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Cyber Threat Intelligence: Challenges )
and Opportunities G

Mauro Conti, Tooska Dargahi, and Ali Dehghantanha

Abstract The ever increasing number of cyber attacks requires the cyber security
and forensic specialists to detect, analyze and defend against the cyber threats in
almost real-time. In practice, timely dealing with such a large number of attacks is
not possible without deeply perusing the attack features and taking corresponding
intelligent defensive actions—this in essence defines cyber threat intelligence
notion. However, such an intelligence would not be possible without the aid of
artificial intelligence, machine learning and advanced data mining techniques to
collect, analyse, and interpret cyber attack evidences. In this introductory chapter
we first discuss the notion of cyber threat intelligence and its main challenges and
opportunities, and then briefly introduce the chapters of the book which either
address the identified challenges or present opportunistic solutions to provide threat
intelligence.

Keywords Cyber threat intelligence - Indicators of attack - Indicators of
compromise - Artificial intelligence

1 Introduction

In the era of digital information technology and connected devices, the most
challenging issue is ensuring the security and privacy of the individuals’ and orga-
nizations’ data. During the recent years, there has been a significant increase in the
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number and variety of cyber attacks and malware samples which make it extremely
difficult for security analysts and forensic investigators to detect and defend against
such security attacks. In order to cope with this problem, researchers introduced
the notion of “Threat Intelligence”, which refers to “the set of data collected,
assessed and applied regarding security threats, threat actors, exploits, malware,
vulnerabilities and compromise indicators” [14]. In fact, Cyber Threat Intelligence
(CTI) emerged in order to help security practitioners in recognizing the indicators
of cyber attacks, extracting information about the attack methods, and consequently
responding to the attack accurately and in a timely manner. Here an important chal-
lenge would be: How to provide such an intelligence? When a significant amount
of data is collected from or generated by different security monitoring solutions,
intelligent big-data analytical techniques are necessary to mine, interpret and extract
knowledge out of the collected data. In this regard, several concerns come along and
introduce new challenges to the filed, which we discuss in the following.

1.1 Cyber Threat Intelligence Challenges

As a matter of fact, cybercriminals adopt several methods to attack a victim in order
to (1) steal victim’s sensitive personal information (e.g., financial information); or
(2) access and take control of the victim’s machine to perform further malicious
activities, such as delivering malware (in case of botnet), locking/encrypting victim
machine (in case of ransomware). Though, different cyber attacks seem to follow
different methods of infection, in essence they have more or less similar life cycle:
starting from victim reconnaissance to performing malicious activities on the victim
machine/network.

1.1.1 Attack Vector Reconnaissance

An important challenge in defending against cyber attacks, is recognizing the point
of attacks and the system vulnerabilities that could be exploited by the cybercrim-
inals. Along with the common methods that have always been used to deceive
victims (e.g., phishing [16]) in performing the actions that the attackers desire,
during the recent years, attackers have used smarter and more innovative methods
for attacking victims. These methods are ranging from delivering a malicious
software (malware) in an unexpected format (e.g., Word documents or PDF files)
to the victim machine [6], to exploiting O-day vulnerabilities,! and trespassing
anonymous communications in order to contact threat actors [8]. Some examples
of such advanced attacks are the new families of Ransomware that have worm-like

1 An application vulnerability that is undisclosed and could be exploited by the attackers to access
the victim’s machine [12].
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behaviours, which have infected tens of hundreds of individuals, organizations and
critical systems. These advancements in attack methods make the recognition of the
attacker and attack’s point of arrival an extremely challenging issue.

1.1.2 Attack Indicator Reconnaissance

Another important issue regarding the emerging cyber attacks is the fact that
cybercriminals use advanced anti-forensics and evasion methods in their malicious
code, which makes the usual security assessment techniques, e.g., CVSS (Common
Vulnerability Scoring System), or static malware and traffic analysis less effi-
cient [13, 15]. Moreover, the new networking paradigms, such as software-defined
networking (SDN), Internet of Things (IoT), and cloud computing, and their widely
adoption by organizations (e.g., using cloud resources for their big-data storage and
processing) call for modern techniques in forensic investigation of exchanged and
stored data [2, 7, 10, 17].

1.2 Cyber Threat Intelligence Opportunities

In order to address the challenges explained in the previous section, the emerging
field of cyber threat intelligence considers the application of artificial intelligence
and machine learning techniques to perceive, reason, learn and act intelligently
against advanced cyber attacks. During the recent years, researchers have taken
different artificial intelligence techniques into consideration in order to provide
the security professionals with a means of recognizing cyber threat indicators. In
particular, there is an increasing trend in the usage of Machine Learning (ML)
and data mining techniques due to their proved efficiency in malware analysis (in
both static and dynamic analysis), as well as network anomaly detection [1, 3—
5, 9, 15]. Along with the methods that the cyber defenders could use in order to
prevent or detect cyber attacks, there are other mechanisms that could be adopted
in order to deceive the attackers, such as using honeypots. In such mechanisms,
security specialists provide fake information or resources that seem to be legitimate
to attract attackers, while at the same time they monitor the attackers’ activities and
proactively detect the attack [11]. Totally, a combination of these methods would be
required to provide up-to-date information for security practitioners and analysts.

2 A Brief Review of the Book Chapters

This book provides an up-to-date and advanced knowledge, from both academia
and industry, in cyber threat intelligence. In particular, in this book we provide
wider knowledge of the field with specific focus on the cyber attack methods and
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processes, as well as combination of tools and techniques to perceive, reason, learn
and act on a wide range of data collected from different cyber security and forensics
solutions.

The remainder of the book is structured as follows. The first six chapters
discuss, in details, how the adoption of artificial intelligence would advance
the cyber threat intelligence in several contexts, i.e., in static malware analy-
sis (chapter “Machine Learning Aided Static Malware Analysis: A Survey and
Tutorial”), network anomaly detection (chapter “Application of Machine Learning
Techniques to Detecting Anomalies in Communication Networks: Datasets and
Feature Selection Algorithms” and “Application of Machine Learning Techniques
to Detecting Anomalies in Communication Networks: Classification Algorithms”),
Ransomware detection (chapter “Leveraging Machine Learning Techniques for
Windows Ransomware Network Traffic Detection”and “Leveraging Support Vector
Machine for Opcode Density Based Detection of Crypto-Ransomware”), and Botnet
detection (chapter “BoTShark : A Deep Learning Approach for Botnet Traffic
Detection”). The next chapter (chapter “A Practical Analysis of the Rise in Mobile
Phishing™) presents an investigative analysis of mobile-specific phishing methods
and the results of a case study by PayPal. Chapter “PDF-Malware Detection:
A Survey and Taxonomy of Current Techniques” reviews several methods of
malicious payload delivery through PDF files and provides a taxonomy of malicious
PDF detection methods. Chapter “Adaptive Traffic Fingerprinting for Darknet
Threat Intelligence” presents a traffic fingerprinting algorithm for Darknet threat
intelligence, which in essence serves as an adaptive traffic association and BGP
interception algorithm against Tor networks. Chapter “A Model for Android and
i0S Applications Risk Calculation: CVSS Analysis and Enhancement Using Case-
Control Studies” investigates the effectiveness of existing CVSS evaluation results
and proposes a model for CVSS analysis suggesting improvements to the calculation
of CVSS scores (to be used for Android and iOS applications). Chapter “A Honeypot
Proxy Framework for Deceiving Attackers with Fabricated Content” studies the
attributes of an effective fake content generator to be used to deceive cyber
attackers, and presents an implementation design for an efficient honeypot proxy
framework. Chapter “Investigating the Possibility of Data Leakage in Time of Live
VM Migration” discusses possible attacks to the memory data of VMs (Virtual
Machines) during live migration in the cloud environment and proposes a secure
live VM migration. Chapter “Forensics Investigation of OpenFlow-Based SDN
Platforms” introduces a forensic investigation framework for SDN, validating its
efficiency considering two use-case scenarios. Finally, the last two chapters warp
up the book by assessing and reviewing the state-of-the-art in mobile forensics
(chapter “Mobile Forensics: A Bibliometric Analysis”) and cloud forensics (chapter
“Emerging from The Cloud: A Bibliometric Analysis of Cloud Forensics Studies”).

Acknowledgements We would like to sincerely thank all the authors and reviewers, as well as
Springer editorial office for their effort towards the success of this book.
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Machine Learning Aided Static Malware m)
Analysis: A Survey and Tutorial G

Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke

Abstract Malware analysis and detection techniques have been evolving during
the last decade as a reflection to development of different malware techniques to
evade network-based and host-based security protections. The fast growth in variety
and number of malware species made it very difficult for forensics investigators to
provide an on time response. Therefore, Machine Learning (ML) aided malware
analysis became a necessity to automate different aspects of static and dynamic
malware investigation. We believe that machine learning aided static analysis can
be used as a methodological approach in technical Cyber Threats Intelligence (CTI)
rather than resource-consuming dynamic malware analysis that has been thoroughly
studied before. In this paper, we address this research gap by conducting an in-
depth survey of different machine learning methods for classification of static
characteristics of 32-bit malicious Portable Executable (PE32) Windows files and
develop taxonomy for better understanding of these techniques. Afterwards, we
offer a tutorial on how different machine learning techniques can be utilized in
extraction and analysis of a variety of static characteristic of PE binaries and
evaluate accuracy and practical generalization of these techniques. Finally, the
results of experimental study of all the method using common data was given to
demonstrate the accuracy and complexity. This paper may serve as a stepping stone
for future researchers in cross-disciplinary field of machine learning aided malware
forensics.

Keywords Machine learning - Malware - Static analysis - Artificial intelligence
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1 Introduction

Stealing users’ personal and private information has been always among top
interests of malicious programs [8]. Platforms which are widely used by normal
users have always been best targets for malware developers [9].

Attackers have leveraged malware to target personal computers [22], mobile
devices [61], cloud storage systems [13], Supervisory Control and Data Acquisition
Systems (SCADA) [12], Internet of Things (IoT) network [81] and even big data
platforms [67].

Forensics examiners and incident handlers on the other side have developed
different techniques for detection of compromised systems, removal of detected
malicious programs [14, 23], network traffic [63], and even log analysis [69]. Dif-
ferent models have been suggested for detection, correlation and analyses of cyber
threats [20] (on a range of mobile devices [43] and mobile applications [45], cloud
applications [11], cloud infrastructure [46] and Internet of Things networks [47]).
Windows users are still comprising majority of Internet users hence, it is not
surprising to see Windows as the most adopted PC Operating System (OS) on top
of the list of malware targeted platforms [73]. In response, lots of efforts have been
made to secure Windows platform such as educating users [25, 54], embedding an
anti-virus software [40], deploying anti-malware and anti-exploitation tools [52, 53],
and limiting users applications privilege [41].

In spite of all security enhancements, many malware are still successfully
compromising Windows machines [36, 73] and malware is still ranked as an
important threat to Windows platforms [33]. As result, many security professionals
are still required to spend a lot of time on analyzing different malware species [10].
This is a logical step since malware analysis plays a crucial role in Cyber Threats
Intelligence (CTI). There has been proposed a portal to facilitate CTI and malware
analysis through interactive collaboration and information fusion [56].

There are two major approaches for malware analysis namely static (code)
and dynamic (behavioral) malware analysis [8, 16]. In dynamic malware analysis,
samples are executed and their run time behavior such as transmitted network traffic,
the length of execution, changes that are made in the file system, etc. are used to
understand the malware behavior and create indications of compromise for malware
detection [16]. However, dynamic analysis techniques can be easily evaded by
malware that are aware of execution conditions and computing environment [34].
Dynamic malware analysis techniques can only provide a snapshot view of the
malware behavior and hence very limited in analysis of Polymorph or Metamorph
species [44]. Moreover, dynamic malware analysis techniques are quite resource
hungry which limits their enterprise deployment [37].

In static malware analysis, the analyst is reversing the malware code to achieve
a deeper understanding of the malware possible activities [28]. Static analysis
relies on extraction of a variety of characteristics from the binary file such that
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function calls, header sections, etc. [83]. Such characteristics may reveal indicators
of malicious activity that are going to be used in CTI [57]. However, static analysis
is quite a slow process and requires a lot of human interpretation and hence [8].

Static analysis of PE32 is a many-sided challenge that was studied by different
authors. Static malware analysis also was used before for discovering interconnec-
tions in malware species for improved Cyber Threat Intelligence [42, 66]. As 32-bit
malware are still capable of infecting 64-bit platforms and considering there are
still many 32-bit Windows OS it is not surprising that still majority of Windows
malware are 32-bit Portable Executable files [8]. To authors knowledge there has not
been a comparative study of ML-based static malware using a single dataset which
produces comparable results. We believe that utilization of ML-aided automated
analysis can speed up intelligent malware analysis process and reduce human
interaction required for binaries processing. Therefore, there is a need for thorough
review of the relevant scientific contributions and offer a taxonomy for automated
static malware analysis.

The remainder of this paper is organized as follows. We first offer a com-
prehensive review of existing literature in machine learning aided static malware
analysis. We believe this survey paves the way for further research in application
of machine learning in static malware analysis and calls for further development
in this field. Then, taxonomy of feature construction methods for variety of static
characteristics and corresponding ML classification methods is offered. Afterwards,
we offer a tutorial that applies variety of set of machine learning techniques and
compares their performance. The tutorial findings provide a clear picture of pros and
cons of ML-aided static malware analysis techniques. To equally compare all the
methods we used one benign and two malware datasets to evaluate all of the studied
methods. This important part complements the paper due to the fact that most of the
surveyed works used own collections, sometimes not available for public access or
not published at all. Therefore, experimental study showed performance comparison
and other practical aspects of ML-aided malware analysis. Section 4 gives an insight
into a practical routine that we used to establish our experimental setup. Analysis of
results and findings are given in Sect. 5. Finally, the paper is concluded and several
future works are suggested in Sect. 6.

2 An Overview of Machine Learning-Aided Static
Malware Detection

This section provides an analysis of detectable static properties of 32 bit PE malware
followed by detailed description of different machine learning techniques to develop
a taxonomy of machine learning techniques for static malware analysis.
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2.1 Static Characteristics of PE Files

PE file format was introduced in Windows 3.1 as PE32 and further developed as
PE32+ format for 64 bit Windows Operating Systems. PE files contain a Common
Object File Format (COFF) header, standard COFF fields such as header, section
table, data directories and Import Address Table (IAT). Beside the PE header fields
a number of other static features can be extracted from a binary executable such as
strings, entropy and size of various sections.

To be able to apply Machine Learning PE32 files static characteristics should
be converted into a machine-understandable features. There exist different types of
features depending on the nature of their values such that numerical that describes a
quantitative measure (can be integer, real or binary value) or nominal that describes
finite set of categories or labels. An example of the numerical feature is CPU (in %)
or RAM (in Megabytes) usage, while nominal can be a file type (like *.dll or *.exe)
or Application Program Interface (API) function call (like write() or read()).

1. n-grams of byte sequences is a well-known method of feature construction
utilizing sequences of bytes from binary files to create features. Many tools
have been developed for this purpose such as hexdump [39] created 4-grams
from byte sequences of PE32 files. The features are collected by sliding window
of n bytes. This resulted in 200 millions of features using 10-grams for about
two thousands files in overall. Moreover, feature selection (FS) was applied to
select 500 most valuable features based on Information Gain metric. Achieved
accuracy on malware detection was up to 97% using such features. Another work
on byte n-grams [51] described usage of 100-500 selected n-grams yet on a
set of 250 malicious and 250 benign samples. Similar approach [31] was used
with 10, ..., 10, 000 best n-grams forn = 1, ..., 10. Additionally, ML methods
such that Naive Bayes, C4.5, k-NN and others were investigated to evaluate their
applicability and accuracy. Finally, a range of 1-8 n-grams [27] can result in 500
best selected n-grams that are used later to train AdaBoost and Random Forests
in addition to previously mentioned works.

2. Opcode sequences or operation codes are set of consecutive low level machine
abstractions used to perform various CPU operations. As it was shown [62]
such features can be used to train Machine Learning methods for successful
classification of the malware samples. However, there should be a balance
between the size of the feature set and the length of n-gram opcode sequence.
n-Grams with the size of 4 and 5 result in highest classification accuracy as
unknown malware samples could be unveiled on a collection of 17,000 malware
and 1000 benign files with a classification accuracy up to 94% [58]. Bragen [6]
explored reliability of malware analysis using sequences of opcodes based on
the 992 PE-files malware and benign samples. During the experiments, about 50
millions of opcodes were extracted. 1-gram- and 2-gram-based features showed
good computational results and accuracy. Wang et al. [79] presented how the 2-
tuple opcode sequences can be used in combination with density clustering to
detect malicious or benign files.
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3. API calls are the function calls used by a program to execute specific functional-
ity. We have to distinguish between System API calls that are available through
standard system DLLs and User API calls provided by user installed software.
These are designed to perform a pre-defined task during invocation. Suspicious
API calls, anti-VM and anti-debugger hooks and calls can be extracted by PE
analysers such as PEframe [4]. Zabidi et al. [83] studied 23 malware samples
and found that some of the API calls are present only in malwares rather than
benign software. Function calls may compose in graphs to represent PE32 header
features as nodes, edges and subgraphs [84]. This work shows that ML methods
achieve accuracy of 96% on 24 features extracted after analysis of 1037 malware
and 2072 benign executables. Further, in [71] 20,682 API calls were extracted
using PE parser for 1593 malicious and benign samples. Such large number of
extracted features can help to create linearly separable model that is crucial for
many ML methods as Support Vector Machines (SVM) or single-layer Neural
Networks. Another work by [55] described how API sequences can be analysed
in analogy with byte n-grams and opcode n-grams to extract corresponding
features to classify malware and benign files. Also in this work, an array of
API calls from IAT (PE32 header filed) was processed by Fisher score to select
relevant features after analysis of more than 34 k samples.

4. PE header represents a collection of meta data related to a Portable Executable
file. Basic features that can be extracted from PE32 header are Size of Header,
Size of Uninitialized Data, Size of Stack Reserve, which may indicate if a
binary file is malicious or benign [15]. The work [76] utilized Decision Trees
to analyse PE header structural information for describing malicious and benign
files. Ugarte-Pedrero et al. [77] used 125 raw header characteristics, 31 section
characteristics, 29 section characteristics to detect unknown malware in a semi-
supervised approach. Another work [80] used a dataset containing 7863 malware
samples from Vx Heaven web site in addition to 1908 benign files to develop
a SVM based malware detection model with accuracy of 98%. Markel and
Bilzor [38] used F-score as a performance metric to analyse PE32 header features
of 164,802 malicious and benign samples. Also [29] presented research of two
novel methods related to PE32 string-based classier that do not require additional
extraction of structural or meta-data information from the binary files. Moreover,
[84] described application of 24 features along with API calls for classification of
malware and benign samples from VxHeaven and Windows XP SP3 respectively.
Further, ensemble of features was explored [59], where authors used in total 209
features including structural and raw data from PE32 file header. Further, Le-
Khac et al. [35] focused on Control Flow Change over first 256 addresses to
construct n-gram features.

In addition to study of specific features used for malware detection, we analyzed
articles devoted to application of ML for static malware analysis published between
2000 and 2016, which covers the timeline of Windows NT family that are still in
use as depicted in Fig. 1. We can see that the number of papers that are relevant
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Byte n-gram & lain et al.
Opcode n-gram ® Shahzad et al & Santos et al. & Bragen  eWang et al.
& Tang & 7hao S Deviet al. & Markel et al. :
& Ugarte-Pedrero et al. #Cepeda et al.
PE32 & Wang et al. & Santos et al. skhorsand et al. ale-Khac et al.
& 5ami et al. ® Farukiet al|
AP calls & Shankarapani et al. & Zabidi et al,
No features & Dube et al. ® Baig et al.
Timeline 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 1 Timeline of works since 2009 that involved static analysis of Portable Executable files
using method characteristics using also ML method for binary malware classification

to our study is growing from 2009 and later, which can be justified on the basis
of increase in the number of Windows users (potential targets) and corresponding
malware families.

Challenges Despite the fact that some of the feature construction techniques
reflected promising precision of 90+ % in differentiation between malicious and
benign executables, there are still no best static characteristic that guarantee 100%
accuracy of malware detection. This can be explained by the fact that malware
are using obfuscation and encryption techniques to subvert detection mechanisms.
In addition, more accurate approaches such as bytes N-GRAMS are quite resource
intensive and hardly practical in the real world.

2.2 Machine Learning Methods Used for Static-Based
Malware Detection

2.2.1 Statistical Methods

Exploring large amounts of binary files consists of statistical features may be
simplified using so called frequencies or likelihood of features values. These
methods are made to provide prediction about the binary executable class based
on statistics of different static characteristics (either automatically or manually
collected) which are applicable to malware analysis too as describe by Shabtai et al.
[60]. To process such data, extract new or make predictions the following set of
statistical methods can be used:

Naive Bayes is a simple probabilistic classifier, which is based on Bayesian
theorem with naive assumptions about independence in correlation of different
features. The Bayes Rule can be explained as a following conditional independences
of features values with respect to a class:

P(VICy)

P(CilV) = P(Ck)W (D
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where P(Cy) is a prior probability of class Cy,k = 1, ..., mo which is calcu-
lated from collected statistics according to description of variables provided by
Kononenko et al. [32]. This method is considered to tackle just binary classification
problem (benign against malicious) since it was originally designed as multinomial
classifier. V. = (vi,...,v,) is the vector of attributes values that belongs to a
sample. In case of Naive Bayes input values should be symbolical, for example
strings, opcodes, instruction n-grams etc. P (V) is the prior probability of a sample
described with vector V. Having training data set and given vector V we count
how many samples contain equal values of attributes (e.g. based on the number of
sections or given opcode sequence). It is important to mention that V have not to be
of length of full attribute vector and can contain only one attribute value. P(V |Cy)
is the conditional probability of a sample described with V given the class Cy. And
P (Ck|V) conditional probability of class Cy with V. Based on simple probability
theory we can describe conditional independence of attribute values v; given the
class Cy:

P(V|Ck)=P(Ul/\~~-/\Ua|Ck)=l_[P(Ui|Ck) (2)
i=1

Dropping the mathematical operations we get final version of Eq. (1):

Celu
P(CkIV)—P(Ck)]_[ 1()<2|U) 3)

So, the task of this machine learning algorithm is to calculate conditional and
unconditional probabilities as described in Eq. (3) using a training dataset. To be
more specific, the Algorithm 1 pseudo code shows the calculation of the conditional
probability.

So, we can see from Eq. (1) that given output is as a probability that a questioned
software sample belongs to one or another class. Therefore, the classification
decision will be made by finding a maximal value from set of corresponding class
likelihoods. Equation (4) provides formula that assigns class label to the output:

y = argmax P(Cp)P(VI|Cy). “)
kefl,...,K}

Bayesian Networks is a probabilistic directed acyclic graphical model (some-
times also named as Bayesian Belief Networks), which shows conditional depen-
dencies using directed acyclic graph. Network can be used to detect “update
knowledge of the state of a subset of variables when other variables (the evidence
variables) are observed” [32]. Bayesian Networks are used in many cases of
classification and information retrieval (such as semantic search). The method’s
routine can be described as following. If edge goes from vertex A to vertex B,
then A is a parent of B, and B is an ancestor of A. If from A there is oriented path
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Algorithm 1 Calculating P (Cy|V )—conditional probability of class Cy with V

: Sample structure with class label and attribute values

: S < array of training Samples

V <« array of attribute values

Cj < class number

P _Ciy,=0

: function get_P_Cy(Class Number, Samples)

output =0

for all sample from Samples do

9: if sample. getClass() == ClassNumber then
10: output+ =
11: end if

12: end for

13: return output

14: end function

15: function get_P_Cy_v;(Class Number, v, i, Samples)
16: output =0

A O el e

st 'e[Samples]

17: for all sample from Samples do

18: if sample.getClass() == ClassNumber AND sample.get Attribute(i) == v
then

19: 0utput+ = m

20: end if

21: end for

22: return output

23: end function
24: P(Cy|V =0)

25: prod =1

26: i=0

27: for all vfromV do

2 prods = St GGl iSaples
29: i+=1

30: end for

31: P(Ck|V) = prod x get_P_Cy(Class Number, Samples))

to another vertex B exists then B is ancestor of A, and A is a predecessor of B.
Let’s designate set of parent vertexes of vertex V; as parents(V;) = PA;. Direct
acyclic graph is called Bayesian Network for probability distribution P (v) given for
set of random variables V if each vertex of graph has matched with random variable
from V. And edge of a graph fits next condition: every variable v; from V must be
conditionally independent from all vertexes that are not its ancestors if all its direct
parents P A; are initialized in graph G:

VVi e V.= P(vilpai,s) = P(vi|pa;) ®)

where v; is a value of V;, S—set of all vertexes that are not ancestors of V;, s—
configuration of S, pa;—configuration of P A;. Then full general distribution of the
values in vertexes could be written as product of local distributions, similarly to
Naive Bayes rules:
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Fig. 2 Bayesian network suitable for malware classification [58]

P(Vi,.... Vo) = [ [P(Vi | parents(V))) (©)

i=1

Bayesian Belief Networks can be used for classification [32], thus can be applied
for malware detection and classification as well [58]. To make Bayesian Network
capable of classification it should contain classes as parent nodes which don’t have
parents themselves. Figure 2 shows an example of such Bayesian network.

2.2.2 Rule Based

Rule based algorithms are used for generating crisp or inexact rules in different
Machine Learning approaches [32]. The main advantage of having logic rules
involved in malware classification is that logical rules that operate with statements
like equal, grater then, less or equal to can be executed on the hardware level which
significantly increases the speed of decision making.

C4.5 is specially proposed by Quinlan [50] to construct decision trees. These
trees can be used for classification and especially for malware detection [75]. The
process of trees training includes processing of previously classified dataset and on
each step looks for an attribute that divides set of samples into subsets with the
best information gain. C4.5 has several benefits in compare with other decision tree
building algorithms:

* Works not only with discrete but with continuous attributes as well. For
continuous attributes it creates threshold tp compares values against [49].

* Take into account missing attributes values.

*  Works with attributes with different costs.
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Algorithm 2 Decision tree making algorithm

S =51, 52, ... labelled training dataset of classified data
¢ X1i,X2i, ..., Xp; - p-dimensional vector of attributes of each sample s; form §
: Check for base cases
. for all attributes x do
Find the normalized gain ratio from splitting set of sample on x
end for
Let xpes: be the attribute with the highest normalized information gain.
: Create decision node that splits on Xpeg;
: Repeat on the subsets created by splitting with xp.s,. Newly gained nodes add as children of
current node.

e Perform automate tree pruning by going backward through the tree and removing
useless branches with leaf nodes.

Algorithm 2 shows a simplified version of decision tree building algorithm.

Neuro-Fuzzy is a hybrid models that ensembles neural networks and fuzzy
logic to create human-like linguistic rules using the power of neural networks.
Neural network also known as artificial neural network is a network of simple
elements which are based on the model of perceptron [65]. Perceptron implements
previously chosen activation functions which take input signals and their weights
and produces an output, usually in the range of [0, 1] or [—1, 1]. The network can
be trained to perform classification of complex and high-dimensional data. Neural
Networks are widely used for classification and pattern recognition tasks, thus for
malware analysis [72]. The problem is that solutions gained by Neural Networks
are usually impossible to interpret because of complexity of internal structure and
increased weights on the edges. This stimulates usage of Fuzzy Logic techniques,
where generated rules are made in human-like easy-interpretable format: /F X >
3 AND X <5 THEN Y =1.

Basic idea of Neuro-Fuzzy (NF) model is a fuzzy system that is trained with a
learning algorithm similar to one from neural networks theory. NF system can be
represented as a neural network which takes input variables and produces output
variables while connection weights are represented as encoded fuzzy sets. Thus at
any stage (like prior to, in process of and after training) NF can be represented as
a set of fuzzy rules. Self-Organising (Kohonen) maps [30] is the most common
techniques of combining Neuro and Fuzzy approaches. Shalaginov et al. [64]
showed the possibility of malware detection using specially-tuned Neuro-Fuzzy
technique on a small dataset. Further, NF showed good performance on large-scale
binary problem of network traffic analysis [63]. This method has also proven its
efficiency on a set of multinomial classification problems. In particular, it is useful
when we are talking about distinguishing not only “malware” or “goodware” but
also detecting specific type of “malware” [68]. Therefore, it has been improved for
the multinational classification of malware types and families by Shalaginov et al.
[70].
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2.2.3 Distance Based

This set of methods is used for classification based on predefined distance measure.
Data for distance-based methods should be carefully prepared, because compu-
tational complexity grows significantly with space dimensionality (number of
features) and number of training samples. Thus there is a need for proper feature
selection as well as sometimes for data normalization.

k-Nearest Neighbours or k-NN is classification and regression method. k-NN
does not need special preparation of the dataset or actual “training” as the algorithm
is ready for classification right after labelling the dataset. The algorithm takes a
sample that is need to be classified and calculates distances to samples from training
dataset, then it selects k nearest neighbours (with shortest distances) and makes
decision based on class of this k nearest neighbours. Sometimes it makes decision
just on the majority of classes in this k neighbours selection, while in other cases
there is weights involved in process of making decision. When k-NN is used for
malware classification and detection there is a need for careful feature selection
as well as a methodology for dealing with outliers and highly mixed data, when
training samples cannot create distinguishable clusters [58].

Support Vector Machine or SVM is a supervised learning method. It constructs
one or several hyperplanes to divide dataset for classification. Hyperplane is
constructed to maximize distance from it to the nearest data points. Sometimes
kernel transformation is used to simplify hyperplanes. Building a hyperplane is
usually turned into two-class problem (one vs one, one vs many) and involves
quadratic programming. Let’s have linearly separable data (as shown in Fig.3)

Fig. 3 Maximum margin
hyperplane for two class
problem [32]
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which can be represented as 7 = {(x;, y;) | x; € R?, y; € {—1, 1}}}_,. Where y;
is 1 or —1 depending on class of point x;. Each x; is p-dimensional vector (not
always normalised). The task is to find hyperplane with maximum margin that
divides dataset on points with y; = 1 and y; = —1: w-x — b = 0. Where w
is a normal vector to a hyperplane [21]. If dataset is linearly separable we can build
two hyperplanes w - x —b = 1 and w - x — b = —1 between which there will be
no (or in case of soft margin maximal allowed number) points. Distance between
them (margin) is ﬁ, $0 to maximize margin we need to minimize ||w|| and to find
parameters of hyperplane we need to introduce Lagrangian multipliers o and solve

Eq. (7) with quadratic programming techniques.

. [P
argrg;grg;g{inwn —Zai[yi(w-m—w—u} (7

i=1

Sometimes there is a need to allow an algorithm to work with misclassified data
hence leaving some points inside the margin based on the degree of misclassification
&. So Eq. (3) turns into Eq. (8).

n n n
arg min max {%nww +CY &= aulyiw-xi—b) — 1 +&] - Zﬁisf}
R i=1 i=1 i=1
with o, Bi > 0
®)
Also the data might be linearly separated, so there is a need for kernel trick. The
basic idea is to substitute every dot product with non-linear kernel function. Kernel
function can be chosen depending on situation and can be polynomial, Gaussian,
hyperbolic etc. SVM is a very powerful technique which can give good accuracy

if properly used, so it often used in malware detection studies as shown by Ye
et al. [82].

2.2.4 Neural Networks

Neural Network is based on the model of perceptron which has predefined activation
function. In the process of training weights of the links between neurons are trained
to fit train data set with minimum error with use of back propagation. Artificial
Neural network (ANN) consists of input layer, hidden layer (layers) and output layer
as it is shown on Fig. 4.

The input layer takes normalized data, while hidden output layer produces
activation output using neuron’s weighted input and activation function. Activation
function is a basic property of neuron that takes input values given on the input
edges, multiply them by weights of these edges and produces output usually in a
range of [0,1] or [—1,1]. Output layer is needed to present results and then interpret
them. Training of ANN starts with random initialization of weights for all edges.
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Results
(prediction)

Attributes

Hidden layer

Fig. 4 Aurtificial neural network [32]

Algorithm 3 ANN training

: S =51, 52, ... labeled training dataset of classified data
. X1i,X2i, ..., Xp; - p-dimensional vector of attributes of each sample s; form §
: N number of training cycles
: L,qse learning rate
Random weight initialization
: for all training cycles N do
for all samples S do
give features x; as input to the ANN
compare class of s; with gained output of ANN
calculate error
using back-propagation tune weights inside the ANN with L,ate
end for
reduce L,4se
: end for

—_— e
AN

Then feature vector of each sample is used as an input. Afterwards, result gained
on the output layer is compared to the real answers. Any errors are calculated and
using back-propagation all weights are tuned. Training can continue until reaching
desired number of training cycles or accuracy. Learning process of ANN can be
presented as shown in the Algorithm 3. Artificial Neural networks can be applied for
complex models in high-dimensional spaces. This is why it often used for malware
research [72].

2.2.5 Open Source and Freely Available ML Tools

Today machine learning is widely used in many areas of research with many
publicly available tools (Software products, libraries etc.).
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Weka or Waikato Environment for Knowledge Analysis is a popular, free, cross
platform and open source tool for machine learning. It supports many of popular ML
methods with possibility of fine tuning of the parameters and final results analysis.
It provides many features such as splitting dataset and graphical representation of
the results. Weka results are saved in .arff file which is specially prepared CSV file
with header. It suffers from couple of issues including no support for multi-thread
computations and poor memory utilization especially with big datasets.

Python weka wrapper is the package which allows using power of Weka
through Python programs. It uses javabridge to link Java-based Weka libraries to
python. It provides the same functionality as Weka, but provides more automation
capacities.

LIBSVM and LIBLINEAR are open source ML libraries written in C++ sup-
porting kernelized SVMs for linear, classification and regression analysis. Bindings
for Java, Mathlab and R are also present. It uses space-separated files as input, where
zero values need not to be mentioned.

RapidMiner is machine learning and data mining tool with a user friendly GUI
and support for a lot of ML and data mining algorithms.

DIlib is a free and cross-platform C++ toolkit which supports different -machine
learning algorithms and allows multi-threading and utilization of Python APIs.

2.2.6 Feature Selection and Construction Process

Next important step after the characteristics extraction is so-called Feature Selection
process [32]. Feature Selection is a set of methods that focus on elimination of
irrelevant or redundant features that are not influential for malware classification.
This is important since the number of characteristics can be extremely large, while
only a few can actually be used to differentiate malware and benign applications
with a high degree of confidence. The most common feature selection methods are
Information Gain, and Correlation-based Feature Subset Selection (CFS) [24]. The
final goal of Feature Selection is to simplify the process of knowledge transfer from
data to a reusable classification model.

2.3 Taxonomy of Malware Static Analysis Using Machine
Learning

Our extensive literature study as reflected in Table 1 resulted to proposing a
taxonomy for malware static analysis using machine learning as shown in Fig. 5. Our
taxonomy depicts the most common methods for analysis of static characteristics,
extracting and selecting features and utilizing machine learning classification
techniques. Statistical Pattern Recognition process [26] was used as the basis for
our taxonomy modelling.

To get a clear picture on application domain of each machine learning and feature
selection method we analysed reported performance as shown in Fig. 6. Majority
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Fig. 6 Comparison of accuracy of various static characteristics with respect to feature selection
and machine learning methods. Colour of the bubbles shows used characteristics for detection,

while size of the bubble denotes achieved accuracy

of researchers were using byte n-gram, opcode n-gram and PE32 header fields for
static analysis while C4.5, SVM or k-NN methods were mainly used for malware
detection. Information Gain is the prevalent method to define malware attributes.
Also we can see that n-gram-based method tend to use corresponding set of feature
selection like tf-idf and Symmetric Uncertainty that are more relevant for large
number of similar sequences. On the other hand, PE32 header-based features tend to
provide higher entropies for classification and therefore Control-Flow graph-based

and Gain Ratio are more suitable for this task.
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To conclude, one can say that majority of authors either extract features that
offers good classification accuracy, or use conventional methods like Information
Gain. However, n-gram based characteristics need other FS approaches to eliminate
irrelevant features. Rule-based ML is the most commonly used classification method
along with SVM. Forest-based method tends to be more applicable for PE32 header-
based features. Also ANN is not commonly-used technique. While most of the
works achieved accuracies of 80—100%, some Bayes-based methods offered much
lower accuracy even down to 50% only.

3 Approaches for Malware Feature Construction

Similar the previous works, following four sets of static properties are suggested for
feature classification in this paper:

PE32 header features characterize the PE32 header information using the
PEframe tools [77]. Following numerical features will be used in our experi-
ments:

o ShortInfo_Directories describes 16 possible data directories available in PE
file. The most commonly used are “Import”, “Export”, “Resource”, “Debug”,
“Relocation”.

e ShortInfo_Xor indicates detected XOR obfuscation.

e ShortInfo_DLL is a binary flag of whether a file is executable or dynamically-
linked library.

» Shortinfo_FileSize measures size of a binary file in bytes.

o ShortInfo_Detected shows present techniques used to evade the detection by anti-
viruses like hooks to disable execution in virtualized environment or suspicious
API calls.

e Shortlnfo_Sections is a number of subsections available in the header.

* DigitalSignature contains information about the digital signatture that can be
present in a file

* Packer describes used packer detected by PEframe

* AntiDebug gives insight into the techniques used to prevent debugging process.

e AntiVM is included to prevent the execution in a virtualize environment.

e SuspiciousAPI indicates functions calls that are labelled by PEframe as suspi-
cious.

» SuspiciousSections contains information about suspicious sections like
\u0000 \u0000 \u0000”

e Urlis a number of different url addresses found in the binary file.

3

‘.Isre

Byte n-Gram n-Gram is a sequence of some items (with minimum length of 1)
that are predefined as minimal parts of the object expressed in Bytes. By having the
file represented as a sequence of bytes we can construct 1-gram, 2-gram, 3-gram etc.
n-Grams of bytes, or byte n-grams are widely used as features for machine learning
and static malware analysis [27, 51].
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Reddy et al. [51] used n-grams of size 2, 3 and 4 with combination of
SVM, Instance-based learner and Decision Tree algorithms to distinguish between
malicious and benign executables. After extracting n-grams they used class-wise
document frequency as a feature selection measure and showed that class-wise
document frequency is performing better than Information Gain as a feature
selection measure. Jain et al. [27] used n-grams in range of 1-8 as features and Naive
Bayes, Instance Based Learner and AdaBoostl [3] as machine learning algorithms
for malware classification and reported byte 3-grams as the best technique.

Opcode n-gram represent a set of instructions that will be performed on the CPU
when binary is executed. These instructions are called operational codes or opcodes.
To extract opcodes from executable we need to perform disassembly procedure.
After this opcodes will be represented as short instructions names such as POP,
PUSH, MOV, ADD, SUB etc. Santos et al. [58] described a method to distinguish
between malicious and benign executables or detecting different malware families
using opcode sequences of length 1-4 using Random Forest, J48, k-Nearest
Neighbours, Bayesian Networks and Support Vector Machine algorithms [3].

API calls is a set of tools and routines that help to develop a program using
existent functionality of an operating system. Since most of the malware samples
are platform dependent it is very much likely that their developers have use APIs
as well. Therefore, analysing API calls usage among benign and malicious software
can help to find malware-specific API calls and therefore are suitable to be used
as a feature for machine learning algorithms. For example, [71] successfully used
Support Vector Machines with frequency of API calls for malware classification.
[78] provided a methodology for classification of malicious and benign executables
using API calls and n-grams with n from 1 to 4 and achieved accuracy of 97.23%
for 1-gram features. [19] used so-called API call-gram model with sequence length
ranging from 1 to 4 and reached accuracy of 97.7% was achieved by training with 3-
grams. In our experiments we are going to use 1 and 2 n-grams as features generated
from API calls.

4 Experimental Design

All experiments were conducted on a dedicated Virtual machine (VM) on Ubuntu
14.04 server running on Xen 4.4. The server had an Intel(R) Core(TM) i7-3820
CPU @ 3.60 GHz with 4 cores (8 threads), out of which 2 cores (4 threads) were
provided to the VM. Disk space is allocated on the SSD RAID storage based on
Samsung 845DC. Installed server memory was Kingston PC-1600 RAM, out of
which 8 GB was available for the VM. Operating system was an Ubuntu 14.04 64
bit running on ae dedicated VM together with all default tools and utilities available
in the OS’s repository. Files pre-processing were performed using bash scripts due
to native support in Linux OS. To store extracted features we utilised MySQL 5.5
database engine together with Python v 2.7.6 and PHP v 5.5.9 connectors.
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For the experiments we used a set of benign and malicious samples. To
authors knowledge there have not been published any large BENIGN SOFTWARE
REFERENCE DATASETS, so we have to create our own set of benign files. Since
the focus of the paper is mainly on PE32 Windows executables, we decided
to extract corresponding known-to-be-good files from different versions of MS
Windows, including different software and multimedia programs installations that
are available. The OSes that we processed were 32 bit versions of Windows XP,
Windows 7, Windows 8.1 and Windows 10. Following two Windows malware
datasets were used in our research:

1. VX HEAVEN [2] dedicated to distribute information about the computer viruses
and contains 271,092 sorted samples dating back from 1999.

2. VIRUS SHARE [1] represent sharing resource that offers 29,119,178 malware
samples and accessible through VirusShare tracker as of 12th of July, 2017. We
utilized following two archives: VirusShare_00000.zip created on 2012-06-15
00:39:38 with a size of 13.56 GB and VirusShare_00207.zip created on 2015-
12-16 22:56:17 with a size of 13.91 GB, all together contained 131,072 unique,
uncategorised and unsorted malware samples. They will be referred further as
malware_000 and malware_207.

To be able to perform experiments on the dataset, we have to filter out irrelevant
samples (not specific PE32 and not executables), which are out of scope in this
paper. However, processing of more than 100k samples put limitations and require
non-trivial approaches to handle such amount of files. We discovered that common
ways of working with files in directory such that simple Is and mv in bash take
unreasonable amount of time to execute. Also there is no way to distinguish files
by extension like *.dIl or *.exe since the names are just md5 sums. So, following
filtering steps were performed:

1. Heap of unfiltered malware and benign files were placed into two directories
“malware/” and “benign/”.

2. To eliminate duplicates, we renamed all the files to their MDS5 sums.

3. PE32 files were detected in each folder using file Linux command:

\$ file 000000bddccfbaa5bd981af2clbbf59a
000000b4dccfbaaSbd981af2clbbf59a: PE32 executable (
DLL) (GUI) Intel 80386, for MS Windows

4. All PE32 files from current directory that meet our requirement were scrapped
and move to a dedicated one:

#!/bin/sh

cd ../ windowsl;

counter=0;

for i in =x; do
counter=$((counter+1));
echo "$counter";

VAR="file _$i_I_grep PE32_" ;
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VARI=$(eval "$VAR") ;
lenl1=${#VARI };
if [ —n "$VARI" ] && [ "$lenl" —gt "1" ] ;
then
echo "$VARI" | awk ’{print $1}° | awk *{gsub(/:$/,""
); print $1 "_../windows/PE/" $1}’|l xargs mv —f ;
else
echo "other";
file $i | awk *{print $1}° | awk {gsub(/:$/,"");
print $1 "_ ../ windows/other/" $1}° | xargs mv —f
fi
done

5. We further can see a variety of PE32 modifications for 32bit architecture:

PE32 executable (GUI) Intel 80386, for MS Windows

PE32 executable (DLL) (GUI) Intel 80386, for MS
Windows

PE32 executable (GUI) Intel 80386, for MS Windows,
UPX compressed

Following our purpose to concentrate on 32bit architecture, only PE32 are filtered
out from all possible variants of PE32 files shown about.

6. After extracting a target group of benign and malicious PE32 files, multiple
rounds of feature extraction are performed according to methods used in the
literature.

7. Finally, we insert extracted features into the corresponding MySQL database to
ease the handling, feature selection and machine learning processes respectively.

After collecting all possible files and performing the pre-processing phase, we
ended up with the sets represented in Table 2.

Further, feature construction and extraction routine from PE files was performed
using several tools as follows:

1. PEFRAME [4] is an open source tool specifically designed for static analysis
of PE malware. It extracts various information from PE header ranging from
packers to anti debug and anti vm tricks.

Table 2 Characteristics of Dataset Number of files | Size
the dataset collected and used -
Benign 16,632 7.4GB

for our experiments after
filtering PE files Malware_000 | 58,023 14.0GB

Malware_207 | 41,899 16.0GB
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2. HEXDUMP is a standard Linux command line tool which is used to display a file
in specific format like ASCII or one-byte octal.

3. OBJDUMP is a standard Linux command line too to detect applications instruc-
tions, consumed memory addresses, etc.

5 Results and Discussions

Before testing different ML techniques for malware detection it is important to show
that our datasets actually represent the real-world distribution of the malware and
goodware. Comparison of “Compile Time” field of PE32 header can be utilized for
this purpose. Figure 7 represents log-scale histogram of the compilation time for
our benign dataset. Taking into consideration the Windows OS timeline we found a
harmony between our benign dataset applications compile time and development of
Microsoft Windows operating systems. To start with, Windows 3.1 was originally
released on April 6, 1992 and our plot of benign applications indicates the biggest
spike in early 1992. Later on in 1990th, Windows 95 was due on 24 August 1995,
while next Windows 98 was announced on 25 June 1998. Further, 2000th marked
release of Windows XP on October 25, 2001. Next phases on the plot correspond
to the release of Windows Vista on 30th January 2007 and Windows 7 on 22nd
October 2009. Next popular version (Windows 8) appeared on 26th October 2012
and the latest major spike in the end of 2014 corresponds to the release of Windows
10 on 29th July 2015.

Further, compilation time distribution for the first malware dataset malware_000
is given in Fig.8. We can clearly see that release of newer Windows version is
always followed by an increase of cumulative distribution of malware samples in
following 6-12 month. It can be seen that the release of 32bit Windows 3.1 cause

Wind 3.1 Wind 95 Windows 98 Windows XP  Windows Vista Windows 7 Windows 8 Windows 10
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Fig. 7 Log-scale histogram of compilation times for benign dataset
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a spike in a number of malware. After this the number of malware compiled each
year is constantly growing. Then, another increase can be observed in second half

of the 2001 which corresponds to the release of the Windows XP and so on.

Considering the fact that MS DOS was released in 1981 it makes compilation

times before this day look like fake or just obfuscated intentionally.

On the other

malware with compilation time prior to 1981 or later than Jan 2012 are tampered

(Fig. 9).

hand the dataset malware_000 cannot have dates later than June 2012. Therefore
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5.1 Accuracy of ML-Aided Malware Detection Using Static
Characteristics

This part presents results of apply Naive Bayes, BayesNet, C4.5, k-NN, SVM, ANN
and NF machine learning algorithms against static features of our dataset namely
PE32 header, Bytes n-gram, Opcode n-gram, and API calls n-gram.

5.1.1 PE32 Header

PE32 header is one of the most important features relevant to threat intelligence of
PE32 applications. We performed feature selection using Cfs and InfoGain methods
with fivefold cross-validation as presented in Table 3.

We can clearly see that the features from the Short Info section in PE32 headers
can be used as a stand-alone malware indicators, including different epochs. Number
of directories in this section as well as file size and flag of EXE or DLL have bigger
merits in comparison to other features. To contrary, Anti Debug and Suspicious

Table 3 Feature selection on PE32 features

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207
Information gain

Merit | Attribute Merit | Attribute Merit | Attribute

0.377 | ShortInfo_Directories | 0.369 | ShortInfo_ DLL 0.131 | ShortInfo_FileSize
0.278 | ShortInfo_DLL 0.252 | ShortInfo_Directories | 0.094 | ShortInfo_Detected
0.118 | AntiDebug 0.142 | ShortInfo_FileSize 0.064 | SuspiciousAPI
0.099 | Packer 0.105 | SuspiciousSections 0.044 | ShortInfo_Directories
0.088 | SuspiciousSections 0.101 | SuspiciousAPI 0.036 | Packer

0.082 | ShortInfo_Xor 0.089 | AntiDebug 0.028 | AntiDebug

0.076 | SuspiciousAPI 0.084 | ShortInfo_Detected 0.017 | SuspiciousSections
0.045 | ShortInfo_FileSize 0.054 | ShortInfo_Xor 0.016 | Url

0.034 | ShortInfo_Detected 0.050 | Packer 0.015 | AntiVM

0.022 | Url 0.036 | Url 0.012 | ShortInfo_Xor
0.004 | AntiVM 0.002 | AntiVM 0.002 | ShortInfo_DLL

0 ShortInfo_Sections 0 ShortInfo_Sections 0 ShortInfo_Sections
0 DigitalSignature 0 DigitalSignature 0 DigitalSignature
Cfs

Attribute Attribute Attribute
ShortInfo_Directories ShortInfo_Directories ShortInfo_Directories
ShortInfo_Xor ShortInfo_Xor ShortInfo_FileSize
ShortInfo_DLL ShortInfo_DLL ShortInfo_Detected
ShortInfo_Detected Packer

Url

Bold font denotes selected features according to InfoGain method
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Table 4 Comparative classification accuracy based on features from PE32 header, in %

Dataset Naive Bayes | BayesNet | C4.5 k-NN |SVM |ANN |NF
All features

Bn vs M1_000 90.29 91.42 97.63 |97.30 | 87.75 |95.08 |92.46
Bn vs M1_207 88.27 91.21 9643 9599 |84.88 9324 |89.03
MI_000 vs M1_207 | 63.41 71.59 8245 |82.11 |73.77 [69.99 |69.01
Information gain

Bn vs M1_000 88.32 89.17 94.09 |94.01 |94.09 |93.51 |87.53
Bn vs M1_207 87.25 90.39 95.06 |94.58 |84.55 9237 |87.88
MI_000 vs M1_207 | 58.26 67.05 67.77 7070 |69.46 |63.19 |51.31
Cfs

Bn vs M1_000 89.35 90.89 9539 9538 |95.16 |93.69 |85.85
Bn vs M1_207 86.88 89.67 91.61 |91.68 |91.68 |91.68 |81.91
MI_000 vs M1_207 | 67.45 70.95 7698 17692 |72.15 |68.18 |67.06

Bn, MI_000 and MI_207 are benign and two malaware datasets respectively
Items in bold reflecting highest achieved accuracy

API sections from PEframe cannot classify a binary file. Finally, we can say that
digital signature and Anti VM files in PE32 headers are almost irrelevant in malware
detection. Further, we performed exploration of selected ML methods that can
be used with selected features. By extracting corresponding numerical features
mentioned earlier, we were able to achieve classification accuracy levels presented
in Table 4. Table 3 presents also accuracy of ML method after performing feature
selection. Here we used whole sub-sets defined by Cfs method and features with
merit of > 0.1 detected by InfoGain.

Malware and goodware can be easily classified using full set as well as sub-set
of features. One can notice that ANN and C4.5 performed much better than other
methods. It can be also seen that the high quality of these features made them very
appropriate to differentiate between the benign and malware_000 dataset. Further,
we can see that the two datasets malware_000 and malware_207 are similar and
extracted features do not provide a high classification accuracy. Neural Network
was used with three hidden layers making it a non-linear model and experiments
were performed using fivefold cross-validation technique.

5.1.2 Bytes n-Gram

Bytes n-gram is a very popular method for static analysis of binary executables.
This method has one significant benefit: in order to perform analysis there is no
need of previous knowledge about file type and internal structure since we use its
raw (binary) form. For feature construction we used random profiles that were first
presented by Ebringer et al. [18] called fixed sample count (see Fig.10), which
generates fixed number of random profiles regardless of the file size and sliding
window algorithm. In this method each file is represented in a hexadecimal format
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Fig. 10 Sliding window
algorithm [18] Generate randomness measurements for a file, output

proportional to file length

INPUT: An array of bytes bl, ..,,bn, a window size w and a
skip size a.

OUTPUT: An array of |'-n;_w1 samples of the
randomness, ranging from 0.0 to1.0.
1. Construct the Huffman tree for the input bytes.

2. Construct an array e, ..., €, containing the encoding

length for each of the input bytes.

il 1, do the following:
a

3. Forifrom 1 to[_

a(i- D+w+1
a) r‘.<—2j:a(i_ bl G

4. Rescale r, between 0.0 and 1.0, where min(r)) = 0.0 and
max(r)=1.0.

Table 5 Classification accuracy based on features from bytes n-gram randomness profiles, in %

Dataset Naive Bayes | BayesNet | C4.5 |k-NN |SVM |ANN |NF
All features

Bn vs M1_000 69.9 60.4 769 |75.6 78.3 78.3 74.8
Bn vs M1_207 70.3 68.2 75.8 |75.6 72.1 71.6 68.2
MI_000 vs M1_207 | 50.1 64.0 68.1 64.7 58.1 60.1 58.2

and frequencies of each byte are counted to build a Huffman tree for each file. Then
using window of fixed size and moving it on fixed skip size the randomness profile
of each window is calculated. A Randomness profile is sum of Huffman code length
of each byte in a single window. The lower the randomness in a particular window
the bigger will be the randomness of that profile.

We chose 32 bytes as the most promising sliding window size [18, 48, 74] and
due to big variety of file sizes in our dataset, we chose 30 best features (or pruning
size in terminology from [18]) which are the areas of biggest randomness (the most
unique parts) in their original order. This features was fed into different machine
learning algorithms as shown in Table 5. Our results indicate that the accuracy of
this technique is not that high as it was originally developed to preserve local details
of a file ([18])while the size of file affects localness a lot. In our case file sizes vary
from around 0.5 Kb to 53.7 Mb which adversely affect the results. Despite worse
results it is still easier to distinguish between benign executables and malware than
between malware from different time slices. Also we can see that ANN is better in
Benign vs Malware_000 dataset, C4.5 in Benign vs Malware_207 and Malware_000
vs Malware_207 datasets.
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Also it should be noted that we did not use feature selection methods as in the
case of PE32 header features. Both Information gain and Cfs are not efficient due to
the similarity of features and equivalence in importance for classification process.
For the first dataset the Information Gain was in the range of 0.0473-0.0672 while
for the second dataset it was in the range of 0.0672-0.1304 and for the last it was
0.0499-0.0725. Moreover, Cfs produces best feature subset nearly equal to full set.
Therefore, we decided to use all features as there is no subset that could possibly be
better than original one (Fig. 11).

5.1.3 Opcode n-Gram

Opcode n-gram consists of assembly instructions which construct the executable
file. The main limitation of this method is that in order to gain opcodes we need
disassemble an application which sometimes fails to give correct opcodes due to
different anti-disassembly and packing techniques used in executables hence we
filtered out this kind of files from our dataset. We extracted 100 most common 3-
and 4-grams from each of three file sets in our dataset. Then we extracted a set of
200 most common n-grams—which are called feature n-grams—to build a presence
vector where value 1 was assigned if a certain n-gram from feature n-grams is
present in top 100 most used n-grams of the file. Table 6 represents results of feature
selection performed on the dataset with 3-grams. As can be seen the first two pair of
datasets have a lot of common n-grams, while selected n-grams for the third pair of
dataset is totally different. For Information Gain the threshold of 0.1 was used for
both benign and malware datasets, while for the last set we used InfoGain of 0.02.
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Table 6 Feature selection on 3-gram opcode features

Benign vs Malware_000

Information gain

Merit Attribute
0.302483 int3movpush
0.283229 int3int3mov
0.266485 popretint3
0.236949 retint3int3
0.191866 | jmpint3int3
0.134709 callmovtest
0.133258 movtestje
0.115976 callmovpop
0.114482 testjemov
0.101328 poppopret
0.100371 movtestjne
Cfs

Attribute

movtestje

callmovtest

callmovpop

retint3int3

popretint3

pushmovadd
int3int3mov

callmovjmp

jmpint3int3
int3movpush

Benign vs Malware_207
Merit Attribute
0.298812
0.279371
0.227489
0.202162
0.193938
0.108580

int3movpush
int3int3mov
popretint3
retint3int3
jmpint3int3
retpushmov

Attribute
movmovadd
retpushmov
X0rmovmov
callmovtest
popretint3
pushmovadd
int3int3mov
callmovjmp
Jjmpint3int3
int3movpush

35

Malware_000 vs Malware_207

Merit Attribute
0.042229
0.039779
0.037087

0.031045

pushlcallpushl
movtestjne
callpushlcall
pushpushlcall

Attribute
pushpushlcall
movtestjne
movmovjmp
jecmpje
cmpjepush
pushleacall
callpopret
leaveretpush
pushmovadd
pushcalllea
callpushlcall
callmovlea
pushlcallpushl
movmovmovl
calljmpmov

Bold font denotes features that present in both datasets that include benign samples

These data were passed to machine learning algorithms and results are shown in
Tables 7 and 9. As can be seen C4.5 performed well and had the highest accuracy
almost in all experiments. Also feature selection significantly reduced the number
of n-grams from 200 down to 10-15, while overall accuracy on all methods did
not dropped significantly. In fact, Naive Bayes performed even better that can
be justified by reduced complexity of the probabilistic model. Also NF showed
much better accuracy in comparison to other methods when using all features
to distinguish between two malware datasets which can be linked to non-linear

correlation in the data that are circumscribed in the Gaussian fuzzy patches.
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Table 7 Classification accuracy based on features from opcode 3-gram, in %

A. Shalaginov et al.

Dataset Naive Bayes | BayesNet |C4.5 k-NN |SVM |ANN |NF
All features
Bn vs M1_000 83.51 83.52 9553 |93.82 9443 9451 |95.28
Bn vs M1_207 84.52 84.52 9393 |91.84 9232 (9244 |93.20
Mn_000 vs M1_207 | 63.73 63.73 81.21 |78.64 | 7542 |76.64 |83.13
Information gain
Bn vs M1_000 86.74 86.94 90.41 |90.45 |89.98 |90.26 |84.45
Bn vs MI1_207 86.22 86.22 86.22 |86.22 |87.46 8748 |83.36
Mn_000 vs M1_207 | 63.19 62.55 71.19 |71.89 | 69.54 |67.36 |69.14
Cfs
Bn vs M1_000 87.79 88.66 91.15 |91.22 [90.90 |90.82 |85.31
Bn vs M1_207 86.24 86.33 89.92 [89.73 |89.17 |89.34 |81.58
Mn_000 vs M1_207 |86.24 86.33 89.92 [89.73 |89.17 |89.34 |69.25
Items in bold reflecting highest achieved accuracy
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Fig. 12 Distribution of the frequencies of top 20 opcode 3-grams from benign set in comparison
to both malicious datasets

Further, we investigated if there is any correlation between n-grams in files that
belong to both benign and malicious classes. We extracted relative frequency of

. . NC![IA‘S N
each n-gram according to the following formula /4, _gram = W, where
ies
Class foq; : Class ;
N¥iles € n—gram indicates number of files in class that has n-gram and Niiles 182

total number of files in this class. The results for 3-gram is depicted in Fig. 12.
As a reference we took top 20 most frequent n-grams from benign class and found
frequency of the corresponding n-grams from both malware datasets. It can be seen
that the frequency does not differ fundamentally, yet n-grams for both malicious
classes tend to have very close numbers in comparison to benign files. Moreover,
there is a clear dependency between both malicious classes. We also can notice that
most of the features selected from two datasets that includes benign samples are
same. This highlights reliability of the selected 4-grams and generalization of this
method for malware detection.

Additionally, we studied 4-gram features and extracted 200 features as shown in
Table 8. Similar to the 3-grams features selected in the Table 6 one can see that two
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Table 8 Feature selection on 4-gram opcode features

Benign vs Malware_000

Information gain

Merit

0.303209
0.295280
0.285608
0.258733
0.241215
0.233205
0.220679
0.185178
0.151337
0.125703
0.104993
0.104416

Attribute
int3int3movpush
int3movpushmov
int3int3int3mov
popretint3int3
poppopretint3
jmpint3int3int3
retint3int3int3
movpopretint3
movpushmovsub
pushcallmovtest
movpushmovpush
movpushmovmov

Benign vs Malware_207

Merit

0.295427
0.286378
0.266966
0.229431
0.224318
0.210289
0.170367
0.148442
0.116760
0.103841
0.102730

Attribute
int3int3movpush
int3movpushmov
int3int3int3mov
jmpint3int3int3
poppopretint3
popretint3int3
retint3int3int3
movpopretint3
movpushmovsub
movpushmovpush
movpushmovmov
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Malware_000 vs Malware_207

Merit

0.047452
0.045860
0.044750
0.044573
0.038822
0.035731
0.030460
0.028564
0.025813
0.024372
0.023374
0.022312
0.021929
0.020003

Attribute
pushlcallpushlcall
movpoppopret
jepushcallpop
callpushlcallpushl
cmpjepushcall
pushcallpopret
pushcallpopmov
movcmpjepush
cmpjecmpje
leaveretpushmov
pushpushpushlcall
pushcallpoppop
movtestjepush
pushpushleapush

Cfs

attribute
incaddincadd
movpushmovsub
jmpmovmovmov
pushcallmovtest
int3int3int3mov
movpoppopret
jmpint3int3int3
movpopretint3
int3int3movpush
int3movpushmov
poppopretint3
addpushpushpush
pushpushcalllea

attribute
addaddaddadd
movmovpushpush
movpushmovsub
pushcallmovtest
int3int3int3mov
MOVXOrmovmov
pushlcallpushlcall
jmpint3int3int3
movpopretint3
int3int3movpush
int3movpushmov
poppopretint3

attribute
leaveretpushmov
callmovtestje
jepushcallpop
pushlcallpushlcall
pushpushpushlea
jecmpjecmp
movpoppopret
pushcallmovpush
pushmovmovcall
movpopretint3
cmpjepushcall
movleamovmov
movmovjmpmov
pushpushcalllea
retnopnopnop
movaddpushpush
subpushpushpush

Bold font denotes features that present in both datasets that include benign samples

first pairs of datasets have a lot of common features, while the last one provides
a significantly different set. As in case with 3-grams we used Information Gain
with threshold of 0.1 for both benign and the first malware dataset, while for the
last malware set we used InfoGain of 0.02, which looks reasonable with respect to
number of selected features.



38

retintSink3int3
pushpushpushpush
pushpushpushmow

sheall

A

¢

]

i

E

1]
Boe

< a

A. Shalaginov et al.

Series:
@ opcode n-gram
L] Shape, Color (class):
° ® benign
.. o B malware000
< malware207

02

0.4

25

06

fragqaucency

Fig. 13 Distribution of the frequencies of top 20 opcode 4-grams from benign set in comparison
to both malicious datasets

Table 9 Classification accuracy based on features from opcode 4-gram, in %

Dataset Naive Bayes | BayesNet |C4.5 k-NN |SVM |ANN |NF
All features

Bn vs M1_000 86.92 86.92 9531 |93.73 9428 |94.23 |95.54
Bn vs M1_207 86.84 86.84 93.33 |91.71 92.03 |92.04 |93.75
MIL_000 vs M1_207 | 64.90 64.90 8158 |78.98 7498 |75.77 | 78.80
Information gain

Bn vs M1_000 87.79 87.89 9148 |91.45 9131 |90.84 |85.74
Bn vs M1_207 84.64 84.57 87.84 |87.83 |87.25 |87.70 |48.67
Mn_000 vs M1_207 | 62.73 63.20 69.96 |70.25 |68.40 |67.24 |68.90
Cfs

Bn vs M1_000 89.63 89.63 91.51 |91.52 [91.52 |90.76 |84.95
Bn vs M1_207 86.41 86.64 89.36 8948 |89.16 |89.12 |81.13
Mn_000 vs M1_207 | 66.28 66.17 72.00 |72.27 6896 |69.17 |69.32

Items in bold reflecting highest achieved accuracy

The classification performance is given in Fig. 9. As can be seen, 3-grams can
show a bit better result than 4-grams in case of distinguishing between benign and
malware_000 or Benign and malware_207 with C4.5 classifier. At the same time
4-grams are better in order to distinguish between two malware datasets with C4.5
classifier. We can conclude that results are quite good, and can be used for malware
detection. In our opinion results can be improved by extracting more features and
usage of relative frequencies rather than pure vectors.

In contrary to 3-grams we can see that the histograms of 4-grams have fundamen-
tal differences when it comes to malicious and benign sets as it is depicted in Fig. 13.
We can see that the frequencies correspond to malware_000 and malware_207
datasets are nearly similar and are far from the frequencies detected for the benign
class. Moreover, there is a clear and strong correlation between two malware
datasets. So, we can conclude that in case of probabilistic-based models like Bayes
Network and Naive Bayes the classification could be a bit better due to differences
in likelihood of appearance, which can be also found in Tables 7 and 9.
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Table 10 Classification accuracy based on API call 1-gram features, %

Dataset Naive Bayes | BayesNet | C4.5 k-NN |SVM |ANN |NF
All features

Bn vs M1_000 90.79 90.79 93.39 9347 9351 9343 |82.44
Bn vs M1_207 87.18 87.18 90.94 |91.03 |91.37 |91.23 |81.28
MI_000 vs M1_207 | 66.19 66.2 7844 |77.09 7333 7277 |73.55

Items in bold reflecting highest achieved accuracy

Table 11 Classification accuracy based on API call 2-gram features, %

Dataset Naive Bayes | BayesNet | C4.5 k-NN |SVM |ANN |NF
All features

Bn vs M1_000 86.54 86.55 90.88 |91.53 9196 91.85 |75.24
Bn vs M1_207 81.94 81.91 87.84 8882 |88.31 |87.81 |83.61
MIL_000 vs M1_207 |62.31 62.31 73.69 | 73.17 7027 |69.45 |70.08

Items in bold reflecting highest achieved accuracy

5.1.4 API Call n-Grams

API calls n-grams is the combination of specific operations invoked by the process
in order to use functionalities of an operation system. In this study we used peframe
to extract API calls from PE32 files. The bigger the n-gram size is the lower accuracy
is possible to gain. The reason for this is that single API calls and their n-grams are
far fewer in comparison with for example opcode n-grams. After extraction of API
calls, we combined them into 1- and 2-grams. For each task we selected 100 most
frequent features in a particular class and combined them into 200-feature vectors.
Tables 10 and 11 presents results of machine learning evaluation on API call n-
grams data.

As we can see ANN, k-NN and C4.5 are the best classifiers similar to previous
results. It is also more difficult to distinguish between files from malware_000 and
malware_207. We gained quite high accuracy, but it is still lower than in related
studies. It could be explained by the size of datasets: other studies datasets usually
consist of several hundreds or thousands of files while our dataset has more than
110,000 files. After analysing feature selection results we decided not to include
them in the results section since most of the features are similar in terms of
distinguishing between malware and goodware. It means that there is large number
of unique API calls that can be found once or twice in a file in contrary to the byte
or opcode n-gram.

We also studied the difference between frequencies distributions of API calls.
Figure 14 sketches extracted API 1-grams from three datasets. One can see that
there is a significant spread between numbers of occurrences in benign class in
contrary to both malicious datasets. On the other hand, results for both malware
datasets are similar, which indicates statistical significance of extracted features. It
is important ho highlight that the largest scatter are in frequencies for memset(),
malloc() and free() API calls. On the other hand, malicious programs tend to use
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Fig. 14 Frequencies of 20 most frequent API 1-grams for three different datasets

GetProcAddress() function more often for retrieving the address of any function
from dynamic-link libraries in the system.

6 Conclusion

In this paper we presented a survey on applications of machine learning techniques
for static analysis of PE32 Windows malware. First, we elaborated on different
methods for extracting static characteristics of the executable files. Second, an
overview of different machine learning methods utilized for classification of static
characteristics of PE32 files was given. In addition, we offered a taxonomy of
malware static features and corresponding ML methods. Finally, we provided a
tutorial on how to apply different ML methods on benign and malware dataset for
classification. We found that C4.5 and k-NN in most cases perform better than other
methods, while SVM and ANN on some feature sets showed good performance. On
the other hand Bayes Network and Naive Bayes have poor performance compared
to other ML methods. This can be explained by negligibly low probabilities
which present in a large number of features such as opcode and bytes n-grams.
So, it can see that static-analysis using ML is a fast and reliable mechanism to
classify malicious and benign samples considering different characteristic of PE32
executables. Machine Learning- aided static malware analysis can be used as part
of Cyber Threat Intelligence (CTI) activities to automate detection of indications of
compromise from static features of PE32 Windows files.
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Abstract Detecting, analyzing, and defending against cyber threats is an important
topic in cyber security. Applying machine learning techniques to detect such threats
has received considerable attention in research literature. Anomalies of Border
Gateway Protocol (BGP) affect network operations and their detection is of interest
to researchers and practitioners. In this Chapter, we describe main properties of the
protocol and datasets that contain BGP records collected from various public and
private domain repositories such as Route Views, Réseaux IP Européens (RIPE),
and BCNET. We employ various feature selection algorithms to extract the most
relevant features that are later used to classify BGP anomalies.

Keywords Routing anomalies - Border Gateway Protocol - Feature extraction -
Feature selection - Machine learning techniques

1 Introduction

The Internet is a critical asset of information and communication technology. Cyber
attacks and threats significantly impact the Internet performance. Hence, detecting
such network anomalies is of great interest to researchers and practitioners. In this
Chapter, we describe BGP, datasets used to detect anomalies, feature extraction
process, and various feature selection algorithms. We consider BGP update mes-
sages because they contain information about the protocol status and configurations.
BGP update messages are extracted from the collected data during the time periods
when the Internet experienced known anomalies. BGP features are extracted and
selected in order to improve the classification results. The classifiers are then used
in Chapter 4 to detect anomalies and to compare classification results.
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We extract AS-path and volume features from the BGP datasets [1, 9, 11]. Subsets
of features are then selected using various feature selection algorithms to reduce
the dimensionality of the dataset matrix while preserving their physical meaning.
The employed algorithms belong to the category of filter methods where feature
selection is independent of the underlying learning algorithm [28]. For feature
selection, we employ: Fisher [35], minimum redundancy maximum relevance
(mRMR) [40] (including mutual information difference (MID), mutual informa-
tion quotient (MIQ), and mutual information base (MIBASE)), odds ratio (OR),
extended/weighted/multi-class odds ratio (EOR/WOR/MOR), class discriminating
measure (CDM) [21], and decision tree [42].

In this survey, we have revised our previous research findings and results by
carefully processing the considered datasets, selecting better parameters for various
techniques, and reevaluating past performance results. We revised previously
reported performance results [16, 24] for feature selection algorithms (Fisher, MID,
MIQ, MIBASE, OR, EOR, WOR, MOR, and CDM). Other approaches include
using fuzzy rough sets for feature selection [34]. Fuzzy sets and rough sets [38, 43]
have greatly affected the way we compute with imperfect information. Fuzzy rough
sets deal with the approximation of fuzzy sets in an approximation space [52].
Even though the classification accuracy usually improves by performing feature
reduction using fuzzy rough sets, the computational complexity of the algorithm
remains rather high. Hence, this approach is unsuitable in cases with large number
of samples and attributes. In comparison, the decision tree algorithm is faster and
may achieve acceptable classification accuracy.

This Chapter is organized as follows. We first briefly described BGP, the effect
of network anomalies, and approaches for their detection. In Sect.2, we provide
details of various BGP anomalies that we have considered in our previous work
and in this survey. The description of the datasets and data processing is introduced
in Sect. 3. Various approaches for feature extractions are described in Sect. 4 while
feature selection algorithms are described in Sect. 5. We conclude with Sect. 6. List
of relevant references is also provided.

1.1 Border Gateway Protocol (BGP)

BGP [44] is a routing protocol that plays an essential role in forwarding Internet
Protocol (IP) traffic between the source and the destination Autonomous Systems
(ASes). An AS is a collection of BGP peers managed by a single administrative
domain [51]. It consists of one or more networks that possess uniform routing
policies while operating independently. Internet operations such as connectivity and
data packet delivery are facilitated by various ASes.

The main function of BGP is to select the best routes between ASes based on
network policies enforced by network administrators. Routing algorithms determine
the route that a data packet takes while traversing the Internet. They exchange
reachability information about possible destinations. BGP is an upgrade of the
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Exterior Gateway Protocol (EGP) [45]. It is an interdomain routing protocol used
for routing packets in networks consisting of a large number of ASs. BGP version
4 allows Classless Interdomain Routing (CIDR), aggregation of routes, incremental
additions, better filtering options, and it has the ability to set routing policies. BGP
employs the path vector protocol, which is a modified version of the distance vector
protocol [30]. It is a standard for the exchange of information among the Internet
Service Providers (ISPs).

BGP relies on the Transport Control Protocol (TCP) to establish a connection
(port 179) between the routers. A BGP router establishes a TCP connection
with its peers that reside in different ASes. Because of their size, BGP routing
tables are exchanged once between the peering routers when they first connect.
BGP allows ASes to exchange reachability information with peering ASes to
transmit information about the availability of routes within an AS. Based on the
exchanged information and routing policies, it determines the most appropriate path
to destination. BGP allows each subnet to announce its existence to the Internet and
to publish its reachability information. Hence, all sub-networks are inter-connected
and are known to the Internet.

BGP is an incremental protocol that sends updates only if there are reachability or
topology changes within the network. Afterwards, only updates regarding new pre-
fixes or withdrawals of the existing prefixes are exchanged. BGP routers exchange
four types of messages: open, update, keep-alive, and notification [45]. The open
message that contains basic information such as router identifier, BGP version, and
the AS number is used to open a peering session. Routers exchange all known routes
using the update message after the BGP session is established and when there is a
change of BGP routes in the routing tables. Keep-alive messages are exchanged
between peers during inactivity periods to ensure that the connections still exist.
The notification message closes a peering session if there is a disagreement in the
configuration parameters. A sample of a BGP update message is shown in Table 1.
It contains two Network Layer Reachability Information (NLRI) announcements,
which share attributes such as the AS-path. The AS-path attribute in the BGP update
message indicates the path that a BGP packet traverses among AS peers. The AS-
path attribute enables BGP to route packets via the best path.

Propagation of the BGP routing information is susceptible to various anoma-
lous events such as worms, malicious attacks, power outages, blackouts, and
misconfigurations of BGP routers. BGP anomalies are caused by changes in
network topologies, updated AS policies, or router misconfigurations. They affect
the Internet servers and hosts and are manifested by anomalous traffic behavior.
Anomalous events in communication networks cause traffic behavior to deviate
from its usual profile. These events may spread false routing information throughout
the Internet by either dropping packets or directing traffic through unauthorized
ASes and, hence, risking eavesdropping. Large-scale power outages may affect ISPs
due to unreliable power backup. They could also cause network equipment failures
leaving affected networks isolated and their service disrupted. Configuration errors
in BGP routers also induce anomalous routing behavior. Routing table leak and
prefix hijack [10] events are examples of BGP configuration errors that may lead
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Table 1 Sample of a BGP update message

Field Value

Time 2003 1 24 00:39:53

Type BGP4MP/BGP4MP_MESSAGE AFI_IP

From 192.65.184.3

To 193.0.4.28

BGP packet type Update

Origin IGP

AS-path 513 3320 7176 15570 7246 7246 7246
7246 7246 7246 7246 7246 7246

Next-hop 192.65.184.3

Announced NLRI prefix 198.155.189.0/24

Announced NLRI prefix 198.155.241.0/24

IGP: Interior Gateway Protocol, NLRI: Network Layer Reachability Information

to large-scale disconnections in the Internet. A routing table leak occurs when an
AS such as an ISP announces a prefix from its Route Information Base (RIB) that
violates previously agreed upon routing policy. A prefix hijack is the consequence
of an AS originating a prefix that it does not own.

1.2 Approaches for Detecting Network Anomalies

Detailed comparison of various network intrusion techniques has been reported in
the literature [18]. Demands for Internet services have been steadily increasing and
anomalous events and their effects have dire economic consequences. Determining
the anomalous events and their causes is an important step in assessing loss of data
by anomalous routing. Hence, it is important to classify these anomalous events and
prevent their effects on BGP.

Anomaly detection techniques have been applied in communication net-
works [14]. These techniques are employed to detect BGP anomalies such as
intrusion attacks, worms, and distributed denial of service attacks (DDoS) [32, 39]
that frequently affect the Internet and its applications. BGP data have been analyzed
to identify anomalous events and design tools that have been used in anomaly
predictions. Network anomalies are detected by analyzing collected traffic data
and generating various classification models. A variety of techniques have been
proposed to detect BGP anomalies.

Early approaches include developing traffic models using statistical signal
processing techniques where a baseline profile of network regular operation is
developed based on a parametric model of traffic behavior and a large collection
of traffic samples to account for regular (anomaly-free) cases [27]. Anomalies may
then be detected as sudden changes in the mean values of variables describing
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the baseline model. However, it is infeasible to acquire datasets that include
all possible cases. In a network with quasi-stationary traffic, statistical signal
processing methods have been employed to detect anomalies as correlated abrupt
changes in network traffic [47].

The main focus of approaches also proposed in the past is developing models for
classification of anomalies. The accuracy of a classifier depends on the extracted
features, combination of selected features, and underlying models. Recent research
reports describe a number of applicable classification techniques. One of the
most common approaches is based on a statistical pattern recognition model
implemented as an anomaly classifier and detector [23]. Its main disadvantage is the
difficulty in estimating distributions of higher dimensions. For example, a Bayesian
detection algorithm was designed to identify unexpected route mis-configurations as
statistical anomalies [17]. An instance-learning framework also employed wavelets
to systematically identify anomalous BGP route advertisements [53]. Other pro-
posed techniques are rule-based methods that have been employed for detecting
anomalous BGP events. An example is the Internet Routing Forensics (IRF) that
was applied to classify anomaly events [33]. However, rule-based techniques are not
adaptable learning mechanisms. They are slow, have high degree of computational
complexity, and require a priority knowledge of network conditions.

We view anomaly detection as a classification problem of assigning an
“anomaly” or “regular” label to a data point. There are numerous machine learning
methods that address these classification tasks. However, redundancies in the
collected data may affect the performance of classification methods. Feature
extraction and selection are used to select a subset of features from the original
feature space and, thus, to reduce redundancy among features that leads to
improving the classification accuracy. Feature extraction methods such as principal
component analysis project the original data points onto a lower dimensional space.
However, features transformed by feature extraction lose their original physical
meaning. We extract BGP features based on the attributes of BGP update messages
in order to achieve reliable classification results. Recent trends in designing BGP
anomaly detection systems rely more frequently on machine learning techniques.
Known classifiers are tested for their ability to detect network anomalies in datasets
that include known BGP anomalies. In this survey, we described several machine
learning techniques that we have used in the past for classification due to their
superior performance compared to earlier approaches.

2 Examples of BGP Anomalies

Anomalous events considered in this Chapter are worms, power outages, and BGP
router configuration errors. They are manifested by sharp and sustained increases in
the number of announcement or withdrawal messages exchanged by BGP routers.
Volume and AS-path features are collected over 1-min time intervals during 5-day
periods for well known anomalous Internet events. While the available datasets
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Table 2 Examples of known BGP Internet worms

Date
Dataset Class Beginning of the event End of the event Duration (min)
Slammer | Anomaly | 25.01.2003 at 5:31 GMT | 25.01.2003 at 19:59 GMT | 869
Nimda Anomaly | 18.09.2001 at 13:19 GMT | 20.09.2001 at 23:59 GMT | 3,521
Code Red I | Anomaly | 19.07.2001 at 13:20 GMT | 19.07.2001 at 23:19 GMT | 600

Table 3 Datasets of the Internet anomalous events

Event Date RRC Peers

Moscow power blackout May 2005 |RIS05 | AS 1853, AS 12793, AS 13237
AS 9121 routing table leak | Dec. 2004 | RIS 05 | AS 1853, AS 12793, AS 13237
AS 3561 improper filtering | Apr. 2001 | RIS 03 | AS 3257, AS 3333, AS 286

Panix domain hijack Jan. 2006 | Route AS 12956, AS 6762, AS 6939, AS 3549
Views
AS-path error Oct. 2001 |RIS03 | AS 3257, AS 3333, AS 6762, AS 9057

AS 3356/AS 714 de-peering | Oct. 2005 | RISO1 | AS 13237, AS 8342, AS 5511, AS 16034

contain data over much longer periods of time, we have selected for our analysis
a 5-day period to minimize storage and computational requirements. Furthermore,
selecting longer periods of regular data would make datasets ever more unbalanced.
Several methods that we surveyed offer better performance when dealing with
balanced datasets. Details including dates of the events, remote route collectors
(RRC) that acquired data using Routing Information Service (RIS), and observed
peers are given in Tables 2 and 3. For example, Slammer event occurred on January
25, 2003 and lasted almost 16hours. Hence, BGP update messages collected
between January 23, 2003 and January 27, 2003 are selected as samples for feature
extraction.

The Structured Query Language (SQL) Slammer worm attacked Microsoft SQL
servers on January 25, 2003 [12]. It generated random IP addresses and replicates
itself by sending 376 bytes of code to those IP addresses. As a result, the update
messages consumed most of the routers’ bandwidth, which in turn slowed down the
routers and, in some cases, caused the routers to crash. The Nimda worm [8] was
released on September 18, 2001. It propagated fast through email messages, web
browsers, and file systems. Viewing the email message triggered the worm payload.
The worm modified the content of the web document file in the infected hosts and
copied itself in local host directories. The Code Red I worm attacked web servers
on July 19, 2001 [3]. The worm affected approximately half a million IP addresses
a day. It took advantage of vulnerability in the Internet Information Services (IIS)
indexing software. It triggered a buffer overflow in the infected hosts by writing to
the buffers without checking their limits.

We consider BGP anomalous events such as Slammer [12], Nimda [8], Code Red
1[3], AS 9121 routing table leak [41], Moscow power blackout, AS 3561 improper
filtering, Panix domain hijack, AS path error, and AS 3356/AS 714 de-peering [54].
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Slammer [12] Microsoft SQL servers were infected through a small piece of
code that generated IP addresses at random. Furthermore, code replicated itself by
infecting new machines through randomly generated targets. If the destination IP
address was a Microsoft SQL server or a user’s PC with the Microsoft SQL Server
Data Engine (MSDE) installed, the server became infected and began infecting other
servers. The number of infected machines doubled approximately every 9s. Single
infected machines have reported additional traffic of 50 Mb/s [13] as a consequence
of increased generation of update messages.

Nimda [8] Nimda exploited vulnerabilities in the Microsoft Internet Information
Services (IIS) web servers for the Internet Explorer 5. It used three methods for
propagation: email, network shares, and the web. The worm propagated by sending
an infected attachment that was automatically downloaded after viewing email. A
user could also download it from the website or access an infected file through the
network.

Code Red I [3] Although the Code Red I worm attacked Microsoft IIS web servers
earlier, the peak of infected computers was observed on July 19, 2001. The worm
replicated itself by exploiting weakness of the IIS servers and, unlike the Slammer
worm, Code Red I searched for vulnerable servers to infect. Rate of infection was
doubling every 37 min.

Records of three BGP anomalies along with regular RIPE traffic are shown in
Fig. 1. The effect of Slammer worm on volume and AS-path features is shown in
Fig.2.

Moscow Power Blackout The blackout occurred on May 25, 2005 and lasted several
hours. The Moscow Internet exchange was shut down during the power outage.
Routing instabilities were observed due to loss of connectivity of some ISPs peering
at this exchange. This effect was apparent at the RIS remote route collector in
Vienna (1rrc05) through a surge in announcement messages arriving from peer AS
12793, as shown in Fig. 3. Hence, volume of announcements was one of the features
used to detect the anomaly.

AS 9121 Routing Table Leak It occurred on December 24, 2004 when AS 9121
announced to peers that it could be used to reach almost 70% of all prefixes (over
106,000). As a consequence, numerous networks had either misdirected or lost their
traffic. The AS 9121 started announcing prefixes to peers around 9:20 GMT and the
event lasted until shortly after 10:00 GMT. It continued to announce bad prefixes
throughout the day. The announcement rate reached the second peak at 19:47 GMT.

AS 3561 Improper Filtering This was a BGP mis-configuration error that occurred
on April 6, 2001. AS 3561 allowed improper route announcements from its down-
stream customers, which created connectivity disruptions. Surge of announcement
messages originating from peer AS 3257 was observed at the RIS rrc03.

Panix Domain Hijack Panix, the oldest commercial ISP in New York state, was
hijacked on January 22, 2006. Its services were unreachable from the greater part
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Fig. 1 Number of BGP announcements in Slammer (top left), Nimda (top right), Code Red I
(bottom left), and regular RIPE (bottom right) traffic

of the Internet. Con Edison (AS 27506) advertised routes that it did not own at the
time. Panix was previously a customer of Con Edison, which was once authorized
to offer advertised routes. Even though AS 27506 originated improper routes, major
downstream ISPs did not properly configure filters and propagated those routes,
leading to excess number of update messages.

AS-path Error The AS-path error occurred on October 7, 2001. It was caused by
an abnormal AS-path (AS 3300, AS 64603, AS 2008) that contained private AS
64603 that should not have been included in the path. At the time, AS 3300 and
AS 2008 belonged to INFONET Europe and INFONET USA, respectively. The
path was distributed to the network via mis-configured routers and caused the leak
of the private AS numbers. Shown in Fig. 4, is the increase of incomplete packets
around 20:00 GMT, peaking around 21:00 GMT, and slowly decreasing during the
following 4 hours.

De-Peering The AS 3356/AS 714 De-Peering event occurred on October 5, 2005.
Even though the Level 3 Communications (AS 3356) notified the Cogent Commu-
nications (AS 714) 2 months in advance of de-peering, the event created reachability
problems for many Internet locations. Mostly affected were single-homed customers
of Cogent (approximately 2,300 prefixes) and Level 3 Communications (approxi-
mately 5,000 prefixes). De-Peering resulted in partitioning of approximately 4% of
prefixes in the global routing table.
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Fig. 2 BGP announcements during the Slammer worm attack: number of duplicate announce-
ments (top left), number of EGP packets (top right), maximum AS-path length (bottom left), and
maximum AS-path edit distance (bottom right)

3 Analyzed BGP Datasets

The Internet routing data used in this chapter to detect BGP anomalies are acquired
from projects that provide valuable information to networking research: the Route
Views project [11] at the University of Oregon, USA and the Routing Information
Service (RIS) project initiated in 2001 by the Réseaux IP Européens (RIPE) Net-
work Coordination Centre (NCC) [9]. Both projects collect and store chronological
routing data that offer a unique view of the Internet topology. The Route Views and
RIPE BGP update messages are publicly available to the research community. The
regular BCNET dataset is collected at the BCNET location in Vancouver, British
Columbia, Canada [25, 31]. We use BGP update messages that originated from AS
513 (route collector rrc04) member of the CERN Internet Exchange Point (CIXP).
Only data collected during the periods of Internet anomalies are considered.

The Route Views project collects BGP routing tables from multiple geographi-
cally distributed BGP Cisco routers and Zebra servers every 2 hours. At the time of
BGP anomalies considered in this study, two Cisco routers and two Zebra servers
were located at the University of Oregon, USA. The remaining five Zebra servers are
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located at Equinix-USA, ISC-USA, KIXP-Kenya, LINX-Great Britain, and DIXIE-

Japan [11]. Most participating ASes in the Route Views project are located in North
America.
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The RIPE NCC began collecting and storing Internet routing data in 2001
through the RIS project [9]. The data were exported every 15 min until July 2003.
The interval between consecutive exports was later decreased to 5 min. BGP update
messages are collected by the RRCs and stored in the multi-threaded routing
toolkit (MRT) binary format [7]. The Internet Engineering Task Force (IETF) [4]
introduced MRT to export routing protocol messages, state changes, and content of
the routing information base (RIB). We transformed BGP update messages from
MRT into ASCII format by using libBGPdump library [5] on a Linux platform.
LibBGPdump is a C library maintained by the RIPE NCC and it is used to analyze
dump files, which are in MRT format.

We use data from the Route Views and RIPE projects data collectors. Only
data collected during the periods of Internet anomalies are considered. BGP update
messages originated from RIS route collectors: rrcO1 (LINX, London), rcc03 (AMS-
IX, Amsterdam), rrc04 (CIXP, Geneva), and rrc05 (VIX, Vienna).

3.1 Processing of Collected Data

BGP update messages are collected during the time period when the Internet
experienced anomalies. Datasets are concatenated to increase the size of training
datasets and thus improve the classification results. Anomaly datasets and their
concatenations used for training and testing are shown in Table 4.

We consider a 5-day period for each anomaly: the days of the attack (anomalous
data points) and 2 days prior and 2 days after the attack (regular data points). The
exception is Nimda dataset where the anomaly lasted longer than 2 days and, hence,
we only use 2 days prior to the event as regular data points. Datasets consist of
14,400 (2x 7,200) data points represented by 14,400 x 37 and 14,400 x 10 matrices
that correspond to 37 and 10 features, respectively. In some cases choosing 15
features was suitable for detecting anomalous events [22] leading to the feature
matrices of dimension 7,200 x 15. In addition to anomalous test datasets, we also
use regular datasets collected from RIPE [9] and BCNET [1]. Details of the three
anomalies are listed in Table 5.

Table 4 Training and test datasets

Training dataset Anomalies Test dataset

1 Slammer and Nimda Code Red I

2 Slammer and Code Red I Nimda

3 Nimda and Code Red I Slammer

4 Slammer Nimda and Code Red I

5 Nimda Slammer and Code Red I
6 Code Red I Slammer and Nimda

7 Slammer, Nimda, and Code Red I RIPE or BCNET
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Table 5 Duration of

Anomaly (min)

Q. Ding et al.

Regular (min)

analyzed BGP events
Slammer 6,331
Nimda 3,679
Code Red I 6,600
Table 6 List of features extracted from BGP update messages
Feature Name Category
1 Number of announcements volume
2 Number of withdrawals volume
3 Number of announced NLRI prefixes volume
4 Number of withdrawn NLRI prefixes volume
5 Average AS-path length AS-path
6 Maximum AS-path length AS-path
7 Average unique AS-path length AS-path
8 Number of duplicate announcements volume
9 Number of duplicate withdrawals volume
10 Number of implicit withdrawals volume
11 Average edit distance AS-path
12 Maximum edit distance AS-path
13 Inter-arrival time volume
14-24 Maximum edit distance = n, AS-path
wheren = (7,...,17)
25-33 Maximum AS-path length = n, AS-path
where n = (7, ..., 15)
34 Number of Interior Gateway Protocol (IGP) packets volume
35 Number of Exterior Gateway Protocol (EGP) packets volume
36 Number of incomplete packets volume
37 Packet size (B) volume

4 Extraction of Features from BGP Update Messages

Feature extraction and selection are the first steps in the classification process. We
developed a tool (written in C#) [15] to parse the ASCII files and extract statistics
of the desired features. The AS-path is a BGP update message attribute that enables
the protocol to select the best path for routing packets. It indicates a path that a
packet may traverse to reach its destination. If a feature is derived from the AS-
path attribute, it is categorized as an AS-path feature. Otherwise, it is categorized
as a volume feature. There are three types of features: continuous, categorical, and
binary. We extracted AS-path and volume features shown in Table 6 [15].
Definitions of the extracted features are listed in Table 7. BGP update messages
are either announcement or withdrawal messages for the NLRI prefixes. The NLRI
prefixes that have identical BGP attributes are encapsulated and sent in one BGP
packet [37]. Hence, a BGP packet may contain more than one announced or with-
drawn NLRI prefix. The average and the maximum number of AS peers are used for
calculating AS-path lengths. Duplicate announcements are the BGP update packets
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Table 7 Definition of volume and AS-path features extracted from BGP update messages

Feature | Name Definition
1 Number of announcements Routes available for delivery of data
2 Number of withdrawals Routes no longer reachable
3/4 Number of announced/withdrawn | BGP update messages that have
NLRI prefixes type field set to announcement/withdrawal
5/16/7 Average/maximum/average unique| Various AS-path lengths
AS-path length
8/9 Number of duplicate Duplicate BGP update messages with
announcements/withdrawals type field set to announcement/withdrawal
10 Number of implicit withdrawals | BGP update messages with type field

set to announcement and different AS-path
attribute for already announced NLRI prefixes
11/12 Average/maximum edit distance | Average/maximum of edit distances of messages
34/35/36| Number of IGP, EGP or, BGP update messages generated by IGP, EGP,
incomplete packets or unknown sources

Table 8 Example of BGP features

Time Definition BGP update type NLRI AS-path

to Announcement Announcement 199.60.12.130 13455614

f Withdrawal Withdrawal 199.60.12.130 13455 614

5] Duplicate Announcement 199.60.12.130 13455 614
announcement

13 Implicit Announcement 199.60.12.130 16180 614
withdrawal

14 Duplicate Withdrawal 199.60.12.130 13455 614
withdrawal

that have identical NLRI prefixes and the AS-path attributes. Implicit withdrawals
are the BGP announcements with different AS-paths for already announced NLRI
prefixes [48]. The edit distance between two AS-path attributes is the minimum
number of deletions, insertions, or substitutions that need to be executed to match
the two attributes [23]. For example, the edit distance between AS-path 513 940
and AS-path 513 4567 1318 is two because one insertion and one substitution
are sufficient to match the two AS-paths. The maximum AS-path length and the
maximum edit distance are used to count Features 14-33. We also consider Features
34, 35, and 36 based on distinct values of the origin attribute that specifies the origin
of a BGP update packet and may assume three values: IGP, EGP, and incomplete.
Even though the EGP protocol is the predecessor of BGP, EGP packets still appear in
traffic traces containing BGP updates messages. Under a worm attack, BGP traces
contain large volume of EGP packets. Furthermore, incomplete update messages
imply that the announced NLRI prefixes are generated from unknown sources. They
usually originate from BGP redistribution configurations [37]. Examples are shown
in Table 8 while various distributions are shown in Figs. 5 and 6.
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Code Red I worm

Performance of the BGP protocol is based on trust among BGP peers because
they assume that the interchanged announcements are accurate and reliable. This
trust relationship is vulnerable during BGP anomalies. For example, during BGP
hijacks, a BGP peer may announce unauthorized prefixes that indicate to other
peers that it is the originating peer. These false announcements propagate across the
Internet to other BGP peers and, hence, affect the number of BGP announcements
(updates and withdrawals) worldwide. This storm of BGP announcements affects
the quantity of volume features. For example, we have observed that 65% of the
influential features are volume features. They proved to be more relevant to the
anomaly class than the AS-path features, which confirms the known consequence
of BGP anomalies on the volume of announcements. Hence, using BGP volume
features is a feasible approach for detecting BGP anomalies and possible worm
attacks in communication networks.

The top selected AS-path features appear on the boundaries of the distributions.
This indicates that during BGP anomalies, the edit distance and AS-path length of
the BGP announcements tend to have a very high or a very low value and, hence,
large variance. This implies that during an anomaly attack, AS-path features are the
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distribution outliers. For example, approximately 58% of the AS-path features are
larger than the distribution mean. Large length of the AS-path BGP attribute implies
that the packet is routed via a longer path to its destination, which causes large
routing delays during BGP anomalies. In a similar case, very short lengths of AS-
path attributes occur during BGP hijacks when the new (false) originator usually
gains a preferred or shorter path to the destination [10].

5 Review of Feature Selection Algorithms

Machine learning models classify data points using a feature matrix. The rows
correspond to the data points while the columns correspond to the features. Even
though machine learning provides general models to classify anomalies, it may
easily misclassify test data points due to the redundancy or noise contained in
datasets. By providing a sufficient number of relevant features, machine learning
models overcome this deficiency and may help design a generalized model to
classify data with small error rates [28, 29]. Performance of anomaly classifiers
is closely related to feature selection algorithms [20].

Feature selection is used to pre-process data prior to applying machine learning
algorithms for classification. Selecting appropriate combination of features is
essential for an accurate classification. For example, the scatterings of anomalous
and regular classes for Feature 9 (volume) vs. Feature 1 (volume) and vs. Feature 6
(AS-path) are shown in Fig.7 (left) and (right), respectively. The graphs indicate
spatial separation of features. While selecting Feature 9 and Feature 1 may lead to a
feasible classification based on visible clusters, using only Feature 9 and Feature 6
would lead to poor classification.
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Fig. 7 Scattered graph of Feature 9 vs. Feature 1 (left) and vs. Feature 6 (right) extracted from the
BCNET traffic. Feature values are normalized to have zero mean and unit variance. Shown are two
traffic classes: regular (open circle) and anomaly (asterisk)
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Feature selection follows a feature extraction process and it is used to decrease
dimension of the dataset matrix by selecting a subset of original features to create
a new matrix according to certain criteria. The number of features is reduced by
removing irrelevant, redundant, and noisy features [36]. Feature selection reduces
overfitting by minimizing the redundancies in data, improves modeling accuracy,
and decreases training time. It also reduces computational complexity and memory
usage. Performance of classification algorithms may also be improved by using pre-
selection of features that are most relevant to the classification task. We select the top
ten features while dismissing weak and distorted features. We employ Fisher [26,
35, 49], mRMR [40] (including MID, MIQ, and MIBASE), OR (including EOR,
WOR, MOR, and CDM) [21], and Decision Tree [42] feature selection algorithms
to select relevant features from BGP datasets.

Each sample is a point in n-dimensional space, where kth dimension is a column
vector Xy representing one feature. For example, X is a column vector representing
7,200 announcements in each sampling window of 1 min.

5.1 Fisher Algorithm

The Fisher feature selection algorithm [26, 35, 49] computes the score @y for the
kth feature as a ratio of inter-class separation and intra-class variance. Features
with higher inter-class separation and lower intra-class variance have higher Fisher
scores. If there are N[’f anomalous samples and Nrk regular samples of the kth
feature, the mean values mla‘ of anomalous samples and m’r‘ of regular samples are
calculated as:

1
k
= o X

a4 jeay
1
k _ .
my = g ik (1)
T jerg

where a; and ry are the sets of anomalous and regular samples for the kth feature,
respectively. The Fisher score for the kth feature is calculated as:

|(mk)* = (m)?)

(@)
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Table 9 The top ten features selected using the Fisher feature selection algorithm and Dataset 2
(two-way classification)
Feature | 9 10 8 3 6 11 1 34 36 2

Fisher | 0.2280 | 0.1665 | 0.0794 | 0.0656 | 0.0614 | 0.0610 | 0.0528 | 0.0526 | 0.0499 | 0.0336
score

Table 10 The top ten features selected using the Fisher feature selection algorithm and Dataset 7
(four-way classification)

Feature | 9 10 6 11 8 36 3 37 1 34

Fisher |0.1259 |0.0502 | 0.0414 | 0.0409 | 0.0281 | 0.0271 | 0.0240 | 0.0239 | 0.0210 | 0.0203
score

Examples of features selected using the Fisher algorithm applied to various
training datasets are shown in Tables 9 and 10.

5.2 Minimum Redundancy Maximum Relevance (mnRMR)
Algorithms

The mRMR algorithm [6, 40] relies on information theory for feature selection.
It selects a subset of features that contains more information about the target
class while having less pairwise mutual information. A subset of features S =

{X1, ..., Xk, ...} with | S| elements has the minimum redundancy if it minimizes:
1
V=5 > IXk X)) 3)
X, X €8

It has maximum relevance to the classification task if it maximizes:

1
V=— JX0), @
|S| XieS

where C is a class vector and .# denotes the mutual information function calcu-
lated as:

p (X, X))

I Xi, X)) = X, XDlog————.
Xe, X)) =Y p(Xi Dlog— = XD

k.l

®)

The mRMR algorithm offers three variants for feature selection: Mutual Informa-
tion Difference (MID), Mutual Information Quotient (MIQ), and Mutual Informa-
tion Base (MIBASE). MID and MIQ select the best features based on rsrlas)2([7/ /A

C

and ISnaS)Z([”I/ /W], respectively, where 2 is the set of all features.
c
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Table 11 The top ten mMRMR

features selected using the MID MIQ MIBASE

mRMR feature selection
algorithms and Dataset 2 Feature | Score | Feature |Score | Feature | Score

(two-way classification) 34 0.0554 | 34 0.0554 | 34 0.0554
10 0.0117 |10 0.7527 | 1 0.0545
20 0.0047 | 8 0.6583 | 8 0.0469
25 0.0014 | 20 0.5014 | 10 0.0469
24 0.0012 | 4 04937 | 3 0.0421
23 0.0008 | 36 0.4095 | 9 0.0411

0.0007 | 1 0.3720 |36 0.0377

8 0.0007 | 9 0.3260 | 4 0.0367
22 0.0006 | 3 0.2824 | 6 0.0205
21 0.0005 | 6 0.2809 |11 0.0201

g‘able 12 1The (tiop ten ) mRMR

mRMR feature selecton MID MIQ MIBASE

algorithms and Dataset 7 Feature |Score |Feature | Score |Feature | Score

(four-way classification) 9 0.0407 | 9 0.0407 | 9 0.0407
20 0.0030 |34 04797 | 1 0.0308
36 0.0024 | 36 0.3790 |34 0.0305
34 0.0024 | 10 0.3730 |36 0.0305
22 0.0017 | 5 0.3333 | 3 0.0234
21 0.0017 | 8 0.3322 | 8 0.0225
5 0.0003 | 1 0.3156 | 10 0.0200
10 0.0003 | 6 0.2920 | 6 0.0179
29 0.0002 | 37 0.2387 | 11 0.0177
23 0.0000 | 3 0.2299 |37 0.0175

The top ten features selected by mRMR from various datasets are shown in
Tables 11 and 12. They are used for two-way and four-way classifications. Selected
features shown in Table 11 are generated by using Dataset 2 (Table 4) and are
intended for two-way classification. Features shown in Table 12 are generated by
using Dataset 7 (Table 4) and are used for four-way classification.

5.3 Odds Ratio Algorithms

The odds ratio (OR) algorithm and its variants perform well when selecting features
to be used in binary classification using naive Bayes models. In case of a binary
classification with two target classes ¢ and c, the odds ratio for a feature Xj is
calculated as:

Pr(Xgle) (1 — Pr(Xk|2))

OR(X) = log Pr(Xy|6)(1 — Pr(Xkle))’

(6)
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where Pr(Xy|c) and Pr(Xy|c) are the probabilities of feature Xj being in classes ¢
and c, respectively.

The extended odds ratio (EOR), weighted odds ratio (WOR), multi-class odds
ratio (MOR), and class discriminating measure (CDM) are variants that enable

multi-class feature selections in case of y = {c1, c2, ..., ¢} classes:
L Pr(Xglep)(1 = Pr(Xxlé))
EORXy) =) log =
o Pr(Xklcj)(l - Pr(Xk|c.,~))

Pr(Xk|Cj)(1 — PI‘(Xk|C_j))
Pr(Xy[c;) (1 — PrXglc;))

J
WORXy) = ZPr(cj) x log
j=1
J
MOR(Xy) = Z log

Jj=1

Pr(Xele;) (1 — Pr(Xe|¢))) ’
Pr(Xk|¢j)(1 — Pr(Xglc)))

Pr(Xkle;)

J
CDMXp) =) Pr(X¢l¢))

j=1

log , (7

where Pr(Xy|c;) is the conditional probability of X given the class c¢; and Pr(c;)
is the probability of occurrence of the class j. The OR algorithm is extended by
calculating Pr(Xj|c;) for continuous features. If the sample points are independent
and identically distributed, (6) is written as:

X!

OR(Xk)zzlog r(Xik = xikle) r(Xix = xik|C))
i=1

Pr(Xix = xik|0) (1 — Pr(Xix = xixle))’

®)

where |Xy| denote the size of the kth feature vector, X;; is the ith element of the
kth feature vector, and x; is realization of the random variable X;z. Other variants
of the OR feature selection algorithm are extended to continuous cases in a similar
manner. The top ten selected features used for two-way and four-way classifications
are shown in Tables 13 and 14, respectively.

5.4 Decision Tree Algorithm

The decision tree approach is commonly used in data mining to predict the class
label based on several input variables. A classification tree is a directed tree where
the root is the source sample set and each internal (non-leaf) node is labeled
with an input feature. The tree branches are prediction outcomes that are labeled
with possible feature values while each leaf node is labeled with a class or a
class probability distribution [50]. A top-down approach is commonly used for
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Table 13 The top ten features selected using the OR feature selection algorithms and Dataset 2

(two-way classification)

Odds Ratio variants

OR
Feature
13
7

5
29
15
28
14
6
11
30

Table 14 The top ten features selected using the OR feature selection algorithms
(four-way classification)

Score x10*
—2.7046
—2.8051
—2.8064
—2.8774
—2.8777
—2.9136
—2.9137
—2.9190
—2.9248
—2.9288

Odds Ratio variants

EOR
Feature
3

13

9

11

6

37

Scorex 107
—1.5496
—1.5681
—1.6063
—1.6184
—1.6184
—1.6191
—1.6499
—1.6522
—1.6783
—1.6784

WOR

Feature | Score x 10*

12
1
34
3

23
24
22
21
20

WOR
Feature
12
1
34
4
36
2
23
24
21
20

3.9676
3.4121
3.4095
3.3482
3.3468
2.9348
2.7628
2.7051
2.6662
2.5821

Score x 10*

1.7791
1.3293
1.3273
1.1140
1.0763
1.0140
0.8669
0.8529
0.8508
0.8504

MOR

Feature | Score x 107

12
34

36
37
23

MOR
Feature
12
34
1
4
36
2
23
24
21
22

1.0789
0.9214
0.9213
0.8908
0.8775
0.7406
0.7264
0.7229
0.7208
0.6782

Score x 10°

3.0894
2.5964
2.5723
2.5252
2.4617
2.3024
2.2832
2.2733
2.2696
2.2696

CDM
Feature
12

34

36
37

CDM
Feature
12
34

1

4

Score x10°
1.0713
0.9199
0.9198
0.8885
0.8702
0.7224
0.7201
0.7192
0.7145
0.6624

and Dataset 7

Score x10°
3.0700
2.5924
2.5688
2.5190
2.4422
2.2300
2.2068
2.1357
2.1168
2.0848

constructing decision trees. At each step, an appropriate variable is chosen to best
split the set of items. A quality measure is the homogeneity of the target variable
within subsets and it is applied to each candidate subset. The combined results
measure the split quality [19, 46].

The C5 [2] software tool is used to generate decision tree for both feature
selections and anomaly classifications. The C5 decision tree algorithm relies on the
information gain measure. The continuous attribute values are discretized and the
most important features are iteratively used to split the sample space until a certain
portion of samples associated with the leaf node has the same value as the target
attribute. For each training dataset, a set of rules used for classification is extracted
from the constructed decision tree.
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Table 15 Selected features

. L Training dataset | Selected features
using the decision tree

algorithm Dataset 1 1-21, 23-29, 34-37
Dataset 2 1-22, 24-29, 34-37
Dataset 3 1-29, 34-37

We apply the decision tree algorithm for feature selection to form the training
datasets shown in Table 4. These datasets are also used in the classification stage.
The selected features are shown in Table 15. Based on the outcome of the decision
tree algorithm, some features are removed in the constructed trees. Fewer features
are selected either based on the number of leaf nodes with the largest correct
classified samples or based on the number of rules with maximum sample coverage.
The features that appear in the selected rules are considered to be important and,
therefore, are preserved.

6 Conclusion

Detecting network anomalies and intrusions are crucial in fighting cyber attacks
and insuring cyber security to service providers and network customers. Machine
learning techniques are one of the most promising approaches for detecting network
anomalies and have been employed in analyzing BGP behavior. In this chapter, we
introduce BGP datasets, investigate BGP anomalies, and describe various feature
selection techniques. Datasets used in these experiments are examples of known
anomalies that proved useful for developing anomaly detection models. We have
processed and extracted features from known BGP anomalies such as Slammer,
Nimda, and Code Red I worms as well as the Moscow power blackout, AS
9121 routing table leak, Panix hijack, and AS-path error datasets. Various feature
selection and attribute reduction algorithms are used to select a subset of features
important for classification. After the feature selection process, extracted features
are used as input to machine learning classification algorithms described in the
follow-up Chapter.
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Abstract In this chapter, we apply various machine learning techniques for
classification of known network anomalies. The models are trained and tested on
various collected datasets. With the advent of fast computing platforms, many
neural network-based algorithms have proved useful in detecting BGP anomalies.
Performance of classification algorithms depends on the selected features and their
combinations. Various classification techniques and approaches are compared based
on accuracy and F-Score.
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1 Introduction

In Chapter “Application of Machine Learning Techniques to Detecting Anomalies
in Communication Networks: Datasets and Feature Selection Algorithms”, we have
introduced Border Gateway Protocol (BGP) datasets used to detect anomalies,
feature extractions, and various feature selection algorithms. We describe here
machine learning classification techniques used to detect BGP anomalies. We
examine the effect of feature selection on performance of BGP anomaly clas-
sifiers by evaluating performance of feature selection algorithms introduced in
Chapter “Application of Machine Learning Techniques to Detecting Anomalies in
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classification accuracy and F-Score.
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We apply machine learning techniques to develop classification models for
detecting BGP anomalies [6—10]. These models are trained and tested using various
datasets that consist features extracted and selected in Chapter “Application of
Machine Learning Techniques to Detecting Anomalies in Communication Net-
works: Datasets and Feature Selection Algorithms”. They are used to evaluate the
effectiveness of the extracted features. We report on improved classification results
emanating from our previous studies (Support Vector Machine (SVM) two-way
classification, Naive Bayes (NB) two-way and four-way classifications) and also
implement the Long Short-Term Memory (LSTM) machine learning technique.

A survey of various methods, systems, and tools used for detecting network
anomalies reviews a variety of existing approaches [12]. The authors have examined
recent techniques to detect network anomalies and discussed detection strategy and
employed datasets, including performance metrics for evaluating detection method
and description of various datasets and their taxonomy. They also identified issues
and challenges in developing new anomaly detection methods and systems.

Various machine learning techniques to detect cyber threats have been reported
in the literature. One-class SVM classifier with a modified kernel function was
employed [36] to detect anomalies in IP records. However, unlike the approach
in our studies, the classifier is unable to indicate the specific type of anomalies.
Stacked LSTM networks with several fully connected LSTM layers have been used
for anomaly detection in time series [27]. The method was applied to medical
electrocardiograms, a space shuttle, power demand, and multi-sensor engine data.
The analyzed data contain both long-term and short-term temporal dependencies.
Another example is the multi-scale LSTM that was used to detect BGP anoma-
lies [14] using accuracy as a performance measure. In the preprocessing phase,
data were compressed using various time scales. An optimal size of the sliding
window was then used to determine time scale to achieve the best performance of
the classifier. Multiple HMM classifiers were employed to detect Hypertext Trans-
fer Protocol (HTTP) payload-based anomalies for various Web applications [8].
Authors first treated payload as a sequence of bytes and then extracted features
using a sliding window to reduce the computational complexity. HMM classifiers
were then combined to classify network intrusions. It was shown [29] that the naive
Bayes classifier performs well for categorizing the Internet traffic emanating from
various applications. Weighted ELM [39] deals with unbalanced data by assigning
relatively larger weights to the input data arising from a minority class. Signature-
based and statistics-based detection methods have been also proposed in [40].

This Chapter is organized as follows. We first introduce machine learning
techniques and performance metrics in Sect.2. Experimental procedures using
various classification algorithms are described in Sects. 3—8. The advantages and
shortcomings of various classification algorithms are offered in Sect. 9. We conclude
with Sect. 10. The list of relevant references is provided at the end of the Chapter.
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1.1 Machine Learning Techniques

Machine learning techniques have been employed to develop models for detecting
and designing BGP anomaly detection systems. They are the most common
approaches for classifying BGP anomalies.

Unsupervised machine learning models have been used to detect anomalies in
networks with non-stationary traffic [16]. The one-class neighbor machines [31]
and recursive kernel-based online anomaly detection [7] algorithms are effective
methods for detecting anomalous network traffic [6].

While unsupervised learning techniques are often used for clustering, supervised
learning is employed for anomaly classification when the input data are labeled
based on various categories. Well-known supervised learning algorithms include
Support Vector Machine (SVM) [11, 38], Long Short-Term Memory (LSTM) [20,
22], Hidden Markov Model (HMM) [11], naive Bayes [28], Decision Tree [33], and
Extreme Learning Machine (ELM) [23, 24].

The SVM algorithms often achieve better performance compared to other
machine learning algorithms albeit with high computational complexity. LSTM is
trained using gradient-based learning algorithms implemented as a recurrent neural
network. It outperforms other sequence learning algorithms because of its ability to
learn from past experiences long-term dependencies.

No single learning algorithm performs the best for all given classification tasks
[37]. Hence, an appropriate algorithm should be selected by evaluating its perfor-
mance based on various parameters. Statistical methods, data mining, and machine
learning have been employed to evaluate and compare various algorithms [17, 19].

2 Classification Algorithms

Classification aims to identify various classes in a dataset. Each element in the
classification domain is called a class. A classifier labels the data points as either
an anomaly or a regular event. We consider datasets of known network anomalies
and test the classifiers’ ability to reliably identify anomaly class, which usually
contains fewer samples than the regular class in training and test datasets. Classifier
models are usually trained using datasets containing limited number of anomalies
and are then applied on a test dataset. Performance of a classification model depends
on a model’s ability to correctly predict classes. Classifiers are evaluated based on
various metrics such as accuracy, F-Score, precision, and sensitivity.

Most classification algorithms minimize the number of incorrectly predicted
class labels while ignoring the difference between types of misclassified labels
by assuming that all misclassifications have equal costs. The assumption that all
misclassification types are equally costly is inaccurate in many application domains.
In the case of BGP anomaly detection, incorrectly classifying an anomalous sample
may be more costly than incorrect classification of a regular sample. As a result, a
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classifier that is trained using an unbalanced dataset may successfully classify the
majority class with a good accuracy while it may be unable to accurately classify
the minority class. A dataset is unbalanced when at least one class is represented
by a smaller number of training samples compared to other classes. The Slammer
and Code Red I anomaly datasets that have been used in this study are unbalanced.
In our studies, out of 7,200 samples, Slammer and Code Red I contain 869 and
600 anomalous events, respectively. The Nimda dataset is more balanced containing
3,521 anomalous events. Hence, the majority of samples are regular data.

Various approaches have been proposed to achieve accurate classification results
when dealing with unbalanced datasets. Examples include assigning a weight to
each class or learning from one class (recognition-based) rather than two classes
(discrimination-based) [13]. The weighted SVMs [38] assign distinct weights to
data samples so that the training algorithm learns the decision surface according to
the relative importance of data points in the training dataset. The fuzzy SVM [26], a
version of weighted SVM, applies a fuzzy membership to each input sample and
reformulates the SVM so that input points contribute differently to the learning
decision surface. In this study, we create the balanced datasets by randomly reducing
a portion of regular data points. Each balanced dataset contains the same number of
regular and anomalous data samples.

2.1 Performance Metrics

The confusion matrix shown in Table 1 is used to evaluate performance of
classification algorithms. True positive (TP) and False negative (FN) are the number
of anomalous training data points that are classified as anomaly and regular,
respectively. False positive (FP) and True negative (TN) are the number of regular
data points that are classified as anomaly and regular, respectively.

Variety of performance measures are calculated to evaluate classification algo-
rithms, such as accuracy and F-Score:

TP+TN
accuracy = (D)
TP+TN+FP+FN

) precision X sensitivity
X

F-Score

2

precision + sensitivity’

Table 1 Confusion matrix Predicted class

Anomaly | Regular
Actual class (positive) | (negative)
Anomaly (positive) | TP FN
Regular (negative) | FP TN
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where
i re 3)
recision = —m
P TPt FP
itivity (recall) re 4)
sensitivi reca = -
y TPt FN

As a performance measure, accuracy reflects the true prediction over the
entire dataset. It is commonly used in evaluating the classification performance.
Accuracy assumes equal cost for misclassification and relatively uniform distri-
butions of classes. It treats the regular data points to be as important as the
anomalous points. Hence, it may be an inadequate measure when comparing per-
formance of classifiers [32] and misleading in the case of unbalanced datasets. The
F-Score, which considers the false predictions, is important for anomaly detection
because it is a harmonic mean of the precision and sensitivity, which measure
the discriminating ability of the classifier to identify classified and misclassified
anomalies. Precision identifies true anomalies among all data points that are
correctly classified as anomalies. Sensitivity measures the ability of the model to
identify correctly predicted anomalies.

As an example, consider a dataset that contains 900 regular and 100 anomalous
data points. If a classifier identifies these 1,000 data points as regular, its accuracy
is 90%, which seems high at the first glance. However, no anomalous data point
is correctly classified and, hence, the F-Score is zero. Therefore, the F-Score is
often used to compare performance of classification models. It reflects the success
of detecting anomalies rather than detecting either anomalies or regular data points.
In this study, we use F-Score to compare various classification algorithms.

3 Support Vector Machine (SVM)

Support Vector Machine is a supervised learning algorithm used for classification
and regression tasks. Given a set of labeled training samples, the SVM algorithm
learns a classification hyperplane (decision boundary) by maximizing the minimum
distance between data points belonging to various classes. There are two types of
SVM models: hard-margin and soft-margin [15]. The hard-margin SVMs require
that each data point is correctly classified while the soft-margin SVMs allow some
data points to be misclassified. The hyperplane is acquired by minimizing the loss
function [11]:

al 1
CY tnt5llwlP, ©)
=1

with constraints: #,y(x,) > 1 —¢,, n=1,..., N,
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=0
Margin ----O'----—I—j-o--—-l ----- y = -1 (regular)

Dicision boundary

T O .................... y= 1 (anomaly)

Fig. 1 Illustration of the soft margin SVM [11]. Shown are correctly and incorrectly classified
data points. Regular and anomalous data points are denoted by circles and stars, respectively. The
circled points are support vectors

where the regularization parameter C controls the trade-off between the slack
variable ¢,, N is the number of data points, and %||w| |> is the margin. The
regularization parameter C > 0 is used to avoid over-fitting problem. The target
value is denoted by 7, while y(x,) and x, are the training model and data points,
respectively. The SVM solves a loss function as an optimization problem (5).

An illustration of the soft margin is shown in Fig. 1 [11]. The solid line indicates
the decision boundary while dashed lines indicate the margins. Encircled data points
are support vectors. The maximum margin is the perpendicular distance between the
decision boundary and the closest support vectors. Data points for which { = 0 are
correctly classified and are either on the margin or on the correct side of the margin.
Data points for which 0 < ¢ < 1 are also correctly classified because they lie
inside the margin and on the correct side of the decision boundary. Data points for
which ¢ > 1 lie on the wrong side of the decision boundary and are misclassified.
The outputs 1 and —1 correspond to anomaly and regular data points, respectively.
The SVM solution maximizes the margin between the data points and the decision
boundary. Data points that have the minimum distance to the decision boundary are
called support vectors.

The SVM employs a kernel function to compute a nonlinear separable function
to map the feature space into a linear space. The Radial Basis Function (RBF) was
chosen because it creates a large function space and outperforms other types of SVM
kernels [11]. The RBF kernel k is used to avoid the high dimension of the feature
matrix:

k(x,x') = exp(—|lx — X'[|*/20?). (6)

It depends on the Euclidean distance between x and x’ feature vectors. The datasets
are trained using tenfold cross validation to select parameters (C, 1/202) that give
the best accuracy.

The SVM algorithm is applied to datasets listed in Table 2. We experiment with
the MATLAB SVM functions and the SV M!igh [4] library modules to train and



Classification Algorithms 77

Table 2 Training and test datasets

Training dataset Anomalies Test dataset

1 Slammer and Nimda Code Red I

2 Slammer and Code Red 1 Nimda

3 Nimda and Code Red I Slammer

4 Slammer Nimda and Code Red I

5 Nimda Slammer and Code Red I
6 Code Red I Slammer and Nimda

7 Slammer, Nimda, and Code Red I RIPE or BCNET

test the SVM classifiers. The SV M'¢" library, developed in C language, is an
effective tool for classification, regression, and ranking when dealing with large
training samples. We adjust the value of parameter C (5), which controls the trade-
off between the training error and the margin as well as the cost factor [30].

Feature selection algorithms were implemented in MATLAB and were used to
minimize the dimension of the dataset matrix by selecting the ten most relevant
features. We used: Fisher, minimum redundancy maximum relevance (mRMR)
(mutual information difference (MID), mutual information quotient (MIQ), and
mutual information base (MIBASE)), odds ratio (OR), extended/weighted/multi-
class odds ratio (EOR/WOR/MOR), and class discriminating measure (CDM).
Hence, the dimension of feature matrices that correspond to a 5-day period of
collected data is 7,200 x 10. Each matrix row corresponds to the top ten selected
features within the 1-min interval. In two-way classifications, we target two classes:
anomaly (positive) and regular (negative) for each training dataset. While the two-
way classification only identifies whether or not a data point is anomaly, the
four-way classification detects the specific type of BGP anomaly: Slammer, Nimda,
Code Red I, or regular (RIPE and BCNET). SVM classifies each data point x,,
where n = 1, ..., 7,200, with a training target class #, either as anomaly y = 1 or
regular y = —1.

In a two-way classification, all anomalies are treated as one class. Validity of
the proposed models is tested by applying two-way SVM classification on BGP
traffic traces collected from RIPE and BCNET on December 20, 2011. All data
points in the regular RIPE and BCNET datasets contain no anomalies and are, hence,
labeled as regular traffic, as shown in Table 3. The results are generated using the
MATLAB fitcsvm support vector classifier. The index of models reflects the dataset
used for training and testing. These datasets contain no anomalies (both TP and FN
values are zero) and, hence, precision is equal to zero while sensitivity is not defined.
Consequently, the F-Score is also not defined and the accuracy reduces to:

TN

—_— . 7
TN+ FP ™

accuracy =
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Table 3 Performance of the two-way SVM classification using unbalanced datasets

Accuracy (%) F-Score (%)
Regular
SVM Feature Test dataset RIPE BCNET Test dataset
SVM; 37 features 78.65 69.17 57.22 39.51
SVM; Fisher 81.93 85.67 80.49 41.16
SVM; MID 85.38 92.63 83.68 45.18
SVM; MIQ 80.86 86.89 83.75 39.56
SVM; MIBASE 80.86 87.10 88.47 39.51
SVM; OR 78.57 70.15 66.74 38.01
SVM, WOR 88.03 89.88 70.90 47.18
SVM; MOR 83.88 83.40 83.75 44.53
SVM; CDM 84.40 81.36 90.56 44.05
SVM, 37 features 55.50 89.89 82.08 24.29
SVM, Fisher 54.22 96.28 98.33 16.43
SVM, MID 53.89 95.88 95.76 11.89
SVM, MIQ 55.10 96.10 97.57 20.74
SVM, MIBASE 55.11 92.78 95.83 19.32
SVM, OR 54.93 93.90 97.64 15.87
SVM, WOR 54.53 97.39 93.26 14.56
SVM, MOR 55.36 96.74 97.85 20.21
SVM, CDM 54.67 96.60 97.64 16.65
SVM3 37 features 93.04 73.92 59.24 75.93
SVM3 Fisher 93.31 80.63 57.71 76.51
SVM; MID 93.35 75.33 59.65 76.30
SVM; MIQ 93.28 78.99 57.50 76.27
SVM; MIBASE 93.40 79.14 57.85 76.52
SVM3 OR 90.44 80.53 79.03 70.32
SVM3 WOR 93.08 77.51 58.19 75.61
SVM3 MOR 92.92 76.79 68.68 75.48
SVM; CDM 92.93 76.97 68.13 75.54

The best accuracy (93.40%) for two-way classification is achieved by using SVM3
for the Slammer test dataset. The Nimda test data points that are correctly classified
as anomalies (true positive) in the two-way classification are shown in Fig. 2 (top)
while incorrectly classified anomaly and regular data points are shown in Fig. 2
(bottom).

The SVM models are used to compare results for unbalanced and balanced
training datasets. Examples using SVM_3 models are shown in Table 4. For
unbalanced training datasets, the features selected by the MIBASE algorithm
generate the best F-Score (76.52%). The best F-Scores is achieved by SVM;3
(66.59%) that is trained using balanced datasets and the MID algorithm. Incorrectly
classified anomalies (false positive) and regular points (false negative) are shown in
Fig.3.
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Fig. 2 SVM classifier applied to Slammer traffic collected from January 23 to 27, 2003: Shown
in purple are correctly classified anomalies (true positive) while shown in green are incorrectly
classified anomalies (false positive) (top). Shown in red are incorrectly classified anomalies (false
positive) and regular (false negative) data points while shown in blue are correctly classified
anomaly (true positive) and regular (true negative) data points (bottom)

The SVM classifier may be also used to identify multiple classes [21]. For four-
way classification, we use four training datasets (Slammer, Nimda, Code Red I,
and RIPE) to identify the specific type of BGP data point: Slammer, Nimda, Code
Red I, or regular (RIPE or BCNET). Classification of RIPE dataset achieves 91.85%
accuracy, as shown in Table 5. The results are generated using the MATLAB fitcecoc
support vector classifier.
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Table 4 Accuracy and F-Score using the SVM;,3 models using balanced datasets

Balanced datasets

Accuracy (%) F-Score (%)
Model Test dataset RIPE BCNET Test dataset
SVM,3 37 Features 87.19 63.31 51.11 64.76
SVM,;,3 Fisher 84.74 62.58 52.01 60.54
SVM,,3 MID 88.33 66.10 60.28 66.59
SVM,;,3 MIQ 87.56 66.69 59.93 65.43
SVM,,3 MIBASE 87.40 66.76 60.14 65.18
SVM,,3 OR 71.94 52.92 52.78 46.16
SVM,,3 WOR 87.68 65.61 56.60 65.45
SVM,;,3 MOR 86.44 64.69 57.43 63.69
SVM,;,3 CDM 86.67 64.81 57.85 63.99

4 Long Short-Term Memory (LSTM) Neural Network

The LSTM approach employs a special form of the recurrent neural networks
(RNNs). Traditional RNNs are designed to store inputs in order to predict the
outputs [30]. However, they perform poorly when they need to bridge segments
of information with long-time gaps. Unlike the traditional RNNs, LSTM networks
are capable of connecting time intervals to form a continuous memory [22].
They were introduced to overcome long-term dependency and vanishing gradient
problems [35].

The LSTM module consists of an input layer, a single hidden LSTM layer, and
an output layer. The input layer consists of 37 nodes (each node corresponds to
one feature) that serve as inputs to the LSTM layer, which consists of LSTM cells
called the “memory blocks” [34]. An LSTM cell is composed of: (a) forget gate
fn, (b) input gate i,,, and (c) output gate o,. The forget gate discards the irrelevant
memories according to the cell state, the input gate controls the information that
will be updated in the LSTM cell, and the output gate works as a filter to control
the output. The logistic sigmoid and network output functions are denoted by ¢ and
tanh, respectively. The output layer has one node that is connected to the output of
the LSTM layer. The output is labeled by 1 (anomaly) or —1 (regular). An LSTM
module is shown in Fig. 4 [3].

Keras [2], a modular neural network library for the Python language, is designed
for deep learning and used as a framework for implementing the LSTM classifier.
It uses either TensorFlow or Theano library as the back-end. In this study, we used
Keras 2.0.2 with Python 2.7.13 and TensorFlow 1.0.1 [5]. We use all 37 features [18]
because LSTM cells select the useful features during the learning process. Keras
generates LSTM sequential models with 37-dimensional inputs, 1 hidden layer, and
1-dimensional outputs. Each hidden layer contains 256 LSTM cells. The length of
the time sequence is 20, which implies that samples from the current and the 19 most
recent time stamps are used to predict the future instance. We utilize the datasets
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Fig. 3 SVM classifier applied to Slammer traffic collected from January 23 to 27, 2003. Shown in
red is incorrectly classified traffic (top) and the detail (bottom)

shown in Table 2 to generate LSTM models. The “Adam” optimizer [25] with the
learning rate “Ir = 0.001” is used when compiling the LSTM model because of
its superior performance when dealing with large datasets and/or high-dimensional
parameter spaces.

Results of the LSTM classification are shown in Table 6. When using unbalanced
datasets, the highest F-Score (84.62%) is achieved by LSTM,,3 trained by using
the combined Nimda and Code Red I datasets. Among balanced datasets, the
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Table 5 Accuracy of the
four-way SVM classification

Z.Lietal.

Accuracy (%)

Feature RIPE | BCNET
37 features | 84.47 | 76.11
Fisher 87.00 | 83.13
MID 91.11 | 80.07
MIQ 87.26 | 73.06
MIBASE 87.14 | 82.64
EOR 87.69 | 74.38
WOR 88.57 | 65.35
MOR 88.72 | 66.39
CDM 91.85 | 72.15
Output layer l
® @ :
T i tanh h
f; o)
i " LSTM cell
[<|5]| t|5 ][ta|nh][ flfl
| W ) 7 -

Input layer

Input layer

Fig. 4 Repeating module for the LSTM neural network. Shown are the input layer, LSTM layer
with one LSTM cell, and output layer

Table 6 Accuracy and
F-Score using LSTM models
for unbalanced and balanced
datasets

LSTM, 1
LSTM,2
LSTM,3

LSTM, 1
LSTM,,2
LSTM,3

Unbalanced datasets

Accuracy (%)
Test dataset

95.22
53.94
95.87

F-Score (%)

Balanced datasets

Accuracy (%)
Test dataset

56.43
56.32
82.98

RIPE |BCNET | Test dataset

65.49 |57.30 83.17

51.53 |50.80 11.81

56.74 | 58.55 84.62
F-Score (%)

RIPE | BCNET | Test dataset

60.48 | 62.78 26.59

44.27 |53.58 65.96

55.00 |48.20 58.54

LSTM,2 model achieves the best performance (65.96%). We suspect that the poor
performance of LSTM,,2 may be caused by noisy data. LSTM models reported in
the previous study [18] were improved by adjusting the length of time sequence and

choice of the optimizer.
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5 Hidden Markov Model (HMM)

HMMs are statistical tools used to model stochastic processes that consist of two
embedded processes: the observable process that maps features and the unobserved
hidden Markov process. We assume that the observations are independent and
identically distributed (iid). In this survey, HMMs are used for non-parametric
supervised classification. We implement the first order HMMs using the MATLAB
statistical toolbox. Each HMM model is specified by a tuple A = (N, M, «, B, 7),
where:

N: number of hidden states (cross-validated)

M : number of observations

«: transition probability distribution N x N matrix
B: emission probability distribution N x M matrix
7: initial state probability distribution matrix.

The proposed HMM classification models consist of three stages:

* Sequence extracting and mapping: All features are mapped to an observation
vector.

* Training: Two HMMs for a two-way classification and four HMMs for a four-
way classification are trained to identify the best probability distributions o and
B for each class. The HMMs are trained and validated for various numbers of
hidden states N.

* Classification: Maximum likelihood probability p(x|A) is used to classify the test
observation sequences.

In the sequence extraction stage, the BGP feature matrix is mapped to a
sequence of observations by selecting feature sets: FS1 (2,5,6,7,9,10,11,13) and
FS2 (2,5,6,7,10,11,13). In both cases, the number of observations is chosen to be
the maximum number of selected features.

HMMs are trained and validated for various numbers of hidden states. For each
HMM, a tenfold cross-validation with the Baum-Welch algorithm [11] is used for
training to find the best « (transition) and 8 (emission) matrices by calculating the
largest maximum likelihood probability p(x|Agnv, ). We construct seven two-
way HMM models, as shown in Table 7. The name of each HMM model reflects the
training dataset and the number of hidden states. Each test observation sequence is
classified based on p(x MHMMX)-

Table 7 HMM models: two-way classification

Number of hidden states
Training dataset 2 3 4 5 6 7 8

Slammer, Nimda, and HMM; |HMM, ' HMM3; |HMM,; |HMM;5; | HMMg | HMMy
Code Red I
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Table 8 Accuracy of the N

. . Accuracy (%)
two-way HMM classification

No. of hidden states | Feature set | RIPE | BCNET

2 (2,5,6,7,9, |42.15 |50.62
3 10,11,13) | 4521 |62.99
4 16.11 | 36.53
5 19.31 | 27.15
6 16.81 |21.11
7 83.26 | 52.01
8 67.50 | 41.04
N

Accuracy (%)
No. of hidden states | Feature set | RIPE | BCNET

(2,5,6,7, 41.46 | 50.56

10,11,13) | 26.60 |59.17

10.14 |25.76

4.03 | 28.06

16.67 |21.11

82.99 |51.94

66.87 | 40.97

IR I AN IS

We use regular RIPE and BCNET datasets to evaluate performance of various
classification models. The FS1 and FS2 are used to create an observation sequence
for each HMM. The accuracy (1) is calculated using the highest p(x[Agpp,) in
the numerator while sequences in the denominator share the same number of hidden
states. As shown in Table 8§, HMMs have higher accuracy using feature set FS1.
The regular RIPE and BCNET datasets have the highest accuracy when classified
using HMMs with seven and three hidden states, respectively. Similar HMM models
were developed for four-way classification and tested on regular RIPE and BCNET
datasets.

6 Naive Bayes

The naive Bayes classifiers are among the most efficient machine learning classi-
fication techniques. The generative Bayesian models are used as classifiers using
labeled datasets. They assume conditional independence among features. Hence,

Pr(Xy = x1, X; = x/lcj) = Pr(Xg = x¢lcj) Pr(X; = xylc;), ¥

where x; and x; are realizations of feature vectors X; and X, respectively. In a
two-way classification, classes labeled ¢y = 1 and ¢; = —1 denote anomalous
and regular data points, respectively. For a four-way classification, four classes
labeled ¢ = 1, ¢ = 2, ¢c3 = 3, and ¢4 = 4 refer to Slammer, Nimda, Code
Red I, and regular data points, respectively. Even though it is naive to assume that
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features are independent for a given class (8), for certain applications naive Bayes
classifiers perform better compared to other classifiers. They have low complexity,
may be trained effectively with smaller datasets, and may be used for online real
time detection of anomalies.

The probability distributions of the priors Pr(c;) and the likelihoods Pr(X; =
x;|cj) are estimated using the training datasets. Posterior of a data point represented
as a row vector x; is calculated using the Bayes rule:

PI‘(Xl’ =x,-|cj)Pr(Cj)
Pr(X; = x;)
~ Pr(X; =xi|cj)Pr(cj). )]

Pr(c;|X; =x;) =

The naive assumption of independence among features helps calculate the likelihood
of a data point as:

K

Pr(X; = xilc;) = [ [ Pr(Xix = xitlc)), (10)
k=1

where K denotes the number of features. The probabilities on the right-hand
side (10) are calculated using the Gaussian distribution .4":

Pr(Xix = xilc), pk, ok) = A (Xik = Xiklcj, i, 0k), (11)

where uj and oy are the mean and standard deviation of the kth feature, respectively.
We assume that priors are equal to the relative frequencies of the training data points
for each class ¢ ;. Hence,

N;
Pr(cj) = . (12)

where N; is the number of training data points that belong to the jth class and N is
the total number of data points.

The parameters of two-way and four-way classifiers are estimated and validated
by a tenfold cross-validation. In a two-way classification, an arbitrary training data
point x; is classified as anomalous if the posterior Pr(c;|X; = x;) is larger than
Pr(02|X,~ = x,').

We use the MATLAB statistical toolbox to implement naive Bayes classifiers
and identify anomaly or regular data points. Datasets listed in Table 2 are used
to train the two-way classifiers. The test datasets are Code Red I, Nimda, and
Slammer. The combination of Code Red I and Nimda training data points (NB3)
achieves the accuracy (92.79%) and F-Score (66.49%), as shown in Table 9. The
NB models classify the data points of regular RIPE and regular BCNET datasets
with 90.28% and 88.40% accuracies, respectively. The OR and EOR algorithms
generate identical results for the two-way classification and thus performance of the
EOR algorithm is omitted.
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Table 9 Performance of the two-way naive Bayes classification

Accuracy (%) F-Score (%)
No. NB Feature Test dataset RIPE BCNET Test dataset
1 NB1 37 features 82.03 82.99 79.03 29.52
2 NB1 Fisher 90.94 88.13 76.46 36.08
3 NBI MID 86.75 86.04 83.61 24.64
4 NB1 MIQ 88.86 87.78 75.21 30.38
5 NB1 MIBASE 90.92 87.64 77.92 35.12
6 NB1 OR 90.35 83.82 72.57 37.33
7 NB1 WOR 86.64 86.88 78.06 18.34
8 NBI MOR 89.28 86.04 75.56 26.05
9 NBI CDM 89.53 87.78 75.14 27.50
10 NB2 37 features 62.56 82.85 86.25 48.78
11 NB2 Fisher 57.51 87.01 83.26 27.97
12 NB2 MID 57.64 79.58 88.40 31.31
13 NB2 MIQ 56.68 84.38 82.15 26.35
14 NB2 MIBASE 57.60 86.88 82.99 28.55
15 NB2 OR 60.38 84.31 84.93 37.31
16 NB2 WOR 53.76 80.69 87.36 18.23
17 NB2 MOR 56.81 88.06 84.10 26.34
18 NB2 CDM 56.50 90.28 83.26 25.50
19 NB3 37 features 83.58 84.79 81.18 51.12
20 NB3 Fisher 92.79 87.36 75.97 66.49
21 NB3 MID 86.71 87.08 86.32 52.08
22 NB3 MIQ 92.47 88.68 77.15 65.03
23 NB3 MIBASE 92.49 89.31 80.42 62.97
24 NB3 OR 80.63 67.29 59.79 52.47
25 NB3 WOR 88.22 87.22 81.81 50.29
26 NB3 MOR 89.89 88.06 81.39 51.01
27 NB3 CDM 90.89 88.54 77.92 55.43

The Slammer worm test data points that are correctly classified as anomalies
(true positives) during the 16 h time interval are shown in Fig. 5 (top). Incorrectly
classified (false positives and false negatives) using the NB 3 classifier trained based
on the features selected by Fisher in the two-way classification are shown in Fig. 5
(bottom). Most anomalous data points with large number of IGP packets (volume
feature) are correctly classified.

The four-way naive Bayes model classifies data points as Slammer, Nimda, Code
Red I, or Regular. Both regular RIPE and BCNET datasets are tested. Classification
results for regular datasets are shown in Table 10. Although it is more difficult to
classify four distinct anomalies, the classifier trained based on the features selected
by the CDM algorithm achieves 90.14% accuracy. Variants of the OR feature
selection algorithm perform well when combined with the naive Bayes classifiers
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Fig. 5 Naive Bayes classifier applied to Slammer traffic collected from January 23 to 27, 2003:
Shown in purple are correctly classified anomalies (true positive) while shown in green are
incorrectly classified anomalies (false positive) (top). Shown in red are incorrectly classified
anomalies (false positive) and regular (false negative) data points while shown in blue are correctly
classified anomaly (true positive) and regular (true negative) data points (bottom)

because feature scores are calculated using the probability distribution that the naive
Bayes classifiers use for posterior calculations. Hence, the features selected by the
OR variants are expected to have stronger influence on the posteriors calculated by
the naive Bayes classifiers [28]. Performance of the naive Bayes classifiers is often
inferior to the SVM and HMM classifiers.
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Table 10 Accuracy of the
four-way naive Bayes
classification

Average accuracy (%)
Feature RIPE regular | BCNET

Z
°

1 37 features | 85.90 85.07
2 Fisher 88.75 84.24
3 MID 86.18 82.85
4 MIQ 89.38 84.51
5 MIBASE 88.75 84.24
6 EOR 89.03 90.07
7 WOR 88.40 87.36
8 MOR 88.75 87.71
9 CDM 90.14 83.54
Table 11 Decision tree algorithm: performance
Accuracy (%) F-Score (%)
Training dataset Test dataset (Test) RIPE BCNET (Test)
Dataset 1 Code Red I 85.36 89.00 77.22 47.82
Dataset 2 Nimda 58.13 94.19 81.18 26.16
Dataset 3 Slammer 95.89 89.42 77.78 84.34

7 Decision Tree Algorithm

The decision tree algorithm is one of the most successful supervised learning
techniques [33]. A tree is “learned” by splitting the source set into subsets based on
an attribute value. This process is repeated on each derived subset using recursive
partitioning. The recursion is completed when the subset at a node contains all
values of the target variable or when the splitting no longer adds value to the
predictions. After a decision tree is learned, each path from the root node (source) to
aleaf node is transformed into a decision rule. Therefore, a set of rules is obtained by
a trained decision tree that is used for classifying unseen samples. Test accuracies
and F-Scores are shown in Table 11. The results are generated using MATLAB
fitctree from the statistics and machine learning toolbox. The lower accuracy of the
training dataset 2 is due to the distributions of anomaly and regular data points in
training and test datasets.

8 Extreme Learning Machine Algorithm (ELM)

The Extreme Learning Machine (ELM) [1, 23] is an efficient learning algorithm
used with a single hidden layer feed-forward neural network. It randomly selects the
weights of the hidden layer and analytically determines the output weights. ELM
avoids the iterative tuning of the weights used in traditional neural networks and,
hence, it is fast and may be used as an online algorithm.
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Fig. 6 Neural network
architecture of the ELM
algorithm

ELM employs weights connecting the input and hidden layers with the bias terms
randomly initialized while the weights connecting the hidden and output layers are
analytically determined. Its learning speed is higher than the traditional gradient
descent-based method. Reported research results indicate that ELM may learn much
faster than SVMs. Incremental and weighted extreme learning machines are variants
of ELM.

A neural network architecture of the ELM algorithm is shown in Fig. 6, where

[x1,x2, ..., xq] is the input vector; d is the feature dimension; f(.) is the activation
function; W is the vector of weights connecting the inputs to hidden units;
[¥1,¥2, ..., ¥ym] is the output vector; and B is the weigh vector connecting the

hidden and the output units.

The three datasets used to verify ELM’s performance are shown in Table 2. The
number of hidden units is selected by a 5-fold cross validation for each training
dataset. The best testing accuracy was achieved by choosing 315 hidden units for
each dataset. The input vectors of the training datasets are mapped onto [—1, 1] as:

xﬁp)

x,'(p) —nli

_‘ximin _ 1, (13)

Ximax — Ximin
where xl.(p ) is the ith feature of the pthsample while x; , and x;, . are the minimum
and maximum values of the ith feature of the training sample, respectively.

The accuracies and F-Scores for the three ELM test datasets with 37 or 17
features are shown in Table 12. Accuracies for RIPE and BCNET datasets are also
included. For each dataset, 100 trials were repeated. The binary Features 14-33
(shown in Chapter 3, Table 6) are removed to form a set of 17 features.

9 Discussion

We have introduced and examined various machine learning techniques for detect-
ing network anomalies. Each approach has its unique advantages and limitations.
Soft-margined SVMs perform well in classification tasks. However, they require
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Table 12 Performance of the ELM algorithm using datasets with 37 and 17 features

No. of Accuracy (%) F-Score (%)

features Training dataset Test dataset (Test) RIPE BCNET (Test)

37 Dataset 1 Code Red I 80.92 75.81 69.03 36.27
Dataset 2 Nimda 54.42 96.15 |91.88 13.72
Dataset 3 Slammer 86.96 78.57 73.47 55.31

17 Dataset 1 Code Red I 80.75 7343 6243 39.90
Dataset 2 Nimda 55.13 94.11 83.75 15.97
Dataset 3 Slammer 92.57 80.57 72.71 72.52

relatively long time for training models when dealing with large datasets. Although
LSTM algorithms achieve high accuracy and F-Score, their performance is limited
to using time sequential input data. HMM and naive Bayes algorithms compute
probabilities that events occur and are suitable for detecting multiple classes of
anomalies. Decision tree is commonly used in data mining due to its explicit and
efficient decision making. ELM is an efficient classifier while its performance is
limited due to its simple structure.

10 Conclusion

In this Chapter, we classify anomalies in BGP traffic traces using a number of
classification models that employ various feature selection algorithms. We conduct
experiments using a number of datasets and various features extracted from data
points. We analyze performance of BGP anomaly detection models based on
SVM, LSTM, HMM, naive Bayes, Decision Tree, and ELM classifiers. When the
testing accuracy of the classifiers is low, feature selection is used to improve their
performance. Performance of the classifiers is greatly influenced by the employed
datasets. While no single classifier that we have employed performs the best across
all used datasets, machine learning proved to be a feasible approach to successfully
classify BGP anomalies using various classification models.
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Abstract Ransomware has become a significant global threat with the ransomware-
as-a-service model enabling easy availability and deployment, and the potential
for high revenues creating a viable criminal business model. Individuals, private
companies or public service providers e.g. healthcare or utilities companies can all
become victims of ransomware attacks and consequently suffer severe disruption
and financial loss. Although machine learning algorithms are already being used
to detect ransomware, variants are being developed to specifically evade detection
when using dynamic machine learning techniques. In this paper we introduce
NetConverse, a machine learning evaluation study for consistent detection of
Windows ransomware network traffic. Using a dataset created from conversation-
based network traffic features we achieved a True Positive Rate (TPR) of 97.1%
using the Decision Tree (J48) classifier.

Keywords Ransomware - Malware detection - Machine learning - Network
traffic - Intrusion detection

1 Introduction

Malicious programs and exploit kits have always been important tools in cyber
criminals’ toolset [1]. In the last 2 years ransomware has become a significant
global threat with the FBI estimating that $1Billion of ransom demands were paid
in 2016; this represents a 400% increase from the previous year [2]. In the same
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period the U.S. experienced a 300% increase in the number of daily ransomware
attacks [3] and the cost of the average ransom demand doubled [4]. At the end
of 2015 Symantec logged a record number (100) of new ransomware families [4].
The increase over the 2 year period is attributed to the rise of ransomware-as-a-
service (RaaS) model. RaaS provided the cybercriminal with the ability to purchase
ransomware creation kits and source code and distribute ransomware with very little
technical knowledge [5].

In 2016 Europol reported that ransomware had become the primary concern for
European law enforcement agencies with Cryptoware (the class of ransomware
that encrypts files in comparison to the decreasingly prevalent locker class) the
most prominent malware threat [6]. In July 2016 the No More Ransom project [7]
was launched as a partnership between European law enforcement and IT Security
companies in an attempt to disrupt ransomware related criminal activities, and help
businesses and individuals mitigate against the impact of ransomware. Similarly,
commercial software products have been developed to defend networks; Cybereason
[8] uses behavioural techniques to protect consumer networks; Darktrace [9] has
employed advanced unsupervised machine learning to protect enterprise networks.

Several machine learning techniques and frameworks have been proposed and
undertaken for ransomware detection. However, dynamic analysis techniques have
limitations in that new ransomware variants can be redesigned in an attempt to
decrease the rate of detection by machine learning algorithms [10]. The application
of machine learning for dynamic analysis of ransomware has achieved detection
rates >96% [11]. Similarly, the application of machine learning for network traffic
analysis of Android malware has achieved detection rates >99% [12].

The vast majority of ransomware threats today are designed to target personal
computers running the Windows operating system since Windows-based computers
make up around 89% of the OS market share of desktop computers [13]. The
NetConverse model focuses on the Windows environment and proposes to leverage
machine learning techniques for detecting Windows ransomware through analysing
network traffic.

The paper is organised as follows: Sect. 2 discusses related works on the topic
of machine learning, ransomware detection and network traffic analysis; Sect. 3
describes the research methodology and the three phases that it comprises; Sect. 4
presents the experiment and discusses the results; Sect. 5 presents the conclusion
and discusses future works.

2 Related Works

Machine learning techniques have been used for decades for malware detection and
analysis [14]. Different detection, analysis and investigation approaches have been
proposed to defend against malware, however malicious programs are employing
a variety of propagation and evasion techniques to bypass defensive mechanisms
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[15]. Malware classification using machine learning has proved very successful in
the detection of Android malware [16]. Malware behavioural characteristics such
as API calls, filesystem changes and network traffic have been used as features
for different classification tasks [17], hence machine learning can be utilised for
Ransomware detection as well [18].

Ransomware can be categorized into two main classes, namely Locker ran-
somware and Crypto ransomware. The Locker ransomware denies access to the
computer or device [13], while the Crypto ransomware prevents access to files or
data. Previous works for ransomware detection and analysis can be divided into
static and dynamic approaches [21]. The static approaches rely on ransomware
signature or utilisation of a cryptographic primitive function for detection [22]. On
the other hand, the dynamic methods are using dynamic binary instrumentation such
as ransomware runtime activities for detection [23].

EldeRan [11], which was a ransomware classifier based on a sample’s dynamic
features, could achieve a True Positive Rate (TPR) of 96.3% with a low False
Positive Rate (FPR) of 1.6%. UNVEIL [24] is another machine learning based
system for ransomware detection using a ransomware sample interacting with the
underlying O.S. which achieved a True Positive Rate (TPR) of 96.3%, and a zero
False Positive Rate (FPR). Network behaviours and Netflow data can also be used
for ransomware detection [25].

With NetConverse we are investigating the application of different machine
learning classifiers in detecting ransomware samples using features extracted from
network traffic conversations; we report accuracy, TPR and FPR as metrics to
evaluate the performance of our classification tasks.

3 Methodology

This section presents the data collection, feature extraction and machine learning
classifier phases of our experiment. The three phases are outlined in Fig. 1.

In the data collection phase, the network traffic samples are collected for both
malicious (ransomware) and benign Windows applications. The feature extraction
phase extracts the relevant features and merges them to create our dataset. The
final machine learning classifier stage involves the training and testing of several
algorithms in the Waikato Environment for Knowledge Analysis 3.8.1 (WEKA)
machine learning tool [26] to identify the optimum detection model.

3.1 Data Collection Phase

This experiment focuses on Windows ransomware network traffic, examining the
characteristics of the network conversations that were created when a host is
infected. The infected host will attempt to connect to a remote attacker network
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Fig. 1 Workflow showing the three phases for the experiment

address which could be a command and control server, payment or distribution
website [27] thus creating a network conversation. Subsequently, the resulting
network conversations are captured and compared with the characteristics of the
benign applications using different classification techniques.

3.1.1 Malicious Applications

We identified the ransomware families to be included in our experiment by looking
at the current tracked families on the Ransomware Tracker website, namely Cerber,
Cryptowall, CTB-Locker, Locky, Padcrypt, Paycrypt, Teslacrypt and Torrentlocker.
The site provides an overview of the internet infrastructure used by ransomware
cyber criminals [27]. Cryptolocker was also included due to its prevalence prior
to 2014. By searching for the specific ransomware families in the Virus Total
Intelligence platform [28] we could identify portable executable samples that had
a corresponding behavioural analysis network traffic capture. For each sample the
PCAP file was downloaded and saved with the name of the sample hash value. In
total, we collected 210 network traffic captures which are summarised in Table 1.

3.1.2 Benign Applications

Our benign network traffic samples (goodware) were also collected from the Virus
Total Intelligence platform [28]. Our search criteria targeted portable executable
files that had been submitted at least three times and had O detections by antivirus
engines; the search results provided 264 goodware samples.
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Table 1 Summary of

- Ransomware family | Class | Sample size
ransomware families

Cerber Crypto |30
Cryptowall Crypto |30
Cryptolocker Crypto |30
CTB-Locker Locker |30
Locky Locker |30
Padcrypt Crypto
Paycrypt Crypto | 2
Teslacrypt Crypto |27
Torrentlocker Locker |30

Table 2 List of extracted features

Feature name Type [31, 32] Description

Protocol Basic Protocol type

Address A Basic Source IP address

Port A Basic Source host port number

Address B Basic Destination IP address

Port B Basic Destination host port number

Packets Basic Total number of packets per conversation

Bytes Basic Total number of bytes per conversation

Packets A — B Connection The number of packets from source to destination

Bytes A — B Connection The number of bytes sent from source to destination

Packets B — A Connection The number of packets sent from destination to source

BytesB — A Connection The number of bytes sent from destination to source

Rel Start Basic Time relative to start of the conversation (seconds)

Duration Basic Duration of the conversation (seconds)

3.2 Feature Selection and Extraction

Feature extraction was achieved using TShark, a terminal based feature of the
network protocol analyser Wireshark [29]. The network traffic capture PCAP
files can be analysed within Wireshark, but it offers limited export features.
TShark provides a more flexible, powerful export feature that can create statistical,
calculated data in addition to static feature extraction. We chose to extract several
basic, traffic and connection based features using the TShark conversations export
option. This aggregated each network capture file into unique conversations based
on the 5-tuple [30] protocol, source/destination IP address, source/destination port
values; the equivalent statistical values were also extracted. Each export file was
merged together to create our initial pre-processed data. Table 2 shows the list of
extracted features. Table 3 shows a sample of the dataset before cleaning.

The pre-processed data was analysed to remove any outliers and erroneous
records. We removed records with an Address A value of 0.0.0.0 and Port B records
with a value of 53 which represented DNS traffic. The Packets, Bytes, Rel.Start
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and Duration attributes were also removed to leave us with nine features to use
in the experiment. Finally, the IP address value in the ‘Address A’ and ‘Address
B’ attributes were converted to decimal to more accurately reflect the differences
between IP address subnets by the clustering process [33]. Table 4 shows a sample
of the final dataset to be used in the experiment.

The WEKA machine learning tool has an option to allocate a percentage split
of a dataset for training and test purposes. We chose to manually split our dataset
into training and test datasets to ensure each dataset contained records relating
to an equal number of malware and goodware samples. Due to the difference in
the number of conversations created and subsequently extracted for each sample,
the number of instances in each dataset is different; the training dataset contained
75,618 instances and the test dataset contained 48,526 instances. This equates to a
percentage split of 60.91% for training, and 39.09% for testing of the NetConverse
model. Each dataset was finally converted into Attribute-Relation File Format
(.ARFF) for processing within WEKA.

3.3 Machine Learning Classifiers

During this stage of the experiment we identified the machine learning classifier and
feature combination that achieved the highest detection rate. Table 5 outlines the 6
machine learning classifiers that we used.

The experiments were performed within a virtual VMWare workstation envi-
ronment running on Kali Linux 2017.1 and Debian 4.9.25 OS; 4GB memory was
allocated from the host. The host laptop was a MacBook Pro with a 2.9 Ghz Intel
i7 processer, 16GB DDR3 RAM and MacOS Sierra 10.12.4 OS. The machine
learning tool used was WEKA 3.8.1 with a Java Runtime Version of 1.8.0_131.
In the experiment, all six classifiers used their default values.

4 Experiments and Results

This section presents the results of the experiment and evaluation of the classifiers
that were used to achieve the best detection rate.

The experiment was split into two phases; the first phase ran tenfold cross-
validation using all ten extracted attributes; the second ran tenfold cross-validation
using 8 extracted attributes (the Packets A — B and Packets B — A attributes were
removed at this stage as the corresponding Bytes attributes reflected the overall
payload size). In both phases each classifier model was re-evaluated against the
supplied test dataset to evaluate its effectiveness.
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Table 5 Machine learning classifiers [34, 35]

Classifier
Bayes network

Multilayer Perceptron based | Accurate estimation

perceptron

J48 Logic based Fast and scalable
classifier of decision
tree

K Nearest Instance based Simple, requires no

Neighbours (IBK)

Technique Pros
Statistical based

training

Fast computation and
data training

Cons

Impractical for large
featured datasets
High processing time

Can be less effective on
predicting the value of
continuous class
attributes

High processing time

Random forest Logic based Can improve predictive | Output can be hard to
performance analyse
Logistic model tree | Logic based Flexible and accurate Potentially high bias
(LMT)
Table 6 Evaluation metrics
Metric Calculation Value
True positive rate (TPR) | TP/(TP+FN) Correct classification of
predicted malware
False positive rate (FPR) | FP/(FP4TN) Goodware incorrectly predicted
as malware
Precision TP/(TP+FP) Rate of relevant results
Recall TPR Sensitivity for the most relevant
results
F-measure 2 x (Recall x Preci- Estimate of entire system

sion)/(Recall + Precision)

performance

TP true positive, FN false negative, TN true negative, FP false positive

4.1 Evaluation Measures

We evaluated the performance using the five standard WEKA metrics: true positive
rate (TPR), false positive rate (FPR), precision, recall, F-measure. The metrics are

summarised in Table 6.

4.2 Malware Experiment and Results

Table 7 summaries the time taken to build each model in each phase of the
experiment (with/without feature selection). Only two classifiers (KNN and LMT)
experienced an increase in time taken to build the model; the other four classifiers
(Bayes Network, Multilayer Perceptron, J48 and Random Forest) experienced a
decrease in processing time due to a reduction in the number of attributes to be

processed.
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Table 7 Comparison of processing time (in seconds)

Without feature selection Feature selection (eight

Classifier (ten attributes) attributes)

Bayes network 0.72 0.59

Multilayer perceptron 48.9 36.99

J48 0.95 0.18

KNN 0.01 0.03

Random forest 5.46 4.75

LMT 28.5 32.7

Table 8 Comparison without and with feature selection

Classifier TPR (%) FPR (%) Precision Recall F-measure
Without feature selection

Bayes network 94.90 5.10 95.00 94.90 94.90
Multilayer perceptron 94.90 6.50 94.80 94.90 94.90
J48 97.10 1.60 97.30 97.10 97.10
KNN 95.30 4.10 95.50 95.30 95.30
Random forest 96.10 3.70 96.20 96.10 96.10
LMT 96.80 3.90 96.80 96.80 96.80
With feature selection

Bayes network 95.00 4.70 95.10 95.00 95.00
Multilayer perceptron 95.20 5.50 95.20 95.20 95.20
J48 97.10 1.60 97.30 97.10 97.10
KNN 95.30 4.20 95.50 95.30 95.30
Random forest 95.10 4.10 95.40 95.10 95.20
LMT 96.80 3.90 96.80 96.80 96.80

Table 8 lists the results of our experiment without feature selection (10 attributes)
and with feature selection (eight attributes). Only the random forest classifier
demonstrated slightly decreased results with a higher FPR (40.40%) and lower
TPR, precision, recall and f-measure values. The Bayes Network and Multilayer
Perceptron classifiers demonstrated a very small increase overall (0.10% and 0.30%
TPR increase respectively). The KNN and LMT classifier results did not change.

Table 9 summarises the highest performance achieved for each classifier. The
results for each performance metric are shown: TPR, FPR, Precision, Recall, F-
Measure. The J48 classifier achieved the best performance across all five metrics,
with a very low false positive rate (FPR) at 1.60% being an important factor in
achieving a high overall system performance (f-measure) value. The J48 classifier
achieved the highest accuracy with 97.10% followed by LMT with 96.80%, Random
Forest with 96.10%, KNN with 95.30%, Multilayer Perceptron with 95.20% and
Bayes Network with 95.00%. It can be clearly seen that the logic based classifiers
have outperformed the instance, perceptron and statistical based classifiers due
to the discrete nature of the dataset features. The Bayes Network classifier also
performs better on smaller datasets [35] whereas the NetConverse datasets contain
a large number of instances (75,618 and 48,526).
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Table 9 Malware detection evaluation result

Classifier | Technique | TPR (%) | FPR (%) | Precision | Recall | F-measure | Feature selection

J48 Logic 97.10 1.60 97.30 97.10 1 97.10 With/without
based

LMT Logic 96.80 3.90 96.80 96.80 |96.80 With/without
based

Random Logic 96.10 3.70 96.20 96.10 | 96.10 Without

forest based

KNN Instance 95.30 4.10 95.50 95.30 1 95.30 Without
based

Multilayer | Perceptron | 95.20 5.50 95.20 95.20 |1 95.20 With
perceptron | based

Bayes Statistical | 95.00 4.70 95.10 95.00 | 95.00 With
network based

Table 10 Comparison of results from similar studies

Study Description Method Accuracy (TPR%)
Mobile malware Android malware Network conversations | 99.99

detection [12]

NetConverse Windows ransomware | Network conversations | 97.1

EldeRan [11] Windows ransomware | Dynamic 96.3

Peershark [36] P2P Botnets Network conversations | 95.0 (average)

4.3 Result Comparison

As far as the authors are aware there is no directly comparable study, however
there are similar machine learning techniques and approaches that we can use to
substantiate our results.

In [12] Android malware was analysed using a dataset created by extracting
similar, but more statistical network traffic features. This technique achieved a
99.9% TPR with the random forest classifier, in comparison to a value of 97.1%
achieved using the J48 classifier in NetConverse. In [11] Windows ransomware was
analysed using features obtained via dynamic analysis. A slightly lower TPR of
96.3% was achieved. The final study [36] adopted a statistical network conversation
approach to analyse botnet traffic, achieving an average TPR of 95.0% in the
detection of 4 different botnet applications (Table 10).

5 Conclusion and Future Works

NetConverse demonstrated an evaluation of different machine learning classifiers to
detect Windows ransomware by analysing network traffic conversation data with a
high rate of accuracy. Selected classifiers were Bayes network (BN), Decision Tree
(J48), K-Nearest Neighbours (IBK), Multi-Layer Perceptron, Random Forest and
Logistic Model Tree (LMT).
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We trained NetConverse with a set of extracted network traffic features for
further evaluation, using a set of different classifiers. In addition, we identified
the best classifier based on the TPR value. The importance of this paper relies on
the method used for collecting the samples and filtering the network conversations
to remove any duplication and non-relevant attributes from our training dataset.
Our experiment results (classifiers) show high performance achieved with a high
accuracy result.

The experiment results show a 97.1% detection rate accuracy with the decision
tree (J48) classifier and 96.8% detection rate accuracy with the LMT classifier. The
experiment proves that machine learning classifiers can detect ransomware based on
the network traffic behaviour.

This work is a baseline for future research in which researchers can extend and
develop a dataset to include other types of malware such as OSX malware [37],
ToT malware [38], ransomware [39], cloud environment malware [40, 41] and even
Trojans [42] to enhance the detection process by extracting additional attributes.
There are several areas of research that could be undertaken, for example: develop-
ing real-time ransomware detection using cloud-based machine learning classifiers
and outputting detection results for use within other tools or leveraging machine
learning to detect ransomware based on end nodes power usage patterns [43].
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Abstract Ransomware is a significant global threat, with easy deployment due
to the prevalent ransomware-as-a-service model. Machine learning algorithms
incorporating the use of opcode characteristics and Support Vector Machine have
been demonstrated to be a successful method for general malware detection.
This research focuses on crypto-ransomware and uses static analysis of malicious
and benign Portable Executable files to extract 443 opcodes across all samples,
representing them as density histograms within the dataset. Using the SMO classifier
and PUK kernel in the WEKA machine learning toolset it demonstrates that this
methodology can achieve 100% precision when differentiating between ransomware
and goodware, and 96.5% when differentiating between five crypto-ransomware
families and goodware. Moreover, eight different attribute selection methods are
evaluated to achieve significant feature reduction. Using the CorrelationAttributeE-
val method close to 100% precision can be maintained with a feature reduction
of 59.5%. The CFSSubset filter achieves the highest feature reduction of 97.7%
however with a slightly lower precision at 94.2%.
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1 Introduction

In their December 2016 quarterly threat report [1] McAfee referred to 2016 as the
“year of Ransomware; the FBI estimated that $1Billion of ransom demands were
paid in 2016 representing a 400% increase from the previous year, and the cost of
the average ransom demand doubled [2]. The rise of the ransomware-as-a-service
(RaaS) model provided cybercriminals with the ability to distribute ransomware
with very little technical knowledge [3] in addition to the potential for huge financial
returns for both the distributors, and the developers within the model (In July 2016
Cerber generated US $195,000 revenue for its distributors with a 40% cut of that
figure going to the developer) [4].

Europol, in 2017, concluded that ransomware continued to be “one of the most
prominent malware threats in terms of the variety and range of its victims and the
damage done” [5]. In the recently commissioned 2017 Ransomware Report, 88% of
survey respondents who has been affected by ransomware in the previous year had
encountered crypto-ransomware [6].

In 2017 ransomware achieved global news coverage due to the WannaCry [7]
and subsequent Petya [8] outbreaks. Due to the nature of the WannaCry outbreak
many high profile global organisations such as the UK National Health Service,
Spanish telecommunications company Telefénica, and logistics company Fed-Ex.
were subject to severe disruption [5]. The scale of the infection and subsequent
media coverage provoked discussion and reaction down from government level
through to security vendors, enterprises and domestic audiences.

Current AV vendors that rely on static detection methods are struggling to
contain the threat of ransomware due to the daily deployment of new variants,
iterations and families. Recent commercial software products have adopted heuristic
detection methods; Darktrace employ advanced unsupervised machine learning
for the protection of enterprise networks [9]; MWR have developed RansomFlare
“as an effective countermeasure to the increasing threat of ransomware” [10].
Although malware threats and detection techniques are predominantly targeted
towards Microsoft Windows systems, machine learning techniques are also applied
to other platforms such as OS X [11], Android [12] and IOT (Internet of Things)
[13].

Due to its recent significance and effect on the cyber threat landscape [14] this
paper focuses on crypto-ransomware affecting Microsoft Windows systems only. It
will use static opcode density analysis of crypto-ransomware and benign samples
using Support Vector Machine (SVM) supervised machine learning techniques.
Malicious and benign programs require a different set of instructions to achieve their
function and previous research works have demonstrated opcode characteristics to
be an effective predictor for malware. Opcode characteristics can be easily extracted
for data input into a machine learning classifier such as SVM which is effective
where binary classification is required.

The objective of this paper is to achieve >95% precision when differentiating
between ransomware and goodware, and when differentiating between five crypto-
ransomware families and goodware. Moreover, eight different attribute selection
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methods are evaluated to achieve feature reduction. This research will provide scope
for further development, and practical or commercial application.

The rest of the paper is organised as follows: Sect. 2 reviews related works on
the topic of machine learning, ransomware and malware detection; Sect. 3 describes
the research methodology and the four phases that it comprises; Sect. 4 presents
the results of the experiment; Sect. 5 presents the conclusion and discusses future
works.

2 Related Works and Research Literature

Firdausi et al. demonstrated that the use of machine learning techniques could
detect malware effectively and efficiently [15]. They used dynamic analysis reports
obtained from an online analysis service, Anubis, to evaluate different machine
learning classifiers, with the best performing J48 Decision Tree classifier achieving
precision of 97.3%, and a false positive rate (FPR) of 2.4%. In 2011 Rieck et al. pro-
posed a framework for the automatic analysis of malware behaviour using machine
learning [16]. They embedded the observed behaviour in a vector space and applied
clustering algorithms to achieve significant improvement over previous work in
that area. Egele et al. presented a comprehensive overview of the state-of-the-art
analysis techniques and tools for use by a malware analyst [17]. They concluded
that both static and dynamic analysis tools were required to overcome the evasion
techniques that malware authors were using. The following year, after a detailed
analysis conducted on the current malware detection systems that included static,
dynamic and hybrid malware techniques, Landage and Wankhade concluded that
data mining and machine learning was also required to compliment the limitations
of existing techniques to achieve better detection [18]. Islam et al. introduced a
classification method that integrated static and dynamic to overcome the limitations
associated with each technique [19]. They demonstrated the importance of including
both old and new malware samples to overcome the evasion techniques employed
by malware authors. They achieved a minimum of 5% lower accuracy across all
evaluated classifiers when using newer samples only. Similarly, in 2016 another
comprehensive review was undertaken of techniques and tools for malware analysis
and classification by Gandotra et al. [20]; it included processes for collection,
static/dynamic analysis, feature extraction and machine learning classification.
Bilar [21] used static analysis techniques to statistically compare the distribution
of opcodes within malware and goodware. He concluded that the infrequently
used opcodes were a better indicator of malware compared to the more frequently
used opcodes. This statistical research has been cited frequently and is one of
most important works relating to opcodes and their ability to be used for malware
prediction. Bilar then extended his research to analyse opcode control flows which
is now a widely used technique for malware detection. Ding et al. presented a
control flow-based method to extract opcode behaviour from executable files to
improve on text-based extraction methods and obtain a more accurate representation
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of the executable file behaviour [23]. The control flow method achieved a 2.3%
improvement in accuracy over text-based methods using a KNN classification. Zhao
et al. used a similar technique with additional feature filtering to achieve a 97%
accuracy with a Random Forest classifier [24].

Cesare et al. proposed a malware classification system using approximate
matching of control flowgraphs and a distance metric based on the distance between
feature vectors of string-based signatures to achieve high accuracy [25].

Opcode density analysis has been extensively researched and applied to general
malware detection. Rad et al. used opcode density histograms to differentiate
between malicious and benign PE files with 100% accuracy based on a 100
sample dataset (80 malicious/20 benign) [26]. O’Kane et al. used dynamic analysis
techniques to extract the opcodes from runtime traces and introduced SVM classifier
filter techniques to perform dimension reduction [27].

Further dimension reduction/feature filtering research has included Lin et al.
who proposed a two-stage dimensionality reduction approach combining feature
selection and extraction to substantially reduce the dimensionality of features for
training and classification [28].

Khammas et al. used static analysis techniques for opcode n-grams and compared
several feature selection methods and machine learning classifiers [29]. They
concluded that Principal Component Analysis (PCA) feature selection and Support
Vector Machines (SVM) classification achieved the highest classification accuracy
using a minimum number of features. Park et al. used feature reduction to identify
the top-10 opcodes for malware detection and decreased the training time of a
supervised learning algorithm by 91% with no loss of accuracy [30]. Lo et al.
used feature reduction to identify nine features that could distinguish malware from
goodware achieving an accuracy of 99.60% using a Random Forest classifier [31].

There are several techniques that have been researched for the detection of
ransomware as a specific family. EldeRan [32], was a ransomware classifier
based on a sample’s dynamic features; it achieved a True Positive Rate (TPR) of
96.3% with a low False Positive Rate (FPR) of 1.6%. UNVEIL [33] is another
machine learning based system that uses a ransomware sample interacting with the
underlying O.S. to achieve a True Positive Rate (TPR) of 96.3% and a zero False
Positive Rate (FPR). Network related behaviour and Netflow data can also be used
for ransomware detection as demonstrated by [34] and [35] in which they extracted
conversation-based network traffic features to achieve a precision of 97.3% using
the Decision Tree (J48) classifier. In 2016 Ahmadian and Shahriari introduced
2entFox, a framework for ransomware detection based on 20 extracted filesystem
and registry events [36]. Using a Bayesian network model, it achieved an F-measure
of 93.3%. Most recently in 2017, Homayoun et al. used sequential pattern mining
of filesystem, registry and DLL events to achieve 99% accuracy when differenti-
ating between crypto-ransomware and goodware, and 96.5% when differentiating
between the 3 different ransomware families [37]. Using a novel approach to detect
crypto-ransomware in IOT networks based on power consumption, Azmoodeh et al.
achieved a detection rate of 95.65%, and a precision of 89.19% when monitoring
connected Android devices [38].
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3 Methodology

Our considered methodology comprises four key stages as summarised in Fig. 1.

3.1 Data Collection

The ransomware families used for the experiment were identified from the Ran-
somware Tracker website [39], an online ransomware resource used by internet
service providers (ISPs), computer emergency response teams (CERTSs) and law
enforcement agencies (LEAs). By studying the current tracked ransomware families
focus was given to five crypto families only (Cerber, CryptoWall, Locky, TeslaCrypt,
TorrentLocker) with the inclusion of historic samples where available to ensure
that variant history and changes to the malicious code were included [19]. The
Ransomware tracker website lists known Distribution, Payment and Command and
Control hosts associated with each ransomware family; corresponding SHA256
sample references are documented. The SHA256 value for each identified sample
was submitted to the Virus Total Intelligence platform [40] to facilitate quick, bulk
downloading. The download list was reviewed to ensure that only the PE file format
(Portable Executable) was downloaded, and other formats such as DLL (dynamic
link library) were omitted. This was done to enable an accurate comparison with the
goodware samples which were a similar PE format.

The benign (Goodware) executable samples for the dataset were obtained from
the Portable Apps platform [41], a portable software solution that allows popular
software to be installed and run from portable storage devices. The Portable Apps
platform provides suitable counterpart samples in that the executable files are
portable (or standalone), and ensure relevance across multiple OS versions [42].
Using a ‘certutil’ command run against the 350 benign samples an output file was
generated containing the SHA256 values for each sample. The SHA256 values

1 Data Collection / 2 Feature Extraction \ // 3 Dataset Creation \ / 4 Machine Learnin \\

Crypto-ransomware: Load sample into - Merge instruction Training/testing
- R..ansom\‘m Tracker IDAPro and count counts algorithms to obtain
- Virus Total opcode instructions benchmark
Intelligence - Normalise and
- Virus Share [‘1 LI\ | clean the data L |

I} - Create the dataset 1 1 B
Benign: Capture count in .txt 8 .

Attriby !
- Portable Apps file format for each u‘;‘ﬂi‘?::“f:m *©
sumple reduction

\ P A SN 7

Fig. 1 The four key stages of the research
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were submitted in bulk to the VTI platform to determine the detection ratio for
further analysis. Many of the samples were detected as infected by smaller antivirus
vendors but the vendors that offered the highest protection e.g. BitDefender,
F-Secure, Kaspersky, McAfee, Symantec, Trend Micro C [43] identified each of the
goodware samples as clean, therefore the detection from the smaller vendors were
deemed to be false positives, and discounted. Where a detection ratio of 4/total or
higher was registered (regardless of vendor size) the samples were discarded.

3.2 Feature Extraction

As the study focuses on the actual CPU instruction (opcode) and not the data that
is to be processed (operand) the operand value has not been captured during the
feature extraction process. Static analysis was performed using IDAPro with an
InstructionCounter plugin to automate the opcode count process and export the
results to text file format [44]. The InstructionCounter plugin was successfully
installed and run correctly within a reduced-functionality, evaluation version of the
latest IDAPro version 6.95 [45]; it was tested successfully in both a Windows 7
Professional SP1 and Windows 10 Home environments. On loading the sample into
IDAPro the plugin was run and the output captured to a text file that was saved with
a name corresponding to the SHA256 hash file for easy recognition. This process
was repeated for all samples, both malicious and benign. Due to the limitations
with the evaluation version of the latest IDAPro 6.95, only 32-bit PE files could be
loaded—64-bit benign samples files were discarded and not analysed.

Figure 2 shows a sample feature extract using the InstructionCounter plugin.

The columns in the output file represent rank, count, density and, opcode. The
total number of opcodes is also included which provide useful for reference and to
enable recalculation of the density with more numerical precision within the dataset
(see Sect. 3.3.2).

DeBe2be2ade(3dcbBbbbT1b7d8411c6d32d4772714fd7dbAc9c5TTbdf40e85eaxt - Notepad o X
Eile Edit Format View Help

Opcode distribution of file: ee8e2be2adee3dcbsbbb71b7dsa1fc6d32da772714fd7dbacoc577bdf40e85ea. exe
Total opcodes: 1060398

eee1. 522777 49.30% mov
2e02. 100587 9.49% call
0003, 092192 8.69% lea
0004, 068179 6.43% sub
0085, 835504 3.35% jz

2006. 834083 3.21% test
@eo07. 833897 3.20% jmp
@eos. 831512 2.97% cmp
eep9. 825956 2.45% push
eele. e18663 1.76% add

Fig. 2 Sample InstructionCounter output file with top ten opcodes, count and density
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Table 1 Example of MOV Opcode density

Sample ?;Iriv Qs Total no. Density% | Total opcodes in sample
Malicious (Cerber) | 1 2,368 33 7,215
Benign 1 398,332 33 1,192,874

3.3 Dataset Creation

Each executable sample is represented in the dataset as a density histogram to reflect
the percentage density of each opcode occurrence relative to the total number of
opcode occurrences. This process removes any variance that is attributed to different
application and code lengths. Consider the two samples in Table 1 which relate to the
MOV opcode. The malicious and benign samples have a large variation in both the
total number of opcodes, and extracted number of MOV opcodes. In both samples,
however, MOV has a similar density and therefore are both equally ranked because
of this.

3.3.1 Merging the Data

A copy of all the malicious and benign output text files were placed in a single
directory and merged into a single text file. The text file was opened in Microsoft
Excel and using the ‘Text to Columns’/‘Sort A to Z’/‘Remove Duplicates’ features
a master list of all the extracted opcodes (443) was obtained. This list was used to
subsequently ensure that all records and features could be sorted alphabetically and
therefore be correctly ordered.

Using a custom recorded VB Macro each output file was combined with the
master opcode list, sorted, transposed and inserted into a master Microsoft Excel
worksheet to create a raw representation of the data.

3.3.2 Normalising the Data

Additional processing in Excel was required to finalise the created dataset.

1. Each column was checked for correct alignment and sorting, samples were sorted
by opcode count, records analysed and removed if containing duplicate data.
The cell values were recalculated to increase the decimal place value to eight
as the InstructionCounter plugin had only exported to two decimal places. The
increase in numerical precision was required as eight decimal places provided a
differentiation between no occurrence (i.e. O count) and low occurrence (e.g. 5),
which in samples of high opcode count were both represented by 0.00.
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A B C D E E G H | J K L
[mov push call cmp pop add lea jz jmp test sub xor ]
0.35031 0.130042 0.1246 0.023314 0.071934 0.020267 0.051851 0.024077 0.03578 0.023417 0.007979 0.0
0.213753 0.18011 0.071966 0.062817 0.05701 0.034593 0.035051 0.04589 0.032024 0.035227 0.015414 0.0
0.43864 0.017616 0.098937 0.043622 0.025874 0.025637 0.073195 0.05883 0.03556 0.037643 0.061818 0.00:
0.50305 0.025266 0.075659 0.041164 0.030017 0.017788 0.056328 0.041778 0.030734 0.03662 0.020133 0.01t
0.211528 0.181965 0.070595 0.061614 0.054506 0.036412 0.034151 0.042616 0.029627 0.034797 0.015605 0.0
0.280236 0.212389 0.117994 0.020649 0.070796 0.00885 0.017699 0.014749 0.103245 0.0059 0.00295 0.06«
0.344574 0.13806 0.113272 0.033225 0.083355 0.018063 0.023498 0.033896 0.036169 0.027156 0.007957 0.03:
0.347589 0.168669 0.068076 0.042768 0.048054 0.072081 0.020984 0.020343 0.029793 0.019222 0.024027 0.01°
10 | 0.362844 0.117333 0.108785 0.02724 0.069763 0.024893 0.039931 0.025165 0.031281 0.022335 0.009962 0.03!
11 | 0.422609 0.093618 0.09872 0.03548 0.057667 0.02889 0.022339 0.026181 0.027454 0.019389 0.011436 0.02¢
12 0.291379 0.177653 0.095254 0.037761 0.055566 0.025442 0.051655 0.034969 0.026418 0.037247 0.015222 0.02:
13 | 0.493001 0.024478 0.094858 0.029717 0.011915 0.0176 0.086941 0.033482 0.031966 0.032142 0.064296 0.00¢
14 | 0.360244 0.120612 0.12741 0.025818 0.06761 0.022205 0.050458 0.021441 0.036766 0.019706 0.009285 0.03
15 | 0.341119 0.127007 0.107289 0.033108 0.080335 0.021667 0.03034 0.033023 0.035298 0.029004 0.010726 0.03:
16 | 0.211874 0.193036 0.076475 0.066477 0.04407 0.033627 0.03623 0.049957 0.032294 0.035754 0.016409 0.02!
17 | 0.444352 0.035454 0.094401 0.03779 0.019403 0.020256 0.062246 0.041924 0.049955 0.038426 0.014476 0.00¢
18  0.216495 0.178139 0.070325 0.066333 0.055018 0.034503 0.03603 0.044292 0.030928 0.033531 0.01628 0.02:
19 0.207111 0.21151 0.10044 0.029692 0.08651 0.070748 0.026393 0.036657 0.018328 0.053886 0.012463 0.02:

O~ B W -

w

Fig. 3 Dataset sample

Table 2 Extracted opcode statistics

Average no extracted
Class Total extracted opcodes opcodes per sample Largest no codes
Goodware 70,848,904 308,039 320
Malware 3,418,229 13,147 163
483 Total

2. An additional “class” column was added where ‘good’ represented goodware and
‘malware’ represented malware to provide a response/detection for the machine
learning prediction.

3. The dataset values were linearly scaled (0, 1). This was done for two reasons: to
avoid attributes in greater numeric ranges dominating those in smaller numeric
ranges; to avoid large attribute value calculation errors associated with some
kernel functions [46].

4. The final step was to calculate average density for each attribute and sort high
to low. Figure 3 shows an example of the final sorted dataset with the attributes
highlighted (The ‘class’ attribute is usually listed at the end of the dataset and is
referenced in WEKA using the ‘last’ parameter. It is not shown in this example).

3.3.3 Opcode Breakdown

Almost 71 million opcodes were extracted from the benign samples with an average
of 308,038 codes per sample. This is in contrast to almost 3.5 million codes extracted
from the malicious samples, with an average of 13,147 codes per sample (Table 2).
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Table 3 Top 20 opcode densities (%)
Goodware Malware Goodware Malware
Rank| Opcode Density (%) Opcode| Density Rank Opcode | Density (%) Opcode | Density (%)
1 MOV |31.9 MOV |329% |11 |INZ 2.5 TEST |29
2 PUSH | 13.8 PUSH | 13.2% |12 | XOR 22 XOR 2.7
3 CALL | 9.6 CALL | 64% |13 |RETN |20 INZ 1.9
4 POP 4.9 ADD | 45% |14 |SUB 1.8 RETN | 1.8
5 LEA 43 CMP | 4.1% |15 |INC 1.0 AND 1.6
6 CMP | 42 SUB 4.0% |16 |AND |0.8 OR 1.3
7 JZ 35 JZ 39% |17 |MOVZX 0.7 SHL 1.0
8 JMP 3.4 LEA 34% |18 | DEC 0.7 INC 0.8
9 ADD | 3.2 JMP 33% |19 |OR 0.6 SAR 0.7
10 |TEST | 3.2 POP 32% |20 |JLE 0.3 MOVZX 0.6

Figure 4 also illustrates the opcode distribution for both classes with the malware
samples predominantly using <50 different opcodes, in comparison to goodware
using between 100 and 200. It can be clearly seen that the structure for the malware
samples is much simpler than the goodware samples with a lower overall count
for both the number of extracted codes, and number of different opcodes used to
perform the instructions.

Table 3 displays the top 20 opcodes for each class. It shows that the MOV opcode
has the highest density at over 30% for both malware and goodware, compared to
the second highest opcode, PUSH with around 13%. The densities for both classes
are quite similar, especially for MOV and PUSH.
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3.4 Machine Learning Classification

The final phase involves the training and testing of the SVM classifier in the Waikato
Environment for Knowledge Analysis 3.8.1 (WEKA) machine learning toolset [47].
WEKA was selected as the best tool for this experiment as it incorporates several
standard machine learning techniques for simple workflow, can output results into a
text and statistical format and offers several attribute selection evaluators.

3.4.1 SVM and Kernel Functions

The Support Vector Machine (SVM) is a supervised machine learning technique,
especially effective where binary classification is required; it is therefore an effective
classifier for malware detection which often has two classes for prediction—
malicious (malware) and benign (goodware). An SVM classifies data by construct-
ing a hyperplane to separate data points in one class from those in another class; the
best hyperplane therefore should have the largest margin of separation between both
classes [48]. Where linear separation is not possible SVM can use kernel functions
to transform the data into a higher dimensional feature space e.g. using by a radial
hypersphere to achieve separation [49]. The goal of an SVM is therefore to produce
a classification model based on a training dataset which is then used to predict the
target values of the test dataset [46].

Sequential Minimal Optimization, (or SMO), is an algorithm used to train
Support Vector Machines, devised by John Platt in 1998. The SMO can handle
large datasets and scales well due to the memory footprint growing linearly with
the training set size.

In WEKA, the SMO classifier was run with all the default options including the
selection of a ‘Logistic’ calibration method.

The SMO algorithm in WEKA uses linear, polynomial and Gaussian kernel
functions and each kernel choice (Poly, NormalisedPoly, PUK, RBF) was initially
tested using default values before further tuning and optimisation was applied.

3.4.2 Feature/Attribute Selection Process

The attribute selection/feature reduction process is performed to enable the classifier
to use the lowest number of features while maintaining the highest level of precision.
Feature reduction applied to very large datasets can significantly decrease the
training time for algorithms and the computational overhead associated with the
high number of attributes and instances. Accuracy can also be increased by filtering
out the noisy attributes that could have a negative effect on classification.

Attribute selection methods can be grouped into two categories: wrapper methods
and filter methods. Wrapper methods can achieve better performance than filter
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methods due to their ability to be optimised, however they cannot always be used in
datasets with a large number of attributes due to the evaluation process requiring a
computational overhead and excessively long training times [50].

Within the WEKA toolset there are nine attribute selection evaluators. The
WrapperSubsetEval options is not used in this experiment as it was briefly tested
and proved unresponsive for the reasons already discussed. The following attribute
selection methods were evaluated: CfsSubsetEval, CorrelationAttributeEval, Gain-
RatioAttributeEval, InfoGainAttribute, OneRAttributeEval, Principal Component
Analysis, ReliefFAttributeEval, SymmetricalUncertAttributeEval.

WEKA has several search methods used by the attribute selection evaluators to
perform either feature reduction, or ranking; in this experiment three search methods
are employed: (1) ‘BestFirst’ uses greedy hill climbing (performing evaluation at
each iteration) to search the attribute subspace; it can be configured to start with
no attributes and search forwards, start with all attributes and search backwards,
or search both directions from any point. It has a “backtracking” option which
is used to terminate the search when the number of consecutive non-improving
nodes is reached; (2) ‘GreedyStepwise’ performs a greedy search through the
attribute subset space and can also be configured to start with no attributes and
search forwards, all attributes and search backwards, or search both directions from
any point. When the addition or removal of any remaining attributes results in a
decrease in evaluation, the search will stop. It can be configured to generate a
ranking by recording the order that the attributes are selected. Used in conjunction
with the “numToSelect” option (specifies the number of attributes to retain and
“threshold” option (threshold at which attributes are discarded) further feature
reduction can be achieved; (3) ‘Ranker’ generates a ranking for each attribute based
on their individual evaluations. Used in conjunction with the “numToSelect” option
(specifies the number of attributes to retain and “threshold” option (threshold at
which attributes are discarded) further feature reduction can be achieved.

3.5 Implementation

The experiment can be separated into four district phases:

1. Pre-processing the dataset
2. Creating the training and test datasets
3. Training and testing the SVM classifier
Training and testing the attribute selection evaluators
4. Tuning the attribute selection evaluators to achieve further feature reduction

These phases are illustrated in workflow diagram Fig. 5.
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(1)

1. Load dataset .csv file
2. Check for outliers
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Fig. 5 The four experiment phases

3.5.1 Pre-processing the Dataset (1)

The full dataset CSV file was loaded into the WEKA pre-processing tool to be
prepared for the classifier tasks.

Outliers and extreme values are identified and removed in a two-step process.

In step 1 the ‘weka.filters.unsupervised.attribute.InterquartileRange’ filter was
applied to the loaded dataset to identify outliers and extreme values based on the
results of interquartile aggregation.

In step 2 the corresponding ‘weka.filters.unsupervised.instance. Remove WithValues’
filter should be applied to remove the ‘outlier’ and ‘ExtremeValue’ attributes
labelled as ‘yes’, however in this instance this step was not applied due to the high
number of outliers detected. It was decided to continue with the experiment to see
if the classification produced satisfactory results as Interquartile aggregation may
not be a suitable method for outlier detection for the type of data in this dataset.
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Finally the dataset was shuffled using the filter weka.filters.unsupervised.instance.
Randomize -S 42 to prevent an unequal sample distribution across either training, or
test dataset.

3.5.2 Creating the Training and Test Datasets (2)

Following shuffling the dataset was split into a training dataset (70%) and test
(evaluation) dataset (30%). The following WEKA filters were applied and after each
application the new dataset was saved in the. ARFF (Attribute-Relation File Format)
format—a format consisting of a separate header and data section developed for use
specifically within the WEKA software:

* weka.filters.unsupervised.instance.RemovePercentage -P 30.0 (to remove 30%
from each class in the dataset)

* weka.filters.unsupervised.instance.RemovePercentage -P 30.0 -V (selection
inverted to swap the 30% back into the dataset)

The resulting training and test datasets contained 343 and 103 instances respec-
tively.

3.5.3 Training and Testing the SVM Classifier (3.1)

The SVM classification experiment was conducted in multiple phases with each
classification run using all available kernel and search methods.

The ten main phases of the classification experiments are summarised in Table 4.

In each of the classification experiments training was performed using tenfold
cross validation. Cross-validation is an important technique used to help prevent
overfitting by allocating a portion of the training dataset for validation, validating
using multiple rounds (the number of rounds is determined by the number of
specified folds, in this case 10) and then averaging the prediction results. Using
tenfolds has become a standard process for cross-validation and following extensive
testing it has been shown that around this number achieves the best estimate of error
[51]. All SMO classifier options were set to their default values and the experiment
repeated for each of the four available kernel functions (Poly, NormalisedPoly, PUK,
RBF).

The test dataset (containing 30%, 103 instances) was supplied to the classifier
and each model re-evaluated against the same test set. The evaluation metrics are
compared in the following result tables. The highest performing evaluated model is
highlighted in green, the lowest in red.
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Table 4 The ten main phases of the classifications

Experiment

1. SMO classifier
Run against 2 Classes
(malware, goodware)

2. SMO Classifier
Run against 6 Classes
(5 *malware families,

goodware)
3. CFSSubsetEval

4.
CorrelationAttributeEval

5. GainRatioAttributeEval

6. InfoGainAttributeEval

7. OneRAttributeEval

8. PrincipalComponents
— correlation matrix
— covariance matrix

9. ReliefAttributeEval

10. SymmetricalUncer-
tAttributeEval

3.5.4 Training and Testing the Attribute Selection Evaluators

Options Kernel Selections
1. Training and evaluation — Poly
— NormalisedPoly
-PUK
—RBF
1. Training and evaluation — Poly
— NormalisedPoly
-PUK
- RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction -PUK
Training and evaluation - RBF
1. Attribute Selection — Poly
Training and evaluation — NormalisedPoly
2. Feature Reduction - PUK
Training and evaluation - RBF

Available Search
methods

BestFirst

GreedyStepwise

Ranker

Ranker

Ranker

Ranker

Ranker

Ranker

Ranker

In Phases 3—10 the Attribute Selection evaluators were run using default options and
a single parameter changed to discard attributes below a threshold value of 0; this
was selected to achieve an initial feature reduction prior to further tuning.
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Table 5 Evaluation metrics [52]

Metric Calculation Value

True positive rate (TPR) | TP/ATP+FN) Rate of true positives (instances
correctly classified as a given class)

False positive rate (FPR) | FP/AFP+TN) Rate of false positives (instances
falsely classified as a given class)

Precision TP/TP+FP) Proportion of instances that are truly

of a class divided by the total
instances classified as that class

Recall TPR Proportion of instances classified as a
given class divided by the actual total
in that class (equivalent to TP rate)

F-measure 2 X (Recall x Precision)/ A combined measure for precision
(Recall + Precision) and recall (Estimate of entire system
performance)

TP true positive, FN false negative, TN true negative, FP false positive

The dimensionality of the data was therefore reduced by the attribute selection
evaluation process before being passed onto the selected classifier, in this case,
SMO.

Classifications were performed using all available search methods and kernels
(using default, untuned settings) and the results presented.

3.5.5 Evaluation Metrics

The performance of each classification model was evaluated using the five default
WEKA metrics as summarised in Table 5 and compared in the later Experiments
and Results section.

3.5.6 Machine Specifications

Best practice within malware analysis and malicious executable handling is to use an
isolated virtual environment that is detached from its host. This provides the ability
to restore the environment to a clean, previous state, to recover from, or clean-up
after infection [42, 53].

The feature extraction phase of the experiment was undertaken within an isolated
virtual environment on a lab PC with the network cable disconnected to further
isolate it from the network. The virtual environment used for data collection and
feature extraction was VMWare Workstation due to the ease of configuration,
deployment and familiarity as the environment was already configured on the host
laptop with a number of suitable VMs already in use for such tasks. Table 6 outlines
the environment machine specifications for each stage of the experiment.
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4 Experiments and Results

4.1 SMO (Two Classes)

In Phase 1 the SMO classifier was trained and tested using the classifier default
options to obtain a benchmark set of evaluation metrics for all extracted attributes in
the detection model (Table 7). The two classes used were ‘malware’ and ‘goodware’.

With all default options set the PUK kernel (Pearson VII function-based universal
kernel) achieved the best results with 100% precision and a 0% False Positive rate
(FPR).

The linear and quadratic kernel functions achieved slightly less than the target
95% precision and the RBF Gaussian kernel function only achieving 82.6%
precision.

Determining the best kernel function for the dataset can often only be achieved
by conducting multiple experiments across all available kernels and parameters, and
comparing the chosen evaluation metrics therefore the Poly, NormalisedPoly and
RBF kernels were further tuned to achieve higher precision comparable to the PUK
kernel results:

— Poly/NormalisedPoly:
‘Complexity’ tested using values 0.1, 1.0, 10.0, 100.0; ‘exponent using’ 1.0,
2.0,3.0
— RBF kernel:
‘Complexity’ tested using values 0.1, 1.0, 10.0, 100.0; ‘gamma’ using 0.01,
0.1, 1.0, 10.0

Table 8 below summarises the parameter selections that provided the highest
precision.

Each kernel, when properly tuned, can achieve 100% precision when re-
evaluated against the test dataset.

Table 7 SMO (two classes) evaluation metrics

Model | Kernel Action TPR% FPR% Precision% | Recall% | F-Measure% | Attributes
1 Poly*® Training (tenfold cross-validation) | 90.7 9.5 90.7 90.7 90.7 444
1 Poly* Re-evaluation against test set 94.2 59 94.4 94.2 94.2 444
2 NormalisedPoly ® Training (tenfold cross-validation) 89.8 10.7 90.0 89.8 89.8 444
2 NormalisedPoly " Re-evaluation against test set 94.2 59 94.4 94.2 94.2 444
3 PUK Training (tenfold cross-validation) 86.9 14.0 87.5 86.9 86.8 444
3 PUK Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444
4 RBF Training (tenfold cross-validation) 80.5 20.2 80.6 80.5 80.4 444
4 RBF Re-evaluation against test set 825 17.4 82.6 825 825 444

4 Exponent default value set to 1.0 to achieve linear kernel function
b Exponent default value set to 2.0 to achieve quadratic kernel function
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Table 8 New parameter selections for tuning the SMO kernels

Changed i . .
Kernel L Action TPR% FPR% Precision% | Recall% F-Measure%| Attributes
Pol E=2 Training (tenfold cross- 90.4 96 90.4 90.4 90.4 444
Y c=1 validation) ’ ’ ’ ’
Poly EZ % Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444
E=1 Training (tenfold cross-
Poly Cc-10 validation) 90.4 9.6 90.4 90.4 90.4 444
Poly Ez %0 Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444
NormalisedPoly E - 2100 I;ﬁﬂ:;ﬁi,ﬂ;e““"d cross- 9.8 105 89.8 89.8 89.8 444
NormalisedPoly E Z 2100 Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444
NormalisedPoly | €3 3:;‘;:2%)“(;6"“” eross- 915 838 91.6 915 915 444
NormalisedPoly g z 310 Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444
RBF 7=1 Training (tenfold cross- 84,5 164 85.1 845 84.4 244
c=10 validation) - > : : -
RBF %1110 Re-evaluation against test set 100.0 0.0 100.0 100.0 100.0 444

C—The complexity parameter
E—The exponent value
y—The Gamma value

4.2 SMO (Six Classes)

Phase 2 required a second version of the dataset to be created and labelled with
six different classes to represent the benign instances and 5 different ransomware
classes (A single dataset with two class attributes could have been used but creating
separate datasets reduced the complexity). The steps in 3.5.1 and 3.5.2 were repeated
to pre-process the data and create the training and test datasets for use in the 6-class
classification model.

The evaluation metrics for this phase of the experiment can be seen in Table 9.

With all default options set the PUK kernel (Pearson VII function-based universal
kernel) once again achieved the best results with 96.5% precision and 0.3%
False Positive rate (FPR). Table 10 shows the detailed accuracy by each class in
the classification. Three classes (Good, TeslaCrypt, Cryptowall) achieved 100%
precision and although Cerber achieved a 100% TPR, two Locky samples were
incorrectly detected as Cerber resulting in a decrease in precision due to receiving
false positives. The confusion matrix for this association can be seen in Table 11.
Although all classes were represented in the training dataset, the test dataset did not
contain any instances for the Torrentlocker class which highlights an issue in that
this class was not represented correctly in the dataset.

4.3 Training and Testing the Attribute Selection Evaluators

In Phases 3—10 the Attribute Selection evaluators were run using default options and
a single parameter changed to discard attributes below a threshold value of 0; this
was selected to achieve an initial feature reduction prior to further tuning.
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Table 9 SMO (six classes) evaluation metrics

Model | Kernel Action TPR% FPR% Precision% | Recall% | F-Measure% | Attributes
45 Poly* Training (tenfold cross-validation) 70.8 102 70.0 70.8 69.8 444
45 Poly® Re-evaluation against test set 874 41 86.7 87.4 86.7 444
46 NormalisedPoly® Training (tenfold cross-validation) 69.4 14.6 66.9 69.4 66.0 444
46 NormalisedPoly® Re-evaluation against test set 874 6.7 863 874 26.6 444
47 PUK Training (tenfold cross-validation) 62.7 2.2 60.9 627 56.0 444
47 PUK Re-evaluation against test set 97.1 03 96.5 97.1 96.7 444
48 RBF Training (tenfold cross-validation) 493 43.9 35.1 493 347 444
48 RBF Re-evaluation against test set 51.5 47.6 46.4 515 36.8 444

4 Exponent default value set to 1.0 to achieve linear kernel function
b Exponent default value set to 2.0 to achieve quadratic kernel function

Table 10 Detailed accuracy by class (SMO six classes)

TPR% FPR% Precision% | Recall% F-measure% | Class

100.0 0.0 100.0 100.0 100.0 Good

0.0 0.0 0.0 0.0 0.0 Torrentlocker
100.0 0.0 100.0 100.0 100.0 Teslacrypt
86.7 1.1 92.9 86.7 89.7 Locky

100.0 0.0 100.0 100.0 100.0 Cryptowall
100.0 2.1 75.0 100.0 85.7 Cerber

97.1 0.3 96.5 97.1 96.6 Weighted avg.

Table 11 Confusion matrix with false positives highlighted in red (SMO 6 classes)

a b © d ® f <--classified as
51 0 0 0 0 0 | a=good
0 0 0 1 0 0 | b= Torrentlocker
0 0 22 0 0 0 | ¢ =TeslaCrypt
0 0 0 13 0 2 | d=_Locky
0 0 0 0 8 0 | e=CryptoWall
0 0 0 0 0 6 | f=Cerber
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The dimensionality of the data was therefore reduced by the attribute selection
evaluation process before being passed onto the selected classifier, in this case,
SMO.

Classifications were performed using all available search methods and kernels
(using default, untuned settings) and the results presented.

4.3.1 CFSSubsetEval

CfsSubsetEval is a Subset evaluator that is used conjunction with an appropriate
search option to determine the smallest subset size that has the same consistency
as the full attribute set [51]. It assesses the predictive ability of each individual
attribute and the degree of redundancy among them; it prefers sets of attributes
that are highly-correlated with the class, but have low intercorrelation with each
other. The CfsSubsetEval evaluator determined that a subset of 21 attributes had a
consistency equal to the full set of 444 attributes.

The highest performing model using the PUK kernel achieved 94.2% precision
using 21 attributes (Table 12). The ranked 21 attributes are: SETS, SETNBE,
SETNLE, JB, FSUB, XCHG, POP, OR, FUCOMPP, JLE, CMOVS, ROR, FIDIV,
SETBE, JA, LEA, FNINIT, CALL, AND, SETLE, FDIVP.

Table 12 CfsSubsetEval evaluation metrics

Model Search method Kernel Action TPR% FPR% Precision% | Recall%| F-Measure% | Attributes
5 BestFirst Poly Training (tenfold 872 | 137 | 877 872 | 871 21
cross-validation) ) ) ) ) )
5 BestFirst Poly ::;i‘c'?]”a“"“ against | g7 4 127 | 877 874 | 873 21
6 GreedyStepwise | Poly I:j;:‘:flf‘;z:?:‘f 87.2 13.6 87.6 872 | 87.1 21
6 GreedyStepwise | Poly i:ig'“a“"“ against | g7 4 127 | 877 874 | 873 21
7 BestFirst NormalisedPoly :r’j;“"/‘fh(;‘;‘lﬁ’:‘? 90.1 10.3 90.2 90.1 90.1 21
7 BestFirst NormalisedPoly i:i:luat“’“ against | g7 4 12.6 87.4 87.4 87.4 21
8 GreedyStepwise | NormalisedPoly I::;:‘:flf;:‘t‘i’""; 90.1 10.3 90.1 90.1 90.1 21
8 GreedyStepwise | NormalisedPoly i:e:;]uatmn against 87.4 12.6 87.4 87.4 87.4 21
9 BestFirst PUK Training (tenfold 92.1 8.1 922 92.1 92.1 21
cross-validation) )
9 BestFirst PUK Re-cvaluation against | g3 ) | g 932 932 | 932 21
test set
10 GreedyStepwise | PUK I::;g‘j:lf;:‘[‘lﬁ’i;‘ 21 |81 922 021 | 921 21
10 GreedyStepwise | PUK 2:;:;31“3“0“ against | 915 59 942 942 | 942 21
1 BestFirst RBF Training (tenfold 542 517 754 542 | 393 21
cross-validation)
1 BestFirst RBF ﬁ:zv:]“a""“ against | 515 | 495 | 753 515 | 360 21
12 GreedyStepwise | RBF I:j::‘:‘if;;ﬁs 542 517 75.4 542 | 393 21
12 GreedyStepwise | RBF z:fsﬁlu*‘"““ against | g 5 495 753 515 | 360 21
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4.3.2 CorrelationAttributeEval

CorrelationAttributeEval is another Correlation-based evaluator but it uses ranking
to evaluate each attribute and does not apply filtering. This is used in conjunction
with the “discard” and “threshold” options to achieve feature reduction.

The CorrelationAttributeEval evaluator uses the ranker search method so only
achieved a low initial feature reduction due to the zero-discard threshold setting.
It achieved 100% precision with the PUK kernel and this model was selected for
further tuning (Table 13).

4.3.3 GainRatioAttributeEval

The GainRatioAttributeEval evaluator measures the gain ratio with respect to the
class to evaluate predictor importance of each attribute [52]. Using the zero-discard
threshold a feature reduction from 444 to 252 attributes and 99% precision using the
PUK kernel was achieved (Table 14).

Table 13 CorrelationAttributeEval evaluation metrics

Model Ys:;;_l?d Kernel Action TPR% FPR% | Precision% | Recall% | F-Measure% | Attributes

13 Ranker | Poly Training (tenfold 90.7 95 |907 9.7 | 90.7 432
cross-validation)

13 Ranker Poly Re-evaluation against | g 59 | 944 942|942 432
test set

. Training (tenfold

14 Ranker NormalisedPoly S 89.8 10.7 90.0 89.8 89.8 432
cross-validation)

14 Ranker NormalisedPoly E:ivei‘]“““"" agaimst | g4 59 | 944 942|942 432

15 Ranker | PUK Training (tenfold 86.9 140 | 875 869 |868 432
cross-validation)

15 Ranker PUK :i:es‘;'“"“"“ aganst | 1000 | 00 100.0 1000 | 100.0 432

16 Ranker RBF Training (tenfold 80.2 205|803 80.2 80.1 432
cross-validation)

16 Ranker RBF ::f:;‘l“a""“ agaimst | gy s 174 | 826 825 |825 432

Table 14 GainRatioAttributeEval evaluation metrics

Search

Riteds method

Kernel Action TPR% | FPR% | Precision% | Recall% | F-Measure% | Attributes

Training (tenfold
cross-validation)
17 Ranker Poly Re-evaluation 942 | 59 94.4 942 942 252
against test set
Training (tenfold
cross-validation)
Re-evaluation

18 Ranker NormalisedPoly against test set 95.1 4.9 95.3 95.1 95.1 252

17 Ranker Poly 91.3 8.9 91.3 91.3 91.3 252

18 Ranker NormalisedPoly 91.0 9.3 91.0 91.0 91.0 252

Training (tenfold

19 Ranker PUK shen 904 |97 90.4 90.4 90.4 252
cross-validation)

19 Ranker PUK R G 99.0 1.0 99.0 99.0 99.0 252
against test set

20 Ranker RBF Training (tenfold | ¢, 195 | 81.1 81.0 81.0 252

cross-validation)
Re-evaluation

20 Ranker RBF 5 82.5 17.4 82.6 82.5 82.5 252
against test set
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4.3.4 InfoGainAttributeEval

The InfoGainAttribute evaluator measures the information gain with respect to the
class to evaluate predictor importance of each attribute [52]. Using the zero-discard
threshold the same results as the GainRatioAttributeEval evaluator were achieved
i.e. feature reduction from 444 to 252 attributes and 99% precision using the PUK
kernel (Table 15).

4.3.5 OneRAttributeEval

OneRAttributeEval evaluates the worth of an attribute by using the OneR classifier,
a simple cheap classifier that can obtain high accuracy using of a set of rules that all
test one particular attribute to determine the class of an instance and aims to find the
attribute with the fewest prediction errors [54].

Using the zero-discard threshold the evaluator initially performed only a single
attribute feature reduction by removing the ‘class’ attribute, however it achieved
100% precision using the PUK kernel (Table 16).

Table 15 InfoGainAttribute evaluation metrics

Model ‘Sneei::d Kernel Action TPR% | FPR% | Precision% [ Recall% | F-Measure% | Attributes
21 Ranker Poly Training (tenfold | o, 5| ¢ o 913 913 913 252

cross-validation)

21 Ranker Poly Re-cvaluation 942 | 59 94.4 942 94.2 252
against test set
Training (tenfold
cross-validation)
2 Ranker NormalisedPoly | Re-evaluation 95.1 49 953 95.1 95.1 252
against test set
Training (tenfold
cross-validation)
23 Ranker PUK Reeetion 99.0 | 1.0 99.0 99.0 99.0 252
against test set
Training (tenfold
cross-validation)
Re-evaluation

24 Ranker RBF 5 82.5 17.4 82.6 82.5 82.5 252
against test set

22 Ranker NormalisedPoly 91.0 9.3 91.0 91.0 91.0 252

23 Ranker PUK 90.4 9.7 90.4 90.4 90.4 252

24 Ranker RBF 81.0 19.5 81.1 81.0 81.0 252

Table 16 OneRAttributeEval evaluation metrics

Model rstlzi]:o}:l Kernel Action TPR% FPR% | Precision% | Recall% | F-Measure% | Attributes

Training (tenfold
cross-validation)
25 Ranker Poly Re-cvaluation 942 59 94.4 94.2 942 443
agamsL test set

Training (tenfold

25 Ranker Poly 90.7 9.5 90.7 90.7 90.7 443

26 Ranker NormalisedPoly S 89.8 10.7 90.0 89.8 89.8 443
cross-validation)

26 Ranker Normalisedpoly | Re-evaluation 942 59 94.4 942 94.2 443
against test set

27 Ranker PUK Training (tenfold | g o 140 | 875 86.9 86.8 443

cross-validation)
27 Ranker PUK Re-cvaluation 1000 | 0.0 100.0 100.0 | 100.0 443
against test set
Training (tenfold
cross-validation)
28 Re-evaluation

Ranker RBF 5 82.5 17.4 82.6 82.5 82.5 443
against test set

28 Ranker RBF 80.2 20.5 80.3 80.2 80.1 443
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4.3.6 PrincipalComponents

Principal Component Analysis is a widely-used dimension reduction technique. It
is based on the principle of converting a large number of variables into a smaller
number of uncorrelated variables; it can reduce training and testing times for SVM
classifiers with little decrease in accuracy [55]. The new attributes are then ranked in
order of their eigenvalues with a subset of attributes selected by choosing sufficient
eigenvectors to account for a specified proportion of the variance, usually 95%. The
attributes can then be transformed back to their original space but with a loss of
ranking for predictor importance.

The PCA evaluation was performed using both the covariance and correlation (to
perform standardisation) matrices which gave very different results.

When run with the default values the covariance matrix achieved significantly
higher dimension reduction resulting in just seven attributes, but at the expense of
performance. The highest precision using the correlation matrix and PUK kernel
achieved just under the target 95% precision with a value of 94.4%, with a reduction
in attributes to 87 (Table 17).

Table 17 PCA evaluation metrics

Search
method

29¢ Ranker Poly

Model Kernel Action TPR% | FPR% | Precision% | Recall% | F-Measure% | Attributes

Training (tenfold
cross-validation)
29° Ranker Poly Re-cvaluation 903 9.8 90.8 90.3 903 87

against test set

Training (tenfold

854 15.5 85.9 85.4 853 87

30° Ranker NormalisedPoly S 542 51.6 63.7 54.2 40.3 87
cross-validation)

30° Ry || Nesmifiimy || NoovHin 50.5 505 | 255 50.5 33.9 87
against test set

310 Ranker PUK Training (tenfold | ¢, 125 | 874 87.2 87.2 87

cross-validation)
31° Ranker | PUK R sasiaion 94.2 5.9 94.4 94.2 942 87
against test set
Training (tenfold
cross-validation)
320 Ranker | RBF Re-cvaluation 50.5 505 | 255 505 339 87
against test set
Training (tenfold
cross-validation)
33° Ranker Poly Re-evaluation 718 28.6 785 71.8 70.0 7
against test set
Training (tenfold
cross-validation)
34° Ranker NormalisedPoly | Re-evaluation 50.5 505 255 505 33.9 7
against test set
Training (tenfold
cross-validation)
3s5® Ranker | PUK Re-cvaluation 85.1 143|857 85.1 85.1 7
against test set
Training (tenfold
cross-validation)
Re-evaluation
against test set

32 Ranker RBF 53.1 53.1 282 53.1 36.8 87

33° Ranker Poly 729 29.6 76.2 72.9 71.5 7

34° Ranker NormalisedPoly 54.2 51.6 63.7 54.2 40.3 7

35° Ranker PUK 85.1 143 85.7 85.1 85.1 7

36° Ranker RBF 53.1 53.1 282 53.1 36.8 7

36" Ranker RBF 50.5 50.5 25,3 50.5 339 7

4 Using the correlation matrix
b Using the covariance matrix
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Table 18 ReliefFAttributeEval evaluation metrics

Model [s;atl::d Kernel Action TPR% | FPR% | Precision% | Recall% | F-Measure% | Attributes

Training (tenfold
cross-validation)
37 Ranker Poly Re-evaluation 942 59 944 942 942 281
against test set
Training (tenfold
cross-validation)
38 Ranker NormalisedPoly | Re-cvaluation 932 | 69 933 932 932 281
against test set

Training (tenfold

37 Ranker Poly 91.0 9.2 91.0 91.0 91.0 281

38 Ranker NormalisedPoly 90.7 9.8 90.8 90.7 90.6 281

39 Ranker PUK (tent 904 | 102|906 90.4 903 281
cross-validation)

39 Ranker PUK o 9.0 |10 |99.0 99.0 | 99.0 281
agamst test set

40 Ranker RBF Training (tenfold | g/, ¢ 198|808 80.8 80.7 281

cross-validation)
Re-evaluation

40 Ranker RBF 5 82.5 17.4 82.6 82.5 82.5 281
against test set

Table 19 SymmetricalUncertAttributeEval evaluation metrics

Desc ie;ﬂll Kernel Action TPR% | FPR% [ Precision% | Recall% | F-Measure% | Attributes

41 Ranker Poly Training (tenfold | o, 5 8.9 91.3 913 91.3 252
cross-validation)

41 Ranker Poly Re-evaluation 942 59 94.4 94.2 942 252
against test set

) Ranker NormalisedPoly | Lraining (tenfold ) o g 5 91.0 91.0 91.0 252

cross-validation)
Re-evaluation

42 Ranker NormalisedPoly against test set 95.1 4.9 95.3 95.1 95.1 252

Training (tenfold

43 Ranker PUK wen 904 | 9.7 90.4 90.4 90.4 252
cross-validation)

43 Ranker PUK o Gt 990 |10 |90 99.0  [99.0 252
against test set

44 Ranker RBF Training (tenfold | g, ) 195|811 81.0 81.0 252

cross-validation)

44 Ranker RBF NGl ekt 82.5 174|826 82.5 82.5 252
against test set

4.3.7 RelieffAttributeEval

ReliefFAttributeEval is instance-based, sampling instances randomly and checking
neighbouring instances of the same and different classes. It can operate on both
discrete and continuous class data [51].

The ReliefFAttributeEval, an instance-based evaluator achieved 99% precision
using the PUK kernel, with a feature reduction to 281 features (Table 18).

4.3.8 SymmetricalUncertAttributeEval

SymmetricalUncertAttributeEval evaluates the worth of an attribute by measuring
the symmetrical uncertainty with respect to the class, assigning a value of O or
1 to represent irrelevance and relevance respectively [52]. It achieved very high
precision, 99% with a feature reduction to 252 features (Table 19).
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Table 20 Comparison of feature reduction

Model | Desc Searchmethod | Kemel | TPR% | FPR% | Precision%| Recall% [F-Measurets| Foure Reduction%
3 SMO (Benchmark) - PUK 100.0 0.0 100.0 1000 | 100.0

% CFSSubset GreedyStepwise | PUK 942 5.9 942 942 942 21-=10 917

i CorrelationAttributeEval Ranker PUK 1000 | 0.0 100.0 100.0 | 100.0 432->180 | 595

” GainRatioAttributeEval Ranker PUK 99.0 1.0 99.0 99.0 99.0 252->183 | 5838

23 InfoGainAttributeEval Ranker PUK 99.0 1.0 99.0 99.0 99.0 252-> 128 71.2

27 OneRAttributeEval Ranker PUK 1000 | 0.0 100.0 100.0 | 100.0 H43->332 | 252

i PrincipalComponents Ranker PUK 942 59 944 942 942 87-> 55 87.6

3 ReliefFAttributcEval Ranker PUK 99.0 10 99.0 99.0 99.0 281->77 827

4 SymmetricalUncertAttributeEval | Ranker PUK 99.0 1.0 99.0 99.0 99.0 252> 133 70.0

4.4 Tuning the Attribute Selection Evaluators to Achieve
Further Feature Reduction (4)

The best performing model from each phase model was tuned by applying a
decremental change to the discard threshold within the Ranker or greedy stepwise
searches to achieve increased feature reduction, but without a decrease in precision.
Once a decrease had been reached, the highest number of attributes required to
maintain performance was recorded.

In each of the classification experiments training was performed using tenfold
cross validation with each model re-evaluated against the same test set. Table 20
compares the final feature reduction achieved by each tuning process. The Correla-
tionAttributeEval still achieves 100% precision and 0% TPR with a significantly
reduced no. of features (reduced to 180). CFSSubset is the lowest performing
evaluator with a 94.2% precision rate but it does provide the highest feature
reduction at only 10 features or a 97.7% reduction.

4.5 Important Opcodes

Table 5-16 shows a list of the top 21 ranked Opcodes by each attribute selection
evaluator. The top 21 values have been chosen to reflect the value (21) of the initial
feature reduction achieved by the CFSSubsetEval method for full comparison. Due
to the difficulty in calculating the specific ranked Opcodes by the PCA filter the
attributes have been transformed back into their original space resulting in an equal
rank being assigned to each attribute. The PCA top 21 Opcodes have included on
Table 21 for reference but are not ranked.

Highlighted in Table 5-16 are any occurrences of the common crypto functions
used by ransomware: XOR, ROL, ROR, ROT. Although XOR, ROL, ROR have
been selected by 4, 6 and 8 attribute filters respectively as predictive features, only
ROR appears more than once in the top 21 ranked predictors and does not feature in
the top 20 overall ranked predictors.

The CFSSubset Evaluator can provide feature reduction from 443 to 10 attributes
but the ROR attribute can be discarded without any decrease in precision.
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Table 21 Top 21 ranked opcodes by feature reduction method

E z E o 2 2 .
=z 2 ‘E g E g E g 3 :g e g = ?:j :E B gé
55 | 3 g 2 2 2 Ly =5
8 5 5 ° E . .
1 SETS JLE SETLE FDIVP FDIVP POP FDIVP SUBPS
2 SETNBE CALL FDIVP XCHG AND INC SETLE MULPS
3 SETNLE FILD SETBE AND XCHG INZ FILD SETNBE
4 B POP SETNBE JA SETLE CMP FSUBRP PADDW
5 FSUB G FSUBRP INC SETNLE PUSH MUL CVTTSS2SI
6 XCHG AND SETNB SETNLE B CALL SETNBE FRNDINT
7 POP FIDIV FILD SETLE FMUL ADD SETBE XORPD
8 OR FMUL ROR MUL FSTSW DEC AND FDIVRP
9 FUCOMPP | JL CALL FMUL FADDP JL XCHG ADDPS
10 | JLE DEC FISTP STOS FSUB JLE FSUB FSUBRP
11 | CMOVS SUB FIDIV FSUB FISTP INB FISTP FUCOM
12 | ROR OR FNINIT JB MUL AND B PADDD
13 | FIDIV SETNBE FSTP JLE SHLD RETN FSTSW ORPD
14 | SETBE FDIV BSWAP RCR FXCH XOR SETNLE PMINUW
15 [ JA FDIVRP FSTSW SETZ SCAS SUB JA COMISS
16 | LEA FISTP MUL NOT FDIV TEST STOS FIADD
17 | ENINIT FMULP FLD FSTSW FABS 1z FMUL PUNPCKLBW
18 | CALL CMC LODS FADDP FILD B SETNB CMOVBE
19 | AND NEG FDIV JS FSUBRP STD JLE CMOVB
20 | SETLE IMUL CMOVS INZ SETZ INS FSTP FXAM
21 | FDIVP LDMXCSR | FSUB SETNL FLDZ OR SETZ SUBPS

2 Principal Components listed are unranked

To achieve an overall ranking for OpCode predictor importance the top 21
attributes selected by the first seven evaluation methods in Table 5-17 have been
assigned a weight from 21 to 1, where 21 represents the highest rank, down to 1 for
the lowest. The overall ranking is provided in Table 22.

The two opcodes with the highest density, MOV (32.45%) and PUSH (13.49%)
do not have good predictive importance due to their prevalence in both ransomware
and benign samples. Table 4-16 illustrates that some of the more infrequent Opcodes
such as SETBE and FIDIV are better indicators of ransomware. This partly agrees
with Bilar’s conclusion that less frequent opcodes make better indicators of malware
than the most frequent opcodes [21].

5 Conclusion

This research demonstrated that the analysis of CPU instructions (opcodes) can be
used to differentiate between crypto-ransomware and goodware with high precision.

As per the results presented in this chapter a high precision (>95%) rate has been
achieved for the 2-class model using all four kernel options, the 6-class model with
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Table 22 Overall ranking for opcode predictor importance

Overall Histogram | Histogram density
ranking Opcode Description [56] density % rank/443
1 FDIVP Divide, store result and pop the 0.002 140
register stack
2 AND Logical AND 1.201 15
3 SETLE Set byte if less or equal 0.014 69
4 XCHG Exchange Register/Memory 0.038 54
with Register

5 SETNBE | Set byte if not below or equal 0.001 145
6 SETNLE | Set byte if not less or equal 0.058 45
7 JB Jump short if below 0.243 28
8 FILD Load Integer 0.035 56
9 JLE Jump short if less or equal 0.244 27
10 POP Pop a Value from the Stack 4.01 5
11 CALL Call Procedure 7.881 3
12 FSUB Subtract 0.025 62
13 FMUL Multiply 0.055 46
14 MUL Unsigned Multiply 0.024 63
15 SETBE Set byte if below or equal 0.001 184
16 FISTP Store Integer 0.008 88
17 FSUBRP | Reverse Subtract 0.002 138
18 INC Increment by 1 0.857 17
19 FIDIV Divide 0.006 162
20 FSTSW Store x87 FPU Status Word 0.008 86
21 JA Jump short if above 0.133 36

the PUK kernel, and 6 out of 8 feature reduction models (with the remaining two at
94.2%).

It has also been demonstrated that the PUK kernel is the simplest kernel to use
for the SMO classifier as it is flexible and self-optimising, achieving 100% precision
with no tuning required. The linear, polynomial and Gaussian kernels can also
achieve 100% precision when optimised. For all other models (6-class and feature
reduction) the PUK kernel achieved the highest precision using the default settings.

By employing the chosen methodology of static analysis, opcode extraction
and density histogram representation, a Support Vector Machine can be trained to
differentiate between two classes (crypto-ransomware and goodware) with 100%
precision when using all kernel selections, and between six classes (five crypto-
ransomware families and one goodware) with 96.5% precision (96.7% accuracy)
using the PUK kernel. Both levels of precision exceeded the 95% target set in
the objectives. Moreover, when differentiating between ransomware and goodware,
feature reduction from 443 extracted opcodes down to 180 opcodes can be achieved
using the CorrelationAttributeEval filter with no loss of precision. Feature reduction
from 443 to 10 opcodes can be achieved using the CFSSubsetEval filter, but with a
lower precision of 94.2%.

There is scope to extend and develop this research. The dataset can be extended
to include other crypto-ransomware families such as WannaCry or similar advanced
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“ransomworms” [57] ; a reduced, optimum feature extraction process can be devel-
oped by extracting only the groups of opcodes identified by the attribute selection
evaluators; dynamic runtime extraction of opcodes with time-based features can
be applied to demonstrate real-time application as a crypto-ransomware threat
detection method.

Acknowledgements The authors would like to Virus Total for providing access to their Intelli-
gence platform to assist with the dataset creation, and Ransomware Tracker for being an invaluable
resource for current ransomware threat detection.
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Abstract While botnets have been extensively studied, bot malware is constantly
advancing and seeking to exploit new attack vectors and circumvent existing
measures. Existing intrusion detection systems are unlikely to be effective coun-
tering advanced techniques deployed in recent botnets. This chapter proposes a
deep learning-based botnet traffic analyser called Botnet Traffic Shark (BoTShark).
BoTShark uses only network transactions and is independent of deep packet
inspection technique; thus, avoiding inherent limitations such as the inability to
deal with encrypted payloads. This also allows us to identify correlations between
original features and extract new features in every layer of an Autoencoder or
a Convolutional Neural Networks (CNNs) in a cascading manner. Moreover, we
utilise a Softmax classifier as the predictor to detect malicious traffics efficiently.
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1 Introduction

Cybercriminals are becoming the main potential threat to all systems connected to
the Internet [1]. Malware attacks are increasing while the total number of unique
malwares reached to about 600 million in 2016 tripled from 2013 [2]. A botnet
is a network of hosts connected to the Internet that is under control of one or
more master machine(s) that coordinates each and every bot malicious activities
[3, 4]. Botnets have been heavily used to carry different cyber attacks ranging
from information espionage, and click-fraud to malware distribution and Distributed
Denial of Services (DDoS) [5]. The owner (master) of a botnet can control the botnet
using command and control (C&C) software to manage bot clients.

Botnets are implemented in four main topologies namely Star, Multi-Server,
Hierarchical and Peer-to-Peer (P2P) [6, 7]. Star topology facilitates a fast and
accurate communication between bot nodes in a simple manner but suffers from
a single point of failure when spreads commands across the network [7]. Internet
Relay Chat (IRC) based botnets are the best example of star C&C [8]. Multi-Server
protocol tackles the problem of single point of failure by using several servers as
master nodes [7], but its hierarchical structure requires more setup time but allows
sharing of the infrastructure. P2P is the most advanced topology of botnets in which
every node may serve as a master or client as needed [9]. Although P2P topology
has the most latency of convergence but since hides the presence of master nodes
it make it more difficult to trace back botnet operation [10]. Due to the potential
power and stealthiness of P2P botnets, it is a favorable option among bot masters
C&C channels [11, 12]. In this chapter, botnets with one of a few central servers
are considered as centralized topology, while Peer-to-Peer botnets is considered as
decentralized topology.

While majority of existing research [10, 13—15] are depending on a single
topology for botnet detection, this chapter utilizes deep learning to detect botnet
traffics independently of underlying botnet architecture. The main contribution of
this research is adopting two deep learning techniques namely Autoencoders and
Convolutional Neural Networks (CNNs) to detect malicious botnet traffics. We
propose two detection models based on deep learning to eliminate dependency
of detection systems to primary features achieved by NetFlow extractor tools.
To the best of our knowledge, this is among very first attempts to employ deep
learning in botnet detection, therefore this chapter opens new insights in this field.
Our models have the capability of detecting malicious traffics from botnets of
two common topologies namely centralized and decentralized botnets. It is worth
pointing out that BoTShark does not pre-filter any primary extracted features and
does not need experts’ knowledge in selecting proper features to extract features
automatically. In other words, BoTShark takes samples with all raw features and
generates discriminative features for classifying botnets traffics from normal traffics.
BoTShark is tested on ISCX Botnet Dataset [16] that is a well-known research
dataset in the field of botnet detection.
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Fig. 1 Malicious and Normal Malicious
non-malicious systems are

connected to the Internet

BoTShark

Figure 1 shows the network architecture considered in this chapter. The network
includes both malicious and non-malicious hosts, and BoTShark works on the
traffics generated by systems connected to the Internet.

The remainder of this chapter is organized as follows. Section 2 reviews some
related research. Section 3 gives a brief background on deep Autoencoders and
CNNs. Section 4 explains dataset and primary features extracted from network
flows. We describe BoTShark for detecting botnets traffics in Sect. 5 while Sect. 6
evaluates BoTShark models. Finally, Sect. 7 concludes the chapter.

2 Related Work

Botnet is becoming a dominant tool for cybercriminals to distribute new malwares
between a large scale of infected host or attacking a target by taking the advantage
of cooperative characteristic of the network [17]. The growth in botnet sizes is the
main motivation of researches on botnet detection [18]. In the past decade, many
researchers attempted to propose a model for detecting bot infected hosts [10, 13, 19]
or their malicious network traffics [14, 20, 21]. Most bot host detection systems are
relying on profile of each host including their behaviour during a period of time [10]
e.g. 6h [22] or 10 min [23]. BotHunter [24] as one of the earliest botnet behaviour
detection system attempts to correlate SNORT [25] generated alarms to behaviour
of an individual host. However, it works by inspecting payload of packets that is



140 S. Homayoun et al.

not useful against botnets that benefits cryptography in their connections. BotMiner
[13] considers group behaviours of individual bots within the same botnet.

On the other hand, some researches focused on detecting malicious botnet traffics
originating from internal hosts inside a LAN based on machine learning techniques
to predict new NetFlows [14, 15, 20, 26, 27]. Using of machine learning techniques
is more common in detecting botnets malicious traffics. A two-phase system
consisting of feature extraction phase and machine learning phase is proposed in
[20] to detect botnet C&C traffic of IRC based botnets by creating a Bayesian
network classifier with 90% detection rate and 15.4% false positive rate that is
high. Some works focused on DNS requests [26] and achieved accuracy of 92.5%
in detecting malicious DNS requests. However, relying on DNS requests makes
the detection system exclusive to botnets that benefits DNS for finding their C&C
servers (most centralized botnets). A system is proposed for detecting P2P traffics by
assuming that the traffics generated by normal user fluctuate greatly and is different
to P2P bots [15]. The system in [15] achieved 98% of detection rate while the false
positive rate is still high (30%).

Working on a set of features is a very common approach in the literature of botnet
detection while this approach makes the detection systems dependent on the studied
network traffics. The features can be suggested by the experts [14, 20, 26, 27] or
can be selected by feature selection algorithms [28, 29]. ISOT [30] and ISCX [16]
are two well-known datasets in the literature of botnet detection. Zhao et al. [14]
attempted to detect malicious traffics by employing a decision tree using the
Reduced Error Pruning algorithm (REPTree) and achieved 98.3% true positive rate
in detecting malicious traffics, where the model extracts feature vectors for a time
window of 60 s and creates a decision tree to classify malicious and non-malicious
traffics. However, a research proved that the model proposed in [14] is biased to
the dataset [28]. A new stepwise greedy feature selection algorithm for using in
botnet traffic detection proposed in [28] that selects best features to differentiate
botnet traffics. However, the algorithm works in a greedy manner and it does not
consider different permutation of features. Therefore, it is likely to remove valuable
feature information. Recently, an approach for detecting botnet traffics based on
NetFlows characteristics is proposed [27] that selects best features according to
experts analysis on botnets behaviours, where several datasets of botnet traffics
are merged to make a dataset for evaluating proposed model. However, combining
different datasets requires considering special methods e.g. overlay methods [31]
while the details of combining datasets are not described.

Although there are many papers published on detecting bot infected machines
or botnet malicious traffics, few models have the capability of detecting malicious
traffics independent of botnets topologies. In other words, almost all proposed
methods worked on botnets within the same topologies. For example, a model
that is proposed to detect decentralized P2P botnets is unable to detect centralized
IRC botnet traffics. This chapter aims at differentiating botnet traffics from benign
traffics in both topologies.
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3 Background: Deep Learning

Deep Learning is a sub field of machine learning that studies artificial neural
networks and related machine learning algorithms that contain more than one hidden
layer. Since we are using Autoencoders and CNNs, we give a brief background in
the following subsections.

3.1 Autoencoders

Artificial Neural Networks (ANN) is one of the popular machine learning tech-
niques that is used for any condition and has the ability of learning problems
structure automatically. The learning method in ANN is usually back-propagation
in which the samples are forwarded and the output of network is compared with
the desired target. Then the error is calculated according to this difference and the
weights are tuned [32].

An Autoencoder is similar to a neural network where the output is regarded as
the input and supposes that the hidden layer must reconstruct the initial information
with the least possible amount of distortion. Then, Autoencoders are trained to
reconstruct their own inputs X instead of being trained to predict Y. An Autoencoder
tries to learn a function A (w, ) (x) = x by learning an approximation to the identity
function. As Fig. 2 shows, an Autoencoder always consists of two parts, the encoder
and the decoder, which can be a transition between ¢ and p such that¢ : X — F
and p : F — X where F is the intermediate representation of sample X. An
Autoencoder attempts to minimize reconstruction error based on Eq. (1).

argming, p|X — (p o $)X|? (1)
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Suppose the dataset only includes a set of unlabeled training examples X =
(xM x@ x® . x™M} where x) € R?. The aim of an Autoencoder is to
learn a representation (encoding) for a set of data, typically for the purpose of
dimensionality reduction. Equation (2) shows the hidden layer while Eq. (3) presents
the reconstruction from the hidden unit.

z=01(WI'X +b) 2)
X' =0 (Wz+b') 3)

The loss function is as Eq. (4) where W and W are the transform matrices.
LXX) =X =X'IP =X —ox(W@a W' X +b)+0)1> &

A simple Autoencoder often ends up learning a low-dimensional representation
very similar to PCAs and a subspace is learned for the representation of data. If
a nonlinear function is exerted in each layer, the nonlinearity is considered and a
submanifold is finally extracted that benefits the separability of data points; then in
the new space the discrimination procedure is more effective.

3.2 Convolutional Neural Network (CNN)

CNN owes its inception to a well-known research paper [33]. CNNs are usually
applied to image but it is also applicable in spam detection, and topic classification,
and studies are growing to use CNNs [34].

A CNN consists of different layers that each layer performs a different function
on their inputs. Convolution layer, pooling layer and non-linear layer are three layers
that are very common in the literature and are usually stacked sequentially many
times based on the application [35].

The convolutional layer contains a filter as a sliding window to generate new
feature maps. In other words, each filter will generate a new feature set and the
model applies different filters to the inputs. The pooling layer uses a kind of filter
to summarize the generated feature maps during the previous layer. As convolution
explores the correlation between different features, the pooling layer extracts the
existing correlation in any parts of the input. There are a few functions namely max
pooling, L2-Norm pooling and average pooling that can be used in pooling layer.
Since the operations in the layers of convolution and pooling are linear, a non-linear
layer such as tanh is used to make the model efficient for non-linear cases.

Assume X = {x1,..., x,} as the input vector where x s is value of feature f.If
a filter W with M weights is applied to the input vector X then Z; is the output of
convolution layer and is calculated by Eq. (5) foreach i’ € {1,...,|X| — Mg + 1}
where | X| is size of vector X.



BoTShark: A Deep Learning Approach for Botnet Traffic Detection 143

Mp
Zj = Z(Xi’+i—lWMF—i+1) )

i=1

Equation (5) considers applying a filter on the input data and there are usually
more than one filter with different weights. So Eq. (5) can be applied individually for
each filter. Therefore, using of convolution layer on an input vector creates feature
maps as its output.

Now the generated feature maps can be fed as the input of max pooling layer
to generate reduced feature maps. Using of max pooling is very common in the
literature of CNNs [36]. Max pooling outputs y/ as the maximum value of the
features under the swapping filter and is calculated by Eq. (6).

yir = max (x;) (6)
i)

where $2(i') is the set of feature values starting with i’ feature value located under
the swapping filter.
Finally, the non-linearity is applied using tanh according to Eq. (7).
1 — e

tanhx = ———
1+ e

)

4 Data Collection and Primary Feature Extraction

This chapter uses network traffics from ISCX [16] that is created by using one of the
most popular overlay methodology introduced in [31] to combine different datasets.
The creators of ISCX claims that their dataset has all three requirements of a
validated dataset: generality, realism and representativeness. ISCX dataset includes
44.97% of malicious flows from 16 different botnet flows and contains botnet traffics
from both centralized and decentralized topologies as well as normal traffics.

This chapter works on network flows extracted from network traffics that might
be in form of packet capture (PCAP) files or live traffics. A NetFlow is a set of
fields, namely a record, that gives some information about a connection between
source and destination (source/destination address, ports etc.). PCAP consists of an
Application Programming Interface (API) for capturing network traffic and store
them into a file.

This chapter considers all TCP and UDP NetFlows into a dataset of NetFlows.
There are a few tools for extracting NetFlows from network traffics. Argus [37] is
a powerful flow exporter that is popular among researchers and is able to extract
features from different aspects: byte-based (extracted features based on bytes in a
flow e.g. byte sent/received), time-based (features depend on time e.g. inter-packet
arrival time) and packet-based features (e.g. total number of packets in a flow).
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Table 1 List of features extracted by Argus

Feature Description

SrcAddr Source IP address

DstAddr Destination IP address

Sport Source port

Dport Destination port

Proto Connection protocol (udp, tcp, icmp, igmp etc.)

Dir Source — Destination, Source <— Destination, Source <> Destination
Dur Record total duration (time between flow start time and flow end time)
TotPkts Total transaction packet count

SrcPkts Source — destination packet count

DstPkts Destination — source packet count

SIntPkt Source inter-packet arrival time (mSec)

SIntPktIdl Source idle inter-packet arrival time (mSec)

DIntPkt Destination inter-packet arrival time (mSec)

DIntPktIdl Destination idle inter-packet arrival time (mSec)

TotBytes Total transaction bytes exchanged between source and destination
SrcBytes Source — destination transaction bytes

DstBytes Destination — source transaction bytes

sPktSz Source active interpacket arrival time (mSec)

dPktSz Destination active interpacket arrival time (mSec)

sMeanPktSz Mean of the flow packet size transmitted by the source (initiator)
dMeanPktSz Mean of the flow packet size transmitted by the destination (target)
sMinPktSz Minimum packet size for traffic transmitted by the source
dMinPktSz Minimum packet size for traffic transmitted by the destination
sMaxPktSz Maximum packet size for traffic transmitted by the source
dMaxPktSz Maximum packet size for traffic transmitted by the destination
Load Bits per second

SrcLoad Source bits per second

DstLoad Destination bits per second

Rate Packets per second

SrcRate Source packets per second

DstRate Destination packets per second

Argus has the capability of extracting 120 features for each connection. However,
some features are not useful in the area of botnet detection because they are all
null or zero (for example there are several features special to MPLS networks that
basically are not relevant to the considered LAN topology). Table 1 shows extracted
features by Argus after removing irrelevant features (primary feature selection).
This chapter does not remove any features from the feature set and works on all
features of Table 1 (except SrcAddr, DstAddr, Sport and Dport, because the use of
these features became inefficient when data comes from different networks [38]).
Since Autoencoders and CNNs need continuous features, two categorical features
Dir and Proto are converted to continues aspect e.g. 1 and 2 which could handle in
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the network. The proposed technique feeds feature vectors for each NetFlow to the
learning task. This chapter considers two labels (malicious and non-malicious) for
each NetFlow and feeds dataset to BoTShark.

5 Proposed BoTShark

We propose BoTShark with two deep structures namely BoTShark-SA that applies
stacked Autoencoders to extract new features for distinguishing malicious and
benign network flows and BoTShark-CNN which takes the advantage of CNNs to
train a classifier for detecting malicious traffics.

5.1 BoTShark-SA: Using Stacked Autoencoders

Figure 3 shows BoTShark-SA architecture to learn a classifier that detects malicious
NetFlows in a deep structure and to classify new NetFlows as malicious or non-
malicious. Since selecting proper features is a big challenge in most machine
learning based botnet detection systems [28], BoTShark-SA benefits the stacked
Autoencoders depicted in Fig. 4. The dataset consists of all unlabeled NetFlows with
primary features set { f1, ..., fg} from Sect. 4 is fed to the stacked structure, where
d is the dimensionality of data. In the field of deep learning, multiple Autoencoders
make an stacked structure to produce the best final denoised output and minimize
reconstruction error. This combination learns to extract valuable features in a
stepwise manner without employing any particular hand-made feature selection.

Feature Extraction in Fig.3 extracts efficient features from all given data. As
the original number of features are not too much, two layers of Autoencoders are
sufficient (see Fig.4). In the first step of Fig. 4 original feature set is encoded into
dy features {fi, ..., faq,} to enter the next step. The second Autoencoder receives
the output from previous step and extract d; features {fi, ..., f4,}. The output of
layer2 from the second Autoencoder is considered as the final extracted features.

All NetFlows that are now in a new representation, with their corresponding
labels provide inputs for training a classifier model to distinguish malicious and
non-malicious NetFlows. As the main purpose of deep networks is to extract best
features, any classifier can be used in this phase. This chapter input a vector of
27x 1 to the first Autoencoder and feed its 20x 1 output to the second Autoencoder
to extract final ten features (see Fig. 4).

Softmax is a well-known classifier that is using in neural networks [39], it assigns
a probability to each class based on the extracted features received from the previous
layer to classify the instances. If there are only two classes, Softmax acts like a
logistic regression which uses a logistic function to assign a probability to instances
according to each class. The mentioned function is as Eq. (8).
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Fig. 3 BoTShark-SA
architecture to extract
features and train the
classifier
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where z is considered as the k-dimensional vector of each sample. Although this
chapter is involved with two classes (malicious and non-malicious), Softmax can

handle multiple classes and the proposed method has the ability to expand to more
number of classes by Softmax.

0(2); = sforj=1,...,K (8)

5.2 SocialBoTShrak-CNN: Using CNNs

Figure 5 depicts our proposed architecture for training a classifier that has the
capability of distinguishing malicious traffics. We input a NetFlow as a vector with
27 extracted features to a CNN for training and feeding calculated weights to a fully
connected network with a hidden layer to prepare final inputs for Softmax to create
final classifier.

Fig. 5 BoTShark-CNN —
architecture to train the

classifier

Original Features

Fully
Connected
Network
v v
Classifier Model Softmax

!

Malicious/ Non-Malicious
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Fig. 6 Implemented architecture for CNNs

We designed a CNN consisting of two layers with three sub-layers of temporal
convolution, max pooling and a non-linear function tanh (see Fig.6). At first all
weights are initialized randomly with values between —1 and +1 and the structure
in Fig. 6 learns appropriate weights automatically for further steps of Fig. 5.

The convolution sub-layer in the first layer of Fig. 6 consists of 10 filters with 4
weights in each filter. This convolution sub-layer turns the 27x 1 input vector into
10 feature maps of length 24. These feature maps are then fed to the max pooling
sub-layer with filter of width 2 to be converted to 10 feature maps of length 12. After
applying tanh sub-layer, we will have feature maps with size of 12 x 10 given to the
second layer. The second layer in its convolution sub-layer applies 5 filters of size 4
that generates 5 feature maps of size 9. Max pooling sub-layer with the filter of size
2 is applied to the feature maps that outputs 5 feature maps of size 4. tanh sub-layer
as the final sub-layer is applied to 4x5 feature maps. Finally, these 5 vectors are
concatenated to form a 1-D vector of size 20.

We feed our final 20 features to a fully connected neural network with one hidden
layer of ten neurons and two outputs in which the neurons apply tanh function.
A Softmax uses two outputs from the fully connected network to train the final
classifier with the capability of detecting malicious network traffics.

6 Evaluation

We are using widely accepted criteria namely True Positive Rate (TPR) and False
Positive Rate (FPR) to evaluate our model [40—42]. TPR is reflecting the proportion
of positives that are correctly identified and FPR shows the ratio between the number
of negative labels wrongly identified as positive. We will also report Receiver
Operating Characteristic (ROC) that is a potentially powerful metric for comparison
of different classifiers, because it is invariant against skewness of classes in the
dataset. In a ROC curve the true positive ratio is plotted in function of the false
positive ratio for different thresholds.
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We apply BoTShark to ISCX botnet dataset to evaluate the performance of the
binary classifier in predicting new NetFlows. The proposed technique feeds feature
vectors for each NetFlow to the learning task. This chapter considers two labels
(malicious and non-malicious) for each NetFlow and feed dataset to BoTShark. In
this experiment 70% of data is considered as training and the rest 30% for testing
the final classifier. BoTShark-SA is implemented in Matlab 2015b and BoTShark-
CNN is implemented using Torch7 framework for deep learning networks and run
on a system with 8 GB of RAM and Core i5 of 8 cores of 4 GHz CPU. We set the
iteration count of both BoTShark-SA and BoTShark-CNN to 400 iterations.

Table 2 reflects the performance achieved by lunching BoTShark on ISCX
dataset. It is demonstrated that BoTShark-SA and BoTShark-CNN achieved T PR >
0.91 on ISCX datasets. BoTShark works on all primary features and no feature is
filtered by experts. BoTShark-SA achieved TPR of 0.91 and its false positive ratio is
0.15 and BoTShark-CNN achieved higher detection ratio (0.92).

Figure 7 depicts the ROC diagrams of BoTShark-SA and BoTShark-CNN. The
diagram shows True Positive Rate (X-Axis) against False Positive Rate (Y-Axis) to
demonstrate the amount of false positives for achieving a specified true positives.
The ROC diagrams of BoTShark shows that in false positive ratio < 0.05 we will
have true positive ratio of about 0.75. However, BoTShark achieves higher true
positive ratios (>0.91) by tolerating more false positives (FPR between 0.05 and
0.15).

Table 2 Performance of TPR | FPR
BoTShark in detecting

malicious traffics BoTShark-SA 091 |0.13

BoTShark-CNN |0.92 |0.15

Fig. 7 ROC diagrams of
BoTShark-SA and
BoTShark-CNN

m— BoTShark-SA
= = BoTShark-CNN

True Positive Rate

0.1
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Working directly on the outputs from Argus and extracting features automatically
without experts is an advantage of BoTShark. In other words, the main advantage
of the proposed method is the variety of applications. Since Autoencoders and
CNNs are not limited to a special field of data, it can be used for efficient feature
extraction in any cases. Then any NetFlow extractor such as Argus [37], YAF [43]
and ISCXFlowMeter [44] can be used as the flow exporter.

7 Conclusion

IRC and P2P are two main botnet topologies hence a typical network may include
infected hosts from both topologies and new detection systems are required to
support both. As deep learning is very efficient in image processing and text mining,
this chapter attempted to apply deep learning techniques in the realm of botnet
detection by proposing BoTShark-SA that uses Autoencoders and BoTShark-CNN
which uses CNN. BoTShark has the ability of detecting botnet traffics from both
common topologies of botnets namely centralized and P2P. A Softmax classification
makes the final predictor of malicious and non-malicious traffics. We achieved TPR
of 0.91 with FPR of 0.13 in detecting malicious traffics of botnets. Our study also
showed that Autoencoders perform better than CNN since as it generates smaller
false positives. Applying other deep learning techniques such as Long Short Term
Memory (LSTM) can be considered as a future work of this study. Moreover, the
approach of this study can be applied for detection of relevant evidences during
course of forensics investigation of cloud [45] and IoT [46] botnet traffic as well.
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A Practical Analysis of the Rise in Mobile M)
Phishing ity

Brad Wardman, Michael Weideman, Jakub Burgis, Nicole Harris,
Blake Butler, and Nate Pratt

Abstract Phishing attacks continue to evolve in order to bypass mitigations applied
within the industry. These attacks are also changing due to the attacker’s desire
for a greater return on investment from their attacks against the common internet
user. The digital landscape has been ever-changing since the emergence of mobile
technologies. The intersection of the internet and the growing mobile user-base
fueled the natural progression of phishers to target mobile-specific users. This
research investigates mobile-specific phishing attacks through the dissection of
phishing kits used for the attacks, presentation of real world phishing campaigns,
and observations about PayPal’s insight into mobile web-based phishing numbers.

Keywords Phishing - Abuse reporting - Phishing kits - Mobile attacks

1 Introduction

For years, there has been speculation across the industry that phishing would soon
be a solved problem; however, there is evidence that phishing attacks are more
prevalent than ever. Phishing is an attack vector used by criminals to lure their
victims into divulging personal or financial information through the use of social
engineering. Phishing attacks can be distributed through spam email links, email
attachments, text messages, phone calls, forum posts, and more [1, 2]. This paper
focuses on phishing attacks using fraudulent websites to harvest user information.
Phishing attacks can be distributed using a wide net, attempting to attract a broad
range of victims or they can be extremely targeted to a few individuals. The
latter attacks are referred to as spear phish due to the use of additional personal
information about their victim for precise targeting [3].

The Anti-Phishing Working Group (APWG) provides bi-yearly reports on
phishing statistics which indicate that phishing continues to grow. The total number
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of distinct phishing attacks reported to the APWG in Q1 of 2014 was 125,215,
Q1 of 2015 was 136,347, and Q1 of 2016 was 289,371 [4-6]. In fact, there was a
250% increase in phishing attacks in Q1 2016 compared to Q4 2015 [6]. PayPal has
observed this upward trend within its reporting numbers as well.

The most common response to phishing attacks is to remove the malicious
content from the internet as soon as possible as it has been demonstrated that
the spamming of phishing content stops shortly after [7]. This process is referred
to as “takedown” [8, 9]. The majority of organizations rely on external security
companies to provide the service of detecting new phishing attacks and removing
the content. Another response to phishing is reporting the websites to the major
blacklisting firms such as Google Safe Browsing in order to warn users that a
website is likely malicious [10]. Blacklists are used by most web browsers and
typically serve a red page containing warnings to the user as a means to prevent
them from visiting the page [11]. While these warning pages are an effective method
for victim prevention [12] they are limited in that they are only available to the user
before they visit the phishing website. There has been research performed on the
effectiveness of blacklists to detect phishing websites or URLSs. Prior research found
that it takes blacklists around 2 h to identify and action 90% of the phishing websites
reported to them [13]. There are a number of factors that contribute to a blacklist’s
ability to identify phishing content, such as the timely reporting of the content, the
depth of the queue for scanning content, and the likelihood that the content can be
retrieved using traditional methods.

The timeliness of reporting by organizations and security firms is often out of the
control of the blacklists as they are reliant on external parties to report the URLS.
Nevertheless, the URL queue handling process could be reworked so that trusted
contacts sharing potentially abusive content are prioritized over content that is newly
introduced to the internet and simply needs to be scanned. There are also limitations
to the content retrieval systems or crawlers employed by current blacklists. The
development of more robust, adaptive systems could provide increased detection
capabilities for the blacklists by scanning from different geolocations, using proper
browser language settings, and using content retrieval systems that emulate browsers
and devices rather than simple scripted (e.g. curl and wget) commands. These
techniques will help to overcome obstacles used by phishers for years such as the
use of .htaccess files within phishing kits for denying and allowing certain IP ranges
from retrieving the intended content [14, 15]. These access restrictions often cause
issues for content retrieval systems, hence preventing them from taking action on
the phishing website. Another evolution of website filtering is the use of .htaccess
and similar PHP files to check the user-agent being used to retrieve the content.
PayPal has recently observed a new trend in phishing websites in the wild ensuring
the visitor’s user-agent is a mobile device which will be expounded on in this
research. According to Cisco, there was a 74% rise in mobile internet traffic as
well as a 43% increase in the use of smartphones between 2014 and 2015 [16]. In
2015, Google’s Search Chief, Amit Singhal, stated that mobile device searches had
exceeded desktop computer searches [17]. With this in mind, it stands to reason
that attackers would prioritize targeting mobile users over personal computer users.
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This introduces a number of issues for the abuse reporting industry, as they have
not typically employed the use of mobile emulators or user-agents as a means to
retrieve content targeting mobile users. Furthermore, there are differences between
addressing phishing countermeasures for mobile users versus those using a personal
computer such as phishing education through the use of warnings.

The research in this paper presents trending data that PayPal is observing in
regards to the targeting of mobile users. The first section presents initial research that
PayPal performed to better assess the impact phishing is having on direct monetary
losses incurred by PayPal. Next, this research will share real-world PayPal numbers
on the impact that mobile device usage is having to its phishing numbers. Following
the description of the problem, information is shared on phishing kits observed
targeting mobile users in the wild. We will then step through an example mobile
phishing website reported to PayPal which was not available except through the use
of a mobile browser. After presenting these examples, a section presents industry
recommendations that could be employed in response to the rise in mobile phishing.
The final section concludes the research presented in this paper.

2 Measuring the Impact of Phishing

Previously published research by PayPal proposed an equation for measuring
phishing’s direct impact to an organization [18]. The equation is as follows:

Direct Monetary Loss = numSites x avgVisit X %Creds

X monetized x avgLoss

where:

* numSites is the number of phishing websites per year

* avgVisit is the average number of customers visiting each website

* %Creds is the percentage of valid credentials acquired by each phishing website
* monetized is the number of credentials that undergo attempted monetization

* avgLoss is the average amount of loss due to a compromised account

The numsSites variable is common amongst organizations to collect. The industry
is aware that gaps exist for this variable; however, this variable is well documented
by members of the industry such as the APWG [4-6]. The avgVisit variable, which
is important to this paper’s research, is the average number of visits that a phishing
website observes. This can be achieved by tracking the resources (e.g. graphics,
JavaScript files, and CSS files) that phishing websites use from the targeted orga-
nization. The %Creds variable represents the return rate of legitimate credentials
that the phishing website harvests from its visitors. The monetized variable is
representative of the number of accounts against which have had attempted account
takeovers. Finally, avgLoss is the measurement of loss per account takeover. This is
often institutionally dependent.
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Measuring the impact of phishing has proven vital as this research has led to
the discovery of mobile phishing abuse through further inspection of the targeted
customers. The following section will provide insight into the observations PayPal
found when assessing those visiting the phishing websites.

3 Methodology for Visitors to Phishing Websites

PayPal actively monitors phishing attack trends to determine the scope of the
problem as well as to better understand the evolution of attack strategies. This
is often done through trends observed via customer calls and complaints. PayPal
has also found it extremely useful to monitor the trends in phishing by using
internal data related to web resource usage. Organizations can analyze data related
to phishing websites that are leveraging access to web resources such as images or
JavaScript [19]. The current study employs two data sets: a URL data set and a data
set of visitor information. The first data set consists of all phishing URLs reported
or collected by PayPal over the first half of 2016 (i.e. January through June). The
URL data set was collected from internal detection strategies, customer reporting,
external security firms, phishing URL aggregation sources, and blacklists. The data
set is comprised of over 18K distinct phishing websites, meaning we removed
duplicate URLSs based on identical hostnames using the same hosting IP on the same
day. The second data set is the visitor information collected on phishing websites
related to the URLs data set that was collected by PayPal through the execution of
JavaScript functions. This means that the phishing URLs in the URL data set were
checked against PayPal’s internal cookie data in order to identify which URLSs had
collected visitor information through the execution of PayPal’s JavaScript. PayPal
had collected data through this source on 24.7% of the total number of observed
phishing campaigns. Note that not all phishing campaigns are successful in luring
visitors as blacklists and mail filters mitigate a great deal of attacks; therefore, the
24.7% is likely a larger percentage of the total URLSs visited.

The initial research into the inspection of targeted customers was tailored towards
eliminating sessions in phishing websites that were not traditional internet users
or customers. The reasoning for this was to better understand how to remove
crawlers (e.g. automated systems for collecting web content) used by security firms,
blacklists, and researchers whose visits could inflate the number of actual visitors
to phishing websites. A number of filters were applied to the data set, such as IP
addresses that visited more than 10 different phishing websites in the first half
(i.e. January—June) of 2016, malformed or non-realistic user-agents of visitors, and
IP addresses originating within known researcher networks. In addition, phishing
websites visited by customers also contained cookies pre-existing from PayPal,
allowing PayPal to identify specific customer visits. The initial findings indicated
there was a lower than anticipated percentage of customers who visited a phishing
website and subsequently had their account taken over. This could be because the
customers identified that the website was a scam or, for some other reason, the
phishers did not attempt to monetize the collected accounts.
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Fig. 1 A comparison of mobile, tablet and desktop users visiting phishing websites in the first half
of 2016 (using DD/MM/YYYY format for dates)

The next phase of the research was to identify visits that did not have customer
cookies but were still likely to be a legitimate internet user or customer. PayPal
started by analyzing the user-agents that remained in the data set after removing
known customer cookies as well as removing the sessions that were likely to be
blacklists, researchers, or security firms. PayPal found that the user-agent traffic was
approximately broken down to 54% mobile, 9% tablet, and 37% desktop. Figure 1
shows the findings plotted each day throughout the first half (or H1) of 2016. There
is a observable trend starting in May 2016 until the end of the data set indicating
that the number of mobile users visiting phishing websites is rising.

There are two reasons PayPal suspects this rise in mobile browser user-agents
started to occur in May 2016. Firstly, it could be that content retrieval systems
started using mobile user-agents in their crawlers or are using mobile emulators.
The other is that more people are reviewing emails on their mobile devices and
viewing more content shared over social media via their mobile devices. For the
latter case, when the user clicks the link, the phishing website is presented to them in
the mobile browser. This could also be a reason why PayPal did not have cookies on
the visitors, as many users on their mobile devices use the PayPal mobile application
rather than performing transactions using the mobile browser, in which case pre-
existing cookies may not be present. A side observation during the examination of
the sessions indicated that the number of HTTP referrer headers referencing mail
and webmail providers also increased using the same timescale in Fig. 1 suggesting
that many users were being redirected more from their web mailboxes over time.

PayPal also observed a significant number of phishing campaigns distributed via
social media in the first half of 2016. In Fig. 1, the large spike in visits towards the
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end of March 2016 was entirely driven by customers visiting links shared on Twitter,
as indicated by the “t.co” URL shortener being present in the HTTP referrer. The
“t.co” shortener accounts for 30% of all mobile referrers seen in H1, and is 10x
more prevalent than any other.

Further analysis of the data set revealed several trends that can be found in the
tables located in the Appendix 1. By classifying each visit by characteristics of the
device used, inferred from the user-agent header, the primary devices used to visit
phishing sites were Windows 7 (23.44%), iPhone (19.56%), generic ‘linux’ (8.58%),
Windows 10 (6.81%), and Android devices using Chrome browser (6.52%). It is
notable to mention that Phantom JS was the 13th most popular device, responsible
for 1.14% of unique visits to phishing websites. The use of Phantom JS suggests a
crawler capable of executing JavaScript and performing advanced functions that
simple content retrieval systems are not capable of. There are additional useful
data trends using the geo-location information of the IP addresses visiting phishing
websites such as calculating the percentage of phishing websites visited via mobile
devices per country. Of the set of countries with more than 1000 phishing site visits,
the majority of countries present show more visits via mobile devices than not.
Additionally, with the exception of the United States, the countries with the majority
of mobile visits have English as either the primary or secondary language.

4 Mobile Phishing Kits in the Wild

A more thorough review of active phishing kits was needed to determine if there
are apparent changes in phishing tactics. PayPal decided to analyze a set of six
active phishing kits using different organizations as the lure for their victims.
The analysis indicates no significant change into the underlying phishing strategy,
rather incremental changes to enable tighter access controls by the phisher such
as additional commands added to identify and block specific user-agents. Note the
highlighted section of the source code in Fig. 2 was observed in a PayPal phishing
kit. This JavaScript redirects the visitor to different web resources and experiences
based on the user-agent provided by the visitor to the executing JavaScript. For
instance, the visitor is redirected to “rand.php” if they execute the JavaScript using
a mobile user-agent. The “rand.php” webpage is employed by the phisher to provide
a more mobile friendly experience. Visitors using any other type of user-agent are
provided with a typical web browser experience (i.e. redirection to the “account”
webpage).

There was also a difference in the two experiences between the mechanism of
how the phished information was collected and provided to the phisher. Phished
information collected by “rand.php”, resulted in the creation of unique directories
per visitor. The directory “/account” holds additional directories that are representa-
tive of each victim and the names of those directories are based on a string generated
by a function in the PHP. The string is computed by taking a substring of five
characters from the MD5 hash [20] of a randomly generated number and the IP
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Fig. 2 Example source code found in a PayPal phishing kit that directs the visitor to different
resources based the user-agent

address of the visitor. For example, a file containing the phished information for a
specific visitor would be written to a directory on the phishing webserver located at
“phishing-domain/account/4d876/”. In comparison, the strategy for collecting the
phished information from the “account” webpage was a standard phishing practice
that utilizes functions in a file called “successfully.php” to email the collected
information of the user to the phisher.

Observations during the analysis of the phishing kits found various obfuscation,
blocking, and back door techniques that have been observed in the evolution of
phishing kits over the years. For instance, an analysis of a PayPal kit found common
source code obfuscation used within the phishing kits to increase the difficulty of
analysis by researchers. Another observation is that phishers are employing blocking
mechanisms utilizing an array of words that are related to security firms, researchers,
and the targeted organizations, as shown in Fig. 3. Also found in Fig. 4 is PHP source
code that is blocking requests based on specific IP ranges.

The following section describes a walkthrough of an example mobile phishing
campaign that targeted PayPal.

5 Mobile Phishing Campaigns

Mobile specific campaigns are actively being used against PayPal. This sec-
tion provides a walkthrough of an example phishing campaign that was only
retrievable using what the website perceived as a mobile device. PayPal identi-
fied a potential phishing redirect website hosted on the subdomain hosting site
respectiverespectively.from-ct[.Jcom registered to DYN Dynamic Network Ser-
vices, Inc., hosted on 216.146.39.125 AS33517. This site redirected to an unfiltered
intermediary redirect site hosted on 82.165.61.207 AS8560, which redirects to the
phishing landing page hosted on the unfiltered subdomain hosting site customerde-
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blocker.php x data_ip_masuk txt x detect.php X index.php X robots.txt % __ YourMail___php x
<?php
gethostbyaddr (5_SERVER[ 'REMOTE_ADDR']);
rds = array
(“above","google”, "softlayer®, "anazonaws” , "cyveillance”, "phishtank”, "dreanhost”, "netpilot”, "calyxinstitute”, "tor-exit®,
“msnbot”,"pipwgdsn”, "netcraft”, “trendmicro®, “ebay”, "paypal®, "torservers”, “messagelabs”, “sucuri.net”, “crawler®);
foreach(Sblocked_words as Sword) (

Af (substr_count(Shostname, Sword) » 8) {

header ("HTTP/1.8 484 Not Found"};

die("<h1>404 Mot Found</hl»The page that you have requested could not be found.”);

]

TAT4.125.%.%7,

"A66.205.64.%
"A64.62.175
"r64.124.14.%7, 7
~67.209.128

JT2.%%, TA209.73.228.%7,
"f12.148.200.%", "A12.148.196.*",
199.38.228.*");

“68.65.53.71%, "
AF(in_array(5_ ER[ 'REMOTE_ADDR" ], Sbann
header ("HTTP/1.0 404 Not Found');

exit();
} else {
foreach(SbannedIP as Sip) {
Af(preg_match('/"' . $ip . '/',5_SERVER['REMOTE_ADDR®])){
header('HTTP/1.0 484 Wot Found');
die("<h1>484 Not Found</hi>The page that you have requested could not be found.”);

1))

}

Fig. 3 Example PHP source code that uses IP ranges and user-agent strings as filtering techniques

@ Problem oading page x

respectiverespectively fram <t.com

(D Server not found

 at respectiverespectively from-ct.com

Iress for typing

ors such a3 werexample.com Instead of www.examgle.com
to lead any pages, check your computer's network connection

= I your computer or network is protected by a firewall or proxy, make sure that Firefox is permitted to access the
b,

Fig. 4 Page returned upon initial retrieval of phishing URL

skinfo.servehttp[.Jcom registered to Vitalwerks Internet Solutions, LLC—No-IP.com,
77.68.12.254 AS8560. This URL was reported over 600 times to PayPal.

The hostname respectivelrespectively.from-ct[.Jcom appeared in 28 of the 600
emails and revealed a weakness in the attack as all 600 URLs in the emails were
filtered through the intermediary redirect pages at 82.165.61.207. All those links
pointed to the same landing page customerdeskinfo.servehttp[.]Jcom, which was the
focus of mitigating this campaign quickly.

First inspection of the URL using a web browser coming from a United States
IP address did not display the phishing website. Instead, the content retrieved was
a “Server not found” page depicted in Fig. 4. The next step was to change the IP
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Fig. 5 A screenshot of the phishing URL test being submitted to URLQuery as a Droid Razor
browser

’ PayPal

Sign Up

Fig. 6 The mobile-friendly phishing content retrieved once a mobile user-agent was employed

address and language setting to the targeted victim country-base. The campaign was
being distributed to United Kingdom targets; hence, the IP address and language
settings were changed to United Kingdom settings. The content was still not being
delivered. Other various proxy services were also used with no success.

The analyst decided to use URLQuery, as seen in Fig. 5, as a means of
determining if the data could be captured using a mobile user-agent [21]. The
device that was chosen was the Droid Razor browser. Upon submitting the request,
URLQuery was sent through a redirect, ultimately getting served the phishing
content as observed in Fig. 6. Note that some of the phishing kits analyzed in Sect.
4 do block URLQuery in the .htaccess file.

The source code found in Fig. 7 is the filtering mechanism observed in the
redirect to the phishing website and is similar to what was found in the phishing
kits dissected in Sect. 4. This source code uses JavaScript to determine if the user-
agent contains strings that would be present in a mobile browsing experience.
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Fig. 7 Source code found for ["copE SNIPPET I
filtering on user agent
<html><head>

<script type="text/javascript">

var device = navigator.user  Agent

if (device.match(/Iphonel/i)|| device.match(/Ipod/i)||
device.match(/Android/i)|| device.match(/J2MEY/i))||
device.match(/BlackBerry/i)||
device.match(/iPhoneliPad|iPod/i)|| device.match(/Opera
Mini/i)||

device.match(/IEMobile/i)|| device.match(/Mobile/i)||
device.match(/Windows Phoneli)|| device.match(/windows
mobile/i)|| device.match(/windows ce/i)||
device.match(/webOS/i)|| device.match(/palm/i)||
device.match(/bada/i)|| device.match(/series60/i)||
device.match(/nokia/i)|| device.match(/symbian/i)||

device.match(/HTC/i))

{

window.location = "./rand.php";
/

else

{

var page = "./random.php";
top.location = page,

/
</script>
</head>
</html>

A lasting observation found during the analysis of live mobile phishing websites
was the difference in the user experience with regards to the warning page when
visiting phishing websites from a web and mobile browsing experience. In some
instances, it seems that security measures for mobile browsing has not kept up with
current attack vectors. Phishing websites were visited using an actual mobile device
and updated Chrome browser as well as using the same updated Chrome browser
on a personal computer. The Chrome browser on the personal computer warned the
user with a warning page when visiting the phishing website. However, this was not
the case when using Chrome on a mobile device to visit the same phishing website.
This was a small test and by no means indicates an industry-wide problem, but it
does raise the question of what else is being missed. The focus should shift to what
the phishers are doing, and where the community is susceptible.

6 Recommended Changes

The implementation of new technologies requires the industry to adapt security
controls to protect internet users. The adoption of new security controls is often
slow moving, as seems to be the case in regards to mobile-specific phishing
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attacks. The research presented in this paper demonstrates that phishing kits are
available to phishers for targeting mobile users. The research also presents real
world examples of the phishing campaigns. The potential damage caused by similar
phishing campaigns are backed up with data that PayPal has collected on phishing
visitors. The intent is to bring this emerging attack vector to the attention of the
industry in the hopes that mitigation technologies will be developed that are capable
of thwarting mobile-targeted victims. The remainder of the paper discusses changes
to the current processes of organizations, security firms, and blacklists to help them
better protect internet users.

The first recommendation is to implement changes to the content retrieval
systems or crawlers used to capture the potential phishing content. Minor changes
to the user-agents in the request could be implemented in the short term, to give
time for more robust, long-term solutions to be put in place. The crawlers could
iterate randomly through a list of common mobile device user-agents to help avoid
detection and blocking. The suggested longer term solutions would require crawlers
that fully emulate mobile devices. This will allow for the crawlers to bypass anti-
automation defenses as the emulated devices will be able to perform most actions
that any mobile device would be capable of executing.

The next recommendation is to create a distributed system that has access to
IP infrastructure located within a diverse number of geolocations. Such a system
would make it more difficult to block crawlers from current .htaccess files which
are typically blocking known IP ranges or only allowing country-specific IP ranges.
Simple modifications such as changing the language settings of the crawlers to the
country of the IP being used would make the request more realistic. It is important
to note that a significant portion of phishing kits are preloaded with .htaccess files
for blocking most major security firms and blacklists.

The last recommendation is to create a new set of features or protocol for
reporting abusive content. The current abuse reports contain lists of URLSs, the
timestamps observed, and possibly the brand or organization being targeted. The
industry should consider additional context around how the content was rendered
including details about the browser or device that was able to retrieve the content.
Examples of additional fields that would provide more context for others trying
to verify the content as being abusive could include user-agent, browser language,
operating system, ASN, etc. Such features could be used by content retrieval
systems to increase the chances of retrieving the content through programmatic
configurations of the crawlers.

7 Conclusion

This research introduces phishing-related data that PayPal uncovered showing a
rise in the number of visitors from apparent mobile devices. Deeper investigation
into current phishing kits found that some phishers are targeting mobile users
specifically with their phishing campaigns. The techniques found in phishing kits
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to limit access by mobile device visitors causes issues for the security industry, as
many of their crawlers are not using mobile device emulators or mobile user-agents
in their retrieval strategies. Therefore, many phishing websites are likely not getting
labeled as malicious in the blacklists as well as in vendor security products. The
security industry requires more robust solutions for scraping potentially malicious
content in order to ensure that internet users are adequately protected from malicious
websites.

A.1 Appendix

Unique | Unique IP

Device type visits | addresses | Most commonly seen user-agent header string
Windows 7 70,577 | 25,500 Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1;
Trident/6.0)

i0S/iphone 58,891 | 48,610 Mozilla/5.0 (iPhone; CPU iPhone OS 9_3_1 like Mac OS
X) AppleWebKit/601.1.46 (KHTML, like Gecko)
Version/9.0 Mobile/13E238 Safari/601.1

Linux 25,830 | 759 Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/28.0.1500.71
Safari/537.36

Windows 10 20,500 | 13,520 Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/46.0.2486.0 Safari/537.36 Edge/13.10586

Android/Chrome 19,637 | 19,964 Mozilla/5.0 (Linux; Android 5.0; SM-G900V

Phone Build/LRX21T) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/50.0.2661.89 Mobile Safari/537.36
0OSX 17,676 | 7873 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_2)

AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/36.0.1944.0 Safari/537.36

XP/IE6 17,037 | 138 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; NeosBrowser; .NET CLR 1.1.4322; NET CLR
2.0.50727)

i0S/iPad 15,780 | 12,789 Mozilla/5.0 (iPad; CPU OS 9_3_1 like Mac OS X)

AppleWebKit/601.1.46 (KHTML, like Gecko)
Version/9.0 Mobile/13E238 Safari/601.1

Windows 8 15,012 | 6379 Mozilla/5.0 (Windows NT 6.3; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/48.0.2564.109 Safari/537.36

Windows XP 10,326 | 3712 Mozilla/5.0 (Windows NT 5.1; rv:9.0.1) Gecko/20100101
Firefox/9.0.1
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Percent of visits Unique phishing Unique IP
Country that are mobile site visits addresses
United States 30.67 115,114 30,559
United Kingdom 75.01 43,341 28,680
France 11.85 23,646 2438
Germany 4.64 16,931 705
Canada 65.99 13,588 7327
Australia 72.23 13,360 7691
Romania 1.83 11,604 201
Russia 0.73 9650 65
Brazil 9.37 8386 637
Netherlands 16.2 3105 430
Italy 27.19 2953 768
Indonesia 22.03 2782 554
Ireland 73.33 2355 1453
Singapore 68.71 2183 1270
Hong Kong 65.42 1972 1131
Japan 19.63 1717 289
Norway 24.02 1690 353
Poland 2.74 1676 43
India 11.69 1523 170
Spain 57.95 1460 829
Morocco 5.31 1244 55
Serbia 1.29 1242 16
N/A 11.67 1105 58
New Zealand 59.15 1104 582
Switzerland 55.97 1013 346
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Abstract Portable Document Format, more commonly known as PDF, has become,
in the last 20 years, a standard for document exchange and dissemination due its
portable nature and widespread adoption. The flexibility and power of this format
are not only leveraged by benign users, but from hackers as well who have been
working to exploit various types of vulnerabilities, overcome security restrictions,
and then transform the PDF format in one among the leading malicious code spread
vectors. Analyzing the content of malicious PDF files to extract the main features
that characterize the malware identity and behavior, is a fundamental task for
modern threat intelligence platforms that need to learn how to automatically identify
new attacks. This paper surveys existing state of the art about systems for the
detection of malicious PDF files and organizes them in a taxonomy that separately
considers the used approaches and the data analyzed to detect the presence of
malicious code.

Keywords Malware detection - Portable document format - Taxonomy

1 Introduction

Portable Document Format, commonly known as PDF, has become, since its
introduction in 1993, a de-facto standard for document exchange and dissemination.
The widespread adoption of this document format is due to both its portable nature
and its inherent flexibility. PDF files, in fact, can contain a variety of media (text,
pictures), but also embedded files or code that will be interpreted and executed by
the reading software. This latter ability makes PDF adaptable to a large amount of
extremely different usage requirements.
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Despite the complexity and the number of possibilities this file format offers,
end users still treat PDF files as plain, static and immutable documents, without
understanding that what the reader software shows them is the result of the execution
of a potentially complex program. While end users have become increasingly aware,
year after year, about the traps that other document formats may hide (mainly
Microsoft Office documents including macros), such awareness struggles to extend
toward PDF.

In the last 10 years malicious actors have exploited this lack of awareness,
together with the presence of vulnerabilities in mainstream PDF readers, to make
PDF become an extremely successful vector for malware diffusion. In 2010
Symantec [20] already reported a large rise in PDF-driven attacks, mainly justifying
it with a corresponding rise in the vulnerabilities identified in the Adobe Reader
software. More recently, Ke Liu reported [8] about his discovery since December
2015 of more than 150 vulnerabilities in the most common PDF reader software
products. This latter news shows how, even today, PDF is an important infection
vector that provides a large attack surface.

Malware developers typically use the possibility to supply Javascript to the PDF
reader interpretation engine to execute their code. Such code is usually sandboxed!
for execution, but it may still exploit un-patched vulnerabilities to escape the
environment boundaries and execute shellcode at the user level. Complex payloads
can be included in the PDF as obfuscated text to evade inspection techniques, or can
be downloaded from the Internet as soon as the attacker takes control of the user
shell. Malicious PDF files are then delivered through different methods [20]: from
drive-by downloads, to targeted attacks or mass mailing approaches.

To counteract such growing phenomenon, the research community produced in
the recent past several solutions for detecting malicious PDFs. The most recent and
promising ones use a mix of techniques borrowed by standard malware analysis best
practices (like static and dynamic code analysis) and adapted to the specificities of
the file format to select what features to analyze. The analysis is performed using
several different approaches that range from simple string matching through regular
expressions to complex classifiers based on machine learning techniques. In this
corpus of solutions it is somewhat difficult for the interested reader to identify
which approaches are adopted by a given solution and how they are related to
competing solutions. Nevertheless, such solutions represent an important building
block for threat intelligence platforms that need to automatically analyze incoming
data looking for suspicious infection vectors or indicators of compromise. Recently,
a survey from Nissim et al. [12] provided an overview of academic contributions on
this area, but limited its scope to systems leveraging machine learning approaches.

This work proposes a survey of the existing techniques at the state of the art for
the detection of malicious PDF files. The main novelty introduced in this survey lies
in its analysis of the most relevant works, which tackles two orthogonal, but strictly

IThis feature is actually reader-dependent. As an example, the Google Chrome PDF reader
executes embedded Javascript code within a Google Native Client sandbox.
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related aspects: (1) which features are considered and how they derive from the
analyzed PDF file, and (2) which techniques are used to analyze such features and
detect malicious files. The taxonomy is completed by a global view that considers
the combination of these two aspects to correctly contextualize analyzed works and
propose possible gaps that could possibly pave the way for new research initiatives.
Comparing to [12], we believe that discussing features and analysis techniques
as orthogonal topics, helps in shedding further light on available solutions and
identifying new directions for additional research.

The text is organized as follows: after this introduction, Sect.2 provides a
basic background on the Portable Document Format and some information about
obfuscation techniques that can be used to conceal malicious code in PDF files, with
the aim of making the detection process less effective. Section 3 gives an overview
of the study we conducted on the state of the art, describes the rationale that drives
our taxonomy and details the taxonomy itself. Section 4 puts the pieces together
and provides the reader with a unified view with a clear reference to existing works.
Finally, Sect. 5 concludes the paper.

2 Background on Malicious PDF Files

This section introduces some basic concepts that are fundamental to understand how
PDF malware detection solutions treat the internals of a PDF and how they extract
features for further analysis. In addition, we briefly discuss obfuscation techniques
that can be adopted by malware developers to hide malicious code with the aim of
evading detection.

2.1 The Portable Document Format

The Portable Document Format is the world’s leading language for describing the
printed page, and the first one equally suitable for paper and online use. It is basically
a file format defined in 1993 by Adobe Systems and used until today to exchange and
represent documents reliably, independently from the available hardware, software,
and operating system. This means that this is a format intended to display content
identically in all platforms and media. In 2008 it became an open standard released
as ISO 32000-1.

A PDF file may contain a mix of textual and binary data and is composed by
different abstraction layers. The layers define the sequential flow by which a PDF
viewer application reads the contents and renders them on the screen. According
to the PDF Reference [3], the internal structure of a PDF file is made up of the
elements depicted in Fig. 1.
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= \ersion number = Page objects = Object locations = Location of special
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cross-reference table

Fig. 1 Internal structure of a PDF file

Metadata All the data that can be extracted by exploring the “raw” PDF file, i.e.
from its internal structure, as it is detailed below. Metadata include elements such as
embedded keywords, “EOF” characters located after the trailer, author field, creation
data, etc.

Objects The basic content of a PDF document is represented by a collection of
Objects. Each object contains a different element that will be used to render the file
content, e.g., a page, a picture, a form, a portion of JavaScript code. Objects are the
basic building blocks that collectively form the data structure of a PDF document.

An explicit definition is prefixed with a text label “1 0 obj”. This kind of
object is defined indirect, or also labeled, as it can be referenced by another object
using the first number of its definition, 1 in this example, also known as its object
reference. Conversely, direct objects can not be referenced and do not contain any
reference prefix, implying that they will always be embedded in other objects. The
syntax used by a container object to refer to an indirect object follows the pattern
“l 0 R”.PDF only supports eight basic types of objects:

* Boolean values

* Integer and real numbers

¢ Strings: sequences of bytes. PDF strings have bounded length and can be
represented in two distinct formats, namely as a sequence of literal characters
enclosed in rounded parentheses, or as hexadecimal dump embedded in angle
brackets.

* Names: atomic symbols uniquely defined by a character sequence.

* Null value: there exists only one object of type null represented by the
corresponding keyword “null”. If the null object is specified as the value of a
dictionary entry, it means that the entry does not exist. When an object references
an indirect object that does not exist within the structure of the PDF, then this
indirect reference is interpreted as a null object.

¢ Arrays: one-dimensional ordered collections of PDF objects enclosed in square
brackets.

¢ Dictionaries: unordered sets of key-value pairs enclosed between the symbols
“((” and “))”, where each pair constitutes a dictionary’s entry. Keys must be
name objects and must be unique within a dictionary. The values may be any
kind of PDF object, including nested dictionaries.
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* Streams: sequences of bytes. Note that, while string objects must be read by
a PDF viewer completely in their length, streams can undergo an incremental
reading process. Furthermore, stream length is not bounded. This is the reason
why large amount of data like images or JavaScript code are represented as
streams.

File Structure This layer refers to how objects are organized in a PDF file, and later
accessed or updated. A PDF file structure consists of the following four parts:

* Header: represents the single first line of the PDF file. It has the format
“$PDF-a.b”, where a . b denotes the version of the PDF standard specification
to which the file conforms.

* Body: this is the section which defines the content of the PDF document
containing the objects.

* Cross-reference table: specifies the byte offset of every object contained in the
Body starting from the top of the file.

e Trailer: a dictionary consisting of the “trailer” keyword followed by a set of
key-value pairs enclosed in double angle brackets. It provides the location of the
cross-reference table and of certain special objects within the body of the file, like
the root object called Catalog. A PDF viewer conforming to the standard should
read the file starting from this section in order to locate the cross-reference table
and navigate to each object of the physical PDF structure. Within the trailer we
can also find other relevant information like the number of revisions made to the
document.

Document Structure This layer describes the semantics of the components of
the PDF file. This is a hierarchical structure that defines the relationships linking
the various objects, i.e., how two objects are connected. Decoupling the document
structure from the file structure means that, given a document structure, it is possible
to build different equivalent PDF files by simply shuffling the object order in the
body. As long as the document structure does not change, the file rendering will not
change as well.

At the root of the hierarchy there is the document’s Catalog dictionary. A few
nodes in the Catalog are scalar nodes, but many others are the roots of for higher
level objects. There are a lot of objects, but a minimal PDF document will at least
contain Page objects. Such objects are tied together in a logical structure called page
tree, whose root is the first page object, which in turn is an indirect object referenced
in the Catalog dictionary by using the entry having “/pages” as key.

Content Streams These are PDF stream objects whose data consists of a sequence
of instructions describing the appearance of any graphical entity to be rendered on a
page. These objects are distinct from the basic types of data objects. The instructions
can also refer to other indirect objects which contain information about resources
used by the stream.



174 M. Elingiusti et al.

2.2 PDF Document Obfuscation Techniques

Obfuscation is a well-known approach leveraged by malware coders to hide
malicious code from inspection efforts. Code obfuscation is, in general, a legitimate
technique that is widely used to protect proprietary code, however it is also one of
the best evasion techniques used by malicious coders to fool malware detection
systems (especially those based on signature matching) or to make the work
of an expert analyst more complex and time consuming. Kittilsen listed several
techniques [5] that are usually employed to hide JavaScript code in PDF files.

Separating Malicious Code over Multiple Objects: the code embedded in
the PDF document is fragmented among several objects and reassembled upon
execution. This technique is made possible by exploiting the reference feature
that is relevant to the indirect objects.

Applying Filters: filters are used to compress and encode object streams of a
PDF file. The parser of a detection software must be aware of the filter used,
otherwise it will not detect the presence of malicious code.

White Space Randomization: randomly placed whitespace characters can be
inserted in order to defeat very simple signature matching systems, like the ones
based on calculating the hash sum of the whole document. This technique can
be easily applied to JavaScript code, whose syntax is space-agnostic. Some of
the solutions surveyed in the next sections (e.g. [4]) preprocess the code with a
normalization phase in order to overcome this kind of obfuscation.

Comment Randomization: similarly to space randomization, comments can be
inserted at random to change the code without modifying its functioning.
Variable Name Randomization: variable names are changed in order to over-
come signature based detection systems which, for example, during a static
analysis, look at the extracted code for suspicious variable names such as
“heapspray”, “shellcode”, “exploit”, etc.

String Obfuscation: string manipulation is an obfuscation technique to fool
and hinder security analysts and anti-malware software. This can be achieved
in different ways. One of the most widely used techniques is to split a string
in several substrings, and then merge them back at runtime. String format
representation can be easily changed by employing different schemes, like
the hexadecimal representation, unicode, base64 etc. An attacker can also use
different formats and build hybrid representations. Another commonly used
string obfuscation technique is the application of de-obfuscation functions upon
strings at runtime, like substitution or XOR. Obfuscated code can be placed in
any object and then deobfuscated only at runtime [13]. This kind of approach
is extremely powerful against static analysis, while it is potentially subject to
detection with dynamic analysis approaches.

Function Name Obfuscation: this technique can be applied by creating pointers
to functions using arbitrary names, like “eval”or “unescape”.

Integer Obfuscation: numbers can be obfuscated by representing them in a
different way, e.g. using a mathematical expression. This technique is often
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employed to hide a specific hardcoded memory address or other kind of numbers,
such as addresses related to ROP gadgets that are packaged in the code and used
to exploit different versions of a reader software.

* Block Randomization: this involves modifying the embedded JavaScript code
syntax and structure, while preserving its global behavior.

¢ Dead code and Pointless code: as a further element of obfuscation, real code can
be augmented with dead code (routines that will never be executed) or pointless
blocks (whose results do not impact the execution of the real malicious code).

3 Taxonomy of PDF Malware Detection Approaches

The approaches used in the state of the art to identify malicious PDF files vary
widely from solution to solution. However, it is possible to identify a general pattern
that, with some specific variations, is commonly adopted:

¢ feature extraction;
 feature analysis and decision.

In the feature extraction phase the PDF file is analyzed to extract various features.
Features can be extracted through an analysis of the PDF characteristics, or from
the code that the file embeds. In this case standard static or dynamic techniques are
leveraged to analyze and characterize the code behavior. Features are then analyzed
in the feature analysis phase where several metrics of interest can be calculated.
A discriminant function is then applied to decide if the input must be classified as
malware or benign.

In order to conceptually organize the current state of the art in the field of PDF
malware detection, we consider appropriate to apply this two-phases approach as
the basis to build a taxonomy. In particular, we propose a taxonomy of the existing
works with respect to two different aspects: considered features, and approaches
used to analyze them. These two aspects provide orthogonal information about how
the existing solutions tackle the problem of identifying malicious PDF files. In the
next two sections we will detail these two taxonomies in more details.

3.1 Features

This section describes which features have been proposed for PDF malware
detection, and organizes them in a multi-level taxonomy (see Fig. 2). The first level
is the leftmost depicted in Fig.2 and represents which type of data is extracted
from the PDF document. The second level shows the preprocessing techniques used
on these data to obtain the actual features used for PDF malware detection; these
features are then reported in the third level.
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This section is organized according to the data types identified at the first level:
metadata, javascript, and whole file. A final subsection discusses feature selection
techniques used by some solutions to improve detection performance.

3.1.1 Metadata

Some works focus on the metadata of a PDF (see Sect.2.1) to determine its
maliciousness [10, 11, 14, 21, 24]. They all perform structural analyses of the
documents to extract the features they need.

Embedded Keywords A PDF reader uses the keywords embedded in the document
to understand which actions to execute; therefore, the set of keywords embedded in
a PDF file can be an effective indicator of its high-level behavior. Pareek et al. [14]
propose a fixed reference set of keywords to look for in a document, while PDF
Malware Slayer [11] and Slayer Neo [10] identify sets of most characteristic
keywords by examining the occurrences of keywords in either benign and malicious
PDFs included in the training set.

Structural Paths As detailed in Sect. 2.1, the internal structure of a PDF is organized
hierarchically in a tree-like fashion. Investigating how objects are arranged in such
a structure can unveil valuable clues to recognize malicious documents. Hidost [24]
considers the structural paths of leaves in the analyzed documents as features. The
obtained feature set is then processed through a technique called structural path
consolidation(SPC) to merge together similar features. In this way the semantic of
the document structure is better preserved because it reduces the dependency of the
feature set from the specific dataset.

Metafeatures Other works look at more general characteristics of a PDF, which we
refer to as metafeatures. We want to stress the fact that metafeatures are different
from embedded keywords. Indeed, some works [11] use a set of specific keywords
and simply extract them from the structure of the file, because these keywords
are closely associated to some known vulnerabilities or malicious behaviors.
Conversely, metafeatures are features representing properties of the metadata, like
“the count of some keywords”, or “the ratio of the number of pages to the size of
the whole document”, or “the number of uppercase characters in the author field” or
other similar properties that parametrize the metadata and the file structure as much
as possible. As an example, Slayer Neo [10] considers a number of statistics about
the structure of a document, such as its size and the number of contained streams.
Similarly, PDFrate [21] gathers many numeric data representing aspects such as the
occurrences of specific strings or the length and position of particular sections. Also
Pareek [14] considers the frequency of some specific keywords, like /s (i.e., the
number of launched javascript) or /JavaScript (i.e., the number of embedded
javascript).
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Despite systems relying on these kind of features are both efficient and effective,
they are possibly subject to two kinds of evasion, namely mimicry and reverse
mimicry attacks. The first attack has been demonstrated in a more systematic way by
Smutz and Stavrou [21] and Maiorca et al. [10], and more theoretically by Laskov
et al. [6] and Srndic and Laskov [23]. The second attack has been widely addressed
by Maiorca et al. [10].

The peculiarity of these attacks resides in the way they prepare the malicious
PDF file. In particular, the mimicry attack adds benign metadata-based attributes to
malicious samples, while the reverse mimicry attack starts instead from a sample
classified as benign and renders it malicious in an incremental fashion while trying
to avoid that it gets classified as malicious.

3.1.2 JavaScript

The most common attack vector for malicious PDFs derives from embedded
JavaScript code that can be executed by the PDF reader. Indeed, many surveyed
papers consider features derived in different ways from embedded JavaScript
code [2,4,7,9, 19, 25, 26]. As Fig.2 shows, features linked to JavaScript can
be extracted from two distinct sources: the JavaScript code itself, that is actually
executed when the PDF file is opened, and the in-memory data that is generated
during code execution.

JavaScript code can be extracted from the PDF either statically or dynamically.
In the former case, the code is directly extracted from the file, while in the
latter the PDF is opened and parsed through a reader software to observe which
code is actually executed. The dynamic approach is generally more robust against
obfuscation techniques (see Sect. 2.2), but requires a secure sandboxed environment
for execution and is, in general, more resource demanding.

In-memory data is generated by the execution of the embedded JavaScript code
and can thus be observed only by running the code through dynamic analysis.
Features extracted from in-memory analysis can unveil malicious activities such as
the preparation of memory areas (e.g. heap spray) to use for buffer overflow attacks.

Different preprocessing techniques have been proposed on either JavaScript code
and in-memory data to compute the required features: lexical analysis, formatting
and normalization, runtime analysis, code method extraction, opcode extraction and
string extraction.

Differently from previous surveys [12], our taxonomy assumes that data can be
extracted with either a static or dynamic analysis process. Depending on the sample
under analysis, the choice of the right tool for data extraction is either implicit in the
taxonomy (i.e., in-memory data can be obtained through dynamic analysis only), or
is left to the analyst (i.e., JavaScript code extraction may be performed statically or
dynamically, depending on the nature of the analyzed sample.)
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Lexical Analysis Examining possibly complex and obfuscated JavaScript code
calls for some form of abstraction to get rid of unnecessary details and isolate what
is actually relevant for the detection. A lexical analysis of the code can support the
automation of such an abstraction process.

Both the approaches proposed by Vatamanu et al. [26], i.e., Hierarchical Bottom-
up Clustering and Hash Table Clustering, use PDF fingerprints as features, where
a fingerprint is the set of pairs (token, frequency) obtained from a lexical analysis
of JavaScript code extracted statically from a document. They consider JavaScript
tokens identified using a grammar for ECMA Script.

Also PJScan [7] performs lexical analysis on JavaScript code extracted in a static
way. It relies on SpiderMonkey? to extract JavaScript tokens, and also recognizes
further tokens on the base of their length and whether they are invocation of
suspicious functions, such as eval() and unescape().

Formatting and Normalization In case some kind of comparison between
JavaScript code fragments is required to decide on the maliciousness of a document,
a conversion to some canonical form is usually needed to enable the evaluation of
possible similarities or differences.

Karademir et al. [4] use code syntactic units as features. As syntactic unit they
consider a block or a function in JavaScript code. Code is extracted statically from a
document, then it is parsed to identify syntactic units. These are then encapsulated in
an XML file with additional metadata, such as the start and end line of each syntactic
unit with respect to the original file (formatting phase). The normalization phase
includes three types of transformations aimed at abstracting the actual structure of
the unit, i.e., control and assignment statements: (1) renaming of identifiers (to
remove any reliance on naming conventions), (2) filtering of non distinguishing
elements, such as variable declaration, and (3) replacing elements by their abstract
name (e.g., replacing any expression with a unique symbol).

Code Analysis The extracted JavaScript code can be either analyzed or executed
in a real or virtual environment, to understand in details which APIs are invoked and
with which parameters. The execution environment can be instrumented to capture
relevant events and information, depending on the specific features to obtain.

PDF Scrutinizer [19] looks at runtime for operations that add elements to an array
to verify whether many identical and large data blocks are inserted, which can be
seen as an attempt of heap spraying. It also statically inspects code to find any match
with known signatures of malicious vulnerable method calls and parameters.

LuxOR [2] uses PhoneyPDF? for executing both static and dynamic analyses to
extract all the API references that appear in the considered JavaScript code (i.e., AP
access patters).

Zhttps://developer.mozilla.org/en- US/docs/Mozilla/Projects/SpiderMonkey.
3https://github.com/smthmik/phoneypdf.
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Opcode Extraction A common practice for malicious PDFs is to build the
shellcode at runtime by copying the corresponding sequence of opcodes in some
variables. As a consequence, some PDF Malware detection approaches execute
dynamic analysis to identify variables that possibly contain malicious or suspicious
opcode sequences.

PDF Scrutinizer [19] employs a dedicated heuristic to properly choose which
values to analyse, for example by focussing on the output of unescape method
invocations, or on strings “with length between reasonable lower and upper bounds™
or having many occurrences of the pattern “%u”. Indeed, the unescape method can
be used to decode previously encoded strings where the malicious opcode sequence
was stored, and the shellcode is mostly encoded using the “%u” pattern.

MDScan [25] chooses the strings where to look for shellcode by observing that
such strings are commonly built at runtime, for example by decoding or deciphering
other strings. This kind of transformations requires new strings to be allocated,
because strings are immutable objects in JavaScript. Hence, MDScan scans memory
areas of newly allocated strings.

In a similar way, also MPScan [9] identifies new strings by hooking where they
are created, and subsequently examines them to spot shellcodes. Furthermore, it
hooks the JavaScript engine of Adobe Reader where opcodes are actually executed,
so as to reconstruct the real opcode flow.

String Extraction Besides being analysed to identify sequences of opcodes that
may correspond to known shellcodes, strings can be also extracted for other types
of analyses, for example for heap spray detection.

MPScan [9] computes the entropy of strings to verify whether they can be used
for heap spraying. Indeed, since a memory area to be used for heap spraying mostly
contains NOP opcodes, its entropy should smaller compared to any other string.

PDF Scrutinizer [19] looks instead at the length of used strings. Relying on the
observation that strings prepared for heap spraying are likely to have significant
dimensions, it verifies whether the length is greater than 100000 bytes.

3.1.3 Whole File

In addition to inspecting document metadata or contained/executed JavaScript code,
other approaches look at the PDF file as a whole. The underlying rationale is that a
malicious PDF holds somewhere specific elements designated to run some exploits
and deliver a desired payload, which makes the document as a whole contain some
distinguishing traits overall. Thus the key idea is analyzing the entire PDF with the
aim of catching any feature possibly attributable to malware.
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Slayer Neo [10] employs two distinct tools, PeePDF* and Origami,’ to parse
PDF documents and observe whether any malformed object is found. The presence
of malformed objects, streams, actions, code or filters is a valuable information to
evaluate the maliciousness of a PDF.

Pareek et al. [15] compute the byte-level entropy of the entire file to obtain a
representative data to recognize malware. They also extract word-level 2-grams
from the hexadecimal dump of a PDF, and apply a term frequency-inverse document
frequency (TF/IDF) analysis on the obtained 2-grams.

3.1.4 Feature Selection

Feature extraction is often followed by a technique called Feature selection (some-
times also known as attribute selection). It is an automatic selection of attributes
that are most relevant to the predictive modeling problem under consideration.

What is worth mentioning is that some works address this technique in very
different ways. PDFMS [11] and Slayer Neo [10] use a clustering approach in order
to reduce the number of features by only selecting those appearing in the larger
clusters.

Luxor [2] instead, uses a crafted function to select a set of features, represented
by API references, that effectively characterize malicious samples. In particular,
it checks the result of the function against a predefined threshold 7, where ¢ must
be chosen in order to reflect a good tradeoff between classification accuracy and
robustness against possible evasion.

Hidost [24] makes a sort of feature selection in order to find the minimum set
of features required for a successful machine learning application. Specifically,
the huge extracted feature set is analyzed with a technique called structural path
consolidation (SPC), aiming at merging similar features. In this way, the semantic
of the document structure is better preserved by reducing the dependency of the
feature set on the specific dataset.

3.2 Detection Approaches

The features extracted according to the techniques described in Sect.3.1 are
then used to determine whether a specific PDF is malicious or not. This section
reports on the approaches used in reviewed papers to elaborate available features

“https://github.com/jesparza/peepdf.
Shttp://esec-1ab.sogeti.com/pages/origami.html.
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for malware detection. We grouped existing approaches in four macro-classes
(see Fig.3): Statistical analysis, Machine learning classification, Clustering (for
family identification) and Signature matching. A subsection is dedicated for each
macro-class.

3.2.1 Statistical Analysis

A common way to study a dataset of interest consists in employing well-known
statistical analysis tools, indeed they allow to easily find trends and relationships
that otherwise would remain hidden and unexploited.

Pareek et al. [15] extract the byte-level entropy on the entire file for a set of PDFs
including both benign and malicious PDFs, then calculate the confidence interval
for the entropy of malevolent documents. A new document to analyse is recognised
as malicious if the entropy of its content is within such confidence interval. As
underlined by authors, using the entropy only does not lead to acceptable detection
accuracy.

3.2.2 Machine Learning Classification

A natural and nowadays really widespread approach to malware detection consists
in extracting a set of features from a training set, balanced between benign and
malevolent samples, and training a binary classifier to detect new malicious samples
with the highest possible accuracy. Several machine learning classification tech-
niques are used in literature also for malware detection in PDF files. Often, reviewed
papers report evaluation results on employing distinct classification algorithms and
discuss which one performs best.

Two-class Support Vector Machines (SVM) are used by PDF Malware
Slayer [11], PDFRate [21] and LuxOR [2]. PJScan [7] uses instead a one-class
SVM, trained with a set of malicious PDFs only. Decision Tree algorithm is the most
widely employed, in fact it is used by Slayer Neo [10], Pareek et al. [14, 15], PDF
Malware Slayer [11], Hidost [24] and LuxOR [2]. A Random Forest is an ensemble
of decision trees, which usually provides better accuracy than single decision trees.
PDF Malware Slayer [11], PDFRate [21] and LuxOR [2] feed their features to a
Random Forest. Naive Bayes classifiers are utilized by Pareek et al. [15], PDF Mal-
ware Slayer [11] and PDFRate [21]. Pareek et al. [15] also employ other classifiers,
i.e., Bayesian Networks, Logistic Regression and Logistic Model Tree (LMT).

3.2.3 Clustering

Within the more general field of malware analysis, it is of high interest grouping
together samples that behave more similarly or that share more commonalities
among each other. Analyzing new unknown or suspicious samples by understanding
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what known malware are most similar is a fundamental task. Indeed, this quickly
gives to analysts many relevant information about analyzed samples, e.g., what
actions we can expect they execute, and how to neutralize them. A group of similar
malware is usually referred to as malware family. Given a set of malicious samples,
each represented by a feature vector, it is possible to group them on the base of the
similarities they have on those features. Clustering algorithms are usually employed
at this regard, and also some surveyed papers use them.

Vatamanu et al. [26] propose two approaches to cluster malware with the aim of
understanding what families can be identified in the considered dataset of malicious
PDFs. The first approach is hash-based and is called Hash Table Clustering, where
for each document of the dataset the hash of the PDF fingerprint is computed, and
two PDF files are considered in the same family if their hashes are in the same
bucket, i.e., each bucket represents a malware family. Since this approach does not
lead to detect malware, the hash-based block in Fig. 3 is not linked to any block of
the Discriminant Function level of the taxonomy. The second approach is distance-
based, the Hierarchical Bottom-up Clustering, where clusters are built iteratively
in a bottom-up fashion, starting from having one cluster for each sample and then
gradually merging clusters having higher similarity. Such similarity is measured
using a distance metric computed on token frequencies.

Karademir et al. [4] also use a distance-based approach and compute a similarity
metric between two samples by using the NiCad clone detection tool [18]. Each
sample is represented by its code syntactic units, and if two samples result less than
30% different from each other then they are considered in the same family. Rather
than using such clustering methodology only for family identification, they take one
step further by realizing a malware detection method based on family membership.
After a training phase where available malicious PDFs are clustered in families,
when a new sample has to be analysed, its similarity is computed with respect to
identified families and, if the most similar family results less than 30% different,
then the new sample is assigned to that family and hence considered as malicious.

3.2.4 Signature Matching

One of the oldest and still employed approaches for malware detection is signature
matching. A knowledge base is maintained where distinguishing signatures of
known malware are stored. When a new sample has to be analysed, it is verified
against these signatures and, if any match is found, the sample is marked as
malicious. We recognize three distinct classes of approaches based on signature
matching: regular expression matching, deterministic automation and threshold-
based.

Regular Expression Matching Rather than relying on a fixed and poorly flexibly
signature, approaches based on regular expression matching result more powerful
and effective in identifying variants of a same malware.
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PDF Scrutinizer [19] matches signatures against patterns specified with regular
expression. In particular, JavaScript code is checked for occurrences of the signa-
tures, represented by vulnerable method calls and including parameters often used
in known exploits. It also employs another kind of regular expression, consisting in
the set of words more commonly used by known malicious JavaScript code, such
as suspicious variable names (e.g., “shellcode”, “heapspray”, “exploit”). Vulnerable
API methods calls are checked against crafted regular expressions. Furthermore,
it executes the code in an emulated environment and uses a basic endless loop
detection mechanism to recognize situations where a malicious PDF realizes it
is being executed in some analysis environment and reacts by not executing its
malicious payload.

PDF Scrutinizer [19], MPScan [9] and MDScan [25] use external tools such as
Nemu [16] and libemu to perform a pattern matching of extracted opcode sequences
against signatures of known shellcodes.

Deterministic Automation When a signature represents specific patterns of
opcodes which denote known malicious activities, it can be useful to model such
patterns by using finite state machines (FSM). MPScan [9] adopts this approach
and relies on a knowledge base of signatures, each of them being an FSM instance
modelling a malicious pattern of opcodes.

To verify whether a specific opcode sequence extracted from a PDF matches a
particular signature, the correspondent FSM instance is used to check the feasibility
to obtain the opcode sequence according to the allowed transitions. If the sequence
can be rebuilt exactly and the FSM instance terminates in a final state, then a
matching is found and the sequence is considered malicious.

Threshold-Based A particular type of signature can consist in a threshold value,
to be used when determining if a document contains malware. Its simplicity of use
usually comes at the cost of limited effectiveness in terms of achievable accuracy.

PDF Scrutinizer [19] puts in place a threshold-based mechanism on string
lengths. If the length of a variable string value exceeds a predefined threshold,
the document is marked as malicious. This is because long strings in a malicious
JavaScript code are usually instantiated for the construction of NOP-sleds, to be
used in heap spray exploitation.

MPScan [9] selects all the strings longer than a certain threshold, under the
assumption that very long strings are likely linked to heap spray activities. The
entropy of these long strings is then computed and, because heap spray mostly
includes repeated characters, the result should be much lower with respect to normal
and harmless strings. Hence, a maximum threshold value (1, in this case) is chosen,
to determine whether the string should be considered suspicious.



186 M. Elingiusti et al.

4 State of the Art Discussion

In the previous sections we described a taxonomy that explores two aspects
separately, namely features and detection approaches. For each aspect we detailed
several building blocks, grouped in conceptually homogeneous families and orga-
nized in a hierarchical structure. This taxonomy helped us in clearly defining how
each specific building block is considered by the works that use it. However,
considering these building blocks separately does not provide the reader with a
global view about how each work in the state of the art analyzes a given set of
features.

Figure 4 provides a cross-reference matrix where the two aspects of this
taxonomy are represented as different axes. At the intersection of features with
detection approaches within this matrix we report references to the systems where
that specific combination is used. This global view allows the reader to appreciate
two details that are evident. Firstly, some works combine the usage of different
detection approaches with several distinct features. This is a common solution to
improve the overall detection accuracy of a system. The second detail that is worth
noticing is that several systems share similar approaches or work on the same feature
sets. This is an important information as it may indicate that these features or
approaches have been found to be particularly effective in detecting malware by
independent researchers.

We want also to point out how Pareek et al. developed two systems, both
introduced in [15], that focus on extracting features from the whole file, with the
difference that one is based on entropy measure while the second is n-gram-based.

Furthermore, the two systems introduced by Vatamanu et al.[26] have not been
included in the matrix as they mainly propose a method for malware family
identification and do not explicitly define a discriminant function to identify
benign/malicious input (they assume that all input samples are malicious).

The matrix shows that most detection systems take advantage of machine
learning techniques for file classification. What is worth mentioning is how all of
them, but [7, 10] and [15], exploit more than just one classification algorithm to
train several models and select the ones providing the best accuracy on the available
training datasets. By a quick visual inspection of the matrix, it seems that no system
has explored, so far, the usage of machine learning classification techniques in
combination with OpCode sequences as possible features. On the other hand, all the
systems that use them employ an instrumented javascript interpreter to keep track
of runtime operations and variable values, together with specific dynamic heuristics
monitoring the control flow for malicious operations (e.g. shellcode detection using
GetPC heuristics). In general, three main clusters of works can be spot in the matrix:
one characterized by using classifiers on metadata, another one adopting classifiers
on the whole file, and a third one applying signature matching on features derived
from JavaScript code. The empty parts of this matrix could possibly provide hints
for future research directions.
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4.1 Related Works

This section briefly reports other solutions that are strictly related to the analysis
performed in this survey, but do not fit adequately the proposed taxonomy. This may
happen because these works focus on specific solutions that per-se do not constitute
a fully fledged malware detection system. In some other cases, it is possible that the
proposed work provides a fundamental building block that can be used to build a
malware detection system. In any case, we think a survey like this one could not be
considered complete without briefly citing these solutions.

NOZZLE Ratanaworabhan et al. [17] presented a runtime heap-spraying detector
which examines individual objects in the heap, by interpreting them as code and
performing a static analysis on that code to detect malicious intent. In particular
the NOZZLE lightweight emulator scans heap objects to identify valid x86 code
sequences, disassembles the code and builds a control flow graph. This analysis
technique is mainly focussed on the detection of NOP sleds. Through the devel-
opment of an attack surface metric, they try to figure out the likelihood that a
random jump on an object allocated in the heap would end up executing a possible
shellcode. As we know, in the heap spray technique, any jump that lands in the NOP
sled will eventually transfer control to the shellcode. Through the development of
a control flow graph made of blocks with disassembled code, NOZZLE calculates
the reachability of the various blocks. If one of them contains the shellcode, most
likely, by jumping randomly on a different block (containing arbitrary instructions
or NOP instructions), it will be eventually reached. The heap spray technique is
widely employed within malicious PDF files to give exploits a higher chance of
success. For this reason, blocking a part of the attack, the heap spray in this case,
would mean stopping the attack itself.

ShellOS Presented by Snow et al. [22], ShellOS is an open source framework that
leverages hardware virtualization to better enable the detection of code injection
attacks with respect to software-based emulation techniques. It is based on code
analysis at runtime. The framework uses hardware virtualization to execute instruc-
tion sequences directly on the CPU, significantly improving the speed of code
analysis and the execution efficiency. ShellOS kernel runs as a guest OS using
Kernel-based Virtual Machine (KVM). It communicates with the host operating
system by mean of shared memory address space regions, through which it receives
the stream of code to analyze and writes back the results

Active Learning Framework Nissim et al. [13] proposed an Active Learning
(AL) based framework, specifically designed to efficiently assist anti-virus vendors
focussing their analytical efforts aimed at acquiring novel malicious content. The
objective is to identify and acquire both new PDF files that are most likely malicious
and informative benign PDF documents. These files are used for retraining and
enhancing the knowledge bases of both the detection model and anti-virus. The
model is built by employing a SVM classifier on the same features used by Srndié
and Laskov [24], namely the structural paths.
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Advanced Parsers Carmony et al. [1] highlight how all existing detection tech-
niques rely on the PDF parser to a certain extent. The problem is mainly due to the
complexity of the PDF format specification. Parser implementations, built ad-hoc
by anti-virus software developers are often limited in functionalities, are less precise
than other full-fledged parsers, and are often vulnerable to possible evasion. In order
to prove that this problem is actually compelling in the field of malware detection,
they implemented a javascript reference extractor which directly taps into Adobe
Reader, and compared it with publicly available parsers, showing their inability at
extracting malicious javascript code from several samples.

5 Conclusions

In this work we presented a comprehensive overview of existing solutions for
PDF malware detection. We conveniently organized reviewed solutions along two
orthogonal axes: one for the considered features, and one for the approaches used
to analyze these features to decide whether a PDF is malicious or benign. By
structuring in this way the surveyed solutions, we provided a general taxonomy
which can be used by practitioners to identify the best solutions for their needs.
Furthermore, the same taxonomy may be of interest for researchers as it hints
at clear gaps in the current state of the art that may pave the way for new
interesting research directions. More in general, PDF malware analysis represents a
fundamental building block for threat intelligence platforms that aim at protecting
systems from diverse attacks.
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for organising illegal activities and data exfiltration. As such there is a case for
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what purposes. However, anonymity in cyberspace has always been a domain of
conflicting interests. While it gives enough power to nefarious actors to masquerade
their illegal activities, it is also the corner stone to facilitate freedom of speech and
privacy. We present a proof of concept for a novel algorithm that could form the
fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The
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In combination with server HTTP response manipulation, the algorithm attempts to
reduce the candidate data set to eliminate client-side traffic that is most unlikely to be
responsible for server-side connections of interest. Our test results show that MITM
manipulated server responses lead to expected changes received by the Tor client.
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1 Introduction

Threats to individuals and organisations from Cyber attackers have been observed
since the early days of computers and the Internet [48]. Threat actors have perpe-
trated various attacks ranging from relatively innocuous hoaxes to more impact-ful
instances of social engineering and reverse engineering to harvest credentials,
hold organisations to ransom for their data, or cause actual physical damage to
systems [30]. In response to this persistent threat from a wide range of actors with
varying motives and methods, a number of ontologies for Cyber Threat Intelligence
(CTI) have appeared over the years such as STIX and TAXII [10], OpenlOC [8],
SCAP [39], VERIS [46], Cybox [9], and RID and IODEF [25]. Given that so
many ontologies exist to address some aspect of exchanging CTI, further work
has attempted to taxonomies these systems to understand their dependencies and
interoperability [6]. Furthermore, it is widely accepted that a critical part of an
organisation’s CTI capability requires the sharing of information with trusted peers
[2]. This varied selection of offerings highlights the importance of standardisation,
as organisations are likely to use a particular solution that may or not be compatible
with that in use by another organisation. A gap in the current offerings appears to be
in satisfactorily addressing Privacy Enhancing Technology (PET) as a medium for
threat actors to perpetrate their nefarious activities undetected.

An example of threat actor behaviour is the use of encrypted channels for data
exfiltration [20], and the challenge for organisations in identifying or blocking
known bad network locations has increased due to the readiness with which PET
is now available. Organisations are then faced with a choice, to allow or disallow
traffic originating from, or destined for, such PET on their networks. This choice is
further complicated by the open debate on privacy and data protection [13].

It is easily observable that long-standing concerns regarding privacy and
anonymity continue to grow among certain groups [17, 35, 47]. This may not
come as a surprise, considering the increasing capabilities of some organisations to
monitor and report on user behaviour in day to day activities [14].

Fuelling this debate, there have been recent legislations such as the Investigatory
Powers Bill in the UK proposed to require Internet Service Providers (ISPs) and
Mobile Operators to preserve meta-data on the activities of each Internet user [56].
This has resulted in greater use over time of PET such as The Onion Router (Tor)
[15, 55], The Invisible Internet Project (i2p) [24], and Freenet [52], for a wide range
of reasons, and no longer limited to cyber-espionage or illegal activities.

Deep Packet Inspection (DPI) is a suitable example of a technique to extend
analysis capabilities towards encrypted traffic [61]. For instance, while DPI cannot
by default access encrypted streams, it could still facilitate censorship by means
of a Denial-of-Service (DoS) attack on PET by analysing IP and TCP headers
[61]. Countermeasures in this case focus on obfuscating PET traffic [60, 63]. For
example, Tor’s obfsproxy [44] is implemented to mock the behaviour of the widely
used Transport Layer Security (TLS) protocol, relying on the essential role that
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TLS plays in other communications, and the fact that it must be permitted as a key
requirement to enable e-commerce in a given region.

There is a known threat to users of PET of powerful adversaries with access to
Autonomous Systems (AS) or Internet Exchanges (IX), who are in strong tactical
position to view or gain access to large portions of Internet traffic, potentially
allowing passive traffic association to take place [51, 57]. While the Tor threat
model states that it does not protect against adversaries that can view both sides
of a circuit, the Tor path selection algorithm does take steps to reduce the chance of
this happening [15, 33] and therefore such an adversary is obviously of concern to
the developers and users of the system.

In this work we present a novel algorithm that could act as a fundamental pillar
of a Threat Intelligence Platform for use by AS and IX operators either alone, or
in collaboration with trusted peers. The algorithm may allow operators to identify
encrypted connections engaging in activity that is against their acceptable use
policies or terms and conditions of use. The algorithm fingerprints TCP connection
meta-data and supplies a fully automated routine to assist with the effective degra-
dation of un-traceability of PET users. The proposed algorithm combines several
previously documented techniques. The algorithm can classify network streams
according to flow metrics, make use of BGP interception if necessary to increase the
attack surface for traffic association, and also manipulate server-side traffic destined
for the client. Our initial test results show that MITM manipulated server responses
lead to expected changes received by the Tor client. Using simulation data generated
by shadow, we show that the detection scheme is effective with false positive rate of
0.001, while sensitivity detecting non-targets was 0.016£0.127. We believe that the
algorithm can be further improved or adapted in order to improve detection rates and
efficiencies in performance. Our algorithm could assist collaborating organisations
willing to share their threat intelligence or cooperate during investigations.

The traffic association methods alone may prove useful to routing providers that
wish to engage in intelligence-sharing, by allowing a risk score to be assigned to
flows that demonstrate particular behaviour. TCP flow metrics could be combined
with other scoring metrics that service providers wish to use, or may highlight
candidates for the traffic manipulation or BGP interception components. Such
collaboration between providers could lead to improved overall risk-reduction or
may prove valuable during forensics investigations.

The remainder of this chapter is structured as follows: Sect.2 contains back-
ground and discussion of existing works describing attack and defence mechanisms
relevant to our work. Then, Sect. 3 introduces an adaptive traffic association and
BGP interception algorithm (ATABI) against Tor. In Sect. 4 we present our initial
experimentation and results and discuss them in Sect.5. Finally, the chapter is
concluded in Sect. 6.
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2 Background

It is important for any organisation to have some handle on the common, generic,
and opportunistic attacks that they may be subject to. For larger or more risk-
averse organisations, there is a case for being aware of more targeted attacks,
and applicable Advanced Persistent Threats (APT) [42]. Threat intelligence can
be generated from a variety of resources that a typical organisation has access to,
such as web server logs, firewall logs, mail logs, antivirus, and host or network
intrusion detection systems [38]. The consumption and interpretation of such data
can become a challenge due to the large volumes often generated, leading to a
case of being unable to see the wood for the trees, or searching for a needles in
a haystacks [45]. Often critical to identifying threats is the challenging task of
defining the baseline and understanding what normal activity actually looks like
[59]. Furthermore, threats are ever evolving, and older threats often tend to become
benign as more effective techniques take over, or when law enforcement take down
command and control infrastructure [41].

The primary goal of CTI, then, is to inform organisations of what the current
threats are so that appropriate actions can be taken, with as much automation as
possible [7]. To this end machine learning, big data analytics, and intelligence
sharing techniques have become more common in modern Security and Information
and Event Management (SIEM) and CTI systems [50]. Primary customers of such
technology are always going to be determined by factors such as their risk profile,
risk appetite, and of course the size of their security budget [7].

2.1 Analysis of Attack Vectors in Tor

Having a variety of threat intelligence sources increases an organisation’s ability
to identify threats early on in a typical series of sequential actions leading to data
breach. Where PET such as Tor is concerned, the ability to inject relays allows
an observer to become a part of the network, and when they are participating as
an entrance or exit node, the source or the destination of traffic could be recorded
by a threat management platform. Indeed, many attacks against Tor users require
visibility of both the entrance and exit traffic [33, 57]. Injection of relays is typically
simple to achieve as PET systems are mostly designed to allow anyone to participate
as a user or a router of traffic [1, 3,5, 12, 31, 32, 53, 54, 64]. As such, adversaries can
easily initiate rogue routers in order to conduct active traffic analysis by injecting
traffic into legitimate communication channels in an attempt to enumerate and
analyse underlying traffic [31, 32].

These common and easy-to-deploy attacks may effectively expose anonymous
communications, and the current authors assert that they may also give service
providers and collaborating organisations the opportunity to record and share
observed behaviour originating from specific locations. The more routers that are
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compromised by the adversary, the greater the probability that circuits will start
being built using those routers as entrance and exit nodes. This comes with a
financial cost increasing over time with the total number of Tor relays in existence. It
is possible with this prerequisite for a Tor exit relay to insert a signal into the traffic
that can be detected by an entry relay [32]. This is accomplished by making changes
to the Tor application code to control at what point write events are made, which
result in output buffers being flushed. By controlling whether either one or three
cells! are sent in an individual Internet Protocol (IP) packet, it is possible to create
a binary signal. If the signal created by the exit relay matches the signal received by
the entry relay, then the user will be discovered along with the visited website. The
obstacle that must be overcome by an adversary to perpetrate this class of attack is
in getting the target to use entry and exit routers belonging to an adversary, or in
gaining control of routers belonging to other operators.

Some of the most powerful attacks against PET are those possible if an adversary
has access to AS or IX routing infrastructure [18, 21, 33, 34, 51, 57, 62], as this
position greatly increases the possibility of observing traffic destined for servers that
are participating as relays. More specifically, it has been reported that the probability
of an adversary with IX-level access serving ASes appearing on both sides of a
circuit is much greater than previously estimated [57]. This is due to traffic between
the user and the entry relay, and also between the exit relay and website, passing
through several routers existing in multiple ASes and IXes.

Another previous study conducted a real-world analysis of distribution of IXes
on Tor entry and exit relay network paths to estimate the probability of the same
IX or AS appearing at both ends of a circuit [33]. This involved running traceroute
analysis from Tor clients to entry nodes, as well as from remote destination websites
back to Tor exit nodes. All router points on the discovered route were then associated
with an AS and an IX using available IP to AS number reference systems and IX
mapping data. It was reported that one specific AS had a 17% chance of routing
traffic for both ends of an established circuit, and a specific IX had a 73% chance
[33]. This would ultimately allow completely passive analysis and correlation of
traffic for large portions of the Tor network, and allow association of website
interaction by a Tor user. This class of attack has a high level of sophistication due
to the level of access required, and also due to the amount of processing power
necessary to analyse the traffic and correlate traffic patterns. Organizations that
do have the required access could make use of this capability to perpetrate such
attacks themselves or share it with other parties. Changes to the Tor node selection
algorithm have been suggested to reduce the feasibility of this attack by taking into
account specific ASes and IXes on the paths between relay nodes [33].

It has been suggested that little attention has been given to application-level
attacks against low-latency anonymous networks such as Tor [58]. A potential
attack was presented in which attackers compromised multiple routers in the Tor
network with only one web request to de-anonymise a client. However, there are

!Individual and equal-sized 512 byte unit of Tor traffic [15].
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several other requirements and caveats. Firstly, the target must construct circuits
using compromised relays. Secondly, separate relay commands must be set up
for each request and it’s not clear whether this would work with simultaneous
requests such as those over HTTP/1.1. The attack is noted as becoming far less
effective if the client is participating in concurrent browsing activity, as this will
dilute or completely hide the signal created. Furthermore, certain active circuits
can be multiplexed over a single TCP stream with variations of the traffic pattern.
Further developments by He et al. [20] identified that HTTP GET requests are
typically encapsulated within a single Tor cell. The authors discussed how previous
work on fingerprinting in single-hop encrypted connections such as SSH tunnels
or openVPN was based on the fact that variations in web asset sizes are useful for
allowing association of encrypted traffic to fingerprinted websites. However, since
the introduction of HTTP/1.1 and the support for persistent connections handling
concurrent requests, such attacks became largely ineffective due to overlapping web
asset requests. As a result, attention quickly turned to packet sizes and timing. An
important assumption in [20] is that HTTP GET requests exist in a single outbound
cell from the client. The proposition is that by delaying these outbound packets by a
small period between the client and the entry guard, overlaps between HTTP GET
requests and server responses can be removed. This creates much cleaner traffic
patterns for analysis and could overcome one of the possible limitations of [58], as
already discussed.

2.2 Hidden Services

The nature of Tor hidden services provides a number of challenges in collecting and
analysing traffic, because by their very design the service host is intended to remain
anonymous [15]. Many hidden services, or “deepnet” sites can be found using
publicly available indexes. Such hidden services can then be fingerprinted for traffic
analysis by a Tor client, but the wider challenge is in identifying and profiling sites
that are not indexed in this way, or accessible by invitation only. There is research
into attacks on hidden services in Tor [18, 28, 64], which, as stated, are as much of
a problem for the provider of that service as the visiting user due to hidden service
operators often wishing to remain anonymous. A brief overview of hidden service
operation is provided in Fig. 1. For Tor networks in particular, running a hidden
service comes with the greatest risk due to the ease with which an adversary can
identify the service host [28]. Three separate attacks namely circuit classification,
circuit fingerprinting, and website fingerprinting against Tor hidden services were
described in [28] based on the assumption that it is possible to fingerprint the
process of connecting to a hidden service. The ability to identify hidden services
is significantly greater than association of normal user behaviour due largely to the
much smaller number of hosts and typically more static content provided by hidden
services compared to the open Internet [28]. Adversarial operators of hidden service
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directories may record the addresses of otherwise unadvertised hidden services to
launch application level attacks [40].

There are many ways of covertly tracking a user’s behaviour on the Internet
such as cookies, server logs, and web beacons. Most PET technology will provide
or support fit-for-purpose precautionary measures [43]. However, some attacks,
especially against hidden services, may simply take advantage of the human factor.
For example, configuration error is a large risk for inexperienced users of the i2p
system [11] as well as Tor hidden service hosts. Hidden services can be erroneously
hosted on a public-facing interface, or on a server that otherwise also hosts public
information and gives away it’s identity through private key fingerprints or other
unique service information [11]. It is therefore recognised that PET systems are
vulnerable to configuration errors.

2.3 Combining Methods

Little research attention has been drawn to the possibility that with sufficient
resources, a powerful adversary could combine several documented attacks to
further augment degradation of anonymity. Such combined methods are likely to
have varying compatibility with each other but the potential end result would be
some combination of an increased success rate, and a reduction in number of
resources required as part of the attack itself. Considering the range of known attack
methods against PET introduced above, we will now present a novel algorithm. Our
algorithm combines a number of these previous attacks with a level of automatic
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adaptation to assist with reduction in un-traceability of Tor users. This can provide
a fundamental pillar of a threat intelligence platform capable of identifying threats
making use of PET.

3 Adaptive Traffic Association and BGP Interception
Algorithm (ATABI)

Normally, the Tor client chooses three relay nodes to route encrypted traffic. Each
node in turn then removes a layer of encryption, before the unencrypted traffic
leaves the network towards its destination. Therefore, and as depicted in Fig. 2 step
1, server responses destined for the client are unencrypted until they re-enter the tor
network, unless the website implements its own TLS encryption. Once the responses
reach the exit relay (OR3) they are encrypted within the Tor network (step 2).
Responses travelling between the entry relay (OR1) and the client are also encrypted
as part of the established Tor circuit (step 3). For simplification, the following
description assumes that an entity is interested in generating threat intelligence
relating to undesirable use of PET on their infrastructure without being concerned
about the potential repercussions of carrying out the methods described. A more
pragmatic approach might be to collaborate with other service providers to perform
wider passive analysis and reconnaissance, and agreeing about circumstances that
collaborating entities are permitted to make BGP announcements for the purposes
of association or investigation. Obviously operators could also share the necessary
information with their collaborators without the need for BGP updates to gain
additional network visibility.

As previously mentioned, the published research does not contain many detailed
examples of combining known attacks against Tor, especially given the highly
advantageous Man in the Middle (MITM) position provided to an AS- or IX-level
entity. For instance, HTTP response traffic can be modified while in-transit with
sophisticated regular expression (regex) search and replace methods [29, 36]. We
propose that these or similar techniques can be used by an AS- or IX-level entity to
manipulate server response traffic sent between websites and Tor exit nodes destined

Q \\ Website
e
/ 15
17

/ >

Unencrypted Responses

Fig. 2 Server responses in Tor
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for the user. This will allow modification of HTTP responses sent back to the
browser in order to directly affect or control client behaviour, while removing some
of the obstacles to previous attacks such as having to compromise the website itself
or for users to have JavaScript enabled in their browser. Obviously this kind of attack
is considerably easier on clear text websites as opposed to HTTPS sites employing
Secure Socket Layer (SSL) or TLS protocols, as in these cases the adversary would
also have to gain visibility of server-side encrypted traffic. There are several known
attacks against HTTPS that adversaries may be able to leverage to facilitate this, or
they may simply have gained access to the private keys of a root or intermediate
certificate authority [16, 37]. The AS or IX operator may instead wish to investigate
watermarking techniques to avoid compromising HTTPS. The scope of this study is
limited to testing HTTP traffic only assuming that HTTPS is either not enforced, or
has been compromised.

Let us assume that an AS or IX operator has identified a website for which they
wish to identify the users. If this entity has the capability of instigating a BGP
interception attack, then they might begin by enumerating the list of all prefixes
hosting Tor relays that they do not already have visibility of, or perhaps for locations
that they believe to be likely sources of the traffic. With this information and
the known prefix of the destination website, a BGP interception attack could be
launched against all of these prefixes, thus getting complete visibility of the entry
and exit traffic of interest. The challenge is then to associate the website traffic with
the encrypted Tor entry traffic.

We present an Algorithm 1 that considers whether or not an adversary already
has visibility of their intended targets and performs BGP interception if necessary.
The algorithm waits for a trigger condition such as a security alert, indicator of
compromise, or manual initiation before saving all required network traffic to disk
for analysis. Our algorithm consists of three components: BGP interception, MITM
server response manipulation (using MITMProxy [36]), and a detection scheme.
The full algorithm can be described as follows (see Fig. 3):

1. The IX-level adversary initiates a BGP interception against the subjects of inter-
est, for instance a destination website. BGP interception can also be performed
to gain increased visibility of client to entry-side traffic.

2. The adversary routes unencrypted web server response traffic through a manipu-
lator in order to change the HTTP responses as required, for instance by inserting
assets.

3. The traffic then enters the Tor network via the exit relay. From this point back to
the client, responses remain encrypted as per the Tor implementation.

4. The adversary performs traffic analysis with the detection scheme on traffic
destined for the client at point 2 (unencrypted) and point 4 (encrypted).

The expected outcome is that as routes start to converge, the adversary gains
visibility of all traffic destined for that website as well as the proportion of Tor
entry node traffic of interest. The MITMproxy configuration forces page responses
to include large assets that increase traffic for users that the adversary desires. As
mentioned, this attack has a high level of sophistication due to the type of access
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required by AS or IX Internet routing systems. However, for entities with that level
of access, updating routing to flow through another system running some form of
manipulation software would be straightforward. We believe that this is entirely
achievable for a service provider or group of collaborating providers.

A number of assumptions based on previous research support the proposed
algorithm. Firstly, we assume it is feasible to associate traffic behaviour to indi-
viduals if both sides of the connection can be observed [22, 23, 32]. Secondly, BGP
routing attacks by an AS or IX operator can allow observation of large or specific
proportions of Internet traffic [S1, 57]. Finally, HTTPS is not always implemented,
or may be vulnerable to a range of attacks, and can be vulnerable to watermarking
techniques [16, 37].

3.1 BGP Interception Component

We consider the recently disclosed attack known as RAPTOR (Routing Attacks on
Privacy in Tor) [51], which is a further development on previous works such as [57].
Such routing attacks are one example that could place a powerful adversary at great
advantage, if they have access to core Internet routing infrastructure. These works
describe three main assumptions that can be approached either individually or in
combination to increase the exploitability of the system.

First, Internet routing is asymmetric in its nature. In other words, the path that
an outgoing packet takes is not necessary the same as that of its reply, and visibility
of only one direction of this traffic flow is required to analyse traffic. Therefore
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the attack surface and likelihood of exposure to an adversary performing a passive
traffic association attack are greatly increased.

Second, BGP “churn” over time due to network changes or transient issues such
as router failures increases the chances that a regular user of Tor will cross paths
with a particular AS or IX, facilitating passive traffic analysis.

Finally, it is possible for an AS operator to make false BGP announcements in
order to have traffic intended for another AS route through their own routers in an
active attack, which positions themselves on a target circuit.

The active attack comes in two versions, hijack and intercept. The drawback
of the hijack is that the traffic never reaches its intended destination and so the
client experience will be interrupted, potentially raising the alarm, or causing a new
circuit to be built. An interception on the other hand allows the traffic to continue
to its destination and the client session remains active. There are three possible
scenarios for the interception attack namely: (1) the adversary already monitors a
website or exit node and targets a set of known Tor entry relays; (2) the adversary
already monitors the client to entry relay side and targets known Tor exit relays (or
a destination website); (3) the adversary targets both entry and exit traffic in order to
perform general monitoring, data gathering and association. It should be noted that
while the impact of a hijack to a user is obvious, there is no mention of the impact
on user experience in terms of latency, or packet loss while the new routes propagate
and converge during an interception attack.

Once this Man in the Middle position is achieved, the previous authors discussed
the strong feasibility of traffic timing attacks, especially given the benefits of
asymmetric routing. We propose that this MITM position can be put to further use
to provide greater advantage by perpetrating further attacks in combination.

3.2 MITM Component

Manipulating traffic is useful for affecting client behaviour. In a large set of similar
candidate connections, the ability to affect those that the entity is interested in
and separate them from the rest is obviously a valuable capability. Below, we
demonstrate in a simple test that manipulation of server responses prior to entering
the Tor network result in the expected client behaviour. We used the MITMProxy
application to act as a reverse proxy for Apache HTTPd in order to replace:
</body>

With:

<img src="link_to_large_file" width="1px" /></body>

We suggest that an example of a real use case may instead need to simply
forward traffic for all non-target destinations as required while pattern matching
to manipulate only responses from the target website, and this is possible with
MITMProxy filter options. We tested the “--anticache” option and found this to
be effective against a caching server (varnish) in front of our test web server.
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The output as observed in TORBrowser without MITMProxy was as follows:

curl —socks4a 127.0.0.1:9050 http://52.48.17.126/
<html>

<head>

</head>

<body>

<div align="center">

<p>Welcome home!!!</p>

</div>

</body>

</html>

And with MITMProxy running with search and replace on the body tag
resulted to:

curl —socks4a 127.0.0.1:9050 http://52.48.17.126/
<html>
<head>
</head>
<body>
<div align="center">
<p>Welcome home!!! </p>
</div>
<img src="/dsc_0575.jpg" width="1px"/></body>
</html >
Note the additional image being included prior to the closing body tag, which is
a 3.5 MB JPEG but resized to one by one pixel so as not to be obvious. The image in
this test also resided on the web server, but could just as easily be hosted elsewhere.
However, hosting assets with another site may require alterations to the detection

scheme.

3.3 Detection Scheme

Algorithm 1 includes the detection scheme, which is useful for fingerprinting
connections and consists of a reduction function based on a set of filters applied
in sequence. The goal is to eliminate client connection streams that are unlikely
to be responsible for the observed server-side traffic, based on their meta-data. We
propose that this may be useful in assigning a risk score to any client connections
that remain after applying the detection scheme. Such scoring may be useful for
later interpretation or alerting by Bayesian analysis or machine learning systems.
Specifically, server-side sessions are fingerprinted by recording specific metrics
including the start and end time of the connection (SCt in Algorithm 1), total
number of packets sent to the client (¢p), average time distance between successive
packets (at), total data sent (¢d), and total transmission time (7). Similar metrics
have been used in previous studies [22, 23, 32], however we believe our specific
generation and treatment of these metrics is novel in its approach.

The same metrics are generated for all other observed connections. Once this
fingerprinting is complete, reduction begins by first filtering for only connections
that fit within the same time period as the server-side connection (C Ct). Thereafter,
remaining connections are filtered for similarity using the same metrics already
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Algorithm 1 Traffic association

function BGPINTERCEPT(target)
Initiate BGP Interception against target

1:
2
3:
4: function COMPUTESTATS(connection)

5: tp = Total number of packets in connection

6: at = Average time between packets in connection

7 td = Total data sent in connection

8: tt = Total duration of connection

9: return tp, at, td, tt
10:
11: if Target website traffic not visible then BGPIntercept website
12:
13: if Suspect clients traffic not visible then BGPIntercept clients
14:
15: while trigger # 1 do
16: Check for trigger condition

17:

18: while ServerConnection = active do

19: Initiate MITM manipulation of server responses
20: Save all network traffic to disk

21:

22: for all ServerConnections do

23: SCt = Timeframe of ServerConnection
24: SC = ComputeStats serverconnection
25: return SC

26:

27: for all ClientConnections do

28: CC = ComputeStats clientconnection

29: return CC
30: for all SC do

31: Set initial tolerances
32: CCt = list of CC where CC packets are in the same time frame as SCt
33:

34: CCtp = CCt where CCt has similar total number of packets as SC

35: if CCtp = 0 then Increase tolerance by +1% and repeat

36: if tolerance > max tolerance then Stop

37:

38: CCat = CCtp where CCtp has similar average time between packets as SC
39: if CCat = 0 then Increase tolerance by +1% and repeat

40: if tolerance > max tolerance then Stop

41:

42: CCtd = CCat where CCat has similar total data sent as SC

43: if CCtd = 0 then Increase tolerance by 1% and repeat

44: if tolerance > max tolerance then Stop

45:

46: CCtt = CCtd where CCtd has similar total transmission time as SC
47: if CCtt = 0 then Increase tolerance by 1% and repeat

48: if tolerance > max tolerance then Stop

49:

50: return SC, CCtt
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discussed in turn, starting by leaving only those with similar total number of
packets (CCtp), then similar average time between packets (CCat), similar total
data received (CCtd), and finally, similar total transmission time (CCtt). Any
remaining client connections are returned as possible candidates for the observed
server-side connection in question. Moreover, our proposal is that average time
distance between individual packets can act as the filter, followed by similar total
amount of data sent, and then finally similar total transmission time.

The detection scheme is adaptive in the sense that an initial tolerance is set
and if no candidates are found, the filter is performed again after automatically
increasing the tolerance. In our initial tests, we selected a base interval of +1%
for increasing tolerances. This proved effective in our tests, but is adaptable and
may improved in further work. This occurs for each of the discussed metrics in turn.
For example, the check for total packets sent will increase from £5% by £1% until
at least one candidate is returned, up until a maximum tolerance level. Maximum
tolerances were chosen simply to avoid the algorithm continuing indefinitely until
candidates are returned that are highly unlikely to be those responsible for the
server-side connection of interest. Any candidates found are passed to the next step
in the detection scheme. The starting tolerance, incremental amount, and maximum
tolerance are all configurable and were chosen by the present authors during testing
as they proved to be effective with our data. We anticipate that future research will
allow tolerance values to be set automatically by machine learning systems based on
measurable factors including network conditions such as latency, packet loss, and
jitter.

We will discuss experimental results following initial testing of the detection
component of the algorithm, and offer a discussion of current design and perfor-
mance. We use several key performance indicators (KPI’s) used in typical binary
classification systems to evaluate the effectiveness of the detection scheme. Our
rationale for choosing these KPI's was due to the similarity to clinical studies
in which a test is evaluated based on its ability to correctly diagnose members
of a population with a condition, while keeping false positives to a minimum.
KPI’s include sensitivity (se, percentage of target clients correctly identified as
candidates for a server-side connection), specificity (sp, percentage of non-target
clients who are correctly excluded from the list of candidates), false positive
rate ( fpr, percentage of non-target clients who are incorrectly included in list of
candidates), and false negative rate (fnr, percentage of victim clients who are
incorrectly excluded from the list of candidates). For completeness, we also report
the positive predictive value (ppv, percentage of included candidates who were truly
responsible), and negative predictive value (npv, percentage of excluded clients who
were truly not responsible).
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4 Experimentation and Results

4.1 Experiment Setup

We used shadow [27] to create simulated networks and generate PCAP data for
analysis. Shadow was used due to being readily available, easily accessible, multi-
threading capability, simulation of transient network issues, its use of real Tor code,
and the fact that it is still actively maintained [49]. Shadow and shadow-plugin-tor
were built from the project source code available on github. The tgen plugin was
used for the purposes of generating traffic on the network. This plugin makes use of
graphml XML files that control the behaviour of a particular client such as which
servers to download from, how large a download should be, how many downloads to
complete, and how long to pause between each download. The latest stable release
of Tor code (0.2.7.6—2015-12-10, at the time of experimentation) was used with
shadow-plugin-tor.

In sizing our simulation network, we referred to [19] in which two separate
experiments were conducted as follows; First, to test the feasibility of an attack,
the authors implemented a small scale experiment consisting of 20 relays, 190
web clients and 10 bulk clients. Secondly, A larger network was also constructed
by the authors based on the work of [26] consisting of 400 relays, 3000 clients,
and 400 servers. Our approach was similar, implementing small networks for
speed of simulations in order to debug any problems, and to develop and test
the detection scheme. We then created a larger network resulting in more time-
consuming simulation and greater data generation for our testing.

AWS EC?2 instances were used for running our simulations. With our time and
budgetary constraints in mind, an m4.2xlarge AWS EC2 instance of 8 cores and
32 GB memory was used to run simulations on a network containing 4 authority
servers, 400 relays, 1000 clients, and 400 web servers. Generation of the network
topology was based on tor metrics and server descriptors for the month of April
2016 (2016-04-30).

The 1000 clients included 989 similar web clients all set to download a 350 KiB
file every 60s, and 10 bulk clients set to download a 5 MiB file repeatedly without
pausing. There were also two 50KiB, 1 MiB, and 5 MiB clients downloading every
60s. The actual downloaded data is arbitrary and randomly generated by shadow
in order to provide simulation data. To simulate increased traffic for a victim (e.g.
following a MITM attack) a single default web client as provided by shadow was
set to download a 2 MiB file.

Due to the fact that shadow records session information for all clients, servers,
and relays, it is straightforward to confirm from simulation output which client was
actually responsible for a particular server connection. The process for running a
particular test of the detection scheme was automated and involved the following
steps:
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* Inspect the web client log file for a successful download and take note of the time
of the download and name of the destination web server.

* Inspect the web server log file for the correct download (which shadow helpfully
confirms in the logs) and take note of the connecting exit relay session tuple (IP
and port number).

* Run the algorithm against the given web server PCAP file and record connection
tuple information of all clients’ PCAP data in order to detect candidates for
responsible clients.

The detection scheme is not currently multi-threaded but result generation for
detection performance was scripted and split between 16 cores on a c¢3.4xlarge EC2
instance with 30 GB memory, and with 9000 Input Output Operations Per Second
(I0PS).

4.2 Evaluation Criteria

Figure 4 illustrates a linear increase in average runtime of the detection scheme
against a single session to identify a specific client amongst a group of 50, 100, 200,
500, and 1000 clients. This is indicative of the one to many relationship between a
target connection on a server, and the variable number of potential candidates.

The detection scheme was tested by implementing in python against every client
in turn within a particular set of simulation data and the detection performance KPI’s
were calculated. For a given detection attempt in a network of n clients, the total
number of targets ¢ will only ever be 1, with all other clients being non-targets
(nt = n —1t). This is because there is only ever one client that was truly responsible
for a specific server-side connection. Using a diagnostic classification matrix, the
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Table 1 Single detection
result matrix

Test result

Client Target Non target
Target tp=1) | (fn=0) t=1
Non target | (fp=2) |(tn =197) | (nt =199)
Total 3 197 (n = 200)
Table 2 Detection performance comparison
Test
A B C D E Test A victim
se 0.0160.127 | 0.558+0.497 | 0.485%0.500 | 0.279+0.449 | 0.008+0.090 | 1.000
sp 1.000+0.001 | 0.981+0.014 | 0.98610.010| 0.993+0.006 | 1.000£0.000 | 0.999

fpr 0.000+£0.001 | 0.019+0.014 | 0.014+£0.010 | 0.007+£0.006 | 0.000£0.000 | 0.001
fnr 0.984+0.127 | 0.442+0.497 | 0.515+0.500 | 0.721+£0.449 | 0.992+0.090 | 0.000
ppv 0.012+0.100| 0.073+0.186 | 0.0754+0.192| 0.065+0.181 | 0.0084-0.090  0.500
npv 0.9992£0.000 | 1.000£0.001 | 0.99940.001 | 0.999+£0.000 | 0.9994-0.000  1.000

Victim | True True False False False True
detected

outcome for a detection attempt contains values for true positives #p, being either 1
or 0; false negatives fn, (being the inverse of 7p given that there is only ever one
true target); false positives where 0 < fp < (nt — 1); and true negatives tn where
0<tn <(m—1)andtn = nt — fp. A typical output from our testing is reflected
in Table 1.

Performance KPI’s are all percentages in the range 0 < K PI < 1. Sensitivity se
is calculated as se = sz and will always be either 1 or 0 as there is only one target.
Specificity sp is calculated as sp = ;—’; False positive rate fpr is calculated as

frr= % or 1 — sp. False negative rate fnr will always be 0 or 1 and is calculated

_ fn

as fnr = 4= or 1 — se. Positive predictive value is ppv = and Negative

tp
tp+fp
tn
fn+tn-

predictive value is npv =

4.3 Results

We ran the detection scheme against all clients five times for the largest simulation
data, varying the percentages of tolerance in order to identify whether there was
an optimised tolerance for the different metrics. Tolerances for each metric began
at £5% in every test and as per the algorithm, increased by 1% until candidates
are returned or until the maximum tolerance is reached. These results are presented
in Table 2. The tolerance values tested were (number of packets, average packet
time, total data, total time): 52,32,2,1 (A); 100, 50,25,5 (B); 50,50,25,5 (C);
50,50, 10,5 (D); 25,25,5,1 (E).
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The results table also includes a column showing detection performance KPI's
for the MITM victim during Test (A). The first test (A) used tolerance values
tailored to achieve the best detection of the correct MITM victim target. Subsequent
tests were performed to quantify detection KPI performance in general, and also
tested against the MITM victim. Test (B) allowed a maximum tolerance of +100%
for similar number of packets and resulted in larger numbers of candidates to be
included for classification according to the other metrics. Test results show how the
performance KPI’s are affected by changing the maximum tolerance values of the
algorithm. Test (A) clearly performs poorly overall, however is highly successful in
terms of true positive and false positive rates. This might be expected as test (A) was
designed for detection of the MITM victim.

With these maximum tolerance values set, the correct target was identified only
16 times out of 984 total attempts, while detection performance of the MITM victim
client with these tolerance values was very high. Detection of the MITM victim was
achieved with a sensitivity of 1 (average for all other detections against non-victims
= 0.016£0.127), specificity of 0.999 (average = 1£0.001) and a false positive rate
of 0.001 (average = 0£0.001).

Test (B) correctly identified the MITM victim, and also correctly identified other
targets with a sensitivity of 0.55840.497 and false positive rate of 0.019+0.014.
Detection performance whilst searching for the victim with these tolerances had a
sensitivity of 1 and fpr of 0.003, which indicates an improvement over detection
of non-victims.

Tests (C,D, E) all failed to identify the MITM victim and achieved decreasing
detection performance KPI’s as per Table 2.

5 Discussion

Our tests indicate a poor detection performance for any client while using maximum
tolerances for total number of packets, average inter-packet time, and total data
sent, and lower maximum tolerance for total connection time (Test (B). While the
MITM victim was detected with these tolerances, three false positives were also
identified as candidates. With fine tuned tolerances for the MITM victim in Test
(A), detection performance for other targets is poor, while the victim detection was
successful with just 1 false positive. This suggests that getting the tolerances right
is critical to success. Furthermore, with further development and testing, tolerances
could be automatically defined based on external factors such as network conditions
or factors that the adversary can control, such as the size or number of inserted
assets. It may also be worth investigating the splitting of individual connections
into sections that can be individually fingerprinted with the same metrics. The
relationship between sections when comparing client to server-side traffic may yield
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improved detection rates thanks to temporal variations in network conditions. We
note that the runtime performance of the detection scheme is not currently scalable,
and that there are opportunities for further efficiencies to be added. Machine learning
in particular is of interest as a solution for eliminating candidates when performing
the traffic association element.

A general strength of this algorithm is that it does not require Tor nodes to be
injected or compromised. The algorithm is simplified and only requires average and
total statistics to be calculated for some individual flow meta data for comparison.
By using average data for connections rather than considering all inter-packet timing
data for comparison, minor transient network issues such as short-term jitter and
packet loss are expected to have a reduced impact on detection, however false
positives may be more of a problem when larger data sets are available. Shadow
allows for random and transient variables such as bandwidth, computing power,
packet loss, and jitter to be simulated in order to mimic real network connections
and with these default measures in place, our initial results are positive.

The application layer component of this algorithm relies on visibility of unen-
crypted traffic between the exit node and the destination, in contrast to watermarking
techniques, which operate purely by embedding a signal into the packet timing.
Previous attacks such as SWIRL are also blind, meaning that as long as the
watermarker and detector both know the watermarking secret, no other data needs to
be synchronised between them. Our attack requires that the metadata descriptors of
the entry- and exit-side connection be shared with whichever system is performing
the algorithm, at less than 150 bytes per connection.

The attack also assumes that the client is only participating in activity on one
destination website. Because the onion proxy multiplexes all outgoing connections
through a single connection to an entry guard, if several client activities are
concurrent then the algorithm will not currently deal with this. However, if we
assume that in most cases users of Tor will be browsing one page at any one time,
the time slicing of the client side multiplexed connection would in that case only
include the relevant data pertaining to the observed exit-side traffic.

We currently make no attempt to remove Tor control cells from the client side
connection data. The tolerance level in the algorithm helps to account for this,
but a future improvement to the algorithm might wish to take this into account
as discussed in [20]. Total data received by the client in a particular window
could simply be indicative of client bandwidth limitations. Therefore, for a given
time window of the exit-side traffic, there is a risk that other Tor users with
similar bandwidth restrictions could appear in the set of candidates, even if they
are accessing completely different sites. However this still allows for correlation
with the exit-side traffic thanks to the inter-packet timing and total data sent for
individual connections. We also note that compared to watermarking techniques, the
performance impact of embedding large assets would perhaps be more noticeable in
text only applications, image-sparse forums, or bulletin board systems.
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5.1 Use Cases

It has previously been presented that a small number of very large ASes are naturally
in a position to see at least one end of a circuit due purely to their size [51]. Ten
ASes were shown to have visibility of at least 50% of all Tor circuits, with some
providers seeing over 90%. This would place these providers in a prime position
to generate threat intelligence data points based on traffic analysis, or to initiate
BGP updates to hijack or intercept traffic during investigations. The initial threat
intelligence gathering could lead to triggering a BGP routing update under certain
conditions, such as a security alert. It is worth noting that there are numerous entities
and organisations that monitor BGP activity on the internet and report suspected
interception incidents [4]. As such, anomalies are generally reported in forums and
news sites fairly quickly when they do occur. However, this does not imply that
organisations will not carry out such methods anyway, only that they are more likely
to be detected, reported and discussed.

We imagine two preliminary use cases for our algorithm during investigations.
Firstly, an adversary may have little or no idea of the location of the sources
of traffic destined for a particular website. The objective here would be a wide
BGP interception attack against all traffic that the adversary does not already have
visibility of. This would be a large-scale attack and require significant resource for
injecting the HTML into responses and processing the traffic to identify the sources
responsible. An alternative to reduce the overhead would be to engage in a number
of smaller attacks iterating through multiple source locations. In this case the BGP
interception attacks would be targeted at the smaller IP ranges in sequence together
with the destination if required. As discussed, another alternative would be if AS or
IX operators participate in threat information exchange, or agree terms under which
such BGP routing updates are acceptable.

Secondly, the adversary may have a good idea of where the source of traffic is
coming from, for instance in a criminal investigation where a suspect is believed to
reside in a particular area. In this case, the adversary may be fortunate enough to
already have visibility of the required IP ranges thanks to asymmetric routing but
if not, then would only have to perpetrate a much smaller BGP interception attack
based on the suspect’s location.

While our presented algorithm applies to Tor clients accessing public Internet
sites, similar techniques could be applied to Tor hidden services. For instance, if
an operator was to first identify a remote hidden service, then they could repeatedly
make custom requests to it during a widespread BGP interception attack (or working
with collaborators) while running the detection scheme. If detection of the hidden
service were to prove successful, then BGP interception and detection could be used
to identify clients of the hidden service, or the adversary could target the hosting
system directly in other ways, leading to further attacks.
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5.2 Proposed Defences

To mitigate against the HTML injection component, Tor nodes could consider
disallowing port 80/HTTP in their exit policy. This may be strongly advised in any
case considering the typical Tor user’s privacy concerns as well as the wider industry
moving towards HTTPS everywhere, and HTTP Strict Transport Security (HSTS).
If blocking port 80 is too problematic for user experience or website functionality,
then the only other option is for website operators to correctly implement HTTPS
and make use of HSTS. Users that care deeply about their privacy should insist on
using HTTPS websites and avoid the use of HTTP sites for accessing or sharing
sensitive information. This will still not help if the adversary has the ability to
compromise HTTPS, but would make success for the adversary significantly more
difficult, or force the use of other methods such as watermarking.

The countermeasures suggested by the authors of RAPTOR [51] would all still
apply to the routing component of the current algorithm and therefore deserve a
mention. Monitoring was proposed to raise awareness of the possibility of increased
traffic visibility due to asymmetric routing, BGP churn, or routing attacks, and
to notify clients when a potential degradation of anonymity is identified. BGP
and traceroute monitoring were both suggested and tested with successful results
reported.

It was also noted that traditional countermeasures that manipulate packet sizes or
timing come with a significant latency impact and so would remove one of the main
benefits of Tor. A number of alternative countermeasures were proposed, including
incorporating traceroute and AS lookups as part of intelligent selection of relays to
build circuits that avoid routes crossing the same AS multiple times. However, this
may result in lower overall entropy in Tor circuit selection and greater probability
of adversaries with large numbers of injected or compromised relays appearing on
both ends of a circuit.

Another suggested mitigation was that Tor relays should advertise prefixes of
/24 to reduce the capability of BGP hijack or interception attacks. Adversaries
could still launch attacks by advertising the same prefix, however the impact of the
attack would be more localized to the adversary and more widespread redirection
of Internet traffic would not take place. To further mitigate this reduced capability,
it was suggested that clients could favour guard relays that are closer in terms of
number of AS hops, but that this could reveal probabilistic information about clients,
and requires further investigation. The final suggested mitigation requires that the
wider Internet moves towards secure inter-domain routing, however this has been
slow to get off the ground.
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6 Conclusion and Future Work

This work has presented a novel algorithm (ATABI) against the Tor network
based on the combination of previously reported HTML injection techniques
with BGP routing attacks and a detection scheme. This algorithm could form
a fundamental pillar of a PET-capable Cyber Threat Intelligence Management
platform. A simplified version of the MITM component was perpetrated against
a basic web page to insert a large hidden asset at the bottom of the HTML. This
change in the returned HTML was observed in the response received by the Tor
client. The suggested detection algorithm yielded positive results in initial tests
on data generated by the shadow simulator for Tor. Detection performance of an
MITM victim with large tolerances was good with a fpr of 0.003, while average
general detection performance of all clients without MITM traffic manipulation was
poor with sensitivity of 0.558+0.497 and fpr of 0.0194£0.014. By tailoring the
tolerances for the MITM victim and running against all clients, general performance
was greatly reduced with average sensitivity of 0.01640.127 and average fnr of
0.984=+0.127, while sensitivity when searching for the victim was 1 with a fpr of
0.001.

In future research we intend to evaluate whether temporal patterns manifested
throughout the duration of a session can assist detection by splitting sessions
and fingerprinting each section. We hope to provide more practical examples of
routing attacks facilitating a MITM position and consider other MITM technologies
or development of a dedicated lightweight application. With further efficiencies
such as multi-threading for an individual attack, performance could be increased
to operate with larger data sets. Increased performance may also be achieved
by using GPU, or distributed computing. Combining the IX-level advantage with
other previous concepts such as watermarking schemes, sending custom requests
to hidden services, or delaying GET requests but at the exit side rather than the
client side are also of interest. We also plan on performing further simulations
and experiments to produce more data in order to further optimise the tolerance
levels for each connection metric, and provide more data for potential testing and
implementation of machine learning. Given the large number of CTI ontologies
available, we would see benefit in developing our algorithm to be platform agnostic.
A worthwhile project would be the creation of a PET-capable Cyber Threat
Intelligence Management Platform that can interoperate with a wide range of CTI
ontologies, with a view to driving standardisation, and with our algorithm as a
fundamental pillar.

We believe that this variety of opportunities to perpetrate previously known
attacks against PET more effectively in combination with AS- or IX-level access
is likely to gain more research attention in the future. This likelihood is augmented
especially considering the challenge of attribution in CTI for darknet-based threat
activity.
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A Model for Android and iOS )
Applications Risk Calculation: CVSS Gy
Analysis and Enhancement Using

Case-Control Studies

Milda Petraityte, Ali Dehghantanha, and Gregory Epiphaniou

Abstract Various researchers have shown that the Common Vulnerability Scoring
System (CVSS) has many drawbacks and may not provide a precise view of the risks
related to software vulnerabilities. However, many threat intelligence platforms
and industry-wide standards are relying on CVSS score to evaluate cyber security
compliance. This paper suggests several improvements to the calculation of Impact
and Exploitability sub-scores within the CVSS, improve its accuracy and help threat
intelligence analysts to focus on the key risks associated with their assets. We will
apply our suggested improvements against risks associated with several Android
and iOS applications and discuss achieved improvements and advantages of our
modelling, such as the importance and the impact of time on the overall CVSS
score calculation.

Keywords CVSS - Risk management - Risk calculation - Vulnerability -
Exploitability

1 Introduction

The problematics of IT risk management often circle vulnerabilities within IT
systems and behaviour of people who use those systems [1]. It is, therefore, hard
to disagree that “there is no 100% security, there is only risk management” [2].
However, one can only make informed decisions about risks as effectively as
informative and accurate are the metrics used for risk evaluation.
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Common Vulnerability Scoring System (CVSS) is used to calculate the severity
of vulnerabilities [3] and risks related to IT assets [4]. Industries rely on CVSS
as a standard way to capture the principal characteristics of vulnerabilities and
produce a numerical score reflecting their severity. CVSS score is currently used to
help the organisations to prioritise their vulnerability management process, yet the
primary purpose of the CVSS is to detail the technical aspects of the vulnerability
[4]. Furthermore, there is an expectation from organisations to use the CVSS
calculation if they want to meet the requirements of certifications. For example,
Payment Card Industry Data Security Standard (PCI DSS) requires to ‘perform
quarterly external vulnerability scans using an Approved Scanning Vendor (ASV)
approved by the Payment Card Industry Security Standards Council (PCI SSC)’
[5]. The ASV requirements clearly state that ‘wherever possible, the ASV must
use the CVSS base score for the severity level’ [6]. The ASV reports need to
be configured in such a way that a card vendor could immediately notice non-
compliance and fix any issues ‘to be considered compliant, a component must
not contain any vulnerability that has been assigned a CVSS base score equal to
or higher than 4.0." [6]. The Telecommunication Standardization Sector (ITU-T)
base their Recommendations to technical, operating and tariff questions on CVSS
too [7, 8]. Previous recommendations have focused solely on CVSS [7], yet the
latest report has been dedicated a Common Weakness Scoring System [8], which
is largely focused on the methodology of CVSS and adopts a similar calculation
[8]. CVSS score is used alongside Common Vulnerabilities and Exposures (CVE)
numbers. MITRE considers CVE as the industry standard to systematically register
all discovered software vulnerabilities [9]. Before vulnerabilities are registered in
a database they are assigned a CVE number and a CVSS score which can be used
for software product compatibility testing, within threat intelligence community to
build security alerts and within public watch lists such as Open Web Application
Security Project (OWASP) to rank and manage risks [9].

However, since the introduction of CVSS there have been numerous complaints
and suggestions for improvement of its calculation [3, 4, 10-13]. The CVSS v.2 was
recently updated, and several changes were introduced, however, several researchers
have shown that this scoring system does not represent the real level of associated
risks as well. CVSS exploitability metrics were shown to not correlate strongly with
the existence of exploits and have a high false positive rate [4, 11]. Also, grouping
vulnerabilities into High, Medium and Low does not represent the distribution
of the scores well [14]. Finally, the guidelines of CVSS scoring are not being
followed [15]. As a result, the data in National Vulnerability Database (NVD)
which contains the latest vulnerabilities with their CVSS scores have poor prediction
capability [16].

In addition to the listed issues, neither the documentation of CVSS v2 nor
CVSS v3 contains a justification of constant values that have been assigned
to the components within the CVSS formula [17, 18]. The changes within the
vulnerability ecosystem, such as availability of exploits, patches and updates suggest
that vulnerabilities do not retain the same risk score over time. While servility
of vulnerabilities is changing over time, CVSS sub-scores are not sensitive to the
variation of risk over time. The rapid changes in the Information Security (IS)
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environment require a significant improvement in CVSS score calculation. As stated
in ISO27001 standard any method that is used for risk assessment should ensure that
its results are consistent, valid and comparable [19]. Finally, CVSS v2 is not tailored
to risks imposed to mobile applications [20].

Mobile devices and their security are quickly becoming a widely recognised issue
due to various ways that they can be exploited [21-23]. A wide range of mobile
malware forensics and threat hunting models have been developed to fight against
growing security issues in mobile devices [22, 24, 25]. For example, investigation
of attackers remnants on mobile social networking applications [26, 27], Voice over
IP (VoIP) apps [28], mobile cloud storage apps [29], and techniques for mobile
malware detection [30],

Mobile device-related vulnerabilities are also different from those of traditional
personal computers and laptops [30]. A particular mobile device comes with a pre-
installed operating system (OS) which cannot be changed or replaced. Besides,
all applications are available via a dedicated application store i.e. Google or
Apple app stores. These applications undergo provenance—a process of application
implementation scrutiny for security [31, 32] before they become available for
download. However, it was shown that manufacturers do not always provide patches
promptly or sometimes do not provide them at all [20, 33].

In this paper, we explain how the formula of CVSS should be adjusted to more
precisely reflect risks associated with applications vulnerabilities and we explore our
model applicability by practicing it on different mobile device vulnerabilities. We
discuss the improvements both on impact and exploitability sub-scores, but most
importantly we introduce the concept of time which reflects how the risk score
changes over time and when there is an environmental change, i.e. when a proof
of concept exploit becomes available or when a patch is released.

The structure of this paper is as follow. The first part focuses on the analysis
of CVSS score where it is broken down into its components, the Impact and
Exploitability sub-scores. This part, also explains the data sets of this research as
well as its collection and analysis. In the second part, we discuss the proposed
improvements and introduce the new suggested formula and discuss implementation
results. The third part covers the conclusions with suggestions for future work and
identified limitations of this study.

1.1 Background

Both CVSS v2 and v3 consist of three parts: base score, temporal score and
environmental score. The base score is the CVSS score assigned once a vulnerability
is evaluated. Both CVSS v2 and v3 consider temporal and environmental metrics
as optional, and they are not incorporated into the final CVSS score [17, 34].
Furthermore, temporal score still consists of constant values, yet does not have an
explanation of the reasoning behind such values [18].
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Table 1 Values of Impact and Exploitability sub-scores of CVSS v2 [17]

Impact Exploitability
Confidentiality (C) | Complete (C) Access Vector (AV) Network (N),
Partial (P) Adjacent Network (A),
None (N) Local (L)
Integrity (I) Access Complexity (AC) | High (H),
Medium (M),
Low (L)
Availability (A) Authentication (Au) None (N),

Single (M), Multiple (M)

CVSS calculation is modelled according to the risk formula, where the impact
is multiplied by likelihood, whereas CVSS calls it the sub-metrics of impact and
exploitability [17]:

CVSS = Impact x Exploitability QY

In formula (1), the impact measures how an exploited vulnerability could affect
an asset and exploitability measures the current state of exploit techniques or code
availability, moreover, the vulnerability score becomes higher if it is easy to exploit
it. Both impact and exploitability scores can be assigned as pre-defined values
shown in Table 1.

1.2 Impact Sub-Score

The impact sub-score is evaluated based on the vulnerability effects on the CIA
(Confidentiality, Integrity and Availability) triad [17]. For impact sub-score, CVSS
v2 used values of Complete (C), Partial (P) or None (N) [17], but CVSS v3 has
adopted the values of High (H), Low (L) and None (N) [18]. The impact sub-score
of CVSS v2 was obtained using the following formula:

Impact = 10.41 x (1 — (1 — Conflmpact) x (1 — Integlmpact)
x (1 — Availlmpact)) 2

Even though the naming of these values in CVSS v3 have been changed and
some clarification was introduced into the new definitions, it has not uprooted the
key issue of the evaluation itself.

The evaluation of ‘None’ means no impact to any of the CIA components, while
‘Complete’ shows a total compromise of all CIA triad. The definition of ‘None’ and
‘Complete’ suggests that the definition of ‘Partial’ is very broad. It could be that if
there is a compromise of a component, but it is not complete, then it automatically
falls into the category of ‘Partial’.
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Table 2 Incidence of impact for Android (left) and iOS (right) NVD datasets, where impact sub-
score values demonstrate the combination of possible CIA combinations and their distribution across
the data sets. Greyed out areas in the combinations never occurred within the datasets

C |1 A | Absolute # |Incidence% C |1 A | Absolute # |Incidence%
Cc |C C 442 54 CcC |C C 187 | 22.130
CcC |C P 0 0 CcC |C P 0 0.000
CcC |C N 1 0.121 C |C N 0 0.000
CcC |P C 0 0 CcC |P C 0 0.000
CcC |P P 0 0 CcC |P P 0 0.000
C |P N 0 0 C |P N 0 0.000
C |N C 3 0.363 C |N C 0 0.000
C |N P 0 0 C |N P 0 0.000
C |N N 9 1.09 C |N N 3 0.355
P C C 0 0 P C C 0 0.000
P C P 0 0 P C P 0 0.000
P C N 0 0 P C N 0 0.000
P P C 0 0 P P C 0 0.000
P P P 62 8 P P P 293 | 34.675
P P N 58 7 P P N 33 3.905
P N C 4 0.484 P N C 1 0.118
P N P 1 0.121 P N P 1 0.118
P N N 134 16 P N N 173 | 20473
N |C C 6 0.726 N |C C 3 0.355
N |[C P 0 0 N |C P 0 0.000
N |C N 0 0 N |C N 2 0.237
N |P C 0 0 N |P C 0 0.000
N P P 17 2 N P P 4 0.473
N P N 54 7 N P N 102 12.071
N |N C 7 0.847 N [N C 18 2.130
N |N P 28 3 N [N P 25 2.959
N |N N 0 0 N [N N 0 0.000

Such evaluation introduces a high possibility that the majority of vulnerabilities
will contain an assessment of ‘Partial’ for all or more than one of the components of
their impact sub-score. This definition cannot adequately estimate what is the real
impact of a vulnerability as the scale of ‘Partial’ becomes very broad, namely from
minimum to near high. The new definition of ‘High’ in CVSS v3 includes not only
the total compromise of a component but also a significant impact to either of them.
However it is still difficult to draw the line and to identify what kind of compromise
is a significant one and what could be the one of a lower impact.

The division into the CIA values should make it easier to calculate the Impact
score and to introduce more variety, however, this does not seem to work as Table 2
shows a significant amount of greyed-out combinations which are not used within
the data set. Tables 3 and 4 shows a condensed version of Table 2 that omits the
Auvailability score for a better display of the statistical score and demonstrates the
percentage of frequency in which these combinations are currently being used.
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Table 3 Combinations of

o . C |T |NVD (%) |EDB (%)
Confidentiality and Integrity
per dataset: Android, obtained C € |53.00 45.45
from NVD and EDB dataset C |[P | 0.00 0.00
C [N | 1.08 9.09
P |C | 0.00 0.00
P |P |17.00 22.73
P |N |15.70 13.64
N |[C | 0.16 0.00
N |P 9.00 9.09
N IN | 418 0.00
Table 4 Cqmbinations of C |1 |NVD (%) |EDB (%)
Conﬁdentlal.lty and Iqtegrlty BGRET -
per dataset: iOS, obtained
from NVD and EDB own C |P |0 0
dataset C |N | 1453 7
P [C |00 0
P [P |15 24
P [N |18 10
N |[C |0.726 0
N |P |9 7
N [N |4 0

1.3 Exploitability Sub-Score

Exploitability sub-score consists of values detailed in the right column of Table 1
and is calculated according to the following formula [17]:

Exploitability = 20 x Access Complexity x Authentication x Access Vector (3)

Both Impact and Exploitability sub-scores consist of constant values and a
coefficient that is used to maintain the score between 1 and 10. CVSS v2 constant
values are displayed in Table 5. However, CVSS v2 documentation does not provide
any justification of why such numbers or coefficients are used for exploitability sub-
score calculation [17].

1.4 Research Data Set

Reported Android and iOS software vulnerabilities were collected from following
well-known vulnerability databases:

* National Vulnerability Database (NVD) [35]: the database contains existing
vulnerabilities which are registered and assigned a reference number. 826
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Table 5 Constant values in CVSS v2 calculation formula [17]

Access Complexity (AC) High: 0.35
Medium: 0.61
Low: 0.71
Authentication (AU) Requires no authentication: 0.704

Requires single instance of authentication: 0.56
Requires multiple instances of authentication: 0.45
Access Vector (AV) Requires local access: 0.395
Local Network accessible: 0.646
Network accessible: 1
Confidentiality Impact (C) None: 0
Partial: 0.275
Complete: 0.660
Integrity Impact (I) None: 0
Partial: 0.275
Complete: 0660
Availability Impact (A) None: 0
Partial: 0.275
Complete: 0660

vulnerabilities were registered for Android and 845 vulnerabilities were related
to 108 as of 23 May 2016.

» Exploit Database (EDB) [36]: contains known exploits for existing vulnerabil-
ities which might be listed in NVD. A total of 44 entries found for Android
platform, out of which 15 have not been linked to a known CVE hence
disregarded. Out of 142 iOS exploits in EDB only 25 entries were associated
to a known CVE and used in this research.

* Vulnerability Lab [37] is another source that maps the registered vulnerabilities
in NVD and EDB and helps to identify additional vulnerabilities.

* Symantec Connect [38] database was used to map the vulnerability exploit data
with available patches and proof of concept.

The CVSS scores of related vulnerabilities detected from previously mentioned
datasets were analysed and compared to understand the distribution of CVSS scores
across a scale of 1-10 according to the current CVSS calculation which was
discussed previously. CVSS scores range from 1 to 10, where 1 is the lowest
vulnerability score, and 10 is the highest, or the vulnerability is most critical.
Looking at the comparison of this data in Figs. 1 and 2 it is quite obvious that
there are CVSS scores with a particularly high amount of data, while some scores
have a visibly low number of data. Wanting to understand the reason behind such
distribution the collected dataset spreadsheets, both for Android and i0S, were then
used to analyse the CVSS the sub-scores of exploitability and impact, which is
explained further in detail.
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1.5 The CVSS Analysis of Data Set

The analysis of the Impact sub-score data displays two problems. First, Figs. 1 and 2
display the outcome of a vague evaluation definition. Since the definition of Impact
values is not informative enough, it is possible that the features of vulnerability
are not evaluated consistently. Therefore the ‘Partial’ score seems to always fit
any average impact to either confidentiality, integrity or availability. Second, since
the evaluation of vulnerabilities often does not reflect the amount of corresponding
exploits available [4, 11], it is possible that the sub-score values simply do not take
into consideration the right features of vulnerability which could be better defined,
evaluated and therefore measured.
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Fig. 3 Impact sub-score distribution across Android and iOS datasets in NVD and EDB

Figure 3 displays how impact score within our dataset is distributed across the
scale of 1-10. It is visible that the score mainly consists of three values.

The exploitability sub-score within the dataset was analysed to understand its
distribution within the scoring scale of 1-10, the way it was done when analysing
the Impact sub-score. The results displayed in Fig. 4 shows that the largest number
of vulnerabilities contain an Exploitability score of either 3, or mostly 8 and 10,
while other scores are low in number.

2 Proposed Model

In this research we have access to data of existing vulnerabilities and registered
exploits, however, this data does not give a drilled down details of a particular use
case and how it was remediated if it was at all. It is not possible to know how many
devices were affected where a vulnerability was exploited and what happened to it
over time. Moreover, the exploit data of mobile devices is very limited, especially
for i0S.

The level of variances in this research make it hard to provide comparable results.
In such situations, a Randomised Block Design method can be used to compare
an individual experiment on several homogenous groups to reduce variances that
could impact the study [39]. A comparison is made between two seemingly similar
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Fig. 4 Exploitability sub-score distribution across Android and iOS datasets in NVD and EDB

object groups or blocks, where the behaviour of one object group has been analysed
and understood. The same features of such two object groups allow to predict
and suggest the reaction of the other object group. Therefore, in this research,
we compare the data of Android and iOS vulnerabilities and exploits with human
viruses and diseases.

There was a variety of studies which successfully adopted the same semantics
to describe the disease of a computer system as it was long used to describe a
disease in a human body [40—42]. In the case of computer systems the system
patches and updates is a reaction to any new or existing vulnerability. The concept
of changing virus life cycle over time could potentially help to understand how the
introduction of time sub-metric makes the score of a vulnerability more accurate
[43—45]. Overall, the vulnerability lifecycle may have several critical points that
could be approximately matched to a biological virus as shown in Table 6.

Despite the similarities, computer and viruses differ in their survival behaviour.
Surviving probability of computer viruses drop sharply over the first two months
of their life. Statistically just a small percentage of them cause an outbreak in
the computer community, while those viruses that survive still decay over time
depending on their type [46]. As for human viruses, some of them (i.e. polio,
measles, rubella, etc.) never completely disappear but are dormant due to existing
preventive controls (i.e. good hygiene or vaccination), yet when these controls are
removed due to any circumstances the viruses infect populations. This behaviour
could not be associated with computer viruses since a patch is supposed to provide
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Table 6 Comparison of critical points between a biological virus and a vulnerability

Biological virus Vulnerability

Virus discovery Vulnerability found

Virus is researched/understood Proof of concept provided

Infected individuals reported Exploit is available

Virus treatment discovered Software patch available

Virus treated Software update pushed to the mobile devices

appropriate protection for a vulnerability and for this reason it should not be possible
to infect the system using the same vulnerability.

For this reason, a more suitable function to mathematically reflect the declining
spread of a computer virus would be a mathematical function rather than a line, i.e.
constant number. Actuarial science has long used Panjer’s Recursion Formula (PRF)
to calculate cumulative risks for the insurance purposes [47, 48]. In the insurance
industry, collective risk models are used to evaluate processes that produce claims
over time [47]. In our case, it resembles to risk score over time where variables
are independent and identically distributed events that could impact the change
of the risk score [47] such as the development of an exploit or the opposite—a
system patch. These events are independent in the sense that they are not necessarily
generated by the same subject, one event could occur before another, and one could
occur without the existence of the other. One of the techniques to calculate these
independent events is using PRF as shown in Fig. 5.

PRF as shown in formula (4) is a sum of the independent variables that re-occur
constantly, where N is a random variable with a value of i. In our case N is some
exploits for a particular vulnerability and is independent X, that is time over which
an exploit or a number of exploits for that particular vulnerability is available.

N
f(x) = Z X; )

i=1

Using PRF, we assume that every month there is an equal probability for a
new critical point to appear, which is in our case an existence of an exploit or a
development of a patch. We also make an assumption that if a new critical point
appears in the environment of a vulnerability, it does not mean that there will be
no more critical points appearing for the same vulnerability in that month. In other
words, the appearance of one critical point is independent from the appearance of
any other critical point.

Formula (4) could also be an alternative to Monte Carlo simulation [48]. Its key
advantage is that the complete aggregate distribution of claims for a given block of
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Fig. 5 The graph of Panjer’s Recursion Formula, taken from [48]

policies may be quickly calculated and the simulation time decreases nearly 60%
[48, 49].

PRF is effective when calculating the recursive events, but it has received
criticism in the past that the initialisation of the formula is not clear and could
introduce variances. Therefore, Guegan & Hassani [48] have modified the algorithm
which mixes Monte Carlo simulation, PRF and kernel smoothing by way of
introducing either Binomial or Poisson distributions to the core formula. Poisson
distribution is suitable to calculate the total amount of events during a particular
time span, while Binomial distribution calculates only positive events during that
time. Since we are interested in the amount of total events during the lifetime
of vulnerability, therefore the inclusion of Poisson distribution to Panjer’s PRF is
more suitable to satisfy the requirement of the overall CVSS score calculation (see
Formula (5)). Where e is the exponential limit, A is a mean or an average of critical
points per month and « is the probability of the event:

N
)\’K
S = E X, where X = e_’\—, where . € R andx € N (®))
— K!
i
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Table 7 Suggested breakdown of Impact sub-score evaluation

CIA Impact Current constant values Suggested constant values
Confidentiality Impact (C) None: 0 None: 0
Partial: 0.275 Partial-Application: 0.461
Partial-System: 0.515
Complete: 0.660 Complete: 0.660
Integrity Impact (I) None: 0 None: 0
Partial: 0.275 Partial-Application: 0.461
Partial-System: 0.515
Complete: 0.660 Complete: 0.660
Auvailability Impact (A) None: 0 None: 0
Partial: 0.275 Partial-Application: 0.461
Partial-System: 0.515
Complete: 0.660 Complete: 0.660

The formula should be the sum of all critical point components that are available
as data for each vulnerability. Hence, taking into consideration all the components
of exploitability sub-score.

2.1 Results and Discussion

The analysis of the Impact sub-score showed that the CIA evaluation within the
Impact sub-score was too broad and too many vulnerabilities could have fallen
under an evaluation of ‘Partial’ impact as it lacked a clear definition. Also, there
is a difference in the severity of a vulnerability depending on whether it is an OS
vulnerability or the one which exists within a vulnerable application. Therefore,
the CIA score evaluation of ‘Partial’ could be distinguished into two scores, which
separate the vulnerabilities apply to applications and OS. For this research, we
named the suggested value for application evaluation ‘Partial-Application’ and
the value related to OS ‘Partial-System’. The structure together with suggested
calculation for each of these values is shown in Table 7. Following the approach
of the old CVSS formula the coefficients of 0.461 for the Partial-Application
and 0.515 for the Partial-System value were introduced, where coefficient for the
vulnerabilities related to OS takes more weight due to their potentially higher
impact.

During the implementation of the suggested method, the vulnerabilities within
our datasets were separated into either application or OS vulnerabilities. The rec-
ommended coefficients were then applied to these vulnerabilities, and a new CVSS
Impact sub-score was calculated. After the implementation, another comparison of
vulnerability score distribution within the dataset was performed to evaluate how
the suggested method changed the values of CVSS score. The result displayed in
Fig. 6 shows that only the change of a value within one sub-score of CVSS could
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Fig. 6 Recalculated CVSS scores with an improvement of adding additional value to the Impact
sub-score

make a significant difference to the overall evaluation of vulnerabilities and their
distribution across the scores.

However, the split of the ‘Partial’ score into application or OS vulnerabilities
only improved the definition and use of the ‘Partial’ value of the Impact sub-score.
It is possible that the evaluation of ‘Complete’ should also be reviewed as part of a
future research as there are still proportionally high amounts of vulnerabilities with
CIA impact of ‘Complete’ making more than 50% of the entire mobile vulnerability
population for both Android and iOS vulnerabilities. This could be one of the
reasons why there are large amounts of vulnerabilities with highest CVSS scores.

To improve the Exploitability sub-score, it is necessary to use the PRF Formula
(5). The previous discussion suggests that there could be as many as five critical
points of vulnerability (see Table 6). However, not all of this information will be
available for all vulnerabilities as a vulnerability may not yet have an exploit or a
patch. The amount of these critical points would only improve the accuracy of the
overall score, without rendering it invalid.

A test with only one critical point would help to back up the above claim.
Howeyver, to test the effectiveness of the model, we aimed to test the vulnerabilities
with as many critical points as possible. Hence, the experiment was applied on
vulnerabilities that have an exploit, i.e. are registered with EDB. As of 26 May 2016
Symantec Connect [38] contained three critical points of registered vulnerability
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exploits within our dataset: availability of proof of concept (POF), an exploit and a
patch.

Formula (5) was used to experiment the collected data set run on vulnerabilities
that had one critical point, then two critical points and finally three. The Exploitabil-
ity score was derived according to the age of the vulnerability counting the months
since its registration until June 2016. This score was used for calculation of the
CVSS base score.

To be able to calculate the new CVSS scores the suggested model was incor-
porated into the current CVSS base score calculation. The impact sub-score is re-
calculated with new CIA values, and PRF was used for calculation of Exploitability
as shown in Formula (6).

CVSS = (0.6 x Impact + 0.4 x Exploitability — 1.5) x f(Impact) (6)

Having applied Formula (6) to the data set it is possible to demonstrate that the
number of critical points does not make an essential difference to the effectiveness
of the Formula (6), yet it provides more accuracy to the overall vulnerability score.
Fig. 7 displays how a number of critical points improved the accuracy of the
calculation and therefore the vulnerability score. However, it does not change the
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Fig. 7 CVSS exploitability score change according to the new CVSS calculation model. Graphs
display the vulnerability score change over two years (in months) when (a) there is one critical
point, (b) two critical points, (c¢) three critical points discovered
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overall principle of how the score changes over several months, as displayed in
Fig. 7a—c.

The analysis of the present calculation of the CVSS score has exposed some
problems. First, the vulnerabilities do not seem to be measured against their true
characteristics which result in vague evaluation system of the overall CVSS score.
Second, the changing technologies require constant monitoring of whether or not the
CVSS result of vulnerability is still relevant. Furthermore, a systematic collection
of the data showed that there were large amounts of vulnerabilities that retained
repeated values across all of their sub-scores, i.e. a CVSS score of 6.8 will always
have an Impact sub-score of 6.4 and Exploitability sub-score of 8.6. The analysis
of their breakdown values also appeared to be always the same, most likely due to
vague vulnerability evaluation system. This could be one of the reasons why the
overall distribution of the CVSS scores across the data set was concentrated at only
several scores. Therefore the CVSS calculation does not satisfy the purpose that it
was designed for.

The suggested Formula (5) introduces a difficulty in updating the scores of
existing vulnerabilities as time goes and a critical point is discovered. This would
require a strong collaboration between the administration of National Vulnerability
Database and Exploit Database team, which is not being done at the moment.
It would also require more sophistication in a website design of NVD, where a
‘forecast’ calculation could potentially be introduced, showing how vulnerability is
expected to decrease over time provided a critical point is not discovered.

3 Conclusions and Future Works

Various researchers have shown that the CVSS score calculation has several
drawbacks and does not reflect the real situation of the vulnerability risk. However,
a number of industry-wide standards use CVSS score to evaluate cyber security
compliance, and there is generally a lot of reliance on the scoring system.

Our suggested model improved calculation and distribution of the CVSS base
score. However, the formula should be further improved to entirely replace the
constant values within the existing formula with those that are dynamic and true
representatives of properties of vulnerabilities. Even though the suggested model
improved the way that the mobile device vulnerabilities are calculated, there is
potentially an overall limitation in how the nature of vulnerability is perceived
and therefore evaluated. It was particularly evident in the way vulnerabilities were
evaluated for CIA within the Impact sub-score, where some values were never in
use for extracted vulnerabilities. Therefore, a potential future work could focus
on investigating what the metrics that would allow an accurate evaluation of
vulnerabilities according to the meaningful qualities are. Moreover, development of
metrics relevant to specific threats such as malware [50], ransomware [51], Trojans
[52], etc. can be considered as an interesting future work.
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Another limitation of this research is that we have the data of existing vulnerabil-
ities and registered exploits. However this data does not give a drilled down details
of a particular exploit case and how it was remediated if it was at all. Therefore,
it is not possible to know how many devices were infected with a virus where a
vulnerability was exploited and what happened to it over time. Moreover, the scope
of the research is limited to the vulnerabilities related to mobile device software and
applications only, and therefore further research should be conducted on different
types of data such as vulnerabilities in OSX [53], Internet of Things [54, 55], and
Cloud computing [56] to confirm suggested model effectiveness in other domains.

References

1. A. Shameli-Sendi, R. Aghababaei-Barzegar, and M. Cheriet, “Taxonomy of Information
Security Risk Assessment (ISRA),” Comput. Secur., vol. 57, pp. 14-30, 2016.

2. W. Ahsford, “Sony data breach: 100m reasons to beef up security,” 2011. [Online]. Available:
http://www.computerweekly.com/news/1280097348/Sony-data-breach-100m-reasons-to-
beef-up-security. [Accessed: 14-May-2016].

3. H. Li, R. Xi, and L. Zhao, “Study on the Distribution of CVSS Environmental Score,” pp. 14,
2015.

4. L. Allodi and F. Massacci, “Comparing vulnerability severity and exploits using case-control
studies,” (Rank B)ACM Trans. Embed. Comput. Syst., vol. 9, no. 4, 2013.

5. PCI SSC, “Payment Card Industry (PCI) Card Production: Logical Security Requirements,”
no. May. 2013.

6. PCI SSC, “Payment Card Industry (PCI) Data Security Standard: Technical and Operational
Requirements for Approved Scanning Vendors (ASVs),” October, vol. 21, no. October. 2010.

7. ITU-T, “Series X: Data Networks, Open System Communications and Security. Common
Vulnerability Scoring System,” 2011.

8. ITU-T, “Series X: Data Networks, Open System Communications and Security. Common
Weakness Scoring System,” 2015.

9. MITRE.ORG, “CVE,” 2016. [Online]. Available: https://cve.mitre.org/index.html. [Accessed:
04-Sep-2015].

10. L. Gallon, “On the impact of environmental metrics on CVSS scores,” Proc. - Soc. 2010 2nd
IEEE Int. Conf. Soc. Comput. PASSAT 2010 2nd IEEE Int. Conf. Privacy, Secur. Risk Trust, pp.
987-992, 2010.

11. A. A. Younis and Y. K. Malaiya, “Comparing and Evaluating CVSS Base Metrics and
Microsoft Rating System,” no. 1, 2015.

12. P. Toomey, “CVSS — Vulnerability Scoring Gone Wrong,” 2012. [Online]. Available: http:/
/labs.neohapsis.com/2012/04/25/cvss-vulnerability-scoring-gone-wrong/. [Accessed: 03-Jan-
2016].

13. C. Frithwirth and T. Minnistd, “Improving CVSS-based vulnerability prioritization and
response with context information,” 2009 3rd Int. Symp. Empir. Softw. Eng. Meas. ESEM 2009,
pp. 535-544, 2009.

14. P. Toomey, “CVSS - Vulnerability Scoring Gone Wrong | Neohapsis Labs on WordPress.com,”
2012. [Online]. Available: https://labs.neohapsis.com/2012/04/25/cvss-vulnerability-scoring-
gone-wrong/. [Accessed: 14-May-2016].

15. C. Eiram and B. Martin, “The CVSSv2 Shortcomings, Faults, and Failures Formulation.” pp.
1-13, 2013.

16. S. Zhang, X. Ou, and D. Caragea, “Predicting Cyber Risks through National Vulnerability
Database,” Inf. Secur. J. A Glob. Perspect., vol. 24, no. 4-6, pp. 194-206, Nov. 2015.


http://www.computerweekly.com/news/1280097348/Sony-data-breach-100m-reasons-to-beef-up-security
https://cve.mitre.org/index.html
http://labs.neohapsis.com/2012/04/25/cvss-vulnerability-scoring-gone-wrong/
https://labs.neohapsis.com/2012/04/25/cvss-vulnerability-scoring-gone-wrong/

236

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38

M. Petraityte et al.

FIRST, “CVSS v2 Complete Documentation,” 2007. [Online]. Available: https://www.first.org/
cvss/v2/guide. [Accessed: 16-May-2016].

FIRST, “CVSS v3.0 Preview,” 2014.

British Standard Institution (BSI), “ISO/IEC 27001:2013 - Information technology - Security
techniques - Information security management systems Requirements,” Br. Stand. Online, no.
December 2015, 2015.

D. R. Thomas, Beresford, Alastair R., and A. Rice, “Security Metrics for the Android
Ecosystem,” in Proceedings of the 5th Annual ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices, 2015, pp. 87-98.

F. N. Dezfouli, A. Dehghantanha, B. Eterovic-Soric, and K.-K. R. Choo, “Investigating Social
Networking applications on smartphones detecting Facebook, Twitter, LinkedIn and Google+
artefacts on Android and iOS platforms,” Aust. J. Forensic Sci., 2015.

M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmud, “MO0Droid: An Android
Behavioral-Based Malware Detection Model,” J. Inf. Priv. Secur., vol. 11, no. 3, Sep. 2015.
A. Dehghantanha, N. I. Udzir, and R. Mahmod, “Towards Data Centric Mobile Security,”
IEEE, no. 7th International Conference on Information Assurance and Security (IAS), pp. 62—
67,2011.

N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine learning aided
Android malware classification, Computers & Electrical Engineering.” [Online]. Available:
https://doi.org/10.1016/j.compeleceng.2017.02.013.

M. Petraityte, A. Dehghantanha, and G. Epiphaniou, “Mobile Phone Forensics: An Investiga-
tive Framework Based on User Impulsivity and Secure Collaboration Errors,” in Contemporary
Digital Forensic Investigations Of Cloud And Mobile Applications, 2016, pp. 79—-89.

M. Najwadi Yusoff, A. Dehghantanha, and R. Mahmod, “Forensic Investigation of Social
Media and Instant Messaging Services in Firefox OS: Facebook, Twitter, Google+, Telegram,
OpenWapp, and Line as Case Studies,” in Contemporary Digital Forensic Investigations Of
Cloud And Mobile Applications, 2016, pp. 41-62.

F. Nourozizadeh, A. Dehghantanha, and K.-K. R. Choo, “Investigating Social Networking
applications on smartphones detecting Facebook, Twitter, LinkedIn and Google+ artefacts on
Android and iOS platforms,” Aust. J. Forensics Sci., 2014.

T. Dargahi, A. Dehghantanha, and M. Conti, “Forensics Analysis of Android Mobile VoIP
Apps,” in Contemporary Digital Forensic Investigations Of Cloud And Mobile Applications,
2016, pp. 7-20.

M. Amine Chelihi, A. Elutilo, I. Ahmed, C. Papadopoulos, and A. Dehghantanha, “An Android
Cloud Storage Apps Forensic Taxonomy,” in Contemporary Digital Forensic Investigations Of
Cloud And Mobile Applications, 2016, pp. 285-305.

K. Shaerpour, A. Dehghantanha, and R. Mahmod, “Trends in Android Malware Detection.,” J.
Digit. Forensics, Secur. Law, vol. 8, no. 3, pp. 21-40, 2013.

I. Mohamed and D. Patel, “Android vs iOS Security: A Comparative Study,” 2015 12th Int.
Conf. Inf. Technol. - New Gener., pp. 725-730, 2015.

Google, “Android Security: 2015 Year in Review,” 2015.

F. Daryabar, A. Dehghantanha, B. Eterovic-Soricc, and K.-K. R. Choo, “Forensic investigation
of OneDrive, Box, GoogleDrive and Dropbox applications on Android and iOS devices,”
Taylor Fr. Online, no. 0618 (March), pp. 1-28, 2016.

First, “Common Vulnerability Scoring System (CVSS-SIG).” [Online]. Available: https://
www.first.org/cvss. [Accessed: 02-Jan-2016].

NIST, “National Vulnerability Database,” 2016. [Online]. Available: https://nvd.nist.gov/
home.cfm. [Accessed: 05-Aug-2015].

Offensive Security, “Exploit Database,” 2016. [Online]. Available: https://www.exploit-
db.com/. [Accessed: 10-Aug-2015].

Vulnerability Lab, “Mobile Vulnerabilities,” 2016. .

. Security Focus, “Symantec Connect,” 2016.
. W. C. for S. R. Methods, “Randomized Block Designs,” 2006. [Online]. Available: https://

www.socialresearchmethods.net/kb/expblock.php.


https://www.first.org/cvss/v2/guide
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
https://www.first.org/cvss
https://nvd.nist.gov/home.cfm
https://www.exploit-db.com/
https://www.socialresearchmethods.net/kb/expblock.php

A Model for Android and iOS Applications Risk Calculation: CVSS Analysis. . . 237

40.

41.

42.

43.

44,

45.

46.

47.

48.

49

50.

51

52.

53.

54.

55.

56.

R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “Epidemic processes
in complex networks,” Rev. Mod. Phys., vol. 87, no. 3, pp. 1-62, 2015.

E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, “Analytical computation of the epidemic
threshold on temporal networks,” arXiv Prepr., vol. 21005, no. 2, p. 19, 2014.

G. F. De Arruda, E. Cozzo, P. Tiago, F. A. Rodrigues, and Y. Moreno, “Multiple Transitions and
Disease Localization in Multilayer Networks,” Final Draft. Submitt. Publ., pp. 1-18, 2016.

G. F. Brooks, J. S. Butel, and S. A. Morse, Medical Microbiology. 2015.

Scitable, “Host Response to the Dengue Virus,” Scitable, 2014. [Online]. Available: http://
www.nature.com/scitable/topicpage/host-response-to-the-dengue-virus-22402106. [Accessed:
14-May-2016].

A. Boianelli, V. K. Nguyen, T. Ebensen, K. Schulze, E. Wilk, N. Sharma, S. Stegemann-
Koniszewski, D. Bruder, F. R. Toapanta, C. A. Guzman, M. Meyer-Hermann, and E. A.
Hernandez-Vargas, “Modeling Influenza Virus Infection: A Roadmap for Influenza Research,”
Viruses, vol. 7, no. 10, pp. 5274-304, Oct. 2015.

R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Phys. Rev.
Lett., vol. 86, no. 14, pp. 3200-3203, 2001.

R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit, Modern Actuarial Risk Theory, vol. 53.
2008.

D. Guegan and B. K. Hassani, “A modified Panjer algorithm for operational risk capital
calculations,” J. Oper: Risk, vol. 4, no. 4, pp. 53-72, 2009.

. L. Spencer and L. Re, “An Overview of the Panjer Method for Deriving the Aggregate Claims

Distribution,” 2000.

Amin Azmoodeh, Ali Dehghantanha, Mauro Conti, Raymond Choo, “Detecting Crypto-
Ransomware in IoT Networks Based On Energy Consumption Footprint”, Journal of Ambient
Intelligence and Humanized Computing, DOI: 10.1007/s12652-017-0558-5, 2017

Sajad Homayoun, Ali Dehghantanha, Marzieh Ahmadzadeh, Sattar Hashemi, Raouf Khayami,
“Know Abnormal, Find Evil: Frequent Pattern Mining for Ransomware Threat Hunting
and Intelligence”, IEEE Transactions on Emerging Topics in Computing, 2017 - DOI:
10.1109/TETC.2017.2756908

Dennis Kiwia, Ali Dehghantanha, Kim-Kwang Raymond Choo, Jim Slaughter, “A Cyber Kill
Chain Based Taxonomy of Banking Trojans for Evolutionary Computational Intelligence”,
Journal of Computational Science, 2017

Hamed HaddadPajouh, Ali Dehghantanha, Raouf Khayami, and Kim-Kwang Raymond Choo,
“Intelligent OS X Malware Threat Detection”, Journal of Computer Virology and Hacking
Techniques, 2017

Amin Azmoudeh, Ali Dehghantanha and Kim-Kwang Raymond Choo, “Robust Malware
Detection for Internet Of (Battlefield) Things Devices Using Deep Eigenspace Learning”,
IEEE Transactions on Sustainable Computing, 2017

Mauro Conti, Ali Dehghantanha, Katrin Franke, Steve Watson, “Internet of Things Security
and Forensics: Challenges and Opportunities”, Elsevier Future Generation Computer Systems
Journal, Dol: https://doi.org/10.1016/j.future.2017.07.060, 201

Yee-Yang Teing, Ali Dehghantanha, Kim-Kwang Raymond Choo, Zaiton Muda, and Mohd
Taufik Abdullah, “Greening Cloud-Enabled Big Data Storage Forensics: Syncany as a Case
Study,” IEEE Transactions on Sustainable Computing, DOI: 10.1109/TSUSC.2017.2687103,
2017.


http://www.nature.com/scitable/topicpage/host-response-to-the-dengue-virus-22402106
http://dx.doi.org/10.1016/j.future.2017.07.060

A Honeypot Proxy Framework for )
Deceiving Attackers with Fabricated e
Content

Jarko Papalitsas, Sampsa Rauti, Jani Tammi, and Ville Leppénen

Abstract Deception is a promising method for strengthening software security. It
differs from many traditional security approaches as it does not directly prevent
the attacker’s actions but instead aims to learn about the attacker’s behavior. In this
paper, we discuss the idea of deceiving attackers with fake services and fabricated
content in order to find out more about malware’s functionality and to hamper cyber
intelligence. The effects of false data on the malware’s behavior can be studied while
at the same time complicating cyber intelligence by feeding fallacious content to the
adversary. We also discuss the properties required from a tool generating fabricated
entities. We then introduce a design for a honeypot proxy that generates fallacious
content for fake services in order to deceive attackers, and test our implementation’s
accuracy and performance. We conclude that although challenging in many ways,
deceiving adversaries with fake services is a promising and feasible approach in
order to protect computer systems and analyze malware.

Keywords Deception - Honeypots - Intrusion detection

1 Introduction

Today, cyber attacks and cyber intelligence in computer networks are common and
their role will continue to grow in the future. This is because modern infrastructure
and society as a whole has become highly dependent on information technology and
computer networks.

However, when compared to the real world, in cyberspace it is a difficult task
for the attacker to differentiate between legitimate services and fake services. The
attacker typically only sees the response received over the network and cannot be
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sure about the origin of this response. A piece of malware that has infiltrated the
system faces the same problem: is the service or interface it uses really a genuine
service?

By effectively and extensively creating deceptive services, the adversary can be
deceived. The deceptive resources can also be harnessed to collect information about
behavior of the attacker in the system. The malicious activities are thus reversed to
produce information in order to reveal the adversary’s malicious objectives to the
defender. At the same time, fallacious information can be fed to potential cyber
spies, which makes cyber intelligence more difficult.

Deception is a promising method to enhance information security, as has been
earlier demonstrated with traditional honeypots [5, 31]. It is possible to gather
information on how the malware operates by creating fake services within a
computer or a network and giving fallacious but convincing responses to the
malware. More specifically, the responses contain pieces of data, named entities
(such as names, locations and dates) referring to real world objects that can be
replaced with fake entities to deceive the adversary. The approach we take here not
only aims for detection via deception [39] but we also deem it worthwhile to learn
how a piece of malware reacts to differently crafted responses it receives.

In this paper, we discuss generating fabricated content and present a proxy
honeypot for generating fallacious responses. More specifically, it creates messages
where the original named entities have been replaced with fake entities. It can
also be seen as a framework providing a general reference architecture that can
be applied to any TCP-based plain text protocol with relatively small changes.
Experiments with an example configuration consisting of plugins we implemented
for this proxy show that it is able to recognize entities accurately, does good
job in keeping the original confidential information safe and does not produce an
unacceptably large performance overhead.

The rest of the paper is organized as follows. Section 2 gives some general
background on deception as a security measure. Section 3 discusses properties a
fake content generating tool should desirably posses. These properties are used
when discussing our implementation and the practical challenges in generating
fake content. Section 4 gives a conceptual design for a fake content generator and
discusses our practical implementation of a honeypot proxy framework. Section 5
presents experiments measuring the entity recognition accuracy and performance of
our proxy implementation. Section 7 reviews related work. Section 6 discusses the
strengths and limitations of our approach. Conclusions and plans for future work are
presented in Sect. 8.

2 Deceiving Cyber Adversaries

Traditional security measures are not keeping up with today’s sophisticated threats
such as advanced persistent threats (APT) [9, 37]. For instance, most of these
threats are able to successfully evade current anti-virus technology [25]. Since many



A Honeypot Proxy Framework for Deceiving Attackers with Fabricated Content 241

traditional approaches have lost their effectiveness against advanced attacks, new
ways to defend the targeted systems are needed. A promising method to detect
and analyze the attacks is using deception, that is, giving false cues to the attacker
[2, 26].

Conventional security measures usually work directly against the malware’s
actions with the aim of preventing them. For example, encryption directly prevents
the adversary from accessing information. Deception, however, feeds the adversary
fallacious information and manipulates his or her thinking so that the defender
is ultimately the one who benefits (e.g. by making the malware reveal more
information about its functionality).

Being fundamentally different from many other software security approaches in
this sense, we believe deception has the ability to compensate for weaknesses of
many conventional security schemes. Combining deception with these approaches
is therefore advantageous.

Computer deception can be seen as an approach that causes the attackers to
choose specific actions that contribute to malware analysis and software security
defenses (see e.g. [42]). Computer deception defined like this has several noteworthy
properties.

First, it is a proactive way of detecting and analyzing malware. Introducing
fake services with fallacious responses makes things more difficult for a piece of
malicious software or attacker because it receives fake information (we assume
the malware or the adversary does not know this, though). We also do not need
to be familiar with the exact mechanisms of the attack, because our objective is
not to prevent malware from working; this is why deception is also highly effective
against zero day exploits. Instead of directly preventing any actions, we are aiming
to confuse the adversary with fake entities [32] and collect information about his or
her actions (of course, possibly also to raise an alarm and prevent his or her actions
at some point).

The second property of deception is that it allows us to record and analyze the
attacker’s actions. It is interesting to monitor what a piece of malware does in the
target system. By logging the attacker’s behavior, a deceptive honeypot can learn
from it—for example, by inferring and modeling the states of a malicious program
and using them to react in a correct way to requests the malicious program makes.
Analyzing the actions taken by a deceived adversary is also an alternative way to
analyze the malware’s functionality instead of making use of arduous low-level
reverse engineering techniques [33].

Third, what was said above also leads to the possibility of manipulating the
attacker’s actions, at least to some extent [1]. For example, in [8] Cohen and Koike
construct an attack graph depicting the processes attacker could use to attack the
system. They then manipulate the path the adversary takes this graph by making use
of deception.

Fourth, deception also alleviates the adverse effects cased by harmful programs
and curbs the propagation of malware. In a deceptive environment, the malware
cannot make reliable assessments on the changes it has made in the system. The
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malicious changes may not have any effect or they can be rolled back. We can also
try to convince the malware it has successfully propagated while in reality this has
not happened.

Finally, deception causes the adversary to waste his or her resources. For
example, analyzing a fake response from a server requires at least some kind of
computational resources. If human scrutiny is required, this naturally wastes the
adversary’s resources even more effectively.

3 Desirable Properties for a Fake Content Generator

When we want to deceive the adversary with a fake service, there are several
desirable properties one would like a tool creating fake responses to have. While
these properties are ideal goals in the sense that all of them cannot be perfectly
reached in practice, they give a good reference point practical tools can aim for.

First, it is important that the tool accurately recognizes the entities. If a tool
cannot recognize the original entities that should be replaced with the fakes, this
will pretty much deteriorate its other functionality as well.

Second, the tool should be able to generate convincing fake entities. The fake
entities in responses should look convincing for a piece of malware and when
possible, also be believable in human scrutiny. The perpetrator has to trust the fake
content and still deem it valuable. The tool should therefore have a good idea what
the values of a specific entity in the original service usually look like. At the very
least, the tool has to possess a list of possible values of a specific entity or some kind
of structural information on the entity.

Third, keeping the fake content consistent is important. Of course, a tool that
produces deceptive content has to see to it that fake entities stay consistent. We have
to remember how we have replaced a specific entity if it appears in the message(s)
several times. Some entities can also depend on each other in which case the tool
needs a description of this dependence. Consistency has to be maintained not only
inside one message but also between several messages. In fact, entity consistency
should arguably be persistent so that it exceeds mere sessions. This is because not
all attacks are neatly contained in one session [29]. In the most extreme cases like in
some APT attacks, the intruders have continued their activity after a break of almost
a year (see also [34]). Therefore the generated fake entities, if possible, should not
have an expiration date, but rather continue to be used while additional fake entities
are created on demand.

Fourth, a good tool is protocol-independent. An ideal tool for creating fake
entities would do well in recognizing the named entities to be replaced with fakes in
any plain text protocol. Of course in practice it is challenging to create a protocol-
independent solution that also does very well in entity recognition and creates highly
convincing domain-specific entities.

Fifth, original data should not leak. In our approach, the original responses
possibly containing confidential data are being modified in order to create fake
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messages. This naturally leads to a risk that the original values of named entities
(that we want to replace with fakes) might leak. Therefore our tool has to be
careful that this critical data is not revealed to the adversary. Basically, how well
this requirement is fulfilled depends on the accuracy of recognizing entities: if the
entity recognition is performed well, then the data does not leak because the entities
are replaced adequately.

Finally, the tool should perform efficiently. Creating fake responses should only
cause relatively modest performance penalties compared to the genuine service the
tool is mimicking.

In what follows, we present a honeypot proxy framework that strives to provide a
good basis for achieving the aforementioned goals for a fake content generator. We
demonstrate the use of the tool with the HTTP protocol and discuss the strengths of
the tool and the practical challenges it faces.

4 The Design and Implementation of a Fake Content
Generator

4.1 A Conceptual Design of a Fake Content Generator

In order to get the understanding what kind of functionality is required for gener-
ating fake content, we first discuss a simplified abstract design for a fake content
generator. Structurally—and in terms of data processing phases—a tool generating
fake entities can conceptually be divided into four separate parts. Figure 1 shows an
abstract view of these four main components.

Our approach in this paper is based on the observation that when producing fake
responses to deceive the adversary, generating full content from scratch is likely

Fig. 1 A conceptual model
of the data flow between the

. Proxy
four main components

Entity Fake entity
recognizer generator

Entity replacer
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to be much harder than modifying existing content. Therefore the first key part in
our tool is proxy functionality that enables modifying data on the fly (for example,
altering contents of HTTP responses).

Secondly, the tool needs to recognize the replaceable data. The ways used to
achieve this task can vary. Named-entity recognition (NER) is one possible method
of information extraction that aims to detect and classify the named entities in plain
text messages into pre-defined set of categories [20]. This approach is fine on natural
languages but as our tool will be mainly handling structured data such as LDAP
requests or JSON on top of HTTP, there are probably better ways to recognize fields
[23]. In this paper, we mainly use regular expressions for entity recognition.

The third part is generating convincing fake entities that will replace the original
ones in altered responses from the fake service. For consistency reasons, these fake
values also have to be memorized.

Lastly, our tool needs to replace the entities in the original response with the
generated fake values. This step is trivial if the entity recognition has been done
accurately.

4.2 The Implementation

To demonstrate generation of fake content on the fly, we implemented a proxy-
based honeypot framework, Honeyproxy, with Python. The framework relays TCP
data from the client to the remote and back while simultaneously providing hooks
for the data in question. The data hooks direct the traffic through a pipeline that
is defined by the command line parameters. An abstract class diagram of program
structure is shown in Fig. 2.

The pipeline consists of an ordered list of plugins and provides a way to create
modular and extensible combinations of functions to analyze, store and modify
the data. This way, multiple designs can be independently used and tested. For
example, a generic payload parser can be improved by adding or replacing parts
with more specific ones. That is, the design of our proxy strives to enable protocol-
independence but plugins for some specific protocol can also be added. The proxy
only works as a transparent framework in the background.

The interaction between the proxy components is shown in Fig.3. When
the client connects to the proxy, ProxyListener assigns a ClientWorker for the
connection. ClientWorker communicates between the client and the remote service
after it has been assigned and is also responsible for routing the data through the
pipeline composed of plugins.

The pipeline uses a custom dictionary based data structure for passing the
information gathered by different plugins. The format includes a few compulsory
fields such as raw that includes the full document, message or other logical piece of
data with headers depending on the application level protocol. The other compulsory
field is content that includes the content without application level protocol
headers ready to be parsed by the content parsers.



A Honeypot Proxy Framework for Deceiving Attackers with Fabricated Content 245

ProxyListener ClientWorker
+ host + client_socket
+ port dispatch + remote_socket
+ send_hook_args P»| + send_hook
+ receive_hook_args + receive_hook

+ pluginmanager
+ on_sending_data(data)
+ on_receiving_data(data)

+un() + on_close()
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[ return
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+hook(data)
«interface»
Plugin

Fig. 2 UML representation of most notable classes

In addition to the compulsory fields, custom fields and objects can be passed by
the plugins. Those custom fields are created with the x -« prefix. For example, the
httpsplitter plugin can pass x-http-headers field with separated HTTP headers
from the raw content.

4.3 An Example on the Usage of Honeyproxy

The following example illustrates the usage of the proxy. In this context, client refers
to the one who is connecting to the service, remote to the real service or the server
and proxy to our implementation of the extensible proxy. In the example, a basic
HTTP pipeline will be constructed.

When the remote server is up, our proxy can be started with the command:

./ honeyproxy.py —receive —pipeline httpsplitter
typemagic regex replacer printer httpcombiner
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ProxyListener
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Load
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ClientWorker Pipeline

Modified data:

Data transfer

Remote service

Fig. 3 Interaction diagram between different modules

By default, the proxy assumes that the remote is located in 127.0.0.1:80 and
includes several plugins that can be used to construct a pipeline. The data flow in the
pipeline constructed next can be seen in Fig. 4. The fields bolded in the data flow
are the ones the previous plugin has modified or created. In what follows, a more
precise description of every plugin in the example pipeline is given.

The httpsplitter plugin is responsible for translating the TCP traffic with
HTTP into logical documents. This task includes separating and reading the HTTP
header, getting the Content -Length and filling the content buffer with specified
amount of data. After a full document is available and parsed, it will be sent forward.
typemagic uses libmagic (a library for recognizing magic numbers that identify
a file format) [6] to determine the document content type.

When the required preparations for data have been done, more general text
parsing plugins can be used. The regex and replace plugins match specific
patterns to find entities and replace all similar entities in the document. For
outputting purposes, the printer plugin prints all the data it gets at that specific
part of pipeline. Lastly, the httpcombiner plugin transforms the modified
message into a valid HTTP packet, saves it into the raw field and returns the data
back to the main program of the proxy which then relays the data to the TCP layer
for transmission.
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Fig. 4 Data flow through the pipeline

4.4 Recognizing Names Using Regular Expressions

The proxy system is developed to be modular and extensible so that it is able to cover
needs of systems with different protocols and content formats. In this subsection
and in the following one, we give examples of the implementations of two essential
components of the proxy—the entity recognizer and the fake entity generator. These
are just example cases because both components can be implemented with different
algorithms according to the application area or a specific case.

As one of the central requirements of a system dealing with entities is to
recognize the attributes of entities in provided data, we present an example of
parsing such data here. In our proxy system, plugins can be made specifically for
structured data containing specific fields or a more generic and simultaneously less
accurate plugins can be used for these purposes. For example, when dealing with
JSON data containing logical blocks of entities, a specialized plugin for this use-
case is recommended.

The regular expression plugin regex we implemented as an experiment focuses
on finding interesting entity attributes using only regular expressions without caring
about the format of the data as long as it is in plain text. The current heuristic
for finding interesting attributes, person names in our test case, is a naive keyword
based system. The parser is supposed to be used on form-style documents without
well-defined format. It assumes that after a keyword there is noise or a delimiter
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separating the real content from the keyword. After recognizing the attribute
content, the attribute with its recognized type will be saved into a global storage
that is available for all plugins.

It would be possible to replace the recognized attributes outright by substituting
the entities matched by the regular expression. However, to boost the recognition
recall rate, the matched strings are used to replace every equal string found in the full
document. Replacing entity attributes this way will increase the recall rate but lower
the precision as the effect of wrongly recognized attributes is multiplied and as such
the amount of false positives will rise. This trade-off will decrease the possibility of
original information leaking through the proxy while the amount of false positives
can raise suspicions of the data being modified on its way to the client.

4.5 Fake Entity Generation

Another essential component in our proxy system is fake entity generator. In our
test case, we strive to make entities convincing also for human intruders and for this
reason we opted to create a simple fake entity library containing the few entities that
are in use in our testing platform. In order to support situation specific fake entity
attributes, the API allows the user to specify any number of attributes, which will be
used and which will affect all dependent generated attributes. In simplest example,
a gender attribute can be defined, and a generated fake person entity will then have
an appropriate name, a correct social security number etc.

There are usually more attributes associated with aforementioned person than
would usually be required when the fake entity is needed, but because the honey
proxy needs to provide consistent content during a session, the generated entity is
intended to be stored for further use. As an example, person entities may be needed
as a seed for creating a student who has a convincing enrolment year and curriculum
in respect to his or her age and so on.

This simple testing implementation does not access recorded traffic to draw
information about attribute characteristics. Instead, given the clearly defined entities
we deal with, it uses number of dictionaries from which it picks first names, family
names, street names and alike. Such approach lacks capabilities to handle generic
entities, but is adequate for a specific service.

In the future, however, this somewhat limited implementation can be replaced
with a module that can accept entity descriptions, along with detected dependencies,
capable of creating content to meet the required criteria. In order to meet demands
for more convincing results, number of commonly used entities will still be
modelled so that they can be parametrised for suitable generated instances. For
example, sampled traffic has likely provided some attribute ranges, such as the age
distribution of some specific group of persons, that should be used in fake entity
generation.
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5 Experiments

In this section, we present a few experiments gauging the entity recognition
accuracy and performance of our proxy implementation.

5.1 Recognizing Entity Attributes

In our test-case we try to find person names in HTML documents containing loosely
formatted data, without relying too much on the HTML structure. The data being
recognized is not guaranteed to be structured in any standard form nor is it formatted
as natural language. If we relied more on the HTML structure and attributes such as
ids and classes, it could be possible to parse the DOM tree, annotate the fields
manually or with selectors and recognize the fields that way.

In Table 1, we can see the results of entity recognition with a regular expression
parser when tested with two different web services. The parser had been originally
made to with personal information registers in mind, which is why it performs
well with the first web page, “Personal information extract”. The second test was
performed with web different web page, ‘“Personal information form”. When we
take into account that the parser was not optimized in any way to fit for this
second web page having somewhat different way of structuring data, the results
are promising. Also noteworthy is the recall value of 1.00, which means that no
original data would have leaked through to the adversary.

In addition to these two experiments, the parser was also tested with a very
different web service, “E-commerce personal information”. In this case it did not
recognize the entities and produced a great amount of false positives. This was due to
the fact that the parser found a couple of false names that happened to be commonly
used words in the web service. This failure, however, was quite expected, since the
parser was never designed with this kind of service and data format in mind.

Using more specific information about the data format being used should yield
better results. By for example parsing the HTML DOM tree and manually marking
the entities with help of CSS selectors is likely to considerably increase the accuracy.
However, at the same time it decreases the general nature of the parser and as such
increases manual work involved. This is a trade-off we have to accept. Ultimately,

Table 1 Comparing regular expression parser results between a known and an unknown system

True positives False positives Precision Recall
Personal information 8 1 0.89 1.00
extract
Personal information 4 2 0.67 1.00

form
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it would depend on the exact use case of the proxy whether case-specific accuracy
or generality is valued more. In this specific parser implementation, we chose not to
depend on the HTML format.

5.2 Performance

We tested the performance impact of Honeyproxy with HTTP traffic. The data
was recorded to HAR files using Chromium Debug tools (Inspector) [13] and later
unpacked on Google’s HAR analyzer [14]. The server, proxy and the client were
all running on the same machine simultaneously and communicated by using the
loopback interface to minimize the unpredictable and unwanted effects such as
lag that could be caused by the network infrastructure. Honeyproxy was using
the httpsplitter, typemagic, regex, replacer and httpcombiner
plugins. printer was not enabled nor were the debug messages or verbose mode
to minimize the impact of I/O blocking.

In Figs. 5 and 6 the web service loading times are compared between plain Nginx
(a popular web and proxy server) and with Honeyproxy in between. The actions
taken during loading are divided into groups that will be introduced next. Loading
is Blocked when the browser waits for available TCP connections out of maximum
simultaneous connections allowed. Connect is the time it takes to establish the
connection after one of the connection turns are free for use. After the connection
is established, the client Sends data to the server. This part mostly depends on the

3000
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B Wait
2500 Send
m Connect
M Blocked
2000

1500

time (ms)

1000

500

instance

Fig. 5 Sums of load times of Honeyproxy and plain Nginx compared
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Fig. 6 Real asynchronous loading times of Honeyproxy and plain Nginx compared

connection speed. When the data is received by the server, the server processes
the requested data and sends it back. These states are known as Wair and Receive,
accordingly.

Figure 5 presents the total sums of individual components loading. As it can be
seen, with Honeyproxy in between, the time spent in Wait and Blocked states will
increase. It should be noted though that the service used in our test environment
is only a static version of the real service and as such will be faster to serve than
the real dynamic one with a Java or PHP backend. With this in mind, Honeyproxy
will always have an overhead over the real service but the real service will also
spend time in the Wait state. As the overhead by Honeyproxy is not dependent
on whether the real service is static or dynamic, the relative difference in case of
dynamic backend would be smaller.

The server performance measured in Fig. 6 is the one perceived by the user. The
difference between Figs. 5 and 6 is that the first one measures the time all requests
take combined and the second one the total time taken by the loading operation. The
latter is way faster than the requests combined due to asynchronous requests being
sent by the client. Honeyproxy supports these requests by threading the connections
thus allowing asynchronous connections.

The overhead by Honeyproxy is easy to see in the time spent in the Wair state. In
addition to the increase in the Wair state, the client spends noticeably more time in
the Blocked state as it is easy to see in Fig. 7 where the average sums of connections
are compared. As said before, when the state is Blocked, the request is being queued
for free TCP connection. One possible reason for the extended Blocked state is that
Chromium (version 58.0.3029.110 at the time of testing) has capped the maximum
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Fig. 7 Average of sums of loading times between Honeyproxy and plain Nginx compared

amount of connections allowed to a single domain to a hard-coded limit of six (see
also [38]). As the time spent in the Wair state increases, the TCP connections will
be occupied longer awaiting for a response from the server. They therefore occupy
all six TCP connection turns faster and increase the time spent in the Blocked state.

6 Discussion and Limitations

We saw earlier that entity recognition can be quite effective even with relatively
simple methods such as regular expressions. Making the tool well aware of the data
format in the application protocol comes at the price of lost generality, however.
Differently structured messages are naturally a big challenge for a honeypot
proxy. For example, although HTTP is generally quite an easy protocol to modify, it
can carry a lot of differently formatted content. This is why many entity recognition
methods may be needed. Named Entity Recognition works with natural text, but
for the data formats like JSON and XML, a different approach will probably work
much better. The structured formats usually include better hints about the content.
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For instance, {name: Jarko, id: 123456} tells straight (once the format is
known) the type of the object. Named Entity Recognition would not understand the
hint and fall back to gazetteer list of names. This is why it would be infeasible to
build a proxy that would do an excellent job with all types of HTTP responses (not
to mention all plain text protocols). The application level protocol usually defines
the structure of the data, after all, so the parser recognizing entities has to be more
or less context dependent if we require accurate recognition. Our tool supports this
by using a pipeline-based architecture and replaceable plugins.

A little bit more general entity recognizer with a lower success rate is not that big
a problem, however, if we allow human help in recognizing entities. After the entity
recognition program has performed the recognition process, a human can correct
its possible mistakes by annotating the entities present in the message [24]. This
approach is very feasible at least in the context of simpler fake services where the
messages do not contain a huge amount of entities. Manual annotation is therefore
something we plan to take a closer look in the future.

We also discussed creating convincing fake entities. Of course, there is a question
who we are trying to convince, what “convincing” means in this case and how
to measure it. Without delving into these issues too deeply, we assumed in our
example that the fake entities also have to convince human observers. The example
implementation was therefore quite application-specific and had a drawback of not
being able to handle general entities. We discussed ways to move this component
into more general direction, for example by accepting entity descriptions and
detected dependencies between entities. The possibility of sampling traffic and
learning about the entities from the messages is also worth studying.

A big challenge related to convincing entities, especially in the context of web
applications, is the fact that the response often depends on the state of the application
[36]. This information is something that may only be in web application’s internal
session data, and the honeypot therefore has no access to it. We plan to add support
for sessions and states of the fake service.

Our proxy honeypot also needs to be made more sophisticated in the sense that
it becomes capable of handling message sequences in fake services. This means
recording typical message exchanges and then playing them back to adversary with
original entities replaced. In other words, the honeypot learns what is the best way
to reply in a specific situation based on recorded past interactions. It has to be able
to reply as convincingly as possible based on the previous messages.

The issue of consistency also needs to be addressed more comprehensively.
While our proxy has the basic functionality of remembering entity values so that
the same values can be used in future messages, methods to describe relationships
between different entities and preserving consistency between sessions still have to
be built.

While there are several aspects and directions that still have limitations and
should be further developed, we have provided a honeypot proxy framework
design that can be used as a basis for incremental honeypot development. We also
demonstrated the use of the tool in the context of specific fake services and showed
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that the example implementation recognizes entities with high accuracy, does not
leak original data and operate with acceptable performance.

7 Related Work

Several methods such as regular expressions and Named Entity Recognition (NER)
can used to recognize entities. Regular expressions can easily recognize entities
that have a fixed structure such as phone numbers and email addresses. Entities
that require contextual understanding are more difficult to recognize this way. For
instance, Sekine et al. [28] make use of about 1400 manually created rules in order to
detect entities. Named entity recognition tries to recognize named entities and then
classify them into groups. Nadeau et al. [21] propose an unsupervised named-entity
recognition (NER) system that requires no human intervention.

There are several studies on fake data creation. For example, Whitham [41]
proposes a canary file management system that automates fake file generation using
content and file statistics drawn from several sources. Weighting of the sources is
randomized in order to value to prevent discovery by fake file detection systems.
Chow and Golle [7] see the ability to generate believable contextual bogus data as a
basic tool in the quest to preserve privacy. They address two types of contextual data,
location data and search engine query data, and describe their efforts in faking this
content. Rauti et al. survey possible fake entities in computer systems and computer
networks in [27].

The idea of replaying computer programs has been studied for many years
[3]. Although the context is not exactly the same as in our work, many fake
service related approaches have already been proposed and discussed in the existing
literature. Cui et al. [10, 11] implement a tool that can replay the messages of both
client and server sides of a dialog, having been trained with message sequences that
have taken place between them. The approach by Cui et al. is quite general and
protocol-independent, and can be applied e.g. to SMTP and FTP protocols.

Newsome et al. define the replay problem more formally and aim to better ensure
the replay of application dialog is correct [22]. Small et al. propose an approach
that dynamically creates responses to network requests [30]. Their implementation
directly learns from raw network traffic. The method presented by Krueger et al.
infers a state machine presenting some specific network service and can then replay
sessions based on the learned model [17]. Whalen et al. [40] discuss hidden Markov
models and specifically a special type of them known as e-machine, which—
according to the authors—can derive a protocol solely from network traffic and is
well suited for anomaly detection.

It is interesting to note that this kind of advanced methods can also be used by the
attackers [18]. In instant messaging applications, for example, a malicious bot can
act as a man-in-the-middle, observing and tampering the transmitted messages on
the fly. Borders et al. [4] discuss a piece of malware that mimics typical user inputs
and tries to merge with normal user activity in hopes of deceiving users.
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Farneth et al. [12] propose a mechanism analyzing large amounts of web service
requests and responses in order to create emulations for low-interaction honeypots.
Gu et al. [15] present a tarpit mechanism in which they hide live targets among
phantom addresses. These “white holes” give interactive responses to worms so that
the amount of responses in the network segment leaves the worm unable to find
potential targets.

Shafique et al. [29] present a replay-based approach for dealing with multi-
session attacks such as attacks consisting of an FTP session followed by remote shell
login. Lin and Lin [19] present an approach of identifying sensitive information for
anonymization purposes. It has been explicitly developed for network traffic dumps
and their privacy concerns. The approach works both in TCP/IP and link-layer
protocols as well as with transfer protocols (HTTP). While their approach is not
perfect (known protocols enjoy 96% accuracy, protocols that do not have a protocol
parser have approximately 78% accuracy), this research is definitely interesting in
the context of preventing original confidential data from leaking.

8 Conclusions and Future Work

In this paper, we have discussed the task of fake content generation and presented
a design and an implementation for a honeypot proxy framework that deceives
attackers with fabricated content. The goal is to complicate cyber intelligence by
feeding fallacious content to the adversary and also make it possible to study
functionality of malware. Experiments with example plugins we implemented for
our proxy show it can recognize entities accurately, succeeds well in keeping the
original entity values safe and does not produce an unacceptably large performance
overhead.

Future work includes extending our honeypot proxy to record and replay message
sequences so that we can also take into account the earlier messages. In other words,
we extend our scheme so that creating responses and sequences of a fake service
based on recorded interaction between clients and services becomes possible.

The tool can also be developed to support manual annotation in entity recognition
and to keep the entities consistent in message sequences. Support for sessions
and application states should also be added to achieve more convincing entity
generation.

More detailed attack scenarios are also a topic worth studying in the future.
Compared to basic low interaction honeypots, Honeyproxy delivers high fidelity
and ability to respond to unseen attack vectors in expected ways due to the fact that
it acts between a real service and clients. The range of attack vectors that can be
handled is nearly as large as it would be in a high interaction honeypot—the only
perceivable difference being the thoroughness of filtering out sensitive application
data and the generation of convincing replacement data.

Three very common attacks vectors listed by The Open Web Application Security
Project (OWASP) [35] are Cross Site Scripting (XSS), SQL Injection and Server
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Side Includes (SSI) Injection. As they all involve the attacker injecting malicious
code or unwanted commands (SSI and SQL injection), we feel that the next logical
step forward with our Honeyproxy is to apply filtering to user sent requests. As
future research, we would like to determine if malicious content could be reliably
intercepted and filtered out without affecting regular web application usage. If
reliable detection without false positives can be achieved, it would be interesting
to see how we could integrate all this with a honeybridge solution [16], which
could intelligently reroute client connections that have turned malicious to either
low interaction or high interaction honeypots to play out without damage to the
real service. This would also require one-way backend integration between the real
service and the honeypots, to maintain the illusion of continuity in terms of content
and session.

Creating deceptive fake services is challenging at many points, like when dealing
with entity recognition and generating believable fake data. Despite its challenges
and inevitable trade-offs we believe deceiving adversaries with fake services is a
promising and feasible approach in order to protect computer systems and analyze
malware.
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Abstract Virtual machine migration is a powerful technique used to balance the
workload of hosts in environments such as a cloud data center. In that technique,
VMs can be transferred from a source host to a destination host due to various
reasons such as maintenance of the source host or resource requirements of the
VMs. The VM migration can happen in two ways, live and offline migration. In
time of live VM migration, VMs get transferred from a source host to a destination
host while running. In that situation, the state of the running VM and information
such as memory pages get copied from a host and get transferred to the destination
by the VM migration system.

There exist security risks toward the migrating VM’s data integrity and confiden-
tiality. After a successful VM migration, the source host shall remove the memory
pages of the migrated VM. However there should be a mechanism for the owner
of the VM to make sure his VM’s memory pages and information are removed
from the source host’s physical memory. On the other hand, the memory portion
on the destination host shall be clear from previously used VM’s data and possibly
malicious codes. In this chapter, we investigate the possibility of misuse of migrating
VM’s data either in transit or present at source and destination during the VM
migration process. Based on the investigations, we give a proposal for a secure live
VM migration protocol.
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1 Introduction

Virtualization is the technology that enables operation of multiple instances of a
system on a single host. Using virtualization technology, system resources can be
used in a much more efficient way. The most common method of virtualization
is hardware-level virtualization. In the mentioned method, hardware resources are
emulated for some execution environment through a software management layer.
Those execution environments are called Virtual Machines (VM) whereby the
manager software layer is called hypervisor or Virtual Machine Monitor (VMM).
The hypervisor emulates the underlying hardware for each VM and manages the
resource assignment to each VM. Xen, VMware, and Microsoft Virtual PC are the
leading hypervisors which emulate x86-based computers. KVM and VirtualBox, on
the other hand, emulate linux environments.

VMs are not pinned to a single host and they can move to run on other hosts in
a data center or in a geographically distributed network through migration process.
The VM migration process happens either in offline or online manner. Offline VM
migration process is simple which requires turning off a VM and transferring the
whole VM status as a file from a host to the new host. On the other hand, live VM
migration is a bit complex process which is achieved by transmitting a VM’s status
as data packets across the network from the source host to the destination host while
the VM is in use.

In order for a VM to robustly and securely migrate from a source host to a
destination host, there are several efficiency and security issues to consider. In terms
of efficiency, live VM migration might cause an interrupt in the normal operation
of VM in transit by introducing overhead [19]. Furthermore, live migration of
VMs negatively impacts other components of the cloud such as anomaly detection
systems [17]. From security point of view, confidentiality and integrity of the
transmitted VM’s data shall be preserved during and after the process of migration.
That can be achieved by imposing adequate preventive controls such as proper
access control and using a secure transmission channel.

Threat intelligence is referred to the analyzed information about a malicious
actor on its intents and capabilities. This information is valuable to an organization
in order to adequately take actions. These actions include the tactical choices to
impact security, e.g., to detect, defend, or mitigate the risk of threats. These days,
organizations rely on cloud technologies to deliver their services to their customers.
In this regard, there is a higher need for techniques and procedures for securing
clouds, analyzing malware and fighting against cyber crimes in these environments.

In this chapter, we discuss the attacks launched against the VM memory data
during live migration in the cloud environment resulting in data leakage. We have
also highlighted an area in need of deep investigation which is ignored by the current
research work, i.e., a mechanism to ensure the removal of memory data of migrating
VM from the source and the provision of clear memory at the destination. Moreover,
we discuss a few attacks previously uncovered which may exploit the absence of the
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above mentioned mechanism and compromise the consistency of the VM memory
contents present at either source or destination at the time of live migration. These
attacks exploit bugs in hypervisors, message replay, privileged access to the hosts
and may carry out malicious actions such as backing up or modifying VM memory
contents at source and corrupting VM memory at destination. We then present a
few potential solutions for each of the attack scenarios and propose a protocol
that utilizes these solutions in order to ensure a secure process of live migration
of VMs.

The rest of the chapter is organized as follows: Sect.2 discusses the necessary
background on live VM migration for understanding of some key concepts.
Section 3 deals with security threats which may be exploited in order to launch
attacks together with the resulting attacks against live VM migration. A threat model
is also given. Section 4 covers the secure live VM migration which starts with the
description of the security requirements for live migration and then provides the
existing work in this area to secure the process of live VM migration. Section 5
describes some of the uncovered threats and areas which need further investigation
together with potential research directions for these areas. Section 6 proposes a
secure live VM migration protocol, while Sect. 7 concludes the chapter.

2 Background on Live Virtual Machine Migration

In cloud computing environment, virtualization platforms offer dynamic resource
management systems in order for administrators to be able to balance the resource
usage of hosts. Resource management systems balance the computing capacity
among hosts and clusters. That happens by re-arranging VMs on potential hosts
that are more suitable for the overall placement of VMs. While the process of VM
migration improves service levels, energy consumption decreases. The destination
host can be chosen either by a manual check of administrators or automatic
recommendation of the migration system itself. When a VM requires a high resource
capacity for its operation, the resource management system can suggest a host with
sufficient available resources. In cloud environment, live VM migration is effective
in situations such as maintenance of hosts, load balancing, resource elasticity
requests and over commitment of resources (over commitment refers to the situation
where the cumulative amount of resources allocated to VMs on the host is more
than the actual available resources). The live VM migration allows a Cloud Service
Provider (CSP) to maximize the utilization of resources.

In live migration, a VM is shifted from one VMM to another without halting the
guest operating system. This migration usually occurs between two distinct physical
machines. The two ways the VM migrates from the host machine to the destination
machine are Managed migration and Self migration [4]. The managed migration
approach moves the guest OS via migration module (the VMM component that
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implements live migration functionality) without the participation of guest OS. The
self migration approach [8] on the other hand is the one in which the guest OS
migrates itself without the involvement of VMM.

During live VM migration, the state of the running VM and information such as
memory pages get copied from the source host and get transferred to the destination
by the VM migration system. The memory of a migrating VM can be moved from
the host machine to the destination machine in a number of ways. The important
factors which need to be considered while live migrating a VM’s memory are
downtime and total migration time. The downtime is the period during which the
VM service is completely unavailable to clients of the VM and is counted as a
service interruption period. In this period, the VM is shutdown and there is no
executing instance of the VM. The total migration time is the duration in which
the live VM migration is initiated on the source host, the VM is resumed on
the destination host and the original VM on the source host is finally discarded.
Migration of a VM may require transferring tens of gigabytes of data from the
source machine to the destination machine. Therefore, it is desirable to minimize the
downtime during the migration in order to minimize the service interruption period
and to keep the migration transparent to the users. The primary motivation behind
live migration of VMs is reducing downtime. On the other hand, a reduced total
migration time improves load balancing, fault tolerance, and power management
capabilities in data centers.

2.1 Memory Migration

In order to provide a trade-off between downtime and total migration time, the
memory transfer is generalized in three phases [4]: push phase, stop-and-copy
phase, and pull phase.

e Push phase: In this phase, the VM keeps running at source host while its memory
pages are pushed across the network to the destination host. The memory pages—
that are already sent, but modified again at the source during this process, known
as dirty pages—are sent again to the destination in order to preserve memory
consistency.

e Stop-and-copy phase: In this phase, the VM at the source host is stopped,
memory pages are copied to the destination host and the VM then starts at the
destination host (downtime).

e Pull phase: The new VM at destination, if needs a page which has not been
copied from the source host yet (known as page fault), pulls the page across the
network from the source host.

Xen [4] and VMware [11] both have the ability to live migrate virtual machines
using the tools XenMotion and VMotion respectively. They both have the capability
to monitor and manage the migrations for the cloud provider.
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2.2 Migration Algorithms

A migration algorithm may integrate all three phases of memory migration,
however, the most practical algorithms use either one or two of the phases. The
two live VM migration algorithms are pre-copy and post-copy [4].

Pre-copy The pre-copy algorithm uses an iterative push phase followed by a short
stop-and-copy phase. All the memory pages are first copied to the destination
in the push phase. After that, only dirty pages are copied to the destination in
iterative rounds, i.e., pages transferred during round » are the pages modified during
the round n — 1. In stop-and-copy phase, only the CPU state and any remaining
dirty pages are sent to the destination which brings the destination VM to a fully
consistent state. In the pre-copy algorithm, the source host handles the requests to
VM services during the live migration process.

Since less pages are to be transferred during the stop-and-copy phase due to the
iterative push phase, the VM downtime is reduced. However, it might need to send
a large number of pages repeatedly wasting bandwidth, if the pages are modified
frequently. Both Xen and VMware use the live migration pre-copy approach.

Post-copy The post-copy algorithm uses a short stop-and-copy phase followed by
a pull phase. In the stop-and-copy phase, the VM is suspended at the source, VM’s
CPU state is transferred to the destination host and resumed there. The VM is then
started at the destination and other memory pages are fetched (pulled) across the
network from the source host on their first use. In the post-copy algorithm, the
destination host handles the requests to VM services during the live migration
process.

The post-copy algorithm results in minimized downtime at the cost of increased
total migration time.

2.3 Live VM Migration Process

The migration process using the pre-copy algorithm, first described by Clark et
al. [4], consists of the following interactions between the source and destination
hosts.

1. Pre-Migration. The migration process starts with an active VM on the source
host A. The destination host B may be pre-selected in order to speed up the
migration process.

2. Reservation. It is confirmed that the necessary resources required by the VM at
the source host A are available at the destination host B. A VM container of that
size is also reserved at B. If the resource reservation fails, the VM simply keeps
on running on A.

3. Iterative Pre-Copy. During the first iteration, all memory pages of VM at A are
transferred to B. Later iterations copy only dirty pages to B.
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4. Stop-and-Copy. The VM at A is suspended and the CPU state and the remaining
inconsistent pages are transferred to B. The network traffic is redirected to B.
At the end of this stage, both A and B have suspended consistent copy of the
VM. The copy at A is considered the primary copy which can be resumed if the
migration process fails.

5. Commitment. Host B then sends a commitment to host A that it has successfully
received a consistent OS image. Host A now deletes its copy of VM and host B
becomes the primary host now.

6. Activation. The VM is activated at B now. Post migration code reattaches device
drivers to the migrated VM and advertises IP addresses.

3 Security Threat Model

3.1 Threat Model

The valuable asset which needs to be protected is the migrating VM’s data.
Traditional commodity operating systems are complex having design flaws, imple-
mentation bugs and security flaws which facilitate an adversary to gain access
to or tamper with the OS running inside a VM, resulting in a malicious OS.
Considering the maliciousness of OS, a process running inside an OS may also
behave maliciously. A tampered process with high privileges can access VM'’s
private data and tamper with it. Moreover, the adversary can install a rootkit
as a VMM below the OS and launch a malicious VMM. Hence OSs, processes
running inside OSs, and VMM are all not trusted. The peripheral I/O devices are
shared among VMs and hence are exposed to tampering through device drivers.
Communication medium is also not trusted allowing anyone to gain access to or
modify data in transit.

The owners of other virtual machines are possible adversaries. The owner of the
platform is also a potential adversary who can modify or tamper with the software
systems installed on the machine including OS images, VMM and applications etc.
Other malicious hosts inside the cloud and/or entities outside the cloud may also
launch attacks. The goal of both internal and external adversaries is the same: to
successfully gain access to or modify the migrating VM’s data either via a malicious
software system or via an untrusted communication medium.

3.2 Security Threats and Attacks

Oberheide et al. [12] categorized three classes of threats to the migration process as
control plane, data plane and migration module. The following is a description of
these threats and the resulting attacks against live VM migration in the context of
these threats.
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3.2.1 Control Plane

Control plane points out the misuse of the communication mechanism adopted by
the source and the destination VMM s to initiate and manage live migrations. An
attacker able to take control of the communication mechanism among the VMM is
able to launch the following attacks:

* QOutgoing migration control. An attacker may initiate unauthorized incoming
migrations which may ultimately result in the following attacks:

— Internal attacks. The attacker can migrate a legitimate VM to attacker’s
machine gaining full control of the guest VM.

— Denial of service attacks. The attacker can initiate a large number of outgoing
migrations of guest VMs to a legitimate host with the intentions of overloading
the target host, disrupting its performance, or launching a DoS attack against
it. The attacker can also launch a DoS attack against the target VM by forcing
it to migrate from host to host, disrupting the services it provides.

* Incoming migration control. Similarly, an unauthorized attacker may initiate
outgoing migrations, ultimately resulting in the following attacks:

— Internal attacks. An unauthorized incoming migration will allow an attacker
to migrate a VM with a malicious code to a legitimate host, thus enabling
the malicious VM to launch attacks against the VMM and other guest VMs
running on that host. Moreover, an attacker may live migrate in a legitimate
VM to attacker’s machine and hence, gain full control over the guest VM.

— Denial of service attacks. Similar to unauthorized outgoing migrations, the
attacker can also initiate a large number of incoming migrations of guest VMs
to a legitimate host causing a DoS attack against that host.

« False resource advertising. An attacker can exploit the automatic load balancing
feature and falsely advertise the resources available, pretending to have plenty of
spare resources, thus motivating other VMs to migrate to attacker’s VMM. The
attacker can then launch both internal attacks and DoS attacks against incoming
VMs.

Communication mechanism should be authenticated and tamper resistant
employing a proper access control policy describing who can initiate or suspend
a live VM migration. The access control lists should be complemented with a
firewall to verify the authenticity of the migration source and to allow migrations
to legitimate destinations only [16]. Xen implements required access control policy
via sHype [22].

3.2.2 Data Plane

Data plane refers to the susceptibility of the transmission channel across which
the VM migrations occur. The insecure transmission channel is vulnerable to both
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passive and active attacks revealing the sensitive information from the migrating
VM or at worst compromising the migrating VM. An attacker can place himself
in the transmission path using the techniques such as ARP/DHCP spoofing, DNS
poisoning, and route hijacking. With such a position, the attacker can launch both
types of attacks as follows:

» Passive attacks. The attacker can monitor the transmission channel and eaves-
drop the data in transit revealing the sensitive data from the migrating VM
memory such as encryption keys, passwords and other applications data. Even
if the data in transit is encrypted, the attacker may launch snooping attack to
uniquely identify the migrating VM and the destination VMMs to launch a later
attack against the VM or the destination VMM.

* Active attacks. The attacker can launch the most severe attack by manipulating
the memory of the migrating VM resulting in the complete compromise of the
migrating VM.

The data plane should be secured and protected against both active and passive
attacks employing proper cryptographic mechanisms for hiding the contents of the
transmission (for instance, encryption/decryption), preserving the integrity of the
data (for instance, MAC, digital signatures) and protection against snooping attacks
(for instance, padding).

3.2.3 Migration Module

The migration module is the VMM component which implements the necessary
migration functionality for the live migration of VMs. The migration modules
of the most common commercially available VMMSs, for instance XEN, have
suffered from different vulnerabilities [12] such as stack overflow, heap overflow
and integer overflow. An attacker can exploit these vulnerabilities to take hold of
migration functionality. Moreover, the attacker can subvert the VMM through its
possibly buggy migration module. Since VMM is the one which controls all VMs
running in a host, compromising a VMM would ultimately empower the attacker to
compromise all other VMs running on the same host.

The migration modules should be made resilient against attacks by thoroughly
inspecting their codes and removing the bugs in them.

3.2.4 Insecure Algorithms and Implementations
Moreover, from the cloud perspective, the information regarding VM migration

algorithms used by CSPs are not available publicly. When an attacker has infor-
mation about migration policies of the CSP such as host thresholds, they can create
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abusive attacks. Alarifi and Wolthusen [1] presented a method to reverse engineer
the migration algorithm of a service provider. When the attackers have information
about the migration algorithms, they can strive not to allow their own VMs to
migrate as well.

4 Secure Live Migration

4.1 Essential Security Requirements

To ensure the secure live VM migration between two hosts, the above mentioned
attacks need to be addressed. Based on the above attacks, the essential security
requirements have been listed as follows:

e Appropriate access control. Appropriate access control here involves both
authentication as well authorization. The source and destination hosts should
mutually authenticate each other. No one should be able to impersonate as a
VM source or destination. No unauthorized entity should be able to initiate an
incoming or outgoing live VM migration or suspend a live VM migration.

¢ Confidentiality. To establish a secure channel between the two ends, the contents
of the migrating VM should be hidden so that no one can read or misuse VM data
in transit.

* Integrity of VM data. The integrity of the VM data should be ensured so that
no one could tamper with the in-transit VM data. The state of the VM memory
should be preserved before and after migration without the VM memory being
polluted.

e Availability of VM services. No one should be able to disrupt the services
provided by a VM during the live migration of VM.

4.2 Existing Solutions

Even though an increased use of live VM migration has been reported in cloud
computing, very little attention has been paid so far to interrogate the security
aspects of live migration. So far, the process as well as performance of live migration
have been the central point of attention for the researchers in this area. However,
the security threats and resulting attacks discussed in Sect. 3.2 require the careful
implementation of security properties described in Sect. 4.1 in order to ensure the
secure live migration of a VM. The security in live VM migration is recently getting
attention. Most of the work in this area is based on Trusted Computing.
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4.2.1 Trusted Computing

Trusted Computing (TC) is a technology developed by Trusted Computing Group
(TCG) [18]. Trusted computing ensures that a system is secure and it behaves in
an expected way. TC incorporates strong security in systems by adding hardware
based security via Trusted Platform Module (TPM) in addition to the traditional
software based security. TPM is a computer chip that securely stores passwords,
certificates and/or encryption keys to authenticate a platform (authentication) as well
as platform measurements to ensure the trustworthiness of the platform (attestation).
TPM also provides cryptographic functions such as encryption, decryption, signing,
random number generation, hashing, asymmetric key generation and migration of
keys between TPMs. The TPM is designed in a way that it is extremely difficult
to obtain cryptographic data stored in it or to launch a software based attack from
malicious code, Trojans, viruses and root kits against it. A variety of applications
storing cryptographic material on a TPM can be developed using Trusted Software
Stack (TSS), a standard API for accessing the functions of the TPM. Together TPM
and TSS provide a strong security level that is applied to a system in order to
achieve platform authentication as well as platform attestation. Trusted computing
encompasses the following key technology concepts:

* Endorsement key (EK). A public and private key pair built into the TPM hardware
at manufacture time which cannot be changed.

* Secure Input/Output. Thwarts attacks from spyware such as keyloggers and
screen scrapers that capture the contents of a display.

* Memory curtaining. A hardware-enforced memory isolation scheme providing
complete isolation of sensitive areas of memory such that other processes
including operating systems cannot read or write to them.

* Sealed storage. Seals secure cryptographic data and other critical data by binding
it to platform state including software and hardware being used such that only
certain combination of software and hardware can unseal the data.

* Remote attestation. Encrypted certificates for all software components running
on a device are generated and presented as an evidence to remote parties who use
a certificate to detect unauthorized changes to a software running on that device.

* Trusted Third Party (TTP). An intermediary party between a user and other users
for authentication and remote attestation purposes in order to preserve user’s
anonymity while still providing a “trusted platform”.

4.2.2 VM-vTPM Live Migration

In practice, a virtualized platform owns only one hardware TPM which is owned by
the VMM [18]. However, from the perspective of virtualization, each VM and VMM
must have its own TPM. It leads to the necessity of virtualization of a hardware TPM
in order to make its functionality available to each VM running on a single platform
with the feeling as it has access to its own private physical TPM. Working on this
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idea, the design and implementation of a virtual TPM (vVTPM) was presented by
Berger et al. in [3]. They implemented their designed architecture of vIPM on Xen
hypervisor. Their architecture is composed of a vIPM manager and a number of
vTPM instances running in either memory or on a cryptoprocessor. Each vIPM
instance fully implements the TPM 1.2 specifications of TCG. A VM in need of
TPM functionality is assigned a vIPM instance which acts as a hardware TPM
for that VM. Only the management VM (Dom0 in Xen) has access to the actual
hardware TPM. When a VM starts, a vIPM instance is created for it as a user-
space process in the management VM. The management VM runs vIPMs with the
help of vTPM manager. The vIPM manager, which runs on the management VM,
manages communication between a VM and its associated vIPM instance whereas
the management VM coordinates all requests to the hardware TPM.

In addition to providing a perception of separate TPM for each VM, an additional
challenge is involved in virtualizing a hardware TPM and that is to provide support
for migration of a vIPM instance from the source to the destination platform when
the related VM migrates. This is known as VM-vTPM migration. During VM-
vTPM migration, the underlying hardware and software platform, i.e., the trusted
computing base, changes. Keeping track of this change is challenging in TPM
virtualization especially when VM migrates frequently. Berger et al. [3] enabled
migration of a vIPM instance by encrypting and packaging TPM state on the source
vTPM and decrypting the state on the destination vIPM.

Berger et al.’s Migration Protocol Their proposed protocol initiates migration by
creating an empty VIPM instance at the destination for the purpose of migrating
TPM state. The destination vITPM then creates a Nonce unique to that particular
vTPM migration and transfers it to the source. At the source, the vIPM is locked
to that Nonce so that no further changes can be made in it. The vIPM state is then
encrypted by a symmetric key generated by the source vIPM. The state includes
NVRAM areas, keys, counters, authorization and transport sessions, delegation
rows, owner evict keys, and permanent flags and data. An internal migration digest
is prepared with the hash of the state data and is embedded in the end of the state
information. The source vIPM is then deleted and the encrypted source vIPM
state information together with the migration digest is sent to the destination. The
symmetric key used to encrypt the vIPM state is encrypted using the Storage Root
Key (SRK) of the source vTPM parent instance and sent to the destination. The
migratable SRK of the vTPM parent instance is also sent to the destination vIPM
parent instance using the mechanisms applicable to migratable TPM storage keys.
The destination decrypts the encryption key and uses it to recreate the migrating
vIPM’s state. The migration digest is also recalculated. The vIPM restarts at
destination only if the calculated digest matches the received digest. The vIPM
protocol supports live VM migration, however, the downtime of the migrating VM
in the worst case is increased by the time an outstanding TPM operation takes to
complete plus the vIPM migration time. There is no authentication between source
and destination.
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Danev et al.’s Migration Protocol Danev et al. [6] proposed another TPM based
migration protocol which proceeds in three stages:

1. Authentication: In authentication stage, the source and destination mutually
authenticate each other using their certificates. They both agree upon a session
key in order to establish a secure channel for protecting the rest of the transfer
process ensuring the confidentiality (through encryption) and integrity (through
hashing) using the established session key.

2. Remote attestation: In attestation stage, the source sends an attestation request
to the destination to ensure the integrity verification of both the source and the
destination.

3. VM-vTPM migration: In this stage, the destination sends a freshly generated
random Nonce to the source. The source locks the VM and vTPM using Nonce
to aoivd further changes. The source then transfers encrypted VM and vIPM
along with the received Nonce using the previously established session key. The
destination checks the integrity of the received VM and vTPM via hash value
attached with the received VM and vIPM pair. If integrity check succeeds, the
destination imports the VM and vTPM pair and sends an acknowledgment to the
source. The source after receiving the acknowledgment, deletes the migrated VM
and vTPM pair and informs the destination that the migration is complete. The
source and destination then resume their operations.

These both protocols miss the desirable security feature of access control to
restrict unauthorized entities to migrate in/out VMs. In these protocols, TPM
keys are migrated along with the VM, vIPM pair which might raise security
concerns as the security of TPM depends on its non-migratable keys. According
to Perez-Botero [14], any changes made to a VM need to be synchronized with
the vTPM during the migration which makes live migration more complicated.
Thus, synchronization also becomes a requirement in addition to security for a
vIPM based live migration protocol which ultimately affects the VM and vIPM
resumption timing at destination. Furthermore, ensuring synchronization between
the VM state and its vIPM becomes troublesome in those live migration protocols
which start VM on the destination before it is stopped at the source. A secure
live VM-vTPM migration protocol with the security guarantees is yet to be seen
in practice.

4.2.3 Trusted Third Party

According to Aslam et al. [2], the use of virtual TPM increases the size of the
Trusted Computing Base (TCB) which is also dynamic in nature and hence causes
security concerns. They use TPM without virtualizing the hardware TPM in [2]
which results in a small and manageable TCB which is static. In their proposed
protocol, a trusted third party PTAA (Platform Trust Assurance Authority) assigns
Trust Assurance Levels (TALs) to cloud platforms based on their software and
hardware configurations. The PTAA generates a platform trust credential called
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TrustToken for every cloud platform. Trust_Token is a PTAA signed certificate
which specifies the TAL of the cloud platform for a specific configuration of
hardware and software components it possesses. The Trust_Token also includes a
TPM created bind key to ensure that a cloud platform can use this token as a proof of
its trustworthiness only if it maintains the same configurations for which the PTAA
signed the Trust_Token. The TPM allows to use the bind key only if the platform has
the same configurations. Their VM machine migration protocol has the following
two phases:

1. Remote attestation: The source cloud platform P; and the destination cloud
platform P, exchange their Trust_Tokens in order to perform remote attestation.

2. VM migration. The platform P; sends a Nonce encrypted with the public bind
key P K-Bind of P; which is obtained from the TrustToken of Pg. The platform
Py creates a symmetric key K, and uses it to encrypt the VM snapshot together
with the received Nonce which was decrypted using its private bind key SK-
Bind;. The key K, is also encrypted using PK-Bind,; obtained from the
TrustToken of P,;. The encrypted key K,, together with the encrypted VM and
Nonce are sent to the P;. The platform Py first decrypts K, using SK-Bind,.
Note that the respective bind keys on both sides can only load and work if the
TAL values of Py and P; remain the same during migration. The platform Py
then decrypts Nonce using K, and compares it with the sent Nonce in the first
step. If both values match, the received VM is decrypted and launched and a
signed acknowledgment is sent to P, otherwise the migration is stopped.

Their proposed protocol addresses two security issues of platform integrity and
confidentiality of VM data in transit by involving a trusted third party. As the
hardware and software configuration of a cloud platform might change frequently in
cloud environment, their proposed protocol might require a new Trust_Token from
PTAA for a cloud platform after every change in its configurations.

4.2.4 Role-Based Migration

Wang et al. [20] proposed a role-based live VM migration protocol which provides
the required access control feature using role-based policy which defines who has
the right to migrate a virtual machine, and to which hosts this virtual machine can be
migrated. Their proposed security framework utilizes the advantages of Intel vPro
and TPM hardware platform and contains the following software modules:

* Attestation Service provides remote attestation which cryptographically identifies
a running hypervisor to a remote hypervisor.

e Seal Storage is used by the secure hypervisor to store its private key and role-
based policies.

* Policy Service parses and manages the role-based policies.

* Migration Service is responsible for migration.
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o Secure Hypervisor utilizes the idea of secure hypervisor, by Dewan et al. [7], to
protect the runtime memory of a guest VM’s process from the guest OS by hiding
process memory into persistent storage from the rest of the OS components.

Their proposed secure live migration protocol works in two steps:

1. Remote attestation: First step is the remote attestation of the destination host in
order to make sure that the destination host has the required security level. If
it does not, the back-end cloud helps the destination to install required security
measures.

2. Secure live migration: The VM owner initiates a migration request to the
migration service module. The migration service module contacts the policy
service module to make sure whether this action is allowed to the requesting
entity or not. If allowed, it obtains the cryptographic key and certificate from
the seal storage module and encrypts the VM state in order to migrate it to the
destination.

This work lacks several important details, for instance, the roles of sealed storage
and secure hypervisor. The authors mention the use of the sealed TPM keys but do
not give details about the purpose of these keys. They also fail to explain the role of
the secure hypervisor in their proposed framework.

4.2.5 VLANs

Live VM migration, unlike over the LAN, introduces new challenges over the WAN.
Since disk state is also transferred apart from the memory state in WAN migration,
a large data is to be transferred over a low bandwidth and high latency WAN.
Furthermore, since different routers are involved in WAN migration, the IP address
space would be different making seamless transfer of active network connections
difficult. Wood et al. [21] presented an architecture, CloudNet, which provides
optimized support for live WAN migration of virtual machines. CloudNet addresses
the problems linked to WAN migration by virtualizing the network connectivity
using layer-2 Virtual Private LAN Service (VPLS) VPN technology [RFC 4761]
such that the VM appears to be on the same VLAN. It creates a virtually dedicated
path between the two ends providing a secure communication channel. The traffic
for a migrating VM is restricted to a particular VLAN which isolates it from
other network traffic and thus makes it inaccessible from the public Internet. Their
solution provides confidentiality, integrity and authorization at the cost of increased
complexity of setting up and maintaining VLANs for each VM and increased
administrative costs with the growth of number of VMs.
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5 Uncovered Threats with Potential Research Directions

The existing research in this area mainly focused either on the confidentiality of the
VM’s contents or integrity of the in-transit data. However, there is no mechanism
discussed in literature which makes sure that

1. VM’s memory pages and information are securely removed from the source
host’s physical memory once the VM is migrated and resumed at the destination
host, and

2. memory assigned to a migrating VM on destination host is clear from previously
used VM’s data and possibly any malicious codes.

Although confidentiality and integrity of data in transit together build a secure
communication channel to avoid data leakage during live migration, the protection
of VM data at source and destination during live migration is also crucial. There
are many factors which may affect the confidentiality and integrity of VM data at
source and destination during live migration. In cloud computing, the major security
threats are from the software bugs, system vulnerabilities and careless or malicious
employees [23].

5.1 Bugsin VMM

In the process of software development, defects in implementation of a software,
known as bugs, are inevitable. Many security breaches start with identifying these
bugs and vulnerabilities and taking advantage of them. Therefore, it is significant
to prevent the exploitation of these vulnerabilities. In other words, either the
bugs should be removed from the software, or the exploitation of them should
be made harder. The process of live migration is usually initiated and controlled
by the VMM software. Although remote attestation guarantees the tamper proof
software components on a platform, it does not provide a guarantee that a software
component is bug-free and reliable. A software component might have security
related bugs which could be compromised by, for instance, a buffer overflow attack.
The most popular and widely deployed VMM, e.g., Xen and VMware that support
live VM migration have bugs in their codes and are vulnerable to practical security
attacks launched against their live migration protocols as shown in [12]. Bugs in
VMM can be exploited in order to launch attacks against the consistency of the
memory of migrating VM.

Possible Research Directions Obfuscating the VMM could be the one possible
solution to make the vulnerabilities harder to be noticed. Obfuscation [5] appertains
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to scrambling the code in a way that it is more difficult to comprehend and reverse
engineer it while preserving the semantics of the code. This means that, even if
an attacker succeeds in getting access to the source code, it requires the attacker
more time and energy to identify the vulnerabilities in the obfuscated code than in
the original source code. With given amount of time, the attacker might be able
to understand the code and find the security holes, however, that would be harder
and more costly. Obfuscation increases the effort, energy and cost of conducting a
successful attack.

The other potential solution to this threat is the use of diversification. Diversifica-
tion [9], by changing the internal interfaces and structure of the software, generates
unique and diversified versions of the software. All these versions are functionally
equivalent. As a result, the same attack model is not effective on all these versions,
which impedes the risk of massive-scale attacks. Moreover, the malicious software
that does not know the diversification secret cannot interact with diversified software
component. Thus, the malware becomes ineffective. However, in order to preserve
the access of the legitimate applications to the diversified resources/components, the
diversification secret is propagated to the trusted applications.

Unlike some other security measures, we do not aim at eliminating the security
holes in software by using these techniques; rather we aim at making it more
challenging for the adversary to conduct a successful attack. This is achieved by
increasing the workload, cost, required time, effort, and failure rate for the attacker
to perform its malicious activity.

We believe that these two techniques could successfully protect the VMMs from
exploitation of the available bugs and vulnerabilities. In a previous work [10], we
have shown different types of attacks that diversification and obfuscation techniques
could successfully mitigate, including buffer overflows and code injection.

5.2 Replay of VM Data Messages

During the live migration, whenever a memory page that has already been trans-
ferred to the destination host is modified at the source host, it is sent again to the
destination host. Frequently updated memory pages are transferred to the destination
several times. An attacker who has intercepted a message containing a previous copy
of the encrypted memory page, can replay this message to the destination host at a
later stage providing an older copy of the memory page. The replayed messages pass
authentication check and decrypt successfully, however, compromise the integrity of
the VM memory at destination. Oberheide et al. [12] showed a successful man-in-
the-middle attack against VM memory migration by manipulating memory of the
migrating VM with Xen as a VMM used at both the source and the destination. They
successfully modified the memory pages of a test process running inside a guest OS
on source host while the memory pages of the guest OS were being transmitted
over the network, ultimately polluting the memory of the migrating VM on the
destination. This attack together with replay attack allows an attacker to modify
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pages or add new pages to the migrating VM memory. This attack may become
severe if the modified page contains the security related data used by the VM to
enforce a security feature, e.g., a private key. However, existing research did not pay
attention to the replay attack against migrating memory pages.

Possible Research Directions Replay attack is usually encountered by providing
freshness. To ensure freshness, one option is the use of counter. Both the source and
the destination manage a counter and agree on the same initial value of the counter.
Each memory page from source will be sent with a new counter value that will be
verified on destination. The source and the destination both update the counter value.
Authentication mechanism will void modifying counter value. Hence, the counter
value together with the strong authentication avoid replay attacks as well as man-in-
the-middle attack. Another possibility could be attaching timestamp with each page
which requires some time synchronization between the source and the destination.

5.3 Privileged Access

A system administrator of the cloud provider needs root privileges at the cloud’s
machines in order to install and manage the software on them. It enables a malicious
system administrator to install any software component on a machine to launch
attacks. An example given by Santos et al. [15] states that if Xen is used as a VMM,
a system administrator can use Xenaccess [13] (a monitoring library for operating
systems running on Xen) to run a user level process in DomO (privileged VM in Xen)
which provides system administrator a direct access to the VM memory contents.
Moreover, the system administrator who has privileged control over the VMM can
also access the memory of a customer’s VM [15]. A malicious system administrator
can modify or keep a backup of the migrating VM memory on the source host or
poison the VM memory on the destination host.

Possible Research Directions Rather than a security solution, a security policy
may help in controlling privileged access. For instance, appointing more than one
person as admins and imposing a policy which keeps more than one admin involved
in each privileged access may help. A policy could be that each privileged access
by an admin needs permission or authorization from multiple admins or it could be
that any privileged access to the system generates a notification to more than one
person etc.

5.4 Lack of Access Control

Existing work focused on authentication, confidentiality and integrity of the VM
data and almost ignored the necessary access control feature to restrict unauthorized
entities to initiate a VM migration. TPM based schemes perform remote attestation,
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however, they do not check access control. Wang et al’s live VM migration
protocol [20] provides the required access control feature through access control
policies, however, it lacks several details about how role-based access control will
be implemented. Without proper access control, an adversary can migrate a VM to
such a destination host that can corrupt the memory of migrating VM.

Possible Research Directions There have been an extensive research in the area
of access control for other systems and several approaches for controlling access
in other systems such as web system have been proposed. Those techniques may be
explored here. For instance, access control list, a popular solution for access control,
could be explored here. A list of access rights could be maintained on the host for a
VM, when a VM migrates to a host, defining who is allowed to initiate migration of
that VM. Morover, Wang et al.’s live VM migration protocol [17] may be extended
by providing detailed control policies.

6 Proposed Secure Live VM Migration Protocol

In order to make sure that live VM migration is secure, there needs to have a secure
live VM migration algorithm that protects the VM memory data not only between
the source and destination hosts but also at the source and the destination hosts
during live migration providing required security properties. In this section, we
propose a secure live VM migration protocol keeping in mind the required security
considerations.

Day by day more organizations and businesses have started switching to cloud
computing for their business applications. One of the main technologies behind
cloud computing is virtualization. The security of a cloud cannot be guaranteed
unless its virtualization is made secure. Live VM migration is an important operation
inside clouds for fault tolerance and load balancing. Ensuring the security of live
VM migration is more complex than the security of a switched off VM migration,
adding synchronization requirement on top of security requirements. A secure live
VM migration protocol also needs to instantly synchronize any changes made in
VM pages at source host with the VM pages at the destination host at run time.

Most of the existing solutions for live VM migration are TPM based. TPM based
protocols introduce hardware dependency and fail to work with legacy hardware.
On the other hand, protocols without TPM handle VM migration security issues
individually, either one or another. A protocol which provides one security feature,
for instance encryption to hide VM data in transit, but lacks another security feature,
for instance data integrity of VM data in transit, is not considered a secure VM
migration protocol. Moreover, if a secure VM migration protocol fails to provide
synchronization of VM data on both sides during a live migration, it would not be
considered a usable protocol. A secure live VM migration protocol must provide all
the required security features along with the required synchronization feature.
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Furthermore, the current research seems to have completely ignored the need
of mechanisms which ensure clearing memory at the destination before migration
starts and at the source after migration ends. None of the existing protocols takes the
responsibility of ensuring a clear memory portion assigned to an incoming VM on
the destination host from previous VM data or malicious codes and secure removal
of memory data of outgoing VM. This situation might force the organizations and
businesses to get reluctant to switch to cloud due to the potential attacks on their
assets. One possible way to ensure memory integrity on both sides may be for the
migrated VM to check the state of memory assigned to it on the destination before
it starts moving its pages to the destination and dump its memory itself as soon as it
is migrated to the new host and check the dump for information.

Keeping in mind the essential security requirements of VM migration and
shortcomings of existing solutions, following is a proposal for a secure live VM
migration protocol:

e Access control: At first step, the access rights should be checked to make sure
that if the requesting entity is authorized to perform this operation or not, before
the live VM migration is initiated. As discussed previously, access control list
mechanism or policy management approach could be suitable for this scenario.
Hence, only eligible VMs that are allowed would be allowed to migrate and the
illegitimate VMs are denied at first step.

* Authentication: If the live migration is initiated by an authorized entity, the
source and the destination then mutually authenticate each other to make sure if
the VM is going to migrate from a legitimate source to a legitimate destination.

e Remote attestation: In remote attestation, both source and destination ensure
required security level of each other.

o Secure live migration: The live VM migration then performs the following
steps:

1. The VM data is then encrypted by the source to ensure confidentiality.

2. Counter value or time stamp is attached in order to avoid message replay
attack (this step may be performed before encryption if the confidentiality
is required).

3. Authentication information is embedded with the encrypted VM data (authen-
tication information could be the hash of VM data including counter/time
stamp).

4. The encrypted source VM data together with the authentication information
and counter is sent to the destination.

5. On destination, all the security checks are performed and the VM restarts at
destination only if the security checks are successful.

6. The destination will send an acknowledgment to the source if everything goes
right.

7. The source after receiving the acknowledgment, deletes the migrated VM and
sends an acknowledgment to the destination that the migration is successfully
completed.
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7 Conclusion

In this chapter, we first discussed the attacks that are launched against the VM data
during live migration in the clouds. In addition to these attacks, we highlighted a
few uncovered attacks which may compromise the consistency of the VM memory
contents present at the source and/or the destination at the time of live migration.
These attacks exploit bugs in hypervisors, message replay, privileged access to
the hosts and may carry out malicious actions such as backing up or modifying
VM memory contents at source and corrupting VM memory at the destination.
These and many other attacks in the cloud environment require new solutions and
countermeasures or improvements to the existing solutions. Thence, for each of the
studied threat, we presented potential solutions to prevent or mitigate the risk of
their occurrences, for instance: obfuscation and diversification techniques could be
used to scramble the VM code and change internal interfaces and structure of the
software, respectively to make the vulnerabilities in VMM harder to be noticed;
freshness, in the form of counter or timestamp, may avoid replay attacks; access
control techniques from other systems such as access control lists could be explored
for VM migration; root privileges could be controlled by enforcing a security policy
rather than a security solution. Using these solutions, we proposed a protocol for
secure live migration of VMs.
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Abstract Software Defined Networking (SDN) is an increasingly common
implementation for virtualization of networking functionalities. Although security
of SDNs has been investigated thoroughly in the literature, forensic acquisition
and analysis of data remnants for the purposes of constructing digital evidences
for threat intelligence did not have much research attention. This chapter at first
proposes a practical framework for forensics investigation in Openflow based SDN
platforms. Furthermore, due to the sheer amount of data that flows through networks
it is important that the proposed framework also implements data reduction
techniques not only for facilitating intelligence creation, but also to help with
long term storage and mapping of SDN data. The framework is validated through
experimenting two use-cases on a virtual SDN running on Mininet. Analysis and
comparison of Southbound PCAP files and the memory images of switches enabled
successful acquisition of forensic evidential artefacts pertaining to these use cases.
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1 Introduction

SDN is a network in which there is virtual abstraction of a control layer away
from the physical infrastructure layer. This is a relatively new paradigm within
networking which diverts away from conventionally designed hardware defined
networks in which the network’s physical infrastructure retains and limits its
configurability. The promise of such programmable SDNs has gained industry wide
attention due to its potential for improving upon modern network infrastructure and
alleviating many of its drawbacks. Enabling configurability of network functionality
will facilitate scalability, storage and flexibility of network architecture to allow for
the ever increasing demands placed by world-wide Internet users. As Fig. 1 shows,
the framework of SDN usually consists of three planes while it has two types of
APIs [31]. The data plane (the lowest-level) performs the flow forwarding operation
and deals with flow forwarding devices (switches and routers). The control plane
connects all forwarding devices in the data plane and sends forwarding commands
to data plane. There may be a variety of network application such as firewalls and
access control lists in application plane (the highest-level). Figure 1 also shows two
common APIs in SDN namely the northbound interface which allows components
of control plane communicate with the higher-level component (application plane)
and the southbound interface which enables communication between control plane
and data plane.

OpenFlow-based architecture is the most widely used SDN architecture as the
southbound API [31]. A forwarding device or OpenFlow switch containing flow

Control Plane

Data Plane

Fig. 1 A typical framework of software-defined networking (SDN) [31]
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tables and an abstraction layer uses the OpenFlow protocol to send messages back
and forth to the controller. The flow entries within the flow tables determine the
policy for processing and forwarding packets [29].

The increasing deployment of SDN made forensic investigation of SDN deploy-
ments a growing challenge [2]. In order to facilitate SDN forensics this study
proposes a framework for forensic investigation of SDN networks which contains a
data reduction module due to the voluminous and widely varied information flowing
through SDNs. This chapter follows these objectives:

* Identifying all possible locations within the SDN architecture that may contain
evidential data.

* Proposing a framework for forensics investigation and data reduction in SDN
platforms. We construct a methodology for acquisition, reduction and analysis
of SDN data in a forensically sound manner and demonstrate the framework
viability by testing it against three different SDN platforms.

The rest of this chapter is organized as follow: Sect.2 provides an in-depth
research into the literature on digital forensics in particular cloud forensics as the
closest example of the type of forensics investigation that will be taking place.
Section 3 reviews the specification of a framework for forensics investigation in
software defined networks. The proposed framework is introduced in Sect. 4 while
Sect. 5 describes the tool developed for southbound forensics. Section 6 designs a
testing environment for further evaluation of the framework and Sect.7 evaluates
the framework by designing two practical experiments. Finally, Sect. 8 concludes
the chapter.

2 Related Work

Cloud computing is becoming a major implemented use-case for modern day
network infrastructure service to provide. Cloud forensics is very closely linked to
SDN forensics as evidential data will almost always be transferring across multiple
hosts within a cloud via the network [6].

In 2012 a framework for Cloud forensics investigation was described by Martini
and Choo [22] which was derived from previous frameworks described by McKem-
mish [33] and NIST [19]. This framework has been validated through use in various
other cloud investigations such as ownCloud [23], Amazon EC2 [46], VMWare [25]
and XtreemFS [24], Syncany [45]. and SymForm [43].

Extension and further validation of the framework has been carried out using
SkyDrive, Dropbox, Google Drive [8], MEGA [7], SugarSync [38], pCloud [27],
SpiderOAK [28], hubiC [10] and ownCloud [23].

Another methodology for cloud forensics investigation on Windows, Mac OS,
iOS and Android platforms has been proposed by Chung et al. [5] and applied to
investigate Amazon S3, Google Docs and Evernote. A methodology for acquiring



284 M. K. Pandya et al.

remote evidence from a decentralised file synchronisation network was [36] utilised
to investigate BitTorrent Sync [37]. A different forensics investigation methodology
has been proposed for investigation of any third party or Object Exchange Model
(OEM) application including the newer BitTorrent Sync (version 2.0) [44].

A digital forensics adversary model has been proposed and applied towards
forensics investigation of mobile devices such as the Android smartwatch [12, 13].
Proposal of a conceptual forensics-by-design framework in which forensics tools
and best practices are integrated into the development of cloud systems provided
a basis upon which forensics friendly cloud systems may be implemented [32].
A proposal of proactive application level-logging mechanisms which may be
helpful during incident response [26, 39] has received criticism for not being truly
applicable in real-world scenarios [48]. A different approach involving remote
acquisition of evidences through Application Programming Interfaces (APIs) has
been outlined by various forensics researchers [15, 17, 23, 25], although it has been
suggested that limitations placed by an API’s feature sets and also the introduction
of possible changes into logged data as a result of remote acquisition Forensic
analysis of mobile cloud apps has also been carried out. Examples include forensics
investigation of social networking apps [11] and data storage apps [9].

Various challenges exist when carrying out cloud forensics that have been
well documented. Opinions of digital forensics investigators vary with regards to
perception of what the main challenges are [40], however, lack of data control,
inability to access evidences due to decentralization and laws preventing access to
the data from different parts of the world, difficulty in automating forensic analysis
on cloud platforms due to cloud architecture and lack of available tools for analysis,
volume of data to be analysed and insufficient time to carry out thorough analysis all
present some of the major obstacles to successfully executing forensic investigations
on Cloud [3, 14, 30, 41].

Among all such challenges, physical inaccessibility of evidences due to decen-
tralized nature of the cloud as well as potential legal barriers to obtaining evidences
though potentially located due to jurisdiction differences, are obstacles that could
be overcome in an SDN based cloud system through initial forensic analysis of the
SDN as opposed to direct analysis of cloud clusters.

3 Framework Specification and Design

In order to design a correct forensics investigation framework, it is necessary to first
determine all possible locations within a SDN in which potential forensic evidences
may be obtained. A software defined network consists of a controller connected
to the network infrastructure (switches and routers) via a southbound interface. It is
also connected to various applications that are involved in consuming or configuring
the network via a northbound interface. There may also be connections between
SDN controllers via westbound and eastbound interfaces [16].
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At first glance the most thorough approach to ensure that all potential evidences
of a network is obtained would be to capture all traffic travelling across every
single interface as well as acquiring artefacts from the northbound applications
and complete memory images of all SDN controllers and all routers and switches.
Although such a forensics investigation would leave no stone unturned, it would
involve analysis of very large volumes of data, much of which would be duplicated
across multiple interfaces. The large amount of time involved in carrying such a
thorough SDN forensics investigation out would cause a wasteful, unnecessary over-
allocation of investigative resources. It is also contrary to the ideals of the framework
being designed, as such an approach lacks consideration of data reduction, which
should be integral to the investigative approach even in the preliminary stages prior
to evidential artefact acquisition.

Whilst the SDN controller is responsible for governing all functionalities within
a SDN, it is the switches and routers within the infrastructure or data layer of the
network that actually carry out the respective functions that enable different network
operations. Therefore, all network activities will ultimately have to be relational,
either directly or indirectly, to whatever data transfer occurs across the southbound
interface of the Software Defined Network. Hence, it should be possible to obtain
all necessary evidential forensic artefacts by acquisition of all network traffic data
that flows across only the southbound interface of the SDN, it being pivotally
instrumental for all other network activity. This approach is more direct, less time-
consuming to carry out and should result in the acquired data being less voluminous
and more relevant.

The data that is acquired from the southbound interface network traffic should
reference all other data from network traffic across all other interfaces within a
SDN. It may not, however, be thorough enough in and of itself to provide sufficient
information to stand successfully in a case of law in court. There could be further
information contained within the memory images of switches that is also referenced
by the southbound network traffic that would provide further elaboration and clarity
to any evidential information acquired from the southbound network traffic. As such
in addition to the southbound network traffic data, acquisition and analysis of the
memory images of SDN switches should also be incorporated into a SDN forensics
investigation methodology.

Depending on the size of the network even an investigation involving acquisition
of just the southbound traffic data and the SDN switches’ memory images could
result in far too much data than is possible to adequately analyse in a practical
manner within realistic time frames provided to forensic investigators. As a result
further data reduction on acquired data must be an integral step in any SDN
Forensics Framework

The Semantic Web is a systematically classified set of data relationships catered
towards machine readability. This is achieved through the use of ontologies which
formalise the naming of relationships and entities within a particular domain of
discourse [42]. Successful representation of knowledge can be achieved primarily
through the use of ontologies due to their ability to provide a clear vision of
relationships among structured data. In the absence of such ontologies, representing
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and understanding data relationships within a specific domain becomes difficult.
If the naming of entities and relationships within the specified domain is clearly
established further processing of data for knowledge discovery becomes more
straightforward [35]. It is for these reasons that the data acquired from the forensics
investigation should be mapped into an ontology in order to simplify processing of
data for reduction in volume and variety.

A further approach towards data reduction could potentially be obtained via
mining of the ontologically mapped data. Data mining is a means of analysing
data with the objective of extracting useful information from it. Relationships,
associations and quantities within the data may be discovered as a preliminary
step through which the forensics investigator could narrow down the searchlight
by concentrating efforts on analysing data from locations that are found to have a
stronger likelihood of containing relevant evidences as per the resulting discoveries
found through the data mining process. For example, it could be discovered that
data obtained from a certain packet type flowing through a SDN is related to data
obtained from the switches’ memory that always show a certain activity, such as
sending emails, on a host machine.

4 Framework Development and Implementation

Figure 2 shows our proposed framework that is designed based on Martini and
Choo’s Digital Forensics Framework for Cloud [22]. Following appropriate prepa-
ration procedures and having obtained authorization to acquire evidences from the
SDN southbound network packet captures and the SDN switches’ memory images,
collection of those southbound network traces should take place. Thereafter, the
evidences must be preserved and protected in a forensically sound manner prior
to examination and analysis. The results of the analysis are then to be investigated
and any resulting theories on attributions must be established prior to presenting
evidences. With SDN forensics it is always possible that certain evidences cannot
be found directly from switches’ memory and network packets but are referred
to within those evidences and are actually located elsewhere on the network, for
example a host’s machine. The analysis and results phases therefore may lead back
to the start of the framework flow with new locations within the SDN in which
forensic evidences need to be acquired.

Various ontologies for forensics have been proposed. Among them are the
Digital Evidences Semantic Ontology (DESO) [4], an attempt to automate event
and social network evidence extraction [47] and a method for intelligent network
forensics analysis [35]. Of these the DESO is relevant ontology our investigation
to this particular due to it’s simplicity stemming from a fewer number of entity
classifications which aids greatly in achieving reduction of data variety.

DESO consists of three classes: artefact location, artefact reference and artefact
type identifier. The artefact location has a “asProvenanceReference” relationship
to artefact reference and a “isArtefactType” relationship to artefact type identifier.
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Fig. 2 Proposed framework for forensics in Software Defined Networks (SDN)

Artefact type identifier has a “isFoundAt” relationship to artefact location. The
implementation of this particular ontology in SDN Forensics for data reduction
occurs through alteration of three classes to “packet location” which shows the
origin of the packet file, “packet type”, which represents the protocol of the packet,
and “packet reference” which is a reference to the case being investigated. Once the
data is mapped to the ontology, it is then in a format which may be mined. Mining
of the mapped data is advantageous due to the potential value that subsequent
knowledge gained may bring to the forensics investigation.

5 SDN Southbound Forensics Tool

SDN forensics is a relatively new focus within the digital forensics research
community, partly due to the fact that SDN is an emerging paradigm [21]. For
this reason, as part of this research, a prototype for a SDN forensics tool called
SDN Southbound Forensics which is a python3.5.1 application was written. The
application is contained within a file named sdn_southbound_forensics.py and
requires the host machine to have Python3.5.1 and the forensics tool named bulk
extractor installed in order to run. sdn_southbound_forensics.py consists of two
classes of GUI class for showing graphical user interface and Forensics class to
capture and analyze the data.
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Fig. 4 Common packets shown by the tool

After lunching sdn_southbound_forensics.py, the SDN Southbound Forensics
Tool GUI will appear to the user (Fig.3). Figure 4 presents the common packet
information screen that shows a list of common packets between the switch’s
memory image and the southbound packet capture file. The source and destination
IP addresses, the packet protocol, packet identification and checksum information
is shown in Fig. 4. Double clicking on one of the entries will open a more detailed
outlook on comparison between packets (Fig. 5).

More details regarding information from different packet layers are shown
by scrolling down in the page (Fig.6). Comparisons can be made between the
two packets and potential evidences can be preserved. Clicking on the “Save
and Preserve Evidence” button will save the packet information into a directory
folder named “SDNEvidence” followed by a timestamp at which the evidence was
acquired and saved. The MDS5 hashes of the saved files are also stored in a .zip
file. This will all be contained within the same directory as the southbound packet
capture file used for the investigation.
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Fig. 6 Scrolled down look on more detailed common packet information screen

6 Testing Environment Setup

To determine whether the proposed SDN Forensics Framework is a suitable for
SDN forensic investigation, it is tested within a simulated environment. Simulating
a software defined network can either be done through a virtual network simulator
or by actually implementing an SDN controller and a northbound interface into a
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Controller

Fig. 7 Designed testbed for experimental analysis of proposed framework

physical network’s switches and routers. The mininet virtual environment has been
used for the purposes of SDN simulation as a well-known SDN simulator [18].
The simulated environment consists of four switches each connected to three hosts
as shown in Fig.7. In order to verify the validity of the framework it should be
tested across a variety of SDN controllers and use case scenarios. Due to their
prevalence in a variety of studies within the literature, OpenDaylight [34], Project
Floodlight [1] and Ryu [20] are the three types of SDN controllers that have been
selected for this study. The first step in running experiments is to install the three
SDN controllers being investigated onto the computer carrying out the experiment.
In this case all experimentation was carried out on a Mac OS X Yosemite computer.
Then we installed OpenDaylight, Floodlight and Ryu to prepare our testbed. A
virtual machine was set up using VirtualBox in which an Ubuntu Desktop 16.04
Xenial image was loaded. Figure 7 is implemented in mininet for lunching our case-
studies. It is notable that in order to extract memory images of switches from mininet
the Linux Memory Extractor (LiMe)! module needs to be installed. LiMe allows
full memory capture of volatile memory from Linux and Linux-based devices. It
also has the capability of capturing memory of android devices.

Thttps://github.com/504ensicsLabs/LiME/tree/master/doc.
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7 Evaluation and Discussion

To determine whether the proposed SDN Forensics Framework is a valid approach
towards SDN forensic investigations, a specific measure for success must be defined.
Success of the framework is to be proven through actual experimental use in a
simulated forensics investigation. We designed two different use cases to evaluate
our proposed framework:

Use Case 1: The first use case simply involved pinging all hosts on the network.
This was achieved simply by the mininet Command Line Interface (CLI) using
the pingall command. All 12 hosts were sent ICMP messages to one another.
Packet information was picked up using Wireshark and dumped into a PCAP
file. Linux Memory Extractor (LiME) was used to extract the memory images
of the four switches for analysis as well. This experiment acted as an initial test
to establish whether relevant forensics artefacts showing the ICMP processing
can be extracted from within the southbound network packet capture and the
switches’ memory images.

Use Case 2: The second use case involved running web services with different
web pages on hosts H», Hs, H; and Hp,, ensuring that at least one host per
switch will act as a server (see Fig.8). A PHP server is started on each one of
these hosts, which provides web services that are accessed remotely by various
hosts. In this case the web pages were accessed using Firefox on host Hj. Various
tests were present on the web pages in which various user activity will need to be
carried out. The first test involved clicking a link to another web page hosted on

opening webpage

Controller

using Firefox

Web Server o
Vi H4 ]-]5 HG Web Server HlO H” le
‘Web Server ‘Web Server

Fig. 8 Use Case 2, testing web activities of users
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a different host to the initial web page. Thereafter, a test involving an image as a
link was conducted, followed by another test involving the running of a video and
the submission of a web form. The web form submission was carried out both
with ordinary login details for an already existing user as well as three different
types of SQL injection attacks. The attacks which were carried out are as follows:

b OR ’,:79;_
"OR1=1;—
" DROP TABLE Users; ——

As with Use Case 1 packet information was picked up using Wireshark and dumped
into a PCAP file. Linux Memory Extractor (LiME) was used to extract the memory
images of the four switches for analysis as well (Collection of Southbound Network
Captures and SDN Switches’ Memory Images in Fig. 2). After lunching Use Case 1,
we saw there was no problem discovering information for ICMP about all the pings
happening between hosts (Examination, Analysis and Investigation from Fig. 2). It
should be noted that the source and destination IP addresses for the hosts are written
explicitly with openflow 1.0 but in openflow 1.3 they are embedded within the
OpenFlow data segment. This difference shows that wireshark will portray different
versions of OpenFlow packets differently. This was true across all controllers.

Results from experimenting Use Case 2 on three SDN environments such as
OpenDaylight, Project Floodlight and Ryu show that all relevant evidences could be
recovered with the OpenDaylight controller but not so with the other two controllers.
However the limited evidence that we did manage to recover from Project Floodlight
and Ryu could provide clues as to the locations of further evidences so could still be
used as a basis to theorise an SDN Forensics Framework. If suspected evidence has
not been completely discovered in southbound PCAPs and switchs’ memories, it
may be contained on the hosts, then forensic analysis of the hosts that are suspected
based on evidence gained from the PCAPs and switch memories should be carried
out. Cross-comparison of evidential artefacts gained from the southbound packet
capture information and the switches’ memory images may be carried out using a
forensics tool that has been developed as part of this research. Installation and usage
information for this particular tool is described in the next section.

The framework tested through running multiple use cases across a simu-
lated Software Defined Networking Environment using mininet. Forensic artefacts
extracted included southbound network packet capture (pcap) files and the memory
images of SDN switches. A tool built using python was used to compare and contrast
network packet information such that the related information is displayed to the
forensics investigator for successful cross-referencing. This helps in identifying
trends and patterns within the acquired data in order to help classify data relationally.
Data reduction has been achieved both by reduction at intake by specifying only two
locations in which acquisition within an SDN should take place as well as through
the use of ontological mapping via a custom ontology. The ontology was based upon
the DESO ontology [4].

In light of the results of the experimentation it can be suggested that the
complexity of the data that has been extracted is a factor that needs to be thought
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about. As found in the results, data found relating to packet information may not
always be in an appropriate format for easy interpretation even when using tools
such as Wireshark. This will have to be looked into in future investigations in which
not just the volume and variety but also the nature of data acquired from digital
forensics investigations of SDN Platforms needs to be addressed.

The resultant framework created was based upon the findings of the experimen-
tation using [22] Digital Forensics Framework as a basis. A custom ontology based
on DESO [4] has been specified as a means for achieving data reduction as part
of the proposed framework. Whilst it was found that the OpenDaylight controller
successfully yielded positive results for the verification of the proposed framework,
further experimentation is necessary in future investigations to conclusively estab-
lish the accuracy of the framework when applied to various other SDN controllers as
Floodlight and Ryu did not provide the same level of confidence in the framework
as OpenDaylight.

Data reduction was found to be achievable through the specified acquisition
locations along the southbound interface of SDNs by ensuring that the amount of
data necessary to acquire is kept at a minimum. An approach involving ontological
mapping using a custom ontology extended from Digital Evidences Semantic
Ontology (DESO) has also been put forward as a means of further reducing volume
and variety of data. In addition to the volume and variety of data to be reduced,
complexity is another factor which must be considered for reduction processes. Data
mining of the acquired forensic evidence could also be an option for further data
reduction as it may help pinpoint specific locations for focusing forensic extraction
efforts by using information gained from any patterns or associations found from
the mining process.

8 Conclusion

This chapter followed three main objectives. (1) We carried out a thorough
taxonomy of SDN architecture to determine all possible areas that are potential
providers of SDN data. The southbound API was identified as the best possible
location for obtaining all necessary evidential data that will be correlated across
the entire SDN. (2) We constructed a methodology for the acquisition, reduction
and analysis of SDN data in a forensically sound manner and demonstrate its
viability on a sample of three particular SDN Platforms. (3) This chapter proposed a
framework for forensics investigation and data reduction in SDN Platforms based on
the conclusions drawn from the experimentation of the proposed forensically sound
methodology. We also considered data reduction in SDN Platforms.

It was found that the OpenDaylight controller successfully yielded positive
results while other SDN controllers as Floodlight and Ryu did not provide the same
level of confidence in the framework. Moreover, a Python-based tool was built to
facilitate SDN forensics investigation of southbound traffics.
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Abstract In the past few years mobile devices have advanced in a variety of
ways such as internal power source capacity, internal memory storage, and CPU
capabilities thereby increasing computing capacity while still maintaining a portable
size for the owners of mobile devices, this essentially turning it into a portable data
storage device where people store their personal information. These changes in the
nature and sage of the mobile devices have led to their increased importance in
areas such as legal implications in police or company investigations. In this paper
we will conduct a bibliometric analysis of the subject of mobile forensics which
will enable us to examine the degree to which this new development can become
potential evidence, the advances investigators have made over time on the subject,
the possible future technologies that could influence more changes in the field
of mobile forensics and its impact, covering also the difference between mobile
forensics and computer forensics.
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1 Introduction

Mobile forensics is the technique of using a set of tools in order to gain access to
digital information stored on a mobile devices [1] such as a smartphone, Tablet or
even a digital camera to be used as evidence in an investigation [2].

This can be anything from images, call logs, GPS data, and audio/visual
recording along with any deleted information on the device [3]. This has given rise to
a complication due to the development of mobile devices with considerable storage
size and internet capabilities along with a myriad of other abilities when compared
to mobile devices from just a few years ago [4]. We are currently moving from the
Internet society to a mobile society where more and more access to information is
done by previously dumb phones [5].

There is a difficulty when trying to retrieve information from a mobile device due
to the vast variety of available devices [6] as the process of finding an appropriate
forensic tools is very difficult [7]. Despite the aforementioned research conducted
on mobile forensics being quite extensive, no bibliometric analysis can be traced to
the topic using reports on the research impacts and trends of such investigations.

In order to show the growth and impact of mobile forensics, this paper proposi-
tion is to provide an assessment of research into mobile forensics between 2005 and
2016 using keywords and major academic databases. The bibliometric methods are
now firmly established as scientific specialties and are an integral part of research
evaluation methodology especially within the scientific and applied fields[8]. This
method parameters have become a vital role of the modern academic assessment
[9]. The results of such analysis also help in decision making when a research is to
be funded [10]. This paper will look at the distribution and trends of the bibliometric
data in order to know the impact and influence of mobile forensics around the world.
Figure 1 shows the statistics of Mobile Forensic publications by the top 10 countries
in the world.

2 Methodology

The purpose of bibliometric data is to review and quantify the impact of a scientific
field. The field of bibliometric studies publication patterns by using quantitative
analysis and statistics [11]. In this paper, searching the correct bibliometric infor-
mation involved multiple search options such as using keywords like “mobile
forensics” and “mobile analysis” in order to retrieve the most relevant information.
The keywords themselves allow us to search database collections such as IEEE
Xplore Digital Library and Web of Science to find the relevant data for this paper,
which involved using the websites of each stated database. This involved using
keywords to search a database for relevant information, as an example using the
keyword Mobile Analysis within the Web of Science displays 121,643 results
(Fig. 2).
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In order to break down and remove unwanted information, certain search criteria
were employed, for example, by using a search criteria such as a time frame, 2005—
2016, limiting how far back the database could search for the information, we were
able to focus our research area, within Web of Science when searching for mobile
analysis using the time frame, a result of 76,351 was produced as compared to the
earlier result of 121,643, by using such search criteria as this in conjunction with



300 J. Gill et al.

others, languages, research domains, research areas as well as giving the information
a viewing order such as the highest to lowest times cited along us to easily see the
most impactful documents which is at the heart of bibliometric.

2.1 Web of Science

There is a variety of databases available for us to use in order to collect the
information necessary for this paper, such as IEEE Xplore digital library, Scopus
Centre for Science and Technology Studies (CWTS), The Institute for Research
Information and Quality Assurance (IFQ) and Web of Science. We first investigated
different databases to find one that was most suitable for our needs. We first
eliminated Google Scholar as our database of choice due to it not being well
accepted or at the very least scrutinized by many in the academic field and Google
Scholar was released as a beta product in November of 2004. Since then, Google
Scholar scrutinized and questioned by many in academia and the library field
[12] and the worry of manipulated data, In order to alert the research community
over how easily one can manipulate the data and bibliometric indicators [13].
The elimination of IEEE Xplore was due to multiple accounts of Scopus, the
Web of Science (WoS) and Google Scholar being the main three databases when
considering bibliometric data and we have already removed Google Scholar as an
option, it seems that the two most extensive databases are Web of Science and
Scopus. Besides searching the literature, these two databases used to rank journals
in terms of their productivity and the total citations received to indicate the journals
impact, prestige or influence [14]. There are three major bibliometric databases
investigated as follows: Google Scholar, Scopus and the Web of Science [15].

This left us only with Scopus and Web of Science as the two main databases we
could choose from [16]. It is due to multiple factors, including its scholarly citations,
The Web of Science, an online database of bibliographic information produced by
Thomson Reuters draws its real value from the scholarly citation index at its core
[17]. The tools and content of the Web of Science are trusted by a vast amount of
institution s worldwide The Web of Science s content and tools are trusted by nearly
7000 of the world’s leading scholarly institutions responsible for scientific policy
making. [18] and for its ability to refine search options within its own database, this
allowed us, when using keywords to search for relevant information for this paper,
to narrow the search results with a multitude of options such as documentation
type, language, times cited, research domains, countries, authors and so on. All
these capabilities made the Web of Science database an extremely effective tool
in searching for relevant information quickly in a format of our choosing.

3 Finding in Publications Distribution

This section will be broken down into numerous sub-topics: productivity, research
areas, institutions, authors, impact journals, highly-cited articles, and keyword
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_....__.-.-.-.-.-....__
Proceedings paper Article Meeting Abstract
2005 114 61 8
H 2006 109 63 7
2007 126 60 2
m2008 151 74 2
2009 149 79 4
m2010 89 86 3
m2011 87 99 3
m2012 119 103 3
m2013 191 114 5
m2014 167 116 12
m2015 228 137 7
w2016 76 138 2

Fig. 3 Number of publications in recent years

frequency. These findings are important due to showing the publication rates with
bibliometric data. In addition, this method is also able to reveal research that helps
to create new knowledge and to guarantee this inquiry into mobile forensics is more
in-depth. Fig. 3 provided is to show the number of publications between the years
2005-2016.

Figure 3 shows numerous publications taken from various fields of study that are
related to mobile forensics. It shows three categories, Conference paper, Article
and Meeting abstract. The Conference paper has the highest proportion of the
publications with a 57.60% of the publications. This is then followed by the articles
proportion of the publications with 40.53%. This is then finally followed by the
meeting abstract portion of the publications with 1.89 %, the lowest percentage of
all the publications. Looking at Fig. 3, in 2016, publications of proceeding papers
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have declined quite significantly. This is possibly due to the revision process of
proceeding papers, in some cases taking up to a year of feedback and alterations.
Following this cycle, it is likely that proceeding papers publications would be on the
increase in the following year 2017. Furthermore, the likely increase to proceeding
papers publications will have an increasing effect on citations.

As stated earlier, citation analysis is used to evaluate the prevalence of the publi-
cations based on data extracted from the citation index. It also supplies information
about researchers to other researchers using shared references, providing a holistic
view of the topic being researched. Fig. 4 illustrates the citations accumulated by
the publications in the last 11 years. This demonstrates the number of publications
influences on the number of citations. The longer a publication stays within a
database the longer that publications have to amass citations.

The medium number of citation collected by the publications is 935 annually
during the period of 2005-2016. Distinct peaks occur in 2014 and 2015. This is
conceivably due to an increase in research into mobile forensics/analysis, such as
a new type mobile malware or mobile device. Researchers citing other researchers
causing an increase in citations. Concluding that the number of citations for the
11 years will also include co-citations.

3.1 Productivity

This section will analyze articles by continents, to help ascertain which is the
most productive in the field. Productivity in the bibliometric analysis is taken into
consideration because it is a factor that enables the researcher to ascertain which
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Table 1 Africa mobile

. . List of continents | No. of articles | No. of articles (%)
forensics articles

South Africa 14 0.53
Egypt 11 0.42
Cameroon 4 0.15
Ghana 3 0.11
Kenya 3 0.11
Algeria 2 0.08
Nigeria 2 0.08
Senegal 2 0.08
Tunisia 2 0.08

continents are leading in a particular branch of the research. Another important way
it helps researchers is that it increases research productivity by building on the works
of the identified leaders. As such, it weeds out least impactful works, and as a result,
helps researchers have a better focus on how to advance the research with recent
technologies and the new and best methods.

To create a clearer picture, the results of the mobile forensics publications search
were analyzed by their originating continents. The results were further broken down
into countries. Showing each country’s number of publications and the percentage
of their contributions to the research subject.

Tables 1, 2, 3, 4 and 5 shows that publication rate on subject of mobile forensics
in five continent. Asia is the leading continent in mobile forensics research with a
total of 1321 publications and a massive 50.08% of the total publications. The top
four countries in Asia having above 100 publications in mobile forensics realm. The
bulk of it coming from the top country which is The People s Republic of China s
545 which is 20.66% of the world’s publications, having more than double of what
the second in that continent, India, could muster up. The second most productive
continent is Europe with 980 publications. Germany lead in the continent with
149 and they are closely followed by England with 106. Both of them, together
with Spain occupy the top 3 positions in the continent having published above
100 publications each. The third-ranked continent is North America. It is clear
that the USA is the leading researcher in that continent. In addition to being the
top publishers in that continent, they are the second highest in the world. Coming
in with 488 publications, which is 18.50% of the world’s publications on mobile
forensics just behind China by 2.16%. The only other North American country who
made a sizeable contribution to the list is Canada, having only 93 publications on
the subject. According to Tables 1, 2, 3, 4, and 5, Chinese and the Americans stand
head and shoulders above the other countries.

One key observation here is the gap in quantity between the USA and other
countries when taken independently. It may be due to the heavy government
investments in research and development. The United States federal government
invests almost 140 billion on research and development every year [19].
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Table 2 Asia mobile

) . List of continents | No. of articles | No. of articles (%)
forensics articles

Peoples R China | 545 20.66
Australia 72 2.73
India 141 5.35
Japan 120 4.55
Taiwan 95 3.60
Malaysia 60 2.27
Singapore 41 1.55
Iran 31 1.18
Pakistan 20 0.76
Indonesia 15 0.57
Saudi Arabia 15 0.57
Thailand 14 0.53
U Arab Emirates 4 0.15
Jordan 3 0.11

Table 3 North-America

. : ' List of continents | No. of articles | No. of articles (%)
mobile forensics articles

USA 488 18.50
Canada 93 3.53
Mexico 18 0.68
Cuba 2 0.08

Table 4 South-America

. - ) List of continents | No. of articles | No. of articles (%)
mobile forensics articles

Brazil 42 1.59
Chile 4 0.15

3.2 Research Areas

This section highlights the direction of the research into other disciplines. As a
discipline evolves it tends to borrow practices and scientific method from related and
even some unrelated disciplines. It is also critical in the measurement of the research
scope based on publications and citations frequency. Knowing the frequency is vital
because it shows the trend of the research over a given time period. An analysis
by research areas on the results gotten from the WoS database showed several
publications linked with other discipline as can be seen in Table 6.

A quick glance at Table 6 would show that the highest publications come from
engineering, computer science and telecommunications which is understandable.
However, with disciplines like imaging science photographic technology, it could
imply that mobile forensics is getting more important in crime scene investigations.
While the disciplines like automated control systems, and transportation show the
breadth in the usage of mobile device forensics.
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Table 5 Europe mobile

) . List of continents | No. of articles | No. of articles (%)
forensics articles

Austria 61 2.31
Ireland 18 0.68
Czech Republic 13 0.49
Denmark 11 0.42
New Zealand 11 0.42
Germany 149 5.65
England 106 4.02
Spain 102 3.87
Italy 96 3.64
France 80 3.03
Austria 37 1.40
Switzerland 35 1.33
Sweden 33 1.25
Greece 29 1.10
Romania 29 1.10
Poland 27 1.02
Netherlands 26 0.99
Turkey 26 0.99
Belgium 22 0.83
Portugal 22 0.83
Norway 20 0.76
Hungary 11 0.42
Russia 11 0.42
Cyprus 4 0.15
Wales 4 0.15
Croatia 2 0.08
Israel 2 0.08
Luxembourg 2 0.08

3.3 Institutions

This section breaks down the number of publications with respect to the institutions
they were published from. The aim of the section is also to find out which
institutions have been actively publishing on the subject. Table 7 below shows the
top 20 institutions, their publications and the country of the institutions. The data
from the table reaffirms the observation from Table 6 that The People’s Republic of
China is the leading researcher in the field. The Table 7 below shows a representation
of the most active institutions. The results come as no surprise when the information
from Table 6 is considered. With Asia having the most active institutions on the list,
and China contributing the most. Reaffirming the observation from Table 7.
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Table 6 Research areas

Research areas Publications Publications (%)
Engineering 1117 42.34
Computer Science 1051 39.84
Telecommunications 709 26.88
Automation Control Systems 153 5.80
Robotics 136 5.16
Business Economics 116 4.40
Chemistry 101 3.83
Transportation 85 3.22
Materials Science 73 2.77
Operations Research Management Science 62 2.35
Physics 61 2.31
Education Educational Research 59 2.24
Science Technology Other Topics 56 2.12
Health Care Sciences Services 50 1.90
Optics 49 1.86
Information Science Library Science 46 1.74
Instruments Instrumentation 44 1.67
Environmental Sciences Ecology 43 1.63
Imaging Science Photographic Technology 43 1.63
Biochemistry Molecular Biology 40 1.52
Communication 39 1.48

3.4 Impact Journals

This section will discuss the listing of impact journals under the computer science
area. This category will be influential because it shows the most leading publications
and the highest citations received. From this information, researchers are able to
bolster their work by publishing in high-quality journals.

Table 8 displays 10 journal publications with the highest number of publications.
It shows the most significant number of publications belongs to the Lecture Notes in
Computer Science proceeded by Applied Mechanics and Materials and Proceedings
of SPIE publications. The publication series of Lecture Notes in Computer Science
has the most significant number of publications. This is due to providing publishing
services to areas such as education, computer science, and information technology
research.

Table 9 shows that Lecture Notes in Computer Science, accumulated a total
of 68,000 citations, secondly IEEE Transactions on Communications with 53,045
citations and thirdly Lecture Notes on Artificial Intelligence with 20,713.

Then according to Table 9 and the quality of the journal a correlation can be seen,
a high-quality journal will attract researchers for citations, which will then, in turn,
attract more researchers through the increase of citations.
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Institutions Publications Publications (%) Country
Beijing University Posts Telecomm 51 1.93 China
Chinese Acad Sci 25 0.95 China
Korea University 22 0.83 South Korea
Sungkyunkwan University 20 0.76 South Korea
Beijing Jiao tong University 19 0.72 China
Nanyang Technological University 19 0.72 Singapore
Seoul Natl University 19 0.72 South Korea
Purdue University 17 0.64 USA
Korea Adv Inst Sci Technology 15 0.57 South Korea
Tsinghua University 15 0.57 China
Columbia University 13 0.49 USA
Natl University Singapore 13 0.49 Singapore
University Illinois 13 0.49 USA
Georgia Inst Technology 12 0.46 USA
Han-yang University 12 0.46 South Korea
Shanghai Jiao Tong University 12 0.46 China
Natl Cheng Kung University 11 0.42 China
Politecn Milan 11 0.42 Italy
University Carlos lii Madrid 11 0.42 Spain
Table 8 Top 10 most cited journals
Journal titles with the highest
number of publications IF Q P Most cited journals C
Lecture Notes in Computer 0.402 | Q4 |36,143 | Lecture Notes in Computer | 68,000
Science Science
Lecture Notes in Artificial 0.302 | Q4 7064 | IEEE Transactions on 53,045
Intelligence Communications
Wireless Personal 0.701 Q3 4344 | Lecture Notes on Artificial | 20,713
Communications Intelligence
IEEE Transactions on 2.925 Ql 4220 | Computer 19,640
Communications Communications
IEICE Transactions on 0.226 Q4 4058 | IEICE Transactions on 10,064
Communications Communications
Computer Communications 2.099 QI 2588 | Wireless Personal 9322
Communications
Journal of Network and 2.331 Ql 1297 | Journal of Network and 8479
Computer Applications Computer Applications
Telecommunications Policy 0982 | Q3 734 | Telecommunications 5567
Policy
Digital Investigations 1211 |Q3 734 | Digital Investigations 2547
International Journal of 0.765 | Q3 309 | International Journal of 1588
Mobile Communications Mobile Communications
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Table 9 Highly citied articles

Titles Times cited | Year published
SURF: Speeded Up Robust Features 1628 2006
Machine Learning for High-speed Corner Detection 482 2006
Differential Privacy 385 2006
Calibrating Noise to Sensitivity in Private Data Analysis 326 2006
Overview and Recent Advances in Partial Least Squares 290 2006
Bandit Based Monte-Carlo Planning 283 2006
Practical Identify 249 2006
Information Retrieval in Folksonomies: Search and Ranking 228 2006
Sampling Strategies for Bag-of-Features Image Classification 198 2006

3.5 Highly Cited Articles

This section discusses the amount of citations accumulated by the journals. This
section will evaluate the research quality and the influence it has upon related fields.

Table 9 displays nine of the highest cited articles from the previously mentioned
Lecture Notes in Computer Science publication. It will display the top cited article,
SURF: Speeded Up Robust Features, has accumulated 1628 citations and was
published in the year 2006, 10 years ago, strongly supporting the idea that the longer
a publication has been in the database, the higher the accumulated citations will be.
This, in turn, made the article itself a high-quality publication attracting more and
more researchers.

4 Conclusion and Future Works

Although numerous studies and research has supplied multiple mobile forensic
possibilities, but as mobile devices become more integrated into daily life such as
banking and social networking, along with the production of new devices, there will
always be the difficulty of mobile forensics keeping pace [20, 21].

With the exponential growth and development of mobile devices, mobile foren-
sics has not been far behind. Mobile devices in recent years hold vital and copious
amounts of information when compared to just a few years ago [22]. Banking,
E-mails, GPS, and social networking are just a few parts of information that can
be stored on a mobile device [27]. This has, in turn, caused a rise in the need and
abilities of mobile forensics, as more and more sophisticated attack techniques such
as malware [23, 24] and ransomware are targeting major mobile operating systems
such as Android [25] and iOS.

In this paper, the bibliometric method was used to analyze mobile forensic trends
from 2005 until 2016. In this study, we presented a variety of criteria including,
impact journals, highly-cited articles, research areas, productivity, institutions and



Mobile Forensics: A Bibliometric Analysis 309

authors. Using these criteria, it helped to unearth global trends linked to mobile
forensic publications. In the past 11 years, it has been shown that the number of
publications related to mobile forensics had steadily grown.

We compiled and analyzed the articles published between 2005 and 2016. First,
these were categorized into continents. Asia is the greatest producer of publications
in research, followed by Europe. This trend can also be seen in the institutions and
authors, with the Asian continent holding a majority of the publication positions,
including majority of the top positions. The Asian continent also hold a majority
position with institutions, including the top 7 positions, followed by the United
States of America.

Developing biblimometric analysis of other types of malware such as IoT
malware [26], OSX malware [27], and ransomware [28] is an interesting future
work of this study. Moreover, using bibliometric analysis to detect current and future
research trends in IoT security and forensics [29], ransomware analysis [30], and
cloud security and forensics [31] would pave the way for future researchers in the
field.
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Emerging from the Cloud: A Bibliometric @)
Analysis of Cloud Forensics Studies s

James Baldwin, Omar M. K. Alhawi, Simone Shaughnessy, Alex Akinbi,
and Ali Dehghantanha

Abstract Emergence of cloud computing technologies have changed the way we
store, retrieve, and archive our data. With the promise of unlimited, reliable and
always-available storage, a lot of private and confidential data are now stored
on different cloud platforms. Being such a gold mine of data, cloud platforms
are among the most valuable targets for attackers. Therefore, many forensics
investigators have tried to develop tools, tactics and procedures to collect, preserve,
analyse and report evidences of attackers’ activities on different cloud platforms.
Despite the number of published articles there isn’t a bibliometric study that
presents cloud forensics research trends. This paper aims to address this problem by
providing a comprehensive assessment of cloud forensics research trends between
2009 and 2016. Moreover, we provide a classification of cloud forensics process to
detect the most profound research areas and highlight remaining challenges.

Keywords Cloud forensics - Cloud computing - Cloud analysis - Cloud
investigation - Digital forensics

1 Introduction

Cloud Computing is an emerging technology that has seen a rapid adoption by
enterprises and individual consumers. Gartner forecasted that the cloud computing
market will hit US$250 billion by 2017 as cloud adoption increases in organizations
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[1]. Cisco have also forecasted that annual global cloud IP traffic will reach 14.1 ZB
(14.1 billion TB) by the end of 2020, up from 3.9 ZB in 2015 [2].

The National Institute of Standards and Technology (NIST) considers three cloud
service models [3]: Software as a Service (SaaS), Platform as a Service (PaaS)
and Infrastructure as a Service (IaaS). In the SaaS model an Application Service
Provider (ASP) provides various applications over the Internet which eliminates
the need for software and IT infrastructure (servers/databases etc) maintenance
for the ASP customers [4]. The applications are accessed using a client browser
interface. Google Apps, Yahoo Mail and CRM applications are all instances of
SaaS. In the PaaS model, cloud infrastructure is owned and maintained by the
provider; the customer is then able to deploy and configure applications into a
provider managed framework and infrastructure [5]. Examples of PaaS are Google
App Engine, Apprenda and Heroku. In the IaaS model resources are provided to
the customer as virtualised resources e.g. Virtual Machines (VMs). Whereas the
customer has full control over the operating system, the provider maintains control
over the physical hardware. This allows for services to be scaled and billed in line
with customer resource requirements [6]. Amazon Web Services (AWS), Microsoft
Azure and Google Compute Engine (GCE) are examples of IaaS models.

Furthermore, NIST suggests four cloud deployment models, namely private
cloud, community cloud, public cloud, and hybrid cloud. With public clouds,
services are available through a public cloud service provider (Microsoft, Amazon,
etc) who host the cloud infrastructure, and customers don’t have any control over the
located infrastructure. Private clouds are dedicated to organizations (as opposed to
the public) and host specific business relevant applications. Community clouds are
shared between organisations with similar requirements and business objectives;
they are maintained by all participating members of the community. The final
model, hybrid cloud, consist of two or more of the public, private and community
models [7].

According to the 2016 State of the Cloud Survey in which 1060 technical
professionals representing a broad cross section of organizations were questioned
[8], there has been an increase (from 2015) in the number of organisations utilizing
the services of cloud providers. This change is illustrated in Fig. 1.

Actual statistical figures of how many crimes have been committed in the cloud
are unclear as Cloud Service Providers (CSPs) often ask clients not to disclose any
information to the public in relation to cyber incidents [9]. As more organisations
move away from traditional ‘in house’ computing and adopt cloud technology to
provide the infrastructure to run their businesses, there are more opportunities and
vulnerabilities for attackers in such a rapidly changing environment. According
to DarkReading [10] the number of cybercrime incidents reported in the UK has
surpassed traditional crime within this current year. With the crime rate increasing,
the need for forensic investigations within the cloud has also increased.

The term “cloud forensics” (a cross-discipline of cloud computing and digital
forensics [11]) was first introduced in 2011 [11] to recognize the rapidly emerging
need for digital investigation in cloud computing environments. According to the
2016 State of the Cloud Survey [8] there is a lack of forensic tools that are tailored
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Fig. 1 Survey respondents adopting cloud—2016 vs. 2015 [8]

for cloud systems. Approximately 58% of respondents agreed that digital forensic
process automation is needed to tackle future challenges including cloud forensics
[12]. Current forensic tools appear unsuited to process cloud data as the physical
inaccessibility of the evidence and lack of control over the system make evidence
acquisition a challenging task [13]. Table 1 illustrates a summary of mostly used
tools to conduct cloud forensics [14].

Variety of investigation frameworks have been suggested for cloud forensics [25,
26]. Moreover, researchers tried to identify residual evidences of users’ interactions
with different cloud platforms such as DropBox [27], MEGA [28], GoogleDrive
[29], SugarSync [30], pCloud [31, 32], CloudMe [33], SpiderOak [32] and hubiC
[34] on Windows, Linux and mobile devices. There were several attempts to extract
server-side evidences of different cloud platforms such as Syncany [35], BitTorrent
Sync [36], SymForm [37] as well. While there was a lot of focus on technological
and procedural development in cloud forensics [38], to the best of authors’
knowledge, a bibliometric analysis of this emerging technology does not exist. As
such, this paper aims to provide a comprehensive bibliometric analysis of cloud
forensics studies and to demonstrate research trends by highlighting the substantial
research contributions. We discuss publication statistics, citation distributions and
statistics, regional and institutional productivity, research areas, impact journals,
and keywords frequency. By identifying research gaps and challenges in the forensic
process this paper will open the way for future research within cloud forensics.

This paper is organised as follows: Sect. 2 describes the research methodologys;
Sect. 3 presents the results and discusses cloud forensics studies; Sect. 4 introduces
the challenges and future trends; Sect. 5 is the conclusion to the study.
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Table 1 A summary of mostly used tools to conduct cloud forensics [14]

Utilized tools General/cloud-based tools Functionality

FTK remote agent [15] General Remote drive and
memory image
acquisition; remote
mounting

Encase remote agent [16] General Remote drive image
acquisition

Snort [17] General Network traffic
monitoring and packet
logging

FROST [18] Cloud-based Digital forensics tools
for the OpenStack cloud
platform

OWADE [19] Cloud-based Reconstruction of
browsing history and
online credentials

CloudTrail [20] Cloud-based Logging in the AWS
cloud

Wireshark [21] General Network traffic capture
and analysis

Sleuthkit [22] General Forensic image analysis
and data recovery

FTK imager [15] General Acquisition of memory
and disk images

X-Ways [23] General Acquisition of live
systems (Windows and
Linux)

Encase e-discovery suite [24] General Drive image acquisition

and offline examination

2 Methodology

Bibliometrics is a method which allows us to verify the relevance, appropriateness
and research impacts of a research area/subject based on citation metrics [39].
According to Eugene Garfield [40] the citation index has a quantitative value which
helps to define the significance of an article. This in turn helps to measure the
‘influence’ or ‘impact factor which is based on two elements: the number of citations
in the current year to items published in the previous 2 years, and the number of
substantive articles and reviews published in the same 2 years [41].

We chose to use Web of Science (WoS) as our primary database researching
about published articles on ‘cloud forensics’ as a reliable single source for publi-
cations. There are other databases available to search such as Google Scholar and
Scopus however WoS provides a more comprehensive and accurate image of the
scholarly impact of author [42].
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Fig. 2 The data collection process

Table 2 Publication

- Category | No. publications | % Publications
categories

Book 190 73.08
Journal 70 26.92

As illustrated in Fig. 2 the first step in the data collection process was to use
key word searches against the WoS database. We used various general search terms
including ‘cloud forensic*’, forensic* (where * denotes a wildcard character in the
search term) and ‘cloud investigation’ in addition to specific search terms to include
platforms, service models and deployment methods. The initial 18,275 results were
then refined by excluding other databases such as KCI-Korean Journal Database,
Medline and Russian Science Citation. Finally, we refined the results by removing
unrelated publications providing a final total of 260 publications directly related to
the cloud forensics research area.

Analysis of our results were performed using a combination of the WoS results
analysis tools and spreadsheet processing to obtain further detail such as clearly
defined geographical region and keyword frequency statistics; they are presented
and discussed in Sect. 3.

3 Results and Discussion

Table 2 categorizes related publications based on their source to journals and books
(which contain conference proceedings as well). The book category has the highest
proportion of publications at 73.08%. This is more than double the journal category
which totals 26.92%.
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The publication frequency of both categories is illustrated in Fig. 3.

Between 2011 and 2015 there has been a significant increase in the number of
book chapters. In 2011 the introduction of the term “cloud forensics” [11] and the
release of both the UK [43] and US [44] cloud computing strategies may have
contributed to an increased global focus on cloud computing. This year (2011) also
represented the beginning of funding into cloud forensics research with a single
(1) publication funded by the National Science Foundation Cyber Trust. From
2011 to 2016 the number of funded articles then increased to 8 with an overall
28 publications funded over this period.

WoS provides a citation map feature that allows the researcher to have a
holistic view of related research which reflects how researchers embed their work
within related and earlier publications [45, 46]. Figure 4 shows the annual citation
distribution over the period 2009-2016. This 7-year period represents the start of
research into cloud forensics and the average number of citations over the period is
87.75. In 2011 there was only 1 citation while there were 6 citations in 2012 with
significant growth in 2013 (650%), 2014 (305%) and 2015 (172%).

Figure 5 represents the total number of available cloud forensic publications and
the number of citations for each year in the period of 2009-2016. The earlier an
article is published the more citations it received [47]. The top 3 cited publications
in this study were published in 2012 which corresponds to the first significant annual
citation increase as discussed earlier.

3.1 Productivity

This section will discuss productivity based on the publication output from the 6
geographical regions identified in this study. It can show whether there are any
significant geographic trends that correlate to institutional and author research
contribution.
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Table 3 lists the productivity ordered by regional and country contribution.
It shows that Asia is the major contributor to cloud forensics publications with
a total of 36.92% of all publications. It is closely followed by Europe with
28.85%. The North American, African, Australian and Middle Eastern regions total
34.23% combined. Asia and Europe are therefore the most productive regions both
contributing to almost two-thirds of all publications.

Within Asian India and China are clear research-leaders with a combined 26.92%
of overall global publications. 72.92% of all publications produced by 9 countries
in Asia. The second highest contributor, Europe, has 2 clear research leaders with
England and Ireland contributing 14.23% of all global publications and 49.33% of
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Table 3 Productivity by region

J. Baldwin et al.

List of regions No. of articles | (%) List of regions No. of articles | (%)
Asia 96 36.92 | Scotland 2 0.77
India 40 15.38 | Croatia 1 0.38
Peoples R China | 30 11.54 | Poland 1 0.38
Taiwan 7 2.69 | Serbia 1 0.38
Japan 5 1.92 | Slovenia 1 0.38
South Korea 4 1.54 | Spain 1 0.38
Bangladesh 3 1.15 | Switzerland 1 0.38
Malaysia 3 1.15 | Wales 1 0.38
Pakistan 3 1.15 | North America 46 17.69
Sri Lanka 1 0.38 | USA 42 16.15
Europe 75 28.85 | Canada 4 1.54
England 21 8.08 | Africa 22 8.46
Ireland 16 6.15 | South Africa 19 7.31
Italy 7 2.69 | Ghana 1 0.38
Greece 6 2.31 | Morocco 1 0.38
Germany 5 1.92 | Tunisia 1 0.38
Romania 5 1.92 | Australia 17 6.54
France 2 0.77 | Australia 17 6.54
Netherlands 2 0.77 | Middle East 4 1.54
Norway 2 0.77 | U Arab Emirates 4 1.54
Table 4 Productivity by leading regional countries
No. countries Publications Contribution
Country Region in region (%) to region %
USA North America 2 16.15 91.30
India Asia 9 15.38 41.67
Peoples R Asia 9 11.54 31.25
China
England Europe 17 8.08 28.00
Australia Australia 1 6.54 100.00
South Africa Africa 4 7.31 86.36
Ireland Europe 17 6.15 21.33
U Arab Middle East 1 1.54 100.00
Emirates

the publications from the 17 countries in that region. North America is a single
leader in the USA with 16.15% overall and 91.30% regional contribution out of
just the 2 representative countries. The USA, India and China are the overall top 3
countries with a combined total of 43.08% of all publications. Table 4 shows the

major contributing countries within each region.
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Table 5 Research areas

Research areas Publications Yo
Computer Science 130 50.00
Computer Science; Engineering 56 21.54
Computer Science; Telecommunications 22 8.46
Engineering; Telecommunications 12 4.62
Computer Science; Engineering; Telecommunications 8 3.08
Engineering 6 2.31
Computer Science; Engineering; Information Science & 3 1.15
Library Science; Government & Law; Telecommunications

Telecommunications 3 1.15
Automation & Control Systems; Computer Science 2 0.77
Computer Science; International Relations 2 0.77
Government & Law 2 0.77
Automation & Control Systems; Computer Science; 1 0.38
Engineering

Automation & Control Systems; Engineering 1 0.38
Automation & Control Systems; Engineering; Materials 1 0.38
Science

Computer Science; Criminology & Penology 1 0.38
Computer Science; Education & Educational Research 1 0.38
Computer Science; Engineering; Operations Research & 1 0.38
Management Science

Computer Science; Medical Informatics 1 0.38
Computer Science; Operations Research & Management 1 0.38
Science

Computer Science; Physics 1 0.38
Criminology & Penology 1 0.38
Engineering; Materials Science 1 0.38
Engineering; Medical Informatics 1 0.38

3.2 Research Areas

The WoS database contains 150 different scientific research areas that can be
categorised depending on the focus and reach of the research across multiple sectors.
As seen in Table 5 they can be a combination of single and multi-disciplined
research. Table 5 illustrates that 50% of all publications are attributed to the single-
disciplined Computer Science research area. The second and third highest research
areas are the multi-disciplined Computer Science & Engineering (21.54%), and
Computer Science and Telecommunications (8.46%). Within this study the most
influential publications in the top 3 research areas are “Acquiring Forensic Evidence
from Infrastructure-As-A-Service Cloud Computing: Exploring and Evaluating
Tools, Trust, And Techniques”, “Cloud Computing-Based Forensic Analysis for
Collaborative Network Security Management System” and “A Cloud Computing
Platform for Large-Scale Forensic Computing”.
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Table 6 Research areas in isolation

Research areas No. publications %o

Computer Science 230 88.46
Engineering 91 35.00
Telecommunications 48 18.46
Automation Control Systems 5 1.92
Government Law 5 1.92
Information Science Library Science 3 1.15
Criminology Penology 2 0.77
International Relations 2 0.77
Materials Science 2 0.77
Medical Informatics 2 0.77
Operations Research Management Science 2 0.77
Education Educational Research 1 0.39
Legal Medicine 1 0.39
Physics 1 0.39
Science Technology Other Topics 1 0.39

Table 6 displays each research area in isolation and illustrates that the research
Computer Science research contains majority of the published articles, featuring
88.46% of all publications. Engineering and Telecommunications area feature 35%
and 18.46% of all publications respectively.

3.3 Institutions

This section discusses the number of publications attributed to different institutions
to determine which institutions are prevalent within cloud forensics research.

Table 7 lists the institutions with at least three relevant publications. Combined
they are credited for 44.83% of all publications. The University of Pretoria
(South Africa), University of South Australia (Australia) and University College
Dublin (Ireland) are the 3 leading institutions with 5.38%, 5% and 4.62% of total
publications respectively. The list features 7 institutions from Asia, 6 from Europe,
2 from North America and 1 each from Africa, Australia and The Middle east. The
single country with the highest number of institutions is India with 3 institutions.

3.4 Impact Journals

This section discusses the impact journals from the cloud forensics research. The
findings from this section will help the researcher identify the best publication to
promote their papers.
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Table 7 List of Institutions

Institution

University of Pretoria

University of South Australia
University College Dublin

Birla Institute of Technology and Science
Tsinghua University

University of The Aegean

University of Alabama at Birmingham
Military Technical Academy
University of New Orleans

University of Plymouth

Central Police University

Cisco Systems Inc

G.H. Raisoni College of Engineering
Khalifa University

Ministry of Public Security

Nanjing University

National University of Sciences and Technology

University of Derby
University of Naples Federico 11

Table 8 Impact journals

Journal title P
ACM Computing Surveys 357
Future Generation Computer 611
Systems the International Journal

of Grid Computing and EScience

IEEE Transactions on 387
Dependable and Secure

Computing

Digital Investigation 322
Computer 2113
Tsinghua Science and 228
Technology

Journal of Internet Technology 835
Computer Law Security Review 492

5561
6431

2459

1319
7213
379

1249
478

Publications | Publications % | Country

14
13
12

—_
(=]

W W W W W Wwwwwh prp oo oo

CY
695.12
803.88

307.38

164.88
801.44
75.8

156.12
95.6

5.38
5.00
4.62
3.85
2.31
2.31
2.31
1.92
1.54
1.54
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15

CI
15.58
10.53

6.35

4.1
3.41
1.66

1.5
0.97

33
28

21

17
33

10
10
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South Africa

Australia

Ireland

India

Peoples R China

Greece

USA

Romania

USA

England

Taiwan

India

India

U Arab Emirates

Peoples R China

Peoples R China

Pakistan

England

Italy
IF Q %
5243 |1 0.86
2430 |1 0.86
1.592 |1 0.86
1211 |2 10.78
1.115 |2 1.29
1.063 |4 1.72
0.533 |4 0.86
0373 |3 0.86

P No. Publications, C No. citations, CY Average citations per year, CI Average citations per item,
H h-index, IF Impact factor, Q Quartile in category

Table 8 lists the journal titles identified within this study and their citation and
publication data for the period 2009-2016. Although Digital Investigation is the
journal with the highest number of publications, it has a relatively low impact factor

(1.211)
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Table 9 Top source titles

Source titles No. publications %
Digital Investigation 27 10.39
Lecture Notes in Computer Science 11 4.23
IFIP Advances in Information and Communication Technology |11 4.23
Proceedings of The International Conference on Cloud Security 7 2.69
Management

Advances in Digital Forensics XI 4 1.54
Communications in Computer and Information Science 4 1.54
Computers Security 4 1.54
Lecture Notes of the Institute for Computer Sciences Social 4 1.54
Informatics and Telecommunications Engineering

Proceedings 10th International Conference on Availability 4 1.54
Reliability and Security Ares 2015

Tsinghua Science and Technology 4 1.54
2013 Eighth International Workshop on Systematic Approaches 3 1.15
to Digital Forensic Engineering SADFE

Advances in Digital Forensics VIII 3 1.15
Computer 3 1.15
Digital Forensics and Cyber Crime ICDF2C 2012 3 1.15
IEEE Cloud Computing 3 1.15
IEEE International Advance Computing Conference 3 1.15
Information Security for South Africa 3 1.15
International Workshop on Systematic Approaches to Digital 3 1.15
Forensic Engineering SADFE

Procedia Computer Science 3 1.15
Proceedings of 2016 11th International Conference on 3 1.15
Availability Reliability and Security Ares 2016

Proceedings of the 3rd International Conference on Cloud 3 1.15
Security and Management ICCSM 2015

Proceedings of The International Conference on Information 3 1.15

Warfare and Security

The Computer Surveys journal published by the Association for Computing
Machinery (ACM) has the highest impact factor (5.243) and the highest average
number of citations per paper (15.58). It also has the highest h-index which is
a measure of predicting future scientific achievement proposed [48].Within the
Computer Science, Theory & Methods citation reports category it is ranked 2 out of
105 whereas between the years 2002-2011 it was ranked at no. 1.

Table 9 lists the journals and books that have published at least three relevant
articles.

The Digital Investigation journal is a clear leader with 10.39% of all publications.
Digital Investigation is an international journal in digital forensics & incident
response promoting innovations and advancement in the field.
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180
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mQty =%

Fig. 6 No. citations

3.5 Highly-Cited Articles

This section discusses the most highly-cited articles within both journal and book
publications. Figure 6 shows that 78.71% of all publications in this study do not
yet have any citations. Only 5.94% of the 260 publications have greater than 10
citations.

Table 10 lists the articles that have received more than 10 citations between 2009
and 2016.

It also includes details of the publication (journal or book series), published year
and research area.

The Computer Science research area comprises 89% of this list and the journal
Digital Investigation is responsible for 57.89% all published articles. The top 3 cited
articles were all published in 2012 which reinforces the idea that the earlier a work
is published, the more it will be cited. The top 3 articles are high quality forensics
procedural-based research papers [38] that are acknowledged by future authors due
to their originality and value [49].

3.6 Keywords Frequency

This section discusses the use of author keywords and how it enables researchers
to identify specific research [50]. The publications within this study contained 1172
keywords across 260 publications; 35 did not contain any keywords. The largest
number of keywords for publications is 17; the average number of keywords is 4.52.
The top author keywords and their relationship to their occurrence within the title
are provided in Table 11.
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Table 10 Highly-cited articles

Title

Acquiring Forensic Evidence from
Infrastructure-As-A-Service Cloud
Computing: Exploring and Evaluating
Tools, Trust, And Techniques

An Integrated Conceptual Digital
Forensic Framework for Cloud
Computing

Digital Forensic Investigation of Cloud
Storage Services

Cloud Forensics Definitions and
Critical Criteria for Cloud Forensic
Capability: An Overview of Survey
Results

Dropbox Analysis: Data Remnants on
User Machines

Cloud Storage Forensics: OwnCloud
as A Case Study

Efficient Audit Service Outsourcing
for Data Integrity in Clouds

Design and Implementation of Frost:
Digital Forensic Tools for The
Openstack Cloud Computing Platform
Digital Droplets: Microsoft Skydrive
Forensic Data Remnants

Forensic Collection of Cloud Storage
Data: Does the Act of Collection
Result in Changes to The Data or Its
Metadata?

Google Drive: Forensic Analysis of
Data Remnants

Cloud Computing-Based Forensic
Analysis for Collaborative Network
Security Management System

Cloud Computing and Its Implications
for Cybercrime Investigations in
Australia

Times
cited

44

43

37

28

26

25

25

25

23

21

20

18

Publication
Digital
Investigation

Digital
Investigation

Digital
Investigation
Digital
Investigation

Digital
Investigation
Digital
Investigation
Journal of
Systems and
Software
Digital
Investigation

Future
Generation
Computer
Systems - The
International
Journal of Grid
Computing and
EScience
Digital
Investigation

Journal of
Network and
Computer
Applications
Tsinghua
Science and
Technology
Computer Law
& Security
Review

Year
2012

2012

2012

2013

2013

2013

2012

2013

2013

2013

2014

2013

2013

J. Baldwin et al.

Research
areas

Computer
Science

Computer
Science

Computer
Science
Computer
Science

Computer
Science
Computer
Science
Computer
Science

Computer
Science

Computer
Science

Computer
Science

Computer
Science

Computer
Science;
Engineering
Government &
Law

(continued)
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Table 10 (continued)
Times Research
Title cited Publication Year areas
Impacts of Increasing Volume of | 15 Digital Investigation | 2014 Computer
Digital Forensic Data: A Survey Science
and Future Research Challenges
A Survey of Information 14 Computers & 2015 Computer
Security Incident Handling in Security Science
The Cloud
Amazon Cloud Drive Forensic 12 Digital Investigation | 2013 Computer
Analysis Science
Distributed Filesystem 11 Digital Investigation | 2014 Computer
Forensics: XtreemFS as A Case Science
Study
A Forensically Sound Adversary | 11 Plos One 2015 Science &
Model for Mobile Devices Technology -
Other Topics
Overcast: Forensic Discovery in | 10 IMF 2009: 5th 2009 Computer
Cloud Environments International Science
Conference on IT
Security Incident
Management and IT
Forensic
Table 11 Relationship between title and author keywords
Titles Frequency Keywords Frequency
Cloud 187 Cloud computing 104
Forensic 178 Digital forensics 78
Forensics 81 Cloud forensics 66
Digital 68 Computer forensics 20
Digital forensic 58 Security 19
Cloud computing 48 Digital evidence 12
Analysis 42 Cloud storage 11
Cloud forensic 34 Cloud 10
Data 34 Forensics 10
Digital forensics 33 Digital investigation 10
Cloud forensics 26 Big data 7
Model 23 Network forensics 7
Evidence 21 Evidence 6
Security 19 Privacy 6
Challenges 15 Cybercrime 6
Forensic analysis 13 Cloud forensics challenges 6
Log 13 Virtualization 6
Forensic investigation 12 Digital 5




326 J. Baldwin et al.

The top 3 author keywords are “cloud computing”, “digital forensics” and “cloud
forensics”. Within this study the top 3 author keywords have been included together
in 19 publications; at least 2 of the top 3 keywords have featured in 46 publications.
The mostly used keywords paper titles are “cloud”, “forensic” and “forensics”
with 187, 178 and 81 occurrences respectively. The author keyword “forensic” is
included in just 4 publications but features highly in titles. Two examples of this are
the publications “Cloud Manufacturing: Security, Privacy and Forensic Concerns”
and “An Integrated Conceptual Digital Forensic Framework for Cloud Computing”.

4 Challenges and Future Trends

This section discusses the limitations that a forensic investigator may face dur-
ing examination within a cloud environment. Moreover, issues relating to data
sovereignty, data confidentiality, and inadequacy of existing legislative and regu-
latory frameworks are elaborated [51].

4.1 Evidence Identification

Identification is the reporting of any malicious activity in the cloud such as illegal
file storage or file deletion. The identification phase is initiated as a result of a
complaint made by an individual or by a CSP authority that reports any misuse of the
cloud [52]. The distributed nature of cloud computing makes evidence identification
a difficult task. The first evidence collection issue that an investigator will encounter
is of the system status and log files. Whereas this is not possible to collect in either a
SaaS or PaaS model, it is possible in an IaaS cloud model where access is provided
through a Virtual Machine (VM); within this model the VM behaves almost the
same as an Actual Machine [53].

Data loss from volatile storage is the next issue facing a forensic investigator as
all the client’s data is volatile due to the high dependence on cloud computing. Also,
due to the nature of cloud computing storage policies any evidence or stored data in
the volatile storage will be removed, or deleted, if the criminal restarts or forces a
power down of the computer.

Client-side evidence identification is another necessary step in computer forensic
investigations that is usually not possible, especially in SaaS and PaaS models. In
both models there are always some vital parts of evidence data that can be found
on the client side interface (e.g. web browser temp data) [54]. Thus, the fragile
and volatile nature of cloud environments require more attention and specialist
techniques to ensure that the evidence data can be properly evaluated and isolated.
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4.2 Legal Issues in the Cloud

Special care should be taken in from the outset to ensure that privacy of users are
not violated during investigation of any criminal case [55]. Crimes involving cloud
computing typically involve an accumulation or retention of data on a digital device
(such as a mobile phone) that must be identified, preserved, analysed, and presented
in a court of law [56]. Cloud data distribution within numerous data centres around
the world creates jurisdictional issues relating to locating and seizing elusive evi-
dential data [57]. Because of the nature of cloud computing, investigations require
a co-operation between government agencies and law enforcement investigations
from different countries, in addition to a collaboration of cloud service providers.

4.3 Data Collection and Preservation

Data collection in a computer forensic investigation is a significantly vital task and
requires a physical acquisition for any forensic investigation. For example, within
digital forensics the process of taking custody of any storage device (including hard
disk) and then taking a bit-by-bit image for this device is one of the procedures that
must be performed. This becomes a key issue in cloud computing as this step of
the process is not possible due to the shared nature of the cloud environment. The
investigator may have to contact the CSP for physical acquisition of data because
these resources are distributed between numerous data centers, as previously
discussed. Moreover, resources can be shared simultaneously among multiple cloud
clients and can be constantly in use. The privacy of other client’s data is therefore
another issue faced in the seizure of physical evidence [58].

The data collection phase of cloud forensics should also consider the storage
capacity for collecting evidence [59]. The amount of extracted data and the collected
evidence would be greater than non-cloud digital forensics because of the wider
nature of the cloud. The preservation of the evidence in a forensic investigation is
vital to prove that an offence has been committed and how it relates to evidence
can make it inadmissible. Another issue in evidence collection and preservation
is the chain of custody which is the chronological documentation that shows how
evidence was collected, preserved and analyzed [59]. Again, due to the cloud nature
this attribute can violate digital forensic rules. To solve this challenge having a
multifactor authentication method can prevent the perpetrator from claiming stolen
authentication credentials [54].
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4.4 Analysis and Presentation

Data analysis is another phase involving the analysis of collected data from different
resource layers. In cloud computing this step has significant challenges because
of the utilization of the intensive computation and massive data within cloud
computing. This becomes an additional issue for cloud forensics investigation
mainly due to the limitations in processing and examining vast amounts of data [60].
During forensics presentation, the judge or jury members may not fully understand
the validity of evidence collected from the cloud, or comprehend what they are being
told, or shown.

4.5 Future Trends

When considering the challenges that cloud computing environments offer there are
several areas of future research that could be undertaken, for example: the evidence
collection process and data volatility in SaaS and PaaS cloud models; chain of
custody and privacy considerations for the seizure of physical evidence; jurisdiction
and multi-agency/provider collaboration within cloud environments.

5 Conclusion

Cloud computing and the internet are interrelated and that makes them increasingly
vulnerable to security threats. Digital forensic practitioners must extend their
expertise and toolsets to conduct cloud examination. Moreover, cloud-based entities,
CSPs and cloud customers must consider including built-in forensic capabilities
to their platforms. In this paper the bibliometric methods were used to analyse
cloud forensic research trends from 2009 until 2016. We presented criteria including
publication statistics, citation distributions and statistics, regional and institutional
productivity, research areas, impact journals, and keywords frequency. These criteria
helped to uncover the global trends and significant areas in cloud forensic research.
It is noticeable that the number of publications relating to cloud forensics has
increased with an average annual growth rate of 218%. Asia had the largest
number of publication in academic research followed by Europe and North America
respectively. This paper findings provide researchers with better understanding of
emerging trends in cloud forensic and help them to identify key areas for future
research in this field. Future works may include conducting bibliometric analysis
in areas of IoT security and forensics [61], OSX [62], mobile [63] and IoT [64]
malware analysis, Trojans [65] ransomware [66] investigation.
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