similar ways as GSR.
Differences are, for instance, the use of hello messages for neighbor detection and a
more efficient exchange of topology information. Although these modifications
improve the quality of link detection, several drawbacks remain.

4.3.2 Clustering Protocols

Topology information is needed for network clustering, which divides a network
into groups of nodes. As the amount of topology information needed for this task
varies, clustering protocols (see [3] for a survey, and Chap. 9) usually incorporate
functionality for topology detection. Furthermore, this functionally is restricted to
the discovery of communication topologies, as interference and sensing topologies
are not considered for clustering.

To establish clusterings that are optimal w.r.t. specified clustering criteria, com-
plete global communication topologies would be needed. As this would yield high
communication and time complexity, most clustering algorithms only use partial
topologies. For instance, to form a d-hop dominating set, i.e., a set V′ � V where all
nodes vi 2 V are in d-hop neighborhood of some node vk 2 V′, knowledge about the
d-hop neighborhood may be sufficient.

A well-known clustering protocol for wireless ad hoc networks is MaxMinD
cluster formation [4]. Clustering objectives are connectivity achieved by intra- and
inter-cluster routing, and balanced cluster sizes. In the floodmax phase, cluster
heads are predetermined. For this purpose, nodes determine the largest node id in
their d-hop neighborhood. In the floodmin phase, cluster sizes are balanced, based
on additional information from the (2 � d)-hop neighborhood.

4.3 Related Work 95



Compared to ATDP, topology detection of MaxMinD has a number of draw-
backs. First, link detection is based on single observations only. d-hop neighbors
and potential cluster heads are recorded already after a single successful message
reception. This implies that weak links are recorded, too, if a message has been
received. Furthermore, it is assumed that links are symmetrical.

MaxMinD strives for a small number of clusters, heuristically maximizing
cluster sizes defined by d-hop neighborhoods. This is achieved by considering
communication links covering long distances between nodes. However, in wireless
networks, such links tend to be weak, resulting in unreliable routes for intra- and
inter-cluster communication.

Other clustering protocols for wireless ad hoc networks, such as Algorithm for
Cluster Establishment (ACE) [8], work in similar ways as MaxMinD. Differences
are, for instance, the use of hello messages for neighbor detection and different
metrics for cluster formation. As in MaxMinD, weak links are recorded, too, to
achieve a small number of clusters.

4.3.3 Detection of Interference Topologies

To perform SDMA, information about the interference topology is required.
With SDMA, nodes outside each other’s interference range may use the medium
simultaneously. This can be exploited to increase network-wide throughput, based
on exclusive reservation of time slots.

In [11], the authors report on interference experiments with IEEE 802.11 nodes
to predict interference among pairs of links, with rather accurate results. However,
given a network of n nodes, O(n2) experiments are required to determine the
interference topology. For a test bed of 22 nodes, the authors report an experiment
duration of about 28 h.

In [12], the radio interference detection (RID) protocol is presented. RID
assesses interference based on the transmission of detection sequences, consisting
of two frames each. The first frame is transmitted with high transmission power,
whereas the second frame is sent with reduced transmission power. For this to
work, the assumption is that the communication range of high power transmissions
is equal to or larger than the interference range of transmissions with reduced
power. Thus, by receiving the first frame, a receiving node acquires knowledge
about the sender id and can then assess the link type by measuring the received
signal strength of the second frame and comparing it to a threshold value. A major
drawback of this approach is that only reduced transmission power can be used
during network operation.
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4.4 Conclusions

In this chapter, we have explained the concepts and requirements of topology
detection, have presented our protocol ATDP for the automatic detection of com-
munication, interference, and sensing topologies, and have surveyed and compared
related work. We have argued that solid information about communication
topologies is vital for other network functionalities, in particular for routing and
clustering. Furthermore, knowledge of interference topologies enables SDMA to
increase network-wide throughput. Finally, knowledge about sensing topologies
can help to tackle the hidden station problem and to transmit black burst encoded
bit sequences.

With its functionality and reliability, ATDP exceeds existing protocols for
automatic topology detection. To our knowledge, ATDP is the only protocol that
detects sensing topologies and is one of very few protocols that address interference
topologies. Furthermore, unlike many other protocols, ATDP does not rely on
single or a few observations, but continues link observation until stability criteria
are met. In particular, only reliable communication and sensing links are considered
for information exchange.

Regarding the detection of interference and sensing topologies, we state that this
requires prior knowledge about transmission activities of nodes, i.e., transmission
schedules. In ATDP, this is achieved by virtual time slotting combined with
exclusive and globally known slot reservations. Exclusive slot reservations also
prevent the collision of management messages, which is a problem in other
link-state protocols.

We have already noted that link stabilization in ATDP is rather strict, as links
only stabilize if the same link type is observed during a sequence of observations.
Although this has proven feasible in our experiments, the notion of link stabiliza-
tion may be relaxed, for instance, by allowing for a small percentage of deviating
observations.
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Chapter 5
Medium Access Schemes

The ultimate task of a communication system is the exchange of payload messages
among a set of nodes via a physical medium. If the medium is shared among these
nodes, methods controlling medium occupancy called medium access schemes are
applied. In this chapter, we explain foundations of medium access, present medium
access schemes of ProNet 4.0 [1] including our novel mode access scheme [2–5],
survey and compare related work, and draw conclusions.

5.1 Foundations

In this chapter, we establish the context of accessing a wireless medium, explain
concepts and measures, and address areas of operation.

5.1.1 Context

In wireless communication systems, nodes transmit and receive frames via radio
channels that are shared among all network nodes. Since the medium is shared,
collisions occur if transmissions overlap in time, frequency, and space. Depending
on positions of senders and receivers, received signal strength, and other factors,
frame collisions can be destructive, resulting in frame corruption or frame loss.
Therefore, measures to reduce the probability of collisions or to avoid them entirely
are to be taken, located in a Medium Access Control (MAC) protocol on MAC
layer (see Fig. 1.1).

MAC protocols provide several protocol functionalities. They define the format
of frames, e.g., data frames and management frames, and support addressing
schemes, e.g., unicast, multicast, and broadcast. In the core of a MAC protocol is
the medium access scheme to control medium occupancy. Furthermore, a MAC
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protocol provides error detection, for instance, detection of transmission errors such
as bit errors and frame loss, and error handling, e.g., by bit error correction and
retransmission of frames. In wireless networks, further measures to tackle the
hidden and exposed station problems may be taken. On the other hand, routing is
usually not addressed by MAC protocols. In this chapter, our focus is on medium
access schemes in wireless networks.

5.1.2 Concepts and Measures

We distinguish three basic types of medium access. Exclusive access means that at
any point in time, only one node has the right of using the medium for transmission.
With shared access, all nodes may use the medium at any time. Mode access
reduces the right of medium usage to subsets of nodes.

• Exclusive medium access is usually based on network-wide reservation of time
intervals assigned to single nodes. In single-hop networks, token passing is a
feasible method to provide exclusive access. In networks with global time
slotting, exclusive reservation of time slots is a suitable approach.

• Shared medium access bears the risk of destructive collisions, if several nodes
use the medium at the same time. To reduce the probability of collisions, the
following measures are applied:

– A straightforward measure is to listen on the medium before starting trans-
mission, called Listen Before Talk (LBT) or Carrier Sense Multiple Access
(CSMA). Only if the medium is detected as idle, transmission begins.

– If a node detects the medium as busy, which may be due to an ongoing
transmission, it waits until the medium becomes idle again. However, during
this period, other nodes may do the same. To prevent these nodes from
accessing the medium at the same time, some form of medium contention,
e.g., random backoff (explained below) is performed.

• Mode medium access defines, for specific time intervals, subsets of nodes that
may contend for the medium. Furthermore, messages that may have to be sent
during the same time interval are assigned unique priorities. By enforcing these
priorities, medium access becomes deterministic.

We distinguish two types of medium contention schemes. Passive contention is
performed by listening on the medium for a random duration. Active contention is
done by transmitting contention patterns on the medium. Passive and active con-
tention can also be combined.

Passive contention is usually associated with random backoff. As soon as a node
detects a previously busy medium as idle, it determines a random time interval
during which it refrains from sending. If the medium is still idle at the end of this
interval, the node has won contention and starts transmission. If the medium
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becomes busy during this interval, the node has lost contention and has to contend
again. By configuring value ranges of random backoff intervals, strict and statistical
frame priorities can be supported.

Active contention can be performed by transmitting busy tones or binary
countdown sequences:

• A busy tone is a jamming signal of defined length. Contending nodes transmit
busy tones of different length after detecting the medium as idle and then listen
on the medium. If the medium is still busy, another node in range is sending a
longer busy tone and thereby gains preference. The node sending the longest
busy tone wins contention.

• A binary countdown sequence is a bit sequence encoding a unique priority.
When the medium is idle or at aligned points in time, nodes contend by bitwise
transmission of their sequences. Bits are encoded as dominant and recessive
signals, with the medium being monitored instead of transmitting recessive
signals. If during a binary countdown sequence, a node contends with a
recessive signal, but monitors a dominant signal, it loses contention and resigns.
At the end of the sequence, the node signaling the highest priority wins.

In wireless networks, passive contention and active contention are effective in
single-hop range only. For instance, a node may not detect busy tones or binary
countdown sequences, as it may be out of range. Furthermore, a node may detect
the medium as idle even if another node in interference range of the intended
receiver is transmitting. In some MAC protocols, this problem is tackled by a
sequence of short reservation frames between sender and receiver. However, col-
lisions cannot be ruled out entirely.

5.1.3 Areas of Operation

Medium access schemes support the operation and efficient usage of shared com-
munication media. The decision about the access scheme(s) depends on the type of
traffic (periodic, sporadic), availability of synchronization, required guarantees, and
efficiency of bandwidth usage.

In case of periodic traffic, communication is time-triggered, i.e., messages are to
be sent at determined points in time. For timeliness and reliability of transmissions,
exclusive medium access schemes, e.g., based on reserved time slots, are required.
Thereby, collision-free medium access at defined points in time can be guaranteed.
Furthermore, due to the periodicity of transmissions, bandwidth is used efficiently.

In case of sporadic traffic, communication is event-triggered, i.e., messages are
to be sent when events occur. For short reaction delays, shared medium access
schemes are the first choice. Thereby, short-term, possibly priority-driven medium
access is basically possible. In addition, no reservations need to be made in
advance; therefore, bandwidth is used efficiently.
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In case of a mix of periodic and sporadic traffic, both types of medium access
schemes should be used together, as none of them supports both types of traffic
without significant drawbacks. For instance, in case of sporadic traffic with short
reaction delays, exclusive access schemes have bad bandwidth usage, as worst-case
reservations of time slots are required. In case of periodic traffic, shared access
schemes cannot guarantee timeliness and reliability of transmissions. A solution
could be to alternate between exclusive and shared medium access. However, this
implies that during a phase of exclusive access, event-triggered messages are
delayed until the next contention phase. Here, mode medium access with restricted
contention is a proper approach.

5.2 Medium Access Schemes in ProNet 4.0

The protocol stack ProNet 4.0 [1] supports several medium access schemes: ex-
clusive access, shared access with priorities, and mode access. These access
schemes are implemented by protocol modules ProRes, ProCont, and ProMod,
respectively, and activated during dedicated virtual time regions (see Fig. 5.1 and
Chap. 3). ProRes, ProCont, and ProMod are self-contained MAC protocols, i.e.,
they cover frame formats, addressing schemes, and error control, too. However, in
this chapter, we will focus on medium access schemes.

Figure 5.1 shows an example of virtual time slotting for medium access and
synchronization. Exclusive regions host time-triggered traffic with strict deadlines
and access guarantees. Event-triggered communication is placed into shared
regions. Mode regions support a mix of periodic and sporadic traffic, with access
guarantees for high-priority messages.

Virtual time regions can be freely placed and dimensioned, so, for instance,
exclusive regions may prevail in case of purely periodic traffic. Sporadic messages
have to wait for the next shared or mode region. Therefore, in the case of short
reaction delays, these regions should be placed in short distances. The global time
slotting scheme of ProSlot (see Chap. 3) provides all necessary flexibility.

super slot ( = sampling slot 1)
sync region (ProSync)

exclusive region (ProRes)

shared region (ProCont)

mode region (ProMod)

resync slot

Fig. 5.1 Virtual time slotting—medium access regions (for explanations, see also Chap. 3)
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5.2.1 Exclusive Medium Access—ProRes

Exclusive medium access is granted in exclusive regions. As illustrated in Fig. 5.2,
these regions are decomposed into sequences of exclusive time slots, which may
differ in length. Global time slotting is provided by ProSlot (see Chap. 3) and highly
flexible.

For exclusive medium access, it is necessary that a time slot be assigned to a
single node, either before deployment or at runtime. We assume that dynamic slot
assignments are handled by a resource reservation protocol during route selection
(see Chap. 8). Additional flexibility can be achieved by configuring size and
placement of exclusive slots at runtime.

As an exclusive slot is assigned to a single sending node, medium access is
straightforward. After an initial delay defined by the maximum tick offset (see
Chap. 2), the sender starts its frame transmission. Since slot assignments are
exclusive, no contention is required, and transmissions are collision-free. Therefore,
reliability depends on link quality only, which is checked during topology detection
(see Chap. 4).

5.2.2 Shared Medium Access—ProCont

Shared medium access is granted in shared regions. No prior assignment of time
slots to sending nodes is performed. Instead, nodes with frames to be sent contend
for the medium and start transmission only after winning contention.

In ProNet 4.0, the protocol module ProCont controls medium access in shared
regions (see Fig. 5.1). To reduce the risk of destructive collisions, ProCont takes
several measures. First, nodes perform Carrier Sense Multiple Access (CSMA)
before sending and access the medium only if it was detected as idle. Second, if the
medium was busy, a passive contention scheme is applied.

super slot sync region (ProSync)

exclusive region (ProRes)

shared region (ProCont)

mode region (ProMod)

exclusive slots

Fig. 5.2 Virtual time slotting—exclusive regions and exclusive slots
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As other MAC protocols for wireless communication, ProCont uses random
backoff to resolve contention. As soon as a contending node detects a previously
busy medium as idle, it continues to listen on the medium for a random backoff
interval. If the medium stays idle, the node wins contention and starts its frame
transmission. Otherwise, it loses contention and has to compete again.

To detect a medium as idle, a node listens for a fixed duration dCIFS of the
contention inter frame space (CIFS, see Fig. 5.3). It then draws a random value
nrandom from the current contention window, which is an interval of natural num-
bers. The duration of the random backoff interval drandom is obtained by multiplying
nrandom with the fixed duration of a backoff slot dbackoffSlot. Random backoff is
realized by a backoff counter cbackoff, which is set to the initial value nrandom and
then decremented after each backoff slot, if the medium is still idle. Medium access
is performed as soon as cbackoff is counted to zero.

Compared to existing MAC protocols, there is one aspect of ProCont that
deserves special attention. For shared medium access, both strict and statistical
frame priorities are supported. For each frame, a frame-specific start of the con-
tention window framelowerBound and a frame priority framepriority are defined. From
these parameters and the maximum size maxCW of the contention window, the
frame-specific contention window is derived as follows (see Fig. 5.3):

• lowerCW =df min{framelowerBound, maxCW}
• upperCW =df min{framepriority, maxCW}

By choosing framelowerBound � framepriority, we can realize frame priorities.
Higher priorities are achieved by shifting the frame-specific contention window to
the beginning of the interval [0…maxCW]; for lower priorities, it can be shifted
toward the end. For frames with framepriority > maxCW, the contention window
always ends at maxCW. Yet, frames can be scheduled locally according to their
frame priority before starting contention.

To realize statistical priorities, frame-specific contention windows may
overlap. In addition, after losing contention, the backoff counter value is kept, and
countdown continues during the next contention phase. For strict priorities,
non-overlapping contention windows are required. Furthermore, a new random
value nrandom from the current contention window is drawn, and the backoff counter
is set to nrandom at the start of the next contention phase.

CIFS contention window

backoff slot lowerCW                                       upperCW                   maxCW

Fig. 5.3 Shared medium access in ProCont
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Of course, the passive priority-driven contention scheme of ProCont is only
effective in the single-hop range. To address the hidden station problem, ProCont
also supports the RTS/CTS mechanism (e.g., see [11]) for unicast transfers.

5.2.3 Mode Medium Access—ProMod

In this chapter, we present our novel concept of mode-triggered scheduling with
mode medium access [2–5]. Our approach can substantially improve bandwidth
usage in many scenarios of industrial relevance, while preserving timeliness. With
mode-triggered scheduling, a well-controlled amount of dynamic contention for
time slots can be defined. With some technologies, mode medium access reaches
consensus among contending nodes extremely fast and deterministically.

5.2.3.1 Motivation

To motivate mode medium access, we consider a scenario from the control domain,
where four control systems are operating via a shared wireless communication
system:

• Two control systems of type “inverted pendulum” (see Chap. 1), each equipped
with three sensors to measure position, velocity, and angle, one actuator to apply
a voltage to a motor, and a controller.

• Two control systems of type “flow rate system”, each equipped with two sensors
to measure flow rate, one actuator to operate a valve, and a controller.

• For each control system, there is an emergency shutdown to move it to a
fail-safe state. This also happens if steering values are not received for a defined
period of time, to protect against failure of the communication system.

• To synchronize value sampling, the sensor nodes of each control system are to
be tick-synchronized.

For convenience, we assume that all nodes are in single-hop range, with stable
communication links. During system analysis, we have identified functionalities,
message types, and communication requirements (see Table 5.1). Most messages
are of periodic nature, with the exception of emergency messages, which are to be
sent in case of very rare emergency events, and therefore sporadic. All messages
require high or even very high transfer reliability and carry only light payload.
Furthermore, all messages have tight timing constraints regarding maximal total
transfer delay, which is the sum of medium access delay and transmission delay.

Periodic messages have transmission intervals that correspond to sampling
intervals, ranging from preferred (short) intervals to maximal (long) intervals. By
convention, maximal intervals are necessary and sufficient to keep a controlled
system stable. For instance, if every 72 ms, the inverted pendulum can complete a
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control cycle, consisting of sampling and steering, the control objective is achieved.
Thus, at least 4 messages are to be exchanged every 72 ms. In case of sporadic
disturbances, however, stabilization delay may be high. To shorten this delay and
thereby increase quality of control, the sampling interval may be temporarily
reduced. This also has an impact on the transmission interval. By dividing the
maximum transmission interval of the inverted pendulum in half, 4 messages are to
be exchanged every 36 ms. However, as 4 messages every 72 ms are still sufficient
to reestablish stability, it is not mandatory that the additional 4 messages can
actually be sent.

Table 5.1 Control system scenario—results of system analysis

Functionalities Message
types

Message
characteristics

Communication requirements

Tick sync mtick periodic data very high reliability, small data
volume,
fixed transmission interval of
72 ms,
maximal total transfer delay of
4 ms

Inverted
pendulum 1

ms_1,1…3,
ma_1

periodic data high reliability, small data
volume,
transmission interval of
36–72 ms,
maximal total transfer delay of
12 ms

Inverted
pendulum 2

ms_2,1…3,
ma_2

periodic data high reliability, small data
volume,
transmission interval of
36–72 ms,
maximal total transfer delay of
12 ms

Flow rate control
A

ms_A,1…2,
ma_A

periodic data high reliability, small data
volume,
transmission interval of
72–144 ms,
maximal total transfer delay of
20 ms

Flow rate control
B

ms_B,1…2,
ma_B

periodic data high reliability, small data
volume,
transmission interval of
72–144 ms,
maximal total transfer delay of
20 ms

Emergency
shutdown

me,1..4 very rare sporadic
events

very high reliability, small data
volume,
maximal total transfer delay of
100 ms
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From the application requirements, we derive the number of messages to be sent
during each transmission interval:

• For tick synchronization, 1 message per 72 ms is required.
• Each inverted pendulum exchanges 4 to 8 messages per maximal sampling

period of 72 ms.
• For flow rate control, 3–6 messages per maximal sampling period of 144 ms and

control system are to be exchanged.
• For emergency shutdown, a maximum number of 4 messages are to be

exchanged during a period of 100 ms.

If a range of messages per maximal sampling period is given, the smaller number
of transmissions is mandatory. It is expected, however, that the higher number of
transmissions can be temporarily supported, too.

Solution 1: Event-triggered priority-driven scheduling

In a first solution, we assume that a wireless communication system with
event-triggered strict priority-driven scheduling based on shared medium access is
available (e.g., see Sect. 5.2.2). Table 5.2 shows a possible mapping of commu-
nication requirements to an assignment of static message priorities. As wireless
communication systems usually only support a small number of priorities, several
messages are assigned the same priority.

• As tick synchronization has the most stringent requirements regarding total
transfer delay, we assign the highest priority 0 to messages of type mtick.

• We assign high priority 1 to emergency event messages me,1…4. Given the
maximal total transfer delay of 100 ms, this does not seem mandatory; however,
we want to rule out that sporadic emergency messages are delayed indefinitely
by frequent periodic messages of higher priority.

• As inverted pendulums have shorter transmission intervals than flow rate control
systems, their messages are assigned higher priority.

• Finally, we assign a low priority to messages of flow rate control systems.

Table 5.2 Event-triggered
scheduling—message
priorities

Functionalities Message types Message
priorities

Tick sync mtick 0

Inverted pendulum 1 ms_1,1…3, ma_1 2

Inverted pendulum 2 ms_2,1…3, ma_2 2

Flow rate control A ms_A,1…2, ma_A 3

Flow rate control B ms_B,1…2, ma_B 3

Emergency
shutdown

me,1…4 1
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While this priority assignment is systematical and coherent, it bears a number of
potential problems. In event-triggered priority-driven communication systems,
high-priority messages may delay messages of lower priority indefinitely. Thus, the
inverted pendulums may dominate and subsequently destabilize the flow rate
control systems if they exchange messages at maximal rates, leading to a violation
of maximal total transmission delays. Furthermore, messages of different types are
assigned the same priority. This implies that in addition, a random-based contention
scheme is to be applied, which may result in destructive collisions and thereby
reduces transfer reliability. In summary, we can state that shared medium access is
not adequate to support the deterministic communication requirements of this
scenario.

Solution 2: Time-triggered scheduling

The second solution builds on time-triggered scheduling with exclusive medium
access. For each message type, a fixed number of time slots per sampling interval
are exclusively assigned, thereby avoiding collisions entirely, which achieves very
high reliability and timeliness. Table 5.3 shows the number of required time slots
per cycle of 144 ms.

The length of a cycle is determined as the least common multiple of the trans-
mission intervals of tick resynchronization, inverted pendulums, and flow rate
control systems, which is 144 ms. As this is two times the length of the resyn-
chronization interval, two sync slots per cycle are assigned. Similarly, we obtain a
demand of 8–16 (3–6) time slots per cycle for each inverted pendulum (flow rate
control system). As the requirements call for a maximum total transfer delay of
100 ms for emergency shutdowns, 2 time slots per control system and cycle are
required, yielding a total of 8 time slots per cycle. Adding up, there is a need for up
to 54 time slots per cycle. If we assume a slot size of 4 ms, only 36 time slots per
cycle are available. Thus, to implement the communication requirements, two
wireless communication systems would have to be deployed. In summary, we can
state that exclusive medium access yields timeliness and high reliability; however,
it lacks bandwidth efficiency, as exclusively reserved slots may not be needed in
each cycle.

Table 5.3 Time-triggered
scheduling—time slots per
cycle

Functionalities Message types Slots/cycle

Tick sync mtick 2

Inverted pendulum 1 ms_1,1…3, ma_1 8–16

Inverted pendulum 2 ms_2,1…3, ma_2 8–16

Flow rate control A ms_A,1…2, ma_A 3–6

Flow rate control B ms_B,1…2, ma_B 3–6

Emergency shutdown me,1…4 8
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5.2.3.2 Mode-Triggered Scheduling

To overcome the problems of event-triggered and time-triggered scheduling, we
now present a third solution that is based on our novel concept of mode-triggered
scheduling with mode medium access [2–5]. The main idea is to assign time slots to
subsets of message types and to apply a deterministic priority-driven scheduling
strategy implemented by a highly efficient distributed arbitration scheme. Mode
medium access supports exclusive access as well as high bandwidth usage.

In a first step, we uniquely associate transmission modes (or modes for short)
with message types. A mode is a high-level design concept and may be derived, for
instance, from system operation phases or transmission purposes. In the control
scenario, we use modes management, safety{1,2,A,B}, and emergency.

Definition 5.1 (Modes) Modes are modeled as a non-empty, finite set M = {m1,…,
mr}.

Definition 5.2 (Mode assignment) Let M be a set of modes, MT be set of message
types. Then ma: MT ! M is a function uniquely associating a mode with each
message type, called mode assignment.

Table 5.4 shows a mode assignment mac for the control scenario, where 6 modes
are associated with 19 message types. As we will show later, the number of modes
influences the degree of restricted contention, with more modes permitting better
medium usage. For this reason, we distinguish 4 kinds of safety modes instead of
having only one such mode.

For mode-triggered traffic, virtual time regions called mode regions are formed
(see Fig. 5.4). Mode regions are then substructured into scheduling units called
mode slots.

Definition 5.3 (Global time slotting) Time is divided into an infinite set of con-
secutively numbered super slots S = {S1, S2, …} of equal length. Super slots
contain one or more mode regions. All mode regions of a super slot are divided into
a finite set S = {s1, …, sn} of consecutively numbered mode slots, which may have
different lengths. Each mode slot sj has one occurrence per super slot Si, referred to
as si,j.

Table 5.4 Mode-triggered
scheduling—mode
assignment mac

Functionalities Message types Mode

Tick sync mtick management

Inverted pendulum 1 ms_1,1…3, ma_1 safety1
Inverted pendulum 2 ms_2,1…3, ma_2 safety2
Flow rate control A ms_A,1…2, ma_A safetyA
Flow rate control B ms_B,1…2, ma_B safetyB
Emergency shutdown me,1…4 emergency
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In the following, we assume that addressing of message instances is based on
message types: A message type identifier is uniquely associated with one sending
node and one or more receiving nodes.

For each mode mk 2 M, a mode slot sj 2 S can be assigned to a message type
mt 2 MT of that mode. This assignment implicitly applies to all mode slots si,j of
super slots Si 2 S. We note that with this stipulation, a mode slot can be assigned to
up to nmode = |M| message types.

Definition 5.4 (Slot assignment) LetM be a set of modes, S be a set of mode slots,MT
be a set of message types, and ma be a mode assignment. Then sa:M � S !p MT is a
partial function called slot assignment. We stipulate that sa respects mode assignment,
i.e., 8m 2 M, s 2 S, mt 2 MT. (sa(m, s) = mt ) ma(mt) = m).

The function sa is partial, i.e., it is possible to have empty or incomplete slot
assignments. In case of an empty assignment, a slot remains unused. If there is a
single slot assignment, the slot is reserved exclusively for messages of the assigned
message type. In case of multiple assignments, messages of the assigned message
types have to contend for slot usage at runtime.

For mode-triggered scheduling, it is important that message types assigned to the
same slot have different modes, which is captured by the constraint in Definition
5.4. This limits the number of message types per slot and thus the maximum degree
of contention to nmode = |M|. For finer distinctions, further modes can be
introduced.

Table 5.5 shows a slot assignment sac for the control scenario (see Sect. 5.2.3.1)
respecting mode assignment mac in Table 5.4. In most cases, slots are assigned to
one message type only, i.e., exclusively. Exclusive assignments are appropriate in
case of strictly periodic messages, where assigned slots are always used. In case of
sporadic messages, or when messages are not strictly periodic, assigned slots may
not always be needed. In the control scenario, this is the case during periods where
sufficient quality of control is already achieved using maximal intervals. In this
situation, it is appropriate to assign the same slot to several message types. In
Table 5.5, some slots are assigned 3 or 4 times. This raises the question of how

super slot sync region (ProSync)

exclusive region (ProRes)

shared region (ProCont)

mode region (ProMod)

mode slots

Fig. 5.4 Virtual time slotting—mode regions and mode slots
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these slots are arbitrated in case of dynamic contention of messages. We note that
different from the time-triggered solution with a need of 54 time slots per cycle (see
Sect. 5.2.3.1), 32 slots per cycle are now sufficient.

For mode-triggered scheduling, we introduce, for each slot and mode, unique
mode preferences, which determine the priority of messages that are scheduled for
the same slot.

Definition 5.5 (Mode preference assignment) Let M be a set of modes, S be a set of
mode slots, ma and sa be mode and slot assignments, respectively. Then mpa:
M � S !p N0 is a partial function called mode preference assignment, assigning,
to each tuple of mode and slot for which sa is defined, a unique preference, with
lower values representing higher preferences.

Table 5.6 shows a mode preference assignment mpac for the control scenario
satisfying the constraints stated in Definition 5.5. Preferences are chosen such that
message types get the highest preference 0 in case of exclusive mode slot assign-
ment. Furthermore, message types associated with mode emergency always get the
highest preference.

The possibility to assign mode preferences to message types on a per slot basis
instead of having the same mode preference for all slots is a crucial and outstanding
aspect of mode-triggered scheduling. Compared to static message type-based pri-
ority assignments as, for instance, in Controller Area Network (CAN) [6], this
opens up a new dimension of scheduling. In Table 5.6, mode preferences 0, 1, and
2 are assigned to mode safety1 in different slots. Thus, messages with this mode can
compete with different priorities, which support temporal message urgencies. In slot
s14, up to 4 messages1 may contend for medium access, with the message instance
winning contention being uniquely determined by the mode preference assigned to
the message type’s mode in that slot.

In Table 5.6, we have assigned minimal consecutive integer values as mode
preferences, starting with 0. As we will show later, this supports a more efficient
medium arbitration, as compared to using arbitrary integer values.

Definition 5.6 (Message instance assignment) Let S be a set of super slots, S be a
set of mode slots, and M be a set of modes. Furthermore, let MI be a set of message
instances (messages for short) to be sent at runtime. Then mia: S � S � M !p MI
is a partial function defining a message instance assignment.

A message instance assignment defines which messages are scheduled for which
slot instance and mode. As it is not known offline which messages are to be sent at
what point of execution, this assignment is determined dynamically. For instance,
additional messages of an inverted pendulum may have to be scheduled in case of
sporadic disturbances, to shorten the stabilization delay. Furthermore, messages

1Even if a message type is assigned to a mode and a slot, this does not imply that in every such
slot, a message of this type is to be sent. Especially sporadic messages are only sent from time to
time. In particular, in some occurrences of slot s14, there may be no message to be sent.
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may have to be scheduled more than once, if they compete with other messages of
higher preference in the assigned slot instance, or be discarded.

As a constraint, a (dynamic) message instance assignment has to respect the
(static) slot assignment:

Definition 5.7 (Consistency) Let sa be a slot assignment, mia be a message
instance assignment. Let mt: MI ! MT be a function associating, with each mes-
sage instance, its message type. The function mia is consistent with sa iff 8S 2 S,
s 2 S, m 2 M, mi 2 MI, mt 2 MT. (mia(S, s, m) = mi ^ mt(mi) = mt ) sa
(m, s) = mt).

With these preparations, we can now formally define mode-triggered scheduling:

Definition 5.8 (Mode-triggered scheduling) Let mia: S � S � M !p MI be a
message instance assignment, mpa be a mode preference assignment, and
tx � S � S � MI be a relation defining whether a message is sent in a given slot
instance. Then mode-triggered scheduling is the strategy where, for each slot
instance, the scheduled message with the highest mode preference is sent. Formally:
8S 2 S, s 2 S. 9m 2 M, mi 2 MI. (mia(S, s, m) = mi ^ 8m′ 2 M, mi′ 2 MI.
(m 6¼ m′ ^ mia(S, s, m′) = mi′ ) mpa(m, s) < mpa(m′, s)) ) tx(S, s, mi)).

From the definitions, it follows that if there is dynamic contention among nodes,
because two or more message instances are dynamically assigned to the same slot
instance, the contention is deterministically resolved.

In the control scenario, for instance, sporadic emergency message instances
me,1…4 always win a possible contention due to their highest mode preference. If no
such message instance is assigned, other assigned message instances may use the
slot, in the order of mode preferences. Thus, mode-triggered scheduling improves
bandwidth usage compared to time-triggered scheduling significantly.

Other than solutions 1 and 2 (see Sect. 5.2.3.2), mode-triggered scheduling with
mode medium access efficiently realizes the requirements of the control scenario.
Exclusive medium access is granted when necessary. Due to deterministic medium
access, no collisions occur, therefore, communication is highly reliable.
Furthermore, real-time traffic is delayed only within specified time bounds. Finally,
compared to solution 2, no additional wireless communication system needs to be
deployed, as the required bandwidth is reduced from 54 (exclusive) slots to 32
(mode) slots, i.e., by 40%.

5.2.3.3 Mode Medium Access with Fast Mode Signaling

By fast mode signaling, we refer to methods to propagate the mode of all message
instances assigned to a slot instance that has the highest preference in that slot fast
and reliably across the network. Fast means that at the beginning of the slot instance
or with a very short delay, all nodes are aware whether they may or may not
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transmit an assigned message instance. Fast mode signaling is crucial for the effi-
cient implementation of mode medium access.

Conceptually, fast mode signaling can be realized in different ways, related to
the scope of modes. For instance, a mode can be valid globally, i.e., for a given slot
instance, the same mode applies to all nodes (see, e.g., TTP/C [14]). It follows that a
slot instance is used only if there is an assigned message instance associated with
the valid mode. Global modes can be signaled, for instance, at the beginning of a
super slot, or at the beginning of each mode slot. An advantage is that a message
instance associated with the global mode can be sent without further contention.
However, if for a given slot instance, no message instance of that mode is assigned,
the slot instance remains unused. Therefore, global modes are inappropriate to
realize mode-triggered scheduling.

Another approach of fast mode signaling is to reduce the scope of modes to
individual nodes and single slot instances. For a given slot instance, each node
determines the set of its locally assigned message instances. The current local mode
is then defined to be the mode with the highest mode preference of the associated
message types of that set or undefined if the set is empty. At the beginning of each
slot instance, all nodes with defined local mode signal their mode preference, with
the node signaling the highest preference winning contention. Here, it is important
that mode signaling is very fast, and that it can be performed in a collision-protected
way. Since modes and mode preferences of a slot are unique, the winning node is
uniquely determined.

5.2.3.4 Implementation of Mode Medium Access

Mode medium access can be implemented by passive and active contention (see
Sect. 5.1.2). For passive contention, each node can perform a deterministic backoff
with a duration corresponding to its current local mode preference. To realize
higher preferences, shorter backoffs are applied. Since mode preferences of a slot
instance are unique, the node that signals the highest preference wins. For active
contention, nodes can send busy tones of different length, associated with the
current local mode preference. For higher preferences, longer busy tones are
transmitted.

Contention by deterministic backoffs or busy tones is feasible in single-hop
networks. For multi-hop networks, other mechanisms are required, and until
recently, it has been an open question whether deterministic solutions for wireless
networks actually exist. In Chap. 6, we will present a binary countdown protocol for
deterministic arbitration in multi-hop wireless networks, which solves the problem.
However, this kind of arbitration comes at some expense and therefore may not be
sufficiently efficient for fast mode signaling.

Mode medium access has been implemented for single-hop scenarios in ProMod
[4], a module of the ProNet 4.0 protocol stack [1], applying a passive contention
scheme. The implementation is based on virtual time slotting with mode regions
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subdivided into mode slots, as shown in Fig. 5.4. In each mode slot, mode medium
access with fast mode signaling is performed.

To achieve deterministic contention, the timing of mode medium access is
crucial [4]. Figure 5.5 shows the temporal structure of a mode slot s supporting 3
mode preferences. To avoid overlap with a transmission in the previous mode slot,
contending nodes, i.e., nodes with a message assigned to s, have to wait for the
maximum tick offset dmaxTickOffset (see Chap. 2) before starting arbitration. Each
node then listens on the medium for mpa(m, s) � 0 backoff slots of length
dbackoffSlot, where m is the current local mode associated with the assigned message
instance, and mpa is the mode preference assignment. If the medium is idle for this
listening period, the node wins contention and starts transmission at the transmis-
sion start point (TSP) following the end of the associated backoff slot. Transmission
ends at transmission end point (TEP) to ensure that overlap with the next mode slot
or slot region is avoided.

The structure of a backoff slot is determined by two parameters: the setting of
TSP with a delay of dTSP relative to the start of the backoff slot, and the backoff slot
duration dbackoffSlot. Both parameters have to be chosen such that all contending
nodes are able to associate the start of a message transmission with the same
backoff slot. TSP has to consider the maximum tick offset dmaxTickOffset and the
delay dswitch of the sender to switch from receive mode to transmit mode:

dTSP � max dmaxTickOffset; dswitchð Þ ð5:1Þ

This is to ensure that transmission only starts after the corresponding backoff slot
of a node with a slow clock has begun, i.e., after dmaxTickOffset. Furthermore,
switching can only start at the beginning of the current backoff slot, yielding a
minimum delay of dswitch before transmission can start.

The duration dbackoffSlot is determined as follows:

dbackoffSlot � dmaxTickOffset þ dTSP þ dmaxProp þ dmaxCCA ð5:2Þ

This is to ensure that all nodes detect the start of transmission in the same
backoff slot. The delay dmaxTickOffset is taken into account once more to ensure that a
node with a fast clock listens long enough. It then takes up to dTSP before trans-
mission starts, up to dmaxProp for it to arrive, and up to dmaxCCA to be detected.

Fig. 5.5 Temporal structure of a mode slot with deterministic backoff
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After transmission ends, the sending node switches its transceiver from transmit
mode back to receive mode. Furthermore, to avoid overlap with a transmission in
the next mode slot, the transmission interval has to end at least dmaxTickOffset before
the mode slot ends. This is captured by the following constraint:

dTEP �max dmaxTickOffset; dswitchð Þ ð5:3Þ

For the implementation of mode medium access in ProMod, Imote2 motes [13]
with the Chipcon CC2420 radio transceiver [7] have been used. Tick synchro-
nization is performed by Black Burst Synchronization (BBS, see Chap. 2),
implemented in ProSync of the ProNet 4.0 protocol stack [1]. Inserting corre-
sponding values from data sheets and the analysis of BBS for a single-hop scenario
with a resynchronization interval of 1 s into constraints (5.1) and (5.2), we obtain
dTSP � 192 µs and dbackoffSlot � 529 µs.

5.2.3.5 Experimental Results

In this chapter, we report on real-world experiments that were conducted to show
feasibility and reliability of the implementation of mode medium access [4].
Figure 5.6 shows the topology of the experiment setup, with 4 nodes in single-hop
range. Nodes v1, v2, and v3 take the role of senders, and node vs is synchronization
master and records receptions from senders.

Figure 5.6 also shows the virtual time structure, with a super slot hosting a
resync slot and a sampling slot with the same length of 1000 ms (see Chap. 3). In
the middle of the super slot, a mode region consisting of one mode slot s is
configured.

In the scenario, modes M = {regular, safety, emergency} are defined. Three
message types mt1, mt2, and mt3 assigned to these modes in mode slot s are con-
figured, with node vi sending message instances of type mti. Furthermore, mode
preferences in mode slot s are 0 (emergency), 1 (safety), and 2 (regular). To
distinguish between these mode preferences, a mode slot contains 2 backoff slots
(see Fig. 5.5). Message instances of mode regular are assigned in every mode slot,
of type safety in every 4th mode slot, and of type emergency in every 8th mode slot.

super slot (1000ms)
sync region (ProSync)

mode region (ProMod)

v1

v2 v3

vs 

mode slot

Fig. 5.6 Topology and virtual time structure of the experiment
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With this strictly periodical traffic pattern, 2 (3) nodes contend in every 4th (8th)
mode slot.

To assess feasibility and reliability of the implementation of mode medium
access, experiments with a duration of 5,000 super slots each have been conducted.
All experiments were carried out in a controlled environment, where the influence
of other senders could be ruled out, i.e., with the single-network property (see
Sect. 1.3) being satisfied. In all experiments and all mode slots, the node with the
assigned message instance and associated highest mode preference has won con-
tention, and the transmitted message instance was correctly received. This shows
that the implementation of mode medium access is indeed feasible and highly
reliable.

5.3 Related Work

In this chapter, we survey and compare medium access schemes used in wireless
communication technologies. Our survey is not intended to be comprehensive, but
to address some state-of-the-practice approaches, and to point out similarities and
differences to medium access schemes of ProRes, ProCont, and ProMod.

5.3.1 IEEE 802.11—Wi-Fi

Wi-Fi (IEEE 802.11 [11]) is a widespread wireless technology incorporated by
virtually all mobile devices, such as smartphones, notebooks, and tablets. In
single-hop networks also called cells, medium access can be supervised by a base
station called point coordinator. Here, time is structured into super frames started
by a beacon frame of the point coordinator and decomposed into contention-free
period and contention period (see Fig. 5.7). In ad hoc mode, i.e., without point
coordinator, time is a continuous contention period.

Medium access is by contention, which is partially deterministic, partially ran-
dom. Before starting a transmission, nodes are required to perform Carrier Sense
Multiple Access (CSMA) and to reduce potential collisions. Contention is priori-
tized by CSMA periods of different length called interframe spaces. Short Inter
Frame Spaces (SIFS) are used to give preference to nodes involved in an ongoing

contention-free period contention period

super frame

beacon frame

Fig. 5.7 Wi-Fi with point coordinator—time structure
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frame sequence, e.g., RTS-CTS-DATA-ACK. The base station applies PIFS (Point
Coordinator Function (PCF) Inter Frame Spaces), which are longer than SIFS. In
both cases, contention is resolved deterministically, as at any point in time during
execution, there is at most one contending node per interframe space and strict
preference between contending nodes. This scheme has some similarities with fast
mode signaling with priorities 0 (SIFS) and 1 (PIFS), as provided by ProMod.
A difference is that nodes applying priority 0 are not predetermined, but have to win
general contention first. Furthermore, the points in time when contention is per-
formed are not determined as in ProMod.

In legacy Wi-Fi2, the point coordinator contends for medium access during the
contention free period. By applying PIFS, it gains exclusive medium access. It can
then send data to nodes of the same cell, or poll them. Polled nodes apply SIFS to
get exclusive medium access once. It is up to the point coordinator which nodes to
poll in which order. Therefore, this form of exclusive access is not deterministic as
in ProRes.

Shared medium access is provided via general contention, where DIFS
(Distributed Coordinator Function (DCF) Inter Frame Spaces), which are longer
than SIFS and PIFS, are used. Different from SIFS and DIFS, this does not resolve
contention deterministically. Therefore, the CSMA period is extended by a random
backoff interval controlled by a backoff counter. This further reduces the risk of
collisions and, however, does not rule them out.3

Different from ProCont, IEEE 802.11 does not support frame priorities. Nodes
losing general contention have to contend again. However, they keep their backoff
counter value and continue countdown after the next CSMA period of length DIFS,
which improves their chances of winning contention. In a variant of IEEE 802.11,
frame priorities can be supported by configuring up to 8 traffic categories with
different interframe spaces and contention window sizes. As in legacy IEEE 802.11,
backoff counter values are kept after losing contention, which means that frame
priorities are statistical.

5.3.2 ZigBee—IEEE 802.15.4

ZigBee [17] is a wireless technology for short distance communication in home and
industrial automation, with low transmission rates and low energy consumption. It
incorporates IEEE 802.15.4 [12] and adds routing, security, and application
functionalities.

2In a variant of IEEE 802.11, the point coordinator can also contend for medium access during the
contention period. This extension is referred to as Hybrid Coordination Function (HCF).
3The risk of collisions is further reduced by exchanging an RTS-CTS sequence before the actual
data transmission. Since we are focusing on medium access schemes, we will not discuss this
further.
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When operated in beaconed mode with a personal area network
(PAN) coordinator synchronizing device nodes in single-hop distance via beacon
frames, time is structured into super frames (see Fig. 5.8). Each super frame con-
sists of active and inactive period. The active period is decomposed into 16 super
frame slots of equal length, which are subdivided into dynamic intervals referred to
as contention access period (CAP) and contention-free period (CFP).

In beaconed mode, ZigBee supports shared and exclusive medium access.
Shared medium access is provided during the CAP and based on slotted CSMA/
CA. To contend for the medium, a node locates the next backoff slot boundary. It
then waits for a random number of backoff slots, without listening on the medium,
which reduces energy consumption. If the medium is idle at the beginning of the
two slots following this backoff interval, the node wins contention and starts
transmission. Different from ProCont, no frame priorities are supported.

ZigBee provides exclusive medium access during the CFP, based on exclusively
reserved slots called guaranteed time slots (GTSs). Reservations can be requested
by device nodes during the CAP and are granted on a first-come-first-served basis
by the PAN coordinator, subject to availability. Compared to ProRes and ProSlot,
the time structure of CFPs and GTSs is quite inflexible, which strongly limits the
number and placement of reserved slots. However, reservations can be handled
dynamically.

5.3.3 WirelessHART

WirelessHART [8, 16] is a communication technology for wireless networking of
intelligent field devices and applied in the production domain. It builds on IEEE
802.15.4 PHY [12] and adds functionality for medium access control, multi-channel
operation, routing, end-to-end communication, and application support.

super frame

active period inactive period

beacon
CAP CFP

GTS GTS inactive

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SD = aBaseSuperframeDuration ⋅ 2SO symbols

active
BI = aBaseSuperframeDuration ⋅ 2BO symbols

Fig. 5.8 ZigBee with PAN coordinator—time structure in beaconed mode (see [12], Fig. 8)
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Communication in WirelessHART is based on global time slotting (see
Sect. 3.3.2). First, time is physically structured into slots of 10 ms, which are
identified by their Absolute Slot Number (ASN). Then, slots are composed into
virtual time regions called super frames.

WirelessHART provides exclusive medium access, based on time-triggered
scheduling. A centralized network manager handles time synchronization, channel
management, scheduling, reservation, and route discovery. Time slots are exclu-
sively assigned to nodes and used to transmit several kinds of unicast and broadcast
frames. Exclusive medium access is based on reservations and therefore comparable
to ProRes.

5.3.4 TTP/C

Time-Triggered Protocol Class C (TTP/C) [14] is a wired time-triggered field bus
that explicitly defines and applies the concept of mode. As mode medium access,
TTP/C supports dynamic mode changes; however, it lacks efficiency and flexibility.

TTP/C structures time into a sequence of cluster cycles, which are substructured
into a fixed number of TDMA rounds consisting of a fixed number of slots. In a
TDMA round, slots are exclusively assigned to nodes, with at most one slot
assignment per node. It is possible that in different TDMA rounds, a slot is
exclusively assigned to different nodes.

Modes in TTP/C are introduced as global system operating modes. Global
means that the current mode applies to all nodes, which may only send messages
associated with the current operating mode in assigned slots. As in mode-triggered
scheduling with mode medium access, TTP/C supports the configuration of the set
of modes and mode changes at runtime, which are requested by authorized nodes.
Mode change requests are signaled in a dedicated control field of regular messages.
Mode changes become effective only at the beginning of the TDMA round fol-
lowing their reception (deferred mode change) and are performed by all nodes. If
more than one request is received during a TDMA round, the last request is granted.

Compared to mode medium access, the use of TTP/C modes lacks efficiency and
flexibility. In TTP/C, mode changes are only performed at the beginning of TDMA
rounds. During a TDMA round, the current mode applies to all nodes. Furthermore,
slots are always assigned exclusively. Thus, if nodes have no message to send for
the mode in place, slots remain unused. Furthermore, mode changes are very slow.
In addition, the time structure of TTP/C is quite inflexible.
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5.4 Conclusions

In this chapter, we have explained concepts and measures of medium access, have
presented medium access schemes of ProNet 4.0, and have surveyed and compared
medium access schemes used in state-of-the-practice wireless communication
technologies. We have distinguished three basic types of medium access. Exclusive
access means that at any point in time, only one node has the right of using the
medium for transmission. With shared access, several nodes may access the med-
ium simultaneously, with potential collisions. Mode access restricts shared access to
defined subsets of nodes, renders contention deterministic, and thereby avoids
collisions.

Among the medium access schemes supported by ProNet 4.0, we have focused
on the novel mode medium access with mode-triggered scheduling. This way, a
well-controlled amount of dynamic contention for time slots is permitted. We have
introduced fast mode signaling to agree on the current transmission mode of highest
preference extremely fast and reliably. Furthermore, we have outlined the imple-
mentation of mode medium access and have reported on the results of real
experiments showing feasibility and reliability in a wireless network.

While mode medium access as presented in this chapter supports deterministic
contention with a predictable winner, less rigid forms are perceivable, too. For
instance, it is possible to assign, for a given mode slot, the same mode preference to
more than one message type. In this case, nodes with assigned message instances
associated with the same mode preference would have to contend, e.g., by per-
forming an additional random backoff in their backoff slot. A similar scheme is used
by Elimination by Sieving/Deadline Bursting with DCF (ES/DB-DCF) [15] in the
elimination phase. Another option is to assign mode preference 0 uniquely to one
message type per slot and to assign mode preference 1 collectively to several other
message types in the same slot. This enforces exclusive access for assigned message
instances associated with the highest mode preference and permits other message
instances to contend randomly, which improves bandwidth usage if message
instances of highest preference are not always assigned while preserving real-time
capability.

While the focus of this book is on wireless communication technologies, we
would like to point out that mode medium access is also applicable in wired tech-
nologies. In [2], we have presented a solution based on Controller Area Network
(CAN) [6], with a working prototype for TTCAN [2, 4], a Time-Triggered Protocol
in the automotive domain [10]. Solutions for FlexRay [9] are described in [3].
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Chapter 6
Deterministic Arbitration

Predictable behavior is of paramount importance in distributed real-time computer
systems. In particular, this concerns predictability of timing and of arbitration
procedures. In this chapter, we explain the foundations of deterministic arbitration
in wireless ad hoc networks, present Arbitration and Cooperative Transfer Protocol
(ACTP) [2, 3], survey and compare related work, and draw conclusions.

6.1 Foundations

In this chapter, we provide the context of deterministic arbitration in wireless ad hoc
networks, explain concepts and measures, and address areas of operation.

6.1.1 Context

In distributed systems, nodes exchange messages to share data and to coordinate
their behavior. To achieve predictable behavior, deterministic protocols are
required. In Chap. 2, we have presented Black Burst Synchronization (BBS), our
deterministic protocol for tick and time synchronization, with upper bounds for tick
and time offset, and for convergence delay. In Chap. 5, we have addressed
exclusive medium access and the novel mode medium access with an implemen-
tation that provides deterministic outcomes for medium arbitration in single-hop
range.

In distributed real-time systems, there are further functionalities requiring de-
terministic arbitration:

• Leader election: A leader is needed for centralized coordination of activities,
such as provision of a service registry, route discovery, and resource reservation.
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• Consensus on a common data value: Consensus is needed for agreement on the
identity of a leader, on a global clock value, and on termination of a distributed
algorithm.

• Signaling of mode changes: Real-time systems may run in different operating
modes, with different settings and functionalities. For instance, Internet of
Things (IoT) devices may be executed in operational mode, fail-safe mode,
diagnosis mode, or configuration mode. To enable mode-driven operation, the
current mode has to be signaled efficiently and reliably.

In this chapter, we identify and present protocol mechanisms that can be applied
to tackle these problems in wireless ad hoc networks.

6.1.2 Concepts and Measures

For deterministic arbitration in wireless ad hoc networks, we distinguish the fol-
lowing general objectives:

• n-hop deterministic arbitration: Nodes contend with all nodes in their n-hop
neighborhood in order to determine a unique winner. Special cases are n = 2,
which solves the hidden station problem, or n = nmaxHops, where nmaxHops

denotes the maximum network diameter, which means that contention is
network-wide.

• n-hop deterministic value transfer: A single node communicates a data value to
all nodes in n-hop neighborhood. For instance, a master node may propagate its
clock value of the most recent reference tick to all other nodes, with n set to
nmaxHops.

• n-hop deterministic arbitration and value transfer: This combines the previous
objectives. For instance, a leader may be elected (arbitration) with its identity
made public to all nodes participating in the election (value transfer).

In networks in general and in wireless ad hoc networks in particular, several
problems make it difficult to achieve these objectives. Communication may be
impeded by weak links and by destructive collisions due to interference of con-
current transmissions, particularly in wireless networks. Furthermore, if broadcasts
are used, collisions may go undetected. Finally, the multi-hop nature of networks
poses an additional challenge.

To resolve contention, passive and active contention schemes can be considered.
Passive contention is performed by listening on the medium. In Sect. 5.2.3.4, we
have presented an implementation of mode medium access, using a deterministic
passive contention scheme for wireless ad hoc networks based on individual
backoffs of unique length. While this is feasible in single-hop networks, it is unclear
how it can be extended to multi-hop topologies.

Active contention is done by transmitting contention patterns. If several nodes
in range contend, collisions are unavoidable. Therefore, for deterministic outcomes,
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it is mandatory that active contention schemes are collision-resistant. In the liter-
ature, two active schemes with this property have been proposed:

• Busy tone protocols: When the medium is idle or at predefined points in time,
nodes contend by transmitting jamming signals of different length. After fin-
ishing transmission, nodes listen on the medium. If the medium is detected idle,
meaning that the listening node has transmitted the longest jamming signal, the
node wins contention; otherwise, it loses.

• Binary countdown protocols (dominance protocols): When the medium is idle
or at predefined points in time, nodes contend by bitwise transmission of unique
arbitration bit sequences of fixed length representing a priority. Bits are encoded
as dominant and recessive signals, with the medium being monitored instead of
transmitting recessive signals. If during an arbitration bit sequence, a node
contends with a recessive signal, but monitors a dominant signal, it loses con-
tention and resigns. At the end of the arbitration bit sequence, the node signaling
the highest priority remains and wins contention.

As passive contention schemes, active schemes can be applied in single-hop
networks. In the literature, there have been attempts to extend these schemes to
multi-hop topologies. However, until recently, it has been an open question whether
deterministic solutions for multi-hop wireless networks actually exist. In Sect. 6.2,
we will present a solution.

6.1.3 Areas of Operation

Deterministic arbitration is an essential functionality of distributed real-time com-
puter systems, enabling applications on user and system level.

6.1.3.1 Leader Election

A well-known and well-studied problem requiring deterministic arbitration is the
leader election problem, where a node is to be uniquely chosen out of a set of
competitors [7]. Leaders—also called coordinators—are required in a variety of
applications. For instance, to manage the operation of a distributed system, a
centralized scheduler could be elected. To determine routes with exclusive slot
assignments, a node acting as routing and reservation manager could be chosen. In
both cases, the election is among all nodes, i.e., network-wide.

There are also applications where elections occur in n-hop neighborhood, for
instance, in case of clustering, where the objective is to divide a network into
groups of nodes (see Chap. 9). Here, a set of leaders called cluster heads and their
followers are chosen.
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Many leader election algorithms assume communication to be reliable.
However, when applying wireless technologies for ad hoc networks, this cannot be
taken for granted. For instance, links may be weak and therefore lossy, and
destructive collisions may occur, yielding unbounded election delays.

6.1.3.2 Consensus

Another well-known and well-studied problem requiring deterministic arbitration is
the consensus problem, where agreement on a common data value is to be reached
among a set of nodes [6, 9]. For instance, it may not be sufficient to elect an
anonymous leader, but also be necessary to share its node address.

In Chap. 2, we have presented Black Burst Synchronization (BBS), a deter-
ministic protocol for tick and time synchronization in wireless ad hoc networks. The
exchange of clock values of the last reference point in time is another scenario
requiring distributed agreement. For instance, the master node’s clock value could
be propagated across the network. Alternatively, nodes could agree on the clock
value of the fastest clock, which, in addition, requires network-wide arbitration.

In Chap. 4, we have presented Automatic Topology Discovery Protocol
(ATDP), which detects and disseminates communication, interference, and sensing
topologies. As soon as all nodes have a consistent view, consensus on termination is
to be reached.

6.1.3.3 Quality of Service Routing

In multi-hop networks, routing is required to provide end-to-end communication. In
distributed real-time systems, routes have to satisfy specific quality of service
(QoS) requirements regarding, for instance, performance and reliability. In [4], we
have introduced Black Burst-based QoS routing (BBQR). The objective of BBQR
is to discover routes satisfying a specified QoS requirement. In the process of route
discovery, BBQR applies n-hop deterministic arbitration and value transfer several
times, with different settings for the arbitration radius n.

• In Phase 1, BBQR selects a single node to continue its route search, thereby
serializing route requests to avoid the problem of mutual blocking of resources.
This is achieved by setting n = nmaxHops. At the end of this phase, there is a
unique winner, and all nodes know its node id.

• In Phase 2, BBQR detects feasible routes, i.e., routes satisfying the QoS
requirement, with n = 1. At the end of this phase, all nodes have learned about
their hop distance to the destination node.

• In Phase 3, BBQR selects one feasible route with minimal hop count, with n = 2
to resolve potential conflicts. Furthermore, nodes along the selected route learn
about their predecessor.
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• In Phase 4, BBQR informs nodes along the selected route about their successor
by regular unicast frames.

BBQR has been devised for multi-hop wireless ad hoc networks and qualifies as
a deterministic protocol. By using a collision-resistant active contention scheme,
route discovery is reliable and predictable.

6.2 Arbitrating and Cooperative Transfer Protocol
(ACTP)

In this chapter, we present Arbitrating and Cooperative Transfer Protocol (ACTP)
[2, 3], a protocol for n-hop deterministic arbitration and value transfer in multi-hop
ad hoc networks. ACTP is implemented in protocol module ProArb of the ProNet
4.0 protocol stack [1] and activated during dedicated virtual time regions.

6.2.1 Encoding of Bit Sequences with Black Bursts

To encode bit sequences used for arbitration and value transfer, ACTP uses the
concept of black bursts [12] (see Sect. 2.2.2). A black burst is a period of trans-
mission energy of defined length. Transmission of black bursts starts at locally
determined points in time, without prior medium arbitration. If black bursts collide,
a receiving node can still detect a period of energy on the medium, which renders
collisions non-destructive provided certain timing constraints are observed.

Bit sequences are encoded with black bursts as follows: a logical 1 is encoded by
transmitting a black burst of defined duration dBB > 0 µs; a logical 0 is encoded by
not transmitting a black burst, i.e., dBB = 0 µs. If several nodes in range transmit a
bit, a logical 1 will dominate a logical 0, which therefore is called recessive bit,
while 1 is dominant. This feature can be used to encode a bitwise logical OR by
sending bit sequences in an aligned way.

6.2.2 Time Structure of ACTP

The time structure of ACTP builds on global time slotting (see Chap. 3). Arbitration
and value transfer occur in virtual time regions called arbitrated regions. As
illustrated in Fig. 6.1, these regions are decomposed into sequences of arbitrated
slots. Slot lengths depend on the required arbitration range (in hops), and on the size
of values and data to be exchanged, and are therefore not fixed.

Arbitrated slots are further decomposed into a bit sequence phase for arbitration
and/or value transfer and a possibly empty data phase for transmission of one or
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more regular frames. Depending on the arbitration range, this could be exploited to
send a data frame over several hops, without further arbitration and free of colli-
sions. A bit sequence phase consists of nbits bit phases, where nbits is the length of
the arbitration bit sequence of that arbitrated slot. A bit phase is composed of nhops
bit rounds, where nhops is the arbitration range. In Fig. 6.1, nbits = 2, and nhops = 4.
If dbitRound is the (constant) duration of a bit round, we have dbitPhase = nhops �
dbitRound and dbitSequencePhase = nbits � dbitPhase for the duration of bit phase and bit
sequence phase, respectively.

6.2.3 Arbitration and Cooperative Transfer in Single-hop
Networks

When performing ACTP in single-hop networks, i.e., nhops = nmaxHops = 1, bit
phases consist of a single bit round only. Since this simplifies the operation of
ACTP, we start by considering the single-hop algorithm, which can be classified as
a binary countdown protocol (see Sect. 6.1.2).

At the beginning of an arbitrated slot, all contending nodes are active; all other
nodes are passive, i.e., they listen only.

• Active nodes transmit their arbitration bit sequence bit by bit as follows:

– In (bit round 1 of) the current bit phase i, 1 � i � nbits, an active node
“transmits” the ith bit of its arbitration bit sequence.

– If an active node has transmitted a logical 1, i.e., a dominant bit, it remains
active.

Fig. 6.1 Virtual time slotting—arbitrated region (for explanations, see also Sect. 3.2)
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– If an active node has “transmitted” a logical 0, i.e., a recessive bit, it remains
active only if it does not receive a logical 1 in this bit round. Otherwise, it
becomes passive, i.e., it stops contending.

• Data values are recorded as follows:

– If an active node has sent a logical 1 in (bit round 1 of) the current bit phase
i, 1 � i � nbits, it records a logical 1 as the ith bit.

– If a passive node has received a logical 1 in (bit round 1 of) the current bit
phase i, it records a logical 1 as the ith bit.

– In all other cases, a node records a logical 0 as the ith bit.

After nbits bit phases, only one node is still active and therefore winner if the
initial set of contending nodes has not been empty, and if all bit sequences have
been unique. Furthermore, all nodes know the bit sequence of the winner. Thereby,
1-hop arbitration and transfer of a data value as given by the arbitration bit sequence
are achieved. In addition, the winner can send a regular data frame in the data phase
if configured.

Figure 6.2 illustrates the single-hop case of ACTP. Here, nodes vr, vs, and vt
form a single-hop network. Nodes vr and vs are contending with arbitration bit
sequences 101 and 100 of length nbits = 3; node vt is not contending, but listening in
order to learn about the data value of the winner.

In the first and only bit round of bit phase 1, nodes vr and vs transmit a logical 1,
encoded as black burst of duration dBB. Before doing so, they switch their trans-
ceivers from receive (rx) mode to transmit (tx) mode; afterward, they switch back.
Figure 6.2 also shows that there is a tick offset between nodes, leading to slightly
shifted arbitrated slots of participating nodes. Consequently, node vt observes an
extended energy interval when receiving the logical 1. In bit round 1 of bit phase 2,
both vr and vs transmit a logical 0. However, when listening on the medium, they do
not receive a logical 1; therefore, they both remain active. Finally, in bit round 1 of
bit phase 3, nodes vr and vs transmit 1 and 0, respectively. As node vs receives a
logical 1, it loses and becomes passive. Thus, at the end of the bit sequence phase,

Fig. 6.2 Arbitration and cooperative transfer—single-hop scenario (see [14], Fig. 2)
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vr is the only active node and therefore wins, with all nodes knowing the arbitration
bit sequence and data value 101.

For cooperative transfer, there are one or more nodes transmitting the same data
value. Although conceptually different, this can be handled as a special case of
arbitration.

6.2.4 Generalization to Multi-hop Range

In multi-hop networks, bit phases consist of nhops � 1 bit rounds. This requires a
generalization of the operation of ACTP, i.e., an extension of the binary countdown
protocol approach. As in the single-hop case, all contending nodes are active at the
beginning of an arbitrated slot; all other nodes are passive. In addition, passive
nodes act as repeaters.

• Active nodes transmit their arbitration bit sequence bit by bit as follows:

– In bit round 1 of the current bit phase i, 1 � i � nbits, an active node
“transmits” the ith bit of its arbitration bit sequence.

– If an active node has transmitted a logical 1 in bit round 1, it remains active
and silent throughout the remaining bit rounds of this bit phase.

– If an active node has “transmitted” a logical 0 in bit round 1, it remains
active throughout this bit phase only if it does not receive a logical 1 in some
bit round j, 1 � j � nhops. Otherwise, it becomes passive in the bit round in
which it receives a logical 1 and immediately starts acting as repeater.

• Passive nodes act as repeaters, by forwarding dominant bits:

– If a passive node receives a logical 1 in bit round j for the first time in this bit
phase, 1 � j < nhops, it transmits a logical 1 in bit round j + 1. This especially
holds for nodes that have just become passive in bit round j.

– If a passive node has repeated a logical 1 in bit round j < nhops, it stops
repeating for the rest of this bit phase.

• Data values are recorded as follows:

– If an active node has sent a logical 1 in bit round 1 of the current bit phase i,
1 � i � nbits, it records a logical 1 as the ith bit.

– If a node has received a logical 1 in some bit round j, 1 � j � nhops, of bit
phase i, 1 � i � nbits, it records a logical 1 as the ith bit.

– In all other cases, a node records a logical 0 as the ith bit.

Figure 6.3 illustrates the multi-hop bit sequence phase of ACTP. Here, nodes vr,
vs, vt, vu, and vm form a multi-hop network, with the topology shown in the figure.
At the beginning of the bit sequence phase, all nodes are active and contend with
unique bit sequences of length nbits = 4, with nhops = nmaxHops = 3. These settings
also determine the time structure of the bit sequence phase.
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• Bit phase 1: In the first bit round, all nodes are active and transmit the first bit of
their arbitration bit sequence, which is a logical 1. Therefore, they record a 1 as
the first bit and remain silent for the rest of bit phase 1.

• Bit phase 2: In the first bit round, all nodes are still active and transmit their
second bit. Here, only vs and vt send a logical 1, while all other nodes “transmit”
a logical 0. As vr and vu are in range of vs and vt, they receive a logical 1 in bit
round 2, and therefore, become passive taking immediate effect. For this reason,
they repeat the logical 1 in bit round 2 of bit phase 2. Node vm has not received a
logical 1 in bit round 1 yet, and therefore, is still active at the beginning of bit
round 2. However, in bit round 2, it receives a logical 1 repeated by vu, and
therefore, turns passive, repeating this logical 1 in bit round 3.

• Bit phase 3: In the first bit round, only nodes vs and vt are still active and transmit
their third bit. The logical 1 of vt is received by vr and vu and repeated in bit round
2. Here, vs receives it and becomes passive, while the receiver vm has already
been passive before. In bit round 3, the logical 1 is repeated by vs and vm.

• Bit phase 4: In the first bit round, node vt is the only remaining active node. By
transmitting a logical 0, it finishes transmission of its arbitration bit sequence.
Since vt does not receive a logical 1 during bit phase 4, it remains active and
wins arbitration. By then, all nodes have recorded the complete winner arbi-
tration bit sequence and data value, which is 1110.

After nbits bit phases, exactly one node is still active and therefore winner if the
initial set of contending nodes has not been empty, if nhops = nmaxHops, and if all
arbitration bit sequences have been unique. Furthermore, all nodes know the
arbitration bit sequence of the winner. Thereby, nmaxHops-hop arbitration and
transfer of a data value are achieved. This is illustrated by the example in Fig. 6.3.

transmitting „1“ receiving „1“

transmitting „0“ receiving „0“ / idle

repeating „1“

1000vr 

1100 

1011

1110

1001vm 

vu

vs 

vt 

Fig. 6.3 Arbitration and cooperative transfer—multi-hop scenario
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In addition, the winner can send a regular data frame in the data phase, which may
be forwarded over several hops in the same data phase if configured.

If nhops < nmaxHops, there may be several winners, even if all arbitration bit
sequences have been unique. Furthermore, it can happen that nodes in n � nhops
hop distance of a winner v have contended with a bit sequence representing a higher
priority, however, have lost because there is another contending node v′ in their
nhops range dominating their arbitration bit sequence, which is not in nhops range of
v. In such a case, these nodes record the logical OR of all arbitrating bit sequences
of winners in their nhops range. Thus, while arbitration still works as specified, value
transfer is impaired.

Figure 6.4 illustrates this behavior for nhops = 2, which is a suitable setting for
hidden station elimination. In the scenario, nodes v1, v4, and v7 contend with
arbitration bit sequences 1101, 1011, and 1010, respectively. Node v4 loses in bit
phase 2 when receiving a logical 1 from repeating node v3 in bit round 2 and
becomes passive, acting as repeater. Since nhops = 2, node v4, which is in 2-hop
distance of active nodes v1 and v7, only records bit values received in bit round 2 of
bit phases 2–4, but does not repeat them. At the end of the bit sequence phase,
nodes v1 and v7 remain as winners. Here, node v7 wins although v4 has a dominating
arbitration bit sequence, which, however, is in turn dominated by the arbitration bit
sequence of v1. Nodes in two-hop range of either v1 or v7 record the corresponding
arbitration bit sequence 1101 or 1010. Nodes in two-hop range of both v1 and v7
record the logical OR, i.e., 1111, as shown in the figure.

For cooperative transfer, there are one or more nodes transmitting the same data
value. Although conceptually different, this can be handled as a special case of
arbitration, with only one active node. Alternatively, the entire bit sequence could
be propagated hop by hop, which requires a different time structure of an arbitrated
slot. Here, a bit sequence phase is decomposed into nhops bit sequence rounds, each
consisting of nbits bit rounds.
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Fig. 6.4 Arbitration—hidden station elimination (nhops = 2)

134 6 Deterministic Arbitration



6.2.5 Abstract Analysis of ACTP

Performance and complexity of ACTP can be analyzed based on configuration and
hardware parameters. For a given hardware platform, concrete values can be
determined (see Sect. 6.2.5).

To determine arbitration delay darbPhase, we have to analyze the minimal duration
dbitRound of a single bit round. Together with the parameters nhops and nbits of an
arbitrated slot, we obtain

darbPhase ¼ dbitSequencePhase ¼ nbits � dbitPhase; with dbitPhase ¼ nhops � dbitRound ð6:1Þ

To determine dbitRound, we abstract from propagation delay, delays caused by
internal hardware commands, and processing delays, and derive the following
constraints:

dbitRound � dBB þ 2 � dswitch ð6:2Þ

This constraint results from the observation that a node sending a logical 1 must
be able to complete this within one bit round, which consists of the transmission of
a black burst and of switching delays.

dBB � dmaxCCA ð6:3Þ

A black burst has to be long enough such that nodes in range can detect its
energy with the clear channel assessment (CCA) mechanism.

dTSP �max dmaxTickOffset; dswitchð Þ ð6:4Þ

The transmission start point (TSP) of a bit round has to be placed at least dTSP
after the beginning of a bit round such that all nodes locate the start of black burst
transmission in the same bit round (parameter dmaxTickOffset), and the transmitting
node has enough time to switch from receive to transmit mode (parameter dswitch).

dTEP �max dswitch; dmaxCCA þ dmaxTickOffsetð Þ ð6:5Þ

The transmission end point (TEP) has to be placed at least dTEP before the end of
a bit round, to ensure that all nodes locate the end of black burst transmission in the
same bit round (parameter dmaxCCA), taking the maximum tick offset into account
(parameter dmaxTickOffset), and the transmitting node has enough time to switch back
to receive mode (parameter dswitch).

dbitRound � dTSP þ dBB þ dTEP ð6:6Þ
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A bit round has to be configured such that the constraints (6.2) to (6.5) are
considered. This is captured by constraint (6.6). Since dTEP � dTSP � dswitch, this
also covers constraint (6.2).

Figure 6.5 illustrates the timing constraints of bit rounds. Node vr is sending a
black burst, which is received by nodes vt and vs in range of vr. The local start time
of the current bit round of vr is at t

r. Node vt (vs) has the slowest (fastest) clock;
therefore, the local start time of this bit round of vt (vs) is shifted forward (back-
ward) by dmaxTickOffset, yielding a local start time of tt (ts).

As argued before, the sender vr has to wait at least dmaxTickOffset before starting its
transmission. However, during this time span, it can already start switching to
transmit (tx) mode. In Fig. 6.5, dswitch � dmaxTickOffset, therefore,
dTSP = dmaxTickOffset (see constraint 6.4). This is followed by the transmission of a
black burst and switching back to receive (rx) mode.

Nodes vs and vt start detecting the black burst with delays dCCA and d′CCA,
respectively, during the same bit round. Black burst reception ends at most dmaxCCA

after vr has finished its transmission. In Fig. 6.4, dswitch � dmaxCCA + dmaxTickOffset,
therefore, dTEP = dmaxCCA + dmaxTickOffset (see constraint 6.5).

The thick dashed arrows indicate, for each node, the minimal bit round duration.
As it turns out, this duration is smaller for node vt, which has the slowest clock,
longer for node vs with the fastest clock, and in-between for the sender vr. To cover
the worst case, the bit round duration required by vs is the duration to be considered,
as expressed in constraint (6.6) and indicated by the thick arrows.

Fig. 6.5 Arbitration and cooperative transfer—timing of bit rounds
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If a data phase is configured in the arbitrating slot, its duration ddataPhase has to
take nhops (number of hops), dframe (frame transmission duration), and dmaxTickOffset into
account. As duration of an arbitrating slot, we get darbSlot = dbitSequencePhase + ddataPhase.

With dmaxTickOffset, dmaxCCA, and dswitch being constant, time complexity of
ACTP is in the order of nhops � nbits, and therefore, independent of the number of
nodes. For communication complexity, we have an order of nnodes � nbits. Space
complexity is constant, and there is no structural complexity, as ACTP is
topology-independent and therefore robust against node movements and node
failure.

6.2.6 Concrete Analysis of ACTP

In this chapter, we extend the abstract analysis of ACTP, based on a real hardware
platform, by inserting parameters from data sheets and results of the concrete
analysis of tick synchronization (see Chap. 2).

To analyze ACTP, we have chosen the Chipcon CC2420 radio transceiver [5].
Furthermore, we use results of the concrete analysis of Black Burst Synchronization
(BBS) from Chap. 2.

Table 6.1 shows the results of the evaluation of the arbitration performance of
ACTP, for several parameter settings. We consider topologies with a maximum
network diameter nmaxHops of 1, 4, and 10 hops and resynchronization intervals
dresInt of 1 s and 5 s, yielding maximum tick offsets dmaxTickOffset as shown in the
table. In our implementation, dBB is 160 µs, and values for dswitch and dmaxCCA are
taken from the CC2420 data sheet.

Table 6.1 Arbitration performance of ACTP

nmaxHops 1 4 10

dresInt (s) 1 1 5

dmaxTickOffset (µs) 208 592 1680

dswitch (µs) 192

dBB (µs) 160

dmaxCCA (µs) 128

dTSP (µs) 208 592 1680

dTEP (µs) 336 720 1808

dbitRound (ms) 0.70 1.47 3.65

nhops 1 1 2 4 1 2 10

dbitPhase (ms) 0.70 1.47 2.94 5.89 3.65 7.30 36.48

nbits 4

dbitSequencePhase (ms) 2.82 5.89 11.78 23.55 14.59 29.18 145.92
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In a single-hop network, minimum bit round duration dbitRound is 0.70 ms (see
constraint 6.6). This value increases in topologies with higher diameter, due to
higher maximal offsets. For instance, in a 10-hop network, dbitRound is 3.65 ms. For
bit phase duration dbitPhase, we consider nmaxHops-hop arbitration as well as 1-hop
and 2-hop arbitration, where applicable. In all settings, nbits is 4, yielding the bit
sequence phase durations dbitSequencePhase shown in the table.

In the settings listed in Table 6.1, bit sequence phase durations are in the order of
milliseconds, i.e., relatively high. These durations even increase when using longer
arbitration bit sequences. This leads us to the conclusion that this overhead should
in general not be spent for a single frame transmission, but rather in applications
that require deterministic arbitration less frequently, such as leader election and
consensus, or to transmit several frames without further arbitration. In Chap. 4, we
have presented Automatic Topology Detection Protocol (ATDP), which uses ACTP
to reach deterministic consensus on termination, a decision to be taken only once.

6.2.7 Experimental Assessment of ACTP

In this chapter, we report on real-world experiments that were conducted to show
feasibility and reliability of ACTP [2, 3]. Experiments were performed in testbeds
of Imote2 motes [8], using the CC2420 radio transceiver [5].

Feasibility Experiments

To show feasibility, ACTP was implemented and executed in a representative
small-scale topology that covers scenarios found in larger networks [2]. Due to
weather conditions, experiments were conducted indoors, with other networks
operating nearby. Nevertheless, operation of ACTP has been correct and stable.

Figure 6.6 shows topology and virtual slot timing of the experiments. Time is
divided into super slots with a duration of 1 s, which start with a sync region. In
each super slot, ten arbitrated regions are placed, consisting of a single arbitrated
slot of 20 ms duration. Black Burst Synchronization (BBS, see Chap. 2) establishes
tick synchronization, with a worst-case offset dmaxTickOffset of 336 µs.

The topology consists of four nodes including the timing master vm, with a
maximum network diameter nmaxHops of 2. Arbitration range nhops is set to nmaxHops,

super slot (1s)
sync region (ProSync)

arbitrated region (ProArb)

100ms

BBS master vs 

vu

vt 

vm 

Fig. 6.6 Feasibility of ACTP—topology and virtual slot timing
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and arbitration bit sequences have length nbits = 8. For each arbitrated slot, unique
arbitration bit sequences are assigned to nodes such that each node wins 2 or 3
arbitrations per super slot (see Table 6.2).

The results of the experiments show feasibility of ACTP. In particular, the
results of contention, conversion of active nodes to passive nodes and operation as
repeaters, collision-resistant transmission of black bursts, and timing behavior were
as expected. This also provides some evidence that the timing constraints have been
correctly derived.

Reliability experiments

To assess reliability of ACTP, experiments were conducted over a long period of
time, to determine success rates and false observation rates. With the same settings
and topology as in the feasibility experiments (see Fig. 6.6), experiments continued
for 5 h, i.e., for 18,000 super slots, with a total of 180,000 arbitrations.

Figure 6.7 shows node-specific and overall success rates. An arbitration counts
as node-specific success if the node wins arbitration and is the intended winner, or if
the node loses arbitration and receives the arbitration bit sequence of the intended
winner correctly. An arbitration counts as overall success if it is a node-specific
success for all nodes, which implies that there is exactly one winner. Although there
were other networks operating nearby, success rates were very high (>99.9%). The
lowest overall success rates were observed in arbitrated slots 1 and 5, where 13 out

Table 6.2 Assignment of arbitration bit sequences (in decimal notation) (see [3], Table 5.3)

Slot
1

Slot
2

Slot
3

Slot
4

Slot
5

Slot
6

Slot
7

Slot
8

Slot
9

Slot
10

vm 213 156 76 103 178 45 91 57 27 30

vs 22 189 99 71 110 155 209 59 219 73

vt 187 188 155 66 44 79 210 23 51 201
vu 89 14 103 245 3 100 104 198 113 33
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Fig. 6.7 Reliability of ACTP—success rates per node and overall (see [2], Fig. 10)
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of 18,000 arbitrations (*0.07%) fail. Node-specific success rates exhibit no
degradation between nodes vs and vt in the center of the topology and nodes vm and
vu at the boundary, which shows that ACTP enforces the specified arbitration range
of nhops = 2.

To further investigate unsuccessful arbitrations, the role of false positives, i.e.,
the faulty detection of a logical 1, and false negatives, i.e., the faulty detection of a
logical 0 during an arbitration bit sequence was investigated (see Fig. 6.8). In 37
out of 180,000 arbitrations (*0.02%), false positives have led to wrong or multiple
winners; in 67 arbitrations (*0.037%), false negatives have caused wrong
recordings of the arbitration bit sequence. A straightforward explanation is the
interference of other networks operating nearby. In this particular case, problems
could be traced back to interfering Bluetooth and Wi-Fi networks.

6.3 Related Work

In this chapter, we survey and compare deterministic arbitration protocols devised
for wireless communication technologies. Our survey is not intended to be com-
prehensive, but to identify related protocols, and to point out differences to ACTP.

6.3.1 Black Burst Contention (BBC)

In [12], Sobrinho and Krishnakumar have published a busy tone protocol for
deterministic arbitration in wireless networks to which we refer here as Black Burst
Contention (BBC). The objectives of BBC are to give priority to periodical
real-time traffic over regular traffic, to guarantee collision-free transmission of
real-time traffic, and to provide bounded and small medium access delays.
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Fig. 6.8 Reliability of ACTP—false positives and false negatives (see [2], Fig. 11)

140 6 Deterministic Arbitration



The communication model of BBC distinguishes between communication,
interference, and sensing links (see Chap. 4):

• Node vj is in communication range of vi if vj can successfully receive from vi.
• Node vj is in interference range of vi if vi can interfere with a reception at vj.
• Node vj is in sensing range of vi if vj can detect whether vi is transmitting.

It is assumed that if a node is in communication (interference) range, it is also in
interference (sensing) range. Though not explicitly stated, BBC builds on the
validity of the single-network property (see Sect. 1.3). Furthermore, it requires that
there are no hidden stations: If a node vi is in communication range of vj, and vk is in
interference range of vj, then vk is in sensing range of vi. This implies that carrier
sensing before sending is sufficient to (almost) avoid destructive frame collisions.
Due to the active contention scheme of BBC, this implication holds despite
switching delay, propagation delay, and sensing delay if timing constraints are
observed. Figure 4.1 in Chap. 4 shows a multi-hop topology that satisfies the
assumption.

For the busy tone algorithm in [12], the authors further strengthen the “no hidden
station” requirement by considering only topologies where all nodes are in mutual
sensing range.1 Furthermore, they classify nodes into regular nodes using a random
backoff contention scheme and real-time nodes using the busy tone contention
scheme. Busy tones—called black bursts—are composed of an integral number of
black slots. BBC guarantees that black bursts sent by contending real-time nodes
differ in length by at least one black slot, which yields unique winners.

Real-time nodes execute real-time sessions, which are long time intervals where
a node requires periodical medium access to transmit real-time frames. To start a
real-time session, a real-time node has to contend by random backoff, i.e., just like
regular nodes. Once it has successfully transferred the first real-time frame, the rules
of busy tone contention apply.

During a real-time session, real-time nodes start contending for medium access
after the medium has been found idle for an interframe spacing of duration dmed,
thereby gaining preference over regular nodes, which wait for dlong > dmed. After
dmed, a contending real-time node sends a black burst. The length dBB of this black
burst is a function fBB of the current contention delay dcont, i.e., the length of the
time interval since the real-time frame was scheduled until the start of contention.
BBC ensures that contending nodes use black bursts of different length.

After a contending real-time node finishes its black burst transmission, it listens
on the medium. If the medium is busy, i.e., another node is sending a longer black
burst, the node loses contention. The node sending the longest black burst is the
only node that senses the medium as idle. It wins contention and sends its real-time
frame. Without going into further details, we note that timing in the contention
phase is very critical.

1Otherwise, bounded access delays cannot be assured.
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Figure 6.9 shows an execution scenario of BBC, with real-time nodes vrt_1 and
vrt_2 starting their real-time sessions at t1 and t2, respectively, by transmitting
real-time frames rt1,1 and rt2,1. The diagram shows the activity of vrt_1, vrt_2, and the
resulting medium occupancy. Subsequent real-time frames are scheduled with a
transmission interval of dsch, which is identical for all real-time nodes. In the
example, vrt_1 and vrt_2 schedule frames rt1,2 and rt2,2 at t3 = t1 + dsch and t4 =
t2 + dsch, respectively. However, since the medium is detected as busy due to an
ongoing transmission of a regular frame, both nodes have to wait until the medium
becomes idle. After an interframe space dmed, they both start contending by
transmitting black bursts at t5. As the contention delay dcont(rt1,2) = t5–t3 is longer
than dcont(rt2,2) = t5–t4, the function fBB determines, for each node black bursts of
different length, consisting of two and one black slots, respectively. Thus, vrt_1 wins
contention and starts transmitting rt1,2 at t6. Node vrt_2 contends again at t7, now
with a black burst consisting of two black slots, wins, and transmits rt2,2 at t8.

One strength of BBC is that contention of real-time frames is deterministic once
real-time sessions have been established. Furthermore, real-time frames collide
neither with regular frames nor with other real-time frames.

A drawback of BBC is the topology constraints, requiring that nodes in inter-
ference range of a receiver be always in sensing range of the sender. This strongly
limits the applicability of BBC in multi-hop networks. In particular, BBC does not
support network-wide leader election or network-wide consensus. Furthermore,
there is no upper bound for the transmission delay of frames that start a real-time
session. To assess the performance, the authors have simulated BBC; however, no
implementation on a real hardware platform exists.

A general disadvantage of busy tone protocols, which therefore also applies to
BBC, is that busy tones can get quite long in situations of high contention. Since the
number of black slots forming a busy tone grows linearly with the number of

Fig. 6.9 Operation of BBC—execution scenario (see [12], Fig. 2)

142 6 Deterministic Arbitration



priorities, and because black slots tend to be relatively long, the efficiency of
contention deteriorates significantly.

6.3.2 SYN-MAC

In [13], Wu et al. have presented a binary countdown protocol for potentially
deterministic arbitration in wireless networks called SYNchronized MAC
(SYN-MAC). The objective of SYN-MAC is to provide unicast frame transfers
with very low collision probabilities.

In SYN-MAC, time is structured into slots (called frames) of fixed length, which
are aligned network-wide, using external time synchronization. Slots consist of
three phases (see Fig. 6.10). During the contention phase, 1-hop random
value-based medium arbitration using binary countdown is performed. During the
hidden station elimination phase, the reservation achieved during the contention
phase is extended to neighbors of the receiving node. Data and acknowledgment are
exchanged in the data transfer phase. The contention phase consists of k contention
slots of fixed length, which are composed of switching interval and signaling
interval. In the signaling interval, short MAC frames carrying the intended recei-
ver’s MAC address are sent.

At the beginning of the contention phase, active nodes, i.e., nodes intending to
send data, generate a random bit sequence b of length k. Then, for contention slot i,
1 � i � k, they send a contention signal CSi, if b[i] = 1; otherwise, i.e., if b[i] = 0,
they listen on the medium. If an active node perceives the medium as busy while
listening, it stops contending and continues as passive node.

Passive nodes, i.e., nodes not intending to send data or nodes having lost con-
tention, listen on the medium in contention slots i � k. As soon as they receive an
uncorrupted contention signal CSi, they stop listening. If CSi carries its own MAC
address, a node marks itself as the intended receiver and records the contention slot
number i. For correct results, communication, interference, and sensing range must
be identical.

Figure 6.11 illustrates the contention phase for a sample topology, with nodes B,
C, G, and H as active nodes when contention starts. Node B resigns during con-
tention slot 1, perceiving the medium as busy due to CS1 transmitted by node C.

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 HCM DATA ACK

contention slot switching interval

contention phase
hidden station
elimination phase data transfer phase

signaling interval

Fig. 6.10 SYN-MAC—time structure (see [13], Fig. 1)
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Furthermore, node B receives CS1 uncorrupted, however, is not the intended
receiver of C. In contention slot 3, node G resigns too. Here, CS3 of nodes C and H
collide; therefore, G cannot yet find out whether it is an intended receiver and has to
continue listening until CS5. At the end of the contention phase, nodes C and H
remain as winners, although their random bit sequences are different, a problem to
be resolved in the subsequent hidden station elimination phase. Moreover, F has
received an uncorrupted contention signal CS5 of node C in contention slot 5, and
therefore, has recorded contention slot number 5.

At the beginning of the hidden station elimination phase, there is at most one
winner per collision domain, unless two or more active nodes have generated
identical random numbers. A collision domain is defined for each node v and
consists of v and its neighbors in sensing range. However, intended receivers may
be in range of more than one winner. To determine a unique winner, an intended
receiver creates a bit mask of length k, with only the ith bit set to 1, where i is the
contention slot number recorded during the contention phase. Then, it sends an
Hidden station Clear Message (HCM), carrying this bit mask.

Winner nodes receiving an HCM frame compute the bitwise “and” of their
random bit sequence and received bit mask. If the result is different from 0, the node
remains as winner and can continue with the data phase. Otherwise, it loses and
stops.

Figure 6.12 illustrates the hidden station elimination phase, continuing the
example from Fig. 6.11, where nodes C and H have been winners, and node F has
been the intended receiver. Node F now creates a bit mask, with bit 5 set to 1, and
signals this bit mask to all nodes in range. Computing the bitwise AND with the
random bit masks of the contention phase identifies node C as the remaining
winner, while node H retires.

The strength of SYN-MAC is its ability to almost solve the hidden station
problem in multi-hop wireless networks, thereby achieving very low collision
probabilities for unicast frames if generated random bit sequences are sufficiently
long. Another advantage that is common to all binary countdown protocols is their

contending node
link
intended data transfer

A B

C

D

E

F

H

G

I

J

K

B: 0 0 0 1 1 1 1 1 
C: 1 1 1 0 1 0 1 1 
G: 1 1 0 1 0 1 0 1 
H: 1 1 1 0 0 1 0 0 

Fig. 6.11 SYN-MAC—contention phase (see [13], Fig. 2)
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arbitration efficiency, due to binary encoding of arbitration bit sequences.
Furthermore, by associating non-overlapping random number intervals with pri-
orities, it is possible to support frame priorities.

A drawback of SYN-MAC is that the operation is not entirely deterministic, as
nodes of the same collision domain may generate identical random numbers.
Furthermore, the arbitration range is limited to 2 hops, which implies that
SYN-MAC does not support network-wide leader election or network-wide con-
sensus in larger networks. Problematic is the assumption that communication range
and sensing range are identical, and the fact that timing constraints, which are
crucial for the operation of the protocol, have not been worked out. To assess
performance, the authors have simulated SYN-MAC; however, no implementation
on a real hardware platform exists.

6.3.3 Dominance Protocol for Wireless Medium Access
(WiDom)

In [10], Pereira, Andersson, and Tovar have presented a binary countdown protocol
for deterministic arbitration in single-hop wireless networks2 called Wireless
Dominance (WiDom) protocol. The objective of WiDom is to provide collision-free
transfer of sporadic messages with deadlines.

As a general assumption, the traffic load consists of streams of sporadic mes-
sages, with a lower bound on message interarrival times, an upper message length,
and transmission deadlines. To ensure that all transmission deadlines are met, a
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C: 1 1 1 0 1 0 1 1 
H: 1 1 1 0 0 1 0 0 
F: 0 0 0 0 1 0 0 0

intended receiver
winner
link
mask signaling

Fig. 6.12 SYN-MAC—hidden station elimination phase

2This is later extended to multi-hop networks [11], which, however, may lead to concurrent
arbitrations that are not aligned temporarily and therefore may fail.
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suitable schedulability test, as found, for instance, in rate-monotonic scheduling,
has to be passed.

Message transfers in WiDom consist of three phases:

• Synchronization phase: During this phase, nodes with a message ready to be
transmitted agree on a common reference point in time. When the medium is
detected idle, a single black burst called sync signal is transmitted.

• Tournament phase: Nodes that have successfully transmitted a sync signal in the
synchronization phase contend in this phase. A unique winner is determined by
running a binary countdown protocol, with arbitration bit sequences encoding
unique message priorities.

• Receive/transmit phase: The node winning contention transmits its message.

The strength of WiDom is that it achieves deterministic arbitration in single-hop
wireless networks, using collision-resistant schemes for tick synchronization and
arbitration. Another benefit is that WiDom has been implemented on a real hard-
ware platform, and that it has been experimentally assessed in a testbed consisting
of up to ten motes.

A drawback of WiDom is its very high overhead, as for each message trans-
mission, synchronization, and tournament are required. Another problem is that
carrier pulses used for synchronization are not protected against corruption, which
makes WiDom prone to false positives and false negatives. Finally, WiDom is
restricted to single-hop networks. In [11], the authors report on an extension for
2-hop arbitrations. However, this does not solve the problem of overlapping sync
phases in different parts of the network.

6.4 Conclusions

In this chapter, we have explained concepts and measures of deterministic arbi-
tration in wireless ad hoc networks, have presented Arbitration and Cooperative
Transfer Protocol (ACTP), and have surveyed and compared related work. ACTP is
a binary countdown protocol enabling deterministic arbitration and value transfer
within a configurable hop radius, which supports applications such as leader
election and distributed consensus. The protocol has low time and space complexity
and is robust against node movements and node failure. ACTP has been imple-
mented on Imote2 motes and has been assessed in real experiments that have shown
its feasibility and reliability. Furthermore, ACTP has been implemented in ProArb,
a protocol module of our protocol stack ProNet 4.0 [1].

Protocols for deterministic arbitration require reference points in time where
arbitration starts. In single-hop networks, these reference points can be established
by having some node starting an arbitration, with others joining when they notice
this start. This is, however, only feasible with active contention schemes, i.e., with
busy tones or binary countdowns. In multi-hop networks, network-wide tick
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synchronization of nodes is needed. In our protocol stack ProNet 4.0, we have
incorporated the protocol module ProSync that implements Black Burst
Synchronization (BBS, see Chap. 2) for this purpose. The protocols addressed in
Sect. 6.3 either operate in single-hop environments only (BBC, WiDom), or assume
the availability of a suitable synchronization protocol (SYN-MAC).
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Chapter 7
Duty Cycling

When using battery-powered nodes, energy consumption is a major concern. Duty
cycling is a functionality to save energy and thereby extend network lifetime. In this
chapter, we explain foundations of duty cycling in wireless ad hoc networks,
present our duty cycling approach in ProNet 4.0 [1] that has been originally
developed for MacZ [2], survey and compare related work, and draw conclusions.

7.1 Foundations

In this chapter, we provide the context of duty cycling in wireless ad-hoc networks,
explain concepts, measures, and requirements, and address areas of operation.

7.1.1 Context

In systems consisting of battery-powered nodes, such as wireless sensor networks
and wireless networked control systems, energy consumption is a major concern,
constraining the uptime of nodes and therefore the network’s lifetime. As a rule,
energy consumption should be kept as low as possible. This can be achieved, for
instance, by using low-power hardware platforms such as microcontrollers and
motes, low-power communication technologies such as ZigBee [15] and Bluetooth
Low Energy [5], and by devising energy-efficient algorithms, and protocols.
Furthermore, hardware components can be temporarily shut off or switched to an
energy-saving mode when not needed.

While it is desirable to reduce energy consumption, it is mandatory to consider
computation and communication requirements. For instance, in networked control
systems consisting of sensors, actuators, and controllers communicating over a
wireless medium, the main objective is achieving optimal system behavior such as
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stability of the controlled system. Therefore, system components can only be
switched to energy-saving modes if this objective is not put in jeopardy. In some
systems, always-on nodes are required, which leaves little room for energy saving.
However, in scenarios where the full computation power is only needed sporadi-
cally or where communication events are rare, the potential for energy saving is
substantial.

7.1.2 Concepts, Measures, and Requirements

Duty cycling is a functionality to reduce energy consumption of nodes. To save
energy, hardware components such as CPU, memory, transceiver, LEDs, and
sensing devices can be switched to active mode (e.g., receive, transmit) when
needed, and to non-active mode (e.g., sleep, idle) mode when not needed. The duty
schedule defines the duration of alternating intervals of active and non-active
modes. A duty schedule may be static, consisting of predetermined strictly or
weakly periodic active and non-active mode intervals, dynamic, where active and
non-active mode intervals are determined at runtime or a combination of both. The
duty cycle denotes the ratio of time a hardware component is in active mode.

Figure 7.1 shows a strictly periodical duty schedule of duration ddutySchedule and
an active interval of length dactive, yielding duty cycle rdutyCycle = dactive/
ddutySchedule. In addition to these common notions, we introduce the waste ratio
rwaste = (dactive − ddataTransfer)/ddataTransfer, where ddataTransfer sums up the duration of
payload transmissions and receptions of a duty schedule. Thus, waste ratio of 0.5
means that 50% overhead are produced.

To achieve minimal energy consumption, all hardware components of a node are
to be considered together. In this chapter, we focus on wireless communication, and
therefore consider the transceiver only. In the literature (see, for instance, Ye et al.
[13]), there are four sources of energy waste associated with the transceiver:

• Idle-listening occurs when a node listens on the medium without detecting any
transmissions. Without specific knowledge about the communication behavior
of other nodes, a node has to listen whenever not sending itself.

Fig. 7.1 Strictly periodical duty schedule
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• Overhearing occurs when a node receives a frame with different destination.
Without specific knowledge, a node cannot determine in advance whether an
incoming frame can be disregarded.

• Collisions occur when a receiving node is in interference range of two or more
nodes with transmissions overlapping in time. If the incoming frame is cor-
rupted, it has to be retransmitted, thereby increasing the overall energy
consumption.

• Overhead occurs when non-payload data (such as preamble and control fields of
DATA frames) or management frames (e.g., Request-To-Send (RTS),
Clear-To-Send (CTS), ACKnowledgement (ACK), and beacons) are transmitted
or received.

Figure 7.2 illustrates these sources of energy waste for a Multiple Access with
Collision Avoidance for Wireless (MACAW) protocol, i.e., a MAC protocol with
passive medium contention and an RTS-CTS-DATA-ACK sequence for single-hop
unicast transmission. In the example, nodes v1, v2, and v3 form a line topology.
After waking up, they start listening on the medium, with node v2 contending and
winning. During this phase, all nodes waste energy due to idle-listening, as the
medium remains idle. Furthermore, idle-listening periods may differ in length, as
nodes may wake up at different points in time due to clock offsets.

When winning contention, node v2 switches from receive mode to transmit
mode, which is another source of energy waste (not mentioned in Ye et al. [13]).
Then, there is overhead due to the exchange of an RTS-CTS sequence for v2 and v3.
In the scenario, the RTS frame is also received by v1. However, because v1 is not
the destination, this is energy waste due to overhearing. In fact, the information
contained in the RTS frame helps v1 to set its network allocation vector (NAV), and
to switch its transceiver to sleep mode, thereby saving energy during the subsequent
data exchange of v2 and v3. Data exchange happens after the successful reception of
the CTS frame by v2 and is followed by an ACK frame. In the scenario, no
collisions occur.

Fig. 7.2 Sources of energy waste for a MACAW protocol (see [2], Fig. 4)
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To determine absolute energy consumption, an energy model of the transceiver
and information about transmission rates and frame sizes are required. The energy
model determines operational modes, energy consumed in each mode, and transi-
tions between modes with energy consumption and/or duration. Figure 7.3 shows
the energy model of the CC2420 transceiver [6] in a tabular notation, which can
also be represented as a graph. The transceiver has four operational modes.
Interestingly, energy consumption in receive mode is higher than in transmit mode
even when sending with maximum transmission power. Figure 7.3 also shows state
transitions and their durations. The energy model is incomplete, as some transition
durations and the energy consumption associated with transitions are missing.

To exchange messages, the transceivers of communicating nodes have to be in
active mode. Therefore, duty cycling requires distributed coordination. In particu-
lar, nodes have to agree on wake-up times and duty schedules to perform syn-
chronized mode switching. For this reason, duty cycling protocols usually1 build on
tick or time synchronization, preferably with low and bounded offsets to maximize
energy savings.

The energy-saving potential of the transceiver is further limited by application
requirements and communication protocols. To maintain regular operation, a cer-
tain amount of message exchange is necessary. Maximal transfer delays may place
further constraints on intervals where the transceiver can save energy. Furthermore,
the amount of energy waste due to idle-listening, overhearing, collisions, and
overhead strongly depends on communication protocols and medium access
schemes.

Operational 
modes

Energy 
consumption

powerDown 0.02 mA
idle 0.426 mA
receive 18.8mA
send 8.5-17.4 mA

Current mode Next mode Duration

powerDown idle 1000 μs
idle receive 192 μs

transmit 192 μs
receive powerDown - 

idle - 
transmit 192 μs

send receive 192 μs

Fig. 7.3 Energy model of the transceiver CC2420—tabular notation

1In B-MAC [11], a preamble scheme is used instead. Before sending, a node transmits a long
preamble. The other nodes wake up in regular intervals and check for the preamble. If they detect
the preamble, they wait for the message, otherwise, they change to sleep mode.
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7.1.3 Areas of Operation

Duty cycling extends the lifetime of nodes with scarce energy resources, and
thereby of networks. This is of particular importance in harsh environments where
nodes are not easily accessible for battery replacement and in industrial applications
where the cost of maintenance is a factor.

7.1.3.1 Monitoring Slope Stability in Permafrost Areas

PermaSense [12] is a consortium of Swiss research institutions and companies,
developing and deploying wireless sensor networks customized for long-term
operation in high-mountain environments. A project run by the consortium uses
wireless sensor networks in cryosphere research, to monitor the stability of
high-alpine mountain slopes in permafrost areas of the Alps. Slope instability can
cause massive landslides, which can result in the deaths of people, and therefore has
to be detected as early and reliably as possible. In a period of global warming, the
threat of slope instability is increasing.

To monitor slope stability, the consortium has developed and deployed wireless
sensor networks to measure microseismic activity in remote high-mountain regions.
Sensor networks consist of sensor nodes, which sample data, and a base station
collecting data values. Deploying these nodes has been a big, expensive, and
dangerous effort, involving teams of mountaineers and even helicopters. It is
self-evident that deployed sensor networks have to be long living, which, among
other things, requires low-energy consumption (to avoid battery replacements) or
the use of energy harvesting techniques. Among the measures taken to achieve this
objective is the development of a communication stack called low-power wireless
bus (LWB) [9] supporting time-triggered message scheduling and duty cycling.

7.1.3.2 Monitoring Wagons of Freight Trains

In the Asset Monitoring for Rail Applications (AMRA) project at Bosch BEG [4],
wagons of freight trains are equipped with a variety of sensors. Sensors detect
shocks, flats, open cargo doors, cargo status, and location. Furthermore, an local
data collector (LDC) is placed on each wagon, to gather and aggregate sensor data.
LDCs forward their status data to a global data collector, which is located on the
railroad engine, and forwarded via global system for mobile communications
(GSM) to a remote data collector in a stationary headquarter where all trains are
monitored. The system is used to detect malfunctions and to plan maintenance
activities.

An important concern of the AMRA project is energy saving, as sensor nodes
and LDCs are battery-driven. For this reason, Bluetooth Low Energy [5] has been
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chosen as technology for on-wagon and inter-wagon communication. Furthermore,
duty cycling is applied using a duty schedule of weakly periodic active mode
intervals. With these measures, a node lifetime of up to 5 years is to be reached.

7.2 Duty Cycling in ProNet 4.0

In this chapter, we present our duty cycling protocol devised for ProNet 4.0 [1].
Duty cycling is based on network-wide tick synchronization with BBS (Black Burst
Synchronization, see Chap. 2). Originally, the protocol has been conceived for
MacZ, a predecessor of ProNet 4.0 with reduced functionality implemented on the
MICAz [10] hardware platform [2]. Compared to this original version, we have
made extensions to cover arbitrated regions.

7.2.1 Virtual Time Slotting

Global time slotting is a basic functionality of ProNet 4.0 (see Chap. 3). Following
an analysis of timing requirements, time is structured into physical time slots, which
are composed into virtual time regions. We have argued that virtual time slotting
provides a high degree of flexibility, while keeping unusable slot portions small.

Figure 7.4 shows an example of virtual time slotting, with virtual time regions of
different types and lengths formed and placed into super slots in a non-overlapping,
but otherwise flexible way. Time intervals in-between active regions, i.e., regions
where messages may be exchanged, form passive regions called idle regions, where
transceivers can be switched to an energy-saving mode.

Virtual time slotting is node-specific and can be performed statically and/or
dynamically. In case of static virtual slotting, the time structure of a super slot is
repeated, yielding a weakly period pattern of active and passive virtual time
regions. Compared to other duty cycling approaches (see Sect. 7.3), which assume a
strictly periodic pattern of sync, data, and sleep phases, this provides considerable
flexibility. When combined with dynamic virtual time slotting, even more flexibility
is achieved. For instance, depending on the varying need for exclusive time slots,

super slot

sync region
exclusive region
shared region
arbitrated region
idle region

Fig. 7.4 Virtual time slotting (for explanations, see Chap. 3)
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exclusive regions may be extended or shortened during execution, with an effect on
adjacent idle regions, which, as a result, may shrink and grow.

7.2.2 Duty Cycling in Idle Regions

Virtual time slotting structures time into a sequence of active (non-idle) and passive
(idle) regions. While active regions are used for message exchange, it may still be
possible to switch the transceivers of some or all nodes to energy-saving mode,
depending on medium access scheme and traffic pattern. During idle regions,
message exchange is disabled network-wide. Therefore, by default, all transceivers
can change to sleep or idle mode, to minimize energy consumption.

Figure 7.5 shows a super slot structured into non-idle and idle regions. At the
beginning of an idle region, the transceiver is switched to energy-saving mode, and
returns to active mode right before the idle region ends. It follows that during an
idle region, switching delays are the only source of energy waste.

The full potential of duty cycling in idle regions is achieved, if three constraints
are satisfied. First, the length of an idle region has to exceed switching delays.
Second, at the local start of an idle region, all other nodes have finished message
exchanges of the previous active region. Third, all other nodes do not start medium
occupancy before the local end of an idle region.

7.2.3 Duty Cycling in Exclusive Regions

Exclusive regions host deterministically scheduled, contention-free traffic, and are
substructured into exclusive slots of possibly different length. In each exclusive
slot, one or more messages can be exchanged, with slot boundaries being respected.
In particular, this means that messages transferred in an exclusive slot are associated
with the same slot by receiving nodes and that switching delays are observed.

Although exclusive regions are active regions, there is high potential for energy
saving. Since nodes involved in message exchanges of exclusive slots are deter-
mined in advance, nodes not involved in an exchange can switch their transceivers

super slot
non-idle region
idle region

transceiver idle payload exchange idle-listening

overhearing overhead mode switching

Fig. 7.5 Duty cycling in idle regions
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to energy-saving mode. This also holds for nodes after they have finished a
scheduled message transfer in a slot, and, in particular, if there is no message
instance to be transmitted in an assigned slot.

Figure 7.6 shows an exclusive region consisting of four exclusive slots. We
stipulate that at the beginning and the end of an exclusive region, all transceivers
are in receive mode. This may require switching from idle or transmit mode to
receive mode at the end of the preceding virtual time region, and switching to
receive mode when the exclusive region ends.

In exclusive slot s1, a transfer from node v1 to v2 is scheduled. Before starting
transmission, v1 has to wait until the transmission start point (TSP), i.e., for the
maximum tick offset. If this interval is sufficiently long, there is some potential for
energy saving, as shown in the figure. After transmission, v1 can switch its trans-
ceiver to energy-saving mode for the remainder of the exclusive region, as it does
not participate in further scheduled message exchanges. Thus, energy waste of v1 is
due to mode switching and overhead (preamble and control fields of the data frame)
only.

To receive the scheduled message from v1, node v2 has to start listening on the
medium at the local start of exclusive slot s1, which constitutes idle-listening. The
length of this period depends on the current and maximum tick offsets between both
nodes. After receiving the data frame, node v2 can switch to energy-saving mode
until exclusive slot s3, where this scheme is repeated.

Node v3 sends a scheduled message in exclusive slot s3, and can switch its
transceiver to energy-saving mode until then. In exclusive slot s4, it is ready to
receive a message from v2, however, as there is no message instance to be trans-
mitted, v3 ceases listening on the medium after noticing this.

In summary, we observe that in exclusive regions, there is high potential for
energy saving, as only nodes involved in scheduled message transfers need to be
active. As transmissions are deterministically scheduled, energy waste is due to
idle-listening and mode switching only.

Fig. 7.6 Duty cycling in exclusive slots (see [2], Fig. 3)
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7.2.4 Duty Cycling in Shared Regions

Shared regions host unscheduled, contention-based traffic. As the occurrence of
message transfers is not predictable, nodes have to stay active and listen on the
medium even if they are not contending for medium access. Thus, energy waste due
to idle-listening is high in case of low traffic. With increasing traffic, idle-listening
decreases, whereas energy waste due to overhearing and collisions increases.
Furthermore, when running a Multiple Access with Collision Avoidance for
Wireless (MACAW) protocol, there is energy waste due to overhead. This is further
explained in Sect. 7.1.2, and illustrated in Fig. 7.2.

Duty cycling in shared regions can be improved by distinguishing between a
reservation interval, where all nodes are active and nodes intending to communicate
exchange a reservation sequence consisting of Request-To-Send (RTS) and
Clear-To-Send (CTS), and by having the actual data exchange in a subsequent time
interval where all nodes not involved in this exchange switch their transceiver to
energy-saving mode. To some degree, this effect is also achieved by applying the
network allocation vector (NAV) to save energy.

7.2.5 Duty Cycling in Arbitrated Regions

Arbitrated regions host deterministic n-hop arbitrations and value transfers. They
are decomposed into arbitrated slots, with slot lengths depending on arbitration
range and on the size of values and data to be exchanged. For a detailed treatment,
we refer to Chap. 6. Since all nodes are potentially involved in an arbitration
process, as either contending or repeating nodes, they have to stay in active mode
for almost the entire duration of arbitrated slots.

Figure 7.7 illustrates the potential of duty cycling during an arbitrated slot, for a
single-hop network, i.e., nhops = nmaxHops = 1, and an arbitration bit sequence of
length nbits = 2. In the example, v2 contends with the bit sequence 10. We stipulate
that at the beginning of a bit round, all transceivers are in receive mode. As v2 sends
a logical 1 with a delay of dTSP relative to the local start of its first bit round, it may
switch to energy-saving mode provided the interval dTSP is long enough for two
switching delays. It then sends its black burst and may switch to energy-saving
mode for the rest of this bit round. In the second bit round, v2 has to listen on the
medium in case another node sends a logical 1. After winning contention, v2 sends a
data frame during the data phase of the arbitrated slot.

Nodes v1 and v3 do not contend, but listen on the medium to record the current
arbitration bit sequence. Afterward, v3 receives the data frame, while v1 may switch
its transceiver to energy-saving mode.
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In summary, we observe that in arbitrated regions, there is not much potential for
energy saving, as both active (contending) and passive (repeating) nodes are
involved in the arbitration process. Since arbitration is deterministic and occurring
collisions are non-destructive, energy waste is due to idle-listening, overhead (ex-
change of the arbitration sequence), and mode switching.

7.2.6 Analytical Assessment

To assess the energy efficiency of our duty cycling protocol [2], we analytically
determine duty cycles and waste factors for a real-life application scenario operated
on MICAz motes [10] equipped with the CC2420 transceiver [6]. At the University
of Kaiserslautern, an ambient intelligence system for the improvement of the
training effects of a group of racing cyclists called assisted bicycle trainer
(ABT) has been developed [3]. During training sessions, ABT collects status data
(e.g., velocity, headwind, heart rate, and pedal power output) of each cyclist,
periodically forwards the data to the trainer node, and shows an aggregation of the
data on the trainer display. Based on these data and his experience, the trainer can
modify training parameters (e.g., velocity, position) by sending commands to
cyclists.

Fig. 7.7 Duty cycling in arbitrated slots
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7.2.6.1 Application Scenario

In a typical training session, a number of cyclists (nodes v1 to v5) are pedaling an
oval cycling track,2 with the trainer (node T) standing in the center of the track (see
Fig. 7.8). To improve connectivity, stationary repeater nodes A to D may be placed.
Individual status data are collected on each bicycle once per second, i.e.,
dappInt = 1 s, and communicated to the trainer, possibly via some repeater node,
depending on the current position of a cyclist on the track. Given data rate rtx and
frame size ldataFrame, the duration ddataTransfer for a single data frame transmission,
i.e., the minimally required time of a transceiver in active mode per application
interval (duty schedule duration) is

ddataTransfer ¼ ldataFrame=rtx ð7:1Þ

This yields a minimal duty cycle of ddataTransfer/dappInt. However, depending on
the type of communication protocol, further factors may increase the required time
dactive of a transceiver in active mode, which together determines waste ratio and
duty cycle.

dactive ¼ ddataTransfer þ didleListening þ doverhead þ dcollision
þ doverhearing þ dswitching

ð7:2Þ

rwaste ¼ dactive�ddataTransferð Þ=ddataTransfer ð7:3Þ

rdutyCycle ¼ dactive=dappInt ð7:4Þ

v1 

A 

B C 

D 

T 

v5 

v4 

v3 

v2 

Fig. 7.8 Assisted bicycle
trainer—network topology
(see [2], Fig. 6 and 7)

2The assisted bicycle trainer can also be used for road training.
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7.2.6.2 Exclusive Regions

In the first communication solution, we configure virtual time regions as shown in
Fig. 7.9a. Resynchronization is performed every 10 s, i.e., dresInt = 10 s, sampling
occurs once per second, i.e., dappInt = 1 s. Exclusive regions are placed with an
offset of dconv—the time needed for resynchronization—relative to the beginning of
each sampling slot, and subdivided into five exclusive slots assigned to cyclist
nodes v1 to v5. Exclusive slots are sized such that data frame transfer (10 bytes
preamble and control fields, 12 bytes payload), switching delays, and maximum
synchronization offset fit.

Table 7.1 (columns “exclusive”) shows the results of our analytical assessment
of duty cycling with exclusive reservations. To determine values for the sources of
energy waste, we have used parameter values of the CC2420 transceiver and Black
Burst Synchronization (BBS), see Chap. 2. Due to exclusive slot assignments and
because cyclist nodes only act as senders,3 there is no energy waste due to
idle-listening, collisions, and overhearing. Energy waste occurs due to mode
switching, which is 2 � dswitch per data transfer, and due to overhead caused by

(a)

(b)

Fig. 7.9 Virtual time regions of the assisted bicycle trainer [2]

Table 7.1 Duty cycling with
MacZ—cyclist nodes

Exclusive Shared

1-hop 2-hop 1-hop 2-hop

ddataTransfer [ms] (7.1) 0.70 0.70 0.70 0.70

didleListening [ms] – – 5.33 7.20

doverhead [ms] 0.23 0.38 1.19 1.34

dcollision [ms] – – – –

doverhearing [ms] – – 0.34 1.44

dswitching [ms] 0.38 0.38 2.30 3.84

dactive [ms] (7.2) 1.31 1.46 10.16 14.52

rwaste (%) (7.3) 0.86 1.07 13.43 19.63

rdutyCycle (%) (7.4) 0.13 0.15 1.02 1.45

3For simplicity, we omit exclusive slot assignments (once per super slot) for the trainer, to
communicate commands to cyclists. During these slots, cyclist nodes act as receivers and therefore
perform idle-listening, too.
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resynchronization, i.e., doverhead = (dconv/dresInt) � dappInt. In the single-hop case,
cyclist nodes are active for 1.31 ms per application interval, yielding a very low
duty cycle rdutyCycle of 0.13%. The waste ratio rwaste is 0.86 and mainly caused by
switching delays that are hardware-specific and therefore cannot be avoided.
Results of the two-hop case are similar.

7.2.6.3 Shared Regions

In the second communication solution, we configure virtual time regions as shown
in Fig. 7.9b. As in the first solution, dresInt = 10 s and dappInt = 1 s. Shared regions
are placed with an offset of dconv relative to the beginning of each sampling slot and
are collectively used by cyclist nodes v1 to v5.

Table 7.1 (columns “shared”) shows the results of our analytical assessment of
duty cycling with medium contention. We have simplified the analysis by assuming
that communication is collision-free. Because of passive medium contention, there
is a substantial amount of idle-listening.

As soon as a cyclist node notices that it has lost contention, it switches its
transceiver to energy-saving mode for the duration of the following
CTS-DATA-ACK frame sequence, which increases switching delays. We assume
that on average, a node has to contend ncyclist/2 times to win contention, and then
switches its transceiver to energy-saving mode.

Compared to duty cycling with exclusive regions, duty cycles are about 10 times
higher, waste ratios about 20 times. This clearly shows that communication based
on reservations has far more potential for energy saving compared to passive
medium contention.

7.3 Related Work

In this chapter, we survey and compare duty cycling protocols devised for wireless
communication technologies. Our survey is not intended to be comprehensive, but
to identify related protocols, and to point out differences to our duty cycling
approach.

7.3.1 Sensor-MAC (S-MAC)

In [13], Ye, Heidemann, and Estrin have presented S-MAC (Sensor-MAC), a duty
cycling protocol for wireless sensor networks. Objectives of S-MAC are energy
saving, scalability and collision avoidance in multi-hop networks. S-MAC is
devised for applications with long idle periods and networks with light traffic load.
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S-MAC divides time into duty schedules of fixed duration, consisting of (short)
active and (long) sleep phases (see Fig. 7.10). Active phases are further decom-
posed into sync and data phase. During the sync phase, S-MAC runs a synchro-
nization protocol that establishes synchronization clusters, each consisting of a
cluster head (called synchronizer) and followers. Nodes belonging to the same
synchronization cluster synchronize their active phases. To establish network-wide
connectivity, suitable cluster overlaps are required, which cannot be guaranteed by
the approach. Furthermore, there is the risk of overlapping active phases of
neighboring clusters, which may result in collisions. As it is straightforward to
replace the synchronization protocol of S-MAC by an algorithm that avoids these
and further problems, we will not go into further detail.

During the data phase, nodes passively contend for the medium, using a random
back-off scheme. Nodes winning contention start a unicast transfer sequence by
sending an Request-To-Send (RTS) frame. This already ends the data phase, and
the sleep phase begins. However, nodes involved in an RTS exchange, i.e., senders
and receivers, stay active to complete the transfer sequence continued by
Clear-To-Send (CTS) frame, DATA frame, and ACK frame before switching their
transceivers to energy-saving mode.

Figure 7.10 shows a scenario with a line topology. For simplicity, all nodes are
aligned in time. Node v2 wins contention and starts its transfer sequence. Node v3 is
the intended receiver, and therefore responds with a CTS frame in the sleep phase,
followed by DATA and ACK frames. Node v1 also receives the RTS frame;
however, as it is not the intended receiver, it can switch its transceiver to

Fig. 7.10 Operation of S-MAC
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energy-saving mode immediately. Node v4 is not involved, but has to listen for
possible RTS frames.

Figure 7.10 also shows where energy is wasted. Although not detailed, we can
assume that the synchronization protocol in the sync phase is rather expensive in
terms of energy, as several broadcasts have to be exchanged, and because nodes
have to listen on the medium during the entire sync phase. During the data phase,
nodes are active, too, either contending for the medium or listening for RTS frames.
This causes energy waste due to idle-listening, overhead, overhearing, and mode
switching. Further overhead is produced by the exchange of CTS and ACK frames
in the sleeping interval.

In single-hop networks, throughput of S-MAC is limited to one data frame per
duty schedule, which is the reason why the protocol is applicable in networks with
light traffic load only. A major drawback of S-MAC in multi-hop networks is that
messages can cover a distance of only one hop per duty schedule, which leads to
high end-to-end delays, if sleep intervals are long (as intended, to achieve high
energy savings). In [14], the authors of S-MAC propose an improvement that works
for a distance of up to 2 hops per duty schedule, called adaptive listening.

Another drawback of S-MAC is the high synchronization overhead at the
beginning of every active phase, especially when using the synchronization pro-
tocol incorporated into S-MAC. Even more, this overhead is required for the
transmission of only one data frame. The authors of S-MAC discuss the possibility
of performing resynchronization less frequently; however, this increases
idle-listening due to earlier wake-up times.

7.3.2 Routing-Enhanced MAC (RMAC)

In [7], Du et al. have presented RMAC (Routing-enhanced MAC), a duty cycling
protocol for wireless sensor networks that readdresses the throughput and
end-to-end delay problems of S-MAC. Compared to S-MAC, RMAC achieves
substantial improvements, by performing multiple and multi-hop signaling during
the data phase.

Time structuring of RMAC is similar to S-MAC, with active, sleep, sync, and
data phases (see Fig. 7.11). Unlike S-MAC, synchronization is not covered by
RMAC. Instead, the authors propose to use an existing synchronization protocol, to
be executed during the sync phase.

During the data phase, nodes passively contend for the medium. Nodes winning
contention transmit a PION (PIONeer) frame, containing the addresses of sender,
next hop on the route, previous hop (if applicable), and destination. Furthermore,
PION frames contain a hop count nhops and the transmission duration dDATA of the
subsequent DATA frame.

When a node on a route receives a PION frame, it forwards an updated PION
frame. First, this serves as a confirmation to the sender of the previous PION frame.
Second, it is received by nodes in range, which helps to solve the hidden station
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problem. Third, it extends the route by one hop, if the destination node has not yet
been reached. This way, PION frames combine the functionality of RTS and CTS
frames.

By sending a PION frame with hop count nhops, a node reserves a data transfer
interval of length ddti = 2 � dSIFS + dDATA + dACK, where dSIFS and dACK denote
the durations of short inter-frame space (SIFS) and ACK transfer duration,
respectively. This data transfer interval starts at tsleepPhase + nhops � ddti, with
tsleepPhase denoting the point in time where the next sleep phase starts.4 When a node
receives a PION frame with itself being the denoted receiver, it reserves a data
reception interval starting at tsleepPhase + nhops � ddti. All other nodes determine
network allocation vector (NAV) intervals to avoid interference in the confirmation
PION segment, the DATA segment, and the ACK segment.

Figure 7.11 shows a scenario with a line topology and a frame to be routed from
node v1 to node v3. Therefore, a sequence of PION frames is exchanged, followed
by DATA and ACK frames in the reserved intervals of the sleep phase. Energy
waste due to overhead occurs in the sync phase, and by the exchange of PION and
ACK frames. Idle-listening occurs during the active phase, and due to synchro-
nization inaccuracies, as receiving nodes have to switch to active mode earlier in
order not to miss the DATA frame (not shown in Fig. 7.11).

Simulation experiments reported in [7] clearly show that RMAC outperforms
S-MAC. This is due to the possibility to signal more than one message transfer per
data phase, which increases throughput and reduces end-to-end delay. The price for

Fig. 7.11 Operation of RMAC

4For a simplified presentation, we abstract from clock offsets.
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this is a longer data interval and therefore more energy consumption due to
idle-listening.

A drawback of RMAC is that it builds on network status information such that
nodes can determine next hops to destination nodes. To establish this kind of
information, broadcast messages would have to be exchanged. However, as RMAC
supports only unicast transfers, it is unclear how this information is to be
established.

Another drawback of RMAC is the high synchronization overhead by the pro-
posed synchronization protocol Reference Broadcast Synchronization (RBS) [8],
which has a communication complexity of up to O(n2), where n is the number of
nodes. In fact, RBS is not even suitable, as it only determines clock offsets among
nodes belonging to the same time zone, but does not establish global reference
points in time, which are needed for duty cycling. However, this problem could be
remedied by selecting a suitable and more efficient synchronization protocol.

7.4 Conclusions

In this chapter, we have explained concepts, measurements, and requirements of
duty cycling, have presented our duty cycling approach devised for ProNet 4.0 [1]
and partially implemented in MacZ, and have surveyed related work. Duty cycling
in MacZ is highly efficient due to the flexible time structure, which permits to place
active virtual time regions where needed, and to switch the transceiver to
energy-saving mode in-between. Given the type of virtual time region, further
potential for energy saving can be exploited, with exclusive regions performing
best. The high flexibility of the global time structure can be used to configure duty
schedules and virtual time regions such that objectives regarding throughput and
end-to-end latency are achieved. Furthermore, by building on Black Burst
Synchronization (BBS, see Chap. 2), deterministic tick and time synchronization
with low and bounded offsets and convergence delay are available.
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Chapter 8
Quality of Service Multicast Routing
with Mobility Support

In multi-hop networks, routing is required to provide end-to-end communication. In
this chapter, we explain foundations of routing in wireless ad hoc networks, present
our protocol quality of service (QoS) multicast routing (QMR) for partially mobile
wireless time-division multiple access (TDMA) networks [3] implemented in
ProRoute of ProNet 4.0 [1], survey and compare related work, and draw conclusions.

8.1 Foundations

In this chapter, we provide the context of QoS routing in wireless ad hoc networks,
explain concepts and requirements, and address areas of operation.

8.1.1 Context

The objective of routing is to discover and operate routes between sets of nodes in
order to provide end-to-end communication in multi-hop networks. Routes are
requested by distributed applications, by specifying information to identify and
localize nodes. Localization can be based on topology information about nodes and
links, position information determined by geographical coordinates, or content
information about stored data.

Depending on communication requirements, different kinds of routes can be dis-
tinguished. Unicast routes are established between pairs of nodes. Broadcast routes
distribute messages to all nodes; whereas, multicast routes support message transfer to
particular groups of nodes. More advanced schemes are n-hop cast, where distribution
of messages is to all nodes in n-hop neighborhood, and concast, where a group of
senders delivers messages to a single receiver, e.g., a sink node of a sensor network.
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In distributed real-time computer systems, routes may have to satisfy specific quality
of service (QoS) requirements regarding performance, reliability, guarantee, and syn-
chronicity. For instance, routes may have to guarantee minimal end-to-end transmission
rates or maximal transmission delays. This requires that routes are operated deter-
ministically, which is a particular challenge in multi-hop wireless ad hoc networks.

Another challenge is node mobility, which may be required, e.g., for the operation
of autonomous mobile robots in a production environment. To establish stable routes
with predictable communication behavior, stationary nodes are preferable. If nodes can
move, routes may easily break, impairing or even preventing deterministic guarantees.

8.1.2 Concepts and Requirements

Routing in computer networks is a broad topic. In this chapter, we set the focus on
QoS routing in wireless time-division multiple access (TDMA) networks, with node
localization based on topology information.

We model a network topology as a directed graph G = (V, E), consisting of a set
V of nodes and a set E � V�V of links (see Chap. 4). We distinguish the following
types of topologies:

• A communication topology is modeled as a graph GC ¼ V ;ECð Þ, where links
e ¼ vi; vj

� �
express that vj is in communication range of vi, i.e., vj can suc-

cessfully receive messages from vi.
• An interference topology is modeled as a graph GI ¼ V ;EIð Þ, where links e ¼

vi; vj
� �

express that vj is in interference range of vi, i.e., vi can interfere with a
reception at vj.

We assume that a node vj in communication range of vi is also in interference
range of vi. The graphs GC and GI can be merged into a combined network topology
G = (V, L, E), where L = {c, i} is a set of labels distinguishing between different
types of links. We require that the complete communication subgraph1 GC ¼
V ; cf g;ECð Þ is connected, i.e., for all pairs (v, v′) 2 V � V of distinct nodes, there is
a directed path p ¼ v1; . . .; v pj j þ 1

� � 2 V þ of communication links such that for all
i, 1� i� pj j, vi; viþ 1ð Þ 2 EC, v = v1, and v0 ¼ v pj j þ 1, with |p| denoting the number
of edges of p.

Figure 8.1 shows a symmetrical topology. Solid lines represent communication
links, which are interference links too. To simplify presentation, only communication
links are shown in these cases. Additional interference links are depicted as dashed lines.

Based on the network model G = (V, L, E), communication routes between sets
of nodes can be identified. A unicast route is a directed loop-free communication
path p 2 V+ between a pair of nodes. A multicast route is a rooted communication

1Obtained by reducing G to the set of all nodes and all communication links.
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tree t � G, i.e., a subgraph G′ of G rooted at the source node forming a directed
loop-free tree of communication links. A concast route can be characterized as an
inverse rooted communication tree of G, consisting of links that lead from leaf
nodes to the root node. Given these definitions, unicast routes are special cases of
multicast routes.

Route discovery is based on network status information. Routing algorithms can
be classified according to how detailed this information is, whether it is updated at
runtime, and how these updates are triggered. A node has global network status
information if it knows the entire network topology. For QoS routing, additional
knowledge about link attributes, e.g., available bandwidth, average transmission
delay, or statistical link reliability may be required. A node has aggregated network
status information if only a summary of the network topology is available, e.g., hop
distance or accumulated delays to other nodes.

In case of variable link quality or node mobility, it is necessary that network
status information is updated while operating the network. A routing algorithm with
this capability is called dynamic and static otherwise. Dynamic routing schemes are
proactive if updates are performed independent of whether routes are being
requested, e.g., periodically, and reactive otherwise.

In this book, we focus on core functionalities of wireless real-time networking
with TDMA. The availability of network-wide TDMA, the possibility to reserve
time slots, and information about communication and interference topologies form
the basis for the discovery of routes that can be operated without the interference
problem.

Definition 8.1 (Interference problem) Let G = (V, L, E) be a network topology, v1,
v2 2 V , and v1; v2ð Þ 2 EC. Then, the transfer of a message from v1 to v2 can be
disturbed by an overlapping transmission of another node v3 in interference range of
v2, i.e., (v3, v2) 2 EI (see Fig. 8.1).

The interference problem is caused by transmissions that overlap in time, fre-
quency, and space, called collisions. To avoid collisions, it is sufficient to reserve

v1

v3

v2

communication
(and interference) link
interference link
message transfer
communication range of node v2
interference range of node v2

Fig. 8.1 Network topology and interference problem
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time slots exclusively. Here, collision-free routes can be discovered based on
knowledge of the communication topology and of reserved slots. As the network
diameter increases, exclusive reservations of time slots become inefficient. If nodes
are sufficiently far apart, they can safely use a time slot together, i.e.,
non-exclusively, without creating destructive collisions. This approach is referred to
as space-division multiple access (SDMA) and improves bandwidth usage. To
discover collision-free routes, knowledge of the interference topology is required in
addition to knowledge of the communication topology and of reserved slots.

8.1.3 Areas of Operation

Routing is a core functionality of all kinds of multi-hop networks, including
wireless ad hoc networks. In the Internet, exterior gateway protocols, e.g., Border
Gateway Protocol (BGP) [4], determine routes between autonomous systems of
providers; interior gateway protocols, e.g., Open Shortest Path First (OSPF) [8], are
used inside autonomous systems. Wireless technologies such as ZigBee [12]
incorporate routing protocols for the dynamic formation of mesh networks.

In wireless networked control systems, routing protocols developed for the
Internet or for ZigBee are not suitable, due their best-effort characteristics. Instead,
QoS routing protocols are required. WirelessHART [11] incorporates a proactive
QoS routing protocol for the dynamic formation of mesh networks. Here, route
discovery is performed by a network manager and based on global network status
information, yielding routes with exclusively reserved time slots2 and deterministic
end-to-end delay.

In the task Adaptive Services in Networked Production Environments of the
project Software Innovations for the Digital Enterprise (SINNODIUM) of the
Software-Cluster [10], the demonstrator vertical integration of production processes
(VI-P) has been developed and deployed (for details, see Sect. 12.3). Part of VI-P is
a wireless mesh network of stationary sensor nodes monitoring the status of factory
devices, room temperatures, and gas concentrations, and a gateway node collecting
and aggregating sensor readings, and forwarding them to the enterprise resource
planning (ERP) system. Furthermore, a mobile autonomous robot supporting
remote factory monitoring and maintenance, which is part of the wireless mesh
network, is operated. To provide real-time end-to-end group communication in this
partially mobile wireless network, we have devised a QoS multicast routing algo-
rithm based on TDMA [3].

2WirelessHART also applies frequency-division multiple access (FDMA) techniques.

170 8 Quality of Service Multicast Routing with Mobility Support



8.2 QoS Multicast Routing (QMR)

In this chapter, we present QoS multicast routing (QMR) for partially mobile
wireless TDMA networks [3]. QMR has been inspired by the communication
requirements of industrial networked control systems consisting of stationary and
mobile nodes. The protocol module ProRoute of the ProNet 4.0 protocol stack [1]
implements QMR.

For the operation of QMR, we assume that the stationary nodes form a network,
i.e., there is a path of communication links between all pairs of stationary nodes.
Furthermore, we assume that each mobile node is in communication range of at
least one stationary node at all times. In a closed industrial environment, both
assumptions can be satisfied by placing stationary nodes until connectivity and
spatial coverage are achieved.

We now present QMR in several steps, starting with the iterative construction of
QoS routing trees in networks consisting of stationary nodes only, and then
extending this algorithm to support mobile nodes too. We motivate and explain our
design decisions, formalize constraints for collision-free operation, introduce
heuristics for route selection and slot scheduling, and present the results of simu-
lation experiments. As the problem of finding optimal QoS routing trees and slot
schedules is NP-complete, QMR relies on heuristics either to achieve small
end-to-end delay or to favor route feasibility and slot reuse.

8.2.1 Context and Design Decisions for Stationary Nodes

QMR is specifically devised for wireless networked control systems consisting of
nodes exchanging real-time control information. Conceptually, sensor and actuator
nodes provide periodical and event-triggered application services, e.g., temperature
readings, alarm notifications, and control value settings. Controller nodes use these
services to collect sensor values, and to determine and apply control values, thereby
building feedback loops. In a usage scenario, sensor and actuator nodes register
their services in a service registry (see Chap. 10). Controller nodes look up, sub-
scribe to, and unsubscribe from services dynamically.

For each subscription to a service, a QoS route between the service provider and
the subscriber, i.e., the service user, is to be established. If several controllers
subscribe to the same sensor service, a multicast route from the service provider to
all subscribers can decrease network load compared to one unicast route per sub-
scription. Furthermore, if subscriptions and/or unsubscriptions occur at different
points in time, existing multicast routes have to be extended and/or reduced during
operation, to avoid service interruptions.

In a network consisting of a set Vs of stationary nodes only, it is sufficient to
build a QoS routing tree consisting of a single branch when the first subscription to
a service is made. For subsequent subscriptions and unsubscriptions, the tree is
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extended and reduced, respectively. Furthermore, to satisfy QoS requirements,
suitable slot reservations along the branches are to be handled.

In wireless networked control systems, routes have to satisfy QoS requirements
regarding timeliness, bandwidth, and reliability. In TDMA networks, this can be
achieved by scheduling suitable time slots along the branches of a routing tree. To
guarantee timeliness, time slots of each branch are to be scheduled such that the
time span from the start of the slot on the first hop until the end of the slot on the
last hop matches the specified end-to-end delay. To provide required bandwidth,
slot reservations on each branch are to be repeated with sufficient periodicity. To
achieve reliability, slot reservations have to be sufficiently exclusive such that the
interference problem (see Definition 8.1) is solved.

For the discovery of QoS routing trees satisfying these requirements, precise
information about the network status is needed. First, this concerns the knowledge
of the communication topology GC ¼ Vs;ECð Þ, to determine trees consisting of
communication links v; v0ð Þ 2 EC. Second, to select time slots s2S, information
about their current reservation status TXs �EC recording whether s is reserved for
transmission on links v; v0ð Þ 2 EC has to be available. Third, to solve the interfer-
ence problem, the interference topology GI ¼ Vs;EIð Þ must be known.

At this point, design decisions about the provision of network status information
and the location of routing decisions are due. In Chap. 4, we have presented
Automatic Topology Discovery Protocol (ATDP) for the automatic detection of
communication, interference, and sensing topologies. ATDP is executed before
regular network operation is started and terminates once a stable topology, where all
links are in states stable or fluctuating, has been determined and disseminated.
Since we are dealing with a network of stationary nodes in a closed industrial
environment, this solves the problem of acquiring knowledge of communication
and interference topology, which is available to all nodes.

Discovery of QoS multicast routes can be performed by a centralized routing
manager or in a decentralized way by distributing route discovery and slot
scheduling among network nodes. With QMR, we have decided for a centralized
solution, for a number of reasons:

• First, a centralized solution avoids the problem of mutual blocking of resources
due to concurrent QoS route searches. When exploring route alternatives, dis-
tributed routing protocols have to pre-reserve resources, e.g., time slots, until a
final route decision has been reached. If nodes have to contend for the same
resources, route searches may fail despite the existence of feasible QoS routes.
With a centralized routing manager, route searches can easily be serialized,
which rules out mutual blocking of resources.
Using Arbitration and Cooperative Transfer Protocol (ACTP, see Chap. 6), it is
possible to serialize distributed route searches in a decentralized routing pro-
tocol. Before triggering a route search, nodes perform network-wide deter-
ministic arbitration, with only the winner starting the search. In [2], we have
devised Black Burst-based QoS routing (BBQR), a decentralized QoS routing
protocol for wireless TDMA networks applying this idea. However, given its
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overhead and complexity, we have reached the conclusion that a centralized
approach is preferable.

• Second, a centralized approach reduces management traffic substantially. For
QoS routing, network status information has to be collected and updated. In
addition to topology information GC and GI provided by ATDP, this concerns
the current reservation status TXs. In a centralized approach, the routing man-
ager keeps track of this status, without sharing it with other nodes. In the
decentralized case, reservations have to be negotiated with other nodes, and
reservation decisions have to be exchanged, which produces an enormous
amount of management traffic. In particular, status information has to be
exchanged with interference neighbors, which is very difficult to achieve, as
these nodes may not be in communication range. Furthermore, nodes repeatedly
exchange route request and reply messages when searching for routes. With a
centralized routing manager, this management traffic is obsolete.

• Third, unless using exclusively reserved time slots, management traffic is prone
to collisions and loss. Route searches may fail because route request messages
are corrupted. Furthermore, route searches may fail or yield unfeasible routes
because the reservation status of nodes is inconsistent, due to loss or delay of
status messages. Again, this problem is avoided by a centralized approach.

A drawback of centralized routing is its lack of scaling, as at some point, the
routing manager may become a bottleneck. Furthermore, it is a single point of
failure. However, given the advantages and considering the fact that we are dealing
with relatively small wireless ad hoc networks consisting of up to 100 nodes, we
have decided to adopt the centralized approach to QoS routing.

8.2.2 Slot Inhibited Policies

To solve the interference problem, information about communication and inter-
ference topologies GC ¼ Vs;ECð Þ and GI ¼ Vs;EIð Þ and about the current reser-
vation status TXs �EC of slots s 2 S is required. Here, Vs denotes the set of
stationary nodes, and v; v0ð Þ 2 TXs expresses that slot s is reserved for transmission
from v to v′.

We now introduce a reservation criterion Fs
TX �EC, with v; v0ð Þ 2 Fs

TX
expressing that slot s is free for transmission from v to v′, without causing any
interference problems with already existing reservations. In [9], the constraints of
Fs
TX are called slot inhibited policies.

Definition 8.2 (Communication and interference distance) Let GC and GI be
communication and interference topologies of a network G. Then, the communi-
cation distance dGc v; v0ð Þ between nodes v, v0 2 Vs is defined as
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dGc v; v0ð Þ ¼df minp2PGc v;v0ð Þ pj j

where PGc v; v0ð Þ is the set of all cycle-free communication paths starting in v and
ending in v′. Interference distance dGI v; v

0ð Þ is defined analogously.

Definition 8.3 (Communication and interference neighborhood) Let GC and GI be
communication and interference topologies of a network G, v 2 Vs, and i � 0 be an
integer value. The i-hop communication neighborhood CN� i vð Þ and i-hop inter-
ference neighborhood IN� i vð Þ of v are defined as follows:

CN� i vð Þ ¼df fv0 2 VsjdGc v; v0ð Þ � ig
IN� i vð Þ ¼df fv0 2 VsjdGI v; v

0ð Þ � ig

Since we assume that nodes in communication range are also in interference
range, we have CN� i vð Þ� IN� i vð Þ.
Definition 8.4 (Reservation status) Let GC be communication topology of a network
G, and s2S be an exclusive slot. The reservation status TXs �EC of slot s defines for
all links v; v0ð Þ 2 EC, whether s is reserved for transmission from v to v′, provided
v0 2 CN� 1 vð Þn vf g. The following relations are derived from TXs as follows:

TXs vð Þ ¼df 9v0 2 Vs:TXs v; v0ð Þ s is reserved by v for transmission
RXs v; v0ð Þ ¼df TXs v; v0ð Þ s is reserved by v for reception from v0

RXs vð Þ ¼df 9v0 2 Vs:RXs v; v0ð Þ s is reserved by v for reception

We call the subset TXs
v ¼ fTXs v1; v2ð Þjv ¼ v1g reservation status of v for s.

Definition 8.5 (Reservation criterion) Let GI be the interference topology of a
network G, v; v0 2 Vs, s2S be an exclusive slot, and TXs be the reservation status of
s. The reservation criterion Fs

TX defines whether s is free for transmission from v to
v′ as follows:

Fs
TX v; v0ð Þ ¼df 8v1 2 IN � 1 vð Þ::RXs v1ð Þ ^ 8v2 2 IN � 1 v0ð Þ:: TXs v2ð Þ

If the reservation criterion is satisfied for a slot s2S and nodes v, v0 2 Vs, slot
s can be reserved without causing an interference problem.

Figure 8.2 illustrates the reservation criterion, showing the interference ranges of
nodes v1 and v2. To check the reservation criterion, the reservation status TXs

v of all
nodes v 2 IN � 1 v1ð Þ [ IN � 1 v2ð Þ and of nodes v3 and v4 is required. Thus, despite a
network diameter of seven communication hops, the reservation status of all but
four nodes is needed for an accurate reservation decision. In a decentralized routing
approach, this status information has to be exchanged before a reservation decision
for link (v1, v2) can be made, causing substantial management traffic and bearing the
risk of inconsistent decisions.
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8.2.3 Routing Tree Discovery for Stationary Nodes

In QMR, routing tree discovery is an iterative process, starting with the search of a
path from source node to the first destination node and extending this initial routing
tree. This design decision is in line with the application context, with subscriptions
and/or unsubscriptions taking place at different points in time. To determine the
initial routing tree, QMR computes the set of shortest paths measured in commu-
nication hops. If more than one shortest path is found, a heuristics is applied to
select a path running through denser parts of the network. To formalize this cri-
terion, we extend the definition of communication neighborhood (see Definition
8.3) to routing trees, which includes paths as special case.

Definition 8.6 (Communication neighborhood) Let GC be the communication
topology of a network G, t�GC be a routing tree, and i� 0 be an integer value. The
i-hop communication neighborhood CN � i tð Þ of t is defined as follows:

CN � i tð Þ ¼df

[
v2t

CN � i vð Þ

To construct an initial routing tree consisting of a single path, QMR selects a
shortest path p with the largest single-hop communication neighborhood CN� 1(p).
The rationale behind this heuristics is that when adding further destination nodes, it
can be expected that the required extensions of the routing tree are smaller, which
reduces bandwidth consumption, as less additional time slots are needed.
A drawback of this heuristics is that in denser parts of the network, there are less
free time slots, which could render a selected path unfeasible. So, a better heuristics
could be to select a path with the smallest CN� 1(p). We leave this for further study.

Figure 8.3 illustrates the selection of the initial routing tree for source node v11
and destination node v8. There are three shortest path candidates p1, p2, and p3 of

v1 v2

v4

v3

communication
(and interference) link
interference link
message transfer
interference range of node v1
interference range of node v2
required TXs reservation status

Fig. 8.2 Illustration of the reservation criterion
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length 3. Here, path p1 has the largest single-hop communication neighborhood
CN� 1(p1), as it contains the neighborhoods of p2 and p3, and is therefore selected.

While the selection of a shortest path in hops has its merits in wired networks, it
is in general not the first choice in wireless networks, as it gives preference to longer
and therefore less reliable hops. However, QMR builds on a communication
topology determined by ATDP, which consists of stable and therefore reliable
communication links only. Therefore, in this particular case, selection of a shortest
path is a good choice, especially as it optimizes bandwidth consumption measured
as the number of required time slots.

To extend an existing routing tree t with source node v by a route to a new
destination node v″, QMR starts by determining, for each node v0 2 t, a shortest
path pv′, v″ from v′ to v″. If there are several shortest paths, a path with the largest
single-hop communication neighborhood is chosen. Then, for each preselected path
pv′,v″, the length of the path pv′ = pv,v′ • pv′,v″ from source node v to new destination
node v″ via v′ is determined. Here, pv,v′ is a branch of the existing routing tree, •
denotes concatenation of paths. From the candidate set of shortest paths pv′, a path
that adds the smallest number of links is selected, because this optimizes the
additional bandwidth consumption. If there still are several candidate paths, a path
pv′ adding the largest single-hop communication neighborhood to t is chosen, with
pv′,v″ appended to the existing routing tree. As before, the rationale of the second
selection criterion is that further extensions of the routing tree can be kept small.

Figure 8.4 illustrates the extension of an existing routing tree t rooted at node v11
by a branch to node v1. The shortest paths p4,1, p7,1, p9,1, and p13,1 starting at nodes
already belonging to t all have length 3, while shortest paths p5,1, p8,1, and p11,1 (not
highlighted in the figure) have length 4. Among the concatenated paths p4, p7, p9,
and p13, p9 and p13 are the shortest paths. Since p13 yields the largest extension of

Fig. 8.3 Illustration of initial routing tree selection
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the single-hop neighborhood of t of the remaining candidates, it is selected, with
p13,1 added to the existing routing tree.

Up to this point, routing trees are formed without considering the availability of
time slots. This implies that a selected routing tree may be unfeasible due to lack of
suitable free slots, while another routing tree might be feasible. There are two
possible strategies to overcome this problem. First, we could check the availability
of time slots already when searching for a routing tree. Second, if a search fails, we
can repeat the search by considering different trees. Both strategies increase the
complexity of route search and may detect larger routing trees that consume more
bandwidth. In case of QMR, we have decided against both strategies, as they are
only required when network load is already rather high, which reduces the chances
of finding another feasible path anyways. Instead, we optimize slot usage by
keeping routing trees small.

8.2.4 Slot Scheduling for Stationary Nodes

We now extend the iterative construction of routing trees by an algorithm for slot
scheduling, i.e., selection and reservation of time slots along the branches of a
routing tree. We assume that there are exclusive regions decomposed into exclusive
slots of the same size dslot (see Fig. 8.5 and Sect. 5.2.1).

When a message is sent from node v1 to node v2 in communication range of v1 in
time slot s, we assume that node v2 returns an acknowledgment in the same time
slot. First, this requires symmetrical communication links, which are detected by
ATDP (see Chap. 4). Second, this implies that nodes v1 and v2 are both senders and
receivers in time slot s. Thus, to avoid interference, we have to strengthen the
reservation criterion in Definition 8.5 as follows:

Fig. 8.4 Illustration of the extension of an existing routing tree
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Definition 8.7 (Strengthened reservation criterion) Let GI be interference topology
of a network G, v, v0 2 Vs, s2S be an exclusive slot, and TXs be the reservation
status of s. The strengthened reservation criterion F

s
TX defines whether s is free for

transmission from v to v′ and vice versa as follows:

F
s
TX v; v0ð Þ ¼df F

s
TX v; v0ð Þ ^ Fs

TX v0; vð Þ
¼ 8v1 2 IN � 1 vð Þ [ IN � 1 v0ð Þ:: TXs v1ð Þ ^ :RXs v1ð Þ

QMR constructs routing trees iteratively, by determining an initial path and
appending paths as required. In each iteration step, time slots along the path to be
added are scheduled, i.e., selected and reserved. In the following, we assume that
the bandwidth requirements of a route are satisfied by one time slot per hop and
super slot. If this is not sufficient, several time slots can be reserved. Furthermore,
we assume that there are no constraints regarding the placement of reserved slots of
a routing tree in a super slot.

QMR offers two slot scheduling strategies: achieving small end-to-end delay and
high route feasibility. Furthermore, QMR exploits local multicasting to reduce
bandwidth consumption.

Small end-to-end delay—shortDelay

For a routing tree t, the theoretical lower bound for end-to-end delay is given as the
product of routing tree depth and exclusive slot duration, i.e., depth(t) � dslot. This
lower bound is only reached if consecutive exclusive slots of the same exclusive
region are reserved for all branches of t, in the order defined by t. In practice, to
achieve small end-to-end delay, gaps between reserved slots belonging to the same
or different exclusive regions should be kept small.

To achieve low end-to-end delays, QMR uses the slot scheduling strategy
shortDelay, which applies the slot decision policy nearest slot first (NSF) to links in
the order of the path. Informally, given the slot selected on the previous hop of a

super slot sync region (ProSync)

exclusive region (ProRes)

shared region (ProCont)

mode region (ProMod)

exclusive time slots

Fig. 8.5 Virtual time slotting—exclusive regions and exclusive slots
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branch of a routing tree t, NSF selects the next slot that is free for transmission on
the next hop.

Definition 8.8 (Nearest Slot First (NSF)) Let s0,…,sn-1 be the sequence of exclu-
sive slots located in the exclusive region(s) of a super slot. Let si be the starting
point for searching a slot that is free for transmission from node v to node v′.

• When forming an initial routing tree, the starting point si for this search can be
any slot, e.g., s0 (First Fit) or slot sk reached after the last search (Rotating First
Fit).

• When extending an existing routing tree, starting point si is the slot s(k+1) mod n

following the reserved slot sk on the previous hop.

The slot decision policy NSF performs a rotating forward search starting at si and
selecting the first slot sk ¼ s iþ jð Þmod n, with 0 � j � n–1, that is free for trans-
mission from v to v′ if such a slot exists. Formally,

NSF si; v; v0ð Þ ¼ df if 9 j:ð0� j� n� 1 ^ F
sj
TX v; v0ð ÞÞ

then s iþ jð Þmod n such that
j ¼ minfk j 0� k� n� 1 ^ F

sðiþ kÞmod n

TX v; v0ð Þg
else undefined

If NSF returns valid time slots for all hops of the path to be appended to the
routing tree, a feasible extended routing tree has been determined. Otherwise, the
extension is unfeasible.

Table 8.1 shows slot reservations and blockings for a scenario based on the
topology in Fig. 8.4, with five exclusive slots. To keep the scenario small, we
assume that all nodes in interference range are also in communication range. In a
first route search, the QoS route p = (v4, v3, v2, v1) has been established, with the
reservations shown in the table (regular font). In addition, the table shows for which
nodes a slot is blocked due to reservation of a slot in interference range (regular
font). If the scheduled slots belong to the same exclusive region, end-to-end delay
for p is 3 � dslot, i.e., minimal.

Next, a slot schedule for the path p′ = (v11, v9, v7, v8) with small end-to-end
delay is to be determined. Slot search starts on link (v11, v9) at s3 (Rotating First
Fit). Applying the strengthened reservation criterion, it turns out that slot s3 is free
for transmission from node v11 to node v9, which is therefore scheduled (bold
entries in the table). Furthermore, v6, v7, v10, v12, and v13 in interference range of v9
or v11 are now blocked in s3. On the next hop from v9 to v7, slot search starts in s4,
which is successfully scheduled as shown in the table.

On the last hop from v7 to v8, slot search starts in s(4+1) mod 5, which is s0.
However, s0 is already blocked for both nodes, i.e., the strengthened reservation
criterion is not satisfied. Since the next slot s1 is blocked for v7, slot search con-
tinues with s2, where communication between v7 and v8 does not interfere with v1
and v2. Therefore, s2 can be scheduled again, increasing bandwidth utilization due
to SDMA.
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If the scheduled slots belong to the same exclusive region, end-to-end delay for p′ is
n � dslot. The reason is that after slot s4, slot s2 is scheduled, which can only be used in
the following super slot. In the given scenario and with the search heuristics, this is the
best possible result. Starting slot search at s0 (First Fit) would have produced a better
result, with an end-to-end delay of only 4 � dslot. However, First Fit leads to a con-
centration of scheduled slots at the beginning of a super slot, which is not always
desirable. Furthermore, with only five exclusive slots per super slot, the options in this
simple scenario are of course very much restricted.

High route feasibility—highReuse

To achieve high route feasibility and to enhance slot reuse, QMR uses the slot
scheduling strategy highReuse, which applies slot decision policies Fewest Slots
First (FSF), Least Conflicts First (LCF), and Most Reuse First (MRF), in that order.
Similar slot decision policies have been introduced in [9], in a decentralized
approach. In the following, we define these policies and illustrate their application.

Table 8.2 shows slot reservations and blockings for a scenario based on the
topology in Fig. 8.4, with five exclusive slots. To keep the scenario small, we assume
that all nodes in interference range are also in communication range. In preceding
route searches, the QoS routes p = (v2, v3, v4, v5) and p′ = (v12, v11) have been
established, with the reservations and blockings shown in the table (regular font).

Table 8.1 Slot reservations and blockings “Small end-to-end delay”—QoS routes p = (v4, v3, v2,
v1) and p′ = (v11, v9, v7, v8) (for the topology, see Fig. 8.4)

Mode Slot

s0 s1 s2 s3 s4
v1 x RXs2(v1, v2)

v2 x RXs1(v2, v3) TXs2(v2, v1)

v3 RXs0(v3, v4) TXs1(v3, v2) x x
v4 TXs0(v4, v3) x x
v5 x

v6 x x x x
v7 x x TXs2(v7, v8) x RXs4(v7, v9)
v8 x RXs2(v8, v7) x
v9 x RXs3(v9, v11) TXs4(v9, v7)
v10 x x x
v11 TXs3(v11, v9) x
v12 x x
v13 x
v14
v15 x

TXs(vi, vj): slot s reserved for transmission from vi to vj
RXs(vi, vj): slot s reserved for reception by vi from vj
x: blocked due to reservation in interference range

180 8 Quality of Service Multicast Routing with Mobility Support



Next, a slot schedule for path p″ = (v11, v9, v7, v8) with high route feasibility is to
be determined. To select a link of p″ where we start slot selection, we apply the first
slot decision policy FSF:

Definition 8.9 (Fewest Slots First (FSF)) Let S be the set of exclusive slots of a
super slot, p be a path for which slots are to be selected, and NoDec(p) � p be the
non-empty set of links for which no slot decision has been made so far. The slot
decision policy FSF determines the link to be considered next for slot selection as
some link with the fewest number of slot choices:

Free v; v0ð Þ ¼df fs 2 S j �Fs
TX v; v0ð Þg

nFree v; v0ð Þ ¼df Free v; v0ð Þj j
FSF pð Þ ¼df fnFreeðv; v0Þ[ 0^

8 v1; v2ð Þ 2 NoDec pð Þ: nFree v; v0ð Þ � nFree v1; v2ð Þg

FSF captures the heuristics that to improve the chances of finding a feasible
route, slot search should start on a link with the smallest number of slot choices. If
there are no choices, i.e., FSF(p) = {} although NoDec(p) 6¼ {}, the route search
terminates without success. If there are one or more choices, one link is selected,
and further slot decision policies are applied.

Table 8.2 Slot reservations and blockings “high route feasibility”—QoS routes p = (v2, v3, v4,
v5), p′ = (v12, v11), and p″ = (v11, v9, v7, v8) (for the topology, see Fig. 8.4)

Mode Slot

s0 s1 s2 s3 s4
v1 x

v2 TXs0(v2, v3) x

v3 RXs0(v3, v2) TXs1(v3, v4) x x

v4 x RXs1(v4, v3) x TXs3(v4, v5)

v5 x RXs3(v5, v4)

v6 x x
v7 x x TXs2(v7, v8) RXs3(v7, v9)
v8 x RXs2(v8, v7) x

v9 RXs0(v9, v11) x TXs3(v9, v7)
v10 x x x
v11 TXs0(v11, v9) RXs2(v11, v12) x
v12 x TXs2(v12, v11) x
v13 x x

v14
v15
TXs(vi, vj): slot s reserved for transmission from vi to vj
RXs(vi, vj): slot s reserved for reception by vi from vj
x: blocked due to reservation in interference range
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When starting with an empty tree t and p″ = (v11, v9, v7, v8) (see Table 8.2 and
Fig. 8.4), we get nFree(v11, v9) = 4 (free slots s0, s1, s3, s4), nFree(v9, v7) = 2 (free
slots s3, s4), and nFree(v7, v8) = 2 (free slots s2, s4). FSF(p″) returns the links with the
least number of choices, i.e., {(v9, v7), (v7, v8)}. We continue with one of these
links, e.g., (v9, v7). To select a slot for (v9, v7), we apply the second slot decision
policy LCF.

Definition 8.10 (Least Conflicts First (LCF)) Let p be a path for which slots are to
be selected, NoDec(p) � p be the non-empty set of links for which no slot decision
has been reached so far, and (v, v′)2FSF(p). Then, the slot decision policy LCF
reduces the set of free slots Free(v, v′) to those with the least conflicts with free slots
of the previous two and next two hops of p, restricted to links for which no decision
has been reached yet.

LCF captures the heuristics that to improve the chances of finding a feasible
route, the options of links that may be affected by a slot selection should be reduced
as little as possible. In the example, the choice of s4 on link (v9, v7) reduces the
options of links (v11, v9) and (v7, v8). However, selecting s3 affects link (v11, v9)
only, which is therefore the better choice.

Since there are further links for which no slot decision has been reached so far,
we continue by applying FSF to the remaining links, yielding nFree(v11, v9) = 3 (free
slots s0, s1, s4) and nFree(v7, v8) = 2 (free slots s2, s4). Applying LCF to (v7, v8) leads
to the selection of s2 on link (v7, v8). After that, only link (v11, v9)2p″ remains
without slot decision, with free slots s0, s1, and s4 left for selection after application
of FSF and LCF. To select a slot for (v11, v9), we apply the slot decision policy
MRF.

Definition 8.11 (Most Reuse First (MRF)) Let S′�S be the set of free slots on link
(v, v′)2FSF(p) after applying LCF. The slot decision policy MRF reduces S′ to the
set of slots with the highest utilization so far as follows:

nBlocked s; v; v0ð Þ ¼df j fv1 2 IN � 1 vð Þ [ IN � 1 v0ð Þ j :9 v2 2 CN� 1ðv1Þ:�Fs
TX v1; v2ð Þg j

MRFðp; v; v0; S0Þ ¼df fs 2 S0 j v; v0ð Þ 2 NoDec pð Þ ^
8s0 2 S0: nBlocked s; v; v0ð Þ � nBlocked s0; v; v0ð Þg

MRF captures the heuristics that high reuse increases the degree of SDMA and
the chances of finding feasible routes in subsequent route searches. In the example,
nBlocked(s0, v11, v9) = 2, nBlocked(s1, v11, v9) = 1, and nBlocked(s4, v11, v9) = 0,
yielding MRF(p″, v11, v9,{s0, s1, s4}) = {s0}. Therefore, slot s0 is selected for link
(v11, v9). The slot schedule for path p″ = (v11, v9, v7, v8) and the additional
blockings are shown in Table 8.2 (bold font).

In the scenario in Table 8.2, seven transmissions are scheduled in four slots,
which shows that the slot decision policies FSF, LCF, and MRF indeed foster
SDMA and high slot usage. Up to now, slot s4 is not reserved at all, and some of the
other slots are still free for reservation on one or more links. For instance, slot s1 can
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be reserved on links (v12, v11), (v11, v13), (v13, v14), and (v14, v15) in both directions.
Furthermore, although already reserved twice, slots s2 and s3 are still free on link
(v1, v15), in both directions.

We formally capture slot utilization by the utilization rate rutil defined as the
number of time slots used for transmission or receptions divided by the number of
time slots blocked for transmissions or receptions due to reservations in single-hop
interference neighborhood (provided there is at least one slot usage):

rutil ¼df
j f s; vð Þ 2 S� V j TXs vð Þ _ RXs vð Þg j

f s; vð Þ 2 S� V j 9v0 2 IN � 1:ðTXs v0ð Þ _ RXs v0ð Þgj j

A high value of rutil increases the potential for SDMA, because it increases the
options of reserving slots multiple times. For the scenarios in Tables 8.1 and 8.2,
we obtain rutil ¼ 6þ 6

6þ 6þ 25 � 0:32 and rutil ¼ 6þ 2þ 6
6þ 2þ 6þ 22 � 0:39. To reach the theo-

retical optimum of 1, no slots should be blocked unless used for transmission or
reception. In practice, this optimum cannot be reached in multi-hop networks.

We conclude by pointing out that the slot decision policies FSF, LCF, and MRF
need a more rigorous and generalized treatment. To keep this chapter concise, we
have presented the underlying ideas in a semi-formal way.

Local multicasting

When a path is added to an existing tree, suitable slots along the new branch have to
be scheduled. At the node where the branch starts, QMR examines the possibility of
applying local multicasting, to reduce bandwidth consumption. For instance, if path
(v9, v6, v2, v1) is to be attached to the routing tree in Fig. 8.4, there is already a time
slot s selected on link (v9, v7). If s can also be used on link (v9, v6), i.e., if
8v 2 IN � 1 v6ð Þn v9f g:: TXs vð Þ ^ :RXs vð Þ holds, v6 can receive the transmission of
v9 in the same time slot.

When using local multicasting, several acknowledgments are to be exchanged in the
same time slot. As QMR supports up to three receivers per local multicast, exclusive
time slots are sized such that up to three acknowledgments fit. The order of acknowl-
edgments is determined by the routing master and forwarded to nodes on the route.

8.2.5 Design Decisions for Partially Mobile Networks

We now generalize QMR to support QoS multicast routing in wireless networked
control systems consisting of sets of stationary and mobile nodes Vs and Vm. Here,
mobile nodes, e.g., autonomous robots, may act as service providers, by hosting
sensors and actuators, and as service users executing control functionalities.

A straightforward approach is to include mobile nodes in QoS routing trees,
without making a distinction between stationary and mobile nodes. This, however,
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yields routes that may break quickly due to node movements. Furthermore, it
renders SDMA for slot reuse unfeasible, as mobile nodes may appear anywhere in
the network topology. Therefore, QoS multicast routing in partially mobile net-
works requires a more sophisticated approach.

For the operation of QMR, we assume that the stationary nodes form a stable
communication topology, which is essential for achieving stable routes.
Furthermore, we stipulate that each mobile node be always in communication range
of at least one stationary node. For better performance, a minimal subset Va � Vs of
stationary nodes called access nodes providing spatial coverage can be determined
for this purpose. Thus, mobile nodes have single-hop access to the network of
stationary nodes, a property that makes the establishment of stable QoS routing
trees with mobile nodes as source or destination nodes feasible. In addition, it opens
potential for efficient slot schedules.

8.2.6 Routing Tree Discovery in Partially Mobile Networks

To incorporate mobile nodes, we distinguish between outgoing routes, with a mobile
node as destination, and incoming routes, with a mobile node as source node.

Outgoing routes

To establish an outgoing route from a stationary source node vs to a mobile des-
tination vm, QMR first builds a multicast tree t of stationary nodes from vs to all
access nodes va2Va. Then, each branch of t is extended by an access hop (va, vm)
from each access node to the mobile node. As vm is in range of at least one access
node at all times, this provides single-hop access from t to vm. During operation,
management frames are exchanged in pre-reserved management slots to identify the
access node in charge and to ensure that only one access hop is used. The special
case of adding a mobile node to an already existing routing tree t is equivalent to
adding all access nodes and access hops to t.

When operating outgoing routes, messages sent by a source node are forwarded
to all access nodes. The access node currently in charge is responsible to deliver a
received message to the mobile node via its access hop.

Figure 8.6 illustrates the discovery of outgoing routes. In the example, a mul-
ticast tree is iteratively built from source node v11 to access nodes v2, v8, and v9.
Route search starts with an access node in minimum hop distance to the source
node, yielding path p1 = (v11, v9) as initial multicast tree. QMR extends this tree by
adding access nodes with increasing hop distance to the source node, as explained
in Sect. 8.2.3, yielding paths p2 and p3. Paths p1, p2, and p3 are then extended by
access hops to vm. In the runtime topology in Fig. 8.6, vm is currently in range of
access node v2; therefore, the access hop (v2, vm) is used.
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Incoming routes

To build an incoming route from a mobile source node vm to a stationary destination
vd, QMR first chooses a stationary distributor node vdn2Vs, which is in charge of
receiving data from vm and forwarding them to vd. Then, a concast tree tc from all
access nodes va2Va to vdn is built and extended by access hops (vm, va). To build tc,
QMR determines a multicast tree from vdn to all va2Va as outlined before, which is
then inverted. This is feasible, as QMR considers bidirectional links only. Next,
QMR creates a multicast tree tm from vdn to vd, with the option to extend this tree if
further destination nodes are added later. Finally, tc and tm are concatenated at vdn to
form an incoming route.

There are several strategies to choose the distributor node vdn2Vs.
A straightforward strategy is to select vdn = vd, which implies that initially, no
multicast tree from vdn to vd is required. This choice works best if the mobile node is
always close to vd, and no further destination nodes are added later. Another
strategy is to choose a distributor node in the center of the topology, yielding
concast and multicast trees of low depth, i.e., short routes. QMR adopts this strategy
and chooses a node with the minimum average distance to all other nodes as
distributor node.

When operating incoming routes, messages sent by a mobile source node are
received by the access node currently in charge and forwarded to all destinations via
the distributor node. We observe that to reach the distributor node, only one branch
of the concast tree is used.

Figure 8.7 illustrates the discovery of an incoming route from mobile source vm
to destination v5, extended by destination v12 in the second step. In the example, v7
is chosen as distributor node. Then, a concast tree tc from access nodes v2, v8, and v9
to distributor node v7 is formed and extended by access hops (vm, v2), (vm, v8), and

Fig. 8.6 Routing tree from source v11 to mobile node vm via access nodes v2, v8, and v9 (see [3],
Fig. 4)
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(vm, v9). Next, a multicast tree tm from v7 to v5 is established and concatenated with
tc and the access hops. Later, destination v12 is added. In the runtime topology in
Fig. 8.6, vm is currently in range of access node v2; therefore, the access hop (vm, v2)
is used.

In the example, some links are part of the concast tree tc and the multicast tree tm,
and therefore used in both directions, e.g., (v7, v8) and (v8, v7). While this might
look inefficient, it is a consequence of our design decisions and systematical
treatment, yielding functional multicast routes involving mobile source nodes. Also,
only one branch of the concast tree is used during operation. In the example, this is
the branch (vm, v2, v3, v7), which is disjoint with tm; therefore, no link is used in both
directions. If vm uses access node v8, then the link between v7 and v8 is used twice.
However, if local multicasting is feasible, there is no loss of efficiency.

So far, we have considered outgoing and incoming routes with only one mobile
node. This can be generalized to having several mobile nodes as destinations and/or
sources, by establishing, for each mobile node, outgoing and/or incoming routes,
and by composing them.

8.2.7 Slot Scheduling in Partially Mobile Networks

We now extend the iterative construction of routing trees in partially mobile net-
works by an algorithm for slot scheduling, i.e., selection and reservation of time
slots along the branches of a routing tree. As before, we assume that super slots
contain exclusive regions decomposed into exclusive slots.

Fig. 8.7 Routing trees from mobile source vm to destinations v5 and v12 via distributor node v7
(see [3], Fig. 5)
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In case of an outgoing route from a stationary source node vs to a mobile
destination vm, there is a multicast tree consisting of stationary nodes only. Slot
reservations for this tree are covered by the slot scheduling strategies in Sect. 8.2.4,
to achieve small end-to-end delays or high route feasibility and slot reuse. For the
last hop from access nodes to the mobile node, it is sufficient to reserve one
additional time slot, as at any point in time, only one access node is in charge.
However, since the location of the mobile node is not determined, the slot has to be
free network-wide and is reserved exclusively, i.e., reuse through SDMA cannot be
exploited.

In case of an incoming route from a mobile destination vm to a group of sta-
tionary nodes, different kinds of slot reservations are needed. First, there are the
access hops from vm to access nodes. As the mobile node sends to exactly one
access node at a time, it is sufficient to reserve one time slot. As in case of outgoing
routes, this reservation must be exclusive, as location and interference range of vm
are not known. Second, slot reservations on the concast tree from access nodes to
distributor node are required. Since only one access node is in charge at any time,
only the corresponding branch of the concast tree is used for transmissions. It
follows that transmissions on different branches of the concast tree are not in
conflict. Therefore, the same scheduling strategies as in Sect. 8.2.4 can be applied,
with the difference that blocking entries are not considered if they are caused by
another branch of the concast tree only. Finally, reservations for the multicast tree
from the distributor node to destinations are due (see Sect. 8.2.4).

8.2.8 Experimental Assessment

To assess and compare the slot scheduling strategies of QMR to achieve small
end-to-end delays (shortDelay) or high route feasibility and slot reuse (highReuse),
we have conducted a series of simulation experiments. Furthermore, we have
investigated the benefits of using access nodes in partially mobile networks. We
have decided against comparisons with other routing protocols, as they funda-
mentally differ from QMR in functionality and/or QoS support (see Sect. 8.3).

For the experimental assessment, we have used several topologies of stationary
nodes. In the following, we provide details for the topologies shown in Fig. 8.8.
Topology 1 represents dense networks with uniform placement of nodes and links.
Topology 2 is a representative of a stretched network as found, for instance, in
production lines. We assume that the 1-hop interference neighborhood of a node is
a subset of its 2-hop communication neighborhood. For conservative slot
scheduling decisions, we extend the interference neighborhood to be maximal, i.e.,
8v2V. IN � 1 vð Þ ¼ CN � 2 vð Þ.

To evaluate the slot scheduling strategies shortDelay and highReuse, we have
randomly generated, for each topology, 50 route request scenarios with three sets of
nodes consisting of one source node and three destination nodes each. Furthermore,
we have varied the number of exclusive slots per super slot from 10 to 15. The
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results of the experiments for the topologies in Fig. 8.8 are shown in Tables 8.3 and
8.4.

First, we observe that the average depth of multicast trees is almost independent
of the slot scheduling strategy. The reason for this is that multicast trees are built
before slot scheduling occurs. Small variations can be explained by different suc-
cess rates, which have some impact on calculated averages. Another finding is that
both scheduling strategies achieve about the same average utilization rates.
A possible reason is that both topologies are relatively dense, reducing the potential
for slot reuse.

source

destination
(access node)
distributor
route link

Fig. 8.8 Topology 1 (left), with multicast tree. Topology 2 (right), with concast tree (see [3],
Figs. 6 and 7)

Table 8.3 Experimental assessment for topology 1 (see [3], Table III)

Strategy Slots Tree depth Utilization [%] Delay [slots] Success rate [%]

shortDelay 10 2.52 ± 1.21 0.18 ± 0.02 3.16 ± 2.07 40

highReuse 10 2.59 ± 1.22 0.19 ± 0.02 4.66 ± 4.10 54

shortDelay 12 2.74 ± 1.24 0.17 ± 0.01 3.61 ± 2.48 94

highReuse 12 2.73 ± 1.23 0.18 ± 0.02 5.35 ± 5.08 96

shortDelay 15 2.75 ± 1.23 0.17 ± 0.01 3.56 ± 2.18 100

highReuse 15 2.74 ± 1.24 0.18 ± 0.02 6.06 ± 6.39 100

Table 8.4 Experimental assessment for topology 2 (see [3], Table IV)

Strategy Slots Tree depth Utilization
[%]

Delay [slots] Success rate
[%]

shortDelay 10 3.33 ± 2.12 0.23 ± 0.01 4.47 ± 3.63 10

highReuse 10 3.54 ± 2.30 0.24 ± 0.01 7.33 ± 7.28 16

shortDelay 12 3.63 ± 2.06 0.23 ± 0.01 5.36 ± 5.12 52

highReuse 12 3.96 ± 2.22 0.24 ± 0.01 9.08 ± 8.34 90

shortDelay 15 3.99 ± 2.21 0.23 ± 0.01 5.70 ± 4.34 100

highReuse 15 3.99 ± 2.21 0.24 ± 0.01 11.22 ± 11.15 100
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As expected, shortDelay establishes routes with substantially smaller end-to-end
delays compared to highReuse. This can be explained by the slot decision policy of
shortDelay, which handles links in the order of the path and performs a rotating
forward search for free slots; whereas, highReuse applies other criteria to link
handling and slot search. The strength of highReuse is the success rates for the
discovery of feasible routes. For instance, in topology 2 with 12 exclusive slots
(Table 8.4), highReuse is successful in 90% of all route requests, while shortDelay
achieves only 52%. This can be explained by the slot decision policies of
highReuse, which improve the chances of finding a feasible route.

Based on these findings, we conclude that the slot scheduling strategy should be
chosen such that the application requirements are reflected. For a route request, both
strategies return a deterministic delay in slots, which has to be augmented by gaps
between exclusive regions to which these slots belong. An approach could be to use
highReuse to find a feasible route and to apply shortDelay as backup strategy in
case this does not match the specified maximum end-to-end delay.

To assess the advantages of having dedicated access nodes in order to incor-
porate mobile nodes into QoS multicast routes, simulation experiments with out-
going and incoming routes have been conducted. Topology 1 in Fig. 8.8 shows a
multicast tree for an outgoing route from a source node to four access nodes. When
applying shortDelay, we obtain a delay of up to six slots, depending on the current
location of the mobile node, with 69 blockings. In comparison, a multicast tree to
all stationary nodes, also applying shortDelay, yields a maximum delay of 11 slots
and 128 blockings.

Topology 2 in Fig. 8.8 shows a concast tree that is part of an incoming route.
Here, QMR optimizes slot usage by exploiting the fact that only one branch of the
tree is used at any time. When using shortDelay, the maximum delay is three slots
with the optimization, and seven slots without.

8.3 Related Work

In this chapter, we outline QoS routing protocols for wireless TDMA networks and
compare them to QoS multicast routing (QMR). To keep the survey concise, we
have selected one representative protocol for centralized and one for decentralized
route discovery.

8.3.1 Distributed Slots Reservation Protocol (DSRP)

In [9], Shih et al. present Distributed Slots Reservation Protocol (DSRP), a rep-
resentative for decentralized discovery of QoS unicast routes in TDMA networks.
DSRP is a reactive routing protocol, which enforces slot inhibited policies and
applies slot decision policies.
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Route discovery of DSRP consists of two phases. During the route request
phase, DSRP finds a set of feasible QoS routes and preselects time slots. In the route
reply and reservation phase, it selects and finalizes a QoS route and reserves time
slots. If time slots selected during the route request phase are no longer available for
reservation, DSRP applies a slot adjustment protocol with a slot adjustment algo-
rithm to negotiate slot exchanges with neighbor nodes.

The decision whether a time slot s is free for transmission on a link (v1, v2) is
based on the transmit and receive reservation status TXs and RXs of nodes v1 and v2.
This information is recorded and updated by each node and requires the exchange
of reservation decisions with nodes in single-hop interference neighborhood. To
make this feasible, DSRP assumes that nodes in interference range are also in
communication range, i.e., IN � 1 vð Þ�CN � 1 vð Þ. Nevertheless, there still is the
problem of local uncertainty about the reservation status of neighbor nodes due to
possible collisions and delays of management traffic.

Slot s is free for transmission on a link (v1, v2) if it satisfies slot inhibited policies
SIP1.3 as follows:

SIP1 : :TXs v1ð Þ ^ :RXs v1ð Þ ^ :TXs v2ð Þ ^ :RXs v2ð Þ
SIP2 : 8v 2 CN1 v1ð Þ::RXs vð Þ
SIP3 : 8v 2 CN1 v2ð Þ::TXs vð Þ

Here, CN1 vð Þ ¼ CN � 1 vð Þn vf g. Apart from the assumption
IN � 1 vð Þ�CN � 1 vð Þ, this corresponds to the reservation criterion in Definition 8.5.
For a given link, SIP1 and SIP2 are checked by v1; whereas, v2 verifies SIP3. Thus,
knowledge about the reservation status in single-hop communication neighborhood
is sufficient.

The selection of slots that are free for transmission is guided by three slot
decision policies. During route discovery, route request packets record the sets of
free slots of the previous three hops (or less, if the distance of the sending node to
the source node is smaller). Three-hop Backward Decision Policy (3BDP) deter-
mines slots for the last but two link such that unfeasible slot assignments due to the
hidden station problem are avoided. On top of 3BDP, Least Conflicts First Policy
(LCFP) assigns slots having the least conflict with free slots of the following two
hops. LCFP corresponds to LCF in Definition 8.10, which, however, considers the
following hops too. Finally, Most Reuse First Policy (MRFP), which corresponds to
MRF in Definition 8.11, prefers slots with high utilization to increase the effects of
SDMA.

The source node initiates the route request phase by broadcasting a RREQ
packet, which contains the ids of source, destination, and transmitting node, route
request id, bandwidth requirement, and the partial route with selected slots, free
slots, and slot usage. Nodes receiving a route request for the first time try to extend
the partial route. If applicable, they select slots for the last but two link, applying
slot decision policies 3BDP, LCFP, and MRFP (in this order). If the bandwidth
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requirements can still be satisfied, they broadcast an updated RREQ packet to
continue the route search.

On reception of a RREQ packet with a feasible route, the destination node
initiates the route reply and reservation phase by returning a RREP packet on the
unicast route recorded in the received packet. On each hop, time slots selected
during the route request phase are reserved, if they are still free for transmission.
However, if several concurrent route requests are processed, slots may have been
selected several times and may therefore not be available anymore. In this case,
DSRP starts a slot adjustment protocol with a slot adjustment algorithm to negotiate
slot exchanges with neighbor nodes. However, slot adjustments may also be per-
formed concurrently and may therefore lead to inconsistent results.

One strength of DSRP is the definition and application of slot inhibited and slot
decision policies. Simulations show good success rates compared to other dis-
tributed QoS routing protocols. Major drawbacks are high communication over-
head, problems caused by loss and delay of routing management messages, and the
possibility of concurrent route request processing, which makes route discovery
unreliable and unpredictable. Message loss and delay may also cause inconsistent
reservation status information, resulting in the discovery of unfeasible routes. The
authors claim that DSRP has good success rates even with mobile nodes. However,
node mobility may lead to route breaking and rules out SDMA. Finally, DSRP only
supports QoS unicast routing.

Despite its strengths, DSRP reveals that decentralization of QoS route discovery
suffers severe problems that are difficult to solve. With Black Burst-based QoS
routing (BBQR) [2], we have devised a decentralized QoS routing protocol that
avoids some of these problems, but at the price of high overhead and complexity.
Therefore, we argue that a centralized approach is preferable. In larger networks,
several routing managers can share the task, based on suitable network clustering.

8.3.2 QoS Routing in WirelessHART

WirelessHART [11] is a protocol stack developed for wireless networking in
industrial environments based on TDMA, supporting reservations for exclusive
medium access and multi-hop networks. It extends the wired Highway Addressable
Remote Transducer (HART) protocol developed by the company Rosemount in the
1980s. In WirelessHART, route discovery and slot scheduling are centralized.

WirelessHART operates mesh networks consisting of nodes with different roles
and capabilities. The node taking the role of network manager is responsible for
time synchronization, channel management, route discovery, slot scheduling, and
slot reservation. The gateway (possibly the same node) couples wireless field
devices to the wired plant automation network. It acts as sink for packets from and
as source for packets to devices.
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WirelessHART distinguishes the following main types of routing:

• Source routing: In this context, a source route is a complete path from a source
node to a destination node. Source routes are computed by the network manager
and distributed to the source node via the gateway. To send data to the desti-
nation node, a source node adds the complete path description to the packet.
Intermediate nodes forward incoming packets according to this description.

• Graph routing: In this context, a graph is a loop-free directed subgraph of the
communication topology with a single source or destination node. Graphs are
computed by the network manager and distributed to nodes contained in the
graph via the gateway. Furthermore, each graph has a unique identifier, which is
added to packets sent via the corresponding graph. Three kinds of graphs are
distinguished. A broadcast graph connects the gateway node to all other nodes
of the wireless mesh network. An uplink graph connects a set of nodes to the
gateway. A downlink graph connects the gateway to a single node. When using
graph routing, intermediate nodes are supposed to forward incoming packets on
the first available outgoing link of the corresponding graph.

In addition to the route information provided by a path or graph, a node has to
observe the slot schedule, which determines the assigned time slots that may be
used to forward incoming packets on a given link.

The specification of WirelessHART defines source and graph routing, as well as
frame formats and a protocol for the distribution of source and graph routes to
network nodes. However, algorithms to generate paths, graphs, and slot schedules
are not part of the standard, and therefore, have to be added by the system
developer.

WirelessHART favors centralized route and slot schedule computation, per-
formed by the network manager [5]. For this, it is assumed that the network
manager knows the network topology. It is, however, not defined in the standard
how this knowledge is established and maintained. Furthermore, given the indus-
trial application context, it is assumed that nodes are stationary. Chen et al. [5]
consider the use of quarantine or start-up phase, where routes and slot schedules are
computed and distributed. This would imply that communication requirements
remain static during system operation.

In [7], Nobre et al. provide an extensive survey of WirelessHART routing and
slot scheduling schemes. Among the surveyed routing algorithms is the algorithm
by Han et al. [6], which computes a broadcast graph, an uplink graph for all nodes,
and downlink graphs for individual nodes. For a directed graph G = (V, E), a node
v2V is (n, m)-reliable if and only if it has at least n incoming and m outgoing edges.
This criterion is then applied as follows:

• A broadcast graph is reliable if all nodes (except gateway and access points) are
(2, 0)-reliable. This increases the chances that broadcast messages from the
gateway reach all wireless devices.

• An uplink graph is reliable if all nodes (except gateway and access points) are
(0, 2)-reliable. Again, this adds redundancy in case individual links fail.

192 8 Quality of Service Multicast Routing with Mobility Support



• A downlink graph from gateway vg to node v2V is reliable if vg and all inter-
mediate nodes are (0, 2)-reliable.

Han’s algorithm then constructs minimal reliable subgraphs of G, by reducing
edges and, in case of downlink graphs, nodes. If there are nodes not satisfying the
required (n, m)-reliability in the original graph G, the algorithm tries to attach these
nodes via a single link to the resulting graph.

Among the slot scheduling algorithms surveyed in [7] is the algorithm by Han
et al. [6], which uses the Fastest Sampling Rate First (FSRF) policy. Starting points
are broadcast, uplink, and downlink graphs. Free slots are assigned from source to
destination using depth first search, exploiting the concurrent use of different
channels for different branches of the graphs.

In summary, the QoS routing algorithms that are devised for WirelessHART
separate route discovery and slot scheduling. First, paths and/or graphs to support
general communication scenarios are determined. Then, time slots for QoS
end-to-end communication along paths and branches of graphs are exclusively
assigned, based on sampling rates. This may not yield optimal QoS routes; how-
ever, given the complexity of the problem, it is a very good compromise.

Flexibility of QoS routing in WirelessHART is reduced in several ways. First,
for different sessions between the same nodes, the same path and/or graph is used.
This may create slot shortages that could be avoided by having separate routes.
Second, WirelessHART mainly considers unicast and broadcast communication
between the gateway and the complete set of devices. In a networked control
system, there may be several controllers acting as sink nodes for a subset of devices,
which would require more flexible communication structures. Furthermore, if
several controllers share sensors, multicast routes help reducing slot usage. Third,
WirelessHART assumes that communication requirements are static. Thus, slot
assignment has to be static, too, leading to a waste of resources in case of temporary
sessions. Finally, mobile nodes are not supported.

8.4 Conclusions

In this chapter, we have explained the concepts and requirements of routing in
wireless ad hoc networks, have presented QoS multicast routing (QMR) for par-
tially mobile wireless TDMA networks, and have surveyed related work. QoS
routing is a challenging task with solutions that are often customized to a specific
problem domain. QMR has been inspired by the communication requirements of
industrial networked control systems, as found in a setting for remote maintenance
in a production plant.

For the operation of QMR, we have assumed that there is a set of stationary
nodes forming a wireless multi-hop TDMA network, and that additional mobile
nodes are in communication range of at least one stationary node at all times.
Furthermore, we have assumed that communication sessions may be of dynamic
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nature, with dynamically varying groups of nodes and bandwidth requirements.
Finally, we have considered flexible scenarios with several controllers that may
share sensors and actuators.

QMR copes with these requirements by incrementally constructing and pruning
routing trees and assigning and releasing exclusively reserved slots at runtime.
Compared to offline computation of routes and slot schedules, this approach is
highly flexible. In particular, routes and slot schedules can be adapted during
operation especially in contexts with varying communication requirements.

In QMR, routing and slot scheduling decisions are taken by a centralized routing
manager, which has important advantages compared to decentralized solutions: It
prevents mutual blocking of resources due to concurrent route searches, substan-
tially reduces management traffic, and avoids the problem of inconsistent reserva-
tion status due to lost or delayed management messages.
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Chapter 9
Network Clustering

Network clustering is the activity of dividing a network into groups of nodes. In this
chapter, we explain foundations of clustering, present heterogeneous network
clustering (HNC) [3] implemented in ProMid of ProNet 4.0 [1], survey and com-
pare related work, and draw conclusions.

9.1 Foundations

In this chapter, we provide the context of clustering in wireless ad hoc networks,
explain concepts, and address areas of operation.

9.1.1 Context

Clustering is a basic functionality of wired and wireless computer networks to
reduce the complexity of communication topologies by creating overlay structures.
This can be used, for instance, for hierarchical routing to decrease management
traffic and the size of routing tables, thereby achieving scalability. Overlay struc-
tures also exist in control systems, where controllers collect, aggregate, and
exchange data of sensor nodes located in their neighborhood. A well-known
functionality based on clustering is Domain Name System (DNS), a hierarchical
distributed naming service used in the Internet. Other clustering applications are
energy balancing to extend lifetime of networks consisting of battery-driven nodes
and redundancy measures to improve fault tolerance.

The criteria for cluster formation depend, i.e., on clustering objectives, node
capabilities, node deployment, and network dynamics:
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• Clustering objectives: To support intra- and inter-cluster routing, connectivity is
a primary concern. For load balancing, equally sized clusters are sought. To
keep the number of resource-rich and therefore expensive cluster manager nodes
small, the objective is a minimal cluster count. For maximal network lifetime,
energy consumption is to be minimized and/or evenly distributed.

• Node capabilities: This concerns, for instance, computing power, communica-
tion speed and range, energy supply, and software functionalities. In homoge-
neous networks, nodes have similar capabilities, while in heterogeneous
networks, there may be resource-rich nodes selected as cluster managers.

• Node deployment: In industrial networks, node deployment is typically con-
trolled, to achieve well-balanced topologies and/or spatial coverage. In other
scenarios, nodes may be deployed randomly, yielding non-uniform node dis-
tributions that require self-organizing approaches.

• Network dynamics: Networks may consist of stationary and/or mobile nodes.
Node mobility is a challenge for clustering, as it requires dynamic cluster
reformation, which is time-consuming. Network dynamics also concerns
activities, which may be event-triggered or time-triggered.

Clustering algorithms have been proposed for various combinations of these and
further criteria and are, therefore, targeting different application contexts.

9.1.2 Concepts

Clustering divides a network into subsets of nodes called clusters, with the purpose
of achieving defined clustering objectives. The nodes of a cluster are called cluster
members. Cluster membership may be fixed or variable. Clustering may be per-
formed offline or during network operation by executing a clustering algorithm,
possibly repeatedly to cope with node mobility. Depending on clustering objectives,
clusters may be overlapping or disjoint.

Cluster members are classified as cluster heads or followers. A cluster head is a
distinguished node of a cluster, which is pre-assigned or elected by other nodes.
Followers are cluster members other than the cluster head. Followers may act as
gateways to establish inter-cluster connectivity. Figure 9.1 shows an example.

cluster head

follower

gateway

cluster

Fig. 9.1 Network clustering
—node types and (disjoint)
clusters
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We now introduce basic clustering concepts:

Definition 9.1 A graph G is a tuple (V, E) consisting of a set V of vertices and
a relation E � V � V of edges. It is undirected (or symmetrical) if and only if
8v, v′ 2 V. ((v, v′) 2 E ) (v′, v) 2 E). Otherwise, it is directed.

Definition 9.2 Let G = (V, E), G′ = (V′, E′) be graphs. G′ is a subgraph of G if and
only if V′ � V and 8v, v′ 2 V′. ((v, v′) 2 E′ ) (v, v′) 2 E). G′ is a complete sub-
graph of G if and only if in addition, 8v, v′ 2 V′. ((v, v′) 2 E ) (v, v′) 2 E′) holds.

Definition 9.3 A path p of G = (V, E) is a finite, non-empty sequence
(v1, …, v|p|+1) 2 V+ such that for all i, 1 � i � |p|, (vi, vi+1) 2 E, with the length
|p| � 0 denoting p’s number of edges. A path p is cycle-free if vertices occur at
most once in p.

Definition 9.4 A graph G = (V, E) is (strongly) connected if and only if for each
pair (v, v′) of vertices, there exists a path p with v and v′ being the first and the last
vertices, respectively. Otherwise, G is unconnected.

Definition 9.5 Let G = (V, E) be a graph, G′ = (V′, E′) be a subgraph of G. G′
is a maximal connected subgraph of G if and only if G′ is connected and 8v 2 V′.
8v′2 V \ V′ ((v, v′) 62 E ^ (v′, v) 62 E). If G is connected, then V′ = V holds.

Definition 9.6 A communication topology is modeled as a connected graph
G = (V, E), where vertices are called nodes, and edges are called links.

Definition 9.7 The hop distance dGðv; v0Þ between nodes v, v′ 2 V is defined as

dG v; v0ð Þ ¼df min p2PG v;v0ð Þ pj j

where PGðv; v0Þ is the set of all cycle-free paths starting in v and ending in v′. The
i-hop communication neighborhood CN� i(v) of v 2 V, i � 0, is defined as

CN� i vð Þ ¼df v0 2 V j dGðv; v0Þ � if g
Definition 9.8 A d-hop dominating set is a set of nodes V′ � V such that every
node v 2 V is in d-hop communication neighborhood CN� d(v′) of some node
v′ 2 V′. Elements of V′ are called dominating nodes. A minimal d-hop dominating
set1 is a d-hop dominating set consisting of a minimal number of nodes.

Definition 9.9 A k-hop connected d-hop dominating set is a d-hop dominating set
V′ � V where every dominating node is connected to at least one other dominating
node by a path of length k or less, and where all dominating nodes are connected via
sequences of such paths.

1The dominating set problem of determining a minimal dominating set is considered to be
NP-complete.
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Figure 9.2 shows an example of a 4-hop connected 2-hop dominating set of size
3. It is minimal, because there is no 2-hop dominating set with less than three nodes.

9.1.3 Areas of Operation

In wireless ad hoc networks, clustering is applied to tackle a variety of problems.
A core problem is limited lifetime of networks with battery-driven nodes. Battery
replacement increases the cost of maintenance and should, therefore, occur in rare
intervals only. In harsh environments, it may not even be possible to recharge or
replace batteries. Measures based on proper clustering can extend network lifetime
substantially. In wireless sensor networks, cluster heads may act as data collectors
for their followers. This reduces the tasks and therefore energy consumption of
followers in two ways. First, computation is restricted to pure sensing. Second,
communication is with the cluster head only, i.e., highly localized. Depending on
the kind of application, this may even open up potential for duty cycling, by
switching hardware components from active mode to sleep or idle mode when not
needed (see Chap. 7). In addition, cluster heads may aggregate data received from
followers, which reduces frequency and amount of data to be forwarded to other
parties and therefore limits energy consumption due to communication. To balance
energy consumption, elected cluster heads may pass their role to other nodes after
some period of activity. Here, a cluster head selection criterion could be the
available energy of nodes.

In industrial control applications, wireless networks are typically heterogeneous
in the sense that they consist of nodes with different capabilities and resources.

dominating nodes

2-hop neighborhood

Fig. 9.2 Minimal 4-hop connected 2-hop dominating set
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From an operational perspective, nodes with full functionality, for instance, con-
trollers, and nodes with reduced functionality, such as sensors and actuators, may
be distinguished. From an energy point of view, controllers may be (partially)
attached to a power network, while sensors and actuators operate battery-driven.
This makes controllers natural candidates for the role of permanent cluster heads,
hosting computationally expensive control algorithms and service registries.
Furthermore, the overlay structure established by clustering can be used for hier-
archical routing schemes, with routes formed by cluster heads and a minimal set of
followers acting as gateways.

In [2], we have presented a protocol for dynamic overlay line topology estab-
lishment and repair in wireless networks based on two levels of network clustering,
with the objective to satisfy application requirements and extend network lifetime.
Our work has been triggered by the requirements of the Asset Monitoring for Rail
Applications (AMRA) project at Bosch BEG. The purpose of the project is to track
cargo wagons and to monitor their status in order to detect malfunctions and to plan
maintenance activities. On each wagon, several sensor nodes are placed to detect,
for instance, shocks, flats, cargo status, and wagon location. Furthermore, a dedi-
cated master node collects and aggregates sensor data and exchanges data with
master nodes of neighboring wagons. Here, a first level of network clustering is
given by the nodes of each cargo wagon, with the master node as cluster head. On
the second level, master nodes are clustered, and subline topologies are established
within each cluster, with the cluster head acting as data collector for a set of cargo
wagons.

9.2 Heterogeneous Network Clustering (HNC)

In this chapter, we present heterogeneous network clustering (HNC), a clustering
algorithm for wireless TDMA networks consisting of stationary nodes [3]. HNC
has been inspired by the requirements of industrial networked production and
control environments, in particular the requirement to establish distributed service
registries in heterogeneous wireless networks. We have implemented HNC as part
of the production middleware ProMid of the ProNet 4.0 protocol stack [1].

9.2.1 Context and Design Decisions

In a research project with industrial partners, we have explored methods to provide
high-level services for distributed control applications. Conceptually, sensor and
actuator nodes provide periodical and event-triggered services such as temperature
readings and control value settings. Controller nodes use these services to build up
feedback loops in order to achieve well-defined control objectives.
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To manage services, we have decided to build up a service registry, where
sensors and actuators register their services. Controllers can then look up services
and contact the service provider in order to subscribe to particular services. If
properly supported by a middleware, the distributed nature of a networked control
system remains transparent for control applications. For scalability, the service
registry can be distributed.

HNC is a clustering algorithm specifically devised for heterogeneous wireless
networks, as, for instance, in wireless networked control systems. In the considered
industrial setting, nodes have different capabilities and resources. Accordingly,
HNC distinguishes between nodes that must, may, or must not become cluster
heads or gateways. To apply HNC in homogeneous networks, all nodes are clas-
sified as may-nodes.

To perform network clustering, up-to-date information about the communication
topology is required. Usually, clustering protocols incorporate functionality to
collect and maintain this information. In case of HNC, this information is already
provided by ATDP, our protocol for the automatic detection of communication,
interference, and sensing topologies (see Chap. 4). Even more, ATDP terminates
once a stable topology has been detected and disseminated to all network nodes. For
this reason, we have made the design decision to devise a centralized algorithm.
Since all nodes have consistent information about the communication topology and
because HNC is conceived to yield deterministic results, it is sufficient to execute
HNC locally, without sharing the outcome via message exchange.

9.2.2 Overview

HNC clusters a network consisting of nodes that must, may, or must not become
cluster heads or gateways into a 3-hop connected 1-hop dominating set, if such a
clustering is feasible. Clustering objectives are a small number of clusters and
efficient connectivity, achieved in six steps. In the first step, HNC selects all
must-nodes as clusters heads and determines their sets of followers. In the second
step, may-nodes are added as cluster heads until a 1-hop dominating set is estab-
lished. In the third and fourth step, HNC selects may-nodes as gateway nodes until
3-hop connectivity is given. In the remaining steps, connectivity is optimized.

Starting point of HNC is a communication topology G = (V, E) consisting of a
set V of nodes and a set E of links. Topology information is provided by ATDP (see
Chap. 4) and reduced to bidirectional communication links. Nodes are classified as
follows:

• Vmand: Set of mandatory nodes, i.e., nodes that must be selected as cluster heads.
• Vopt: Set of optional nodes, i.e., nodes that may be selected as cluster heads or

gateways.
• Vexcl: Set of excluded nodes, i.e., nodes that must not become cluster heads or

gateways.
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The sets Vmand, Vopt, and Vexcl are mutually disjoint, with their union yielding
V. Furthermore, we require that the complete subgraph G′ = (Vmand [ Vopt, E′) of
G = (V, E) is connected, to ensure 3-hop connectivity if a 1-hop dominating set can
be established. An example satisfying these constraints is shown in Fig. 9.3.

If HNC is able to establish a feasible clustering, the result is a 5-tuple (Vch, Vgw,
Efollow, Grouter, Gout) with:

• Vch: Nodes selected as cluster heads, forming a 1-hop dominating set of the
initial topology G, with Vmand � Vch and Vch � Vmand [ Vopt.

• Vgw: Nodes selected as gateways, with Vgw � Vopt.
• Gfollow = (V, Efollow): Cluster topology of the 1-hop dominating set:

– Efollow: Set of bidirectional communication links connecting each follower
with its cluster head, with Efollow � E.

• Grouter = (Vrouter, Erouter): Routing topology of the optimized 3-hop connected
1-hop dominating set:

– Vrouter = Vch [ Vgw: Nodes acting as routers, i.e., nodes selected as cluster
heads or gateways.

– Erouter = {(v1, v2) 2 E | v1, v2 2 Vrouter}: Set of bidirectional communication
links between router nodes.

• Gout = (V, Eout): Overlay intra- and inter-cluster communication topology of the
initial topology G = (V, E), with Eout = Erouter [ Efollow.

Fig. 9.3 Sample topology with mandatory, optional, and excluded nodes
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If HNC cannot establish a feasible clustering, it terminates by indicating the
causes. In such a case, it may be feasible to change node placements or node
classifications until HNC terminates successfully.

9.2.3 Creation of a Dominating Set

To create a dominating set, Vch, Vgw, Efollow, and Erouter are initialized as empty sets.

Step 1: Selection of mandatory nodes as cluster heads

In the first step, HNC selects all mandatory nodes v 2 Vmand as cluster heads, one
by one. Each node v selected as cluster head is added to Vch. Furthermore, the
graphs Gfollow and Grouter are updated. First, each 1-hop neighbor v′ 2 V \ Vmand of
v that does not belong to a cluster so far becomes follower of v by adding the
bidirectional link (v, v′) 2 E to Efollow. Second, v is connected to cluster heads v′ in
1-hop distance by adding (v, v′) 2 E to Erouter. Thus, clusters formed so far are
maximal connected subgraphs (see Definition 9.5) of Gfollow.

During execution, HNC forms partitions G′ = (V′, E′), which are maximal
connected subgraphs of Gout. With each partition, the smallest index number i of all
cluster heads vi 2 Vch belonging to this partition is associated. If V = V′, i.e., if the
partition covers all nodes of G, a feasible clustering has been found.

If, after Step 1, there is a single partition covering all nodes of G, HNC continues
with Step 5. Otherwise, if a 1-hop dominating set has already been established, the
algorithm continues with Step 3. If not, Step 2 is next.

Figure 9.4 shows the sample topology of Fig. 9.3 after Step 1 has been per-
formed. Mandatory nodes v8 and v17 have been selected as cluster heads, nodes in
their 1-hop neighborhood have become followers. Furthermore, partitions 8 and 17
are created, which coincide with the clusters of v8 and v17, respectively. At this
point, Vch is not a dominating set.

Step 2: Selection of optional nodes as additional cluster heads

In the second step, nodes v 2 Vopt are selected as cluster heads in order to establish
a 1-hop dominating set, if needed. From Vopt \ Vch, nodes that cover most previ-
ously uncovered nodes, i.e., nodes that neither belong to Vch nor to the current set of
followers, are selected first. The objective of this heuristic is to keep the number of
clusters small. In case of multiple cluster head candidates with the same number of
previously uncovered nodes, nodes already belonging to the current set of followers
are preferred. This way, the new cluster is 1-hop connected to an existing cluster,
which reduces the set of required gateway nodes. If there are still several candidate
nodes vi, the one with the smallest index number i is chosen, to obtain deterministic
results.
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For each node v 2 Vopt selected as cluster head, data structures Vch, Gfollow, and
Grouter are updated as follows. First, v is added to Vch. Second, 1-hop neighbors v′ of
v that do not belong to a cluster so far become followers of v by adding the
bidirectional link (v, v′) 2 E to Efollow. If v has been a follower to some cluster head
v′ before becoming cluster head itself, the link (v, v′) is removed from Efollow. Third,
v is connected to cluster heads v′ in 1-hop distance by adding (v, v′) 2 E to Erouter.
Finally, partitions are formed as defined in Step 1.

If, after Step 2, there is a single partition covering all nodes of G, HNC continues
with Step 5. Otherwise, if a 1-hop dominating set has been established, the algo-
rithm continues with Step 3. If not, HNC terminates unsuccessfully, and a report
with incomplete clustering is generated.

Figure 9.5 shows the result after performing Step 2. Now, every node either is
cluster head or in 1-hop neighborhood of a cluster head. This implies that Vch is a
1-hop dominating set of G = (V, E). Still, there are four partitions; therefore, the
algorithm continues with Step 3.

Fig. 9.4 Result after step 1
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9.2.4 Establishment and Optimization of Connectivity

Step 3: Selection of optional nodes as gateways (1)

In the third step, nodes v 2 Vopt \ Vrouter are selected as gateways if they have at
least one cluster head belonging to another partition in 1-hop neighborhood, thereby
connecting two or more partitions. To keep the number of gateways small, nodes
connecting most partitions are selected first. In case of several gateway candidates,
the node vi with the smallest index number i is chosen, to obtain deterministic
results.

For each node v 2 Vopt \ Vrouter selected as gateway, data structures Vgw and
Grouter are updated as follows. First, v is added to Vgw. Second, 1-hop neighbors
v′ 2 Vch of v are connected by adding the bidirectional links (v, v′) to Erouter. This
includes the link to the cluster head of v, which now belongs to cluster and router
topology. Finally, partitions are updated.

If, after Step 3, there is a single partition covering all nodes of G, HNC continues
with Step 5. Otherwise, the algorithm continues with Step 4.

Figure 9.6 shows the result after Step 3. According to Fig. 9.5, nodes v10 and v22
are gateway candidates, connecting two partitions each. As v10 has the smaller
index number, it is selected first, followed by v22. This connects partitions 8, 12,
and 26 to form the new partition 8. After Step 3, two partitions remain, therefore,
the algorithm continues with Step 4.

Fig. 9.5 Result after step 2
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Step 4: Selection of optional nodes as gateways (2)

In the fourth step, pairs of nodes v 2 Vopt \ Vrouter are selected as gateways if they
together can connect two or more partitions. If the complete subgraph
G′ = (Vmand [ Vopt, E′) of G = (V, E) is connected, and since a 1-hop dominating
set of a connected graph is always 3-hop connected, this will finally yield a single
partition covering all nodes of the communication topology G = (V, E). In case of
several gateway pair candidates, the pair containing the nodes vi and vj with the smallest
index number i and j is chosen, to obtain deterministic results. Data structures Vgw and
Grouter are updated accordingly. Then, HNC continues with Step 5.

Figure 9.7 shows the result after Step 4. According to Fig. 9.6, (v5, v13) and (v6, v7)
are gateway pair candidates to connect partitions 4 and 8. Nodes v5 and v13 are selected,
because v5 has the smallest index number. After Step 4, only one partition remains,
which implies that HNC has found a feasible clustering.

Steps 5 and 6: Optimization of connectivity

If Steps 1–4 have been successful, a 3-hop connected 1-hop dominating set has
already been established. However, it may contain routes between cluster heads that
are rather long and therefore inefficient. The objective of Steps 5 and 6 is to enhance
routing efficiency by selecting further nodes v 2 Vopt \ Vrouter as gateways, while
keeping the number of routers low. In Step 5, single nodes are selected; in Step 6,
pairs of nodes are added as gateways. In both steps, data structures Vgw and Grouter

are updated accordingly.

Fig. 9.6 Result after step 3
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Figure 9.8 shows the result after Steps 5 and 6. In Step 5, node v21 is selected as
additional gateway, shortening the route between v17 and v26 from three to two hops.
In Step 6, nodes v6 and v7 become gateways, leading to a 3-hop route between
v4 and v8.

9.2.5 Evaluation

In this chapter, we present the results of simulation experiments to assess the
performance of HNC w.r.t. its clustering objectives, i.e., a small number of clusters
and efficient connectivity [17]. In the experiments, we have generated random
topologies and have applied HNC. Furthermore, we have applied HNC’, which is
HNC without optimization of connectivity, and adjusted versions of LCA [5] and
MaxMinD [4] (see also Sect. 9.3) to cope with heterogeneous networks.

Linked clustering algorithm (LCA) is a deterministic algorithm for the formation
of 3-hop connected 1-hop dominating sets in homogeneous wireless networks. To
extend LCA to heterogeneous networks, mandatory nodes are selected in
decreasing order of their node identifiers before other nodes are selected.
Furthermore, we ensure that excluded nodes are not selected as cluster heads or
gateways. We call this adjusted version LCA’.

MaxMinD is a deterministic algorithm for the formation of d-hop dominating
sets that are (2 � d + 1)-hop connected. For comparison with HNC, d is set to 1. To

Fig. 9.7 Result after step 4
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adjust MaxMinD to heterogeneous networks, mandatory nodes always keep their
own node identifier in the floodmax and floodmin phases to ensure they become
cluster heads. Excluded nodes refrain from broadcasting their node identifier and
are not considered in the gateway selection phase. We call this adjusted version
MaxMinD’.

For the simulation experiments, we have generated random topologies. In each
topology, 100 nodes are placed randomly in a 100 � 100 grid. Communication
links between pairs of nodes are added if their distance is at most 14 grid units.
Mandatory and excluded nodes are determined randomly, too, with a chance of 5%
and 10%, respectively. Topologies are checked whether they are connected and
dropped if not.

To compare the performance of HNC, HNC’, LCA’, and MaxMinD’, they were
applied to 1000 random topologies. Table 9.1 shows the average number of cluster
heads, gateways, and routers, and the average maximum cluster size. Compared to
LCA’ and MaxMinD’, HNC selects far less cluster heads, which keeps the number

Table 9.1 Comparison of performance w.r.t. to clustering objectives (see [3, Table 1])

Algorithm avg |Vch| avg |Vgw| avg |Vrouter| avg max |Vcluster|

HNC 22.4 38.9 61.3 10.8

HNC’ 22.4 18.1 40.5 10.8

LCA’ 29.8 36.1 65.9 9.5

MaxMinD’ 32.7 52.5 85.2 8.4

Fig. 9.8 Result after steps 5 and 6
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of resource-rich and therefore expensive nodes small. As a consequence, clusters
formed by HNC are larger on average. However, as the average maximum cluster
size indicates, clusters are still well-balanced. For the application of HNC to build
distributed service registries, large clusters are not problematic; therefore, balancing
clusters is not considered important.

As expected, HNC chooses more gateways than HNC’, to improve routing
efficiency. The average number of gateways is comparable to LCA’ and consid-
erably below MaxMinD’. The reason is that MaxMinD’ selects all nodes located at
the border of clusters that link two or more clusters as gateways. Consequently,
almost all optional nodes not chosen as cluster heads become gateways. This is also
expressed by the average number of routers, i.e., cluster heads or gateways, which
is 85.2% out of 90% of mandatory or optional nodes.

To compare route efficiency, we have computed the lengths of the shortest paths
between all pairs of cluster heads in the router network Grouter consisting of cluster
heads and gateways. Furthermore, we have computed the optimal paths given as the
shortest paths with all mandatory and optional nodes acting as routers.

Figure 9.9 shows, for each clustering algorithm, the percentages of routes with a
difference of Dn_hops to the optimal path. For MaxMinD’, all optimal paths between
pairs of cluster heads are contained in the router network, i.e., Dn_hops is always 0.
This is not surprising, as MaxMinD’ selects almost all optional nodes as gateways.
Even though HNC selects considerably less gateways (see Table 9.1), 97.7% of all
optimal paths are part of the router network, and no shortest route exceeds the
optimal path by more than three hops. The results also show that the optimization of
connectivity in Steps 5 and 6 of HNC has a significant effect: without these steps,
only 49.8% of all optimal paths are part of the router network, and 2.6% of the
paths are 10 or more hops longer. In summary, we observe that the objective of
efficient connectivity while keeping the number of gateways low is achieved.

Fig. 9.9 Comparison of route efficiency (see [3, Fig. 13])
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9.3 Related Work

In this chapter, we outline clustering protocols for wireless ad hoc networks and
compare them to our heterogeneous network clustering (HNC) algorithm. To keep
the survey concise, we have selected two representative protocols that establish
intra- and inter-cluster connectivity in TDMA and non-TDMA networks. We have
used adjusted versions of these protocols in the performance evaluation of HNC
(see Sect. 9.2.5).

9.3.1 Linked Clustering Algorithm (LCA)

In [5], Baker and Ephremides present linked clustering algorithm (LCA), a clus-
tering protocol that has been tailored to the HF intra-task force communication
network of the US Navy. Clustering objectives are intra- and inter-cluster con-
nectivity, high availability, and fault tolerance. To achieve these objectives, clusters
are formed on different radio channels. As HNC, LCA establishes a 3-hop con-
nected 1-hop dominating set. Different from HNC, LCA assumes a homogeneous
network, i.e., all nodes may become cluster heads.

The authors start by presenting a centralized version of LCA, which is later
decentralized. A communication topology is modeled as a connected graph G = (V,
E), with nodes vi 2 V having unique node identifiers i 2 {1,…, n}. The node with
the highest node identifier becomes the first cluster head, with all 1-hop neighbors
assigned as followers. As long as there are unclassified nodes, the algorithm con-
tinues, in decreasing order of node identifiers. If a node has one or more unclas-
sified neighbors, it becomes cluster head, with its unclassified 1-hop neighbors
assigned as followers. In addition, gateways may have to be selected to achieve
inter-cluster connectivity. Figure 9.10 shows the final clustering for a small
network.

The centralized version of LCA is only applicable if the network topology is
already known. In case the topology is not available, there is a decentralized version
of LCA that incorporates topology detection, based on TDMA. For this purpose,

vi 

vi cluster head

follower

link

cluster

v4

v1

v2

v3

v5 v6

Fig. 9.10 Centralized clustering with LCA
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time is decomposed into m epochs, two frames, and n slots, where m is the number
of radio channels, and n is the highest node identifier. In each epoch k, LCA is
performed on radio channel k. In each frame of an epoch, a phase of LCA is
executed. Each phase consists of n slots assigned to nodes v1 to vn.

In the first frame of each epoch, each node vi locally broadcasts its nodes heard
set nhsi, which is initially empty, in its assigned slot. In each slot i 6¼ j, nodes vj
update their nodes heard set nhsj and their connectivity matrix cmj based on whether
they have received the message from vi. At the end of the frame, each node vi is
aware of its 1-hop neighbors and of the existence or non-existence of bidirectional
links for all vj with j > i. For the topology in Fig. 9.10, Fig. 9.11a shows the nhs4
and cm4 at the end of the first frame. An entry 1 in cell cm4(4, 5) denotes a
bidirectional link to node v5, 0 in cm4(4, 6) indicates that there is no such link to
node v6.

In its assigned slot of the second frame, each node vi decides whether it becomes
a cluster head or a follower, and locally broadcasts its role nsi and connectivity
matrix row cmi(i). By then, a node has received all missing entries from its
neighbors with lower node identifier, i.e., cmi(i) is complete, and the role nsi can be
determined. In addition, decisions about gateways are made. For the topology in
Fig. 9.10, Fig. 9.11b shows ns4 and cm4 at the end of the second frame. In cm4(4),
the local connectivity as well as the roles of 1-hop neighbors (H = cluster head,
F = follower) are captured. Matrix rows cm4(1), cm4(2), and cm4(5) are received
from these neighbors. This way, each node becomes aware of its 2-hop network
topology. The final clustering is the same as in the centralized case (see Fig. 9.10).

Topology detection of the decentralized version of LCA is based on single
observations. In its assigned slot of each frame, a node locally broadcasts one
message. Topology decisions are then reached based on whether this message is
received. This may lead to situations where bidirectional links are incorporated into
the connectivity matrix, although they are actually too weak for reliable operation.

v4 1 2 3 4 5 6 
1 F 1 0 H 0 0 
2 1 F 0 H 0 0 
3 
4 F F 0 H 1 0 
5 0 0 F 1 H 1 
6 

ns4 = CH
v4 1 2 3 4 5 6 
1 
2 
3 
4 1 0 
5 
6 

nhs4 = { v1,v2,v5 } (a) (b)

Fig. 9.11 Decentralized clustering with LCA—topology status of node v4
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In HNC, topology detection is performed by ATDP (see Chap. 4), which collects
extensive statistical information before deciding about link stability.

With its features—establishment of a 3-hop connected 1-hop dominating set,
deterministic results—LCA is a potential candidate to replace HNC. With some
adjustments (see LCA’ in Sect. 9.2.5), it can even cope with heterogeneous net-
works consisting of nodes that must, may, or must not become cluster heads or
gateways. Since the network topology is already available, the centralized version
of LCA would be sufficient. Nevertheless, as we have shown in Sect. 9.2.5, HNC
outperforms LCA’ w.r.t. small number of clusters and efficient connectivity, and
therefore is the better choice.

9.3.2 MaxMinD

In [4], Amis et al. introduce MaxMinD, a frequently quoted clustering protocol for
wireless ad hoc networks. Clustering objectives are intra- and inter-cluster con-
nectivity, and balanced cluster sizes. MaxMinD establishes a (2 � d + 1)-hop
connected d-hop dominating set, where d is a parameter to control the number of
clusters and cluster sizes. With d = 1, HNC-like clusters can be configured.

MaxMinD works in four phases. In the floodmax phase, cluster heads are pre-
determined. During the floodmin phase, cluster sizes are balanced. In the cluster
head selection phase, cluster heads and their followers are determined. Finally,
inter-cluster routes are established in the gateway selection phase.

The floodmax phase is decomposed into d rounds. In each round r, nodes locally
broadcast their node identifier and the identifier of the current winner, which is the
(r − 1)-hop neighbor with the highest node identifier. Thus, after d rounds, each
node has learned about the d-hop winner, which is a candidate for the role of
becoming cluster head. Since this would lead to unbalanced cluster sizes,
MaxMinD propagates the smaller node identifiers in each node’s d-hop neighbor-
hood remaining as winners in the subsequent floodmin phase. To reach local
decisions about cluster heads and followers based on network status information
collected in the previous phases, four rules are applied in the cluster head selection
phase. Finally, based on local network status information, gateways are selected.

As in LCA, topology detection of MaxMinD is based on single observations
only. Even worse, different from LCA, MaxMinD messages are not broadcasted in
exclusive time slots, but contend with other traffic. This may lead to destructive
collisions, which go undetected by the sending node. In addition, links that are
actually too weak for sufficiently reliable message exchange may be considered for
cluster formation, if there was a single successful message exchange during the
execution of MaxMinD on such a link. Thus, in a real wireless ad hoc network, the
outcome of MaxMinD is highly unreliable and unpredictable.

Another problem not addressed in the original paper is the need for synchro-
nization. As MaxMinD works in phases and rounds, nodes have to agree on the
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state of execution. Furthermore, rounds have to be timed such that all nodes have a
chance to successfully access the medium.

If the network topology is already available, a centralized version of MaxMinD
with d set to 1 is a potential candidate to replace HNC. With some adjustments (see
MaxMinD’ in Sect. 9.2.5), it can even cope with heterogeneous networks.
Nevertheless, as shown in Sect. 9.2.5, HNC outperforms MaxMinD’ w.r.t. small
number of clusters and gateways, while still providing connectivity of similar
efficiency, and therefore is the better choice.

9.4 Conclusions

In this chapter, we have explained clustering concepts, have presented our
heterogeneous network clustering (HNC) algorithm for wireless ad hoc networks,
and have surveyed related work. HNC has been inspired by the communication
requirements of industrial networked control systems.

HNC is a clustering algorithm specifically devised for the establishment of
distributed service registries in heterogeneous wireless networks consisting of
nodes with different capabilities and resources. Therefore, we have distinguished
mandatory nodes that are to be selected as cluster heads, optional nodes that may be
selected as cluster heads or gateways, and excluded nodes that can only act as
followers.

HNC clusters a heterogeneous network into a 3-hop connected 1-hop dom-
inating set, if such a clustering is feasible. Clustering objectives are a small
number of clusters and efficient connectivity. By comparing HNC to adjusted
versions of other clustering algorithms, we have shown that these objectives are
achieved.

An extension of HNC could be the construction of (d + 1)-hop connected d-hop
dominating sets. As the global communication topology is available, this extension
seems straightforward. However, it would require that excluded nodes, which are
not supposed to act as routers, be placed at the boundaries of clusters only.
Therefore, this extension would not be beneficial in the context considered here.
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Chapter 10
Middleware for Networked Production
and Control Systems

Middleware is a software layer providing abstractions for applications. In this chapter,
we explain foundations of middleware, present production middleware (ProMid), a
middleware for networked production and control systems that is part of the ProNet
4.0 protocol stack [1], survey and compare related work, and draw conclusions.

10.1 Foundations

In this chapter, we point out the importance of middleware, explain concepts, and
address areas of operation.

10.1.1 Context

Middleware provides abstractions for applications. First, it hides platform-specific
aspects such as heterogeneity and distribution of resources. Second, it establishes a
high-level domain-specific context, by offering concepts and interfaces that are
familiar to the application developer. Altogether, this fosters productivity of
developers as well as quality and interoperability of application software.

Middleware is of high practical and commercial importance and therefore often
developed and marketed by companies and consortia. Well-known middleware initia-
tives are Open Software Foundation (OSF) with Distributed Computing Environment
(DCE), Object Management Group (OMG) with Common Object Request Broker
Architecture (CORBA), World Wide Web Consortium (W3C) with Web Services, and
Microsoft with Distributed Component Object Model (DCOM). For networked pro-
duction and control systems, the Open Platform Communications (OPC) Foundation has
released OPC UA, the OPC Unified Architecture [6]. Some wireless communication
standards, for instance, ZigBee [12], comprise a middleware layer.
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In distributed real-time computer systems, applications have Quality of Service
(QoS) requirements regarding performance, reliability, guarantees, and synchronicity.
To satisfy such requirements, middleware has to build on real-time functionalities of the
underlying operating and communication systems. In 2016, two OPC members have
launched an OPC UA over time-sensitive networks (TSN) initiative for real-time
extensions via Time-Sensitive Networks, which the OPC Foundation joined in 2018.
Apart from that, real-time aspects are not well supported by commercial middleware.

10.1.2 Concepts

In distributed systems, middleware is often based on a client–server model. Here,
servers—also called service providers—offer application services to clients— also
called service users. Services are application-oriented and may be, for instance,
database services, Web-based services, or domain-specific services. The task of a
service-oriented middleware is to support service definition and composition (also
called orchestration or choreography), service publication, and service usage.

Figure 10.1 shows two abstract service architectures, each consisting of a number
of service users and service providers, and their interaction. The difference between
these architectures is how services are made public. In Fig. 10.1a, service publication
is either proactive, i.e., by announcement of the service provider, or reactive, i.e., by
inquiry of the service user. By sending a call, the service user triggers the execution
of a service, which may then lead to a reply containing service data.

In Fig. 10.1b, service publication is via a service registry, where service pro-
viders enter their services. Service users can then retrieve available services by
performing lookups and receiving a list of available services in a result message.
With this information, service users subscribe to and call-services and may get
replies containing service data.

The middleware literature defines a number of Message Exchange Patterns (MEPs)
for the interaction in message-based client–server architectures. An MEP is the generic
definition of a form of interaction by message passing. MEPs exist in various contexts
including Web Services, Software-Oriented Architecture (SOA), and Windows
Communication Foundation (WCF). In a client–server architecture, we can distinguish
the following MEPs:
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Fig. 10.1 Service architectures—interaction for service provision
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• Fire and Forget: A service provider is called, without reply. Used, e.g., to set an
actuator value.

• Request–Response: A service provider is called and returns a single reply. Used,
e.g., to collect a sensor value.

• Callback: A service provider is called and then returns zero or more replies.
Used, e.g., to collect a sequence of sensor values or event notifications.

• Publish–Subscribe: A service is made public by a service provider and can then
be subscribed to by one or more service users. Until a service user unsubscribes,
the service provider issues replies without further requests. Depending on the
kind of service, the following reply patterns can be distinguished:

– Time-triggered: The service provider issues replies at specified points in
time, e.g. periodically. For instance, a temperature sensor sends a value in
intervals of 10 s.

– Event-triggered: The service provider issues replies when specified events
occur. For instance, a photoelectric sensor sends a message when triggered.

Service definition and composition are a complex topic with a variety of
approaches in different application domains. In fact, composition, orchestration, and
choreography of services are an active field of research. To keep our treatment of
concepts concise, we will not further address this topic.

10.1.3 Areas of Operation

Middleware is widely used for the development of distributed applications. Some
programming languages offer a communication-oriented middleware to support the
remote execution of code. Java, for instance, provides an abstract mechanism called
Java Remote Method Invocation (RMI) [9]. When an RMI client calls a remote
method, the call is transferred to the responsible RMI server on the target machine,
executed, and a result is returned to the client. To realize Java RMI, client-stubs and
server-skeletons, which exchange serialized parameters and results via messages on
behalf of client and server, are created at runtime. For the application developer,
remote method calls are syntactically similar to local method calls. However, there
are semantical differences regarding, for instance, parameter usage and the possi-
bility of server failure and message loss. Furthermore, the application developer has
to program publication and lookup of remote methods in a service registry called
Java Remote Object Registry (rmiregistry), remote interfaces, creation and export of
remote objects, creation and configuration of a security manager, and, in some
cases, routines for the serialization of objects.

The World Wide Web Consortium (W3C) [8] provides a middleware standard
for the integration of Web-based applications called Web Services. Its architecture
has similarities with the service architecture in Fig. 10.1b, with service providers
offering services, service requesters acting as service users, and a service broker
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taking the role of the service registry. Web Services use the XML, SOAP, WSDL,
and UDDI open standards to remain platform-independent. Simple Object Access
Protocol (SOAP) is a protocol for exchanging XML data between service requester
and service provider. Web Services Description Language (WSDL) is an
XML-based interface description language used to characterize services. Universal
Description, Discovery, and Integration—UDDI refers to a standardized registry
service.

Middleware for the development of distributed applications such as Java RMI
and Web Services is usually based on Internet protocols such as TCP or UDP and
therefore abstracts from the specifics of communication technologies. For instance,
it is not visible on application level whether wired and/or wireless technologies are
used. Furthermore, as TCP and UDP provide best-effort communication only, the
development of distributed real-time applications, for instance, in the production
and control domain, is out of scope.

10.2 Production Middleware (ProMid)

In this chapter, we present Production Middleware (ProMid), our middleware
tailored to networked production and control systems that is part of the ProNet 4.0
protocol stack [1, 4]. ProMid is an evolution of Wireless Networked Control
Systems Communication Middleware (WNCS_CoM) [2, 3].

10.2.1 Concepts and Design Decisions

In ProMid, application-level services are characterized by service offer specifica-
tions. They are offered by service providers and subscribed to by service users.
Service users identify a service by a service requirement specification. When a
service user subscribes to a service, the middleware is in charge of resolving the
service requirement specification, by determining corresponding service providers.
Thus, on application level, service users are decoupled from service providers,
which fosters abstraction and flexibility as follows. First, service users address
services logically, without having to know where a service is physically located.
Second, if service requirement specifications are coupled to service providers
dynamically, the role of service provider can be passed between nodes at runtime,
supporting redundancy measures, and load balancing.

A service is characterized by a service offer specification, which consists of a
service type and a list of parameters further distinguishing the service. For instance,
a temperature-sensing service may be associated with a geographic location such as
a room number and has a minimum response interval in case of a periodical service.
When subscribing to a service, the service user specifies the required service by its
type, and by restricting the values of the associated parameters.
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Coupling of service offer specifications to service providers is by registration in a
service registry. To register a service, a service provider publishes the service offer
specification. The middleware is in charge of handling the registration process and
of interacting with the (possibly distributed) service registry. Service subscriptions
of service users are also handled by the middleware. First, the service requirement
specification is to be resolved, which requires a lookup in the service registry.
Second, a global service reference is created, which is used to identify the specific
service. Third, the responsible service provider is informed.

Figure 10.2 illustrates the flow of control between service users and service
providers via middleware instances, and their interaction with the service registry.
Conceptually, service users subscribe to a service by providing a service require-
ment specification. It remains hidden to the service user how the local middleware
instance resolves subscriptions. If the subscription is successful, the service user can
call the service or gets replies.

10.2.2 Distribution and Replication of Service Registries

In ProMid, services are registered and looked up in a service registry. To deploy a
service registry, design decisions regarding distribution and replication are to be
made. A service registry may be centralized or distributed. In a distributed service
registry, entries may be replicated.

If a service registry is centralized, all services are registered in the same location.
This simplifies its operation, as service registration and lookup are executed by a
single node. However, this solution does not scale well. First, the service registry
node may become a bottleneck. Second, it produces substantial communication
overhead, as registration and lookup messages are to be sent across the network.
Therefore, a centralized service registry suits small-sized networks only.

If a service registry is distributed, services are registered in different locations;
furthermore, replication of service entries in several locations becomes feasible.
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Distribution fosters scalability, if registry nodes and replication strategies are well
chosen. A first design decision is to prefer resource-rich nodes in terms of com-
putation and energy as registry nodes. Second, registry nodes should be selected
such that short routes are available for registration and lookup messages. Third, the
number of registry nodes and thus management overhead should be kept small.

In case of a distributed service registry, a design decision about the replication of
service entries is to be made. Without replication, each service entry is recorded by
a single node. This has the advantage that service entries cannot be inconsistent, as
there is only one copy. However, lookups may take a substantial amount of time, as
all service registry nodes may have to be involved.

With replication, service entries are recorded by several nodes. This may lead to
temporary inconsistencies, if service entries are modified or deleted. Furthermore,
replication produces additional management traffic. However, in production and
control systems, such changes are comparably rare. The advantage of replication is
that lookups are more efficient, in terms of both delay and communication.
Assuming that lookups occur more frequently than changes of service entries,
replication is beneficial.

ProMid supports distribution of the service registry as well as replication of
service entries. Distribution is determined by executing Heterogeneous Network
Clustering (HNC; see Chap. 9 and Sect. 10.2.3). Replication is configured by
setting a replication radius of n hops, which means that service entries are replicated
on all registry nodes in n-hop neighborhood of the service registry node where the
service has been registered. By setting n to 0, replication is disabled. If n equals the
network diameter, all service entries are replicated on all registry nodes. If we
assume a certain subscription locality, i.e., nodes interested in a particular service
are in short hop distance to the service provider, replication should be kept local,
too, by choosing small values for n.

10.2.3 Establishment of Distributed Service Registries

In ProMid, service providers publish service offer specifications in a distributed
service registry. To establish this service registry, all nodes execute heterogeneous
network clustering (HNC; see Chap. 9), a clustering algorithm for wireless TDMA
networks, which is part of ProMid. HNC has been specifically devised for estab-
lishing distributed service registries in heterogeneous networks consisting of nodes
with different capabilities and resources, as in production and control networks.

Production and control systems are composed of sensor, actuator, and controller
nodes. For better connectivity, additional router nodes may be added. Typically,
sensor and actuator nodes are devices with reduced functionality and resources,
while controller and router nodes have full functionality and less resource con-
straints. Therefore, we assume that controller and router nodes are basically capable
of acting as service registry and/or router nodes, whereas pure sensor and actuator
nodes are not.
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To apply HNC, we classify resource-rich controller and router nodes as
mandatory or optional nodes, i.e., nodes that must or may become cluster heads,
with the intention that all selected cluster heads act as registry nodes. Additionally,
optional nodes not selected as cluster heads may become gateways between clus-
ters. Furthermore, we classify all pure sensor and actuator nodes as excluded nodes,
which makes them followers in terms of HNC.

HNC clusters a heterogeneous network into a 3-hop connected 1-hop dominating
set, if such a clustering is feasible. Thus, all followers, in particular, all pure sensor
and actuator nodes, are in single-hop distance of at least one cluster head. From this,
it follows that nodes with reduced functionality and resources are not required to act
as routers, which enables low duty cycles for minimal energy consumption (see
Chap. 7).

Figure 10.3 shows an example of a communication topology after application of
HNC, with Vmand = {v4, v8}, Vopt = {v5, v6, v7, v10, v12, v13}, and Vexcl = {v1, v2, v3,
v9, v11, v14}. To form a 1-hop dominating set, HNC selects all mandatory nodes and
the optional node v12 as cluster heads, which act as service registry nodes.
Furthermore, optional nodes are selected as gateways, as shown in the figure.

10.2.4 Operation of the Service Registry

The service registry offers confirmed bootstrap services to register and look up
application services. To register a service, a service offer specification is provided,
which indicates service type and a list of parameters further characterizing the
service (see Listing 10.1). For instance, a sensor node may offer a temperature
reading service, parameterized with sensor location and shortest reading interval.

To look up a service, a service requirement specification is provided, which
indicates service type and a list of parameter values identifying the requested ser-
vice. The service requirement specification must match the parameters of the ser-
vice type and may restrict the set of service providers offering the service. For
instance, a service user may be interested in a temperature reading service of a

Fig. 10.3 Establishment of a distributed service registry with HNC
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specific location. The outcome of a successful lookup is a global service reference,
which identifies the service provider network-wide.

Distribution of the service registry and replication of service entries are kept
transparent to its users. Service registry instances run a protocol realizing the
replication strategy and maintaining consistency of replicated service entries.
Furthermore, they forward lookups in case these cannot be resolved locally. For
message exchange among service registry instances, the overlay routing topology
determined by HNC connecting all service registry nodes is used. For brevity of
exposition, we omit further details about the operation of the protocol.

10.2.5 Service Publication and Subscription

To publish a service, a service provider uses the confirmed publish service offered
by the middleware, parameterized with a service offer specification (see Listing
10.2). The local middleware instance then registers the service by sending a reg-
istration request to its cluster head, which hosts a service registry instance. For
brevity of exposition, we omit confirmation parameters, which may contain
information about the result of an operation or message exchange. Several service

Listing 10.1 Bootstrap services of the service registry—register, lookup

Listing 10.2 Middleware services—publish, subscribe

224 10 Middleware for Networked Production and Control Systems



providers may publish services of the same type, with possibly different service
offer specifications. For instance, several sensor nodes may offer a temperature
reading service in different locations.

To subscribe to a service, a service user applies the confirmed subscribe service
offered by the middleware, parameterized with a service requirement specification.
To resolve the service requirement specification, the local middleware instance
issues a lookup to the service registry instance of its cluster and waits for the result,
which is a global service reference in case of success. This reference is used by the
service user to interact with the service provider and to unsubscribe from the
service.

Once a service provider has been determined, the middleware requests routes
between service user and service provider. Route requests are issued to ProRoute,
the routing protocol module of the ProNet 4.0 protocol stack implementing QMR
(QoS Multicast Routing, see Chap. 8). Depending on the service, routes in both
directions may be required, with different QoS requirements. QMR creates or
extends QoS routing trees, depending on whether a service already has other service
users. Furthermore, time slots are exclusively reserved.

The message sequence chart in Fig. 10.4 illustrates application service publi-
cation and service subscription. Sensor and Controller are application instances,
providing and using the periodic service of a sensor measuring the angle of an
inverted pendulum (see Sect. 1.2), respectively. The middleware ProMid offers
publish and subscribe services. On this level of abstraction, ProMid is represented
as a single instance, to hide distribution.

Sensor publishes the service by issuing a publish request to ProMid, indicating
service type Angle and minimal period 10 ms. After successful publication, ProMid
returns a publish confirmation. In the second part of the scenario, Controller issues a
subscribe request to ProMid, specifying service type, maximum period, and max-
imum delay. The subscribe confirmation informs Controller about the success of the
subscribe request.

publishReq (″Angle″,10ms)

ProMid 

subscribeReq 
(″Angle″,20ms,8ms)

publishConf (″Angle″)

subscribeConf (″Angle″)

MSC SensorService-publishSubscribe

Sensor Controller 

getAngle 

Fig. 10.4 Service publication and subscription

10.2 Production Middleware (ProMid) 225



To provide publish and subscribe services, ProMid uses the bootstrap services of
the distributed service registry. After the service provider Sensor has been located, a
QoS route between the nodes hosting Sensor and Controller has to be established,
satisfying the specified maximal delay of 8 ms.

10.2.6 Application Service Provision

ProMid supports the provision of different kinds of application services. We dis-
tinguish between call- and reply-services. A call-service is a service where, after
subscription, the service user takes the initiative and contacts the service provider.
Call-services are used, for instance, to apply steering values to actuators.
A reply-service is a service where, after subscription, the service provider contacts
the service user(s). Reply-services are used, for instance, to report sensor values.

Call- and reply-services can be scheduled at specified points in time, i.e.,
time-triggered, or by the occurrence of events, i.e., event-triggered. Time-triggered
scheduling often follows a strictly or weakly periodic pattern. For instance, a tem-
perature sensor reports a value in intervals of 10 s. Event-triggered scheduling is
sporadic; however, it can be mapped to a periodic pattern supporting the minimum
reaction time when assigning resources. For instance, a photoelectric sensor reports
its status when triggered by movement, with a maximum reaction delay of 1 s.

When using a call-service, the service user is in charge of deciding when to
contact the service provider. For this, ProMid accepts call-operations containing a
valid service reference and a list of service parameter values. Based on subscription
and established QoS route, ProMid may assert a maximum interaction delay.

If the service user has subscribed to a reply-service, the service provider is
responsible to decide when to issue replies. Depending on the service, replies may
be triggered by events or at specified points in time. The service user simply waits
for incoming replies, i.e., no polling is needed.

In ProMid, the service provider has the option to supply a handle to generate the
reply parameters. This way, the middleware can actively create replies, without
further involvement of the service provider on application level. This shifts control
down to the middleware, which can use this functionality to coordinate the pro-
vision of a reply-service to different service users.

The message sequence chart in Fig. 10.5 illustrates the usage of a periodical
service. Sensor and Controller have already published and subscribed to the peri-
odical service type Angle, respectively (see Fig. 10.4). With the specified period of
20 ms, ProMid reads timestamped angle values and issues replies to Controller.

On this level of abstraction, ProMid is represented as a single instance, to hide
distribution. To deliver a sensor value, the ProMid instance located on the node
hosting Sensor has to communicate with the node of Controller. This communi-
cation occurs on the QoS route that has already been determined during service
subscription.
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10.3 Related Work

In this chapter, we briefly present and discuss protocol stacks for wireless ad hoc
networks that comprise an application layer and compare them with our production
middleware ProMid. To keep the survey concise, we have selected two protocol
stacks that are state-of-the-practice.

10.3.1 WirelessHART

WirelessHART [10] is a protocol stack for wireless real-time networking in
industrial environments, extending the wired Highway Addressable Remote
Transducer (HART) protocol developed in the 1980s. The current version is
WirelessHART 3.0 [11]. WirelessHART operates mesh networks consisting of
nodes with different roles and capabilities. Field devices sample the state of the
technical system and apply steering values. Routers provide network connectivity.
The network manager is responsible for time synchronization, channel manage-
ment, route discovery, exclusive slot scheduling, and slot reservation. The gateway
couples wireless field devices to the wired plant automation network and acts as
destination for packets from and as source for packets to field devices.

The architecture of the WirelessHART application layer consists of a command
handler and supporting functionality. Commands are classified into a number of
categories. HART commands comprise universal and common practice commands,
to be supported by devices, for instance, what data is to be sent at what rate, and
when to start and stop sending. The device manufacturer can define device-specific
commands. WirelessHART commands comprise, in addition, network commands

ProMid 

reply (″Angle″,20°,ts)

timer 
(now+20ms)

MSC SensorService-provision

Sensor Controller 

getAngle 

read (″Angle″) = (20°,ts)

getAngle 

Fig. 10.5 Usage of a periodical service
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for the management of source and graph routes, links, super frames, and bandwidth
allocation. The command handler processes incoming commands from the network
manager and field devices by triggering appropriate actions.

At startup, the network manager is in charge of discovering the network structure
and of configuring field devices and routers. When discovering nodes joining the
network, the network manager determines routes (see Sect. 8.3.2) and forwards
information about source and graph routes to field devices and routers.
Furthermore, the network manager activates sensor and actuator services by issuing
appropriate WirelessHART commands to corresponding nodes, which includes slot
scheduling and slot reservation.

Other than ProMid, WirelessHART does not provide a service registry, where
field devices can publish their services, to be looked up and subscribed to by control
devices. Instead, the network manager must already be aware of existing services
and the addresses of nodes offering them when configuring the network via a series
of commands. Thus, although there is a notion of client–server applying to activated
services, the level of abstraction is rather low. Furthermore, the network manager
handles network topology discovery, determines routes and exclusive slot reser-
vations, and transfers the resulting status updates to field devices and routers by
issuing commands. Thus, network management is part of the application program,
which offers much flexibility, but further reduces the level of abstraction. Finally,
distribution is not hidden. Therefore, strictly speaking, the application layer of
WirelessHART does not qualify as application middleware.

10.3.2 ZigBee

ZigBee [12] is a protocol stack for wireless networking in home and industrial
automation, with low transmission rates and low energy consumption. It incorpo-
rates IEEE 802.15.4 [5] and adds routing, security, and application functionalities.
ZigBee standards are developed by the ZigBee Alliance, the standard bearer of the
open Internet of Things (IoT). The current version is ZigBee 3.0 [13]. ZigBee
operates mesh networks consisting of nodes with different roles and capabilities.
Full Function Devices (FFDs) are nodes supporting the complete set of ZigBee
functionalities, other than Reduced Function Devices (RFDs). A coordinator is an
FFD responsible for network formation. Routers are FFDs building up network
connectivity. End devices are FFDs or RFDs hosting, for instance, sensors and
actuators. The mesh topology of ZigBee networks can be characterized as a clus-
tered tree rooted at the coordinator, with end devices as leaves. In clustering ter-
minology, this is a 1-hop connected 1-hop dominating set (see Chap. 9).

The architecture of the ZigBee application layer consists of several components.
Application objects implement end applications, using an application framework
providing a set of functions for interaction with other components of the application
layer. The APplication Support sublayer (APS) is in charge of connection man-
agement and message transport between application objects. The ZigBee device
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object (ZDO) implements role functionality, discovers device services and estab-
lishes connections.

For route discovery, ZigBee uses Ad hoc On-demand Distance Vector (AODV)
[7], a reactive routing protocol for wireless networks. Routes discovered with
AODV are best-effort routes, i.e., routes without guarantees regarding real-time and
reliability. This implies that despite the possibility to configure guaranteed time
slots, the ZigBee application layer does not support real-time services.

ZigBee employs a client–server model, where application objects act as service
providers and/or service users. Elementary input and output services are combined
into descriptors referring to an application profile and an application device and are
associated with application objects. Other than ProMid, ZigBee does not provide a
service registry, where service providers can publish their services, to be looked up
and subscribed to by service users. Rather, service discovery is by inquiry, using
identifiers of application profiles and elementary services. First, a node discovers a
device, followed by a query to the application objects hosted on that device. To use
services, clients send commands to service providers.

10.4 Conclusions

In this chapter, we have explained middleware concepts, have presented Production
Middleware (ProMid) that is part of the ProNet 4.0 protocol stack, and have sur-
veyed related work. ProMid is an application-specific middleware devised for
networked production and control systems. It adopts a client–server architecture,
with service providers and service users publishing and subscribing to services,
respectively. Part of the middleware is a distributed service registry, where service
entries can be replicated by setting a replication radius. However, the existence of a
service registry and therefore distribution, replication, registration, and lookup
remain transparent to service providers and service users on application level.

ProMid supports the provision of real-time call- and reply-services, which can be
triggered at specified points in time or by the occurrence of events. The provision of
these real-time services is mapped to communication functionalities of the ProNet
4.0 protocol stack, in particular, ProRes and ProRoute (see Chaps. 5 and 8). Again,
the distributed system nature remains hidden to service providers and service users
on application level.
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Chapter 11
Implementation Aspects of ProNet 4.0

In this chapter, we outline Black burst integrated Protocol Stack (BiPS) [2, 3], a
real-time-capable implementation framework specifically devised for the protocols
of ProNet 4.0 [1], and its implementation on the Imote2 [15] hardware platform.

11.1 BiPS—Black Burst Integrated Protocol Stack

Black burst integrated Protocol Stack (BiPS) [2, 3] comprises both operating
system and communication functionalities. Instead of building on an existing
operating system, BiPS provides real-time-capable operating system functionality
tailored to the Imote2 target platform. In particular, BiPS comprises a real-time
scheduler controlling the timely execution of processes and protocols. Furthermore,
BiPS implements core protocol functionalities, in particular, tick and time syn-
chronization, global time slotting, topology detection, and several medium access
schemes. Altogether, BiPS classifies as a bare-metal solution.

11.1.1 Conceptual Design Decisions

In real-time systems, time-critical functionality is to be executed under stringent
timing constraints, with predictable timing behavior. In a distributed real-time
system, this applies to both real-time applications and real-time protocols.
Therefore, BiPS runs directly on top of the Imote2 hardware platform, without any
underlying operating system. In state-of-the-practice operating systems, MAC
protocols are executed in the same conceptual domain as less time-critical func-
tionalities. Even when using a real-time operating system, it is still difficult to
realize schedules that satisfy the runtime requirements of real-time communication
regarding, for instance, synchronization and hardware delays. To this end, BiPS
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provides a small set of operating system functionalities customized for real-time
applications and real-time protocols.

The conceptual design of BiPS strictly distinguishes between real-time and
non-real-time functionalities. For this, BiPS comprises two schedulers. The BiPS real-
time scheduler (BRTS, see Sect. 11.1.4) is responsible for the timely execution of
time-critical functionalities such as MAC protocols, core functionalities of BiPS, and
real-time application tasks. The BiPS application scheduler (BAS, see Sect. 11.1.5) runs
under control of BRTS and is concerned with the execution of non-real-time applica-
tions and non-time-critical higher-layer protocols. If for complex applications, the limited
capabilities of BAS are insufficient, it can be replaced by schedulers of other operating
systems such as FreeRTOS [9], to be incorporated into BiPS (see Sect. 11.1.6).

11.1.2 Overview of the BiPS Framework

BiPS is an implementation framework for wireless networked production and
control systems customized for the Imote2 hardware platform [15]. This platform
hosts an Intel XScale PXA271 processor with 256 KiB SRAM, 32 MiB SDRAM,
and 32 MiB FLASH. It supports clock rates up to 416 MHz and integrates the
widely used IEEE 802.15.4-compliant CC2420 transceiver [5].

Figure 11.1 shows the architecture of the BiPS framework. Shaded parts of the
figure mark functionality covered by BiPS. Other parts are to be added before
deployment. The overall structure of BiPS follows a layered approach, where
higher layers abstract from lower layers by providing abstract interfaces.

• Layer 0 implements low-level functionality to interact with hardware compo-
nents, such as hardware timers and general-purpose input/output (GPIO) pins.
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Fig. 11.1 Architecture of the BiPS framework (see [2, Fig. 1 and 3, Fig. 2])
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• Layer 1 comprises hardware drivers for peripheral devices, in particular, an
optimized driver for the CC2420 transceiver using direct memory access (DMA).

• Layers 2 consists of the synchronization protocol Black Burst Synchronization
(BBS, see Chap. 2) providing network-wide synchronization in wireless multi-hop
networks, virtual time region establishment (see Chap. 3), topology detection (TD,
see Chap. 4), and four MAC protocols (RB, CB, MB, ACTP, see Chaps. 5 and 6).
In addition, the BiPS multiplexer provides a unique interface to the upper layers.

• Layer 3 hosts higher-level protocols, e.g., routing protocols (see Chap. 8).
• On layer 4, application-specific functionality, for instance, a customized mid-

dleware for production and control systems providing time- and event-triggered
real-time application services hosting a distributed service registry (see Chaps. 9
and 10), is located.

• Layer 5 comprises application instances, e.g., sensor operation and control
algorithms.

Furthermore, the BiPS framework provides two schedulers:

• The BiPS real-time scheduler (BRTS) controls execution of MAC layer pro-
tocols and real-time applications in their assigned virtual time regions.

• The BiPS application scheduler (BAS) is responsible for the execution of
non-real-time applications and higher-level functionality.

The BiPS framework is the basis for the implementation of ProNet 4.0 [1]. In
fact, the conceptual architecture of ProNet 4.0 (see Fig. 1.3) is mapped to the
architecture of the BiPS framework and extended by specific protocols for real-time
multicast routing (see Chap. 8), clustering (see Chap. 9), and a middleware for
networked production and control systems (see Chap. 10).

11.1.3 Access to MAC Protocols—BiPS Multiplexer

The protocol stack ProNet 4.0 supports several medium access schemes, located on
MAC layer: exclusive access, shared access with priorities, mode access, and access for
n-hop deterministic arbitration and value transfer. These access schemes are implemented
by protocol modules ProRes (RB), ProCont (CB), ProMod (MB) (see Chap. 5), and
ProArb (ACTP, see Chap. 6), which are activated during dedicated virtual time regions.

The lower part of Fig. 11.2 shows an example of virtual time slotting (see
Chap. 3) for synchronization, medium access, and real-time applications for a
single-hop network consisting of three nodes. Time slotting for communication is
global, i.e., all nodes have the same perception of the time structure. In addition,
there are real-time (RT) application regions, which are scheduled locally such that
they do not overlap with virtual time regions for communication.

Access of real-time (RT) and non-real-time (NRT) applications and higher-layer
protocols to MAC protocols in virtual time regions is provided by so-called
transmission opportunities (TOs), located in the BiPS multiplexer (see Fig. 11.1).
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The multiplexer realizes common MAC functionalities, in particular, queuing of
messages, thereby facilitating application development as well as the integration of
further MAC protocols. Figure 11.2 shows 4 TOs associated with node v3, con-
taining one or more message queues, depicted as dashed rectangles. Each TO is
associated with one or more virtual time regions of the same type, which determines
the medium access scheme to be applied to data to be sent or received. The BiPS
multiplexer provides a homogeneous interface to pass data between higher layers
and MAC layer, where metadata such as addressing schemes may differ among
MAC protocols. Thus, the multiplexer realizes temporal decoupling between
real-time communication and higher-layer instances.

To send data, the BiPS multiplexer provides TX TOs (Sending TOs), which are
shown as queues marked TX TO in Fig. 11.2. Higher-layer instances enqueue data
into a TX TO queue via method call. When a MAC protocol is executed in a virtual
time region and requests data to be sent, the message with highest priority is
dequeued from a TX TO queue associated with this virtual time region and passed
to this protocol. The multiplexer determines message priorities as follows. First, a
TO can contain more than one TX TO queue, each with a unique priority. Among
non-empty TX TO queues, the multiplexer selects the queue with highest priority.
Next, the queue’s scheduling strategy is considered. A first-in, first-out (FIFO)
queue selects the oldest message, an earliest deadline first (EDF) queue returns the
message with the closest deadline.

TX TOs directly interact with the MAC protocol. In particular, the MAC pro-
tocol returns a notification whether a transmission is successfully completed or not.
In case of transmission failure, the message can be rescheduled up to a configurable
maximum number of transmission attempts, and is reinserted into the TX TO
queue. After completion of a message transfer—whether successful or not—the
BiPS multiplexer notifies the higher-layer instance.

Fig. 11.2 Virtual time regions of nodes v1, v2, and v3, and transmission opportunities of v3 (see
[2], Fig. 2 and [3], Fig. 6)

234 11 Implementation Aspects of ProNet 4.0



To receive data, the BiPS multiplexer provides Receiving TOs (RX TOs), which
are shown as queues marked RX TO in Fig. 11.2. Higher-layer instances are
notified about receptions and can dequeue and process frames according to the
scheduling strategy associated with the RX TO queue.

11.1.4 BRTS—The BiPS Real-Time Scheduler

The BiPS real-time scheduler (BRTS) is in charge of realizing the schedule defined
by virtual time slotting (see Fig. 11.2). In communication regions (exclusive
regions, shared regions, mode regions, and arbitrated regions), BRTS activates and
deactivates the associated MAC protocol at start and end of the region, respectively.
In RT application regions, it transfers control to the associated application [see RT
app v3,1 in Fig. 11.2, methods start() and stop()]. In idle regions, it passes control to
the BiPS application scheduler (see Sect. 11.1.5). All tasks of BRTS are
non-interruptible and are executed with maximal priority.

Figure 11.3 shows the structure of a communication region and a message
sequence chart (MSC) illustrating the actions of BRTS to schedule this region. Let
dcommunicationRegion be the configured duration of the virtual time region. For correct
operation, it is essential that all nodes respect the boundaries of virtual time regions.
In particular, this means that despite synchronization inaccuracies, all nodes can
receive transmissions of other nodes in the same virtual time region. To satisfy this
constraint, we adopt the following rules:

• At the beginning of a communication region, the transceiver is in receive mode1,
to be able to receive incoming frames of nodes with faster clocks.

• There is a guard interval dstart =df max{dmaxTickOffset, dmaxCfg} at the beginning
of a communication region where transmission is disabled. Here, dmaxTickOffset is
the maximum synchronization inaccuracy between pairs of nodes; dmaxCfg is the
maximum duration to finish configuration of the MAC protocol executed during
this virtual time region. In particular, the guard interval ensures that transmission
cannot overlap with the preceding virtual time region of nodes with slower
clocks.

• There is a guard interval dstop =df max{dmaxTickOffset, dswitch} at the end of a
communication region where transmission is disabled. Here, dswitch is the
duration to switch the transceiver to receive mode, to ensure that it is in this
mode when the subsequent communication region starts. Furthermore, the guard
interval ensures that transmission cannot overlap with the subsequent virtual
time region of nodes with faster clocks.

1Depending on the kind of communication region, the transceiver may be switched to sleep mode
temporarily during this region.
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From these considerations, it follows that the effective duration of a communi-
cation region that can be used for sending is given by dcommunicationRegionEff

=df dcommunicationRegion − dstart − dstop (see Fig. 11.3).
To activate MAC protocols, and to realize the proper timing behavior, BRTS is

triggered by the expiry of the timer timerBRTS. The MSC in Fig. 11.3 shows a
scenario where timerBRTS expires at time t0, which is the beginning of a commu-
nication region. When executing the associated interrupt routine, BRTS triggers the
configuration of the MAC protocol associated with the virtual time region and the
multiplexer, which may already pass the message to be sent next in this virtual time
region. When obtaining this message, the MAC protocol may already build a MAC
frame and start to pass this frame to the transceiver’s queue, such that sending can
start as soon as the guard interval ends, i.e., at t1. Furthermore, BRTS sets timerBRTS
to t1 = t0 + dstart.

At t1, timerBRTS expires and triggers BRTS, which starts the MAC protocol,
indicating the effective duration dcommunicationRegionEff of the virtual time region for
sending frames. Furthermore, BRTS sets timerBRTS to t2 = t1 +
dcommunicationRegionEff. Upon expiry of the timer at t2, BRTS triggers the MAC

Fig. 11.3 Scheduling of communication regions (see [2], Fig. 3 and [3], Fig. 7)
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protocol to switch the transceiver to receive mode, and sets the timer to t3 = t2 +
dstop. At t3, BRTS deactivates the MAC protocol.

11.1.5 BAS—The BiPS Application Scheduler

The BiPS application scheduler (BAS) is in charge of scheduling non-real-time
(NRT) applications, such as control applications and higher-layer protocols. It can
be classified as cooperative, event-based, and non-preemptive. To be scheduled by
BAS, applications register events, such as data receptions of the multiplexer or
timer expiries. When activated by BRTS, BAS checks for the occurrence of reg-
istered events and passes control to the corresponding components. As BAS is
non-preemptive, activated components may run to completion. However, they may
be interrupted by BRTS, thereby providing high priorities to RT (Real-Time)
applications and MAC protocols.

BAS supports interaction between NRT applications by events only. Therefore,
synchronization primitives such as mutexes are not needed, as BAS tasks execute
cooperatively and can only be interrupted by hardware interrupts. There are,
however, critical sections where components use low-level functionalities for
interaction. Examples are transmissions of messages via universal asynchronous
receiver–transmitter (UART) or exchanges of data between application and BiPS
multiplexer. Here, access to data structures has to be exclusive, to prevent data
races. In state-of-the-practice operating systems, this is achieved by disabling
interrupts temporarily. However, this would imply that BRTS would be delayed
during exclusive access. We have adopted two measures to mitigate this problem:

• First, we distinguish between hardware interrupts that are used or not used by
BRTS or RT applications. We then apply nested interrupts on two levels, which
is supported by the PXA271 processor on hardware level. With this scheme,
disabling of non-BRTS or non-RT interrupts does not affect real-time behavior.
In particular, BRTS can still interrupt other interrupt handlers of lower priority.

• Second, we consider cases where the first measure cannot be applied. For
instance, when data is exchanged with the BiPS multiplexer, BRTS has to be
disabled temporarily, to prevent data races between different RT applications
and the multiplexer. To meet deadlines, we measure the worst-case execution
times dmaxCrit of critical sections. Then, whenever a time-critical event is about
to happen, BRTS takes over control dmaxCrit before that event. BRTS then waits
for the time-critical event to happen, handles the event, and returns control to
BAS.

If BAS has no further tasks to schedule, it could switch the CPU to sleep mode
in order to save energy (duty cycling). However, depending on the kind of sleep
mode, the PXA271 processor has different activation delays. Furthermore, BAS is
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not aware of the real-time tasks to be scheduled next. Therefore, to maintain
real-time operation, the decision about duty cycling is passed to BRTS.

11.1.6 Nesting of State-of-the-Practice Operating Systems

BiPS comprises BRTS, the BiPS real-time scheduler, and BAS, the BiPS appli-
cation scheduler. For more complex applications, the limited capabilities of BAS—
cooperative and event-based scheduling, no preemption, no task concept—are
insufficient. For instance, in control applications performing complex calculations,
it would be preferable to preempt processes after defined time slices, such that other
tasks are treated fairly and do not suffer from starvation.

In BiPS, BAS can be replaced by incorporating another operating system
(OS) together with its scheduling mechanisms, called nested OS. It is then possible
to use all capabilities of the nested OS, such as preemptive priority scheduling,
multi-tasking, and process interaction.

When porting an operating system to a target platform, the engineer has to adapt
the generic code of the OS. In particular, this is required when nesting an OS into
BiPS. In our work so far, we have nested FreeRTOS [9] and RIOT [11]. Both are
state-of-the-practice real-time operating systems and support tasks, task priorities,
synchronization primitives, and task preemption. We now address a number of
porting steps and provide details about nesting FreeRTOS and RIOT:

• At startup, an operating system executes initialization routines to set up hard-
ware and runtime environment. As initialization is controlled by BiPS, the code
required by the nested OS is reduced to some function calls into the BiPS core.
FreeRTOS needs an implementation for its xPortStartScheduler stub, which
configures and starts a periodic timer and jumps into the first task. Our code for
nesting FreeRTOS is similar to the code for a standalone porting, with the
exception that we were able to exploit some BiPS functions, e.g., to set up the
system timer. Similar considerations apply to the nesting of RIOT.

• To register and handle interrupts, and to disable them when executing critical
sections, code for interrupt management is required. When porting FreeRTOS
and RIOT, this was translated into calls of the BiPS core. This way, BiPS
maintains some control about interrupt handling. In particular, a nested OS does
not disable BiPS-related interrupts. Thus, BiPS can interrupt processes and core
functions of a nested OS.

• Further code is required to manipulate a system timer for scheduling purposes of
the nested OS. Since BiPS provides an interface for timer manipulation, this
code simply calls BiPS functions. On the Imote2 hardware platform, nine
hardware timers are available, one of which is reserved for the nested OS.

• Nesting of an OS requires code for context switching and task creation. For
instance, if a task with a higher priority becomes runnable, or if the time slice of
a running task expires, the CPU is rescheduled. The code implements saving and
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restoring of CPU registers and flags, and of runtime-specific parts such as libc’s
_impure_ptr to support reentrancy of libc functions. Here, BiPS offers some
helper functions, which have been sufficient to realize code for FreeRTOS and
RIOT, without additional programming on assembler level.

• To access hardware components such as UART, an operating system incorpo-
rates device drivers. As BiPS already contains device drivers for the Imote2
hardware platform, nesting of an OS mostly consisted of providing wrappers
that translate concepts of the nested OS to BiPS, and vice versa. For FreeRTOS,
we have added mechanisms to transfer frames between transmission opportu-
nities of BiPS and FreeRTOS queues.

Nesting of an OS into BiPS is similar to the realization of an OS on a virtual
machine. Instead of interacting with the hardware platform directly, the nested OS
interacts with BiPS. Since BiPS controls the execution of the virtual machine,
real-time behavior of MAC protocols and RT applications is ensured. On the other
hand, if the nested OS is a real-time OS—such as FreeRTOS—its real-time
capabilities are reduced, as execution of tasks is delayed when BiPS takes over
control.

11.1.7 Memory Management and Fault Handling

The core hardware of the Imote2 platform offers features that can be used to speed
up execution and to facilitate debugging of applications. In this regard, the avail-
ability of instruction and data caches and an MMU (Memory Management Unit) is
crucial. In BiPS, we use the MMU to detect and analyze common faults and provide
tools to examine failure situations. In particular, we can detect overwriting of code
and read-only data, accidental writes to system memory such as page tables, access
of null pointers, and execution of invalid code provoked by illegal jumps.

If a failure occurs, the in-system fault handler of BiPS reports possible reasons.
Furthermore, it prints a backtrace and offers a shell to examine memory content and
to print current virtual memory layout, physical memory allocation, and information
about heap and stacks. There is also a GDB (GNU Debugger) server included, so
GDB can be invoked on a PC attached to the Imote2 via serial line. This can
provide event more insight, since GDB can enhance pointer addresses by debug
information.

By enabling the MMU, we can also enable the data cache of the Imote2, which
speeds up average execution times significantly. On the downside, caches introduce
jitter, which is conflicting with time-critical protocols and real-time applications.
However, in BiPS, this jitter is largely reduced for time-critical functions by using
cache locking, a feature preventing individual data and instructions from being
evicted from the caches.

Using the MMU reduces development times, as BiPS and its applications work
on a common virtual memory layout and are therefore independent of their physical
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memory placement. As result, an image with BiPS can be stored on non-volatile
memory and can also be executed from SDRAM, which is much faster and saves
write cycles of the flash memory.

11.1.8 Evaluation

In this chapter, we present results of experiments comparing BiPS with
state-of-the-practice operating systems for wireless sensor networks. The objective
of these experiments has been to evaluate BiPS as framework for real-time capable
protocols and applications. In particular, we have evaluated memory usage, pre-
dictability of timer expiry processing delays, and delays to detect (start of frame
delimiters (SFDs).

Since there are only few operating systems supporting the XScale PXA271
processor of the Imote2, quantitative comparisons are very limited. In fact, we only
found direct support for this processor in TinyOS (used in Version 2.1.2). To
compare BiPS with a classical real-time OS, we have ported RIOT [11] to the
Imote2. However, since RIOT does not provide a driver for the CC2420 trans-
ceiver, comparisons are restricted to communication-independent aspects. In all
experiments, the Imote2 was operated with 104 MHz.

11.1.8.1 Memory Usage

Memory usage can be divided into static and dynamic memory usage. Static
memory is needed for the application image and stores code, read-only data, and
pre-initialized read–write data. Its size is determined by the file size of the image
after linking all object files. Dynamic memory is additionally needed during pro-
gram execution. Its size is determined by memory usage for global variables, heap,
and stacks. Since dynamic memory usage varies during execution, it is not
straightforward to determine its size.

The Imote2 platform offers 32 MiB flash memory, which is the upper bound for
static memory usage. Furthermore, it provides 256 KiB SRAM and 32 MiB
SDRAM, which are the upper limits for dynamic memory usage. Since this is ample
of memory, we had not much incentive to optimize memory usage. Features like
virtual memory handling and a powerful fault handler consumed only about 59 KiB
static memory and 26 KiB dynamic memory.

A BiPS application needs at least 140 KiB static and 26 KiB dynamic memory.
An application using BiPS excessively consumes about 350 KiB static and 26 KiB
dynamic memory, i.e., 1 and 0.1% of the available memory, respectively. By
compiling for size instead of performance, static memory consumption can be
reduced by 20%.
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11.1.8.2 Timer Expiry Processing Delays

In real-time computer systems, reaction delays must be low and predictable. In this
chapter, we analyze timer expiry processing delays. In the experiments, we have
used one Imote2 node, on which TinyOS, RIOT, and BiPS were installed con-
secutively. Two timer variants were evaluated. In the first variant, timer expiries
were processed in interrupt mode; this variant is called alarm in TinyOS, and hw
timer in RIOT and BiPS. In the second variant, timer expiries were processed in
non-interrupt mode; this variant is called timer in TinyOS, virtual timer in RIOT,
and event timer in BiPS. Timer expiry processing delays were measured by per-
formance counters of the Imote2. For each operating system and timer variant,
experiments were performed without and with background load and repeated
10,000 times.

Table 11.1 shows the results of the experiments. Without load, there is no
concurrency. In general, timer expiry processing delays are shorter and less variable
in interrupt mode compared to non-interrupt mode. Due to its costly runtime model
and its abstraction layers, hardware timer processing delays with TinyOS are sig-
nificantly higher than with RIOT and BiPS. Here, RIOT and BiPS achieve low and
stable delays, as they benefit from optimized implementations. A surprising result is
the high delay of virtual timer expiry processing of RIOT, which is due to the need
to preempt an idle task and to switch context, summing up to 22 µs.

When additional random background load is generated by a second timer,2

evictions of data from the Imote2’s instruction and data caches are provoked. This
increases the delays for timer expiry processing, in particular, for timers in
non-interrupt mode. Here, RIOT has the advantage of supporting priority-based
preemptive scheduling, while TinyOS and BiPS suffer from cooperative schedul-
ing. Yet, BiPS outperforms TinyOS due to better use of hardware features such as

Table 11.1 Timer expiry processing delays and instruction counts (see [2], Table 1)

Without load With load

Delay [µs] Instructions Delay [µs] Instructions

Min Avg Max Min Avg Max Min Avg Max Min Avg Max

TinyOS Alarm 13.5 13.6 13.7 112 112 112 13.5 16.8 18.4 112 112 112

Timer 18.1 18.3 18.6 177 177 177 19.3 46.2 1.3 192 497 15,382

RIOT hw timer 2.3 2.3 2.4 49 49 50 2.3 3.5 7.6 49 49.3 50

Virtual
timer

22 22 22 663 663 663 26.7 49.9 63.4 933 933 1,254

BiPS hw timer 1.5 1.5 1.6 13 13 13 1.5 1.7 2.5 13 13.3 14

Event
timer

2.3 3.3 7.9 49 49.3 50 5.3 8.8 594 53 86.9 13,260

2This timer expiry is processed in non-interrupt mode and with lowest priority in case priorities are
supported by the operating system.
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data caches. For timer expiries processed in interrupt mode, the increase of timer
expiry processing delays with load is substantially smaller compared to the results
without load. Here, BiPS performs best due to cache locking. In summary, reaction
delays to timer expiries are low and highly predictable for BiPS hardware timers,
which are therefore first choice for the execution of MAC protocols.

11.1.8.3 Detection Delays of Start of Frame Delimiters

According to the datasheet of the CC2420 transceiver, detection of a start of frame
delimiter (SFD) is signaled with a delay of 3 µs. However, this does not include the
delay until the SFD is recognized by software running on the CPU. To signal
detection of an SFD, the CC2420 provides an output pin. On the Imote2 platform,
this pin is connected to a general-purpose input/output (GPIO) pin of the micro-
controller, thereby enabling the triggering of hardware interrupts when an SFD is
signaled.

In the experiments, three Imote2 nodes were placed in close proximity, one node
vs acting as sender and two nodes vr1 and vr2 as receivers. Each receiver vri was
connected by two GPIO pins sfdri and slotri with a logic analyzer running with a
sampling rate of 100 MHz. After detecting a rising edge at the SFD pin of the
transceiver, receiver vri raised the GPIO pin sfdri. The second GPIO pin slotri was
raised 10 ms after the detection of the SFD to emulate virtual medium slotting and
to evaluate the local accuracy of slot bounds. Therefore, a timer was activated, with
the expiration time set 10 ms after detection of the SFD. Apart from control of the
GPIO pins, no further application was executed. In total, 1,500 observations with
BiPS and with TinyOS were made.3

Figure 11.4 shows the accuracy of SFD detection in software. For BiPS and
TinyOS, the median of differences is almost 0 µs, which is due to the usage of
identical receivers. However, the observed variation with TinyOS is much larger
than with BiPS, with empirical standard deviations of 1.5 µs versus 0.06 µs. This
indicates that detection accuracy with TinyOS suffers from diverging execution
delays, while it is almost constant with BiPS.

Figure 11.5 illustrates the differences in the perception of slot starts 10 ms after
the SFD event. Here, the differences with TinyOS are substantial and spread over a
range of [−36.23, 30.58 µs], whereas differences with BiPS are almost negligible.
One reason for this is that BiPS uses the µs hardware timers of the Imote2 platform,
which is not the case for TinyOS.

3Experiments reported in this chapter were conducted with TinyOS and BiPS only, as RIOT does
not provide a CC2420 driver.
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11.2 Related Work

In this chapter, we discuss related work addressing one of the two aspects covered
by BiPS: In Sect. 11.2.1, we look at the MAC protocols of BiPS, surveying pro-
tocols for wireless sensor networks (WSNs) with multi-MAC support. In

Fig. 11.4 Accuracy of SFD detection (see [2], Fig. 5)

Fig. 11.5 Accuracy of slot start detection (see [2], Fig. 6)
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Sect. 11.2.2, we compare the runtime engine of BiPS to other operating systems for
WSNs. We are not aware of related work covering both aspects together.

11.2.1 Multi-MAC Support

Communication protocols for wireless networks with more than one MAC scheme
can be found in both industrial standards and research, and usually comprise shared
and exclusive medium access schemes. A well-known standardized MAC protocol
is IEEE 802.15.4 [14], which is also part of ZigBee [23]. In beaconed mode, IEEE
802.15.4 establishes super frames that are composed of contention access period
(shared access), contention-free period with guaranteed time slots (exclusive
access), and idle period. In WirelessHART [22], a well-known industrial standard,
time is also subdivided into superframes, consisting of time slots of fixed length
(10 ms), which either are assigned exclusively or are shared by several nodes
running CSMA/CA. The same applies to the ISA 100.11a [16] standard, which,
however, allows time slots of configurable length.

In research, several proposals combining CSMA-based MAC protocols with
TDMA can be found and are often called hybrid MACs [17]. They all try to
combine the benefits of TDMA (e.g., more efficient duty cycling and prevention of
collisions) and CSMA/CA (e.g., shorter average access delays). Examples are [10],
which proposes an extension of IEEE 802.15.4 to mitigate the drawback of the rigid
super frame structure, Z-MAC [19], and EE-MAC [18]. ER-MAC [21] addresses
typical scenarios of WSNs, where it is assumed that there is a single sink node. In
[13], a hybrid MAC protocol is presented that switches dynamically from TDMA to
CSMA when exchanging routing information in order to shorten the duration of
reactive route discovery.

Comparing these protocols with BiPS, the virtual time regions of BiPS (see
Chap. 3) are much more flexible than the (partially) stringent time framings of the
industrial standards and proposals from research, in particular w.r.t. the number,
placement, and duration of active and inactive slots. Furthermore, all outlined
protocols are restricted to one TDMA-based and one CSMA-based protocol.
Further protocols such as a binary countdown protocol (e.g., ACTP, see Chap. 6)
are not supported and cannot be integrated due to missing network-wide syn-
chronization with bounded offset. Compared to BiPS, a further drawback of most
outlined protocols is their reliance on a single sink node, which limits their
applicability in ad hoc networks and, in many cases, also implies a
topology-dependent slot assignment for TDMA. To assign time slots for TDMA, all
protocols either run slot assignment algorithms based on detected communication
links or require manual effort to find interference-free schedules. A distinction
between communication and interference topology as performed by BiPS (ATDP,
see Chap. 4) is not made.

Several papers (e.g., in [4, 12, 20]) point out that the behavior and performance
of a protocol highly depends on its implementation. Often, this aspect is neglected,
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and many protocols are not even implemented, but are assessed analytically or in
simulation experiments only. Existing protocol implementations usually rely on
general operating systems such as Contiki [6] or TinyOS [8] to execute the protocol
in an appropriate and timely manner. Particularly, the handling of concurrency of
tasks is often not scrutinized but can affect the behavior adversely. Thus, it is often
unclear—in particular, if a protocol is to support real-time guarantees, e.g., due to
the incorporation of TDMA—how timing constraints can be satisfied and if pro-
vided prioritization measures are actually sufficient to preserve a protocol’s con-
ceptual real-time capability.

11.2.2 Runtime Engines of Operating Systems

A widespread event-driven operating system for WSNs is TinyOS [8], which
schedules tasks cooperatively by applying first come, first served (FCFS) and
earliest deadline first (EDF). Tasks can be preempted by interrupts, commands, and
events, but not by other tasks. Since Version 2, there is also support for full
multi-threading and synchronization primitives, yet w.r.t. the Imote2 platform,
some features like MMU and data caches are no longer used. As TinyOS does not
offer a mechanism to run the communication stack in a privileged context, protocols
with stringent timing constraints are difficult to implement. Additionally, the
modular structure of TinyOS, yet enabling extensions very flexibly, increases the
amount and variance of execution delays. Applications for TinyOS are written in a
dialect of C called nesC, rendering the learning curve steeper for C/C++ programmers.

Another well-known operating system for WSNs is Contiki [6], with a special
focus on strongly resource-constrained devices. Though scheduling in Contiki is
basically cooperative, there are extensions for light-weight multi-threading
(so-called Protothreads) and full multi-threading support. To execute time-critical
code, Contiki provides real-time tasks, which can preempt any low-priority process.
Though Contiki subdivides system execution into tasks, memory protection has
never been an objective of Contiki. Programs for Contiki are written in constrained
C with a strong use of C macros.

Different from TinyOS and Contiki, Nano-RK [7] was developed with a special
focus on real-time communication. It is designed for classical multi-hop networks
of resource-constrained nodes that send sensor values to a sink periodically.
Scheduling with Nano-RK is priority-based and preemptive, with additional support
for task synchronization. Nano-RK is considered a static design-time framework,
thereby enabling offline real-time schedulability analyses, which reduces runtime
flexibility. It follows a reservation paradigm, i.e., tasks can reserve any kind of
resource such as CPU, network bandwidth, and sensors/actuators. To incorporate
MAC protocols and routing protocols, a basic CSMA/CA template and some
infrastructure are provided. Programming language for Nano-RK applications is C.
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RIOT [11] is another operating system with support of real-time communication.
It comes with full multi-threading support and uses inter-process communication to
pass messages between modules, thereby enabling a better decoupling of tasks.
Memory protection or advanced measures for fault detection are not provided, and
the implementation of time-critical protocols still demands some programming
tricks. As in BiPS, applications in RIOT are written in C/C++. Though there is no
native porting of RIOT to the Imote2, it can run on this platform in the context of
the BAS of BiPS. Thus, higher-level applications running on the Imote2 with BiPS
can benefit from both worlds, flexible execution of tasks in BAS/RIOT and
real-time communication in BRTS.

Compared to the outlined state-of-the-practice operating systems, BiPS is
protocol-centric, i.e., the communication protocols are an inherent part of the
system architecture (see Fig. 11.1). Thereby, BiPS can guarantee real-time capa-
bilities of the implemented protocols by design. W.r.t. typical operating system
functionalities such as multi-threading, preemption, and inter-process communi-
cation, BiPS provides less support compared to the outlined operating systems.
However, this drawback can be eliminated by nesting FreeRTOS or RIOT into
BiPS.

11.3 Conclusions

In this chapter, we have outlined the real-time-capable implementation framework
Black burst integrated Protocol Stack (BiPS), and have surveyed related work. BiPS
is the basis for the implementation of the ProNet 4.0 protocol stack on the Imote2
hardware platform. In particular, we have explained structure and operation of the
BiPS multiplexer providing uniform access to MAC protocols, the BiPS schedulers
BRTS and BAS, and the possibility of nesting state-of-the-practice operating sys-
tems into BiPS. In our evaluation, we have assessed memory usage, timer expiry
processing delays, and detection delays of message receptions.

A key design objective of BiPS is the provision of a flexible and extendable
framework for real-time communication. This is achieved by the incorporation of a
protocol for deterministic tick and time synchronization (see Chap. 2), a highly
flexible structuring of time into virtual time regions (see Chap. 3), a protocol for
automatic topology detection (see Chap. 4), and protocols supporting different
medium access schemes (see Chaps. 5 and 6). Another key concern is an imple-
mentation of BiPS that complies with the real-time constraints imposed by the
structuring of time. This is achieved by implementing BiPS on bare hardware, and
by providing real-time protocol-centric operating system support, in particular, with
the BiPS real-time scheduler.
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Chapter 12
ProNet 4.0 Case Studies

In this chapter, we present three case studies highlighting different functionalities of
ProNet 4.0. The first case study [2] is about the operation of different types of
control systems over a wireless TDMA network, using exclusive and mode medium
access. In the second case study [3, 4], a control application based on
Try-Once-Discard (TOD), a protocol from the control systems domain, is con-
ceived, using deterministic network-wide value-based arbitration and data transfer.
In the third case study [5], ProNet 4.0 is part of a setting for remote maintenance in
a production plant. This industrial case study ranges from field level to management
level and comprises a production facility, a wireless sensor network, an autonomous
robot, a multimedia system, and an enterprise resource planning (ERP) system. To
realize application requirements on field level, communication functionalities on all
layers of ProNet 4.0 are exploited.

12.1 Inverted Pendulum and Flow Rate System

The first case study [2] addresses the operation of several independent control
systems over a shared wireless communication network. It has been devised during
a research project at the University of Kaiserslautern, involving two research groups
from the Department of Electrical and Computer Engineering and the Department
of Computer Science, as part of the Priority Programme 1305 “Control Theory of
Digitally Networked Dynamic Systems” of the German Research Foundation
(DFG) [13]. In this chapter, we outline control aspects and address some aspects of
the communication solution.
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12.1.1 Control Aspects

In the case study, several independent instances of different types of control systems
are operated over a shared wireless communication system. The inverted pendulum
(see Sect. 1.2) is a time-based control system, where sampling and exchange of
values occur synchronously at specified points in time. The flow rate system uses an
event-driven mode of operation, where exchange of values is triggered by the
occurrence of specified events.

Figure 12.1 shows the two types of controlled systems in a schematic way. The
inverted pendulum consists of a cart that is mounted to a belt. The belt can be
accelerated by a motor in both directions such that the cart moves back and forth,
with changing velocity. Attached to the cart is a rod (pendulum) with a weight at the
end that can swing around one axis. Control objective is to stabilize the rod in an
upright position, by moving the cart. Disturbances are caused, for instance, by
frictions of the rail, local reaction delays of the motor, and pushes to the rod. The
state of the inverted pendulum is sampled periodically and characterized by position
x and velocity v of the cart, and by the angle u of the rod. From the history of
samplings, a voltage u is calculated by the controller and applied to the motor.

To achieve the control objective, the following real-time requirements are to be
satisfied. Sampling of measured values x, v, and u has to occur synchronously and
periodically, with a maximum sampling period dIPsampling = 72 ms. The maximum
end-to-end reaction delay, i.e., the largest time span between value sampling and
application of the corresponding steering value, is dIPend2endReactionMax = 24 ms.
Finally, loss of measured and steering values must be rare.

The flow rate system consists of a hose with several devices attached. The hose is
filled with liquid via a tap. A pump then creates a pressure in the hose to establish a
flow. Two sensors measure the flow rate, which can be controlled by an adjustment
valve. The control objective is to achieve a specified flow rate trajectory, e.g., a
ramp signal or a step signal. Disturbances are caused, for instance, by reaction
delays of the adjustment valve and by nonlinear overrun. The state of the flow rate
system is sampled periodically and characterized by flow rates f1 and f2. From the
history of samplings, a value v is calculated by the controller and applied to the
adjustment valve.
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Fig. 12.1 Controlled systems: inverted pendulum and flow rate system
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Sampling of measured values f1 and f2 has to occur periodically, with a maxi-
mum sampling period dFRsampling = 160 ms. Maximum end-to-end reaction delay is
dFRend2endReactionMax = 60 ms. Loss of measured and steering values must be rare.

12.1.2 Communication Solution

In the case study, the task is to control two inverted pendulums and two flow rate
systems over a shared wireless network, applying ProNet 4.0. Figure 12.2 shows
the architecture consisting of controlled systems, sensors, actuators, and controllers.
For instance, the inverted pendulum control system IP1 comprises sensors s1,x, s1,v,
and s1,/, an actuator a1,u, and a controller c1. The figure also indicates measured and
steering values and their exchange over the wireless network. In this case study, all
nodes are in single-hop range.

To satisfy the real-time requirements of the control applications, we have
selected appropriate medium access schemes, have devised a time structure of
virtual time regions, and have defined a communication schedule.

An analysis of the application requirements of the inverted pendulum has shown
that for safe operation, it is sufficient to transfer measured and steering values with a
communication period of dIPcommBase = 72 ms. In case of disturbances, a shorter
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period dIPcommPref = 36 ms yields faster stabilization and could, for instance, be
supported if there are free communication resources. This would imply that the
sampling period be reduced to dIPsampling = 36 ms. To satisfy these requirements,
we use exclusive medium access every 72 ms and mode medium access in-between
(see Chap. 5).

Similar considerations apply to the flow control system. Here, it is sufficient to
transfer measured and steering values with a communication period of
dFRcommBase = 160 ms, and with a period dFRcommPref = 80 ms (based on
dFRsampling = 80 ms) to improve quality of control. Different from the inverted
pendulum, which is a time-based control system, the control algorithm of the flow
rate system uses an event-driven mode of operation. Therefore, reserved slots are
only used when events occur. It is not feasible to use shared medium access, as this
may cause unpredictable medium access delays and message loss due to collisions.

To structure time, we first consider sampling, communication, and resynchro-
nization periods. For the inverted pendulums, we have sampling periods
dIPsampling 2 {36, 72 ms} and communication periods dIPcommBase = 72 ms and
dIPcommPref = 36 ms. For the flow rate system, these periods are dFRsampling 2 {80,
160 ms}, dFRcommBase = 160 ms, and dFRcommPref = 80 ms. For resynchronization,
we define the resynchronization interval duration dresInt = 200 ms. Obviously, these
periods, in increasing order, cannot be arranged as a harmonic chain, i.e.,
di = ki � di−1, where 1 < i � 9 and ki 2 N (see Chap. 3). The drawback is that slot
assignments can only be made with substantial waste. However, it is possible to
reduce some durations without losing quality of control: With dFRsampling 2 {72,
144 ms}, dFRcommBase = 144 ms, dFRcommPref = 72 ms, and dresInt = 144 ms, an
arrangement as harmonic chain becomes feasible, thereby avoiding waste. The
super slot length then is the maximum of sampling periods and resynchronization
period, i.e., 144 ms.

In each super slot, messages have to be scheduled depending on communication
and resynchronization periods. For each inverted pendulum control system, a
minimum of 8 messages and a maximum of 16 messages per super slot are required.
For each flow rate control system, these figures are 3 and 6 messages per super slot.

Table 12.1 shows a feasible schedule that satisfies all real-time requirements. For
simplicity, a super slot is divided into 36 slots of 4 ms, which is sufficient for a
single message transmission with either exclusive or mode medium access. We will
later reduce this duration to what is needed on a specific hardware platform.

The first slot is assigned to resynchronization, followed by exclusive slots. The
corresponding virtual time regions are shown in the first row of the table. Next are
three slots exclusively assigned to transfer measured values in messages m1,x, m1,v,
and m1,/ of sensors s1,x, s1,v, and s1,/ of the inverted pendulum control system IP1.
The corresponding actuator message m1 sent by controller c1 is scheduled with a
delay of one slot after the sensor values have been received, to allow for the
execution of the control algorithm. The same pattern is applied to IP2. Both patterns
are repeated 18 slots, i.e. 72 ms, later. This satisfies communication periods
dIPcommBase = 72 ms and maximum end-to-end delay dIPend2endReactionMax = 24 ms.
Furthermore, 3 slots per flow rate control system are exclusively assigned,
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satisfying dFRcommBase = 144 ms and dFRend2endReactionMax = 60 ms. All exclusive
slots are assembled into exclusive regions, as shown in the first row of the table.

To support shorter periods dIPcommPref and dFRcommPref to overcome disturbances
faster, we configure mode slots, which are assembled into mode regions. In the first
part of Table 12.1, there are four slots assigned to two messages each. For instance,
the first of these slots is assigned to messages m1,x (prio = 0) and m2,x (prio = 1) of
s1,x and s2,x, respectively. At runtime, these slots are used only in case of distur-
bances, with priority given to IP1. In the second part of Table 12.1, further slots are
assigned to messages of IP1 and IP2, this time with priority given to IP2. It follows
that in case of disturbances to only one inverted pendulum, the communication rate
is doubled, and increased proportionally if both inverted pendulums need higher
communication rates. Similar considerations apply to the flow rate control systems.

From the slot assignments, it follows that messages of the communication
periods dIPcommBase, dFRcommBase, and dIPcommPref are scheduled strictly periodically.
For periods dFRcommPref, there are waiting times different from 72 ms after the
previous transfer of measured and steering values. For instance, message mA,f_1 of
sensor sA,f_1 is scheduled in exclusive slot 5 and mode slot 30, i.e., with an interval
of 100 ms instead of 72 ms. In the scenario, it is also possible to assign free slots
such that dFRcommPref is met. However, as the shift is in accordance with the
requirements of the control application, we have optimized the schedule in order to
save time slots.

By assigning exclusive slots, there is no message loss due to collisions, if the
single-network property (see Sect. 1.3) holds. However, in wireless communication,
message loss cannot be ruled out entirely. To compensate for message loss, pre-
dictive control algorithms can be used. Thus, if a set of measured values is not

Table 12.1 Virtual time regions and communication schedule. For brevity, modes (see Sect. 5.2.3)
are omitted
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complete, steering values can be estimated and applied until new values have been
received.

As hardware platform, we consider Imote2 motes [10] with the Chipcon CC2420
radio transceiver [8]. Tick synchronization is performed by Black Burst
Synchronization (BBS, see Chap. 2), implemented in ProSync of the ProNet 4.0
protocol stack [1]. From the data sheet and the analysis in Chap. 5, it follows that
for a frame size of 16 bytes, the length of exclusive slots can be reduced to 0.9 ms;
for mode slots, we get 1.5 ms (mode slots with two priorities) and 2.4 ms (mode
slots with four priorities). This reduces medium usage from 86.1 to 25.6%, which
leaves room to support further control systems over the same wireless communi-
cation network or to save energy.

At the time the case study has been defined, the ProNet 4.0 protocol stack was
not yet completed. For instance, mode medium access, originally devised for wired
bus systems, and the BiPS framework (see Chap. 11) were not available on Imote2.
Therefore, only a subset of the functionality described in this chapter has been
realized.

12.2 Batch Reactor

The second case study [3, 4] features the use of Black Burst Synchronization (BBS,
see Chap. 2) and Arbitration and Cooperative Transfer Protocol (ACTP, see
Chap. 6), which are implemented in protocol modules ProSync and ProArb of the
ProNet 4.0 protocol stack [1]. In the case study, BBS and ACTP are applied to
realize Try-Once-Discard (TOD), a protocol from the control systems domain, in
order to control an unstable batch reactor via a wireless network [19]. In this
chapter, we outline control aspects and address some aspects of the communication
solution.

12.2.1 Control Aspects

A reactor is a container in which controlled reactions such as chemical processes or
nuclear fusion take place. A specific reactor type is the batch reactor, which consists
of a container for liquid or compressed gas, an agitator for shaking or stirring, and a
heating or cooling system. Batch reactors are used, for instance, in chemical and
pharmaceutical industry.

In the example in [19], an unstable batch reactor is described as a coupled
two-input-two-output networked control system (NCS). For the exchange of sensor
values, a protocol called Try-Once-Discard (TOD) is devised. TOD is of special
interest in the control systems domain, because its properties can be characterized
by Lyapunov functions [11]. This makes it straightforward to incorporate TOD into
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Lyapunov-based design of linear and nonlinear control systems, yielding a
self-contained theory for system stabilization.

In [9], a Lyapunov-based theory is presented to derive bounds on the maximal
allowable transfer interval (MATI) that guarantees asymptotic stability.
Furthermore, the maximal allowable delay (MAD) is derived. Stabilization is
achieved with TOD, if MATI and MAD can be satisfied. TOD realizes the global
scheduling policy maximum-error-first (MEF). Since this policy requires
network-wide and value-based arbitration and end-to-end transmission within each
sampling interval (bounded by MATI), TOD is difficult to implement, especially in
wireless networks.

Walsh et al. [19] characterize TOD by the following requirements:

• Time is divided into time slots of fixed duration, to which all nodes have to
synchronize with deterministic accuracy.

• In each time slot, a TOD round consisting of two phases is performed. In the
arbitration phase, sensor nodes contend, with the node reporting the greatest
weighted error w.r.t. the last reported value winning. In the data phase, the
winning node transmits its current value to the controller node.

• For the duration of a time slot, a deterministic upper bound satisfying MATI
must be guaranteed, to ensure system stability.

In the original work [19], the Controller Area Network (CAN) protocol [7] used
in the automotive and automation domains is identified as a suitable communication
technology to implement TOD. When using weighted error values augmented with
a unique node identifier as CAN identifiers, contention yields deterministic medium
arbitration. We note, however, that by design, CAN is limited to wireline,
single-hop networks, and that CAN does not support synchronization, which vio-
lates the requirement of synchronized TOD rounds.

12.2.2 Communication Solution

TOD is difficult to implement, especially in wireless networks. In [16], Pereira,
Andersson, and Tovar have presented a binary countdown protocol (see Sect. 6.1.2)
for deterministic arbitration in wireless single-hop networks called Wireless
Dominance (WiDom) protocol. WiDom was later extended to wireless multi-hop
networks [17]. However, it cannot avoid concurrent destructive arbitrations. In
summary, WiDom and its extensions do not solve the problems of network-wide
synchronization, medium arbitration, and value transfer. Therefore, it does not
satisfy the communication requirements of TOD.

It has long been an open question whether TOD can be realized in wireless
multi-hop networks. In [15], it is stated explicitly that “TOD cannot be imple-
mented directly in wireless networks.” Moreover, [18] concludes that “no such
arbitration (of TOD) is possible for wireless channels.” In [3], we have given a
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positive answer to the open question, by presenting a functionally complete real-
ization of TOD in wireless multi-hop networks.

To realize TOD, we apply Black Burst Synchronization (BBS, see Chap. 2) and
Arbitrating and Cooperative Transfer Protocol (ACTP, see Chap. 6). Figure 12.3
shows the hierarchical global time structure (see Chap. 3). On top level, time is
decomposed into super slots consisting of sync region and arbitrated region. The
arbitrated region is then divided into arbitrated slots of equal length darbSlot, except
for the first slot, which has a duration of darbSlot − dconv. Here, dconv is the con-
vergence delay for resynchronization, i.e., the length of the sync region at the
beginning of super slots. The reason for this is that to satisfy the requirements of
TOD, all time slots must have fixed duration. For the first time slot, this is achieved
by conceptually decomposing it into resync slot and TOD slot, to leave time for
resynchronization. Furthermore, arbitrated slot duration has to satisfy MATI, i.e.,
darbSlot � MATI.

Arbitrated slots are further decomposed into arbitration and data phase—the
TOD round—preceded and followed by idle times (see Fig. 12.3). This slightly
deviates from the time structure of arbitrated slots in Chap. 6, which does not
contain idle times. An exception is again the first arbitrated slot, which does not
contain the first idle time. The first idle time of subsequent slots aligns the starting
point of the TOD round with that of the first slot, to compensate for the preceding
resynchronization, i.e., didleTime1 = dconv. The second idle time fills up slots to save
energy in case darbSlot > darbPhase + ddataPhase + didleTime1.

In the arbitration phase, nodes contend by reporting their weighted error. ACTP
ensures that all nodes reporting the greatest weighted error win. To have exactly one
winning node, nodes extend contention by sending their unique identifiers.
Figure 12.3 shows a scenario where the arbitration phase consists of 4 bit phases,

Fig. 12.3 Virtual time slotting for TOD (see also Sect. 6.2.2)
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which in turn are decomposed into 2 bit rounds. This indicates that an arbitration bit
sequence of length nbits = 4 is used, and that the network diameter is nhops = 2.

The winning node then transmits its data frame in the data phase. In a multi-hop
network, each data frame has to be forwarded over one or more hops until it reaches
the destination node, in the same data phase. This places a timing constraint con-
cerning the minimum duration ddataPhase. In the two-hop scenario in Fig. 12.3, two
slots for data frame transfer are configured.

Figure 12.4 shows a concrete scenario of a batch reactor control system. The
topology on the left side consists of a master node vm acting as controller and sensor
nodes reporting errors. In the arbitration phase, sensor nodes contend with their
weighted error value followed by their node identifier, with nbits = 6 and nhops = 3.
In the example, error values and identifiers are shown in decimal notation. Because
nodes vr and vt report the same greatest weighted error value 7, they continue and
transmit their node identifiers to resolve contention, yielding node vr as winner. In
the data phase, vr transmits its data frame containing the actual error value to vm, via
nodes vt and vu, which completes the TOD round.

Figure 12.4 also shows idle times during the TOD round, indicating potential for
energy saving. For instance, the master node vm does not participate in the arbi-
tration, and therefore can stay idle in the arbitration phase. The drawback is that vm
does not learn about the winner identifier, and therefore, it has to listen for an
incoming data frame during the entire data phase. Since the remaining nodes are
aware of the winner identifier, and assuming that topology information is readily
available, they can be switched to active mode when participating in a frame
exchange in the data phase, and to sleep mode otherwise.

In [12], the bound MATI = 10.65 ms for guaranteeing L2 stability in the pres-
ence of bounded perturbations has been derived. We now analyze whether the
constraint darbSlot � MATI can be satisfied for a given hardware platform in the
three-hop scenario in Fig. 12.4. For the analysis, we use Atmel’s AT86RF230
transceiver [6]. Compared to the Chipcon CC2420 transceiver for which an

Fig. 12.4 Unstable batch reactor control system—three-hop scenario: sample TOD round
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implementation of ACTP exists [8], it has beneficial characteristics that lead to
smaller maximum tick offsets, less convergence delay, and shorter bit rounds.

In the example, we use an arbitration bit sequence of length nbits = 6 (3 bits
weighted error, 3 bits identifier) and a network diameter nhops = 3. Based on the
analysis of ACTP in Chap. 6, this yields darbPhase = 5.184 ms. As maximum tick
offset, we obtain 56 µs, with resynchronization interval dresInt = 100 ms; conver-
gence delay is dconv_m = didle1 = 2.846 ms. During the data phase, we transmit data
frames of 16 bytes length, carrying 8 bytes of payload, yielding ddata = 1.872 ms.
Summing up, we obtain a minimum arbitration slot length darbSlotMin = 9.902 ms,
which satisfies MATI. As arbitration slot length, we choose darbSlot = 10 ms.

At the time the case study has been defined, the ProNet 4.0 protocol stack was
not yet completed. For instance, the ProArb protocol module (see Chap. 6) and the
BiPS framework (see Chap. 11) were not yet operational on Imote2. Furthermore,
the transceiver AT86RF230 was not available. Therefore, the case study has been of
analytical nature. Nevertheless, feasibility and reliability experiments with the
transceiver CC2420 have been conducted (see Chap. 6).

12.3 Vertical Integration of Production Processes (VI-P)

The third case study [5] features the entire protocol stack ProNet 4.0 and its pro-
totypical implementation on Imote2 nodes. The case study is part of the demon-
strator vertical integration of production processes (VI-P) developed in Task 6.1.4
“Adaptive Services in Networked Production Environments” of the project
SINNODIUM (Software Innovations for the Digital Enterprise), funded by the
German Federal Ministry of Education and Research. In this chapter, we survey the
broader application context and address some aspects of the communication solu-
tion that involve ProNet 4.0.

12.3.1 Application Context

Industry 4.0 is said to be the next evolution step in production and automation. By
digitization and by making factories intelligent, production processes become more
efficient regarding cost, resources, administration, and maintenance. This requires
that production processes and products are continuously monitored and controlled,
that structures in production plants are flexible, and that the layers of automation
(AT) and information technology (IT) are vertically integrated.

With several partners from industry, research institutes, and universities, we
have developed technological components and a demonstrator featuring solutions
for Industry 4.0 [5]. In the core of the technological foundations are QoS-capable
middleware concepts for production plants. Though in the demonstrator, several
heterogeneous middleware systems are composed, their interfaces are generic and
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guided by the idea of emergent software to enable a seamless and systematical
vertical integration of the AT and IT worlds. This way, high-level management and
enterprise resource planning (ERP) systems are coupled with field and control
layers.

Figure 12.5 shows the technological components developed in the research
project, and their integration:

• On IT layer, there is an ERP system developed and maintained by proALPHA
Software GmbH, a software provider for mid-sized enterprises. This system has
been enhanced by interfacing components to the AT layer. In particular, abstract
interfacing with aggregated servers by definition of key performance indicators
(KPIs) and exchange of KPI values is supported.

• Aggregated servers are responsible for the orchestration of field services and the
collection of data from field devices. Services and data are merged into a uni-
form semantical information model based on Open Platform Communications
Unified Architecture (OPC UA) [14], where KPIs are generated on the basis of
the model and standardized KPI templates. These KPIs are homogeneous and
have a uniform semantical description to make them accessible and processible
by business applications like ERP systems.

• Aggregated servers collect raw data provided by sensors on field level.
Communication is wireless, via ProNet 4.0, using the real-time services of
Production Middleware (ProMid, see Chap. 10), which in turn uses the real-time
communication services of the ProNet 4.0 protocol stack.

• Service robots such as automated guided vehicles contribute to a more flexible
and safer operation of production facilities. Robot services may include safe and
autonomous navigation to target positions, teleoperation, and the provision of
robot sensor data and system states. To realize these services, other services
available in the production plant, for instance, services of stationary sensors to
improve navigation, may be subscribed to via ProMid.

• Remote operators are responsible for running and maintaining production
facilities. With a high level of automation and monitoring, these facilities no

Fig. 12.5 Components of the infrastructure of an enterprise with vertical integration (see [5],
Fig. 1)
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longer need continuous supervision. Instead, highly specialized personnel takes
care remotely in case of maintenance and malfunctions.

• To get quick information about the production facility status, remote operators
use a dashboard providing all kinds of data, such as a floor plan, measurement
values, and video data. This information is provided by a Web-based multi-
media system, connected to the ERP system on IT layer and to service robots on
AT layer. To build up efficient and flexible connectivity, the paradigm of
software defined networking is instantiated.

All technological components have been prototypically implemented and
deployed in the demonstrator VI-P.

12.3.2 Communication Solution

The technological components developed in the research project form part of the
VI-P demonstrator, located in the Living Lab SmartFactoryKL of the German
Institute for Artificial Intelligence (DFKI) in Kaiserslautern. The laboratory hosts a
production plant bottling liquid colored soap. For demonstration purposes, we
consider the following scenario. During the production process, a pump fails. The
automation system has to detect the failure in real time and to store failure data in a
failure variable monitored by the ERP system. To reduce downtime, this auto-
matically starts a workflow to identify the fault causing the failure and to start
repairing.

In the scenario, we assume that it is not economical or feasible to have a
specialist on standby in the production plant. Therefore, as part of the workflow, a
remote specialist is consulted. Via the dashboard as remote interface, the specialist
starts narrowing down the problem. He orders a mobile service robot equipped with
a camera and further sensors to navigate to the faulty pump and evaluates the video
streams. After identifying the origin of the problem, a local mechanic is consulted
to repair the pump while being guided by the remote specialist.

Communication between technological components is via enterprise network,
multimedia network, and real-time sensor network (see Fig. 12.5). To establish the
sensor network, ProNet 4.0 is deployed, connecting stationary sensors of the pro-
duction plant, mobile sensors of the service robot, and an aggregated server (see
Fig. 12.6). Each sensor provides a service, which is published via ProMid and
registered in the ProMid service registry (see Chap 10). For instance, sensors
monitor the status of the pump and measure temperatures and gas concentration.
Aggregated server and service robot can subscribe to these services dynamically.
When navigating toward the faulty pump, the service robot subscribes to services
along planned routes. If critical sensor values are received, for instance, due to a gas
leak, the robot reduces its set of planned routes and finally chooses a safe route or
stops if no such route exists.
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To realize this high-level functionality, communication functionality on all
layers of ProNet 4.0 is exploited:

• Production middleware (ProMid, see Chap. 10) provides the abstract interface
for service users (aggregated server, service robot) and service providers (sen-
sors) for service publication and subscription.

• Services are dynamically registered and looked up in the ProMid service registry
(see Chap. 10).

• To establish the service registry, heterogeneous network clustering with HNC
(see Chap. 9) is performed.

• QoS multicast routing (QMR, see Chap. 8) detects routes in this partially mobile
TDMA sensor network.

• QMR constructs routing trees and reserves exclusive slots to achieve reliable
value transfers, based on topology information collected by Automatic
Topology Discovery Protocol (ATDP, see Chap. 4) and global time slotting (see
Chap. 3).

• Exclusive medium access is provided by the medium access control protocol
ProRes (see Chap. 5).

Fig. 12.6 Production plant bottling liquid soap with Imote2 nodes running ProNet 4.0 (see [20],
Fig. 8)
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• Global time slotting, medium access, and application services require
network-wide tick and time synchronization, which is provided by the syn-
chronization protocol Black Burst Synchronization (BBS, see Chap. 2).

• Finally, the Black burst integrated Protocol Stack (BiPS, see Chap. 11)
framework provides communication and operating system functionality, and
integrates further communication protocols.

12.4 Conclusions

In this chapter, we have presented three case studies featuring different function-
alities of ProNet 4.0. The first case study addresses the operation of several inde-
pendent control systems over a shared wireless communication network. Part of the
communication solution is global time slotting, synchronization, and exclusive and
mode medium access. The second case study realizes the protocol
Try-Once-Discard in a wireless multi-hop network. This requires global time
slotting, synchronization, and deterministic multi-hop arbitration and data transfer.
The third case features the entire ProNet 4.0 protocol stack, exploiting various
real-time communication functionalities and the real-time production middleware.

Taken together, the case studies provide evidence that ProNet 4.0 combines rich
functionalities that cover a variety of requirements. Most importantly, ProNet 4.0
incorporates deterministic protocols that can satisfy real-time requirements—key is
a deterministic protocol for tick and time synchronization. Furthermore, ProNet 4.0
offers novel functionalities, in particular, mode medium access and deterministic
multi-hop arbitration and value transfer. Automatic topology detection and a QoS
multicast routing protocol for partially mobile networks support operation of
multi-hop networks. Finally, a production middleware provides an abstract interface
for production and control applications, incorporating a distributed service registry
with replicated service entries.
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Chapter 13
Conclusions and Future Research

This chapter briefly summarizes the results reported in this book, presents con-
clusions, and reports on future research.

13.1 Results and Conclusions

In this book, we have presented core functionalities and protocols for wireless
real-time multi-hop networking with time-division multiple access (TDMA), their
integration into a flexible, versatile, fully operational, self-contained communica-
tion system called Production Network (ProNet) 4.0 [1], and their operation in a
number of case studies. Altogether, ProNet 4.0 provides rich functionalities that
cover a large variety of communication requirements.

Real-time behavior is supported by deterministic protocols, providing, for
instance, tick and time synchronization, mode medium access, and multi-hop
medium arbitration. With protocol modules for automatic topology detection and
quality of service (QoS) multicast routing for partially mobile networks, ProNet 4.0
supports the operation of wireless multi-hop networks. A customized production
middleware provides an abstract interface for real-time applications in production
and control systems, incorporating a distributed service registry with replication of
service entries.

• In Chap. 2, we have presented Black Burst Synchronization (BBS), a deter-
ministic protocol with low upper bounds for tick offset, time offset, and con-
vergence delay. Further features of BBS are low complexity of computation,
storage, time and structure, and robustness against topology changes. During the
development of BBS, we have gained three key insights. First, nodes can
synchronize by agreeing on network-wide reference ticks, without synchroniz-
ing their local clocks. This reduces the amount of synchronization data to be
exchanged among nodes. Second, time synchronization can be achieved on top
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of tick synchronization, without much additional exchange of synchronization
data. Third, by encoding synchronization messages with black bursts, potential
collisions are rendered non-destructive. This reduces convergence delay and
enables deterministic operation.

• In Chap. 3, we have presented a novel approach for global time slotting. Here,
fixed, strictly periodic physical time slotting and variable, weakly periodic
virtual time slotting provide a high degree of flexibility. This enables customized
sync, exclusive, shared, mode, arbitrated, and idle regions and thereby reduces
waiting delays and energy consumption.

• In Chap. 4, we have presented Automatic Topology Discovery Protocol (ATDP),
which detects communication, interference, and sensing topologies in wireless
multi-hop TDMA networks. Solid information about these topologies is vital for
other network functionalities, in particular, for routing and clustering.
Furthermore, knowledge about the interference topology enables space-division
multiple access (SDMA) to increase network throughput.

• In Chap. 5, we have presented medium access schemes. Exclusive access and
shared medium access are well known and supported by ProNet 4.0. Furthermore,
we have presented a novel scheme called mode medium access with mode-triggered
scheduling and fast mode-signaling. Mode medium access restricts shared access to
defined subsets of nodes. By assigning and signaling unique mode priorities,
contention in single-hop range is rendered predictable, which avoids collisions.

• In Chap. 6, we have presented Arbitrating and Cooperative Transfer Protocol
(ACTP). ACTP is a binary countdown protocol providing deterministic arbi-
tration and value transfer within a configurable hop radius in wireless networks.
This supports applications such as leader election and distributed consensus.
ACTP has low time and space complexity and is robust against node move-
ments and node failures.

• In Chap. 7, we have presented a flexible and energy-efficient duty cycling
approach for wireless networks supporting weakly periodic idle periods.
Flexibility of placing idle regions is due to very flexible global time slotting (see
Chap. 3), which enables customized idle periods. In addition, given the type of
virtual time region, further potential for duty cycling can be exploited, with
exclusive regions performing best.

• In Chap. 8, we have presented QoS multicast routing (QMR), a specialized
routing protocol for partially mobile wireless TDMA networks. QMR incre-
mentally constructs and prunes routing trees, and assigns and releases exclu-
sively reserved slots at runtime. Taking routing and slot scheduling decisions in
a centralized way prevents mutual blocking of resources due to concurrent route
searches, substantially reduces management traffic, and avoids the problem of
inconsistent reservation status due to lost or delayed management messages.

• In Chap. 9, we have presented heterogeneous network clustering (HNC) for
wireless TDMA networks consisting of stationary nodes with different capa-
bilities and resources. HNC clusters a heterogeneous network into a 3-hop

266 13 Conclusions and Future Research



connected 1-hop dominating set, if such a clustering is feasible. Clustering
objectives are a small number of clusters and efficient connectivity.

• In Chap. 10, we have presented production middleware (ProMid), a customized
middleware for production and control applications. ProMid adopts a client–
server architecture, with service providers publishing services, and service users
subscribing to services. ProMid operates a distributed service registry, where
service entries can be replicated by setting a replication radius.

• In Chap. 11, we have presented Black burst integrated Protocol Stack (BiPS), a
framework comprising operating system and communication functionalities. In
particular, BiPS comprises a real-time scheduler controlling the timely execution
of processes and protocols. Furthermore, BiPS implements core protocol
functionalities, in particular, tick and time synchronization, global time slotting,
topology detection, and several medium access schemes.

• In Chap. 12, we have presented three case studies featuring different function-
alities of ProNet 4.0. Taken together, the case studies provide evidence that
ProNet 4.0 combines rich functionalities that cover a large variety of commu-
nication requirements, and, most importantly, real-time requirements.

ProNet 4.0 has been fully implemented as prototype and has been successfully
deployed and operated in an industrial setting as part of the demonstrator vertical
integration of production processes (VI-P, see Chap. 12). Target platform are
Imote2 nodes [9] equipped with Chipcon CC2420 transceivers [8]. Building on the
real-time-capable implementation framework BiPS, ProNet 4.0 classifies as
bare-metal solution.

The successful implementation and operation of ProNet 4.0 on the chosen target
platform provide evidence that this is feasible on customary hardware. We observe,
however, that efficiency of operation could be improved on a hardware platform
that is specifically devised to support the functionality of ProNet 4.0, in particular
black bursts and tick synchronization. For instance, the CC2420 transceiver pro-
duces substantial delays when switching between rx and tx modes, and when
performing clear channel assessment (CCA). Here, Atmel’s AT86RF230 transcei-
ver [7] is much faster. Furthermore, the low data rate of 250 Kbps is a bottleneck.
Finally, a better (and more expensive) processor quartz could reduce maximum
clock skew.

In Chap. 2, we have analyzed BBS and its performance on the CC2420 and
AT86RF230 transceivers. With a specialized transceiver that offers, for instance,
dmaxCCA = 4 µs, rmaxClockSkew = 5 ppm, a data rate of 1 Mbps (dsym = 4 µs), and
switching delays drxtx = dtxrx = 4 µs, synchronization accuracy and convergence
delay could be improved as shown in Table 13.1. Compared to the CC2420, the
improvements are dramatic and still substantial w.r.t. to the AT86RF230.

In Sect. 12.2, we have analyzed the minimum arbitration slot length to be
darbSlotMin = 9.90 ms, based on the values of the AT86RF230 transceiver. This
satisfies maximal allowable transfer interval (MATI) of 10.65 ms, but leaves no
bandwidth for other usage. For the CC2420, we even get darbSlotMin = 29.37 ms,
which violates MATI. With the specialized transceiver, we obtain
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darbSlotMin = 2.47 ms, resulting in a duty cycle of only 24.7%. Altogether, this
shows that a specialized transceiver is crucial for the efficient implementation of
ProNet 4.0.

13.2 Future Research

At the end of this book, the question of future research in the area of wireless
real-time communication systems remains to be addressed. How is the work
reported here to be continued? Following the style of this monograph, we will
provide a concise and focused outlook of our research instead of a broad treatment
of developments and trends in the entire research community and industry.

The development of the ProNet 4.0 real-time protocol stack has greatly bene-
fitted from the decisions to use the Imote2 hardware platform with the CC2420
transceiver, to develop a bare-metal solution and to replace the medium access
control (MAC) layer of the IEEE 802.15.4 standard by a customized MAC layer
supporting black bursts and a variety of medium access schemes. This of course has
created substantial hardware dependencies, which makes it cumbersome to change
platform components. In fact, production of Imote2 motes has been discontinued
several years ago.

Given this situation, the question arose whether it is feasible to build wireless
real-time communication systems on off-the-shelf widespread communication
technologies such as IEEE 802.11 (Wi-Fi), using general-purpose boards running
customary operating systems such as Linux. Such an approach would greatly
simplify changing hardware platforms and transceivers, as there would be less
hardware dependencies. Furthermore, it would reduce development effort, as a
common well-maintained operating system and an existing MAC layer would be
used. On the other hand, real-time capabilities of bare-metal solutions would no

Table 13.1 Analysis of BBS: CC2420, AT86FR230, and specialized transceiver

CC2420 AT86RF230 Specialized
transceiver

nmaxHops 1 4 1 4 1 4

dresInt 1 s 1 s 1 s

dsym 16 µs 16 µs 4 µs

dmaxCCA 128 µs 16 µs 4 µs

drxtx, dtxrx 192 µs, 192 µs 17 µs, 33 µs 4 µs, 4 µs

rmaxClockSkew 40 ppm 40 ppm 5 ppm

dmaxTickOffset_m 208 µs 592 µs 96 µs 144 µs 14 µs 26 µs

dmaxTickOffset_d 400 µs 1360 µs 113 µs 212 µs 18 µs 42 µs

dconv_m 1.60 ms 8.32 ms 0.82 ms 3.86 ms 0.21 ms 1.00 ms

dconv_d 1.56 ms 13.94 ms 0.66 ms 3.42 ms 0.17 ms 0.89 ms
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longer be within reach. In particular, it would be very difficult to achieve accurate
tick and time synchronization, as concepts such as black bursts cannot be imple-
mented on top of the IEEE 802.11 MAC layer. Furthermore, Linux does not
support a protocol-centric real-time approach as in BiPS.

Starting point for answering the question has been our decision to explore ways
of devising real-time capable wireless communication systems on Linux-driven
low-priced boards, equipped with widely available Wi-Fi cards employing, for
instance, the Atheros chipset. Different from ProNet 4.0 and IEEE 802.15.4,
additional communication functionality is to be built on top of the MAC layer, not
on top of the PHY (PHYsical) layer, which fosters portability of implementations.
Furthermore, data rates of IEEE 802.11 are substantially higher than data rates of
IEEE 802.15.4.

In the following, we report on our activities to build up communication func-
tionality that contributes to the real-time behavior of IEEE 802.11 networks. As
network-wide tick synchronization that is sufficiently accurate to establish short
time slots for single message transfer is out of reach, exclusive slot reservation is
not feasible. Instead, we strive for statistical approaches for link quality assessment,
bandwidth reservation, traffic monitoring, fair bandwidth usage, routing, and
channel quality assessment.

Automatic Topology Detection

Solid information about communication topologies is essential for other network
functionalities, in particular, for routing and clustering. In Chap. 4, we have pre-
sented Automatic Topology Detection Protocol (ATDP), which detects communi-
cation, interference, and sensing topologies of wireless TDMA networks. For this, it
observes the reliability of links until deterministic stability criteria are met.

As accurate time slotting for single message exchange is not available in IEEE
802.11 networks, automatic topology detection is restricted to communication
topology. Furthermore, medium access is contention-based, therefore, deterministic
stability criteria for the reliability of links are out of reach. To support reliability, we
have therefore decided to use a network model G = (V, r) with nodes v 2 V and a
statistical reliability function r: V � V ! R0,1 for single-hop communication [3].
Based on r, the set of links is then defined as E =df {(v, v′) 2 V � V | r(v, v′) > 0}.
This network model is suitable for statistical reliability routing, as explained below. It is
the task of automatic topology detection to establish and maintain G, via observation of
statistical link reliabilities during network operation.

Time Token Bucket Traffic Monitoring and Traffic Shaping

In IEEE 802.11 networks, nodes follow a greedy strategy to satisfy communication
requests of applications as quickly as possible. With increasing network density,
this leads to overload situations resulting in an increase of collisions, frame loss,
retransmissions, and frame delays. This problem can, for instance, be tackled if each
node is prepared to shape its traffic locally such that network overload is avoided.
Traffic shaping in turn requires traffic monitoring to assess the current network load,
in order to make local decisions about medium usage.
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For traffic shaping in IEEE 802.11 networks, we have devised and implemented
a variant of the token bucket algorithm called time token bucket [2]. With this
algorithm, it is possible to control medium access such that local bandwidth usage
conforms to the reserved relative bandwidth, frames exceeding it are delayed or
dropped, and traffic is distributed uniformly to avoid high contention situations. For
traffic monitoring, we have conceived the novel metric unusable wasted bandwidth
ratio (UWBR), which is computed locally from the number of unusable wasted
tokens. Other than the commonly used metric channel busy time (CBT), UWBR is
hardware-independent.

Fair Bandwidth Scaling

In IEEE 802.11 networks, applications with quality of service (QoS) requirements
such as Voice over IP (VoIP) apply scaling based on the perceived data rate.
However, this happens in a greedy way, where each node tries to maximize its own
throughput. This problem can be solved, for instance, if nodes cooperate to get fair
shares of the available bandwidth.

For fair bandwidth scaling in IEEE 802.11 networks, we have devised and
implemented a novel algorithm [6] based on reserved minimum and preferred
relative bandwidth bwmin,v and bwpref,v of nodes v 2 V using our time token
bucket algorithm for traffic monitoring and traffic shaping. The idea is to divide the
difference bwpref,v − bwmin,v into an equal number of levels and to balance the
levels of all nodes such that each node v gets (almost) the same relative share of
bandwidth on top of bwmin,v. Using the local metric UWBR and information about
the levels of its neighbors, each node decides locally when to scale up or down.
First experiments in a single-hop test bed of nodes equipped with off-the-shelf
Wi-Fi adapters have shown that after a short stabilization phase, the QoS fairness
index is close to 1, i.e., fair bandwidth distribution is reached.

rmin-Routing

In multi-hop IEEE 802.11 networks, routes are required to provide end-to-end
connectivity. To assess the quality of routes, route metrics are applied. The most
prevalent route metric is probably shortest path (SP), which minimizes the number
of hops between source and destination. However, this is not a good idea in wireless
networks, as it gives preference to links that cover more distance and are therefore
less reliable, due to signal attenuation and fading.

For routing in IEEE 802.11 networks, we have conceived a novel algorithm
called rmin-routing [3]. The idea of rmin-routing is to discover routes matching a
specified statistical reliability target rmin. Route discovery is based on a network
model G = (V, r), where V is the set of nodes and r is a statistical reliability function
for single-hop communication. G is determined and maintained by automatic
topology detection, as already explained. To increase the number of route candi-
dates, rmin-routing uses well-directed retransmissions. To select among a set of
route candidates, it applies several quality criteria. Key is a new routing metric
called smallest maximum number of transmissions (SMTX), which determines the
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minimum number of transmissions to match a specified statistical reliability rmin on
a path p and distributes them among the links of p such that rmin is satisfied.

Channel Hopping Schedules

IEEE 802.11 networks can operate on different channels. For instance, when using
the 2.4 GHz range, up to 14 channels are available. When setting up a Wi-Fi
network, one of these channels is selected, possibly based on a channel quality
assessment to avoid or reduce overlap with other networks. For improved perfor-
mance, it is also possible to dynamically measure channel qualities, select the best
channels, and perform channel hopping based on a common schedule.

In [4], we have presented an approach for the dynamic computation and
adjustment of channel hopping schedules for, but not limited to, cognitive radio
networks. Based on channel quality, metrics for the number of channel utilizations
in a hopping schedule and for the distribution of channel usage in the schedule are
defined. Using these metrics, optimal channel hopping schedules are computed and
dynamically adjusted. The approach gives preference to channels of higher quality,
by using them more frequently. Furthermore, dynamic schedule adjustments due to
changing channel quality usually lead to small changes, keeping network operation
more stable.

Operation of Wireless Networks with Channel Hopping

When using channel hopping, network nodes have to agree on a common hopping
schedule. In [5], we have presented a three-dimensional stabilization protocol for,
but not limited to, multi-hop cognitive radio networks with channel hopping. For
stabilization in the dimensions time and space, nodes agree on a common time
structure of super slots and macroslots. For stabilization in the dimension channel,
nodes determine and share global channel hopping schedules.

These are examples of communication functionalities that contribute to a more
reliable and more predictable operation of multi-hop IEEE 802.11 networks. In our
future research work, we will integrate, tune, and augment these functionalities.
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