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Anonymous Webs of Trust

Michael Backes!2, Stefan Lorenz', Matteo Maffei’, and Kim Pecina'

! Saarland University, Saarbriicken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract. Webs of trust constitute a decentralized infrastructure for es-
tablishing the authenticity of the binding between public keys and users
and, more generally, trust relationships among users. This paper intro-
duces the concept of anonymous webs of trust — an extension of webs of
trust where users can authenticate messages and determine each other’s
trust level without compromising their anonymity. Our framework com-
prises a novel cryptographic protocol based on zero-knowledge proofs, a
symbolic abstraction and formal verification of our protocol, and a proto-
typical implementation based on the OpenPGP standard. The framework
is capable of dealing with various core and optional features of common
webs of trust, such as key attributes, key expiration dates, existence of
multiple certificate chains, and trust measures between different users.

1 Introduction

Over the last years, the Web has evolved into the premium forum for freely dis-
seminating and collecting data, information, and opinions. Not all information
providers, however, are willing to reveal their true identity: For instance, some
may want to present their opinions anonymously to avoid associations with their
race, ethnic background, or other sensitive characteristics. Furthermore, people
seeking sensitive information may want to remain anonymous to avoid being stig-
matized or other negative repercussions. The ability to anonymously exchange
information, and hence the inability of users to identify the information providers
and to determine their credibility, raises serious concerns about the reliability of
exchanged information. Ideally, one would like to have a mechanism for assigning
trust levels to users, allowing them to anonymously exchange data and, at the
same time, certifying the trust level of the information provider.

Webs of trust. Webs of trust (WOT) constitute a well-established approach to
bind public keys to their owners and, more generally, to establish trust relation-
ships among users in a decentralized manner: Each participant decides which
public keys are considered trustworthy. This trust is expressed by signing the
trustworthy public keys along with a set of user and key attributes (e.g., user
name and key expiration date). These certificates can be chained in order to
express longer trust relationshipsEI For instance, the certificate chain

3 In the OpenPGP standard [15], trust relationships may be transitive and their valid-
ity is ruled by trust signatures, which we describe in In our setting, the
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says that the owner of pks has certified the binding between the public key pkqy
and the set Ao of attributes, and the owner of pk, has certified the binding be-
tween pk; and A;. Such certificate chains are a salient technique for expressing
transitive trust relationships, e.g., to use webs of trust to implement friendship
relations in social networks such as Facebook, where transitive friendship rela-
tions are common; in this example, the owner of pk; would be a friend of a friend
of the owner of pks.

After receiving a signature on message m that can be verified using pk;, the
owner of pk; knows that m comes from a user of trust level 2 bound to the
attributes A1E| Hence for authenticating a message in the context of a WOT,
the sender has to find a chain of certificates starting with a certificate released
by the intended recipient and ending with a certificate for the sender’s key.

Our contributions. In this work we introduce the concept of anonymous webs
of trust — an extension of webs of trust that allows users to authenticate messages
and determine each other’s trust level without compromising their anonymity.
Our framework comprises:

— a cryptographic protocol based on the Camenisch-Lysyanskaya signa-
ture scheme [I6] and a novel zero-knowledge proofE| that allows users
to efficiently prove the existence of certificate chains without com-
promising user anonymity. For instance, given the -certificate chain
sig((pky,.A1),ska), sig((pksy, Az),sks) and a message m that the owner of pk,
wants to authenticate with the owner of pks, our protocol allows the owner
of pk; to prove a statement of the form “there exist certificates Cy,C2, a
signature S, keys K7, K5, and attributes A, As such that (i) C is a certifi-
cate for (K7, Ap) that can be verified with key Ko, (i7) Cs is a certificate
for (K2, As) that can be verified with key pks, and (i#4) S is a signature on
m that can be verified with K,”. This statement reveals only the length of
the chain, i.e., the trust level of the sender, the authenticated message m,

trust relationship is more sophisticated and, in fact, it is parametrized by a number
of factors including the length of the chain (i.e., the longer the chain, the smaller
the conveyed trust). This allows us to accommodate fine-grained trust models, as
discussed in
For the sake of simplicity, we identify the trust level of a certificate chain with its
length here. In we will consider the more sophisticated trust measure
proposed in [2I]. We refer the interested reader to [43[340/42|2TIT9/54/4139] for ad-
ditional trust models.
A zero-knowledge proof combines two seemingly contradictory properties. First, it
is a proof of a statement that cannot be forged, i.e., it is impossible, or at least
computationally infeasible, to produce a zero-knowledge proof of a wrong statement.
Second, a zero-knowledge proof does not reveal any information besides the bare fact
that the statement is valid [36]. A non-interactive zero-knowledge proof is a zero-
knowledge protocol consisting of one message sent by the prover to the verifier.



and the public key pks of the intended recipient. We provide a prototypical
implementation of our protocol as an extension of the OpenPGP standard.
The tool is freely available at [7].

— a number of extensions of our protocol to achieve fine-grained anonymity
and trust properties. In some situations, a controlled release of additional
information is desired or even required, e.g., proving that the keys involved
in a chain have not expired. We propose variants of our zero-knowledge
proof that allow for selectively revealing additional properties of the certifi-
cate chains, such as the validity of the keys with respect to their expiration
date, the existence of multiple certificate chains, and the trust level that the
certificate chains are assigned according to a realistic trust model. These
extensions demonstrate the expressiveness and generality of our approach.
The potential application scenarios of our protocol include distributed so-
cial networks, where people may want to share opinions or information in
an anonymous fashion while being able to prove their trust relationships,
applications for anonymous message exchange, and services for anonymous
yet trustworthy reports or reviews.

— a symbolic abstraction and a formal verification of our protocol. We specify
our protocol in the applied pi-calculus [2], and we formalize the trust prop-
erty as an authorization policy and the anonymity property as an observa-
tional equivalence relation. We consider a strong adversarial setting where
the attacker has the control over the topology of the web of trust, some of
the protocol parties, and the certificate chains proven in zero-knowledge by
honest parties. Security properties are verified using ProVerif [12], an auto-
mated theorem prover based on Horn clause resolution that provides security
proofs for an unbounded number of protocol sessions and protocol parties.

Related work. Although the setting is different, our approach may at a first
glance resemble the delegatable anonymous credential scheme [I0]. This protocol
relies on an interactive protocol between each pair of users along the certificate
chain. In contrast, our protocol is fully non-interactive, and provers do not need
any interactions with other principals except for the intended recipient. In ad-
dition, our approach allows the prover to selectively reveal partial information
on attributes in the certificate chain, which is crucial to achieve anonymity in
realistic trust models without compromising their expressiveness.

Group signature schemes [25J49I6/TT] provide a method for allowing a member
of a group to anonymously sign a message on behalf of the group. In contrast to
our approach, these schemes require the presence of a group manager; moreover,
two users in the same group are completely interchangeable. A similar argument
holds for HIBE/HIBS schemes [34/13], where anonymity could be obtained by
replacing user identifiers with generic anonymous attributes.

Ring signature schemes [45lJ38/41] are similar to group signatures but do not
require a group manager. As for group signatures, two users in the same group
are completely interchangeable. It would be interesting, nevertheless, to explore
the usage of ring signature schemes to achieve k-anonymity in webs of trust.



Social networks constitute a particularly promising application scenario for
our protocol; we thus briefly relate our approach to recent works on privacy
and anonymity in social networks. The (somewhat) orthogonal problem of cre-
ating encrypted data that can be read by people who are n degrees away in a
social network has been recently addressed [3I]. Several techniques have been
proposed to keep the social network graph private while enforcing access con-
trol policies based on trust degrees [28/27153]. In contrast to our approach, the
proposed protocols are interactive, similar to the delegatable anonymous creden-
tial scheme [10]. In other works, trust relationships are instead assumed to be
public, e.g., [46/5J20]. Our approach does not put any constraints on the way
certificates are distributed (for instance, they could be exchanged by private
communication). We just assume that the prover can retrieve the certificates
composing the chain proven in zero-knowledge. In the specific context of webs
of trust such as GnuPG [50], public keys and attached certificates are uploaded
on key servers and are thus publicly available. Finally, the recently proposed
Lockr protocol [52] achieves access control and anonymity in social networks and
file-sharing applications, such as Flickr and BitTorrent. Lockr provides weaker
anonymity guarantees compared to our framework, since the prover has to reveal
her identity to the verifier; moreover, Lockr does not support certificate chains
but only direct trust relationships.

Outline of the paper. introduces the notion of anonymous webs of
trust and provides a high-level overview of our protocol. describes the
cryptographic setup, conducts a complexity analysis, and describes the imple-
mentation. [Section 4] presents extensions of our protocol that accommodate some
advanced properties of webs of trust. proposes a symbolic abstraction
of our protocol and conducts a formal security analysis. concludes and
gives directions of future research.

2 Anonymous Webs of Trust

In this section, we introduce the notion of anonymous webs of trust and we give
an overview of our protocol.

A web of trust is a decentralized public-key infrastructure. Each user u holds
a public key pk, and a secret key sk,. Trust is distributed via certificates. User
u expresses her belief that a given public key pk, actually belongs to user v by
signing pk, along with a set A, of user and key attributes. Hence, certificates
establish the relation between public keys and users and, depending on the ap-
plications, they can also be used to witness specific trust relationships between
users. These certificates are attached to the signed public key and uploaded all
together onto key servers. Every user having access to such a server can partici-
pate in the web of trust.

Trust into public keys not directly signed by a user is established using cer-
tificate chains. A certificate chain from A to B consists of all the certificates that
link (pka,.Aa) to (pkg, Ag), thus establishing a trust relation between those keys.
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Witnesses: aj < pkp g < sig(pkg,ska) ag < pke o < sig(pke,skg)

Fig. 1. Protocol for anonymous proof of a certificate chain of length 2

Definition 1 (Certificate Chain). A certificate chain or simply chain from
(pky, A1) to (pke,Ae) is a sequence of certificates C = (C, ..., Co—1) of length
¢ —1, where C; = sig((pk;;1,Ait1),5ki) and £ > 2. We say that (pk,, As) has
trust level £—1. We assume to know the binding between sk, and (pkq,.A1), which
can be captured by an additional self-generated certificate sig((Ai, pky),sky).

The fundamental idea of our approach is to provide anonymity in webs of
trust by deploying zero-knowledge proofs to demonstrate the existence of valid
certificate chains without revealing any information that might compromise the
anonymity of users. We consider a setting where users want to anonymously
exchange messages, yet guaranteeing the receiver the trust level of the sender.

For the sake of simplicity, we initially focus on certificates on public keys
without attributes. In[Section 4] we will extend our zero-knowledge proof scheme
to certificates binding a key to a set of attributes, and subsequently show how
to selectively hide some of them while revealing the others.

In order to authenticate a message m with the owner of pk;, the owner of pk,
has to retrieve a certificate chain from pk; to pk, and to prove in zero-knowledge
the existence of this chain as well as the knowledge of a signature on message m
done with the signing key corresponding to pk,. Notice that the signature cannot
be sent in plain, since this would compromise the anonymity of the sender. If
we denote by ver(m, C, pk) the successful verification of certificate C on message
m with public key pk, the statement that the owner of pk, has to prove can be
formalized by the following logical formula:

ver(pky, C1, pk;) A [/\5;21 ver(pk;. 1, Ci, pki)] A ver(hash(m), sig(hash(m), sk¢), pk,) (1)

which can be read as “the verification of signature C; on message pk, with
verification key pk; succeeds and for all ¢ from 2 to ¢ — 1, the verifications of
C; on pk,,, with pk; succeed and the verification of the signature on the hash
of m with pk, succeeds.” For efficiency reasons, the sender signs the hash of the
message she is willing to authenticate. Since the proof should not reveal the user
identities, we weaken this statement by existentially quantifying over all secret



witnessesff]
3 K1y ..., 201 :

ver(au, az, pky) A [/\f;; ver(oi—1, 02:, a2¢,3)] A ver(hash(m), aize—1, a2e—3)

(2)

This statement only reveals the public key pk; of the intended recipient, the hash
of the authenticated message m, and the length of the chain (i.e., the trust level
of the sender). The zero-knowledge proof of this statement is sent to the verifier,
who, after successful verification, will authenticate message m as coming from a
principal of level £—1. schematically shows our protocol for a certificate
chain of length 2. To execute this algorithm, we solely assume that the prover
can efficiently retrieve the certificates composing the chain. In an established
web of trust, public keys and attached certificates are usually uploaded on key
servers and are thus publicly available. Our approach, however, is general and
does not put any constraints on the way certificates are distributed (for instance,
they could be exchanged by private communication). We just require that the
prover has access to the certificate chain linking her key to the verifier’s one.

Input: A chain C = (Cq,...,,C¢—1) from pk; to pk,, signing key sk¢, recipient U
owner of pk;, and message m.

1. Set sig,, < sig(hash(m), ske).

2. Set formula
f o« 3 o, 0 ver(ar,ae,pky) A [/\i;; ver(ai—1, 2, 2i—3)] A
ver(hash(m), aae—1, a2¢—3).

3. Set witness W  (pky, C1, ..., pky, Co—1, Sig,,)-

4. Generate non-interactive zero-knowledge proof ZK(f) for statement f using
witnesses .

5. Send m, ZK(f), pky, hash(m)) to U.

Fig. 2. Anonymous message exchange protocol

3 Cryptographic Protocol

For implementing the ideas described in the previous sections, we need (i) a
digital signature scheme that allows for efficient zero-knowledge proofs and (i7)
an expressive set of zero-knowledge proofs that can be combined together in con-
junctive and disjunctive forms. For signing messages, we rely on the Camenisch-
Lysyanskaya signature scheme [I6] while, for proving statements about certifi-
cate chains, we propose a novel non-interactive zero-knowledge proof of knowl-
edge based on X-protocols [26]. We first review the basic building blocks and
subsequently describe the construction of our zero-knowledge proof scheme.

5 Here and throughout the paper, we use the convention introduced in [18] that Greek
letters denote those values that are kept secret by the proof.



3.1 Camenisch-Lysyanskaya Signature

This signature scheme was introduced in [I6] together with some zero-knowledge
proofs. None of them, however, deals with situations in which every value in-
volved in the verification (and, in particular, the verification key) must be kept
secret, as required by the statements considered in this paper. This circumstance
required us to develop a novel zero-knowledge proof.

We will now give a short overview of this signature scheme. A public key
is a tuple pk = (a,b,c,n) where n = p- ¢ is a special RSA modulus with p =
2:-p+1,q=2-¢" +1, and p,p’,q,q¢ are primes. The numbers a, b, and c are
uniformly random elements of QR(n), the group of quadratic residues modulo
n. The corresponding secret key is sk = p. Since factorizing n is assumed to
be hard, the attacker cannot efficiently compute sk. To sign a given message
m € [0,...,2%"), one chooses a random prime e of length ¢, > /,, +2 and a
random number s € [0, ..., 2n Tt +¢) where £, is the bit-length of n and ¢ is
a security parameter. In practice, £ = 160 is considered secure. Finally, one
computes v such that:

v=p (b c)l/e (3)

Here and throughout this paper, we write v =,, u to say that u is equivalent to v
modulo n. Notice that the factorization of n is used to efficiently compute 1/e.
The signature on message m is the tuple sig,, = (e, s,v). Given pk = (a,b, ¢, n),
m, and sig,, = (e, s,v), the verification of the signature sig,, is performed by
checking that 2%~! < e < 2% along with the following equivalence:

ve =, (a™-b°-¢) (4)
This equation constitutes the cryptographic instantiation of the symbolic pred-
icate ver(m,sig,,, pk) discussed in Under the strong RSA assump-
tion, the Camenisch-Lysyanskaya signature scheme is secure against existential
forgery attacks. Security against existential forgery is the standard notion of
security when dealing with signature schemes.

Definition 2 (Strong RSA Assumption). The strong RSA assumption
states that it is hard, on input an RSA modulus n and an element u € Zj,
to compute values e > 1 and v such that v¢ = u mod n. More formally, we as-
sume that for all polynomial-time circuit families { Ay}, there exists a negligible
function (k) such that

Prle > 1A0v° =, u:n <+ RSAmodulus(1*);u < QR,; (v, ) + Ag(n,u)| = pu(k)

3.2 Zero-Knowledge Proofs and X-Protocols

Zero-knowledge proofs were first introduced in [37] and have since then become
a key element of many cryptographic protocols. A zero-knowledge proof is an



interactive proof system (P, V') between two parties: The prover P and the ver-
ifier V. Both parties obtain the statement to be proven as input, the prover
additionally receives a witness to the given statement. Besides the usual com-
pleteness and soundness properties, the zero-knowledge property ensures that
even a malicious verifier cannot learn any information on the prover’s witness[’]
Our zero-knowledge scheme builds on a class of zero-knowledge protocols, called
Y-protocols [35126], which allow one to prove certain properties of committed
values without opening the commitments. We briefly review below the basic
building blocks of our scheme. A detailed description of their cryptographic

realization is given in

Y -protocols and their properties. The proofs outlined below belong to the
class of X-protocols, i.e., protocols composed of three message exchanges: com-
mitment (com), challenge (ch), and response (resp), sent by the prover, the
verifier, and the prover respectively. These protocols enjoy the special sound-
ness and the special honest verifier statistical zero-knowledge (SHVSZK) prop-
erties [35/26].

Special soundness is a strong form of proof of knowledge and guarantees that
a prover is in possession of a witness. This property says that given two protocol
transcripts with the same commitment but different challenges, one can extract
a witness to the proven statement. Honest verifier zero-knowledge is a variant of
the zero-knowledge property where the verifier chooses the challenge uniformly
at random from the according challenge space and, in particular, independently
of the commitment sent by the proverﬂ We write {PK(a) : S} to denote a proof
of knowledge of witnesses a for statement S.

As shown in [26], X-protocols can be combined together to prove logical
conjunctions and disjunctions of their respective statements.

Lemma 1 (Logical Combination of X-protocols [26]). Assume that
(P1,V1) and (P, V) are SHVSZK and have special soundness and overwhelm-
ing completeness for relations Ry and Ry respectively. Assume that My O Lg,
and My D Lg, where Ly := {(x,y) | vRy}. Assume that for both schemes, the
verifier accepts the output of the simulator with overwhelming probability.

Then there exist SHVSZK proof schemes for the relations Ra := R1 Appy M,
Ry and Ry := R, VM, Mo Rs.

Intuitively, the M; represent well-formed inputs and are needed for completeness

reasons. The construction is given in

" The zero-knowledge property is formalized using a simulator that, without having
access to the witness to a given statement, creates simulated proof transcripts that
are indistinguishable from actual protocol transcripts. Intuitively, this guarantees
that the proof cannot be used to gain any information on the witness.
In general, zero-knowledge implies honest-verifier zero-knowledge but the converse
does not necessarily hold. In our setting, however, focusing on honest verifiers does
not restrict the power of the attacker since the proof will be eventually made non-
interactive using the Fiat-Shamir heuristic [30], which lets the prover herself choose
the challenge by using the random oracle, without interacting with the verifier.



Commitments. A commitment scheme consists of the commit phase and the
open phase. Intuitively, it is not possible to look inside a commitment until it is
opened (hiding property) and the committing principal cannot change the con-
tent while opening (binding property). We use the integer commitment scheme
described in [44]. In the following, we let [c] denote the value committed to in c.

Range proofs. We use the range proofs proposed in [32]. A range proof guar-
antees that a certain committed value lies in the interval (A, B), where A and
B are integers. This proof will be denoted by {PK(a): [c] =aNA < a< B}
Notice that this proof does not reveal «, just the commitment ¢ and the bounds
A and B of the interval.

Proofs of arithmetic operations. Our protocol also uses some of the pro-
tocols presented in [I7] for proving sums, multiplications, and exponentiations
of committed values in zero-knowledge (i.e., without opening the commitments
and revealing the witnesses). These proofs will be denoted by

{PK(er, 3,0,v) : [ea] = aNfes] =BAJea]l =0 Afen] =v A a+ 8=,0}
{PK(ar, 8,0,v) : [ea] = aN[er] =BAJcal =0 A [en] =v A a-B=,0}
{PK(a,3,6,) : [eal =aA[e] =BA[cal =N [en] =v A &P=,6}

3.3 Ouwur Protocol

Our goal is to compute the verification equation in zero-knowledge. This is
achieved by the zero-knowledge protocol . We first recompute the exponenti-
ations in the signature verification equation, i.e., 7, = a™, ™ £ b°, 74 £ a™b°,
and 73 £ v°, and check if v¢ =,, a™b%c (cf. line (a)). We then test whether the
signed message and the verification prime number are in the appropriate ranges
(cf. line (b)). This protocol constitutes the cryptographic instantiation of the
symbolic proof for the statement 3 am, Qsig, Qpk : VEr(Qm,, Osig, pk) discussed in

with Qm = [, Qsig = (Va 076)7 and Qpk = (a7ﬁa7’n)'

PK(a7677a6777a/j/7y70-a7—1)7-277-377-4) : [[Ca]] =a [[Cb]] = ﬁ/\
[ec]=vAlenl =nAlem]l =pAle] =vAle] =0 Ae] =¢

/\HC(am)]] =T A [[C(bs)ﬂ = T2 A [[C(,Uc)]] = T3 A HC(ambs)ﬂ = T4 (5)
M= A=, A= VATL=,T1 -T2 AT3 = Ta-y (@)
AO<p<2tm A 20t <o < 20mt2 (b)

Zero-knowledge proofs for single chain elements are combined together in
conjunctive form to prove the existence of a valid certificate chain, as formalized
in equation . In particular, every occurrence of value u is instantiated with
the same commitment c,. This ensures the equality of the values appearing in
different chain element proofs. We reveal the public key of the verifier and the
hash of the signed message by opening the corresponding commitments.

Theorem 1. Let ¢y, ¢p, Cey Cm, Cs,y Co, Ce, and ¢, be integer commitments and
let camy, Cvs), Crvey, and cgmysy be auziliary commitments. Then, the protocol
from equation (@) is a special honest verifier statistical zero-knowledge proof with



special soundness that the values committed to in ¢4, ¢y, Ce, Cm, Cs, Cy, Ce, aNAd
cn, fulfill the Camenisch-Lysyanskaya signature scheme verification equation.

Proof. The completeness follows from inspection of the protocol and the verifi-
cation equation of the signature scheme. Special soundness and SHVSZK follow
from the special soundness and the SHVSZK property of the individual proofs

by applying

Finally, we apply the Fiat-Shamir heuristic [30] to make our protocol non-
interactive.

3.4 Complexity Analysis

We now analyze the communication complexity in terms of the various security
parameters of the different zero-knowledge proofs:

{ determines the maximum bit length of a committed value.
€ > 1 is a security parameter.
0y denotes the maximum bit length of the exponents used in the exponentiation
proof. Typically, £, = £.
C describes the challenge space CS := {0, ...,2¢ — 1}. Our protocol will have
soundness error 2~¢ i.e., a cheating prover will convince an honest verifier
with probability of at most 2.

Asp=2-q+1and g > 22> we have that all numbers computed modulo p
or modulo ¢ require a communication complexity of @(e - £). In the following,
we assume that we already applied the Fiat-Shamir heuristic and hence do not
consider the challenge as it can be computed by the verifier.

— Proofs of knowledge of a representation use one message modulo p as com-
mitment and n messages modulo ¢ as response. As n < 3 for our proofs, we
get that a representation proof is in O(e - £).

— Multiplication and addition proofs are in @(e - £) as both are representation
proofs.

— In a range proof, the commitment is computed modulo p and the response
s is a value in Z. Since s is at most the sum of two numbers smaller than ¢,
the whole proof is in ©(e - £). However, we need to run the protocol C' times
to achieve a soundness equal to the soundness of the other proofs. Hence, a
range proof protocol is actually in O(e- £ - C).

— The exponentiation proof is a combination of many knowledge of represen-
tation, knowledge of discrete logarithm, and range proofs. A careful analysis
shows that the dominating parts are the range proofs for all the intermediate
results used in the protocol; an exponentiation proof is in @(e- £ ¢y, - C).

Since exponentiation proofs are the dominant factor, our zero-knowledge proto-
col for the Camenisch-Lysyanskaya signature scheme is in O(e - £- ¢, - C).

Once all aforementioned parameters are fixed, the communication complexity
is linear in the length of the certificate chain as each chain element requires
exactly one signature verification proof.

10



3.5 Implementation

We implemented our protocol as an extension of the OpenPGP standard. Our
system relies on key servers that provide standard OpenPGP functionality and
additionally maintain the certificates from the anonymous web of trust. The
authenticity of anonymous web of trust keys is established by OpenPGP certifi-
cates. Arithmetic operations are performed by using MIRACL [48]. The imple-
mentation is in Java and comprises roughly 6000 lines of code. A prototypical
implementation is freely available at [7].

4 Partial Disclosure: Beyond the All-or-Nothing Barrier

The cryptographic protocol described so far allows the prover to show the ex-
istence of a certificate chain without revealing anything other than the length
of the chain. In some situations, however, the length of the chain might reveal
too much about the prover’s identity while in some other scenarios, users might
desire more precise trust measures, even at the price of sacrificing a little their
anonymity. There is indeed an inherent trade-off between anonymity and trust.
In this section we develop extensions of our protocol that allow users to fine-tune
the degree of anonymity and trust.

Hiding the chain length. The length of the chain might actually reveal some
information about the sender, depending on the topology of the web of trust. For
instance, in the extreme scenario where the intended recipient has certified just
one key and the length of the chain is 1, the intended recipient knows exactly the
identity of the sender. In this case, the prover can arbitrarily increase the length
of the chain proven in zero-knowledge by attaching self-generated certificates.

Input: A chain C from pk; to pk, and signing key sk

1. Create a new key-pair (pk’,sk’)
2. Set C «+ C,sig(pk’, sk¢)
3. Return C and sk’

Note that the keys used in these certificates need not be uploaded onto a server
as the verifier does not need them to check the proof and, after the proof is
generated, these keys can be discarded. Indeed, a proof for a certificate chain of
length n does not guarantee that the prover is n hops away from the verifier,
but that she is at most n hops away.

Partial release of secrets. To achieve fine-grained trust properties, we now
consider certificate attributes, such as user name and key expiration date, and
show how to reveal some of them while keeping the others secret. For instance, we
might want to reveal the key expiration date while hiding confidential informa-
tion such as the user name. We recall that participants in a web of trust place the
signature on the concatenation of a public key and a set of attributes. Intuitively,
instead of proving 3 o, Qsig, Qpk : Ver(am, tsig, apk), we would like to prove a
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statement of the form 3 as, asig, Qpk, ak, aa.ver(as, asig, apk) A as = (ak, aa)
and then reveal (part of) the attributes aa. The concatenation of the public
key and the attributes is implemented as b = k - 2 + A where ¢ is an a pri-
ori fixed upper bound on the length of the attribute set. The idea is to split b
in zero-knowledge and to reveal some of the components to the verifier. Given
commitment ¢;4 on public key k and attributes A, commitment ¢, on k, and
commitment c4 on A, we execute the following zero-knowledge protocol:

{PK(a,k,7): [ek]l = A[eal =aA[cra]l =7 AT=K-2"+a A0 < a<2'}

We can then open c4 and release all the attributes A to the verifier or apply the
protocol again on c4 to select which attributes have to be revealed.

Dynamic trust relationships and key expiration. Since trust relationships
may vary over time, it is important to provide users with the possibility to
periodically update their certificates. Our system incorporates two distinct key
expiration mechanisms.

The first mechanism is based on a global version number that is attached to
all public keys as an attribute. Periodically after a fixed interval, all keys have
to be generated from scratch, re-signed, and tagged with the updated version
number. Proving a key valid translates into showing that it is tagged with the
most recent version number. This version number is revealed using our partial
secret release protocol. As the interval is globally fixed, revealing the version
number does not leak any information about the key.

In order to provide the user with the possibility to independently decide the
validity of each certificate, we also support a second mechanism based on a key
expiration date. Users can use our partial secret release protocol to selectively
reveal the expiration date of a key. Since the exact expiration date might uniquely
identify the public key, one can also prove {PK(e) : [ce] = € A current date <
€ < ub} given a commitment ¢, on the expiration date attribute € and a suitable
upper bound ub for all possible key expiration dates.

Notice that the OpenPGP standard [I5] incorporates a key revocation mech-
anism, which is implemented by a special signature (also called revocation sig-
nature) that is attached to the revoked key by the revoking principal. Although
conceptually appealing, such a revocation mechanism is not compatible with our
framework since there is no way to prove in zero-knowledge that a certain key
has not been revoked. In particular, even if revoked, the key and the according
certificates could still be used in our zero-knowledge proof.

Conjunctive and disjunctive statements over certificate chains.
J-protocols allow us to prove logical conjunction and disjunction of statements.
Proving a conjunctive statement over certificate chains strengthens trust at the
price of decreasing anonymity guarantees, whereas a disjunctive statement en-
hances the anonymity guarantees but diminishes trust.

In a way of example, consider (a) where A is trusted by both C; and
Cs, and D is only trusted by C5. Assume A is interested in authenticating to a
party B trusting both C; and Cs and suppose also that A does not know the

12
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Fig. 3. Webs of trust

public key of B. If A proves that she is trusted by C; or Cs, a curious principal
will not be able to distinguish whether the message originated from D or A. The
trust guarantee provided by the proof, however, may be low if, for instance, the
link between C and D is weak (cf. the following discussion on trust measures).

A proof that A is trusted by C; and Cs strengthens the trust guarantee.
One can, however, compute the intersection of the principals trusted by Cj
and Cs, potentially reducing the anonymity guarantees. In this example, the
intersection uniquely identifies A as the prover. This example shows that there
is often an inherent trade-off between trust and anonymity. The expressiveness of
our zero-knowledge proof scheme is crucial to fine tune the security requirements
according to the application scenario.

Trust measures. In the following, we extend our approach to trust measures.
We will focus in particular on the trust model from [2I]. The examples in this
section are intentionally borrowed from [2I] in order to show the applicability of
our framework to existing trust models. Consider the web of trust in[Figure 3(b).
As shown by the weight of the two links, the trust of B in C is higher than the
trust of A in B. The trust measure proposed in [21] is based on the multiplication
of the trust values of the individual links. Therefore the trust degree provided
by the chain between A and C is 95% - 99% = 94.05%.

We devise a proof that reveals the trust degree provided by a given chain,
without disclosing the weight of individual links, since this might compromise
the anonymity of participants. In case even the exact trust degree is considered
too informative on the identity of the parties involved in the chain, we can
approximate this value using range proofs (cf. key expiration).

In addition to proving the validity of the certificate chain of (b), the
prover executes the following protocol:

{PK(O[,B7’)/) : [[Ctﬂ =aA Hctl]] = 6/\ [[CtQ]] :’7/\05 =P 67}

where ¢;, and ¢, are the commitments to the certificate attributes 95 and 99,
P is a large publicly known prime (cf. Proving that two committed numbers are

not equal in |[Appendix B|), and ¢; is a commitment to 9405, which is opened
by the prover. Since we cannot reason on rational numbers and consequently on
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divisionsﬂ the verifier has to perform the remaining computation on the value
[c:] = 9405, namely, 1 — (1 — 9405/10000) = 94.05%.

We now show how our protocol can be extended to deal with even more
complex scenarios. Consider the graph in (¢c): Z has to show that there
exist two distinct paths from A to Z. The total trust degree is computed as
1—(1-95%-99%) - (1 —80% - 95%) ~ 98.6%.

The corresponding zero-knowledge proof is computed as follows. Given the
commitments cg,, Cs,, Csy, and cg, on the certificates certap, certac, certcz,
and certpz, where certy; denotes the certificate issued by I on J’s public key,
and the commitments ¢y, , ¢t,, ct;, and c;, on the corresponding trust values, in
addition to showing that both chains are valid we run the following protocol:

PK(a1, az, as, aa, B1, B2) : e, ] = a1 Aer,] = o Afers] = as Ale, ] = cun
[es:] = B1 Afless] = B2 A Br # B2 Aller] =p ([er0000] — 01 - a3) - ([c10000] — @2 - o)

Proving [cs, ] # [cs,]] ensures that the first two signatures, and therefore the two
chains, are different. The rest of the proof computes in zero-knowledge the total
trust value as follows: [¢,] = (10000 —95-99)- (10000 —80-95) = 1428000 (c10000
is a commitment to 10000). The verifier then computes (10® —[c,])/10® ~ 98.6%.
Although the numbers grow quickly with the chain length and the number of
parallel paths, P > 10'% is large enough for any reasonably sized chain.

5 Formal Verification

The cryptographic proof from ensures that our scheme enjoys the
special soundness and honest verifier statistical zero-knowledge properties. It is
important to verify, however, that the protocol as a whole guarantees the in-
tended trust and anonymity properties. We conducted a formal security analysis
by modeling our protocol in the applied pi-calculus [2], formalizing the trust
property as an authorization policy and the anonymity property as an obser-
vational equivalence relation, and verifying our model with ProVerif [12/1], a
state-of-the-art automated theorem prover that provides security proofs for an
unbounded number of protocol sessions. We model zero-knowledge proofs fol-
lowing the approach proposed in [§], for which computational soundness results
exist [9]. For easing the presentation, in this section we focus on certificate chains
without attributes. The ProVerif scripts used in the analysis are reported in[Ap]
pendix D

Attacker model. In our analysis, we consider a standard symbolic Dolev-Yao
active attacker who dictates the certificates released by each party (i.e., the at-
tacker controls the web of trust), the certificate chains proven in zero-knowledge,
and the proofs received by each verifier.

Verification of trust. We partition the set of parties into honest and compro-
mised. Honest parties generate a fresh key-pair, publish the public component,

9 Computing 1/m for a given m results in a number u such that m -« = 1 mod g,
e.g., 1/4 =5 mod 19.
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and engage in three distinct activities: Certificate generation, proof generation,
and proof verification.

We decorate security-related protocol events with logical predicates, which
constitute the building blocks of the authorization policy formalizing the trust
property (cf. . The event TRUST (z,y) describes the point in the proto-
col where the honest party associated with public key x releases a certificate for
public key y. The event COMPR(z) tracks the compromise of the party associ-
ated with public key x (i.e., this party is under the control of the attacker, which
also knows the corresponding private key). The event SEND;(z,y, z) describes
the point in the protocol where the party associated with public key x sends a
zero-knowledge proof for a certificate chain of length 7 to the party associated
with public key y to authenticate message z. Finally, the event AUTH,(z,y)
describes the point in the protocol where the party associated with public key
x authenticates message y as coming from a party of trust level i. The trust
property is formalized as the following authorization policy:

AUTH,(id2, z) = SENDs(id1,id2, z) & TRUST (id2,id3) & TRUST (id3,id1)) (1)
| (TRUST(id2,id3) & TRUST(id3,id1) & COMPR(idl))  (2)
| (TRUST(id2, id3) & COMPR(id3)). (3)

For the sake of simplicity, we focus on certificate chains of length 2: The
extension to arbitrary chain lengths is straightforward. This policy says that
in all execution traces, the event AUTH5(id2,z) has to be preceded by either
(1) SENDs(id1,id2, z) and TRUST (id2,id3) and TRUST (id3,id1) (i.e., all par-
ties are honest), or (2) TRUST (id2,id3) and TRUST(id3,id1) and COMPR(id1)
(i.e., all parties except for the prover are honest), or (3) TRUST(id2,4d3) and
COMPR(id3) (i.e., the party trusted by the verifier is compromised and the at-
tacker has chosen to lengthen the certificate chain by an additional, possibly
fake, certificate). In other words, this policy says that whenever the verifier au-
thenticates a message as coming from a party of trust level 4, then indeed a
party of trust level ¢ or less has started a protocol session with the verifier to
authenticate that message.

This authorization policy is successfully verified by ProVerif and the analysis
terminates in 3 seconds. The formal analysis highlighted a couple of important
requirements for the safety of our protocol. First, the verifier has to check that the
authenticated message is not a public keym otherwise the following attack would

10 We recall that parties sign the hash of messages and these are shorter than keys.
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be possible: The attacker gathers a certificate chain of length ¢ 4+ 1 and builds
a zero-knowledge proof for a certificate chain of length 7, authenticating the
public key signed in the ¢ 4+ 1-th certificate as coming from the party associated
with the public key signed in the i-th certificate. For a similar reason, signatures
on messages other than public keys cannot be sent in plain or must be tagged
differently from the signatures proven in zero-knowledge.

Verification of anonymity. Intuitively, we formalize the anonymity property
as a cryptographic game where two principals act in a web of trust set up by the
attacker and one of them authenticates by proving in zero-knowledge a certificate
chain chosen by the attacker. If the attacker cannot guess which of the two
principals generated this zero-knowledge proof, then the protocol guarantees
anonymity. Our model includes an arbitrary number of honest and compromised
parties as well as the two (honest) principals engaging in the anonymity game.

The anonymity game is defined by two distinct processes that are replicated
(i.e., spawned an unbounded number of times) and in parallel composition (i.e.,
concurrently executed). In the first process, each of the two principals releases
certificates as dictated by the attacker. Since the attacker controls also the certifi-
cates released by the other parties in the system, both honest and compromised
ones, the attacker controls the topology of the whole web of trust. In the sec-
ond process, the two principals receive two (possibly different) certificate chains
from the attacker. If both certificate chains are valid and of the same length, we
non-deterministically choose one of the two principals and we let it output the
corresponding zero-knowledge proof. The observational equivalence relation =~
(cf. says that the attacker should not be able to determine which of
the two principals output the zero-knowledge proof.

ProVerif successfully verifies this observational equivalence relation. This
implies that our protocol guarantees the anonymity of users even against our
strong adversarial model. Since processes are replicated and the two principals
may output an unbounded number of zero-knowledge proofs, our protocol ad-
ditionally provides unlinkability, that is, the attacker is not able to tell if two
zero-knowledge proofs come from the same principal or not.

6 Conclusion

We have proposed a cryptographic protocol for anonymous communication in
webs of trust. We reconcile trust and anonymity, two seemingly conflicting re-
quirements, using a novel zero-knowledge proof that allows the sender to prove
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the existence of a certificate chain without revealing her identity and the re-
ceiver to verify the trust level of the sender. The zero-knowledge proof scheme is
general and accommodates different aspects of webs of trust, such as key expira-
tion, trust measures, and existence of multiple certificate chains. We conducted
a formal security analysis of our protocol, showing that trust and anonymity are
guaranteed even in a strong adversarial setting.

Our approach inherently requires that the certificates comprising the certifi-
cate chain are accessible to the prover, since they have to be proven in zero-
knowledge. While public relationships are not a problem in a company (e.g.,
boss, employee, trainee, etc.), there might be privacy issues in other settings,
e.g., in the context of social networks where users may want to keep their social
relationships secret. We stress that our approach does mot require the whole
relationship graph to be public; only the certificates used in the proof need to
be accessible to the prover.

In a distributed social network, for instance, we envision the following local
certificate distribution mechanism: A expresses her friendship with B by signing
B’s public key and sending the corresponding certificate C'4p to him. If A wants
her profile to be available only to her friends (this corresponds to a “friends
only” policy in Facebook [29]), then B is expected to keep Cyp to himself.
Should A instead opt for a “friends of friends” policy (which is also available in
Facebook [29]), then A authorizes B to release Cyp to his friends in order to let
them anonymously authenticate with A (with a zero-knowledge proof of length
2). B’s friends might express interest in authenticating with A, after looking at
a preview of A’s profile, which could be made available by B.

In general, there is an inherent trade-off between the privacy of the relation-
ship graph and the anonymity guarantees of our scheme. On the one hand, if
the relationship graph is fully private, then the prover does not know how many
other principals have her own trust level. Hence, in the extreme scenario in which
the verifier and all the principals in the chain have issued just one certificate,
the prover is just anonymous in the set of principals occurring in the chain (due
to the chain enlargement technique discussed in . On the other hand,
if the relationship graph is public, as in GnuPG, the prover can be certain of
her anonymity guarantees. As a future work, it would be interesting to investi-
gate techniques to solve this tension, e.g., by selectively disclosing parts of the
relationship graph in order to ensure meaningful anonymity properties.
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A Trust model

One of the core motivations behind webs of trust as public key infrastructures
is the fact that there is no central authority one has to trust. Every participant
bases trust decisions on her own policy.

However, this poses problems: Consider a simple web of trust where Alice
signed Bob’s key and Bob signed Charlie’s key. Alice trusts Bob only marginally,
i.e., she is not convinced that her signing policy is fully compatible with Bob’s
policy. What does this say about Charlie’s key? Probably Alice should not accept
it as a valid key if it is only signed by Bob. In the following, we use trust and
validity on the basis of the GnuPG Handbook [51]: Trust denotes the belief
that the owner of a key acts in accordance with our signing policy and wvalidity
denotes our belief that a key actually belongs to the designated owner.

Our work is based on the OpenPGP standard [I5], which stipulates a method
for conveying and expressing trust, namely, trust signatures. Such signatures
allow the signer to assert a transitivity level and a trust level. The former rules
the transitivity of trust relationships while the latter allows one to publicly
state the amount of trust set in the owner of a key. (Typical trust values are
unknown, no trust, marginal, and full.) For instance, a level one trust signature
on key k means that k can be used to sign another key %', which will inherit
the same trust level as k. Key k’, however, is not trusted to sign further keys.
In general, a level n trust signature asserts that the owner of a key is trusted to
issue level n — 1 trust signatures. depicts a trust signature chain with a
constant trust level. Note that the OpenPGP standard does not require the trust
level to remain constant throughout a chain. In practice, common transitivity
levels are 0 (direct friendship relation) and 1 (friend of a friend relation). A
level zero signature is equivalent to a standard signature in the web of trust.
Higher transitivity levels may be useful in certain applications where they have
a clear and meaningful interpretation (e.g., reflecting the hierarchical structure
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Fig. 6. Trust signature chain

of a company). PGP, since version 5, as well as GnuPG, depending on user
preferences, use transitivity levels and trust levels to calculate the validity of
keys. The specific details of these computations are implementation dependent.

Our approach is compatible with the trust signature mechanism and a variety
of validity calculation algorithms. In fact, we can selectively reveal both transi-
tivity levels and trust levels in our zero-knowledge proofs as well as compute in
zero-knowledge the validity of keys as described in

In a way of example, consider the web of trust depicted in This
example is intentionally borrowed from the GnuPG Handbook [51] to show the
applicability of our framework to existing implementations. A labeled edge de-
notes a trust signature issued on the target’s public key. The first number rep-
resents the transitivity level and the second number represents the trust level.
Here we assume two trust levels (namely, marginal and full), which are denoted
by 1 and 2H We further assume that in the validity calculation algorithm, two
signatures of marginal trusted principals are needed to deduce full validity.

The web is rooted at Alice who assigns a signature with level 1 and marginal
trust to Dharma and Blake. Thus the keys of Dharma and Blake become auto-
matically fully valid. Since both Dharma and Blake may issue level 0 signatures
with marginal trust, Chloe and Francis are marginally trusted by Alice. Chloe’s
key becomes fully valid as it is signed by two trusted principals. The same holds
for Francis’ key, which is signed by Chloe and Dharma. Elena’s key is considered
partially valid as it is signed by only one marginally trusted party. Geoff’s key
can not be validated.

If Chloe wants to authenticate a message with Alice while remaining anony-
mous, she should send a zero-knowledge proof that shows the existence of two
distinct paths of length two and additionally reveals the transitivity level and
the trust level of the incorporated chain elements[T as discussed in

B Extensions of our zero-knowledge proof system

Proof that two committed numbers are not equal. For proving relations
about independent chains, it is necessary to prove that two given commitments
do not contain the same number. This will be particularly useful when we show

"1 The OpenPGP standard suggests to use 60 for partial trust and 120 for full trust.
12 This proof only preserves anonymity if there is at least one more principle with
similar chains to Alice.
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Fig. 7. Hypothetical Web of Trust

how we can increase trust by demonstrating knowledge of multiple paths from
the recipient to the sender of a message. Proving that two commitments do not
contain the same number allows us to guarantee that multiple paths are distinct,
without revealing the nodes occurring therein.

The following protocol proves that ¢, and ¢, are commitments to different
numbers. The intuition is that if a = b, then multiplying ¢ — b by any value
yields zero modulo P. If a # b, then multiplying a — b by a random value yields
a (non-zero) uniformly random number in the group, thus hiding a and b.

{PK(e,8,p) : [ea] = A [er] = BA[ea] =d A [er] =p A
AN=p(a=B)-p ANd#0 A 0<p< P}

where ¢, is a commitment to a freshly generated random value r, P ~ ,/q is a
publicly known prime, and d is the result of (a — b) - p mod P. Notice that the
proof reveals the opening information for the commitment [c;]]. If d is different
from zero, then the verifier knows that the values a and b committed to in ¢,
and ¢ are different.

C Cryptographic protocols

In this section, we review the cryptographic implementation of the zero-
knowledge proofs used in our protocol. Unless stated differently, ch will denote
the random verifier challenge in the X-protocol chosen from the challenge space
CS :=1{0,...2¢ —1}.

We assume a correctly initialized commitment scheme used by every partic-
ipant that the discrete logarithm between the two generators is not known.

Commitment. In order to commit to a value m, one first chooses a uniformly
random value r € {0,...,¢ — 1} and computes ¢, = G™ - H" mod p. In the
opening phase, the prover sends m and r to the verifier, who then reconstructs
the commitment and compares it to c¢,,. Here p is a safe prime of the form
p = 2-q+ 1 such that p and ¢ are primes; G and H are uniformly random
generators of the subgroup G, C Z, of prime order g. It is important that the
discrete logarithm between the generators G and H is not known to the prover as
the commitment scheme loses its binding property otherwise. We require that the
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bit length |q| > 22¢*5 where ¢ determines the maximum bit length of committed
values and € > 1 is a security parameter. In the following, we let V=el+2.
We assume a correctly initialized commitment scheme used by every partici-
pant. In particular, we assume that p, ¢, G, and H are constructed as described
above such that the discrete logarithm between the two generators is not known.

Representation proofs. Such proofs are used to show knowledge of a repre-
sentation of an element y with respect to base elements (g1, ..., gm) [14423147].
This proof is denoted by {PK((c;)i=1,...m) : vy =[1ir; g5 }. If we use the base
elements from the commitment scheme, we often write {PK(«): [c] = a} to
denote {PK(a,p) : ¢ =G*H*}.

The prover chooses 71, ..., 7 €r Zg and sends ¢ := [[;~, g;" mod p to the
verifier. The prover responds with s; := r; — ch-x; mod ¢, i = 1,...,m. The
verifier accepts iff t = y" [, 5.

Such proofs also enable us to elegantly show that a commitment contains 0 or
1. Given commitment ¢ = G™-H", if we are able to prove that {PK(p) : ¢= H*}
or {PK(p) : ¢/G = H*}, we convince the verifier that c is indeed a commitment
to 0 or 1; were we able to successfully run this protocol with a commitment ¢ not
containing 0 or 1 respectively, we could compute the discrete logarithm between
G and H which we assumed to be unknown.

Combining this technique with logical disjunction, we can prove a case dis-
tinction on whether a bit is 0 or 1 without revealing the actual value.

Range proofs. In known-order groups, we need to show that a committed num-
ber lies in a certain interval [22]33]. This prevents a malicious party from exploit-
ing the computation modulo group order in exponents when dealing with com-
mitments. A range proof is denoted by {PK(;) : ¢=¢*[[i2, 97" NA < a < B}
for integers A, B. For readability, the range and the representation part of the
proof can be separated.

Given a representation y = ¢*[[;~,¢" mod p, ¢1, and {5, the following
protocol convinces the verifier that 261 — 260242 < 5 < 261 4 9¢42%2 The prover
chooses z €g {—22,...,2¢}, z; €g Z, and sends t := g* [[|~, g/ mod p to
the verifier. The verifier chooses ch €g {0,1} as challenge. The prover answers
s:=z—ch-(x—2%)in Z and s; := z; — ch - (z; — 2©) mod ¢. The verifier

? 2
checks —2¢2+1 < 5 < 2¢2+1 apd t = g5 I, gfﬁczll y¢ mod p.
The relation ey + 2 < logq should hold as otherwise, every value will lie
within the range. ¢; < loggq is an offset and can also be zero.

This proof is repeated /-times to achieve a soundness error of 2%,

Equality of discrete logarithms. The protocols so far only
dealt with linear relations. However, proving, for instance, mul-
tiplication requires us to cope with non-linear relations of se-
crets. Proofs of equality of discrete logarithms [24] are denoted

{PK((ai)izl,...,ma (Bi)j=1,m) = o1 =B Ay =T, 957 Nye = 11—, hfj}

Equality is shown with respect to the bases g; and h; in the representation
(21, ..y ) and (21, ..., z,) of elements y; and yo to the bases (g1, ..., gm) and
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(h1,...,hy) respectively. The prover chooses r1,...,7m,Uz,..., Uy, €r Z, and

sends t; = i g7" and ty := hy" -[}_, b} to the verifier. The prover answers

with s; == r; —ch-x; mod q and v; :== u; —ch-z; modgq,i=1,...,m and
j =2,...,n. The verifier accepts iff t; = y{" [[\", ¢;* and to = ys"h} | h;)j.

Arithmetic operations. We compute certain arithmetic operations in zero-
knowledge, i.e., hiding some of the witnesses. In particular, given commitments
Ca=G* H ¢, =G - H™, cg=G* H", and ¢, = G"-H™, we can prove that
[ca] = [ca] + [es] mod [en], [ca] = [ca] - [co] mod [e,], and [cq] = [ca]le]
mod [¢,]. The protocols are defined as follows:

lea] =geny [ea] + [e] ==

{PK(a, B,0,m,x,p) : ) )
[ca] = aAfe] = BA[ca] =6 A [en] =nA-2<a,B,6n<2" (a)
ca/(cach) = cXh? A 2t <y <2t } ©)

led] =penp [ea] - [eo] ==

{PK(a, &/, B,8,m,x,p : ) )
[cal =anfe] =BAJcal =6 Aea] = nA=2° < a,B,6,1 < 2° (a)
cd:c?/c’éh”/\—2é<x<22}/\Oc:o/ (b)

Let us argue why the desired relations should hold: Due to the range
proofs in both protocols, using standard techniques, we can extract witnesses
a,7q, b, 7y, d, "4, 1,7, &, 7 such that

Ca = GaH% Acp = Géf{ﬁ’ Acqg = GiH™ A cn=GYH™
A=2'<a,bdn, i <2
In the addition proof, we additionally have that
ca/(cqcy) = cEH"
Since the discrete logarithm between G and H is unknown, we can deduce
GI@H) = G mod p
<d—-(a+b)=2-n modg
sd—(a+b)=d-n

where the last equivalence holds due to the range constraints imposed by the
range proofs.
For the multiplication proof, we also have that

cq = cycrh”

Using the same argument as above, we can deduce that



where the last equivalence again holds due to the range constraints.

The exponentiation protocol uses all previously introduced proofs as building
blocks. The main idea is to use the square and multiply algorithm to step by
step compute the result of the exponentiation where ¢, = |b] is the bit length of
b.

[[Cdﬂ E[[Cn]] [[Caﬂ[[eb]] =
{PK(avﬂ’év"%Xa (pi)iZI ..... 5) :

[c] = anfe] =BAJead =5 A[en] =nA-2" <a,dn<2’ (o)
(TT5 @) ) fen = P !

((cy = H® Acuy/G=H™)V (cb, /G = H" Acuy/ca =H))A (e
/\2172((051‘ :Hﬂi/\cui/cui_le”)\/ f
=t (Cbi/G =H" A [[Cuiﬂ =lenl [[c“i_lﬂ : [[CWH)

co,—1=H%* ANcafeu, _, =H™ 1|V
( ' ) ))} (9)

Cgb,l/G =H%%=1 A [[Cdﬂ =lenl chbfzﬂ : IICVKb—l]]

(
(
[evi] =geay [eal - [eal Ao Allewy, 1] Sy leve, -2l - levy, oA ()
[ew] = pa Ao Aleuy, o] = pey—2 A =2° <y pey—2 <2°A (d)
(e)
(f)

A

(a) shows that we know how to open the commitments and that the committed
values are in appropriate ranges. (b) shows that the commitments ¢,, are a base
for a binary representation of ¢, similar to the partial release of secrets protocol.
We do not prove that each cp, is a commitment to either 0 or 1 as this is
done in steps (e — g). (c¢) shows that the ¢,, are commitments to powers of [¢,],
namely, [c,,] =[e.] [ca]® . We do not state the range proofs explicitly as they are
included in the individual multiplication proofs. (d) shows that the intermediate
results of the square and multiply algorithm are well-formed. (e — g) prove the
actual computation. (e) shows that [cp,] = 0 and [e,,] = 1 or [ep,] = 1 and
[euo] = [ea]- (f) is similar to (e) but if [cp,] = 1, then current intermediate result
lew] =geny leu, 1] - [cv;] equals the previous intermediate result multiplied with
the appropriate power of [¢,]. Finally, (g) proves that the last computation step
results in [cq].

Fiat-Shamir heuristic and random oracles. All the protocols shown so far
were interactive X-protocols. Ultimately, our goal is to generate a non-interactive
proof, i.e., a proof comprised of one single message sent from the prover to the
verifier. To achieve this goal, we use the Fiat-Shamir heuristic and introduce the
random oracle model.

The idea is that cryptographic hash-functions such as SHA-1 return, upon
a query, a truly uniformly random string but answer consistently with previous
queries. Since the only verifier message is one random string, we can make a
JX-protocol non-interactive by computing the hash-value of the statement and
the first message of the prover.

We stress that our (interactive) protocol is secure without random oracles;
we merely rely on random oracles to make our protocol non-interactive.
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And: (P,S,V)
Common input: statements x1, T2
Private input: witnesses w1, w2

plwi,wz) |4

) (comy,coma)
com; < P!t :

ch

ch er CS

(resp1,respz)

resp; < P/"i(ch)

Vi(com;, ch,resp;) = true, i =1,2

S(ch):

(comi, resp;) < Si(ch), return ((com1, comz), ch, (respiresp2))

Fig. 8. Logical And of two sub proofs

Construction of And and Or proofs. We give the construction of the log-
ical And in and Or in [26] for the case of two sub protocols
(P1,V1,51) and (Py, Vs, S2) where S; denotes the simulator for the according
scheme. We assume that the sub protocols are SHVSZK proofs with special
soundness.

We require that the prover returns, upon their first call, the commitment
message and upon the second call the response to the given challenge. The
verifier returns a random challenge and verification requires the commitment, the
challenge, and the response as input. The simulator returns, given a challenge, a
valid simulation for that challenge, i.e., the simulator’s output verifies using the
according verifier. We write P to denote that P has access to witness w.

As range proofs only have a binary challenge space, a challenge ch is trans-
lated into C' many runs where the i-th run uses the i-th bit of ch.

Notice that the simulation for And and Or is only possible because we can
give the simulator a specific challenge.

Since both schemes for And have special soundness and a change in the
challenge is propagated to both schemes, the And also has special soundness.

Before arguing about the special soundness of the Or protocol, we note that
once the commitment has been sent, the challenge for the second scheme is fixed
(otherwise, P, can compute a witness due to the special soundness of the second
scheme). Hence, if we change the challenge ch, we also change the challenge chy
to for the first scheme. Since this scheme has special soundness, the construction
of Or also has special soundness (we only need to compute one witness).

27



Or: (P,S,V)
Common input: statements x1, T2
Private input: w.l.o.g. witnesses w

pt 1%
che €r CS
(coma,rep2) < Sa2(chs)

(comi,coms)

comy + P/
ch

ch egr CS
chi := ch — cha mod 2¢

(resp1,chi,respa,cha)
respr + Pt (chi1)

ch = chi + cha mod 2¢
Vi(coms, chi, resp;) Z true
i=1,2

S(ch):

chy €er CS

chs := ch — ch; mod 2¢

(comy, resp;) < Si(chs), return ((comi,comsz), ch, ((resp1,chy), (respz, chz2)))

Fig. 9. Logical Or of two sub proofs

D Applied pi-calculus model

We report the applied pi-calculus model used for verifying the trust and
anonymity properties of our protocol (for certificate chains of length 2). @
contains the model of our protocol and the trust policy, while [Table 2
shows the processes capturing the observational equivalence relation verified by
ProVerif. Notice that ProVerif is able to analyze biprocesses, i.e., processes shar-
ing the same structure and differing just in their terms. As usual, the biprocess
P(choice[z, y]) denotes the observational equivalence relation P(z) = P(y).
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free c¢. (* communication channel *)
private free d. (* synchronization channel for public keys *)

private reduc pkey(pk(x)) = true.

(* standard equations for cryptographic messages and zero-knowledge omitted *)

query ev:AUTH(id2,x) ==>
(ev:SEND(id1,id2,x) & ev:TRUST(id2,id3) & ev:TRUST(id3,id1)) |
(ev:TRUST(id2,id3) & ev:TRUST(id3,id1) & ev:COMPROMISE(id1)) |
(ev:TRUST(id2,id3) & ev:COMPROMISE(id3)).

(* Principals release certificates as dictated by the attacker *)

let auth = in(c,(xsig2,xpk2,xsig3,pkl));
let z=pkey(pkl) in
new rl; new ml;
let sigm1 = sign(hash(m1),sk(k)) in
let xzk1 = zk(sigm1,pk(k),xsig3,xpk2,xsig2,r1;hash(m1),pkl;proof) in
event SEND(pk(k),pkl,m1);
out(c,(xzkl,m1)).

(* The verifier receives and checks the zero-knowledge proof*)

let ver = in(c,(x,y));
if zkver(6;2;proof;x) = true then
if public2(x)=pk(k) then
let z = publicl(x) in
if z=hash(y) then
AUTH(pk(k),z).

(* Honest principals *) (* Compromised principals *)
let peer = let keygencompromise =
new Kk; new Kk;
lout(d,pk(k)) | (out(c,pk(k)); event COMPROMISE(pk(k));
(Yin(c, x); lout(d,pk(k)) | out(c,k).
let xi = pkey(x) in
in(d,=x);

event TRUST(pk(k),x);
out(c, sign(x, sk(k))))) | auth | ver.

(* Statement of our proof *)

define proof = land(
land(
check(alphal,betal,alpha2), check(alpha3,alpha2,alpha4)
), check(alphab,alpha4,beta2)

).

process ( 'keygencompromise | peer).

Table 1. Applied pi-calculus model with trust policy as described in
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free c.
(* Equations for cryptographic messages as in Table 1 *)
(* Phase 1: the attacker generates the Web of Trust *)

let keygen =

new k;

out(c,pk(k));

lin(c, x);

let xi = pkey(x) in
out(c, sign(x, sk(k))).

(* Phase2 : Each peer generates a key-pair, publishes the public key,
and sign the public keys chosen by the attacker *)

let signingl = out(c,pk(kl));
lin(c, x);
let xi = pkey(x) in
out(c, sign(x, sk(k1))).

let signing2 = out(c,pk(k2));
lin(c, x);
let xi = pkey(x) in
out(c, sign(x, sk(k2))).

(* Phase 3:

The attacker chooses a key-chain and each peer generates the corresponding proof.
If the two proofs are both valid and are addressed to the same verifier,

then the attacker does not know which of the two peers is authenticating *)

let auth = in(c,(xsig2,xpk2,xsig3));
in(c,(ysig2,ypk2,ysig3));

// first peer

new rl; new ml;

let sigm1 = sign(hash(m1),sk(k1)) in

let xzk1 = zk(sigm1,pk(kl),xsig3,xpk2,xsig2,r1;hash(m1l),pkl;proof) in

// second peer

new r2; new m2;

let sigm2 = sign(hash(m2),sk(k2)) in

let yzk2 = zk(sigm2,pk(k2),ysig2,ypk2,ysig2,r2;hash(m2),pkl;proof) in

// both proofs are valid

if zkver(6;2;proof;xzkl) = true then
if zkver(6;2;proof;yzk2) = true then
out(c,choice|(xzk1l,m1),(yzk2,m2)]).

(* Statement of our proof as in Table 1 *)

process ( 'keygen | new kl; new k2;(signingl | signing2 |

in(c,pkl);let xtemp = pkey(pkl) in auth)).
Table 2. Applied pi-calculus model of the anonymity game described in
tion 5. P(choice[x,y]) £ P(x) ~ P(y)
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