TROUBLESHOOTING

Linux® Server Best Practices

KR o C

http://www.allitebooks.org
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

DevOps
Troubleshooting

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

This page intentionally left blank

|| || From the Library of Martin Spilovsky

http://www.allitebooks.org

DevOps
Troubleshooting

Linux® Server Best Practices

Kyle Rankin

vv Addison-Wesley

Upper Saddle River, NJ « Boston ¢ Indianapolis * San Francisco
New York * Toronto * Montreal * London * Munich ¢ Paris « Madrid
Capetown * Sydney * Tokyo * Singapore * Mexico City

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Cataloging-in-Publication Data is on file with the Library of Congress.

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.

To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle

River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-83204-7
ISBN-10: 0-321-83204-3

Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, November 2012

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Rebecca Rider

Indexer
Richard Evans

Proofreader
Diane Freed

Technical Reviewer
Bill Childers

Publishing Coordinator
Kim Boedigheimer

Compositor
Kim Arney

From the Library of Martin Spilovsky

http://www.allitebooks.org

This book wouldn’t be possible without the support of my wife, Joy,
who once again helped me manage my time so I could complete the
book, only this time while carrying our first child, Gideon. I'd also
like to dedicate this book to my son, Gideon, who so far is easier to
troubleshoot than any server.

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

This page intentionally left blank

|| || From the Library of Martin Spilovsky

http://www.allitebooks.org

Contents

Preface Xiii
Acknowledgments Xix
About the Author Xxi
CHAPTER 1 Troubleshooting Best Practices 1
Divide the Problem Space 3
Practice Good Communication When Collaborating 4
Conference Calls 4
Direct Conversation 5
Email 6
Real-Time Chat Rooms 7
Have a Backup Communication Method 8
Favor Quick, Simple Tests over Slow, Complex Tests 8
Favor Past Solutions 9
Document Your Problems and Solutions 10
Know What Changed 12
Understand How Systems Work 13
Use the Internet, but Carefully 14
Resist Rebooting 15
CHAPTER2 Why Is the Server So Slow? Running Out of CPU,
RAM, and Disk 1/0 17
System Load 18
What Is a High Load Average? 20
Diagnose Load Problems with top 20
Make Sense of top Output 22
Diagnose High User Time 24
Diagnose Out-of-Memory Issues 25
Diagnose High I/O Wait 27
Troubleshoot High Load after the Fact 29
Configure sysstat 30
View CPU Statistics 30

vii

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

viii Contents

View RAM Statistics 31
View Disk Statistics 32
View Statistics from Previous Days 33

CHAPTER3 Why Won’t the System Boot? Solving Boot Problems 35

The Linux Boot Process 36
The BIOS 36
GRUB and Linux Boot Loaders 37
The Kernel and Initrd 38
/sbin/init 39

BIOS Boot Order 45

Fix GRUB 47
No GRUB Prompt 47
Stage 1.5 GRUB Prompt 48
Misconfigured GRUB Prompt 49
Repair GRUB from the Live System 49
Repair GRUB with a Rescue Disk 50

Disable Splash Screens 51

Can’t Mount the Root File System 51
The Root Kernel Argument 52
The Root Device Changed 52
The Root Partition Is Corrupt or Failed 55

Can’t Mount Secondary File Systems 55

CHAPTER4 Why Can’t I Write to the Disk? Solving Full

or Corrupt Disk Issues 57
When the Disk Is Full 58

Reserved Blocks 59

Track Down the Largest Directories 59
Out of Inodes 61
The File System Is Read-Only 62
Repair Corrupted File Systems 63
Repair Software RAID 64

CHAPTER 5 Is the Server Down? Tracking Down the Source

of Network Problems 67
Server A Can’t Talk to Server B 68
Client or Server Problem 69
Is It Plugged In? 69

|| || From the Library of Martin Spilovsky

http://www.allitebooks.org

Contents ix

Is the Interface Up? 70
Is It on the Local Network? 71
Is DNS Working? 72
Can I Route to the Remote Host? 74
Is the Remote Port Open? 76
Test the Remote Host Locally 76
Troubleshoot Slow Networks 78
DNS Issues 79
Find the Network Slowdown with traceroute 80
Find What Is Using Your Bandwidth with iftop 81
Packet Captures 83
Use the tcpdump Tool 84
Use Wireshark 88

CHAPTER6 Why Won’t the Hostnames Resolve? Solving DNS

Server Issues 93

DNS Client Troubleshooting 95
No Name Server Configured or Inaccessible

Name Server 95

Missing Search Path or Name Server Problem 97

DNS Server Troubleshooting 98

Understanding dig Output 98

Trace a DNS Query 101

Recursive Name Server Problems 104

When Updates Don’t Take 107

CHAPTER 7 Why Didn’t My Email Go Through? Tracing

Email Problems 119
Trace an Email Request 120
Understand Email Headers 123
Problems Sending Email 125
Client Can’t Communicate with the Outbound
Mail Server 126
Outbound Mail Server Won’t Allow Relay 130
Outbound Mail Server Can’t Communicate
with the Destination 131
Problems Receiving Email 135
Telnet Test Can’t Connect 136
Telnet Can Connect, but the Message Is Rejected 137
Pore Through the Mail Logs 138

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

X

Contents

CHAPTER 8

CHAPTER 9

Is the Webhsite Down? Tracking Down Weh
Server Problems

Is the Server Running?
Is the Remote Port Open?
Test the Remote Host Locally
Test a Web Server from the Command Line
Test Web Servers with Curl
Test Web Servers with Telnet
HTTP Status Codes
1xx Informational Codes
2xx Successful Codes
3xx Redirection Codes
4xx Client Error Codes
5xx Server Error Codes
Parse Web Server Logs
Get Web Server Statistics
Solve Common Web Server Problems
Configuration Problems
Permissions Problems
Sluggish or Unavailable Web Server

Why Is the Database Slow? Tracking Down
Database Problems

Search Database Logs
MySQL
PostgresSQL

Is the Database Running?
MySQL
PostgresSQL

Get Database Metrics
MySQL
PostgresSQL

Identify Slow Queries
MySQL
PostgresSQL

From the Library of Martin Spilovsky

141

143
143
144
146
146
148
149
150
150
151
152
153
154
158
163
163
164
166

m

172
173
173
174
174
175
177
177
179
182
182
183

Contents Xi

CHAPTER 10 It’s the Hardware’s Fault! Diagnosing Common

Hardware Problems 185
The Hard Drive Is Dying 186
Test RAM for Errors 190
Network Card Failures 191
The Server Is Too Hot 192
Power Supply Failures 194
Index 197

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

Preface

DevOps describes a world where developers, Quality Assurance (QA), and
systems administrators work more closely together than in many tradi-
tional environments. Although DevOps is already recognized as a boon to
rapid software deployment and automation, an often-overlooked benefit
of the DevOps approach is the rapid problem solving that occurs when
the whole team can collaborate to troubleshoot a problem on a system.
Unfortunately, developers, QA, and sysadmins have gaps in their trouble-
shooting skills that they often resolve by blaming each other for problems
on the system. This book aims to bridge those gaps and guide all groups
through a standard set of troubleshooting practices that they can apply as
a team to some of the most common Linux server problems.

Although the overall topics covered in the book are traditionally the
domain of sysadmin, in a DevOps environment, developers and QA also
find themselves troubleshooting network problems, setting up web serv-
ers, and diagnosing high load, even if they may not have a background in
Linux administration. What makes this book more than just a sysadmin
troubleshooting guide is the audience and focus. This book assumes the
reader may not be a Linux sysadmin, but instead is a talented developer or
QA engineer in a DevOps organization who may not have much system-
level Linux experience. That said, if you are a sysadmin, you won’t be left
out either. Included are troubleshooting techniques that can supplement
the skills of even senior sysadmin—just written in an accessible way.

In a traditional enterprise environment without DevOps principles, trou-
bleshooting is as dysfunctional as development is. When there is a server
problem, if you can even get developers and sysadmin on the same call,
you can expect everyone to fall into their traditional roles—the sysadmin
will only look at server resources and logs; the developers will wait for

Xiii

From the Library of Martin Spilovsky

Xiv Preface

the inevitable blame to be heaped on them for their “bloated” or “buggy”
code, at which point they will complain about the unstable, underpowered
server; or maybe everyone will redirect the blame at QA for not finding the
problem before it hit production. All the while, the actual problem is not
any closer to being solved.

In a DevOps organization, cooperation between all the teams is stressed,
but when it comes to troubleshooting, often people still fall into their tra-
ditional roles even if there’s no blame game. Why? Well, even if every-
one wants to work together, without the same troubleshooting skills and
techniques, everyone may still be waiting on everyone else to troubleshoot
their part. The goal of this book is to get every member of your DevOps
team on the same page when it comes to Linux troubleshooting. When
everyone has the same Linux troubleshooting skills, the QA team will bet-
ter be able to diagnose problems before they hit production, developers
will be better at tracking down why that latest check-in doubled the load
on the system, and sysadmins can be more confident in their diagnoses, so
when a problem strikes, everyone can pitch in to help.

This book is broken into ten chapters based on some of the most com-
mon problems you’ll face on Linux systems, and the chapters are ordered
so that techniques you learn in some of the earlier chapters (particularly
about how to diagnose high load and how to troubleshoot network prob-
lems) can be helpful as you get further into the book. That said, I realize
you may not read this book cover-to-cover, but instead you will probably
just turn to the chapter that’s relevant to your particular problem. So when
topics in other chapters are helpful, I will point you to them.

Chapter 1: Troubleshooting Best Practices Before you learn how
to troubleshoot specific problems, it may be best to learn an overall
approach to troubleshooting that you can apply to just about any kind
of problem, even outside of Linux systems. This chapter talks about
general troubleshooting principles that you will use when you try spe-
cific troubleshooting steps throughout the rest of the book.

Chapter 2: Why Is the Server So Slow? Running Out of CPU, RAM,
and Disk I/O This chapter introduces troubleshooting principles
that you will apply to one of the most common problems you’ll have

From the Library of Martin Spilovsky

Preface XV

to solve: Why is the server slow? Whether you are in QA and are try-
ing to figure out why the latest load test is running much slower; you
are a developer trying to find out if your program is I/O bound, RAM
bound, or CPU bound; or you are a sysadmin who isn’t sure whether
aload of 8,9, or 13 is OK, this chapter will give you all the techniques
you need to solve load problems.

Chapter 3: Why Won’t the System Boot? Solving Boot Problems Any
number of different problems can stop a system from booting. Whether
you have ever thought about the Linux boot process or not, this chap-
ter helps you track down boot problems by first walking you through
a healthy Linux boot process, and then discussing what it looks like
when each stage in that boot process fails.

Chapter 4: Why Can’t I Write to the Disk? Solving Full or Corrupt
Disk Issues Just about anyone who has used Linux for a period of
time has run across a system where they can’t write to the disk. It could
be that you are a developer who enabled debugging in your logs and
you accidentally filled the disk, or you could simply be the victim of
file system corruption. In either case, this chapter helps you track down
what directories are using up the most space on the system and how to
repair corrupted file systems.

Chapter 5: Is the Server Down? Tracking Down the Source of Net-
work Problems No matter where you fit in a DevOps organization,
network troubleshooting skills are invaluable. Sometimes it can be dif-
ficult to track down networking problems because they often impact
a system in strange ways. This chapter walks you through how to iso-
late and diagnose a network problem step-by-step by testing problems
on different network layers. This chapter also lays the groundwork
for troubleshooting techniques for specific network services (such as
DNS) covered in the rest of the book.

Chapter 6: Why Won’t the Hostnames Resolve? Solving DNS Server
Issues DNS can be one of the trickier services to troubleshoot
because even though so much of the network relies on it, many users
are unfamiliar with how it works. Whether you are a web developer
who gets DNS service for your site on a web GUI via your registrar, or a
sysadmin in charge of a full BIND instance, these DNS troubleshooting

From the Library of Martin Spilovsky

Xvi Preface

techniques will prove invaluable. This chapter will trace a normal, suc-
cessful DNS request and then elaborate on the DNS troubleshooting
covered in Chapter 5 with more specific techniques for finding prob-
lems in DNS zone transfers, caching issues, and even syntax errors.

Chapter 7: Why Didn’t My Email Go Through? Tracing Email Prob-
lems Email was one of the first services on the Internet and still is
an important way to communicate. Whether you are tracing why your
automated test emails aren’t being sent, why your software’s email
notifications are stuck, or why mail delivery is down for your entire
company, this chapter helps you solve a number of email problems,
including misconfigured relay servers and DNS-related mail server
issues. This chapter even shows you how to send an email “by hand”
with telnet.

Chapter 8: Is the Website Down? Tracking Down Web Server Prob-
lems So many of the applications we interact with on a daily basis
are based on the Web. In fact, if you are a software developer, there’s a
good chance web programming is at least a part of what you develop,
and if you are a sysadmin, you are likely responsible for at least one
web server. Web server troubleshooting is a large topic, but for the pur-
poses of this chapter, you only learn about the common problems you
are likely to run into with two of the most popular web servers today:
Apache and Nginx. This chapter discusses how to pull server status and
how to identify the cause of high server load as well as other common
debugging techniques.

Chapter 9: Why Is the Database Slow? Tracking Down Database
Problems Just like much of the software you use on a daily basis is
on the Web, much of the software you use stores its data in some sort of
database. This chapter is similar to Chapter 8, only its focus is on trou-
bleshooting problems with two popular open source database servers:
MySQL and PostgresSQL. As with Chapter 8, it discusses how to pull
load metrics from these databases and how to identify problem queries
as well as other causes of high load.

Chapter 10: It’s the Hardware’s Fault! Diagnosing Common Hard-
ware Problems With all this focus on software, we should also dis-
cuss one of the most common causes of server problems: hardware

From the Library of Martin Spilovsky

Preface Xvii

failures. The problem with hardware failures is that often hardware
doesn’t fail outright. Instead, segments of RAM have errors, hard drive
sectors fail, or Ethernet cards drop random packets. What’s worse,
these failures often cause software problems that are almost impos-
sible to track down. This chapter discusses how to troubleshoot some
common hardware failures, from bad RAM, to failing hard drives, to
dying network cards. This chapter contains hardware troubleshooting
techniques you can apply anywhere—from a production rackmount
server to your personal laptop.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

Acknowledgments

THANKS TO DEBRA for advocating for this book, from the first time the idea
came up all the way through to it becoming a real book. Thanks also to
Trotter and Bill for all of their feedback along the way. Finally, thanks to
all of the broken systems I’ve worked on through the years that helped me
hone my troubleshooting skills.

Xix

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

This page intentionally left blank

From the Library of Martin Spilovsky

About the Author

Kyle Rankin is a senior systems administrator and DevOps engineer; the
current president of the North Bay Linux Users’ Group; author of The
Official Ubuntu Server Book, Knoppix Hacks, Knoppix Pocket Reference,
Linux Multimedia Hacks, and Ubuntu Hacks; and a contributor to a num-
ber of other books. Rankin is an award-winning columnist for Linux™
Journal and has written for PC Magazine, TechTarget websites, and other
publications. He speaks frequently on open source software, including at
SCALE, OSCON, Linux World Expo, Penguicon, and a number of Linux
Users’ Groups.

XXi

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 1
Troubleshooting Best Practices

1

From the Library of Martin Spilovsky

TROUBLESHOOTING IS A SKILL. As with all skills, whether it’s juggling, play-
ing the guitar, cooking, or programming, some people naturally have a
knack for troubleshooting and others don’t. If a skill comes naturally to
you, you might assume it comes naturally to everyone else. After all, if you
rode a bike on your first try, you may take for granted how much work
other people have to put into it.

Some people are naturally good at troubleshooting. When faced with a
problem, they automatically snap into action and instinctively pick steps
that further isolate the problem until they have found the root cause.
When you take a car to a good mechanic, one who is good at troubleshoot-
ing, right after you describe your symptoms you can see the gears turning;
he’s already isolated the problem to a handful of causes and has a “hunch”
about the root cause. After a few tests he will have confirmed his hunch
and be well on his way toward fixing your car. On the other hand when
you take your car to a mechanic who’s bad at troubleshooting, you can
expect high repair bills and trip after trip to the shop as one after another
part of your car is replaced.

Troubleshooting is a skill that anyone can learn. As with many skills, cer-
tain techniques are involved in troubleshooting that, whether they come
naturally or not, can become second nature through practice. You not only
want to be a better troubleshooter, you also want to be faster. This is espe-
cially true when you work in an environment where downtime is mea-
sured in dollars. After all, both the good mechanic and the bad mechanic
will eventually fix your car, but which one would you prefer work on it?

In a DevOps organization, everyone on the team is responsible for some
level of troubleshooting. A developer troubleshoots bugs in his software,
a sysadmin troubleshoots problems on her hardware, and the QA team
spends a great majority of their time first finding problems and then try-
ing to locate the root cause. When everyone on the DevOps team uses the
same proven troubleshooting techniques, the whole team benefits.

This chapter describes some troubleshooting best practices you can apply
to just about any problem. Most of these practices are fairly common-sense

From the Library of Martin Spilovsky

Divide the Problem Space 3

once you read them, but you might be amazed how many people skip
them when faced with a problem.

Divide the Problem Space

If I asked you to guess a number I was thinking of from 1 to 100, what
number would you guess? Let’s say the number is 73, and after every guess
I will tell you whether the number is higher or lower than your guess.
Some people might start randomly guessing numbers, or start with 1 and
work their way up. Someone who is good at troubleshooting would prob-
ably guess something like: 50 (higher), 75 (lower), 63 (higher), 69 (higher),
72 (higher), 73. With each guess, the number of possibilities was cut in
half. In this example it took 6 guesses to find the right answer, whereas
if you started from 1 and went up, it would take 73. If you just guessed
randomly you might go through all the numbers before you lucked into
the right one.

This same approach applies to all troubleshooting. When faced with a
problem, some just start at the bottom of the list of possible causes and
work their way up; others choose random tests until they luck into the
cause. A good troubleshooter chooses each test so that the result will rule
out a class of causes, not just a single cause. Divide and conquer. When you
divide the problem space, even if a test doesn’t reveal the root cause, the
results rule out more than one cause.

For instance, if I tried to load a website in my browser and the request
timed out, and T wanted to test whether the problem was with their site
or my Internet connection, I wouldn’t immediately go to the back of my
computer to make sure the Ethernet cable was plugged in. Instead I would
probably try to load one or two other websites I know are usually stable. If
those other websites came up, I would know my Internet connection was
fine and would have just ruled out an entire set of local networking tests.

When you are problem solving with a team of people, you will also want to

divide the problem space between members of the team. Nothing is worse
than tracing down a problem only to find out your teammate has been

From the Library of Martin Spilovsky

4 Chapter 1 = Troubleshooting Best Practices

working on the same exact test. When you set out to solve a problem in a
team setting, assign different tests to each person and make sure that once
someone has ruled out a cause, the result is communicated to everyone else.

Practice Good Communication When Collaborating

One of the biggest challenges when troubleshooting with a team is estab-
lishing good methods of communication. Without good communication,
two people work on the same problem without realizing it, people go down
troubleshooting paths that someone else has already ruled out, or worse,
people misunderstand instructions and make the problem worse. The fol-
lowing sections go over some of the different communication methods
used for collaboration and describe what works and what doesn’t in each.

Conference Calls

Conference calls are one of the most common and one of the absolute
worst ways to communicate for problem solving. The biggest problem is
that only one person can talk on a conference call at a time. Even if you are
fortunate and only have people who are directly working an issue on the
call, anyone who has new information, a breakthrough, a warning, or any-
thing else has to wait their turn to speak. Even when they do get their turn,
there’s no guarantee everyone will understand what they said the first time
between interruptions, bad cell signals, and background noise from speak-
erphone users who forgot to mute. It is especially difficult to communicate
command-line commands, IP addresses, log output, or anything else that’s
remotely technical.

If solving a problem quickly is important, than conference calls put a
number of obstacles in your way. First and foremost is the time you spend
to look up the conference call number and access code, punch everything
in, and then wait while the “moderator” joins the conference. Once the
conference call is connected, you can expect the first five to ten minutes to
be a complete wash as your conversation goes something like this:

BEEP “___ just joined the conference.”

Fred: “Who just joined?”

From the Library of Martin Spilovsky

Practice Good Communication When Collaborating 5

Ted: “It’s Ted. So the website is down! What do you think the problem is?”
Fred: “Well 'm not sure yet ... I just logged into the ...

BEEP “Mary just joined the conference.”

Mary: “Hey so the website is down? What do you think the problem is?”
Fred: “I just logged into the web server and I'm looking at the ...
BEEP “Bob just joined the conference.”

Bob: (highway noises in the background) “Hey the website is down!”

The fact is, most problem-solving teams aren’t alone on the conference
call. Many managers love conference calls as a way to be involved in the
troubleshooting process and as a central command to “manage” the issue
even if they can’t directly contribute. This inevitably results in frequent
requests for a progress report, which means someone (likely the team lead
who you most want to work the issue) stops what they are doing to explain.
Since only one person can talk on the call at once, during the explanation
no other member of the team can communicate.

Essentially all of the other communication methods listed below are pref-
erable to conference calls, so while 'm not saying throw away your confer-
ence call number, I am saying you should make it your last resort.

Direct Conversation

It’s common for offices to seat teams together in the same area, yet even
when every team member is within earshot, often people turn to a con-
ference call to communicate during a crisis. If everyone is within earshot
there are many advantages to discussing an issue out loud. For one, it’s
generally easier to understand what someone says, and secondly, it’s easier
for multiple conversations to occur at one time.

The downside to direct conversations for problem solving is that it is still
difficult to share any relatively technical information, much less long log
entries or URLs. On top of that, usually conversations aren’t recorded, so
there’s no record of your troubleshooting steps for a later postmortem,

From the Library of Martin Spilovsky

6 Chapter 1 = Troubleshooting Best Practices

and anyone who joins the conversation late needs to be brought up to
speed. Plus if everyone doesn’t work in the same location, or the problem
occurs after-hours, then you are back to the conference call. For me, direct
conversations are a good supplement for some of the other, better com-
munication methods.

Email

Email can be a good way to collaborate on a problem, especially if it isn’t
time sensitive. You can see examples of this in the public bug-tracking sys-
tems for popular open source projects. The advantages of email over voice
communication are

Multiple conversations can occur at once.

Side conversations are also easy.

It’s easy to paste in IP addresses, URLSs, or commands.
You can attach screenshots or logs.

Someone who joined in the problem late can read the email thread and
get up to speed by themselves.

You automatically have a time-stamped log of the troubleshooting col-
laboration process that might include pasted command output and
other data that might not get logged any other way.

That said, a number of problems still exist with email communication.
For one, email isn’t real-time and interactive, so there is always a lag you
wouldn’t have when talking to someone in person, and that can really
slow down the troubleshooting process. Secondly, long email chains can
be difficult to parse and read, especially when people have different phi-
losophies when it comes to top-posting versus bottom-posting versus in-
line replies. It’s very easy to overlook critical information that might be
nested between comments or pasted output. If you are an administrator
and have monitoring software installed, you likely use email for one of
the notifications. During an issue, your inbox might be filled with alerts,
so it could be difficult to find the conversation in the middle of so many

From the Library of Martin Spilovsky

Practice Good Communication When Collaborating 7

other emails. Finally, what if the problem you were trying to solve is why
the email server was down?

Real-Time Chat Rooms

Real-time chat rooms are one of the best ways for a team to collaborate when
troubleshooting. Real-time chat rooms include IRC or any instant messag-
ing client such as Jabber that has a group chat feature. Here are some of the
advantages chat rooms have over the other methods of communication:

Communication is real-time and interactive.
Multiple people can communicate at the same time.
Individuals can also chat privately.

It is easy to paste in technical information.

Most chat room software includes a file-sharing feature so you can
share screenshots or logs.

Chat room conversations can be logged for later postmortems.

Some chat rooms keep chat history even for new people who join, so
it’s easy to get up to speed.

You can ignore the conversation when you are focused on something,
then return to the conversation and catch up.

You can set the chat room title to the current state of the problem and
please your manager.

Chat rooms aren’t without their own issues, though. For one, only some
chat room software saves chat history. Without that feature, every new col-
laborator who joins the chat will need to be brought up to speed. Also, any
pasted text that is more than a few lines long can be difficult to read in a
chat room, so you might need to resort to email or some other method to
share large amounts of data. Finally, some people just prefer talking over
typing, especially if they aren’t fast typists, so you may have a hard time
getting them to join the chat room.

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

8 Chapter 1 = Troubleshooting Best Practices

It may go without saying, but for the sake of privacy, it is better to use a
chat server under your own control since during troubleshooting sessions
a lot of sensitive data gets shared. Both IRC and Jabber offer open source
servers you can install in your environment to make sure communication
stays within your control.

Have a Backup Communication Method

Whatever communication method you choose, you will want to make sure
you have a backup in place. It’s tough to communicate over email if the
email server is down, and if you have networking problems, you might
not be able to reach your internal chat server. Figure out ahead of time
how you will communicate in case your primary method won’t work, and
make sure everyone knows how to use it.

Favor Quick, Simple Tests over Slow, Complex Tests

It would be great if every problem had a logical set of tests along with an
order in which you should try them. Instead, often you come up with a few
different possible causes that seem equally plausible. It can be difficult to
know what you should try first, but a good rule of thumb is that when you
have two equally good tests to perform, favor quick or simple tests over
slow or complex ones.

If you are part of an organization where downtime is measured in dol-
lars, it’s often important to locate the root cause of a problem as quickly
as possible. For instance, when a web server is down, there are a number
of different ways to troubleshoot the problem, but if you start by trying to
ping the server, you are performing a fast test that immediately tells you
whether the server is still on the network. If ping doesn’t work you can
start working on how to get the server back on the network. If ping does
work, you can start the longer, more involved troubleshooting process, but
you are only out a couple of seconds.

In a team setting you have an advantage in that it’s easier to do more than

one test at a time. In this case, it might make sense to have one mem-
ber work on a slow, complex test while someone else focuses on shorter,

From the Library of Martin Spilovsky

Favor Past Solutions 9

simpler tests. As long as everyone communicates well, you can quickly drill
down to a root cause this way.

Although quick and simple tests should be preferred, it’s fine to start a
slow test if it’s mostly unattended. The reason for this is that you can fire
off the slow test and then work on other things while it runs. The same
thinking applies to any other troubleshooting processes that take some
time. For instance, if as part of the troubleshooting process you need to file
a ticket or send some sort of notice to other support staff, get that process
started and then dive into other tasks that require more focus.

Here’s another great question to ask: “Is it plugged in?” Often some of the
largest problems have the simplest causes. Network and power cables are
often loosely connected and the slightest nudge is enough to drop your
server from the network. If you are close enough to a system to check
whether it’s plugged in, it’s better to do that quick visual test than sit at
your computer waiting for a minute-long port scan to return.

Favor Past Solutions

The fact of the matter is that most problems happen more than once. One
of the reasons that some people have an uncanny ability to isolate an issue
quickly is that they have experienced the same thing many times before.
You will become a better and faster troubleshooter the more problems you
are exposed to.

When you are solving a problem you will often see the same symptoms that
you've seen before. Try to remember what the root cause was the last time
and what steps you used to isolate the issue. More often than not, when the
symptoms are the same, the root cause will be the same, and if you are able
to recognize that, you can solve the problem that much faster. Like they say,
if it walks like a duck and quacks like a duck, it’s probably a duck.

Yet, sometimes it’s not a duck. I’'ve seen some people take the principle of
favoring past solutions so far that if any symptoms sound familiar, they
become completely closed off to any other explanation. The fact is, com-
pletely different problems can often have the same symptoms, especially

From the Library of Martin Spilovsky

10 Chapter 1 = Troubleshooting Best Practices

on the surface. For instance, an ssh session into a server can lag and seem
sluggish both when the server is under heavy load or when the network
connection is saturated. Nmap (a useful port scanning tool) will report
that a port is filtered both if a firewall is blocking it and if there is a router
misconfiguration. If you zero in on a past solution too quickly, you can bias
yourself and make it much more difficult to find the real problem.

The key is that even when you use past solutions to guide your trouble-
shooting process, still be sure to test your hypotheses. If you remember
some of the ways you isolated the issue last time, you should be able to
prove it with a test much faster this time, and if your test gives different
results, be ready to move on to other theories.

Document Your Problems and Solutions

As I've already mentioned, most problems happen more than once. One of
the best ways to take advantage of this fact is to document your problems
and their solutions. Many places call this process a postmortem. After a
problem is resolved, everyone involved gets together and documents what
went wrong and what steps everyone performed to isolate the issue along
with their results. At the end of the postmortem a root cause is identified
and, ideally, further steps are put in place to prevent the problem from
happening again.

While postmortems take time out of everyone’s busy schedule, there are a
lot of reasons they are worth doing. The main reason is that in the event
the same symptoms do creep up again, it can be hard to remember every-
thing you did the last time to resolve the issue. In the heat of the moment,
often all you can remember is that you've seen the issue before. If you can
find a matching postmortem, you’ll get an immediate list of troubleshoot-
ing steps to isolate the issue.

In a team setting, this documentation process makes everyone a better
problem solver. The junior members of the team get the benefit of learn-
ing from more senior members’ experience, and everyone learns new tools
and techniques together. What’s more, when the solutions to problems are
documented, it’s easier for junior team members to solve the problem by

From the Library of Martin Spilovsky

Document Your Problems and Solutions 11

themselves. That means fewer wake-up calls when you aren’t on call and
fewer interruptions when you are on vacation.

When done properly, postmortems can be a valuable asset, but when done
poorly, they can cause more problems than they solve. It’s great to talk
about and document troubleshooting techniques and procedures, but you
must also trace back to the root cause. It’s true that it takes extra time
and effort to pore through logs to trace the root cause once the problem
goes away. Many times a team will go only as far as it takes to describe
the symptoms and what they did to make the problem go away. These are
often the same teams that only solve problems by rebooting servers or
services. If you don’t isolate a root cause, you are probably going to see the
same problem again and again.

Of course, isolating a root cause is only useful if you then take some steps
to prevent the problem from happening again. Once you know the root
cause, you can then figure out how to fix it and who will take it on. That
is often easier said than done but, again, without it you will likely see the
problem again, and worst case, you can decide that the effort involved to
solve a problem for good isn’t worth it.

Some teams, if you can call them that, have the opposite problem. They
love to use the postmortem to isolate a root cause, but only so they know
who to blame. Postmortems in this environment become defensive,
often aggressive, and ultimately counterproductive. When a postmortem
becomes all about blame, people are less likely to participate and more
likely to keep facts to themselves, especially if they think it could implicate
them. In the end, even if you do find someone to blame, you may not have
found the actual root cause. This fosters an even more dysfunctional envi-
ronment when you have to troubleshoot a new issue. Instead of solving the
problem at hand, the focus is on doing enough to prove the problem is “on
your end, not mine.”

Finally, some people love postmortems so much that they start them before
the problem is even solved. When you are in the middle of a crisis, your
focus should be strictly on the problem at hand and the troubleshooting
steps you will perform to isolate it. It’s too early to know the root cause,

From the Library of Martin Spilovsky

12 Chapter 1 = Troubleshooting Best Practices

so what good is it to say those immortal words: “What can we do so this
never happens again?” If you've ever solved complex problems, you know
that what you think might be the root cause can change multiple times
throughout the process. Often troubleshooting environments are high-
stress and require extreme focus, especially when the problem is costing
your company money and any distractions just mean it will be that much
longer before the problem is solved.

Even if you have just identified the root cause, it’s still better to allow
enough time for everyone to cool off, calm down, and really think about
what just happened before you plan long-term solutions. Without that
extra time, you are more likely to come up with reactionary, bandage fixes
that either postpone the problem or create more problems than they solve.

Know What Changed

One of the largest sources of problems in a system is change. When every-
thing has been running smoothly for a long time and then a problem
appears, one of the first things you should ask is “What changed?” Now, if
your system is constantly unstable, you wouldn’t necessarily want to jump
to new changes as a source of your problems; but on a stable, consistent
system, all other things being equal, changes should be your first trouble-
shooting target. Identifying and ruling out changes made to the system
will dramatically speed up your troubleshooting process.

Although a change to the system could likely be the source of the prob-
lem, if you have no way to track changes, you will probably not be able to
solve the problem any faster. If you don’t have some way to keep track of
changes, you should seriously consider one—especially once your system
is stable. Nothing is nicer than getting an alert of a problem, having some-
one pipe up with “Jim pushed a code change around the time the problem
started,” and immediately tracking down the issue. Nothing’s worse than
discovering a problem on a stable system, asking what changed, and real-
izing that you have no way of knowing.

Even with some way to keep track of your changes, it’s still best if you can
discipline yourself to change only one thing at a time. It’s much simpler to

From the Library of Martin Spilovsky

Understand How Systems Work 13

isolate an issue if you can point to a single change made around the time
of the problem; it’s much more difficult if ten different pieces of code and
three configuration files were changed at the same time. I've seen some
teams use maintenance windows as a way to get a lot of unrelated things
knocked out at once. The issue is that when a problem arises during that
maintenance window, it’s much harder to isolate the root cause.

It’s great if you have a system to keep track of your changes, but even better
is a system that allows you to roll back any changes that cause problems.
If nothing else, if you can roll back all changes to the system before the
problem appeared and the problem is still there, you have just ruled out
a major hypothesis and can move on to other tests. Even if you have the
ability to roll back changes, still try to change one thing at a time. Rolling
back a large group of changes may solve the problem, but you still have
to dig through each individual change to find the source of the problem.

Having said all of this, changes aren’t always the cause of your problems.
In fact, I've seen the “What changed?” question create many red herrings
in troubleshooting sessions. Like with all of these troubleshooting philos-
ophies, be sure to test your change hypothesis and don’t just start rolling
everything back at the first sign of an issue.

Understand How Systems Work

One thing I've learned in my years as a systems administrator is that when
there’s a problem, everyone blames the technology they understand least.
At one point in my career, DNS became the scapegoat for any and all net-
working problems. I have no idea how it started, since as long as I had
been there our DNS servers had always been stable, but the moment any
networking problem appeared heads would pop up above cubicles and
people would say “Is DNS down?” What I noticed was that those people
who were blaming DNS were the same people who knew the least about
it. My solution was to host a voluntary class inside the company where I
taught how DNS worked, and afterward I noticed that everyone who had
attended the class stopped blaming DNS for networking problems (and
the few people who skipped the class still did).

From the Library of Martin Spilovsky

14 Chapter 1 = Troubleshooting Best Practices

The point is that this instinct to blame the technology you understand
least applies to you the troubleshooter as well as anyone else. You will be a
much more effective problem solver if you understand how the system you
are troubleshooting works. From the perspective of solving Linux issues,
this means having a good understanding of TCP/IP, DNS, Linux processes,
programming, and memory management. This book will help explain
many of these subjects in the context of troubleshooting, but the fact is
they are good subjects to know anyway even outside of troubleshooting.

You'll discover that the more you understand how a system works, the
faster you will be able to solve its problems. You will find you can trust
your hunches about a problem more. It also will help you avoid wild goose
chases. You'll be able to rule out entire categories of root causes without
having to perform many tests.

Use the Internet, but Carefully

The Internet can be a very valuable resource when troubleshooting. You
probably aren’t the first person in the world to see a particular error mes-
sage. It’s not only likely that someone else has seen the same symptoms as
you, there’s a good chance in your search you’ll find a working solution.

The challenge with using the Internet for your troubleshooting is that you
must have a good, clear understanding of the problem before you search
on the Internet. If your server is not on the network and you type “server
not on network” into a search engine, you probably won’t get very helpful
results. Once you do some troubleshooting steps on your own to narrow
down the issue and have a clearer understanding of the problem, you'll be
able to use specific, targeted search queries that very well could help you
solve your problem.

I’ve found the Internet to be most useful when troubleshooting problems
that include a very specific error code or phrase. Error codes that describe
a specific issue can be handy because they are simple to search for even
if you don’t understand what the error code means. Usually you’ll find a
helpful person on a forum or knowledge base that explains what the error
code means and what to do when you see it. Error messages in program

From the Library of Martin Spilovsky

Resist Rehooting 15

output, if they are specific enough, can also be a good source for help when
you are trying to resolve a problem.

The danger with Internet searches is that if you don’t have a good under-
standing of the problem or don’t use specific search queries, you can end
up with a lot of bad information and bad troubleshooting steps that will
take you further away from the root cause. You can also find a lot of advice
from people who frankly don’t know what they are talking about. Always
consider the source, and especially be sure you understand any commands
or code before you copy and paste them.

Resist Rebooting

Back in the Windows 95 days, rebooting was often the best way to fix just
about any problem. We aren’t in the Windows 95 days anymore, nor are we
even using Windows here, yet some people are still stuck in that mindset,
so the moment a problem arises, their first action is to restart a service or
reboot hardware.

The most dangerous thing about rebooting to fix a problem isn’t that it
won’t work, but that sometimes it actually does fix the problem. What’s
dangerous is that if it does fix the problem you are still no closer to identi-
fying the root cause, and, since the problem is no longer there to test again,
you may never isolate the cause. It is really difficult if not impossible to
troubleshoot the cause of a problem when the problem no longer exists. If
you don’t isolate the root cause, you are almost guaranteeing you will see
the problem again at a later date.

Don’t get me wrong, ’'m not saying that you should never reboot hard-
ware or restart a service when troubleshooting. What I am saying is that
you should always use a reboot as an absolute last resort, and try to cap-
ture all of the troubleshooting data you can beforehand just in case the
problem does go away. This can be a tricky policy to have, especially if
the problem is costing real money and your boss or a customer is scream-
ing at you to just reboot and see if it fixes things. Stick to your guns,
though. If you think your boss or customer is upset now, wait until the
same problem happens again.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 2

Why Is the Server So Slow?
Running Out of CPU, RAM,
and Disk 1/0

17

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

18

ALTHOUGH MOST OF THE problems you’ll find on a server have some basis in
networking, a class of issues still involves only the localhost. What makes
this tricky is that some local and networking problems often create the
same set of symptoms, and in fact, local problems can create network
problems and vice versa. This chapter covers problems that occur specifi-
cally on a host and leaves issues that impact the network to Chapter 5.

Just about everyone in a DevOps team faces problems with a sluggish or
unresponsive host, whether they are a developer trying to track down why
their latest check-in is running much slower than before, a QA engineer
trying to perform load tests before their code hits production, or a sysad-
min who needs to figure out whether it’s time to buy more RAM, extra
CPUsg, or faster disks. These same techniques can even help you trouble-
shoot load problems on your Linux desktop.

Probably one of the most common problems you will find on a host is that
it is sluggish to the point of being unresponsive. Often this can be caused
by network issues, but this chapter will discuss some local troubleshoot-
ing tools you can use to tell the difference between a loaded network and
a loaded machine.

When a machine is sluggish, it is often because you have consumed all of
a particular resource on the system. The main resources are CPU, RAM,
disk I/O, and network (which I will leave to Chapter 5). Overuse of any of
these resources can cause a system to bog down to the point that often the
only recourse is your last resort—a reboot. If you can log in to the system,
however, there are a number of tools you can use to identify the cause.

System Load

System load average is probably the fundamental metric you start from
when troubleshooting a sluggish system. One of the first commands I run
when I'm troubleshooting a slow system is uptime:

$ uptime
13:35:03 up 103 days, 8 min, 5 users, Toad average: 2.03, 20.17, 15.09

From the Library of Martin Spilovsky

System Load 19

The three numbers after Toad average—2.03, 20.17, and 15.09—represent the
1-,5-, and 15-minute load averages on the machine, respectively. A system
load average is equal to the average number of processes in a runnable or
uninterruptible state. Runnable processes are either currently using the
CPU or waiting to do so, and uninterruptible processes are waiting for I/O.

A single-CPU system with a load average of 1 means the single CPU is
under constant load. If that single-CPU system has a load average of 4,
there is four times the load on the system than it can handle, so three out
of four processes are waiting for resources. The load average reported on
a system is not tweaked based on the number of CPUs you have, so if you
have a two-CPU system with a load average of 1, one of your two CPUs is
loaded at all times—that is, you are 50% loaded. So aload of 1 on a single-
CPU system is the same as a load of 4 on a four-CPU system in terms of
the amount of available resources used.

The 1-, 5-, and 15-minute load averages describe the average amount of
load over that respective period of time and are valuable when you try
to determine the current state of a system. The 1-minute load average
will give you a good sense of what is currently happening on a system,
so in the previous example, you can see that the server most recently
had a load of 2 over the last minute, but the load had spiked over the
last 5 minutes to an average of 20. Over the last 15 minutes the load was
an average of 15. This tells us that the machine had been under high
load for at least 15 minutes and the load appeared to increase around 5
minutes ago, but it appears to have subsided. Let’s compare this with a
completely different load average:

$ uptime
05:11:52 up 20 days, 55 min, 2 users, load average: 17.29, 0.12, 0.01

In this case, both the 5- and 15-minute load averages are low, but the
1-minute load average is high, so I know that this spike in load is relatively
recent. Often in this circumstance I will run uptime multiple times in a row
(or use a tool like top, which I will discuss in a moment) to see whether the
load is continuing to climb or is on its way back down.

From the Library of Martin Spilovsky

20 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

What Is a High Load Average?

A fair question to ask is what load average you consider to be high. The
short answer is “It depends on what is causing it.” Because the load
describes the average number of active processes that are using resources,
a spike in load could mean a few things. What is important to determine
is whether the load is CPU-bound (processes waiting on CPU resources),
RAM-bound (specifically, high RAM usage that has moved into swap), or
[/O-bound (processes fighting for disk or network 1/0).

For instance, if you run an application that generates a high number
of simultaneous threads at different points, and all of those threads are
launched at once, you might see your load spike to 20, 40, or higher as they
all compete for system resources. As they complete, the load might come
right back down.

Typically systems seem to be more responsive when under CPU-bound
load than when under I/O-bound load. I’ve seen systems with loads in the
hundreds that were CPU-bound, and I could still run diagnostic tools on
those systems with pretty good response times. On the other hand, I've
seen systems with relatively low I/0-bound loads on which just logging
in took a minute because the disk I/O was completely saturated. A system
that runs out of RAM resources often appears to have I/O-bound load,
since once the system starts using swap storage on the disk, it can consume
disk resources and cause a downward spiral as processes slow to a halt.

Diagnose Load Problems with top

One of the first tools I turn to when I need to diagnose high load is top.
When you type top on the command line and press Enter, you will see a
lot of system information all at once (Figure 2-1). This data will continu-
ally update so that you see live information on the system, including how
long the system has been up, the load average, how many total processes
are running on the system, how much memory you have—total, used, and
free—and finally a list of processes on the system and how many resources
they are using. You probably won’t be able to see every process that is cur-
rently running on your system with top because they wouldn’t all fit on the

From the Library of Martin Spilovsky

Diagnose Load Problems with top 21

top - 15:28:40 up 16 min, £ users, load average: 0.00, 0.17, 0.22

Tasks: 68 total, 1 rumning, 67 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0xu=, 1.6xsy, 0.0xmi, 98.4xid, 0.0xwa, 0.0<hi, 0.0xsi, 0.0xst
Mem: 508684k total, 304116k used, 204568k free, 10976k buffers

Swap: 397304k total, 0k used, 397304k free, 138948k cached

PID USER PR NI VUIRT RES 3SHR 5 xCPU »MEM TIME+ COMMAND

1331 ubuntu 20 0 2388 1124 896 .75 top
root 20 0 216 1576 1192 .07 init
root 20 .00 kthreadd
root RT .00 migration-sQ
root 20 .00 ksoftirgd- 0
root RT .00 watchdog/Q
root 20 .49 events- 0
root 20 .00 cpuset
root 20 .00 khelper
root 20 .00 netns
root 20 .00 async-mgr
root 20 .00 pm
root 20 .02 sync_supers
root 20 .00 bdi-default
root 20 .00 kintegrityd-0
root 20 .04 kblockd 0
root 20 .00 kacpid
root 20 .00 kacpi_notify
root 20 .00 kacpi_hotplug
root 20 .00 ata-0
root 20 .00 ata_aux
root 20 .00 ksuspend_usbd
rnnt Pl A AR khichd

l=RolicoRoloololclolofolclolololollclollclolol
=R R R e R e e e e R e e o i e o]
=R R R e R e e e e R e e o i e o]
20000 OCCOCOOLCOOOOOOOOCOOO
eI T P I e e I e R e I P R T R R P e I e R P I R I e T)
=l == R o - e e i o o o e o i o o il
f=l ==l R R o o = i o - o e o - o o = =)
j=Roliclolofclolclolofolcloclcfolclolclofolclol
j=jolicRoliofclococlofolclioiclcolclollclcloTUH)

Figure 2-1 Standard top output

screen. By default top sorts the processes according to how much CPU they
use. That way you can see what processes are consuming CPU at a glance.

So what if you do notice a process consuming all of your CPU and you
want to kill it? The very first column for processes in top is labeled PID
and shows a program’s process ID—a unique number assigned to every
process on a system. To kill a process, press the K key and then type in the
PID you wish to kill; then hit Enter when prompted to kill with signal 15.

By default top runs in an interactive mode, which is fine unless you want
to view information that doesn’t fit on the screen. If you do want to view
the full output of top, or redirect it to a file, you can run it in a batch mode.
The -b option enables batch mode, and the -n option lets you control how
many times top will update before it closes. So, for instance, to run top just
once so you can see the full output, run

$top-b-nl

From the Library of Martin Spilovsky

22 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

If you wanted to store that information into a file named top_output, use
$ top -b -n 1> top_output

If you wanted to view the top output and output to a file at the same time,
you could use the handy command-line tool tee:

$ top -b -n 1 | tee top_output

Make Sense of top Output

When you use top to diagnose load, the basic steps are to examine the top
output to identify what resources you are running out of (CPU, RAM, disk
I/O). Once you have figured that out, you can try to identify what pro-
cesses are consuming those resources the most. First, let’s examine some
standard top output from a system:

top - 14:08:25 up 38 days, 8:02, 1 user, Toad average: 1.70, 1.77, 1.68
Tasks: 107 total, 3 running, 104 sleeping, 0 stopped, 0 zombie
Cpu(s): 11.4%us, 29.6%sy, 0.0%ni, 58.3%id, .7%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 1024176k total, 997408k used, 26768k free, 85520k buffers
Swap: 1004052k total, 4360k used, 999692k free, 286040k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17.64 mysqld
18749 nagios 16 0 140m 134m 1868 S 12 6.6 1345:01 nagios2db_status
24636 nagios 7 034660 1om 712 S 8 0.5 1195:15 nagios
22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

[

The first line of output is the same as you would see from the uptime com-
mand. As you can see in this case, the machine isn’t too heavily loaded for
a four-CPU machine:

top - 14:08:25 up 38 days, 8:02, 1 user, Toad average: 1.70, 1.77, 1.68

top provides you with extra metrics beyond standard system load, though.
For instance, the Cpu(s) line gives you information about what the CPUs
are currently doing:

Cpu(s): 11.4%us, 29.6%sy, 0.0%ni, 58.3%id, 0.7%wa, 0.0%hi, 0.0%si, 0.0%st

From the Library of Martin Spilovsky

Diagnose Load Problems with top 23

These abbreviations may not mean much if you don’t know what they
stand for, so I've broken each of them down here:

us: user CPU time

This is the percentage of CPU time spent running users’ processes that
aren’t niced. (Nicing is a process that allows you to change its priority
in relation to other processes.)

sy: system CPU time
This is the percentage of CPU time spent running the kernel and ker-
nel processes.

ni: nice CPU time
If you have user processes that have been niced, this metric will tell you
the percentage of CPU time spent running them.

id: CPU idle time

This is one of the metrics that you want to be high. It represents the
percentage of CPU time that is spent idle. If you have a sluggish system
but this number is high, you know the cause isn’t high CPU load.

wa: I/0 wait

This number represents the percentage of CPU time that is spent wait-
ing for I/0O. It is a particularly valuable metric when you are tracking
down the cause of a sluggish system, because if this value is low, you
can pretty safely rule out disk or network I/O as the cause.

hi: hardware interrupts
This is the percentage of CPU time spent servicing hardware interrupts.

si: software interrupts
This is the percentage of CPU time spent servicing software interrupts.

st: steal time
If you are running virtual machines, this metric will tell you the per-
centage of CPU time that was stolen from you for other tasks.

In the previous example, you can see that the system is over 50% idle,
which matches a load of 1.70 on a four-CPU system. When you diagnose
a slow system, one of the first values you should look at is I/O wait so

From the Library of Martin Spilovsky

24 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

you can rule out disk I/O. If I/O wait is low, then you can look at the idle
percentage. If I/O wait is high, then the next step is to diagnose what is
causing high disk I/O, which I will cover momentarily. If I/O wait and idle
times are low, then you will likely see a high user time percentage, so you
must diagnose what is causing high user time. If the I/O wait is low and the
idle percentage is high, you then know any sluggishness is not because of
CPU resources, and you will have to start troubleshooting elsewhere. This
might mean looking for network problems, or in the case of a web server,
looking at slow queries to MySQL, for instance.

Diagnose High User Time

A common and relatively simple problem to diagnose is high load due to
a high percentage of user CPU time. This is common since the services
on your server are likely to take the bulk of the system load and they are
user processes. If you see high user CPU time but low I/O wait times, you
simply need to identify which processes on the system are consuming the
most CPU. By default, top will sort all of the processes by their CPU usage:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17.64 mysqld
18749 nagios 1 0 140m 134m 1868 S 12 6.6 1345:01 nagios2db_status
24636 nagios 7 034660 1om 712 S 8 0.5 1195:15 nagios
22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

=

In this example, the mysqld process is consuming 53% of the CPU and the
nagios2db_status process is consuming 12%. Note that this is the percentage
of a single CPU, so if you have a four-CPU machine, you could possibly
see more than one process consuming 99% CPU.

The most common high-CPU-load situations you will see are all of the
CPUs being consumed either by one or two processes or by a large number
of processes. Either case is easy to identify since in the first case the top
process or two will have a very high percentage of CPU and the rest will
be relatively low. In that case, to solve the issue you could simply kill the
process that is using the CPU (hit K and then type in the PID number for
the process).

From the Library of Martin Spilovsky

Diagnose Load Problems with top 25

In the case of multiple processes, you might have one system doing too
many things. You might, for instance, have a large number of Apache pro-
cesses running on a web server along with some log parsing scripts that
run from cron. All of these processes might be consuming more or less the
same amount of CPU. The solution to problems like this can be trickier
for the long term. As in the web server example, you do need all of those
Apache processes to run, yet you might need the log parsing programs
as well. In the short term, you can kill (or possibly postpone) some pro-
cesses until the load comes down, but in the long term, you might need to
consider increasing the resources on the machine or splitting some of the
functions across more than one server.

Diagnose Out-of-Memory Issues

The next two lines in the top output provide valuable information about
RAM usage. Before diagnosing specific system problems, it’s important to
be able to rule out memory issues.

Mem: 1024176k total, 997408k used, 26768k free, 85520k buffers
Swap: 1004052k total, 4360k used, 999692k free, 286040k cached

The first line tells us how much physical RAM is available, used, free, and
buffered. The second line gives us similar information about swap usage,
along with how much RAM is used by the Linux file cache. At first glance it
might look as if the system is almost out of RAM since the system reports
that only 26,768k is free. A number of troubleshooters are misled by the
used and free lines in the output because of the Linux file cache. Once
Linux loads a file into RAM, it doesn’t necessarily remove it from RAM
when a program is done with it. If there is RAM available, Linux will cache
the file in RAM so that if a program accesses the file again, it can do so
much more quickly. If the system does need RAM for active processes,
it won’t cache as many files. Because of the file cache, it’s common for a
server that has been running for a fair amount of time to report a small
amount of RAM free with the remainder residing in cache.

To find out how much RAM is really being used by processes, you must
subtract the file cache from the used RAM. In the example code you just

From the Library of Martin Spilovsky

26 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

looked at, out of the 997,408k RAM that is used, 286,040k is being used
by the Linux file cache, so that means that only 711,368k is actually being
used. In this example, the system still has plenty of available memory and
is barely using any swap at all. Even if you do see some swap being used,
it is not necessarily an indicator of a problem. If a process becomes idle,
Linux will often page its memory to swap to free up RAM for other pro-
cesses. A good way to tell whether you are running out of RAM is to look
at the file cache. If your actual used memory minus the file cache is high,
and the swap usage is also high, you probably do have a memory problem.

If you do find you have a memory problem, the next step is to identify
which processes are consuming RAM. top sorts processes by their CPU
usage by default, so you will want to change this to sort by RAM usage
instead. To do this, keep top open and hit the M key on your keyboard. This
will cause top to sort all of the processes on the page by their RAM usage:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
18749 nagios 16 0 140m 134m 1868 S 12 6.6 1345:01 nagios2dh_status
9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17 mysqld
24636 nagios 17 0 34660 10m 712 S 8 0.5 1195:15 nagios
22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

Look at the %MEM column and see if the top processes are consuming a
majority of the RAM. If you do find the processes that are causing high
RAM usage, you can decide to kill them, or, depending on the program,
you might need to perform specific troubleshooting to find out what is
making that process use so much RAM.

NOTE top can actually sort its output by any of the columns. To change which column top sorts
by, hit the F key to change to a screen where you can choose the sort column. After you
press a key that corresponds to a particular column (for instance, K for the CPU column),
you can hit Enter to return to the main top screen.

The Linux kernel also has an out-of-memory (OOM) killer that can kick
in if the system runs dangerously low on RAM. When a system is almost
out of RAM, the OOM killer will start killing processes. In some cases this

From the Library of Martin Spilovsky

Diagnose Load Problems with top 27

might be the process that is consuming all of the RAM, but this isn’t guar-
anteed. It’s possible the OOM killer could end up killing programs like sshd
or other processes instead of the real culprit. In many cases, the system is
unstable enough after one of these events that you find you have to reboot
it to ensure that all of the system processes are running. If the OOM killer
does kick in, you will see lines like the following in your /var/log/syslog:

1228419127.32453_1704 .hostname:2,S:0ut of Memory: Killed process 21389 (java).
1228419127.32453_1710. hostname:2,S:0ut of Memory: Killed process 21389 (java).

Diagnose High 1/0 Wait

When you see high I/0O wait, one of the first things you should check is
whether the machine is using a lot of swap. Since a hard drive is much
slower than RAM, when a system runs out of RAM and starts using swap,
the performance of almost any machine suffers. Anything that wants to
access the disk has to compete with swap for disk I/O. So first diagnose
whether you are out of memory and, if so, manage the problem there. If
you do have plenty of RAM, you will need to figure out which program is
consuming the most I/O.

It can sometimes be difficult to figure out exactly which process is using
the I/O, but if you have multiple partitions on your system, you can nar-
row it down by figuring out which partition most of the I/O is on. To do
this, you will need the iostat program, which is provided by the sysstat
package in both Red Hat- and Debian-based systems; if it isn’t installed,
you can install it with your package manager.

Preferably you will have this program installed before you need to diag-
nose an issue. Once the program is installed, you can run iostat without
any arguments to see an overall glimpse of your system:

$ sudo jostat
Linux 2.6.24-19-server (hostname) ©01/31/2009

avg-cpu: %user %nice %system %iowait %steal %idle
5.73 0.07 2.03 0.53 0.00 91.64

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

28 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 9.82 417.96 27.53 30227262 1990625
sdal 6.55 219.10 7.12 15845129 515216
sda2 0.04 0.74 3.31 53506 239328
sda3 3.24 198.12 17.09 14328323 1236081

The first bit of output gives CPU information similar to what you would
see in top. Below it are I/O stats on all of the disk devices on the system
as well as their individual partitions. Here is what each of the columns
represents:

tps
This lists the transfers per second to the device. “Transfers” is another
way to say I/O requests sent to the device.

Blk_read/s
This is the number of blocks read from the device per second.

Blk_wrtn/s
This is the number of blocks written to the device per second.

B1k_read
In this column is the total number of blocks read from the device.

BTk_wrtn
In this column is the total number of blocks written to the device.

When you have a system under heavy I/O load, the first step is to look at
each of the partitions and identify which partition is getting the heavi-
est I/O load. Say, for instance, that you have a database server and the
database itself is stored on /dev/sda3. If you see that the bulk of the I/O
is coming from there, you have a good clue that the database is likely
consuming the I/O.

Once you figure that out, the next step is to identify whether the I/O is
mostly from reads or writes. Let’s say you suspect that a backup job is
causing the increase in I/O. Since the backup job is mostly concerned with
reading files from the file system and writing them over the network to the
backup server, you could possibly rule that out if you see that the bulk of
the I/O is due to writes, not reads.

From the Library of Martin Spilovsky

Troubleshoot High Load after the Fact 29

NOTE You will probably have to run iostat more than one time to get an accurate sense of the
current I/0 on your system. If you specify a number on the command line as an argument,
iostat will continue to run and give you new output after that many seconds. For instance,
if you wanted to see iostat output every 2 seconds, you could type sudo iostat 2. Another
useful argument to jostat if you have any NFS shares is -n. When you specify -n, iostat
will give you 1/0 statistics about all of your NFS shares.

In addition to iostat, we have a much simpler tool available in newer distri-
butions called fotop. In effect, it is a blend of top and jostat in that it shows
you all of the running processes on the system sorted by their I/O statis-
tics. The software uses a somewhat new feature of the Linux kernel and
requires the 2.6.20 kernel or later. If the program isn’t installed by default,
you will find it in the aptly named iotop package. It is included in Debian-
based distributions, but for Red Hat-based distributions, you will need to
track down and install a third-party RPM with a search on the web or via
a third-party repository. Once the package is installed, you can run iotop as
root and see output like the following:

$ sudo iotop
Total DISK READ: 189.52 K/s | Total DISK WRITE: 0.00 B/s

TID PRIO USER DISK READ DISK WRITE SWAPIN 10> COMMAND

8169 be/4 root 189.52 K/s 0.00 B/s 0.00 % 0.00 % rsync --server --se
4243 be/4 kyle 0.00 B/s 3.79 K/s 0.00 % 0.00 % cli /usr/1ib/gnome-
4244 be/4 kyle 0.00 B/s 3.79 K/s 0.00 % 0.00 % cli /usr/1ib/gnome-

1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % init

In this case, you can see that there is an rsync process tying up your read I/O.

Troubleshoot High Load after the Fact

So far this chapter has talked about how to find the cause of high load
while the system is loaded. Although top and iostat are great tools, we aren’t
always fortunate enough to be on the system when it has problems. I can’t
tell you how many times I've been notified of a slow server, only to have

From the Library of Martin Spilovsky

30 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

the load drop before I log in. With only a little effort, you can install tools
on your server to log performance data throughout the day.

We've already discussed how to use the tool iostat included in the sysstat
package to troubleshoot high IO, but sysstat includes tools that can also
report on CPU and RAM utilization. Although it’s true you can already
do this with top, what makes sysstat even more useful is that it provides a
simple mechanism to log system statistics like CPU load, RAM, and 1/O
stats. With these statistics, when someone complains that a system was
slow around noon yesterday, you can play back these logs and see what
could have caused the problem.

Configure sysstat

The first step is to install the sysstat package using your package manager.
On a Debian-based system like Ubuntu, sysstat won’t be enabled auto-
matically, so edit /etc/default/sysstat and change

ENABLED="false"
to
ENABLED="true"

On a Red Hat-based system, you may want to edit the /etc/sysconfig/sysstat
file and change the HISTORY option so it logs more than 7 days of statis-
tics. On both distributions types, statistics will be captured every 10 min-
utes and a daily summary will be logged.

Once enabled, sysstat gathers system stats every 10 minutes and stores
them under /var/log/sysstat or /var/log/sa. In addition, it will rotate out the
statistics file every night before midnight. Both of these actions are run
in the /etc/cron.d/sysstat script, so if you want to change how frequently
sysstat gathers information, you can modify it from that file.

View CPU Statistics

As sysstat gathers statistics, it stores them in files beginning with sa fol-
lowed by the current day of the month (such as sa03). This means that you

From the Library of Martin Spilovsky

Troubleshoot High Load after the Fact 31

can go back up to a month from the current date and retrieve old statistics.
Use the sar tool to view these statistics. By default sar outputs the CPU
statistics for the current day:

$ sar
Linux 2.6.24-22-server (kickseed) 01/07/2012

07:44:20 PM CPU %user %nice %system %iowait %steal %idle
07:45:01 PM all 0.00 0.00 0.54 0.51 0.00 98.95
07:55:01 PM all 0.54 0.00 1.66 1.26 0.00 96.54
08:05:01 PM all 0.20 0.00 0.72 1.08 0.00 98.00
08:15:01 PM all 0.49 0.00 1.12 0.62 0.00 97.77
08:25:01 PM all 0.49 0.00 2.15 1.21 0.00 96.16
08:35:01 PM all 0.22 0.00 0.98 0.58 0.00 98.23
08:45:01 PM all 0.23 0.00 0.75 0.54 0.00 98.47
08:55:01 PM all 0.20 0.00 0.78 0.50 0.00 98.52
09:01:18 PM all 0.19 0.00 0.72 0.37 0.00 98.71
09:05:01 PM all 0.24 0.00 1.10 0.54 0.00 98.12
Average: all 0.32 0.00 1.12 0.78 0.00 97.78

From the output you can see many of the same CPU statistics you would
view in top output. At the bottom, sar provides an overall average as well.

View RAM Statistics

The sysstat cron job collects much more information than CPU load,
though. For instance, to gather RAM statistics instead, use the -r option:

$ sar -r
Linux 2.6.24-22-server (kickseed) 01/07/2012
07:44:20 PM kbmemfree kbmemused %memused kbbuffers kbcached kbswpfree kbswpused %swpused kbswpcad

07:45:01 PM 322004 193384 37.52 16056 142900 88316 0 0.00 0
07:55:01 PM 318484 196964 38.21 17152 144672 88316 0 0.00 0
08:05:01 PM 318228 197220 38.26 17648 144700 88316 0 0.00 0
08:15:01 PM 297669 217780 42.25 18384 154408 88316 0 0.00 0
08:25:01 PM 284152 231296 44.87 20072 173724 88316 0 0.00 0
08:35:01 PM 283096 232352 45.08 20612 173756 88316 0 0.00 0
08:45:01 PM 283284 232164 45.04 21116 173780 88316 0 0.00 0
08:55:01 PM 282556 232892 45.18 21624 173804 88316 0 0.00 0
09:01:18 PM 276632 238816 46.33 21964 173896 88316 0 0.00 0
09:05:01 PM 281876 233572 45.31 22188 173900 88316 0 0.00 0
Average: 294804 220644 42.81 19682 162954 88316 0 0.00 0

From the Library of Martin Spilovsky

32 Chapter 2 = Why Is the Server So Slow? Running Out of CPU, RAM, and Disk 1/0

Here you can see how much free and used memory you have as well as
view statistics about swap and the file cache similar to what you would
see in either top or free output. The difference here is that you can go
back in time.

View Disk Statistics

Another useful metric to pull from sar is disk statistics. The -b option gives
you a basic list of disk I/O information:

§ sar -b

Linux 2.6.24-22-server (kickseed) 01/07/2012

07:44:20 PM tps rtps wtps bread/s bwrtn/s
07:45:01 PM 8.03 0.00 8.03 0.00 106.61
07:55:01 PM 8.78 0.14 8.64 3.35 127.59
08:05:01 PM 7.16 0.00 7.16 0.00 61.14
08:15:01 PM 8.17 0.14 8.03 5.82 139.02
08:25:01 PM 9.50 0.06 9.44 4.09 212.62
08:35:01 PM 8.27 0.00 8.27 0.01 74.66
08:45:01 PM 8.04 0.00 8.04 0.00 71.51
08:55:01 PM 7.64 0.00 7.64 0.00 66.46
09:01:18 PM 7.11 0.00 7.11 0.36 63.73
09:05:01 PM 7.61 0.00 7.61 0.00 72.11
Average: 8.11 0.04 8.06 1.67 102.52

Here you can see the number of total transactions per second (tps) plus
how many of those transactions were reads and writes (rtps and wtps,
respectively). The bread/s column doesn’t measure bread I/0O, instead it tells
you the average number of bytes read per second. Similarly, the burtn/s tells
you average bytes written per second.

There are tons of individual arguments you can pass sar to pull out specific
sets of data, but sometimes you just want to see everything all at once. For
that, just use the -A option. That will output all of the statistics from load
average, CPU load, RAM, disk I/O, network I/O, and all sorts of other
interesting statistics. This can give you a good idea of what sorts of statis-
tics sar can output, so you can then read the sar manual (type man sar) to see
what flags to pass sar to see particular statistics.

From the Library of Martin Spilovsky

Troubleshoot High Load after the Fact 33

View Statistics from Previous Days

Of course, so far I've just listed how to pull all of the statistics for the
entire day. Often you want data from only a portion of the day. To pull
out data for a certain time range, use the -s and -e arguments to specify
the starting time and ending time you are interested in, respectively. For
instance, if you wanted to pull CPU data just from 8:00 p.m. to 8:30 p.m.,
you would type

$ sar -s 20:00:00 -e 20:30:00

Linux 2.6.24-22-server (kickseed) 01/07/2012

08:05:01 PM CPU %user %nice %system %iowait %steal %idle
08:15:01 PM al1 0.49 0.00 1.12 0.62 0.00 97.77
08:25:01 PM all 0.49 0.00 2.15 1.21 0.00 96.16
Average: all 0.49 0.00 1.63 0.91 0.00 96.96

If you want to pull data from a day other than today, just use the -f option
followed by the full path to the particular statistics file stored under
/var/log/sysstat or /var/log/sa. For instance, to pull data from the statistics
on the sixth of the month you would type

$ sar -f /var/Tog/sysstat/sa06

You can combine any of the other sar options as normal to pull out specific
types of statistics.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 3

Why Won’t the System Boot?
Solving Boot Problems

35

From the Library of Martin Spilovsky

36

OF ALL THE THINGS that can go wrong with a Linux system, one of the most
stressful might be a system that won’t boot. After all, if you can’t boot a
system, it means any services it provides are completely down until you
can fix it. What’s more, any data you need to retrieve might depend on
your ability to get the system back up and running.

It turns out that a number of different problems can prevent a system from
booting. To best troubleshoot why your computer won’t boot, this chapter
will first describe the boot process. Once you understand the boot process,
you can observe your own system and see at what point in the process it
gets stuck. After describing the boot process, this chapter will highlight
each major class of boot problem along with how to diagnose and fix it.

Troubleshooting boot issues is a domain traditionally for sysadmins; how-
ever, any member of a DevOps team might be responsible for keeping
packages on a system up to date. When a kernel or distribution update
goes badly, it’s good to have all the skills you need to bring the system back
up yourself.

The Linux Boot Process

Chapter 1 mentioned that if you want to be good at troubleshooting, it’s
important that you understand how systems work. That philosophy defi-
nitely applies to troubleshooting boot problems, especially since they can
have so many different causes.

The BIOS

The very first system involved in the boot process is the BIOS (Basic Input
Output System). This is the first screen you will see when you boot, and
although the look varies from system to system, the BIOS initializes your
hardware, including detecting hard drives, USB disks, CD-ROMs, network
cards, and any other hardware it can boot from. The BIOS will then go
step-by-step through each boot device based on the boot device order it is
configured to follow until it finds one it can successfully boot from. In the
case of a Linux server, that usually means reading the MBR (master boot

From the Library of Martin Spilovsky

The Linux Boot Process 37

record: the first 512 bytes on a hard drive) and loading and executing the
boot code inside the MBR to start the boot process.

GRUB and Linux Boot Loaders

After the BIOS initializes the hardware and finds the first device to boot,
the boot loader takes over. On a normal Linux server this will be the GRUB
program, although in the past a different program called LILO was also
used. GRUB is normally what is used when you boot from a hard drive,
while systems that boot from USB, CD-ROM, or the network might use
syslinux, isolinux, or pxelinux respectively as their boot loader instead of
GRUB. Although the specifics of syslinux and other boot loaders are dif-
ferent from GRUB, they all essentially load some sort of software and read
a configuration file that tells them what operating systems they can boot,
where to find their respective kernels, and what settings to give the system
as it boots.

When GRUB is loaded, a small bit of code (what it calls stage 1) is executed
from the MBR. Since you can only fit 446 bytes of boot code into the MBR
(the rest contains your partition table), GRUB’s stage 1 code is just enough
for it to locate the rest of the code on disk and execute that. The next stage
of GRUB code allows it to access Linux file systems, and it uses that ability
to read and load a configuration file that tells it what operating systems it
can boot, where they are on the disk, and what options to pass them. In
the case of Linux, this might include a number of different kernel versions
on the disk and often includes special rescue modes that can help with
troubleshooting. Usually the configuration file also describes some kind of
menu you can use to see and edit all of your boot options.

On most modern systems GRUB can display a nice splash screen, some-
times with graphics and often with a countdown. Usually you will see a
menu that gives you a list of operating systems you can boot from (Fig-
ure 3-1), although sometimes you have to press a key like Esc (or Shift with
GRUB2) to see the menu. GRUB also allows you view and edit specific
boot-time settings that can be handy during troubleshooting since you
can fix mistakes that you might have made in your GRUB configuration
without a rescue disk.

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

38 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

GNU GRUB wersion ©.97 (639K lower ~ 392128K upper memory)

Cent03S (Z.6.18-238.e15)

Use the T and ! keys to select which entry is h
Press enter to boot the selected 0S8, ‘ef
commands before booting, "a’ to modify

before booting, or 'c’ for a command-line.

Figure 3-1 A default GRUB menu from Cent0S

The Kernel and Initrd

Once you select a particular kernel in GRUB (or the countdown times
out and it picks one for you), GRUB will load the Linux kernel into RAM,
execute it, and pass along any boot-time arguments that were configured
for it. Usually GRUB will also load an initrd (initial RAM disk) along with
the kernel. This file, on a modern Linux system, is a gzipped cpio archive
known as an initramfs file, and it contains a basic, small Linux root file
system. On that file system are some crucial configuration files, kernel
modules, and programs that the kernel needs in order to find and mount
the real root file system.

In the old days all of this boot time capability would be built directly into
the Linux kernel. However, as hardware support grew to include a number
of different file systems and SCSI and IDE devices along with extra fea-
tures like software RAID, LVM, and file system encryption, the kernel got
too large. Therefore, these features were split out into individual modules

From the Library of Martin Spilovsky

The Linux Boot Process 39

so that you could load only the modules you needed for your system. Since
the disk drivers and file system support were split out into modules, you
were faced with a chicken or egg problem. If the modules are on the root
file system, but you need those modules to read the root file system, how
can you mount it? The solution was to put all those crucial modules into
the initrd.

As the kernel boots, it extracts the initramfs file into RAM and then runs a
script called init in the root of that initramfs. This script is just a standard
shell script that does some hardware detection, creates some mount points,
and then mounts the root file system. The kernel knows where the root file
system is, because it was passed as one of the boot arguments (root=) by
GRUB when it first loaded the kernel. The final step for the initramfs file
after it mounts the real root file system is to execute the /sbin/init program,
which takes over the rest of the boot process.

/shin/init

The /sbin/init program is the parent process of every program running
on the system. This process always has a PID of 1 and is responsible for
starting the rest of the processes that make up a running Linux system.
Those of you who have been using Linux for a while know that init on
Ubuntu Server is different from what you might be used to. There are a
few different standards for how to initialize a UNIX operating system, but
most classic Linux distributions have used what is known as the System
V init model (described momentarily), whereas some modern Linux dis-
tributions have switched to other systems like Upstart or, most recently,
systemd. For instance, Ubuntu Server has switched to Upstart but has still
retained most of the outward structure of System V init such as runlevels
and /etc/rc?.d directories for backward compatibility; however, Upstart
now manages everything under the hood. Since the most common two
init systems you will run across on a server are System V init and Upstart,
the following sections will describe those two.

Classic System V Init System V refers to a particular version of the origi-

nal UNIX operating system that was developed by AT&T. In this style of
init, the init process reads a configuration file called /etc/inittab to discover

From the Library of Martin Spilovsky

40 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

its default runlevel, discussed next. It then enters that runlevel and starts
processes that have been configured to run at that runlevel.

The System V init process is defined by different system states known as
runlevels. Runlevels are labeled by numbers ranging from 0 to 6, and each
number can potentially represent a completely different system state. For
instance, runlevel 0 is reserved for a halted system state. When you enter
runlevel 0, the system shuts down all running processes, unmounts all file
systems, and powers off. Likewise, runlevel 6 is reserved for rebooting the
machine. Runlevel 1 is reserved for single-user mode—a state where only
a single user can log in to the system. Generally, few processes are started
in single-user mode, so it is a very useful runlevel for diagnostics when a
system won’t fully boot. Even in the default GRUB menu you will notice a
recovery mode option that boots you into runlevel 1.

Runlevels 2 through 5 are left for the distribution, and finally you, to
define. The idea behind having so many runlevels is to allow you to create
different modes the server could enter. Traditionally a number of Linux
distributions have set one runlevel for a graphical desktop (in Red Hat,
this was runlevel 5) and another runlevel for a system with no graphics
(Red Hat used runlevel 3 for this). You could define other runlevels too—
for instance, one that starts up a system without network access. Then
when you boot, you could pass an argument at the boot prompt to over-
ride the default runlevel with the runlevel of your choice. Once the system
is booted, you can also change the current runlevel with the init command
followed by the runlevel. So, to change to single-user mode, you might
type sudo init 1.

In addition to /etc/inittab, a number of other important files and directo-
ries for a System V init system organize start-up and shutdown scripts, or
init scripts, for all of the major services on the system:

/etc/init.d

This directory contains all of the start-up scripts for every service at
every runlevel. Typically these are standard shell scripts, and they con-
form to a basic standard. Each script accepts at least two arguments,
start and stop, which respectively start up or stop a service (such as,

From the Library of Martin Spilovsky

The Linux Boot Process 4

say, your web server). In addition, init scripts commonly accept a few
extra options such as restart (stops and then starts the service), status
(returns the current state of a service), reload (tells the service to reload
its settings from its configuration files), and force-reload (forces the ser-
vice to reload its settings). When you run an init script with no argu-
ments, it should generally return a list of arguments that it accepts.

/etc/rc0.d through /etc/rc6.d

These directories contain the init scripts for each respective runlevel.
In practice, these are generally symlinks into the actual files under /etc/
init.d. What you will notice, however, is that the init scripts in these
directories have special names assigned to them that start with an S
(start), K (kill), or D (disable) and then a number. When init enters a
runlevel, it runs every script that begins with a K in numerical order
and passes the stop argument, but only if the corresponding init script
was started in the previous runlevel. Then init runs every script that
begins with an S in numerical order and passes the start argument. Any
scripts that start with D init ignores—this allows you to temporarily
disable a script in a particular runlevel, or you could just remove the
symlink altogether. So if you have two scripts, SO1foo and SO5bar, init
would first run S01foo start and then S05har start when it entered that
particular runlevel.

Jetc/rcS.d

In this directory you will find all of the system init scripts that init runs
at start-up before it changes to a particular runlevel. Be careful when
you tinker with scripts in this directory because if they stall, they could
prevent you from even entering single-user mode.

/etc/rc.local

Not every distribution uses rc.local, but traditionally this is a shell
script set aside for the user to edit. It’s generally executed at the end of
the init process, so you can put extra scripts in here that you want to
run without having to create your own init script.

Here is an example boot process for a standard System V init system.

First init starts and reads /etc/inittab to determine its default runlevel,
which in this example is runlevel 2. Then init goes to /etc/rcS.d and runs

From the Library of Martin Spilovsky

42 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

each script that begins with an S in numerical order with start as an argu-
ment. Then init does the same for the /etc/rc2.d directory. Finally init is
finished but stays running in the background, waiting for the runlevel
to change.

Upstart System V init is a good system and has worked well on Linux
for years; however, it is not without some drawbacks. For one, init scripts
don’t automatically have a mechanism to respawn if the service dies. So,
for instance, if the cron daemon crashes for some reason, you would have
to create some other tool to monitor and restart that process.

Another issue with init scripts is that they are generally affected only
by changes in runlevel or when the system starts up but otherwise are
not executed unless you do so manually. Init scripts that depend on a
network connection are a good example. On Red Hat and Debian-based
systems an init script, called network or networking, respectively, estab-
lishes the network connection. Any init scripts that depend on a net-
work connection are named with a higher number than this init script
to ensure they run after the network script has run. What if you unplug
the network cable from a server and then start it up? Well, the network-
ing script would run, but all of the init scripts that need a network con-
nection would time out one by one. Eventually you would get a login
prompt and be able to log in. Now after you logged in, if you plugged in
the network cable and restarted the networking service, you would be
on the network, yet none of the services that need a network connection
would automatically restart. You would have to start them manually one
by one.

Upstart was designed not only to address some of the shortcomings of
the System V init process, but also to provide a more robust system for
managing services. One main feature of Upstart is that it is event-driven.
Upstart constantly monitors the system for certain events to occur, and
when they do, Upstart can be configured to take action based on those
events. Some sample events might be system start-up, system shutdown,
the Ctrl-Alt-Del sequence being pressed, the runlevel changing, or an
Upstart script starting or stopping. To see how an event-driven system
can improve on traditional init scripts, let’s take the previous example of

From the Library of Martin Spilovsky

The Linux Boot Process 43

a system booted with an unplugged network cable. You could create an
Upstart script that is triggered when a network cable is plugged in. That
script could then restart the networking service for you. You could then
configure any services that require a network connection to be triggered
whenever the networking service starts successfully. Now when the sys-
tem boots, you could just plug in the network cable and Upstart scripts
would take care of the rest.

Upstart does not yet completely replace System V init, at least when it
comes to services on the system. At the moment, Upstart does replace
the functionality of init and the /etc/inittab file, and it manages changes
to runlevels, system start-up and shutdown, and console ttys. More and
more core functionality is being ported to Upstart scripts, but you will still
find some of the standard init scripts in /etc/init.d and all of the standard
symlinks in /etc/rc?.d. The difference is that Upstart now starts and stops
services when runlevels change.

Upstart scripts reside in /etc/init and have different syntax from init
scripts since they aren’t actually shell scripts. To help illustrate the syn-
tax, here’s an example Upstart script (/etc/init/rc.conf) used to change
between runlevels:

rc - System V runlevel compatibility

#

This task runs the old System V-style rc script when changing
between runlevels.

description "System V runlevel compatibility"

author "Scott James Remnant <scott@netsplit.com>"
start on runlevel [0123456]

stop on runlevel [!$RUNLEVEL]

export RUNLEVEL

export PREVLEVEL

task

exec /etc/init.d/rc SRUNLEVEL

Upstart treats lines that begin with # as comments, like most other scripts

and configuration files. The first two configuration options are start on
and stop on. These lines define what events must occur for the script to

From the Library of Martin Spilovsky

44 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

start and stop. In this case, the script will start when any runlevel is entered
and will stop when the runlevel is not set.

The next couple of lines export some environment variables, and then the
task option tells init that this script will not be persistent—it will execute
and then stop.

The actual programs that are run from an Upstart script are defined with
either the script or exec options. In the case of the exec option, Upstart
executes the command and all of the arguments that follow the exec option
and keeps track of its PID. With the script option, Upstart treats the lines
that follow as a shell script until it reaches the end script line.

Even though Upstart is designed to be event-driven, it still provides meth-
ods to check the status of Upstart jobs and start and stop them as appro-
priate. You can check the status, start, and stop Upstart scripts with the
appropriately named status, start, and stop commands. One Upstart job on
an Ubuntu server is the ttyl job and it starts the getty program on ttyl.
This gives an administrator a console when he or she presses Alt-F1. Let’s
say, however, that for some reason you believe that the console was hung.
Here’s how to check the status and then restart the job:

$ sudo status ttyl

ttyl: start/running, process 789
$ sudo stop ttyl

ttyl stop/waiting

§ sudo start ttyl

ttyl start/running, process 2251

You can also query the status of all available Upstart jobs with initct] 1ist:

$ sudo initct] Tist

mountall-net stop/waiting

rc stop/waiting

rsyslog start/running, process 640

ttyd start/running, process 708

udev start/running, process 299
upstart-udev-bridge start/running, process 297
ureadahead-other stop/waiting

From the Library of Martin Spilovsky

apport start/running
hwclock-save stop/waiting
irgbalance stop/waiting
plymouth-Tog stop/waiting

tty5 start/running, process 713
atd start/running, process 727
failsafe-x stop/waiting

plymouth stop/waiting

ssh start/running, process 1210
control-alt-delete stop/waiting
hwclock stop/waiting
moduTe-init-tools stop/waiting
cron start/running, process 728
mountall stop/waiting

rcS stop/waiting

ufw start/running

mounted-varrun stop/waiting
rc-sysinit stop/waiting

tty2 start/running, process 717
udevtrigger stop/waiting
mounted-dev stop/waiting

tty3 start/running, process 718
udev-finish stop/waiting
hostname stop/waiting
mountall-reboot stop/waiting
mountall-shell stop/waiting
mounted-tmp stop/waiting
network-interface (lo) start/running
network-interface (eth@) start/running
plymouth-splash stop/waiting
ttyl start/running, process 2251
udevmonitor stop/waiting

dmesg stop/waiting
network-interface-security start/running
networking stop/waiting

procps stop/waiting

tty6 start/running, process 720
ureadahead stop/waiting

BIOS Boot Order

BIOS Boot Order 45

If your system can’t even get to the GRUB prompt (but could previously),
then either GRUB was completely removed from your MBR, your hard

drive has crashed beyond recognition, or the boot order in your BIOS has

From the Library of Martin Spilovsky

46 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

changed. We'll start with how to fix the boot order since it is the simplest
and fastest fix. Often this can occur when someone tweaks the BIOS boot
order so they can boot off of some other media, such as a USB key, a CD-
ROM, or over the network, and then they forget to change things back
when they are done.

The BIOS provides a method to change its settings as the system pow-
ers on—by hitting a special key on the keyboard. Many BIOSes also
allow you to press a different key and choose what device to boot from.
Unfortunately, manufacturers can’t seem to agree on which keys you
should press to get to either option, but fortunately most BIOSes will
display the keys they use on your monitor as the system powers on. Of
course the emphasis is on fast boot times, so many BIOSes flash past this
screen quickly. If you are lucky, your BIOS will show a quick notice on
the screen (often around the time your monitor actually starts showing
something) that prompts you to press a key (often Del, F1, F2, or Esc) to
configure the BIOS. You might also get a prompt to press a different key
(often F11 or F12) to change the BIOS boot order or to select the boot
device just for this boot.

Since we want to rule out whether the BIOS boot order is the cause of
our problems, if your BIOS allows you to choose the boot order on the
fly, choose that option first. Otherwise, press the key to configure your
BIOS and go to the screen that allows you to edit your boot order (often
labeled Boot, or if not, you'll find it under Advanced). Each manufac-
turer’s BIOS is a bit different, so you may have to look around a bit to
find the right options.

Whether you select a one-time boot device or are in the BIOS config, you
should be presented with a list of possible devices you can boot from. On
most servers this will be some sort of hard disk, so find the first hard disk
option and select it. If that drive boots properly you’ve found the right
drive, otherwise reset the system and try each of the boot devices until you
find the one that does work. If you are able to find a drive that does boot,
don’t forget to go back to your BIOS configuration screen and confirm
that the boot order puts that drive before others.

From the Library of Martin Spilovsky

Fix GRUB 47

If you don’t get a GRUB prompt with any of the drives, then either GRUB
is completely erased or your primary disk or disk controller has failed.
First go through the steps in the next section to try to repair GRUB since
they will help you use a rescue disk to determine whether the disk is avail-
able at all. If the disk isn’t available at all, you’ll want to turn to Chapter 10
which talks about resolving hardware failures.

Fix GRUB

The difficulty in identifying and fixing problems with GRUB is in the fact
that without a functioning boot loader, you can’t boot into your system
and use the tools you would need to repair GRUB. There are a few differ-
ent ways that GRUB might be broken on your system, but before we dis-
cuss those, you should understand that in the interest of booting quickly,
some systems set GRUB with a short timeout of only a few seconds before
they boot the default OS, even on servers. What’s worse, some systems
even hide the initial GRUB prompt from the user, so you have to press
a special key (Esc for GRUB 1 releases, also known as GRUB legacy, and
Shift for GRUB 2, also just known as GRUB) within a second or two after
your BIOS has passed off control to GRUB.

If you don’t know which version of GRUB you have installed, you may
have to boot the system a few times and try out both Esc and Shift to see if
you can get some sort of GRUB window to display. After that, you might
still have to deal with a short timeout before GRUB boots the default OS,
so you'll need to press a key (arrow keys are generally safe) to disable the
timeout. The following sections discuss a few of the ways GRUB might be
broken and then follow up with some general approaches to repair it.

No GRUB Prompt

The first way GRUB might be broken on your system is that it could have
been completely removed from your MBR. Unfortunately, since GRUB is
often hidden from the user even when it works correctly, you may not be
able to tell whether GRUB is configured wrong or not installed at all. Test
by pressing either the Esc or Shift keys during the boot process to confirm
that no GRUB prompt appears.

|| ||| From the Library of Martin Spilovsky

http://www.allitebooks.org

48 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

It’s rather rare for GRUB to disappear from the MBR completely, but it
most often happens on dual-boot systems where you might load both
Linux and Windows. The Windows install process has long been known
to wipe out the boot code in the MBR, in which case you would get no
GRUB prompt at all and instead would boot directly into Windows. Dual-
boot setups are fairly rare on servers, however, so most likely if GRUB was
completely removed from your MBR, your only clue would be some error
from the BIOS stating that it couldn’t find a suitable boot device. If you
have already gone through the steps listed earlier to test your boot device
order in your BIOS and still get this error, somehow GRUB was erased
from the MBR.

This error might also occur on systems using Linux software RAID where
the primary disk may have died. While some modern installs of GRUB
can automatically install themselves to the MBR on all disks involved in
a RAID, if your install doesn’t default to that mode (or you are using an
old version of GRUB and didn’t manually install GRUB to the MBR of the
other disks in your RAID array), when the primary disk dies there will be
no other instance of GRUB on the remaining disks you can use.

Stage 1.5 GRUB Prompt

Another way GRUB can fail is that it can still be installed in the MBR, how-
ever, for some reason it can’t locate the rest of the code it needs to boot the
system. Remember that GRUB’s first stage has to fit in only 446 bytes inside
the MBR, so it contains the code it needs to locate and load the rest of the
GRUB environment. GRUB normally loads what it calls stage 1.5 (GRUB
2 calls this core.img), which contains the code that can read Linux file sys-
tems and access the final GRUB stage, stage 2. Once stage 2 or core.img is
loaded, GRUB can read its default configuration file from the file system,
load any extra modules it needs, and display the normal GRUB menu.
When GRUB can’t find the file system that contains stage 2 or its configu-
ration files, you might be left with a message that reads “loading stage 1.5”
followed by either by an error or a simple grub> prompt.

If you get an error that loading stage 1.5 failed, move on to the section that
talks about how to repair GRUB. If you get as far as a grub> prompt, that

From the Library of Martin Spilovsky

Fix GRUB 49

means that at least stage 1.5 did load, but it might be having trouble either
loading stage 2 or reading your GRUB configuration file. This can happen
if the GRUB configuration file or the stage 2 file gets corrupted, or if the file
system that contains those files gets corrupted (in which case you'll want to
read Chapter 4 on how to repair file systems). If you are particularly savvy
with GRUB commands, or don’t have access to a rescue disk, it might be
possible to boot your system from the basic grub> prompt by typing the
same GRUB boot commands that would be configured in your GRUB con-
figuration file. In fact, if GRUB gets as far as the final stage and displays a
prompt, you can use GRUB commands to attempt to read partitions and
do some basic troubleshooting. That said, most of the time it’s just simpler
and faster to boot into a rescue disk and repair GRUB from there.

Misconfigured GRUB Prompt

Finally, you might find that you have a full GRUB menu loaded, but when
you attempt to boot the default boot entry, GRUB fails and either returns
you to the boot menu or displays an error. This usually means there are
errors in your GRUB configuration file and either the disk or partition
that is referenced in the file has changed (or the UUID changed, more on
that in the upcoming section on how to fix a system that can’t mount its
root file system). If you get to this point and have an alternative older ker-
nel or a rescue mode configured in your GRUB menu, try those and see if
you can boot to the system with an older config. If so, you can follow the
steps in the next section to repair GRUB from the system itself. Otherwise,
if you are familiar with GRUB configuration, you can press E and attempt
to tinker with the GRUB configuration from the GRUB prompt, or you
can boot to a rescue disk.

Repair GRUB from the Live System

If you are fortunate enough to be able to boot into your live system (pos-
sibly with an older kernel or by tinkering with GRUB options), then you
might have an easier time repairing GRUB. If you can boot into your sys-
tem, GRUB was probably able to at least get to stage 2 and possibly even
read its configuration file, so it’s clearly installed in the MBR; the next sec-
tion will go over the steps to reinstall GRUB to the MBR.

From the Library of Martin Spilovsky

50 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

Once you are booted into the system, if the problem was with your GRUB
configuration file, you can simply open up the configuration file (/boot/
grub/menu.lst for GRUB 1, or /etc/default/grub for GRUB 2). In the case
of GRUB 2, the real configuration file is in /boot/grub/grub.cfg, but that
file is usually generated by a script and isn’t intended to be edited by reg-
ular users, so once you edit /etc/default/grub, you will need to run the
Jusr/sbin/update-grub script to generate the new grub.cfg file. Even in the case
of GRUB 1, the menu.lst file might be automatically generated by a script
like update-grub depending on your distribution. If so, the distribution will
usually say as much in a comment at the top of the file along with provid-
ing instructions on how to edit and update the configuration file.

Repair GRUB with a Rescue Disk

Most of the time when you have a problem with GRUB, it prevents you
from booting into the system to repair it, so the quickest way to repair it is
with a rescue disk. Most distributions make the process simpler for you by
including a rescue disk as part of the install disk either on CD-ROM or a
USB image. For instance, on a Red Hat or CentOS install disk you can type
Tinux rescue at the boot prompt to enter the rescue mode. On an Ubuntu
install disk, the rescue mode is listed as one of the options in the boot
menu. For either rescue disk you should read the official documentation
to find out all of the features of the rescue environment, but we will now
discuss the basic steps to restore GRUB using either disk.

In the case of the Ubuntu rescue disk, after the disk boots it will present
you with an option to reinstall the GRUB boot loader. You would select
this option if you got no GRUB prompt at all when the system booted.
Otherwise, if you suspect you just need to regenerate your GRUB configu-
ration file, select the option to open a shell in the root environment, run
update-grub to rebuild the configuration file, type exit to leave the shell, and
then reboot the system.

In the case of the Red Hat or CentOS rescue disk, boot with the Tinux rescue

boot option, then type chroot /mnt/sysimage to mount the root partition. Once
the root partition is mounted and you have a shell prompt, if you need to

From the Library of Martin Spilovsky

Can’t Mount the Root File System 51

re-install GRUB to the MBR, type /sbin/grub-install /dev/sda. Replace /dev/sda
with your root partition device (if you are unsure what the device is, type
df at this prompt and look to see what device it claims /mnt/sysimage is).
From this prompt you can also view the /boot/grub/grub.conf file in case
you need to make any custom changes to the options there.

Disable Splash Screens

Back in the earlier days of Linux, the boot process was a bit more exposed
to the average user. When you booted a server, screens full of text scrolled
by telling you exactly what the system was doing at any particular moment.
Even on server installs, many systems default to hiding a lot of that valu-
able debug information.

If you've gotten past the GRUB prompt but the system gives errors fur-
ther along in the boot process, you will want to disable any splash screen
or other mode that suppresses output so you can see any errors. To do
this, go to the GRUB menu that displays your different boot options (you
may have to hit Esc or Shift at boot to display this menu), then press E to
edit the boot arguments for that specific menu entry. Look for the line
that contains all of your kernel boot arguments (it might start with the
word Tinux or kernel) and edit it to remove arguments like quiet and splash.
Optionally, you may add the word nosplash to make sure any splash screens
are disabled. Now once you exit the editing mode and boot with these new
options, you should be able to see debug output as your system boots.

Can’t Mount the Root File System

Apart from GRUB errors, one of the most common boot problems is from
not being able to mount the root file system. After GRUB loads the ker-
nel and initrd file into RAM, the initrd file is expanded into an initramfs
temporary root file system in RAM. This file system contains kernel mod-
ules and programs the kernel needs to locate and mount the root file sys-
tem and continue the boot process. To best troubleshoot any problems in
which the kernel can’t mount the root file system, it’s important to under-
stand how the kernel knows where the root file system is to begin with.

From the Library of Martin Spilovsky

52 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

The Root Kernel Argument

The kernel knows where the root file system is because of the root option
passed to it by GRUB. If you were to look in a GRUB configuration file
for the line that contains kernel arguments, you might see something like
root=/dev/sda2, root=LABEL=/, or root=UUID=528c6527-24bf-42d1-b908-c175f7h06adf. In
the first example, the kernel is given an explicit disk partition, /dev/sda2.
This method of specifying the root device is most common in older sys-
tems and has been replaced with either disk labels or UUIDs, because any
time a disk is added or repartitioned, it’s possible that what was once /dev/
sda2 is now /dev/sdb2 or /dev/sda3.

To get around the problem of device names changing around, distribu-
tions started labeling partitions with their mount point, so the root parti-
tion might be labeled / or root and the /home partition might be labeled
home or /home. Then, instead of specifying the device at the root= line, in
GRUB you would specify the device label such as root=LABEL=/. That way, if
the actual device names changed around, the labels would still remain the
same and the kernel would be able to find the root partition.

Labels seemed to solve the problem of device names changing but intro-
duced a different problem—what happens when two partitions are
labeled the same? What started happening is that someone would add a
second disk to a server that used to be in a different system. This new
disk might have its own / or /home label already, and when added to the
new system, the kernel might not end up mounting the labels you thought
it should. To get around this issue, some distributions started assigning
partitions UUIDs (Universal Unique Identifiers). The UUIDs are long
strings of characters that are guaranteed to be unique across all disk par-
titions in the world, so you could add any disk to your system and feel
confident that you will never have the same UUID twice. Now instead of
specifying a disk label at the boot prompt, you would specify a UUID like
root=UUID=528¢6527-24bf-42d1-h908-c175f7h06a0f.

The Root Device Changed

One of the most common reasons a kernel can’t mount the root partition
is because the root partition it was given has changed. When this happens

From the Library of Martin Spilovsky

Can’t Mount the Root File System 53

you might get an error along the lines of “ALERT! /dev/sdb2 does not exist”
and you might then get dropped to a basic initramfs shell. On systems that
don’t use UUIDs, this is most often because a new disk was added and the
device names have switched around (so, for instance, your old root parti-
tion was on /dev/sda2 and now it’s on /dev/sdb2). If you know that you
have added a disk to the system recently, go to the GRUB menu and press
E to edit the boot arguments.

If you notice that you set the root argument to be a disk device, experiment
with changing the device letter. So, for instance, if you have root=/dev/sda2,
change it to root=/dev/sdb2 or root=/dev/sdc2. If you aren’t sure how your
disk devices have been assigned, you might need to boot into a rescue
disk and then look through the output of a command like fdisk -1 as the
root user to see all of the available partitions on the system. Here’s some
example output of fdisk -1 that shows two disks, /dev/sda and /dev/sdb.
The /dev/sda disk has three partitions: /dev/sdal, /dev/sda2, and /dev/
sda3, and /dev/sdb has only one: /dev/sdbl.

fdisk -1

Disk /dev/sda: 11.6 GB, 11560550400 bytes

4 heads, 32 sectors/track, 176400 cylinders

Units = cylinders of 128 « 512 = 65536 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x0009c896

Device Boot Start End Blocks Id System
/dev/sdal 1 76279 4881840 83 Linux
/dev/sda2 76280 91904 1000000 82 Linux swap / Solaris
/dev/sda3 91905 168198 4882816 83 Linux

Disk /dev/sdb: 52.4 GB, 52429848576 bytes

4 heads, 32 sectors/track, 800016 cylinders

Units = cylinders of 128 « 512 = 65536 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x000c406f

Device Boot Start End Blocks Id System
/dev/sdbl 1 762924 48827120 83 Linux

From the Library of Martin Spilovsky

54 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

If you find that the system does boot correctly once you change to a differ-
ent device, then you can edit your GRUB configuration file (/boot/grub/
grub.conf or /boot/grub/menu.lst for GRUB 1; most GRUB 2 systems use
UUIDs and auto-detect the root partition) and change the root= line per-
manently. By the way, if the device did change, you will probably need to
change the same entry in /etc/fstab as well.

For systems that use partitions labels, the inability to mount the root file
system might be caused either by a disk being added that has a partition
with the same label, or it could be from an administrator who changed
the root partition label. The best way to diagnose disk label problems is
to edit the root= line and, instead of a label, specify the disk device itself.
Again, if you don’t know how your disks are laid out, boot into a rescue
disk and type fdisk -1. If you do find that you are able to successfully boot
once you set root to a disk device instead of a label, you can either update
your GRUB configuration file to use the disk device instead of a label, or
you can use the program e21abel to change the partition label of your root
partition back to what it should be. So, for instance, to assign a label of / to
/dev/sda2 as root, you would type

e2label /dev/sda2 /

In the case of duplicate labels, use the e21abel tool as well to rename the
duplicate root partition to be something else. You can type e21abel along
with just the disk device name (like e21abel /dev/sda2) to display what the
current label is set to.

If your system uses UUIDs and the kernel can’t find the root partition, it’s
possible that the UUID changed. Normally the UUID should be assigned
when a partition is formatted, so it is unusual for this to happen to a root
partition. That said, it often happens when someone clones a system based
off one that uses UUIDs. When they create the root partition for the cloned
system, it gets a new UUID, yet when they copy over the GRUB configura-
tion files, it specifies the old UUID.

Like with disk label problems, a quick way to troubleshoot this issue is
to edit the boot prompt at the GRUB menu and change the root= line to

From the Library of Martin Spilovsky

Can’t Mount Secondary File Systems 55

specify a specific device instead of a UUID. If you find you get further
along in the boot process that way, then you can use the b1kid command to
see the UUID that’s assigned to a particular device:

$ sudo blkid -s UUID /dev/sda2
/dev/sda2: UUID="528c6527-24hf-42d1-h908-c175f7b06a0f"

Once you know what the UUID should be, you can then edit your GRUB
configuration file (and /etc/fstab) so that it references the proper UUID.

The Root Partition Is Corrupt or Failed

The other main reason why a kernel may not be able to mount the root file
system is that it is corrupt or the disk itself has completely failed. When a
file system gets mounted, if errors are detected on the file system, it will
automatically start a repair process; however, in many cases the corrup-
tion is significant enough that the boot process will drop you to a basic
shell so you can manually attempt to repair the file system. If your boot
process gets to this state, go to the Repair Corrupted File Systems section
of Chapter 4 for details on how to correct the errors. If you fear that your
disk has completely failed, check out Chapter 10, which talks about how to
diagnose hardware issues.

Can’t Mount Secondary File Systems

Many servers have multiple file systems that might get mounted automati-
cally as the system boots. These file systems are defined in the /etc/fstab file
and might look somewhat like the following:

/etc/fstab: static file system information.

<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/sdal / ext3 defaults 0 0
/dev/sda2 swap swap defaults 0 0
/dev/sda3 /var ext3 defaults 0 0
/dev/sdbl /home ext3 defaults 0 0

From the Library of Martin Spilovsky

56 Chapter 3 © Why Won’t the System Boot? Solving Boot Problems

In this example you can see that in addition to the / partition that’s on
/dev/sdal, the system also mounts /var from /dev/sda3 and /home from /dev/sdbl.
If either /var or /home are corrupted and can’t automatically be repaired or
can’t be found, the boot process will stop and drop you to a shell prompt
where you can investigate matters further. In these circumstances, just
repeat the same troubleshooting steps you might perform for a problem
with a root file system and look for device names that have changed, new
labels, or different UUIDs.

From the Library of Martin Spilovsky

CHAPTER 4

Why Can’t | Write to
the Disk? Solving Full
or Corrupt Disk Issues

a7

From the Library of Martin Spilovsky

58

IF YOU WERE TO ask a DevOps team to describe what part of a Linux server
was the source of the most trouble for them, many would point to the hard
drive. Not only is the hardware most likely to fail on your server (which
we’ll cover in Chapter 10), it is often also one of the main bottlenecks for
your application. On top of that, if you are in charge of maintaining the
server, you also have to deal with disks filling up and file systems getting
corrupted. All of the latter problems start with the same symptom: A user
or program can’t write data to the disk.

In a DevOps organization, logging debug data is particularly valuable
when you are troubleshooting your code. When one of your automated
tests fails, you want to know exactly what caused the failure. All those logs
add up, though, and if left to themselves they will eventually fill up the
disk. When that happens, you may not automatically know which direc-
tory is using up all that space, and when processes can’t write to disk, they
sometimes fail in unusual ways. This chapter covers how to diagnose and
fix some of the common problems that can prevent you from writing to
the disk.

When the Disk Is Full

Linux actually makes it pretty obvious when you run out of disk space:

$ cp /var/log/syslog syslogbackup
cp: writing “syslogbackup’: No space left on device

Of course, depending on how your system is partitioned, you may not
know which partition filled up. The first step is to use the df tool to list all
of your mounted partitions along with their size, used space, and available
space. If you add the -h option, it shows you data in human-readable for-
mat, instead of in 1K blocks:

$ df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sdal 7.8G 7.4G 60K 100% /

none 245M 192K 245M 1% /dev

none 249M 0 249 0% /dev/shm
none 249M 36K 249M 1% /var/run

From the Library of Martin Spilovsky

When the Disk Is Full 59

none 249M 0 249M 0% /var/lock
none 249M 0 249M 0% /lib/init/rw

Here you can see there is only one mounted partition, /dev/sdal; it has
7.8GD of total space of which 7.4Gb is used, and it says it’s 100% full with
60Kb available. Of course, with a full file system, how are you supposed to
log in and fix anything? As you’ll see later in the chapter, one of the com-
mon ways to free up space on a file system is to compress uncompressed
logs, but if the disk has no free space, how are you expected to do that?

Reserved Blocks

If you look at the df numbers closely, though, you may say, wait a minute, is
Linux really that bad at math? 7.4Gb divided by 7.8Gb is closer to 95% full.

What’s happening here is that Linux has set aside a number of blocks on
the file system, known as reserved blocks, for just such an emergency (and
also to help avoid fragmentation). Only the root user can write to those
reserved blocks, so if the file system gets full, the root user still has some
space left on the file system to log in and move around some files. On most
servers with ext-based file systems, 5% of the total blocks are reserved,
but this is something you can check with the tune2fs tool if you have root
permissions. For instance, here is how you would check the reserved block
count on your full /dev/sdal partition:

$ sudo tune2fs -1 /dev/sdal | grep -i “block count”
Block count: 2073344
Reserved block count: 103667

If you divide 103667 by 2073344, you'll see that it works out to about 5%,
or, in this case, it means the root user has about 400Mb to play around
with to try to fix the problem.

Track Down the Largest Directories

The df command lets you know how much space is used by each file sys-
tem, but after you know that, you still need to figure out what is consuming

From the Library of Martin Spilovsky

60 Chapter 4 = Why Can’t | Write to the Disk? Solving Full or Corrupt Disk Issues

all of that disk space. The similarly named du command is invaluable for
this purpose. This command, with the right arguments, can scan through
a file system and report how much disk space is consumed by each direc-
tory. If you pipe it to a sort command, you can then easily see which direc-
tories consume the most disk space. What I like to do is save the results
in /tmp (if there’s enough free space, that is) so I can refer to the out-
put multiple times and not have to rerun du. I affectionately call this the
“duck command”:

$cd/
$ sudo du -ckx | sort -n > /tmp/duck-root

This command won’t output anything to the screen but instead it creates
a sorted list of which directories consume the most space and outputs the
list to /tmp/duck-root. If you then use tail on that file, you can see the top
ten directories that use space:

$ sudo tail /tmp/duck-root

67872 /1ib/modules/2.6.24-19-server
67876 /1ib/modules

69092 /var/cache/apt

69448 /var/cache

76924 /usr/share

82832 /1ib

124164 /usr

404168 /

404168 total

In this case, you can see that /usr takes up the most space, followed by
/lib, /usr/share, and then /var/cache. Note that the output separates out
/var/cache/apt and /var/cache, so you can tell that /var/cache/apt is the
subdirectory that consumes the most space under /var/cache. Of course,
you might have to open the duck-root file with a tool like Tess or a text edi-
tor so that you can see more than the last ten directories.

So what can you do with this output? In some cases the directory that takes
up the most space can’t be touched (as with /usr), but often when the free
space disappears quickly, it is because of log files growing out of control. If
you do see /var/log consuming a large percentage of your disk, you could

From the Library of Martin Spilovsky

Out of Inodes 61

then go to the directory and type sudo 1s -1S to list all of the files sorted by
their size. At that point, you could truncate (basically erase the contents
of) a particular file:

$ sudo sh -c "> /var/log/messages"

Alternatively, if one of the large files has already been rotated (it ends
in something like .1 or .2), you could either gzip it if it isn’t already
gzipped, or you could simply delete it if you don’t need the log any-
more. If you routinely find you have disk space problems due to uncom-
pressed logs, you can tweak your logrotate settings in /etc/logrotate.conf
and /etc/logrotate.d/ and make sure it automatically compresses rotated
logs for you.

NOTE | can’t count how many times I've been alerted about a full / file system (a dangerous situ-
ation that can often cause the system to freeze up) only to find out that it was caused by
large files in /tmp. Specifically, these were large .swp files. When vim opens a file, it copies
the entire contents into a .swp file. Certain versions of vim store this .swp file in /tmp,
others in /var/tmp, and still others in ~/tmp. In any case, what had happened was that a
particular user on the system decided to view an Apache log file that was gigabytes in size.
When the user opened the file, it created a multi-gigabyte .swp file in /tmp and filled up the
root file system. To solve the issue, | had to locate and kill the offending vim process.

Out of Inodes

Another less common but tricky situation in which you might find your-
self is the case of a file system that claims it is full, yet when you run df,
you see that there is more than enough space. If this ever happens to you,
the first thing you should check is whether you have run out of inodes (an
inode is a data structure that holds information about a file). When you
format a file system, the mkfs tool decides at that point the maximum num-
ber of inodes to use as a function of the size of the partition.

Each new file that is created on that file system gets its own unique inode,
and once you run out of inodes, no new files can be created. Generally
speaking, you never get close to that maximum; however, certain servers
store millions of files on a particular file system, and in those cases you

From the Library of Martin Spilovsky

62 Chapter 4 = Why Can’t | Write to the Disk? Solving Full or Corrupt Disk Issues

might hit the upper limit. The df -i command will give you information
on your inode usage:

§ df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda 520192 17539 502653 4% /

In this example, the root partition has 520,192 total inodes but only 17,539
are used. That means you can create another 502,653 files on that file sys-
tem. In the case where 100% of your inodes are used, only a few options
are at your disposal. You can try to identify a large number of files that you
can delete or move to another file system; you can possibly archive a group
of files into a tar archive; or you can back up the files on your current file
system, reformat it with more inodes, and copy the files back.

The File System Is Read-Only

Every now and then you may encounter a file system that isn’t full, but it
won’t let you write to it all the same. When you do try to copy a file or save
a file, you get an error that the file system is read-only. The first step is to
see if you can, in fact, remount the file system read-write; so for instance,
if the /home partition were read-only, you would type

$ sudo mount -0 remount,rw /home

Chances are, though, if you get this error, it’s because your file system
has encountered some sort of error and has decided to remount read-
only to protect itself from further damage. This sort of problem happens
more frequently on virtual machines in part, I imagine, to the extra level
of abstraction between its virtual disk and the physical hardware. When
there’s some hiccup between the two, the file system detects a serious error
and protects itself. To know for sure, examine the output of the dmesg com-
mand, specifically for lines that begin with EXT3-fs error. You should see
lines in the output that reference the errors ext3 found and a log entry that
states Remounting filesystem read-only.

From the Library of Martin Spilovsky

Repair Corrupted File Systems 63

So what do you do if this happens to you? If the file system is not the root
partition and you can completely unmount it, you can try to unmount it
completely and then remount it. If it’s the root partition, or remounting
doesn’t work, unfortunately you will have to reboot the system so it can
check and remount the file system cleanly. If after a reboot the file system
still won’t mount cleanly, then move on to the next section.

Repair Corrupted File Systems

There are a number of scenarios in which a file system might get cor-
rupted through either a hard reboot or some other error. Normally Linux
will automatically run a file system check command (called fsck) at boot
to attempt to repair the file system. Often the default fsck is enough to
repair the file system, but every now and then a file system gets corrupt
enough that it needs manual intervention. What you will often see is the
boot process drop out after a fsck fails, hopefully to a rescue shell you can
use to run fsck manually. Otherwise, track down a rescue disk you can boot
from (many distribution install disks double as rescue disks nowadays),
open up a terminal window, and make sure you have root permissions (on
rescue disks that use sudo, you may have to type sudo -s to get root).

One warning before you start fscking a file system: Be sure the file sys-
tem is unmounted first. Otherwise fsck could potentially damage your
file system further. You can run the mount command in the shell to see all
mounted file systems and type umount <devicename> to unmount any that are
mounted (except the root file system). Since this file system is prevent-
ing you from completing the boot process, it probably isn’t mounted, so
in this example let’s assume that your /home directory is mounted on a
separate partition at /dev/sda5. To scan and repair any file system errors
on this file system, type

fsck -y -C /dev/sda5
The -y option will automatically answer Yes to repair file system errors.

Otherwise, if you do have any errors, you will find yourself hitting Y over
and over again. The -C option gives you a nice progress bar so you can see

From the Library of Martin Spilovsky

64 Chapter 4 = Why Can’t | Write to the Disk? Solving Full or Corrupt Disk Issues

how far along fsck is. A complete fsck can take some time on a large file
system, so the progress bar can be handy.

Sometimes file systems are so corrupted that the primary superblock can-
not be found. Luckily, file systems create backup superblocks in case this
happens, so you can tell fsck to use this superblock instead. You aren’t
likely to automatically know the location of your backup superblock. For
ext-based file systems you can use the mke2fs tool with the -n option to list
all of the superblocks on a file system:

mke2fs -n /dev/sda5

WARNING Be sure to use the -n option here! Otherwise, mke2fs will simply format your file system
and erase all of your old data.

Once you see the list of superblocks in the output, choose one and pass it
as an argument to the -b option for fsck:

fsck -b 8193 -y -C /dev/sda5

When you specify an alternate superblock, fsck will automatically update
your primary superblock after it completes the file system check.

Repair Software RAID

The hard drive is one of the pieces of hardware most likely to break on
your server, and if you run a system that uses Linux software RAID, it’s
good to know how to repair the RAID. The first step is figuring out how
to detect when a RAID has failed. On a modern software RAID install, the
system should have mdadn configured to email the root user whenever there
is a RAID problem (if you want to change this, edit the MAILADDR option in
/etc/mdadm/mdadm.conf and run /etc/init.d/mdadm reload as root to load
the changes). Otherwise you can view the /proc/mdstat file:

$ cat /proc/mdstat
Personalities : [Tinear] [multipath] [raid@] [raidl] [raid6]

From the Library of Martin Spilovsky

Repair Software RAID 65

[raid5] [raid4] [raidl0]

mdd : active raid5 sdb1[0] sdd1[3](F) sdcl[1]

16771584 blocks Tevel 5, 64k chunk, algorithm 2 [3/2] [UU_]
unused devices: <none>

Here you can see that sdd1 is marked with an (F) stating it has failed, and on
the next line of output, the array shows two out of three disks ([3/2] [UU_]).
The next step is to remove the disk from /dev/md0 so that you can swap it
out with a new drive. To do this, run mdadn with the --remove option:

$ sudo mdadm /dev/mdd --remove /dev/sddl

The drive must be set as a failed drive for you to remove it, so if for some
reason mdadm hasn’t picked up the drive as faulty but you want to swap it
out, you might need to set it as faulty before you remove it:

$ sudo mdadm /dev/mdd --fail /dev/sddl

The mdadm command supports chaining commands, so you could fail and
remove a drive in the same line:

$ sudo mdadm /dev/mdd --fail /dev/sddl --remove /dev/sddl

Once you remove a drive from an array, it will be missing from /proc/
mdstat:

$ cat /prod/mdstat

Personalities : [linear] [multipath] [raid@] [raidl] [raid6]
[raidS] [raid4] [raidl@]

md0 : active raidS sdbl[0] sdcl[1]

16771584 blocks Tevel 5, 64k chunk, algorithm 2 [3/2] [UU_]
unused devices: <none>

Now you can swap out the drive with a fresh one and partition it (either a
hot-swap if your system supports that, or otherwise by powering the sys-
tem down and swapping the hard drives). Be sure that when you replace
drives you create new partitions to be equal or greater in size than the rest

From the Library of Martin Spilovsky

66 Chapter 4 = Why Can’t | Write to the Disk? Solving Full or Corrupt Disk Issues

of the partitions in the RAID array. Once the new partition is ready, use
the --add command to add it to the array:

$ sudo mdadm /dev/md0 --add /dev/sddl

Now mdadm will start the process of resyncing data. This can take some time,
depending on the speed and size of your disks. You can monitor the prog-
ress from /proc/mdstat:

$ cat /proc/mdstat

Personalities : [Tinear] [multipath] [raid@] [raidl] [raid6]
[raidS] [raid4] [raid10]

mdd : active raid5 sdd1[3] sdbl[0] sdcl[1]

16771584 blocks Tevel 5, 64k chunk, algorithm 2 [3/2] [UU_]
[] recovery = 2.0% (170112/8385792)
finish=1.6min speed=85056K/sec

unused devices: <none>

NOTE If you get tired of running cat /proc/mdstat over and over, you can use the watch com-
mand to update it every few seconds. For instance, to run that command every 5 seconds
you could type

$ watch -n 5 "cat /proc/mdstat”

Just hit Ctrl-C to exit out of the watch command when you are done.

From the Library of Martin Spilovsky

CHAPTER 5

Is the Server Down?
Tracking Down the Source
of Network Problems

67

From the Library of Martin Spilovsky

68

MOST SERVERS ARE ATTACHED to some sort of network and generally use
the network to provide some sort of service. Many different problems can
creep up on a network, so network troubleshooting skills become crucial
for anyone responsible for servers or services on those servers. Linux pro-
vides a large set of network troubleshooting tools, and this chapter dis-
cusses a few common network problems along with how to use some of
the tools available for Linux to track down the root cause.

Network troubleshooting skills are invaluable for every member of a
DevOps team. It’s almost a given that software will communicate over the
network in some way, and in many applications, network connectivity is
absolutely vital for the software to function. When there is a problem with
the network, everyone from the sysadmin, to the QA team, to the entire
development staff will probably take notice. Whether your networking
department is a separate group or not, when your entire DevOps team
works together on diagnosing networking problems, you will get a better
overall view of the problem. Your development team will give you the deep
knowledge of how your software operates on the network; your QA team
will explain how the application behaves under unusual circumstances and
provide you with a backlog of networking bug history; and your sysadmin
will provide you with an overall perspective of how networked applica-
tions work under Linux. Together you will be able to diagnose networking
problems much faster than any team can individually.

Server A Can’t Talk to Server B

Probably the most common network troubleshooting scenario involves
one server being unable to communicate with another server on the net-
work. This section will use an example in which a server named devl1 can’t
access the web service (port 80) on a second server named webl. Any
number of different problems could cause this, so we’ll run step by step
through tests you can perform to isolate the cause of the problem.

Normally when troubleshooting a problem like this, you might skip a few
of these initial steps (such as checking the link), since tests further down
the line will also rule them out. For instance, if you test and confirm that
DNS works, you’ve proven that your host can communicate on the local

From the Library of Martin Spilovsky

Server A Can’t Talk to Server B 69

network. For this example, though, we’ll walk through each intermediary
step to illustrate how you might test each level.

Client or Server Problem

One quick test you can perform to narrow down the cause of your problem
is to go to another host on the same network and try to access the server. In
this example, you would find another server on the same network as devl,
such as dev2, and try to access webl. If dev2 also can’t access webl, then
you know the problem is more likely on web1, or on the network between
devl, dev2, and webl. If dev2 can access web1, then you know the problem
is more likely on devl. To start, let’s assume that dev2 can access webl, so
we will focus our troubleshooting on devl.

Is It Plugged In?

The first troubleshooting steps to perform are on the client. You first want
to verify that your client’s connection to the network is healthy. To do this
you can use the ethtool program (installed via the ethtool package) to verify
that your link is up (the Ethernet device is physically connected to the
network). If you aren’t sure what interface you use, run the /shin/ifconfig
command to list all the available network interfaces and their settings. So
if your Ethernet device was at eth0

$ sudo ethtool etho
Settings for ethd:

Supported ports: [TP]

Supported Tink modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Supports auto-negotiation: Yes

Advertised Tlink modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Advertised auto-negotiation: Yes

Speed: 100Mb/s

DupTex: Full

Port: Twisted Pair

PHYAD: 0

Transceiver: internal

From the Library of Martin Spilovsky

70 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

Auto-negotiation: on

Supports Wake-on: pg

Wake-on: d

Current message Tevel: 0x000000ff (255)
Link detected: yes

Here, on the final line, you can see that Link detected is set to yes, so devl1 is
physically connected to the network. If this was set to no, you would need
to physically inspect dev1’s network connection and make sure it was con-
nected. Since it is physically connected, you can move on.

NOTE ethtool has uses beyond simply checking for a link. It can also be used to diagnose and
correct duplex issues. When a Linux server connects to a network, typically it autonegoti-
ates with the network to see what speeds it can use and whether the network supports
full duplex. The Speed and Duplex lines in the example ethtool output illustrate what a
100Mb/s, full duplex network should report. If you notice slow network speeds on a host,
its speed and duplex settings are a good place to look. Run ethtool as in the previous
example, and if you notice Duplex set to Half, then run

§ sudo ethtool -s eth® autoneg off duplex full

Replace eth@ with your Ethernet device.

Is the Interface Up?

Once you have established that you are physically connected to the net-
work, the next step is to confirm that the network interface is configured
correctly on your host. The best way to check this is to run the ifconfig
command with your interface as an argument. So to test ethQ’s settings,
you would run

$ sudo ifconfig ethd

etho Link encap:Ethernet HWaddr 00:17:42:1f:18:be
inet addr:10.1.1.7 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::217:42ff:felf:18be/64 Scope:Link
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:1 errors:@ dropped:@ overruns:0 frame:0
TX packets:11 errors:0 dropped:@ overruns:@ carrier:0
collisions:0 txqueuelen:1000
RX bytes:229 (229.0 B) TX bytes:2178 (2.1 KB)
Interrupt:10

From the Library of Martin Spilovsky

Server A Can’t Talk to Server B 71

Probably the most important line in this is the second line of output,
which tells us our host has an IP address (10.1.1.7) and subnet mask
(255.255.255.0) configured. Now, whether these are the correct settings for
this host is something you will need to confirm. If the interface is not
configured, try running sudo ifup ethd and then run ifconfig again to see
if the interface comes up. If the settings are wrong or the interface won’t
come up, inspect /etc/network/interfaces on Debian-based systems or /etc/
sysconfig/network_scripts/ifcfg-<interface> on Red Hat-based systems. It
is in these files that you can correct any errors in the network settings. Now
if the host gets its IP through DHCP, you will need to move your trouble-
shooting to the DHCP host to find out why you aren’t getting a lease.

Is It on the Local Network?

Once you see that the interface is up, the next step is to see if a default gate-
way has been set and whether you can access it. The route command will
display your current routing table, including your default gateway:

$ sudo route -n
Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.1.1.0 % 255.255.255.0 U 0 0 0 etho
default 10.1.1.1 0.0.0.0 UG 100 0 0 etho

The line you are interested in is the last line, which starts with default. Here
you can see that the host has a gateway of 10.1.1.1. Note that the -n option
was used with route so it wouldn’t try to resolve any of these IP addresses
into hostnames. For one thing, the command runs more quickly, but more
important, you don’t want to cloud your troubleshooting with any potential
DNS errors. If you don’t see a default gateway configured here, and the host
you want to reach is on a different subnet (say, web1, which is on 10.1.2.5),
that is the likely cause of your problem. To fix this, either be sure to set
the gateway in /etc/network/interfaces on Debian-based systems or /etc/
sysconfig/network_scripts/ifcfg-<interface> on Red Hat-based systems, or
if you get your IP via DHCP, be sure it is set correctly on the DHCP server
and then reset your interface with the following on Debian-based systems:

$ sudo service networking restart

From the Library of Martin Spilovsky

72 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

The following would be used on Red Hat-based systems:
$ sudo service network restart

On a side note, it’s amazing that these distributions have to differ even on
something this fundamental.

Once you have identified the gateway, use the ping command to confirm
that you can communicate with the gateway:

$ ping -c 5 10.1.1.1

PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.

64 bytes from 10.1.1.1: icmp_seq=1 tt1=64 time=3.13 ms

64 bytes from 10.1.1.1: icmp_seq=2 tt1=64 time=1.43 ms

64 bytes from 10.1.1.1: icmp_seq=3 tt1=64 time=1.79 ms

64 bytes from 10.1.1.1: icmp_seq=5 tt1=64 time=1.50 ms

--- 10.1.1.1 ping statistics ---

5 packets transmitted, 4 received, 20% packet Tloss, time 4020ms
rtt min/avg/max/mdev = 1.436/1.966/3.132/0.686 ms

As you can see, we were able to successfully ping the gateway, which means
that we can at least communicate with the 10.1.1.0 network. If you couldn’t
ping the gateway, it could mean a few things. It could mean that your gate-
way is blocking ICMP packets. If so, tell your network administrator that
blocking ICMP is an annoying practice with negligible security benefits
and then try to ping another Linux host on the same subnet. If ICMP isn’t
being blocked, then it’s possible that the switch port on your host is set to
the wrong VLAN, so you will need to further inspect the switch to which
it is connected.

Is DNS Working?

Once you have confirmed that you can speak to the gateway, the next thing
to test is whether DNS functions. Both the nslookup and dig tools can be used
to troubleshoot DNS issues, but since you need to perform only basic test-
ing at this point, just use nslookup to see if you can resolve web1 into an IP:

$ nsTookup webl
Server: 10.1.1.3
Address: 10.1.1.3#53

From the Library of Martin Spilovsky

Server A Can’t Talk to Server B 73

Name: webl.example.net
Address: 10.1.2.5

In this example DNS is working. The web1 host expands into webl.exampTle.net
and resolves to the address 10.1.2.5. Of course, make sure that this IP
matches the IP that web1 is supposed to have! In this case, DNS works, so
we can move on to the next section; however, there are also a number of
ways DNS could fail.

No Name Server Configured or Inaccessible Name Server 1f you see
the following error, it could mean either that you have no name servers
configured for your host or they are inaccessible:

$ nsTookup webl
;3 connection timed out; no servers could be reached

In either case you will need to inspect /etc/resolv.conf and see if any name
servers are configured there. If you don’t see any IP addresses configured
there, you will need to add a name server to the file. Otherwise, if you see
something like the following, you need to start troubleshooting your con-
nection with your name server, starting off with ping:

search example.net
nameserver 10.1.1.3

If you can’t ping the name server and its IP address is in the same subnet
(in this case, 10.1.1.3 is within the subnet), the name server itself could be
completely down. If you can’t ping the name server and its IP address is in
a different subnet, then skip ahead to the Can I Route to the Remote Host?
section, but only apply those troubleshooting steps to the name server’s IP.
If you can ping the name server but it isn’t responding, skip ahead to the
Is the Remote Port Open? section.

Missing Search Path or Name Server Problem 1t is also possible that
you will get the following error for your nslookup command:

$ nsTookup webl
Server: 10.1.1.3

From the Library of Martin Spilovsky

74 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

Address: 10.1.1.3#53
#+ server can’t find webl: NXDOMAIN

Here you see that the server did respond, since it gave a response: server
can’t find webl. This could mean two different things. One, it could mean
that web1’s domain name is not in your DNS search path. This is set in
/etc/resolv.conf in the line that begins with search. A good way to test this is
to perform the same nslookup command, only use the fully qualified domain
name (in this case, webl.example.net). If it does resolve, then either always
use the fully qualified domain name, or if you want to be able to use just
the hostname, add the domain name to the search path in /etc/resolv.conf.

If even the fully qualified domain name doesn’t resolve, then the problem
is on the name server. The complete method for troubleshooting all DNS
issues is covered in Chapter 6, but here are some basic pointers. If the
name server is supposed to have that record, then that zone’s configura-
tion needs to be examined. If it is a recursive name server, then you will
have to test whether or not recursion is working on the name server by
looking up some other domain. If you can look up other domains, then
you must check if the problem is on the remote name server that does
contain the zones.

Can | Route to the Remote Host?

After you have ruled out DNS issues and see that webl is resolved into
its IP 10.1.2.5, you must test whether you can route to the remote host.
Assuming ICMP is enabled on your network, one quick test might be to
ping webl. If you can ping the host, you know your packets are being
routed there and you can move to the next section, Is the Remote Port
Open? If you can’t ping webl1, try to identify another host on that network
and see if you can ping it. If you can, then it’s possible webl is down or
blocking your requests, so move to the next section. If you can’t ping any
hosts on the remote network, packets aren’t being routed correctly. One of
the best tools to test routing issues is traceroute. Once you provide traceroute
with a host, it will test each hop between you and the host. For example, a
successful traceroute between devl and web1 would look like this:

From the Library of Martin Spilovsky

Server A Can’t Talk to Server B 75

$ traceroute 10.1.2.5

traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
110.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

2 webl (10.1.2.5) 8.039 ms 8.348 ms 8.643 ms

Here you can see that packets go from devl to its gateway (10.1.1.1), and
then the next hop is web1. This means it’s likely that 10.1.1.1 is the gateway
for both subnets. On your network you might see a slightly different out-
put if there are more routers between you and your host. If you can’t ping
webl, your output would look more like the following:

$ traceroute 10.1.2.5
traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
110.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

Once you start seeing asterisks in your output, you know that the problem
is on your gateway. You will need to go to that router and investigate why
it can’t route packets between the two networks. Instead you might see
something more like

$ traceroute 10.1.2.5

traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
110.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms

110.1.1.1 (10.1.1.1) 3006.477 ms 'H 3006.779 ms 'H 3007.072 ms

In this case, you know that the ping timed out at the gateway, so the host is
likely down or inaccessible even from the same subnet. At this point, if you
haven’t tried to access web1 from a machine on the same subnet as webl,
try pings and other tests now.

NOTE If you have one of those annoying networks that block ICMP, don’t worry, you can
still troubleshoot routing issues. You just need to install the tcptraceroute package
(sudo apt-get install tcptraceroute), then run the same commands as for traceroute,
only substitute tcptraceroute for traceroute.

From the Library of Martin Spilovsky

76 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

Is the Remote Port Open?

So you can route to the machine but you still can’t access the web server on
port 80. The next test is to see whether the port is even open. There are a
number of different ways to do this. For one, you could try telnet:

$ telnet 10.1.2.5 80
Trying 10.1.2.5...
telnet: Unable to connect to remote host: Connection refused

If you see Connection refused, then either the port is down (likely Apache isn’t
running on the remote host or isn’t listening on that port) or the firewall
is blocking your access. If telnet can connect, then, well, you don’t have a
networking problem at all. If the web service isn’t working the way you
suspected, you need to investigate your Apache configuration on webl.
Troubleshooting web server issues is covered in Chapter 8.

Instead of telnet, I prefer to use nmap to test ports because it can often detect
firewalls. If nmap isn’t installed, use your package manager to install the nmap
package. To test webl, type the following:

$ nmap -p 80 10.1.2.5

Starting Nmap 4.62 (http://nmap.org) at 2009-02-05 18:49 PST
Interesting ports on webl (10.1.2.5):

PORT STATE SERVICE

80/tcp filtered http

Aha! nmap is smart enough that it can often tell the difference between a
closed port that is truly closed and a closed port behind a firewall. Nor-
mally when a port is actually down, nmap will report it as closed. Here it
reported it as filtered. What this tells us is that some firewall is in the way
and is dropping the packets to the floor. This means you need to investi-
gate any firewall rules on the gateway (10.1.1.1) and on web1 itself to see
if port 80 is being blocked.

Test the Remote Host Locally

At this point, we have either been able to narrow the problem down to a
network issue or we believe the problem is on the host itself. If we think

From the Library of Martin Spilovsky

Server A Can’t Talk to Server B 17

the problem is on the host itself, we can do a few things to test whether
port 80 is available.

Test for Listening Ports

One of the first things you should do on web1 is test whether port 80 is lis-
tening. The netstat -Tnp command will list all ports that are listening along
with the process that has the port open. You could just run that and parse
through the output for anything that is listening on port 80, or you could
use grep to show only things listening on port 80:

$ sudo netstat -Tnp | grep :80
tcp 00 0.0.0.0:80 0.0.0.0:+ LISTEN 919/apache

The first column tells you what protocol the port is using. The second and
third columns are the receive and send queues (both are set to 0 here).
The column you want to pay attention to is the fourth column, as it lists
the local address on which the host is listening. Here the 0.0.0.0:80 tells us
that the host is listening on all of its IPs for port 80 traffic. If Apache were
listening only on web1’s Ethernet address, you would see 10.1.2.5:80 here.

The final column will tell you which process has the port open. Here you
can see that Apache is running and listening. If you do not see this in your
netstat output, you need to start your Apache server.

Firewall Rules
If the process is running and listening on port 80, it’s possible that web1
has some sort of firewall in place. Use the iptables command to list all

of your firewall rules. If your firewall is disabled, your output will look
like this:

$ sudo /shin/iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

From the Library of Martin Spilovsky

78

Chapter 5

Is the Server Down? Tracking Down the Source of Network Problems

Notice that the default policy is set to ACCEPT. It’s possible, though, that your
firewall is set to drop all packets by default, even if it doesn’t list any rules.
If that is the case you will see output more like the following:

$ sudo /sbin/iptables -L
Chain INPUT (policy DROP)
target prot opt source destination

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (poTicy DROP)
target prot opt source destination

On the other hand, if you had a firewall rule that blocked port 80, it might
look like this:

$ sudo /sbin/iptables -L -n

Chain INPUT (policy ACCEPT)

target prot opt source destination

REJECT tcp -- 0.0.0.0/0 0.0.0.0/0 tep dpt:80 reject-with
=icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Clearly, in the latter case you would need to modify the firewall rules to
allow port 80 traffic from the host.

Troubleshoot Slow Networks

In a way, it’s easier to troubleshoot network problems when something
doesn’t work at all. When a host is unreachable, you can perform the trou-
bleshooting steps discussed earlier until the host is reachable again. When
the network is just slow, however, sometimes it can be a bit tricky to track
down why. This section discusses a few techniques you can use to track
down the cause of slow networks.

From the Library of Martin Spilovsky

Troubleshoot Slow Networks 79

DNS Issues

Although DNS is blamed more often than it should be for network prob-
lems, when DNS does have an issue, it can often result in poor network
performance. For instance, if you have two DNS servers configured for
a domain and the first one you try goes down, your DNS requests will
wait 30 seconds before they time out and go to the secondary DNS server.
Although this will definitely be noticeable when you run tools like dig
or nslookup, DNS issues can cause apparent network slowdowns in some
unexpected ways; this is because so many services rely on DNS to resolve
hostnames to IP addresses. Such issues can even affect your network trou-
bleshooting tools.

Ping, traceroute, route, netstat, and even iptables are great examples of network
troubleshooting tools that can degrade during DNS issues. By default, all
of these tools will attempt to resolve IP addresses into hostnames if they
can. If there are DNS problems, however, the results from each of these
commands might stall while they attempt to look up IP addresses and
fail. In the case of ping or traceroute, it might seem like your ping replies are
taking a long time, yet when they do finally come through, the round-trip
time is relatively low. In the case of route, netstat, and iptables, the results
might stall for quite some time before you get output. The system is wait-
ing for DNS requests to time out.

In all of the cases mentioned, it’s easy to bypass DNS so your trouble-
shooting results are accurate. All of the commands we discussed earlier
accept an -n option, which disables any attempt to resolve IP addresses into
hostnames. I've just become accustomed to adding -n to all of the com-
mands I introduced you to in the first part of this chapter unless I really
do want IP addresses resolved.

NOTE Although we’ll get into this more in Chapter 8, DNS resolution can also affect your web
server’s performance in an unexpected way. Some web servers are configured to resolve
every IP address that accesses them into a hostname for logging. Although that can make
the logs more readable, it can also dramatically slow down your web server at the worst
times—when you have a lot of visitors. Instead of serving traffic, your web server can get
busy trying to resolve all of those IPs.

From the Library of Martin Spilovsky

80

Chapter 5

Is the Server Down? Tracking Down the Source of Network Problems

Find the Network Slowdown with traceroute

When your network connection seems slow between your server and a
host on a different network, sometimes it can be difficult to track down
where the real slowdown is. Especially in situations where the slowdown
is in latency (the time it takes to get a response) and not overall band-
width, it’s a situation traceroute was made for. traceroute was mentioned
earlier in the chapter as a way to test overall connectivity between you
and a server on a remote network, but traceroute is also useful when you
need to diagnose where a network slowdown might be. Since traceroute
outputs the reply times for every hop between you and another machine,
you can trace down servers that might be on a different continent or
gateways that might be overloaded and causing network slowdowns. For
instance, here’s part of a traceroute between a server in the United States
and a Chinese Yahoo server:

$ traceroute yahoo.cn
traceroute to yahoo.cn (202.165.102.205), 30 hops max, 60 byte packets
1 64-142-56-169.static.sonic.net (64.142.56.169) 1.666 ms 2.351 ms 3.038 ms

2 2.ge-1-1-0.gw.sr.sonic.net (209.204.191.36) 1.241ms 1.243 ms 1.229 ms

3 265.ge-7-1-0.gw.paol.sonic.net (64.142.0.198) 3.388 ms 3.612 ms 3.592 ms
4 xe-1-0-6.arl.paol.us.nlayer.net (69.22.130.85) 6.464 ms 6.607 ms 6.642 ms
5 ae0-80g.crl.paol.us.nlayer.net (69.22.153.18) 3.320 ms 3.404 ms 3.496 ms
6 ael-50g.crl.sjcl.us.nlayer.net (69.22.143.165) 4.335 ms 3.955 ms 3.957 ms
7 ael-40g.ar2.sjcl.us.nlayer.net (69.22.143.118) 8.748 ms 5.500 ms 7.657 ms
8 as4837.xe-4-0-2.ar2.sjcl.us.nlayer.net (69.22.153.146) 3.864 ms 3.863 ms 3.865 ms
9 219.158.30.177 (219.158.30.177) 275.648 ms 275.702 ms 275.687 ms

10 219.158.97.117 (219.158.97.117) 284.506 ms 284.552 ms 262.416 ms

11 219.158.97.93 (219.158.97.93) 263.538 ms 270.178 ms 270.121 ms

12 219.158.4.65 (219.158.4.65) 303.441 ms 303.465 ms

13 202.96.12.190 (202.96.12.190) 306.968 ms 306.971 ms 307.052 ms

14 61.148.143.10 (61.148.143.10) 295.916 ms 295.780 ms 295.860 ms

Without knowing much about the network, you can assume just by looking
at the round-trip times that once you get to hop 9 (at the 219.158.30.177
IP), you have left the continent, as the round-trip time jumps from 3 mil-
liseconds to 275 milliseconds.

From the Library of Martin Spilovsky

Troubleshoot Slow Networks 81

Find What Is Using Your Bandwidth with iftop

Sometimes your network is slow not because of some problem on a remote
server or router, but just because something on the system is using up all
the available bandwidth. It can be tricky to identify what process is using
up all the bandwidth, but there are some tools you can use to help identify
the culprit.

top is such a great troubleshooting tool that it has inspired a number of
similar tools like fotop to identify what processes are consuming the most
disk I/O. It turns out there is a tool called iftop that does something similar
with network connections. Unlike top, iftop doesn’t concern itself with pro-
cesses but instead lists the connections between your server and a remote
IP that are consuming the most bandwidth (Figure 5-1). For instance, with
iftop you can quickly see if your backup job is using up all your bandwidth
by seeing the backup server IP address at the top of the output.

iftop is available in a package of the same name on both Red Hat- and
Debian-based distributions, but in the case of Red Hat-based distributions,

819Kb 199Kb

rates:

Figure 5-1 Sample iftop output

From the Library of Martin Spilovsky

82 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

you might have to find it from a third-party repository. Once you have it
installed, just run the iftop command on the command line (it will require
root permissions). Like with the top command, you can hit Q to quit.

At the very top of the iftop screen is a bar that shows the overall traffic
for the interface. Just below that is a column with source IPs followed by
a column with destination IPs and arrows between them so you can see
whether the bandwidth is being used to transmit packets from your host
or receive them from the remote host. After those columns are three more
columns that represent the data rate between the two hosts over 2, 10, and
40 seconds, respectively. Much like with load averages, you can see whether
the bandwidth is spiking now, or has spiked some time in the past. At
the very bottom of the screen, you can see statistics for transmitted data
(TX) and received data (RX) along with totals. Like with top, the interface
updates periodically.

The iftop command run with no arguments at all is often all you need
for your troubleshooting, but every now and then, you may want to take
advantage of some of its options. The iftop command will show statistics
for the first interface it can find by default, but on some servers you may
have multiple interfaces, so if you wanted to run iftop against your second
Ethernet interface (ethl), type iftop -i ethl.

By default iftop attempts to resolve all IP addresses into hostnames. One
downside to this is that it can slow down your reporting if a remote DNS
server is slow. Another downside is that all that DNS resolution adds extra
network traffic that might show up in iftop! To disable network resolution,
just run iftop with the -n option.

Normally iftop displays overall bandwidth used between hosts, but to help
you narrow things down, you might want to see what ports each host is
using to communicate. After all, if you knew a host was consuming most
of your bandwidth over your web port, you would perform different
troubleshooting than if it was connecting to an FTP port. Once iftop is
launched, press P to toggle between displaying all ports and hiding them.
One thing you’ll notice, though, is that sometimes displaying all the ports
can cause hosts you are interested in to fall off the screen. If that happens,

From the Library of Martin Spilovsky

Packet Captures 83

you can also hit either S or D to toggle between displaying ports only from
the source or only from the destination host, respectively. Showing only
source ports can be useful when you run iftop on a server, since for many
services, the destination host uses random high ports that don’t neces-
sarily identify what service is being used, but the ports on your server are
more likely to correspond to a service on your machine. You can then fol-
low up with the netstat -1np command referenced earlier in this chapter to
find out what service is listening on that port.

Like with most Linux commands, iftop has an advanced range of options.
What we covered should be enough to help with most troubleshooting
efforts, but in case you want to dig further into iftop’s capabilities, just type
man iftop to read the manual included with the package.

Packet Captures

Although the techniques mentioned in this chapter should help you
troubleshoot a wide range of networking problems, some problems are
so subtle or low-level that the only way to track them down is to dig down
into the protocol itself and examine individual packets as they go back
and forth. Because of the low-level and tedious nature of analyzing packet
dumps, you should try to use it as a last resort. That said, this type of
troubleshooting can be quite effective, particularly to identify hosts on
your local network that are misbehaving, hosts with misconfigured net-
work settings, or debugging communications between your own client
and server software. Packet dumps are less effective for troubleshooting if
you are unfamiliar with the protocols you are examining since you can’t
tell correct traffic from errors, or if you allow yourself to get buried in
volumes of packets and can’t see the problem for all of the normal traffic.

When you capture packets, it’s most effective if you can capture them on
both sides of a communication, especially if there is a router or firewall
between two hosts. If a machine between the two hosts is the cause of the
problem, you're more likely to detect it when you can see whether packets
sent from host A arrive on host B exactly as they are sent. For instance, if
you see host B send a reply back to host A that never gets there, you can be
confident that the problem is somewhere in between the two hosts.

From the Library of Martin Spilovsky

84 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

A great example of where packet captures come into play occurred some
time back when I was troubleshooting a host that seemed to have trouble
communicating with a different server. Connections would sometimes
just die out, yet at other times things seemed relatively fine, if slow. Noth-
ing can be trickier to troubleshoot than an intermittent problem. After a
series of different troubleshooting steps, we captured packets both from
the problem host and the destination server.

What we discovered in the packet dump was that a misconfigured router
had been trying to apply NAT (Network Address Translation) rules to our
destination server incorrectly and had sent reply packets back to our host
while the destination server was trying to reply to us directly. Our host was
seeing the same reply twice, but from two different MAC addresses. What
happened was a race where each time we tried to set up a TCP handshake,
sometimes the destination server won the race and replied back, but other
times the router replied back first; upon seeing that reply, our host tried
to re-initiate the handshake. Depending on who won the race, the com-
munication would continue or get reset. If we weren’t able to analyze the
individual packets going back and forth, we may have never discovered the
duplicate packets.

Use the tcpdump Tool

The main packet capture tool we will discuss is tcpdump. This is an old and
proven command-line packet capture tool, and although there are more
modern tools out there, tcpdump is a program that you should be able to find
on any Linux system. Because of how tcpdump works, you will need to run
it with root privileges on your machine. By default, it will scan through
your network interfaces and choose the first suitable one; then it will cap-
ture, parse, and output information about the packets it sees. Here’s some
example output from tcpdump with the -n option (so it doesn’t convert IP
addresses to hostnames and slow things down):

$ sudo tcpdump -n

tcpdump: verbose output suppressed, use -v or -wv for full protocol decode

Tistening on ethd, Tink-type EN1OMB (Ethernet), capture size 96 bytes

19:01:51.133159 IP 208.115.111.75.60004 > 64.142.56.172.80: Flags [F.], seq 753858968, ack
—1834304357, win 272, options [nop,nop,TS val 99314435 ecr 1766147273], length 0

From the Library of Martin Spilovsky

Packet Captures 85

19:01:51.133317 IP 64.142.56.172.80 > 208.115.111.75.60004: Flags [F.], seq 1, ack 1, win
=54, options [nop,nop,TS val 1766147276 ecr 99314435], length @

19:01:51.157772 1P 208.115.111.75.60004 > 64.142.56.172.80: Flags [.], ack 2, win 272,
=options [nop,nop,TS val 99314437 ecr 1766147276], length 0

19:01:51.224021 IP 72.240.13.35.45665 > 64.142.56.172.53: 59454% [lau] AAAA? ns2.example.
=net. (45)

19:01:51.224510 IP 64.142.56.172.53 > 72.240.13.35.45665: 59454:- 0/1/1 (90)

19:01:51.256743 IP 201.52.186.78.63705 > 64.142.56.172.80: Flags [.], ack 1833085614, win
=65340, Tength 0

NOTE Whenever you are done capturing packets, just hit Ctrl-C to exit tcpdump. As tcpdump
exits, it tells you how many packets it was able to capture and how many the kernel
dropped.

The output of tcpdump can be a bit tricky to parse at first, and I won’t go
over all the columns, but let’s take two lines from the preceding output
and break them down:

19:01:51.224021 IP 72.240.13.35.45665 > 64.142.56.172.53: 59454% [lau] AAAA? ns2.example.
=net. (45)
19:01:51.224510 IP 64.142.56.172.53 > 72.240.13.35.45665: 59454x- 0/1/1 (90)

The first line tells you that at 19:01:51, the host 72.240.13.35 on port 45665
sent a packet to 64.142.56.172 on port 53 (DNS). If you wanted to dig
further in that line you could see that the source host sent a request for the
AAAA record (an IPv6 IP address) for ns2.example.net. The second line
tells you that also at 19:01:51 the host 64.142.56.172 on port 53 replied
back to host 72.240.13.35 on port 45665, presumably with an answer to
the query.

Since the first column is a datestamp for each packet, it makes it simple to
see how long communication takes between hosts. This can be particularly
useful for protocols that have set timeouts (like 30-second timeouts for
DNS requests) since you can watch the timeout occur and see the source
host resend its request. The next major column shows the IP and port
for the source host. The > in the line can be treated like an arrow that lets
you know that the direction of communication is from the first IP to the

From the Library of Martin Spilovsky

86 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

second. Finally, the next column tells you the destination IP and port fol-
lowed by some extra flags, sequence numbers, and other TCP/IP informa-
tion for that packet that we won’t get into here.

Filtering Tepdump Output Since by default tcpdump captures all of the
packets it sees, it usually bombards you with a lot of noise that doesn’t
help with your troubleshooting. What you want to do is pass tcpdump some
filtering rules so it only shows you packets that you are interested in. For
instance, if you were troubleshooting problems between your host and a
server with a hostname of web1, you could tell tcpdump to only show packets
to or from that host with

$ sudo tcpdump -n host webl

If you wanted to do the opposite, that is, show all traffic except anything
from web1, you would say

$ sudo tcpdump -n not host webl

You can also filter traffic to and from specific ports. For instance, if you
wanted to just see DNS traffic (port 53) you would type

$ sudo tcpdump -n port 53

If you wanted to capture all of your web traffic on either port 80 or port
443, you would type

$ sudo tcpdump -n port 80 or port 443

You can actually get rather sophisticated with tcpdump filters, but it’s often
easier to just capture a certain level of tcpdump output to a file and then use
grep or other tools to filter it further. To save tcpdump output to a file, you can

use a command-line redirect:

$ sudo tcpdump -n host webl > outputfile

From the Library of Martin Spilovsky

Packet Captures 87

If you want to view the packets on the command line while they are being
saved to a file, add the -1 option to tcpdump so it buffers the output, and then
use tee to both display the output and save it to a file:

$ sudo tcpdump -n -1 host webl | tee outputfile

Raw Packet Dumps Although you might think that tcpdump already pro-
vides plenty of difficult-to-parse output, sometimes all that output isn’t
enough—you want to save complete raw packets. Raw packets are par-
ticularly useful since they contain absolutely all of the information about
communication between hosts, and a number of tools (such as Wireshark,
which we’ll discuss briefly momentarily) can take these raw packet dumps
as input and display them in a much-easier-to-understand way.

The simplest way to save raw packet dumps is to run tcpdump with the -w
option:

$ sudo tcpdump -w output.pcap

Like with other tcpdump commands, hit Ctrl-C to stop capturing packets.
You can also use all of the same filtering options we’ve discussed so far
when capturing raw packets. With raw packet dumps, you are getting the
complete contents of the packets as best as tcpdump and your disk can keep
up. So if someone is transferring a 1Gb file from your server, you might
just capture the whole file in your packet dump. You may want to open up
a second command-line session just so you can keep an eye on the size of
the output file.

tcpdump provides a few options you can use to manage the size of output
files. The first option, -C, lets you specify the maximum size of the out-
put file (in millions of bytes) before it moves on to a second one. So, for
instance, if you wanted to rotate files after they grow past ten megabytes,
you can type

$ sudo tcpdump -C 10 -w output.pcap

From the Library of Martin Spilovsky

88 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

The first output file will be named output.pcap.1, and once it gets to ten
megabytes, tcpdump will close it and start writing to output.pcap.2, and so
on, until you either kill tcpdump or you run out of disk space. If you want
to be sure that you won’t run out of disk space, you can also add the -W
option, which lets you limit the number of files tcpdump will ultimately cre-
ate. Once tcpdump reaches the last file, it will start from the beginning and
overwrite the first file in the set. So, for instance, if you want tcpdump to
rotate to a new file after ten megabytes and want to make sure tcpdump only
uses fifty megabytes of disk space, you could limit it to five rotated files:

$ sudo tcpdump -C 10 -W 5 -w output.pcap

Once you have these packet captures, you can use tcpdump to replay them as
though they were happening in real time with the -r option. Just specify
your raw packet output file as an argument. You can specify filters and
other options like -n just as if you were running tcpdump against a live stream
of traffic:

$ sudo tcpdump -n -r output.pcap

The tcpdump program is full of useful options and filters beyond what I've
mentioned here. The man page (type man tcpdump) not only goes over all of
these options and filters, but it also provides a nice primer on TCP packet
construction, so it’s worth looking through if you want to dig deeper into
tepdump’s abilities.

Use Wireshark

Although tcpdump is a handy tool for packet capture, when you actually
need to parse through and analyze raw packets, the -r option sometimes
doesn’t cut it. Luckily some tools make the process simpler. One of the
best tools for raw packet analysis is Wireshark. It is a desktop application
that provides a lot of sophisticated tools for packet analysis that are way
beyond the scope of this book. At a basic level, though, Wireshark provides
you with a much easier way to view your raw packet dumps and pinpoint
obvious problems.

From the Library of Martin Spilovsky

Packet Captures 89

The Wireshark package should be packaged and available for major Linux
distributions, and it even has clients for Windows and Mac systems. Once
installed, you can launch it via your desktop environment or just type
wireshark on the command line. If you type wireshark followed by your raw
packet file, it will go ahead and open it up as it starts.

As Figure 5-2 shows, Wireshark separates its GUI into a few sections. The
main pane below the toolbar displays basic packet information like you
might find in default tcpdump output. What’s useful about Wireshark is that
its columns are a bit simpler to read, plus it color-codes packets based on
protocol and will even highlight error packets in red. The color coding
in this main pane makes it a bit simpler to filter through your traffic and
identify possible problems.

Once you click on a particular packet in the main pane, the pane below it
shows all of the detailed information in the different layers of the packet.

File Edit View Go Capture Ar

AT EE acaarl §EEX @

Filter:| IL" Expression... Clear| Apply

No. . Time Source Destination Protocol Info -
4 2.676949 64.142.56.172 192.189.128.12 TCP http > 34292 [FIN, ACK] Seg=1 Ack=1l Win=75 Len=0 TSV=1766752089 TSER=
5 2.747328 192.189.128.12 64.142.56.172 TCP 34292 > http [ACK] Seq=1 Ack=2 Win=65535 Len=8 TSV=1459768349 TSER=17
6 3.879527 64.142.56.172 84.73.114.57 TCP http > 57979 [FIN, ACK] Segq=1 Ack=1 Win=54 Len=0 TSV=1766752209 TSER=
7 4.092073 84.73.114.57 64.142.56.172 TCP 57979 > http [ACK] Seq=1 Ack=2 Win=33304 Len=0 TSV=1238527563 TSER=17

[8 4.658290 202.158.196.133 64.142.56.172 DNS Standard query A nsl.greenfly.net |
9 4.658449 262.158.196.133 64.142.56.172 DNS Standard query A ns2.greenfly.net
10 4.658467 202.158.196.133 64.142.56.172 DNS Standard query AAAA nsl.greenfly.net
11 4.658889 64.142.56.172 202.158.196.133 DNS Standard query response A[Packet size limited during capture]
12 4.659129 64.142.56.172 202.158.196.133 DNS Standard query response[Packet size limited during capture]
13 4.659352 202.158.196.133 64.142.56.172 DNS Standard query AAAA ns2.greenfly.net
14 4.659397 64.142.56.172 202.158.196.133 DNS Standard query response A[Packet size limited during capture]
15 4.659787 64.142.56.172 202.158.196.133 DNS Standard query response[Packet size limited during capture]
16 5.194249 151.164.11.204 64.142.56.172 DNS Standard query AAAA ns2.greenfly.net
17 5.194730 64.142.56.172 151.164.11.204 DNS Standard query response[Packet size limited during capture] A4

+ Frame 8 (87 bytes on wire, 87 bytes captured)
— Ethernet II, Src: ControlR 4c:8f:00 (00:e0:80:4c:8f:00), Dst: RealtekU 15:75:7c (52:54:00:15:75:7c)
+ Destination: RealtekU 15:75:7¢ (52:54:00:15:75:7c)
+ Source: ControlR 4c:8f:00 (00:e0:80:4c:87:00)
Type: IP (©x0800)
— Internet Protocol, Src: 202.158.196.133 (202.158.196.133), Dst: 64.142.56.172 (64.142.56.172)

Version: 4
Header length: 20 bytes
+ Differentiated Services Field: 0x08 (DSCP ©x@0: Default; ECN: 0x00) v
0808 52 54 @6 15 75 7c 6@ e®@ 80 4c 8f G0 68 6@ 45 80 RT..u|.. .L....E.

0010 00 49 ea d6 €0 00 39 11 8e 6f ca 9e c4 85 40 8e I....9. L0....@.
0820 38 ac 1b 65 B0 35 6@ 35 84 a5 14 92 60 16 80 81 8..e.5.5
0030 ©0 00 00 0O 0O @1 03 6e 73 31 @8 67 72 65 65 68 n sl.green
0848 66 6c 79 B3 Ge 65 74 6@ @0 01 60 01 @0 6@ 29 18 fly.net.).
0050 ©0 @0 €0 89 @ @@ GO ...,

@ File: "ftmpftcpdump3” 5136 Bytes 0... Packets: 51 Displayed: 51 Marked: 0 Profile: Default

Figure 5-2 Default Wireshark window

From the Library of Martin Spilovsky

90 Chapter 5 = Is the Server Down? Tracking Down the Source of Network Problems

In that pane you can drill down to display IP headers, the data section of
the packet, and everything in between. Once you do, click on and expand
a particular section of a packet; at the very bottom of the window is a
separate pane that will show you both the hex and ASCII representation
of that data.

Wireshark has a ton of features, including the ability to capture packets in
its own right, and is a complicated and powerful-enough tool that it could
be a subject for its own book. Since this is a book about troubleshooting
and not TCP/IP itself, this section just mentions a few basic features that
will help you with troubleshooting.

Along the top toolbar you'll see an input box and a button labeled Filter.
As with tcpdump, you filter packet dumps so you only see packets that match
your criteria. Unlike tcpdump, Wireshark uses a completely different syntax
for filters. So, for instance, if you want to see only packets related to host
192.168.0.1, type this in the filter and press Enter:

ip.addr == 192.168.0.1
To display only packets related to DNS (port 53), type
tep.port == 53 || udp.port == 53

The filtering syntax for Wireshark is pretty extensive, but if you click on
the button labeled Filter, a window pops up that gives you a good list of
examples to get you started. From there you can also click a Help button
that gives you more complete documentation on how to construct your
own filter rules.

Another useful feature in Wireshark is the ability to pick a complete stream
of communication between two hosts out of a large number of packets.
Although you can certainly do this yourself by hand, you can also just
select one sample packet you are interested in, then click Analyze = Fol-
low TCP Stream. If it’s a UDP or SSL stream, those options will be visible
instead. Once you select that menu, a new window pops up (Figure 5-3),

From the Library of Martin Spilovsky

Packet Captures 91

© & ©® Follow TCP Stream

Stream Content (incomplete)

No. . Time i GET_/ZE@G/@S/@E/Writing-H'ITP/I.1 200 0K | “
67 7.92682(*-Pingb .))))) -92898774 TSE
68 7.92686] -<link rel="alternate" <link rel='archives' tit='archives' title='Febru' title='September 2006'/' /> ing capturel
69 7.92934 </ heads =92898775 TSE
70 7.92938! ing capture]
;; 2131‘: <bodythe below commented out they did that had me last.</p> .EBZMBB? LEL

<p>You may also logspot.com/' rel="exter your work a little stif shall necessarily tell gravatar.com" class="grChris ing capture]
74.8.12259 Chapbers Ringtone v class="commentid"> _=92393823 TSE
75 8.12264] comment by <a href='httphendimetrazine</p> ing capture]
76 8.12596] </d><sa>.--> =92898824 TSE
77 8.12660f "cl* rel="nofollow">http:/avatar for comments by vat.teplog.nl" rel="nofol.com"><img src="" alt="G</p> ing capture]
78 B.12696 ..<p class="commens="commentid"> =92898824 TSE
79 8.12700: ..<a h by <a href="http://buypp://jewelrytitanium.toplr own gravatar for comme-)
 ing capture]
808 8.12997 <img srcm </p> =92898825 TSE

81 8.13000] .<p>Very good sicomment-4813">4813 <gs.grab.com/proactiv' rebox"> ing capture] -
‘external nofbox">

+ Frame 72 (66 ommentby">Com' 18jobapplica. juicypornh®nofollow>alabama job siv class="commentid">

- Ethernet IT, 1. juicypornhost.com' rels='url'sephedra</p>
+ Destinatiol -forum.net ephedra</s by visiting gravatar.cedit.asp?1ngPageID=30748s="commentid">
+ Source: Col ..<a h own gravatar for commenzine</p>
Type: IP ({ ..<p classntbox">

+ Internet Prot .<div class="coar.com" class="gravatar"ite. Thank you!!!

+ Transmission | 91-bin/lst.eur?phendime</www.gravatar.com">zanax</p>

..="commentid"> v
'Find | Save As| Print | Entire conversation (4200 bytes) \vJ ASCIl) EBCDIC ' Hex Dump ' CAmays & Raw

0008 52 54 00

0016 00 34 97 Hel Filter Out This Stream Close

0026 38 ac 85 icloy l 1

0030 01 c6 ae A Ll R T e v

0848 ce e5

Q) File: "fimp/tcpdump4” 155 KB 00:0... ~ Packets: 1691 Displayed: 344 Marked: 0 Profile: Default

Figure 5-3 Wireshark following an HTTP stream filled with blog spam

and if it is able to piece together any content from that stream, it is dis-
played. In either case, when you close the Follow TCP Stream window,
the main Wireshark window will have automatically filtered out all of the
packets except for those related to this particular stream.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 6

Why Won’t the Hostnames
Resolve? Solving DNS
Server Issues

93

From the Library of Martin Spilovsky

94

THE DOMAIN NAME SYSTEM, or DNS, is one of the most important systems
on the Internet. Every host on the Internet is assigned an IP address, but
most of us don’t have the IP addresses of our favorite websites memorized.
Instead, we type in a hostname that DNS translates into an IP address
behind the scenes. You can also use DNS to convert IP addresses to host-
names. When DN fails, you end up with an effect much like a failed net-
work connection—you can’t reach a website or server you want to reach,
but unlike with a failed network connection, your computer and the server
are still on the network.

In a DevOps organization, you might be presented with DNS trouble-
shooting from a number of different areas of responsibility. At the most
basic level, you may have no direct control over your DNS system at all,
however, you notice you can no longer reach a server you are responsible
for or that you develop on, or you may notice your automated tests are
timing out when they try to resolve a server name. Ultimately someone
else on your team may have to fix the problem, but you want to approach
them with some solid data first. Beyond that, perhaps you do manage DNS
for a website, but through a registrar or other third party and you really
only change records in a web GUI. Now some record you changed didn’t
update, and you want to sanity-check things before you file a ticket with
your DNS provider. Finally, maybe you are a full-fledged DNS administra-
tor running your own DNS server, so when there’s a DNS problem, the
buck stops with you. No matter where you fit on your DevOps team, DNS
troubleshooting skills are valuable to have.

Although understanding how DNS works really helps with troubleshoot-
ing, this chapter assumes that your understanding might be a bit hazy.
That’s OK, because in the process of troubleshooting DNS problems
step-by-step in this chapter, we will end up tracing a request all the way
through the stack and back. The chapter is split into two distinct parts.
The first part talks about how to troubleshoot DNS problems from the
client side, and the second part talks about troubleshooting DNS server
problems. The client-side troubleshooting will help provide you with the
basic troubleshooting steps to know whether the problem is on your end
or the DNS server’s end. If you do find that the problem is on the server

From the Library of Martin Spilovsky

DNS Client Troubleshooting 95

end, the server troubleshooting section will help you trace down some
common DNS server issues.

DNS Client Troubleshooting

The first place to troubleshoot DNS problems is on your local host. You
will find that even if the problem is on the DNS server side, you can trace
down the cause of many DNS server issues from any client with nsTookup
and dig installed. Both the nslookup and dig tools can be used to trouble-
shoot DNS issues, but for basic testing, start with nslookup. For this trouble-
shooting step, we’ll borrow a scenario from the Chapter 5 where the client
has an IP address of 10.1.1.7 and we have a server named web1 that has
an IP address of 10.1.2.5 that we want to resolve. Here is an example of a
successful nsTookup request that resolves web1:

$ nsTookup webl
Server: 10.1.1.3
Address: 10.1.1.3#53
Name: webl.example.net
Address: 10.1.2.5

In this example DNS is working. The web1 host expands into web1.example.
net and resolves to the address 10.1.2.5. One of the first things to confirm,
of course, is that this IP matches the IP that webl is supposed to have!
If web1 has the wrong IP address, then you can move down to the DNS
server troubleshooting section of this chapter to find out why. In this case
DNS works; however, there are also a number of ways DNS could fail on
the client, ways that give distinct clues.

No Name Server Configured or Inaccessible Name Server

If you see the following error, it could mean that either you have no name
servers configured for your host or they are inaccessible:

$ nslookup webl
;3 connection timed out; no servers could be reached

From the Library of Martin Spilovsky

96 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

In either case you will need to inspect /etc/resolv.conf and see if any name
servers are configured there. If you don’t see any IP addresses configured
there, you will need to add a name server to the file. Otherwise, you might
see something like this:

search example.net
nameserver 10.1.1.3

You now need to start troubleshooting your connection with your name
server, starting off with the ping command. If you can’t ping the name
server and its IP address is in the same subnet (in this case 10.1.1.3 is
within my subnet), the name server itself could be completely down. A
good way to confirm this would be to run an nslookup directly against your
configured name server by adding its IP address to the command line:

$ nslookup webl 10.1.1.3
Server: 10.1.1.3
Address: 10.1.1.3#53
Name: webl.example.net
Address: 10.1.2.5

Alternatively, if you want to use dig instead of nslookup, you put @ in front
of the name server IP and be sure to use the fully qualified domain name.
Also, be ready for a lot more output:

$ dig webl.example.net @10.1.1.3

; <> DiG 9.7.0-P1 <<>> www.example.net @10.1.1.3

;3 global options: +cmd

;1 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23394

;3 flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
;5 WARNING: recursion requested but not available

;3 QUESTION SECTION:
;webl.example.net. N A

;5 ANSWER SECTION:
webl.example.net. 300 IN A 10.1.2.5

From the Library of Martin Spilovsky

DNS Client Troubleshooting 97

;3 AUTHORITY SECTION:
example.net. 300 N NS ns2.example.net.
example.net. 300 N NS nsl.example.net.

;; ADDITIONAL SECTION:
nsl.example.net. 300 IN A 10.1.1.3
ns2.example.net. 300 IN A 10.1.1.4

77 Query time: 11 msec

;; SERVER: 10.1.1.3#53(10.1.1.3)
;5 WHEN: Sat Mar 17 16:56:55 2012
;3 MSG SIZE rcvd: 118

Although you could add +short to the end of the dig command to just get the
IP address, dig gives us a lot of extra info that is useful for troubleshooting.
For instance, it tells us the two name servers for example.net were named
nsl and ns2, and it also gives us their IP addresses. We will use this sort of
extra information later when we troubleshoot DNS server issues.

If you can’t ping the name server and its IP address is in a different subnet,
then either the DNS server is down or you have some kind of networking
problem, so you’ll want to review Chapter 5, particularly the Can I Route
to the Remote Host? section, only apply those troubleshooting steps to the
DNS server’s IP. If you can ping the name server but it isn’t responding,
skip ahead to the DNS Server Troubleshooting section of this chapter.

Missing Search Path or Name Server Problem

It is also possible that you will get the following error for your nslookup
command:

$ nslookup webl

Server: 10.1.1.3

Address: 10.1.1.3#53

#x server can’t find webl: NXDOMAIN

Here you see that the server did respond, since it gave a response server

can’t find webl. This could mean two different things. One, it could mean
that web1’s domain name is not in your DNS search path. This is set in

From the Library of Martin Spilovsky

98 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

/etc/resolv.conf in the line that begins with search. A good way to test this is
to perform the same nslookup command, only use the fully qualified domain
name (in this case webl.example.net). If it does resolve, then either always
use the fully qualified domain name, or if you want to be able to use just
the hostname, add the domain name to the search path in /etc/resolv.conf.

If even the fully qualified domain name doesn’t resolve, then the problem
is on the name server. The complete method to troubleshoot all DNS
issues is covered next, but here are some basic pointers before we dig into
that. If the name server is supposed to have that record (i.e., it is config-
ured to be a name server for that domain), then that zone’s configuration
needs to be examined. If it is a recursive name server, then you will have
to test whether recursion is not working on the name server by looking
up some other domain. If you can look up other domains, then you must
check whether the problem is on the remote name server that does con-
tain the zones. We will cover all of these problems in more detail in the
following pages.

DNS Server Troubleshooting

Compared to web, email, and database servers, it seems DNS servers are
among the least likely servers one might want to manage themselves.
Although it’s true that there’s a fair learning curve when configuring DNS
server software such as BIND, a lot of the reluctance might have to do with
the perception that DNS issues are difficult to troubleshoot—they’d rather
have someone like a registrar worry about it. This section steps through
some of the common problems that plague DNS servers and describes how
to best track them down. Even if you don’t host your own DNS server and
hire it out to someone else, you'll still want to know how to tell whether
the problem is on their end!

Understanding dig Output

Although nslookup is a useful tool for DNS troubleshooting, when it comes
to DNS servers, I like to use dig. Both tools should be available on your
average Linux system, but I like dig for DNS server troubleshooting because
of all of the extra information it gives by default. The output from dig is

From the Library of Martin Spilovsky

DNS Server Troubleshooting 99

also a lot closer to the actual DNS response from the server, so it helps you
learn a bit more about the protocol along the way. Here’s some sample dig
output as an example:

$ dig webl.example.net

i <<o>> DiG 9.7.0-P1 <<>> example.net

17 global options: +cmd

;5 Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30750

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;3 QUESTION SECTION:
;webl.example.net. N A

;5 ANSWER SECTION:
webl.example.net. 300 IN A 10.1.2.5

;3 AUTHORITY SECTION:
example.net. 300 IN NS ns2.example.net.
example.net. 300 IN NS nsl.example.net.

;5 ADDITIONAL SECTION:
nsl.example.net. 300 N A 10.1.1.3
ns2.example.net. 300 N A 10.1.1.4

;5 Query time: 2 msec

;7 SERVER: 192.168.0.1#53(192.168.0.1)
;5 WHEN: Mon Mar 19 20:48:27 2012

;3 MSG SIZE rcvd: 118

This is a lot of output, but there’s a lot of useful information here. First let’s
look at the question and answer sections:

;3 QUESTION SECTION:
;webl.example.net. IN A

;5 ANSWER SECTION:
webl.example.net. 300 N A 10.1.2.5

The question section repeats what DNS query was sent. In this case, we

asked for the A record (the traditional DNS record that maps a hostname to
an IP) for webl.example.net. The answer section returns the full A record

From the Library of Martin Spilovsky

100 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

for webl.example.net including its IP address (10.1.2.5) and its TTL (Time
To Live—how many seconds we can cache this reply before we should look
it up again), which in this case is 300 seconds.

Along with the answer to our direct query, the DNS reply sent up some
additional information:

3+ AUTHORITY SECTION:
example.net. 300 N NS ns2.example.net.
example.net. 300 IN NS nsl.example.net.

7 ADDITIONAL SECTION:
ns2.example.net. 300 IN A 10.1.1.4
nsl.example.net. 300 N A 10.1.1.3

In the authority section, we get two NS records for example.net. An NS
record is a special DNS record that lists which hosts are registered as name
servers for a particular zone. In the authority section, we see that there
are two name servers for example.net, ns2.example.net and nsl.example.
net, and both of them happen to also have a TTL of 300 seconds. After
the authority section is the additional section that lists extra information
our DNS query gave us. In this example, it provided us with the A records
for ns2.example.net and nsl.example.net, so we know both of their IP
addresses. The DNS server does this so that the next time we look up
records for example.net, we may already have the NS records along with
their IP cached, and this saves time because we do not have to look those
up again.

Finally, the dig output gives us some information about our query itself:

;5 Query time: 2 msec

;5 SERVER: 192.168.0.1#53(192.168.0.1)
;3 WHEN: Mon Mar 19 20:48:27 2012

;3 MSG SIZE rcvd: 118

Although this output might be easy to skip over, it also provides us with
some valuable information. It not only tells us when we ran the query and
how long it took (which can be useful when we are diagnosing slow DNS
servers), it also tells us what DNS server did the search for us. This can

From the Library of Martin Spilovsky

DNS Server Troubleshooting 101

be handy in case we are trying to track down a problem where one DNS
server has stale records and another doesn’t, because we can tell which
DNS server our client contacted for each request.

By default dig attempts to resolve a hostname into an IP, but you can also
have dig bring back any other DNS record for a domain. To do this, just
add the record type to the end of your query (i.e., NS, MX, TXT). This is
particularly handy when you want to know what name servers or mail
servers are configured for a particular domain:

$ dig example.net NS

; <> DiG 9.7.0-P1 <<>> example.net NS

i3 global options: +cmd

;5 Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38194

;3 flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: @, ADDITIONAL: 2

;3 QUESTION SECTION:
;example.net. IN NS

;3 ANSWER SECTION:
example.net. 300 IN NS nsl.example.net.
example.net. 300 IN NS ns2.example.net.

;5 ADDITIONAL SECTION:
nsl.example.net. 300 N A 10.1.1.3
ns2.example.net. 300 N A 10.1.1.4

;5 Query time: 3 msec

;7 SERVER: 192.168.0.1#53(192.168.0.1)
;3 WHEN: Sat Mar 24 20:44:42 2012

i3 MSG SIZE rcvd: 98

You'll find this sort of dig query much more useful as we troubleshoot zone
transfer issues further on in this chapter and mail server troubleshooting
in Chapter 7.

Trace a DNS Query

Generally speaking, when you look up a DNS record, your machine doesn’t
look everything up itself; instead, you send your request to a DNS server

From the Library of Martin Spilovsky

102 Chapter 6 = Why Won’t the Hostnames Resolve? Solving DNS Server Issues

provided by your organization or ISP and it does all of the DNS heavy lift-
ing for you. In many cases, unless the DNS server already has the answer
cached, it usually does not already know the answer to your question, so
it has to do what is known as recursive DNS resolution. If we assume no
cache is involved, a recursive DNS resolver has to go through quite a few
steps before it can get your answer.

In the case of web1l.example.net, first the resolver sends the request to one of
the 13 root name servers—the most important name servers on the Inter-
net. These name servers are crucial for recursive queries, so all name servers
that are going to perform recursive queries have the root name server IP
addresses hard-coded. The root name servers don’t know the address for
webl.example.net, but they do have a list of all the .net name servers, so
they reply with those along with their IP addresses. Then the resolver asks
one of the .net name servers for the address for web1.example.net. The .net
name servers don’t have that information either, but they do know the list
of name servers responsible for example.net, so they reply with that, along
with their IPs. Finally, when the resolver asks one of those servers for the
address for webl.example.net, it replies back with the record (if it exists)
and the resolver finally returns back to you with your answer.

That was a lot of steps, and if you are new to DNS, sometimes it can be
hard to remember how recursive DNS resolution works, but dig provides
a nice feature in that it can perform complete, uncached, recursive DNS
requests for you and show you the complete trace for the request. You can
think about it sort of like traceroute for DNS. To enable this feature, just
add +trace to the end of your dig request:

§$ dig webl.example.net +trace

; <<>> DiG 9.7.0-P1 <<>> webl.example.net +trace

;3 global options: +cmd

;3 global options: +cmd
143557 1IN NS m.root-servers.net.
143557 1IN NS a.root-servers.net.
143557 1IN NS b.root-servers.net.
143557 1IN NS c.root-servers.net.
143557 1IN NS d.root-servers.net.
143557 1IN NS e.root-servers.net.

From the Library of Martin Spilovsky

143557
143557
143557
143557
143557
143557
143557

;7 Received 512 bytes from 192

net.
net.
net.
net.
net.
net.
net.
net.
net.
net.
net.
net.
net.

172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800
172800

IN
IN
N
N
IN
IN
IN

NS
NS
NS
NS
NS
NS
NS

DNS Server Troubleshooting 103

~ . - @ —h

.168.0.1#53(192.168.0.1) in 3 ms

IN
IN
IN
N
N
IN
IN
IN
IN
IN
IN
IN
IN

NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS

a.gtld-servers.
k.gt1d-servers.
b.gt1d-servers.
d.gtld-servers.
1.gt1d-servers.
e.gtld-servers.
f.gt1d-servers.
m.gtld-servers.
h.gt1d-servers.
g.gtld-servers.
j.gtld-servers.
i.gtld-servers.
c.gtld-servers.

.root-servers.
.root-servers.
.root-servers.
.root-servers.
.root-servers.
.root-servers.
1.root-servers.

17 Received 503 bytes from 192.33.4.12#53(c.root-servers.net) in 22 ms

example.net.
example.net.

webl.example.net.
example.net.
example.net.

172800
172800

300
300
300

N
N

IN
IN
IN

NS
NS

A

NS
NS

ns2.example.net.
nsl.example.net.
;5 Received 102 bytes from 192.12.94.30#53(e.gt1d-servers.net) in 153 ms

10.1.2.5

ns2.example.net.
nsl.example.net.

Above each line that begins with ;; is the output from the request sent to
that server. If we look at just the lines that begin with ;;, we can see what

servers were involved in the request:

;7 Received 512 bytes from 192.168.0.1#53(192.168.0.1) in 3 ms
17 Received 503 bytes from 192.33.4.12#53(c.root-servers.net) in 22 ms
7 Received 102 bytes from 192.12.94.30#53(e.gt1d-servers.net) in 153 ms

;7 Received 118 bytes from 10.1.1.4#53(ns2.example.net) in 2 ms

The first server was 192.168.0.1, the local DNS server, which replied with
the list of root name servers. The next request went to c.root-servers.net,

From the Library of Martin Spilovsky

104 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

one of the root name servers, which replied with a list of .net name serv-
ers. By the way, you might have noticed that all of the root name servers
are named after a letter in the alphabet, but by default, name server replies
are sent in random order. That way you can pick the first server in the list
and the load gets balanced evenly. The next request in the list was sent
to e.gtld-servers.net, a .net name server, which returns the list of name
servers for example.net. The final request went to ns2.example.net, which
replied back with the answer we were looking for.

I highly recommend trying out the +trace argument both for domains you
own and for any domain you might visit frequently. The output provides
an instant primer on how recursive resolution works, and if you run it
for your own domain while everything is working well, you’ll have a nice
baseline to compare against when things go wrong.

Recursive Name Server Problems

Now that we’ve gone over how DNS requests generally work, we’ll discuss
problems in the very next link in the chain: recursive name servers. Most
computers don’t have a DNS server installed on them; instead, all DNS
queries go to a recursive name server. On Linux machines these name
servers are configured in /etc/resolv.conf. Although that DNS server might
host some zones itself, as a recursive name server, it will receive DNS que-
ries from clients and then perform recursive resolution (the steps we dis-
cussed in the tracing section) to resolve them.

When a recursive name server has a problem, all clients using that name
server have a problem. Since we all rely on DNS to translate hostnames to
IPs, without your recursive name server, you won't be able to look up IP
addresses for your favorite websites, and unless you have IPs memorized,
the Internet will, in effect, be down for you.

Because recursive DNS resolution is so important, ISPs provide their cli-
ents with more than one name server to use, and most offices and other
organizations should as well. In those cases, when the first name server
in your list has a problem, one of the first symptoms you might see is
DNS resolution taking about 30 seconds. If you aren’t directly doing

From the Library of Martin Spilovsky

DNS Server Troubleshooting 105

DNS lookups on the command line, this would be apparent when you
try to load a new website in a browser and it lags for about 30 seconds

before it loads.

If you suspect that one of your recursive DNS servers is down, confirm-

ing the suspicion is pretty straightforward. Go through the list of name
servers configured for your host (listed in /etc/resolv.conf on Linux) and
perform DNS client troubleshooting, as discussed at the beginning of the

chapter, to see if your list of name servers are up and replying. Basically,
use nslookup to attempt to resolve a few well-known and presumably stable
sites like www.google.com and www.yahoo.com, only make sure to add

the IP address of the name server you want to test after the query, like so:

$ nsTookup www.google.com 10.1.1.4

Server: 10.1.1.4

Address: 10.1.1.4#53

Non-authoritative answer:

www.google.com canonical name = www.1.google.com.

Name: www.1.google.com
Address: 74.125.224.144
Name: www.T.google.com
Address: 74.125.224.145
Name: www.1.google.com
Address: 74.125.224.146
Name: www.T.google.com
Address: 74.125.224.147
Name: www.T.google.com
Address: 74.125.224.148

If you follow the steps from the DNS client troubleshooting section, you
should be able to tell whether the DNS server is up and reachable or not.
Once that’s confirmed, and you still can’t resolve sites, you might see an

error like the following:

$ nslookup www.example.net 10.1.1.4

Server: 10.1.1.4
Address: 10.1.1.4453

#+ server can't find www.example.net: REFUSED

From the Library of Martin Spilovsky

http://www.google.com
http://www.yahoo.com

106 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

The dig command provides a more direct error message in its output:

$ dig www.example.net 10.1.1.4

; <> DiG 9.7.0-P1 <<>> www.example.net @10.1.1.4

;5 global options: +cmd

;3 Got answer:

i+ ->>HEADER<<- opcode: QUERY, status: REFUSED, id: 23822

;3 flags: qr rd; QUERY: 1, ANSWER: @, AUTHORITY: @, ADDITIONAL: 0
;3 WARNING: recursion requested but not available

;3 QUESTION SECTION:
;www. example.net. IN A

;3 Query time: 1492 msec

;3 SERVER: 10.1.1.4#53(10.1.1.4)
;3 WHEN: Sat Mar 24 20:15:17 2012
;3 MSG SIZE rcvd: 33

In both cases, what you see is that the DNS server is up and responding,
however, your request was refused. In the dig output, you can see the expla-
nation that the request was refused because recursion was not available.

What has happened here is probably the cause of a misconfiguration, espe-
cially if the name server has worked before. Many organizations restrict
what hosts are allowed to perform recursive queries on them for security
reasons, which you can see if you attempt to resolve a site like google.com
from something like yahoo.com’s name servers. It is likely that an admin
changed a configuration file and accidentally disabled recursion altogether,
or if recursion was limited to certain IP addresses, the admin accidentally
removed the IPs.

In BIND, recursion is turned on by default but can be disabled or restricted
via its configuration file. This option is configured either in the root
named.conf file (usually at /etc/bind/named.conf) or in one of the other
configuration files that named.conf includes, such as named.conf.local
or named.conf.options on some servers. The option you want to search,
called either recursion or allow-recursion, is in the options section of the file,
and might look like the following:

From the Library of Martin Spilovsky

DNS Server Troubleshooting 107

options {
allow-recursion { 10.1.1/24; };

b

In this example, recursion is allowed for the entire 10.1.1.0 subnet. You
might also see something like the following:

acl "internal” { 127.0.0.1; 192.168.0.0/24; 10.1.0.0/16; };

options {
allow-recursion { "internal"; };

b

Here, instead of specifying an IP address, we specified an ACL (Access
Control List) called "internal” that we defined earlier in the configuration
file to be a list of IP addresses. BIND allows you to do this so you can
define ACLs in one place and then reference them multiple times through
your config. If you see a line like the preceding one in your BIND con-
figuration file and recursion isn’t working, make sure that your client’s IP
address is in the list of networks that are allowed.

If, on the other hand, you see something like this,

options {
recursion no;

b

then recursion has been disabled on this name server. To enable it, either
remove this option so BIND will switch to its default of recursion being
on, or better yet, replace it with an allow-recursion statement so BIND can
restrict recursion to specific networks. In either case, once you are done,
restart the BIND server to make sure the changes take.

When Updates Don’t Take

As a DNS administrator, one of the more common problems you might
have to troubleshoot is a change you’ve made to your zone files that doesn’t

From the Library of Martin Spilovsky

108 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

take. Even if you aren’t responsible for the DNS server, knowing how to
troubleshoot update problems is a handy skill to have in your arsenal.
After all, if you ask your administrator to make the change, or if you make
the change via some DNS hosting service and you keep getting the old
record, it can be handy to know how to figure out where the problem is.

Most DNS update problems fall into three camps: updates you don’t see
(yet) because of DNS caching, updates the DNS server rejects because of
syntax errors, and problems due to the changes made to the master DNS
server not making it to its slave hosts. This section discusses how to iden-
tify each type of problem using the same DNS troubleshooting tools we’ve
used so far.

DNS Caching and TTL The fact is that your average DNS record might
stay the same for weeks, months, or even years. Because many DNS
records are so stagnant, it doesn’t make much sense for every DNS query
to have to follow that same long path we covered in the tracing section
of this chapter. Instead, as a DNS server does a query, it caches its results
so that if you make the same request afterward, it can return an answer
much more quickly.

Of course the problem with caching is, how does the DNS server you use
know how long to cache results? The answer is that each DNS record con-
tains a Time To Live, or TTL, value measured in seconds. When you per-
form a DNS request, the server you use checks its cache, and any records
that are newer than their respective TTLs are returned to you from the
cache, even if they might have changed on the host. Once the TTL of a
record expires, the DNS server goes through its regular steps to resolve the
IP; however, note that each DNS server it queries along the way also has a
TTL of its own, and if those TTLs haven’t yet expired, it will just use the
IPs it has in cache. This is why you often hear the refrain, “it may take up to
two days to see your change in DNS.” In particular, the root and top level
domain name servers have long TTLs, so when you register a new domain,
it may take some time for those changes to propagate. Although your aver-
age TTL is a few hours, TTLs can range from as little as under a minute to
multiple days, and depending on the kind of change, it might take quite
some time for all the related caches to expire.

From the Library of Martin Spilovsky

DNS Server Troubleshooting 109

Although DNS caching can be quite handy, one problem for DNS admin-
istrators is that not every DNS server out there honors your TTL. In fact,
some ISPs have been known to completely disregard TTLs that are too low,
to help reduce the load on their DNS servers. Because of this, even though
you may have a TTL of only a few minutes, a DNS change you make may
take hours to show up on a DNS server that doesn’t obey it.

The easiest way to see the TTL for a zone, outside of viewing it on the DNS
server itself, is via the dig command:

$ dig webl.example.net

; <> DiG 9.7.0-P1 <<>> example.net

i3 global options: +cmd

;5 Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30750

75 flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;3 QUESTION SECTION:
;webl.example.net. N A

;5 ANSWER SECTION:
webl.example.net. 300 N A 10.1.2.5

;3 AUTHORITY SECTION:
example.net. 300 IN NS ns2.example.net.
example.net. 300 IN NS nsl.example.net.

;; ADDITIONAL SECTION:
nsl.example.net. 300 N A 10.1.1.3
ns2.example.net. 300 IN A 10.1.1.4

;3 Query time: 2 msec

;7 SERVER: 192.168.0.1#53(192.168.0.1)
;5 WHEN: Mon Mar 19 20:48:27 2012

i3 MSG SIZE rcvd: 118

Along with each record dig reports back, it also includes the TTL, not just
for the main record you requested, but also for any additional information
it may return. In this case, the TTLs for all the records happen to be 300
seconds. This tells us that if we make a change to the webl.example.net
record, we can expect it to take up to 5 minutes for an ordinary DNS server
to return the new record.

From the Library of Martin Spilovsky

110

Chapter 6

Why Won’t the Hostnames Resolve? Solving DNS Server Issues

Of course, if you have made an update and aren’t seeing it, how do you

know for sure it’s a caching issue and not some other problem? The best

way to tell is to identify one of the official name servers for the domain (in
the earlier dig output, you see it’s ns2.example.net and nsl.example.net).
If you aren’t sure what name servers are used by a domain, just perform a

dig query for the NS records:

$ dig example.net NS

; <> DiG 9.7.0-P1 <<>> example.net NS

;3 global options: +cmd

;1 Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38194

;5 flags: gr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: @, ADDITIONAL: 2

;3 QUESTION SECTION:

;example.net.

;5 ANSWER SECTION:
example.net. 300

example.net. 300

;; ADDITIONAL SECTION:
nsl.example.net. 300

ns2.example.net. 300

;3 Query time: 3 msec

;; SERVER: 192.168.0.1#53(192.168.0.1)

IN

IN
IN

N
N

;3 WHEN: Sat Mar 24 20:44:42 2012

;3 MSG SIZE rcvd: 98

NS

NS
NS

nsl.example.net.

ns2.example.net.

10.1.1.3
10.1.1.4

Once you have the list of name servers, choose one and query it directly:

$ dig webl.example.net @10.1.1.4

From the Library of Martin Spilovsky

DNS Server Troubleshooting 11

When you query a name server directly, you bypass any caching from your
local DNS server and get the current up-to-date record, so if the IP you get
from your direct query is still the old IP, you know that the change hasn’t
propagated to that name server. At that point, query the rest of the name
servers in the list directly and see if any of them have the correct record.
If you find that none of the DNS servers have the update, you may have
a syntax error in your zone file. If some DNS servers have the update and
others don’t, you might have a zone transfer issue.

If you do find that the name servers do have the correct record but your
local DNS server has the old record cached, you have a few recourses. The
simplest recourse is to just wait until the local cache expires. Ideally, if
you know in advance that you need to make a DNS change and your TTL
is long, many DNS administrators lower the TTL a few days before the
change so that all DNS servers out there have a chance to pull down the
new shorter TTL. Then, once the change goes through, they increase the
TTL back to its old value.

If you can’t wait until the local cache expires, you can also flush your
respective DNS caches. The first cache to flush would be the cache located
on your operating system. Yes, even your OS will cache DNS requests so
it doesn’t have to query your name server every time a record needs to be
resolved. On Linux the nscd daemon (if it’s installed) handles this caching,
so to flush its cache just type

$ sudo /etc/init.d/nsdc restart

If you are on a Windows system, you can open a command prompt
and type

ipconfig /flushdns

On a Mac, you would open a terminal and type

Tlookupd -flushcache

or the following, depending on your version of Mac OSX:

dscacheutil -flushcache

From the Library of Martin Spilovsky

112 Chapter 6 = Why Won’t the Hostnames Resolve? Solving DNS Server Issues

If it’s your recursive DNS server that holds the cache, you will need to
have administrative access to it to flush its cache. To flush the DNS cache
of a BIND name server, you simply restart the service. On Red Hat-based
systems this might be

$ sudo /etc/init.d/named restart

On Debian-based systems the service might be called bind or bind9 instead
of named. If you don’t have the ability to restart your recursive name server,
the only alternative is to temporarily replace the name server configured
for your system with one that doesn’t have the old record cached, or, you
could hard-code the IP in your /etc/hosts file, but that is a short-sighted fix
that I don’t recommend.

Zone Syntax Errors 1f you have made a change to a DNS record and
notice that the update hasn’t made it to any of the name servers for that
zone, a likely cause is a syntax error in the zone file. When you make a
change to a zone file and then reload BIND, if it notices a syntax error in
the file, it will simply disregard any changes to that particular zone file and
stick to the records it has. Unless you pay attention to the log files, you may
not even realize it happened. If you updated a zone, reloaded the BIND
service, and the name server still reports the old record, check /var/log/
syslog or /var/log/messages on your system for error messages from BIND.

Here’s an example error message as a result of a syntax error:

Mar 27 21:07:26 nsl named[25967]: /etc/bind/db.example.net:20: #ns2.example.net: bad owner
=name (check-names)

Mar 27 21:07:26 nsl named[25967]: zone example.net/IN: Toading from master file /etc/bind/
=db.example.net failed: bad owner name (check-names)

Mar 27 21:07:26 snowball named[25967]: zone example.net/IN: not Toaded due to errors.

In this case, the first line in the error message is kind enough to tell me
that the error is in line 20 of /etc/bind/db.example.net. What happened
here is a classic mistake: Almost all configuration files support using # to
comment out a line except BIND, which uses a semicolon. Instead of using
the semicolon to comment out a line in the zone file, the administrator
accidentally used # and BIND rejected the zone.

From the Library of Martin Spilovsky

DNS Server Troubleshooting 113

Zone Transfer Issues The last problem we’ll discuss that can cause a
DNS change to not take is due to zone transfer issues. In your average
DNS infrastructure, one DNS server is treated as the master for a particu-
lar zone and the rest are configured as slaves. Any changes are made to the
master and then are pushed out to any slaves that are configured. Zone
transfer problems can be tricky to detect immediately because your master
name server will report the new record; however, any queries to one or
more slaves may report the old record. As a result, different clients may see
different IP addresses at different times.

The fastest way to identify a zone transfer issue is perform a direct DNS
query using a tool like dig against all of the name servers configured for a
zone. If you see that some name servers have the change and others don’t,
wait a minute or two and try again to see if the changes possibly just took
some time to propagate. If after a few minutes the changes still aren’t trans-
ferred, then the next step is to identify the master DNS server and confirm
it has the right records. The master DNS server is configured in a special
record called the Start of Authority, or SOA, record. This record lists what
is considered to be the authoritative DNS server for the zone and, like with
other dig requests for specific record types, simply query the domain and
add SOA to the end of the query:

$ dig example.net SOA

; <<>> DiG 9.7.0-P1 <<>> example.net SOA

i3 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62609

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2

;3 QUESTION SECTION:

;example.net. IN SOA
;3 ANSWER SECTION:

example.net. 300 IN SOA nsl.example.net. admin.example.net.
-2011062300 10800 2000 604800 7200

From the Library of Martin Spilovsky

114 Chapter 6 = Why Won’t the Hostnames Resolve? Solving DNS Server Issues

;3 AUTHORITY SECTION:
example.net. 300 N NS ns2.example.net.

example.net. 300 N NS nsl.example.net.

;> ADDITIONAL SECTION:
nsl.example.net. 300 IN A 10.1.1.3

ns2.example.net. 300 IN A 10.1.1.4

;3 Query time: 35 msec

;3 SERVER: 192.168.0.1#53(192.168.0.1)
;3 WHEN: Tue Mar 27 21:18:46 2012

;3 MSG SIZE rcvd: 143

In this output, we’re particularly interested in this line:

;; ANSWER SECTION:

example.net. 300 IN SO0A nsl.example.net. admin.example.net.
-2011062300 10800 2000 604800 7200

Here you see that the authoritative DNS server is nsl.example.net. The
next record after that, admin.example.net, isn’t another name server but
instead is actually the email address to the administrative contact for this
domain. The first period is intended to be replaced by an @, so in this case
the administrative contact is admin@example.net.

Once you know which name server is authoritative for a zone, that’s the
server that should be configured as the master. If we suspect there is a zone
transfer issue, the next step is to log in to the master DNS server directly
and check its configuration.

The way that zone transfers work in BIND is that any time a record is
updated on the master, BIND scans the zone for the NS records and noti-
fies each of those name servers that there is an update. If BIND is con-
figured with an extra list of name servers to notify in addition to name
servers configured in the zone, it notifies those as well. The slave name

From the Library of Martin Spilovsky

DNS Server Troubleshooting 115

servers are configured to know who their master or masters are and will
disregard this notification if it doesn’t come from the list of masters. Along
with the notification the master will send a serial number configured in the
zone file that is supposed to be incremented each time the zone changes.
If the serial number on the master is larger than the serial number on the
slave, the slave will request either a full or partial zone transfer so it gets
the updates. That zone transfer request goes back to the master and, pro-
vided it comes from an IP address that it allows to have zone transfers (by
default all of the configured name servers for the zone are allowed), the
master will start the zone transfer. A problem with any of the above steps
can cause an update to fail, so we’ll discuss how to identify each problem.

Once you make a change to a zone and reload BIND, the master should
show that the change was detected and that a notify was sent:

Mar 27 21:47:16 nsl named[25967]: zone example.net/IN: Toaded serial 2012032700
Mar 27 21:47:16 nsl named[25967]: zone example.net/IN: sending notifies (serial 2012032700)

If you don’t see evidence in the logs that notifies were sent, then it’s time to
troubleshoot the configuration on your master. First, use commands like
this to see if the named process is even running:

$ ps -ef | grep named

If it is not, start the service. You may also have to resort to restarting
the BIND daemon if it didn’t reload properly. Finally, check your BIND
named.conf and the rest of the zone configuration files, and confirm
that this particular zone is configured to be a master and not a slave on
this server.

One of the most common reasons a zone transfer fails is simply that the
serial number wasn’t updated. When you reload BIND on the master you
might see an error in the logs like the following:

Mar 27 21:09:52 nsl named[25967]: zone example.net/IN: zone serial (2012011301) unchanged.
=zone may fail to transfer to slaves.

Mar 27 21:09:52 nsl named[25967]: zone example.net/IN: Toaded serial 2012011301

Mar 27 21:09:52 nsl named[25967]: zone example.net/IN: sending notifies (serial 2012011301)

From the Library of Martin Spilovsky

116 Chapter 6 © Why Won’t the Hostnames Resolve? Solving DNS Server Issues

In this case, you are being warned that the serial number did not change
even though the zone did. If you see a message like this, simply re-edit
your zone file and make sure the serial number is incremented (many DNS
administrators use the YYYYMMDD format followed by two more num-
bers to allow them to update a zone up to 100 times in a day while also let-
ting them easily see the last time the zone was updated). If the notify went
out and the serial number is larger than what is on the slaves, you should
see entries like the following in the log file on your master:

Mar 27 21:47:16 nsl named[25967]: client 10.1.1.4#38239: transfer of 'example.net/IN':
= AXFR-style IXFR started

Mar 27 21:47:16 nsl named[25967]: client 10.1.1.4#38239: transfer of ‘example.net/IN’:
= AXFR-style IXFR ended

Here you see that the transfer for the zone that changed was started by
the client 10.1.1.4 and then ended. You should see an entry like this for
each name server configured for this zone, and if you don’t, while you are
on the master, make sure that all of the name servers that need updates
are either configured in the zone itself with their own NS entry or in your
named.conf file in the also-notify directive (if configured).

If the log files and configuration on the master seem correct but you don’t
see that a zone transfer was initiated, the next step is to go to a slave name
server. You should be able to see entries in the /var/log/syslog or /var/log/
messages file on the slave name server that show it received a notify that a
zone has changed:

Mar 27 21:58:44 ns2 named[22774]: client 10.1.1.3#50946: view external: received notify for
=zone 'example.net'

Mar 27 21:58:44 ns2 named[22774]: zone example.net/IN/external: Transfer started.

Mar 27 21:58:44 ns2 named[22774]: transfer of 'example.net/IN' from 10.1.1.3#53: connected
—using 10.1.1.3#38239

Mar 27 21:58:44 ns2 named[22774]: zone example.net/IN/external: transferred serial
=2012032700

Mar 27 21:58:44 ns2 named[22774]: transfer of 'example.net/IN' from 10.1.1.3#53: end of
=transfer

From the Library of Martin Spilovsky

DNS Server Troubleshooting 117

These log entries show a complete zone transfer process that was success-
ful; however, you might see a log entry like the following:

Mar 27 21:58:45 ns2 named[22774]: zone example.net/IN/external: refused notify from non-
—master: 10.1.1.7#35615

Here the slave received a notify from a server (in this case 10.1.1.7) that it
does not have configured as its master, so it rejected it. In this case, if the
IP is a valid IP for the master, you will need to look into your BIND con-
figuration for this zone on this slave and make sure that it is configured as
a slave and that the IP of the master is configured as one of the master IPs.

You might, on the other hand, see a log entry like the following:

Mar 27 22:09:00 ns2 named[22774]: client 10.1.1.3#42895: view external: received notify for
=zone 'example.net'

Mar 27 22:09:00 ns2 named[22774]: zone example.net/IN/external: notify from 10.1.1.3#42895:
=zone is up to date

In this case the notification was sent to the slave; however, the serial num-
ber was not larger than the serial number on the slave, so it didn’t bother
updating. An administrator might accidentally set a very high serial num-
ber on the master (like using the date as a serial number but accidentally
setting the year wrong) but doesn’t realize it and sends out an update. Then
when the next administrator comes around, they fix the error by setting the
serial number to the current date again, but the slaves refuse to accept the
update. When this happens, the fix is to log in to the slave and view the local
cached zone files it has for that zone. Where it stores these files is something
that is configured in BIND, but common locations include the /var/cache/
bind, /etc/bind, and /var/lib/bind directories. When you open this file you
should see all of the records for your zone much like they are configured in
the master, and at the top of the file you can see what the serial number is
set to. If the serial number is too high, the easiest solution is to simply delete
or move this file, then restart BIND on the slave. The BIND service should
then request a zone transfer from the master and get up to date.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 7

Why Didn’t My Email
Go Through?

Tracing Email Problems

119

From the Library of Martin Spilovsky

ALONG WITH DNS, EMAIL is one of the oldest and most widely used services
on the Internet. Unlike DNS, most people use email directly and frequently
and are aware when there’s a problem. No matter what role you have on
a DevOps team, if you are responsible for email service in any capacity,
whether as the administrator in charge of the email server, the go-to tech
guy at an office, a developer adding email support to an application, or just
a regular email user yourself, eventually you will have to answer one of the
following questions:

I sent an email but the recipient didn’t get it, what happened?

Someone sent me an email but I didn’t get it, what happened?

This chapter will talk about how to troubleshoot email, specifically how to
solve problems related to sending and receiving email using SMTP (Send-
mail Transfer Protocol). This sort of troubleshooting is related, but different
from troubleshooting mailbox retrieval over protocols like POP and IMAP.
Even though there are many mail servers out there, troubleshooting ordi-
nary problems with email delivery is the same on all servers. Since IMAP
and POP troubleshooting can vary widely depending on their servers, and
since the techniques are quite different, this chapter will just stick to SMTP.
If you are interested in troubleshooting IMAP or POP problems, I recom-
mend looking at documentation specifically geared for your IMAP or POP
server. By the end of the chapter, you should have the techniques and tools
to track down (as much as is possible) why an email wasn’t delivered.

Trace an Email Request

Before we dive into how to troubleshoot specific email problems, it’s use-
ful to first understand just what happens when you send an email. If you
are able to mentally trace an email from your computer to your recipient
along with each stop along the way, when there is a problem you can fol-
low the path your email should have taken through each step and better
figure out which step failed.

Email systems are set up in many different ways, and if you get email

through a large email provider, their systems might be quite complex. The
fact is, even with a complex mail provider, the general way that email gets

120

From the Library of Martin Spilovsky

Trace an Email Request 121

sent is still pretty much the same, so when you trace an email, you’ll want
to base it on a simple, average case.

For this example, let’s assume that we want to send an email from our
corporate email account, kyle@example.net, using some desktop email cli-
ent like Thunderbird or Outlook, and let’s assume this is all hosted on a
mail server called mail.example.net controlled by the company. We want
to send the email to our personal Gmail account, you@gmail.com, and
since we don’t know the inner workings of Google’s mail servers, we will
treat the mail servers like a normal mail server on the Internet.

First, when we click Send, our email client communicates with the out-
bound mail service it is configured to use over SMTP. In this case, it would
likely be a local mail server inside the office and may even be the same
machine we use to retrieve email over IMAP (but it doesn’t have to be).
This outbound mail server (here called mail.example.net) should be con-
figured to allow us to relay email through it. Mail servers that allow anyone
to relay mail through them are called open relays, and ever since spam-
mers started finding and using open relays to send spam, most mail servers
restrict who can relay mail through them. Some servers restrict this based
on IP address whereas others require the client to authenticate with a login
and password first.

Once mail.example.net accepts my email, it puts it in the mail spool along
with any other email that needs to be delivered. When it is ready to send
the message, it scans the FROM address for the destination domain (in
this case gmail.com). Then it performs a DNS query to find out all of the
MX records for gmail.com (similar to dig gmail.com MX) and gets back results
like the following:

5 gmail-smtp-in.1.google.com.

10 altl.gmail-smtp-in.1.google.com.
20 alt2.gmail-smtp-in.T.google.com.
30 alt3.gmail-smtp-in.1.google.com.
40 alt4.gmail-smtp-in.T.google.com.

In this case, there are five different mail servers to choose from and each
mail server has a priority assigned to it. The mail.example.net server will

From the Library of Martin Spilovsky

122 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

pick the remote mail server with the lowest priority (in this case that
would be gmail-smtp-in.l.google.com, which has a priority of 5). Once
it has selected the mail server to contact, it initiates an SMTP connection
with it over port 25.

If for some reason the first server doesn’t respond, mail.example.net will
pick from the remaining list of gmail.com mail servers based on what has
the lowest priority. If none of the mail servers are available, mail.example.
net will requeue the email and try again later. Most email servers will con-
tinue to try to deliver an email for a few days before giving up. When the
mail server does give up, it will send you a bounce email letting you know
that the message was unable to be delivered. This is an important point
because if all the remote mail servers for a remote domain are unavailable
(or your mail server has network problems of its own and is unable to
reach them), it may take days before the email bounces. Generally this is
a good thing because you want your mail server to keep trying to deliver
messages, but because so many users are accustomed to emails being deliv-
ered almost instantaneously, a lag of even an hour might be a problem.

Let’s assume that the first gmail.com mail server is up. When mail.example.
net makes its SMTP connection, it tells gmail.com who it is, who the email is
from, and who the email is to. Since the gmail.com mail server isn’t an open
relay, it will only accept email that is destined to be delivered on it (email
sent to gmail.com and any other domains it is responsible for). Although
mail.example.net is connected to it, at a minimum it examines the domain
the email is addressed to and makes sure it is for a domain it accepts. The
mail server may also check who the email is addressed to and confirm it’s a
valid account. If either of these checks fails, it will reject the message with
an error code and mail.example.net will send us a bounce email.

Spam is a big concern for mail administrators, so the gmail.com mail
server might perform some extra checks while mail.example.net is con-
nected. For instance, it might check to see if mail.example.net is listed in
one of the many spam blackhole lists as a spammer. It might also perform
a number of other checks against the mail server to make sure it is valid. If
any of these initial spam checks fail, it will reject the message with an error
code and we will get a bounce email.

From the Library of Martin Spilovsky

Understand Email Headers 123

If the email makes it through all of these checks, the gmail.com mail server
will send a success response to mail.example.net, disconnect from it, and
then add the email to the queue for delivery. Of course at this point most
mail servers will also run additional spam filtering on the message based
on the body, but if it does flag the message as spam, it won’t send a bounce
message or otherwise notify mail.example.net at all. From the perspective
of mail.example.net the mail was delivered successfully.

If the mail server that accepted the message is not the primary mail server
with the lowest priority, it will add the email to the spool and attempt to
deliver it to the primary mail server for the next few days. After that point,
if it is unable to deliver it, it will remove the email and send a bounce
message. Once the email is successfully on the primary mail server, it will
either deliver the email to a local mailbox if it also acts as the POP and
IMAP server, or it will be configured to forward the messages to a different
mail server where it will ultimately end up in your inbox.

Understand Email Headers

Now that we’ve traced an email through the system, the headers in an
email make a lot more sense. By default when you view email, a lot of the
headers are left out and you are left with To, From, Subject, and the body
of the message. There are extra headers at the top of the email that pro-
vide valuable troubleshooting data specifically related to how the email
got from the sender to the recipient. Although most mail clients hide these
headers by default, there should be an option to view the hidden headers
in your mail client. For instance, in Gmail, the option appears in a drop-
down menu when you view the message and is named Show Original.

As an example, we could send a test email from kyle@example.net to a
Gmail account, you@gmail.com, to simulate the email tracing example
mentioned earlier. In a normal email client, here is what you might see:

Date: Wed, 11 Apr 2012 19:55:43 -0700
From: Kyle Rankin <kyle@example.net>
To: you@gmail.com

Subject: Test Subject

Test Body

From the Library of Martin Spilovsky

124

Chapter 7

Why Didn’t My Email Go Through? Tracing Email Problems

Here are the full contents of the email:

Delivered-To: you@gmail.com
Received: by 10.182.250.51 with SMTP id yz19csp53077ohc;
Wed, 11 Apr 2012 19:55:45 -0700 (PDT)
Received: by 10.42.179.196 with SMTP id brdmr5232781ich.42.1334199345073;
Wed, 11 Apr 2012 19:55:45 -0700 (PDT)
Return-Path: <greenfly@example.net>
Received: from mail.example.net (mail.example.net. [64.142.5.5])
by mx.google.com with ESMTPS id s4si19571254igb.48.2012.04.11.19.55.44
(version=TLSv1/SSLv3 cipher=0THER)
Wed, 11 Apr 2012 19:55:44 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of greenfly@example.net
—designates 64.142.5.5 as permitted sender) client-ip=64.142.5.5;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for domain
—of greenfly@example.net designates 64.142.5.5 as permitted sender) smtp.mail=greenfly@
—example.net
Received: by mail.example.net (Postfix, from userid 1000)
id 7F566254A3; Wed, 11 Apr 2012 19:55:43 -0700 (PDT)
Date: Wed, 11 Apr 2012 19:55:43 -0700
From: Kyle Rankin <kyle@example.net>
To: you@gmail.com
Subject: Test Subject
Message-ID: <20120412025543.CD23360@exampTe.net>
MIME-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline
User-Agent: Mutt/1.5.20 (2009-06-14)

Test Body

As you can see, a lot of extra information is in the email that you normally
don’t see, and the bulk of the extra headers are like a postmark on an
envelope. Each mail server the email goes through to get to its destination,
starting with the initial mail server, leaves a Received header with a date
stamp and information about the message. The next mail server in the list
adds its header to the top of the message, and so on, so that the header
you see at the very top of the message is actually the last mail server that
ultimately received the message:

Received: by 10.182.250.51 with SMTP id yz19csp53077obc;
Wed, 11 Apr 2012 19:55:45 -0700 (PDT)

From the Library of Martin Spilovsky

Problems Sending Email 125

So if you want to trace the path the email took, you want to look at the
Received headers in reverse order. To help illustrate this, let’s repaste the
headers but in reverse order so you can see the path the email took. First,
here is the email as it was accepted by the mail.example.net mail server:

Received: by mail.example.net (Postfix, from userid 1000)
id 7F566254A3; Wed, 11 Apr 2012 19:55:43 -0700 (PDT)

Next we see that a Gmail mail server, mx.google.com, received the message
from mail.example.net, and that it ran it through an initial spam check to
see if mail.example.net was an acceptable host for the email to come from.
These headers prove that the email left mail.example.net and was accepted
by Google’s mail servers. Also note that each Received header assigns its
own ID to the email—these IDs can be useful later on as they should cor-
respond to IDs used in the mail logs on the mail servers:

Received: from mail.example.net (mail.example.net. [64.142.5.5])
by mx.google.com with ESMTPS id s4si19571254igb.48.2012.04.11.19.55.44
(version=TLSv1/SSLv3 cipher=0THER)
Wed, 11 Apr 2012 19:55:44 -0700 (PDT)
Received-SPF: pass (google.com: best guess record for domain of greenfly@example.net
=designates 64.142.5.5 as permitted sender) client-ip=64.142.5.5;
Authentication-Results: mx.google.com; spf=pass (google.com: best guess record for domain
—of greenfly@example.net designates 64.142.5.5 as permitted sender) smtp.mail=greenfly@
=example.net

From this point on, the headers we see give a glimpse into the internal
structure of Google’s mail infrastructure as it lists two more servers the
email is sent to, the final one being the destination:

Received: by 10.42.179.196 with SMTP id brd4mr5232781ch.42.1334199345073;
Wed, 11 Apr 2012 19:55:45 -0700 (PDT)

Received: by 10.182.250.51 with SMTP id yz19csp53077obc;
Wed, 11 Apr 2012 19:55:45 -0700 (PDT)

Problems Sending Email

So now that you are familiar with the path a successful email takes, it
should be a bit simpler to track down problems sending email. This sec-
tion assumes that at least you have control over the settings of your email

From the Library of Martin Spilovsky

126 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

client, and at most, you have control of the outbound mail server your
client uses to send out email. Essentially, the goal is to make sure the out-
bound mail server accepts your mail and is able to communicate with the
destination mail server that then accepts the email for initial delivery. Later
this chapter will cover how to troubleshoot problems receiving email.

When you tell your email client to send mail, it is configured to talk to a
specific outbound mail server that might be entirely different from the
machine it talks to when it receives email. This mail server is not required
to be listed in DNS with an MX record, although that might help it pass
more spam tests on the remote mail server. Essentially the outbound mail
server just needs to be listening on some incoming port (usually TCP port
25, or possibly port 465 for SMTP over SSL, although that’s more rare), it
needs to be configured to allow certain hosts (hopefully not all) to relay
email through it, and it needs to be able to communicate with other mail
servers on the Internet.

A few main issues can prevent you from sending email. First, your cli-
ent can’t communicate with the outbound mail server. Second, the mail
server won't allow you to relay through it. Third, the mail server can’t
communicate with the destination mail server or the mail server can
communicate with the remote mail server, but the email is rejected for a
number of reasons.

Client Can’t Communicate with the Outbound Mail Server

Your email won’t get very far if you can’t communicate with your out-
bound mail server. If this is the problem, your mail client will probably
alert you with a message that says the outbound mail server is unavailable.
The first step is to simply attempt to send the email again to see if it was
just a one-time hiccup. If you still get an error, it’s time to perform some
basic network troubleshooting against this host.

Chapter 5 discusses how to perform network troubleshooting when you

can’t communicate with a remote host. Before you go much further in this
chapter, make sure your client can communicate with other hosts on your

From the Library of Martin Spilovsky

Problems Sending Email 127

network. If it can’t, go to Chapter 5 to figure out why. If you can talk to
other hosts on your network, then you can skip ahead in that chapter to
specific troubleshooting against the mail server.

Let’s assume that the mail server is our standard mail.example.net that
we’ve used for other examples, and that it has an internal IP of 10.1.1.20;
you can just replace this host and IP with the server you have configured
in your mail client as an outbound mail server. If you are reasonably sure
the computer can communicate on the network, then skip ahead in Chap-
ter 5 to the Is DNS Working? section and follow its directions to confirm
you can resolve mail.example.net into its IP address. Then follow the next
steps in Chapter 5 in the Can I Route to the Remote Host? section to con-
firm you can route to mail.example.net. If all of that is successful, then it’s
finally time to perform some SMTP-specific steps.

The next step is to confirm whether your host can communicate with port
25 on mail.example.net (or whatever port you have configured to use for
the outbound mail server in your client). To do this, adapt the steps from
the Is the Remote Port Open? section through the Firewall Rules section of
Chapter 5 to SMTP. Those sections are aimed at web server troubleshoot-
ing, not SMTP, but with a few substitutions, the same steps can apply to
SMTP. Where the sections talk about port 80, substitute port 25; every-
where they talk about Apache, substitute it with your email server soft-
ware (such as Postfix); and everywhere they talk about web1, substitute the
hostname of your outbound mail server.

Once you have gone through all of the network troubleshooting steps
and have confirmed your host can communicate with the outbound mail
server, the next step is to confirm that you can successfully complete an
SMTP transaction with the outbound mail server by using one of the best
troubleshooting techniques: sending test emails with telnet.

Send a Test Email with Telnet With the advent of secure, encrypted
remote shell programs like SSH, telnet is often relegated to the retirement
home of command-line utilities, but telnet can still be a quite useful tool
when you want to test network communications by hand.

From the Library of Martin Spilovsky

128 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

First, tell telnet to connect to port 25 on your mail server:

$ telnet mail.example.net 25
Trying 10.1.1.20...

Connected to mail.example.net.
Escape character is 'A]".

220 mail.example.net ESMTP Postfix

Now that we are connected, we can start typing raw SMTP commands.
The first command is HELO and lets the server know what domain you are
coming from. It will then respond with its name:

HELO kylepc.example.net
250 mail.example.net

Next, we use the MAIL FROM: command to tell the mail server the FROM
email address to use. What’s interesting here (and fun for pranks) is that
generally you can post any FROM address you want here. If the mail server
accepts it, it will reply with 250 0k:

MAIL FROM: <kyle@example.net>
250 Ok

Note that we surrounded the email with <. Although some email servers
are lenient about this rule, some mail servers are strict and will return a
syntax error if the email address isn’t surrounded by <>. Once we get this
250 Ok response, we are halfway through with testing the mail server. Now
we send the RCPT T0: command so the server knows who the email is for. In
this case, we’ll send the email to you@gmail.com:

RCPT TO: <you@gmail.com>
250 0k

If you were communicating with a destination mail server here, and the
account you specified in the RCPT T0: field was invalid, the mail server
would return an error code. Once you get to this point, you can be pretty
well assured that the mail server has accepted the message and will attempt
to deliver it. Type DATA and press Enter. The mail server will respond with

From the Library of Martin Spilovsky

Problems Sending Email 129

instructions to end your email body with an empty line containing a single
dot. You can also add any additional headers to your email in the body—
the Subject: header is one of the most popular. When you’re done with the
message, type a period on a line by itself:

DATA

354 End data with <CR><LF>.<CR><LF>
Subject: Testing email 1

Hi,

I'm just testing email service

250 Ok: queued as 12BDBEGFEE9

I like putting something unique like an ascending number in the Subject for
test emails. In the course of troubleshooting, you might find that you send
multiple emails, and it’s nice to be able to identify each test email and the
order in which it was sent. The server will respond with 250 0k: followed by
the queue ID. If you have a login on the server itself, you can use this ID as
a keyword to trace the email through the mail logs. When you’re finished
with your email session, type quit to exit:

quit
221 Bye
Connection closed by foreign host.

Email Error Codes You might have noticed in the telnet test that the server
responded to each of our requests with a code, usually 250. Each request
made to the mail server gets a reply code so the client knows whether it was
successful. The most common code is 250, which means that the previous
command was completed. Essentially, any code that starts with a 2 denotes
a success, so for instance, when we typed quit, we received the code 221,
which means that the remote server is going to close the connection.

Codes that start with a 3 denote commands that are accepted, however,
they require additional information to complete. A good example of this is
when we issued the DATA command: We got a 354 code back, which means
the server is waiting for us to input the data followed by the single period
on its own line.

From the Library of Martin Spilovsky

130 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

Codes that start with a 4 are for temporary errors and mean that the
sender should send their request again—usually from the beginning. You
might see errors like this if the remote mail server is unusually busy, its
disk is full, or if there is some other temporary local error on the sys-
tem. When a properly configured mail server gets this error code, it should
retry the connection at a later date. For instance, some mail administra-
tors set up what’s known as greylisting to reduce spam. Greylisting works
on the premise that most spam mail servers have so much spam to send
that if they are told to try again later, they won’t bother. The first time a
mail server with greylisting enabled gets a connection from a remote mail
server, it replies back with the error code 450 and the instructions to try
back in a few minutes.

Error codes that start with 5 denote a permanent error; they can range
from syntax (501) or other command errors that all start with 50, to codes
that start with 55 and denote more common errors such as the mailbox
being unavailable (550), and the mailbox being full (552), to the mailbox
name not being allowed (553), and a general transaction failure (554).

Outbound Mail Server Won’t Allow Relay

Open relays are mail servers that are configured to accept incoming
email from any host and relay it to any other mail server. In the days
before spam, open relays were relatively common, but nowadays any
email server on the open Internet that relays mail for any other host gets
flagged by spam blackhole lists and quickly finds itself blocked by other

mail servers.

Today an outbound mail server used to relay mail should either be fire-
walled off from incoming SMTP traffic from the Internet, or better, set up
with a restricted list of IPs or subnets it will accept mail from. Even better
than that, some mail servers use authentication, such as SMTP auth, so
that they only relay mail from clients with the right username and pass-
word. If you find that your mail client is able to connect to the mail server
but it gets an error message back stating relay access is denied, your prob-
lem is likely with one of the just-mentioned relay safeguards.

From the Library of Martin Spilovsky

Problems Sending Email 131

If the mail server uses SMTP authentication, then the next troubleshoot-
ing step is to verify the account—your password probably expired or
otherwise changed. If the mail server doesn’t use SMTP authentication,
the next step is to look at the configuration of the mail server and con-
firm that relaying is enabled and that your client’s IP address is on the list
of approved IPs and networks. For instance, on postfix this is set via the
smtpd_recipient_restrictions configuration option, which you could check
with the postconf command:

$ postconf smtpd_recipient_restrictions
smtpd_recipient_restrictions = permit_mynetworks, permit_sas]_authenticated,
=reject_unauth_destination

If you are using postfix, you may just have a subset of these options
enabled (this server supports authentication), but likely you will have
permit_mynetworks enabled. This option allows relaying for any networks set in
the mynetworks option, which you can also check with the postconf command:

$ postconf mynetworks
mynetworks = 127.0.0.0/8, 192.168.0.0/24

Here you can see the mail server accepts email from localhost (127.0.0.0/8)
and from the 192.168.0.x network.

Outbound Mail Server Can’t Communicate
with the Destination

If you can successfully queue an email with your outbound mail server but
it still doesn’t seem to get delivered, the next step is to test the communi-
cation between the outbound mail server itself and the destination mail
server. If you have access to the outbound mail server, log in and view the
mail logs (on a Linux system often at /var/log/mail.log or /var/log/maillog)
and see if you can locate one of your messages in the log. If you performed
the telnet email test, then you were given an email queue ID once you sub-
mitted the body of the email in a response something like this:

250 Ok: queued as 12BDBE6FEE9

From the Library of Martin Spilovsky

132 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

The fastest way to find information about this email is to use the grep com-
mand and search for the email ID:

$ grep 12BDBE6FEE9 /var/log/mail.log

Apr 17 20:16:50 mail postfix/smtpd[25545]: 12BDBE6FEEI: client=kylepc.example.net[75.101.46.232]

Apr 17 20:17:03 mail postfix/cleanup[25564]: 12BDBEGFEE9: message-id=<>

Apr 17 20:17:03 mail postfix/qmgr[10784]: 12BDBE6FEEI: from=<kyle@example.net>, size=252,
=nrcpt=1 (queue active)

Apr 17 20:17:05 mail postfix/smtp[25586]: 12BDBE6FEE9: to=<you@gmail.com>, relay=gmail-smtp-
=in.1.google.com[173.194.79.27]:25, delay=21, delays=19/0.06/0.89/0.68, dsn=2.0.0,
= status=sent (250 2.0.0 OK 1334719025 vs4si1566804phc.307)

Apr 17 20:17:05 mail postfix/qmgr[10784]: 12BDBEGFEE9: removed

In this log example, you can see who the email was from (kyle@example.net),
who the email was to (you@gmail.com), who the destination mail server was
(gmail-smtp-in.1.google.com), and that the destination mail server accepted
the message with a 250 success code (250 2.0.0 0K). If you see a log entry like
this for the email, then the destination mail server did accept and spool the
email you sent. This is proof that there is nothing wrong with your out-
bound mail server, but that the problem is on the remote mail server’s end
(possibly the email ended up in a spam folder). If there was some sort of
problem communicating with the remote mail server, you would see error
codes in place of the 250 success code in these logs, and these would give
you more detail on the nature of the problem.

At this phase, a number of things could prevent you from delivering
email to the destination mail server. For one, your mail server could have
been rejected for anti-spam measures. This might happen if a machine
inside the network gets hacked or gets a virus and starts sending out spam
through your mail server. If this is the case, you should see some sort of
error code starting with 5, and often you will also see a brief explanation
of what spam rule the mail server is breaking along with a URL for even
more details.

If you were blocked because of spam, solving the problem usually involves
contacting the administrator of an SBL (Spam Blackhole List) via a web
form and requesting that they remove your mail server from the list. Oth-
erwise, typically the URL you're pointed to gives good instructions on how

From the Library of Martin Spilovsky

Problems Sending Email 133

to unblock your mail server and correct whatever triggered the problem
in the first place.

If, on the other hand, you see an error stating that your mail server can’t
communicate with the remote mail server, you might also notice multiple
attempts as the mail server attempts to deliver the email every so often. At
this phase, what you will want to do is repeat the steps in the Client Can’t
Communicate with the Outbound Mail Server section you performed
earlier to test network connectivity between your client machine and the
outbound mail server, only this time, perform the tests from the outbound
mail server and perform the tests against the destination mail server.

If you aren’t sure about what mail server you should communicate with
for the destination mail server, you can either use the same hostname your
outbound mail server tried to contact in your mail logs, or you can per-
form a dig query to find out all of the mail servers for a particular domain.
For instance, to find out the mail servers for the gmail.com domain, you
would type

$ dig gmail.com MX +short

5 gmail-smtp-in.T.google.com.

10 altl.gmail-smtp-in.1.google.com.
20 alt2.gmail-smtp-in.1.google.com.
30 alt3.gmail-smtp-in.1.google.com.
40 alt4.gmail-smtp-in.1.google.com.

Start your network troubleshooting back in Chapter 5, only substitute any
references to web servers and port 80 with port 25. Pick the destination server
that has the lowest priority (in this example that is gmail-smtp-in.l.google.
com with a priority of 5). Then, for example, when you get to the nmap
phase of the network troubleshooting steps, run nmap from the outbound
mail server and list gmail-smtp-in.l.google.com as the host to scan:

$ nmap -p 25 gmail-smtp-in.T.google.com
Starting Nmap 5.00 (http://nmap.org) at 2012-04-17 20:31 PDT

Note: Host seems down. If it is really up, but blocking our ping probes, try -PN
Nmap done: 1 IP address (0 hosts up) scanned in 3.11 seconds

From the Library of Martin Spilovsky

134 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

Notice that at first you didn’t get a proper response back from nmap. This is
because the remote machine might have been blocking ping probes. In this
case, you follow nmap’s helpful instructions and add -PN to the command:

$ nmap -p 25 -PN gmail-smtp-in.T1.google.com

Starting Nmap 5.00 (http://nmap.org) at 2012-04-17 20:32 PDT
Interesting ports on ph-in-f27.1e100.net (173.194.79.27):

PORT ~ STATE SERVICE

25/tcp open smtp

Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds

Here you can see that the remote SMTP port is open. If it were closed,
either your mail server would be blocked from communicating with this
machine (more likely all remote servers) over port 25, or the remote mail
server would be down. To test both theories, try the same nmap command
against a mail server for a completely different domain (like yahoo.com,
for instance) and also against the next mail server in the list for gmail.com
and see if either of their ports are open.

If you discover both remote mail servers are closed on port 25, it’s more
likely that your firewall or your ISP’s firewall is blocking outbound port
25 traffic than it is that multiple enterprise mail servers for different com-
panies are down at the same time. If, on the other hand, only Gmail’s mail
servers are unavailable, then it’s possible they are just suffering an outage
right now, in which case the best thing to do is just let your mail server
continue to try to deliver the email. It shouldn’t bounce the message until
it has tried to deliver it for at least a few days.

If your mail server has been firewalled off from sending emails, or you
are waiting for a remote mail server to come back online, your mail spool
might start to fill up with email destined for that domain. The mailg com-
mand run from the outbound mail server will give you information about
the current state of the mail queue:

$ mailq
Mail queue is empty

From the Library of Martin Spilovsky

Problems Receiving Email 135

In this case, the mail queue is empty, which ideally is what you want to see.
Otherwise, you will see how many messages are currently waiting in the
queue along with their queue ID and who they are addressed to.

Once mail service is restored, the mail server will attempt to deliver all
of those spooled messages, but not at once. Instead, it will slowly spool
them so as not to risk overloading itself. If, for some reason, you can’t wait
and need those messages delivered immediately, your mail server should
provide some sort of flush command that will let you immediately spool all
email for delivery. Note that you will probably need to be root to run this
command. For instance, with postfix the command is

$ sudo postqueue flush

Problems Receiving Email

It can be tricky to know when you have a problem receiving email for
a particular domain unless you sent the email yourself from a different
account. You won’t know an email didn’t reach you if you didn’t know
it was sent. Usually this sort of problem is realized when an email sent
to your domain bounces, or more likely, someone sends you or someone
in your organization an important email, expecting real-time responses.
When they don’t get responses, they call or contact the recipient directly
with a “Hey, did you get my email?” When this happens, as the trouble-
shooter, you need to be able to demonstrate a few things: First, your mail
system is successfully receiving other emails, and second, you can or can’t
locate the email conversation for that specific email in the logs.

This section will walk through a simple system where a single incoming
mail server receives mail. In most cases, you will want at least two mail
servers, one acting as a secondary in case the primary ever goes down. If
you have a setup like that, you will need to perform these troubleshooting
steps on all of the incoming mail servers you have configured.

One easy way to test that your mail system is functioning, particularly

if it is a busy system, is to log in to it and view the mail logs in real time
with tail -f /var/log/mail.log (or /var/log/maillog on some systems). If

From the Library of Martin Spilovsky

136 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

you have an active mail server, you should be able to see emails coming
in for other users. If you see other email activity, then the mail server is
functioning in general and the next step is to pore through the logs. On
the other hand, if you have a mostly inactive mail server or you aren’t
seeing new log entries, the best next step is to perform the same steps as
a remote mail server, only manually. Before you do that, though, if you
truly aren’t getting any incoming email and you suspect you should, you
may want to perform a quick dig query and confirm that your incoming
mail server is listed as one of the mail servers for your domain and that
its IP address is correct:

§ dig example.net MX

Now that you have confirmed that your mail server is listed in DN, it’s
time to simulate a remote mail server. To do this, get onto a machine, ide-
ally one that’s outside of your network, and perform the telnet email test
mentioned earlier in the chapter, only this time, connect to your incoming
mail server (whatever mail server has the highest priority MX record), and
address the email to you or the user that is complaining about an email
not going through. If your mail server accepts your telnet test and the
email shows up in the recipient’s mailbox, you can be relatively sure gen-
eral incoming mail is being accepted for that user.

Telnet Test Can’t Connect

There are a few ways the telnet test can fail, however. For one, you might
discover you can’t connect to your mail server from the outside at all; in
this case, it’s time to log in to the incoming mail server and make sure the
mail server software is running. For instance, on a system running postfix,
you might type

$ sudo /etc/init.d/postfix status
+ postfix is running

If you are running sendmail or exim, you can replace postfix with the
name of your server’s init script. Alternatively, you can also simply check

From the Library of Martin Spilovsky

Problems Receiving Email 137

whether any postfix processes are running with the ps command. This has
the advantage that you can run it without root permissions:

$ ps -ef | grep postfix

postfix 10784 16923 0 Janl3 ? 00:02:44 gqmgr -1 -t fifo -u -c
postfix 10820 16923 0 Janl3 ? 00:00:39 tlsmgr -1 -t unix -u -c
root 16923 1 0 20117 00:24:15 /usr/1ib/postfix/master
postfix 18320 16923 0 20:23 ? 00:00:00 pickup -1 -t fifo -u -c
postfix 20304 16923 0 20:36 ? 00:00:00 anvil -1 -t unix -u

root 20426 12533 0 20:38 pts/2 00:00:00 grep postfix

If the process isn’t running, then the solution is simple: Start the process.
Otherwise, the next step is to confirm that the mail server is listening on
port 25:

$ sudo netstat -Tnp | grep :25
tcp 0 00.0.0.0:25 0.0.0.0:+ LISTEN 16923 /master

Here you can see that process 16923 (named master, the main postfix pro-
cess) is listening on port 25 on all interfaces (0.0.0.0). If you saw that it was
listening on 127.0.0.1 instead, for instance, you would know that the mail
server only listens for email on localhost, and if you want it to accept email
from the outside, you'll need to reconfigure it. Otherwise, if you see that
no processes are listening on port 25 but your mail server is running, you
have some sort of configuration problem you need to address.

Finally, if you do see that the mail server is running and listening on the
correct port, attempt to do another telnet test from the host itself by tel-
netting to 127.0.0.1 port 25 and confirm that you can connect. If you can,
then try again, only this time connect from a server on the same subnet.
If both attempts are successful, then there’s a good chance the problem
is caused by some firewall or routing issue that is preventing your server
from being contacted from the outside.

Telnet Can Connect, but the Message Is Rejected

Once telnet can connect to the mail server and you send your test email,
you should be able to see any delivery problems that a remote mail server

From the Library of Martin Spilovsky

138 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

would see. For instance, if the user’s mailbox is full, the disk is full in
general, or there’s some other server problem, you should get an error
message when you try to send your test email that tells you where to
investigate next.

If, on the other hand, the message is accepted, confirm that it ends up in
the recipient’s mailbox. If the email doesn’t make it in the mailbox, then
you have some problem between your mail server and your POP/IMAP
server (or, if it’s on the same machine, a problem handing off incoming
email to your local mailboxes). If the email does make it in the mailbox,
then you can be reasonably sure the mail server is functioning correctly
at the present time, and it’s time to dig through the logs to find out what
happened to the original message that wasn’t delivered.

Pore Through the Mail Logs

If your mail server seems to be accepting other email fine, you now need
to see if you can find evidence that the remote mail server attempted to
connect to your incoming mail server and deliver the email. If you are
responding to a user complaint, see if you can find out a range of time
when the email was supposed to have been sent and the FROM email
address. Both of those facts will help you when you dig through your
mail logs.

For instance, if the user’s email address is jan@example.net and Jan tells
you that Fred (fred.smith@gmail.com) emailed her around 8:00 a.m.
this morning but she hasn’t gotten the email yet, that should be enough
information to go on to get started. With that information the first thing
you would do is open your current /var/log/mail.log and with a program
like less, and skip through until you got to logs from around 8:00 a.m.
You're not necessarily trying to find Jan’s message specifically here, but just
performing a sanity check to see whether other messages were delivered
around that time period. The fact is, even if the mail system were down at
that time, the message would have either been queued in a secondary mail
server, or once the mail server came back online the message should have
gotten delivered shortly afterward.

From the Library of Martin Spilovsky

Problems Receiving Email 139

After youre convinced the mail server was functioning around that time,
next you'd attempt to filter out all of Jan’s incoming email out of the mail
log for today into a different file so it can be a bit easier to pore through:

$ sudo egrep 'to=.xjan@example.net' /var/log/mail.log > /tmp/jans_incoming_emails

If Jan had told you that the email was sent a few days ago instead of today,
you would replace /var/log/mail.log with the archived mail log that has
entries for that day. In either case, now you can open /tmp/jans_incom-
ing_emails with a text editor and see first, if Jan got any other messages,
and second, what kind of messages she got around 8:00 a.m.. If you wanted
to get fancy, you could run another grep command that filtered out mes-
sages outside of a time range, but just to be safe look at messages from an
hour before and an hour after 8:00 a.m. at least. In the process of going
through this file if you find any emails that fit that time period, you’ll want
to view the full message transaction, so you need to pull out the message
ID. For instance, the log entry you were interested in might look like this:

Apr 19 08:05:06 incoming postfix/local[13089]: 62337254A2: to=<jan@example.net>,
=relay=local, delay=4.7, delays=0.4/0.03/0/4.3, dsn=2.0.0, status=sent (delivered to
= command: /usr/bin/procmail -t)

You could pull out the message ID 62337254A2 from that line and then go
back to the main /var/log/mail.log and grep the entire message transaction:

$ sudo grep 62337254A2 /var/log/mail.log

Apr 19 08:05:02 incoming postfix/smtpd[13058]: 62337254A2: client=unknown[23.19.244.190]

Apr 19 08:05:02 incoming postfix/cleanup[13081]: 62337254A2: message-id=<Z3J1ZW5mbHTAZ3]1ZW
= 5mbHkubmV0882@quickclickdeals.info>

Apr 19 08:05:02 incoming postfix/qmgr[10784]: 62337254A2: from=<contest@quickclickdeals.
=info>, size=11382, nrcpt=1 (queue active)

Apr 19 08:05:06 incoming postfix/local[13089]: 62337254A2: to=<jan@example.net>,
=relay=local, delay=4.7, delays=0.4/0.03/0/4.3, dsn=2.0.0, status=sent (delivered to
= command: /usr/bin/procmail -t)

Apr 19 08:05:06 incoming postfix/qmgr[10784]: 62337254A2: removed

In this case, this is the wrong message (and likely spam) since the FROM
header is not fred.smith@gmail.com.

From the Library of Martin Spilovsky

140 Chapter 7 = Why Didn’t My Email Go Through? Tracing Email Problems

An alternate approach while looking through the mail logs is that instead
of looking for email to Jan, you could look for email from Fred. After all,
what if he misspelled Jan’s email address somehow, the email bounced,
but Fred didn’t notice. To do that, just pull out any messages from his
address instead:

$ sudo egrep 'from=.«fred.smith@gmail.com' /var/log/mail.log > /tmp/freds_incoming_emails

Then you can see if there are any message IDs from Fred and go back to
the main log to see if he ever made an attempt to begin with. Finally, you
might even simply grep for any messages referencing gmail.com at all:

$ sudo grep 'gmail.com' /var/log/mail.Tog > /tmp/gmail_all_emails

From this log you could see if there were any emails from that domain
at all during the general time period Jan laid out. If at this point you still
don’t see anything in the logs, feel confident going back to Jan and saying
you simply don’t see the email attempt in the logs and to have the sender
send it again. Ultimately you might even end up working with the admin-
istrator in charge of the remote site and compare log entries. It all might
depend on how important these emails are. Even if the problem doesn’t
appear to be on your end, you might still be on the hook to track down the
root cause of the problem, even if it’s another administrator’s fault.

From the Library of Martin Spilovsky

CHAPTER 8

Is the Website Down? Tracking
Down Webh Server Problems

141

From the Library of Martin Spilovsky

ALTHOUGH DNS AND EMAIL are important Internet services that we inter-
act with on a daily basis, web services tend to get much more of our
direct attention. You may or may not immediately notice when someone
else’s email server or DNS server is down, but if your favorite website
is down, you will know almost instantly. Plus, many applications have
moved from being run on local systems to being run on a web server
accessed from your web browser instead. With so much riding on the
health of web servers, you are likely to be responsible for one in some
way, and it’s more important than ever to be able to troubleshoot web
server problems.

Everyone in a DevOps organization is likely to troubleshoot web server
problems at some point in time. On the QA side, many of the automated
testing and build tools you use on a daily basis operate via a web front-end,
not to mention in this day and age that it’s likely you might be perform-
ing some level of automated testing on a web-based application. When a
web server is unresponsive, you’ll want the tools to trace down why. On
the developer end, it’s more likely than ever that you will be developing
software that has at least some level of web front-end, if it is not already
entirely run from the web. Plus, in a DevOps team, developers often
take on more of a role in web server configuration than on traditional
teams, and they hold more responsibility over troubleshooting sluggish or
unavailable web servers. Of course, if you are a sysadmin, it’s quite likely
you will be responsible for at least some web servers in your environment,
and you will likely be one of the first people to answer that dreadful ques-
tion: “Is the website down?”

In a chapter about web server troubleshooting, it is quite easy to get
bogged down in troubleshooting steps for particular web frameworks,
content management systems, plugins, or blogging platforms that would
turn this chapter into a full book in its own right and still not necessar-
ily help you with your custom web app. Instead, this chapter will provide
general, basic troubleshooting steps you can apply to gauge the health of
two popular web servers: Apache and Nginx. The idea here is to give you
overall tools and techniques you can apply to most web server problems
so that no matter what specific web server software you run, when there is
a problem, you can get closer to narrowing it down.

142

From the Library of Martin Spilovsky

Is the Server Running? 143

Is the Server Running?

One of the first web server problems to troubleshoot is a web server that’s
completely unavailable. This is such a common set of troubleshooting
steps that it was already used as the primary example throughout Chap-
ter 5 to diagnose networking issues. After all, one of the first questions you
want to answer when you can’t reach a web server is whether the problem
is on your end or the remote end. For a complete set of network trou-
bleshooting steps, I highly recommend you go through Chapter 5 first;
however, this chapter assumes that the problem is not on the network, so
it will repeat some of the web-server specific troubleshooting steps from
Chapter 5. In this example, the server is named web1 and has an IP address
of 10.1.2.5, so be sure to change your commands to match the hostname
and IP for your web server.

Is the Remote Port Open?

So you can route to the machine, but you can’t access the web server on
port 80. The next test is to see whether the port is even open. There are a
number of different ways to do this. For one, you could try telnet:

$ telnet 10.1.2.5 80
Trying 10.1.2.5...
telnet: Unable to connect to remote host: Connection refused

If you see Connection refused, then either the port is down (likely Apache isn’t
running on the remote host or isn’t listening on that port) or the firewall
is blocking your access. If telnet can connect, then, well, you don’t have a
networking problem at all. If the web service is up but just isn’t working
the way you expect it to, you need to investigate your Apache configura-
tion on the web server.

Instead of telnet, I prefer to use nmap to test ports because it can often detect
firewalls. If nmap isn’t installed, use your package manager to install the nmap

package. To test web1, you would type the following:

$ nmap -p 80 10.1.2.5
Starting Nmap 4.62 (http://nmap.org) at 2009-02-05 18:49 PST

From the Library of Martin Spilovsky

144 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

Interesting ports on webl (10.1.2.5):
PORT STATE SERVICE
80/tcp filtered http

Aha! nmap is smart enough that it can often tell the difference between a
closed port that is truly closed and a closed port behind a firewall. Now
normally when a port is actually down, nmap will report it as closed. Here
it reported it as filtered. What this tells us is that there is some firewall in
the way that is dropping the packets to the floor. This means you need to
investigate any firewall rules on the gateway (10.1.1.1) and on webl itself
to see if port 80 is being blocked.

Test the Remote Host Locally

At this point, we have either been able to narrow the problem down to a
network issue or we believe the problem is on the host itself. If we think
the problem is on the host itself, we can do a few things to test whether
port 80 is available.

Test for Listening Ports Once you are satisfied that the problem is not on
you network, you should log in to the web server and test whether port 80
is listening. The netstat -Tnp command will list all ports that are listening
along with the process that has the port open. You could just run that and
parse through the output for anything that is listening on port 80, or you
could use grep to see only the things that are listening on port 80:

$ sudo netstat -Tnp | grep :80
tcp 00 0.0.0.0:80 0.0.0.0:+ LISTEN 919/apache

The first column tells you what protocol the port is using. The second
and third columns are the receive and send queues (both set to 0 here).
The column you want to pay attention to is the fourth column, as it lists
the local address on which the host is listening. Here the 0.0.0.0:80 tells us
that the host is listening on all of its IPs for port 80 traffic. If Apache were
listening only on the server’s Ethernet address, you would see a specific IP
like 10.1.2.5:80 here.

From the Library of Martin Spilovsky

Is the Server Running? 145

The final column tells you which process has the port open. Here you can
see that Apache is running and listening. If you do not see this in your
netstat output, you need to start your Apache server.

Firewall Rules 1f the process is running and listening on port 80, it’s
possible that the server has some sort of firewall in place. Use the iptables
command to list all of your firewall rules. If your firewall is disabled, your
output would look like this:

$ sudo /sbin/iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Notice that in this output, the default policy is set to ACCEPT. It’s possible,
though, that your firewall is set to drop all packets by default, even if it
doesn’t list any rules. If this is the case, you would see output more like
the following:

$ sudo /shin/iptables -L
Chain INPUT (policy DROP)
target prot opt source destination

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination

On the other hand, if you have a firewall rule that blocks port 80, it might
look like this:

$ sudo /shin/iptables -L -n
Chain INPUT (policy ACCEPT)

From the Library of Martin Spilovsky

146 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

target prot opt source destination
REJECT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80
reject-with icmp-port-unreachable

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Clearly, in the latter case, you need to modify the firewall rules to allow
port 80 traffic from the host.

Test a Web Server from the Command Line

Once you are convinced that the web server is actually listening on the cor-
rect port, the next troubleshooting step is to confirm that the web server
actually responds to requests. Although it’s true that you could use a web
browser to test this, if you know how to troubleshoot a web server with a
command-line tool like curl or telnet, you can test your web server from
just about any host (and more importantly, over an ssh connection). After
all, most servers don’t have a GUI web browser installed, and you may not
even be able to guarantee that command-line web browsers like curl, links,
or w3m are installed, but telnet almost certainly will be. Because of this,
this chapter will show you how to test your web server both with curl and
with telnet as a fallback.

Test Weh Servers with Curl

Curl is a relatively straightforward command-line tool that can speak the
HTTP and HTTPS protocols, among others. If you check out its man page
(by typing man curl on the command line), you’ll see that it supports all
sorts of different options. In fact, a number of command-line tools used
to interface with web APIs use curl exclusively. Curl has an advantage over
raw telnet for web server troubleshooting in that it takes care of the HTTP
protocol for you and makes things like testing authentication, posting data,
using SSL, and other functions we take for granted in a GUI web browser
much easier. With telnet, we will be typing in HTTP commands directly.

From the Library of Martin Spilovsky

Test a Web Server from the Command Line 147

Since we just want to test basic web server functionality, we don’t nec-
essarily need to get into any of curl’s more sophisticated command-line
options. In fact, testing a web server from curl can be as simple as typing
curl and then the URL to load:

$ curl http://www.example.net

<html><body><h1>It works!</h1l>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>
</body></htm1>

In this example, you can see the default web page created by an Apache
web server. If for some reason the web server were unreachable, you would
see something like

$ curl http://www.example.net
curl: (7) couldn’t connect to host

By default, curl will just output the contents of the web page you requested,
but often when you troubleshoot web servers you'd like to get extra data,
such as the HTTP status code (more on that later), how long the request
took, how much data was transferred, and so on. Curl offers a -w option
that lets you pull additional data about the request and display it on the
screen. So, for instance, if you wanted to see the HTTP status code for a
request, you could type

$ curl -w "%{http_code}\n" http://www.example.net

<htm1><body><h1>It works!</h1>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>
</body></htm1>

200

The extra information gets posted at the end of the request. In this case,
the HTTP status code is 200, which is what we want. The curl man page
(type man curl) lists a number of extra options for the -w argument that you
can chain together in your output. Here’s an example of how you might

From the Library of Martin Spilovsky

148 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

use that to get the status code, how long the request took, the size of the
data downloaded, and the content type:

$ curl -w "%{http_code} %{time_total} %{size_download} \

%{content_type}\n" http://www.example.net

<html><body><h1>It works!</h1>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>
</body></htm1>

200 0.004 177 text/html

Test Web Servers with Telnet

Although curl is a handy and simple tool for testing web servers on the
command line, sometimes you might need to test a web server from a host
that doesn’t have curl installed, or you may just need to see lower-level
HTTP calls. In either case, that’s where telnet comes in. Just about any
Linux system should have telnet installed and, as long as you know some
basic HT'TP, you can get a lot of valuable diagnostic data from a web server.

To start, run telnet with the host you want to connect to as an argument,
followed by port 80, or whatever port your web server is listening on:

$ telnet www.example.net 80
Trying 10.1.2.5...

Connected to www.example.net.
Escape character is ‘A]’.

If for some reason you can’t connect, then you will need to go back to the
initial network troubleshooting section in this chapter. Once you are con-
nected, you will type in some basic HTTP:

GET / HTTP/1.1
host: www.example.net

This example uses a basic GET request (CET /) that requests the default
index page for the site followed by what HTTP protocol youre using
(HTTP/1.1). If you wanted to test the /admin/inventory.cgi page, for instance,
you would say CET /admin/inventory.cgi HTTP/1.1. Then you press Enter and

From the Library of Martin Spilovsky

HTTP Status Codes 149

follow up with a host: and the name of the host you want to connect to
(what would be directly after the http:// in a URL). This host parameter
is important since web servers often serve many virtual hosts on the same
machine, so if you don’t specify which host you want, you may not get the
web pages you expect.

Once you finish the host: line, hit Enter and you should get the complete
response from the server:

HTTP/1.1 200 OK

Date: Thu, 28 Jun 2012 03:56:32 GMT

Server: Apache/2.2.14 (Ubuntu)
Last-Modified: Mon, 24 May 2010 21:33:10 GMT
ETag: "38111c-h1-4875dc9938880"
Accept-Ranges: bytes

Content-Length: 177

Vary: Accept-Encoding

Content-Type: text/html

X-Pad: avoid browser bug

<html><body><h1>It works!</hl>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>
</body></html1>

Once you are done with your request, hit Ctrl-] to quit telnet. By default,
you will get a lot more troubleshooting data from telnet than with curl.
In this example, you can see the HTTP status code (200 0K), the date of
the request along with the last date the page was modified, the web server
and version, and other data that you normally don’t see in a web browser.
Of course, the downside is that if you want to do anything much more
sophisticated than a simple GET request, you had better brush up on your
HTTP or switch back to curl, which can more easily handle redirects and
other tricky setups.

HTTP Status Codes

When you are troubleshooting web server issues, the HT TP status code the
web server returns with each request is invaluable. In the earlier examples,

From the Library of Martin Spilovsky

150 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

the web server returned the status code 200, which is the standard code
you will see when everything is working—200 0K means the request has
succeeded. There are a number of other status codes, each in their own
numerical class; so, for instance, every status code that starts with 2 denotes
a success and every code that starts with a 4 denotes a client error. This sec-
tion talks about each of the status code classes and highlights some of the
more common codes you might run into.

1xx Informational Codes

Status codes that start with 1 denote some sort of informational response.
This status code range is for HTTP/1.1 and shouldn’t be sent to HTTP/1.0
clients. Here are the main two responses you will see in this class:

100 Continue
This tells the client to continue with the rest of its request.

101 Switching Protocols
This indicates that the server will switch to an updated HTTP version
in response to a client request to do so.

2xx Successful Codes

A status code that starts with 2 denotes a successful request. Ideally, if you
are troubleshooting a web server, this is the kind of response you want to
see. The most common of these status codes is 200 0K, which indicates a
successful request. Here are some of the status codes you may see:

200 OK
The request was successful.

201 Created
Your request was successful and resulted in a new resource being
created.

202 Accepted
Your request was accepted for processing; however, it may not have
yet been processed.

From the Library of Martin Spilovsky

HTTP Status Codes 151

203 Non Authoritative Information
The information returned to you is not from the original source but
may be from a third party or be a subset of the original information.

204 No Content
The request was successful but the response results in no content.

205 Reset Content
The client should reset the document view.

206 Partial Content
The server fulfilled the partial GET request.

3xx Redirection Codes

When the status code starts with 3, it denotes some sort of redirection
message from the server to the client. Administrators often use this sort of
response when they have moved content from one URL to another, to move
you from one domain to another, or even to redirect you to use HTTPS
instead of HTTP. Here are some common status codes in this family:

300 Multiple Choices
The reply from the server will contain multiple resources the client
can choose to redirect to.

301 Moved Permanently

This code is used when a resource will never again be available at the
previous URI and has been moved to the new resource. Administra-
tors use this code when they want to indicate that a client should
point all future requests to the new URL

302 Found

Unlike the 301 status, this code denotes a resource that is only tem-
porarily being redirected. In the future, the client should still use the
original URL

303 See Other
This is commonly a response to a POST request, where the response can
be obtained via a GET request to a different URI.

From the Library of Martin Spilovsky

152

Chapter 8

Is the Website Down? Tracking Down Web Server Problems

304 Not Modified

This response is used when the client sends a GET request conditional
on the document being modified. This response lets the client know
that the document has not changed.

305 Use Proxy
The server will provide a proxy in its response URI that must be fol-
lowed to access the requested data.

306 Unused
Status code is not yet used.

307 Temporary Redirect

This is similar to a 302 code and is used when the resource the client
is requesting can be found under a different URI temporarily, but in
the future, the client should use the original URI.

4xx Client Error Codes

When you are troubleshooting server problems, you are likely to run into
some error codes that start with 4. This status code family deals with errors
the server believes are on the client side. The most common of these errors
is 404, which is returned when a client requests a page that doesn’t exist.
Here are some common error codes in this class:

400 Bad Request
This code is used in response to bad syntax on the client side.

401 Unauthorized
This request requires authentication from the user, so the client
should repeat the request with proper authentication.

403 Forbidden

Unlike a 401, this request is not allowed from the user and the client
should not attempt to repeat the request with authentication. This
error code is often indicative of permissions errors.

404 Not Found
The server couldn’t find the page the client requested. This error
code often comes up when the user had a typo in their request, when

From the Library of Martin Spilovsky

HTTP Status Codes 153

the request is for a page that has moved without a redirection put in
place, or when the file used to exist but has been deleted.

408 Request Timeout
The client took too long to produce a request. You may see this when
you are experimenting with web server troubleshooting over telnet.

410 Gone
Unlike a 3xx redirection request, this code is used when the resource
used to exist but is now forever gone.

5xx Server Error Codes

Like 4xx status codes, 5xx status codes deal with errors, only in this case
the error is likely on the server side. If you are the web server administrator
and you see these kinds of error codes, you will want to dig into your web
server error logs for more information on the causes of the errors. Here are
some example codes from this class:

500 Internal Server Error

The server received some internal error when it was processing the
request. You may see this when you have a bug in a CGI or PHP script
that causes the file to error out when it is run.

501 Not Implemented
The server doesn’t support the feature the client is requesting.

502 Bad Gateway

The error shows up when the server is configured as a gateway or
proxy device and it received an invalid response when contacting its
upstream server.

503 Service Unavailable

The server is temporarily unavailable to serve the client’s request,
often due to the server being overloaded or to some sort of mainte-
nance being performed on the server.

504 Gateway Timeout
The server did not receive a response in time from some upstream
server it needed to fulfill the request. The upstream server could be

From the Library of Martin Spilovsky

154 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

HTTP, but it could also result from a timeout in an upstream FTP,
LDAP, or even DNS server.

505 HTTP Version Not Supported
Pretty self-explanatory; this error code is used when the server does
not support the HTTP version the client requests.

Parse Web Server Logs

One of the primary ways you will troubleshoot web server problems is via
the logs. Each request that goes to a web server gets logged in a standard
format that may look a bit odd at first, but each line packs a lot of use-
ful information for troubleshooting. Both Apache and Nginx store their
logs in custom directories under /var/log/apache2 (or apache or httpd
depending on your distribution) and /var/log/nginx, respectively. Both
web servers default to similar log formats and both store request logs
under access.log and errors under errors.Jog. Beyond that, though, most
administrators configure their servers so that each site (virtual host) they
serve has its own log, thus the access log might end up being quite empty
whereas your www.example.org.log ends up containing most of your data.

To demonstrate the sorts of information you can get from web server logs,
let’s take a curl command used earlier in the chapter and look at the cor-
responding log:

$ curl -w "%{http_code}\n" http://www.example.net

<html><body><h1>It works!</h1>

<p>This is the default web page for this server.</p>

<p>The web server software is running but no content has been added, yet.</p>
</body></htm1>

200

10.1.2.3 - - [04/1u1/2012:12:08:05 -0700] "GET / HTTP/1.1" 200 303 "-" "cur1/7.19.7
= (x86_64-pc-Tinux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k z1ib/1.2.3.3 Tibidn/1.15"

Log entries are split up into a number of different fields, and where a field

has no data or isn’t applicable, it is replaced with a -. In this example, even
without knowing much about the log format, we can make a few assump-

From the Library of Martin Spilovsky

http://www.example.org.log

Parse Web Server Logs 155

tions. First, the request came from the IP 10.1.2.3. Second, we can identify
a date stamp for the request. After that, we can see the exact HTTP request
the server processed (GET / HTTP/1.1) and the following 200 in the log cor-
responds to the HTTP return code. Finally, at the end of the log is the
User-Agent string the client passed to the server; in this case, it identifies
the client as curl.

NOTE If you are a vi user like me, you probably use it to open just about any text file including
log files. Unfortunately, vi likes to store a complete copy of any text file it opens into temp
space (sometimes /tmp, other times in the user’s home directory). Although this practice
is fine for small text files, web server logs can grow to be gigabytes in size. | can’t tell you
how many times | went to troubleshoot a web server that ran out of disk space only to find
someone had opened up a multi-gigabyte web server log file and filled up the /tmp direc-
tory. Since we don’t want to edit the web logs anyway—we just want to view them—use a
command-line pager tool like less to view log files instead of vi.

Each web server allows you to customize your log output so you can get
even more information about each request, but the default log format
configured in Apache configuration files looks something like this:

LogFormat "%h %1 %u %t \"%r\" %>s %0 \"%{Referer}i\" \"%{User-Agent}i\"" combined

Each of the symbols preceded by % represents some value to store in the
logs. The complete list of these options is in the Apache documentation,
but here is the description of each of these format strings:

%h
The remote host (hostname or IP)

%l
The remote logname (usually returns - unless IdentCheck is on)

%u
The remote user (if the page required authentication, otherwise
returns -)

%t
The time the request was received

From the Library of Martin Spilovsky

156 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

%r
The first line of the request

%S
The status code

%0
The bytes sent, including headers

%{Header}i
The contents of the specified header in the request

Since most web server logs are in a standard format, a lot of different tools
can parse and display data from the logs. This software is useful for getting
statistics and trends; however, when you are troubleshooting, often you just
want to pull out data for a specific IP, or a specific URL For this, command-
line tools like grep and perl are still among the best tools, simply because
they are most likely to be present on just about any web server you log into.

There are plenty of examples online of one-liners to pull data from web
logs, but here are a few base examples you can build from. First is a simple
grep command that will pull out all of the logs from a specific source IP. In
this example, we’ll look for all log entries from the host 10.1.2.3:

$ egrep 'A10.1.2.3 ' /var/log/apache2/access.log

10.1.2.3 - - [04/1u1/2012:12:08:05 -0700] "GET / HTTP/1.1" 200 303 "-" "cur1/7.19.7
= (x86_64-pc-Tinux-gnu) Tibcur1/7.19.7 OpenSSL/0.9.8k z1ib/1.2.3.3 Tibidn/1.15"

Alternatively, if you wanted to know just how many requests you received
from that IP, you could pipe the content to wc -1, which will count the
number of lines in the output:

$ egrep 'A10.1.2.3 ' /var/log/apache2/access.log | wc -1
37

Of course, if your log file contains logs from multiple days, you may only
be interested in the logs from a particular day:

$ egrep 'A10.1.2.3.x04\/Ju1\/2012" /var/log/apache2/access.log

From the Library of Martin Spilovsky

Parse Web Server Logs 157

or a particular hour in that day:
$ egrep 'A10.1.2.3.x04\/Jul\/2012:12" /var/Tog/apache2/access.log

Using perl, you can pull even more interesting statistics from Apache logs.
For instance, you may have noticed extra load on your web server today,
and you'd like to know if any of that load is coming from a particular host.
This per1 one-liner acts like the earlier demonstrated egrep command in
that it pulls out the IP and a specific date from the logs; but it goes a step
further and keeps a tally of each IP it finds. Ultimately it outputs the com-
plete list of IPs and their tally:

$ perl -e 'while(<>){ if(m|(A\d+\.\d+\.\d+\.\d+).%?04/3u1/2012|){ $v{$1}++; } }
=foreach(keys %v){ print "$v{$_N\t$_\n"; }' /var/log/apache2/access.log | sort -n

213 27.171.3.72
217 64.2.73.9
2040 10.2.1.3

Here you can see that the same internal IP address (10.2.1.3) has created
about ten times the number of requests of any other IP in the logs. If you
were investigating a high load problem and saw this, you would pull all
of the log entries coming from 10.2.1.3 and see what that internal server
is doing.

In case you find that one-liner hard to parse, here’s the same command in
a regular file:

#!/usr/bin/perl

while(<>){
Af(m] (A\d+\. \d+\. \d+\.\d+) .+?04/3u1/2012|) {
Sv{$1}++;
}
}

foreach(keys %v){
print "$v{$_}\t$_\n";
}

From the Library of Martin Spilovsky

158 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

CAUTION You may be tempted when first setting up a web server to enable DNS resolution for your
logs. After all, wouldn’t it be handy if you could automatically see what domain each visitor
is coming from? It's a common mistake to enable this option when tweaking your log
settings. When your server gets hit with a lot of traffic, everything slows down prematurely
(or your DNS server load spikes). What's happening is that every request that comes
in requires a DNS request to go out to resolve the IP into a hostname. With too many
requests, you build up a backlog the server can’t keep up with. The moral of the story is
that if you want to resolve IPs in your web server logs into hostnames for troubleshooting,
do that after the fact—-keep your web server nice and fast.

Get Web Server Statistics

Although there’s a fair amount of web server troubleshooting you can
perform outside of the server itself, ultimately you will get in a situation
where you want to know this type of information: How many web server
processes are currently serving requests? How many web server processes
are idle? What are the busy processes doing right now? To pull data like
this, you can enable a special server status page that gives you all sorts of
useful server statistics.

Both Apache and Nginx provide a server status page. In the case of Apache,
it requires that you enable a built-in module named status. How mod-
ules are enabled varies depending on your distribution; for example, on
an Ubuntu server, you would type a2enmod status. On other distributions
you may need to browse through the Apache configuration files and look
for a commented-out section that loads the status module; it may look
something like this:

LoadModule status_module /usr/Tib/apache2/modules/mod_status.so

After the module is loaded on Ubuntu systems, the server-status page is
already configured for use by localhost. On other systems you may need to
add configuration like the following to your Apache configuration:

ExtendedStatus On

<IfModule mod_status.c>

#

Allow server status reports generated by mod_status,

From the Library of Martin Spilovsky

Get Web Server Statistics 159

with the URL of http://servername/server-status
Uncomment and change the ".example.com" to allow
access from other hosts.
#
<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from Tocalhost ip6-Tocalhost
Allow from .example.com
</Location>

</IfModule>

Note that in this configuration example, we have really locked down who
can access the page by saying deny from all hosts and only allow from local-
host. This is a safe default because you generally don’t want the world to
be able to view this kind of debugging information. As you can see in the
commented-out example, you can add additional ATlow from statements to
add IPs or hostnames that are allowed to view the page.

For Nginx, you would add a configuration like the following to your exist-
ing Nginx config. In this example, Nginx will only listen on localhost, but
you could change this to allow other machines on your local network:

server {
Tisten 127.0.0.1:80;

location /nginx_status {
stub_status on;
access_log off;
allow 127.0.0.1;
deny all;

Once you have your configuration set and have reloaded the web server,
if you have allowed some remote IPs to view the page, open up a web
browser and access /server-status on your web server. For instance, if your
web server was located at www.example.net, you would load http://www.
example.net/server-status and see a page like the one shown in Figure 8-1.

From the Library of Martin Spilovsky

http://www.example.net/server-status
http://www.example.net/server-status
http://www.example.net

160

Chapter 8

Is the Website Down? Tracking Down Web Server Problems

Apache Server Status for localhost

Server Version: Apache/2.2.14 (Ubuntu) PHP/5.3.2-1ubuntu4.15 with Suhosin-Patch
Server Built: Mar 5 2012 16:42:17

Current Time: Wednesday, 04-Jul-2012 15:23:44 PDT
Restart Time: Monday, 16-Apr-2012 22:52:21 PDT

Parent Server Generation: 16

Server uptime: 78 days 16 hours 31 minutes 23 seconds
Total accesses: 2342053 - Total Traffic: 253.6 GB

CPU Usage: u4855.07 5362.04 cu9.39 ¢cs0 - .0769% CPU load
.344 requests/sec - 39.1 kB/second - 113.5 kB/request

2 requests currently being processed, 18 idle workers

Scoreboard Key:

"_" Waiting for Connection, "S" Starting up, "R" Reading Request,
"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,

"C" Closing connection, "L" Logging, "G" Gracefully finishing,

"I" Idle cleanup of worker, "." Open slot with no current process

Srv PID Acc M CPU SsS Req Conn Child Siot Client
0-16 - 0/0/58177 . 71.25 15053 0O 0.0 0.00 6057.78127.0.0.1
1-16 - 0/0/51964 . 0.01 15049 1 0.0 0.00 4732.86127.0.0.1

VHost Request
www.example.net.example. OPTIONS * HTTP/1.0
www.example.net.example. OPTIONS * HTTP/1.0

Figure 8-1 Standard Apache status page

At the top of the status page, you will see general statistics about the web
server including what version of Apache it is running and data about its
uptime, overall traffic, and how many requests it is serving per second.
Below that is a scoreboard that gives a nice at-a-glance overview of how
busy your web server is, and below that is a table that provides data on the

last request that each process served.

Although all of this data is useful in different troubleshooting circum-
stances, the scoreboard is particularly handy to quickly gauge the health
of a server. Each spot in the scoreboard corresponds to a particular web
server process, and the character that is used for that process gives you
information about what that process is doing:

Waiting for a connection

S
Starting up

R
Reading the request

From the Library of Martin Spilovsky

Get Web Server Statistics 161

W
Sending a reply

K
Staying open as a keepalive process so it can send multiple files

D
Performing DNS lookup

C
Closing connection

L
Logging

G
Gracefully finishing

I
Performing idle cleanup of worker

Open slot with no current process

Figure 8-1 shows a fairly idle web server with only one process in a K
(keepalive) state and one process in a W (sending reply) state. If you are curi-
ous about what each of those processes were doing last, just scroll down the
page to the table and find the process of the correct number in the score-
board. So, for instance, the W process would be found as server 2-16. It’s
not apparent in the screenshot, but that process was actually the response
to the request for the server-status page itself. You will also notice a few _
(waiting for connection) processes in the scoreboard, which correspond to
the number of processes Apache is configured to always have running to
respond to new requests. The rest of the scoreboard is full of ., which sym-
bolize slots where new process could go—basically the MaxClients setting
(the maximum number of processes Apache will spawn).

What you will notice as you refresh this page is that the objects in the score-
board should change during each request. This scoreboard is handy when
you want to keep an eye on your web server; just continually refresh the
page. During a spike, you are able to see new processes get spawned, switch

From the Library of Martin Spilovsky

162 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

to W to serve the request, and then, if the spike in traffic subsides, those
processes slowly change to _ and ultimately . as they are no longer needed.

Generally speaking, when you access the server status page, you do so from
the command line while logged into the web server. This lets you restrict
what hosts can view the page while still providing all the information you
need. Now, by default, if you were to run curl against the regular server
status page, you would get HTML output. However, if you pass the auto
option to the server-status page, you will get text output that’s more useful
for both command-line viewing and parsing by scripts:

$ curl http://localhost/server-status?auto

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed

117 586 117 586 0 0 2579 0 --i--1-- —=i--i-- --i--1-- 2579117 586 11
7 586 0 0 1905 0 —-i--i-m —miemiem —mlemie- 0
Total Accesses: 2343235
Total kBytes: 265925501
CPULoad: .0773742
Uptime: 6801454
RegPerSec: .34452
BytesPerSec: 40036.7
BytesPerReq: 116210
BusyWorkers: 53
IdleWorkers: 28
Scoreboard: WN_W__W_W__W_K_W_W_K___WiwWW_WwKwwW _ WK KKKKK _KiW_ . WC. CW_____| K__

When you want to monitor the status page of a server in the command
line, although you could just run the curl command over and over, you
could use a handy command called watch, which will run whatever com-
mand you specify every x number of seconds (by default 2). So if you
wanted to keep an eye on the status page and have it refresh every 5 sec-
onds on the command line, you would type

$ watch -n 5 'curl http://localhost/server-status?auto’

To exit out of watch, just hit Ctrl-C.

From the Library of Martin Spilovsky

Solve Common Web Server Prohlems 163

Solve Common Weh Server Problems

Although it’s difficult to document how to solve any and all web server
problems, you are likely to run into a few general classes of problems
that have identifiable symptoms. This section will highlight some of the
common types of problems you may find, their symptoms, and how to
remedy them.

Configuration Problems

One common and relatively simple problem to identify in a web server is
a configuration problem. Since web servers need to be reloaded to take on
changes in their configuration, it can be tempting to make many changes
without reloading the web server; however, if you do so, you are likely to
find out during a server maintenance (or when you need to restart the
server to load new SSL certificates) that there’s some syntax error in your
configuration files and your server will refuse to start.

Both Apache and Nginx validate their configuration files when you start,
restart, or reload the service, so that’s one way to find configuration errors—
unfortunately, it also means that in the case of a problem, the server is down
while you fix the errors. Fortunately, both web servers provide means to
test configuration syntax and highlight any syntax errors while the server
is still running.

In the case of Apache, the command is apache2ct] configtest. Be sure to run
this command as a user who can read all of the configuration files (prob-
ably the root user). A successful run looks like this:

$ sudo apache2ctl configtest
Syntax 0K

When there is a syntax error, this command will identify the file and line
number of the error so it’s easy to find:

$ sudo apache2ctl configtest
apache2: Syntax error on line 233 of /etc/apache2/apache2.conf: Could not open configuration
=file /etc/apache2/conf/: No such file or directory

From the Library of Martin Spilovsky

164 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

In this case, the configuration file had a typo—the directory you wanted to
include was /etc/apache2/conf.d.

Nginx also provides a syntax check by running nginx -t:

$ sudo nginx -t
the configuration file /etc/nginx/nginx.conf syntax is ok
configuration file /etc/nginx/nginx.conf test is successful

As with Apache, when Nginx detects an error, it tells you the file and line
number:

$ sudo nginx -t
[emerg]: unknown directive "included" in /etc/nginx/nginx.conf:13
configuration file /etc/nginx/nginx.conf test failed

Permissions Problems

A common headache, especially for new web server administrators, is per-
mission problems on the web server. Although both Apache and Nginx’s
initial processes run as root, all subprocesses that actually do the work of
serving content run as a user with more restricted permissions—usually
a user like ww-data or apache. If you are, for instance, uploading web pages
as a different user, you may initially run into permissions problems until
you make sure that each file you want to serve is readable by the ww-data
or apache user.

So what does a permissions problem look like from the outside? This
example takes a basic Nginx setup and changes the permissions on the
main index.html file so that it is no longer readable by the world. Then it
uses curl to attempt to load the page:

$ curl http://Tocalhost

<html>

<head><title>403 Forbidden</title></head>
<body bgcolor="white">

<center><h1>403 Forbidden</h1></center>
<hr><center>nginx/0.7.65</center>

</body>

</htm1>

From the Library of Martin Spilovsky

Solve Common Web Server Prohlems 165

The output from the web page tells us the HT'TP error even without hav-
ing to tell curl to display it: a 403 Forbidden error. Unfortunately, although we
can see the page is forbidden, from this output, we’re not yet sure why. At
this point, though, we would turn to the Nginx error logs and see

2012/07/07 16:13:37 [error] 547#0: «2 open() "/var/www/nginx-default/index.html" failed
= (13: Permission denied), client: 127.0.0.1, server: Tocalhost, request: "GET /
=HTTP/1.1", host: "localhost"

This error log lets us know that Nginx attempted to open /var/www/
nginx-default/index.html, but permission was denied. At this point, we
could check out the permissions of that file and confirm that it wasn’t
readable by the www-data user Nginx runs as:

$ ps -ef | grep nginx
root 545 1 015:197? 00:00:00 nginx: master process /usr/shin/nginx
www-data 547 545 @ 15:19 ? 00:00:00 nginx: worker process

$ 1s -1 /var/www/nginx-default/index.html
-rW-r----- 1 root root 151 2006-08-30 03:39 /var/www/nginx-default/index.html

In this case, you could fix this permission problem with the chmod o+r com-
mand, which would add world read permissions to the file. Alternatively,
you could also change the group ownership of the file so it was owned by
the ww-data group (or by a group that ww-data was a member of).

Although some administrators may sidestep permissions problems by
basically making all files readable and writeable by everyone, the security
risks of doing so aren’t worth the easy fix. Instead, consider creating a
group on the system whose membership includes both www-data or apache
users (depending on what user your web server runs as) and the users
you upload files as. If you do try the “chmod 777” method of making
the file readable by everyone, use it only as a temporary sanity check
to confirm that the problem truly is a permissions issue. Be sure after
you have solved the problem to change permissions back to something
more secure.

From the Library of Martin Spilovsky

http://www/nginx-default/index.html
http://www/nginx-default/index.html

166 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

Sluggish or Unavailable Web Server

Although configuration and permission problems are pretty well defined,
probably one of the more common web server problems you will trouble-
shoot is nice and vague—the server seems slow to the point it may even
be temporarily unavailable. Although a large number of root causes make
this kind of problem, this section will guide you through some common
causes for sluggish web servers along with their symptoms.

High Load One of the first things I check when a server is sluggish or
temporarily unavailable is its load. If you haven’t already read through
Chapter 2, read it to learn how to determine whether the server is suffering
from high load, and if so, whether that high load is the result of your web
server processes; if it is, you’ll learn how to determine whether the load is
CPU, RAM, or I/O bound.

Once you have identified whether the load is high and that your web server
processes are the issue, if the load is CPU-bound, then you will likely need
to troubleshoot any CGIs, PHP code, and so on, that your web server exe-
cutes to generate dynamic content. Go through your web server logs and
attempt to identify which pages are being accessed during this high load
period; then attempt to load them yourself (possibly on a test server if
your main server is overloaded) to gauge how much CPU various dynamic
pages consume.

If the load seems RAM-bound and you notice you are using more and
more swap storage and may even completely run out of RAM, then you
may be facing the dreaded web server swap death spiral. This shows up
commonly in Apache prefork servers but could potentially show up in
Apache worker or even Nginx servers in the right conditions. Essentially,
when you configure your web server, you can configure the maximum
number of web server instances the server will spawn in response to traffic.
In Apache prefork, this is known as the MaxClient setting. When a server
gets so much traffic that it spawns more web server processes than can fit
in RAM, processes end up using the much slower swap space instead. This
causes those processes to respond much more slowly than processes resid-
ing in RAM, which causes the requests to take longer, which in turn causes

From the Library of Martin Spilovsky

Solve Common Web Server Prohlems 167

more processes to be needed to handle the current load until, ultimately,
both RAM and swap are consumed.

To solve this issue, you will need to calculate how many web server pro-
cesses can fit into RAM. First calculate how much RAM an individual web
server process will take, then take your total RAM and subtract your oper-
ating system overhead. Then figure out how many Apache processes you
currently can fit into the remaining free RAM without going into swap.
You should then configure your web server so it never launches more pro-
cesses than it can fit into RAM.

Of course, with modern dynamically generated web pages, setting this
value can be a bit tricky. After all, some PHP scripts, for instance, use little
RAM whereas others may use quite a bit. In circumstances like this, the
best tactic is to look at all of the web server processes on a busy web server
and attempt to gauge the maximum, minimum, and average amount of
RAM a process consumes. Then you can decide whether to set the number
of web servers according to the worst case (maximum amount of RAM)
or the average case.

If your load is I/O bound, and the web server has a database back-end
on the same machine, you might simply be saturating your disk I/O with
database requests. Of course, if you followed the load troubleshooting
guide from Chapter 2, you should have been able to identify database pro-
cesses as the culprit instead of web server processes. In either case, you
may want to consider either putting your database on a separate server,
upgrading your storage speed, or going to Chapter 9 for more information
on how to troubleshoot database issues. Even if the database server is on
a separate machine, each web server process that is waiting on a response
from the database over the network may still generate a high load average.

Otherwise, if the server is I/O bound but the problem seems to be coming
from the web server itself and not the database, it could be that the soft-
ware that powers your website running on the machine simply is saturat-
ing disk I/O with requests. Alternatively, if you have enabled reverse DNS
resolution in your logs so that IP addresses are converted into hostnames,

From the Library of Martin Spilovsky

168 Chapter 8 = Is the Website Down? Tracking Down Web Server Problems

your web server processes could simply have to wait on each DNS query to
resolve before it finishes its request.

Server Status Pages One of the other main places to look when diag-
nosing sluggish servers, other than troubleshooting high load on the sys-
tem, is in the server status page. Earlier in the chapter we talked about
how to enable and view the server status page in your web server. In cases
of slow or unavailable web servers, this status page gives a nice overall
view of the health of your web server. You not only see system load aver-
ages, you can also see how many processes are currently busy and what
they are doing.

If, for instance, you see something like this,

$ curl http://localhost/server-status?auto

Scoreboard: WiwhWWWWWWWW KWWK WWWWW WK W W WK KK KK KWK W W CWCWWWWWW KWW
A A A A A A W W W W W

A A A A A A A W W W W W
A A A A A A W W W W W W
W W W W W W W W W

you’ll know that this server is completely overloaded with requests. As you
refresh this page, you may see a process open up every now and then, but
clearly, just about every process is busy fulfilling a request. In this circum-
stance, you may just need to allow your web server to spawn more pro-
cesses (if you can fit them in RAM), or, alternatively, it may be time to add
another web server to help share the load.

Then again, if you see a scoreboard like the one shown earlier, but notice
that your web server seems quite responsive, it could be that each web
request is having to wait on something on the back end. Behavior like
this can happen when an application server is overloaded with waiting
requests (sometimes because, ultimately, the database server it depends on
is overloaded), so although all the web server processes are busy, adding
more wouldn’t necessarily help the issue—they would also still be waiting
on the back end to respond.

From the Library of Martin Spilovsky

Solve Common Web Server Prohlems 169

On the other hand, you might see something like this:

Scoreboard: Wh_W__W_W__W_K_W_W_K ___WWWh/_Ww/K oW _ WK KKKKK _KW_ . WC. CW_____| K-

This is a server that has many processes to spare, both ones that are loaded
into RAM and ones that are waiting to be loaded. If your server is sluggish
but your scoreboard looks like this, then you are going to need to dig into
your web server logs and try to identify which pages are currently being
loaded. Ultimately you will want to identify which pages on your site are
taking so long to respond, and then you’ll need to dig into that software to
try to find the root cause. Of course, it could also simply be that your web
server is underpowered for the software it’s running, and if so, it’s time to
consider a hardware upgrade.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

CHAPTER 9
Why Is the Database Slow?

Tracking Down Database
Problems

17

From the Library of Martin Spilovsky

IT'S A RARE DevOps team that never encounters databases. An application
that reaches a certain level of complexity will certainly store its data in
some sort of database. Due to the prevalence of database wrapper librar-
ies, the ease of installation of some of the more popular databases, and the
general familiarity developers have with SQL, often even relatively simple
applications store data in a database and retrieve it via SQL commands.
It’s the rare website that is purely static data. Most provide some sort of
dynamic content to the user, and many, including the popular blogging
platforms, store all of the relevant content in a database. Whether your
company has dedicated database administrators or not, everyone on the
DevOps team can benefit from some basic database troubleshooting skills.
After all, your DBA (database administrator) may not be responsible for
the database backing your wiki, your build environment, or the test envi-
ronment you run on your laptop.

It’s true that in the modern DevOps world, traditional SQL-based data-
bases are not nearly as popular as they once were. It seems like there’s
a new NoSQL-style database coming out every week. Discussing how to
troubleshoot all of the popular SQL-based databases and the NoSQL data-
bases would fill a complete book (or two); so instead, this chapter is going
to simply cover the two most popular Open Source SQL-based databases
you are most likely to run into: MySQL and PostgresSQL. Each major sec-
tion of this chapter will introduce a particular troubleshooting technique
and then describe how it applies to MySQL and then PostgresSQL. By the
end of the chapter, you should be able to identify whether a database is
running and listening on the right ports, pull performance metrics, and
identify slow queries in a database.

Search Database Logs

One of the places you should look when troubleshooting a database issue
is the error log for that database, particularly if there is a problem with
the database starting. The error log also often provides information about
successful startup and syntax errors in queries sent to the database; these
are particularly useful when you are debugging applications.

172

From the Library of Martin Spilovsky

Search Database Logs 173

MySQL

For MySQL, depending on your distribution, you might find this error
log directly in /var/log, under /var/log/mysql, or maybe even under /var/
lib/mysql. Here’s some example output from a MySQL startup in /var/log/
mysql/error.]og:

120714 15:35:26 [Note] Plugin 'FEDERATED' is disabled.

120714 15:35:26 InnoDB: Initializing buffer pool, size = 8.0M

120714 15:35:26 InnoDB: Completed initialization of buffer pool

120714 15:35:26 InnoDB: Started; log sequence number @ 67138180

120714 15:35:27 [Note] Event Scheduler: Loaded @ events

120714 15:35:27 [Note] /usr/shin/mysqld: ready for connections.

Version: '5.1.63-Qubuntu0.10.04.1-Tog" socket: '/var/run/mysqld/mysqld.sock' port: 3306
= (Ubuntu)

PostgresSQL

For PostgresSQL, your distribution might put the logs in /var/log or in /var/
log/postgresql. Here is some sample output from my /var/log/postgresql/
postgresql-8.4-main.log, including a syntax error:

2012-07-10 20:08:07 PDT LOG: database system is ready to accept connections

2012-07-10 20:08:07 PDT LOC: autovacuum launcher started

2012-07-10 20:08:07 PDT LOC: incomplete startup packet

2012-07-11 14:15:48 PDT LOG: incomplete startup packet

2012-07-11 14:16:01 PDT LOG: incomplete startup packet

2012-07-12 05:06:53 PDT ERROR: operator does not exist: name = pg_stat_all_tables at
=character 47

2012-07-12 05:06:53 PDT HINT: No operator matches the given name and argument type(s).
=You might need to add explicit type casts.

High Server Load

Before we get into database-specific steps, if you are trying to troubleshoot a slow
database server that has high load, particularly if that server does more than just run
database software, check out the tips in Chapter 2 for how to diagnose the cause of
high load. The steps in that chapter should not only help you determine whether the

From the Library of Martin Spilovsky

174 Chapter 9 = Why Is the Database Slow? Tracking Down Database Problems

database is the real cause of the load, but also help you figure out whether the load is
CPU-, RAM-, or 10-bound.

If a database is generating high CPU-bound load, then you might be facing a
bad SQL query that is using much more processing power than it should; if this is
the case, you’ll want to start tracking down slow queries, which are covered later
in this chapter. If your load is RAM-bound, then you will either want to tune your
database to take on fewer simultaneous queries or attempt to locate particularly
expensive SQL queries that tie up RAM (or stop storing your database on your
RAM disk). If the load is 10-bound, then use tools like iotop to try to identify which
specific process, and sysstat to locate which storage, is getting hit the most. Of
course, in all of these cases, you may also just need to upgrade your hardware or
add another server to your cluster.

Is the Database Running?

One of the very first things you will want to check if there seems to be a
database problem is whether the database is running and listening on the
right port. Although you can test whether the port is available remotely,
the best way to truly test whether the database process is running and lis-
tening on the right port is from the server itself. That said, refer to Chapter
5 for more information on how to perform network troubleshooting if
you suspect a network issue may prevent you from connecting to your
database. Both MySQL and PostgresSQL have quite different sets of pro-
cesses, and they both listen on different ports.

MySaL

There are a few different ways to test whether MySQL is running. First, you
can use its init script as it supports the status command. The benefit here
is that you don’t really need to know what the name of the process is, just
the name of the init script located in /etc/rc.d/init.d/ or /etc/init.d/. In the
case of a Debian-based system, the service is called mysql, so you can pull
the status with

$ sudo service mysql status
mysql start/running, process 735

From the Library of Martin Spilovsky

Is the Database Running? 175

You can also confirm that MySQL is running using a combination of ps
and grep:

$ ps -ef | grep mysql
mysql 735 1 0 Junl2 ? 02:02:56 /usr/sbhin/mysqld

Notice that the process ID that the status command returned (735) matches
what you get from ps. Of course, if MySQL is running but listening to the
wrong port (or only listening on localhost and you need it to listen on
all interfaces), you still may not be able to connect to it even though it is
running. So next you will want to test that MySQL is listening on the cor-
rect port. By default, MySQL should listen on port 3306; of course, if you
have configured it to listen on a different port, you will need to change the
following command to match your environment. The netstat command,
when passed the -Tnp options, will display all ports that are in a listening
state along with the process that has that port open:

$ sudo netstat -Tnp | grep :3306
tcp 0 0 127.0.0.1:3306 0.0.0.0:« LISTEN 735/mysqld

Again, notice that the MySQL process in the output has the same process
ID (735) as in the earlier commands. If you don’t get any output from this
command, then there is no process listening on port 3306. You may want
to just view the output of netstat with no grep (or grep for mysql instead) and
see if any processes come up. In this example, it’s also worth noting that
the MySQL process is listening only on localhost (127.0.0.1:3306), which
is fine since the web service that accesses it is located on the same server.
However, if you needed to access MySQL from another machine and you
got this output, you would want to reconfigure MySQL so it listens either
on the IP of your network interface or on all interfaces (0.0.0.0).

PostgresSQL

As with MySQL, you can query the init script or use ps to test whether Post-
gresSQL is running, but depending on your system, the PostgresSQL init
script may have a different name. For instance, on Debian-based systems

From the Library of Martin Spilovsky

176

Chapter 9

Why Is the Database Slow? Tracking Down Database Problems

like Ubuntu, the init script is named after the version of PostgresSQL, so
you would run

$ sudo service postgresql-8.4 status
Running clusters: 8.4/main

Substitute postgresql-8.4 for postgresql-9.1 or whatever version you have
installed on your system, or just check the /etc/init.d or /etc/rc.d/init.d
directories if you aren’t sure about the name of the init script.

Alternatively, you can use the ps command:

$ ps -ef | grep postgres

postgres 1629 1 0 Julle ? 00:00:06 /usr/Tib/postgresql/8.4/bin/postgres -D /
=var/Tib/postgresql/8.4/main -c config_file=/etc/postgresql/8.4/main/postgresql.conf

postgres 1631 1629 0 Julle ? 00:00:38 postgres: writer process

postgres 1632 1629 0 Jullo ? 00:00:30 postgres: wal writer process

postgres 1633 1629 0 Julle ? 00:00:08 postgres: autovacuum launcher process

postgres 1634 1629 0 Julle ? 00:00:04 postgres: stats collector process

Unlike with MySQL, with PostgresSQL, even a basic install has multiple
processes running and being responsible for different tasks. Also, since
PostgresSQL listens on a different port (5432) by default than MySQL,
when you run netstat, you will need to grep for that port:

$ sudo netstat -Inp | grep :5432
tep 0 0 127.0.0.1:5432 0.0.0.0:« LISTEN 1629/postgres
tepb 0 0 ::1:5432 Viiw LISTEN 1629/postgres

Note here that the process that is listening on the port has the same process
ID (1629) as the first process in the ps output. If you don’t get any output,
try grepping for postgres instead of the port to see if postgres is listening on
any other port (or just look at the netstat output without the grep com-
mand). Also note that in this case PostgresSQL is listening only on the loc-
alhost IP (127.0.0.1:5432), so only processes on the same server can access
the database—a safe default if that’s all you need. If you do need other
servers to be able to access the database and PostgresSQL is only listening
on 127.0.0.1, you will need to reconfigure PostgresSQL to either listen on

From the Library of Martin Spilovsky

Get Database Metrics 177

the IP for the network interface you want to use or have it listen for all
interfaces (0.0.0.0).

Get Database Metrics

When you are trying to track down a problem with your database, server
metrics can be useful, but even more useful are metrics from the database
itself. Both MySQL and PostgresSQL give you access to their metrics, but
as you'll see, they do it in completely different ways.

MySQL

To pull metrics from MySQL, you'll use the mysqladmin tool, which should
be installed as part of the MySQL client software on your system (this also
means you can install that software on a different system, potentially con-
nect to the database over the network, and pull this data). The most basic
(and possibly most immediately useful) data we will pull with mysqladmin is
with the status command:

mysqladmin -u root -p status

Enter password:

Uptime: 2680987 Threads: 1 Questions: 17494181 Slow queries: @ Opens: 2096 Flush
—tables: 1 Open tables: 64 Queries per second avg: 6.525

Here is what each of these values represents, pulled from the mysqladmin
man page:

Uptime
The number of seconds the MySQL server has been running

Threads
The number of active threads (clients)

Questions
The number of questions (queries) from clients since the server was
started

From the Library of Martin Spilovsky

178 Chapter 9 = Why Is the Database Slow? Tracking Down Database Problems

STow queries
The number of queries that have taken more than Tong_query_time
seconds

Opens
The number of tables the server has opened

Flush tables
The number of flush-+, refresh, and reload commands the server has
executed

Open tables
The number of tables that currently are open

Queries per second avg
The average number of queries per second the database receives

For a lot of your database troubleshooting, these values may be enough for
you to build a baseline and tell when some number is out of the norm, in
particular the threads, slow queries, and queries-per-second metrics. Of
course, if you want more in-depth information, you can get that too—via
the extended-status command:

$ mysqladmin -u root -p extended-status
Enter password:

B GG L E R E R R R e Fommmmm oo +
| Variable_name | Value |
e fmmmmm e +
Aborted_clients	0
Aborted_connects	5
Binlog_cache_disk_use	0
Binlog_cache_use	0
Bytes_received	3264109643
Bytes_sent	49337359253
Threads_cached	7
Threads_connected	1
Threads_created	6575
Threads_running	1
Uptime	2683061
Uptime_since_flush_status	2683061
+

e

From the Library of Martin Spilovsky

Get Database Metrics 179

The extended-status command will give you all of the information from the
status command plus a huge number of other metrics that you can use to
help build a baseline for your database so that you can see when things fall
outside of the norm.

PostgresSQL

PostgresSQL collects and lists performance statistics in a much differ-
ent way than MySQL. First you need to edit your postgresql.conf file
(for example, on an Ubuntu system, this is located at /etc/postgresql/8.4/
main/) and make sure that the track_activities and track_counts options are
set to on. They likely default to on, but if you need to change these vari-
ables, you will need to restart PostgresSQL afterward for the changes to
take effect.

Once statistics collection is enabled, the data will be stored in special tables
in the database. Unlike with MySQL, you will use SQL commands to pull
this data out of those tables. The complete list of statistics tables is docu-
mented in the official PostgresSQL documentation, but the following sec-
tions will list a few of the particularly useful tables. First though, be sure to
become the postgres user (or another user who has superuser permissions
on the database) so you can send your queries:

su - postgres

$ psql

psql (8.4.12)

Type "help" for help.

pg_stat_activity The pg_stat_activity table displays information about
each currently running server process including which database it is
accessing, which system process it uses, which user is accessing it, the
current query, and data about how long the query has been running.
This table is particularly valuable when you know a particular database
process is using a lot of CPU time and you want to know what query it is

From the Library of Martin Spilovsky

180 Chapter 9 = Why Is the Database Slow? Tracking Down Database Problems

in the middle of. To see all of the data in the table, use a standard select
statement:

postgres=# select « from pg_stat_activity;
datid | datname | procpid | usesysid | usename | current_query
| waiting | xact_start | query_start |
backend_start | client_addr | client_port

11564 | postgres | 4689 | 10 | postgres | select from pg_stat_activi
ty; | f | 2012-07-12 04:26:19.602872-07 | 2012-07-12 04:26:19.602872-07 |
2012-07-12 04:26:01.363883-07 | \ -1

(1 row)

In this example, you can see the default PostgresSQL database isn’t doing
all that much—the only process is the one you initiated to pull statistics.
However, if you were trying to track down a particular process, all you
would have to do is modify your SQL statement:

postgres=# select « from pg_stat_activity where procpid=4689;

datid | datname | procpid | usesysid | usename | current_query
| waiting | xact_start | query_start
backend_start | client_addr | client_port
B R o fomm e +-
______________________________ O U,
11564 | postgres | 4689 | 10 | postgres | select « from pg_stat_activi
ty where procpid=4689; | f | 2012-07-12 04:26:19.602872-07 | 2012-07-12 04:26:19.602872-07 |
2012-07-12 04:26:01.363883-07 | | -1
(1 row)

pg_stat_database The pg stat_database table stores database statistics,
such as the number of server processes connected to that database, the
number of transactions committed and rolled back, and block and row
statistics. Like with pg_stat_activity, a basic select statement can pull all of
the current data:

postgres=# select « from pg_stat_database;
datid | datname | numbackends | xact_commit | xact_rollback | blks_read | blk
s_hit | tup_returned | tup_fetched | tup_inserted | tup_updated | tup_deleted

From the Library of Martin Spilovsky

Get Database Metrics 181

- Hmmmmmmmm e Hmmmmmmm e tmmm e B OCEEEREEE tmmmmmmmmeem +mmmm
—————— T e T

1 | templatel | 0| 0| 0| 0|

0 | 0 | 0 | 0| 0 | 0
11563 | templated | 0| 0| 0| 0|

0| 0| 0| 0| 0 | 0
11564 | postgres | 1| 3876 | 0| 116 |
61544 | 1075635 | 6775 | 0| 0 | 0
(3 rows)

This example is from a default PostgresSQL install so the default databases
are listed, but you would also see any databases you have created as well.

pg_stat_all_tables The pg_stat_all_tables table stores statistics on a
per-table basis including sequential scan statistics, index scan statistics,
and data about the number of other operations performed on that table.
Since this stores data on all the existing tables, the default select will return
a lot of data:

postgres=# select x from pg_stat_all_tables;

relid | schemaname | reTname | seq_scan | seq_tup_read

| idx_scan | idx_tup_fetch | n_tup_ins | n_tup_upd | n_tup_del | n_tup_hot_upd |
n_live_tup | n_dead_tup | last_vacuum | Tast_autovacuum | last_analyze | last_a

utoanalyze
------- T
fmmmmmmmmen fmmmmmm e e fmmmmmmmmme e fmmmmmmmemem pmmmmm e +
------------ T e A
2753 | pg_catalog | pg_opfamily | 0| 0
| 0| 0| 0| 0| 0| 0
0| 0| | | |
2617 | pg_catalog | pg_operator | 0 | 0
| 7| 7| 0| 0| 0| 0|
0] 0| | | |
2328 | pg_catalog | pg_foreign_data_wrapper | 0| 0
| 0| 0| 0| 0| 0| 0
0] 0| | | |
(65 rows)

This is definitely an example where you might want to prune the output
with specific SQL queries to get the data you want. Of course, it may just

From the Library of Martin Spilovsky

182 Chapter 9 = Why Is the Database Slow? Tracking Down Database Problems

be that you want to exclude all of the system tables and only list user tables;
view the pg_stat_user_tables table to just see user tables or the pg_stat_
sys_tables to just see system tables.

Identify Slow Queries

When debugging problems with a database, one of the most common
questions you’ll have to answer is “Why is the database slow?” To answer
that question, you'll want to be able to identify any slow queries—database
queries that take longer than a certain threshold. When you can identify
slow queries, you can then work on optimizing them to run faster on your
database. Both MySQL and PostgresSQL have mechanisms in place to log
slow queries so that you can view them later.

MySQL

To enable slow query logging in MySQL, you will need to set two variables:
Tog_slow_queries and Tong_query_time. The Tog_sTow_queries variable should be
set to the file you want to log all of your slow queries to (make sure the
user MySQL runs as can write to this location), and Tong_query_time should
be set to the threshold in seconds for how long a query needs to take to
be considered a slow query. In the default my.cnf file that came with the
MySQL installation, these settings were already present in the file; they
were just commented out:

Here you can see queries with especially long duration
Tog_sTow_queries = /var/Tog/mysql/mysql-slow.Tog
Tong_query_time = 2

Once you set both of these values, you will need to restart the MySQL pro-
cess. When you do, notice that it creates the slow query log for you when it
restarts; the contents look something like this:

Jusr/sbin/mysqld, Version: 5.1.63-Qubuntu@.10.04.1-Tog ((Ubuntu)). started with:
Tcp port: 3306 Unix socket: /var/run/mysqld/mysqld.sock
Time Id Command Argument

From the Library of Martin Spilovsky

Identify Slow Queries 183

As queries come up that take longer than your threshold, you will be able
to see them in this log along with information about the query, such as
the user who executed it, the query and lock times, how many rows were
sent, and how many were examined. You can then use this information to
go back to your application, identify where that query originates, and find
ways to optimize it.

Another way to identify problem MySQL queries is via the mysqladmin
process1ist command, which lists information about all the currently active
MySQL processes. Here’s some sample output from a relatively inactive
WordPress install that had one client (a local mysqgl client connection)
connected along with this mysqladmin command:

$ mysqladmin -u root -p processlist
Enter password:

e Hommmo- et e oo R e e T +
| Id | User | Host | db | Command | Time | State | Info |
tmmm e Hmmmmee Hommmmmmmm e pommmmmmmmem tmmmmmmmem tmmm s tmmmmme- RnCCEEEEEEEE +
| 2663 | root | Tlocalhost | wordpress | Sleep | 80 | | |
| 2686 | root | localhost | | Query | @ | | show processlist |
L Hommme- e Fommmm oo R $ommme- R Fmmmmm oo +

You can also add the -i option along with the number of seconds; when
you do, this command will execute over and over with that number of
seconds gap in between. Then you can monitor commands as they come
in and identify any queries that are taking much longer than they should.
If you do identify a query that is slowing down the system and you want
to kill it, make a note of the process ID in the output of the processlist
command, and use the ki1l command along with that process ID to kill
the process. For instance, if you wanted to kill the above connection to the
WordPress DB that had been connected for 80 seconds, you would type

$ mysqladmin -u root -p kill 2663

PostgresSQL

PostgresSQL gives you the option to log all queries, not just those that are
above a certain threshold with the Tog_min_duration_statement setting. If this

From the Library of Martin Spilovsky

184 Chapter 9 = Why Is the Database Slow? Tracking Down Database Problems

value is set to -1, then no queries are logged. If it is set to 0, then all queries
are logged. If it is set to anything greater than zero, then it will log all que-
ries that take longer than that number in milliseconds. So, for instance, to
log all queries that take longer than 100 milliseconds, you would set the
value like this:

log_min_duration_statement = 100

Once set, restart the PostgresSQL service so the settings take effect. You
should then start to see any queries that take longer than your thresh-
old to show up in the logs. Remember that unlike MySQL, PostgresSQL
expects this value to be in milliseconds, not seconds. Be careful not to set
the threshold too low, though, unless you want to slow down your data-
base by logging everything. For instance, setting the value to 1 will even
pick up statistics-gathering queries in the log:

2012-07-12 11:02:00 PDT LOG: duration: 28.964 ms statement: select « from
—pg_stat_activity;

2012-07-12 11:02:12 PDT LOG: duration: 39.845 ms statement: select « from
—pg_stat_all_tables;

From the Library of Martin Spilovsky

CHAPTER 10

It’s the Hardware’s Fault!
Diagnosing Common
Hardware Problems

185

From the Library of Martin Spilovsky

THE WORLD OF DevOps is largely a world of software, but ultimately that
software needs to run on a physical machine and that physical machine can
have its own host of problems. Although if you are a developer or work in
QA, you may think that hardware is the sysadmin’s domain; since every-
one in DevOps organizations works much more closely together, having
hardware troubleshooting skills is invaluable. After all, no matter who is
responsible for the hardware, if you could find out ahead of time that the
hard drive on an important server is about to fail, wouldn’t you want to
know? If you knew that your network application was failing not because
of bugs in your code, but because the network card was faulty, you might
save yourself hours or days of debugging. If your application crashes ran-
domly, your code may be fine and it could be a bad stick of RAM.

This chapter will cover some of the more common hardware failures you
might run into, along with steps to troubleshoot and confirm them. It
starts with some of the more common pieces of hardware that fail—hard
drives and RAM—and then continues with how to troubleshoot some
other common hardware problems.

The Hard Drive Is Dying

Many different components make up a server, but consistently the hard
drives seem to be the weakest link. If any piece of hardware is going to fail
before its time, it will likely be a hard drive. That’s why so many servers
have some sort of redundancy in the form of RAID. Although hard drive
manufacturers all have their own hard drive testing tools, modern hard
drives should also support SMART, which monitors the overall health
of the hard drive and can alert you when the drive will fail soon. Unlike
with a lot of vendor tools, you can check the health of your hard drive via
SMART without rebooting.

SMART tools should be available for any major Linux distribution, so
just use your package manager and search for the keyword “smart.” Under

Debian-based distributions, for instance, the package is called smartmontools.
Once the package is installed, you should have a smartct] program you can

186

From the Library of Martin Spilovsky

The Hard Drive Is Dying 187

run as root to scan your drives. Pass the -H option to smartct] to check the
health of a drive:

$ sudo smartct] -H /dev/sda

smartct] version 5.37 [1686-pc-Tinux-gnu] Copyright (C) 2002-6 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

SMART Health Status: OK

In this example, the hard drive is healthy, but smartct] may also return
either failures or warnings about a drive:

$ sudo smartct]l -H /dev/sda
smartct] version 5.38 [x86_64-unknown-Tinux-gnu] Copyright (C) 2002-8 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

=== START OF READ SMART DATA SECTION ===
SMART overall-health self-assessment test result: PASSED
Please note the following marginal Attributes:
ID# ATTRIBUTE_NAME FLAG ~ VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE
190 Airflow_Temperature_Cel 0x0022 056 037 045 0Old_age Always In_the_past 44
= (Lifetime Min/Max 20/50)

In this case, the drive passed but returned a warning about airflow tem-
perature for the drive (it’s in an enclosure that probably could use better
airflow). Both examples pointed smartct1 at /dev/sda, the first SCSI drive in
the system, so you may need to change that to /dev/sdb or another device
to check all of your drives. If you are unsure of the drives in your system,
look at the output of sudo fdisk -1. It will list all of the disks and partitions
it can detect, but keep in mind that it will also show virtual drives like any
software RAID partitions (/dev/mdX devices) you have set up.

You can also pull much more information about a hard drive using smartct1
with the -a option. That option will pull out all of the SMART information
about the drive in one fell swoop:

$ sudo smartctl -a /dev/sda
smartct] version 5.38 [x86_64-unknown-Tinux-gnu] Copyright (C) 2002-8 Bruce Allen
Home page is http://smartmontools.sourceforge.net/

From the Library of Martin Spilovsky

188 Chapter 10 = It’s the Hardware’s Fault! Diagnosing Common Hardware Problems

=== START OF INFORMATION SECTION ===

Model Family: Seagate Barracuda 7200.10 family

Device Model: ST3400620AS

Serial Number: 3QH01QZ3

Firmware Version: 3.AAD

User Capacity: 400,088,457,216 bytes

Device is: In smartct] database [for details use: -P show]
ATA Version is: 7

ATA Standard is: Exact ATA specification draft version not indicated
Local Time is: Sun Jul 15 14:03:44 2012 PDT

SMART support is: Available - device has SMART capability.

SMART support is: Enabled

=== START OF READ SMART DATA SECTION ===
SMART overall-health self-assessment test result: PASSED
See vendor-specific Attribute Tist for marginal Attributes.

General SMART Values:
0ffline data collection status: (0x82) Offline data collection activity
was completed without error.
Auto Off1ine Data Collection: Enabled.

Self-test execution status: (@) The previous self-test routine completed
without error or no self-test has ever
been run.

Total time to complete Offline

data collection: (430) seconds.

0ffline data collection

capabilities: (0x5h) SMART execute Offline immediate.

Auto Offline data collection on/off support.
Suspend 0ffline collection upon new
command.
0ffline surface scan supported.
Self-test supported.
No Conveyance Self-test supported.
Selective Self-test supported.
Saves SMART data before entering
power-saving mode.
Supports SMART auto save timer.
Error Togging capability: (0x01) Error logging supported.

General Purpose Logging supported.

SMART capabilities: (0x0003

=

Short self-test routine

recommended polling time: (1) minutes.
Extended self-test routine
recommended polling time: (132) minutes.

From the Library of Martin Spilovsky

The Hard Drive Is Dying 189

SMART Attributes Data Structure revision number: 10
Vendor Specific SMART Attributes with Thresholds:

ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE
1 Raw_Read_Error_Rate 0x000f 120 093 006 Pre-fail Always - 242629896
3 Spin_Up_Time 0x0003 085 085 000 Pre-fail Always - 0
4 Start_Stop_Count 0x0032 100 100 020 Old_age Always - 46
5 Reallocated_Sector_Ct 0x0033 100 100 036 Pre-fail Always - 0
7 Seek_Error_Rate 0x000f 075 060 030 Pre-fail Always - 33428869
9 Power_On_Hours 0x0032 062 062 000 Old_age Always - 33760

10 Spin_Retry_Count 0x0013 100 100 097 Pre-fail Always - 0

12 Power_Cycle_Count 0x0032 100 100 020 Old_age Always - 67

187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always - 0

189 High_Fly_Writes 0x003a 100 100 000 Old_age Always - 0

190 Airflow_Temperature_Cel 0x0022 060 037 045 Old_age Always In_the_past 40
= (Lifetime Min/Max 20/50)

194 Temperature_Celsius 0x0022 040 063 000 Old_age Always - 40
- (016 0 0)
195 Hardware_ECC_Recovered 0x00la 065 057 000 Old_age Always - 35507735
197 Current_Pending_Sector 0x0012 100 100 000 Old_age Always - 0
198 0ffline_Uncorrectable 0x0010 100 100 000 Old_age Offline - 0
199 UDMA_CRC_Error_Count ~ 0x003e 200 200 000 Old_age Always - 68
200 Multi_Zone_Error_Rate 0x0000 100 253 000 Old_age Offline - 0
202 TA_Increase_Count 0x0032 100 253 000 Old_age Always - 0

SMART Error Log Version: 1
No Errors Logged

SMART Self-test Tog structure revision number 1

SMART Selective self-test log data structure revision number 1
SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS

1 0 0 Not_testing
2 0 0 Not_testing
3 0 0 Not_testing
4 0 0 Not_testing

5 0 0 Not_testing
Selective self-test flags (0x0):
After scanning selected spans, do NOT read-scan remainder of disk.
If Selective self-test is pending on power-up, resume after @ minute delay.

Although smartctl is useful when you just want to check the health of one

drive, ideally the system could keep track of imminent failures automati-
cally and alert you when there’s a problem. The same package that provides

From the Library of Martin Spilovsky

190 Chapter 10 = It’s the Hardware’s Fault! Diagnosing Common Hardware Problems

smartct] also provides a daemon called smartd that can do this very thing.
By default it may be turned off, so on a Debian-based system, you would
have to edit /etc/default/smartmontools, uncomment start_smartd=yes, then
run sudo service smartmontools start to start the service. If you aren’t using
a Debian-based distribution, check the documentation for your SMART
package—it could be that the service is automatically started for you. In
either case, you may want to check out the /etc/smartd.conf configuration
file to tweak any default settings to suit your system.

Test RAM for Errors

Some of the most irritating types of errors to troubleshoot are those
caused by bad RAM. Often errors in RAM cause random mayhem on
your machine with programs crashing for no good reason, or even ran-
dom kernel panics. In fact, when a once-stable server starts to misbehave,
particularly with random crashes, bad RAM is one of the first things you
should check.

Most major Linux distributions include an easy-to-use RAM testing tool
called Memtest86+ that, in some cases, is not only installed by default, it’s
ready as a boot option in distributions like Ubuntu. Otherwise, install the
package and you should be able to easily add it to your GRUB configura-
tion if it isn’t added automatically. Another option is to simply pick just
about any Linux install disk or rescue tool. Since Memtest86+ only takes up
a little bit of space, most install disks offer it as a diagnostic tool you can
select at boot time. No matter how you invoke it at boot time, once you
start Memtest86+, it will immediately launch and start scanning your RAM,
as shown in Figure 10-1.

Memtest86+ runs through a number of exhaustive tests that can identify
different types of RAM errors. At the top right, you can see which test is
currently being run along with its progress; and in the Pass field, you can
see how far along you are with the complete test. A thorough memory
test can take hours to run, and administrators with questionable RAM
might want to let the test run overnight or over multiple days if neces-
sary to get more than one complete test through. If Memtest86+ does find

From the Library of Martin Spilovsky

Network Card Failures 191

Pass B%
Intel Core 886.1HH=z Test 21% ##dduung
L1 Cache: 64K 13115HB-= Test #1 [Address test, own address]
L2 Cache: 2848K 7843MB-s Testing: 128R - 384M 384M

384M 1739MB-s Pattern:
: Intel i448BX

HallTime Cached RswvdMen HerMap ECC Test Pass Errors ECC Errs

224K eB28-5td of f Std

Figure 10-1 Memtest86+ testing some RAM

any errors, they will be reported in the results output at the bottom of
the screen.

If you do find an error in your RAM, you may not automatically be able
to identify which DIMM has the error. At this point, you will have to use
the process of elimination to take out all but the minimal amount of RAM
your system needs to boot (often a pair of DIMMs) and run Memtest86+ to
see if that pair has an error. If the pair passes, put them in the good pile
and continue on until you find a pair that has an error. Once you do, you
can split the DIMM pair so you run Memtest86+ with one unknown DIMM
and one known good DIMM until you can find which specific DIMM is
bad. Of course, don’t be lazy, and be sure to test every DIMM before you
put the server back together. I've seen circumstances where two different
DIMMs in the same server had problems at the same time.

Network Card Failures

When a network card starts to fail, it can be rather unnerving as you try
all sorts of network troubleshooting steps to no real avail. Often when a

From the Library of Martin Spilovsky

192 Chapter 10 = It’s the Hardware’s Fault! Diagnosing Common Hardware Problems

network card or some other network component to which your host is
connected starts to fail, you can see it in packet errors on your system. The
ifconfig command you may have used for network troubleshooting before
can also tell you about TX (transmit) or RX (receive) errors for a card.
Here’s an example from a healthy card:

$ sudo ifconfig ethd

ethd Link encap:Ethernet HWaddr 00:17:42:1f:18:be

inet addr:10.1.1.7 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::217:42ff:felf:18be/64 Scope:Link

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:1 errors:@ dropped:@ overruns:0 frame:0

TX packets:11 errors:@ dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:229 (229.0 B) TX bytes:2178 (2.1 KB)
Interrupt:10

The lines you are most interested in are

RX packets:1 errors:@ dropped:@ overruns:0 frame:0
TX packets:11 errors:0 dropped:@ overruns:@ carrier:0
collisions:0 txqueuelen:1000

These lines will tell you about any errors on the device. If you start to see
a lot of errors here, then it’s worth troubleshooting your physical net-
work components. It’s possible a network card, cable, or switch port is
going bad. Start with the easiest-to-test component by swapping out the
network cable with a new or known good cable, and if you continue to
get errors, then move the cable to a new, hopefully known, good switch
port. Finally, if neither of those solutions help, try swapping out the net-
work card (or switching to a different port if your server has multiple
Ethernet ports).

The Server Is Too Hot

Servers, especially busy servers, generate a lot of heat. Although ideally
your server is colocated in a facility with good active cooling, it might also
just be shoved under someone’s desk, or it may sit at the top of a rack in

From the Library of Martin Spilovsky

The Server Is Too Hot 193

a poorly cooled datacenter. A poorly cooled server can cause premature
hard drive failure and premature failure in the rest of the server compo-
nents as well. If that’s not enough, modern motherboards often throttle
the CPU down when it detects it is getting close to overheating, so even
if your server doesn’t fail completely, it may slow down to the point of
being unusable. Other times, overheated components may cause processes
to randomly crash.

If you suspect your datacenter may be running a bit too hot, one solution
may be to purchase a rackmount thermometer that can monitor tempera-
ture for you. Rackmount thermometers work, but even if the ambient air
is cool enough, a thermometer may not help you if your server is still too
hot. Linux provides tools that allow you to probe CPU and motherboard
temperatures, and, in some cases, the temperatures of PCI devices and
even fan speeds. All of this support is provided by the Tn-sensors package,
which should be available for just about any distribution.

Once the Tn-sensors package is installed, run the sensors-detect program
as root:

$ sudo sensors-detect

This interactive script will probe the hardware on your system so it knows
how to query for temperature. If you don’t know how to respond to some
of the questions it asks, just hit Enter to accept the default. Once the
sensors-detect script is completed, you can pull data about your server by
running the command sensors:

$ sensors
k8temp-pci-00c3
Adapter: PCI adapter
Cored Temp: +34.0°C
Corel Temp: +38.0°C

k8temp-pci-00ch

Adapter: PCI adapter
Cored Temp: +32.0°C
Corel Temp: +36.0°C

From the Library of Martin Spilovsky

194 Chapter 10 = It’s the Hardware’s Fault! Diagnosing Common Hardware Problems

Different hardware will display different temperature readings. For instance,
the previous code is from an HP ProLiant server whereas the following out-
put is from a ThinkPad laptop:

$ sensors -f

acpitz-virtual-0

Adapter: Virtual device

templ: +134.6°F (crit = +260.6°F)
temp2: +132.8°F (crit = +219.2°F)
thinkpad-isa-0000

Adapter: ISA adapter

fanl: 3756 RPM
templ: +134.6°F
temp2: +122.0°F

As you can see in the second output, we not only got a fan speed, we also
were able to see what temperatures were considered critical for a device.
This example added the -f option as well, which will convert temperatures
into Fahrenheit for you.

So, what do you do if your server is running too hot? For starters, examine
the airflow around the server and make sure the vents in and out of the
server aren’t clogged with dust. If the servers are in a datacenter that forces
cool air from the bottom of the rack, you may want to consider moving
particularly hot servers down closer to the floor (even if the servers aren’t
in such a datacenter, the air is likely to be cooler closer to the floor). If
you have room in your rack, also consider spacing your servers out more
so none are stacked on top of each other. If you have the bad habit of
not rack mounting your servers but instead installing a shelf and stacking
servers one on top of the other, that will also contribute to poor airflow
and overheating.

Power Supply Failures

The final hardware failure this chapter will briefly cover is the power sup-
ply failure. Most modern server hardware has the option of having redun-
dant power supplies so that if a power supply fails, the server stays up.
Although complete power supply failures can be a problem, there really

From the Library of Martin Spilovsky

Power Supply Failures 195

isn’t that much to troubleshoot there—the power supply shuts off and
stops working. The power supply failure briefly mentioned in this section
is one in which the power supply still technically works but can’t supply
enough power.

When a power supply can’t supply adequate power either due to being
underpowered or because it is going to fail soon, it can cause strange prob-
lems on the server. In fact, the symptoms are much like RAM errors, in that
programs can randomly crash, but bad power supplies can also cause tem-
porary failures in hard drives. In your syslog, you may see either SMART
errors or possibly you may experience a file system error that causes your
system to remount in read-only mode (Chapter 4 covers this type of error
in more detail), yet when you do a RAM check or a follow-up SMART
check, things come up clean. Many administrators, when faced with this
kind of issue, just assume the motherboard or some other core component
is starting to fail, and they will toss out the whole server!

So how do you tell when problems like this are caused by a bad power sup-
ply and not by bad RAM or failing drives? Generally, when a power supply
starts to fail and can’t supply sufficient power, you’ll notice problems are
more common when a system is under heavy load. For instance, you may
notice you start getting more frequent file system errors when your build
server is in the middle of a big build (although this may also point to a
cooling issue as well). The simplest way to diagnose this kind of problem is
basic troubleshooting: Swap out the power supply with a new one (or one
from a known good system) and see if you can re-create the issue.

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

Index

(pound sign), comment indicator, 43
1xx informational codes, 150

2xx successful codes, 150151

3xx redirection codes, 151-152

4xx client error codes, 152—-153

5xx server error codes, 153—154

A
Active threads, metrics, 177
Apache
displaying web server statistics, 158—162
validating web server configuration, 163-164
apache2ctl command, 163-164

B
BIOS (Basic Input Output System), 36-37
BIOS boot order, 45-47
Blame, establishing
human actions, 11
postmortems, 11
technology, 14
Boot issues. See also GRUB issues; Linux boot
process; specific issues.
root file system won’t mount, 51-55
secondary file system won’t mount, 55-56

C
Changes
rolling back, 13
tracking, 12-13
Chat rooms as a communication method, 7-8

Client error codes, 152—153
Communication methods
backup methods, 8
chat rooms, 7-8
conference calls, 4-5
direct conversation, 5-6
email, 6-7
Conference calls as a communication method,
4-5
Conversation as a communication method, 5-6
Copy failure, 62-63
CPU statistics, displaying. See also top
command.
idle time, 23
iostat program, 28
sysstat package, 30-31
CPU time
system, 23
user, 23-25
CPU-bound load average, 20
curl command
parsing web server logs, 154—157
testing web servers, 146-148

D

Database metrics. See also Metrics.
active threads, 177
database statistics, 180181
flush tables, 178
MySQL, 177-179
open tables, 178

197

From the Library of Martin Spilovsky

198 Index

Database metrics, continued
opens, 178
pg_stat_activity table, 179-180
pg_stat_all_tables table, 181-182
pg_stat_database table, 180-181
PostgresSQL, 179-182
queries per second, 178
questions from clients, 177
server process stats, 179-180
statistics, per table, 181-182
uptime, 177
Database metrics, slow queries
identifying, 182-184
MySQL, 182-183
PostgresSQL, 183184
statistics on, 178
Database servers. See also Logs, databases.
MySQL, 174-175
PostgresSQL, 175-177
testing, 174-175
df command, 59
dig command
displaying TTL values, 109-110
DNS troubleshooting, 72-74, 95-97
recursive DNS resolution, 102—-104
recursive name servers, 106
+trace argument, 102—-104
zone transfer issues, 113-117
Directories, space usage, 59—61
Disk issues
corrupted file systems, repairing, 63—64
disk full, 58-61
hard drive failure, 186—-190
label problems, diagnosing, 54
large .swp files, 61
large /tmp files, 61
out of inodes, 61-62
read-only file system, 62—63
reserved blocks, 59

software RAID, repairing, 64—66
space usage, displaying, 59-61
statistics, displaying, 32
Dividing the problem space, 3—4
dmesg command, 62
DNS (Domain Naming System)
caches, flushing, 111-112
caching, 108-112
inaccessible, 73, 95-97
missing search path, 97-98
not configured, 73, 95-97
overview, 94-95
recursive name servers, 95-98
testing, 72-74
troubleshooting, 95
DNS servers, troubleshooting
dig output, 98-101
DNS caches, flushing, 111-112
DNS caching, 108-112
recursive DNS resolution, 102—-107
recursive name servers, 104—107
tracing DNS queries, 101-104
TTL (Time To Live) values, 108-112
update not taking, 107-117
zone syntax errors, 112
zone transfer issues, 113—117
Documenting troubleshooting activities,
10-12
du command, 60
duck command, 60
Duplex issues, diagnosing, 70

E

Email
as a communication method, 6-7
greylisting, 130
headers, 123-125
spam reduction, 130, 132-133
tracing requests, 125

From the Library of Martin Spilovsky

Email, receiving
logs, examining, 138—140
telnet cannot connect, 136—137
telnet connects, message rejected,
137-138
Email, sending
error codes, 129-130
outbound server can’t communicate with
destination, 131-135
outbound server won't allow relay,
130-131
overview, 125-126
sending a test email, 127-129
unable to communicate with outbound
server, 126—130
Error codes. See also HTTP status codes.
client error, 152-153
email, 129-130
informational, 150
overview, 149-150
redirection, 151-152
server error, 153—154
successful, 150-151
Error logs. See Logs.
/etc/init.d directory, 40—41
/etc/rc.local directory, 41
/etc/rcn.d directory, 41
/etc.rcS.d directory, 41
ethtool program, 69-70
Extended-status command, 178-179

F
File systems
corrupted, repairing, 63—64
read-only, 62-63
Files
listing by size, 61
space usage, displaying, 59-61
unable to save or copy, 6263

Index

Firewalls

detecting, 76

rules, displaying, 77-78, 145-146
5xx server error codes, 153—154
Flush tables, metrics, 178
Folders. See Directories.
4xx client error codes, 152—-153
fsck command, 63-64

G
grep command
parsing web server logs, 156
searching for email ID, 132
testing MySQL, 175
Greylisting email, 130
GRUB boot loader, 37-38
GRUB issues
configuration file, editing, 54
disabling splash screens, 51
version, displaying, 47
GRUB issues, prompt
misconfigured prompt, 49
no prompt, 45—47, 47-48
stage 1.5 prompt, 48—49
GRUB issues, repairs
from the live system, 49-50
with a rescue disk, 50-51

H

Hard drive. See Disk issues.
Hardware interrupts, displaying, 23
Headers, email, 123-125

High load average, definition, 20

199

Hostnames, converting from IP addresses. See

DNS (Domain Naming System).

HTTP status codes
1xx informational codes, 150
2xx successful codes, 150—-151
3xx redirection codes, 151-152

From the Library of Martin Spilovsky

200 Index

HTTP status codes, continued
4xx client error codes, 152—-153
5xx server error codes, 153—154
overview, 149—150

|
ICMP, blocked packets, 72
ifconfig command, 70-71
iftop command, 81-83
Informational error codes, 150
init scripts
directory for, 41
respawning, 42—45
upstart scripts, 42—45
initrd (initial RAM disk), 38—39
Inodes
definition, 61
running out of, 61-62
usage, displaying, 61-62
Internet, targeted searches, 14-15
intramfs file, 38—39
1/O wait time
diagnosing, 27-29
displaying, 23
I/O-bound load average, 20
iostat program, 27-29
iotop command, 81-83
IP addresses, converting to hostnames. See DNS
(Domain Naming System).
iptables command
displaying firewall rules, 77-78, 145-146
troubleshooting DNS issues, 79

L

LILO boot loader, 37

Linux boot process. See also GRUB issues.
BIOS (Basic Input Output System), 36-37
BIOS boot order, 45-47
GRUB boot loader, 3738

initrd (initial RAM disk), 38—39
intramfs file, 38—39
LILO boot loader, 37
Linux kernel, 38-39
Linux boot process, /sbin/init program
/etc/init.d directory, 40—41
/etc/rc.local directory, 41
/etc/ren.d directory, 41
/etc.rcS.d directory, 41
init scripts, 41-45
overview, 39
runlevels, 40
single-user mode, 40
startup scripts, 40—41
system init scripts, 41
System V init, 39-42
upstart scripts, 42—45
user-editable script, 41
Linux kernel, 38—39
Listening ports, displaying, 143, 144. See also
Port 80.
Im-sensors package, 193
Load. See System load.
log_min_duration_statement setting, 183—184
Logs, databases
high server load, 173-174
MySQL, 173
PostgresSQL, 173
searching, 172-174
Logs, email, 138-140
Logs, web server
enabling DNS resolution, 158
parsing, 154-157
log_slow_queries variable, 182—183
long_query_time variable, 182-183

M
mdadm command, 64—66
Memory. See RAM.

From the Library of Martin Spilovsky

Memtest86+ tool, 190-191
Metrics. See also Database metrics; Statistics;
System load; specific metrics.
CPU idle time, 23
hardware interrupts, 23
1/0 wait, 23
nice CPU time, 23
software interrupts, 23
steal time, 23
system CPU time, 23
user CPU time, 23
mke2fs tool, 64
mysql command, 174
MySQL databases
database servers, 174-175
logs, 173
metrics, 177-179
slow queries, 182-183
testing, 175
mysqgladmin command, 177, 183

N
Narrowing the problem, 3—4
netstat command
displaying listening ports, 77, 144
troubleshooting DNS issues, 79
Network card failure, 191-192
Network interfaces
configuration, checking, 70-71
displaying, 69-70
Networks
connections, checking, 69-70
settings, displaying, 69-70
Networks, slow
bandwidth consumption, tracing,
81-83
DNS issues, 79
finding the slowdown, 80
packet captures, 8388

Index 201

Nginx
displaying web server statistics, 158—162
validating web server configuration,

163-164

nginx command, 164

Nice CPU time, displaying, 23

nmap program, 76

nosplash option, 51

nslookup tool, 72-74, 95-97

0

1xx informational codes, 150

OOM (out-of-memory) killer, 26-27
Open tables, metrics, 178
Out-of-memory issues, 25-27

P
Packet captures
overview, 83—84
raw packet dumps, 87-91
replaying captured packets, 88
tcpdump tool, 84-88
Wireshark program, 88-91
Partitions, duplicate names, 52
Past solutions, favoring, 9-10
Performance
slow or no server response. See System load.
troubleshooting slow networks, 78—83
perl command, 156-157
pg_stat_activity table, 179-180
pg_stat_all_tables table, 181-182
pg_stat_database table, 180-181
ping command
DNS troubleshooting, 96
testing local gateway, 72
troubleshooting DNS issues, 79
Port 80, testing. See also Listening ports.
servers, 76, 77—78
web servers, 143—-146

From the Library of Martin Spilovsky

202 Index

PostgresSQL databases

database servers, 175-177

logs, 173

metrics, 179-182

slow queries, 183-184

testing, 176
Postmortems, 10—12
Pound sign (#), comment indicator, 43
Power supply failure, 194-195
Processes

displaying, 29. See also top command.

RAM consumption, 25
Processes, killing
OOM (out-of-memory) killer, 26-27
top command, 21
ps command
testing MySQL, 175
testing PostgresSQL, 176

Q
Queries per second, metrics, 178
Questions from clients, metrics, 177

R
RAID (Redundant Array of Inexpensive
Disks)
failure detection, 64—66
repairing, 64-66
RAM
DIMM failure, identifying, 191
statistics, displaying, 31-32
testing, 190-191
usage, diagnosing, 25-27
RAM-bound load average, 20
Raw packet dumps, 87-91
Rebooting, 15
Recursive DNS resolution, 102—104
Recursive name servers, 95-98
Redirection error codes, 151-152

Remote host
routing to, 74-75
testing locally, 76-78
Remote ports, testing, 76, 77-78
Rescue disk, repairing GRUB issues, 50-51
Reserved blocks, 59
Respawning init scripts, 42—45
Rolling back changes, 13
Root file system won’t mount
duplicate partition names, 52
root device changed, 52-55
root kernel argument, 52
root partition corrupt or failed, 55
UUID changed, 54-55
route command
displaying current route table, 71-72
troubleshooting DNS issues, 79
Routing table, displaying, 71-72
Runlevels, 40

S
sar tool, 31
Save failure, 62—63
/sbin/ifconfig command, 69-70
/sbin/init program
/etc/init.d directory, 40—41
/etc/rc.local directory, 41
/etc/rcn.d directory, 41
/etc.rcS.d directory, 41
init scripts, 41-45
overview, 39
runlevels, 40
single-user mode, 40
startup scripts, 40—41
system init scripts, 41
System V init, 39-42
upstart scripts, 42—45
user-editable script, 41
SBL (Spam Blackhole List), 132-133

From the Library of Martin Spilovsky

Scripts
init, 41-45
startup, 40—41
system init, 41
upstart, 42—-45
user-editable, 41
Secondary file system won’t mount, 55-56
sensors command, 193—-194
Server error codes, 153—154
Servers. See also specific servers.
process statistics, 179-180
slow or no response. See System load.
too hot, 192—-194
Servers, cannot communicate
blocked ICMP packets, 72
client problem versus server, 69
default gateway, pinging, 71-72
DN, testing, 7274
DNS inaccessible, 73
DNS not configured, 73
firewall rules, displaying, 77-78
firewalls, detecting, 76
within the local network, 71-72
missing search path, 73-74, 97-98
network connection, checking, 69-70
network interface, checking, 70-71
port 80, testing, 76, 77-78
remote host, routing to, 74-75
remote host, testing locally, 76-78
remote port, testing, 76, 77-78
routing table, displaying, 71-72
Single-user mode, 40
SMART tools, 186—190
smartctl command, 189
smartd daemon, 189
Software interrupts, displaying, 23
Sorting
files, by size, 61
top command output, 26

Index 203

Space usage, displaying, 59—61
Spam Blackhole List (SBL), 132-133
Spam reduction, 130, 132-133
Speed. See Performance.
Splash screens, disabling, 51
Startup scripts, 40—41
Statistics, data files, 30—31. See also Metrics;
specific statistics.
Statistics, displaying
CPU, 30-31
disk, 32
RAM, 31-32
for specific days, 33
Status codes. See Error codes; HTTP status codes.
status command, 177
Steal time, displaying, 23
Successful error codes, 150-151
.swp files, size issues, 61
sysstat package
CPU statistics, displaying, 30-31
disk statistics, displaying, 32
installing, 30
RAM statistics, displaying, 31-32
run frequency, modifying, 30
System CPU time, displaying, 23
System init scripts, 41
System load, diagnosing
after the fact, 29-33
high I/O wait, 27-29
high user time, 24-25
out-of-memory issues, 25-27
RAM usage, 25-27
top command, 20-24
System load, load average
CPU-bound, 20
high, 20
I/0-bound, 20
overview, 19
RAM-bound, 20

From the Library of Martin Spilovsky

204 Index

System load, overview, 18—-19

System operations, understanding,
13-14

System V init, 39-42

top command

overview, 20-22

tracing bandwidth consumption, 81-83

top command, output

example, 21
T interpreting, 2224
tcpdump tool sorting, 26
filtering output of, 86 +trace argument, 102—-104

output file size, managing, 87
packet captures, 84-88
parsing output, 85

replaying captured packets, 88

traceroute command

finding network slowdowns, 80
routing to a remote host, 74-75
troubleshooting DNS issues, 79

saving output to a file, 86—87 Tracing
tcptraceroute package, 75 DNS queries, 101-104
telnet email requests, 120-123, 125
cannot connect, 136-137 Tracking changes, 12-13
connects, message rejected, 137-138 Troubleshooting, favoring past solutions, 9-10.
See also specific problems.
TTL (Time To Live) values, 108—112
2xx successful codes, 150151

displaying listening ports, 143
sending a test email, 127-129
testing a remote port, 76
testing web servers, 148—149
Testing u
database servers, 174-175 Upstart scripts, 42—45
DNS (Domain Naming System), Uptime, metrics, 177
7274 uptime command, 18-19
local gateway, 72 User CPU time, 23-25

MySQL, 175 User-editable script, 41
port 80, 76, 77-78, 143—-146
PostgresSQL, 176 v

quick versus slow, 8-9 vi editor, 155

remote hosts locally, 76-78

remote port, 77-78 W

simple versus complex, 8-9 watch command, 162

web servers, 146—149 Web servers
3xx redirection codes, 151-152 configuration problems, 163—164
Time To Live (TTL) values, 108-112

/tmp files, size issues, 61

logs, enabling DNS resolution, 158
permission problems, 164—165

From the Library of Martin Spilovsky

server status pages, 168—169
sluggish performance, 166-168
statistics, displaying, 158—162
Web servers, unavailable
CPU-bound load, 166-168
displaying firewall rules, 145-146
high load, 166-168
1/O-bound load, 166-168

Index 205

port 80, testing, 143—146

RAM-bound load, 166168

testing from the command line, 146—149
Wireshark program, 88-91

z

Zone syntax errors, 112
Zone transfer issues, 113-117

From the Library of Martin Spilovsky

This page intentionally left blank

From the Library of Martin Spilovsky

S Everything You Need to Work with

- Ubuntu Server—
PREATLSS Straight from the Source!

. Seventhediton The Official Ubuntu Book serves a
- wide audience: novices who just
want to test the waters and give
Ubuntu a try, intermediate users,
and those who want to take the
next step toward becoming
. 5 power users. It is not intended as a
: ntu guide to highly technical uses like

- Book . ..
B professional systems administra-
tion or programming, although
there is some technical material
i here; the focus is on learning the

e : ubuntu® landscape.

New in this edition is deep coverage of the groundbreaking, user-
experience-focused Unity desktop, an innovative new style of
human-computer interaction that has undergone extensive
development and testing to provide powerful, industry-leading
usability.

Safa Il Available in print and eBook formats.

Books Online

- For more information and sample content visit
IfOrmIT -tormit.comiitie/o133017605

ALWAYS LEARNING PEARSON

From the Library of Martin Spilovsky

A
\A 4

Addison
Wesley

'REGISTER

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock e Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
e A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

. Y

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

A\ 4

informii.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

From the Library of Martin Spilovsky

In'nrm -cnm THE TRUSTED TECHNOLOGY LEARNING SOURCE

InformIT is a brand of Pearson and the online presence
— for the world’s leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

vwAddison-Wesley Cisco Press ExaAMycramM IBM gue 38 PRENTICE ¢4AMS | Safari”

Press. e HALL TR T S eonine

3

LearniT at InformiT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

e | earn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

e Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

e (et tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

In'“rmIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

#Addison-Wesley Cisco Press ExaMiCRAM IBM gug 33 FRENTICE GAMS | Safari”

Press. T ¢e PALL ETETE T T e

From the Library of Martin Spilovsky

Try Safari Books Online FREE for 15 days

Get online access to Thousands of Books and Videos

we o livelessons®

Video Mentor 0

C# 2010

Fundamentals
I, 1, and Il

Paul J. Deitel Elemental

JASON McC. SMITH

Ferewors vy Grady Boooh

\Vile[=Ye}

FREE 15-DAY TRIAL + 15% OFF

sosonine._ INfOrmit.com/safaritrial

Feed your brain

Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE'S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project

Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for first
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

From the Library of Martin Spilovsky

Safari

Books Online

Online Edition

Devbbs

Linux Server Best Prac

K'Y LE R ANKIN

Your purchase of DevOps Troubleshooting includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley Professional
book is available online through Safari Books Online, along with thousands of books and videos
from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media, Prentice Hall, Que,
Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands

of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: QCSFHFH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

From the Library of Martin Spilovsky

and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we'll
take care of the rest.

It's quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/

*Valid for all books, eBooks and video sales at www.informit.com

Addison

ey evee SAMS "

From the Library of Martin Spilovsky

	Contents
	Preface
	Acknowledgments
	About the Author
	CHAPTER 1 Troubleshooting Best Practices
	Divide the Problem Space
	Practice Good Communication When Collaborating
	Conference Calls
	Direct Conversation
	Email
	Real-Time Chat Rooms
	Have a Backup Communication Method

	Favor Quick, Simple Tests over Slow, Complex Tests
	Favor Past Solutions
	Document Your Problems and Solutions
	Know What Changed
	Understand How Systems Work
	Use the Internet, but Carefully
	Resist Rebooting

	CHAPTER 2 Why Is the Server So Slow? Running Out of CPU, RAM, and Disk I/O
	System Load
	What Is a High Load Average?

	Diagnose Load Problems with top
	Make Sense of top Output
	Diagnose High User Time
	Diagnose Out-of-Memory Issues
	Diagnose High I/O Wait

	Troubleshoot High Load after the Fact
	Configure sysstat
	View CPU Statistics
	View RAM Statistics
	View Disk Statistics
	View Statistics from Previous Days

	CHAPTER 3 Why Won’t the System Boot? Solving Boot Problems
	The Linux Boot Process
	The BIOS
	GRUB and Linux Boot Loaders
	The Kernel and Initrd
	/sbin/init

	BIOS Boot Order
	Fix GRUB
	No GRUB Prompt
	Stage 1.5 GRUB Prompt
	Misconfigured GRUB Prompt
	Repair GRUB from the Live System
	Repair GRUB with a Rescue Disk

	Disable Splash Screens
	Can’t Mount the Root File System
	The Root Kernel Argument
	The Root Device Changed
	The Root Partition Is Corrupt or Failed

	Can’t Mount Secondary File Systems

	CHAPTER 4 Why Can’t I Write to the Disk? Solving Full or Corrupt Disk Issues
	When the Disk Is Full
	Reserved Blocks
	Track Down the Largest Directories

	Out of Inodes
	The File System Is Read-Only
	Repair Corrupted File Systems
	Repair Software RAID

	CHAPTER 5 Is the Server Down? Tracking Down the Source of Network Problems
	Server A Can’t Talk to Server B
	Client or Server Problem
	Is It Plugged In?
	Is the Interface Up?
	Is It on the Local Network?
	Is DNS Working?
	Can I Route to the Remote Host?
	Is the Remote Port Open?
	Test the Remote Host Locally

	Troubleshoot Slow Networks
	DNS Issues
	Find the Network Slowdown with traceroute
	Find What Is Using Your Bandwidth with iftop

	Packet Captures
	Use the tcpdump Tool
	Use Wireshark

	CHAPTER 6 Why Won’t the Hostnames Resolve? Solving DNS Server Issues
	DNS Client Troubleshooting
	No Name Server Configured or Inaccessible Name Server
	Missing Search Path or Name Server Problem

	DNS Server Troubleshooting
	Understanding dig Output
	Trace a DNS Query
	Recursive Name Server Problems
	When Updates Don’t Take

	CHAPTER 7 Why Didn’t My Email Go Through? Tracing Email Problems
	Trace an Email Request
	Understand Email Headers
	Problems Sending Email
	Client Can’t Communicate with the Outbound Mail Server
	Outbound Mail Server Won’t Allow Relay
	Outbound Mail Server Can’t Communicate with the Destination

	Problems Receiving Email
	Telnet Test Can’t Connect
	Telnet Can Connect, but the Message Is Rejected
	Pore Through the Mail Logs

	CHAPTER 8 Is the Website Down? Tracking Down Web Server Problems
	Is the Server Running?
	Is the Remote Port Open?
	Test the Remote Host Locally

	Test a Web Server from the Command Line
	Test Web Servers with Curl
	Test Web Servers with Telnet

	HTTP Status Codes
	1xx Informational Codes
	2xx Successful Codes
	3xx Redirection Codes
	4xx Client Error Codes
	5xx Server Error Codes

	Parse Web Server Logs
	Get Web Server Statistics
	Solve Common Web Server Problems
	Configuration Problems
	Permissions Problems
	Sluggish or Unavailable Web Server

	CHAPTER 9 Why Is the Database Slow? Tracking Down Database Problems
	Search Database Logs
	MySQL
	PostgresSQL

	Is the Database Running?
	MySQL
	PostgresSQL

	Get Database Metrics
	MySQL
	PostgresSQL

	Identify Slow Queries
	MySQL
	PostgresSQL

	CHAPTER 10 It’s the Hardware’s Fault! Diagnosing Common Hardware Problems
	The Hard Drive Is Dying
	Test RAM for Errors
	Network Card Failures
	The Server Is Too Hot
	Power Supply Failures

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

