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Preface

Protection of sensitive information from adversaries has been a practice since centuries.
As children, many of us had magic decoder rings for exchanging coded messages with our
friends and possibly keeping secrets from parents, siblings or teachers. Sensitive information will
be passed on between allies at war times. Cryptographic methods were traditionally used to
prevent the enemy from learning sensitive military information. As society has evolved, the
need for more sophisticated methods of protecting data has increased.

The study of techniques needed to protect information is the field of
Cryptography/Cryptology. Cryptanalysis deals with the methods required for breaking the
protection. Of course this is impossible without thorough understanding of the cryptographic
method used for protection.

The course material has 4 modules. Module 1 begins with recent trends in security,
overview of attacks and threats, standards in security services, mechanisms to provide security
services. These topics are discussed in first two units of the module .Later half of module 1
details two important methods of protecting data namely, substitution and transposition.

Units 1 and 2 of module 2 describe an important cipher method called DES (Data
Encryption Standard) and attacks specially devised for this method. In unit 3 variants of DES is
discussed .The module concludes with stream ciphers in unit 4.

Asymmetric encryption is the topic of discussion in module 3.This covers the necessary
background mathematics, public key crypto systems, RSA method, exchange of keys and digital
signatures in various units. The last module of the material touches upon, internet security, web
security, password management, malicious software and firewalls.

All topics are described in simple terms keeping in mind the target audience who are
basically self-learners. Examples are provided, whenever possible to make concepts clear.
Readers are encouraged to refer to original texts given in the references at the end of each unit.
Answering questions and solving problems given in each unit will make learning thorough and
complete.

Authors of the material welcome your comments and suggestions. We hope you will enjoy

reading the material and wish you happy learning.
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1.0 OBJECTIVES

After studying this unit, you will be able to discuss
Variety of security violations

Importance of increased security

Challenges in providing security

Various models in security

Primary goals of security

Trends in security

AN N N N N

Two types of security attacks



1.1 SECURITY OF INFORMATION

We are living in the information age. We need to keep information about every aspect of
our lives. In other words, information is an asset that has a value like any other asset. As an asset

information needs to be secured from attacks.

To be secured, information needs to be hidden from unauthorized access
(confidentiality), protected from unauthorized change (integrity), and available to an authorized

entity when it is needed (availability).

Until a few decades ago, the information collected by an organization was stored on
physical files. The confidentiality of the file was achieved by restricting the access to a few
authorized and trusted people in the organization. In the same way, only a few authorized people
were allowed to change the contents of the files. Availability was achieved by designating atleast

one person who would have access to the files at all times.

With the advent of computers, information storage became electronic. Instead of being
stored on physical media, it was stored in computers. The three security requirements however,
did not change. The files stored in computers require confidentiality, integrity and availability.

The implementation of these requirements, however, is different and more challenging.

The second major change that affected security is the introduction of distributed systems
and the use of networks and communications facilities for carrying data between terminal user
and computer and between computer and computer. Network security measures are needed to
protect data during their transmission. In fact, the term network security is somewhat misleading,
because virtually all business, government, and academic organizations interconnect their data
processing equipment with a collection of interconnected networks. Such a collection is often

referred to as an internet, and the term internet security is used.

There are no clear boundaries between these two forms of security. For example, one of
the most publicized types of attack on information systems is the computer virus. A virus may be
introduced into a system physically when it arrives on a diskette or optical disk and is

subsequently loaded onto a computer. Viruses may also arrive over an internet. In either case,



once the virus is resident on a computer system, internal computer security tools are needed to

detect and recover from the virus.

1.2 NEW THREATS

Computing systems are the assets to attackers. Today computers are very powerful, work
at unimaginable speed and at very high accuracy. With computers we now have new concerns

namely automated attacks, privacy breach, ease of theft etc.

Automating attacks

The speed of computers makes several attacks worthwhile. For example, in the real world,
suppose that someone manages to create a machine that can produce counterfeit coins, would
that not bother authorities? It certainly would. However, producing so many coins on a mass
scale may not be that much economical compared to the return on that investment! How many
such coins would the attacker be able to get into the market so rapidly? This is quite different
with computers. They are quite efficient and happy in doing routine, mundane and repetitive
tasks. For example, they would excel in somehow stealing a very low amount (say half a dollar
or Rupees 20) from a million bank accounts in a matter of few minutes. This would give the

attacker half a million dollars possibly without any major complaints!

Privacy concerns

Collecting information about people and later misusing it is turning out to be a huge problem,
these days. The so called data mining applications gather process and tabulate all sorts of details
about individuals. People can then illegally sell this information. For example, companies like
Experian (formerly TRW), TransUnion and Equifax maintain credit history of individuals in the
USA. Similar trends are seen in the rest of the world. These companies have volumes of
information about a majority of citizens of that country. These companies can collect, collate,
polish and format all sorts of information to whosoever is ready to pay for that data! Examples of
information that can come out of this are: which store the person buys more from, which
restaurant she eats in, where she goes for vacations frequently and so on! Every company (Eg.
Shop keepers, banks, airlines, insurers) is collecting and processing a mind boggling amount of

information about us, without we realizing when and how it is going to be used.
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Distance does not matter

Thieves would earlier attack banks, because banks had money. Banks do not have money today!
Money is in digital form inside computers and moves around by using computer networks.
Therefore, a modern thief would perhaps not like to wear a mask and attempt a robbery! Instead
it is far easier and cheaper to attempt an attack on the computer system of the bank, sitting at
home! It may be far prudent for the attacker to break into the bank’s servers or steal credit card

or ATM information from the comforts of her home or place of work.

In 1995, A russian hacker broke into Citibank’s computers remotely, stealing $12
million. Although the attacker was traced, it was very difficult to get him extradited for the court

case.

1.3 EXAMPLES OF SECURITY VIOLATIONS

Here some common examples of violations on security particularly on information

transmitted through a network.

1. User A transmits a file to user B. The file contains sensitive information (e.g., payroll
records) that is to be protected from disclosure. User C, who is not authorized to read the file,
is able to monitor the transmission and capture a copy of the file during its transmission.

2. A network manager, D, transmits a message to a computer, E, under its management. The
message instructs computer E to update an authorization file to include the identities of a
number of new users who are to be given access to that computer. User F intercepts the
message, alters its contents to add or delete entries, and then forwards the message to E,
which accepts the message as coming from manager D and updates its authorization file
accordingly.

3. Rather than intercept a message, user F constructs its own message with the desired entries
and transmits that message to E as if it had come from manager D. Computer E accepts the
message as coming from manager D and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a message to a server
system to invalidate the employee's account. When the invalidation is accomplished, the
server is to post a notice to the employee's file as confirmation of the action. The employee is

able to intercept the message and delay it long enough to make a final access to the server to
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retrieve sensitive information. The message is then forwarded, the action taken, and the
confirmation posted. The employee's action may go unnoticed for some considerable time.
5. A message is sent from a customer to a stockbroker with instructions for various transactions.

Subsequently, the investments lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of security violations, it illustrates

the range of concerns of network security.

1.4 CHALLENGES IN SECURITY

Internetwork security is complex and at the same time fascinating. Here we highlight some

challenges in providing security.

1. Security involving communications and networks is not as simple as it might first appear
to the novice. The requirements seem to be straightforward; indeed, most of the major
requirements for security services can be given self-explanatory one-word labels:
confidentiality, authentication, nonrepudiation, integrity. But the mechanisms used to
meet those requirements can be quite complex, and understanding them may involve
rather subtle reasoning.

2. In developing a particular security mechanism or algorithm, one must always consider
potential attacks on those security features. In many cases, successful attacks are
designed by looking at the problem in a completely different way, therefore exploiting an
unexpected weakness in the mechanism.

3. Because of point 2, the procedures used to provide particular services are often
counterintuitive: It is not obvious from the statement of a particular requirement that such
elaborate measures are needed. It is only when the various countermeasures are
considered that the measures used make sense.

4. Having designed various security mechanisms, it is necessary to decide where to use
them. This is true both in terms of physical placement (e.g., at what points in a network
are certain security mechanisms needed) and in a logical sense [e.g., at what layer or
layers of an architecture such as TCP/IP (Transmission Control Protocol/Internet

Protocol) should mechanisms be placed].
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5. Security mechanisms usually involve more than a particular algorithm or protocol. They
usually also require that participants be in possession of some secret information (e.g., an
encryption key), which raises questions about the creation, distribution, and protection of
that secret information. There is also a reliance on communications protocols whose
behavior may complicate the task of developing the security mechanism. For example, if
the proper functioning of the security mechanism requires setting time limits on the
transit time of a message from sender to receiver, then any protocol or network that
introduces variable, unpredictable delays may render such time limits meaningless.

Thus, there is much to consider. This chapter provides a general overview of the subject
matter that structures the material in the remainder of the book. We begin with a general
discussion of network security services and mechanisms and of the types of attacks they are
designed for. Then we develop a general overall model within which the security services and

mechanisms can be viewed.

1.5 SECURITY MODELS

An organization can take several approaches to implement its security model. Let us summarize
these approaches.

No Security: In this simplest case, the approach could be a decision to implement no security at
all.

Security through obscurity: In this model, a system is secure simply because nobody knows
about its existence and contents. This approach cannot work for too long, as there are many ways
an attacker can come to know about it.

Hot Security: In this scheme, the security for each host is enforced individually. This is a very
safe approach, but the trouble is that it cannot scale well. The complexity and diversity of
modern sites/organizations makes the task even harder.

Network Security: Host security is tough to achieve as organizations grow and become more
diverse. In this technique, the focus is to control network access to various hosts and their

services, rather than individual host security. This is a very efficient and scalable model.
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1.6 SECURITY GOALS

There are three primary goals in any security service. These are confidentially, integrity and

availability.

Confidentiality

The principle of confidentiality is that only the sender and the intended recipient should be able
to access the contents of a message. Confidentiality gets compromised if an unauthorized person
is able to access the message. Example of this could be a confidential email message sent by user
A to user B, which is accessed by user C without the permission or knowledge of A and B. This

type of attack is called interception.

Integrity

When the contents of a message are changed after the sender sends it, but before it reaches the
intended recipient, we say that the integrity of the message is lost. For example, consider that
user A sends message to user B. User C tampers with a message originally sent by user A, which
is actually destined for user B. User C somehow manages to access it, change its contents and
send the changed message to user B. User B has no way of knowing that the contents of the
message changed after user A had sent it. User A also does not know about this change. This

type of attack is called modification.

Availability

The principle of availability is that resources should be available to authorized parties at all
times. For example, due to the intentional actions of an unauthorized user C, an authorized user
A may not be able to contact a server B. This would defeat the principle of availability. Such an

attack is called interruption.

1.7 SECURITY TRENDS

Internet Architecture Board (IAB) has issued report entitled “Security in the Internet
Architecture” where they have identified key areas for security mechanisms. Among these were
1. need to secure network and

2. need to secure end to end transmission
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These concerns are fully justified. As confirmation, consider the trends reported by the
Computer Emergency Response Team (CERT) Coordination Center (CERT/CC). Figure 1.1 a
shows the trend in Internet-related vulnerabilities reported to CERT over a 10-year period. These
include security weaknesses in the operating systems of attached computers (e.g., Windows,
Linux) as well as vulnerabilities in Internet routers and other network devices. Figure 1.1 b
shows the number of security-related incidents reported to CERT. These include denial of
service attacks; IP spoofing, in which intruders create packets with false IP addresses and exploit
applications that use authentication based on IP; and various forms of eavesdropping and packet
sniffing, in which attackers read transmitted information, including logon information and

database contents.
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Figure 1.1: CERT Statistics
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Figure 1.2: Trends in Attack Sophistication and Intruder Knowledge

Over time, the attacks on the Internet and Internet-attached systems have grown more
sophisticated while the amount of skill and knowledge required to mount an attack has declined

(Figure 1.2). Attacks have become more automated and can cause greater amounts of damage.

This increase in attacks coincides with an increased use of the Internet and with increases
in the complexity of protocols, applications, and the Internet itself. Critical infrastructures
increasingly rely on the Internet for operations. Individual users rely on the security of the
Internet, email, the Web, and Web-based applications to a greater extent than ever. Thus, a wide
range of technologies and tools are needed to counter the growing threat. At a basic level,
cryptographic algorithms for confidentiality and authentication assume greater importance. As
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well, designers need to focus on Internet-based protocols and the vulnerabilities of attached

operating systems and applications.

1.8 OSI SECURITY ARCHITECTURE

The OSI security architecture focuses on security attacks, mechanisms, and services.
These can be defined briefly as follows:
Security attack
Security attack is any action that compromises the security of information owned by an
organization.
Security mechanism
A process (or a device incorporating such a process) that is designed to detect, prevent, or
recover from a security attack.
Security service
A processing or communication service that enhances the security of the data processing systems
and the information transfers of an organization. The services are intended to counter security
attacks, and they make use of one or more security mechanisms to provide the service.
In the literature, the terms threat and attack are commonly used to mean more or less the same
thing. However RFC 2828 (RFC: Request For Comment- is a security standard) differentiates
threat and attack
Threat
Threat is a potential for violation of security, which exists when there is a circumstance,
capability, action, or event that could breach security and cause harm. That is, a threat is a
possible danger that might exploit vulnerability.
Attack
Attack is an assault on system security that derives from an intelligent threat; that is, an
intelligent act that is a deliberate attempt (especially in the sense of a method or technique) to

evade security services and violate the security policy of a system.
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1.9 TYPES OF ATTACKS

Attacks are classified as passive and active. A passive attack is an attempt to learn or
make use of information from the system without affecting system resources; whereas an active

attack is an attempt to alter system resources or affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal
of the opponent is to obtain information that is being transmitted. Two types of passive attacks
are release of message contents and traffic analysis.

The release of message contents is easily understood (Figure 1.3 a). A telephone
conversation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the contents of
these transmissions.

A second type of passive attack, traffic analysis, is subtler (Figure 1.3 b). Suppose that
we had a way of masking the contents of messages or other information traffic so that opponents,
even if they captured the message, could not extract the information from the message. The
common technique for masking contents is encryption. If we had encryption protection in place,
an opponent might still be able to observe the pattern of these messages. The opponent could
determine the location and identity of communicating hosts and could observe the frequency and
length of messages being exchanged. This information might be useful in guessing the nature of
the communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any alteration of
the data. Typically, the messages are sent and received in seemingly normal fashion. Neither the
sender nor receiver is aware that a third party has read the messages or observed the traffic
pattern. However, it is feasible to prevent the success of these attacks. Message encryption is a
simple solution to thwart passive attacks. Thus, the emphasis in dealing with passive attacks is
on prevention rather than detection.

Active Attacks
Active attacks involve some modification of the data stream or the creation of a false stream and
can be subdivided into four categories: masquerade, replay, modification of messages, and denial

of service.
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Replay involves the passive capture of a data unit and its subsequent retransmission to produce
an unauthorized effect (Figure 1.4 a).

A masquerade takes place when one entity pretends to be a different entity (Figure 1.4 b). A
masquerade attack usually includes one of the other forms of active attack. For example,
authentication sequences can be captured and replayed after a valid authentication sequence has
taken place, thus enabling an authorized entity with few privileges to obtain extra privileges by
impersonating an entity that has those privileges.

Modification of messages simply means that some portion of a legitimate message is altered, or
that messages are delayed or reordered, to produce an unauthorized effect (Figure 1.4 c). For
example, a message meaning "Allow John Smith to read confidential file accounts™ is modified
to mean "Allow Fred Brown to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of communications
facilities (Figure 1.4 d). This attack may have a specific target; for example, an entity may
suppress all messages directed to a particular destination (e.g., the security audit service).
Another form of service denial is the disruption of an entire network, either by disabling the

network or by overloading it with messages so as to degrade performance.

Passive attacks

C (Attacker) Reads the contents
of message from Ato B

A (Sender) » B (Receiver)

Fig 1.3 a: Release of message



C (Attacker) Observes the
traffic pattern of messages
fromAtoB

A (Sender) B (Receiver)

Internet

L7

Fig 1.3 b: Traffic analysis

Active attacks

C (Attacker) captures the message and
sends the message again to B

Internet
A (Sender) » B (Receiver)

:

Fig 1.4 a: Replay
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C (Attacker) C pretends to be A

A (Sender) B (Receiver)

Fig 1.4 b: Masquerade

C (Attacker) C modifies the
message and sends to B

A (Sender) B (Receiver)

Fig 1.4 c: Modification of message

C (Attacker) disrupts service to A
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A (Sender) ___ Server

Fig 1.4 d: Denial of service

Active attacks present the opposite characteristics of passive attacks. Whereas passive
attacks are difficult to detect, measures are available to prevent their success. On the other hand,
it is quite difficult to prevent active attacks absolutely, because of the wide variety of potential
physical, software, and network vulnerabilities. Instead, the goal is to detect active attacks and to
recover from any disruption or delays caused by them. If the detection has a deterrent effect, it

may also contribute to prevention.

1.10 SUMMARY

Information security increased the ease of threats to information with use of sophisticated
computing systems and several examples of security violations are described in detail in first
three sections. In sections 1.4 through 1.8 complexities of security service, models, goals and
trends in security are explained. Finally various passive and active attacks are discussed in the
closing section 1.9.

1.11 KEYWORDS

Security-Threats, Attacks, Security Goals, Security Model, Trends in Security, Security
Violations, Active Attacks, Passive Attacks, Virus, Worms.
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1.12 QUESTIONS

© N o o B~ w DN PE

Compare securing information in past and now.
How is computer useful in designing attacks?
Give the examples of security violations.
“Internet security is very challenging”-justify.
Describe models of security.

Explain primary goals of security.

Discuss the past and present trends in attacks.
Briefly explain various attacks.
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UNIT -2: SECURITY SERVICES AND MECHANISMS

Structure
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2.0 OBJECTIVES

A thorough study of this unit will make you proficient in
v’ Essential Security services to be provided by communication system.
v Methods/mechanisms that can ensure various services.

v" Techniques to realize security goals.

2.1 SECURITY SERVICES.

ITU-T (International telecommunication Union and Standardization Sector) develops
standards called relating to Telecommunication and OSI Recommendation. Recommendation
X.800 (Security Architecture for OSI) and IETF RFC 2828 (Internet Security Glossary) are used
as references to systematically evaluate and define security requirements. Though coming from
different standardization bodies, the two standards have many points in common. X.800 is used
to define general security-related architectural elements needed when protection of
communication between open systems is required. X.800 establishes guidelines and constraints
to improve existing recommendations and/or to develop new recommendations in the context of
OSI. Similarly, RFC 2828 provides abbreviations, explanations and recommendations for

information system security terminology.
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Both X.800 and RFC 2828 are designed to assist security managers in defining security
requirements and possible approaches to meeting those requirements. They also help hardware
and software manufacturers to develop security features for their products and services that
follow certain standards. X.800 and RFC 2828 both mention several aspects of security systems,
namely security threat and attack, security services and mechanisms and security management.
This section gives a brief introduction to these standards. We urge readers to read the original

standard documents for more information.

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems that are
components of data transfers. Perhaps a clearer definition is found in RFC 2828, which is as
follows: a processing or communication service that is provided by a system to give a specific
kind of protection to system resources; security services implement security policies and are
implemented by security mechanisms. X.800 divides these services into five categories and

fourteen specific services (Table 2.1). Here we look at each category in turn.

Figure here shows all specific services and the category they belong to.

Security Services

Data Data Authenti- Non- Access
Confidentiality Integrity cation repudiation control
Peer entity Proof of origin
Data origin Proof of delivery
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Service and definition Specific tasks
Data Confidentiality - Protection of data | 1. Connection confidentiality
from unauthorized disclosure 2. Connectionless confidentiality

3. Selective field confidentiality

4. Traffic flow confidentiality
Data Integrity - Assurance that data is as | 1. Connection integrity with recovery
sent by authorized entity (contains no | 2. Connection integrity without recovery
modifications, insertion, deletion, or replay) | 3. Selective field connection integrity

4. Connectionless integrity

5. Selective field connectionless integrity
Authentication - Assurance that | 1. Peer entity authentication
communicating entity is the one that it | 2. Data origin authentication
claims to be
Non repudiation - provides protection | 1. Non repudiation of origin

against one of the entities from denying all

or part of the communication

. non repudiation of destination

Access Control - Prevention of unauthorized

use of a resource

Table 2.1: Category of services and specific tasks

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With respect to the
content of a data transmission, several levels of protection can be identified. The broadest service
protects all user data transmitted between two users over a period of time. For example, when a
TCP connection is set up between two systems, this broad protection prevents the release of any
user data transmitted over the TCP connection. It can detect modifications (insertion, deletion,

replay) and attempt recovery (task 1 in the table 2.1). Narrower forms of this service can also be
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defined, including the protection of a single message or even specific fields within a message
(task 3 in table 2.1). These refinements are less useful than the broad approach and may even be
more complex and expensive to implement. The other aspect of confidentiality is the protection
of traffic flow from analysis (task 4 in the table). This requires that an attacker not be able to
observe the source and destination, frequency, length, or other characteristics of the traffic on a

communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected
fields within a message. Again, the most useful and straightforward approach is total stream
protection.

A connection-oriented integrity service, one that deals with a stream of messages, assures
that messages are received as sent with no duplication, insertion, modification, reordering, or
replays. The destruction of data is also covered under this service (task 2 in the table 2.1). Thus,
the connection-oriented integrity service addresses both message stream modification and denial
of service. On the other hand, a connectionless integrity service, one that deals with individual
messages without regard to any larger context, generally provides protection against message
modification only (task 4 of the table).

We can make a distinction between service with and without recovery. Because the
integrity service relates to active attacks, we are concerned with detection rather than prevention.
If a violation of integrity is detected, then the service may simply report this violation, and some
other portion of software or human intervention is required to recover from the violation.
Alternatively, there are mechanisms available to recover from the loss of integrity of data (task
1), as we will review subsequently. The incorporation of automated recovery mechanisms is, in

general, the more attractive alternative.

Authentication

The authentication service is concerned with assuring that a communication is authentic. In the
case of a single message, such as a warning or alarm signal, the function of the authentication
service is to assure the recipient that the message is from the source that it claims to be from. In
the case of request for interaction, such as the connection of a terminal to a host, two things are

to be taken care of. First, at the time of connection initiation, the service assures that the two
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participating entities are authentic, that is, that each is the entity that it claims to be. Second, the
service must assure that the connection is not interfered with in such a way that a third party can
masquerade as one of the two legitimate parties and perform unauthorized transmission or
reception.

Two specific authentication services are defined in X.800:

1. Peer entity authentication: Provides for the corroboration of the identity of two entities
participating in communication. Peer entity authentication is provided for use at the
establishment of, or at times during the data transfer phase of, a connection. It attempts to
provide confidence that an entity is not performing either a masquerade or an
unauthorized replay of a previous connection.

2. Data origin authentication: Provides for the corroboration of the source of a message
(sender). It does not provide protection against the duplication or modification of data
units. This type of service supports applications like electronic mail, where there are no

prior interactions between the communicating entities.

Access Control

In the context of network security, access control is the ability to limit and control the access to
host systems and applications via communications links. To achieve this, each entity trying to
gain access must first be identified, or authenticated, so that access rights can be tailored to the

individual.

Non-repudiation

Non-repudiation prevents either sender or receiver from denying message transmission or receipt
of message. Thus, when a message is sent, the receiver can prove that the alleged sender in fact
sent the message. Similarly, when a message is received, the sender can prove that the alleged

receiver in fact received the message.

Availability of Service

In addition to services listed in the table above, both X.800 and RFC 2828 define availability to
be the property of a system or a system resource being accessible and usable upon demand by an
authorized system entity, according to performance specifications for the system (i.e., a system is

available if it provides services according to the system design whenever users request them). A
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variety of attacks can result in the loss of or reduction in availability. Some of these attacks are
amenable to automated countermeasures, such as authentication and encryption, whereas others
require some sort of physical action to prevent or recover from loss of availability of elements of
a distributed system.

X.800 treats availability as a property to be associated with various security services. However,
it makes sense to call out specifically an availability service. An availability service is one that
protects a system to ensure its availability to authorized users. This service addresses the security
concerns raised by denial-of-service attacks. It depends on proper management and control of

system resources and thus depends on access control service and other security services.

2.2 SECURITY MECHANISM

We discuss here the list of the security mechanisms defined in X.800. The mechanisms are
divided into those that are implemented in a specific protocol layer, such as TCP or an
application-layer protocol, and those that are not specific to any particular protocol layer or
security service. These mechanisms are called ‘specific security mechanisms’ and ‘pervasive

security mechanism’.

Specific Security Mechanisms
These may be incorporated into the appropriate protocol layer in order to provide some of the

OSI security services. Some techniques for realizing security are listed here.

1. Encipherment
This is the process of using mathematical algorithms to transform data into a form that is not
readily intelligible. The transformation and subsequent recovery of the data depend on an

algorithm and zero or more encryption keys.

2. Digital Signature
Data or cryptographic transformation of a data unit is appended to the data, so that the recipient
of the data unit is convinced of the source and integrity of the data unit and this can also serve to

protect the data against forgery (e.g., by the recipient).
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3. Access Control

A variety of mechanisms are available that enforce access rights to resources.

4. Data Integrity
A variety of mechanisms may be used to assure the integrity of a data unit or stream of data

units.

5. Authentication Exchange
This is a mechanism intended to ensure the identity of an entity by means of information

exchange.

6. Traffic Padding
The insertion of bits into gaps in a data stream is called traffic padding. This helps to thwart
traffic analysis attempts.

7. Routing Control
Routing control enables selection of particular physically secure routes for certain data

transmission and allows routing changes, especially when a breach of security is suspected.

8. Notarization

This is the use of a trusted third party to assure certain properties of a data exchange.

Pervasive Security Mechanisms
These are the mechanisms that are not specific to any particular OSI security service or protocol

layer.

1. Trusted Functionality
The process that which is perceived to be correct with respect to some criteria (e.g., as

established by a security policy).

2. Security Label
This is the technique of marking of a bound to a resource (which may be a data unit) that names

or designates the security attributes of that resource.
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3. Event Detection

Detection of security-relevant events such as forgery, denial of sending or receiving of data,

alteration of data etc. is another important essential mechanism.

4. Security Audit Trail

Data can be collected and potentially used to facilitate a security audit, which is an independent

review and examination of system records and activities.

5. Security Recovery

This deals with requests from mechanisms, such as event handling and management functions,

and takes recovery actions.

2.3 SERVICES AND MECHANISMS

Table 2.2, based on one in X.800, indicates the relationship between security services and

security mechanisms.

Service Enciph | Digital Access | Data Authentication | Traffic | Routing | Notari
erment | Signature | Control | Integrity | Exchange Padding | Control zation

Peer Entity | Y Y Y

Authentication

Data Origin | Y Y

Authentication

Access Control Y

Confidentiality | Y Y

Traffic Flow | Y Y Y

Confidentiality

Data Integrity Y Y Y

Non repudiation Y Y Y

Availability Y Y
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2.4 TECHNIQUES

Mechanisms discussed in the previous section are only theoretical recipes to implement
security. The actual implementation of security goals needs some techniques. Two techniques are

prevalent today: one (cryptography) is very general and the other one (steganography) is specific.

Cryptography

Some security mechanisms listed in the previous section can be implemented using
cryptography. Cryptography, a word with Greek origin, means ‘“‘secret writing”. However, we
use the term to refer to the science and art of transforming messages to make them secure and
immune to attacks. Although in the past cryptography reffered only to the encrytion and
decryption of messages using secert keys, today it is defined as involving three distinct
mechanisms: symmetric-key encripherment, asymmetric-key encipherment, and hashing. We

will briefly discuss these three mechanisms here.

1. Symmetric-key Encipherment

In symmetric encipherment, an entity, say Alice, can send a message to other entity, say Bob,
over an insecure channel with the assumption that an adversary, say Eve, cannot understand the
contents of the message by simply eavesdropping over the channel. Alice encrypts the message
using an encryption algorithm. Bob decrypts the message using a decryption algorithm.
Symmetric-key encipherment uses a single secret key for both encryption and decryption.
Encryption/decryption can be thought of as electronic locking system. In symmetric-key
enciphering, Alice puts the message in a box and locks the box using the shared secret key; Bob
unlocks the box with the same key and takes out the messages.

2. Asymmetric Encipherment
In asymmetric encipherment, we have the same situation aas the symmetric-key encipherment,
with a few exceptions. First, there are two keys instead of one; one public key and one private
key. To send a secure message to Bob, Alice firsts encrypts the message using Bob’s public key.
To decrypts the message, Bob uses his own private key.
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3. Hashing
In hashing, a fixed-length message digest is created out of a variable-length message. The digest
is normally much smaller than the message. To be useful, both the message and the digest must
be sent to Bob. Hashing is used to provide checkvalues, which were discussed earlier in relation

to providing data integrity.

Steganography

This is the art of hidiing messages in another form. Message is not alltered as in encryption. A
text can hide a message. For exmple “red umbrella needed” may mean the message “run”. The
first letter of each word in the text becomes the message. An image can also be used for hiding
messages. Digital images are after all binary information. Suppose the image is grey image. The
least significant bit of consecutive eight pixels may be alterd to be a specific bit pattern of a

character. We will discuss this technique of steganograpphy in detail in the unit to come.

2.5 SUMMARY

A thorough description of five major categories of security services may be found in
section 2.1.In the section next different mechanisms to provide the security services are
elaborately discussed. Mechanisms that ensure services are listed in table 2.2 in section 2.3. In
the closing section 2.4 two prevalent techniques cryptography and steganography are explained

briefly with interesting illustrations.

2.6 KEYWORDS

Steganography, Symmetric key encipherment, Asymmetric key encipherment, Data integrity,
Digital signature, Authentication, Non repudiation, Data confidentiality, Access control,

Notarization, Routing control, Digital signature, Hashing

2.7 QUESTIONS

1. What are five categories of security services?

2. Mention and briefly explain the function of specific services.
3. Briefly explain various security mechanisms.
4

Relate security services and mechanisms.
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S.
6.

Discuss two types of encipherment.

Discuss briefly explain covering a message with image and text.
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UNIT -3: CLASSICAL ENCRYPTION - PART I

Structure

3.0  Objectives

3.1  Symmetric Cipher model

3.2  Cryptosystems and Cryptanalysis
3.3 Substitution Techniques

3.4  Summary

3.5  Keywords

3.6 Questions

3.7  References

3.0 OBJECTIVES

After going through this unit you will be able to

v

v
v
v
v

Understand basic principle of symmetric cipher

Encrypt and decrypt messages using simple substitution methods
Understand the weakness of encryption methods

Devise ways to strengthen the methods

Devise cryptanalytic attacks on the methods

3.1 SYMMETRIC CIPHER MODEL

A symmetric encryption scheme has five ingredients (Figure 3.1). They are

Plaintext: This is the original intelligible message or data that is fed into the algorithm as
input.

Encryption algorithm: The encryption algorithm performs various substitutions and
transformations on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The key is a value
independent of the plaintext and of the algorithm. The algorithm will produce a different
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output depending on the specific key being used at the time. The exact substitutions and
transformations performed by the algorithm depend on the key.

4. Cipher text: This is the scrambled message produced as output. It depends on the
plaintext and the secret key. For a given message, two different keys will produce two
different cipher texts. The cipher text is an apparently random stream of data and, as it
stands, is unintelligible.

5. Decryption algorithm: This is essentially the encryption algorithm run in reverse. It

takes the cipher text and the secret key and produces the original plaintext.

Secret key shared by Secret key shared by
sender and recipiemt sender and recipient

Y T

I'ransmatted

@ ciphernext @
— —

Plaintexl - - , . - Plaintexl
inpul Encrypiion algorithm ecryption algorithm oulput
(e.g.. DES) (reverse of encryplion
algorithm)

N
Y

Figure 3.1: Simplified Model of Conventional Encryption

There are two requirements for secure use of conventional encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the algorithm to be
such that an opponent who knows the algorithm and has access to one or more cipher
texts would be unable to decipher the cipher text or figure out the key. This requirement
is usually stated in a stronger form: The opponent should be unable to decrypt cipher text
or discover the key even if he or she is in possession of a number of cipher texts together

with the plaintext that produced each cipher text.

37



2. Sender and receiver must have obtained copies of the secret key in a secure fashion and
must keep the key secure. If someone can discover the key and knows the algorithm, all

communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the cipher text plus
knowledge of the encryption/decryption algorithm. In other words, we do not need to keep the
algorithm secret; we need to keep only the key secret. This feature of symmetric encryption is
what makes it feasible for widespread use. The fact that the algorithm need not be kept secret
means that manufacturers can and have developed low-cost chip implementations of data
encryption algorithms. These chips are widely available and incorporated into a number of
products. With the use of symmetric encryption, the principal security problem is maintaining
the secrecy of the key. For this reason key is sent to the receiver through a separate secure
channel. Alternatively, a trusted third party can generate the key and send this to both source and
destination.

Let us take a closer look at the essential elements of a symmetric encryption scheme,
using Figure 3.2. A source produces a message in plaintext, X = [X1, X2, ... XM ]. The M
elements of X are letters in some finite alphabet. Traditionally, the alphabet usually consisted of
the 26 capital letters. Nowadays, the binary alphabet {0, 1} is typically used. For encryption, a
key of the form K = [K1, K2, ... KJ] is generated. If the key is generated at the message source,
then it must also be provided to the destination by means of some secure channel. Alternatively,

a third party could generate the key and securely deliver it to both source and destination.

With the message X and the encryption key K as input, the encryption algorithm forms
the cipher text Y=[Y1, Y2, ..., Yn].

We write this as Y= E(K, X).

This notation indicates that Y is produced by using encryption algorithm E as a function

of the plaintext X, with the specific function determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation using

decryption algorithm and the secret key.

We write thisas X=D (K, Y)
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Figure 3.2: Model of Conventional Cryptosystem

Secure channel

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or
both X and K. It is assumed that the opponent knows the encryption (E) and decryption (D)
algorithms. If the opponent is interested in only this particular message, then the focus of the
effort is to recover X by generating a plaintext estimate X’. Often, however, the opponent is
interested in being able to read future messages as well, in which case an attempt is made to

recover K by generating an estimate K’.

3.2 CRYPTOSYSTEMS AND CRYPTANALYSIS

Cryptosystems
Cryptographic systems are characterized along three independent dimensions:
1. The type of operations used for transforming plaintext to cipher text: All encryption
algorithms are based on two general principles: substitution, in which each element in the
plaintext (bit, letter, group of bits or letters) is mapped into another element, and

transposition, in which elements in the plaintext are rearranged. The fundamental
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requirement is that no information be lost (that is, that all operations are reversible). Most
systems, referred to as product systems, involve multiple stages of substitutions and
transpositions.

2. The number of keys used: If both sender and receiver use the same key, the system is
referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender
and receiver use different keys, the system is referred to as asymmetric, two-key, or
public-key encryption.

3. The way in which the plaintext is processed: A block cipher processes the input one
block of elements at a time, producing an output block for each input block. A stream
cipher processes the input elements continuously, producing output one element at a time,

as it goes along.

Cryptanalysis

Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some knowledge of the
general characteristics of the plaintext or even some sample plain text-cipher text pairs. This type
of attack exploits the characteristics of the algorithm to attempt to deduce a specific plaintext or

to deduce the key being used.

Table 3.1 summarizes the various types of cryptanalytic attacks, based on the amount of
information known to the cryptanalyst. The most difficult problem is presented when all that is
available is the cipher text only. In some cases, not even the encryption algorithm is known, but
in general we can assume that the opponent does know the algorithm used for encryption. One
possible attack under these circumstances is the brute-force approach of trying all possible keys.
If the key space is very large, this becomes impractical. Thus, the opponent must rely on an
analysis of the cipher text itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that is transformed,
such as the language of the text namely, English or French text, an EXE file, a Java source

listing, an accounting file, and so on.

The cipher text only attack is the easiest to defend against because the opponent has the
least amount of information to work with. In many cases, however, the analyst has more
information. The analyst may be able to capture one or more plaintext messages as well as their

encryptions. Or the analyst may know that certain plaintext patterns will appear in a message.
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For example, a file that is encoded in the Postscript format always begins with the same pattern,
or there may be a standardized header or banner to an electronic funds transfer message, and so
on. All these are examples of known plaintext. With this knowledge, the analyst may be able to
deduce the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a probable-
word attack. If the opponent is working with the encryption of some general prose message, he
or she may have little knowledge of what is in the message. However, if the opponent is after
some very specific information, then parts of the message may be known. For example, if an
entire accounting file is being transmitted, the opponent may know the placement of certain key
words in the header of the file. As another example, the source code for a program developed by

Corporation X might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the system a
message chosen by the analyst, then a chosen-plaintext attack is possible. An example of this
strategy is differential cryptanalysis. In general, if the analyst is able to choose the messages to
encrypt, the analyst may deliberately pick patterns that can be expected to reveal the structure of
the key.

Table 3.1 lists two other types of attack: Chosen cipher text and chosen text. These are
less commonly employed as cryptanalytic techniques but are nevertheless possible avenues of
attack. Only relatively weak algorithms fail to withstand a cipher text-only attack. Generally, an
encryption algorithm is designed to withstand a known-plaintext attack.

Two more definitions are worthy of note. An encryption scheme is unconditionally secure if
the cipher text generated by the scheme does not contain enough information to determine
uniquely the corresponding plaintext, no matter how much cipher text is available. That is, no
matter how much time an opponent has, it is impossible for him or her to decrypt the cipher text,
simply because the required information is not there. With the exception of a scheme known as
the one-time pad (described later in this chapter), there is no encryption algorithm that is

unconditionally secure.

Therefore, all that the users of an encryption algorithm can strive for is an algorithm that

meets one or both of the following criteria:
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e The cost of breaking the cipher exceeds the value of the encrypted information.

e The time required to break the cipher exceeds the useful lifetime of the information.

An encryption scheme is said to be computationally secure if either of the foregoing two
criteria are met. The rub is that it is very difficult to estimate the amount of effort required to
cryptanalyze cipher text successfully. All forms of cryptanalysis for symmetric encryption
schemes are designed to exploit the fact that traces of structure or pattern in the plaintext may
survive encryption and be discernible in the cipher text. This will become clear as we examine
various symmetric encryption schemes. We will see that cryptanalysis for public-key schemes
proceeds from a fundamentally different premise, namely, that the mathematical properties of the
pair of keys may make it possible for one of the two keys to be deduced from the other.
Brute-force attack
The attacker tries every possible key on a piece of cipher text until an intelligible translation into
plaintext is obtained. On average, half of all possible keys must be tried to achieve success.
Table 3.2 shows how much time is involved for various key spaces. Results are shown for four
binary key sizes. The 56-bit key size is currently in use with the DES (Data Encryption Standard)
algorithm, and the 168-bit key size is used for triple DES. The minimum key size specified for
AES (Advanced Encryption Standard) is 128 bits. Results are also shown for what are called
substitution codes that use a 26-character key (discussed later), in which all possible
permutations of the 26 characters serve as keys. For each key size, the results are shown
assuming that it takes 1 micro second to perform a single decryption, which is a reasonable order
of magnitude for today's machines. With the use of massively parallel organizations of
microprocessors, it may be possible to achieve processing rates that are many orders of
magnitude greater. The final column of Table 3.2 considers the results for a system that can
process 1 million keys per microsecond. As you can see, at this performance level, DES can no

longer be considered computationally secure.

Type of Attack Known to Cryptanalyst
Cipher text Only * Encryption algorithm

* Cipher text
Known Plaintext * Encryption algorithm

* Cipher text
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* One or more plaintext—cipher text pairs formed with the secret key

Chosen Plaintext

* Encryption algorithm
* Cipher text
* Plain text message chosen by cryptanalyst, together with its corresponding

cipher text generated with the secret key

Chosen Cipher text

* Encryption algorithm
* Cipher text
* Cipher text chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

Chosen Text

* Encryption algorithm

* Cipher ext

* Plaintext message chosen by cryptanalyst, together with its corresponding
Cipher text generated with the secret key

« Cipher text chosen by cryptanalyst, together with its corresponding
decrypted plaintext generated with the secret key

Table 3.1: Types of attacks on encrypted messages

Key Size (bits) Number of Time Required at the Time Required at
Alternative Keys rate of 1 Decryption/us 10° Decryptions/us
32 2%2=43x10° 2°ms = 35.8 minutes 2.15 milliseconds
56 2°°=7.2x10% 2°°ms = 1142 years 10.01 hours
128 2% =3.4x10% 2'%'ms = 5.4 x 10** years 5.4 x 10™ years
168 2% =3.7x 10% 2%"ms = 5.9 x 10 years 5.9 x 10% years
26 characters 26! = 4 x 10%° 2*10%ms = 6.4 x 10" 6.4 x 10° years
(permutation) years

Table 3.2: Average time for brute force attack
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3.3 SUBSTITUTION TECHNIQUES

In this section we examine some classical encryption techniques, based on substitution. A
substitution technique is one where letters of plain text are replaced by other letters / numbers /
symbols. If plain text is a bit pattern then cipher is another bit pattern of same length. We discuss
some substitution techniques that had been used in early times. We follow the convention of

using small case letters for plain text and upper case letters for cipher text.
Caesar cipher

This is simple technique, used by Julius Caesar. The Caesar cipher involves replacing each letter

of the alphabet with the letter standing n places further down the alphabet. For example,

Plain: meet me after the toga party
Cipher: PHHW PH DIWHU WKH WRJD SDUWB

Alphabet set is wrapped around. That is A follows Z. In this example n=3.

If the numbers 0 to 25 are assigned to alphabets then ¢ = E(3, p) = (p+3) mod 26.
A shift of k characters is the general Caesar algorithm. Encryption and decryption formulas are
given as:

c=E (k, p) = (p + k) mod 26, where k=1 to 25

p =D (k, ¢) = (c-k) mod 26.

If it is known that Caesar cipher technique is used, cryptanalytic attack is easy. Attacker can try

values 1 to 25 for k systematically and whichever k gives intelligible text is the key used.

Let us take the cipher text

PHHW FH DIWHU WKH WRJD SDUWE
KEY
l Qggv og chvgt 19 vgic rctva
! nffu nf bgufs uif uphb gbsuz
3 meet me after the toga party
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With three attempts intelligible text is exposed. No other k gives intelligible text. Three
important characteristics enabled us to use brute force attacks

1. Encryption and decryption are known

2. total key size =25

3. Language of plain text is known and recognizable

In most networking situations, algorithm is known. What makes brute force attack difficult is
number of possible keys. If the language of plain text is unknown then plaintext output may not
be recognizable. Further input may be compressed or abbreviated. This makes decryption
difficult. For example ZIP transformation of plaintext (uses more than 26 characters), a brute

force attack will not expose the text.
3.3.2 Mono alphabetic cipher

Caesar cipher has just 25 keys. If we use any permutation of alphabets as a key we have
26! keys = 4 x10%® keys. In this method, one letter is substituted for another, hence the name
mono alphabetic cipher. The key space is greater than that of DES. But this encryption is not
stronger than DES.

If the attacker knows the method then the attack (cryptanalytic attack) proceeds as
follows: A frequency of characters appearing in the cipher may be obtained. Frequency of letters
in a long plaintext may be obtained from a sample plain text. If the message is long, then we can
get exact match of frequencies between ciphers and sample plain text. With short messages many
cipher characters is likely to have more or less similar frequencies. If there is a single character
(cipher) with highest frequency, find the corresponding character in sample plain text. Do
similarly for distinct frequency characters. At this stage three to four characters may be revealed.
For similar frequencies in cipher text, associate possible group of plaintext characters. The exact

group can be discovered with frequency match of two to three characters.

Example

Consider the cipher text given here.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
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EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMOQ

As a first step the relative frequency of cipher characters in this short text is determined. The
high frequency letters are P, Z, S, U, O, M, in order. The frequencies of these letters are 13.33,
11.67, 8.33, 8.33, 7.5, and 6.67. The high frequency letters in plain text (considered from a
sample page of an English text) are e, t, a, 0, i, n, in order. The frequencies of these letters are
12.702, 9.056, 8.167, 7.507, 6.996, and 6.749. So it is reasonable to assume that cipher
characters P, Z correspond to plain text character e, t. Small frequencies cannot be matched,
since the cipher text is usually short. The characters S, U, O, M will probably match one or the
other in the group {a, o, i, n}. The low frequency characters in cipher are A, B, G, Y, I, J (with
frequencies 1.67, 1.67, 1.67, 1.67, 0.83, 0.83). These probably match with one or other low
frequency characters in sample text which are in the group {b, j, k, q, v, X, z} having frequencies
1.492, 0.153, 0.772, 0.095, 0.978, 0.15, 0.074. Note that these are the frequencies observed from
the sample text. Thus we already have lot of information about cipher plain correspondence.
There are number of ways to proceed from here. We can analyze double letter frequency in the
sample text and find corresponding double cipher characters. In the cipher the most frequent
double letter occurrence is ZW and in the sample plain text it is th. Thus we have many
information revealed so far. Given here is the first line of cipher and the corresponding plain text
characters. The cipher characters whose equivalent plain characters (given below) are discovered

are underlined.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a e e te that e e a a

Only four letters are discovered and already we have quite a bit of information. Continued
analysis of frequencies, trial and error matching between groups of cipher and plain text
characters plus context of message will expose the plain text easily. Thus we learnt that this
cipher can be broken easily with frequency matches. A counter measure is to use multiple
substitutions for the same letter after certain number of substitutions, single letter, double letter
frequency matches will fail here. Here too a letter can use a substitution letter for a particular

homophone. Attacks are still possible since each element in cipher is out of a single element in
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plain text. Multiple letter frequencies are more or less same between cipher and sample plain text
substitution. Methods that are difficult to decode use two principal methods - one uses multiple
(random) substitutions for each plain text character and the other creates a cipher for blocks of
plain text characters.

3.3.3 Play fair cipher

Here a 5 x5 matrix is created with characters of English alphabet. First a keyword is
chosen. First few adjacent cells are filled with letters of this keyword (which has no letters
repeating). Remaining cells are filled by alphabets (not entered) in order. For example if the
keyword is “SAMPLE” the matrix is as follows, which is called digram. As the number of
characters is 26 which is one greater than the number of cells, one cell will have two letters. A

single cell will have 1, J.

S A M P L
E B C D F
G H 173 K N
0 Q R T U
V W X Y z

Write the plain text with no blank spaces, use a filler character such as x if a pair is same

character.
Rules for substitution

1. If two adjacent characters are in same row (such as e, c), then the characters that are to their
right are substitutions. Here B, D. If characters are g, u the substitution is R, O.
2. If two adjacent characters are in the same column, use substitutions that are one position
below.
Example: ¢, r: 1, X (orJ, X)
g, Ww:W, A
3. If two adjacent characters are in different rows and columns, they are replaced by characters

in the same row and in the column of the other
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Example: w, k: Y, H
a,1:M,H

For decryption, the same matrix is used. The receiver knows the keyword. For characters
in same row (or column) use ones that are just to the left (or above). Otherwise follow third rule
of encryption.

This is much better than mono alphabetic cipher. Because replacement for a character is
not constant since it is decided by its neighbor. For example, the cipher word for ‘meet’ is
‘SCDO’. Thus C, D are both cipher characters for ‘e’. With 26 characters, there are 676 digram.
The identification of individual digrams and frequency match between cipher and plaintexts are
more difficult. The relative frequencies of individual letters exhibit a much greater range than
that of digrams, making frequency analysis much more difficult. For these reasons Playfair was

considered to be safe and was used during world wars | and Il by British and Allied forces.

Despite this level of confidence in its security, Playfair is easy to break, because it still
leaves much of the structure of plaintext language intact. A few hundred letters of cipher text are

generally sufficient.

3.3.4 Hill cipher
This is proposed by Lester Hill in 1929. In this method, m letters together are substituted
by m cipher letters. The formula is ¢ = k * p (mod 26), where k is m x m matrix (entries are mod

26). p, ¢ are column vectors of size m. To get plain text back we use the formula k*c (mod 26) =

p.

We now discuss the computation of A™ in mod 26.

5 8
LetA= [17 3), |A| =15-136 =-121=9 (mod 26)

3 -8
A _1 mod26
91-17 5

1/9=3 (mod 26), since 3 and 9 are multiplicative inverses of mod 26. Thus,
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L, (3 18
At=3
9 5

9 54
= mod26
27 15

(9 2
1 15
Example: Let m=3.

17 17 5
k=[21 18 21
2 2 19

Suppose that plain text is “pay more money”. Take first three characters and find its cipher.

15
pay=| 0
24
17 17 5)(15 375 11
c=|21 18 21|| 0 |=|819 |mod26=|13|=LNS.
2 2 19)\24 486 18

Decryption requires k™.

k| = -939 = 23 (mod 26)
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300 -313 267

klzzi3 -357 313 -252|mod26
6 0 -51
14 25 7
1
=—|7 1 8
23
6 0 1
17 14 25 7
= 1 8| mod26
17 x23(mod26)
6 0
4 9 15
=115 17 6
24 0 17

Note that in the calculations above, 1/23 is multiplied and divided by 17. This is because 17 and

23 are multiplicative inverses of each other and hence the denominator is reduced to 1.
Plain text is given by

4 9 15)\(11
k*c=|15 17 6 ||13|mod26
24 0 17)(18

15
=0
24

— G€pay 13

As with play fair the strength of Hill cipher is that it hides the single letter frequencies. Larger
the m value, more the information (frequency information) is hidden. The 3% 3 Hill cipher is
stronger against cipher text only attacks. But when m plain cipher pairs are known (may be

available from single plain message and corresponding cipher message) key is compromised.

50



Let Pj =

Pj

pmj

and corresponding C; =

Thatis C;=k Pj, for 1 <j<m.

mj

be j™ plain cipher pair.

Let X= (pij) be the m x m matrix of column vectors of plain texts.

Let Y = (c;;) be the m x m matrix of column vectors of m cipher texts.

Now Y= KX and XY = K. that is K can be computed as X Y. If X is not invertible use more

plain cipher pairs until X becomes invertible.

Example: Let m=2. Suppose we got plain text “friday” and its cipher “PQCFKU”. Now we have
three plain cipher pairs. These are ” fr” ,”PQ”; “id”, “CF” and “ay”,” KU”.

We know that K ° = 15 and K 8 =
17 16 3

0 10
Also we have, K = )
24 20

Using the first two pairs we have

5 8
k mod26
17 3

15 2)
16 5)

2\(5 8!
mod?26
5117 3

15
Kk =
b

|
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Verification of key

K@ :(179 gJ (204J "

3.3.5 Poly alphabetic ciphers:

In this method, we make use of different mono alphabetic substitution as one proceeds through

encryption.

Features of the method:

1. A set of related mono alphabetic substitution rules are used.

2. A key determines which rule is selected for a given plain text character position.

Vigenere cipher:

Here 26 Caesar ciphers are used (each is mono alphabetic). These are referred by characters a to

z and numbers 0 to 25. Each cipher denoted by a character which is cipher character for letter ‘a’.

Vigenere table:

1
d26 2(
2

OJ
=KU.
0

Plain text characters
a b C d e

a A B C D X Y Z

b B C E Y Z A

c C D E Z A B

E d D E X A B C
e E X Y B C D

y Y Z B Vv W X

Z B C W X Y
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Method
Choose a key word say “deceptive”. To get cipher letter copy keywords as many times and write
it on top of the plain text.

Keymmwd : deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself
ciphertext: ZICVIW...... VIW. . ..o
Decryption: The letter in the key is the row. Find the letter in the column that has the cipher

letter.

Strength: Cipher letters of same plain text letter is usually different. Letter frequency

information is hidden.

However not all knowledge of plain text is lost. For example the same letters ‘red’ is coded as
‘VTW’ twice. Attack will proceed to find same pattern in cipher text. The probable information
is length of keyword. Suppose the attacker knows its Mono alphabetic or Vigenere cipher. If
Mono alphabetic cipher is used statistical properties of characters in cipher will break the code. If
the opponent discovers it is not a Mono alphabetic, he knows its Vigenere. If identical patterns in
cipher text are discovered, then length of the keyword is distance between the patterns or a factor
of this. For example distance between VTW’s is 9 and hence the keyword length is 9 or 3 if
keyword length is N (guess), then at N+1, 2N+1, ... same row is used for cipher characters. All
cipher characters at these positions can be picked and frequency match with plaintext characters
can be done. Do same for cipher characters at 2, N+2, 2N+2, . . . Continuing this he can get

several characters in keyword.

Counter measure: The periodicity of string in cipher can be broken by using different rows for
making up cipher. One method is having long key word. Another is use plain text next to

keyword and makes it as long as plain text
Example: Key could be
deceptivewearediscoveredsa

wearediscoverdsaveyourself -plaintext
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Even this is not very safe. Key and plaintext share same statistical properties with this method.
For example, e enciphered using e with probability (0.127)* =0.016. t encoded by t with
probability (0.0956)% etc. Thus using frequency match some letters in the keyword can be
retrieved. The ultimate defense is to use a keyword that is as long as the text but has no statistical

relationship to it.
3.3.5 Vernam Cipher

This cipher method is proposed by Gilbert Vernam (1918) that is to be used for binary string

encoding. This is nothing but simple bit wise XOR operation given by,
¢ =p @k

Decryption is the XOR operation of ¢ and k
Example: P =01101110, K=11011001, C =10110111
Decryption: P=C ® K

C=10110111
K =11011001
P =01101110

The strength lies in the length of the key. However long it is, it may have to repeat for long
messages. This is also susceptible to access of some plain — cipher pair attacks => bit values of

key at these positions are known. However it is difficult to get all the bits of key.

3.4 SUMMARY

In section 3.1 symmetric cipher model and cryptanalytic attacks are explained in detail.
Encryption is an age old practice. Traditional Cryptosystems based on substitution are discussed
in section 3.3. To make concepts clear, examples, attacks and counter measures are also

explained.
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3.5 KEYWORDS

Symmetric cipher, Brute force attacks, cryptanalytic attack, classical encryption techniques-

Caesar, Mono alphabetic Polyalphabetic, Vigenere, Playfair, Hill, Vernam

3.6 QUESTIONS

1.
2.

Differentiate symmetric and asymmetric ciphers.

What are two basic functions used in encryption? Give examples. Discuss plus and minus
points of these methods.

Discuss the general approaches of attacks against a cipher.

Distinguish unconditionally secure and computationally secure ciphers.

Discuss classical substitution ciphers with examples, possible attacks and counter

measures.
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UNIT -4: CLASSICAL ENCRYPTION - PART Il

Structure
4.0  Obijectives
4.1  Transposition Techniques
4.2 Rotor Machines
4.3  Steganography
4.4 Summary
45  Keywords
4.6  Questions
4.7 References

4.0 OBJECTIVES

When you go through the material discussed in this unit you will be able to
v"Use transposition for encryption
v Understand the operation of rotor machines which is multiple encryption

v Appreciate the strength and simplicity of steganography for hiding messages

4.1 TRANSPOSITION TECHNIQUES

The basic principle of these techniques is to permute letters in the message.
4.1.1 Rail fence

In this method, letters are written on alternate rows and columns. Suppose that message is “meet

me at the toga party”. Write this as follows

memateoa a t

et ethtgp ry
The letters in the text are written alternatively in two lines.

The cipher is composed as writing first line and then the second line.

MEMATEOAATETETHTGPRY
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Decryption: Split cipher into two halves, write characters alternately from each half.

MEMATEOA A T (onehalf)
ETETHTGP RY

Recovered text is “meetmeatthetogaparty”

While decrypting, if there are odd number of characters in the cipher text, write greater half as
first line and smaller half as second line.

Attack: If the adversary knows the encryption to be rail fence, attack is a too simple and
recovery of plain text is too simple. The attacker has to split the cipher into two halves and write

characters one at a time from each half.
4.1.2 Use of permutation

In this technique, the message is written in adjacent rows and columns are permuted.

Suppose that message is “meet me at the toga party at nine pm”.

The characters in the message are written in successive rows, each row having fixed

number of columns. Then columns are permuted and cipher is generated.
Example: Suppose that given message is written in 6 columns
MEETME
A T THET
O G APA R
T Y ATN I
N E PMXY
Column permutation: 4 1 3 2 5 6

The column permutation and the number of rows is the key for decryption. Here x, y are filler

characters to complete the matrix.
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Cipher textis ETGYETHPTMETAAPMAOTNMEANXETRIY

Decryption: Key is the number of rows (5) and the column permutation (4 1 3 2 5 6). First 5
characters in cipher is written as column 2 (number 1 is in second position of the permutation of
columns), next 5 characters as column 4 (number 2 is in fourth position of the permutation of

columns) and so on.

Attack: A pure transposition is easy to break. Knowing the length of the message, various

matrix sizes and permutation may be tried.

In the example above, the length of the cipher is 30 characters. So attacker will try various
matrix sizes such as 2 x 15, 3 x 10, and 5 x 6. Also various permutations of the columns should
be tried.

4.1.3 Making multiple transpositions

Encrypt the cipher text again with the same permutation of columns

4 1 3 2 5 6
e t g y e t
h p t m e t
a a p m a 0
t n m e a n
X e t r i y

Cipher text: TPAWE YMMER GTPMTEHATX EEAAI TTONY
To realize the strength of double permutation we give here the character positions in cipher text.

Given positions of plain text characters

01 02 03 04 05 06
07 08 09 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
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With one permutation of columns namely, (4 1 3 2 5 6)

The cipher text characters are from positions (in plaintext)

04 10 16 22 28 01 07 13 19 25
03 09 15 21 27 02 08 14 20 26
05 11 17 23 29 06 12 18 24 30

There is some regularity among groups of five elements.

Now for one more transposition of the cipher with the same key, we write the cipher text into

matrix and perform the permutation again.

04 10 16 22 28
01 07 13 19 25
03 09 15 21 27
02 08 14 20 27
05 11 17 23 29
06 12 18 24 30

Cipher text letters are from positions

22 19 21 20 23 24 04 01 03 02 05 | 06
16 13 15 14 17 18 10 07 09 08 11 |12
22 19 21 20 23 24 28 25 27 26 29 | 30

Observe that there is no structure here and hence the attack is complicated.
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4.2 ROTOR MACHINES

We saw that multiple stages of transpositions are difficult to crack. Some is true of
substitution. Rotor machines are used for this purpose. This was used during second world war.

This is now used in DES, a standard in modern encryption.

The machine has 3 independently rotating cylinders. There could be any number of
cylinders. More the number of cylinders greater is the security. The number of substitutions
depends on the number of cylinders. Each cylinder has 26 input pins and 26 output pins, with
internal wiring, connecting pins. Each cylinder is mono alphabetic substitution. When an input
letter is depressed there is electrical current to an output letter. After each input, the cylinder 1
rotates one position and so identical connections are satisfied. This is just poly alphabetic
substitution with a period of 26. But with more cylinders say 31 the number of unique
substitutions is 26*26*26 = 17576, before it repeats itself. Thus the method is safe against

cryptanalytic attacks such as frequency detection.

First cylinder rotates once after each input selection. Cylinder 2 rotates once after 26

rotations of first. Cylinder 3 rotates once after 26 rotations of cylinder 2.

Example: The example given here make concept of rotation of cylinders clear. When ‘a’
is plain text character this key is depressed and the cipher character B is output. With the initial
setting shown in figure 4.1, the character ‘a’ points to number 24 in cylinder 1. The internal
wiring in this cylinder points to number 24 in the second cylinder and the internal wiring here
points to 18 in cylinder 3 and the output cipher character is B (against number 18 in cylinder 3).
Similarly it is easy to follow that the cipher characters corresponding to plain text characters ‘b’
and ‘c’ are I and E respectively given the initial setting in the figure. After one output the
cylinder 1 rotates one position down. That is ‘a’ points to 23 (also numbers on the right move
down one position) and hence the cipher output for the same ‘a’ after one stroke is Y. Thus the
word “bull” will be coded as IDSQ. Note the plain text letter ‘1’ is coded as S and Q in the
cipher.
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Fast rotor Medium rotor  Slow rotor Fast rotor Medium rotor  Slow rotor
Initial setting Setting after one key stroke
Fig 4.1: Rotor machine with 3 cylinders
4.3 STEGANOGRAPHY

Cryptography is a technique based on substitution and transposition for implementing
security mechanisms. Another technique that was used for secret communication in the past is
being revived at the present time. This is nothing but Steganography. The word Steganography,
with origin in Greek, means “covered writing”. In contrast with cryptography, which means
“secret writing”, is the technique of concealing the contents of a message by enciphering.

Steganography means concealing the message itself by covering it with something else.
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Historical use

History is full of facts and myths about the use of steganography. In China, war messages, were
written on thin pieces of silk and rolled into a small ball and swallowed by the messenger. In
Rome and Greece, messages were carved on pieces of wood, that were later dipped into wax to
cover the writing. Invisible inks were also used to write a secret message between the lines of the
covering message or on the back of the paper and the secret message was exposed when the

paper was heated or treated with another substance.

In recent times other methods have been devised. Some letters in an innocuous message
might be overwritten in a pencil lead that is visible only when exposed to light at an angle. Null
ciphers were used to hide a secret message inside an innocuous simple message. For example,
the first or second letter of each word in the covering message might compose a secret message.
Microdots were also used for this purpose. Secret messages were photographed and reduced to a
size of a dot and inserted into simple cover messages in place of regular periods at the end of

sentences.

Modern use

Today, any form of data, such as text, image, audio, or video, can be digitized, anad it is possible
to insert secret binary information into the data during digitization process. Such hidden
information is not necessarily used for secrecy; it can also be used to protect copyright, prevent

tampering, or add extra information.

Text Cover

The cover of secert data can be text. There are several ways to insert binary data into an
innocuous text. For example, we can use single space between words to represent the binary data
0 and double space to represent binary digit 1. The following short messages hides the 8-bit
binary representation of the letter A in ASCII code (01000001).

This book is mostly about cryptography, not steganography
0 10 0 0 0o 1

In the above message there are two spaces between the “book™ and “is” and between the “not”
and “steganography”. Of course, sophisticated software can insert spaces that differ only slightly

to hide from immediate recognition.

62



Another, more efficient method, is to use a dictionary of words organised according to
their grammatical usages. We can have a dictionary containing 2 articles, 8 verbs, 32 nouns, and
4 prepositions. Suppose that we agree to use cover text that always use sentences with the pattern
article-noun-article-noun. The secret binary data can be divided into 16-bit chunks. The first bit
of binary data can be represented by an article. The next five bits can be represented by a noun,
the next four bits can be represented by a verb, the next bit by the second article, and the last five
bits by another noun. For example, the secert data “Hi”, which is 01001000 01001001 in ASCII,
could be a sentence like the following:

A friend called a doctor
0 10010 0001 0O 01001

This is a very trivial example. The actual approach uses more sophisticcated design and a variety
of patterns.

Image Cover

Secret data can also be covered under a color image. Digitized images are made of pixels, in
which normally each pixels uses 24 bits. Each byte represents one of the primary colors. We can
thererfore have 28 different shades of each color. In a method called LSB (least significant bit),
the least significant bit of each byte is set to zero. This may make the image a little bit lighter in
some areas, but this is not normally noticed. Now we can hide a binary data in the image by
keeping or changing the least significant bit. If our binary digit is 0, we keep the bit; if itis 1, we
change the bit to 1. In this way, we can hide a character in three pixels. For example, the

following three pixels can represent the letter H.

01010010 10111101 01010100
01011110 10111101 01100100
01111110 01001010 00010100

Of course, more sophisticated approaches are used these days.
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Other Covers

Other covers are also possible. The secert message, for example, can be covereed under audio
and video. Both audio and video are compressed today; the secert data can be embedded during
or before the compression.

4.4 SUMMARY

This unit introduced to the readers the concept of transposition techniques. These are
different from techniques discussed earlier. Two methods of transposition techniques namely
Rail fence and using permutation are discussed in section 4.1. Section 4.2 is about rotor
machines a device used traditionally for encryption. Steganography is not an encryption
technique. This is way of hiding data in some other medium such as texts and images. Examples

of Steganography are given in 4.3.

4.5 KEYWORDS

Transposition techniques, Rail fence, Permutation method, Multiple permutations, Rotor

machines, Steganography, Text cover for messages, Image cover for messages

4.6 QUESTIONS

. Differentiate transposition and substitution methods.
. Discuss rail fence transposition and comment on its safety.
. Describe through examples permutation technique. Suggest an attack for this cipher.

. Explain multiple permutation method and justify this better than single permutation.

. Explain text cover.

1
2
3
4
5. Define Steganography and what the various forms are.
6
7. Describe the role of images for covering messages.

8

. Explain other form of Steganography.
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MODULE 2

BLOCK AND STREAM CIPHERS
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5.0 OBJECTIVES

After understanding the concepts discussed in this unit you will understand

v’ Basic difference in two types of ciphers: stream and block

AN N N N N N

Reversible and irreversible block ciphers

Feistel cipher structure

Ideal block cipher

Manageable block cipher

Encryption and decryption with Feistel structure
Confusion

Diffusion

5.1 MOTIVATION FOR FEISTEL STRUCTURE

The objective of this section is to introduce the fundamental principles of modern
symmetric ciphers. For this purpose, we focus on the most widely used symmetric cipher: the
Data Encryption Standard (DES). Although, numerous symmetric ciphers have been developed
since the introduction of DES, and it is destined to be replaced by the Advanced Encryption
Standard (AES), DES remains the most important algorithm. Furthermore, a detailed study of

DES provides an understanding of the principles used in other symmetric ciphers.
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The section begins with a discussion on general principles of symmetric block ciphers.

First the primary differences between stream ciphers and block ciphers are discussed.
Stream versus Block ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time.
Examples of classical stream ciphers are the auto keyed Vigenére cipher and the Vernam cipher.
In the ideal case, a one-time pad version of the Vernam cipher would be used, in which the key
stream is as long as the plaintext bit stream. If the cryptographic key stream is random, then this
cipher is unbreakable by any means other than acquiring the key stream. However, the key
stream must be provided to both users in advance via some independent and secure channel. This
introduces insurmountable logistical problems if the intended data traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be implemented as an
algorithmic procedure, so that the cryptographic bit stream can be produced by both users. In this
approach, the bit-stream generator is a key-controlled algorithm and must produce a bit stream
that is cryptographically strong. Now, the two users need only share the generating key, and each

can produce the key stream.

A block cipher is one in which a block of plaintext is treated as a whole and used to
produce a cipher text block of equal length. Typically, a block size of 64 or 128 bits is used. As
with a stream cipher, the two users share a symmetric encryption key. Using some of the modes
of operation explained later in the material, a block cipher can be used to achieve the same effect

as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to
a broader range of applications than stream ciphers. The vast majority of network-based
symmetric cryptographic applications make use of block ciphers. Accordingly, the concern in
this chapter, and in our discussions throughout the book of symmetric encryption, will primarily

focus on block ciphers.

The section next will describe an important block cipher model proposed by Feistel in

1973. We now bring out the motivation for Feistel cipher structure.
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A block cipher operates on a plaintext block of n bits to produce a cipher text block of n
bits. There are possible different plaintext blocks and, for the encryption to be reversible (i.e., for
decryption to be possible), each must produce a unique cipher text block. Such transformation is
called reversible, or nonsingular .The following examples illustrate nonsingular and singular
transformation for n=2. Encoding given in table 5.1 is a reversible mapping and that in table 5.2

is an irreversible mapping.

Reversible Mapping Irreversible Mapping
Plaintext Cipher text Plaintext Cipher text
00 11 00 11
01 10 01 10
10 01 10 01
11 00 11 01
Table 5.1 Table 5.2

In the latter case, a cipher text of 01 could have been produced by one of two plaintext blocks.

So if we limit ourselves to reversible mappings, the number of different transformations is n!

2 bit input
0 1 2 3
0 1 2 3
2 bit output

Fig. 5.1:2-bit substitution cipher

Figure 5.1 illustrates the logic of a general substitution cipher for n=2, corresponding to the

mapping shown in table 5.1.
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A 4-bit input produces one of 16 possible input states, which is mapped by the
substitution cipher into a unique bit pattern of 16 possible output states, each of which is
represented by 4 cipher text bits. The encryption and decryption mappings can be defined by two
tables as shown in Tables 5.3 and 5.4. This is the most general form of block cipher and can be
used to define any reversible mapping between plaintext and cipher text. Feistel refers to this as
the ideal block cipher, because it allows for the maximum number of possible encryption

mappings from the plaintext block.

Plain text Cipher text Cipher text Plain text
0000 0100 0000 0101
0001 1100 0001 0111
0010 0101 0010 1010
0011 1111 0011 1100
0100 0111 0100 0000
0101 0000 0101 0010
0110 1010 0110 1111
0111 0001 0111 0100
1000 1110 1000 1001
1001 1000 1001 1011
1010 0010 1010 0110
1011 1001 1011 1110
1100 0011 1100 0001
1101 1101 1101 1101
1110 1011 1110 1000
1111 0110 1111 0011

Table 5.3: Encryption Table 5.4: Decryption

But there is a practical problem with the ideal block cipher. If a small block size, such as n=4, is
used, then the system is equivalent to a classical substitution cipher. Such systems, as we have
seen, are vulnerable to a statistical analysis of the plaintext. This weakness is not inherent in the

use of a substitution cipher but rather results from the use of a small block size. If sufficiently
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large and an arbitrary reversible substitution between plaintext and cipher text is allowed, then
the statistical characteristics of the source plaintext are masked to such an extent that this type of

cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size
is not practical, however, from an implementation and performance point of view. For such a
transformation, the mapping itself constitutes the key. Consider again Table 5.3, which defines
one particular reversible mapping from plaintext to cipher text for n =4. The mapping can be
defined by the entries in the second column, which show the value of the cipher text for each
plaintext block. This, in essence, is the key that determines the specific mapping from among all
possible mappings. In this case, using this straightforward method of defining the key, the
required key length is (4 bits) x (16 rows) = 64 bits. In general, for a n-bit ideal block cipher, the
length of the key defined in this fashion is n x 2" bits. For a 64-bit block, which is a desirable
length to thwart statistical attacks, the required key length is 64 x 2% =27 =10%" hits .

In considering these difficulties, Feistel points out that what is needed is an
approximation to the ideal block cipher system for large n, built up out of components that are
easily realizable. A tractable general block cipher is to go for a manageable subset of all possible
2" n-bit block cipher such as the mapping defined by a set of linear equations
y1 =(Ku1 X1 + Ki2X2 + Ki3Xz + KiaX4 )mod 2
Y2 = (K21 X1 + KaoXz + KasXz + KaaX4 )mod 2
Y3 =( ka1 X1 + KsoXp + Ksaxs + Kzaxs )mod 2

Ya =( Ka1 X1 + KaoXo + KyaXs + KaaXs )mod 2

Here block size =4, x;’s are binary digits of a block and y;’s are computed output bit. Note that
key size is 4% (all k;; for i=j= 1 to 4). This is much smaller compared to 2*! Note that the
equations above is essentially Hill cipher discussed in module 1, applied to binary data. Such
simple linear equations are vulnerable to attacks. Recall the attack discussed in the section of Hill

cipher. Feistel proposed a product cipher which made the cipher scheme strong against attacks.

5.2 FEISTEL CIPHERS

Feistel’s method (developed in 1973) is a practical application of Claude Shannon’s

proposal in 1945 to alternate confusion and diffusion functions in the product cipher. It is worth
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commenting that modern symmetric cipher is based on Feistel’s structure which in turn is
developed on Claude Shannon’s suggestions. Thus today’s wide used symmetric encryption is

dated back to more than half a century.

Feistel proposed that we can approximate the ideal block cipher by utilizing the concept
of a product cipher, which is the execution of two or more simple ciphers in sequence in such a
way that the final result or product is cryptographically stronger than any of the component
ciphers. The essence of the approach is to develop a block cipher with a key length of k bits and
a block length of n bits, allowing a total of possible 2% transformations, rather than the 2"!
transformations available with the ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and
permutations, where these terms are defined as follows:
 Substitution: Each plaintext element or group of elements is uniquely replaced by a
corresponding cipher text element or group of elements.
» Permutation: A sequence of plaintext elements is replaced by a permutation of that sequence.
That is, no elements are added or deleted or replaced in the sequence, rather the order in which

the elements appear in the sequence is changed.

We now discuss the meaning of the terms confusion, diffusion. The terms diffusion and
confusion were introduced by Claude Shannon to capture the two basic building blocks for any
cryptographic system. Shannon’s concern was to thwart cryptanalysis based on statistical
analysis. The reasoning is as follows. Assume the attacker has some knowledge of the statistical
characteristics of the plaintext. For example, in a human-readable message in some language, the
frequency distribution of the various letters may be known. Or there may be words or phrases
likely to appear in the message (probable words). If these statistics are in any way reflected in the
cipher text, the cryptanalyst may be able to deduce the encryption key, part of the key, or at least
a set of keys likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher,
all statistics of the cipher text are independent of the particular key used. The arbitrary
substitution cipher that we discussed previously (Table 5.3) is such a cipher, but as we have seen,

it is impractical.
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Other than recourse to ideal systems, Shannon suggests two methods for frustrating
statistical cryptanalysis: diffusion and confusion. In diffusion, the statistical structure of the
plaintext is dissipated into long-range statistics of the cipher text. This is achieved by having
each plaintext digit affect the value of many cipher text digits; generally, this is equivalent to
having each cipher text digit be affected by many plaintext digits. An example of diffusion is to
encrypt a message of characters with an averaging operation: adding successive letters to get a
cipher text letter. One can show with this type of encryption, the statistical structure of the
plaintext has been dissipated. Thus, the letter frequencies in the cipher text will be more nearly
equal than in the plaintext; the digram frequencies will also be more nearly equal, and so on. In a
binary block cipher, diffusion can be achieved by repeatedly performing some permutation on
the data followed by applying a function to that permutation; the effect is that bits from different
positions in the original plaintext contribute to a single bit of cipher text.

Every block cipher involves a transformation of a block of plaintext into a block of cipher
text, where the transformation depends on the key. The mechanism of diffusion seeks to make
the statistical relationship between the plaintext and cipher text as complex as possible in order
to thwart attempts to deduce the key. On the other hand, confusion seeks to make the
relationship between the statistics of the cipher text and the value of the encryption key as
complex as possible, again to thwart attempts to discover the key. Thus, even if the attacker can
get some handle on the statistics of the cipher text, the way in which the key was used to produce
that cipher text is so complex as to make it difficult to deduce the key. This is achieved by the
use of a complex substitution algorithm. In contrast, a simple linear substitution function would
add little confusion. Diffusion and confusion in capturing the essence of the desired attributes of

a block cipher has become the cornerstone of modern block cipher design.

5.3 FEISTEL ENCRYPTION AND DECRYPTION

We turn our attention to Feistel’s structure. Figure 5.2 and 5.3 show the structure
proposed by Feistel.
Encryption:
The inputs to the encryption algorithm are a plaintext block of length 2n bits and a key K. The
plaintext block is divided into two halves, Ly and Ro. The two halves of the data pass through

rounds of processing and then combine to produce the cipher text block. Each round i has as
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inputs Li; and R;; derived from the previous round, as well as a subkey K; derived from the

overall K. In general, the subkeys are different from K and from each other. In Figure 5.2, 16

rounds are used, although any number of rounds could be implemented.
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Figure 5.2: Feistel encryption
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Figure 5.3: Feistel decryption

All rounds have the same structure. A substitution is performed on the left half of the

data. This is done by applying a round function F to the right half of the data and then taking the

exclusive-OR of the output of that function and the left half of the data. The round function has

the same general structure for each round but is parameterized by the round subkey K; . Another

way to express this is to say that F is a function of right-half block and a subkey, which produces

an output value of length w bits (F (RE;, Ki.1)). Following this substitution, a permutation is

performed that consists of the interchange of the two halves of the data. This structure is a

particular form of the substitution-permutation network proposed by Shannon.
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The exact realization of a Feistel network depends on the choice of the following
parameters and design features:
* Block size: Larger block sizes mean greater security (all other things being equal) but reduced
encryption/decryption speed for a given algorithm. The greater security is achieved by greater
diffusion. Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and
was nearly universal in block cipher design. However, the new AES uses a 128-bit block size.
» Key size: Larger key size means greater security but may decrease encryption/ decryption
speed. The greater security is achieved by greater resistance to brute-force attacks and greater
confusion. Key sizes of 64 bits or less are now widely considered as inadequate, and 128 bits has
become a common size.
» Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate
security but that multiple rounds offer increasing security. A typical size is 16 rounds.
« Subkey generation algorithm: Greater complexity in this algorithm should lead to greater
difficulty of cryptanalysis.
* Round function F: Again, greater complexity generally means greater resistance to
cryptanalysis.

There are two other considerations in the design of a Feistel cipher:
« Fast software encryption/decryption: In many cases, encryption is embedded in applications
or utility functions in such a way as to preclude a hardware implementation. Accordingly, the
speed of execution of the algorithm becomes a concern.
 Ease of analysis: Although we would like to make our algorithm as difficult as possible to
cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the
algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for
cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength.

DES, for example, does not have an easily analyzed functionality.

Decryption:

The process of decryption with a Feistel cipher is essentially the same as the encryption process.
The rule is as follows: Use the cipher text as input to the algorithm, but use the sub keys K;j in
reverse order. That is, use K, in the first round, K,.; in the second round, and so on, until Ky is
used in the last round. This is a nice feature, because it means we need not implement two

different algorithms; one for encryption and one for decryption.
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To see that the same algorithm with a reversed key order produces the correct result,
Figure 5.2 shows the encryption process going down the left-hand side and the decryption
process going up the right-hand side for a 16-round algorithm. For clarity, we use the notation
LE; and RE; for data traveling through the encryption algorithm (Figure 5.2) and LD; and RD; for
data traveling through the decryption algorithm (Figure 5.3). The diagram indicates that, at every
round, the intermediate value of the decryption process is equal to the corresponding value of the
encryption process with the two halves of the value swapped. To put this another way, let the
output of the i™ encryption round be LE; || RE; Then the corresponding output of the (16 — i)™
decryption round is LD; || RD; or, equivalently, REs|| LEse.i .

Let us walk through Figure 5.3 to demonstrate the validity of the preceding assertions.
After the last iteration of the encryption process, the two halves of the output are swapped, so
that the cipher text is RE;¢||[LE16. The output of that round is the cipher text. Now take that cipher
text and use it as input to the same algorithm. The input to the first round is RE3g||LE1s, Which is
equal to the 32-bit swap of the output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption process is
equal to a 32-bit swap of the input to the sixteenth round of the encryption process. First,
consider the encryption process. We see that

LEis=RE1s

RE16 = LE1s @ F(RE1s, Kig)

On the decryption side,
LD; =RDg = LE1s = REs
RD; = LDy ® F(RDo, Kis)
= RE6 @ F(LE16, Kis) = RE16 @ F(REss, Kie)
= [LE15 ® F(RE1s, Ki6)] ® F(RE3s, Kig)= LE1s

Note that the XOR operation has the following properties:
[A®B] ®C=A®[B®C]

D® D=0

E®O0=E
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Therefore, the output of the first round of the decryption process is RE;s || LE1s, which is the 32-
bit swap of the input to the sixteenth round of the encryption. This correspondence holds all the
way through the 16 iterations, as is easily shown. We can cast this process in general terms. For
the i iteration of the encryption algorithm,

LEi =RE;; and RE;=LE;i; ® F(REj.1, Kj)
Rearranging terms:

REi1 = LE; and LEi; = RE; @ F(REi.1, K;) = RE; ® F(LE;, Kj)

Thus, we have described the inputs to the i™ iteration as a function of the outputs, and these
equations confirm the assignments shown in the Figure 5.2.

Finally, we see that the output of the last round of the decryption process is REo||LEy. A
32-bit swap recovers the original plaintext, demonstrating the validity of the Feistel decryption
process.

Note that the derivation does not require that F be a reversible function. To see this, take
a limiting case in which F produces a constant output (e.g., all ones) regardless of the values of
its two arguments. The equations still hold.

5.4 COMPLETE ENCRYPTION AND DECRYPTION

In the previous section an outline of encryption, decryption process is given. Here we
demonstrate the process of encryption, decryption totally. The internal design of F is not
necessary for showing encryption or recovery of input text during decryption. To make
discussion easy to follow, consider only 4 rounds of encryption.

Encryption:

Input: LEg, RE, (split into two halves)

El: At the end of round 1, the intermediate cipher text is LE; || RE; where LE; = RE,,
RE;= F( REo, K1) ® LE,

E2: At the end of round 2 the intermediate cipher text is LE; || RE, where LE; = RE;,
RE,= F(REy, K;) @ LE;

E3: After round 3 the intermediate cipher text is LEs; || REs where LE; = RE,,
RE;=F(RE;, K3) ® LE;
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E4: After round 4 the intermediate cipher text is LE; || RE4 where LE; = REsg,
RE,=F(REs, K4) ® LE;
E5: Finally there is left, right swap after completion of 4 rounds giving the output cipher text
as LEs || REs where LEs = RE4, REs= LE4,
Decryption:
Input: LEs || REs = LDy || RDg
Note that LDy = RE4, RDo= LE, (Step 5 of encryption - E5)
D1: At the end of round 1, the intermediate text is LD || RD1, where LD; = RDy = LE4
RD; = F(RDy, K4) ® LDy,
(i.e.RDy= F(LE4, K4) ®RE,
= F(RE3, K4) @ [F(RE3, Kg) @ LE]
= [F(K4,RE3) ®F(Ks4 RE3)] @ LEs (by Ey)

Thus RD;=LE; and
LD;=LEs=RE3
D2: After round 2, the intermediate text is LD || RD2 where LD, = RD;= LE3- RE> (by D1
and Ej)
RD,=F(RD1, K3) @ LD1

= F(LEs, K3) © RE;3 (by D1)

=F(LEs, K3) @ [ F(RE2, K3) ®LE;]  (by E3)

= [F(LEs, K3) ® F(LEs, K3)] © LE; (by E3)

= LE;.
Thus RD, =LE; and LD, =RE;
D3: After round 3, the intermediate text is

LD; || RD3; where LD3 = RD;, = LE,= RE; (by D, and Ey)
RD; = F(RD,, K;) ®LD2
= F(LE,, K2) ®RE; (by D2)
=F(RE1, K2) © [F(REy, K2) © LE4] (by E2)
= [F(REy, Ky) @ F(REy, Ky)] @ LE;
=LE;

Thus RD; :LEl, LD; =RE;
D4: At the end of round 4, the intermediate text is
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LD, || RD,4 where LD, = RD3= LE;= REgq (by Ds and El)
RD4: F(RDg, Kl) @ LD3

= F(RE,, K1) ® RE; (by D3 and E1)
= F(REy, K1) ® [F(REy, K1) ® LE(] (by Ej)
= LEO

Thus LD4 =REo, RD4 = LEg
D5: Finally there is left, right swap of round 4 output which gives the output RD4 || LD4 =

LE, || REo = given text.

5.5 SUMMARY

In this unit the basic principle of block cipher is discussed in detail. Feistel block structure being

the building block for modern symmetric cipher system is discussed in detail in sections 5.2 and

5.3. The closing section of the unit namely 5.4 shows the working details of encryption,

decryption process in Feistel’s proposal, by using smaller number of rounds.

5.6 KEYWORDS

Stream cipher, Block cipher, Reversible mapping, Irreversible mapping, Feistel structure,

Confusion, Diffusion.

5.7 QUESTIONS

1.
2.
3.

4.
S.
6.

Differentiate stream and block ciphers.

Give examples for reversible and irreversible mappings.

What is the practical problem in using arbitrary reversible mapping? How can this be
resolved?

Explain the terms confusion and diffusion.

Describe the Feistel block structure.

Show encryption, decryption process with 4 or more rounds.
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UNIT -6: DES - DATA ENCRYPTION STANDARD

Structure

6.0  Objectives

6.1  Development of DES

6.2  Overview of function of DES
6.3  Function of DES in detail

6.4  DES illustration

6.5 Summary

6.6  Keywords

6.7  Questions for self study

6.8  References

6.0 OBJECTIVES

After going through the contents of this unit you will

v Understand the principle of the most popular symmetric encryption called DES

v Be able to know the details of each round

v Be able to perform reduction and expansion of the bits in a block using permutation
tables

v Be able to execute all steps of DES and show encryption and decryption

6.1 DEVELOPMENT OF DES

The most widely used encryption scheme is based on the Data Encryption Standard (DES)
adopted in 1977 by the National Bureau of Standards, now called the National Institute of
Standards and Technology (NIST), as Federal Information Processing Standard 46 (FIPS PUB
46). The algorithm itself is referred to as the Data Encryption Algorithm (DEA) 7. For DES, data
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are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-bit input in a

series of steps into a 64-bit output. The same steps, with the same key, are used to reverse the

encryption.

The DES enjoys widespread use. It has also been the subject of much controversy

concerning how secure the DES is. To appreciate the nature of the controversy, let us quickly

review the history of the DES.

Year Activity/Project Development /Outcome Features
1960 IBM’s project in cryptography | Algorithm called LUCIFER | Block size =64 bits
led by H.Feistel sold to Bank of London Key size= 128 bits
1970 IBM’s effort to market | Refined version of | Key size =56 bits
encryption software/hardware. | LUCIFER  resistant  to | (can fit in a chip)
Combined effort of | attacks Block size = 64 bits
W.Tuchman & C.Meyer and
NSA
1973 NBS invited proposals for | IBM  submitted refined | Changes done to
encryption standards LUCIFER and was adopted | design of s- boxes as
as standard in 1977 & |suggested by NSA
renamed as DES
1994 NIST extended use of DES
federal system for 5 years
1999 NIST recommended Triple

DES for federal use

6.2 OVERVIEW OF FUNCTION OF DES

The overall scheme for DES encryption is illustrated in Figure 6.1. As with any

encryption scheme, there are two inputs to the encryption function: the plaintext to be encrypted

and the key. In this case, the plaintext must be 64 bits in length and the key is 56 bits in length.
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Figure 6.1: General depiction of DES Encryption Algorithm

Looking at the left-hand side of the figure, we can see that the processing of the plaintext
proceeds in four phases. (i) First, the 64-bit plaintext passes through an initial permutation (IP)
that rearranges the bits to produce the permuted input. (ii) This is followed by a phase consisting
of sixteen rounds of the same function, which involves both permutation and substitution
functions. (iii) The output of the last (sixteenth) round consists of 64 bits that are a function of
the input plaintext and the key. The left and right halves of the output are swapped to produce the
pre-output. (iv) Finally, the pre-output is passed through a permutation that is the inverse of the
initial permutation function, to produce the 64-bit cipher text. With the exception of the initial

and final permutations, DES has the exact structure of a Feistel cipher.
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The right-hand portion of Figure 6.1 shows the way in which the 56-bit key is used.
Initially, the key is passed through a permutation function. Then, for each of the sixteen rounds, a
subkey (Ki) is produced by the combination of a left circular shift and a permutation. The
permutation function is the same for each round, but a different subkey is produced because of

the repeated shifts of the key bits.

58 50 42 34 26 18 10
60 52 44 36 28 20 12
62 54 46 38 30 22 14
64 56 48 40 32 24 16
57 49 41 33 25 17 9

59 51 43 35 27 19 11
61 53 45 37 29 21 13
63 55 47 39 31 23 15

~N O w00 MADN

Table 6.1: Initial Permutation (IP)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
Table 6.2: Inverse Initial Permutation (IP™)
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
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24 25 26 27 28 29
28 29 30 31 32 1

Table 6.3: Expansion Permutation (E)

17 16 20 21 29 12 28 7
10 1 23 26 5 18 31 15
9 2 24 14 32 27 3 8
25 19 30 6 22 11 4 13

Table 6.4: Permutation Function (P)

6.3 FUNCTION OF DES IN DETAIL

Initial permutation: The initial permutation and its inverse are defined by tables, as shown in
Tables 6.1 and 6.2, respectively. The tables are to be interpreted as follows. The input to a table
consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table contain a
permutation of the numbers from 1 to 64. Each entry in the permutation table indicates the
position of a numbered input bit in the output, which also consists of 64 bits.

To see that the permutation in tables 6.1 and 6.2 are inverses of each other one can find inverse

of the inverse permutation and verify that original permutation is recovered.

Details of single round: Figure 6.2 shows the internal structure of a single round. Again, begin
by focusing on the left-hand side of the diagram. The left and right halves of each 64-bit
intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in
any classic Feistel cipher, the overall processing at each round can be summarized in the
following formulae:
Li = Ria
Ri=Li1 ® F(Ri.1, Ki)

The round key is 48 bits. The input is 32 bits. This input is first expanded to 48 bits by using a
table that defines a permutation plus an expansion that involves duplication of 16 of the bits
(Table 6.3).The resulting 48 bits are XOR-ed with reduced key for the round. This 48-bit result

passes through a substitution function that produces a 32-bit output, which is permuted as
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defined by Table 6.4. The role of the S-boxes in the function F is illustrated in Figure 6.3.The
substitution consists of a set of eight S-boxes, each of which accepts 6 bits as input and produces
4 bits as output. One of the S boxes (S;) is defined in Table 6.5.
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Figure 6.2: Single round of DES algorithm

Function of S boxes can be interpreted as follows: The first and last bits of the input to
box form a 2-bit binary number to select one of four substitutions defined by the four rows in the
table for S;. The middle four bits select one of the sixteen columns. The decimal value in the cell
selected by the row and column is then converted to its 4-bit representation to produce the
output. For example, in Sy, for input 011001, the row is 01 (row 1) and the column is 1100
(column 12) and assuming a value in row 1, column 12 is 9, the output is 1001. The row, column
and the output (in decimal) are shown in bold in this Table 6.5.

Each row of an S-box defines a general reversible substitution. Figure 6.3 shows eight

S boxes where each S box performs a reduction of 6 bits to 4 bits.
The operation of the S-boxes is worth further comment. Ignore for the moment the
contribution of the key (K; ). If you examine the expansion table, you see that the 32 bits of input
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are split into groups of 4 bits and then become groups of 6 bits by taking the outer bits from the
two adjacent groups. For example, if part of the input string is
..10011 1001 11100...

This becomes
... 100111 110011 111100...

The outer bit inclusion of previous and subsequent parts is shown in bold font.

ETTT
1
li
Wb ETE b
i T |
S

®

| 1) s |

Figure 6.3: Calculation of F(R, K)

The outer two bits of each group select one of four possible substitutions (one row of an S-box).
Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits).
The 32-bit output from the eight S-boxes is then permuted, so that on the next round, the output

from each S-box immediately affects as many others as possible.

Row/ Column |0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 10 9 13 7 6 11 4 15 2 1 O 3 5 8 12
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1 15 5 12 3114 6 7 8 14 0 2 9 1 10 13
2 10 9 4 15 147 11 6 2 0 1 5 3 12 13
3 11 7 0 8 4 12 15 13 1 5 3 2 9 10 6

Table 6.5: S; box
Key Generation: Returning to Figures 6.1 and 6.2, we see that a 64-bit key is used as input to
the algorithm. The bits of the key are numbered from 1 through 64; every eighth bit is ignored, as
indicated in Table 6.6.The key is first subjected to a permutation governed by a table labeled
Permuted Choice One (Table 6.7). This is nothing but permutation of numbers (referring to bit
positions) in the left of Table 6.6. The resulting 56-bit key is then treated as two 28-bit strings,
labeled C;, D;. At each round, C;, D; are separately subjected to a circular left shift or (rotation) of
1 or 2 bits, as governed by Table 6.8.These shifted values serve as input to the next round. They
also serve as input to the part labeled Permuted Choice Two (Table 6.9), which produces a 48-bit

output that serves as input to the function F(R;.1, Kj).

Bits included Bits
excluded
1 2 3 4 5 6 7 |8

9 10 11 12 13 14 15 |16

17 18 19 20 21 22 23 |24

25 26 27 28 29 30 31 |32

33 34 35 36 37 38 39 |40

41 42 43 44 45 46 47 |48

49 50 51 52 53 54 55 |56

57 58 59 60 61 62 63 |64

Table 6.6: Bits included and excluded in reducing the key size

Table 6.7: Permuted Choice One

Round 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Left shifts 112 1 2 2 11 1 2 2 2 2 1 2 1

Table 6.8: Table of left shift

23 35 18 2 46 59 47 63
38 12 52 22 13 21 45 33
5 47 60 41 11 3 51 1
62 42 10 20 4 9 14 25
58 39 29 53 6 26 31 34
27 44 26 37 41 57 55 7

Table 6.9: Permuted Choice Two

23 35 18 2 46 59 61
5 47 63 38 12 52 22
13 21 45 55 60 7 33
57 17 36 41 11 3 51
1 62 50 37 19 15 54
53 6 26 31 34 27 44
49 43 28 30 42 10 20
14 9 4 58 39 29 25

DES Decryption:
As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the

application of the subkeys is reversed.

6.4 DES ILLUSTRATION

*  Block size be 8 bits
*  Key size = 8 bits (all bits of the key are used. No initial reduction)
*  Plain text be 0110 1100
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*  Number rounds be 2

*  Other tables for encryption

. : 1 4 6 8
% T1. Starting permutation
3 5 27

. . 1 75 2
*  T2. Inverse of the initial permutation
6 3 8 4

* Half the block size = 4
*  This has to be expanded to 8 bits to do XOR with key

*  The expansion table is

4 1 2 3
*  T3.
2 3 41

* Two S boxes

021 3

1032
SL.

1320

30 2 1

1 3 0 2]

02 31
s2.

0302

2 1 0 3

* T4, Permutation of 4 bits
[2 1 4 3

*  T5. Key shift table
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Round |1 |2
Shift 2 |1

DES Encryption steps
Operations done at the beginning and end of all rounds
1. Permute data using T1 and then start round 1 (starting operation)

2. After all rounds swap L and R and use inverse permutation as per T2 (end operation)

Operations in each round
1. Divide input data into two halves L;.; and R;.1
2. Expand R;.; using T3
3. Preparation of key
A) Divide key into two halves C;.; and D;.;
B) Left shift both C;_; and D;_;
4. XOR outputs at step 2 and 3
5. Perform S box operations to get 4 bit output
6. Permute 4 bit output using T4
7. XOR Lj.; and output at step 6

Li = Ri; and R; = output at step 7

Beginning operation
T1 on plain text gives the string 00101110

Round 1

1. Lp=0010, Rp=1110

. Expanded Ry (using T3) is 01111101

3. Key preparation

A) Co =0110 and Dy = 1010

B) Left shift using T5 gives 1001 (C;) and 1010 (D)

K =10011010

4. Expanded Ry @ K;=01111101 &

N
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10011010 =11100111
5. S box reduction
1110 returns 00 (entry in the cell 10, 11 is 0)
0111 returns 01 (entry in the cell 01, 11 is 1)
So reduced 4 bit string is 0001
6. Permute this using T4 to get 0010
7. Ry is 0010 @ 0010 (Lo) = 0000
and Ly is Rp =1110

Round 2
1.L;=1110, R;=0000
2. Expanded R;(using T3) is 00000000
3. Key preparation
A) C; =1001 and D; = 1010
B) Left shift using T5 gives 0011 (C,) and 0101 (D)
K, =00110101
4. Expanded R; @ K;=00000000 &
00110101 =00110101

5. S box reduction
0011 returns 00 (entry in the cell 01, 01 is 0)
0101 returns 11 (entry in the cell 01, 10 is 3)
So reduced 4 bit string is 0001
6. Permute this using T4 to get 0011
7. R, is 0011 @ 1110 (L,) = 1101
and L, is Ry =0000

Ending operations

Swap L, and R; to get 11010000

Invert starting permutation as per T2 to get the output cipher text as 10010001
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DES Decryption on the example

~N o oA oW N e

~N o oA oW DN

All operations of encryption done including starting and ending operations using the keys

in reverse order

Cipher text is 10010001

Starting operation:

Permute as per T1 to get the string 11010000
Round 1

. Lo = 1101 Ry = 0000 (observe these are L, and R, of encryption)
. Expand Rg as per T3 to get 00000000

. Use K, =00110101

. XOR of Ky and as Ry . The new string is 00110101

. S box reduction 0011 gives 00 and 0101 gives 11

. Permute 0011 as per T4 to get 0011

. XOR of 0011 and 1101 is 1110 = R; and L; = Ro = 0000

Round 2

. L;=0000, R; = 1110

. Expand Ry as per T3 to get 01111101

. Use K; =10011010

. XOR of Kjand as R; . The new string is 11100111

. S box reduction 1110 gives 00 and 0111 gives 01

. Permute 0001 as per T4 to get 0010

. XOR of 0010 and 0000 is 0010 = R; and L, = R; = 1110

Ending operations
Swap L, and R, to get 00101110

Inverse of initial permutation yields 01101100 which is the given plain text
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6.5 SUMMARY

This unit has a detailed description of very widely used symmetric encryption called DES.
Important milestones in the development of DES algorithm is given in section 2.1.Overview of
DES function can be found in 2.2. Description of each step of DES is discussed in the section
2.3. Finally in the closing section of this unit an illustration of DES for a small block size is

shown.

6.6 KEYWORDS

Symmetric encryption, Block cipher, DES, Permutation and its inverse, S-box bit reduction, Bit

expansion, Shifting bits

6.7 QUESTIONS

1. Explain Feistel block structure.

2. Show that plain text can be retrieved in Feistel block cipher method.

3. Write about the development of DES.

4. Using a flowchart discuss the overall function of DES.

5. Write a table of permutation of 16 bits and its inverse. Show permutation of an example
16 bit block and find its inverse.

6. Using figures explain the steps in a single round.

7. lustrate DES on an 8 bit block. Assume a 6 bit key.

8. Mention the advantages of using S boxes.

6.8 REFERENCES

1. Atul Kahate, Cryptography and Network Security, Tata MCGrawHill
2. Behrouz A Forouzan, Cryptography and Network security, McGraw Hill
3. William Stallings, Cryptography and Network Security, Pearson
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UNIT -7: ATTACKS ON DES AND MULTIPLE ENCRYPTIONS

Structure

7.0  Objectives

7.1  Strength of DES

7.2 Attacks on DES

7.3 Block cipher design issues
7.4  Multiple encryption

7.5 Summary

7.6  Keywords

7.7  Questions

7.8 References

7.0 OBJECTIVES

When you have understood the topics discussed in this unit you will be familiar with

Strength of DES

Special attacks on DES

Ways to strengthen DES

Issues in design of block cipher

AN N NN

Advantages of multiple encryption

7.1 STRENGTH OF DES

Since its adoption as a federal standard, there have been serious concerns about the level of
security that DES provides. These concerns, by and large, fall into two areas: key size and the

nature of the algorithm.

The Use of 56-Bit Keys
With a key length of 56 bits, there are 2°° possible keys, which are approximately 7.2 x 10'°

keys. Thus, on the face of it, a brute-force attack appears impractical. Assuming that, on average,
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half the key space has to be searched, a single machine performing one DES encryption per
microsecond would take more than a thousand years to break the cipher. The justification for this
statement is given as follows:

Note that the minimum and maximum number of keys to be used in a brute force attack is
0 and 2%°. Thus 2*° (= (0+2°%)/2) is the average number of keys used to break the cipher. At the
rate of 1 encryption in a microsec (=1/10° sec), the average time of brute force attack = 2> x
1/10°% sec = 2°° x 1/10° x 1/60 (minutes) x 1/60 (hours) x 1/24 (days) x 1/365 (years) ~ 1142
years.

However, the assumption of one encryption per microsecond is overly conservative. In
1977, Diffie and Hellman postulated that the technology existed to build a parallel machine with
1 million encryption devices, each of which could perform one encryption per microsecond. The
authors also quoted an estimate of 420 million for such a sophisticated machine. But this would
bring the average search time down to about 10 hours. The calculation of time is given here.

The average number of keys to be tried in a brute force attack is 2°°. The rate of
encryption/decryption being 1 million per second, the time needed for attack = 2°° x 1/10° (one
encryption time) x 1/10° ( with 1 million parallel encryptions) x 1/60 (minutes) x 1/60 (hours) ~
10 hours.

DES was shown to be grossly insecure in July 1998, when the Electronic Frontier
Foundation (EFF) announced that it had broken a DES encryption using a special-purpose “DES
cracker” machine that was built with less than $250,000. EEF reported that the attack took less
than three days. The EFF has published a detailed description of the machine, so that others can
build their own cracker. With the trend of falling hardware prices and faster machines, DES
could virtually be worthless very soon. It is important to note that there is more to a key-search
attack than simply running through all possible keys. Unless known plaintext is provided, the
analyst has additional problem of recognizing plaintext as plaintext. If the message is just plain
text in English, then the result pops out easily, although the task of recognizing English would
have to be automated. If the text message has been compressed before encryption, then
recognition is more difficult. And if the message is some more general type of data, such as a
numerical file, and this has been compressed, the problem becomes even more difficult to
automate. Thus, to supplement the brute-force approach, some degree of knowledge about the
expected plaintext is needed, and some means of automatically distinguishing plaintext from
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garble is also needed. The EFF approach addresses this issue as well and introduces some
automated techniques that would be effective in many contexts. Fortunately, there are a number
of alternatives to DES, the most important of which are AES and triple DES, and in the end of

this unit we will discuss the attacks on multiple encryptions as well.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics
of the DES algorithm. The focus of concern has been on the eight substitution tables or S-boxes
that are used in each round. Because the design criteria for these boxes, and indeed for the entire
algorithm, were not made public, there is a suspicion that the boxes were constructed in such a
way that cryptanalysis is possible for an opponent who knows the weaknesses in the S-boxes.
This assertion is tantalizing, and over the years a number of regularities and unexpected
behaviors of the S-boxes have been discovered. Despite this, no one has so far succeeded in

discovering the supposedly fatal weaknesses in the S-boxes.

Timing Attacks

A timing attack is one in which information about the key or the plaintext is obtained by
observing how long it takes for a given implementation to perform decryptions on various cipher
texts. A timing attack exploits the fact that an encryption or decryption algorithm often takes
slightly different amounts of time on different inputs. There are reports on an approach that
yields the Hamming weight (number of bits equal to one) of the secret key. However this is a
long way from knowing the actual key, but it is an intriguing first step. It has been concluded by
attack proposals that DES is fairly resistant to a successful timing attack but suggest some
avenues to explore. Although this is an interesting line of attack, it so far appears unlikely that
this technique will ever be successful against DES or more powerful symmetric ciphers such as
triple DES and AES.

7.2 ATTACKS ON DES

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack

because of its relatively short (56 bits) key length. However, there has also been interest in
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finding cryptanalytic attacks on DES. With the increasing popularity of block ciphers with longer
key lengths, including triple DES, brute-force attacks have become increasingly impractical.
Thus, there has been increased emphasis on cryptanalytic attacks on DES and other symmetric
block ciphers. In this section, we provide a brief overview of the two most powerful and

promising approaches: differential cryptanalysis and linear cryptanalysis.

Differential Cryptanalysis
One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis.
In this section, we discuss the technique and its applicability to DES. Differential cryptanalysis is
the first published attack that is capable of breaking DES in less than 2°° encryptions. The
scheme as reported by Biham and Shamir in 1993, can successfully crypt analyze DES with an
effort on the order of 2*” encryptions, requiring 2*” chosen plaintexts. Although 2*" is certainly
significantly less than 2°°, the need for the adversary to find 2*’ chosen plaintexts makes this
attack of only theoretical interest.

Although differential cryptanalysis is a powerful tool, it does not do very well against
DES. The reason is that differential cryptanalysis was known to the team as early as 1974. The
need to strengthen DES against attacks using differential cryptanalysis played a large part in the
design of the S-boxes and the permutation P. Differential cryptanalysis of an eight-round
LUCIFER algorithm requires only 256 chosen plaintexts, whereas an attack on an eight-round

version of DES requires 2** chosen plaintexts.

Differential Cryptanalysis Attack:

The differential cryptanalysis attack is complex. Here, we provide a brief overview so that you
can get a flavor of the attack. The rationale behind differential cryptanalysis is to observe the
behavior of pairs of text blocks evolving along each round of the cipher, instead of observing the
evolution of a single text block.

We begin with a change in notation for DES. Consider the original plaintext block m to
consist of two halves m0, m1. Each round of DES maps the right-hand input into the left-hand
output and sets the right-hand output to be a function of the left-hand input and the sub-key for
this round. So, at each round, only one new 32-bit block is created. If we label each new block
m;, i=2 to 17, then the intermediate message halves are related as follows:

Mj+1 = Mjg + f(mi, Ki), i= 1,2,...,16
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In differential cryptanalysis, we start with two messages, m and m’, with a known XOR
difference dm = m @ m’, and consider the difference between the intermediate message halves:
dm; =m; @ m;. Then we have
dm, =m;, ® mi'+l
=[m_ ® f(m,K)]®[m_ & f(m' K)]
=dm_, ®[f(m,K,)® f(m', K,

Now, suppose that many pairs of inputs to f with the same difference yield the same
output difference if the same sub key is used. To put this more precisely, let us say that X may
cause Y with probability p, if for a fraction p of the pairs in which the input XOR is X, the output
XOR equals Y. We want to suppose that there are a number of values of that have high
probability of causing a particular output difference. Therefore, if we know dm;.; and dm; with
high probability, then we know dmi.; with high probability. Furthermore, if a number of such

differences are determined, it is feasible to determine the sub-key used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a
single round. The procedure is to begin with two plaintext messages m and m’ with a given
difference and trace through a probable pattern of differences after each round to yield a
probable difference for the cipher text. Actually, there are two probable patterns of differences
for the two 32-bit halves. Next, we submit the plain text for encryption to determine the actual
difference under the unknown key and compare the result to the probable difference. If there is a
match, then we suspect that all the probable patterns at all the intermediate rounds are correct.
With that assumption, we can make some deductions about the key bits. This procedure must be
repeated many times to determine all the key bits.

E(K,m)®EKK,m) = (dm,||dm,)

Linear cryptanalysis

A more recent development is linear cryptanalysis. This attack is based on finding linear
approximations to describe the transformations performed in DES. This method can find a DES
key given known plaintexts, as compared to chosen plaintexts for differential cryptanalysis.
Although this is a minor improvement, because it may be easier to acquire known plaintext
rather than chosen plaintext, it still leaves linear cryptanalysis infeasible as an attack on DES. So
far, little work has been done by researchers to validate the linear cryptanalytic approach.
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7.3 BLOCK CIPHER DESIGN ISSUES
S box

*

No output bit of any S box should be linear function of input bits.

*  |f two inputs to any S box differ by a bit out should differ by at least 2 bits.

*  Should have good avalanche effect (SAC, GA and BIC)
*  SAC — Strict avalanche effect: Any output of an S box should change with probability %2
when a single bit of input is changed
*  Bit independence criteria states that bits at j and k should change independently when
input i is inverted
* GA — Guaranteed avalanche effect: GA of order x means that a single bit input change
result in change of x bits of output always. GA ensures good diffusion
*  Difficult to meet these conditions for large S box
* We then use random number generation for S box entries and do tests on random
numbers
Permutation
*  Four output bits from each S box at round | are distributed so that two of them affect
middle two bits and other two affect end bits
Number of rounds
*  More rounds is better. DES and LUCIFER uses 16 rounds, a kind of optimal number
Key schedule
*  Guessing any individual sub keys should be very difficult

*  One suggestion is to make algorithm of key generation satisfy SAC and GA

7.4 MULTIPLE ENCRYPTIONS

DES is known to be vulnerable to many types of attacks. One alternative is to go for a new
algorithm such as AES. Another option is to use the investment in available DES. DES can be

best used to do multiple encryptions with multiple keys. First, plaintext is converted to cipher
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text using the encryption algorithm and cipher is used as input for a second time encryption. This

process may be repeated through any number of stages.

Double DES

DES can be done twice for additional security. The procedure of double encryption/decryption is
describes as follows:

C=E(K;, E(K3, P)) and P=D(Ky, D(K3, C))

Note that the key size is now 112 bits.

Encryption:
K1 Ks
P > X > C
Decryption:
Ks K1
C » X > P

Strength of double DES

With double DES the cipher text is obtained as E(K;, E(Ky, P)) = C. one may wonder it is after
all encryption done with a new key perhaps Ks. That is E(K;, E(Ky, P)) = E(K3, P). If this is so,
there is no difference between single or double encryption. It is easy to shoe that equation above
iS not true.

A single DES has key space of 2°° . Whereas with double DES and block size of 64 we have 2%
input blocks and the number of mappings possible is 2%/t Note that,

20
2%%1> 10 and 2*6< 10"

Thus DES used twice will provide many more mappings that are defined by single DES.

Attack on double DES

A special type of attack called meet in the middle attack is useful for double DES. Details of this
attack are given here.

Suppose a P, C pair is known

Try various possible keys for K; and do encryption on P at the same time decrypt C with various
possible K,. Stop when X = E (Ky, P) =D (K;, C).
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Probably you have discovered the pair of keys K; and K,. To confirm this is the right the pair of
keys, encrypt P with these two keys and see if get C. If not continue with decryption. A
systematic way of the attack is described in the following steps:
Use all 2°° keys on P and encrypt
. Store the result in a table in the sorted order of ciphers (X) produced
Use systematically the values for K, and decrypt C

. Check the result of decryption against table value

1
2
3
4
5. If match occurs then K; and K; could be pair of keys used
6. Confirm this by doing double DES on P

7. If the result is C then keys are discovered

8. If not continue with decryption

One of the keys K, that gives a value in the table of encryption is the pair that is used in Double
DES. Complexity of the attack is 2°° + 2°* (average) which is not very much greater compared to

2°° required by brute force attack on single DES.

Triple DES

Obvious counter measure to thwart meet in the middle attack for double DES is go more
encryptions. Triple DES with three keys is a solution. The encryption and decryption with three
keys is shown here.

C=E(Kj, E(K2, E(K3, P))) and P=D(K;, D(K3, D(K3, C)))

Encryption:
K1 K; Ks
P > X > Y > C
Decryption:
Ks K K1
C > Y > X > P

Strength of double DES

Key size will increase to 56 x 3 = 168 bits. Meet in the middle attack would now require 2'*?
trials. This is not practical now and far into the future. The major drawback with triple DES is

unwieldy key size (168 bits). Tuchman (1979) proposed an attractive alternative to this namely
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Triple DES with 2 keys. This is currently in use by key management standards ANS X9.17 and
ISO 8732. Triple DES with two keys is shown below.
C=E(Ky, D(Kz, E(Ky, P))) and P=D(Ky, E(Kz, D(K4, C)))

Encryption:
Ki K> Ki
v v v
P> EPX > DM — EB>
Decryption:
K1 Kz Ki

Co» DWW —» E—>% —| DP

By using encryption and decryption alternatively it is possible to reduce this to single DES
(usable as single DES also). There is no cryptographic significance of E, D and E. With K;=Kj it
is simply single DES. A single user DES can encode P using key once and triple DES user can
decode it with using K; three times. A triple DES user can do E, D, E with one key and single

DES user can decrypt the file by using key once.

Attack on Triple DES
No practical cryptanalytic attacks have been reported so far. Coppersmith notes that cost of brute

force attack is 2'*?

and that of differential cryptanalytic attacks suffers from exponential growth
of the order of 10°2. Merkle and Hellman (1981) proposed finding plain text which makes

intermediate encryption A as 0. But this proposal is not practical.

7.5 SUMMARY

In this unit you will find discussion on strength and weakness of DES, two types of attacks on
encryption algorithms and its performance on DES in sections 3.1 and 3.2. The later sections

describe ways to strengthen DES further in section 3.3 design issues of various function in a
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single round are detailed. In the final section of this unit an important multiple encryption
method called triple DES id discussed.

7.6 KEYWORDS

Differential cryptanalysis attack, linear cryptanalsis attack, timing attacks, DES design criteria,
strict avalance, guaranteed avalance, bit independence, multiple encryption, double DES, triple
DES.

7.7 QUESTIONS

Write about the strength of DES.
Discuss timing attacks.
Describe differential cryptanalysis attack on DES.

Briefly discuss the principle of linear cryptanalysis.

o~ W N e

Writ note on strict avalanche, bit independence, guaranteed avalanche, random number
generation.

6. Discuss double and triple DES.

7. Show that triple DES with two keys can be used for three or one encryption.

8. Describe attacks on double and triple DES.

7.8 REFERENCES
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3. William Stallings, Cryptography and Network Security, Pearson
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UNIT - 8: STREAM CIPHERS
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8.0  Objectives
8.1  Operation of stream ciphers
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8.5 Summary

8.6  Keywords

8.7  Questions
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8.0 OBJECTIVES

A good understanding of the topics discussed in this unit will make you knowledgeable in

v’ Operating principles of a stream cipher
v" An important stream cipher method RC4
v Analyzing the strength of RC4

v

Ways to generate random numbers

8.1 OPERATION OF STREAM CIPHERS

A typical stream cipher encrypts plaintext one byte at a time; although a stream cipher may be
designed to operate on one bit at a time or on units larger than a byte at a time. Figure 8.1 shows
the operation of a stream cipher. In stream ciphers, a key is input to a pseudorandom bit
generator that produces a stream of 8-bit numbers that are apparently random. The output of the

generator, called a key stream, is combined one byte at a time with the plaintext stream using
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the bitwise exclusive-OR (XOR) operation. For example, if the next byte generated by the
generator is 10011100 and the next plaintext byte is 01001110, then the resulting cipher text byte

is
01001110  plaintext
@ 10011100 key stream
11010010  ciphertext
Key Ry
K K
i ]
Parudorandom byte Perudorasdom bade
peneralor PERETHIO
(kcy stream gegeraior| ikery =ream penzraior]
I i k
Maimlext Ty _ Cipherieni Ty _ Maislest
Eyjle sream T i sream g “byle dram
L] FNCRYPTION C DECRYPTION i

Decryption requires the use of the same pseudorandom sequence:

11010010
@ 10011100

Figure 8.1 Stream cipher diagram

ciphertext

key stream
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01001110  plaintext

The stream cipher is similar to the one-time pad discussed in module 1. The difference is

that a one-time pad uses a genuine random number stream, whereas a stream cipher uses a

pseudorandom number stream.

The following are some important design considerations for a stream cipher.

1. The encryption sequence should have a large period. Note that the XOR of same plain text
block (blocks being small it is possible that blocks repeat very often) and the same key from
the generator will result in identical cipher blocks. A pseudorandom number generator uses a
function that produces a deterministic stream of bits that eventually repeats. The longer the
period of repeat the more difficult it will be to do cryptanalysis. This is essentially the same
consideration that was discussed with reference to the Vigenére cipher, namely that the
longer the keyword the more difficult the cryptanalysis.

2. It is desirable that the key stream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately equal number of
1s and Os. If the key stream is treated as a stream of bytes, then all of the 256 possible byte
values should appear approximately equally often. If the key stream is close truly random
sequence, the more randomized will the cipher text be, making cryptanalysis more difficult.

3. Note from Figure 8.1 that the output of the pseudorandom number generator is conditioned
on the value of the input key. To guard against brute-force attacks, the key needs to be
sufficiently long. The same considerations that apply to block ciphers are valid here. Thus,
with current technology, a key length of at least 128 bits is desirable.

With an efficiently designed pseudorandom number generator, a stream cipher can be
as secure as a block cipher of comparable key length. A potential advantage of a stream cipher is
that stream ciphers that do not use block ciphers as a building block are typically faster and use
far less code than do block ciphers. The example in this chapter, RC4, can be implemented in
just a few lines of code. In table 8.1, a comparison of execution times of RC4 and three popular
symmetric block ciphers is given. One advantage of a block cipher is that you can reuse keys. In
contrast, if two plaintexts are encrypted with the same key using a stream cipher, then

cryptanalysis is often quite simple. If the two cipher text streams are XOR-ed together, the result
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is the XOR of the original plaintexts. If the plaintexts are text strings, credit card numbers, or
other byte streams with known properties, then cryptanalysis is easy.

For applications that require encryption/decryption of a stream of data, such as over a
data communications channel or a browser/Web link, a stream cipher might be the better
alternative. For applications that deal with blocks of data, such as file transfer, e-mail, and
database, block ciphers may be more appropriate. However, either type of cipher can be used in
virtually any application.

A stream cipher can be constructed with any cryptographically strong random numbers
such as the ones we will shortly discuss in this unit. In the next section, we look at a stream

cipher that uses a function to generate random numbers designed specifically for the stream

cipher.

Cipher Key length Speed (Mbps)

DES 56 9

3DES 168 3

RC2 variable 0.9

RC4 variable 45

Table 8.1: Speed of encryption of various cipher schemes

8.2 RC4

Ron Rivest, one of the authors of asymmetric encoding method RSA, is the designer
of RC4. The official name for this algorithm is “Rivest cipher 4”. However because of its ease of
reference the name “RC4” has stuck. RC4 is widely used in Wired Equivalent Privacy (WEP)
protocol and WPA (WiFi Protected Access) protocol. The reason for its wide deployment is its
speed and simplicity. Both hardware and software implementations are possible.

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a
variable key size stream cipher with byte-oriented operations. The algorithm is based on the use
of a random permutation. Analysis shows that the period of the cipher is overwhelmingly likely

to be greater than 10'%. Just eight to sixteen machine operations are required per output byte, and

107



hence the cipher can run very quickly in software also. RC4 is used in the Secure Sockets
Layer/Transport Layer Security (SSL/TLS) standards that have been defined for communication
between Web browsers and servers.

The RC4 algorithm is remarkably simple and quite easy to explain. A variable-length
key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S, with
elements S[0], S[1]...., S[255] . At all times, S contains a permutation of all 8-bit numbers from 0
through 255. For encryption and decryption, a byte k is generated from S by selecting one of the
255 entries in a systematic fashion. As each value of k is generated, the entries in S are once
again permuted.

Initialization of S:

To begin, the entries of are set equal to the values from 0 through 255 in ascending order; that is,
S[0] =0, S[1] =1, ..., S[255]=255 . A temporary vector, T, is also created. The creation of the
temporary vector T is as follows: If the length of the key is 256 bytes, then is transferred to T.
Otherwise, for a key of length keylen bytes, the first keylen elements of T are copied from K, and
then K is repeated as many times as necessary to fill out T. These preliminary operations can be
summarized as

/* Initialization */

fori=0to 255 do

S[i]=1i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting with S[0] with and
going through to S[255] , and for each S[i], swapping S[i] with another byte in S according to a
scheme dictated by T[i];

/* Initial Permutation of S */

j=0;

fori=0to 255 do

j = (j + S[i] + T[i]) mod 256;

Swap (S[i], S[il);

Because the only operation on S is a swap, the only effect is a permutation.

S still contains all the numbers from 0 through 255.
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Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation involves
cycling through all the elements of S[i], and for each S[i], swapping S[i] with another byte in S
according to a scheme dictated by the current configuration of S. After S[255] is reached, the

process continues, starting over again at S[0].

[* Stream Generation */

i, j=0;

while (true)

i =(i+1) mod 256;

j = (@ + S[i]) mod 256;

Swap (S[i], S[il);

t = (S[i] + S[j]) mod 256;

k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with
the next byte of cipher text. Figure 8.2 illustrates the RC4 logic
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Figure 8.2 RC4

Strength of RC4

A number of attempts have been made attacking RC4. None of these is practical if key size is >
128 bits. However, there is an attack to RC4 on WEP. The problem is not with EC4 but with
input random number. But this can be remedied in WEP by changing the way in which keys are

generated.

8.3 RC5
RC5 is a symmetric key block encryption algorithm developed by Ron Rivest. The main

features of RC5 are that it is quite fast as it uses only the primitive computer operations (such as
addition, XOR, shift, etc). It allows for a variables number of rounds and a variable bit-size key
to add to the flexibility. Different applications that demand varying security needs can set these
values accordingly. Another important aspect is that RC5 requires less memory for execution and
is, therefore, suitable not only for desktop computers, but also for smart cards and other devices

that have a small memory capacity.

8.4 RANDOM NUMBER GENERATION

Random number is an essential ingredient for many cryptographic systems including RCA4.

In this section we discuss some methods for random number generation.

True random number generation
A true random number generator (TRNG) uses a nondeterministic source to produce
randomness. Most operate by measuring unpredictable natural processes, such as pulse detectors
of ionizing radiation events, gas discharge tubes, and leaky capacitors. Intel has developed a
commercially available chip that samples thermal noise by amplifying the voltage measured
across undriven resistors.

The following are possible sources of randomness that, with care, easily can be used on a

computer to generate true random sequences.
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« Sound/video input: Many computers are built with inputs that digitize some real-world analog
source, such as sound from a microphone or video input from a camera. The “input” from a
sound digitizer with no source plugged in or from a camera with the lens cap on is essentially
thermal noise. If the system has enough gain to detect anything, such input can provide

reasonably high quality random bits.

« Disk drives: Disk drives are known to have small random fluctuations in their rotational speed
due to chaotic air turbulence. The addition of low-level disk seek-time instrumentation produces
a series of measurements that contain this randomness. Such data is usually highly correlated, so
significant processing is needed. Nevertheless, experimentation a decade ago showed that, with
such processing, even slow disk drives on the slower computers of that day could easily produce

100 bits a minute or more of excellent random data.

A TRNG may produce an output that is biased in some way, such as having more ones than
zeros or vice versa. Various methods of modifying a bit stream to reduce or eliminate the bias
have been developed. These are referred to as de-skewing algorithms. One approach to de-skew
is to pass the bit stream through a hash function. The hash function produces an n-bit output from
an input of arbitrary length. For de-skewing, blocks of m input bits with m > n, can be passed
through the hash function. TRNG is too tedious and complex pseudo random number generators
(formula) are available in plenty. In this section we will discuss some important ones very

briefly.

Pseudo Random Number Generators (PRNG)
We discuss here two important ways of generating random numbers (hence called pseudo

random numbers).

Linear Congruential Generators:
A widely used technique for pseudorandom number generation is an algorithm first proposed by
Lehmer, which is known as the linear congruential method. The algorithm is parameterized with

four numbers, as follows:

m the modulus m>0
a  the multiplier O<a<m
C the increment 0<c<m
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Xo the starting value, orseed 0<Xo<m

The sequence of random numbers is obtained using the following iterative equation:

Xn+1 = (@X, + ¢) mod m
If m, a, ¢, and X, are integers, then this technique will produce a sequence of integers with each
integer in the range 0 < X, <m.

The selection of values for a, c, and m is critical in developing a good random number
generator. For example, consider a=c=1. The sequence produced is obviously not satisfactory.
This is because if X, is smaller than m then all other X, are same as X,. The period of this
generator is 1. Now consider the values a =7, ¢ = 0, m = 32, and X, = 1. This generates the
sequence {7, 17, 23, 1, 7, etc.}, which is also clearly unsatisfactory. Of the 32 possible values,
only four are generated; thus, the sequence is said to have a period of 4. If, instead, we change
the value to 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 1, 5, etc.}, which increases the
period to 8.

We would like m to be very large, so that there is the potential for producing a long series of
distinct random numbers. A common criterion is that m can be nearly equal to the maximum
representable nonnegative integer for a given computer. Thus, a value of m near to or equal to2**

is typically chosen.

Three important tests to be used in evaluating a random number generator are:

T1: The function should be a full-period generating function. That is, the function should
generate all the numbers between 0 and m before repeating.

T2: The generated sequence should appear random.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, ¢, and m, these three tests can be passed. With respect to
T1, it can be shown that if m is prime and c=0, then for certain values of a the period of the
generating function is m - 1, with only the value 0 missing. For 32-bit arithmetic, a convenient
prime value of m is (2% - 1). Thus, the generating function becomes
Xns+1 = (aXq) mod (2% - 1)
The largest the machine can accommodate is 2% — 1. With this choice of m, there is no necessity

to do division operation to find (aX,) mod (2 - 1). The product of a and X, is computed bit by
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bit from the least significant bit. If the product fits in 32 bits then this the answer of mod (2°! -
1). If it does not, the least significant bits that can fit in 32 bits is the result of mod (2*! - 1).

Of the more than 2 billion possible choices for a, only a handful of multipliers pass
all three tests. One such value is a = 7° = 16807, which was originally selected for use in the
IBM 360 family of computers. This generator is widely used and has been subjected to a more
thorough testing than any other PRNG. It is frequently recommended for statistical and
simulation work.

The strength of the linear congruential algorithm is that if the multiplier and modulus
are properly chosen, the resulting sequence of numbers will be statistically indistinguishable
from a sequence drawn at random (but without replacement) from the set 1, 2, ..., m - 1. But
there is nothing random at all about the algorithm, apart from the choice of the initial value X.
Once that value is chosen, the remaining numbers in the sequence follow deterministically. This
has implications in cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the
parameters are known (e.g. a = 7°, ¢ = 0, m = 2*!- 1), then once a single number is discovered, all
subsequent numbers are known. Even if the opponent knows only that a linear congruential
algorithm is being used, knowledge of a small part of the sequence is sufficient to determine the
parameters of the algorithm.

Suppose that the opponent is able to capture or determine values for Xo, X1, X2, and X3.Then

X1 = (aXp + c) mod m

Xz = (aXy +c)mod m

X3 = (aXz+c)mod m

These equations can be solved for a, ¢, and m. Thus, although it is nice to be able to use a good
PRNG, it is desirable to make the actual sequence used non-reproducible, so that knowledge of
part of the sequence on the part of an opponent is insufficient to determine future elements of the
sequence. This goal can be achieved in a number of ways. For example, using an internal system
clock we can modify the random number stream. One way to use the clock would be to restart
the sequence after every numbers using the current clock value (mod m) as the new seed.

Another way would be simply to add the current clock value to each random number (mod m).
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Blum Blum Shub Generator:

A popular approach for generating secure pseudorandom numbers is known as the Blum, Blum,
Shub (BBS) generator, named after its developers. It has perhaps the strongest public proof of its
cryptographic strength of any purpose-built algorithm. The procedure is as follows. First, choose

two large prime numbers, so that both have a remainder of 3 when divided by 4.

That is, p =¢ = 3(mod 4).

This notation, simply means that (p mod 4) = (q mod 4) = 3. For example, the prime numbers 7
and 11 satisfy 7= 11 = 3(mod 4). Let n= pxq. Next, choose a random number s, such that s is

relatively prime to n; this is equivalent to saying that neither p nor q is a factor of s.

Then the BBS generator produces a sequence of bits B;, according to the following algorithm:

Xo = s> mod n
Fori=1towx
Xi = (Xi.1)* mod n
Bi = Ximod 2

Thus, the least significant bit is taken at each iteration. Table 8.2, shows an example of BBS
operation. Here, n = 192649 = 383 x 503, and the seed s = 101355.

Table 8.2: Operation of BBS generator
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8.5 SUMMARY

Basic principle of stream cipher and widely used stream ciphers RC4, RC5 are explained in the
first three sections. Random numbers are key ingredients for the function of stream cipher.
Principles of true random number generators (TRNG) and its inconveniences are discussed in
section 8.4. Also an useful alternatives namely pseudo random generator (PRNG) is explained

here.

8.6 KEYWORDS

PRNG, TRNG, RC4, Stream cipher, Linear congruential generator, Blum Blum Shub generation

of random numbers.

8.7 QUESTIONS

Explain stream cipher.

RC4 is widely used in many applications — why?
Write the algorithm for RCA4.

Give an overview of RC5.

Differentiate TRNG and PRNG.

Explain linear congruential generator.

N o ok~ wDd e

Discuss Blum Blum Shub method of random number generation.
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UNIT-9: ESSENTIAL MATHEMATICS FOR ASYMMETRIC
ENCRYPTION

Structure
9.0 Objectives
9.1 Fermat’s thecorem
9.2 Euler’s theorem
9.3 Prime numbers
9.4 Discrete logarithms
9.5 Summary
9.6 Keywords
9.7 Questions
9.8 References

9.0 OBJECTIVES

When you have understood the concepts covered in this unit you will
v" Know important results in number theory

Understand prime factoring of integers

Come to know Fermat’s theorem

Be familiar with Euler’s theorem

Be able to appreciate the utility of approximate algorithm for primality testing

AN N NN

Understand the concept of discrete logarithms

9.1 FERMAT’S THEOREM
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We begin this unit with the result on factoring natural numbers into product of prime

poOwers.

Result 1 (Fundamental Theorem of Arithmetic): Any integer a>1 can be factored as product

k

of powers of primes i.e. a=ps™* x P2 x ... x p & where p1, p2 , pxare prime numbers and ay, a;,

...ak are integers.
Example 1: 91=7 x 13, 3600=2" x 3% x 52, 11011 = 7 x 11° x 13
It is useful to write this in another way.
a=TI1p* where a,> 0 and p, a prime number
An integer is then specified by all non zero exponents. Thus,
91 =2°x 3 x 5%x 7t x 11°x 13* = (a;=1, a15=1)
3600 = 2% x 3% x 5% = (a,=4, a3=2, a5=2)
11011=2°x 3°x 5° x 7* x 11% x 13" = (a;=1, a11=2, a13=1)
12 = 2% x3! (a,=2, az=1)
18= 2'x3? (a,=1, a;=2)

Multiplication of numbers
As integers are expressed as product of prime powers, the multiplication of integers is thus

addition of prime powers.
Example 2: 12 x 18 =216 = 23 x 3°
Note that 12 = 22 x3' (a,=2, a3=1),
18= 2'x3? (a,=1, a;=2) and
216 factored as 2° x 3° (a,=3, a3=3)
Divisibility

If a and b are two integers then a | b if and only if a, < b, for all p where a = IT p* and b= T1p™.
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Example 3: Let a=12 and b=36. Now a | b

Also 12 = 22 x3' (a,=2, az=1) and 36 = 2°x3? (b,=2, b3=2)
Note that a, < b, where p=2, 3
That is a,=2 <b,=2 and a3=1< b3=2

Example 4: Let a=6, b=54. Now a |b

Also, 6 = 2'x3 (a,=1, az=1) and 54 = 2'x3* (b,=1, bs=3)
Note that a, < b, where p=2, 3

Example 5: a=4, b=20, a= 2% (a,=2), b= 2%x5 (b,=2, bs=1)
Note that a, < b, where p=2, 5

GCD of two numbers
When numbers are expressed as product of prime powers it is easy to find GCD of the numbers.
GCD =T11p® where ¢, = min(ap, by) for all p

Example 6: GCD(300, 18) =6

300=22x3'x5%and 18 = 2* x 3% and
GCD (300, 18) = 2 x 3! x 5°

Example 7: GCD(50, 24) = 2

50=2'x 5% and 24 = 2° x 3'and 2' x 3x 5° = 2
Finding prime factors is not easy and hence this method of finding GCD is hardly useful.
Fermat’s theorem: If p is prime and a is positive integer not divisible by p then a**=1 mod p .

Example 8: a=7, p=19
7%= 49 (mod 19) = 11
7%= 11% (mod 19) =121(mod 19) = 7
78=7?(mod 19) = 11
7%= 112 (mod 19) =121(mod 19) = 7
718= 11 x 7(mod 19) = 77(mod 19) = 1
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Example 9: a= 3 and p=5
3’=9 (mod 5) = 4,
3*= 4% (mod 5) = 16(mod 5) = 1

Another form of Fermat's theorem:

If a is any integer and p a prime number then, a’= a (mod p).
Note that a and p need not be relatively prime.

Example 10: a= 3 and p=5
3’=9 mod 5 =4,
3*=4mod 5=16 mod 5 = 1 and
3°=1x3mod5 =3 mod 5.

In this example a and p are relatively prime.

Example 11: a= 10 and p=5 (a and p are not relatively prime)
10° = 100000 mod 5 =0 and amod p =10 mod 5 =0

Example 12: a= 6 and p=3 (a and p are not relatively prime)
6°=216 mod 3 =0 and 6 mod 3=0

9.2 EULER’S THEOREM

Another important result of number theory that is useful in understanding public key
systems is Euler’s theorem. Before going into details of statement and examples, we introduce

totient function.

Euler’s Totient function
Given an integer n > 1, the number of integers less than n and prime to n is called Euler’s totient
function denoted by ¢(n). ¢(1) is taken to be 1.

Example 13: n=37 (prime number). As n is prime all numbers less than n (36 in number) are

prime to n thus ¢(37) = 36. For any prime p, ¢(p) = p-1

Example 14: ¢(35) = 24. The numbers less than 35 and primeto 35 are 1, 2, 3,4, 6, 8,9, 11, 12,
13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34 and there are 24 numbers in this list.
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Result: If n=p x q (p, q are primes) then ¢(n) = ¢(p) % ¢(q) = (p-1) % (g-1)

Example 15: ¢(21) = 12 [numbers less than 21 and prime to 21 are 1, 2, 4, 5, 8, 10, 11, 13, 16,
17,19, 20

Alternatively, 21 =3 x 7 and ¢(3) = 2, ¢(7) = 6. Thus ¢(21) = ¢(3) x ¢(7) =2 x 6 =12.

Now that you have enough background knowledge, we are in a position to state Euler’s theorem.
Euler’s theorem: For every a and n that are relatively prime, a*™=1 mod n.

Example 16: Let a=3, n=10; ¢(10) = 4, 3* =81 = 1 mod 10

Example 17: Let a=2, n=11; $(11) = 10, a*™ = 2'°= 1024 = 1 mod 11 = 1 mod n

Alternative form of this theorem is as follows: For any two integers a, n we have a*™**= a mod

n. (Note that a and n need not be relatively prime)

Example 18: Let a=3, n=10; ¢(10) = 4, a*™*!=3%= 243 = 3 mod 10 = a mod n

In this example a and n are relatively prime.

Example 19: a=3, n=6; ¢(6)=2, a*™*'=3%= 27 =3 mod 6 =a mod n

In this example a and n are not relatively prime.

9.3 PRIME NUMBERS

For many cryptographic algorithms we need large prime numbers. So, we generate a
random number and then test if it is prime. Deterministic algorithm for prime number test is
complex (check if any number in the range of 2 to Vn divides n; if so it is not prime). Miller
(1975) and Rabin (1980) developed efficient algorithm that almost certainly determines if n is
prime. More results on number theory are needed to understand Miller Rabin method.

Before discussing the algorithm that tests a given number to be prime, we state some results

on prime numbers supported by examples.

Results on prime numbers
1. Any odd positive number n >2 can be expressed as n-1=2%q where k>0 and q is odd
Example 20: Let n=23 (prime), n-1 =22 =2 x 11 (k=1 and g=11)
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Example 21: Let n=35 9non prime), n-1 =34 =2 x 17 (k=1 and q=17)
2. Property 1 of prime number: If p is prime and a is any positive integer then a> mod p =1
iff either amod p =1 oramod p = -1(p-1)
Example 22: Let a=4, p=3; a> mod p =16 mod 3 =1;
Alsoamod p =1
Example 23: Let a=4, p=2; a> mod p =16 mod 2 = 0;
Neither 4mod 2 =1nor4 mod 2 =-1
Example 24: Let a=6, p=7; a”mod p=36 mod 7 =1
Alsoamodp=-1
3. Property 2 of prime number: Let p be prime > 2. Recall p-1 = 2“ q where k >0, q odd. Let
a be any integer such that 1 < a < p-1 then one of the following conditions is true.
i. a’modp=1
ii. Oneofa? a%, ... a® &Y™ js congruent to -1 mod p. That is there is some
number j> 1 <j <k so thata = -1 mod p.
Example 25: Suppose p=5, a=3; p-1=4 and k = 2, g=1. a® mod p = 3 mod 5 is not 1
Buta®modp=9mod5=4=-1mod5
Example 26: Suppose p= 7, a=4; p-1=6 and k=1, g=3. a® mod p = 64 mod 7 =1

Miller Robin Algorithm

We can use the preceding property to devise a test for primality. The property 2 implies that if n
is prime then first number in list of residues (modulo) (&% a%, ... a® &) mod n is 1 or some
element in the list is -1. On the other hand if the condition is met it does not imply that the
number n is prime.

Example 27: Let n=2047. n is not prime since n = 23 x 89.

Now n-1 = 2046 = 2 x 1023; that is k=1 and q=1023. For a=2 we see that a% = 2'°?® = 1 mod
2047 =1modn

The algorithm for testing primality of n is given here.

TEST (n)

Find integers k, g with k>0, g odd so that n-1=2*x q

Select a random integera> 1 <a<n-1.

If a¥ mod n =1 then return “inconclusive”.

For j=0to k-1 do

el
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5. If a®V™ s -1 mod n then return “inconclusive”
End for

6. Return “composite”

The algorithm above returns “composite” implies that n is definitely not a prime and if it returns
“inconclusive” then it implies that n may or may not be prime. The algorithm is executed with
several random a’s. If the result is “inconclusive” for all a’s then n is prime with high

probability.

Example 28: n=29 (prime). The algorithm returns “inconclusive” for all a’s from 1 to 28. This is
consistent with n being prime.

n=221 =13 x 17, a composite number

n-1 =220 = 2% x 55 ; thus q=2, k=55

For a= 21 you get ‘inconclusive” since 21 *>" is -1 mod 22.

This means that n may be prime (according to the algorithm) but we know that n is definitely
composite. You can verify that only for few a’s (21, 47, 174, 200) the algorithm returns
“inconclusive”. For a = 5 the algorithm returns “composite”. Thus running the algorithm for
several a’s will correctly determine composite number. If it returns “inconclusive” for several a’s

it is highly likely that it is prime and we assume n is prime.

Deterministic algorithm for testing primality

Prior to 2002, there was efficient method known to check primality of very large numbers. All of
the algorithms in use, including the most popular (Miller-Rabin), produced a probabilistic result.
In 2002, Agrawal, Kayal, and Saxena developed a relatively simple deterministic algorithm that
efficiently determines whether a given large number is a prime number. The algorithm, known as
the AKS algorithm, does not appear to be as efficient as the Miller-Rabin algorithm. Thus, it is

not considered superior to this older, probabilistic technique.

Distribution of primes

It is worth noting how many numbers are likely to be rejected before a prime number is found
using the Miller-Rabin test, or any other test for primality. A result from number theory, known
as the prime number theorem, states that the primes near n are spaced on the average one every

(In n) integers. Thus, on average, one would have to test on the order of In(n) integers before a
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prime is found. Because all even integers can be immediately rejected, the correct figure is 0.5*
In(n). For example, if a prime on the order of magnitude of 2%°° were sought, then about 0.5
In(2%) = 69 trials would be needed to find a prime. However, this figure is just an average. In
some places along the number line, primes are closely packed, and in other places there are large

gaps.

9.4 DISCRETE LOGARITHMS

The Discrete logarithm is fundamental to many public key encoding systems including
Diffel Hellman key exchange algorithms and digital signatures.

Recall Euler totient function ¢(n) and the Euler’s theorem, which states that a*™ = 1 mod
n if a, n are relatively prime. Now consider more general expression a" = 1 mod n. If a and n are

relatively prime there is at least one integer (¢(n)) that satisfies the general expression.

The least positive integer m which satisfies the equation a™ = 1 mod n is called (i) order

of a mod n (ii) exponent to which a belongs to mod n (iii) length of the period generated by a

Example 29:
Consider a=7, n=19
7t =7mod 19
7% =11 mod 19
7°=1mod 19
7*=7mod 19 ...
The sequence repeats. The period is 3. This is nothing but the smallest integer m for which a™ =

1 mod n (in this example 7° = 1 mod 19).

For a = 2, you can check that (a, a% a°, ... a®®®) mod 19 are 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15,
11,3,6,12,5,10,1

All numbers 1 to 18 (the value of ¢(19)) have appeared. The period is 18, full period. Similarly
you can verify that 3, 10, 13, 14, 15 all have full period.

Primitive root
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In general the highest possible exponent to whom a number can belong (mod n) is ¢(n). If
a number is of this order it is referred to as a primitive root of n. Alternatively if a is a primitive
root of n then a, @, @, ... a®™ are all distinct (mod n) and are all prime to n. In particular for a
prime number p, if a is a primitive root of p then a, a, @, ... a®* are distinct (mod p) and prime
to p. from the preceding example we see that, primitive roots of 19 are 2, 3, 10, 13, 14 and 15.
Table 9.1 shows all the powers of a, modulo 19 for all positive a < 19. The length of the
sequence for each base value is indicated by shading. Note the following:
1. All sequences end in 1. This is consistent with the reasoning of the preceding few
paragraphs.
2. The length of a sequence divides ¢(19) =18. That is, an integral number of sequences
occur in each row of the table. The length of the sequence fora=1is 1. Fora=2and 3 it
is 18. For a =4 it is 9 and so on. Note that all these lengths divide ¢(n) (=18).

a Z 1@ a8 | & la 1& | [a° [aZ a2 [a® |a? [a® |a® |a¥ | a®
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 4 8 16 |13 |17 |14 |9 18 |17 |15 |11 |3 6 12 |5 10 |1
3 9 8 15 |7 2 6 18 |16 |10 |11 |14 |4 12 |17 |13 |1
4 16 |7 9 7 11 |6 5 1 4 16 |7 9 17 |11 |6 5 1
5 6 11 |17 |9 7 6 4 1 5 6 11 |17 |9 7 11 14 1
6 17 |7 4 5 11 |9 16 |1 6 17 |7 4 5 11 |9 16 |1
7 11 |1 7 11 |1 7 11 |1 7 11 |1 7 11 |1 7 11 |1
8 7 18 |11 |12 |1 8 7 18 |11 |12 |1 8 7 18 |11 |12 |1
9 5 7 6 16 |11 |4 17 |1 9 5 7 6 16 |11 |4 17 |1
10 |5 12 |6 3 11 |15 |17 |18 |19 |14 |7 13 |16 |8 4 2 1
11 |7 1 11 |7 1 11 |7 1 11 |7 1 11 |7 1 11 |7 1
12 |11 |18 |7 8 1 12 |11 |18 |7 8 1 12 |11 |18 |7 8 1
13 |17 |12 | 4 14 |11 |10 |16 |18 |6 2 7 15 |5 8 9 3 1
14 |6 8 17 110 |7 3 4 18 |5 13 |11 |2 9 12 |16 |15 |1
15 |16 |12 |9 2 11 |13 |5 18 |4 3 7 10 |17 |8 6 14 |1
16 |9 11 |5 4 7 17 |6 1 16 |9 11 |5 4 7 17 |6 1
17 |4 11 |16 |6 7 5 9 1 17 14 11 |16 |6 7 5 9 1
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(18 |1 [18 |1 [18 |15 [18 |1 |18 |1 |18 [1 |18 [1 |18 [1 18 |1 |
3. Some of the sequences are of length 18. In this case, it is said that the base integer a

generates (via powers) the set of nonzero integers modulo 19. Each such integer is called

a primitive root of the modulus 19. Some primitive roots of 19 are 2, 3, 10.

Table 9.1: Powers of integers modulo 19
More generally, we can say that the highest possible exponent to whom a number can belong
(mod n) is ¢(n). If a number is of this order, it is referred to as a primitive root of n. The
importance of this notion is that if a is a primitive root of n, then its powers a, @, &, ... a’™ are
distinct (mod n) and are all relatively prime to n. In particular, for a prime number p, if a is a
primitive root of p, then a, a% a°, ... a”* are distinct (mod p). For the prime number 19, its
primitive roots are 2, 3, 10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with primitive roots are those of

the form 2, 4, p“ and p**, where p is any odd prime and « is a positive integer.

Logarithms for modular arithmetic
We review some properties of ordinary logarithms here.
logx(1) =0, logx(x)=1
log.(yz)=log.(y) * 10g«(2)
log,(y/z)=10gx(y)-109x(2)
logx(r*)=a*logx(r)

Consider the primitive root a for some prime number p. We know that powers of a from 1
to p-1 are distinct and are integers 1 to p-1 in some order. We also know that any integer b

satisfies b= r mod p for some r, where 0 <r <p-1 by definition of modular arithmetic.

Let a be a primitive root of p. For the integer b we can find a unique exponent i such that
b=a' mod p, where 0 < i < p-1. The same equation is written in terms of logarithm as dlogap(b)=i.

The exponent i is called the discrete logarithm of the number b for the base a mod p.
All the properties of ordinary logarithms are satisfied by discrete logarithms.

Example 30: Let p=19. We know that 2 is a primitive root of 19.
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Consider b = 52. 52 mod 19 = 14 = 2" mod 19
Thus dlog,19(52) = 7
For 19, 3 is another primitive root
Consider b=52 and 52 mod 19 = 14 = 33 mod 19
Thus dlogs 19(52)=13
Discrete logarithms can also be defined for non prime bases. All we need is a primitive root.
Consider n=9. ¢(9) = 6 and a =2 is a primitive root since (2, 22, ... 2° Ymod 9 are distinct
and prime to 9. These are nothing but (2, 4, 8, 7, 5, 1)
The logarithm table is given here
No. 2 4 8 75 1
Dlogzy 1 2 3 4 5 6/0
Unlike prime number we don’t have logarithm for all numbers. For example, discrete logarithm
for number 3, 6 are not defined.
Note that the properties of ordinary logarithms are true in case of discrete logarithms too. We
now show some of the properties of discrete logarithms.
dloga,p(1) = 0 because 2’ modp=1mod p =1
dloga,p(a) = 1 because a' mod p = a

Now consider,

dlog, ,(x) dlog, , (y)

X=a

mod p y=a mod p

dlog,, p (xy)

Xy =a mod p

Using the rules of modular multiplication,

xymod p =[(xmod p)(ymod p)]mod p

dloga'p(xy dlogayp(x dloga'p

a "mod p =[(a*" %™ mod p)(@a”"****"" mod p)mod p

d |09a,p (x)+d |09a,p

=a Y mod p
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But now consider Euler’s theorem, which states that, for every a and n that are relatively prime,
a’?™ =1(mod n)

Any prime integer z can be expressed in the form z =q + k¢(n), with 0 < q < ¢(n). Therefore, by

Euler’s theorem,

a’ =a%(mod n) if Z=qmodg(n)

Applying this to the foregoing equality, we have

dlog, ,(xy) =[dlog, ,(x)+dlog, , (y)l(mod ¢(p))

And generalizing,

dlog, ,(y") =[r*dlog, ,(y)]modg(p)

This demonstrates the analogy between true logarithms and discrete logarithms.

Calculation of discrete logarithms

Consider the equation y=g* mod p. Given g, x and p it is straight forward to calculate y.
We can multiply g with itself x times or find modulo at in between steps and find y. However
given y, g, p it is difficult to find x (dlog). This is as difficult as factoring a large number into

product of primes.

9.5 SUMMARY

In this unit we discussed important results on number theory, such as prime factoring,
Fermat’s theorem, a useful form of Fermat’s theorem, Euler totient function, Euler’s theorem,
primitive root and discrete logarithms. Sample illustrations are provided to make concepts clear.

A good understanding of these topics helps in following public key cryptography discussions.

9.6 KEYWORDS

Prime factoring, Fermat’s theorem, Euler totient function, Euler’s theorem, primitive root,

discrete logarithm.

9.7 QUESTIONS

1. State and illustrate prime factoring of a natural numbers.
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State Fermat’s theorem and provide examples.

What is alternative form of Fermat’s theorem? Support your statement with examples.
Define Euler totient function and illustrate.

Write the two forms of Euler’s theorem and illustrate both.

Define primitive root. Give examples.

N oo g~ D

Define logarithm on modular arithmetic. Provide examples for at least two prime
numbers and primitive roots for each.

8. Show that discrete logarithms satisfy many relations as ordinary logarithms.
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UNIT -10: PRINCIPLES OF PUBLIC KEY SYSTEMS

Structure

10.0 Objectives

10.1 Brief history

10.2 Overview of public key systems

10.3 Conventional versus public key encryption
10.4 Requirements of public key cryptography
10.5 Cryptanalysis

10.6 Summary

10.7 Keywords

10.8 Questions

10.9 References

10.0 OBJECTIVES

A thorough study of the topics in this unit will make clear to the reader the following:

v

AN N N N SR

Misconceptions of public key system

Terminologies used in asymmetric encryption

Differences between symmetric and asymmetric encryption
Function of public key system

Application of public key systems

Requirements of public key systems

Cryptanalysis of public key encoding

10.1 BRIEF HISTORY

revolution in the entire history of cryptography. Virtually all cryptographic systems are based on
the elementary tools of substitution and permutation since the infant stage of cryptography. With

the development of the rotor encryption/decryption machine a major advance in symmetric

The development of public-key cryptography is regarded as the best and the only true

cryptography occurred.
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The electromechanical rotor enabled the development of complex cipher systems. More
complex systems were devised with the availability of computers. The most prominent of which
was the Lucifer effort at IBM that culminated in the Data Encryption Standard (DES). But both
rotor machines and DES, although representing significant advances, still relied on the basic

tools of substitution and permutation.

Public-key algorithms are based on mathematical functions rather than on substitution
and permutation. In contrast to symmetric encryption, which uses only one key, public-key
cryptography is asymmetric, which involves the use of two separate keys, The use of two keys
has profound consequences in the areas of confidentiality, key distribution, and authentication.

In the mid-1970s, Whitefield Diffie and his professor Martin Hellman at the Stanford
University started thinking about the problem of key exchange. After some research they came
up with the idea of asymmetric key cryptography. Diffie and Hellman can be regarded as the

fathers of the asymmetric key cryptography.

It is believed that, in 1960s, James Ellis of the British Communications Electronic
Security Group (CSEG) proposed the idea of asymmetric key cryptography. However, he could
not device a practical algorithm based on his ideas. He then met with Clifford Cocks who joined
the CSEG in 1973. After a short discussion, Cocks could come up with a practical working
algorithm. However, since CSEG was a secret agency, these findings were never published,

therefore these people never got the credit that they deserved.

Based on the theoretical framework of Diffie and Hellman, in 1977, Ron Rivest, Adi
Shamir and Len Adleman at MIT developed the first major asymmetric key cryptography system
and published their results in 1978. This method is called RSA algorithm. The name RSA comes

from the first letters of the surnames of the three researchers.

Misconceptions

Before proceeding, we should mention several common misconceptions concerning public-key
encryption. One such misconception is that public-key encryption is more secure from
cryptanalysis than the symmetric encryption. In fact, the security of any encryption scheme

depends on the length of the key and the computational work involved in breaking a cipher.
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There is nothing in principle about either symmetric or public-key encryption that makes one

superior to another from the point of view of resisting cryptanalysis.

A second misconception is that public-key encryption is a general-purpose technique that
has made symmetric encryption obsolete. On the contrary, because of the computational
overhead of current public-key encryption schemes, there seems no foreseeable likelihood that
symmetric encryption will be abandoned. As one of the inventors of public-key encryption has
put it, “the restriction of public-key cryptography to key management and signature applications

is almost universally accepted.”

Finally, there is a feeling that key distribution is trivial when using public-key encryption,
compared to the rather cumbersome handshaking involved with key distribution centers for
symmetric encryption. In fact, some form of protocol is needed, generally involving a central
agent, and the procedures involved are neither simpler nor any more efficient than those required

for symmetric encryption.

10.2 OVERVIEW OF PUBLIC KEY SYSTEM

Asymmetric algorithms rely on one key for encryption and a different but related key for
decryption. These algorithms have the following important characteristics.
1. Itis computationally infeasible to determine the decryption key given only knowledge of
the cryptographic algorithm and the encryption key. In addition, some algorithms, such as
RSA, also exhibit the following characteristic.
2. Either of the two related keys can be used for encryption, with the other used for

decryption.

A public-key encryption scheme has six ingredients as shown in figure 10.1.
1. Plaintext: This is the readable message or data that is fed into the algorithm as input.
2. Encryption algorithm: The encryption algorithm performs various transformations on
the plaintext. This encrypts plain text using public key of receiver (as in figure 10.1) or
using private key of the sender (as in figure 10.2)
3. Public and private keys: This is a pair of keys that have been selected so that if one is

used for encryption, the other is used for decryption. The exact transformations
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performed by the algorithm depend on the public or private key that is provided as input.
In figure 10.1, encryption is done using public key and decryption using private key.
Whereas in figure 10.2, encryption is done using private key and decryption using public
key.

Cipher text: This is the scrambled message produced as output. It depends on the
plaintext and the key. For a given message, two different keys will produce two different
cipher texts.

Decryption algorithm: This algorithm accepts the cipher text and the matching key and
produces the original plaintext. In figure 10.1, decryption algorithm uses private key,

whereas in figure 10.2, decryption is done using public key.

Public key ring with A

PRc l

Plain —| Encryption ®ecryption  —Pain Text
Text Algorithm Cipher Text Algorithm
Sender A Receipient C

Figure 10.1: Encryption with public key

Public key ring with C

lPRA
Plain _,| Encryption Jhecryption  —Pain Text
Text Algorithm Cipher Text Algorithm
Sender A Receipient C

Figure 10.2: Encryption with private key
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The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption of
messages.

2. Each user places one of the two keys in a public register or other accessible file. This is
the public key. The companion key is kept private. As figures 10.1 and 10.2 suggest, each
user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using
Alice’s public key (figure 10.1). Or Bob uses his private key to encrypt the plain text
(figure 10.2).

4. When Alice receives the message, she decrypts it using her private key (figure 10.1). No
other recipient can decrypt the message because only Alice knows Alice’s private key. Or

Alice uses public key of Bob (figure 10.2).

With this approach, all participants have access to public keys, and private keys are
generated locally by each participant and therefore need never be distributed. As long as a user’s
private key remains protected and secret, incoming communication is secure. At any time, a
system can change its private key and publish the companion public key to replace its old public

key.

10.3 CONVENTIONAL VERSUS PUBLIC KEY SYSTEMS

Table 10.1 summarizes the important characteristics of symmetric and asymmetric
cryptosystems. To discriminate between the two, we refer to the key used in symmetric
encryption as a secret key. The two keys used for asymmetric encryption are referred to as the
public key and the private key. Invariably, the private key is kept secret, but it is referred to as a

private key rather than a secret key to avoid confusion with symmetric encryption.

Public key encryption can offer confidentiality or sender authentication or both, depending on
keys used for encryption/decryption. Figures 10.3, 10.4 and 10.5 show all the three forms of

encryption.
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Conventional encryption

Public — key encryption

Needed to work:
1. The same algorithm with the same
key is used for encryption and
decryption.
2. The sender and receiver must share

the algorithm and the key.

Needed for security:

1. The key must be secret.

2. It must be impossible or at least
impractical to decipher a message if
no other information is available

3. Knowledge of the algorithm plus
samples of cipher text must be

insufficient to determine the key

Needed to work:

1. One algorithm is used for encryption and
decryption with a pair of keys, one for
encryption and one for decryption.

2. The sender and receiver must each have
one of matched pair of keys (not the same
one).

Needed for security:
1. One of the two keys must be kept secret.
2. It

impractical to decipher a message if no

must be impossible or at least
other information is available.

3. Knowledge of the algorithm plus one of
the keys plus samples of cipher text must

be insufficient to determine the other key.

Table 10.1: Conventional and public key encryption

With the message X and the encryption key PUb as input, A forms the cipher text Y =

E(PUb, X). The intended receiver, in possession of the matching private key, is able to invert the

transformation as X = D(PRb, Y). An adversary, observing Y and having access to PUb, but not

having access to PRb or X, must attempt to recover X and/or PRb. It is assumed that the

adversary does have knowledge of the encryption (E) and decryption (D) algorithms. If the

adversary is interested only in this particular message, then the focus of effort is to recover X by

generating a plaintext estimate X *. Often, however, the adversary is interested in being able to

read future messages as well, in which case an attempt is made to recover PRb by generating an

estimate PRb ".
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Figure 10.3: Public key encryption for confidentiality

The scheme illustrated in Figure 10.3 provides confidentiality, Figures 10.2 and 10.4 show

the use of public-key encryption to provide authentication. Here cipher text is generated using Y
= E(PRa, X) and plain is recovered using X = D(PUa, Y)
In this case, A prepares a message to B and encrypts it using A’s private key before transmitting
it. B can decrypt the message using A’s public key. Because the message was encrypted using
A’s private key, only A could have prepared the message. Therefore, the entire encrypted
message serves as a digital signature. In addition, it is impossible to alter the message without
access to A’s private key, so the message is authenticated both in terms of source and in terms of
data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both
author and contents, requires a great deal of storage. Each document must be kept in plaintext to
be used for practical purposes. A copy also must be stored in cipher text so that the origin and
contents can be verified in case of a dispute. A more efficient way of achieving the same results
is to encrypt a small block of bits that is a function of the document. Such a block, called an

authenticator, must have the property that it is infeasible to change the document without
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changing the authenticator. If the authenticator is encrypted with the sender’s private key, it

serves as a signature that verifies origin, content, and sequencing.
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Figure 10.4: Public key encryption for authentication.

It is, however, possible to provide both the authentication function and confidentiality
by a double use of the public-key scheme as in figure 10.5. The cipher text is produced by double
encryption as Z = E(PUb, E(PRa, X)) and plain text is recovered using double decryption in the
reverse order of encryption as X = D(PUa, D(PRb, 2)).

In this case, we begin as before by encrypting a message, using the sender’s private key.
This provides the digital signature. Next, we encrypt again, using the receiver’s public key. The
final cipher text can be decrypted only by the intended receiver, who alone has the matching
private key. Thus, confidentiality is provided. The disadvantage of this approach is that the
public-key algorithm, which is complex, must be exercised four times rather than two in each

communication.
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Figure 10.5: Public key encryption for confidentiality and authentication.

Public key systems are useful for purposes other than encryption/decryption. We list here
some important applications:
1. Encryption /decryption: The sender encrypts a message with the recipient’s public key.
2. Digital signature: The sender “signs” a message with its private key. Signing is achieved
by a cryptographic algorithm applied to the message or to a small block of data that is a
function of the message.
3. Key exchange: Two sides cooperate to exchange a session key. Several different
approaches are possible, involving the private key(s) of one or both parties.
Some algorithms are suitable for all three applications, whereas others can be used only for one
or two of these applications. Table 10.2 indicates the applications supported by the algorithms

discussed.
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Algorithm Encryption/decryption | Digital signature | Key exchange
RSA Yes Yes Yes

Elliptic curve Yes Yes Yes
Diffie-Hellman | No No Yes

DSS No Yes No

Table 10.2: Applications for public-key cryptosystems

10.4 REQUIREMENTS OF PUBLIC KEY CRYPTOGRAPHY

The cryptosystem illustrated in Figures 10.3 through 10.5 depends on a cryptographic algorithm

based on two related keys. Diffie and Hellman postulated this system without demonstrating that

such algorithms exist. However, they did lay out the conditions that such algorithms must fulfill.

1.

It is computationally easy for a party B to generate a pair (public key PUb, private key
PRDb).

It is computationally easy for a sender A, knowing the public key and the message to be
encrypted, M, to generate the corresponding cipher text: C = E(PUb, M)

It is computationally easy for the receiver B to decrypt the resulting cipher text using the
private key to recover the original message: M = D(PRb, C) = D[PRb, E(PUb, M)]

It is computationally infeasible for an adversary, knowing the public key, PUb, to
determine the private key, PRb.

It is computationally infeasible for an adversary, knowing the public key, PUb, and a

cipher text, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all public-key

applications.

6.

The two keys can be applied in either order: M = D[PUb, E(PRb,M)] = D[PRb, E(PUb,
M)]
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These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA,
elliptic curve cryptography, Diffie-Hellman, DSS) have received widespread acceptance in the

several decades since the concept of public-key cryptography was proposed.

10.5 CRYPTANALYSIS OF PUBLIC KEY SYSTEMS

As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-
force attack. The countermeasure is the same: Use large keys. However, there is a tradeoff to be
considered. Public-key systems depend on the use of some sort of invertible mathematical
function. The complexity of calculating these functions may not scale linearly with the number
of bits in the key but grow more rapidly than that. Thus, the key size must be large enough to
make brute-force attack impractical but small enough for practical encryption and decryption. In
practice, the key sizes that have been proposed do make brute-force attack impractical but result
in encryption/decryption speeds that are too slow for general-purpose use. Instead, as was
mentioned earlier, public-key encryption is currently confined to key management and signature

applications.

Another form of attack is to find some way to compute the private key given the public
key. To date, it has not been mathematically proven that this form of attack is infeasible for a
particular public-key algorithm. Thus, any given algorithm, including the widely used RSA
algorithm, is susceptible. The history of cryptanalysis shows that a problem that seems insoluble

from one perspective can be found to have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, in essence,
a probable-message attack. Suppose, for example, that a message were to be sent that consisted
solely of a 56-bit DES key. An adversary could encrypt all possible 56-bit DES keys using the
public key and could discover the encrypted key by matching the transmitted cipher text. Thus,
no matter how large the key size of the public-key scheme, the attack is reduced to a brute-force
attack on a 56-bit key. This attack can be thwarted by appending some random bits to such

simple messages.

10.6 SUMMARY
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This unit is a gentle introduction to public key cryptography. Beginning from a brief

history of the development in section 10.1, overview of the system, characteristics of symmetric

and asymmetric encryption, requirements of public key cryptography and possible special attacks

are discussed in sections 10.2 to 10.5.

10.7 KEYWORDS

Public key cryptosystems, confidentiality, authentication, public key, private key, digital

signature, key exchange.

10.8 QUESTIONS

1
2
3.
4

o1

. What are the principal elements of public key cryptosystem?

Discuss the roles of public and private keys.

Mention the applications of asymmetric encryption.

Using figures show and explain how systems are useful to protect data, authenticate,
sender and data and do both.

List the requirements of public key systems.

Write about attacks on public key systems.
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11.0 OBJECTIVES

A study of this unit will enable you to

v Understand the RSA algorithm, a popular public key cryptography

v" Come to know of increasing efficiency of RSA
v Appreciate the strength of RSA

v" Become familiar with some attacks on RSA

11.1 RSA ALGORITHM

Diffie and Hellamn [1976] introduced an approach for public key systems and challenged
researchers to devise algorithms that met the requirements. The challenge was met by algorithm
proposed by Ron Rivest, Adi Shamir, Len Adleman (RSA) in 1978 at MIT. RSA is block cipher
in which plain text and cipher text are integers between 0 and n-1 for some n. Typical n has 1024

bits (n < 21%%%) or 309 decimal digits.

Details of the algorithm

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, with each

block having a binary value less than some number n. That is, the block size must be less than or
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equal to log, (n + 1). In practice, the block size is i bits, where 2' < n < 2'"1. Encryption and

decryption are of the following form, for some plaintext block M and cipher text block C.

C=M° mod n

M=C%mod n = M* mod n

Both sender and receiver must know the value of n. The sender knows the value of e, and
only the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a
public key PU = {e, n} and a private key PR = {d, n}. For this algorithm to be satisfactory for
public-key encryption, the following requirements must be met.

1. Itis possible to find values of e, d, n such that M® mod n= M for all M < n.

2. Itis relatively easy to calculate M®mod n and C® mod n for all values of M < n.

3. ltisinfeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions later. We need to
find a relationship of the form M* mod n = M.
The preceding relationship holds if e and d are multiplicative inverses modulo ¢(n),
where @(n) is the Euler totient function. It is shown that for p, q prime, ¢ (pq) = (p - 1)(q - 1).
The relationship between e and d can be expressed as ed mod ¢(n) =1 ----------- (11.1)
This is equivalent to saying
ed =1 mod ¢(n)
d=e™ mod ¢(n)

That is, e and d are multiplicative inverses mod ¢(n). Note that, according to the rules of modular
arithmetic, this is true only if d (and therefore e) is relatively prime to ¢(n). Equivalently,

gcd(d(n), d) = 1. The equation (11.1) satisfies the requirement for RSA.

We are now ready to state the RSA scheme. The ingredients are the following:
1. p, qbe two prime numbers (private, chosen)
2. n=p*q (public, calculated)
3. Select e, with gcd(¢(n),e)=1; 1 <e<d¢(n) (public, chosen)
4

. Calculate d=e™ mod ¢(n) (private, calculated)
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The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A has
published his public key and that user B wishes to send the message M to A. Then B calculates C =

M® mod n and transmits C. On receipt of this ciphertext, user A decrypts by calculating M = C® mod
n.

Suppose A wants to send an encrypted message to B, then the sequence of exchanges between the
two are given as follows:

Method 1
1. Key generation by B
a. Select p and q that are prime numbers and p#q.
b. Calculate n=p™*q.
c. Calculate ¢(n) = (p-1)(g-1).
d. Select integer e that is prime to ¢(n) and less than ¢(n).
e. Calculate d = e (mod ¢(n)).
f. PUg={e, n}.
g. PRg={d, n}.
2. Encryption by A with B's public key
a. Plain text be M <n.
b. Cipher text is C = M®mod n
3. Decryption by B with B's private key
a. Cipher text is C.

b. Retrieved plain text is C¢mod n.

Method 2
1. Key generation by A
a. Select p, g that are prime numbers and p#q.
b. Calculate n=p*q.
c. Calculate ¢(n) = (p-1)(g-1).
d. Select integer e that is prime to ¢(n) and less than ¢(n).
e. Calculate d = e (mod ¢(n)).
f. PUa={e, n}.
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g. PRa={d, n}.

2. Encryption by A with A's private key
a. Plaintext be M < n.
b. Cipher text is C = Mmod n

3. Decryption by B with A's public key
a. Cipher text is C

b. Retrieved plaintext is C°*mod n.

11.2 EXAMPLES OF ENCRYPTION/ DECRYPTION

I. Working example
1. Select p=17, g=11
2. Calculate n=p*q=17 x 11= 187
3. Calculate ¢(n) =(p-1)*(g-1)=16 x 10 = 160
4. Select e such that e is relatively prime to 160 and < 160 say e=7
5. Determine d such that d*e = 1 mod 160 and d<160 (value of d =23 (since 23 x7= 161)

The keys are PU=[7, 187] and PR= [23, 187]. Let plain text be M=88. For encryption we need to
calculate 88" mod 187 =11 (cipher) and for decryption we need to calculate 11%° mod 187 = 88

(plain text). Thus plain text is successfully recovered during decryption.

I1. Example where plain text not recovered

1. Suppose n=187 (7 bit number), e=7 and d(calculated inverse) =23

2. Let M=189 (7 bits)

3. We get C=189’ mod 187 = 128 (encryption)

4. M=128% mod 187 = 2 (decryption)
Note that retrieved M (2) is different from actual M (189). The problem is because M is not < n.
In this example, n is a 7 bit number. Any 7 bit number cannot be M. In other words, block size

cannot be taken as the number of bits in n.

11.3 COMPUTATIONAL ASPECTS
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This section scrutinizes the computational complexity of encryption and decryption using

RSA and the key generation.

Encryption/Decryption computation

Both encryption and decryption in RSA involve raising an integer to an integer power, mod n. If
the exponentiation is done over the integers and then reduced modulo n, the intermediate values
would be very huge. Fortunately, as the preceding example shows, we can make use of a

property of modular arithmetic given here to reduce complexity.
(axb) mod n = [(a mod n)x(b mod n)] mod n
Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA, we are
dealing with potentially large exponents. To see how efficiency might be increased, consider that
we wish to compute x*°. A straightforward approach requires 15 multiplications:

X X FXHF XTI EXFXFXFIXEXEXFXTXFXRX*X

However, we can achieve the same final result with only four multiplications if we repeatedly
take the square of each partial result, successively forming (x*, x*, x8, x*°). As another example,
suppose we wish to calculate x** mod n for some integers x and n. Observe that x'* = x**?*8 =
X)) (®). In this case, we compute x mod n, x* mod n, x* mod n, and x® mod n and then

calculate [(x mod n) x (x> mod n) x (x mod n)] mod n.

More generally, suppose we wish to find the value a” with a and m positive integers. If we
express b as a binary number by by, . . . bg, then we have
b=b(k)*2*+b(k-1)*2%D+. .. b(1)*2+b(0)*1

b(k)*27k+b(k-1)*27(k-1)+... b(1)*2+b(0)*1

b _ _ onj
a =a = Ty iyz08” '

b =gZ2i _ @)

a° mod n = [1a®"] mod n = (x[a®" mod n])mod n

Thus the algorithm for finding a” mod n is as follows:
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Algorithm a-power-b-mod n
c=0;f=1
For i= k down to O // k is the number of bits-1

c =2*C
f=(f*f) mod n

If bi=1

thenc =c+1

f=(f*a)modn
End for
Return f
Example:
Consider computation of 3° Here a=3, 5=101 and k=2
The first time loop is executed, i=2: ¢=0, f=1, b,=1, c=1, f=amod n
When the loop is executed again, i=1: c=2,f=a*a mod n,b,=0,c=2, f=a’ mod n

In the final execution of the loop, i=0: c=4, f=a* mod n, by=1,c=5, f=a® mod n

Execution of fast modular exponentiation in finding a>*®° mod 561 is shown in the table here. The
values of i and the variables b;, ¢, f in each iteration may be found in the table. Note that the values

of f are reduced to mod 560.

9 8 7 6 5 4 3 2 1 0
bi 1 0 0 O 1 1 0 0 0 0
C 1 2 4 8 17 35 70 140 280 560

7 49 157 526 160 241 298 166 67 1

Table 11.1: computation of a°*°

Key Generation
Each participant generates a pair of keys in public key cryptosystem. The steps in key generation
are:

1. Find two prime numbers p and g.

2. Select e or d and calculate the other.
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Note that n (= p*q) is known to any adversary. In order to make discovery of p, q difficult, these
must be large. But detection of large prime numbers is difficult. Probabilistic method such as Miller
Rabin’s method can be used for testing primality. Principle of such methods is to select a large n
and test if it is prime. The steps of the probabilistic method are given here.

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator).

2. Pick an integer a < n at random.

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter. If n fails

the test, reject the value n and go to step 1.

4. 1f n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is performed relatively

infrequently: only when a new pair (PU, PR) is needed.

Having determined prime numbers p and q, the process of key generation is completed by selecting
a value of e and calculating d or, alternatively, selecting a value of d and calculating e. Assuming
the former, then we need to select an e such that gcd(¢(n), ) = 1 and then calculate d = e™* (mod
d(n) ). Fortunately, there is a single algorithm that will, at the same time, calculate the greatest
common divisor of two integers and, if the gcd is 1, determine the inverse of one of the integers

modulo the other. The algorithm is called extended Euclid’s algorithm.

11.4 SECURITY OF RSA

Four possible approaches to attacking the RSA algorithm are
1. Brute force attack: This involves trying all possible private keys.
2. Mathematical attack: There are several approaches, all equivalent in effort to factoring
the product of two primes.
3. Timing attack: These depend on the running time of the decryption algorithm.

4. Chosen cipher text attack: This type of attack exploits properties of the RSA algorithm.

Brute force attack
The defense against the brute-force approach is the same for RSA as for other cryptosystems,
namely, to use a large key space. Thus, the larger the number of bits in d, the better is the
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security. However, because the calculations involved, both in key generation and in

encryption/decryption, are complex, the larger the size of the key, the slower the system will run.

Mathematical attack
We can identify three approaches to attacking RSA mathematically.
1. Factor n into its two prime factors. This enables calculation of ¢(n) = (p - 1) x (q - 1),
which in turn enables determination of 4 = e™* (mod ¢(n)).
2. Determine ¢(n) directly, without first determining p and ¢. Again, this enables
determination of & = e (mod ¢(n)).
3. Determine d directly, without first determining ¢(n).

Most discussions of the cryptanalysis of RSA have focused on the task of factoring n into its two
prime factors. Determining ¢(n) given n is equivalent to factoring n. With presently known
algorithms, determining d given e and n appears to be at least as time-consuming as the factoring
problem . Hence, we can use factoring performance as a benchmark against which to evaluate
the security of RSA. For a large n with large prime factors, factoring is a hard problem, but it is

not as hard as it used to be.

The threat to larger key sizes is twofold:
1. Continuing increase in computing power and the continuing refinement of factoring
algorithms keep reducing the time needed for factoring.

2. Totally new and different algorithms show tremendous speed up.

Researchers suggest some constraints on n which will make factoring a difficult task.
1. pand g should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal
digits), both p and q should be on the order of magnitude of 10" to 10'%.
2. Both (p-1)and (g - 1) should contain a large prime factor.
3. gced(p-1,q-1)should be small.

1/4

In addition, it has been demonstrated that if e <n and d < n™", then d can be easily determined.

Timing attacks
If one needed yet another lesson about how difficult it is to assess the security of a cryptographic
algorithm, the appearance of timing attacks provides a stunning one. Paul Kocher, a

cryptographic consultant, demonstrated that a snooper can determine a private key by keeping
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track of how long a computer takes to decipher messages. Timing attacks are applicable not just
to RSA, but to other public-key cryptography systems as well. This attack is alarming for two
reasons: It comes from a completely unexpected direction, and it is a cipher text-only attack.

A timing attack is somewhat analogous to a burglar guessing the combination of a safe by
observing how long it takes for someone to turn the dial from number to number. We can explain
the attack using the modular exponentiation algorithm we discussed earlier, but the attack can be
adapted to work with any implementation that does not run in fixed time. In this algorithm,
modular exponentiation is accomplished bit by bit, with one modular multiplication performed at
each iteration and an additional modular multiplication performed for each 1 bit.

As Kocher points, the attack is simplest to understand in an extreme case. Suppose the
target system uses a modular multiplication function that is very fast in almost all cases but in a
few cases takes much more time than an entire average modular exponentiation. The attack
proceeds bit-by-bit starting with the leftmost bit, by. Suppose that the first j bits are known (to
obtain the entire exponent, start with j = 0 and repeat the attack until the entire exponent is
known). For a given ciphertext, the attacker can complete the first j iterations of the for loop.
The operation of the subsequent step depends on the unknown exponent bit. If the bit is 1, d« (d
x a) mod n will be executed. If the observed time to execute the decryption algorithm is slow in a
particular iteration then the corresponding bit is assumed to be 1. On the other hand if the
execution of the algorithm is fast then the bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing
variations, in which the execution time of a single iteration can exceed the mean execution time

of the entire algorithm. Nevertheless, there is enough variation to make this attack practical.

Although the timing attack is a serious threat, there are simple countermeasures that can
be used, including the following.
Constant exponentiation time: Ensure that all exponentiations take the same amount of time

before returning a result. This is a simple fix but does degrade performance.

Random delay: Better performance could be achieved by adding a random delay to the

exponentiation algorithm to confuse the timing attack. Kocher points out that if defenders don’t
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add enough noise, attackers could still succeed by collecting additional measurements to

compensate for the random delays.

Blinding: Multiply the ciphertext by a random number before performing exponentiation. This
process prevents the attacker from knowing what ciphertext bits are being processed inside the
computer and therefore prevents the bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. The private-key
operation M = C% mod n is implemented as follows.
1. Generate a secret random number r between 0 and n - 1.
2. Compute C’ = C(r’) mod n, where e is the public exponent.
3. Compute M’ = (C*)? mod n with the ordinary RSA implementation.
4. Compute M=M’r* mod n. In this equation, r is the multiplicative inverse of r mod n. It
can be demonstrated that this is the correct result by observing that r™* mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

Chosen cipher text attack

The basic RSA algorithm is vulnerable to a Chosen Ciphertext Attack (CCA). CCA is defined as
an attack in which the adversary chooses a number of ciphertexts and is then given the
corresponding plaintexts, decrypted with the target’s private key. Thus, the adversary could
select a plaintext, encrypt it with the target’s public key, and then be able to get the plaintext
back by having it decrypted with the private key. Clearly, this provides the adversary with no
new information. Instead, the adversary exploits properties of RSA and selects blocks of data

that, when processed using the target’s private key, yield information needed for cryptanalysis.

11.5 SUMMARY

This unit is a description of an important and widely used public key crypto system called
RSA. The computational aspects of encryption, decryption and key generation are explained in
section 11.3 of this unit. A simple and elegant method to find modulo of powers of a number is
detailed in this section. In section 11.4 some special attacks devised against RSA and counter

measures against these are outlined.
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11.7 QUESTIONS

Explain the steps of encryption and decryption in RSA.
Give two examples (good) of RSA.

Give two bad examples of RSA.

Discuss and illustrate computation of a” mod n.

Write about key generation in RSA.

Explain the 4 attacks on RSA in detail.
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UNIT -12: KEY EXCHANGE AND AUTHENTICATION

Structure
12.0 Objectives
12.1 Diffie Hellman Key exchange
12.2 Hash function
12.3 Message authentication code
12.4 Digital signature
12.5 Summary
12.6 Keywords
12.7 Questions

12.8 References

12.0 OBJECTIVES

When you have completed reading the contents of this unit you will

v Understand the Diffie Hellman Key exchange protocol

v’ Appreciate the simplicity and power of Hash functions in cryptography
v Understand the ways messages can be authenticated
v

Know digital signature methods

12.1 DIFFIE HELLMAN KEY EXCHANGE

This is the first published public key algorithm [1976]. A lot of commercial products use

this algorithm for key exchange.

Algorithm:

Global public: g, a prime number
a, a primitive root of q
User A key generation: Select private Xa with Xa<q

Calculate public Ya as Ya=a** mod q
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User B key generation: Select private Xg with Xg < q
Calculate public Yg as Yg=a*® mod q
Calculation of secret key by user A: K = Yg** mod q

Calculation of secret key by user B: K = YA*® mod q

Secret Key Calculation:
Both A and B calculate secret key. The calculations of both give the same value.

K = (Y)Y mod q (key of A)

= (@*® mod g)** mod q

— (aXB)XA

mod q

2 *Amod q

( a.XA)XB

mod q
= @ mod q)”*® mod q
= (Ya)®*modq  (key of B)

Security of Diffie Hellman key exchange
It is easy to calculate exponentials modulo a prime number and difficult to calculate discrete

logarithms. For large prime numbers it is close to infeasible.

Example 1: Let g=353, a=3 (primitive root of 353)
Suppose that A and B select secret keys XA =97 and Xg =233.
Both compute public keys Ya=3°" mod 353 =40 and Yg = 3*** mod 353 =248
They exchange public keys
Common secret key computed by A and B as Yg™* mod q = 248" mod 353 =160 and (Y a)*®
mod q =40%** mod 353 =160
Attacker has access to g= 353, YA =40 and Y = 248
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In this simple example, the attacker can find secret key 160 by brute force. Attacker can find
secret key by solving 3* mod 353 = 40 or 3° mod 353 = 248. a=97 is found (by systematic testing
of 3*mod 353 = 40) which is the private key of A.

Now secret key is computed using (Yg)** mod q = 248%” mod 353 =160
Note that prime number is small in this example

In reality for large numbers finding a (ds ss3 log (40)) is difficult

Key exchange protocols
Suppose that A wishes to set up a connection with B and use a secret key to encrypt messages on

that connection. The steps followed are

1. AandB know g, a
2. User A:
2.1. Generates random Xa < q. Calculates Ya = a** mod g
2.2. SendsYa toB
3. UserB
1.1 Generates random Xg < . Calculates Yg = a*® mod q and the secret key K=
(Ya)*®mod q
1.2 Sends Yg to A
2. A calculates K= (Yg)** mod q

As an example of another use of Diffie Hellman algorithm, consider a group of users (of
LAN). Each generate a long lasting private key X; (for user i) and calculate a public key Y;.
These public keys Y; together with ¢, a are stored in some central directory. At any time user j
can access i’s public key, calculate a secret key and use that to send an encrypted message to i. If
central directory can be trusted, this form of communication offers confidentiality and
authentication. Confidentiality is ensured. Because only i and j can generate the key no other
user of the group can read the message. Recipient i knows that only j could have sent this

message since 1 has used j’s public key in computing secret key.

Attacks
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A specific attack called Man in the middle attack is possible. Suppose A and B wish to exchange

keys, and D is the adversary. The attack proceeds as follows.

1. D prepares for the attack by generating two random numbers for private keys say Xps,
Xp2 and then computes public keys Yp1, Y
2. Atransmits Ya to B

X
3. D intercepts Ya and sends Yp; to B and calculates K2=(Y,)"°? mod(

X
4. B receives Yp;and calculates Kl= (YD1) ° mOdq
5. B transmits Yg to A

X
6. D intercepts Yg and transmits Yp, to A. D also calculates Kl= (YB) °* mod 0 and
K2=(Y,)"*> modq

7. Areceives Yp, and calculates K2 =(Yg,)** modq

At this point A and B think that they share a secret key, but B and D share the key K1 and A and
D share the key K2. All future communications between A and B are compromised in the
following way

1. A sends encrypted message M using K2 to B as E(K2, M).

2. D intercepts the encrypted message and recovers M

3. Dsends E(K1, M) or E(K1, M’) to B, where M’ is any message.

Such attacks are possible because it does not authenticate the participants. Such attacks can be

overcome with digital signatures.

12.2 HASH FUNCTION

A hash function H accepts a variable-length block of data M as input and produces a
fixed-size hash value h = H(M) .A “good” hash function has the property that the results of
applying the function to a large set of inputs will produce outputs that are evenly distributed and
apparently random. In general terms, the principal object of a hash function is data integrity. A
change to any bit or bits in M results, with high probability, in a change to the hash code. The
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kind of hash function needed for security applications is referred to as a cryptographic hash
function. A cryptographic hash function is an algorithm for which it is computationally infeasible
(because no attack is significantly more efficient than brute force) to find either (a) a data object
that maps to a pre-specified hash result (The one-way property) or (b) two data objects that map
to the same hash result (the collision-free property). Because of these characteristics, hash

functions are often used to determine whether or not data has changed.
Figure 12.1 depicts the general operation of a cryptographic hash function.

L hits

&
¥

Message or data block M (variable length) | L

L J

[ ]

Hash value &
(fixed length)

Figure 12.1: Block Diagram of Cryptographic Hash Function; h = H(M)

Typically, the input is padded out to an integer multiple of some fixed length (e.g., 1024 bits),
and the padding includes the value of the length of the original message in bits. The length field
is a security measure to increase the difficulty for an attacker to produce an alternative message

with the same hash value.

Before we go into details of Hash function usage, we list some primary applications of hash
functions

i.  Message authentication — Mechanism to verify correctness of a message received.

ii.  Digital Signature — Mechanism to authenticate sender.

iii.  One way password file — Ways of protecting a file of passwords.
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iv.  Intrusion and Virus detection —Means of detecting if intruder has tampered the file or if

virus attack has happened.
v.  Pseudo random number generator — Generate random numbers that are useful for many

cryptographic algorithms.

Message authentication
Message authentication is a mechanism or service used to verify the integrity of a message.

Message authentication assures that data received are exactly as sent.
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Figure 12.2: Simplified Examples of the use of a Hash Function for Message Authentication
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Figure 12.2: Simplified Examples of the use of a Hash Function for Message Authentication

Figures here illustrate a variety of ways in which a hash code can be used to provide message

authentication.

12.1 a: The message plus concatenated hash code is encrypted using symmetric encryption.
Because only A and B share the secret key, the message must have come from A and has not

been altered. The hash code provides the structure or redundancy required to achieve
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authentication. Because encryption is applied to the entire message plus hash code,

confidentiality is also provided.

12.1b: Only the hash code is encrypted, using symmetric encryption. This reduces the

processing burden for those applications that do not require confidentiality.

12.1 c: It is possible to use a hash function but no encryption for message authentication. The

technique assumes that the two communicating parties share a common secret value S. A
computes the hash value over the concatenation of M and S and appends the resulting
hash value to verify. As B has in possession S, hash value can be computed and message
can be authenticated. Because the secret value itself is not sent, an opponent cannot

modify an intercepted message and cannot generate a false message.

12.1 d: Confidentiality can be added to the approach of method (c) by encrypting the entire

message plus the hash code.

When confidentiality is not required, method (b) has an advantage over methods (a) and (d),

which encrypts the entire message, in that less computation is required. Nevertheless, there has

been growing interest in techniques that avoid encryption.

Some reasons for avoiding encryption are:

1.

Encryption software is relatively slow. Even though the amount of data to be encrypted
per message is small, there may be a steady stream of messages into and out of a system.
Encryption hardware costs are not negligible. Low-cost chip implementations of DES are
available, but the cost adds up if all nodes in a network must have this capability.
Encryption hardware is optimized toward large data sizes. For small blocks of data, a
high proportion of the time is spent in initialization/invocation overhead.

Encryption algorithms may be covered by patents, and there is a cost associated with

licensing their use.

Digital signatures

Another important application, which is similar to the message authentication application, is the

digital signature. The operation of the digital signature is similar to that of the MAC. In the case

of the digital signature, the hash value of a message is encrypted with a user’s private key.

Anyone who knows the user’s public key can verify the integrity of the message that is

associated with the digital signature. In this case, an attacker who wishes to alter the message
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would need to know the user’s private key. As we shall see later, the implications of digital
signatures go beyond just message authentication. Figure 12.3 illustrates, in a simplified fashion,
how a hash code is used to provide a digital signature.

1. The hash code is encrypted, using public-key encryption with the sender’s private key.
This provides authentication. It also provides a digital signature, because only the sender
could have produced the encrypted hash code. In fact, this is the essence of the digital
signature technique.

2. If confidentiality as well as a digital signature is desired, then the message plus the
private-key-encrypted hash code can be encrypted using a symmetric secret key. This is a

common technique.

Other Applications

Hash functions are commonly used by operating systems to create a one-way password file. A
simple scheme to secure user passwords is to find hash values of passwords and store these
rather than the password itself. Thus, the actual password is not retrievable by a hacker who
gains access to the password file. In simple terms, when a user enters a password, the hash of
that password is compared to the stored hash value for verification. This approach to password
protection is used by most operating systems.

- Source A — -« Destination B—

- || 1
M a(]); » M ~
PR, i PU, [ l‘Jl[]pul-:'
* j ‘—M
ey f s
Hi—» E

(a) E( PRy H(M))

&

g ﬁ[:—-@—»‘ ’——@—— bﬂ
—|_. PR, [
K

I_ {1‘.-|np.1|-.:'
i E(K, [M || E(PR;, H(M))]) ;
H k) E |PR Hi{M))

Figure 12.3: Simplified Examples of Digital Signatures
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Hash functions can be used for intrusion detection and virus detection. Store H (F) for each file
on a system and secure the hash values (e.g., on a CD-R that is kept secure). One can later
determine if a file has been modified by re-computing H (F). An intruder would need to change F
without changing H (F). A cryptographic hash function can be used to construct a pseudorandom
function (PRF) or a pseudorandom number generator (PRNG). A common application for a

hash-based PRF is for the generation of symmetric keys.

Two simple hash functions

To get some feel for the security considerations involved in cryptographic hash functions, we
present two simple, insecure hash functions in this section. All hash functions operate using the
following general principles. The input (message, file, etc.) is viewed as a sequence of -bit
blocks. The input is processed one block at a time in an iterative fashion to produce an -bit hash
function. One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every
block. This can be expressed as

Ci=biu@® bix®D....0bin

Where
Ci = i" bit of the hash code, 1<i<n
n = number of blocks in the input
bij = i™ bit in j" block
@ = XOR operator

This operation produces a simple parity for each bit position and is known as a longitudinal
redundancy check. It is reasonably effective for random data as a data integrity check. Each n-bit
hash value is equally likely. Thus, the probability that a data error will result in an unchanged
hash value is 2. With more predictably formatted data, the function is less effective. For
example, in most normal text files, the high-order bit of each octet is always zero. So if a 128-bit

2—128

hash value is used, instead of an effectiveness of , the hash function on this type of data has

an effectiveness of 27112,

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash

value after each block is processed. The procedure can be summarized as follows.
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1. Initially set the n-bit hash value to zero
2. Process each successive n-bit block of data as follows:
a. Pick the ith bit of the first block
Increase i by 1 and pick the respective bits for hashing

That is, Ci= bis@®Db (i+12D................ DD (i+n-1)n

This has the effect of “randomizing” the input more completely and overcoming any regularity

that appear in the input.

12.3 MESSAGE AUTHENTICATION CODES

One of the most fascinating and complex areas of cryptography are that of message

authentication and the related area of digital signatures. The purpose of this section and the next

is to provide a broad overview of the subject.

Message authentication requirements

In the context of communications across a network, the following attacks can be identified.

1.

Disclosure: Release of message contents to any person or process not possessing the
appropriate cryptographic key.

Traffic analysis: Discovery of the pattern of traffic between parties. In either a
connection-oriented or connectionless environment, the number and length of messages
between parties could be determined.

Masquerade: Insertion of messages into the network from a fraudulent source. This
includes the creation of messages by an opponent that are purported to come from an
authorized entity. Also included are fraudulent acknowledgments of message receipt or
no receipt by someone other than the message recipient.

Content modification: Changes to the contents of a message, including insertion,
deletion, transposition, and modification.

Sequence modification: Any modification to a sequence of messages between parties,

including insertion, deletion, and reordering.
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6. Timing modification: Delay or replay of messages. In a connection-oriented application,
an entire session or sequence of messages could be a replay of some previous valid
session, or individual messages in the sequence could be delayed or replayed. In a
connectionless application, an individual message (e.g., datagram) could be delayed or
replayed.

7. Source repudiation: Denial of transmission of message by source.

8. Destination repudiation: Denial of receipt of message by destination.

Measures to deal with the first two attacks are in the realm of message confidentiality. Measures
to deal with items (3) through (6) in the foregoing list are generally regarded as message
authentication. Mechanisms for dealing specifically with item (7) come under the heading of
digital signatures. Generally, a digital signature technique will also counter some or all of the
attacks listed under items (3) through (6). Dealing with item (8) may require a combination of

the use of digital signatures and a protocol designed to counter this attack.

In summary, message authentication is a procedure to verify that received messages come from
the alleged source and have not been altered. Message authentication may also verify sequencing
and timeliness. A digital signature is an authentication technique that also includes measures to

counter repudiation by the source.

Message authentication functions

Any message authentication or digital signature mechanism has two levels of functionality. At
the lower level, there must be some sort of function that produces an authenticator: a value to be
used to authenticate a message. This lower-level function is then used as a primitive in a higher-

level authentication protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an
authenticator. These may be grouped into three classes.
e Hash function: A function that maps a message of any length into a fixed length hash
value, which serves as the authenticator.
e Message encryption: The cipher text of the entire message serves as its authenticator.
e Message authentication code (MAC): A function of the message and a secret key that

produces a fixed-length value that serves as the authenticator.
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Hash functions and how they serve as message authenticator has been discussed in previous

section. We examine here briefly the other two options for authenticating messages.

Message encryption:
Figures 12.4 to 12.7 show authenticating messages with symmetric and asymmetric encryptions.
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Figure 12.4: Symmetric encryption: confidentiality and authentication
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Figure 12.5: Public-key encryption: confidentiality
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Figure 12.6: Public-key encryption: authentication and signature
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Figure 12.7: Public-key encryption: confidentiality, authentication and signature

In figure 12.4, B is confirmed of the sender A since only A and B has unique key K. This is

authentication in symmetric encryption. Also B knows that the message received is not altered.
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This is because the opponent, not having knowledge of K would not know how to alter the bit
patterns in cipher text to produce the desired changes in the plain text. Any cipher text X will
produce a text with decryption algorithm. An opponent can deliberately change bit patterns and
the decryption algorithm will produce a text. There should be a way of verifying the source A.
This can be done using some checksum for each block (frame) called FCS (frame checksum) and
append this to message and then encrypt. Attacker will find it extremely difficult to change

cipher text and at same time have same FCS for all frames.
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Figure 12.8: Internal error control
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Figure 12.9: External error control

In figures 12.8 and 12.9 two such methods using FCS is shown. With internal error control
codes, detection of tampering is easy. With external error control codes, opponent can change
cipher bits here and there and still get matching FCS. But the decrypted plain text may be
meaningless. However such a successful confusion and disruption to operation secret sharing of

sensitive information is possible by the opponent.

Figure 12.5 shows confidentiality of message. B is confirmed that message is not tampered.
However anybody else other than A could have sent this message, i.e. there is no sender

authentication. If A uses his private key and encrypts the message and sends it to B, then sender
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is authenticated. This is shown in figure 12.6, with this scheme there is no confidentiality. The
receiver should be informed (or know previously) about some internal structure of the message

so that he is able to confirm that message is not altered by the adversary.

The scheme in figure 12.7 provides confidentiality, sender authentication and signature of the

sender.

Message authentication code (MAC):

An alternative authentication technique involves the use of a secret key to generate a small fixed-
size block of data, known as a cryptographic checksum or MAC that is appended to the message.
This technique assumes that two communicating parties, say A and B, share a common secret
key .When A has a message to send to B, it calculates the MAC as a function of the message and
the key: MAC = MAC (K, M), where M is the input message, C is the MAC function, K is the

shared secret key, MAC is the message authentication code.
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Figure 12.10: Message authentication
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Figure 12.11: Message authentication and confidentiality; authentication tied to plain text
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Figure 12.12: Message authentication and confidentiality; authentication tied to cipher text

The message plus MAC are transmitted to the intended recipient. The recipient performs the
same calculation on the received message, using the same secret key, to generate a new MAC.
The received MAC is compared to the calculated MAC (Figure 12.10). If we assume that only
the receiver and the sender know the identity of the secret key, and if the received MAC matches
the calculated MAC, then
1. The receiver is assured that the message has not been altered. If an attacker alters the
message but does not alter the MAC, then the receiver’s calculation of the MAC will
differ from the received MAC. Because the attacker is assumed not to know the secret
key, the attacker cannot alter the MAC to correspond to the alterations in the message.
2. The receiver is assured that the message is from the alleged sender. Because no one else
knows the secret key, no one else could prepare a message with a proper MAC.
3. If the message includes a sequence number (such as is used with HDLC, X.25, and TCP),
then the receiver can be assured of the proper sequence because an attacker cannot

successfully alter the sequence number.

A MAC function is similar to encryption. One difference is that the MAC algorithm need not be
reversible, as it must be for decryption. In general, the MAC function is a many-to-one function.
The domain of the function consists of messages of some arbitrary length, whereas the range
consists of all possible MACs and all possible keys. If an n-bit MAC is used, then there are 2"
possible MACs, whereas there are N possible messages with N>>2". Furthermore, with a k-bit

key, there are 2% possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a

total of 2'% different messages but only 2*° different MACs. So, on average, each MAC value is
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generated by a total of 2'%/2'° = 2% different messages. If a 5-bit key is used, then there are

2°=32 different mappings from the set of messages to the set of MAC values.

It turns out that, because of the mathematical properties of the authentication function, it is less
vulnerable to being broken than encryption. The process depicted in Figure 12.10 provides
authentication but not confidentiality, because the message as a whole is transmitted in the clear.
Confidentiality can be provided by performing message encryption either after (Figure 12.11) or
before (Figure 12.12) the MAC algorithm. In both these cases, two separate keys are needed,
each of which is shared by the sender and the receiver. In the first case, the MAC is calculated
with the message as input and is then concatenated to the message. The entire block is then
encrypted. In the second case, the message is encrypted first. Then the MAC is calculated using
the resulting cipher text and is concatenated to the cipher text to form the transmitted block.
Typically, it is preferable to tie the authentication directly to the plaintext, so the method of
Figure 12.11 is used.

Because symmetric encryption will provide authentication and because it is widely used with
readily available products, why not simply use this instead of a separate message authentication

code? The three situations in which a message authentication code is used are

1. There are a number of applications in which the same message is broadcast to a number
of destinations. Examples are notification to users that the network is now unavailable or
an alarm signal in a military control center. It is cheaper and more reliable to have only
one destination responsible for monitoring authenticity. Thus, the message must be
broadcast in plaintext with an associated message authentication code. The responsible
system has the secret key and performs authentication. If a violation occurs, the other
destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and cannot
afford the time to decrypt all incoming messages. Authentication is carried out on a
selective basis, messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The computer
program can be executed without having to decrypt it every time, which would be

wasteful of processor resources. However, if a message authentication code were
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attached to the program, it could be checked whenever assurance was required of the
integrity of the program.

. Three other rationales may be added.

For some applications, it may not be of concern to keep messages secret, but it is
important to authenticate messages. An example is the Simple Network Management
Protocol Version 3 (SNMPV3), which separates the functions of confidentiality and
authentication. For this application, it is usually important for a managed system to
authenticate incoming SNMP messages, particularly if the message contains a command
to change parameters at the managed system. On the other hand, it may not be necessary
to conceal the SNMP traffic.

Separation of authentication and confidentiality functions affords architectural flexibility.
For example, it may be desired to perform authentication at the application level but to
provide confidentiality at a lower level, such as the transport layer.

. A user may wish to prolong the period of protection beyond the time of reception and yet
allow processing of message contents. With message encryption, the protection is lost
when the message is decrypted, so the message is protected against fraudulent

modifications only in transit but not within the target system.

Finally, note that the MAC does not provide a digital signature, because both sender and receiver

share the same key.

12.4 DIGITAL SIGNATURES

Properties

Message authentication protects messages exchanged between two parties. However, it does not

protect the two parties against each other. Several forms of dispute between the two are possible.

For example, suppose that A sends an authenticated message to B, using one of the schemes of

Figures 12.4 to 12.7. Consider the following disputes that could arise.

1. B may forge a different message and claim that it came from A. B would simply have to

create a message and append an authentication code using the key that A and B share.

2. A can deny sending the message. Because it is possible for B to forge a message, there is

no way to prove that A did in fact send the message.
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Both scenarios are of legitimate concern. Here is an example of the first scenario: An
electronic funds transfer takes place, and the receiver increases the amount of funds transferred
and claims that the larger amount had arrived from the sender. An example of the second
scenario is that an electronic mail message contains instructions to a stockbroker for a transaction

that subsequently turns out badly. The sender pretends that the message was never sent.
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Figure 12.13: Generic model of digital signature process

In situations where there is not complete trust between sender and receiver, something more than

authentication is needed. The most attractive solution to this problem is the digital signature. The
digital signature must have the following properties:

* It must verify the author and the date and time of the signature.
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* [t must authenticate the contents at the time of the signature.

« It must be verifiable by third parties, to resolve disputes.

Thus, the digital signature function includes the authentication function.
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Figure 12.14: Simplified Depiction of Essential Elements of Digital Signature Process

Attacks and Forgeries:

Following is the list of the types of attacks, in order of increasing severity. Here A denotes the
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user whose signature method is being attacked, and C denotes the attacker.

e Key-only attack: C only knows A’s public key.

¢ Known message attack: C is given access to a set of messages and their signatures.



Generic chosen message attack: C chooses a list of messages before attempting to
breaks A’s signature scheme, independent of A’s public key. C then obtains from A valid
signatures for the chosen messages. The attack is generic, because it does not depend on
A’s public key; the same attack is used against everyone.

Directed chosen message attack: Similar to the generic attack, except that the list of
messages to be signed is chosen after C knows A’s public key but before any signatures
are seen.

Adaptive chosen message attack: C is allowed to use A as an “oracle.” This means the
A may request signatures of messages that depend on previously obtained message—

signature pairs.

The attack is said to be a success if C can do any one of the following:

Total break: C determines A’s private key.

Universal forgery: C finds an efficient signing algorithm that provides an equivalent
way of constructing signatures on arbitrary messages.

Selective forgery: C forges a signature for a particular message chosen by C.

Existential forgery: C forges a signature for at least one message. C has no control over
the message. Consequently, this forgery may only be a minor nuisance to A.

Requirements of Digital Signature:

On the basis of the properties and attacks just discussed, we can formulate the following

requirements for a digital signature.

The signature must be a bit pattern that depends on the message being signed.

The signature must use some information unique to the sender to prevent both forgery
and denial.

It must be relatively easy to produce the digital signature.

It must be relatively easy to recognize and verify the digital signature.

It must be computationally infeasible to forge a digital signature, either by constructing a
new message for an existing digital signature or by constructing a fraudulent digital
signature for a given message.

It must be practical to retain a copy of the digital signature in storage.
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A secure hash function, embedded in a scheme such as that of Figure 12.14 provides a basis for
satisfying these requirements. However, care must be taken in the design of the details of the

scheme.

Direct digital Signature:
The term direct digital signature refers to a digital signature scheme that involves only the
communicating parties (source, destination). It is assumed that the destination knows the public

key of the source.

Confidentiality can be provided by encrypting the entire message plus signature with a
shared secret key (symmetric encryption). Note that it is important to perform the signature
function first and then an outer confidentiality function. In case of dispute, some third party must
view the message and its signature. If the signature is calculated on an encrypted message, then
the third party also needs access to the decryption key to read the original message. However, if
the signature is the inner operation, then the recipient can store the plaintext message and its

signature for later use in dispute resolution.

The validity of the scheme just described depends on the security of the sender’s private
key. If a sender later wishes to deny sending a particular message, the sender can claim that the
private key was lost or stolen and that someone else forged his or her signature. Administrative
controls relating to the security of private keys can be employed to thwart or at least weaken this
ploy, but the threat is still there, at least to some degree. One example is to require every signed
message to include a timestamp (date and time) and to require prompt reporting of compromised

keys to a central authority.

Another threat is that some private key might actually be stolen from X at time T. The
opponent can then send a message signed with X’s signature and stamped with a time before or

equal to T.

Digital Signature Standard (DSS):
The National Institute of Standards and Technology (NIST) has published Federal Information
Processing Standard FIPS 186, known as the Digital Signature Standard (DSS). The DSS makes
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use of the Secure Hash Algorithm (SHA) and presents a new digital signature technique, the
Digital Signature Algorithm (DSA). The latest version (2009) incorporates digital signature
algorithms based on RSA and on elliptic curve cryptography.

The DSS Approach:

The DSS uses an algorithm that is designed to provide only the digital signature function. Unlike
RSA, it cannot be used for encryption or key exchange. Nevertheless, it is a public-key
technique.
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Figure 12.15: RSA approach
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Figure 12.16: DSS approach

Figure 12.15 and 12.16 are two approaches for digital signature. In the RSA approach,
the message to be signed is input to a hash function that produces a secure hash code of fixed
length. This hash code is then encrypted using the sender’s private key to form the signature.
Both the message and the signature are then transmitted. The recipient takes the message and
produces a hash code. The recipient also decrypts the signature using the sender’s public key. If

the calculated hash code matches the decrypted signature, the signature is accepted as valid.
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Because only the sender knows the private key, only the sender could have produced a valid

signature.

The DSS approach also makes use of a hash function. The hash code is provided as input
to a signature function along with a random number k generated for this particular signature. The
signature function also depends on the sender’s private key (PR,) and a set of parameters known
to a group of communicating principals. We can consider this set to constitute a global public

key (PUg). The result is a signature consisting of two components, labeled s and r.

At the receiving end, the hash code of the incoming message is generated. This plus the
signature is input to a verification function. The verification function also depends on the global
public key as well as the sender’s public key (PU,), which is paired with the sender’s private key.
The output of the verification function is a value that is equal to the signature component r if the
signature is valid. The signature function is such that only the sender, with knowledge of the

private key, could have produced the valid signature.

12.5 SUMMARY

This unit introduced topics on data integrity. Section 1 is about secured key exchange method
proposed by Diffie and Hellman. Section 2 discusses the use of hashing technigue to secure data.
In section 3 message authentication ways are described. Section 4 is about digital signature

procedures.

12.6 KEYWORDS

Diffie Hellman Key exchange, Hash function, Message authentication function, Frame
checksum, MAC, Internal and external error control, Digital signature, Direct digital signature,
DSS.

12.7 QUESTIONS

1. Explain Diffie Hellman Key exchange protocol.
2. llustrate Diffie Hellman Key exchange protocol.

3. What are applications of hash functions in cryptography?
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Discuss using figures various ways of using hash function for message authentication?
Explain how hash functions are used for digital signatures.

Explain any two hash functions.

Mention the requirements of a message authentication function.

What are the various ways of authenticating messages? Explain using figures?

© oo N o 0o A

What do you mean by internal and external error control? Explain.
10. What is digital signature?

11. Discuss attacks and forgeries on digitally signed messages.

12. What are requirements of digital signature?

13. Explain direct digital signature.

14. Compare RSA and DSS signature methods.
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UNIT -13: E-MAIL SECURITY

Structure
13.0 Objectives
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13.3  Kerberos
13.4  Summary
13.5 Keywords
13.6  Questions
13.7 References

13.0 OBJECTIVES

After thorough understanding of the material introduced in this unit you will

v" Understand the ways of securing e-mails and an important principle in email security
called pretty good privacy

v Various authentication protocols

13.1 E-MAIL SECURITY

In virtually all distributed environments, electronic mail is the most heavily used network-based
application. Users expect to be able to, and do, send e-mail to others who are connected directly

or indirectly to the Internet, regardless of host operating system or communications suite. With
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the explosively growing reliance on e-mail, there grows a demand for authentication and

confidentiality services. Two schemes stand out as approaches that enjoy widespread use: Pretty
Good Privacy (PGP) and S/IMIME. We discuss in detail the PGP approach.

Pretty good privacy:

PGP is a remarkable phenomenon. Largely the effort of a single person, Phil Zimmermann, PGP

provides a confidentiality and authentication service that can be used for electronic mail and file

storage applications. In essence, Zimmermann has done the following:

1. Selected the best available cryptographic algorithms as building blocks.

2. Integrated these algorithms into a general-purpose application that is independent of
operating system and processor and that is based on a small set of easy-to-use commands.

3. Made the package and its documentation, including the source code, freely available via
the Internet, bulletin boards, and commercial networks such as AOL (America On Line).

4. Entered into an agreement with a company (Viacrypt, now Network Associates) to

provide a fully compatible, low-cost commercial version of PGP.

PGP has grown explosively and is now widely used. A number of reasons can be cited for this
growth.

1.

It is available free worldwide in versions that run on a variety of platforms, including
Windows, UNIX, Macintosh, and many more. In addition, the commercial version satisfies
users who want a product that comes with vendor support.

It is based on algorithms that have survived extensive public review and are considered
extremely secure. Specifically, the package includes RSA, DSS, and Diffie-Hellman for
public-key encryption; CAST-128, IDEA, and 3DES for symmetric encryption; and SHA-1
for hash coding.

It has a wide range of applicability, from corporations that wish to select and enforce a
standardized scheme for encrypting files and messages to individuals who wish to
communicate securely with others worldwide over the Internet and other networks.

It was not developed by, nor is it controlled by, any governmental or standards organization.
For those with an instinctive distrust of “the establishment,” this makes PGP attractive.

PGP is now on an Internet standards track. Nevertheless, PGP still has an aura of an

antiestablishment endeavor.
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We begin with an overall look at the operation of PGP. Next, we examine how

cryptographic keys are created and stored. Then, we address the vital issue of public-key

management.

Notation:

Most of the notation used in this chapter has been used before, but a few terms are new. It is

perhaps best to summarize those at the beginning. The following symbols are used.

Ks = session key used in symmetric encryption scheme

PR, = private key of user A, used in public-key encryption scheme
PU, = public key of user A, used in public-key encryption scheme
EP=public-key encryption

DP= public-key decryption

EC=symmetric encryption

DC = symmetric decryption

H=Hash function

|[=concatenation

Z=compression using ZIP algorithm

R64=conversion to radix 64 ASCII format

The PGP documentation often uses the term secret key to refer to a key paired with a public key

in a public-key encryption scheme. As was mentioned earlier, this practice risks confusion with a

secret key used for symmetric encryption. Hence, we use the term private key instead.

The figures below exhibit the three modes of PGP.
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Figure 13.1: Authentication only
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Figure 13.2: Confidentiality only
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Figure 13.3: Confidentiality and authentication

Sequences of steps for the PGP service in figure 13.1 is as follows:
1. The sender creates a message.
2. SHA-1 is used to generate a 160-bit hash code of the message.
3. The hash code is encrypted with RSA using the sender’s private key, and the result is
prepended to the message.
4. The receiver uses RSA with the sender’s public key to decrypt and recover the hash code.
5. The receiver generates a new hash code for the message and compares it with the

decrypted hash code. If the two match, the message is accepted as authentic.

The PGP service in figure 13.2 has the following steps:
1. The sender generates a message and a random 128-bit number to be used as a session key for

this message only.
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2. The message is encrypted using CAST-128 (or IDEA or 3DES) with the session key- Message
confidentiality.

3. The session key is encrypted with RSA using the recipient’s public key and is prepended to
the message- session key confidentiality.

4. The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

Finally the PGP service in figure 13.3 offers both confidentiality and authentication.

First, a signature is generated for the plaintext message and prepended to the message. Then the
plaintext message plus signature is encrypted using CAST-128 (or IDEA or 3DES), and the
session key is encrypted using RSA (or EIGamal). This sequence is preferable to the opposite:
encrypting the message and then generating a signature for the encrypted message. It is generally
more convenient to store a signature with a plaintext version of a message. Furthermore, for
purposes of third-party verification, if the signature is performed first, a third party need not be

concerned with the symmetric key when verifying the signature.

In summary, when both services are used, the sender first signs the message with its
own private key, then encrypts the message with a session key, and finally encrypts the session

key with the recipient’s public key.

With a note on compatibility between end systems in E-mail communication, we close

this section.

E-mail compatibility: When PGP is used, at least part of the block to be transmitted is
encrypted. If only the signature service is used, then the message digest is encrypted (with the
sender’s private key). If the confidentiality service is used, the message plus signature (if
present) are encrypted (with a one-time symmetric key). Thus, part or the entire resulting block
consists of a stream of arbitrary 8-bit octets. However, many electronic mail systems only permit
the use of blocks consisting of ASCII text. To accommodate this restriction, PGP provides the
service of converting the raw 8-bit binary stream to a stream of printable ASCII characters. The
scheme used for this purpose is radix-64 conversion. Each group of three octets of binary data is
mapped into four ASCII characters. This format also appends a CRC to detect transmission

errors.
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Figure 13.4 shows the relationship among the four services so far discussed. On
transmission (if it is required), a signature is generated using a hash code of the uncompressed
plaintext. Then the plaintext (plus signature if present) is compressed. Next, if confidentiality is
required, the block (compressed plaintext or compressed signature plus plaintext) is encrypted
and prepended with the public-key encrypted symmetric encryption key. Finally, the entire block

is converted to radix-64 format.

On reception, the incoming block is first converted back from radix-64 format to binary.
Then, if the message is encrypted, the recipient recovers the session key and decrypts the
message. The resulting block is then decompressed. If the message is signed, the recipient

recovers the transmitted hash code and compares it to its own calculation of the hash code.

X —file Convert from radix 64
X+« R6d'[X)

v . ! Vs Diecrypt kay, X
Signature = Generate signature Cﬂﬂﬁdﬂ_ﬂ@'_, K.« DiPR. E(PU, K.))
< required? > " X+ signatre 1 X required? X e DK, FK, X0
Mo | Mo |
Compress
X —AX Decompress
X=Z '

r

L

< iali ; s Encrypt key, X ,
Confidentiality ncrypt key, : Yes -
ired? ' ..{ Signature : Strip signatre from X
l':I“I X E{.P|Lu.. KN EK,. X) w@—, verify signature
o
No |

Convert to radix 64

X R&4[X]
(a) Generic transmission diagram (from A) (b} Generic reception diagram (to B)
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Figure 13.4: Transmission and Reception of PGP Messages

13.2 AUTHENTICATION SERVICES
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In most computer security contexts, user authentication is the fundamental building block and the

primary line of defense. User authentication is the basis for most types of access control and for

user accountability.

The process of verifying an identity claimed by or for a system entity. An authentication

process consists of two steps:

Identification step: Presenting an identifier to the security system. (Identifiers should be
assigned carefully, because authenticated identities are the basis for other security
services, such as access control service).

Verification step: Presenting or generating authentication information that corroborates

the binding between the entity and the identifier.

In essence, identification is the means by which a user provides a claimed identity to the

system; user authentication is the means of establishing the validity of the claim.

There are four general means of authenticating a user’s identity, which can be used alone

or in combination:

Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

Something the individual possesses: Examples include cryptographic keys, electronic
keycards, smart cards, and physical keys. This type of authenticator is referred to as a
token.

Something the individual is (static biometrics): Examples include recognition by
fingerprint, retina, and face.

Something the individual does (dynamic biometrics): Examples include recognition by

voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user

authentication. However, each method has problems. An adversary may be able to guess or steal

a password. Similarly, an adversary may be able to forge or steal a token. A user may forget a

password or lose a token. Furthermore, there is a significant administrative overhead for

managing password and token information on systems and securing such information on
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systems. With respect to biometric authenticators, there are a variety of problems, including
dealing with false positives and false negatives, user acceptance, cost, and convenience. For
network-based user authentication, the most important methods involve cryptographic keys and
something the individual knows, such as a password.

Authentication is of two kinds: Mutual authentication and one way authentication

Mutual Authentication:
An important application area is that of mutual authentication protocols. Such protocols enable
communicating parties to satisfy themselves mutually about each other’s identity and to

exchange session keys.

Central to the problem of authenticated key exchange are two issues: confidentiality and
timeliness. To prevent masquerade and to prevent compromise of session keys, essential
identification and session-key information must be communicated in encrypted form. This
requires the prior existence of secret or public keys that can be used for this purpose. The second
issue, timeliness, is important because of the threat of message replays. Such replays, at worst,
could allow an opponent to compromise a session key or successfully impersonate another party.
At minimum, a successful replay can disrupt operations by presenting parties with messages that

appear genuine but are not.

Approaches for coping with replay attacks are:

1. Attach sequence number with messages.
An attacker cannot attach new sequence number while replaying

2. Include time stamps with messages.
This requires synchronized clocks between communicating parties. Only if messages are
received within short time since it is sent, it is understood to be genuine.

3. Using nonce with messages.
Communicating parties exchange nonce (could be random number) before the actual

messages is sent.

One-Way Authentication:

186



One application for which encryption is growing in popularity is electronic mail (e-mail). The
very nature of electronic mail, and its chief benefit, is that it is not necessary for the sender and
receiver to be online at the same time. Instead, the e-mail message is forwarded to the receiver’s
electronic mailbox, where it is buffered until the receiver is available to read it.

The “envelope” or header of the e-mail message must be in the clear, so that the message
can be handled by the store-and-forward e-mail protocol, such as the Simple Mail Transfer
Protocol (SMTP) or X.400. However, it is often desirable that the mail-handling protocol not
require access to the plaintext form of the message, because that would require trusting the mail-
handling mechanism. Accordingly, the e-mail message should be encrypted such that the mail-
handling system is not in possession of the decryption key.

A second requirement is that of authentication. Typically, the recipient wants some
assurance that the message is from the alleged sender.

We now give two protocols one for mutual authentication and one for one way authentication.

Mutual authentication protocol (for symmetric encryption):

1.A—>KDC: ID,|[1Dg [N,

2.KDC — A1 E(K,.[K, || 1D | N, | E(Ky.[K, | IDA])])
3.A5>B:  E(K,.[K,]ID.])

4B—>A:  E(K,N,)

5A>B:  E(K,, f(N,))

One way authentication protocol (for symmetric encryption):
1. A5 KDC: ID, || IDg || N,
2. KDC — A: E(K,,[K, [[1Dg || Ny | E(Ky [K; [ 1D,])])
3.A—>B:  E(K,[K[[ID.DIIE(Ks,M)

Mutual authentication protocol (for asymmetric encryption):

1. A= AS:ID, || 1D,

2. AS — AZE(PR,,[ID, | PU, [ T]) | E(PRy [1Dg || PU, [IT])

3. A—>B: E(PRy.[IDA[IPU, [TDIIE(PR.[I1Dg [|PU, [ITD I E(PU,, E(PR,,[K, [ T]))

as ! as’

One way authentication for asymmetric (for asymmetric encryption):
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If confidentiality is the primary concern, then the following may be more efficient:

A—> B:E(PU,,K,) | E(K,,M)

If authentication is the primary concern, then a digital signature may suffice,

A—>B:M | E(PR,,H(M))

13.4 KERBORES

Kerberos is an authentication service developed as part of Project Athena at MIT. The problem
that Kerberos addresses is this: Assume an open distributed environment in which users at
workstations wish to access services on servers distributed throughout the network .We would
like for servers to be able to restrict access to authorized users and to be able to authenticate
requests for service. In this environment, a workstation cannot be trusted to identify its users

correctly to network services. In particular, the following three threats exist:

1. A user may gain access to a particular workstation and pretend to be another user
operating from that workstation.

2. A user may alter the network address of a workstation so that the requests sent from the
altered workstation appear to come from the impersonated workstation.

3. A user may eavesdrop on exchanges and use a replay attack to gain entrance to a server

or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services and data that
he or she is not authorized to access. Rather than building in elaborate authentication protocols at
each server, Kerberos provides a centralized authentication server whose function is to
authenticate users to servers and servers to users. Unlike most other authentication schemes,
Kerberos relies exclusively on symmetric encryption, making no use of public-key encryption.
Two versions of Kerberos are in common use. Version 4 implementations still exist.
Version 5 corrects some of the security deficiencies of version 4 and has been issued as a

proposed Internet Standard.
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Today’s environment is a distributed architecture consisting of dedicated user workstations
(clients) and distributed or centralized servers. In this environment, three approaches to security
can be envisioned.

1. Rely on each individual client workstation to assure the identity of its user or users and

rely on each server to enforce a security policy based on user identification (ID).

2. Require that client systems authenticate themselves to servers, but trust the client system
concerning the identity of its user.

3. Require the user to prove his or her identity for each service invoked. Also require that
servers prove their identity to clients.

In a small, closed environment in which all systems are owned and operated by a single
organization, the first or perhaps the second strategy may suffice. But in a more open
environment in which network connections to other machines are supported, the third approach
is needed to protect user information and resources housed at the server. Kerberos supports this
third approach. Kerberos assumes distributed client/server architecture and employs one or more

Kerberos servers to provide an authentication service.

Sequence of steps in authentication with Kerberos version is given here in table 13.1(a) to
13.1(c)

(a) Authentication Service Exchange to obtain ticket-granting ticket.
1.C — AS: 1D, || 1D || TS,
2.AS — C:E(K,, [Kq g Il 1D [ITS, |l Lifetime, || Ti cket, ])
Ticket,gs =E(Kygg, [Kygs Il 1Dc [l ADg || 1D [ITS, || Lifetime,])

c,tgs ”

tgs |

(b) Ticket-Granting Service Exchange to obtain service-granting ticket.
3.C > TGS D, ||ticket,, || Authenticator,

4.TGS — C:E(K s, [Kc\ 11D, [ITS, || Ticket,])
Ticket,y, =E(Kygs, [Kcgs [ 1D | AD¢ || 1Dy, [ITS, || Lifetime, ])
Ticket, =E(K,, [K,, [| ID; || AD¢ || ID, ||TS, || Lifetime,])
Authenticator, =E(K_ ¢, [1D¢ || AD¢ ||ITS;])

c,tgs?
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(c) Client/Server Authentication Exchange to obtain service

5.C -V :Ticket, || Authenticator,

6.V >C:E(K

cvr [ TS5 +1]) (for mutual authentication)
Ticket, =E(K,, [K_, || 1D || AD¢ || ID, [[TS, || Lifetime,])
Authenticator, =E(K_ ,,, [1D. || AD¢ || TSs])

c,Vv!?

Tables 13.1a to 13.1c: Summary of Kerberos Version4 Message Exchanges

The notations in the table are briefly explained here. The service TGS, issues tickets to users who

have been authenticated to AS.

Kerberos protocol sequences of operations are described in tables 13.2 (a) to(c)

Message (1)

IDc
IDtgs

TS;

Client requests ticket-granting ticket.

Tells AS identity of user from this client.
Tells AS that user re quests access to TGS.

Allows AS to verify that client’s clock is synchronized with that of AS.

Message (2)

AS returns ticket-granting ticket.

Kc Encryption is based on user’s password, enabling AS and client to verify
Password and protecting contents of message (2).

Ketgs Copy of session key accessible to client created by AS to permit secure exchange
between client and TGS without requiring them to share a permanent key.
Confirms that this ticket is for the TGS.

IDtgs
Informs client of time this ticket was issued.

TS,
Informs client of the lifetime of this ticket.

Lifetime,
Ticket to be used by client to access TGS.

TiCkettgs

(a) Authentication Service Exchange
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Message (3)
IDy

Authenticator,

Client requests service-granting ticket.
Tells TGS that user requests access to server V.
Assures TGS that this user has been authenticated by AS.

Generated by client to validate ticket.

Message (4)
Kc,tgs

KC,V

IDy

TS,
Ticketv

Tickettgs
thS

Kc,tgs

IDc

ADc

IDygs
TS,
Lifetime,

Authenticator,

Kc,tgs

IDc

TGS returns service-granting ticket.

Key shared only by C and TGS protects contents of message (4).

Copy of session key accessible to client created by TGS to permit secure
exchange between client and server without requiring them to share a permanent
k(?())/.nfirms that this ticket is for server V.

Informs client of time this ticket was issued.
Ticket to be used by client to access server V.

Reusable so that user does not have to reenter password.
Ticket is encrypted with key known only to AS and TGS, to prevent tampering.

Copy of session key accessible to TGS used to decrypt authenticator, thereby
authenticating ticket.

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially requested
the ticket.

Assures server that it has decrypted ticket properly.
Informs TGS of time this ticket was issued.
Prevents replay after ticket has expired.

Assures TGS that the ticket presenter is the same as the client for whom the
ticket was issued has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and TGS, to prevent
tampering.

Must match ID in ticket to authenticate ticket.
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ADc

TS;3

Must match address in ticket to authenticate ticket.

Informs TGS of time this authenticator was generated.

(b) Ticket-Granting Service Exchange

Message (5)
Tickety

Authenticator,

Client requests service.
Assures server that this user has been authenticated by AS.

Generated by client to validate ticket.

Message (6)

Keyv
TSs+1
Ticketv
Kv

KC,V

IDc

ADc

IDy
TS,
Lifetime,

Authenticator,

Key

IDc

Optional authentication of server to client.

Assures C that this message is from V.
Assures C that this is not a replay of an old reply.

Reusable so that client does not need to request a new ticket from TGS for each
access to the same server.

Ticket is encrypted with key known only to TGS and server, to prevent
tampering.

Copy of session key accessible to client; used to decrypt authenticator, thereby
authenticating ticket.

Indicates the rightful owner of this ticket.

Prevents use of ticket from workstation other than one that initially requested
the ticket.

Assures server that it has decrypted ticket properly.
Informs server of time this ticket was issued.
Prevents replay after ticket has expired.

Assures server that the ticket presenter is the same as the client for whom the
ticket was issued; has very short lifetime to prevent replay.

Authenticator is encrypted with key known only to client and server, to prevent
tampering.

Must match ID in ticket to authenticate ticket.
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ADc

TSs

Must match address in ticket to authenticate ticket.

Informs server of time this authenticator was generated.

(c) Client/Server Authentication Exchange

Table 13.2: Rationale for the Elements of the Kerberos Version 4 Protocol

13.5 SUMMARY

In this unit, review of internet is given in section 13.1. E-mail security is the topic in

section 13.2. Pretty good privacy (PGP) is widely used method for security of E-mails. User

authentication protocols are described in section 13.3. Section 13.4 introduces the standard

authentication service Kerberos.

13.6 KEYWORDS

IP security, OSI, TCP-IP, E-mail security, PGP, mutual authentication, one way authentication

13.7 QUESTIONS

1
2
3
4.
5
6

Give an overview of PGP of Zimmerman.
Mention the reasons for popularity of PGP.
Describe with figures the three forms of PGP.
Write about E-mail compatibility.

Differentiate mutual and one way authentication.

. Write a protocol for mutual and one way authentication using symmetric and asymmetric

encryption.

Write a note on Kerberos.
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UNIT -14: IP AND WEB SECURITY

Structure
14.0 Objectives
14.1  Web Security
14.2  IP Security
143  Summary

14.4  Keywords
145 Questions

14.6 References

14.0 OBJECTIVES

After going through the contents discussed in this unit you will
v’ Learn about challenges in securing web

Come to know about potential threats

v
v’ Learn about relationship between layers and kind of security
v" Know applications and benefits of securing IP

v

Services provided by IP security

14.1 WEB SECURITY

The World Wide Web is nothing but client/server application running on the TCP/IP
intranets. All the security tools discussed so far are useful for web also. But web poses new
challenges which have not been addressed in computer and network security. We highlight here
these new challenges exclusively to be addressed in securing web.

1. Unlike traditional environments, internet is two way. Hence web is vulnerable to attacks

on the web servers over the internet.

2. Web is more and more used by Corporate for product information and business

transactions. Reputation can be damaged and money can be lost if web servers are

subverted.
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3. Web browsers are easy to use; web servers are easy to manage, content on the web can be
developed easily. Underlying software which makes these tasks easy are highly complex
and possibly having security flaws. The brief history of web is filled with many examples
of security attacks in spite of upgraded systems properly installed.

4. Web servers are often used as launching pad for an organization’s computing systems. If
this server is subverted, an attacker can have access to organization’s secure data,
although this is not part of the web.

5. Casual and untrained users are common clients for web based services. Such people may
not be aware of security risks and quiet often do not have tools or knowledge to take

effective counter measures.

Web security threats is summarized in table 14.1

Threats Consequences Countermeasures
Integrity * Modification of user data * Loss of information | Cryptographic

* Trojan horse browser » Compromise of checksums

* Modification of memory machine

+ Modification of message * Vulnerability to all

traffic in transit other threats
Confidentiality | « Eavesdropping on the net * Loss of information | Encryption, Web

* Theft of info from server * Loss of privacy proxies

* Theft of data from client
« Info about network
configuration

* Info about which client
talks to server

Denial of » Killing of user threads * Disruptive Difficult to prevent
Service * Flooding machine with * Annoying
bogus requests * Prevent user from

» Filling up disk or memory getting work done
» Isolating machine by DNS

Attacks

Authentication | * Impersonation of legitimate | * Misrepresentation of | Cryptographic
users user techniques
* Data forgery * Belief that false

information is valid

Table 14.1: A Comparison of Threats on the Web
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Another way to classify Web security threats is in terms of the location of the threat: Web
server, Web browser, and network traffic between browser and server. Issues of server and

browser security fall into the category of computer system security.

Traffic security will be addressed in this unit. There are a number of approaches to
provide Web security. The various approaches that are discussed are similar in services they
provide and, to some extent, in the mechanisms that they use, but they differ with respect to their

scope of applicability and their relative location within the TCP/IP protocol stack.

Figure 14.1 illustrates this difference. One way to provide Web security is to use IP
security (IPsec) (Figure 14.1a).The advantage of using IPsec is that it is transparent to end users
and applications and provides a general-purpose solution. Furthermore, IPsec includes a filtering

capability so that only selected traffic need incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just above TCP
(Figure 14.1b). The foremost example of this approach is the Secure Sockets Layer (SSL) and
the follow-on Internet standard known as Transport Layer Security (TLS). At this level, there are
two implementation choices. For full generality, SSL (or TLS) could be provided as part of the
underlying protocol suite and therefore be transparent to applications. Alternatively, SSL can be
embedded in specific packages. For example, Netscape and Microsoft Explorer browsers come

equipped with SSL, and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular application.
Figure 14.1c shows examples of this architecture. The advantage of this approach is that the
service can be tailored to the specific needs of a given application.

HTTP FIP SMTP SMIME
HTTP FI'P SMTP S5L or TLS Kerberos]| SMTFP | HITP
TCP TCP LD TCP
IP1PSec 1P 1P
(a) Metwork level (b} Transport level (c) Application level

Figure 14.1: Relative Location of Security Facilities in the TCP/IP Protocol Stack
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SSL Architecture
SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL is not a

single protocol but rather two layers of protocols, as illustrated in Figure 14.2.

The SSL Record Protocol provides basic security services to various higher layer
protocols. In particular, the Hypertext Transfer Protocol (HTTP), which provides the transfer
service for Web client/server interaction, can operate on top of SSL. Three higher-layer protocols
are defined as part of SSL: the Handshake Protocol, the Change Cipher Spec Protocol, and the

Alert Protocol.

Two important SSL concepts are the SSL session and the SSL connection, which are
defined in the specification as follows.

e Connection: A connection is a transport (in the OSI layering model definition) that
provides a suitable type of service. For SSL, such connections are peer-to-peer
relationships. The connections are transient. Every connection is associated with one
session.

e Session: An SSL session is an association between a client and a server. Sessions are
created by the Handshake Protocol. Sessions define a set of cryptographic security
parameters which can be shared among multiple connections. Sessions are used to avoid

the expensive negotiation of new security parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server), there may be
multiple secure connections. In theory, there may also be multiple simultaneous sessions

between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is established,
there is a current operating state for both read and write (i.e., receive and send). In addition,
during the Handshake Protocol, pending read and write states are created. Upon successful
conclusion of the Handshake Protocol, the pending states become the current states.

Transport layer security (TLS)

TLS is an IETF standardization initiative whose goal is to produce an Internet standard version
of SSL. TLS is defined as a Proposed Internet Standard in RFC 5246. RFC 5246 is very similar
to SSLv3. In this section, we highlight the differences between TLS and SSL.
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There are two differences between the SSLv3 and TLS MAC schemes: the actual
algorithm and the scope of the MAC calculation. TLS makes use of the HMAC algorithm
defined in RFC 2104.

TLS makes use of a pseudorandom function referred to as PRF to expand secrets into
blocks of data for purposes of key generation or validation. The objective is to make use of a
relatively small shared secret value but to generate longer blocks of data in a way that is secure
from the kinds of attacks made on hash functions and MACs. The PRF is based on the data

expansion function as given in the following steps.

P_hash(secret, seed)= HMAC _hash (secret, A(1) || seed) ||
HMAC _hash (secret, A(2) || seed) ||
HMAC _hash (secret, A(3) || seed) || . . .
where A() is defined as
A(0) = seed
A(i) = HMAC_hash (secret, A(i — 1))

14.2 IP SECURITY

To provide security, the 1AB (Internet Architecture Board) included authentication and
encryption as necessary security features in the next-generation IP, which has been issued as
IPv6. Fortunately, these security capabilities were designed to be usable both with the current
IPv4 and the future IPv6. This means that vendors can begin offering these features now, and
many vendors now do have some IPsec capability in their products. The IPsec specification now

exists as a set of Internet standards.

Applications of IP security
IPsec provides the capability to secure communications across a LAN, across private and public

WAN:Ss, and across the Internet. Examples of its use include:

« Secure branch office connectivity over the Internet: A company can build a secure

virtual private network over the Internet or over a public WAN. This enables a business
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to rely heavily on the Internet and reduce its need for private networks, saving costs and
network management overhead.

» Secure remote access over the Internet: An end user whose system is equipped with IP
security protocols can make a local call to an Internet Service Provider (ISP) and gain
secure access to a company network. This reduces the cost of toll charges for traveling
employees and telecommuters.

» Establishing extranet and intranet connectivity with partners: IPsec can be used to
secure communication with other organizations, ensuring authentication and
confidentiality and providing a key exchange mechanism.

« Enhancing electronic commerce security: Even though some Web and electronic
commerce applications have built-in security protocols, the use of IPsec enhances that
security. IPsec guarantees that all traffic designated by the network administrator is both
encrypted and authenticated, adding an additional layer of security to whatever is

provided at the application layer.

The principal feature of IPsec that enables it to support these varied applications is that it can
encrypt and/or authenticate all traffic at the IP level. Thus, all distributed applications (including
remote logon, client/server, e-mail, file transfer, Web access, and so on) can be secured.

Figure 14.2 is a typical scenario of IPsec usage. An organization maintains LANs at
dispersed locations. Non-secure IP traffic is conducted on each LAN. For traffic offsite, through
some sort of private or public WAN, IPsec protocols are used. These protocols operate in
networking devices, such as a router or a firewall, that connect each LAN to the outside world.
The IPsec networking device will typically encrypt and compress all traffic going into the WAN
and decrypt and decompress traffic coming from the WAN; these operations are transparent to
workstations and servers on the LAN. Secure transmission is also possible with individual users
who dial into the WAN. Such user workstations must implement the IPsec protocols to provide

security.
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Figure 14.2: An IP Security Scenario

Benefits of IP security

« When IPsec is implemented in a firewall or router, it provides strong security that can be
applied to all traffic crossing the perimeter. Traffic within a company or workgroup does not
incur the overhead of security-related processing.

« IPsec in a firewall is resistant to bypass if all traffic from the outside must use IP and the
firewall is the only means of entrance from the Internet into the organization.

» IPsec is below the transport layer (TCP, UDP) and so is transparent to applications. There is
no need to change software on a user or server system when IPsec is implemented in the
firewall or router. Even if IPsec is implemented in end systems, upper-layer software,
including applications, is not affected.

» IPsec can be transparent to end users. There is no need to train users on security mechanisms,
issue keying material on a per-user basis, or revoke keying material when users leave the

organization.
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» IPsec can provide security for individual users if needed. This is useful for offsite workers
and for setting up a secure virtual subnetwork within an organization for sensitive

applications.

IP security services

IPsec provides security services at the IP layer by enabling a system to select required security
protocols, determine the algorithm(s) to use for the service(s), and put in place any cryptographic
keys required to provide the requested services. Two protocols are used to provide security: an
authentication protocol designated by the header of the protocol, Authentication Header (AH);
and a combined encryption/ authentication protocol designated by the format of the packet for
that protocol, Encapsulating Security Payload (ESP). RFC 4301 lists the following services:
Access control

Connectionless integrity

Data origin authentication

Rejection of replayed packets (a form of partial sequence integrity)

Confidentiality (encryption)

o a0~ wbhE

Limited traffic flow confidentiality

14.3 SUMMARY

In this unit a detailed description of web security is given in section 14.1. Threats on web
security, secure socket layer and transport layer protocols are given in brief. In section 14.2 IP
Security is discussed. Applications and benefits of IP security, and services of IP security are

explained here briefly.

14.4 KEYWORDS

IP security — applications and benefits, RFC, IKS, ESP, AH [web security — threats, approaches,
SSL, TSL]

14.5 QUESTIONS

1. Classify threats on security of web.
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Explain approaches for security of web.

Discuss architecture of SSL.

Mention and explain operations in SSL protocol.
What are the applications of IP security?

Point out the benefits of IP security.

N oo g~ D

Mention the services of IP security.
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15.0 OBJECTIVES

When you finish reading this unit you will come to know about
v' Classes of intruders

v Techniques intruders use for hacking

v Detection mechanism

v’ Threats to password based systems

v’ Efficient management of passwords

15.1 INTRUDERS

Unauthorized intrusion into a computer system or network is one of the most serious
threats to computer security. User trespass can take the form of unauthorized logon to a machine
or, in the case of an authorized user, acquisition of privileges or performance of actions beyond
those that have been authorized. Software trespass can take the form of a virus, worm, or Trojan

horse.
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All these attacks relate to network security because system entry can be achieved by
means of a network. However, these attacks are not confined to network-based attacks. A user
with access to a local terminal may attempt trespass without using an intermediate network. A
virus or Trojan horse may be introduced into a system by means of a diskette. Only the worm is a
uniquely network phenomenon. Thus, system trespass is an area in which the concerns of
network security and computer security overlap.

At first, we examine the nature of attacks to systems. One of the common threats to
security of a system is intruder, also referred to as hacker or cracker. Intruders are classified into
three classes.

i.  Masquerader: Unauthorized individual who penetrates a system’s access control to
exploit an authorized user’s account.
Ii.  Misfeasor: Genuine user accesses data for which he is not authorized or he is authorized
for access but misuses his or her privileges.
iii.  Clandestine user: A person who seizes supervisory control of the system and uses this

control to evade auditing and access controls or to suppress audit collection.

Masquerader is mostly an outsider whereas misfeasor is generally an insider. Clandestine user

can be outsider or insider.

Intruder attacks range from benign to the serious. Sometimes people explore internets and
see what is out there. This is benign type. There are cases where individuals attempt to
read/modify data in the system, though unauthorized. This is serious attack. These attacks are

still not under total control. We point out some techniques for intrusion.

Intrusion techniques
The objective of the intruder is to gain access to a system or to increase the range of privileges
accessible on a system. Generally this requires the intruder to acquire information that is

protected. Often this information is in the form of a user password.

With knowledge of some other user's password, an intruder can log in to a system and
exercise all the privileges accorded to the legitimate user. Typically, a system must maintain a

file that associates a password with each authorized user. If such a file is stored with no
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protection, then it is an easy matter to gain access to it and learn passwords. The password file

can be protected in one of two ways:

e One-way function: The system stores only the value of a function based on the user's
password. When the user presents a password, the system transforms that password and
compares it with the stored value. In practice, the system usually performs a one-way
transformation (not reversible) in which the password is used to generate a key for the one-
way function and in which a fixed-length output is produced.

e Access control: Access to the password file is limited to one or a very few accounts.

If one or both of these countermeasures are in place, some effort is needed for a potential
intruder to learn passwords. On the basis of a survey of the literature and interviews with a
number of password crackers, the techniques for learning passwords are:

1. Try default passwords used with standard accounts that are shipped with the system.

Many administrators do not bother to change these defaults.

2. Exhaustively try all short passwords (those of one to three characters).

3. Try words in the system's online dictionary or a list of likely passwords. Examples of the

latter are readily available on hacker bulletin boards.

4. Collect information about users, such as their full names, the names of their spouse and
children, pictures in their office, and books in their office that are related to hobbies.

Try users' phone numbers, Social Security numbers, and room numbers.
Try all legitimate license plate numbers for this state.

Use a Trojan horse (described in next unit) to bypass restrictions on access.

© N o o

Tap the line between a remote user and the host system.

The first six methods are various ways of guessing a password. If an intruder has to verify the
guess by attempting to log in, it is a tedious and easily countered means of attack. For example, a
system can simply reject any login after three password attempts, thus requiring the intruder to
reconnect to the host to try again. Under these circumstances, it is not practical to try more than a
handful of passwords. However, the intruder is unlikely to try such crude methods. For example,
if an intruder can gain access with a low level of privileges to an encrypted password file, then

the strategy would be to capture that file and then use the encryption mechanism of that
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particular system at leisure until a valid password that provided greater privileges was

discovered.

Guessing attacks are feasible, and indeed highly effective, when a large number of
guesses can be attempted automatically and each guess verified, without the guessing process
being detectable.

The seventh method of attack, the Trojan horse, can be particularly difficult to counter.
An example of a program that bypasses access controls was cited in the literature. A low-
privilege user produced a game program and invited the system operator to use it in his or her
spare time. The program did indeed play a game, but in the background it also contained code to
copy the password file, which was unencrypted but access protected, into the user's file. Because
the game was running under the operator's high-privilege mode, it was able to gain access to the

password file.

The eighth attack listed namely line tapping, is a matter of physical security. It can be
countered with link encryption techniques. Other intrusion techniques do not require learning a
password. Intruders can get access to a system by exploiting attacks such as buffer overflows on
a program that runs with certain privileges. Privilege escalation can be done this way as well.

We turn now to a discussion of the two principal countermeasures: detection and
prevention. Detection is concerned with learning of an attack, either before or after its success.
Prevention is a challenging security goal and an uphill battle at all times. The difficulty stems
from the fact that the defender must attempt to thwart all possible attacks, whereas the attacker is

free to try to find the weakest link in the defense chain and attack at that point.

15.2 INTRUSION DETECTION

Inevitably, the best intrusion prevention system will fail. A system's second line of defense is
intrusion detection, and this has been the focus of much research in recent years. This interest is

motivated by a number of considerations, including the following:

1. If anintrusion is detected quickly enough, the intruder can be identified and ejected from

the system before any damage is done or any data are compromised. Even if the detection
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is not sufficiently timely to preempt the intruder, the sooner that the intrusion is detected,
the less the amount of damage and the more quickly that recovery can be achieved.

2. An effective intrusion detection system can serve as a deterrent, so acting to prevent
intrusions.

3. Intrusion detection enables the collection of information about intrusion techniques that

can be used to strengthen the intrusion prevention facility.

Intrusion detection is based on the assumption that the behavior of the intruder differs
from that of a legitimate user in ways that can be quantified. Of course, we cannot expect that
there will be a crisp, exact distinction between an attack by an intruder and the normal use of

resources by an authorized user. Rather, we must expect that there will be some overlap.

Figure 15.1 suggests, in very abstract terms, the nature of the task confronting the
designer of an intrusion detection system. Although the typical behavior of an intruder differs
from the typical behavior of an authorized user, there is an overlap in these behaviors. Thus, a
loose interpretation of intruder behavior, which will catch more intruders, will also lead to a
number of "false positives,”" or authorized users identified as intruders. On the other hand, an
attempt to limit false positives by a tight interpretation of intruder behavior will lead to an
increase in false negatives, or intruders not identified as intruders. Thus, there is an element of
compromise and art in the practice of intrusion detection.

Probability Profile of
density function

Profile of authorized user
. behavior

intruder behavior

Overlap in observed
or expected behavior

Figure 15.1: Profiles of Behavior of Intruders and Authorized User
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There are studies postulating that one could, with reasonable confidence, distinguish between a
masquerader and a legitimate user. Patterns of legitimate user behavior can be established by
observing past history, and significant deviation from such patterns can be detected. The task of
detecting a misfeasor (legitimate user performing in an unauthorized fashion) is more difficult, in
that the distinction between abnormal and normal behavior may be small. Such violations would
be undetectable solely through the search for anomalous behavior. However, misfeasor behavior
might nevertheless be detectable by intelligent definition of the class of conditions that suggest
unauthorized use. Finally, the detection of the clandestine user is still beyond the scope of purely

automated techniques.

Approaches for intrusion detection are
1. Statistical anomaly detection: Involves the collection of data relating to the behavior of
legitimate users over a period of time. Then statistical tests are applied to observed behavior to
determine with a high level of confidence whether that behavior is not legitimate user behavior.
a. Threshold detection: This approach involves defining thresholds, independent of user,
for the frequency of occurrence of various events.
b. Profile based: A profile of the activity of each user is developed and used to detect

changes in the behavior of individual accounts.

2. Rule-based detection: Involves an attempt to define a set of rules that can be used to decide
that a given behavior is that of an intruder.
a. Anomaly detection: Rules are developed to detect deviation from previous usage
patterns.
b. Penetration identification: An expert system approach that searches for suspicious
behavior.

In a nutshell, statistical approaches attempt to define normal or expected behavior, whereas rule-

based approaches attempt to define proper behavior.

In terms of the types of attackers listed earlier, statistical anomaly detection is effective
against masqueraders, who are unlikely to mimic the behavior patterns of the accounts they
appropriate. On the other hand, such techniques may be unable to deal with misfeasors. For such

attacks, rule-based approaches may be able to recognize events and sequences that, in context,
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reveal penetration. In practice, a system may exhibit a combination of both approaches to be

effective against a broad range of attacks.

Audit Records

A fundamental tool for intrusion detection is the audit record. Some record of ongoing activity
by users must be maintained as input to an intrusion detection system. Basically, two plans are
used:

e Native audit records: Virtually all multiuser operating systems include accounting
software that collects information on user activity. The advantage of using this
information is that no additional collection software is needed. The disadvantage is that
the native audit records may not contain the needed information or may not contain it in a
convenient form.

e Detection-specific audit records: A collection facility can be implemented that
generates audit records containing only that information required by the intrusion
detection system. One advantage of such an approach is that it could be made vendor
independent and ported to a variety of systems. The disadvantage is the extra overhead

involved in having, in effect, two accounting packages running on a machine.

A good example of detection-specific audit records reported in literature contains the following
fields:

e Subject: Initiators of actions. A subject is typically a terminal user but might also be a
process acting on behalf of users or groups of users. All activity arises through
commands issued by subjects. Subjects may be grouped into different access classes, and
these classes may overlap.

e Action: Operation performed by the subject on or with an object; for example, login,
read, perform 1/0O, execute.

e Object: Receptors of actions. Examples include files, programs, messages, records,
terminals, printers, and user- or program-created structures. When a subject is the
recipient of an action, such as electronic mail, then that subject is considered an object.
Objects may be grouped by type. Object granularity may vary by object type and by
environment. For example, database actions may be audited for the database as a whole

or at the record level.
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e Exception-Condition: Denotes which, if any, exception condition is raised on return.

e Resource-Usage: A list of quantitative elements in which each element gives the amount
used of some resource (e.g., number of lines printed or displayed, number of records read
or written, processor time, 1/0 units used, session elapsed time).

e Time-Stamp: Unique time-and-date stamp identifying when the action took place.

The audit records provide input to the intrusion detection using statistical anomaly detection
in two ways. First, the designer must decide on a number of quantitative metrics that can be used
to measure user behavior. An analysis of audit records over a period of time can be used to
determine the activity profile of the average user. Thus, the audit records serve to define typical
behavior. Second, current audit records are the input used to detect intrusion. That is, the
intrusion detection model analyzes incoming audit records to determine deviation from average

behavior.

As far as rule based intrusion detection, audit records are examined as they are generated,
and they are matched against the rule base. If a match is found, then the user's suspicion rating is
increased. If enough rules are matched, then the rating will pass a threshold that results in the

reporting of an anomaly.

Distributed Intrusion Detection

Until recently, work on intrusion detection systems focused on single-system stand-alone
facilities. The typical organization, however, needs to defend a distributed collection of hosts
supported by a LAN or internetwork. Although it is possible to mount a defense by using stand-
alone intrusion detection systems on each host, a more effective defense can be achieved by

coordination and cooperation among intrusion detection systems across the network.

The major issues in the design of a distributed intrusion detection system are:

e A distributed intrusion detection system may need to deal with different audit record
formats. In a heterogeneous environment, different systems will employ different native
audit collection systems and, if using intrusion detection, may employ different formats
for security-related audit records.

e One or more nodes in the network will serve as collection and analysis points for the data

from the systems on the network. Thus, either raw audit data or summary data must be
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transmitted across the network. Therefore, there is a requirement to assure the integrity
and confidentiality of these data. Integrity is required to prevent an intruder from masking
his or her activities by altering the transmitted audit information. Confidentiality is
required because the transmitted audit information could be valuable.

Either a centralized or decentralized architecture can be used. With a centralized
architecture, there is a single central point of collection and analysis of all audit data. This
eases the task of correlating incoming reports but creates a potential bottleneck and single
point of failure. With a decentralized architecture, there are more than one analysis

centers, but these must coordinate their activities and exchange information.

15.3 PASSWORD PROTECTION AND MANAGEMENT

One important element of intrusion prevention is password management, with the goal of

preventing unauthorized users from having access to the passwords of others.

The front line of defense against intruders is the password system. Virtually all multiuser

systems require that a user provide not only a name or identifier (ID) but also a password. The

password serves to authenticate the ID of the individual logging on to the system. In turn, the ID

provides security in the following ways:

The ID determines whether the user is authorized to gain access to a system. In some
systems, only those who already have an ID filed on the system are allowed to gain
access.

The ID determines the privileges accorded to the user. A few users may have supervisory
or "superuser" status that enables them to read files and perform functions that are
especially protected by the operating system. Some systems have guest or anonymous
accounts, and users of these accounts have more limited privileges than others.

The ID is used in what is referred to as discretionary access control. For example, by
listing the I1Ds of the other users, a user may grant permission to them to read files owned

by that user.

The Vulnerability of Passwords

To understand the nature of the threat to password-based systems, let us consider a scheme that

is widely used on UNIX, in which passwords are never stored in the clear. Rather, the following
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procedure is employed. Each user selects a password of up to eight printable characters in length.
This is converted into a 56-bit value (using 7-bit ASCII) that serves as the key input to an
encryption routine. The encryption routine, known as crypt(3), is based on DES. The DES
algorithm is modified using a 12-bit "salt" value. Typically, this value is related to the time at
which the password is assigned to the user. The modified DES algorithm is exercised with a data
input consisting of a 64-bit block of zeros. The output of the algorithm then serves as input for a
second encryption. This process is repeated for a total of 25 encryptions. The resulting 64-bit
output is then translated into an 11-character sequence. The hashed password is then stored,
together with a plaintext copy of the salt, in the password file for the corresponding user ID. This
method has been shown to be secure against a variety of cryptanalytic attacks.

The salt serves three purposes:

e |t prevents duplicate passwords from being visible in the password file. Even if two users
choose the same password, those passwords will be assigned at different times. Hence,
the "extended" passwords of the two users will differ.

e |t effectively increases the length of the password without requiring the user to remember
two additional characters. Hence, the number of possible passwords is increased by a
factor of 4096, increasing the difficulty of guessing a password.

e |t prevents the use of a hardware implementation of DES, which would ease the difficulty

of a brute-force guessing attack.

When a user attempts to log on to a UNIX system, the user provides an ID and a
password. The operating system uses the ID to index into the password file and retrieve the
plaintext salt and the encrypted password. The salt and user-supplied passwords are used as input

to the encryption routine. If the result matches the stored value, the password is accepted.

The encryption routine is designed to discourage guessing attacks. Software
implementations of DES are slow compared to hardware versions, and the use of 25 iterations
multiplies the time required by 25. However, since the original design of this algorithm, two
changes have occurred. First, newer implementations of the algorithm itself have resulted in
speedups. Second, hardware performance continues to increase, so that any software algorithm

executes more quickly.
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Thus, there are two threats to the UNIX password scheme. First, a user can gain access
on a machine using a guest account or by some other means and then run a password guessing
program, called a password cracker, on that machine. The attacker should be able to check
hundreds and perhaps thousands of possible passwords with little resource consumption. In
addition, if an opponent is able to obtain a copy of the password file, then a cracker program can
be run on another machine at leisure. This enables the opponent to run through many thousands

of possible passwords in a reasonable period.

Even stupendous guessing rates do not yet make it feasible for an attacker to use a dumb
brute-force technique of trying all possible combinations of characters to discover a password.

Instead, password crackers rely on the fact that some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is absurdly

short. This makes password cracking very easy.

Password length is only part of the problem. Many people, when permitted to choose
their own password, pick a password that is guessable, such as their own name, their street name,
a common dictionary word, and so forth. This makes the job of password cracking
straightforward. The cracker simply has to test the password file against lists of likely passwords.
Because many people use guessable passwords, such a strategy should succeed on virtually all

systems.

Password cracking programs could use one or all of the following strategies.

1. Try the user's name, initials, account name, and other relevant personal information. In
all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over 60,000
words, including the online dictionary on the system itself, and various other lists as
shown.

3. Try various permutations on the words from step 2. This included making the first letter
uppercase or a control character, making the entire word uppercase, reversing the word,
changing the letter "0" to the digit "zero," and so on. These permutations added another 1

million words to the list.
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4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.
Access Control
One way to thwart a password attack is to deny the opponent access to the password file. If the
encrypted password portion of the file is accessible only by a privileged user, then the opponent
cannot read it without already knowing the password of a privileged user. There are flaws in this

strategy too.

e Many systems, including most UNIX systems, are susceptible to unanticipated break-ins.
Once an attacker has gained access by some means, he or she may wish to obtain a
collection of passwords in order to use different accounts for different logon sessions to
decrease the risk of detection. Or a user with an account may desire another user's
account to access privileged data or to sabotage the system.

e An accident of protection might render the password file readable, thus compromising all
the accounts.

e Some of the users have accounts on other machines in other protection domains, and they
use the same password. Thus, if the passwords could be read by anyone on one machine,

a machine in another location might be compromised.

Thus, a more effective strategy would be to force users to select passwords that are difficult to

guess.

Password Selection Strategies
The lesson from the two experiments just described is that, left to their own devices, many users
choose a password that is too short or too easy to guess. At the other extreme, if users are
assigned passwords consisting of eight randomly selected printable characters, password
cracking is effectively impossible. But it would be almost as impossible for most users to
remember their passwords. Fortunately, even if we limit the password universe to strings of
characters that are reasonably memorable, the size of the universe is still too large to permit
practical cracking. Our goal, then, is to eliminate guessable passwords while allowing the user to
select a password that is memorable. Four basic techniques are in use:

e User education

e Computer-generated passwords
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e Reactive password checking

e Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be provided
with guidelines for selecting strong passwords. This user education strategy is unlikely to
succeed at most installations, particularly where there is a large user population or a lot of
turnover. Many users will simply ignore the guidelines. Others may not be good judges of what
is a strong password. For example, many users (mistakenly) believe that reversing a word or
capitalizing the last letter makes a password unguessable.

Computer-generated passwords also have problems. If the passwords are quite random
in nature, users will not be able to remember them. Even if the password is pronounceable, the
user may have difficulty remembering it and so be tempted to write it down. In general,
computer-generated password schemes have a history of poor acceptance by users. FIPS PUB
181 defines one of the best-designed automated password generators. The standard includes not
only a description of the approach but also a complete listing of the C source code of the
algorithm. The algorithm generates words by forming pronounceable syllables and concatenating
them to form a word. A random number generator produces a random stream of characters used

to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically runs its
own password cracker to find guessable passwords. The system cancels any passwords that are
guessed and notifies the user. This tactic has a number of drawbacks. First, it is resource
intensive if the job is done right. Because a determined opponent who is able to steal a password
file can devote full CPU time to the task for hours or even days, an effective reactive password
checker is at a distinct disadvantage. Furthermore, any existing passwords remain vulnerable

until the reactive password checker finds them.

The most promising approach to improved password security is a proactive password
checker. In this scheme, a user is allowed to select his or her own password. However, at the
time of selection, the system checks to see if the password is allowable and, if not, rejects it.

Such checkers are based on the philosophy that, with sufficient guidance from the system, users
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can select memorable passwords from a fairly large password space that are not likely to be

guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between user
acceptability and strength. If the system rejects too many passwords, users will complain that it
is too hard to select a password. If the system uses some simple algorithm to define what is

acceptable, this provides guidance to password crackers to refine their guessing technique.

15.4 SUMMARY

In this unit we discussed issues relating to unauthorized intrusion into a system. In
section 15.1 we defined and discussed in length, types of intruders, attack classification and
techniques for intruding a system. The section that followed is about detection of intrusion. Two
basic types of detection namely statistical and rule based methods are discussed here. The basic
ingredients for these methods are audit records of users. Description of audit records is found in
this section. Finally the unit closes with section 15.3 where in we described ways to secure

passwords and prompting/guiding users to select a strong password.

15.5 KEYWORDS

Intruders, intrusion attacks, intrusion techniques, intrusion detection- standalone and distributed

system, password protection, password management, password selection

15.6 QUESTIONS

1. Explain the classification of intruders.
2. How do intruders achieve their goals?
3. Differentiate intrusion detection and prevention? Which is easier to do why?
4. Discuss thoroughly
i.  Statistical anomaly detection
ii.  Rule based detection
5. What is audit record? Explain. How is this useful for detection intruders?

6. Explain detection of intrusion in distributed system environment.

217



7. Discuss UNIX way of maintaining passwords. Discuss the strengths and weaknesses of
this method.
8. Write about password crackers.

9. Write a note on password selection strategies.
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UNIT -16: MALICIOUS SOFTWARE AND FIREWALLS

Structure
16.0 Objectives
16.1 Malicious programs

16.2 Viruses

16.3 Worms

16.4  Virus counter measures
16.5 Firewalls

16.6  Summary
16.7 Keywords
16.8 Questions
16.9 References

16.0 OBJECTIVES

When you have gone through the material discussed in this unit you will know

What a malicious software is and its categories

The basic differences between logic bomb, Trojan horses, viruses, worms
About the solution to threat of malicious software

Antivirus techniques working principle

NN

Ways in which firewall protects the system

16.1 MALICIOUS SOFTWARE

Malicious software is software that is intentionally included or inserted in a system for a
harmful purpose. Perhaps the most sophisticated types of threats to computer systems are
presented by programs that exploit vulnerabilities in computing systems. Such threats are
referred to as malicious software, or malware. In this context, we are concerned with

application programs as well as utility programs, such as editors and compilers.

We begin this section with an overview of the spectrum of such software threats.

Malicious software can be divided into two categories: those that need a host program, and those
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that are independent. The former are essentially fragments of programs that cannot exist
independently of some actual application program, utility, or system program. Viruses, logic
bombs, and backdoors are examples. The latter are self-contained programs that can be
scheduled and run by the operating system. Worms and zombie programs are examples. Table

16.1 summarizes the various malicious software which are prevalent today.
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Table 16.1: Terminology of Malicious Programs

We can also differentiate between those software threats that do not replicate and those that do.
The former are programs or fragments of programs that are activated by a trigger. Examples are
logic bombs, backdoors, and zombie programs. The latter consists of either a program fragment
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or an independent program that, when executed may produce one or more copies of itself to be

activated later on the system. Viruses and worms are examples.
A survey of some malicious software is given here.

Backdoor: A backdoor, also known as a trapdoor, is a secret entry point into a program that
allows someone who is aware of the backdoor to gain access without going through the usual
security access procedures. Programmers have used backdoors legitimately for many years to
debug and test programs; such a backdoor is called a maintenance hook. This usually is done
when the programmer is developing an application that has an authentication procedure, or a
long setup, requiring the user to enter many different values to run the application. To debug the
program, the developer may wish to gain special privileges or to avoid all the necessary setup
and authentication. The programmer may also want to ensure that there is a method of activating
the program should something be wrong with the authentication procedure that is being built into
the application. The backdoor is code that recognizes some special sequence of input or is

triggered by being run from a certain user 1D or by an unlikely sequence of events.

Backdoors become threats when unscrupulous programmers use them to gain

unauthorized access.

Logic bomb: One of the oldest types of program threat, predating viruses and worms, is the
logic bomb. The logic bomb is code embedded in some legitimate program that is set to
"explode™ when certain conditions are met. Examples of conditions that can be used as triggers
for a logic bomb are the presence or absence of certain files, a particular day of the week or date,
or a particular user running the application. Once triggered, a bomb may alter or delete data or

entire files, cause a machine halt, or do some other damage.

Trojan Horses: A Trojan horse is a useful, or apparently useful, program or command
procedure containing hidden code that, when invoked, performs some unwanted or harmful
function.

Trojan horse programs can be used to accomplish functions indirectly that an
unauthorized user could not accomplish directly. For example, to gain access to the files of
another user on a shared system, a user could create a Trojan horse program that, when executed,

changed the invoking user's file permissions so that the files are readable by any user. The author

221



could then induce users to run the program by placing it in a common directory and naming it
such that it appears to be a useful utility. An example is a program that ostensibly produces a
listing of the user's files in a desirable format. After another user has run the program, the author
can then access the information in the user's files. An example of a Trojan horse program that
would be difficult to detect is a compiler that has been modified to insert additional code into
certain programs as they are compiled, such as a system login program. The code creates a
backdoor in the login program that permits the author to log on to the system using a special
password. This Trojan horse can never be discovered by reading the source code of the login

program.

Another common motivation for the Trojan horse is data destruction. The program
appears to be performing a useful function (e.g., a calculator program), but it may also be quietly

deleting the user's files.

Zombie: A zombie is a program that secretly takes over another Internet-attached computer and
then uses that computer to launch attacks that are difficult to trace to the zombie's creator.
Zombies are used in denial-of-service attacks, typically against targeted Web sites. The zombie
is planted on hundreds of computers belonging to unsuspecting third parties, and then used to
overwhelm the target Web site by launching an overwhelming onslaught of Internet traffic.

16.2 VIRUSES

A virus is a piece of software that can "infect” other programs by modifying them; the
modification includes a copy of the virus program, which can then go on to infect other

programs.

Biological viruses are tiny scraps of genetic code-DNA or RNA-that can take over the
machinery of a living cell and trick it into making thousands of flawless replicas of the original
virus. Like its biological counterpart, a computer virus carries in its instructional code the recipe
for making perfect copies of itself. The typical virus becomes embedded in a program on a
computer. Then, whenever the infected computer comes into contact with an uninfected piece of
software, a fresh copy of the virus passes into the new program. Thus, the infection can be spread

from computer to computer by unsuspecting users who either swap disks or send programs to
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one another over a network. In a network environment, the ability to access applications and

system services on other computers provides a perfect culture for the spread of a virus.

A virus can do anything that other programs do. The only difference is that it attaches
itself to another program and executes secretly when the host program is run. Once a virus is

executing, it can perform any function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

e Dormant phase: The virus is idle. The virus will eventually be activated by some event,
such as a date, the presence of another program or file, or the capacity of the disk
exceeding some limit. Not all viruses have this stage.

e Propagation phase: The virus places an identical copy of itself into other programs or
into certain system areas on the disk. Each infected program will now contain a clone of
the virus, which will itself enter a propagation phase.

e Triggering phase: The virus is activated to perform the function for which it was
intended. As with the dormant phase, the triggering phase can be caused by a variety of
system events, including a count of the number of times that this copy of the virus has
made copies of itself.

e Execution phase: The function is performed. The function may be harmless, such as a

message on the screen, or damaging, such as the destruction of programs and data files.

Most viruses carry out their work in a manner that is specific to a particular operating system
and, in some cases, specific to a particular hardware platform. Thus, they are designed to take

advantage of the details and weaknesses of particular systems.

Virus Structure
A virus can be prepended or postpended to an executable program, or it can be embedded in
some other fashion. The key to its operation is that the infected program, when invoked, will first
execute the virus code and then execute the original code of the program.

A very general depiction of virus structure is shown in figure 16.1. In this case, the virus
code, V, is pretended to infected programs, and it is assumed that the entry point to the program,

when invoked, is the first line of the program.
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program V :=

{goto main;
1234567;

subroutine infect-executable :=
{loop:
file : = get-random-executable-file;
if (first-line-of-file = 1234567)
then goto loop
else prepend V to file; }

subroutine do-damage :=
{whatever damage is to be done}

subroutine trigger-pulled :=
{return true if some condition holds}

main: main-program :=
{infect-executable:
if trigger-pulled then do-damage;
goto next;}

next:

Figure 16.1: A simple virus

An infected program begins with the virus code and works as follows. The first line of
code is a jump to the main virus program. The second line is a special marker that is used by the
virus to determine whether or not a potential victim program has already been infected with this
virus. When the program is invoked, control is immediately transferred to the main virus
program. The virus program first seeks out uninfected executable files and infects them. Next,
the virus may perform some action, usually detrimental to the system. This action could be
performed every time the program is invoked, or it could be a logic bomb that triggers only
under certain conditions. Finally, the virus transfers control to the original program. If the
infection phase of the program is reasonably rapid, a user is unlikely to notice any difference

between the execution of an infected and uninfected program.

A virus such as the one just described is easily detected because an infected version of a
program is longer than the corresponding uninfected one. A way to thwart such a simple means

of detecting a virus is to compress the executable file.
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A virus program may be written to compress all uninfected executable programs and
append the same to original program when user executes this infected file, the compressed
version of original program is uncompressed and executed. Thus change in size of the file is not
observed. Also running time is not longer. The virus spreads to other programs. Once virus gets
entry into a system, it can affect all other executable files. Thus viral infection can be completely
prevented only by preventing its entry. Unfortunately this is extremely difficult task, because a

virus can be part of any program outside a system.

Types of Viruses

There has been a continuous arms race between virus writers and writers of antivirus software
since viruses first appeared. As effective countermeasures have been developed for existing
types of viruses, new types have been developed. The following categories are the most
significant types of viruses:

e Parasitic virus: The traditional and still most common form of virus. A parasitic virus
attaches itself to executable files and replicates, when the infected program is executed,
by finding other executable files to infect.

e Memory-resident virus: Lodges in main memory as part of a resident system program.
From that point on, the virus infects every program that executes.

e Boot sector virus: Infects a master boot record or boot record and spreads when a system
is booted from the disk containing the virus.

e Stealth virus: A form of virus explicitly designed to hide itself from detection by
antivirus software.

e Polymorphic virus: A virus that mutates with every infection, making detection by the
"signature” of the virus impossible.

e Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with
every infection. The difference is that a metamorphic virus rewrites itself completely at
each iteration, increasing the difficulty of detection. Metamorphic viruses my change

their behavior as well as their appearance.

One example of a stealth virus was discussed earlier: a virus that uses compression so that the
infected program is exactly the same length as an uninfected version. Far more sophisticated

techniques are possible. For example, a virus can place intercept logic in disk 1/O routines, so
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that when there is an attempt to read suspected portions of the disk using these routines, the virus
will present back the original, uninfected program. Thus, stealth is not a term that applies to a

virus as such but, rather, is a technique used by a virus to evade detection.

A polymorphic virus creates copies during replication that are functionally equivalent
but have distinctly different bit patterns. As with a stealth virus, the purpose is to defeat
programs that scan for viruses. In this case, the "signature™ of the virus will vary with each copy.
To achieve this variation, the virus may randomly insert superfluous instructions or interchange
the order of independent instructions. A more effective approach is to use encryption. A portion
of the virus, generally called a mutation engine, creates a random encryption key to encrypt the
remainder of the virus. The key is stored with the virus, and the mutation engine itself is altered.
When an infected program is invoked, the virus uses the stored random key to decrypt the virus.

When the virus replicates, a different random key is selected.

Another weapon in the virus writers' armory is the virus-creation toolkit. Such a toolkit
enables a relative novice to create quickly a number of different viruses. Although viruses
created with toolkits tend to be less sophisticated than viruses designed from scratch, the sheer

number of new viruses that can be generated creates a problem for antivirus schemes.

Macro Viruses
In the mid-1990s, macro viruses became by far the most prevalent type of virus. Macro viruses
are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Virtually all of the macro viruses infect Microsoft
Word documents. Any hardware platform and operating system that supports Word can
be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the information
introduced onto a computer system is in the form of a document rather than a program.

3. Macro viruses are easily spread. A very common method is by electronic mail.

Recent releases of Word provide increased protection against macro viruses. For example,
Microsoft offers an optional Macro Virus Protection tool that detects suspicious Word files and
alerts the customer to the potential risk of opening a file with macros. Various antivirus product

vendors have also developed tools to detect and correct macro viruses.
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E-mail Viruses
A more recent development in malicious software is the e-mail virus. The first rapidly spreading
e-mail viruses, such as Melissa, made use of a Microsoft Word macro embedded in an
attachment. If the recipient opens the e-mail attachment, the Word macro is activated. Then

1. The e-mail virus sends itself to everyone on the mailing list in the user's e-mail package.

2. The virus does local damage.

At the end of 1999, a more powerful version of the e-mail virus appeared. This newer
version can be activated merely by opening an e-mail that contains the virus rather than opening
an attachment. The virus uses the Visual Basic scripting language supported by the e-mail

package.

Thus we see a new generation of malware that arrives via e-mail and uses e-mail software
features to replicate itself across the Internet. The virus propagates itself as soon as activated
(either by opening an e-mail attachment of by opening the e-mail) to all of the e-mail addresses
known to the infected host. As a result, whereas viruses used to take months or years to
propagate, they now do so in hours. This makes it very difficult for antivirus software to respond
before much damage is done. Ultimately, a greater degree of security must be built into Internet

utility and application software on PCs to counter the growing threat.

16.3 WORMS

A worm is a program that can replicate itself and send copies from computer to computer
across network connections. Upon arrival, the worm may be activated to replicate and propagate
again. In addition to propagation, the worm usually performs some unwanted function. An e-mail
virus has some of the characteristics of a worm, because it propagates itself from system to
system. However, we can still classify it as a virus because it requires a human to move it
forward. A worm actively seeks out more machines to infect and each machine that is infected

serves as an automated launching pad for attacks on other machines.

Network worm programs use network connections to spread from system to system.
Once active within a system, a network worm can behave as a computer virus or bacteria, or it

could implant Trojan horse programs or perform any number of disruptive or destructive actions.
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To replicate itself, a network worm uses some sort of network vehicle. Examples include
the following:
e Electronic mail facility: A worm mails a copy of itself to other systems.
e Remote execution capability: A worm executes a copy of itself on another system.
e Remote login capability: A worm logs onto a remote system as a user and then uses

commands to copy itself from one system to the other.

The new copy of the worm program is then run on the remote system where, in addition to any
functions that it performs at that system, it continues to spread in the same fashion.

A network worm exhibits the same characteristics as a computer virus: a dormant phase,
a propagation phase, a triggering phase, and an execution phase. The propagation phase
generally performs the following functions:
1. Search for other systems to infect by examining host tables or similar repositories of
remote system addresses.
2. Establish a connection with a remote system.

3. Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has previously been
infected before copying itself to the system. In a multiprogramming system, it may also disguise
its presence by naming itself as a system process or using some other name that may not be

noticed by a system operator. As with viruses, network worms are difficult to counter.

Morris worm (1998) was designed to spread on UNIX systems and used a number of
different techniques for propagation. When Morris worm program is executed, its first task was
to discover other hosts that would allow entry from this host. This is done by examining variety
of lists and tables, including system tables that declared other trusted hosts, email forwarding
files etc. More recent worms are code Red (2001), SQL Slammer (2003) Sobig.f(2003) and
Mydoom (2004). Code red exploits security holes in Microsoft Internet Information server to
generate and spread. It is capable of initiating denial of service attacks against a Government
website by flooding the site with packets from numerous hosts. The worm then suspends
activities and reactivates periodically. Code Red 11 is a variant of Code Red, which installs a

backdoor allowing hacker to direct activities of victim computers. This worm modifies .htm,
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html, .asp files. SQL Slammer worm exploited buffer overflow vulnerability in Microsoft SQL
server. Sobig.f exploited open proxy servers. It was reported that at its peak, one in every 17
messages was affected by this worm. Mydoom is a mass-mailing email worm. It was capable of

installing a backdoor in infected computers allowing entry for hackers.

For each discovered host, the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the worm first
attempted to crack the local password file, and then used the discovered passwords and
corresponding user IDs. The assumption was that many users would use the same password
on different systems. To obtain the passwords, the worm ran a password-cracking program
that tried.

a) Each user's account name and simple permutations of it
b) A list of 432 built-in passwords that Morris thought to be likely candidates
c) All the words in the local system directory
2. It exploited a bug in the finger protocol, which reports the whereabouts of a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives and sends mail.

If any of these attacks succeeded, the worm achieved communication with the operating
system command interpreter. It then sent this interpreter a short bootstrap program, issued a
command to execute that program, and then logged off. The bootstrap program then called back
the parent program and downloaded the remainder of the worm. The new worm was then

executed.

State of Worm Technology
The state of the art in worm technology includes the following:
e Multiplatform: Newer worms are not limited to Windows machines but can attack a
variety of platforms, especially the popular varieties of UNIX.
e Multiexploit: New worms penetrate systems in a variety of ways, using exploits against
Web servers, browsers, e-mail, file sharing, and other network-based applications.
e Ultrafast spreading: One technique to accelerate the spread of a worm is to conduct a

prior Internet scan to accumulate Internet addresses of vulnerable machines.
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Polymorphic: To evade detection, skip past filters, and foil real-time analysis, worms
adopt the virus polymorphic technique. Each copy of the worm has new code generated
on the fly using functionally equivalent instructions and encryption techniques.
Metamorphic: In addition to changing their appearance, metamorphic worms have a
repertoire of behavior patterns that are unleashed at different stages of propagation.
Transport vehicles: Because worms can rapidly compromise a large number of systems,
they are ideal for spreading other distributed attack tools, such as distributed denial of
service zombies.

Zero-day exploit: To achieve maximum surprise and distribution, a worm should exploit
an unknown vulnerability that is only discovered by the general network community

when the worm is launched.

16.4 VIRUS COUNTER MEASURES

We discuss general approaches of antivirus software and advanced techniques.

Antivirus Approaches

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get into the

system in the first place. This goal is, in general, impossible to achieve, although prevention can

reduce the number of successful viral attacks. The next best approach is to be able to do the

following:

Detection: Once the infection has occurred, determine that it has occurred and locate the
virus.

Identification: Once detection has been achieved, identify the specific virus that has
infected a program.

Removal: Once the specific virus has been identified, remove all traces of the virus from
the infected program and restore it to its original state. Remove the virus from all infected

systems so that the disease cannot spread further.

If detection succeeds but either identification or removal is not possible, then the alternative

is to discard the infected program and reload a clean backup version.
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Advances in virus and antivirus technology go hand in hand. Early viruses were relatively
simple code fragments and could be identified and purged with relatively simple antivirus
software packages. As the virus arms race has evolved, both viruses and, necessarily, antivirus

software have grown more complex and sophisticated.

The four generations of antivirus software are:
e First generation: simple scanners

e Second generation: heuristic scanners

e Third generation: activity traps

e Fourth generation: full-featured protection

A first-generation scanner requires a virus signature to identify a virus. The virus may
contain "wildcards" but has essentially the same structure and bit pattern in all copies. Such
signature-specific scanners are limited to the detection of known viruses. Another type of first-

generation scanner maintains a record of the length of programs and looks for changes in length.

A second-generation scanner does not rely on a specific signature. Rather, the scanner uses
heuristic rules to search for probable virus infection. One class of such scanners looks for
fragments of code that are often associated with viruses. For example, a scanner may look for the
beginning of an encryption loop used in a polymorphic virus and discover the encryption key.
Once the key is discovered, the scanner can decrypt the virus to identify it, then remove the

infection and return the program to service.

Another second-generation approach is integrity checking. A checksum can be appended
to each program. If a virus infects the program without changing the checksum, then an integrity
check will catch the change. To counter a virus that is sophisticated enough to change the
checksum when it infects a program, an encrypted hash function can be used. The encryption key
is stored separately from the program so that the virus cannot generate a new hash code and
encrypt that. By using a hash function rather than a simpler checksum, the virus is prevented
from adjusting the program to produce the same hash code as before.

Third-generation programs are memory-resident programs that identify a virus by its

actions rather than its structure in an infected program. Such programs have the advantage that it
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is not necessary to develop signatures and heuristics for a wide array of viruses. Rather, it is
necessary only to identify the small set of actions that indicate an infection is being attempted

and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus techniques
used in conjunction. These include scanning and activity trap components. In addition, such a
package includes access control capability, which limits the ability of viruses to penetrate a

system and then limits the ability of a virus to update files in order to pass on the infection.

The arms race continues. With fourth-generation packages, a more comprehensive
defense strategy is employed, broadening the scope of defense to more general-purpose

computer security measures.

Advanced Antivirus Techniques
More sophisticated antivirus approaches and products continue to appear. In this subsection, we

highlight two of the most important.

Generic Decryption: Generic decryption (GD) technology enables the antivirus program to
easily detect even the most complex polymorphic viruses, while maintaining fast scanning
speeds. Recall that when a file containing a polymorphic virus is executed, the virus must
decrypt itself to activate. In order to detect such a structure, executable files are run through a
GD scanner, which contains the following elements:

e CPU emulator: A software-based virtual computer. Instructions in an executable file are
interpreted by the emulator rather than executed on the underlying processor. The
emulator includes software versions of all registers and other processor hardware, so that
the underlying processor is unaffected by programs interpreted on the emulator.

e Virus signature scanner: A module that scans the target code looking for known virus
signatures.

e Emulation control module: Controls the execution of the target code.

At the start of each simulation, the emulator begins interpreting instructions in the target
code, one at a time. Thus, if the code includes a decryption routine that decrypts and hence

exposes the virus, that code is interpreted. In effect, the virus does the work for the antivirus
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program by exposing the virus. Periodically, the control module interrupts interpretation to scan

the target code for virus signatures.

During interpretation, the target code can cause no damage to the actual personal

computer environment, because it is being interpreted in a completely controlled environment.

The most difficult design issue with a GD scanner is to determine how long to run each
interpretation. Typically, virus elements are activated soon after a program begins executing, but
this need not be the case. The longer the scanner emulates a particular program, the more likely it
is to catch any hidden viruses. However, the antivirus program can take up only a limited amount

of time and resources before users complain.

16.5 FIREWALLS

Firewalls can be an effective means of protecting a local system or network of systems from
network-based security threats while at the same time affording access to the outside world via

wide area networks and the Internet.

Internet connectivity is no longer optional for organizations. The information and
services available are essential to the organization. Moreover, individual users within the
organization want and need Internet access, and if this is not provided via their LAN, they will
use dial-up capability from their PC to an Internet service provider (ISP). However, while
Internet access provides benefits to the organization, it enables the outside world to reach and
interact with local network assets. This creates a threat to the organization. While it is possible to
equip each workstation and server on the premises network with strong security features, such as
intrusion protection, this is not a practical approach. Consider a network with hundreds or even
thousands of systems, running a mix of various versions of UNIX, plus Windows. When a
security flaw is discovered, each potentially affected system must be upgraded to fix that flaw.
The alternative, increasingly accepted, is the firewall. The firewall is inserted between the
premises network and the Internet to establish a controlled link and to erect an outer security wall
or perimeter. The aim of this perimeter is to protect the premises network from Internet-based

attacks and to provide a single choke point where security and audit can be imposed. The
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firewall may be a single computer system or a set of two or more systems that cooperate to

perform the firewall function.

Firewall characteristics

The following are the design goals of a firewall

1. All traffic from inside to outside, and vice versa, must pass through the firewall. This is

achieved by physically blocking all access to the local network except via the firewall.

Various configurations are possible.

2. Only authorized traffic, as defined by the local security policy, will be allowed to pass.

Various types of firewalls are used, which implement various types of security policies, as

explained later in this section.

3. The firewall itself is immune to penetration. This implies that use of a trusted system with a

secure operating system.

There are four essential controls exercised by a firewall

Service control: Determines the types of Internet services that can be accessed, inbound
or outbound. The firewall may filter traffic on the basis of IP address and TCP port
number; may provide proxy software that receives and interprets each service request
before passing it on; or may host the server software itself, such as a Web or mail service.
Direction control: Determines the direction in which particular service requests may be
initiated and allowed to flow through the firewall.

User control: Controls access to a service according to which user is attempting to
access it. This feature is typically applied to users inside the firewall perimeter (local
users). It may also be applied to incoming traffic from external users; the latter requires
some form of secure authentication technology, such as is provided in IPSec .

Behavior control: Controls how particular services are used. For example, the firewall
may filter e-mail to eliminate spam, or it may enable external access to only a portion of

the information on a local Web server.

Firewalls have their limitations, including the following:

1.

The firewall cannot protect against attacks that bypass the firewall. Internal systems may
have dial-out capability to connect than ISP. An internal LAN may support a modem
pool that provides dial-in capability for traveling employees and telecommuters.
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2. The firewall does not protect against internal threats, such as a disgruntled employee or
an employee who unwittingly cooperates with an external attacker.

3. The firewall cannot protect against the transfer of virus-infected programs or files.
Because of the variety of operating systems and applications supported inside the
perimeter, it would be impractical and perhaps impossible for the firewall to scan all
incoming files, e-mail, and messages for viruses.

Types of Firewalls
Figure 16.2 illustrates the three common types of firewalls: packet filters, application-level

gateways, and circuit-level gateways. We examine each of these in turn.

Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then

forwards or discards the packet. The router is typically configured to filter packets going in both

directions (from and to the internal network). Filtering rules are based on information contained

in a network packet:

e Source IP address: The IP address of the system that originated the IP packet (e.g.,
192.178.1.1)

e Destination IP address: The IP address of the system the IP packet is trying to reach (e.g.,
192.168.1.2)

e Source and destination transport-level address: The transport level (e.g., TCP or UDP)
port number, which defines applications such as SNMP or TELNET

e IP protocol field: Defines the transport protocol

e Interface: For a router with three or more ports, which interface of the router the packet

came from or which interface of the router the packet is destined for.

The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP
header. If there is a match to one of the rules, that rule is invoked to determine whether to
forward or discard the packet. If there is no match to any rule, then a default action is taken. Two
default policies are possible:

e Default = discard: That which is not expressly permitted is prohibited.

e Default = forward: That which is not expressly prohibited is permitted.
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Figure 16.2: Firewall types
The default discard policy is more conservative. Initially, everything is blocked, and services

must be added on a case-by-case basis. This policy is more visible to users, who are more likely
to see the firewall as a hindrance. The default forward policy increases ease of use for end users
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but provides reduced security; the security administrator must, in essence, react to each new

security threat as it becomes known.

Application-Level Gateway

An application-level gateway, also called a proxy server, acts as a relay of application-level
traffic (Figure 16.2). The user contacts the gateway using a TCP/IP application, such as Telnet or
FTP, and the gateway asks the user for the name of the remote host to be accessed. When the
user responds and provides a valid user ID and authentication information, the gateway contacts
the application on the remote host and relays TCP segments containing the application data
between the two endpoints. If the gateway does not implement the proxy code for a specific
application, the service is not supported and cannot be forwarded across the firewall. Further, the
gateway can be configured to support only specific features of an application that the network

administrator considers acceptable while denying all other features.

Application-level gateways tend to be more secure than packet filters. Rather than trying
to deal with the numerous possible combinations that are to be allowed and forbidden at the TCP
and IP level, the application-level gateway need only scrutinize a few allowable applications. In
addition, it is easy to log and audit all incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing overhead on
each connection. In effect, there are two spliced connections between the end users, with the
gateway at the splice point, and the gateway must examine and forward all traffic in both

directions.

Circuit-Level Gateway

A third type of firewall is the circuit-level gateway (Figure 16.2). This can be a stand-alone
system or it can be a specialized function performed by an application-level gateway for certain
applications. A circuit-level gateway does not permit an end-to-end TCP connection; rather, the
gateway sets up two TCP connections, one between itself and a TCP user on an inner host and
one between itself and a TCP user on an outside host. Once the two connections are established,
the gateway typically relays TCP segments from one connection to the other without examining

the contents. The security function consists of determining which connections will be allowed.
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A typical use of circuit-level gateways is a situation in which the system administrator
trusts the internal users. The gateway can be configured to support application-level or proxy
service on inbound connections and circuit-level functions for outbound connections. In this
configuration, the gateway can incur the processing overhead of examining incoming application

data for forbidden functions but does not incur that overhead on outgoing data.

16.6 SUMMARY

This unit began with discussions on malicious software viruses, worms, Trojan horse,
logic bomb, zombie. Phases of a virus in its life cycle, types of viruses are discussed in section
16.2. The behavior programs and latest in worm technology are listed in section 16.3. Counter
measures possible prevent and remedy virus attacks are given the section next. The unit

concludes with a discussion on firewalls.
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16.8 QUESTIONS

Write about logic bomb, Trojan horse, and zombie.

What are the phases of virus?

What is the structure of a virus?

What is the role of compression in the operation of a virus?
What is the role of encryption in the operation of a virus?
Explain propagation of worms.

What are the types of viruses?

How can counter measures be devised for virus attacks?
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List the design goals of firewalls.

10. Explain the techniques used for controlling access with a firewall.
11. Explain firewall design mechanisms

a) Packet filter
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b) Application level gateway

c) Circuit level gateway.
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