
DIGITAL FORENSIC ACQUISITION OF VIRTUAL PRIVATE

SERVERS HOSTED IN CLOUD PROVIDERS THAT USE KVM AS

A HYPERVISOR
by

Adolfo A. Montironi

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

Department of Computer and Information Technology

West Lafayette, Indiana

August 2018

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10845501

10845501

2018

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Marcus K. Rogers, Chair

Department of Computer and Information Technology

Dr. Kathryn C. Seigfried-Spellar

Department of Computer and Information Technology

Dr. John A. Springer

Department of Computer and Information Technology

Approved by:

Dr. Eric T. Matson

Head of the Graduate Program

iii

Dedicated to my lovely wife, Patricia, for her unconditional support and encouragement

during this journey, and to my two children, Sofı́a and Leonardo, who inspire me to

become a better person every day.

iv

ACKNOWLEDGMENTS

I wish to gratefully acknowledge all the faculty members of Purdue University for

their support and guidance throughout the master’s program. I would like to especially

thank Dr. Marcus K. Rogers for the numerous meetings, his insightful comments, and

inestimable help during this research. I would also like to thank Dr. Kathryn C.

Seigfried-Spellar and Dr. John A. Springer for agreeing to be part of my committee and

for helping and supporting me throughout the process.

I would also like to acknowledge my home-country, Argentina, for giving me the

opportunity of studying abroad during two years in order to complete this master’s

program, and to the United States of America, a great and beautiful country that made me

feel welcome since the day I arrived.

Last but not least, I would like to thank my family and friends, specially my

mother, Gladys, and my grandfather, Oscar, for their love, support, and encouragement

since the first day.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xi

GLOSSARY . xiii

ABSTRACT . xiv

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Scope . 4

1.3 Significance . 5

1.4 Research Question and Hypotheses 7

1.5 Assumptions . 7

1.6 Limitations . 8

1.7 Delimitations . 9

1.8 Summary . 10

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 11

2.1 Cloud Computing . 11

2.1.1 Definition and Characteristics 11

2.1.2 Service Models and Deployment Models 12

2.2 Virtualization . 13

2.2.1 Definition and Concepts . 13

2.2.2 KVM . 14

2.2.2.1 Virtual storage . 16

2.2.2.2 Virtual storage snapshots and images 19

2.2.2.3 Virtual RAM . 20

2.2.2.4 Virtual RAM images 21

2.2.2.5 Virtual networking 22

2.2.2.6 Virtual network traffic capturing 24

2.2.3 VPS . 26

vi

2.3 Cloud Computing and Virtualization in Digital Forensics 27

2.3.1 Early Research . 27

2.3.2 Cloud Computing and Virtualization 28

2.3.3 Complementary Approaches 32

2.3.4 Virtual Machine Introspection 33

2.4 Summary . 35

2.5 This Research Study . 36

CHAPTER 3. METHODOLOGY . 37

3.1 Research Question and Hypotheses 37

3.2 Participants . 38

3.3 Research Design . 38

3.3.1 Hardware Specifications . 40

3.3.1.1 Virtualization node 40

3.3.1.2 Laptop . 41

3.3.1.3 Switch and Ethernet patch cords 41

3.3.2 Virtualization Node Implementation 41

3.3.2.1 Operating system installation 41

3.3.2.2 KVM installation and configuration 44

3.3.2.3 Additional configuration steps 44

3.3.3 Virtual Machine Deployment 47

3.3.3.1 VM1 - Ubuntu Server 17.10 (32-bit) 48

3.3.3.2 VM2 - CentOS 7 (64-bit) 49

3.3.3.3 VM3 - Windows Server 2008 Standard (32-bit) 51

3.3.3.4 VM4 - Windows Server 2016 Standard (64-bit) 52

3.3.3.5 Additional configuration steps 53

3.3.4 Laptop Configuration . 54

3.4 Testing Conditions . 55

3.4.1 Hard drives transfer rates . 56

3.4.1.1 Read transfer rate for /dev/sda 56

3.4.1.2 Write transfer rate for /dev/sda 58

vii

3.4.1.3 Read transfer rate for /dev/sdb 60

3.4.1.4 Write transfer rate for /dev/sdb 61

3.4.1.5 Data duplication transfer rate from /dev/sda to /dev/sdb 62

3.4.2 RAM data duplication transfer rate 64

3.5 Testing Procedures . 66

3.5.1 Virtual hard drive image creation 66

3.5.2 RAM image creation and network traffic capturing 68

3.6 Measurements for Evaluation . 71

3.6.1 Hypothesis One . 71

3.6.2 Hypothesis Two . 74

3.6.3 Hypothesis Three . 75

3.7 Measurements for Success . 77

3.7.1 Hypothesis One . 77

3.7.2 Hypothesis Two . 77

3.7.3 Hypothesis Three . 78

3.8 Threats to Validity . 79

3.9 Summary . 80

CHAPTER 4. RESULTS . 81

4.1 Hypothesis One . 81

4.2 Hypothesis Two . 86

4.3 Hypothesis Three . 91

4.4 Summary . 94

CHAPTER 5. DISCUSSION . 95

5.1 Procedure to acquire digital evidence from a VPS hosted in KVM 96

5.2 Significance . 100

5.3 Limitations . 102

5.4 Recommendations for Future Studies 102

5.5 Summary . 104

REFERENCES . 105

APPENDIX A. PACKAGES INSTALLED ON THE VIRTUALIZATION NODE . 110

viii

APPENDIX B. CONFIGURATION FILES OF THE VIRTUALIZATION NODE . 123

APPENDIX C. VIRTUAL MACHINES CONFIGURATION FILES 125

APPENDIX D. GENERATION OF VOLATILITY PROFILES 138

APPENDIX E. BASH SCRIPT TO TEST THE IMAGING PROCESS 140

APPENDIX F. PURDUE’S IRB EXEMPTION LETTER 143

APPENDIX G. USER INTERACTION SCRIPT FOR VM1 (UBUNTU 17.10) . . 144

APPENDIX H. USER INTERACTION SCRIPT FOR VM2 (CENTOS7) 147

APPENDIX I. USER INTERACTION SCRIPT FOR VM3 (WINDOWS 2008) . . 151

APPENDIX J. USER INTERACTION SCRIPT FOR VM4 (WINDOWS 2016) . . 154

ix

LIST OF TABLES

2.1 Storage pool, allocation policy, and virtual hard drive format supported by KVM 18

3.1 Partition table of device /dev/sda . 43

3.2 Virtual machine specifications . 47

3.3 ISO files used to install the OS in each VM 48

3.4 Read transfer rate for device /dev/sda . 57

3.5 Write transfer rate for device /dev/sda . 59

3.6 Read transfer rate for device /dev/sdb . 60

3.7 Write transfer rate for device /dev/sdb . 61

3.8 Data duplication transfer rate from /dev/sda to /dev/sdb 63

3.9 RAM data duplication transfer rate . 65

3.10 Steps followed by the participants to interact with the VMs 69

3.11 Steps and expected results of the virtual hard drive image creation process . 72

3.12 Steps and expected results of the RAM image creation process 74

3.13 Steps and expected results of the network traffic capturing process 76

4.1 VM1 hard drive image creation process 82

4.2 VM2 hard drive image creation process 83

4.3 VM3 hard drive image creation process 84

4.4 VM4 hard drive image creation process 85

4.5 VM1 RAM image creation process . 87

4.6 VM2 RAM image creation process . 88

4.7 VM3 RAM image creation process . 89

4.8 VM4 RAM image creation process . 90

4.9 VM1 network traffic capturing process . 92

4.10 VM2 network traffic capturing process . 92

4.11 VM3 network traffic capturing process . 93

4.12 VM4 network traffic capturing process . 93

x

LIST OF FIGURES

2.1 KVM virtualization node components . 15

2.2 KVM virtual network diagram . 23

2.3 KVM virtualization node and VPSs overview 26

3.1 Research environment . 39

3.2 Partition layout for /dev/sda and /dev/sdb 45

3.3 /dev/sda read transfer rate . 58

3.4 /dev/sda write transfer rate . 59

3.5 /dev/sdb read transfer rate . 61

3.6 /dev/sdb write transfer rate . 62

3.7 Data duplication transfer rate from /dev/sda to /dev/sdb 63

3.8 RAM data duplication transfer rate . 66

3.9 Network connections established from the laptop by the participants 69

F.1 Purdue’s Institutional Review Board exemption letter 143

G.1 Ping command screen . 144

G.2 Putty screen . 145

G.3 Chrome screen . 146

H.1 Ping command screen . 147

H.2 Putty screen . 148

H.3 FileZilla Site Manager screen . 149

H.4 FileZilla screen once the FTP connection is established 150

I.1 Ping command screen . 151

I.2 Remote desktop client screen . 152

I.3 Nslookup command screen . 153

J.1 Ping command screen . 154

J.2 Remote desktop client screen . 155

J.3 MySQL Workbench screen . 156

J.4 MySQL Workbench screen once the MySQL connection is established . . . 156

xi

LIST OF ABBREVIATIONS

b bit

B byte (8 bits)

BASH Bourne-again shell

CaaS crime as a service

CPU central processing unit

DDoS distributed denial of service

DDR double data rate type two

FB-DIMM fully-buffered dual in line memory module

GB gigabyte (1,000 MB)

Gbit gigabit (1,000 Mb)

GHz gigahertz (1,000 MHz)

GiB gibibyte (1,024 MiB)

Hz hertz

IaaS infrastructure as a service

iSCSI Internet small computer system interface

KVM kernel-based virtual machine

LVM logical volume manager

Mb megabit (1,000 bits)

MB megabyte (1,000 bytes)

MHz megahertz (1,000 Hz)

MiB mebibyte (1,024 bytes)

NFS network filesystem

OS operating system

PaaS platform as a service

RAM random access memory

RPM revolutions per minute

SaaS software as a service

SATA serial advanced technology attachment

xii

sec second

TB terabyte (1,000 GB)

TiB tebibyte (1,000 GiB)

USB universal serial bus

VM virtual machine

VMs virtual machines

VMI virtual machine introspection

VPS virtual private server

VPSs virtual private servers

xiii

GLOSSARY

Bit-stream image – an exact bit by bit copy created from a storage device such as a hard

drive.

Cloud computing – “a model for enabling ubiquitous convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction” (Mell &

Grance, 2011)

Cloud computing provider – a company that owns and maintains the cloud computing

resources rented by customers (Garcia, 2014)

Virtualization – “it is the process of hiding the underlying physical hardware so that it can

be shared and used by multiple virtual machines” (Chirammal, Mukhedkar, &

Vettathu, 2016) ; It is an abstraction layer that allows the creation of software

representations of computer physical resources (Pollitt et al., 2008)

Virtualization node – “the physical computer that runs the virtualization software”

(Chirammal et al., 2016)

Hypervisor – “a layer between the underlying physical hardware and the virtual machines

running on top of it [...] It is a piece of software that is responsible for monitoring

and controlling virtual machines” (Chirammal et al., 2016)

Virtual machine (VM) – is a software emulation of a physical computer that runs its own

operating system and applications (Pollitt et al., 2008)

Kernel-based virtual machine (KVM) – is a full virtualization solution that turns the Linux

kernel into a hypervisor by inserting a loadable kernel module (Chirammal et al.,

2016)

Virtual machine introspection (VMI) – a technique that “consists in monitoring virtual

machines from the hypervisor level in order to inspect their states and activities”

(Hebbal, Laniepce, & Menaud, 2015)

Virtual private server (VPS) – a cloud computing solution that consists of a private virtual

machine, managed exclusively by a customer (Zahedi, 2014)

xiv

ABSTRACT

Author: Montironi, Adolfo A.. M.S.
Institution: Purdue University
Degree Received: August 2018
Title: Digital Forensic Acquisition of Virtual Private Servers Hosted in Cloud Providers

that Use KVM as a Hypervisor
Major Professor: Marcus K. Rogers

Kernel-based Virtual Machine (KVM) is one of the most popular hypervisors used by

cloud providers to offer virtual private servers (VPSs) to their customers. A VPS is just a

virtual machine (VM) hired and controlled by a customer but hosted in the cloud provider

infrastructure. In spite of the fact that the usage of VPS is popular and will continue to

grow in the future, it is rare to find technical publications in the digital forensic field

related to the acquisition process of a VPS involved in a crime. For this research, four

VMs were created in a KVM virtualization node, simulating four independent VPSs and

running different operating systems and applications. The utilities virsh and tcpdump

were used at the hypervisor level to collect digital data from the four VPSs. The utility

virsh was employed to take snapshots of the hard drives and to create images of the RAM

content while the utility tcpdump was employed to capture in real-time the network traffic.

The results generated by these utilities were evaluated in terms of efficiency, integrity, and

completeness. The analysis of these results suggested both utilities were capable of

collecting digital data from the VPSs in an efficient manner, respecting the integrity and

completeness of the data acquired. Therefore, these tools can be used to acquire

forensically-sound digital evidence from a VPS hosted in a cloud provider’s virtualization

node that uses KVM as a hypervisor.

1

CHAPTER 1. INTRODUCTION

This chapter presents the introduction to this research study. The general

background, scope, and significance of the problem that lead to the research question and

hypotheses are described next. Limitations, delimitations, and assumptions are also

introduced.

1.1 Background

Digital forensics is a science whose main objective is to gather and examine

evidence from digital devices in order to be presented in a court of law during a criminal

investigation (Holt, Bossler, & Seigfried-Spellar, 2015). It is relatively young compared

to other forensic sciences such as DNA or entomology, but its contribution is vital because

nowadays every crime involves some kind of digital information (Holt et al., 2015). A

digital device can be involved in a crime in three different ways: as a tool to commit the

crime, as a target of the criminal behavior, and as an incidental to the illegal activity (Holt

et al., 2015; Rogers, 2017). Although there is no unique standard procedure to depict the

phases of a digital investigation process in every case, there are four common phases

always present: identification, acquisition, examination, and presentation (Holt et al.,

2015). During identification, investigators survey the digital environment to detect

possible sources of data (Holt et al., 2015). Acquisition is the process of collecting data

from the sources previously identified, while examination represents the analysis of the

data to extract meaningful evidence (Holt et al., 2015). Finally, during the presentation

phase investigators report the methods used and the results obtained in a court of law (Holt

et al., 2015).

The acquisition phase is crucial because the success of the following phases

depends on the data collected (Kolhe & Ahirao, 2017; Ligh, Case, Levy, & Walters,

2014). The investigator has to decide which data need to be collected and the proper

method to do it in order to preserve the state of the digital environment under examination

(Kolhe & Ahirao, 2017; Ligh et al., 2014). This means the acquisition has to be

2

completed in a forensically-sound manner to ensure the evidence does not lose its

admissibility and evidentiary value when presented in a court of law (Lessing & von

Solms, 2008; McKemmish, 2008). To this end, the acquisition process has to be reliable

and accurate in order to guarantee two fundamental properties of the data acquired:

integrity and completeness (Beebe, 2009; Holt et al., 2015; Lessing & von Solms,

2008; McKemmish, 2008). Integrity is achieved by collecting an authentic copy of the

data from the digital environment, while at the same time preserving its original state in

order to minimize the probability of contamination (Holt et al., 2015). Completeness

signifies collecting all the available data to obtain a comprehensive understanding of the

state of the digital environment during a particular moment (Holt et al., 2015).

In investigations where traditional computers are involved, these two properties

can be achieved by powering the computer off, using a write blocker to create bit-stream

images of the hard drives, and verifying that the hash values from the hard drives and the

images created match (Holt et al., 2015). This has been considered the traditional

procedure to create authentic and complete images from hard drives and to preserve the

state of the evidence stored inside them (Lessing & von Solms, 2008; Ligh et al., 2014).

However, this procedure is not always the best option. In a time-sensitive investigation

such as a kidnapping or a child abduction the traditional procedure has to be modified in

order to retrieve critical information in a short period of time, directly at the crime scene

(Rogers, Goldman, Mislan, Wedge, & Debrota, 2006). Information related to emails,

browser, and instant messaging artifacts should be examined first, instead of creating a

bit-stream image of every storage device (Rogers et al., 2006). Furthermore, the

traditional forensic procedure has an important disadvantage: volatile data such as RAM

content or network traffic are lost when the device is powered off, even though this data

represent a fundamental part of the digital environment being analyzed (Lessing & von

Solms, 2008; Ligh et al., 2014).

As the digital forensic field has evolved, the need to take into account not only

hard drives but also other sources of data (e.g., RAM and network traffic) has become vital

to achieve a deeper comprehension of the digital environment (Ligh et al., 2014). Those

other sources were omitted in the past because the environment has to be altered in order

3

to collect data from them and because it is not possible to determine the integrity and

completeness of the data acquired in the same way it is for hard drives. Nonetheless, every

acquisition method introduces modifications in the digital environment; even the

traditional procedure of powering the computer off to create bit-stream images from its

hard drives (Kolhe & Ahirao, 2017; Lessing & von Solms, 2008; Ligh et al., 2014).

The key to still achieve the integrity and completeness required depends on the

investigator’s understating on how each method impacts on the environment and how to

minimize this impact during the investigation process (Ligh et al., 2014). Detailed

documentation of the process followed and the results obtained by the investigator also

plays a fundamental role to achieve forensic soundness (Lessing & von Solms, 2008).

In a digital environment, data are available in three different states: at rest, in

motion, or in execution (Birk, 2011; Birk & Wegener, 2011). Data at rest are kept in

storage devices, data in motion are transferred over a network from one device to another,

and data in execution are loaded in the device’s RAM in order to be read, modified, or

executed (Birk, 2011; Birk & Wegener, 2011). These three states are intimately related

to the sources from where data can be collected: hard drives (or other permanent storage

devices), RAM, and network interfaces. The procedure to collect information focused

only on hard drives and the creation of bit-stream images is referred to as dead forensic

acquisition since it is performed while the device is off (Kolhe & Ahirao, 2017). On the

contrary, live forensic acquisition includes procedures to retrieve non-persistent (volatile)

data from RAM and network interfaces before powering the device off (Kolhe & Ahirao,

2017). The course of action during an acquisition phase should be based on the

persistence of the data to be collected, prioritizing the most volatile first (Ligh et al.,

2014). For this reason, network traffic should be collected first since it is exchanged in

real-time between the devices. Then, the RAM content because it is lost once the device is

powered off. Finally, hard drives and other persistent storages which are more stable

sources of information.

When mobile devices such as cell phones, tablets, and watches are involved in a

investigation, most of the time it is not possible to create bit-stream images from their

permanent storages (Owen & Thomas, 2011). Even if it is possible, the devices usually

4

have to be modified in order to allow a bit-stream extraction, which means the digital

environment has been altered. Other limitations apply to cloud computing solutions. The

cloud provider’s infrastructure is usually shared among different users, and collecting data

from a server could affect the privacy of other users not related to the investigation

(Garcia, 2014). Even if the privacy issues are ignored and all the data from a shared

server is collected, the volume of the data retrieved can be a technical limitation during the

examination phase.

With the development of new technologies and the tendency to move solutions to

the cloud, the traditional forensic procedures defined for personal computers do not seem

to be appropriate enough to justify the digital evidence admissibility. Under this scenario,

it seems more appropriate to evaluate the admissibility of the evidence based on the

methods used by the investigators and their knowledge and skills to justify their actions.

For this reason, the present study evaluated possible methods to collect digital data from a

virtual private server (VPS) hosted in a cloud provider virtualization node that uses

Kernel-based Virtual Machine (KVM) as a hypervisor.

1.2 Scope

The cloud computing paradigm enables scalable, on-demand, and affordable

computing resources through the Internet (Garcia, 2014). Virtualization is a key concept

in cloud computing (Garcia, 2014). Cloud providers make use of virtualization by

offering VPSs to their customers. A VPS is a private VM managed by the customer but

hosted in the cloud provider infrastructure. KVM is one hypervisor used by cloud

providers to deliver and host VPSs. Customers pay according to the resource usage and

they have total control over their VPS (i.e., they can modify the operating system or install

and execute any particular software).

The present study focused on the acquisition process, using two utilities to collect

digital data from a VPS hosted in a full virtualized environment that uses KVM as a

hypervisor: virsh and tcpdump. These utilities were selected with a twofold objective.

First, they allow the collection of data from the hypervisor level and without needing

5

access to the VPS itself, which implies a more reliable result. Second, they are common

utilities available in the majority of the virtualization nodes based on GNU/Linux

distributions and their installation and execution do not require significant modifications

to the production environment. Three different sources of digital data from a VPS were

taken into account to analyze the performance of the utilities: hard drives, RAM, and

network interfaces. These three sources were selected because they represent the most

fruitful locations of potential evidence from a digital forensic perspective.

The performance of the utilities was analyzed in terms of efficiency, integrity, and

completeness because these three characteristics are critical to ensure the acquisition

process is accurate and reliable. Efficiency is measured according to the time needed to

collect the data. Integrity is achieved when the data collected are an authentic copy of the

original source and the source has not been modified during the process (Holt et al.,

2015). Completeness is accomplished when all the data from a specific source of evidence

are acquired (Holt et al., 2015). Although this study focused exclusively on VPSs, the

results and conclusions of using these utilities for acquisition purposes are valid also for

any VM hosted in a KVM virtualization node.

1.3 Significance

The global cloud computing market grew 21% to achieve $110 billion in 2015

(SynergyResearchGroup, 2016). In 2016, spending on hiring public cloud computing

infrastructure reached $38 billion and it is forecast to grow to $173 billion in 2026

(Forbes, 2016). The virtualization market was valued at $10 billion in 2014 and it is

expected to reach $21.5 billion by 2019, as the virtualization market increases in response

to demands for cloud services (Technavio, 2015). In 2016, 17% of enterprises run over

1,000 VPSs in the public cloud, compared to 13% in 2015 (RightScale, 2016). The

previous indicators suggest the usage of cloud computing and virtualization solutions will

continue to grow during the next years.

Even though VMware solutions lead the general hypervisor market share, when

the focus is on cloud computing providers the results are different. Cloud providers cannot

6

afford the costs associated to VMware if they want to offer a lower price to their

customers. Instead, they rely on open source virtualization projects such as Xen or KVM

because they offer an excellent performance and they do not have license costs associated.

Digital Ocean, the third largest cloud provider, uses KVM as a hypervisor (Chirammal et

al., 2016). Amazon Web Services (AWS), the largest IaaS cloud provider, has been using

Xen as principal hypervisor for several years but recently it announced a shift to KVM for

future EC2 VPSs (TheRegister, 2017). These indicators imply the usage of KVM will

continue to grow in the near future and become the most preferred hypervisor by cloud

providers.

For these reasons, it is of paramount importance to define digital forensic

procedures to technically deal with VPSs hosted in a KVM virtualization node. Different

studies have been conducted to examine technical and legal general implications of cloud

computing, but there is no research focused particularly on KVM and the details of the

acquisition process of VPSs.

Furthermore, the cloud computing characteristics of global access, faster

provisioning, high control, and affordability pave the way for criminals to access

computing resources and perform illegal activities. They can rent their own VPSs using

stolen credit card information or they can exploit vulnerable accounts to be used as launch

points to commit offenses. In fact, the term Crime as a Service (CaaS) has been introduced

to define this type of illegal cloud-based services offered by criminals, such as on-demand

distributed denial of service (DDos) attacks (BankInfoSecurity, 2017). The researcher has

worked with different cloud providers and is well aware of how a this problematic

negatively affects not only their business, but also the victims of these illegal activities.

It is expected that the results of this research will guide forensic practitioners and

cloud providers to collect forensically-sound digital evidence from a VPS involved in a

crime and hosted in a virtualization node that uses KVM as a hypervisor. Moreover, it is

the intent of this study to contribute to enlarge the body of knowledge of digital forensics

in this particular area and to reduce the criminal cases that involve the usage of VPSs.

Similar research could be conducted on other hypervisors such as XEN, OpenVZ,

or Hyper-V. Forensic software companies could use these results to develop remote agents

7

to be executed in cloud provider’s virtualization nodes in order to collect data from VPSs.

If these agents were developed as open source projects, the details of their functioning

would be known, which could potentially increase the willingness of the cloud provider to

cooperate with the investigation. The agents could collect data locally or transfer it

remotely using encryption mechanisms. The data collected from the VPSs could be

integrated into the existent forensic software suites to provide a unified examination

interface to investigators. In addition, once the practical details of the acquisition phase in

distinct hypervisors are extensively analyzed, the global legislation on this topic could be

updated in order to deal with this problem also from a legal standpoint.

1.4 Research Question and Hypotheses

The principal objective of this research was to answer the following research

question: is it possible to acquire forensically-sound digital evidence from a VPS hosted

in a cloud provider’s virtualization node that uses KVM as a hypervisor?

The hypotheses of this study were stated as follows:

H1: images of the hard drives of a VPS can be created in an efficient manner,

respecting the integrity and completeness of the data acquired.

H2: images of the RAM content of a VPS can be created in an efficient

manner, respecting the integrity and completeness of the data acquired.

H3: the network traffic of a VPS can be captured in real-time, respecting the

integrity and completeness of the data acquired.

1.5 Assumptions

The assumptions of this study were:

1. The research environment simulated a VPS provider’s infrastructure, using a

physical computer as a virtualization node.

8

2. The virtualization node hosted four VMs that simulated four independent VPSs.

3. A laptop simulated a system used by different participants to interact with the four

VPSs.

4. The virtualization node and the laptop were connected to an Ethernet switch in

order to allow network communication between them and with the four VPSs.

5. Administrator access to the virtualization node was granted in order to complete the

acquisition process of each VPS.

6. The processes of installing and executing the utilities virsh and tcpdump did not

require significant modifications to the virtualization node and to the VPS provider’s

environment.

7. The hardware components and software used throughout the study worked

appropriately.

8. The methodology and results of this research could be applied to any virtualization

node as long as it is configured in the same manner and using the same software

versions.

1.6 Limitations

The limitations of this study were:

1. The study was conducted using a GNU/Linux Ubuntu Server 16.04.4 64-bit system

(kernel version: 4.4.0-116.140) to simulate a virtualization node of a VPS provider.

2. The hypervisor used throughout the study was KVM.

3. The KVM module loaded into the kernel was provided by the linux-image-generic

package (version 4.4.0-116.140).

4. The KVM user-space tools were provided by the qemu-kvm package (version

2.5.0).

9

5. The libvirt service was provided by the libvirt0 package (version 1.3.1-1). The

libvirt utilities, including virsh, were provided by the libvirt-bin package (version

1.3.1-1).

6. The research environment included four VPS running different operating systems:

Ubuntu Server 17.10 (32-bit), CentOS 7 (64-bit), Windows Server 2008 Standard

(32-bit), and Windows Server 2016 Standard (64-bit).

7. The study tested utilities to collect digital data from three possible sources of each

VPS: hard drives, RAM, and network interfaces.

8. The utility virsh (version 1.3.1-1) was used to create images from the virtual hard

drives and from the RAM content of each VPS.

9. The utility tcpdump (version 4.9.2-0) was used to capture in real-time the network

traffic of each VPS.

10. The data collection was performed under low load conditions on the virtualization

node.

1.7 Delimitations

The delimitations of this study were:

1. Other operating systems were not considered to simulate a virtualization node of a

VPS provider.

2. Other hypervisors, KVM (module or user-space tools) versions, and libvirt (service

or client) versions were not considered.

3. The utility virsh (version 1.3.1-1) was the only utility used to create images from the

virtual hard drives and from the RAM content of each VPS.

4. The utility tcpdump was the only utility used to capture in real-time the network

traffic of each VPS.

10

5. Instead of using a public IP address, each VPS was assigned with a private IP

address.

6. The data collection was not performed under heavy load conditions on the

virtualization node.

1.8 Summary

This chapter provided the general background, scope, significance, research

question and hypotheses, assumptions, limitations, and delimitations for this research

study. The following chapter provides a review of the literature relevant to cloud

computing and virtualization from a digital forensic perspective.

11

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter aims to review existent digital forensic research on cloud computing

and virtual environments. The first section defines the principal ideas of the cloud

computing paradigm. The second section provides the fundamental concepts of

virtualization and explores the KVM internals for the purposes of the present study. The

third section analyzes the latest and most significant research on cloud computing and

virtualization. The fourth section summarizes the significant conclusions drawn from the

research and the fifth section introduces the approach taken by this research study.

2.1 Cloud Computing

2.1.1 Definition and Characteristics

It seems appropriate to start this review with the principal concepts related to cloud

computing. The most generally accepted definition of cloud computing was provided by

Mell and Grance (2011):

Cloud computing is a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or

service provider interaction. (p. 2)

From this definition, it can be stated that cloud computing has five inherent

characteristics: on-demand self-service, broad network access, resource pooling, rapid

elasticity, and measured service (Mell & Grance, 2011). On-demand self service means

that a customer can hire computing resources from the cloud provider without human

interaction. Broad network access implies that the services can be accessed over the

Internet using different devices such as cell phones, tablets, or laptops. Resource pooling

12

means the provider offers computer resources dynamically to attend the needs of each

customer. Rapid elasticity implies the resources are delivered and released simply

according to the consumer demand. Measured services means the resources are

monitored, administered, and billed based on utilization.

2.1.2 Service Models and Deployment Models

Cloud computing can be classified into three different service models:

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS) (Mell & Grance, 2011). IaaS provides processing, storage, network, and other

fundamental computing resources to the customers where they can install and execute all

their necessary software, including the operating system and applications. The customer

does not manage the infrastructure of the cloud but has total control over the operating

system and applications deployed, and over the usage of processor, storage, and network

resources (Mell & Grance, 2011). Amazon Web Services (AWS) and Rackspace are two

examples of IaaS providers. PaaS provides the cloud infrastructure where customers can

deploy their own or acquired applications. The customer does not manage the

infrastructure, the operating system, or the usage of processor, storage, and network

resources, but has full control over the applications deployed (Mell & Grance, 2011).

Google App Engine and Microsoft Azure are two examples of PaaS providers. SaaS

provides applications deployed by the provider onto its own infrastructure to be used by

the customers. The customer does not manage the infrastructure of the cloud, the

operating system, or the applications deployed, with the exception of user-side

configuration settings (Mell & Grance, 2011). Microsoft Office 365 is an example of

SaaS.

Cloud computing can also be classified into four different deployment models:

private, community, public, and hybrid (Mell & Grance, 2011; Reilly, Wren, & Berry,

2010). Private cloud is used exclusively by a particular organization which owns,

manages, and operates the cloud infrastructure. Community cloud is controlled

exclusively by a specific community whose members share common concerns. Public

13

cloud is open used by the general public such as business, academic, and government

organizations, or a combination of them. Hybrid cloud is a combination of two or more

different models of cloud previously described.

The present study focused particularly on the IaaS model because it uses

virtualization as the key component, it permits the highest level of customization by the

customers, and it also represents the most fruitful scenario to find potential evidence. The

IaaS model is also the preferred option by most cybercriminals because they can rent this

service using stolen credit card information, or they can exploit vulnerable accounts to be

used as launch points for their illegal activities. A clear example of this predicament was

the attack on Sony’s PlayStation servers, which was launched from an Amazon’s Elastic

Compute Cloud (Amazon EC2) server, and affected over 100 million customers

(ITProPortal, 2011). Furthermore, the term Crime as a Service (CaaS) has been

introduced to define this type of illegal services offered by criminals such as on-demand

distributed denial of service (DDos) attacks (BankInfoSecurity, 2017).

2.2 Virtualization

2.2.1 Definition and Concepts

Virtualization is the key component of the IaaS model (Garcia, 2014). It is an

abstraction layer that allows the creation of multiple virtual (software-based) resources

from physical computer resources (Pollitt et al., 2008). Once created, these virtual

resources can be allocated to a virtual machine (VM), which is an isolated process being

executed by the virtualization software on the physical computer (Pollitt et al., 2008). The

VM behaves like an independent computer, using the assigned virtual resources and

running its own operating system (OS) and applications (Bem & Huebner, 2007). The

physical computer from where the virtual resources are created is called virtualization

node or host, while the VMs are called guests or domains (Barrett & Kipper, 2010;

Pollitt et al., 2008). The virtualization software is called hypervisor (also referred to as

14

virtual machine monitor or VMM) and it is responsible for controlling the interaction

between the VMs and the physical host (Barrett & Kipper, 2010; Pollitt et al., 2008).

There are two principal modes of virtualization: paravirtualization and full

virtualization. In paravirtualization, the VM OS is aware it runs in a virtual environment,

so it modifies some internal operations to communicate with the hypervisor instead of

establishing a direct communication with the different devices (Pollitt et al., 2008;

RedHat, 2017). In full virtualization, the VM OS is not aware it runs in a virtual

environment because the devices are virtualized by the hypervisor and the VM OS can

establish a direct communication with them (Pollitt et al., 2008; RedHat, 2017).

Hypervisors that run on top of the host in place of an OS, such as VMware ESX, are

called Type I hypervisors (Barrett & Kipper, 2010; Pollitt et al., 2008). On the contrary,

hypervisors that run as a process inside the host OS, such as Kernel-based Virtual

Machine (KVM), Xen, and Hyper-V, are called Type II hypervisors (Chirammal et al.,

2016; Pollitt et al., 2008).

2.2.2 KVM

KVM is an open source, hardware-assisted, full virtualization solution. It was

designed to be a modern hypervisor that takes advantage of CPU virtualization

technologies such as Intel VT-x and AMD-V (Chirammal et al., 2016). It can be installed

in most GNU/Linux distributions and it works by loading a module into the Linux kernel

to convert the system into a hypervisor (Chirammal et al., 2016). The complete KVM

virtualization solution includes the following components:

• KVM module: it is a Linux loadable kernel module, which provides

hardware-assisted full virtualization support making use of the virtualization

extensions offered by the underlying CPU (Chirammal et al., 2016).

• Quick Emulator (QEMU): it is a user-space software that provides emulation of

CPUs and peripheral devices such as hard drives, network interfaces, video cards,

and USB ports (Chirammal et al., 2016). QEMU utilizes the KVM kernel module

15

to achieve real hardware-assisted full virtualization support instead of only

emulation (Chirammal et al., 2016). The properties of each VM such as number of

CPUs, RAM size, and virtual devices assigned are specified in a XML configuration

file located inside the directory /etc/libvirt/qemu (Chirammal et al., 2016).

• Libvirtd: it is a management layer that runs as a service and communicates with

different hypervisors, including KVM (Chirammal et al., 2016). Libvirtd provides

an application programming interface (API) to manage the VMs and the

functionalities of the hypervisor (RedHat, 2017). It spawns one QEMU process per

each VM, with the specifications defined in its corresponding XML configuration

file (Chirammal et al., 2016).

• Libvirt client: it is the application used to connect to the Libvirtd service

(Chirammal et al., 2016). Virsh is the principal Libvirt client and it is an advanced

command-line utility that allows to manage the VMs and control the functioning of

the hypervisor (RedHat, 2017).

Figure 2.1 illustrates all the components previously described and their

relationship in a GNU/Linux virtualization node that uses KVM as a hypervisor.

Figure 2.1. KVM virtualization node components

16

2.2.2.1 Virtual storage

The first concept to define related to storage management in KVM is storage pool.

A storage pool represents reserved storage space on the virtualization node, that can be

used to create virtual hard drives and assign them to VMs (Libvirt, 2018). By default,

only one storage pool is defined and it is the directory /var/lib/libvirt/images. The

configuration files corresponding to each defined pool are located inside the directory

/etc/libvirt/storage. A wide variety of pools are supported, but the more important ones for

the purpose of the present study are:

• Local directory or filesystem (including network filesystems such as NFS): if a

filesystem is configured as a storage pool, Libvirt mounts it on a local directory to

manipulate the files stored inside it (Libvirt, 2018). Once it is mounted, the pool is

handled in the same manner as a local directory. Using this type of pool, Libvirt

manages each virtual hard drive as a single file (Libvirt, 2018). For example, if a

VM is created with one virtual hard drive, the corresponding file is also created

inside the filesystem previously mounted as a storage pool. This means a separate

file is generated per each virtual hard drive assigned to a VM.

• Physical disk pool: if a physical disk is configured as a storage pool, Libvirt

manipulates the partition table and creates one partition per each virtual hard drive

generated (Libvirt, 2018). This means a separate partition is generated inside the

partition table of the physical disk per each virtual hard drive assigned to a VM.

• Logical volume pool: this type of pool uses the logical volume management (LVM)

support provided by the Linux kernel, which allows the creation of logical volume

groups from multiple physical partitions or entire hard drives. If a logical volume

group is configured as a storage pool, Libvirt creates one logical volume inside the

group per each virtual hard drive generated (Libvirt, 2018). This means once a

logical volume group has been created, a separate logical volume is generated inside

the volume group per each virtual hard drive assigned to a VM.

In summary, a virtual hard drive assigned to a VM can be created as a file in a

mounted filesystem, as a physical partition in a physical disk, or as a logical volume in a

17

logical volume group. The storage pools based on physical partitions or logical volumes

are called block-based storages because they use devices without a filesystem as backend

to store virtual hard drives (RedHat, 2018). On the contrary, pools based on local

directories or filesystems are called file-based storages and they do use a device with a

filesystem as backend to store virtual hard drives (RedHat, 2018). Block-based storage

pools offer a higher performance than file-based since VMs using block-based devices

achieve higher throughput and lower latency (IBM, 2018).

The next concept to consider regarding storage management is the allocation

policy. There are two possible options:

• Preallocated (thick provisioned) storage: this policy allocates all the storage space

of a virtual hard drive at the moment it is generated (RedHat, 2015). This means if

a VM is created with a 50GB virtual hard drive in a filesystem pool, then the

corresponding file is created with a size of 50GB. This policy offers a better writing

performance because no storage allocation occurs during runtime and it is

recommended for VMs that works as servers or that need high I/O performance

(RedHat, 2015). The main disadvantage is that all the storage is allocated even if

only a small part of the virtual hard drive is being used.

• Sparsely allocated (thin provisioned) storage: this policy is more flexible than

preallocated storage because the virtual hard drive grows as the VM writes data on it

(RedHat, 2015). It also offers a lower writing performance and it is recommended

for VMs that work as desktops or that do not need high I/O performance (Libvirt,

2018)

The last concept to take into account in storage management is the virtual hard

drive format. Libvirt supports several formats: raw, cow, qcow, qcow2, qed, vmdk, and

more (Chirammal et al., 2016). Even though several formats are supported (including

proprietary ones such us vmdk), the best performance in a KVM virtualization node is

achieved when the format used for the virtual hard drive is one of the following:

• raw: it supports both allocation policies (preallocated and sparsely allocated) when

using a file-based storage pool as backend, and only preallocated policy when using

18

block-based storage pool (RedHat, 2017). This format is a direct representation of

the virtual hard drive content and does not add additional metadata to it (Chirammal

et al., 2016; RedHat, 2017).

• qcow2: it supports both allocation policies but only when using a file-based storage

pool as backend. This format adds additional metadata to the content of the virtual

hard drive and it also offers advanced features such us snapshots, compression, and

encryption (RedHat, 2017).

The raw format has a better performance because no additional formatting is

applied to virtual hard drive (RedHat, 2018). On the contrary, qcow2 offers a better

snapshot support, but a similar behavior can be achieved using raw virtual hard drives in a

logical volume pool (RedHat, 2017). In fact, the usage of logical volume pools to store

preallocated VM hard drives in raw format is a convenient strategy for cloud providers

because it combines the high performance offered by block-based storages and by the raw

format with the flexibility of logical volumes.

Table 2.1 summarizes the relationship between the KVM storage components

previously introduced and their corresponding support.

Table 2.1. Storage pool, allocation policy, and virtual hard drive format supported by
KVM

Storage pool Allocation policy Virtual hard drive format Supported

Block-based
(physical disk or
logical volume)

Preallocated raw Yes
qcow2 No

Sparsely allocated raw No
qcow2 No

File-based (local
directory or
filesystem)

Preallocated raw Yes
qcow2 Yes

Sparsely allocated raw Yes
qcow2 Yes

In a KVM virtualization node, the following command can be used to determine

the format and allocation policy of an existent virtual hard drive identified by the last

parameter: qemu-img info diskfile (Chirammal et al., 2016).

19

There is another concept related to virtual storage: the type of virtual hard drive

assigned to the VM. The implementations supported by Libvirt are: IDE, SATA, SCSI, or

VirtIO (between other options). From a digital forensic standpoint, the type of hard drive

assigned to a VM is not relevant because the process to collect data from it is the same.

However, it is worth mentioning that VirtIO is a paravirtualized implementation, while the

others are just emulations. For this reason, VirtIO offers a higher performance and it is

likely to be used in production environments.

2.2.2.2 Virtual storage snapshots and images

A snapshot represents the state of a VM hard drive in a particular point in time.

Libvirt supports the creation of live snapshots that can be taken while the VM is running,

but if the VM is generating high I/O traffic it is safer to stop or suspend the VM before

taking the snapshot (Chirammal et al., 2016). The utility virsh allows the creation of

virtual hard drive snapshots, regardless of whether the VM is running, suspended, or

stopped. Two different type of snapshots can be taken:

• Internal: the snapshot is contained within the virtual hard drive of the VM. It is only

supported by qcow2 virtual hard drives and does not support logical volume storage

pools (Chirammal et al., 2016).

• External: the original virtual hard drive becomes read-only and the writing

operations are completed on a new overlay file (Chirammal et al., 2016). It is

supported by all the virtual disk formats, including raw and qcow2 (Chirammal et

al., 2016). The new overlay file is created with qcow2 format and it can grow to the

same size defined for the original virtual hard drive (Chirammal et al., 2016).

From a digital forensic perspective the external approach seems to be optimal

because it does not modify the original virtual hard drive. Once the snapshot is created a

bit-stream image can be created from the read-only hard drive. In addition, internal

snapshots are supported by only one virtual hard drive format: qcow2.

As it has been stated, the utility virsh can be used to create external snapshots. For

example, the next command creates an external snapshot of a VM named VM1: virsh

20

snapshot-create-as VM1 --disk-only --atomic --name snapshot1 --diskspec

hda,snapshot=external,file=/mnt/kvm/VM1-snapshot.qcow2 . The parameter --diskspec

defines three additional options: the virtual hard drive of the VM to set as read-only (hda),

the type of snapshot (external), and the new overlay file to be created

(/mnt/kvm/VM1-snapshot.qcow2). The parameter --disk-only specifies not to include the

memory content in the snapshot. The parameter --atomic assures the snapshot either

succeeds or fails with no changes on the original device. It is recommended to use

--atomic every time an external snapshot is created, specially when it is created from a live

system (Chirammal et al., 2016). Finally, the parameter --name specifies a customized

name for the snapshot generated. Once the previous command is successful, it is possible

to create a bit-stream image from original virtual hard drive, which is set as read-only after

the overlay file was created.

Once the bit-stream image has been created and verified, the overlay file can be

merged into the original virtual hard drive through the command: virsh blockcommit

VM1 hda --active --pivot --verbose. In this example, the parameter hda specifies the

virtual hard drive, the flag --active initiates the merging process of the overlay file into the

virtual hard drive, and --pivot makes the hard drive active again once the merging is

completed. At this point all the read/write operations are completed on the hard drive

again and the overlay file is not used anymore. The flag --verbose displays detailed

information about the process on the screen.

The previous command does not remove the overlay file nor the snapshot metadata

maintained by Libvirt. The following command should be executed to remove the

metadata: virsh snapshot-delete VM1 snapshot1 --metadata. The parameter snapshot1 is

the customized name specified for the snapshot previously generated. At the time of this

study, Libvirt does not have support for removing external overlay files (Chirammal et al.,

2016). For this reason, once the metadata is removed, the overlay file has to be manually

deleted, for example in this particular case, by executing the command: rm

/mnt/kvm/VM1-snapshot.qcow2.

2.2.2.3 Virtual RAM

21

In a KVM environment, each VM defines two key parameters regarding the RAM

allocation policy used:

• Maximum allocation: it represents the maximum RAM that can be allocated to the

VM when it is in execution.

• Current allocation: it represents the actual RAM allocated to the VM when it is

powered on. It can be lower or equal to the maximum allocation value.

Each VM runs like a normal GNU/Linux process inside the host OS. When a VM

is powered on, its process allocates the RAM specified by the parameter current allocation.

If the VM needs more RAM, the allocation increases until the maximum allocation value

(Chirammal et al., 2016). This behavior is achieved through a driver named balloon that

allows each VM to notify the hypervisor how much RAM it requires (RedHat, 2017). The

hypervisor then dynamically assigns available RAM between different VMs according to

their needs (RedHat, 2017). Even though this is a flexible approach, it could lead to a

potential problem: if the sum of the maximum allocation values of all the different VMs is

greater that the physical RAM of the host and all the VMs request the maximum allocation

at the same time, the host OS will become unstable. Therefore, it is recommended that the

current allocation value equals the maximum allocation value and that the sum of these

values for all the VMs is lower than the physical RAM available in the host.

2.2.2.4 Virtual RAM images

The utility virsh can be also used to create an image of the RAM content of a VM,

but it has to be suspended in order to obtain a consistent result (Suneja, Isci, & de Lara,

2015). The command virsh suspend pauses the execution of the VM, but keeping its RAM

allocation unmodified. Once the VM is suspended, the RAM content can be dumped to a

local file through the command virsh dump. For example, the next command creates an

image of the RAM content of a VM named VM1: virsh dump VM1 --memory-only

/mnt/kvm/VM1.memdump . The resulting file is /mnt/kvm/VM1.memdump and the

parameter --memory-only specifies to collect only the RAM content and CPU common

register value of the VM. After the RAM image is created, it is possible to resume the

22

execution of the VM with the command virsh resume. It is important to note that the

command virsh dump automatically suspends the VM before creating the RAM image and

resumes it after the image is completed. In case the VM should not be suspended during a

particular investigation, a RAM image can still be created if the flag --live is added to the

virsh dump command. In this case the RAM image is created while the VM is running.

The command virsh dump generates a RAM image in QEMU ELF core dump

format, which is supported by the Volatility Framework (Volatility, 2018). Using this

utility, it is possible to examine the RAM image content looking for running processes,

network connections, opened files, and other artifacts stored in RAM.

2.2.2.5 Virtual networking

In Libvirt, the key component of virtual networking is the Ethernet bridge, which

simulates a virtual network switch where different network interfaces can be attached

(Chirammal et al., 2016). By default, Libvirt defines only one virtual network, which

creates an Ethernet bridge on the virtualization node named virbr0 and with IP address

192.168.122.1. The network interfaces of the VMs can be attached to this bridge (working

as a network switch) in order to allow inbound and outbound network traffic between the

VMs and with the virtualization node (RedHat, 2017). The configuration file of the

default virtual network is /etc/libvirt/qemu/networks/default.xml.

Libvirt also creates one TAP interface on the virtualization node (named

vnet<number>) per each network interface added to a VM (Chirammal et al., 2016). If

an Ethernet bridge represents a network switch, these interfaces represent the ports of the

switch where other devices are connected.

Figure 2.2 illustrates a network diagram of a virtual network with a bridge and two

VMs attached to it. In this example, the virtualization node has two physical network

interfaces (eth0 and eth1) connected to different networks. It also has a bridge (virbr0)

whose main function is working as a virtual switch with two virtual ports (vnet0 and

vnet1), where the network interfaces of the VMs are connected.

23

Figure 2.2. KVM virtual network diagram

Once the virtual network interfaces of each VM are connected to the bridge

through the TAP interfaces, they can be set to one of the following modes:

• Isolated mode: inbound and outbound network traffic between the VMs and the

virtualization node is allowed. However, traffic beyond the virtualization node is not

allowed.

• NATed mode: inbound and outbound network traffic between the VMs and the

virtualization node is allowed. Outbound traffic beyond the virtualization node is

also allowed by network address translation (NAT) rules.

• Routed mode: inbound and outbound network traffic between the VMs and the

virtualization node is allowed. Inbound and outbound traffic beyond the

virtualization node requires modifying the routing tables of the devices involved.

• Bridged mode: the VMs are attached to an Ethernet bridge and a physical network

interface of the virtualization node is also attached to the bridge. This configuration

makes the VMs visible on the physical network, allowing inbound and outbound

24

traffic between the VMs and the devices connected to the physical network without

the need of modifying the routing table of the devices involved.

Isolated, NATed, and routed modes are common in testing environments, while the

bridged mode is common in production environments because it allows access to the VMs

directly through their assigned IP addresses (Chirammal et al., 2016). This mode is used,

for example, by cloud providers to offer VPSs with public IP addresses to host services

accessible from the Internet.

There is another concept related to virtual networking: the type of virtual network

interface connected to the VM. The implementations supported by Libvirt are: rtl3189

(Realtek chipset), e1000 (Intel chipset), or VirtIO. In a similar vein as hard drives, from a

digital forensic standpoint, the type of virtual network interface assigned to a VM is not

relevant because the process to collect data from it is the same. However, it is worth

mentioning that VirtIO is a paravirtualized implementation, while the others are just

emulations. For this reason, VirtIO offers a higher network performance and it is likely to

be used in production environments.

2.2.2.6 Virtual network traffic capturing

Tcpdump is a powerful command line utility for monitoring and capturing network

traffic in real-time. It captures the traffic bit-by-bit as it passes through any network

interface and it can also decode protocols from layer 2 (data link), layer 3 (network), and

layer 4 (transport) of the OSI model (Davidoff & Ham, 2012). The network capturing

process performed by tcpdump is highly accurate and, in consequence, it is also

considered admissible in a court of law (Davidoff & Ham, 2012). However, this accuracy

may be limited by two factors. In the first place, capturing network traffic is a

CPU-consuming activity, which means on high traffic networks the CPU could be

overloaded and tcpdump could not be capable of capturing every packet, ignoring some of

them (Davidoff & Ham, 2012). The second factor is the hard drive available space. If the

capturing is too broad and it includes numerous devices generating high traffic operations,

the available hard drive space in the capturing station could not be enough to store all the

traffic (Davidoff & Ham, 2012). For these reasons, it is recommended to capture the

25

network traffic when the CPU load is low and to plan previously the amount of hard drive

available space needed to store the data collected through this procedure (Davidoff &

Ham, 2012). It is also crucial to filter the network traffic to be captured by specifying

only particular hosts or ports related to the ongoing digital investigation. This

determination leads to a lower CPU-consuming process and to a smaller capture file,

which is also beneficial for the subsequent analysis. In addition, the live migration support

provided by KVM could be employed to migrate a particular VM to a special

virtualization node. The network capturing process could be completed on this node

exclusively set aside and with enough resources to complete this task appropriately.

As it was previously mentioned, Libvirt leverages the bridge support provided by

the Linux kernel to set up a virtual network environment for the VMs. This means

tcpdump could be used to capture the network traffic that traverses a bridge (working as a

network switch), and therefore, to capture all the network traffic of that virtual network.

This is possible because the bridge is just a network interface created in the virtualization

node. Nevertheless, this approach has two potential weaknesses from a digital forensic

perspective. Firstly, it is not efficient and the accuracy of the process could be

compromised as it was previously stated. Secondly, it could also affect the privacy of

users, since the network traffic from all the VMs running in the virtualization node is

captured, even if only one VM is under investigation. It seems much more appropriate to

take advantage of the Libvirt virtual network management and use tcpdump to only

capture the traffic that traverses the TAP interfaces of the interested VM.

By taking the previous analysis into consideration, a possible way to capture the

network traffic of one single VM, whose TAP interface is vnet0, is through the command:

tcpdump -nn -s0 --interface=vnet0 -w /mnt/forensic-data/network-capture.pcap. The

parameter --interface specifies to capture only the traffic that traverses the listed network

interfaces (vnet0). The parameter -nn declares not to resolve IP addresses (or ports) to

host names (or services names). This option is relevant because the resolution process

executed by default generates an important delay that can be omitted. The parameter -s

indicates the snapshot length, which is the amount of bytes from each packet to be

captured. In this case, the value 0 means no limit and it was included to avoid truncating

26

packets that have a longer size to the value specified. However, depending on the

investigation and the legal constraints, this value could be reduced. For example, if the

network is based on the Ethernet standard as data link layer, a value of 1,514 bytes should

be enough because this is the maximum size of an Ethernet packet (Davidoff & Ham,

2012). Finally, the parameter -w declares the output file where the network traffic captured

is stored. Tcpdump saves this file using the pcap (packet capture) format, which is an API

for capturing network traffic. This format is also supported by network packet analyzers

such as Wireshark or SolarWinds.

2.2.3 VPS

IaaS providers make use of virtualization technologies such as KVM by offering

VPSs to their customers. In this context, a VPS is a synonym of a VM, with the

particularity that it is managed by the customer but hosted in the cloud provider

infrastructure (Barrett & Kipper, 2010). Figure 2.3 depicts the relationship between a

KVM virtualization node and the VPSs hosted by it.

Figure 2.3. KVM virtualization node and VPSs overview

Customers pay according to the resources used and they have total control over

their VPS (i.e., they can modify the operating system or install and manage any software

they need). One of the most popular VPS solutions is Amazon EC2, which is provided by

27

Amazon Web Services (AWS), and whose cloud is formed by more than half-a-million

GNU/Linux servers with XEN as a hypervisor (ZDNet, 2012). However, AWS recently

announced a shift from Xen to KVM for future EC2 VPSs (TheRegister, 2017).

2.3 Cloud Computing and Virtualization in Digital Forensics

The research needs on cloud computing and virtual environments from a digital

forensic point of view have constantly been evolving. For this reason, it seems appropriate

to present in the first subsection the early studies that identified these two areas as new

challenges to be investigated further. In the second subsection, more recent studies are

analyzed from the IaaS perspective to recognize the improvements and unaddressed

topics. The third subsection introduces studies on complementary approaches to improve

the availability of digital evidence in the cloud provider environment. Finally, the fourth

section analyzes the impact of using the virtual machine introspection (VMI) approach to

acquire digital data from the hypervisor level.

2.3.1 Early Research

Pollitt et al. (2008) developed a research agenda to examine the impact of

virtualization on digital forensics. The authors recognized three principal research areas to

be developed further: analysis of virtual environments, virtualization as investigative tool,

and virtualization in education. Three main sub-areas were identified inside analysis of

virtual environments that needed to be addressed in order to conduct valid forensic

investigations: forensic data acquisition of VMs, virtual platform forensics, and virtual

machine introspection (Pollitt et al., 2008).

The positive use of virtualization with investigative and educational purposes was

previously highlighted by Bem and Huebner (2007). They stated this technology was a

significant step forward to reduce the time needed to analyze digital evidence and also to

train new forensic analysts without compromising real evidence.

28

Beebe (2009) conducted a review study to examine the body of knowledge in

digital forensics and to evaluate the improvements, issues, and unaddressed topics in the

field. The most important contributions made by the forensic community were the

progress toward formalizing the discipline and the improvements related to identifying,

collecting, and examining digital data in traditional computer platforms (Beebe, 2009).

However, the study acknowledges that achieving the same positive results on non-standard

computing environments, such as cloud computing or virtualization, has not been properly

addressed (Beebe, 2009). According to the author, research efforts had been made to take

advantage of virtualization in education or investigative contexts, but there was still a lack

of research on how to conduct digital forensic investigations in virtual environments.

Another unaddressed topic mentioned was the increase of volume storage capacities and

the importance to performing selective forensic acquisitions in order to simplify the

analysis process (Beebe, 2009).

The previous studies suggest that before 2010 virtualization had been considered

only as a tool but not as an environment to be inspected from a digital forensic standpoint.

Similarly, there was no research on the impacts of cloud computing at all. These two facts

implied important gaps in the digital forensic field that needed to be filled.

2.3.2 Cloud Computing and Virtualization

Dykstra and Sherman (2012) conducted a research study to expose technical and

legal issues related to the acquisition of digital evidence from an IaaS cloud provider, and

the strategies proposed to address these limitations. The authors identified six abstraction

layers in the IaaS model (from lower to higher): network, physical hardware, host OS,

hypervisor, VM OS, and VM applications. Each layer determines the type of data

collected: network packets at the network layer, hard disk sectors at the physical hardware

layer, or file system data at the host OS layer. At the same time, each layer offers a

different level of trust regarding the quality of the data acquired. The lower the layer, the

more reliable is the evidence and less level of trust is needed by judges or jury to consider

admissible the evidence in a court of law (Dykstra & Sherman, 2012). If the hypervisor is

29

type I, then the third and forth layers (host OS and hypervisor) are combined in just one,

and VMI utilities could be used to collect data directly from this layer, which is more

reliable than the higher ones (Dykstra & Sherman, 2012).

Dykstra and Sherman (2012) also evaluated the capability of different forensic

tools to collect data remotely from an Amazon EC2 server. FTK and EnCase were able to

retrieve data from the VM OS (layer 5), but they required a local client installed on the

VM and they did not provide hash values for integrity verification (Dykstra & Sherman,

2012). These are important limitations, because installing a local client is not a valid

option when the VM being investigated was used to commit a crime. In this case, the VM

should not be modified to not reveal the presence of the examiner and to not affect the

integrity of the data to be collected. The authors also employed VMI techniques to inject

the local client in the memory of the VM, avoiding the need of installing the local client.

This approach allowed them to retrieve more reliable information from the hypervisor

level (layer 4), but it leaves traces that could reveal the presence of the examiner.

According to Dykstra and Sherman (2012) there are also different options about

who should perform the collection of the digital evidence: law enforcement, an employee

of the cloud provider, or an independent examiner. In the majority of legal cases in the

US, a search warrant or a subpoena is issued to the cloud provider, which executes the

collection and then provides the data to the law enforcement agency (Dykstra & Sherman,

2012). This procedure releases law enforcement from performing the acquisition, but the

process needed to justify the admissibility of the evidence becomes more complex

because it relies on the experience and integrity of the technician at the provider (Dykstra

& Sherman, 2012). This limitation could be partially addressed if a guideline or standard

procedure is developed to be followed by the technicians of the cloud providers. This

document should include the steps required not only to collect the data, but also to include

methods to verify and validate the data acquired.

Birk (2011) conducted a study to analyze the technical challenges of digital

forensic in cloud computing environments. According to the author, in case of an incident,

IaaS offers much more information to be collected and used as digital evidence than PaaS

and SaaS. One important advantage of IaaS and virtualization is the usage of snapshots,

30

which is supported by all popular hypervisors and allows the creation of an exact copy of

the virtual hard drives and the RAM content of a VM (Birk, 2011). This feature also

allows digital forensic practitioners to collect information of a VM without the need of

turning it off. Another benefit mentioned of IaaS and virtualization is the capacity of using

VMI utilities to observe and collect data of the VMs from the hypervisor level (Birk,

2011).

In a similar vein, Birk and Wegener (2011) defined additional technical challenges

related to the IaaS model. They claimed that best practice guides about collection of

digital data are usually outdated and there are no guides to complete this process in a

cloud or virtual environment. If these guides were updated, it would be simpler to justify

in a court of law the integrity and authenticity of the data retrieved and the chain of

custody of the digital evidence presented (Birk & Wegener, 2011).

Zawoad and Hasan (2013) performed a meta-analysis of challenges, approaches,

and problems in cloud computing forensics. One challenge they mentioned was forensic

data acquisition, which they considered the most important step in an investigation

because it involves the collection of the potential digital evidence (Zawoad & Hasan,

2013). The authors also noticed that IaaS offers some advantages over traditional

computer forensics such as the creation of snapshots from the hypervisor level. According

to them, most of the approaches proposed to overcome limitations in cloud computing

depend on the cloud providers’ willingness to modify their environments and to improve

their readiness level (Zawoad & Hasan, 2013). Instead, other solutions proposed are

focused on the legal aspects of cloud computing by proposing an international legislation

for cloud forensic investigations (Zawoad & Hasan, 2013).

Important results can be highlighted from the studies of Birk (2011) and Zawoad

and Hasan (2013). First, the data to be collected from a cloud environment depends on the

type of cloud model. For SaaS and PaaS the possible acquisition approaches are limited

and rely on the provider’s assistance and readiness. For IaaS, the control is higher because

a VM could be accessed to collect data or even retrieve it from the hypervisor level,

although the provider’s collaboration is also needed. As it was stated before, a VPS is just

a VM hosted in a IaaS provider’s infrastructure, this means it is possible to create VM

31

snapshots and to get an exact copy of its virtual hard drives and RAM content. This is a

more auspicious scenario than a traditional computer forensic investigation because it is

not possible to create such snapshots from physical computers. Second, most of the

solutions proposed for the current problems in this field were related to modifications to

be accomplished by law makers or cloud providers in order to make the investigation

process more viable. Third, the absence of guidelines was mentioned again which

emphasizes the significance of defining practical procedures to complete digital forensic

acquisitions in cloud and virtual environments.

Morioka and Sharbaf (2016) conducted a research on cloud forensic to identify

unaddressed challenges and possible solutions. The main challenges they mentioned were

the data acquisition difficulties, the privacy and confidentiality concerns when data is

collected from shared infrastructure (e.g., virtual environments), and the cloud provider’s

lack of staff and procedures to conduct forensic investigations. They also identified three

locations where digital information could be collected: local computers, between the

cloud and local computers, and in the cloud. The first location refers to the personal

devices used to connect to the cloud services, browser cache and history is a clear example

of possible information to be found. The second location concerns records of the Internet

service provider (ISP) which could contain traces of client-cloud communication. The

third location refers to evidence directly located at the cloud provider. The authors

mentioned different possible approaches to collect information from this latter location:

data acquisition from physical node directly at cloud provider, virtual machine

introspection (VMI) to monitor and examine VMs from the hypervisor level, and forensic

tools to acquire information directly from the VM (Morioka & Sharbaf, 2016).

The focus of this study is data acquisition of VPSs (i.e., VMs hosted in a

virtualization node owned by cloud computing provider), and for this reason the most

fertile location to retrieve evidence is the cloud provider’s infrastructure. However,

performing a full data acquisition of the virtualization node is not a valid approach for two

reasons: the volume of information to collect and analyze could be enormous and the

privacy of the customers could be compromised. Using forensic tools to collect data

directly from the VM is not a solid method either because it requires accessing the VM in

32

order to install and execute the tools (i.e., modifying the state of the VM). Therefore, the

scope of the acquisition has to be reduced to include only the suspicious VPSs in order to

not infringe on privacy rights of other clients. The optimal method to do this seems to be

virtual machine introspection (VMI) which is the process of monitoring and managing

VMs externally from the hypervisor level. By using this method, the presence of the

forensic examiner is not revealed and the state of the VM is not modified by installing

tools and executing them.

2.3.3 Complementary Approaches

Patrascu and Patriciu (2014) presented an alternative approach to monitor and log

user activity in IaaS cloud environments. They proposed the idea of implementing a cloud

forensic module to gather forensic and log data from the VMs running in a cloud provider.

The forensic module was designed to be scalable in order to avoid performance issues and

to be applied on top of new or existing cloud computing deployments (Patrascu &

Patriciu, 2014). Their study focused on KVM as an example of the integration between

the proposed module and one particular hypervisor. However, in a real case scenario, this

integration has to be developed for any other hypervisor used by the cloud provider

(Patrascu & Patriciu, 2014). They concluded the presented framework allowed digital

investigators to collect a great deal of information from any particular VM in a cloud

provider, no matter the heterogeneity of the VMs and geographical distribution of the

cloud (Patrascu & Patriciu, 2014).

A similar strategy to deal with cloud environments in a digital investigation was

proposed by Sang (2013), who recommended to build a forensic-friendly environment in

cloud providers. This model focused mainly on SaaS and PaaS solutions and it should be

implemented by the cloud providers to keep the log records of the interaction between

users and the cloud services (Sang, 2013). According to the author, the cloud provider

should implement mechanisms to make this information secure and available not only on

its side, but also on the customer’s side.

33

The methods proposed by Patrascu and Patriciu (2014) and Sang (2013) provided

recommended practices to be performed on the cloud service provider’s side as a

readiness strategy to increase the amount of potential evidence available. Both methods

could be helpful in an investigation by providing additional data, but the downsize is that

their implementation depends on the cloud provider’s willingness to cooperate. From a

digital forensic perspective it is fundamental to have standard and reliable procedures to

perform a comprehensive acquisition in virtual environments, regardless of whether the

cloud provider contributes with additional information from its end.

2.3.4 Virtual Machine Introspection

Virtual Machine Introspection (VMI) is a method that allows to monitor and

control the state of the VMs from the hypervisor level. Through this approach, the

hypervisor can inspect all the data processed by the VMs because it is located in the layer

between the physical hardware of the virtualization node and the VMs (Poisel, Malzer, &

Tjoa, 2013). From this layer, the hypervisor can examine the virtual resources of a VM

(i.e., hard drives, RAM content, and network traffic) without altering its state. This

method allows investigators to overcome the classical limitations presented in traditional

computer forensics such as RAM and network traffic acquisitions (Poisel et al., 2013).

VMI tools relies on the following principles: the VMs are unable to interfere with the

operations executed at the hypervisor level (i.e., tamper resistant), the hypervisor has total

control over the state of the VMs (i.e., evasion resistant), and the hypervisor has a

complete and direct access to the VM resources such as CPU registers, RAM content, and

network traffic (i.e., efficiency) (Hebbal et al., 2015).

The simplest way to retrieve data from a VM using VMI utilities is in binary

format (e.g., a RAM dump or a virtual hard drive image). Other VMI tools have been

developed to provide a high-level information such as processes running in the VM

instead of just bits. The difference between bits and high-level information is called the

semantic gap (Dolan-Gavitt, Payne, & Lee, 2011; Hebbal et al., 2015; Poisel et al.,

2013). According to the method used by the VMI utilities to monitor the state of the VMs,

34

they can be classified in: in-VM (or in-brand), out-of-VM (or out-of-brand), and hybrid

(or derivation) (Hebbal et al., 2015; Poisel et al., 2013). The in-VM strategy implies

installing an agent inside the VM in order to expose its state to the hypervisor. On the

contrary, out-of-VM is considered the real VMI strategy because it does not need an agent

inside the VM, it collects the data from the hypervisor level by accessing the VM

resources directly. The hybrid strategy is a combination of in-VM and out-of-VM. There

are also VMI utilities that can be available out-of-the-box on a particular hypervisor, and

others that need to modify the default behavior of the hypervisor or install additional

libraries in order to be able to work (Suneja et al., 2015). The client virsh previously

mentioned in subsection 2.2.2 is an example of an out-of-VM and out-of-the-box VMI

utility that can be used to monitor the state of the VMs in a virtualization node that uses

KVM as a hypervisor (Suneja et al., 2015).

According to the previous observations, the VMI out-of-VM and out-of-the-box

strategy is the best option from a digital forensic perspective because it does not need to

alter in any manner the content of the VMs or the hypervisor in order to collect reliable

data. Through these specific VMI utilities, it could be possible to create an image of the

virtual hard drive, dump the RAM content, or capture the network traffic in real time. In

addition, they use the inherent benefits of virtualization, such as creating snapshots or

suspending the VMs. The snapshot feature permits to create an instant copy of the virtual

hard drive at a particular point in time, without the need of stopping or suspending the

VM. This is also beneficial to be undetected by the user (customer) while the acquisition is

being performed. The capability of suspending the VMs allows the investigator to create

consistent RAM content images and to validate their integrity (Poisel et al., 2013). This is

conceivable because once the VM is suspended the RAM content remains unmodified and

it can be imaged from the hypervisor level in a reliable and efficient manner. The RAM

image created can be analyzed using memory forensic utilities such as the Volatility

Framework (Volatility, 2018). The drawback of suspending the VM is that it could be

detected by the user because the VM is not accessible until it is unsuspended. Through

these VMI utilities, it could be also possible to capture all the network traffic sent and

received by a VM during a particular period of time and store it into a file. This file can be

35

inspected to analyze the network communications established using network analysis

tools such as Wireshark (WireShark, 2018). The available space on the hard drive needed

to capture the network traffic depends on the period of time the capture is active and on

the volume of the network data sent and received by the VM during that time. In addition,

this process may require an intensive usage of CPU on the hypervisor because each single

network packet is first written to a file and then sent to the virtual network interface.

2.4 Summary

The following conclusions can be drawn from the previous analysis. First, the

acquisition process on cloud computing and virtual environments is mentioned as an

unaddressed topic in digital forensics (Beebe, 2009; Birk & Wegener, 2011; Morioka &

Sharbaf, 2016; Pollitt et al., 2008; Zawoad & Hasan, 2013). Second, some of the

solutions proposed to address this topic need active participation of the cloud providers in

order to apply important modifications to their current environments (Patrascu & Patriciu,

2014; Sang, 2013). Third, VMI is introduced as a reliable approach to collect data from a

VM because it works at a hypervisor level (Birk, 2011; Dykstra & Sherman, 2012;

Morioka & Sharbaf, 2016). This method can be considered a selective acquisition

because it only collects data from a particular VM instead of from the entire physical

virtualization node. Therefore, it helps to address the issues of analyzing enormous data

storage volumes and compromising the privacy of other customers (Beebe, 2009;

Morioka & Sharbaf, 2016). In addition, the capacity to take snapshots and suspend VMs

are mentioned as significant and positive advantages of collecting data from a virtual

environment compared to traditional physical computers (Birk, 2011; Chirammal et al.,

2016; Poisel et al., 2013). Fourth, one limitation noticed is the lack of updated guidelines

to provide forensic investigators with reliable procedures to be followed in cloud or virtual

environments (Birk & Wegener, 2011; Dykstra & Sherman, 2012). This limitation

negatively affects the reliability of the evidence acquired from these environments. Fifth,

there are different types of VMI utilities, but the out-of-VM and out-of-the-box ones are

the more interesting from the digital forensic perspective because they do not need to alter

36

in any manner the content of the VM or the hypervisor. In spite of this fact, there is no

research on the reliability of this kind of VMI utilities to collect data from a virtual

environment. Instead, most of the studies focused on possible classifications and

applications of diverse VMI tools (Hebbal et al., 2015; Poisel et al., 2013; Suneja et al.,

2015).

2.5 This Research Study

This study took a different approach. It aimed to examine if it was possible to

acquire forensically-sound digital evidence from a VPS hosted in a virtualization node

that uses KVM as a hypervisor. To this purpose, the performance of two utilities was

evaluated. The first one was virsh, a VMI out-of-VM and out-of-the-box utility, which

was used to create images of the virtual hard drives and the RAM content of the VPSs.

The second utility was tcpdump, which was used to capture in real-time the network

traffic of the VPSs. Even though tcpdump has been studied and used in the digital

forensics field to capture network traffic on physical network interfaces for a long time,

this study focused on using this utility to capture traffic on specific virtual network

interfaces assigned to a VPS. The main reason for focusing on these utilities was they

could positively impact on the admissibility of the evidence in a court of law because virsh

works at the hypervisor level and tcpdump at the virtualization node OS level. This means

the results of these utilities are more reliable than other utilities that work at the VM level

(Dykstra & Sherman, 2012). Furthermore, they are available in the majority of the

virtualization nodes based on GNU/Linux distributions and their installation and

execution do not require significant modifications to the production environment.

37

CHAPTER 3. METHODOLOGY

As discussed in the previous chapters, there is a need in the digital forensics field

to find an efficient and reliable procedure to acquire digital data from VPSs. This study

aimed to analyze if the utilities virsh and tcpdump can be used to accomplish this

objective in a full virtualized environment that uses KVM as a hypervisor. The principal

reasons for focusing on these tools were: they produce more reliable results than utilities

that work at the VM level (virsh works at the hypervisor level and tcpdump at the

virtualization node OS level), they are available in the majority of the virtualization nodes

based on GNU/Linux distributions, and their installation and execution do not require

significant modifications to the production environment. This chapter introduces the

research question, hypotheses, participants, research design, testing conditions and

procedures, measurements for evaluation and success, and possible threats to validity.

3.1 Research Question and Hypotheses

The principal objective of this research was to answer the following research

question: is it possible to acquire forensically-sound digital evidence from a VPS hosted

in a cloud provider’s virtualization node that uses KVM as a hypervisor?

The hypotheses of this study were stated as follows:

H1: images of the hard drives of a VPS can be created in an efficient manner,

respecting the integrity and completeness of the data acquired.

H2: images of the RAM content of a VPS can be created in an efficient

manner, respecting the integrity and completeness of the data acquired.

H3: the network traffic of a VPS can be captured in real-time, respecting the

integrity and completeness of the data acquired.

The utility virsh was used to test H1 and H2, while tcpdump was used to test H3.

38

3.2 Participants

Five participants cooperated to address H2 and H3 by following four different

scripts to interact with the research environment described in section 3.3. The participants

selected were students of the Computer and Information Technology department at Purdue

University because they are technically skilled and they could follow the scripts more

naturally. The participants did not provide any personal information or opinions during

the process and the purpose of this interaction is explained in subsection 3.5.2. Appendix

F includes the review exemption letter provided by Purdue’s Institutional Review Board

(IRB) for this research.

3.3 Research Design

A study was conducted to test the hypotheses and to address the research question

stated in section 3.1. The study involved the creation of a virtual environment to simulate

a VPS provider’s infrastructure. One physical computer, one Ethernet switch, and one

Ethernet patch cord were used to this purpose. The computer acted as a KVM

virtualization node and was connected to the switch (using the patch cord) to imitate the

VPS provider’s network. The computer required one network interface and enough hard

drive and RAM resources to host four VMs. It also required two hard drives: one to store

the VM hard drives and a second one to store the information collected from the VMs

through the utilities virsh and tcpdump. These VMs acted as independent VPSs hired by

different customers.

In addition, one laptop and another Ethernet patch cord were required for this

study. The laptop was also connected to the switch (using the second patch cord) to

simulate the network communication between the customers (or other external users) and

the VPSs. Figure 3.1 summarizes the research environment proposed.

39

Figure 3.1. Research environment

Once the research environment was prepared, a BASH script was developed to

address H1 by testing if the utility virsh was able to take snapshots of the hard drives of

the VMs, from where bit-stream images could be created. This BASH script was executed

once per day, during 14 consecutive days, and after each execution the results were

evaluated in terms of efficiency, integrity, and completeness. The source code of the

BASH script was included in Appendix E. When the previous analysis was over, five

different participants interacted twice with the four VMs (one at a time) using the laptop

in order to address H2 and H3. During each interaction all the network traffic was captured

with the utility tcpdump, and at the end of the interaction an image of the RAM content of

the VM was created with the utility virsh. Each RAM image creation process was

evaluated in terms of efficiency, integrity, and completeness while each network traffic

capturing process only in terms of integrity and completeness. The details of these

processes are described later in this chapter.

The following two subsections describe the technical specifications of the devices

used in the study and the installation and configuration process followed for each of them.

40

3.3.1 Hardware Specifications

This subsection details the technical specifications of all the devices used to

recreate the research environment previously presented.

3.3.1.1 Virtualization node

The physical computer used as virtualization node in the study was a MacPro3,1

server, model A1186, with the following hardware specifications:

• CPU: Two 3.0GHz 45-nm Intel Xeon E5472 (Harpertown/Penryn) 64-bit

processors. Each processor has four cores and a 12MB level-2 cache. These

processors include the VT-x (virtualization technology) extension, which offers

support for hardware-assisted virtualization.

• RAM: 32GB. Eight 4GB 800MHz DDR2 FB-DIMMs connected into the slots 1 to

4 on the first memory card and into the slots 5 to 8 on the second memory card.

• Hard Drive 1: Hitachi GST Deskstar HDT725040VLA360 3.5 inch internal hard

drive, 400GB (physical sector size 512 bytes), 7200 RPM, SATA 3.0, 16MB cache.

It was connected to the first 3.0 Gbit/s SATA bus connector of the motherboard.

This hard drive was assigned to install the OS of the virtualization node and to store

the VM hard drives.

• Hard Drive 2: Seagate BarraCuda ST31000333AS 3.5 inch internal hard drive, 1TB

(physical sector size 512 bytes), 7200 RPM, SATA 3.0, 32MB cache. It was

connected to the second 3.0 Gbit/s SATA bus connector of the motherboard. This

additional hard drive was assigned to store the data collected from the VMs during

the testing procedures.

• Video: ATI Radeon HD4870 1GB PCI-Express video graphics card.

• Ethernet Interfaces: Two independent Intel 10/100/1000 BASE-T Gigabit Ethernet

RJ-45 interfaces.

41

3.3.1.2 Laptop

The laptop selected to interact with the VMs was a Lenovo IdeaPad Yoga 13,

model 20175, Windows 8.1 Pro 64-bit, with the following hardware specifications:

• CPU: One 2.0GHz Intel i7-3537U 64-bit dual core processor. Each core has their

own 0.25MB level-2 cache and 2MB level-3 cache.

• RAM: 8GB. One 8GB 1600MHz DDR3 SO-DIMM.

• Hard Drive: Samsung MZMTD256HAGM-000L1 internal solid state drive (SSD),

256GB (physical sector size 512 bytes), Mini-SATA (mSATA) interface.

• Video: integrated Intel HD Graphics 4000.

• Ethernet Interface: The laptop did not have an integrated Ethernet network

interface. For this reason, a FosPower USB 3.0 to Gigabit Ethernet RJ-45 adapter

was used to overcome this limitation and to connect the laptop to the switch.

3.3.1.3 Switch and Ethernet patch cords

Two category 6 Ethernet RJ-45 patch cords were used to connect the virtualization

node and the laptop to a D-Link DGS-108 8-port Gigabit switch in order to simulate the

cloud provider’s network. Since the network interfaces, patch cords, and switch were

Gigabit capable, the resulting Ethernet network supported a maximum throughput of 1

Gbit/s.

3.3.2 Virtualization Node Implementation

This subsection describes the process followed to install the OS and the KVM

components on the virtualization node.

3.3.2.1 Operating system installation

The Ubuntu Server 16.04.4 64-bit LTS (long term support) version was

downloaded from the official Ubuntu website. The latest LTS version was selected

42

because it is designed to be stable and supported for five years, while regular versions

(non-LTS) are supported only for nine months. LTS is the version recommended for

enterprises and for this purpose was used as OS of the virtualization node.

The downloaded file was named ubuntu-16.04.4-server-amd64.iso, with MD5

checksum 6a7f31eb125a0b2908cf2333d7777c82. A booteable USB stick was generated

with this file and the physical computer was booted from it. The option Install Ubuntu

Server was selected, and each step of the installation process was completed as detailed

below:

• Language: English

• Location: United States

• Keyboard layout (manually selected): English (US)

• Network configuration: Do not configure the network at this time

• Hostname: kvm

• Full name for the new user: adolfo

• User name for your account: adolfo

• Password for the new user: m5LcbpygPRWHFa38

• Encrypt your home directory: No

• Time zone: America/Indiana/Indianapolis

• Partition disks (manually selected): In this step, only the 400GB hard drive (Hitachi

GST Deskstar HDT725040VLA360) was partitioned. This device was detected as

/dev/sda by the Ubuntu installer. A new GUID partition table (GPT) was created,

with four primary partitions. Table 3.1 shows the details of each partition defined.

43

Table 3.1. Partition table of device /dev/sda

Partition Start Sector End Sector Size Filesystem Function
/dev/sda1 2,048 1,050,623 536.87MB FAT32 EFI system
/dev/sda2 1,050,624 98,707,455 50GB EXT4 Root partition
/dev/sda3 98,707,456 118,239,231 10GB SWAP Swap area
/dev/sda4 118,239,232 781,422,591 339.5GB unformatted Not used

Partition /dev/sda1 (EFI system) contained the UEFI files needed to start the loading

process of the OS. Partition /dev/sda2 (root partition) contained all OS files and its

mount point was the directory /. Partition /dev/sda3 was defined as swap space.

Partition /dev/sda4 was created but not formatted during the Ubuntu Server

installation process. This partition was used after the installation to calculate the

transfer rate for the hard drive and then to store the VM hard drives. These two

additional procedures are described later in this section.

• Updating policy: No automatic updates

• Software selection: Only the option Standard system utilities was selected to be

installed.

• Install GRUB boot loader to the master boot record of the first hard drive: Yes (in

this case the first hard drive was /dev/sda)

• Finish the installation: Continue (to boot into the new installed system)

Once the installation process was completed, the virtualization node booted into

Ubuntu Server 16.04.4. The 400GB hard drive (Hitachi GST Deskstar

HDT725040VLA360) was detected as device /dev/sda, while the 1TB hard drive (Seagate

BarraCuda ST31000333AS) was recognized as /dev/sdb. The two integrated Ethernet

interfaces were identified as enp7s0f0 and enp7s0f1. The interface enp7s0f0 was

connected to a local network and configured to get Internet access. The interface enp7s0f1

was not enabled since it was not needed throughout the study. After that, all the installed

44

packages were updated to the latest version by executing as root the command: apt-get

update && apt-get upgrade && apt-get dist-upgrade.

3.3.2.2 KVM installation and configuration

The KVM module was already installed by the linux-image-generic package

(version 4.4.0-116.140). The KVM user-space tools (version 2.5.0), the libvirt service and

client packages (version 1.3.1-1), and all the required dependencies were downloaded and

installed by executing as root the command: apt-get install kvm qemu-kvm libvirt-bin.

After that, the command kvm-ok (without parameters) was executed to determine if

hardware-assisted full virtualization was supported by the CPU. The output of this

command confirmed that it was supported and enabled.

3.3.2.3 Additional configuration steps

The following steps were performed to complete the configuration process of the

virtualization node.

1. Hard drive /dev/sdb partitioning: the hard drive /dev/sdb was partitioned to replicate

the same partition table defined for /dev/sda during the Ubuntu Server installation

process. The principal objective of this replication was to define exactly the same

fourth partition, which was used to calculate the transfer rates for both hard drives in

subsection 3.4.1. In addition, the second partition was defined to have 50GB, which

was the same size specified for the hard drives assigned to the four VMs. This

partition was employed by a BASH script to create bit-stream images from the

snapshots taken by the utility virsh in section 3.5. The other two partitions and the

unpartitioned space available on /dev/sdb were not used during this study. Figure

3.2 illustrates (not to scale) the partition layout for both hard drives.

45

Figure 3.2. Partition layout for /dev/sda and /dev/sdb

2. Testing Conditions: once the hard drive /dev/sdb was partitioned, the procedures

detailed in section 3.4 were completed. These procedures included: the examination

of both hard drives for bad sectors, the calculation of read and write transfer rate for

both hard drives, the data duplication transfer rate from /dev/sda to /dev/sdb, and the

RAM data duplication transfer rate.

3. Partition /dev/sdb4 formatting: after the procedures detailed in section 3.4 were

completed, the partition /dev/sdb4 was formatted with the EXT4 filesystem by

executing as root the command: mkfs.ext4 /dev/sdb4. After that, the partition was

mounted on the directory /mnt/forensic-data (previously created) by executing as

root: mount -t ext4 /dev/sdb4 /mnt/forensic-data. The file /etc/fstab was also

modified to mount this partition on boot in case the server was restarted.

46

4. Logical volume group creation: as it was stated in 2.2.2.1, the usage of logical

volume pools to store preallocated VM hard drives in raw format is a convenient

strategy for cloud providers because it combines the high performance offered by

block-based storages and by the raw format with the flexibility of logical volumes.

For this reason, a logical volume group was created in the virtualization node by

executing two commands as root. The first one was: pvcreate /dev/sda4. It

initialized the partition for use by the logical volume manager. The second

command was: vgcreate lvm-group /dev/sda4. It generated a new logical volume

group called lvm-group using the partition /dev/sda4 as physical backend. This

logical volume group was created to be used as storage pool for the VM hard drives.

5. Ethernet bridge configuration: as it was also mentioned in 2.2.2.5, the Ethernet

bridge is the key component of virtual networking in KVM. It simulates to be a

virtual network switch where different network interfaces can be attached. For this

reason, an Ethernet bridge was created in the virtualization node by editing the file

/etc/network/interfaces. This file was modified in order to reconfigure the Ethernet

interface enp7s0f0 and accomplish three objectives: disabling the Internet access

previous configured, creating an Ethernet bridge named br0 with IP address

192.168.10.1, and attaching the interface enp7s0f0 to the bridge. After the four

VMs were created, their virtual network interfaces were set to bridged mode and

attached to the bridge in order to share the same physical network with the

virtualization node. Once the bridge configuration was finished, an Ethernet patch

cord was used to connect the interface enp7s0f0 to the physical switch to imitate the

cloud provider’s network.

Appendix A shows a complete list of all the packages installed on the

virtualization node, including their respective version. Appendix B displays the

customized content of the following configuration files: /etc/fstab, /etc/network/interfaces,

and /etc/libvirt/storage/lvm-group.xml.

47

3.3.3 Virtual Machine Deployment

Four VMs were created in the virtualization node according the specifications

detailed in Table 3.2. Different versions of OS and architecture were used to verify if the

results were consistent across them.

Table 3.2. Virtual machine specifications

VM ID Operating System Architecture Hard Drive RAM IP address
VM1 Ubuntu Server 17.10 32-bit 50GB 4096MB 192.168.10.11
VM2 CentOS 7 64-bit 50GB 4096MB 192.168.10.12
VM3 Windows Server 2008 32-bit 50GB 4096MB 192.168.10.13
VM4 Windows Server 2016 64-bit 50GB 4096MB 192.168.10.14

Four logical volumes of 50GB (one per each VM) were created in the logical

volume group lvm-group previously defined in the virtualization node. The command

executed as root to create the logical volume for VM1 was: lvcreate -L 50000000000B -n

VM1 ubuntu lvm-group. The parameter -L specifies the size in bytes of the volume, the

parameter -n defines the name of the volume, and the last parameter indicates in which

logical volume group the new volume is created. Once the previous command was

executed, the new logical volume was created as /dev/lvm-group/VM1 ubuntu. Other

three volumes were created in the same fashion: /dev/lvm-group/VM2 centos (for VM2),

/dev/lvm-group/VM3 win2008 (for VM3), and /dev/lvm-group/VM4 win2016 (for VM4).

The OS installation process in each VM was completed using the original ISO files

provided by Ubuntu, CentOS, and Microsoft, respectively. Table 3.3 shows the files used

in this study and their MD5 checksums. These files were downloaded in the virtualization

node inside the directory /mnt/kvm/isos.

48

Table 3.3. ISO files used to install the OS in each VM

VM ID File name and MD5 checksum
VM1 ubuntu-17.10.1-server-i386.iso

MD5 checksum: f713724032a1b0fdbf3ebd90d2eec8d8
VM2 CentOS-7-x86 64-Minimal-1708.iso

MD5 checksum: 5848f2fd31c7acf3811ad88eaca6f4aa
VM3 6001.18000.080118-1840 x86fre Server en-us-KRMSFRE EN DVD.iso

MD5 checksum: 89fbc4c7baafc0b0c05f0fa32c192a17
VM4 14393.0.161119-1705.RS1 REFRESH SERVER EVAL X64FRE EN-US.iso

MD5 checksum: 70721288bbcdfe3239d8f8c0fae55f1f

The OS installation process followed for each VM and their particular settings are

detailed in the next five subsections.

3.3.3.1 VM1 - Ubuntu Server 17.10 (32-bit)

Virtual resources allocated to this VM:

• CPU: 8 cores.

• RAM: 4096MB.

• Hard drive: /dev/lvm-group/VM1 ubuntu (50GB).

• Network: virtual interface vnet0 attached to the bridge br0.

The previous resources and other information required to create the VM in the

virtualization node were included in the file /mnt/kvm/xmls/VM1.xml. After that, the

following command was executed to create the VM taking as input this file: virsh define

/mnt/kvm/xmls/VM1.xml. The content of the file is included in Appendix C.

Once the VM was created, it was booted from the ISO file downloaded from the

Ubuntu website to start the installation process. The hard drive of the VM was detected as

/dev/sda by the Ubuntu installer. A new MSDOS partition table was created with two

primary partitions: /dev/sda1 (46GB) and /dev/sda2 (4GB). The former partition was

formatted with EXT4 filesystem. It contained all the OS files and its mount point was the

49

directory /. The latter partition was defined as swap space. At the software selection

screen, only the option SSH server was selected to be installed. In addition, only one user

account was generated and granted with sudo privileges:

• User name: cflstudent

• Password: 2hLMmVGt

When the installation process was completed, the VM was booted into the new

installed Ubuntu Server 17.10. The user account was used to login into the system and

configure the network interface with the IP address 192.168.10.11 (network mask

255.255.255.0, no default gateway, and no DNS servers). The SSH server was enabled by

default to listen for incoming SSH connections on port TCP 22. The Apache web server

(version 2.4.27-2) was installed by executing the command: apt-get install apache2. The

default configuration was used, which means the web server listened for incoming HTTP

connections on port TCP 80 and served the default HTML file /var/www/html/index.html.

In summary, two network services were installed and configured in this VM:

• SSH (port TCP 22): Secure Shell access allowed only for user cflstudent.

• Apache (port TCP 80): HTTP access allowed for everyone.

3.3.3.2 VM2 - CentOS 7 (64-bit)

Virtual resources allocated to this VM:

• CPU: 8 cores.

• RAM: 4096MB.

• Hard drive: /dev/lvm-group/VM2 centos (50GB).

• Network: virtual interface vnet1 attached to the bridge br0.

The previous resources and other information required to create the VM in the

virtualization node were included in the file /mnt/kvm/xmls/VM2.xml. After that, the

50

following command was executed to create the VM taking as input this file: virsh define

/mnt/kvm/xmls/VM2.xml. The content of the file is included in Appendix C.

Once the VM was created, it was booted from the ISO file downloaded from the

Centos website to start the installation process. The hard drive of the VM was detected as

/dev/sda by the Centos installer. A new MSDOS partition table was created with two

primary partitions: /dev/sda1 (46GB) and /dev/sda2 (4GB). The former partition was

formatted with XFS filesystem. It contained all the OS files and its mount point was the

directory /. The latter partition was defined as swap space. In addition, only one user

account was generated and granted with sudo privileges:

• User name: cflstudent

• Password: 2hLMmVGt

When the installation process was completed, the VM was booted into the new

installed Centos 7. The user account was used to login into the system and configure the

network interface with the IP address 192.168.10.12 (network mask 255.255.255.0, no

default gateway, and no DNS servers). The SSH server was installed and enabled by

default by the Centos installer to listen for incoming SSH connections on port TCP 22.

The vsftpd FTP server (version 3.0.2) was installed by executing the command: yum

install vsftpd. The default configuration was used, which means vsftpd listened for

incoming FTP connections on port TCP 21 and allowed access to the user’s home

directory files. One additional modification was performed in the vsftpd configuration file

in order to support the passive data transfer mode through the TCP port range

10090-10100. Once installed and configured, vsftpd was enabled to automatically start on

boot by executing the command: systemctl enable vsftpd. The firewall installed by Centos

was modified to allow incoming FTP connections to the port TCP 21 by executing the

command: firewall-cmd --permanent --add-port=21/tcp. A similar modification was

performed to allow incoming data transfer connections to the passive port range by

executing the command: firewall-cmd --permanent --add-port=10090-10100/tcp. Finally,

the firewall rules were reloaded through the command: firewall-cmd --reload.

In summary, two network services were installed and configured in this VM:

51

• SSH (port TCP 22): Secure Shell access allowed only for user cflstudent.

• vsftpd (port TCP 21): FTP access allowed only for user cflstudent.

3.3.3.3 VM3 - Windows Server 2008 Standard (32-bit)

Virtual resources allocated to this VM:

• CPU: 8 cores.

• RAM: 4096MB.

• Hard drive: /dev/lvm-group/VM3 win2008 (50GB).

• Network: virtual interface vnet2 attached to the bridge br0.

The previous resources and other information required to create the VM in the

virtualization node were included in the file /mnt/kvm/xmls/VM3.xml. After that, the

following command was executed to create the VM taking as input this file: virsh define

/mnt/kvm/xmls/VM3.xml. The content of the file is included in Appendix C.

Once the VM was created, it was booted from the ISO file downloaded from the

Microsoft website to start the installation process. The product key text box was left

empty and the option Windows Server 2008 Standard (Full Installation) was selected at

the Windows edition selection screen. The type of installation chosen was Custom

(Advanced). It installed a clean copy of Windows in the hard drive of the VM, which was

detected as Disk 0 and automatically partitioned and formatted by the Windows installer.

When the installation process was completed, the VM was booted into the new

installed Windows Server 2008 system. During the first boot, the password for the

administrator account was generated:

• User name: Administrator

• Password: 2hLMmVGt

The network interface was configured with the IP address 192.168.10.13 (network

mask 255.255.255.0, no default gateway, and no DNS servers) and remote desktop access

52

was allowed only from computers with network level authentication. The firewall was

modified to allow remote desktop access (port TCP 3389) and ping (ICMP echo) request.

The DNS server role was also installed and a new forward lookup primary zone named

vpsnet.com was created. The firewall was automatically modified to allow incoming DNS

queries to the port UDP 53 from the network 192.168.10.0/24. Finally, four A records

were manually created inside this zone trough the DNS manager: vm1 (with IP address

192.168.10.11), vm2 (192.168.10.12), vm3 (192.168.10.13), and vm4 (192.168.10.14).

In summary, two network services were installed and configured in this VM:

• Remote Desktop (port TCP 3389): Remote Desktop access allowed only for user

Administrator.

• DNS (port UDP 53): DNS resolution for zone vpsnet.com allowed for everyone.

3.3.3.4 VM4 - Windows Server 2016 Standard (64-bit)

Virtual resources allocated to this VM:

• CPU: 8 cores.

• RAM: 4096MB.

• Hard drive: /dev/lvm-group/VM4 win2016 (50GB).

• Network: virtual interface vnet3 attached to the bridge br0.

The previous resources and other information required to create the VM in the

virtualization node were included in the file /mnt/kvm/xmls/VM4.xml. After that, the

following command was executed to create the VM taking as input this file: virsh define

/mnt/kvm/xmls/VM4.xml. The content of the file is included in Appendix C.

Once the VM was created, it was booted from the ISO file downloaded from the

Microsoft website to start the installation process.The option Microsoft Server 2016

Standard (Desktop Experience) was selected at the operating system selection screen. The

type of installation chosen was Custom: Install Windows only (advanced). It installed a

53

clean copy of Windows in the hard drive of the VM, which was detected as Drive 0 and

automatically partitioned and formatted by the Windows installer.

When the installation process was completed, the VM was booted into the new

installed Windows Server 2016 system. During the first boot, the password for the

administrator account was generated:

• User name: Administrator

• Password: 2hLMmVGt

The network interface was configured with the IP address 192.168.10.14 (network

mask 255.255.255.0, no default gateway, and no DNS servers) and remote desktop access

was allowed only from computers with network level authentication. The firewall was

modified to allow remote desktop access (port TCP 3389) and ping (ICMP echo) request.

The MySQL server (version 8.0.11) was also installed by downloading the 64-bit

Microsoft Installer (MSI) package from the MySQL website. This service was configured

as a standalone server, to listen for incoming connections on port TCP 3306, and to be

automatically started at Windows startup. Only the default root user account was created,

with the same password defined for the Windows administrator user account. The

Windows firewall was automatically modified by the installer to allow incoming MySQL

connections to the port TCP 3306, and the privileges of the MySQL server were manually

adjusted to allow root access from the network 192.168.10.0/24.

In summary, two network services were installed and configured in this VM:

• Remote Desktop (port TCP 3389): Remote Desktop access allowed only for user

Administrator.

• MySQL (port TCP 3306): MySQL access allowed only for user root.

3.3.3.5 Additional configuration steps

During the OS installation process followed for each VM (or after the OS was

installed) the timezone selected was America/Indiana/Indianapolis (or US & Canada

Eastern time), the language chosen was English, and the location was United States.

54

If a VM required Internet access to update or install any additional package or

software, its network configuration was temporally modified to access the Internet using

the virtualization node as default gateway. The network configuration of the virtualization

node was also modified to accomplish this objective. Once the VM was updated and no

additional software was needed, the network configuration of the VM and the

virtualization node were restored to their previous state.

A customized Volatility profile was compiled on both VMs running GNU/Linux

(VM1 and VM2) after they were successfully installed and updated. This profile was

required in order to examine the RAM images created with the utility virsh as described in

section 3.5. Volatility (the framework used in this study to examine the RAM images)

includes built-in support for the majority of the Windows systems, but for a GNU/Linux

system a customized profile has to be generated (Ligh et al., 2014). This is due to the

large number of Linux kernel versions available and to the fact that each kernel can be

compiled with a custom configuration (Ligh et al., 2014). The commands executed to

generate the profiles for VM1 and VM2 were included in Appendix D.

3.3.4 Laptop Configuration

The laptop was restored to factory settings and all the available updates from

Microsoft were applied. The OS installed after the restore and update process was

Microsoft Windows 8.1 Pro, version 6.3.9600. Only one user account was generated:

• User account name: cflstudent

• Password: 2hLMmVGt

• Account type: Administrator

Besides the OS and the updates applied, the following software was also installed

on the laptop to interact with the four VMs as specified in section 3.5.

• Putty SSH client (version 0.70)

• Google Chrome (version 65.0.3325.146)

55

• FileZilla FTP client (version 3.32.0)

• Command Prompt interface (included in Microsoft Windows)

• Remote Desktop client (included in Microsoft Windows)

• MySQL Workbench (version 6.3.10)

The last step in the laptop configuration process was connecting the USB to

Gigabit Ethernet adapter into a USB port. The network interface integrated in the adapter

was automatically detected by the operating system and no additional drives were

installed. The network interface was listed as Realtek USB GBE Family Controller by

Windows device manager. The IP address 192.168.10.20 was assigned to this interface

and one Ethernet patch cord was used to connect the laptop to the switch. Finally, the

network communication was verified between the laptop, the virtualization node, and the

four VMs.

3.4 Testing Conditions

Before starting the execution of the testing procedures, both hard drives of the

virtualization node were examined to determine if they had bad sectors. To this purpose,

the physical computer was booted from a Ubuntu Desktop 16.04.4 64-bit USB stick and

the option Try Ubuntu without installing was selected. Once Ubuntu booted into graphical

mode, the keys Ctrl+Alt+F1 were pressed to change from graphical to command line

mode. Using this mode, the default user ubuntu (without password) was logged into the

system. The command sudo su was executed to allow the user ubuntu to execute

commands with superuser privileges. Then, the following command was executed:

badblocks -s -v -n /dev/sda. The utility badblocks searches a device for bad blocks.

Option -s was included to show the progress of the process, option -v to report verbose

information, option -n to use non-destructive read/write mode, and the device /dev/sda

corresponded to the physical hard drive assigned to store the VM hard drives. Once the

previous process finished, the following command was executed: badblocks -s -v -n

56

/dev/sdb. The purpose of this command was to perform the same examination on the

device /dev/sdb. This device corresponded to the physical hard drive assigned to store the

data collected from the VMs in the next stage of the study. Both commands did not report

bad sectors.

The testing procedures related to the creation of virtual hard drive and RAM

content images were analyzed from an efficiency standpoint. For this reason, the first step

was to obtain a reliable and accurate baseline to compare with the results observed during

the testing procedures and to determine if they were efficient. The Ubuntu Desktop

previously booted from a USB stick was also used to calculate the transfer rates for both

physical hard drives and for the RAM. By default, Ubuntu Desktop starts several services

which may use hardware resources. The services related to the graphical mode, network

functions, and scheduled tasks were stopped to minimize the usage of resources before

executing the transfer rate tests. The services stopped were: lightdm, cron, bluetooth,

network-manager, cups-browserd, cups, and avahi-daemon. The network interfaces were

also disabled with the command ifconfig down. The principal objective of stopping these

services and disabling the network interfaces was to maximize the availability of resources

during the transfer rate tests in order to get an accurate baseline. The next subsections

introduce the steps followed to obtain these values, which were fundamental to determine

the efficiency of virsh to create virtual hard drive and RAM content images during the

next sections of this study.

3.4.1 Hard drives transfer rates

This subsection describes the process followed to calculate read and write transfer

rates for both hard drives available in the virtualization node. These values were used then

to calculate the data duplication transfer rate from one hard drive to the other and to use it

as baseline for efficiency.

3.4.1.1 Read transfer rate for /dev/sda

57

The command executed to get the read transfer rate for the physical hard drive

selected to store the virtual hard drives was: dd if=/dev/sda4 of=/dev/null bs=512

conv=noerror. The partition /dev/sda4 was selected as input device (parameter if) because

this partition had a size of 339.5GB approximately, which was large enough to get a

reliable transfer rate average. The special file /dev/null was selected as output device

(parameter of) because it just discards the data without performing any real writing

operation. The parameter bs=512 indicates a block size of 512 bytes was read at a time.

This option was chosen to match the physical sector size of the hard drive and to create a

sector-by-sector sequential reading process. The value noerror in the parameter conv

means the process continues after a read error from the input device.

The previous command was executed 10 times. Table 3.4 displays the results of

each execution and the average values.

Table 3.4. Read transfer rate for device /dev/sda

Test Bytes Seconds Bytes/sec MB/sec
1 339,549,880,320 6,317.83 53,744,700.37 53.74
2 339,549,880,320 6,317.98 53,743,424.37 53.74
3 339,549,880,320 6,318.31 53,740,617.40 53.74
4 339,549,880,320 6,318.07 53,742,658.81 53.74
5 339,549,880,320 6,318.43 53,739,596.75 53.74
6 339,549,880,320 6,317.71 53,745,721.21 53.75
7 339,549,880,320 6,318.54 53,738,661.20 53.74
8 339,549,880,320 6,318.40 53,739,851.91 53.74
9 339,549,880,320 6,317.86 53,744,445.16 53.74

10 339,549,880,320 6,318.30 53,740,702.45 53.74
AVG 339,549,880,320 6,318.14 53,742,037.96 53.74

Figure 3.3 illustrates the read transfer rate (in MB/sec) registered. As it can be

seen, the values were stable across the tests, which suggested the 53.74MB/s average

value was an accurate indicator of the read transfer rate for the device /dev/sda.

58

Figure 3.3. /dev/sda read transfer rate

3.4.1.2 Write transfer rate for /dev/sda

The command executed to get the write transfer rate for the physical hard drive

selected to store the virtual hard drives was: dd if=/dev/zero of=/dev/sda4 bs=512

conv=noerror,sync,fdatasync. The special file /dev/zero was selected as input device

(parameter if) because it provides a stream of null characters and it minimizes the use of

CPU compared to other special devices such as /dev/random or /dev/urandom. The

partition /dev/sda4 was selected as output device (parameter of) because this partition was

not being used yet and it had a size of 339.5GB approximately, which was large enough to

get a reliable transfer rate average. The parameter bs=512 indicates a block size of 512

bytes was read and written at a time. This option was chosen to match the physical sector

size of the hard drive and to create a sector-by-sector sequential writing process. The

value noerror in the parameter conv means the process continues after a read error from

the input device. The value sync means to pad with null values the destination block in the

output device after a read error from the input device. The value fdatasync forces each

block to be immediately written out to the output device. The principal objective of

including this last value was to minimize the impact of the cache and to get a more

accurate write transfer rate for the hard drive.

59

The previous command was executed 10 times. Table 3.5 displays the results of

each execution and the average values.

Table 3.5. Write transfer rate for device /dev/sda

Test Bytes Seconds Bytes/sec MB/sec
1 339,549,880,320 18,111.10 18,748,164.40 18.75
2 339,549,880,320 18,154.20 18,703,654.27 18.70
3 339,549,880,320 18,145.40 18,712,725.01 18.71
4 339,549,880,320 18,057.40 18,803,918.63 18.80
5 339,549,880,320 18,165.70 18,691,813.71 18.69
6 339,549,880,320 18,079.40 18,781,037.00 18.78
7 339,549,880,320 18,152.80 18,705,096.75 18.71
8 339,549,880,320 17,992.70 18,871,535.70 18.87
9 339,549,880,320 17,939.00 18,928,027.22 18.93

10 339,549,880,320 17,941.70 18,925,178.79 18.93
AVG 339,549,880,320 18,073.90 18,787,115.15 18.79

Figure 3.4 illustrates the write transfer rate (in MB/sec) registered. As it can be

seen, the values were also stable across the tests, which suggested the 18.79MB/s average

value was an accurate indicator of the write transfer rate for the device /dev/sda.

Figure 3.4. /dev/sda write transfer rate

60

3.4.1.3 Read transfer rate for /dev/sdb

The command executed to get the read transfer rate for the physical hard drive

selected to store the information collected from the VMs was: dd if=/dev/sdb4

of=/dev/null bs=512 conv=noerror. The purpose of this command was to perform the

same previous read transfer rate test on the device /dev/sdb. It was executed 10 times and

Table 3.6 displays the results of each execution and the average values.

Table 3.6. Read transfer rate for device /dev/sdb

Test Bytes Seconds Bytes/sec MB/sec
1 339,549,880,320 2,969.36 114,351,200.37 114.35
2 339,549,880,320 2,969.28 114,354,281.28 114.35
3 339,549,880,320 2,969.38 114,350,430.16 114.35
4 339,549,880,320 2,969.16 114,358,902.96 114.36
5 339,549,880,320 2,969.44 114,348,119.62 114.35
6 339,549,880,320 2,969.40 114,349,659.97 114.35
7 339,549,880,320 2,969.24 114,355,821.80 114.36
8 339,549,880,320 2,969.31 114,353,125.92 114.35
9 339,549,880,320 2,969.38 114,350,430.16 114.35

10 339,549,880,320 2,969.58 114,342,728.71 114.34
AVG 339,549,880,320 2,969.35 114,351,470.10 114.35

Figure 3.5 illustrates the read transfer rate (in MB/sec) registered. As it can be

seen, the values were stable across the tests, which suggested the 114.35MB/s average

value was an accurate indicator of the read transfer rate for the device /dev/sdb.

61

Figure 3.5. /dev/sdb read transfer rate

3.4.1.4 Write transfer rate for /dev/sdb

The command executed to get the write transfer rate for the physical hard drive

selected to store the information collected from the VMs was: dd if=/dev/zero

of=/dev/sdb4 bs=512 conv=noerror,sync,fdatasync. The purpose of this command was to

perform the same write transfer rate tests on the device /dev/sdb. It was executed 10 times

and Table 3.7 displays the results of each execution and the average values.

Table 3.7. Write transfer rate for device /dev/sdb

Test Bytes Seconds Bytes/sec MB/sec
1 339,549,880,320 11,127.90 30,513,383.51 30.51
2 339,549,880,320 11,128.10 30,512,835.10 30.51
3 339,549,880,320 11,128.00 30,513,109.30 30.51
4 339,549,880,320 11,129.30 30,509,545.10 30.51
5 339,549,880,320 11,127.60 30,514,206.15 30.51
6 339,549,880,320 11,127.60 30,514,206.15 30.51
7 339,549,880,320 11,128.50 30,511,738.36 30.51
8 339,549,880,320 11,128.30 30,512,286.72 30.51
9 339,549,880,320 11,128.40 30,512,012.54 30.51

10 339,549,880,320 11,128.60 30,511,464.18 30.51
AVG 339,549,880,320 11,128.23 30,512,478.71 30.51

62

Figure 3.6 illustrates the write transfer rate (in MB/sec) registered. As it can be

seen, the values were also stable across the tests, which suggested the 30.51MB/s average

value was an accurate indicator of the write transfer rate for the device /dev/sdb.

Figure 3.6. /dev/sdb write transfer rate

3.4.1.5 Data duplication transfer rate from /dev/sda to /dev/sdb

At this point, read and write transfer rate values for both hard drives were known.

The final step to get an accurate baseline was testing the process of duplicating data from

the hard drive /dev/sda (selected to store the VM hard drives) to the hard drive /dev/sdb

(selected to store the data collected from the VMs). The command executed to get this

transfer rate was: dd if=/dev/sda4 of=/dev/sdb4 bs=512 conv=noerror,sync,fdatasync. It

was executed 10 times and Table 3.8 displays the results of each execution and the average

values.

63

Table 3.8. Data duplication transfer rate from /dev/sda to /dev/sdb

Test Bytes Seconds Bytes/sec MB/sec
1 339,549,880,320 11,321.50 29,991,598.31 29.99
2 339,549,880,320 11,323.60 29,986,036.27 29.99
3 339,549,880,320 11,322.20 29,989,744.07 29.99
4 339,549,880,320 11,322.70 29,988,419.75 29.99
5 339,549,880,320 11,324.30 29,984,182.72 29.98
6 339,549,880,320 11,322.80 29,988,154.90 29.99
7 339,549,880,320 11,325.70 29,980,476.29 29.98
8 339,549,880,320 11,321.40 29,991,863.23 29.99
9 339,549,880,320 11,317.30 30,002,728.59 30.00

10 339,549,880,320 11,325.50 29,981,005.72 29.99
AVG 339,549,880,320 11,322.70 29,988,420.99 29.99

Figure 3.7 illustrates the data duplication transfer rate (in MB/sec) registered. As it

can be seen, the values were stable across the tests, which suggested the 29.99MB/s

average value was an accurate indicator of the data duplication transfer rate from the

device /dev/sda to the device /dev/sdb.

Figure 3.7. Data duplication transfer rate from /dev/sda to /dev/sdb

As it was previously determined, the read transfer rate for /dev/sda was 53.74MB/s

and the write transfer rate for /dev/sdb was 30.51MB/s. The motherboard of the

64

virtualization node had an integrated SATA 3.0 Gbit/s controller, which supported a

bandwidth throughput of up to 300MB/s shared between four SATA ports. Of these ports

only two were used (one per each hard drive connected), which means if the transfer rate

for both hard drives were added, the resulting 84.25MB/s was still much lower than the

maximum bandwidth throughput supported by the controller. Therefore, the process to

measure the data duplication transfer rate was not limited by the SATA controller, it was

limited only by the write transfer rate for the hard drive /dev/sdb. This analysis is

confirmed by the previous result, since the average data duplication transfer rate

(29.99MB/s) was lower, but indeed close, to the write transfer rate for /dev/sdb

(30.51MB/s).

3.4.2 RAM data duplication transfer rate

The Ubuntu Desktop previously booted from a USB stick was also used to create

two RAM disks, to calculate the data duplication transfer rate between them, and to use

this value as baseline for efficiency. This approach was employed because in section 3.5

the RAM allocated to the VMs was imaged into a file stored in a RAM disk, which is just

a block of RAM that simulates a traditional hard drive. If the RAM content were imaged

to a file stored in a hard drive, the process would be limited by the hard drive write

transfer rate and it would not represent an accurate value to analyze the efficiency of the

imaging process. For this reason, the usage of RAM disks to calculate the RAM data

duplication transfer rate seemed to be more appropriate.

To accomplish this objective, two new directories were created by executing the

command: mkdir /mnt/ramdisk{1,2}. After that, two RAM disks were defined and

mounted on these directories by executing: mount -t tmpfs -o size=12288M tmpfs

/mnt/ramdisk{1,2}. The parameter size specified an extension of 12GiB for each RAM

disk. A new file called memory.img was generated to fill all the space available on the first

RAM disk by executing: dd if=/dev/urandom of=/mnt/ramdisk1/memory.img. The device

/dev/urandom was selected as input device (parameter if) because it is an special file that

provides a stream of random numbers. The previous command wrote 25,165,825 sectors

65

of 512 bytes to generate a file with a total size of 12,884,902,400 bytes. The file previous

generated was then copied into the second RAM disk, by executing the command: time cp

/mnt/ramdisk1/memory.img /mnt/ramdisk2/memory.img. The program time was included

in the command to report the real time needed by the process to complete the copy. The

command was executed 10 times. Table 3.9 displays the results of each execution and the

average values.

Table 3.9. RAM data duplication transfer rate

Test Seconds Bytes/sec MB/sec
1 9.853 1,307,713,630.37 1,307.71
2 9.860 1,306,785,233.27 1,306.79
3 9.842 1,309,175,208.29 1,309.18
4 9.846 1,308,643,347.55 1,308.64
5 9.841 1,309,308,241.03 1,309.31
6 9.856 1,307,315,584.42 1,307.32
7 9.837 1,309,840,642.47 1,309.84
8 9.842 1,309,175,208.29 1,309.18
9 9.851 1,307,979,129.02 1,307.98

10 9.842 1,309,175,208.29 1,309.18
AVG 9.847 1,308,511,091.30 1,308.51

Figure 3.8 illustrates the data duplication transfer rate (in MB/sec) registered

between both RAM disks. As it can be seen, the values were stable across the tests, which

suggested the 1,308.51MB/s average value was an accurate indicator of the RAM data

duplication transfer rate.

66

Figure 3.8. RAM data duplication transfer rate

Once this process was concluded, the virtualization node was powered off, the

Ubuntu Desktop USB stick was disconnected, and the Ubuntu Server previously installed

was booted again.

3.5 Testing Procedures

This section describes the testing procedures performed after the virtualization

node, the VMs, and the laptop were implemented (according to section 3.3) and the

transfer rates determined (section 3.4). These procedures employed the utilities virsh and

tcpdump to collect digital data from the VMs and to test the hypotheses previously defined

(section 3.1).

3.5.1 Virtual hard drive image creation

The testing procedures related to the creation of virtual hard drive images involved

an automatic component completed by a BASH script, and a manual component

completed by examining the output generated by the script.

67

The BASH script was developed to test the imaging process of virtual hard drives

by employing the utility virsh to create a snapshot. This script was executed once per day,

during 14 consecutive days, in order to create two images from the hard drive of each VM.

One image was stored into a local file in the partition /dev/sdb4, which was previously

formatted with ext4 and mounted on the directory /mnt/forensic-data. The second image

was written into the physical partition /dev/sdb2, which was created with the same size of

the four virtual hard drives. The main reason for creating two images was to examine if

different transfer rates were observed when the image was written directly to physical

sectors of a partition and when it was written to a file in a filesystem. The source code of

the script was included in Appendix E and the steps completed by it are detailed next:

1. The utility virsh was used to create an external snapshot of the hard drive of the first

VM. This means the virtual hard drive was set as read-only and a new overlay file

was created to record the writing operations on it. This step was completed without

suspending the VM and the time needed to create the snapshot was registered.

2. A bit-stream image was created through the command dd from the read-only hard

drive into the physical partition /dev/sdb2. The size of this partition matched the one

of the virtual hard drive. The transfer rate of this operation was registered.

3. A second bit-stream image was created through the command dd from the read-only

hard drive into a local file inside the directory /mnt/forensic-data. The transfer rate

of this operation was registered.

4. MD5 and SHA1 hash values were calculated for the read-only virtual hard drive, for

the physical partition /dev/sdb2, and for the file generated in the directory

/mnt/forensic-data. The objective of this step was to verify if the hash values

matched.

5. The principal partition where the VM OS had been installed was mounted on the

local directory /mnt/temp, using one of the images previously created. A log file

located inside this mounted partition was checked to verify if the date and time of

the last entry recorded was close to the moment when the snapshot was created.

68

6. The overlay file was merged into the original virtual hard drive to revert the changes

made in the first step. The virtual hard drive was set again as a read-write device.

This step was completed without suspending the VM and the time needed to merge

the snapshot was registered. Finally, the overlay file was removed.

7. The process started again from the first step, but focusing on the next VM.

Once the script completed the previous steps for the four VMs, its output was

manually analyzed to determine the following:

1. If the MD5 and SHA1 hash values calculated for the two images and the virtual

hard drive matched.

2. If it was possible to mount, from one of the images created, the principal partition

where the VM OS had been installed.

3. If the content of a log file located in the partition mounted reported a close date and

time to the moment the snapshot was created.

3.5.2 RAM image creation and network traffic capturing

The testing procedures related to RAM content imaging and real-time network

traffic capturing required the cooperation of five participants in order to interact with the

four VMs. To this purpose, the participants used the laptop that was previously connected

to the emulated cloud provider’s network and they interacted with the VMs through

different network services. Figure 3.9 illustrates the network connections established from

the laptop by the participants and the network services running on each VM.

69

Figure 3.9. Network connections established from the laptop by the participants

The participants followed sequentially four different scripts (one at a time) that

detailed the steps to be executed for each VM. Table 3.10 summarizes these steps.

Table 3.10. Steps followed by the participants to interact with the VMs

Step VM Description
1 ALL Log in the laptop.
2 ALL Send a random number of ICMP echo requests to the VM.
3 VM1 Use the SSH server on VM1 to execute two commands.

VM2 Use the SSH server on VM2 to execute two commands.
VM3 Use the remote desktop server on VM3 to execute two commands.
VM4 Use the remote desktop server on VM4 to execute two commands.

4 VM1 Use a web browser to access the web server on VM1.
VM2 Use a FTP client to access the FTP server on VM2.
VM3 Use a DNS client to query the DNS server on VM3.
VM4 Use a MySQL client to access the MySQL server on VM4.

5 ALL Complete a table indicating the date and time the interaction
started, the random number of ICMP echo requests specified at
step 2, and the two commands executed at step 3.

70

The four complete scripts and the results registered by the participants are

included in Appendices G, H, I, and J. Appendix F includes the review exemption letter

provided by Purdue’s Institutional Review Board (IRB) for this research.

Each participant completed the process of interacting sequentially with the four

VMs twice, but at different dates. In addition, only one participant completed the process

per each day. The purpose of this segmentation was to allow the researcher to be present

during each interaction in case the participants had any concerns about the process to

follow and also to simplify the later analysis of the data collected.

Before each participant started the interaction with a particular VM, the utility

tcpdump was executed on the virtualization node to capture continuously all the network

traffic that traversed the TAP interface of the VM. For example, the following command

was employed to capture all the network traffic of VM1 (whose TAP interface was vnet0)

and to store the data collected into a local file: tcpdump -nn -s0 --interface=vnet0 -w

/mnt/forensic-data/net-captures/vm1-test1.pcap. The meaning of the parameters included

in the command were explained in 2.2.2.6.

During the interaction, the participants generated network traffic from the laptop,

as specified in table 3.10. Once the interaction was completed, the tcpdump process was

stopped and the resulting file was examined through the application Wireshark (version

2.2.6). The objective of this examination was to retrieve:

1. The random number of ICMP echo requests sent from the laptop to the VM.

2. The SSH or remote desktop access established from the laptop to the VM.

3. The network service connection (HTTP, FTP, MySQL, or DNS) established from

the laptop to the VM.

Similarly, once the interaction with a VM was completed, its RAM content was

imaged into a file stored in a RAM disk that was mounted on the directory /mnt/ramdisk.

The RAM disk was created by executing the command: mount -t tmpfs -o size=5000M

tmpfs /mnt/ramdisk. The parameter size specified an extension of 5GB for the RAM disk.

This size was chosen in order to have enough space to store one RAM image created from

71

any VM (all the VMs had 4GB RAM assigned). The principal and only purpose of using a

RAM disk to store the RAM image file was to analyze the efficiency of the imaging

process.

The utility virsh was executed to create a RAM image from each VM after each

participant finished the interaction. For instance, the following command was employed to

create a RAM image of VM1 into the RAM disk, and also to report the time needed to

finish the process: time virsh dump VM1 Ubuntu 17.10 /mnt/ramdisk/vm1-ram.dump

--memory-only. The meaning of the parameters included in the command were explained

in 2.2.2.4.

Once the previous command ended, the resulting file was moved to the directory

/mnt/forensic-data/ram-images to be examined through the Volatility Framework (version

2.6). The objective of this examination was to retrieve:

1. The SSH or remote desktop access established from the laptop to the VM, that was

intentionally left active during the interaction.

2. The commands executed on the VM OS through the SSH or remote desktop session.

3. The network service connection (HTTP, FTP, MySQL, or DNS) established from

the laptop to the VM.

3.6 Measurements for Evaluation

This section describes the procedures followed to determine if each test described

in the previous section achieved, after being executed, the expected results for the

variables efficiency, integrity, and completeness.

3.6.1 Hypothesis One

The results reported by the BASH script developed to test the creation of virtual

hard drive images were examined to verify if the process was efficient and if it respected

72

the integrity and completeness of the data acquired. Table 3.11 summarizes the steps

executed by the BASH script for each image created and the expected result for each step.

Table 3.11. Steps and expected results of the virtual hard drive image creation process

Step Description Result
1 Create an external snapshot of the virtual hard drive. Time

This means the virtual hard drive was set as read-only
device and a new overlay file was created.

2 Create a bit-stream image from the read-only hard drive Time
into the physical partition /dev/sdb2.

3 Create a bit-stream image from the read-only hard drive Time
into a local file inside the directory /mnt/forensic-data.

4 Calculate MD5 and SHA1 hash values for the read-only Boolean
hard drive, the physical partition /dev/sdb2, and the file
inside /mnt/forensic-data. Did they match?

5 Mount the principal partition where the VM OS was Boolean
installed using one of the images previously created. Was
the partition successfully mounted?

6 Check date and time of the last entry recorded in a Boolean
log file located in the partition mounted in the previous
step. Were date and time close (less than 6 hours) to the
moment when the snapshot was created?

7 Merge the overlay file into the original virtual hard Time
drive to revert the changes made in the first step.

The time results observed for steps 1, 2, and 7 were added together. This sum

represented the total amount of time needed to take a new snapshot from the virtual hard

drive, to use the snapshot to create a bit-stream image into a physical partition, and to

revert the changes made when the snapshot was taken. The total size of the virtual hard

drive was then divided by the total amount of time in order to get the transfer rate for the

whole operation of creating a new image from a snapshot. The ratio between this value

and 29.99MB/s (data duplication transfer rate from /dev/sda to /dev/sdb obtained in

73

subsection 3.4.1) was calculated. As equation 3.1 states, if the ratio was greater than or

equal to 0.7, the process was considered efficient:

E f f iciency = 1, i f
trans f er rate f or snapshot and image creation

trans f er rate f or data duplication (Testing Conditions)
≥ 0.7

(3.1)

The 0.7 threshold value was deliberately selected because a reduction of efficiency

in 0.3 could be acceptable from a digital forensic perspective, as long as the process

respected the integrity and completeness of the data acquired. For the purpose of this

study, these two variables were more significant than efficiency to ensure the acquisition

process was reliable and accurate. Furthermore, a diminution of efficiency was expected

because the images were created from a physical hard drive of the virtualization node,

which was continuously running an OS and the four VMs. The time needed to create the

snapshot and then to merge it again into the virtual hard drive was also included when

efficiency was measured. For these reasons, a result in the previous equation of 0.7 or

higher signified that efficiency was fulfilled.

Similarly, the process of creating two images from the snapshot was considered to

accomplish integrity and completeness if the boolean results observed for steps 4, 5, and 6

indicated a positive (true) outcome. In other words, step 4 demonstrated both bit-stream

images were exact and authentic copies of the virtual hard drive in view of the fact that

their hash values matched. While steps 5 and 6 suggested the images were also

successfully created because the partition table was recognized, the main partition was

mounted, and the entries of the log file extracted were close enough to the moment the

snapshot was taken. As Equations 3.2 and 3.3 state, if these three steps had a positive

(true) outcome, integrity and completeness were considered satisfied:

Integrity = 1, i f Step 4 = true && Step 5 = true && Step 6 = true (3.2)

Completeness = 1, i f Step 4 = true && Step 5 = true && Step 6 = true (3.3)

74

3.6.2 Hypothesis Two

In a similar way, the RAM image created after each participant interacted with a

particular VM was examined to verify if the process was efficient and if it respected the

integrity and completeness of the data acquired. Table 3.12 summarizes the steps

manually executed and the expected result for each step.

Table 3.12. Steps and expected results of the RAM image creation process

Step Description Result
1 Create a RAM content image from the VM (into a RAM disk), Time

once the participant finished the interaction.
2 Use Volatility to recover from the RAM image the SSH or Boolean

remote desktop connection established by the participant.
Was the information successfully retrieved?

3 Use Volatility to recover from the RAM image the commands Boolean
executed on the VM through the SSH or remote desktop session.
Was the information successfully retrieved?

4 Use Volatility to recover from the RAM image the process name Boolean
and port used by the network services running on the VM and
accessed by the participant. Was the information successfully
retrieved?

The time result observed for step 1 represented the total amount of time needed to

create a RAM content image. The total size of file generated in the RAM disk was then

divided by the total amount of time in order to get the transfer rate for the operation of

creating a new RAM content image. The ratio between this value and 1,308.51MB/s

(RAM data duplication transfer rate obtained in subsection 3.4.2) was calculated. As

equation 3.4 states, if the ratio was greater than or equal to 0.5, the process was considered

efficient:

E f f iciency = 1, i f
trans f er rate f or RAM content image creation

trans f er rate f or RAM data duplication (Testing Conditions)
≥ 0.5

(3.4)

The 0.5 threshold value was also deliberately selected because a reduction of

efficiency in 0.5 could be acceptable from a digital forensic perspective, as long as the

75

process respected the integrity and completeness of the data acquired. This value

represented a more flexible threshold than the one used to analyze efficiency during the

hard drive imaging process. There were two main reasons to explain why this threshold

was set to a more flexible value: in the first place RAM transfer rates are sensible and more

difficult to accurately measure than hard drive transfer rates, and in the second place RAM

transfer rate is considerably faster than hard drive transfer rates. For these particularities, a

result in the previous equation of 0.5 or higher signified that efficiency was fulfilled.

Similarly, the process of creating a RAM content image was considered to

accomplish integrity and completeness if the boolean results observed for steps 2, 3, and 4

indicated a positive (true) outcome. In other words, it was possible to recover from the

RAM image the SSH or remote desktop connection established to the VM, the commands

executed through this connection, and the information regarding network services running

on the VM. As Equations 3.5 and 3.6 state, if these three steps had a positive (true)

outcome, integrity and completeness were considered satisfied:

Integrity = 1, i f Step 2 = true && Step 3 = true && Step 4 = true (3.5)

Completeness = 1, i f Step 2 = true && Step 3 = true && Step 4 = true (3.6)

3.6.3 Hypothesis Three

The network traffic captured after each interaction with a particular VM was

analyzed to verify if the process respected the integrity and completeness of the data

acquired. Table 3.13 summarizes the steps manually executed to examine the network

traffic file and the expected result for each step.

76

Table 3.13. Steps and expected results of the network traffic capturing process

Step Description Result
1 Use Wireshark to recover the random number of Boolean

ICMP echo requests sent by the participant. Was
the information successfully retrieved?

2 Use Wireshark to recover the SSH or remote desktop Boolean
connection established by the participant. Was the
information successfully retrieved? Did it match
the information retrieved from the RAM image at
step 3 in the previous subsection?

3 Use Wireshark to recover the network service Boolean
connection established by the participant. Was the
information successfully retrieved? Did it match
the information retrieved from the RAM image at
step 4 in the previous subsection?

The process of capturing network traffic in real-time was considered to accomplish

integrity and completeness if the boolean results observed for steps 1, 2, and 3 indicated a

positive (true) outcome. In other words, it was possible to recover from the network traffic

file the random number of ICMP echo requests sent to the VM, the SSH or remote

desktop connection established to the VM, and the network connection established to the

services running on the VM. In addition, the information recovered matched the one

observed after examining the results of the RAM imaging process of the same interaction.

As Equations 3.7 and 3.8 state, if these three steps had a positive (true) outcome, integrity

and completeness were considered satisfied:

Integrity = 1, i f Step 1 = true && Step 2 = true && Step 3 = true (3.7)

Completeness = 1, i f Step 1 = true && Step 2 = true && Step 3 = true (3.8)

77

3.7 Measurements for Success

This section describes the procedures followed to accept or reject each of the three

hypotheses stated, based on the measures observed for the variables efficiency, integrity

and completeness on each of the tests performed.

3.7.1 Hypothesis One

Fourteen virtual hard drive images were created for each of the four VM, to

produce 56 different images in total. For every image creation process, the variables

efficiency, integrity, and completeness were assigned a value of 1 if the process met the

conditions described in section 3.6. Otherwise, the variables were assigned a value of 0.

Based on these values, equation 3.9 states the condition to accept H1.

H1 : Integrity∗ (10)+Completeness∗ (10)+E f f iciency∗ (5)≥ 20 (3.9)

The previous equation conferred a weight of 10 to the variables integrity and

completeness and a weight of 5 to the variable efficiency. H1 was accepted if the sum of

the three variables by their weight was greater than or equal to 20 for every image creation

process completed or otherwise it was rejected. In other words, H1 was accepted if at least

integrity and completeness were achieved for each image created. As it was mentioned

before, from a digital forensic perspective a reduction of efficiency could be acceptable as

long as the process respects the integrity and completeness of the data acquired. For the

purpose of this study, these two variables were more significant than efficiency to ensure

the acquisition process was reliable and accurate.

3.7.2 Hypothesis Two

Ten RAM images were created for each of the four VM, to produce 40 different

images in total. For every RAM image creation process, the variables efficiency, integrity,

78

and completeness were assigned a value of 1 if the process met the conditions described in

section 3.6. Otherwise, the variables were assigned a value of 0. Based on these values,

equation 3.10 states the condition to accept H2.

H2 : Integrity∗ (10)+Completeness∗ (10)+E f f iciency∗ (5)≥ 20 (3.10)

The previous equation conferred a weight of 10 to the variables integrity and

completeness and a weight of 5 to the variable efficiency. H2 was accepted if the sum of

the three variables by their weight was greater than or equal to 20 for every RAM image

creation process completed or otherwise it was rejected. In other words, H2 was accepted

if at least integrity and completeness were achieved for each RAM image created. As it

was mentioned before, from a digital forensic perspective a reduction of efficiency could

be acceptable as long as the process respects the integrity and completeness of the data

acquired. For the purpose of this study, these two variables were more significant than

efficiency to ensure the acquisition process was reliable and accurate.

3.7.3 Hypothesis Three

Ten network capturing processes were executed for each of the four VM, to

produce 40 different network traffic files. For every network capturing process, the

variables integrity and completeness were assigned a value of 1 if the process met the

conditions described in section 3.6. Otherwise, the variables were assigned a value of 0.

Based on these values, equation 3.11 states the condition to accept H3.

H3 : Integrity∗ (10)+Completeness∗ (10)≥ 20 (3.11)

In this case, the part of the equation related to efficiency was removed because this

variable was not considered for the process of capturing network traffic through the utility

tcpdump.

79

3.8 Threats to Validity

The cooperation of participants in the study may introduce uncertainty. For

instance, they could omit one step in the procedures detailed by the scripts and the later

analysis of the RAM image or network traffic files could get inaccurate results. In order to

minimize this threat, the scripts were written as detailed as possible to guide the

participants, step by step, throughout the study. The researcher was also present during

each interaction in case the participants had any concerns about the process to follow. The

objective of these decisions was to minimize the occurrence of unexpected events when

the participants interacted with the VMs that could impact on the validity of the results.

Additionally, the participants were not informed about the global scope of the

research study. They were only introduced to the scripts to follow during the interaction,

with the principal purpose of minimizing the introduction of bias in their behavior.

In terms of reliability, if the study were repeated using the same software versions

on the virtualization node, the results observed should be replicated. The following list

shows the critical software and corresponding version for the purpose of this study:

• Virtualization node OS: Ubuntu Server 16.04.4 64-bit.

• Linux kernel and KVM module (package linux-image-generic): 4.4.0-116.140.

• KVM user-space tools (package qemu-kvm): 2.5.0.

• Libvirt service (package libvirt0) and Libvirt client (package libvirt-bin): 1.3.1-1.

• Tcpdump: 4.9.2-0.

Appendix A shows a complete list of all the packages installed on the

virtualization node, including their respective version.

It is probable that the results were also replicated if different software versions

were used, specially the GNU/Linux distribution and the Linux kernel installed on the

virtualization node. However, other software versions were not analyzed in this study and

more research is needed to support this observation.

80

A different physical computer could be used as virtualization node as long as the

processor includes virtualization technology support and its hardware components are

fully supported by the Linux kernel. The rest of the physical devices (Ethernet switch and

Laptop) are not relevant as long as they work appropriately and meet the minimum

requirements for the purpose of the study.

3.9 Summary

This chapter provided a detailed description of the methodology used in this

research study. It presented the research question, hypotheses, participants, research

design, testing conditions and procedures, measurements for evaluation and success, and

possible threats to validity.

81

CHAPTER 4. RESULTS

This chapter presents the results registered after completing the testing procedures

previously described for each of the hypotheses stated. The chapter also interprets the

results to determine whether or not each hypothesis was accepted.

4.1 Hypothesis One

Fourteen different images were created from the virtual hard drive assigned to

VM1. This virtual hard drive and each image generated had 97,656,832 sectors of 512

bytes and a total size of 50,000,297,984 bytes. Table 4.1 summarizes the results of the

different steps executed to analyze each image created. The column called TTR displays

the total transfer rate for each image creation process, including the steps needed to create

and merge the external snapshot. This means the values reported by this column take into

account the time results of steps 1, 2, and 7, previously described in section 3.6.1. The

column named Ratio represents the relationship between column TTR and the data

duplication transfer rate used as a baseline (29.99MB/s). The value of the variable

efficiency depended on this column: each image creation process was considered efficient

if the ratio value was greater than or equal to 0.7. The possible values of columns S4, S5,

and S6 were T (true) or F (false) according to the results observed for steps 4, 5, and 6,

described in section 3.6.1. The values of the variables integrity and completeness

depended on these columns: each image creation process was considered to respect the

integrity and completeness of the data acquired if the results reported by these three

columns were T (true). In other words, the last four columns (Ratio, S4, S5, and S6)

provided the information required to assign a value of 0 or 1 to the variables efficiency,

integrity, and completeness for each image creation process completed.

82

Table 4.1. VM1 hard drive image creation process

Test SCT DDT SMT DDTR TTR Ratio S4 S5 S6
1 1.77s 1,977.11s 4.20s 25.29MB/s 25.21MB/s 0.84 T T T
2 1.86s 2,010.38s 3.37s 24.87MB/s 24.81MB/s 0.83 T T T
3 1.69s 1,984.36s 3.42s 25.20MB/s 25.13MB/s 0.84 T T T
4 1.79s 1,945.54s 3.54s 25.70MB/s 25.63MB/s 0.85 T T T
5 1.78s 1,979.25s 3.45s 25.26MB/s 25.20MB/s 0.84 T T T
6 1.69s 1,955.87s 3.25s 25.56MB/s 25.50MB/s 0.85 T T T
7 1.77s 2,060.47s 3.35s 24.27MB/s 24.21MB/s 0.81 T T T
8 1.80s 1,966.50s 3.39s 25.43MB/s 25.36MB/s 0.85 T T T
9 1.77s 1,961.44s 6.75s 25.49MB/s 25.38MB/s 0.85 T T T

10 1.82s 1,925.99s 3.30s 25.96MB/s 25.89MB/s 0.86 T T T
11 1.73s 1,955.68s 3.67s 25.57MB/s 25.50MB/s 0.85 T T T
12 1.70s 1,962.14s 3.72s 25.48MB/s 25.41MB/s 0.85 T T T
13 1.64s 1,931.43s 3.17s 25.89MB/s 25.82MB/s 0.86 T T T
14 1.79s 2,056.23s 3.38s 24.32MB/s 24.26MB/s 0.81 T T T

AVG 1.76s 1,976.60s 3.71s 25.31MB/s 25.24MB/s 0.84 - - -

Note. SCT represents the external snapshot creation time (step 1), DDT the bit-stream
image creation time (step 2), and SMT the external snapshot merging time (step 7). DDTR
represents the transfer rate recorded only for the bit-stream image creation process, while
TTR the total transfer rate, which includes the time needed to create and merge the external
snapshot in addition to the bit-stream image creation time. Ratio represents the relationship
between TTR and the value used as a baseline (29.99MB/s). S4, S5, and S6 represent the
results of steps 4, 5, and 6, respectively. The possible results of S4, S5, and S6 were T
(true) or F (false).

Fourteen different images were also created from the virtual hard drive assigned to

VM2. This virtual hard drive and each image generated had the same size previously

detailed for VM1. Table 4.2 summarizes the results of the different steps executed to

analyze each image created.

83

Table 4.2. VM2 hard drive image creation process

Test SCT DDT SMT DDTR TTR Ratio S4 S5 S6
1 1.94s 1,845.62s 3.49s 27.09MB/s 27.01MB/s 0.90 T T T
2 2.02s 1,917.03s 3.07s 26.08MB/s 26.01MB/s 0.87 T T T
3 1.78s 1,898.53s 3.49s 26.34MB/s 26.26MB/s 0.88 T T T
4 1.89s 1,884.68s 3.08s 26.53MB/s 26.46MB/s 0.88 T T T
5 1.74s 1,864.89s 2.92s 26.81MB/s 26.74MB/s 0.89 T T T
6 1.88s 1,870.41s 2.82s 26.73MB/s 26.67MB/s 0.89 T T T
7 1.91s 1,905.96s 3.02s 26.23MB/s 26.17MB/s 0.87 T T T
8 1.95s 1,860.15s 3.04s 26.88MB/s 26.81MB/s 0.89 T T T
9 1.93s 1,845.36s 3.86s 27.10MB/s 27.01MB/s 0.90 T T T

10 1.88s 1,864.82s 3.48s 26.81MB/s 26.74MB/s 0.89 T T T
11 1.87s 1,866.35s 3.42s 26.79MB/s 26.71MB/s 0.89 T T T
12 1.92s 1,911.01s 3.96s 26.16MB/s 26.08MB/s 0.87 T T T
13 1.75s 1,799.27s 4.80s 27.79MB/s 27.69MB/s 0.92 T T T
14 1.96s 1,914.25s 4.90s 26.12MB/s 26.03MB/s 0.87 T T T

AVG 1.89s 1,874.88s 3.53s 26.68MB/s 26.60MB/s 0.89 - - -

Note. SCT represents the external snapshot creation time (step 1), DDT the bit-stream
image creation time (step 2), and SMT the external snapshot merging time (step 7). DDTR
represents the transfer rate recorded only for the bit-stream image creation process, while
TTR the total transfer rate, which includes the time needed to create and merge the external
snapshot in addition to the bit-stream image creation time. Ratio represents the relationship
between TTR and the value used as a baseline (29.99MB/s). S4, S5, and S6 represent the
results of steps 4, 5, and 6, respectively. The possible results of S4, S5, and S6 were T
(true) or F (false).

Fourteen different images were also created from the virtual hard drive assigned to

VM3. This virtual hard drive and each image generated had the same size previously

detailed for VM1. Table 4.3 summarizes the results of the different steps executed to

analyze each image created.

84

Table 4.3. VM3 hard drive image creation process

Test SCT DDT SMT DDTR TTR Ratio S4 S5 S6
1 2.60s 1,925.07s 3.86s 25.97MB/s 25.89MB/s 0.86 T T T
2 2.14s 1,964.93s 3.89s 25.45MB/s 25.37MB/s 0.85 T T T
3 2.16s 2,032.38s 3.62s 24.60MB/s 24.53MB/s 0.82 T T T
4 2.31s 1,980.01s 3.31s 25.25MB/s 25.18MB/s 0.84 T T T
5 1.84s 2,067.05s 3.47s 24.19MB/s 24.13MB/s 0.80 T T T
6 2.19s 2,156.22s 3.29s 23.19MB/s 23.13MB/s 0.77 T T T
7 2.18s 2,178.07s 3.20s 22.96MB/s 22.90MB/s 0.76 T T T
8 1.74s 2,061.69s 3.47s 24.25MB/s 24.19MB/s 0.81 T T T
9 2.15s 1,940.10s 4.22s 25.77MB/s 25.69MB/s 0.86 T T T

10 2.03s 1,936.74s 3.33s 25.82MB/s 25.75MB/s 0.86 T T T
11 2.13s 1,921.73s 3.82s 26.02MB/s 25.94MB/s 0.86 T T T
12 2.32s 1,824.84s 3.31s 27.40MB/s 27.32MB/s 0.91 T T T
13 2.05s 1,814.18s 3.85s 27.56MB/s 27.47MB/s 0.92 T T T
14 2.43s 2,085.50s 3.78s 23.98MB/s 23.90MB/s 0.80 T T T

AVG 2.16s 1,992.04s 3.60s 25.17MB/s 25.10MB/s 0.84 - - -

Note. SCT represents the external snapshot creation time (step 1), DDT the bit-stream
image creation time (step 2), and SMT the external snapshot merging time (step 7). DDTR
represents the transfer rate recorded only for the bit-stream image creation process, while
TTR the total transfer rate, which includes the time needed to create and merge the external
snapshot in addition to the bit-stream image creation time. Ratio represents the relationship
between TTR and the value used as a baseline (29.99MB/s). S4, S5, and S6 represent the
results of steps 4, 5, and 6, respectively. The possible results of S4, S5, and S6 were T
(true) or F (false).

Fourteen different images were also created from the virtual hard drive assigned to

VM4. This virtual hard drive and each image generated had the same size previously

detailed for VM1. Table 4.4 summarizes the results of the different steps executed to

analyze each image created.

85

Table 4.4. VM4 hard drive image creation process

Test SCT DDT SMT DDTR TTR Ratio S4 S5 S6
1 1.55s 1,943.80s 7.26s 25.72MB/s 25.61MB/s 0.85 T T T
2 1.93s 1,949.18s 5.77s 25.65MB/s 25.55MB/s 0.85 T T T
3 2.30s 2,032.45s 7.77s 24.60MB/s 24.48MB/s 0.82 T T T
4 2.10s 2,027.28s 8.72s 24.66MB/s 24.53MB/s 0.82 T T T
5 2.61s 2,042.94s 6.06s 24.47MB/s 24.37MB/s 0.81 T T T
6 2.49s 2,106.78s 6.22s 23.73MB/s 23.64MB/s 0.79 T T T
7 2.45s 2,051.54s 5.54s 24.37MB/s 24.28MB/s 0.81 T T T
8 2.26s 2,024.43s 6.45s 24.70MB/s 24.59MB/s 0.82 T T T
9 1.99s 1,946.88s 4.72s 25.68MB/s 25.59MB/s 0.85 T T T

10 1.77s 2,104.86s 4.66s 23.75MB/s 23.68MB/s 0.79 T T T
11 1.75s 2,099.97s 4.44s 23.81MB/s 23.74MB/s 0.79 T T T
12 1.83s 1,914.80s 4.82s 26.11MB/s 26.02MB/s 0.87 T T T
13 1.64s 2,012.17s 4.91s 24.85MB/s 24.77MB/s 0.83 T T T
14 1.69s 1,949.67s 6.14s 25.65MB/s 25.54MB/s 0.85 T T T

AVG 2.03s 2,014.77s 5.96s 24.84MB/s 24.74MB/s 0.83 - - -

Note. SCT represents the external snapshot creation time (step 1), DDT the bit-stream
image creation time (step 2), and SMT the external snapshot merging time (step 7). DDTR
represents the transfer rate recorded only for the bit-stream image creation process, while
TTR the total transfer rate, which includes the time needed to create and merge the external
snapshot in addition to the bit-stream image creation time. Ratio represents the relationship
between TTR and the value used as a baseline (29.99MB/s). S4, S5, and S6 represent the
results of steps 4, 5, and 6, respectively. The possible results of S4, S5, and S6 were T
(true) or F (false).

The values presented in the previous four tables suggested the utility virsh is able

to take snapshots of virtual hard drives, from where bit-stream images can be created in an

efficient manner. The ratio value for each of the 56 different images generated was never

lower than the 0.7 threshold value. The lowest ratio value registered was 0.76 while the

average ratio value for all the 56 imaging processes was 0.85. In other words, the average

transfer rate achieved by the imaging processes was 25.42MB/s while the data duplication

transfer rate from /dev/sda to /dev/sdb used as a baseline was 29.99MB/s. This baseline

represented the transfer rate in optimal conditions because it was calculated when the

availability of hardware resources on the virtualization node was maximized. Conversely,

all the virtual hard drive images were created while the virtualization node was using

86

resources to execute different OS tasks and running the four VMs. For instance, the

logging service of the virtualization node was writing to the physical hard drive /dev/sda

and the four VMs were reading and writing their virtual hard drives stored in the same

physical hard drive. This means the hardware resources were shared between the imaging

processes and other tasks in execution at the virtualization node. If all these facts are

considered, the average value of 0.85 observed for all the imaging processes seems to be

notably efficient.

Similarly, the values in the tables suggested the images generated respected the

integrity and completeness of the data acquired. Columns S4, S5, and S6 reported always

T (true) results for the different verifications after each of the 56 imaging processes

finished. Firstly, the MD5 and SHA1 hash values calculated for the virtual hard drive and

for the two bit-stream images matched every time, which means the images were exact

and authentic copies of the virtual hard drive (S4). Secondly, the main partition of each

image created into the physical partition /dev/sdb2 was successfully mounted on the

virtualization node (S5). This step implies two facts: the partition table of the image

created was correctly recognized and the filesystem of the main partition of the image was

detected and mounted by the virtualization node. Thirdly, the content of a file located

inside the mounted partition was successfully accessed and the last entry recorded in this

file was always close (less than 6 hours) to the moment when the snapshot was created

(S6). These results evidence that all the images created respected the integrity and

completeness of the data acquired.

For the previous reasons, H1 was accepted, which means virsh is able to take

snapshots of the virtual hard drives of a VPS from where bit-stream images can be created

in an efficient manner, respecting the integrity and completeness of the data acquired.

4.2 Hypothesis Two

Ten different RAM images were created from VM1 and each of them had a total

size of 4,429,395,320 bytes (approximately 4GiB). Table 4.5 summarizes the results of the

different steps executed to analyze each RAM image created. The column called RITR

87

displays the total transfer rate for each RAM image creation process based on the time

needed to generate the image and its size. This means the values reported by this column

take into account the time results of step 1 previously described in section 3.6.2. The

column named Ratio represents the relationship between column RITR and the RAM data

duplication transfer rate used as a baseline (1,308.51MB/s). The value of the variable

efficiency depended on this column: each RAM image creation process was considered

efficient if the ratio value was greater than or equal to 0.5. The possible values of columns

S2, S3, and S4 were T (true) or F (false) according to the results observed for steps 2, 3,

and 4, also described in section 3.6.2. The values of the variables integrity and

completeness depended on these columns: each RAM image creation process was

considered to respect the integrity and completeness of the data acquired if the results

reported by these three columns were T (true). In other words, the last four columns

(Ratio, S2, S3, and S4) provided the information required to assign a value of 0 or 1 to the

variables efficiency, integrity, and completeness for each RAM image creation process

completed.

Table 4.5. VM1 RAM image creation process

Test RICT RITR Ratio S2 S3 S4
1 5.378s 823.61MB/s 0.63 T T T
2 5.333s 830.56MB/s 0.63 T T T
3 5.843s 758.07MB/s 0.58 T T T
4 5.501s 805.20MB/s 0.62 T T T
5 6.142s 721.16MB/s 0.55 T T T
6 5.423s 816.77MB/s 0.62 T T T
7 5.666s 781.75MB/s 0.60 T T T
8 5.407s 819.20MB/s 0.63 T T T
9 5.910s 749.47MB/s 0.57 T T T

10 5.718s 774.64MB/s 0.59 T T T
AVG 5.632s 788.04MB/s 0.60 - - -

Note. RICT represents the RAM image creation time (step 1) and RITR the RAM image
creation transfer rate. Ratio represents the relationship between RITR and the value used
as a baseline (1,308.51MB/s). S2, S3, and S4 represent the results of steps 2, 3, and 4,
respectively. The possible results of S2, S3, and S4 were T (true) or F (false).

88

Ten different RAM images were also created from VM2 and each of them had a

total size of 4,429,331,264 bytes. Table 4.6 summarizes the results of the different steps

executed to analyze each RAM image created.

Table 4.6. VM2 RAM image creation process

Test RICT RITR Ratio S2 S3 S4
1 5.463s 810.79MB/s 0.62 T T T
2 5.592s 792.08MB/s 0.61 T T T
3 5.625s 787.44MB/s 0.60 T T T
4 5.701s 776.94MB/s 0.59 T T T
5 5.542s 799.23MB/s 0.61 T T T
6 5.670s 781.20MB/s 0.60 T T T
7 5.576s 794.36MB/s 0.61 T T T
8 5.432s 815.41MB/s 0.62 T T T
9 5.592s 792.08MB/s 0.61 T T T

10 5.676s 780.36MB/s 0.60 T T T
AVG 5.587s 792.99MB/s 0.61 - - -

Note. RICT represents the RAM image creation time (step 1) and RITR the RAM image
creation transfer rate. Ratio represents the relationship between RITR and the value used
as a baseline (1,308.51MB/s). S2, S3, and S4 represent the results of steps 2, 3, and 4,
respectively. The possible results of S2, S3, and S4 were T (true) or F (false).

Ten different RAM images were also created from VM3 and each of them had a

total size of 4,429,395,320 bytes. Table 4.7 summarizes the results of the different steps

executed to analyze each RAM image created.

89

Table 4.7. VM3 RAM image creation process

Test RICT RITR Ratio S2 S3 S4
1 5.344s 828.85MB/s 0.63 T T T
2 5.859s 756.00MB/s 0.58 T T T
3 5.975s 741.32MB/s 0.57 T T T
4 5.974s 741.45MB/s 0.57 T T T
5 5.530s 800.98MB/s 0.61 T T T
6 5.990s 739.46MB/s 0.57 T T T
7 5.770s 767.66MB/s 0.59 T T T
8 6.077s 728.88MB/s 0.56 T T T
9 6.041s 733.22MB/s 0.56 T T T

10 5.516s 803.01MB/s 0.61 T T T
AVG 5.808s 764.08MB/s 0.58 - - -

Note. RICT represents the RAM image creation time (step 1) and RITR the RAM image
creation transfer rate. Ratio represents the relationship between RITR and the value used
as a baseline (1,308.51MB/s). S2, S3, and S4 represent the results of steps 2, 3, and 4,
respectively. The possible results of S2, S3, and S4 were T (true) or F (false).

Ten different RAM images were also created from VM4 and each of them had a

total size of 4,429,396,856 bytes. Table 4.8 summarizes the results of the different steps

executed to analyze each RAM image created.

90

Table 4.8. VM4 RAM image creation process

Test RICT RITR Ratio S2 S3 S4
1 5.900s 750.75MB/s 0.57 T T T
2 5.550s 798.09MB/s 0.61 T T T
3 5.941s 745.56MB/s 0.57 T T T
4 5.943s 745.31MB/s 0.57 T T T
5 5.355s 827.15MB/s 0.63 T T T
6 5.921s 748.08MB/s 0.57 T T T
7 5.711s 775.59MB/s 0.59 T T T
8 6.081s 728.40MB/s 0.56 T T T
9 5.977s 741.07MB/s 0.57 T T T

10 5.145s 860.91MB/s 0.66 T T T
AVG 5.752s 772.09MB/s 0.59 - - -

Note. RICT represents the RAM image creation time (step 1) and RITR the RAM image
creation transfer rate. Ratio represents the relationship between RITR and the value used
as a baseline (1,308.51MB/s). S2, S3, and S4 represent the results of steps 2, 3, and 4,
respectively. The possible results of S2, S3, and S4 were T (true) or F (false).

The values presented in the previous four tables suggested the utility virsh is able

to create images of the RAM content in an efficient manner. The ratio value for each of

the 40 different RAM images generated was never lower than the 0.5 threshold value. The

lowest ratio value registered was 0.55 while the average ratio value for all the 40 RAM

imaging processes was 0.6. In other words, the average transfer rate achieved by the

imaging processes was 779.30MB/s while the average RAM data duplication transfer rate

used as a baseline was 1,308.51MB/s. This baseline represented the transfer rate in

optimal conditions because it was calculated when the availability of hardware resources

on the virtualization node was maximized. Conversely, all the RAM images were created

while the virtualization node was using resources to execute different OS tasks and

running the four VMs. This means the hardware resources were shared between the

imaging processes and other tasks in execution at the virtualization node. If all these facts

are considered, the average value of 0.60 observed for all the RAM imaging processes

seems to be efficient.

Similarly, the values in the tables suggested the RAM images generated respected

the integrity and completeness of the data acquired. Columns S2, S3, and S4 reported

91

always T (true) results for the different verifications after each of the 40 RAM images

were created. In the first place, it was possible to recover from every RAM image the SSH

or remote desktop session left intentionally active by the participants during their

interactions (S2). In the second place, the commands executed by the participants through

a SSH session (for GNU/Linux VMs) or through a command prompt window (for

Windows VMs) were also recovered from every RAM image (S3). In the third place, it

was also possible to retrieve the process name and port used by the network services

running in each VM and accessed by the participants (S4). These results evidence that all

the RAM images created respected the integrity and completeness of the data acquired.

For the previous reasons, H2 was accepted, which means virsh is able to create

images of the RAM content of a VPS in an efficient manner, respecting the integrity and

completeness of the data acquired.

4.3 Hypothesis Three

Ten network traffic capture files were generated from VM1, once per each

interaction. Table 4.9 summarizes the results of the three different steps executed to

analyze each file. The possible values of columns Step 1, Step 2, and Step 3, were T (true)

or F (false) according to the results observed for each step, previously described in section

3.6.3. The values of the variables integrity and completeness depended on these results:

each network traffic capturing process was considered to respect the integrity and

completeness of the data acquired if the results reported by these columns were T (true).

In other words, these three columns provided the information required to assign a value of

0 or 1 to the variables integrity and completeness for each network traffic capturing

process completed.

92

Table 4.9. VM1 network traffic capturing process

Test Step 1 Step 2 Step 3
1 T T T
2 T T T
3 T T T
4 T T T
5 T T T
6 T T T
7 T T T
8 T T T
9 T T T

10 T T T

Note. The possible results of Step 1, Step 2, and Step 3 were T (true) or F (false).

Ten network traffic capture files were also generated from VM2. Table 4.10

summarizes the results of the three different steps executed to analyze each file.

Table 4.10. VM2 network traffic capturing process

Test Step 1 Step 2 Step 3
1 T T T
2 T T T
3 T T T
4 T T T
5 T T T
6 T T T
7 T T T
8 T T T
9 T T T

10 T T T

Note. The possible results of Step 1, Step 2, and Step 3 were T (true) or F (false).

Ten network traffic capture files were also generated from VM3. Table 4.11

summarizes the results of the three different steps executed to analyze each file.

93

Table 4.11. VM3 network traffic capturing process

Test Step 1 Step 2 Step 3
1 T T T
2 T T T
3 T T T
4 T T T
5 T T T
6 T T T
7 T T T
8 T T T
9 T T T

10 T T T

Note. The possible results of Step 1, Step 2, and Step 3 were T (true) or F (false).

Ten network traffic capture files were also generated from VM4. Table 4.12

summarizes the results of the three different steps executed to analyze each file.

Table 4.12. VM4 network traffic capturing process

Test Step 1 Step 2 Step 3
1 T T T
2 T T T
3 T T T
4 T T T
5 T T T
6 T T T
7 T T T
8 T T T
9 T T T

10 T T T

Note. The possible results of Step 1, Step 2, and Step 3 were T (true) or F (false).

The values presented in the previous four tables suggested the utility tcpdump is

able to capture in real-time the network traffic of a VPS, respecting the integrity and

completeness of the data acquired. Columns Step 1, Step 2, and Step 3 reported always T

(true) results for the different verifications after each of the 40 interactions were

completed. In the first place, it was possible to recover from every network traffic file the

94

random number of ICMP echo requests sent by the participants during their interactions

(Step 1). In the second place, the details of the SSH or remote desktop session established

by the participants were also recovered (Step 2). In the third place, it was also possible to

retrieve the details of the network connection established to the services running on each

VM and accessed by the participants (Step 3).

In addition, not only the ICMP echo requests were retrieved from the files, but also

every single reply associated to each request. The three-way handshake (SYN, SYN-ACK,

ACK) defined by the TCP protocol to set up a new connection was also recovered for each

SSH and remote desktop session established by the participants. Moreover, the same

three-way handshake was retrieved for each TCP connection established to the services

running on VM1, VM2, and VM4 (HTTP, FTP, and MySQL, respectively). Similarly,

once each of these connections was closed, the termination four-way handshake (FIN,

ACK, FIN, ACK) defined by the TCP protocol was also recovered. Even more specific

details were found: all the FTP commands sent to and received from the FTP server on

VM2 were recovered, including user names, passwords, and content of the files transfered.

It was also possible to determine when the browser used to access the web server on VM1

actually requested the default index.html file or when the browser provided it from its own

cache. Likewise, precise details of each DNS query sent to the DNS server on VM3, and

its corresponding responses, were retrieved. These results evidence that all the network

traffic files generated respected the integrity and completeness of the data acquired.

For the previous, reasons H3 was accepted, which means tcpdump is able to

capture in real-time the network traffic of a VPS, respecting the integrity and

completeness of the data acquired.

4.4 Summary

This chapter presented the results registered after completing the testing

procedures described for each of the hypotheses stated. The chapter also interpreted the

results to determine whether or not each hypothesis was accepted.

95

CHAPTER 5. DISCUSSION

The purpose of this study was to answer the following research question: is it

possible to acquire forensically-sound digital evidence from a VPS hosted in a cloud

provider’s virtualization node that uses KVM as a hypervisor?

To address this question, three different hypotheses were stated:

H1: images of the hard drives of a VPS can be created in an efficient manner,

respecting the integrity and completeness of the data acquired.

H2: images of the RAM content of a VPS can be created in an efficient manner,

respecting the integrity and completeness of the data acquired.

H3: the network traffic of a VPS can be captured in real-time, respecting the

integrity and completeness of the data acquired.

In order to test the different hypotheses and to address the research question, a

research environment was created to simulate a VPS provider’s infrastructure. This

environment consisted of a KVM virtualization node, which hosted four VMs acting as

four independent VPSs.

The performance of two utilities to collect digital data from the VPSs was

evaluated. The first one was virsh, a VMI out-of-VM and out-of-the-box utility, which

was used to take snapshots of the virtual hard drives and to create RAM images of the

VPSs. The second utility was tcpdump, which was used to capture in real-time the

network traffic of the VPSs. In other words, the utility virsh was used to test H1 and H2

while tcpdump was used to test H3.

The main reason for focusing on these utilities was they could positively impact on

the admissibility of the evidence in a court of law because virsh works at the hypervisor

level and tcpdump at the virtualization node OS level. This means the results of these

utilities are more reliable than other utilities that work at the VM level (Dykstra &

Sherman, 2012). Furthermore, they are available in the majority of the virtualization

nodes based on GNU/Linux and their installation and execution do not require significant

modifications to the production environment.

96

Once the research environment was prepared, a BASH script was developed to

address H1 by testing if the utility virsh was able to take external snapshots of the hard

drives of the VPSs, from where bit-stream images could be created. After each image was

successfully created, the snapshot was merged back into the original virtual hard drive. As

it was mentioned in chapter four, the different tests executed showed efficiency, integrity,

and completeness were achieved for each of the 56 different images generated. Therefore,

H1 was accepted.

Five different participants cooperated to address H2 and H3 by following four

different scripts to interact with the four VPSs. During each interaction all the network

traffic was captured with the utility tcpdump, and at the end of the interaction an image of

the RAM content of the VPS was created with the utility virsh.

The examination of RAM images was performed using the Volatility framework

and the results suggested integrity and completeness were achieved for each of the 40

RAM images generated. This means it was possible to recover from the RAM images

specific actions performed by each participant. Efficiency was also achieved by every

RAM imaging process executed. Therefore, H2 was accepted.

Likewise, the examination of the network traffic captured was performed using

Wireshark and the results suggested integrity and completeness were achieved for each of

the 40 network traffic files generated. This entails it was possible to recover from the

network traffic files specific actions performed by the participants. Therefore, H3 was

accepted.

The preceding results suggested that it is possible to acquire forensically-sound

evidence from a VPS hosted in a cloud provider’s virtualization node that uses KVM as a

hypervisor because H1, H2, and H3 were accepted. This means the utilities virsh and

tcpdump are capable of collecting digital data from four VPSs in an efficient manner,

respecting the integrity and completeness of the data acquired.

5.1 Procedure to acquire digital evidence from a VPS hosted in KVM

97

As it was mentioned, the results presented suggested it is possible to acquire

forensically-sound digital evidence from a VPS hosted in a virtualization node that uses

KVM as a hypervisor. These findings could be used to define a procedure to guide

forensic practitioners in acquiring evidence in this environment. For instance, if a VPS

named VM1 is suspected of being involved in a crime, the following processes could be

executed in the KVM virtualization node to collect digital data from it:

• Create an image of each virtual hard drive assigned to VM1:

1. Take an external snapshot of each virtual hard drive:

virsh snapshot-create-as VM1 --disk-only --atomic --name

snapshot1 --diskspec hda,snapshot=external,

file=/mnt/kvm/VM1-snapshot1.qcow2

When an external snapshot is created, the original virtual hard drive is set as

read-only and a new overlay file is created to record the writing operations.

This step is completed without suspending the VPS. The parameter --diskspec

defines three options: the name of the virtual hard drive of the VPS to set as

read-only (hda), the type of snapshot (external), and the new overlay file to be

created (/mnt/kvm/VM1-snapshot1.qcow2). The parameter --disk-only

specifies not to include the memory content in the snapshot. The parameter

--atomic assures the snapshot either succeeds or fails with no changes on the

original device. It is recommended to use --atomic every time an external

snapshot is created, specially when it is created from a live system (Chirammal

et al., 2016). Finally, the parameter --name specifies a customized name for

the snapshot generated.

2. Create a bit-stream image from the original virtual hard drive, which is set as

read-only after the external snapshot is created:

dd if=/dev/lvm-group/VM1 of=/mnt/forensic-disk/VM1.dd

bs=512 conv=noerror,sync,fdatasync

98

3. Verify the bit-stream image is an exact and authentic copy of the original

virtual hard drive by calculating MD5 and SHA1 hash values:

md5sum /dev/lvm-group/VM1

md5sum /mnt/forensic-disk/VM1.dd

sha1sum /dev/lvm-group/VM1

sha1sum /mnt/forensic-disk/VM1.dd

4. Merge the overlay file into the original virtual hard drive:

virsh blockcommit VM1 hda --active --pivot --verbose

The parameter hda specifies the name of the virtual hard drive, the flag --active

initiates the merging process of the overlay file into the virtual hard drive, and

--pivot makes the hard drive active again once the merging is completed. At

this point all the read/write operations are completed on the hard drive again

and the overlay file is not used anymore. The flag --verbose displays detailed

information about the process on the screen.

5. Remove the snapshot metadata and the overlay file:

virsh snapshot-delete VM1 snapshot1 --metadata

rm /mnt/kvm/VM1-snapshot1.qcow2

• Create an image of the RAM assigned to VM1:

1. Create a RAM image:

virsh dump VM1 /mnt/forensic-disk/VM1.memdump --memory-only

The flag --memory-only specifies to collect only the RAM content and CPU

common register value of the VPS. This command automatically suspends the

VPS before creating the RAM image and resumes it after the image is

completed. In case the VPS should not be suspended during the investigation,

a RAM image can still be created if the flag --live is added to the command.

99

2. Verify if the RAM image generated can be examined using a memory forensic

utility such as the Volatility Framework, specially if the image was generated

with the flag --live.

• Capture in real-time the network traffic:

1. Start the network capturing process:

tcpdump -nn -s0 --interface=vnet0 -w

/mnt/forensic-disk/VM1-vnet0.pcap

The parameter --interface specifies to capture only the traffic that traverses the

listed network interfaces (vnet0). The parameter -nn declares not to resolve IP

addresses (or ports) to host names (or services names). This option is relevant

because the resolution process executed by default generates an important

delay that can be omitted. The parameter -s indicates the snapshot length,

which is the amount of bytes from each packet to be captured. The value 0

means no limit and it could be used to avoid truncating packets that have a

longer size to the value specified. However, depending on the investigation and

the legal constraints, this value could be reduced. For example, if the network

is based on the Ethernet standard as data link layer, a value of 1,514 bytes

should be enough because this is the maximum size of an Ethernet packet

(Davidoff & Ham, 2012). Finally, the parameter -w declares the output file

where the network traffic captured is stored.

2. Once the network capturing process is stopped, verify if the file generated can

be examined using a network analysis utility such as Wireshark.

The previous procedure considers the utilities virsh and tcpdump are already

installed on the virtualization node. The meaning of the arguments included in the

example are described next:

• VM1: name of the VPS suspected of being involved in a crime. The names of all the

VPSs hosted in a KVM virtualization node can be listed by executing the command:

virsh list --all.

100

• snapshot1: customized name of the snapshot generated for VM1. The list of all the

snapshots generated for this VPS can be displayed by executing the command: virsh

snapshot-list VM1.

• hda: name of the virtual hard drive assigned to VM1. The name of all the virtual

hard drives assigned to this VPS can be reported by executing the command: virsh

domblklist VM1.

• vnet0: name of the TAP network interface assigned to VM1. The list of all the TAP

interfaces assigned to this VPS can be displayed by executing the command: virsh

domiflist VM1.

• /dev/lvm-group/VM1: the device of the virtual hard drive assigned to VM1. The

devices of all the virtual hard drives assigned to this VPS can by reported by

executing the command: virsh domblklist VM1.

• /mnt/kvm/VM1-snapshot1.qcow2: the name of the overlay file created when the

external snapshot was taken, using the utility virsh.

• /mnt/forensic-disk/VM1.dd: destination file of the bit-stream copy generated from

the external snapshot, using the command dd.

• /mnt/forensic-disk/VM1.memdump: destination file of the RAM image generated

from VM1, using the utility virsh.

• /mnt/forensic-disk/VM1-vnet0.pcap: destination file of the network traffic captured

from VM1, using the utility tcpdump.

5.2 Significance

The findings of this study are important for the digital forensics field for several

reasons. Firstly, Amazon Web Services (AWS), the largest IaaS cloud provider, recently

announced a shift from Xen to KVM for future EC2 VPSs (TheRegister, 2017). Digital

Ocean, the third largest cloud provider, uses KVM as a hypervisor (Chirammal et al.,

101

2016). These facts imply the usage of KVM will continue to grow in the near future and

become the most preferred hypervisor by cloud providers. Furthermore, this research

focused on different versions of Windows and GNU/Linux as OS for the VPSs. These two

platforms represent the vast majority of the OS in the VPSs population and the utilities

virsh and tcpdump were capable of successfully acquiring forensically-sound digital

evidence from them. Even though tcpdump has been studied and used for a long time in

the digital forensics field to capture network traffic on physical network interfaces, this

study took a different approach and focused on using this utility to capture traffic on

specific virtual network interfaces assigned to a VPS.

Secondly, the procedure defined in the section 5.1 could guide forensic

practitioners and cloud providers to acquire forensically-sound digital evidence from a

VPS (or any VM) involved in a crime and hosted in a virtualization node that uses KVM

as a hypervisor. This procedure could be used as a base to develop a more detailed

guideline and help forensic practitioners in acquiring evidence in this environment. In

addition, the same methodology presented in this study could be used to analyze other

utilities or hypervisors to verify if the results could be extended to include them. This

research on cloud computing and virtual environments could contribute to enlarge the

body of knowledge of digital forensics in this particular area and to reduce the criminal

cases that involve the usage of VPSs.

Thirdly, forensic software companies could employ the findings of this research to

develop remote agents to be executed in virtualization nodes that use KVM as a

hypervisor in order to collect digital data from VPSs. If these agents were developed as

open source projects, the details of their functioning would be known, which could

potentially increase the willingness of the cloud providers to cooperate with the

investigation and allow the execution of these agents inside their infrastructure. The

agents could collect data locally or transfer it remotely using encryption mechanisms. The

data collected could be imported into the existent forensic softwares suites to provide a

unified examination interface to investigators. If similar research is conducted on other

hypervisors, the remote agents could be improved to incorporate the new findings and

collect digital data from VPSs hosted in these hypervisors.

102

Lastly, once the practical implications of the acquisition phase in distinct

hypervisors are extensively analyzed, the global legislation on this area could be updated

in order to deal with this problem also from a legal standpoint.

5.3 Limitations

This research was limited by time. The results and conclusions of this study were

valid for a virtualization node based on a GNU/Linux Ubuntu Server 16.04.4 system

(kernel version: 4.4.0-116.140). Ubuntu Server 18.04 (current LTS version) was released

after this research began and for that reason the virtualization node was not based on it.

Other operating systems or Linux kernel versions were not analyzed due to time

constraints.

The KVM module used to convert the Linux kernel into a hypervisor was provided

by the linux-image-kernel package (version 4.4.0-116.140) and the KVM user-space tools

were provided by the qemu-kvm package (version 2.5.0). The libvirt (service and client)

version used throughout the study was 1.3.1-1. Other versions of any of these packages

were not analyzed in this study due to time constraints.

The utility virsh (version 1.3.1-1) was used to test H1 and H2, while tcpdump

(version 4.9.2-0) was used to test H3. No other utilities were employed to test the

hypotheses also due to time constraints.

5.4 Recommendations for Future Studies

Future work on cloud computing and virtualization from a digital forensic

perspective may consider extending this research to include the delimitations mentioned in

chapter one. For instance, the testing procedures in this study were completed under low

load conditions on the virtualization node. This means the four VMs and the virtualization

node did not execute heavy processes during the creation of virtual hard drive and RAM

content images and during the network traffic capturing processes. It would be interesting

to analyze how the efficiency of these procedures is affected under heavy load conditions

103

on the virtualization node. If efficiency is notably affected, the live migration support

provided by KVM could be studied to determine if a VM can be migrated to a special

virtualization node (with more resources and low load) in oder to complete the acquisition

process in that node. This approach may be also beneficial from a privacy point of view,

since the virtualization node could host only the VM under examination.

Even though this study was focused on VPSs, the methodology and techniques

presented could be employed to acquire digital data from any VM hosted in a

virtualization node that uses KVM as a hypervisor. This methodology could also be used

to define best practice guidelines to help digital investigators to perform acquisitions on

this environment. Future work could take into account other OS to install on the

virtualization node, other utilities instead of virsh and tcpdump, or different versions of

KVM (kernel module or user-space tools) or libvirt (service or client) to verify if the

results could be extended to include them.

The methodology presented could also be used to create a virtual environment

with KVM in order to analyze the behavior of a piece of malware (or other type software)

after it is executed in a VM. The usage of virsh to create RAM content images and

tcpdump to capture all the network traffic in real-time could be valuable resources for

digital investigators to inspect the behavior of a particular piece of software.

Finally, it is worth mentioning briefly two points about the procedure employed to

test the creation of virtual hard drive images. First, a block size of 512 bytes was defined

every time the command dd was executed in this study. The objective of defining this

value was to match the physical sector size of both hard drives, which was also 512 bytes.

It would be valuable to analyze the impact defining a longer sector size could have on

efficiency when the command dd is executed. Second, the BASH script developed to

generate automatically bit-stream images from the virtual hard drives created two

independent images: the first one was stored into a local file in a partition formatted with

ext4, and the second one was written directly to physical sectors of a different partition.

This study only included the time results observed for the second image created because

the first image always reported transfer rates higher than the baseline. This difference was

generated because the filesystem (ext4) noticed when a segment of consecutive sectors

104

was full of zeros and it used this knowledge to omit writing these sectors. This feature

provided by the filesystem increased notably the performance of the imaging process.

Even though this finding could be interesting and beneficial in other circumstances, it was

not a precise value to measure efficiency for the purpose of this research and it was not

taken into account.

5.5 Summary

This chapter drew conclusions from the results reported in chapter four in order to

address the research question. It also presented a procedure to acquire forensically-sound

digital evidence from a VPS hosted in a KVM virtualization node. Finally, the chapter

analyzed the significance of the findings for the digital forensics field and stated

limitations and recommendations for future related studies.

105

REFERENCES

BankInfoSecurity. (2017). Crime as a service: A top cyber threat for 2017. Retrieved

from https://www.bankinfosecurity.com/.

Barrett, D., & Kipper, G. (2010). Virtualization and forensics: A digital forensic

investigators guide to virtual environments. Syngress.

Beebe, N. (2009). The good, the bad and the unaddressed. In S. Shenoi & G. Peterson

(Eds.), Advances in digital forensics V (p. 17-36). Springer Science & Business

Media.

Bem, D., & Huebner, E. (2007). Computer forensic analysis in a virtual environment.

International journal of digital evidence, 6(2), 1-13.

Birk, D. (2011, January). Technical challenges of forensic investigations in cloud

computing environments. In Workshop on cryptography and security in clouds.

Zrich, Switzerland.

Birk, D., & Wegener, C. (2011, May). Technical issues of forensic investigations in cloud

computing environments. In Proceedings of the 6th international workshop on

systematic approaches to digital forensic engineering (SADFE) (p. 1-10).

Oakland, CA: IEEE.

Chirammal, H. D., Mukhedkar, P., & Vettathu, A. (2016). Mastering KVM virtualization.

Packt Publishing.

Davidoff, S., & Ham, J. (2012). Network forensics: tracking hackers through cyberspace.

Upper Saddle River, NJ: Prentice Hall.

Dolan-Gavitt, B., Payne, B., & Lee, W. (2011). Leveraging forensic tools for virtual

machine introspection. Georgia Institute of Technology.

106

Dykstra, J., & Sherman, A. T. (2012). Acquiring forensic evidence from

infrastructure-as-a-service cloud computing: Exploring and evaluating tools, trust,

and techniques. Digital investigation, 9, 90-98.

Forbes. (2016). Roundup of cloud computing forecasts and market estimates. Retrieved

from https://www.forbes.com/.

Garcia, M. A. (2014). Cloud computing forensics. In S. Srinivasan (Ed.), Security, trust,

and regulatory aspects of cloud computing in business environments (p. 170-178).

IGI Global.

Hebbal, Y., Laniepce, S., & Menaud, J. M. (2015, August). Virtual machine introspection:

Techniques and applications. In Proceedings of the 10th international conference

on availability, reliability and security (ARES) (p. 676-685). IEEE.

Holt, T. J., Bossler, A. M., & Seigfried-Spellar, K. C. (2015). Cybercrime and digital

forensics: An introduction. New York, NY: Routledge.

IBM. (2018). Best practices for vm storage devices. Retrieved from

https://www.ibm.com/support/.

ITProPortal. (2011). Hackers used Amazon’s EC2 cloud service to launch attack on

Playstation network. Retrieved from https://www.itproportal.com/.

Kolhe, M., & Ahirao, P. (2017). Live vs dead computer forensic image acquisition.

International journal of computer science and information technologies (IJCSIT),

8(3), 455-457.

Lessing, M., & von Solms, B. (2008). Live forensic acquisition as alternative to

traditional forensic processes. Retrieved from https://www.researchgate.net/.

Libvirt. (2018). Storage management. Retrieved from https://libvirt.org/.

107

Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). The art of memory forensics:

Detecting malware and threats in Windows, Linux, and Mac memory.

Indianapolis, IN: John Wiley & Sons.

McKemmish, R. (2008). When is digital evidence forensically sound? In I. Ray &

S. Shenoi (Eds.), Advances in digital forensics IV (p. 3-15). Springer Science &

Business Media.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.

Morioka, E., & Sharbaf, M. S. (2016, May). Digital forensics research on cloud

computing: An investigation of cloud forensics solutions. In Symposium on

technologies for homeland security (HST) (p. 1-6). IEEE.

Owen, P., & Thomas, P. (2011). An analysis of digital forensic examinations: Mobile

devices versus hard disk drives utilising ACPO & NIST guidelines. Digital

investigation, 8(2), 135-140.

Patrascu, A., & Patriciu, V. V. (2014). Logging system for cloud computing forensic

environments. Journal of control engineering and applied informatics, 16(1),

80-88.

Poisel, R., Malzer, E., & Tjoa, S. (2013). Evidence and cloud computing: The virtual

machine introspection approach. Journal of wireless mobile networks, ubiquitous

computing, and dependable applications (JoWUA), 4(1), 135-152.

Pollitt, M., Nance, K., Hay, B., Dodge, R. C., Craiger, P., Burke, P., . . . Brubaker, B.

(2008). Virtualization and digital forensics: A research and education agenda.

Journal of digital forensic practice, 2(2), 62-73.

RedHat. (2015). Red hat enterprise virtualization 3.5 technical guide. Retrieved from

https://access.redhat.com/documentation/.

108

RedHat. (2017). Red hat enterprise linux 7: Virtualization getting started guide.

Retrieved from https://access.redhat.com/documentation/.

RedHat. (2018). Red hat virtualization 4.1: Technical reference. Retrieved from

https://access.redhat.com/documentation/.

Reilly, D., Wren, C., & Berry, T. (2010, November). Cloud computing: Forensic

challenges for law enforcement. In International conference for internet

technology and secured transactions ICITST (p. 1-7). IEEE.

RightScale. (2016). Cloud computing trends: 2016 state of the cloud survey. Retrieved

from https://www.rightscale.com/.

Rogers, M. K. (2017). Technology and digital forensics. In M. R. McGuire & T. J. Holt

(Eds.), The routledge handbook of technology, crime and justice (p. 406-416).

New York, NY: Routledge.

Rogers, M. K., Goldman, J., Mislan, R., Wedge, T., & Debrota, S. (2006). Computer

forensics field triage process model. Journal of Digital Forensics, Security and

Law, 1(2), 19-38.

Sang, T. (2013, January). A log based approach to make digital forensics easier on cloud

computing. In Third international conference on intelligent system design and

engineering applications (ISDEA) (p. 91-94). IEEE.

Suneja, S., Isci, C., & de Lara, E. (2015, March). Exploring VM introspection:

Techniques and trade-offs. ACM Sigplan Notices, 50(7), 133-146.

SynergyResearchGroup. (2016). 2015 review shows $110 billion cloud market growing at

28% annually. Retrieved from https://www.srgresearch.com/.

Technavio. (2015). Virtualization is prompting impressive growth in cloud-enabling

technologies. Retrieved from https://www.technavio.com/.

109

TheRegister. (2017). AWS adopts home-brewed kvm as new hypervisor. Retrieved from

https://www.theregister.co.uk/.

Volatility. (2018). About the Volatility foundation. Retrieved from

http://www.volatilityfoundation.org/.

WireShark. (2018). About Wireshark. Retrieved from https://www.wireshark.org/.

Zahedi, S. (2014). Virtualization security threat forensic and environment safeguarding.

Retrieved from http://www.diva-portal.org/.

Zawoad, S., & Hasan, R. (2013, February). Cloud forensics: A meta-study of challenges,

approaches, and open problems. Cornell University Library, arXiv:1302.6312.

ZDNet. (2012). Amazon EC2 cloud is made up of almost half-a-million linux servers.

Retrieved from http://www.zdnet.com/.

110

APPENDIX A. PACKAGES INSTALLED ON THE

VIRTUALIZATION NODE

Packages installed on the virtualization node and their respective version.

Package name Version

===

accountsservice 0.6.40-2ubuntu11.3

acl 2.2.52-3

acpid 1:2.0.26-1ubuntu2

adduser 3.113+nmu3ubuntu4

apparmor 2.10.95-0ubuntu2.8

apport 2.20.1-0ubuntu2.15

apport-symptoms 0.20

apt 1.2.25

apt-transport-https 1.2.25

apt-utils 1.2.25

at 3.1.18-2ubuntu1

augeas-lenses 1.4.0-0ubuntu1.1

base-files 9.4ubuntu4.6

base-passwd 3.5.39

bash 4.3-14ubuntu1.2

bash-completion 1:2.1-4.2ubuntu1.1

bcache-tools 1.0.8-2

bind9-host 1:9.10.3.dfsg.P4-8ubuntu1.10

binutils 2.26.1-1ubuntu1~16.04.6

bridge-utils 1.5-9ubuntu1

bsdmainutils 9.0.6ubuntu3

bsdutils 1:2.27.1-6ubuntu3.4

btrfs-tools 4.4-1ubuntu1

busybox-initramfs 1:1.22.0-15ubuntu1

busybox-static 1:1.22.0-15ubuntu1

byobu 5.106-0ubuntu1

bzip2 1.0.6-8

ca-certificates 20170717~16.04.1

cgmanager 0.39-2ubuntu5

cloud-guest-utils 0.27-0ubuntu25

cloud-initramfs-copymods 0.27ubuntu1.5

cloud-initramfs-dyn-netconf 0.27ubuntu1.5

command-not-found 0.3ubuntu16.04.2

command-not-found-data 0.3ubuntu16.04.2

console-setup 1.108ubuntu15.3

console-setup-linux 1.108ubuntu15.3

111

coreutils 8.25-2ubuntu3~16.04

cpio 2.11+dfsg-5ubuntu1

cpu-checker 0.7-0ubuntu7

crda 3.13-1

cron 3.0pl1-128ubuntu2

cryptsetup 2:1.6.6-5ubuntu2.1

cryptsetup-bin 2:1.6.6-5ubuntu2.1

curl 7.47.0-1ubuntu2.6

dash 0.5.8-2.1ubuntu2

dbus 1.10.6-1ubuntu3.3

debconf 1.5.58ubuntu1

debconf-i18n 1.5.58ubuntu1

debianutils 4.7

dh-python 2.20151103ubuntu1.1

diffutils 1:3.3-3

distro-info-data 0.28ubuntu0.7

dmeventd 2:1.02.110-1ubuntu10

dmidecode 3.0-2ubuntu0.1

dmsetup 2:1.02.110-1ubuntu10

dns-root-data 2015052300+h+1

dnsmasq-base 2.75-1ubuntu0.16.04.4

dnsutils 1:9.10.3.dfsg.P4-8ubuntu1.10

dosfstools 3.0.28-2ubuntu0.1

dpkg 1.18.4ubuntu1.3

e2fslibs:amd64 1.42.13-1ubuntu1

e2fsprogs 1.42.13-1ubuntu1

ebtables 2.0.10.4-3.4ubuntu2

ed 1.10-2

efibootmgr 0.12-4

eject 2.1.5+deb1+cvs20081104-13.1ubuntu0.16.04.1

ethtool 1:4.5-1

exfat-fuse 1.2.3-1

exfat-utils 1.2.3-1

file 1:5.25-2ubuntu1

findutils 4.6.0+git+20160126-2

fonts-ubuntu-font-family-console 1:0.83-0ubuntu2

friendly-recovery 0.2.31ubuntu1

ftp 0.17-33

fuse 2.9.4-1ubuntu3.1

gawk 1:4.1.3+dfsg-0.1

gcc-5-base:amd64 5.4.0-6ubuntu1~16.04.9

gcc-6-base:amd64 6.0.1-0ubuntu1

gdisk 1.0.1-1build1

geoip-database 20160408-1

gettext-base 0.19.7-2ubuntu3

112

gir1.2-glib-2.0:amd64 1.46.0-3ubuntu1

git 1:2.7.4-0ubuntu1.3

git-man 1:2.7.4-0ubuntu1.3

gnupg 1.4.20-1ubuntu3.1

gpgv 1.4.20-1ubuntu3.1

grep 2.25-1~16.04.1

groff-base 1.22.3-7

grub-common 2.02~beta2-36ubuntu3.17

grub-efi-amd64 2.02~beta2-36ubuntu3.17

grub-efi-amd64-bin 2.02~beta2-36ubuntu3.17

grub-efi-amd64-signed 1.66.17+2.02~beta2-36ubuntu3.17

grub-legacy-ec2 17.2-35-gf576b2a2-0ubuntu1~16.04.2

grub2-common 2.02~beta2-36ubuntu3.17

gzip 1.6-4ubuntu1

hdparm 9.48+ds-1

hostname 3.16ubuntu2

ifenslave 2.7ubuntu1

ifupdown 0.8.10ubuntu1.2

info 6.1.0.dfsg.1-5

init 1.29ubuntu4

init-system-helpers 1.29ubuntu4

initramfs-tools 0.122ubuntu8.10

initramfs-tools-bin 0.122ubuntu8.10

initramfs-tools-core 0.122ubuntu8.10

initscripts 2.88dsf-59.3ubuntu2

insserv 1.14.0-5ubuntu3

install-info 6.1.0.dfsg.1-5

installation-report 2.60ubuntu1

iproute2 4.3.0-1ubuntu3.16.04.3

iptables 1.6.0-2ubuntu3

iputils-ping 3:20121221-5ubuntu2

iputils-tracepath 3:20121221-5ubuntu2

ipxe-qemu 1.0.0+git-20150424.a25a16d-1ubuntu1.2

irqbalance 1.1.0-2ubuntu1

isc-dhcp-client 4.3.3-5ubuntu12.9

isc-dhcp-common 4.3.3-5ubuntu12.9

iso-codes 3.65-1

iw 3.17-1

kbd 1.15.5-1ubuntu5

keyboard-configuration 1.108ubuntu15.3

klibc-utils 2.0.4-8ubuntu1.16.04.4

kmod 22-1ubuntu5

kpartx 0.5.0+git1.656f8865-5ubuntu2.5

krb5-locales 1.13.2+dfsg-5ubuntu2

language-selector-common 0.165.4

113

laptop-detect 0.13.7ubuntu2

less 481-2.1ubuntu0.2

libaccountsservice0:amd64 0.6.40-2ubuntu11.3

libacl1:amd64 2.2.52-3

libaio1:amd64 0.3.110-2

libapparmor-perl 2.10.95-0ubuntu2.8

libapparmor1:amd64 2.10.95-0ubuntu2.8

libapt-inst2.0:amd64 1.2.25

libapt-pkg5.0:amd64 1.2.25

libasn1-8-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libasound2:amd64 1.1.0-0ubuntu1

libasound2-data 1.1.0-0ubuntu1

libasprintf0v5:amd64 0.19.7-2ubuntu3

libasyncns0:amd64 0.8-5build1

libatm1:amd64 1:2.5.1-1.5

libattr1:amd64 1:2.4.47-2

libaudit-common 1:2.4.5-1ubuntu2.1

libaudit1:amd64 1:2.4.5-1ubuntu2.1

libaugeas0 1.4.0-0ubuntu1.1

libavahi-client3:amd64 0.6.32~rc+dfsg-1ubuntu2

libavahi-common-data:amd64 0.6.32~rc+dfsg-1ubuntu2

libavahi-common3:amd64 0.6.32~rc+dfsg-1ubuntu2

libbind9-140:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

libblkid1:amd64 2.27.1-6ubuntu3.4

libbluetooth3:amd64 5.37-0ubuntu5.1

libboost-iostreams1.58.0:amd64 1.58.0+dfsg-5ubuntu3.1

libboost-random1.58.0:amd64 1.58.0+dfsg-5ubuntu3.1

libboost-system1.58.0:amd64 1.58.0+dfsg-5ubuntu3.1

libboost-thread1.58.0:amd64 1.58.0+dfsg-5ubuntu3.1

libbrlapi0.6:amd64 5.3.1-2ubuntu2.1

libbsd0:amd64 0.8.2-1

libbz2-1.0:amd64 1.0.6-8

libc-bin 2.23-0ubuntu10

libc6:amd64 2.23-0ubuntu10

libcaca0:amd64 0.99.beta19-2build2~gcc5.2

libcacard0:amd64 1:2.5.0-2

libcap-ng0:amd64 0.7.7-1

libcap2:amd64 1:2.24-12

libcap2-bin 1:2.24-12

libcgmanager0:amd64 0.39-2ubuntu5

libcomerr2:amd64 1.42.13-1ubuntu1

libcryptsetup4:amd64 2:1.6.6-5ubuntu2.1

libcurl3-gnutls:amd64 7.47.0-1ubuntu2.6

libdb5.3:amd64 5.3.28-11ubuntu0.1

libdbus-1-3:amd64 1.10.6-1ubuntu3.3

114

libdbus-glib-1-2:amd64 0.106-1

libdebconfclient0:amd64 0.198ubuntu1

libdevmapper-event1.02.1:amd64 2:1.02.110-1ubuntu10

libdevmapper1.02.1:amd64 2:1.02.110-1ubuntu10

libdistorm3-3 3.3.0-3

libdns-export162 1:9.10.3.dfsg.P4-8ubuntu1.10

libdns162:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

libdrm-common 2.4.83-1~16.04.1

libdrm2:amd64 2.4.83-1~16.04.1

libdumbnet1:amd64 1.12-7

libedit2:amd64 3.1-20150325-1ubuntu2

libefivar0:amd64 0.23-2

libelf1:amd64 0.165-3ubuntu1

liberror-perl 0.17-1.2

libestr0 0.1.10-1

libevent-2.0-5:amd64 2.0.21-stable-2ubuntu0.16.04.1

libexpat1:amd64 2.1.0-7ubuntu0.16.04.3

libfdisk1:amd64 2.27.1-6ubuntu3.4

libfdt1:amd64 1.4.0+dfsg-2

libffi6:amd64 3.2.1-4

libflac8:amd64 1.3.1-4

libfreetype6:amd64 2.6.1-0.1ubuntu2.3

libfribidi0:amd64 0.19.7-1

libfuse2:amd64 2.9.4-1ubuntu3.1

libgcc1:amd64 1:6.0.1-0ubuntu1

libgcrypt20:amd64 1.6.5-2ubuntu0.3

libgdbm3:amd64 1.8.3-13.1

libgeoip1:amd64 1.6.9-1

libgirepository-1.0-1:amd64 1.46.0-3ubuntu1

libglib2.0-0:amd64 2.48.2-0ubuntu1

libglib2.0-data 2.48.2-0ubuntu1

libgmp10:amd64 2:6.1.0+dfsg-2

libgnutls-openssl27:amd64 3.4.10-4ubuntu1.4

libgnutls30:amd64 3.4.10-4ubuntu1.4

libgpg-error0:amd64 1.21-2ubuntu1

libgpm2:amd64 1.20.4-6.1

libgssapi-krb5-2:amd64 1.13.2+dfsg-5ubuntu2

libgssapi3-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libhcrypto4-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libheimbase1-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libheimntlm0-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libhogweed4:amd64 3.2-1ubuntu0.16.04.1

libhx509-5-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libicu55:amd64 55.1-7ubuntu0.3

libidn11:amd64 1.32-3ubuntu1.2

115

libisc-export160 1:9.10.3.dfsg.P4-8ubuntu1.10

libisc160:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

libisccc140:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

libisccfg140:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

libiscsi2:amd64 1.12.0-2

libjpeg-turbo8:amd64 1.4.2-0ubuntu3

libjpeg8:amd64 8c-2ubuntu8

libjson-c2:amd64 0.11-4ubuntu2

libk5crypto3:amd64 1.13.2+dfsg-5ubuntu2

libkeyutils1:amd64 1.5.9-8ubuntu1

libklibc 2.0.4-8ubuntu1.16.04.4

libkmod2:amd64 22-1ubuntu5

libkrb5-26-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libkrb5-3:amd64 1.13.2+dfsg-5ubuntu2

libkrb5support0:amd64 1.13.2+dfsg-5ubuntu2

libldap-2.4-2:amd64 2.4.42+dfsg-2ubuntu3.2

liblocale-gettext-perl 1.07-1build1

liblvm2app2.2:amd64 2.02.133-1ubuntu10

liblvm2cmd2.02:amd64 2.02.133-1ubuntu10

liblwres141:amd64 1:9.10.3.dfsg.P4-8ubuntu1.10

liblxc1 2.0.8-0ubuntu1~16.04.2

liblz4-1:amd64 0.0~r131-2ubuntu2

liblzma5:amd64 5.1.1alpha+20120614-2ubuntu2

liblzo2-2:amd64 2.08-1.2

libmagic1:amd64 1:5.25-2ubuntu1

libmnl0:amd64 1.0.3-5

libmount1:amd64 2.27.1-6ubuntu3.4

libmpdec2:amd64 2.4.2-1

libmpfr4:amd64 3.1.4-1

libmspack0:amd64 0.5-1ubuntu0.16.04.1

libncurses5:amd64 6.0+20160213-1ubuntu1

libncursesw5:amd64 6.0+20160213-1ubuntu1

libnetcf1:amd64 1:0.2.8-1ubuntu1

libnetfilter-conntrack3:amd64 1.0.5-1

libnettle6:amd64 3.2-1ubuntu0.16.04.1

libnewt0.52:amd64 0.52.18-1ubuntu2

libnfnetlink0:amd64 1.0.1-3

libnih-dbus1:amd64 1.0.3-4.3ubuntu1

libnih1:amd64 1.0.3-4.3ubuntu1

libnl-3-200:amd64 3.2.27-1ubuntu0.16.04.1

libnl-genl-3-200:amd64 3.2.27-1ubuntu0.16.04.1

libnl-route-3-200:amd64 3.2.27-1ubuntu0.16.04.1

libnspr4:amd64 2:4.13.1-0ubuntu0.16.04.1

libnss3:amd64 2:3.28.4-0ubuntu0.16.04.3

libnss3-nssdb 2:3.28.4-0ubuntu0.16.04.3

116

libnuma1:amd64 2.0.11-1ubuntu1.1

libogg0:amd64 1.3.2-1

libopts25:amd64 1:5.18.7-3

libopus0:amd64 1.1.2-1ubuntu1

libp11-kit0:amd64 0.23.2-5~ubuntu16.04.1

libpam-modules:amd64 1.1.8-3.2ubuntu2

libpam-modules-bin 1.1.8-3.2ubuntu2

libpam-runtime 1.1.8-3.2ubuntu2

libpam-systemd:amd64 229-4ubuntu21.1

libpam0g:amd64 1.1.8-3.2ubuntu2

libparted2:amd64 3.2-15ubuntu0.1

libpcap0.8:amd64 1.7.4-2

libpci3:amd64 1:3.3.1-1.1ubuntu1.1

libpciaccess0:amd64 0.13.4-1

libpcre3:amd64 2:8.38-3.1

libperl5.22:amd64 5.22.1-9ubuntu0.2

libpipeline1:amd64 1.4.1-2

libpixman-1-0:amd64 0.33.6-1

libplymouth4:amd64 0.9.2-3ubuntu13.2

libpng12-0:amd64 1.2.54-1ubuntu1

libpolkit-agent-1-0:amd64 0.105-14.1

libpolkit-backend-1-0:amd64 0.105-14.1

libpolkit-gobject-1-0:amd64 0.105-14.1

libpopt0:amd64 1.16-10

libprocps4:amd64 2:3.3.10-4ubuntu2.3

libpulse0:amd64 1:8.0-0ubuntu3.8

libpython-stdlib:amd64 2.7.12-1~16.04

libpython2.7-minimal:amd64 2.7.12-1ubuntu0~16.04.3

libpython2.7-stdlib:amd64 2.7.12-1ubuntu0~16.04.3

libpython3-stdlib:amd64 3.5.1-3

libpython3.5:amd64 3.5.2-2ubuntu0~16.04.4

libpython3.5-minimal:amd64 3.5.2-2ubuntu0~16.04.4

libpython3.5-stdlib:amd64 3.5.2-2ubuntu0~16.04.4

librados2 10.2.9-0ubuntu0.16.04.1

librbd1 10.2.9-0ubuntu0.16.04.1

libreadline5:amd64 5.2+dfsg-3build1

libreadline6:amd64 6.3-8ubuntu2

libroken18-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

librtmp1:amd64 2.4+20151223.gitfa8646d-1ubuntu0.1

libsasl2-2:amd64 2.1.26.dfsg1-14build1

libsasl2-modules:amd64 2.1.26.dfsg1-14build1

libsasl2-modules-db:amd64 2.1.26.dfsg1-14build1

libsdl1.2debian:amd64 1.2.15+dfsg1-3

libseccomp2:amd64 2.3.1-2.1ubuntu2~16.04.1

libselinux1:amd64 2.4-3build2

117

libsemanage-common 2.3-1build3

libsemanage1:amd64 2.3-1build3

libsepol1:amd64 2.4-2

libsigsegv2:amd64 2.10-4

libslang2:amd64 2.3.0-2ubuntu1

libsmartcols1:amd64 2.27.1-6ubuntu3.4

libsndfile1:amd64 1.0.25-10ubuntu0.16.04.1

libspice-server1:amd64 0.12.6-4ubuntu0.3

libsqlite3-0:amd64 3.11.0-1ubuntu1

libss2:amd64 1.42.13-1ubuntu1

libssh2-1:amd64 1.5.0-2ubuntu0.1

libssl1.0.0:amd64 1.0.2g-1ubuntu4.10

libstdc++6:amd64 5.4.0-6ubuntu1~16.04.9

libsystemd0:amd64 229-4ubuntu21.1

libtasn1-6:amd64 4.7-3ubuntu0.16.04.3

libtext-charwidth-perl 0.04-7build5

libtext-iconv-perl 1.7-5build4

libtext-wrapi18n-perl 0.06-7.1

libtinfo5:amd64 6.0+20160213-1ubuntu1

libudev1:amd64 229-4ubuntu21.1

libusb-0.1-4:amd64 2:0.1.12-28

libusb-1.0-0:amd64 2:1.0.20-1

libusbredirparser1:amd64 0.7.1-1

libustr-1.0-1:amd64 1.0.4-5

libutempter0:amd64 1.1.6-3

libuuid1:amd64 2.27.1-6ubuntu3.4

libvirt-bin 1.3.1-1ubuntu10.19

libvirt0:amd64 1.3.1-1ubuntu10.19

libvorbis0a:amd64 1.3.5-3ubuntu0.1

libvorbisenc2:amd64 1.3.5-3ubuntu0.1

libwind0-heimdal:amd64 1.7~git20150920+dfsg-4ubuntu1.16.04.1

libwrap0:amd64 7.6.q-25

libx11-6:amd64 2:1.6.3-1ubuntu2

libx11-data 2:1.6.3-1ubuntu2

libx86-1:amd64 1.1+ds1-10

libxau6:amd64 1:1.0.8-1

libxcb1:amd64 1.11.1-1ubuntu1

libxdmcp6:amd64 1:1.1.2-1.1

libxen-4.6:amd64 4.6.5-0ubuntu1.4

libxenstore3.0:amd64 4.6.5-0ubuntu1.4

libxext6:amd64 2:1.3.3-1

libxml2:amd64 2.9.3+dfsg1-1ubuntu0.5

libxml2-utils 2.9.3+dfsg1-1ubuntu0.5

libxmuu1:amd64 2:1.1.2-2

libxslt1.1:amd64 1.1.28-2.1ubuntu0.1

118

libxtables11:amd64 1.6.0-2ubuntu3

libyajl2:amd64 2.1.0-2

linux-base 4.0ubuntu1

linux-firmware 1.157.17

linux-headers-4.4.0-112 4.4.0-112.135

linux-headers-4.4.0-112-generic 4.4.0-112.135

linux-headers-4.4.0-116 4.4.0-116.140

linux-headers-4.4.0-116-generic 4.4.0-116.140

linux-headers-4.4.0-62 4.4.0-62.83

linux-headers-4.4.0-62-generic 4.4.0-62.83

linux-headers-generic 4.4.0.116.122

linux-image-4.4.0-112-generic 4.4.0-112.135

linux-image-4.4.0-116-generic 4.4.0-116.140

linux-image-4.4.0-62-generic 4.4.0-62.83

linux-image-extra-4.4.0-112-generic 4.4.0-112.135

linux-image-extra-4.4.0-116-generic 4.4.0-116.140

linux-image-extra-4.4.0-62-generic 4.4.0-62.83

linux-signed-generic 4.4.0.116.122

linux-signed-image-4.4.0-112-generic 4.4.0-112.135

linux-signed-image-4.4.0-116-generic 4.4.0-116.140

linux-signed-image-4.4.0-62-generic 4.4.0-62.83

linux-signed-image-generic 4.4.0.116.122

locales 2.23-0ubuntu10

login 1:4.2-3.1ubuntu5.3

logrotate 3.8.7-2ubuntu2.16.04.2

lsb-base 9.20160110ubuntu0.2

lsb-release 9.20160110ubuntu0.2

lshw 02.17-1.1ubuntu3.4

lsof 4.89+dfsg-0.1

ltrace 0.7.3-5.1ubuntu4

lvm2 2.02.133-1ubuntu10

lxc-common 2.0.8-0ubuntu1~16.04.2

lxcfs 2.0.8-0ubuntu1~16.04.2

lxd 2.0.11-0ubuntu1~16.04.4

lxd-client 2.0.11-0ubuntu1~16.04.4

makedev 2.3.1-93ubuntu2~ubuntu16.04.1

man-db 2.7.5-1

manpages 4.04-2

mawk 1.3.3-17ubuntu2

mc 3:4.8.15-2

mc-data 3:4.8.15-2

mdadm 3.3-2ubuntu7.6

memtest86+ 5.01-3ubuntu2

mime-support 3.59ubuntu1

mlocate 0.26-1ubuntu2

119

mokutil 0.3.0-0ubuntu3

mount 2.27.1-6ubuntu3.4

msr-tools 1.3-2

mtr-tiny 0.86-1ubuntu0.1

multiarch-support 2.23-0ubuntu10

nano 2.5.3-2ubuntu2

ncurses-base 6.0+20160213-1ubuntu1

ncurses-bin 6.0+20160213-1ubuntu1

ncurses-term 6.0+20160213-1ubuntu1

net-tools 1.60-26ubuntu1

netbase 5.3

netcat-openbsd 1.105-7ubuntu1

ntfs-3g 1:2015.3.14AR.1-1ubuntu0.1

ntp 1:4.2.8p4+dfsg-3ubuntu5.8

open-iscsi 2.0.873+git0.3b4b4500-14ubuntu3.4

open-vm-tools 2:10.0.7-3227872-5ubuntu1~16.04.2

openssh-client 1:7.2p2-4ubuntu2.4

openssh-server 1:7.2p2-4ubuntu2.4

openssh-sftp-server 1:7.2p2-4ubuntu2.4

openssl 1.0.2g-1ubuntu4.10

os-prober 1.70ubuntu3.3

overlayroot 0.27ubuntu1.5

parted 3.2-15ubuntu0.1

passwd 1:4.2-3.1ubuntu5.3

pastebinit 1.5-1

patch 2.7.5-1

pciutils 1:3.3.1-1.1ubuntu1.1

perl 5.22.1-9ubuntu0.2

perl-base 5.22.1-9ubuntu0.2

perl-modules-5.22 5.22.1-9ubuntu0.2

plymouth 0.9.2-3ubuntu13.2

plymouth-theme-ubuntu-text 0.9.2-3ubuntu13.2

pm-utils 1.4.1-16

policykit-1 0.105-14.1

popularity-contest 1.64ubuntu2

powermgmt-base 1.31+nmu1

procps 2:3.3.10-4ubuntu2.3

psmisc 22.21-2.1build1

python 2.7.12-1~16.04

python-apt-common 1.1.0~beta1ubuntu0.16.04.1

python-crypto 2.6.1-6ubuntu0.16.04.2

python-distorm3 3.3.0-3

python-minimal 2.7.12-1~16.04

python2.7 2.7.12-1ubuntu0~16.04.3

python2.7-minimal 2.7.12-1ubuntu0~16.04.3

120

python3 3.5.1-3

python3-apport 2.20.1-0ubuntu2.15

python3-apt 1.1.0~beta1ubuntu0.16.04.1

python3-chardet 2.3.0-2

python3-commandnotfound 0.3ubuntu16.04.2

python3-dbus 1.2.0-3

python3-debian 0.1.27ubuntu2

python3-distupgrade 1:16.04.24

python3-gdbm:amd64 3.5.1-1

python3-gi 3.20.0-0ubuntu1

python3-minimal 3.5.1-3

python3-newt 0.52.18-1ubuntu2

python3-pkg-resources 20.7.0-1

python3-problem-report 2.20.1-0ubuntu2.15

python3-pycurl 7.43.0-1ubuntu1

python3-requests 2.9.1-3

python3-six 1.10.0-3

python3-software-properties 0.96.20.7

python3-systemd 231-2build1

python3-update-manager 1:16.04.12

python3-urllib3 1.13.1-2ubuntu0.16.04.1

python3.5 3.5.2-2ubuntu0~16.04.4

python3.5-minimal 3.5.2-2ubuntu0~16.04.4

qemu-block-extra:amd64 1:2.5+dfsg-5ubuntu10.24

qemu-kvm 1:2.5+dfsg-5ubuntu10.24

qemu-system-common 1:2.5+dfsg-5ubuntu10.24

qemu-system-x86 1:2.5+dfsg-5ubuntu10.24

qemu-utils 1:2.5+dfsg-5ubuntu10.24

readline-common 6.3-8ubuntu2

rename 0.20-4

resolvconf 1.78ubuntu6

rsync 3.1.1-3ubuntu1.2

rsyslog 8.16.0-1ubuntu3

run-one 1.17-0ubuntu1

sbsigntool 0.6-0ubuntu10.1

screen 4.3.1-2build1

seabios 1.8.2-1ubuntu1

secureboot-db 1.1

sed 4.2.2-7

sensible-utils 0.0.9ubuntu0.16.04.1

sgml-base 1.26+nmu4ubuntu1

shared-mime-info 1.5-2ubuntu0.1

sharutils 1:4.15.2-1

shim 13-0ubuntu2

shim-signed 1.33.1~16.04.1+13-0ubuntu2

121

snap-confine 2.29.4.2

snapd 2.29.4.2

software-properties-common 0.96.20.7

sosreport 3.5-1~ubuntu16.04.2

squashfs-tools 1:4.3-3ubuntu2.16.04.1

ssh-import-id 5.5-0ubuntu1

strace 4.11-1ubuntu3

sudo 1.8.16-0ubuntu1.5

systemd 229-4ubuntu21.1

systemd-sysv 229-4ubuntu21.1

sysv-rc 2.88dsf-59.3ubuntu2

sysvinit-utils 2.88dsf-59.3ubuntu2

tar 1.28-2.1ubuntu0.1

tasksel 3.34ubuntu3

tasksel-data 3.34ubuntu3

tcpd 7.6.q-25

tcpdump 4.9.2-0ubuntu0.16.04.1

telnet 0.17-40

time 1.7-25.1

tmux 2.1-3build1

tzdata 2017c-0ubuntu0.16.04

ubuntu-cloudimage-keyring 2013.11.11

ubuntu-core-launcher 2.29.4.2

ubuntu-keyring 2012.05.19

ubuntu-minimal 1.361.1

ubuntu-release-upgrader-core 1:16.04.24

ubuntu-server 1.361.1

ubuntu-standard 1.361.1

ucf 3.0036

udev 229-4ubuntu21.1

ufw 0.35-0ubuntu2

uidmap 1:4.2-3.1ubuntu5.3

unattended-upgrades 0.90ubuntu0.9

unzip 6.0-20ubuntu1

update-manager-core 1:16.04.12

update-notifier-common 3.168.7

ureadahead 0.100.0-19

usbutils 1:007-4

util-linux 2.27.1-6ubuntu3.4

uuid-runtime 2.27.1-6ubuntu3.4

vbetool 1.1-3

vim 2:7.4.1689-3ubuntu1.2

vim-common 2:7.4.1689-3ubuntu1.2

vim-runtime 2:7.4.1689-3ubuntu1.2

vim-tiny 2:7.4.1689-3ubuntu1.2

122

vlan 1.9-3.2ubuntu1.16.04.4

wget 1.17.1-1ubuntu1.3

whiptail 0.52.18-1ubuntu2

wireless-regdb 2015.07.20-1ubuntu1

xauth 1:1.0.9-1ubuntu2

xdg-user-dirs 0.15-2ubuntu6

xfsprogs 4.3.0+nmu1ubuntu1.1

xkb-data 2.16-1ubuntu1

xml-core 0.13+nmu2

xz-utils 5.1.1alpha+20120614-2ubuntu2

zerofree 1.0.3-1

zlib1g:amd64 1:1.2.8.dfsg-2ubuntu4.1

123

APPENDIX B. CONFIGURATION FILES OF THE
VIRTUALIZATION NODE

Content of the file /etc/fstab

/etc/fstab: static file system information.

#

Use ’blkid’ to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

#

<file system> <mount point> <type> <options> <dump> <pass>

/dev/sda2 / ext4 errors=remount-ro 0 1

/dev/sda1 /boot/efi vfat umask=0077 0 1

/dev/sda3 none swap sw 0 0

/dev/sdb4 /mnt/forensic-data ext4 errors=remount-ro 0 2

Content of the file /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface

auto lo

iface lo inet loopback

auto enp7s0f0

iface enp7s0f0 inet manual

auto br0

iface br0 inet static

address 192.168.10.1

netmask 255.255.255.0

network 192.168.10.0

broadcast 192.168.10.255

bridge_ports enp7s0f0

bridge_stp off

bridge_fd 0

bridge_maxwait 0

Content of the file /etc/libvirt/storage/lvm-group.xml

124

<!--

WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE

OVERWRITTEN AND LOST. Changes to this xml configuration should be made

using: virsh pool-edit lvm-group or other application using the libvirt

API.

-->

<pool type=’logical’>

<name>lvm-group</name>

<uuid>fb1197d6-d126-4ce9-a2ef-daf818092031</uuid>

<capacity unit=’bytes’>0</capacity>

<allocation unit=’bytes’>0</allocation>

<available unit=’bytes’>0</available>

<source>

<name>lvm-group</name>

<format type=’lvm2’/>

</source>

<target>

<path>/dev/lvm-group</path>

</target>

</pool>

125

APPENDIX C. VIRTUAL MACHINES CONFIGURATION FILES

Content of the file /mnt/kvm/xmls/VM1.xml.

<domain type=’kvm’>

<name>VM1_Ubuntu_17.10</name>

<uuid>be0c72a2-c9d7-4dd5-83e3-b2084387be81</uuid>

<memory unit=’KiB’>4194304</memory>

<currentMemory unit=’KiB’>4194304</currentMemory>

<vcpu placement=’static’>8</vcpu>

<resource>

<partition>/machine</partition>

</resource>

<os>

<type arch=’x86_64’ machine=’pc-i440fx-xenial’>hvm</type>

<boot dev=’hd’/>

</os>

<features>

<acpi/>

<apic/>

</features>

<cpu mode=’custom’ match=’exact’>

<model fallback=’allow’>Penryn</model>

</cpu>

<clock offset=’utc’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

</clock>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

</pm>

<devices>

<emulator>/usr/bin/kvm-spice</emulator>

<disk type=’block’ device=’disk’>

<driver name=’qemu’ type=’raw’ cache=’none’ io=’native’/>

<source dev=’/dev/lvm-group/VM1_ubuntu’/>

<backingStore/>

<target dev=’hda’ bus=’ide’/>

<alias name=’ide0-0-0’/>

126

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit=’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’ich9-ehci1’>

<alias name=’usb’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x7’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci1’>

<alias name=’usb’/>

<master startport=’0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci2’>

<alias name=’usb’/>

<master startport=’2’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x1’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci3’>

<alias name=’usb’/>

<master startport=’4’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x2’/>

</controller>

<controller type=’pci’ index=’0’ model=’pci-root’>

<alias name=’pci.0’/>

</controller>

<controller type=’ide’ index=’0’>

<alias name=’ide’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ \

function=’0x1’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<alias name=’virtio-serial0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x0’/>

</controller>

<interface type=’network’>

<mac address=’52:54:00:9e:d3:6c’/>

<source bridge=’br0’/>

<target dev=’vnet0’/>

<model type=’rtl8139’/>

<alias name=’net0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ \

127

function=’0x0’/>

</interface>

<serial type=’pty’>

<source path=’/dev/pts/1’/>

<target port=’0’/>

<alias name=’serial0’/>

</serial>

<console type=’pty’ tty=’/dev/pts/1’>

<source path=’/dev/pts/1’/>

<target type=’serial’ port=’0’/>

<alias name=’serial0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’ state=’disconnected’/>

<alias name=’channel0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port=’1’/>

</channel>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ port=’5900’ autoport=’yes’ listen=’127.0.0.1’>

<listen type=’address’ address=’127.0.0.1’/>

</graphics>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’ heads=’1’/>

<alias name=’video0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’ \

function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir0’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir1’/>

</redirdev>

<memballoon model=’virtio’>

<alias name=’balloon0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x07’ \

function=’0x0’/>

</memballoon>

</devices>

<seclabel type=’dynamic’ model=’apparmor’ relabel=’yes’>

<label>libvirt-be0c72a2-c9d7-4dd5-83e3-b2084387be81</label>

<imagelabel>libvirt-be0c72a2-c9d7-4dd5-83e3-b2084387be81</imagelabel>

</seclabel>

</domain>

128

Content of the file /mnt/kvm/xmls/VM2.xml.

<domain type=’kvm’>

<name>VM2_CentOS_7</name>

<uuid>999170f4-75c1-4d45-b875-fb77cc2a00ea</uuid>

<memory unit=’KiB’>4194304</memory>

<currentMemory unit=’KiB’>4194304</currentMemory>

<vcpu placement=’static’>8</vcpu>

<resource>

<partition>/machine</partition>

</resource>

<os>

<type arch=’x86_64’ machine=’pc-i440fx-xenial’>hvm</type>

<boot dev=’hd’/>

</os>

<features>

<acpi/>

<apic/>

</features>

<cpu mode=’custom’ match=’exact’>

<model fallback=’allow’>Penryn</model>

</cpu>

<clock offset=’utc’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

</clock>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

</pm>

<devices>

<emulator>/usr/bin/kvm-spice</emulator>

<disk type=’block’ device=’disk’>

<driver name=’qemu’ type=’raw’ cache=’none’ io=’native’/>

<source dev=’/dev/lvm-group/VM2_centos’/>

<backingStore/>

<target dev=’hda’ bus=’ide’/>

<alias name=’ide0-0-0’/>

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit=’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’ich9-ehci1’>

129

<alias name=’usb’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x7’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci1’>

<alias name=’usb’/>

<master startport=’0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci2’>

<alias name=’usb’/>

<master startport=’2’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x1’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci3’>

<alias name=’usb’/>

<master startport=’4’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x2’/>

</controller>

<controller type=’pci’ index=’0’ model=’pci-root’>

<alias name=’pci.0’/>

</controller>

<controller type=’ide’ index=’0’>

<alias name=’ide’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ \

function=’0x1’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<alias name=’virtio-serial0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’ \

function=’0x0’/>

</controller>

<interface type=’bridge’>

<mac address=’52:54:00:f6:eb:05’/>

<source bridge=’br0’/>

<target dev=’vnet1’/>

<model type=’rtl8139’/>

<alias name=’net0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ \

function=’0x0’/>

</interface>

<serial type=’pty’>

130

<source path=’/dev/pts/5’/>

<target port=’0’/>

<alias name=’serial0’/>

</serial>

<console type=’pty’ tty=’/dev/pts/5’>

<source path=’/dev/pts/5’/>

<target type=’serial’ port=’0’/>

<alias name=’serial0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’ state=’disconnected’/>

<alias name=’channel0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port=’1’/>

</channel>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ port=’5901’ autoport=’yes’ listen=’127.0.0.1’>

<listen type=’address’ address=’127.0.0.1’/>

</graphics>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’ heads=’1’/>

<alias name=’video0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’ \

function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir0’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir1’/>

</redirdev>

<memballoon model=’virtio’>

<alias name=’balloon0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x0’/>

</memballoon>

</devices>

<seclabel type=’dynamic’ model=’apparmor’ relabel=’yes’>

<label>libvirt-999170f4-75c1-4d45-b875-fb77cc2a00ea</label>

<imagelabel>libvirt-999170f4-75c1-4d45-b875-fb77cc2a00ea</imagelabel>

</seclabel>

</domain>

Content of the file /mnt/kvm/xmls/VM3.xml.

131

<domain type=’kvm’>

<name>VM3_Windows_2008</name>

<uuid>9f44405d-2df8-483d-92f8-2050756235fd</uuid>

<memory unit=’KiB’>4194304</memory>

<currentMemory unit=’KiB’>4194304</currentMemory>

<vcpu placement=’static’>8</vcpu>

<resource>

<partition>/machine</partition>

</resource>

<os>

<type arch=’x86_64’ machine=’pc-i440fx-xenial’>hvm</type>

<boot dev=’hd’/>

</os>

<features>

<acpi/>

<apic/>

<hyperv>

<relaxed state=’on’/>

<vapic state=’on’/>

<spinlocks state=’on’ retries=’8191’/>

</hyperv>

</features>

<cpu mode=’custom’ match=’exact’>

<model fallback=’allow’>Penryn</model>

</cpu>

<clock offset=’localtime’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

<timer name=’hypervclock’ present=’yes’/>

</clock>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

</pm>

<devices>

<emulator>/usr/bin/kvm-spice</emulator>

<disk type=’block’ device=’disk’>

<driver name=’qemu’ type=’raw’ cache=’none’ io=’native’/>

<source dev=’/dev/lvm-group/VM3_win2008’/>

<backingStore/>

<target dev=’hda’ bus=’ide’/>

132

<alias name=’ide0-0-0’/>

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit=’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’ich9-ehci1’>

<alias name=’usb’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x7’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci1’>

<alias name=’usb’/>

<master startport=’0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci2’>

<alias name=’usb’/>

<master startport=’2’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x1’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci3’>

<alias name=’usb’/>

<master startport=’4’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x2’/>

</controller>

<controller type=’pci’ index=’0’ model=’pci-root’>

<alias name=’pci.0’/>

</controller>

<controller type=’ide’ index=’0’>

<alias name=’ide’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ \

function=’0x1’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<alias name=’virtio-serial0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’ \

function=’0x0’/>

</controller>

<interface type=’network’>

<mac address=’52:54:00:70:30:7f’/>

<source bridge=’br0’/>

<target dev=’vnet2’/>

<model type=’rtl8139’/>

<alias name=’net0’/>

133

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ \

function=’0x0’/>

</interface>

<serial type=’pty’>

<source path=’/dev/pts/6’/>

<target port=’0’/>

<alias name=’serial0’/>

</serial>

<console type=’pty’ tty=’/dev/pts/6’>

<source path=’/dev/pts/6’/>

<target type=’serial’ port=’0’/>

<alias name=’serial0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’ state=’disconnected’/>

<alias name=’channel0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port=’1’/>

</channel>

<input type=’tablet’ bus=’usb’>

<alias name=’input0’/>

</input>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ port=’5902’ autoport=’yes’ listen=’127.0.0.1’>

<listen type=’address’ address=’127.0.0.1’/>

</graphics>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’ heads=’1’/>

<alias name=’video0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’ \

function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir0’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir1’/>

</redirdev>

<memballoon model=’virtio’>

<alias name=’balloon0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x0’/>

</memballoon>

</devices>

<seclabel type=’dynamic’ model=’apparmor’ relabel=’yes’>

134

<label>libvirt-9f44405d-2df8-483d-92f8-2050756235fd</label>

<imagelabel>libvirt-9f44405d-2df8-483d-92f8-2050756235fd</imagelabel>

</seclabel>

</domain>

Content of the file /mnt/kvm/xmls/VM4.xml.

<domain type=’kvm’>

<name>VM4_Windows_2016</name>

<uuid>5463353b-7bf4-49f0-b48f-1ff20d9c499a</uuid>

<memory unit=’KiB’>4194304</memory>

<currentMemory unit=’KiB’>4194304</currentMemory>

<vcpu placement=’static’>8</vcpu>

<resource>

<partition>/machine</partition>

</resource>

<os>

<type arch=’x86_64’ machine=’pc-i440fx-xenial’>hvm</type>

</os>

<features>

<acpi/>

<apic/>

</features>

<cpu mode=’custom’ match=’exact’>

<model fallback=’allow’>Penryn</model>

</cpu>

<clock offset=’utc’>

<timer name=’rtc’ tickpolicy=’catchup’/>

<timer name=’pit’ tickpolicy=’delay’/>

<timer name=’hpet’ present=’no’/>

</clock>

<on_poweroff>destroy</on_poweroff>

<on_reboot>restart</on_reboot>

<on_crash>restart</on_crash>

<pm>

<suspend-to-mem enabled=’no’/>

<suspend-to-disk enabled=’no’/>

</pm>

<devices>

<emulator>/usr/bin/kvm-spice</emulator>

<disk type=’block’ device=’disk’>

<driver name=’qemu’ type=’raw’ cache=’none’ io=’native’/>

<source dev=’/dev/lvm-group/VM4_win2016’/>

<backingStore/>

<target dev=’hda’ bus=’ide’/>

135

<boot order=’2’/>

<alias name=’ide0-0-0’/>

<address type=’drive’ controller=’0’ bus=’0’ target=’0’ unit=’0’/>

</disk>

<controller type=’usb’ index=’0’ model=’ich9-ehci1’>

<alias name=’usb’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x7’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci1’>

<alias name=’usb’/>

<master startport=’0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x0’ multifunction=’on’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci2’>

<alias name=’usb’/>

<master startport=’2’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x1’/>

</controller>

<controller type=’usb’ index=’0’ model=’ich9-uhci3’>

<alias name=’usb’/>

<master startport=’4’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x05’ \

function=’0x2’/>

</controller>

<controller type=’pci’ index=’0’ model=’pci-root’>

<alias name=’pci.0’/>

</controller>

<controller type=’ide’ index=’0’>

<alias name=’ide’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x01’ \

function=’0x1’/>

</controller>

<controller type=’virtio-serial’ index=’0’>

<alias name=’virtio-serial0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x04’ \

function=’0x0’/>

</controller>

<interface type=’network’>

<mac address=’52:54:00:24:13:f5’/>

<source bridge=’br0’/>

<target dev=’vnet3’/>

<model type=’rtl8139’/>

136

<alias name=’net0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x03’ \

function=’0x0’/>

</interface>

<serial type=’pty’>

<source path=’/dev/pts/2’/>

<target port=’0’/>

<alias name=’serial0’/>

</serial>

<console type=’pty’ tty=’/dev/pts/2’>

<source path=’/dev/pts/2’/>

<target type=’serial’ port=’0’/>

<alias name=’serial0’/>

</console>

<channel type=’spicevmc’>

<target type=’virtio’ name=’com.redhat.spice.0’ state=’disconnected’/>

<alias name=’channel0’/>

<address type=’virtio-serial’ controller=’0’ bus=’0’ port=’1’/>

</channel>

<input type=’mouse’ bus=’ps2’/>

<input type=’keyboard’ bus=’ps2’/>

<graphics type=’spice’ port=’5903’ autoport=’yes’ listen=’127.0.0.1’>

<listen type=’address’ address=’127.0.0.1’/>

</graphics>

<video>

<model type=’qxl’ ram=’65536’ vram=’65536’ vgamem=’16384’ heads=’1’/>

<alias name=’video0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x02’ \

function=’0x0’/>

</video>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir0’/>

</redirdev>

<redirdev bus=’usb’ type=’spicevmc’>

<alias name=’redir1’/>

</redirdev>

<memballoon model=’virtio’>

<alias name=’balloon0’/>

<address type=’pci’ domain=’0x0000’ bus=’0x00’ slot=’0x06’ \

function=’0x0’/>

</memballoon>

</devices>

<seclabel type=’dynamic’ model=’apparmor’ relabel=’yes’>

<label>libvirt-5463353b-7bf4-49f0-b48f-1ff20d9c499a</label>

<imagelabel>libvirt-5463353b-7bf4-49f0-b48f-1ff20d9c499a</imagelabel>

137

</seclabel>

</domain>

138

APPENDIX D. GENERATION OF VOLATILITY PROFILES

Profile generation steps for VM1 (Ubuntu Server 17.10 32-bit):

apt-get install vim mc zip unzip linux-headers-generic libelf-dev

build-essential

cd /root

wget http://downloads.volatilityfoundation.org/releases/2.6/

volatility-2.6.zip

unzip volatility-2.6.zip

git clone https://github.com/tomhughes/libdwarf.git

cd libdwarf/

./configure

make dd

cp dwarfdump/dwarfdump /usr/local/bin/

cp dwarfdump/dwarfdump.conf /usr/local/lib/

cp libdwarf/libdwarf.a /usr/local/lib

cd /root/volatility-master/tools/linux/

make

zip /root/Ubuntu1710.zip /root/volatility-master/tools/linux/module.dwarf

/boot/System.map-4.13.0-36-generic

The file /root/Ubuntu1710.zip generated in the last step is the Volatility profile
which was used to examine the RAM images created for VM1.

Profile generation steps for VM2 (CentOS 7 64-bit):

yum install vim mc telnet net-tools mlocate wget git gcc zip

unzip elfutils libdwarf libdwarf-devel elfutils-libelf-devel

kernel-devel kernel-headers

cd /root

wget http://downloads.volatilityfoundation.org/releases/2.6/

volatility-2.6.zip

unzip volatility-2.6.zip

git clone https://github.com/tomhughes/libdwarf.git

cd libdwarf/

./configure

make dd

cp dwarfdump/dwarfdump /usr/local/bin/

cp dwarfdump/dwarfdump.conf /usr/local/lib/

cp libdwarf/libdwarf.a /usr/local/lib

cd /root/volatility-master/tools/linux/

make

zip /root/Centos7.zip /root/volatility-master/tools/linux/module.dwarf

/boot/System.map-3.10.0-693.21.1.el7.x86_64

139

The file /root/Centos7.zip generated in the last step is the Volatility profile which was used
to examine the RAM images created for VM2.

140

APPENDIX E. BASH SCRIPT TO TEST THE IMAGING PROCESS

BASH script developed to test the imaging process of virtual hard drives by
employing the utility virsh to create a snapshot.

#!/bin/bash

VM_NAME=(’VM1_Ubuntu_17.10’ ’VM2_CentOS_7’ ’VM3_Windows_2008’

’VM4_Windows_2016’)

VM_LVM=(’/dev/lvm-group/VM1_ubuntu’ ’/dev/lvm-group/VM2_centos’

’/dev/lvm-group/VM3_win2008’ ’/dev/lvm-group/VM4_win2016’)

VM_MAPPER=(’/dev/mapper/loop0p1’ ’/dev/mapper/loop0p1’

’/dev/mapper/loop0p1’ ’/dev/mapper/loop0p2’)

VM_FILE=(’/var/log/syslog’ ’/var/log/messages’

’/Windows/Logs/ServerManager.log’ ’/Windows/debug/wlms.log’)

VM_DISK_DEV=(’hda’ ’hda’ ’hda’ ’hda’)

VM_FS=(’ext4’ ’xfs’ ’ntfs’ ’ntfs’)

RM=$(which rm)

DD=$(which dd)

MD5=$(which md5sum)

SHA1=$(which sha1sum)

TAIL=$(which tail)

VIRSH=$(which virsh)

MOUNT=$(which mount)

UMOUNT=$(which umount)

KPARTX=$(which kpartx)

SNAP_DIR="/var/lib/libvirt/images"

SNAP_NAME="snapshot-script"

IMAGE_DIR="/mnt/forensic-data/disk-images"

IMAGE_DEV="/dev/sdb2"

MOUNT_TMPDIR="/mnt/temp"

for i in {0..3}; do

echo -------------------------- ${VM_NAME[i]} --------------------------

Step 1: Create the external snapshot

echo -n "STEP 1: CREATING EXTERNAL SNAPSHOT. Date: "

date +"%m-%d-%y %I:%M:%S %p"

/usr/bin/time -f "Time: %E" $VIRSH snapshot-create-as ${VM_NAME[i]} \

--disk-only --atomic --name $SNAP_NAME --diskspec ${VM_DISK_DEV[i]},\

snapshot=external,file=$SNAP_DIR/${VM_NAME[i]}-snapshot.qcow2

if [$? -eq 0]; then

echo "Result: Snapshot successfully created."

else

141

echo "Result: ERROR! Snapshot could not be created."

exit

fi

echo

Step 2: Create bit-stream image and calculate hash values

echo -n "STEP 2: CREATING IMAGE AND CALCULATING HASH VALUES. Date: "

date +"%m-%d-%y %I:%M:%S %p"

echo " * Creating bit-stream image into /mnt/forensic-data:"

$DD if=${VM_LVM[i]} of=$IMAGE_DIR/${VM_NAME[i]}.dd bs=512 \

conv=noerror,sync,fdatasync

sleep 5m

echo " * Creating bit-stream image into /dev/sdb2:"

$DD if=${VM_LVM[i]} of=$IMAGE_DEV bs=512 conv=noerror,sync,fdatasync

echo " * Calculating MD5 values:"

$MD5 ${VM_LVM[i]}

$MD5 $IMAGE_DIR/${VM_NAME[i]}.dd

$MD5 $IMAGE_DEV

echo " * Calculating SHA1 values:"

$SHA1 ${VM_LVM[i]}

$SHA1 $IMAGE_DIR/${VM_NAME[i]}.dd

$SHA1 $IMAGE_DEV

echo "Result: TBD (Check MD5 and SHA1 values)."

echo

Step 3: Mounting bit-stream image

echo -n "STEP 3: VERIFYING IMAGE. Date: "

date +"%m-%d-%y %I:%M:%S %p"

echo " * Mounting image:"

$KPARTX -av $IMAGE_DIR/${VM_NAME[i]}.dd ; sleep 3s

$MOUNT -t ${VM_FS[i]} -o ro ${VM_MAPPER[i]} $MOUNT_TMPDIR

if [$? -eq 0]; then

echo " * Retrieving file:"

$TAIL -n2 $MOUNT_TMPDIR${VM_FILE[i]}

$UMOUNT $MOUNT_TMPDIR ; sleep 3s

$KPARTX -dv $IMAGE_DIR/${VM_NAME[i]}.dd

echo "Result: TBD (Check date and time)."

else

echo "Result: ERROR! Image could not be mounted."

exit

fi

echo

Step 4: Merge the snapshot into and remove files:

142

echo -n "STEP 4: MERGING SNAPSHOT AND REMOVING FILES. Date: "

date +"%m-%d-%y %I:%M:%S %p"

/usr/bin/time -f "Time: %E" $VIRSH blockcommit ${VM_NAME[i]} \

${VM_DISK_DEV[i]} --verbose --pivot --active

if [$? -eq 0]; then

echo "Result: Snapshot successfully merged."

$VIRSH snapshot-delete ${VM_NAME[i]} $SNAP_NAME --metadata

$RM $SNAP_DIR/${VM_NAME[i]}-snapshot.qcow2

$RM $IMAGE_DIR/${VM_NAME[i]}.dd

else

echo "Result: ERROR! Snapshot could not be merged."

fi

echo

echo "PROCESS COMPLETE. Date: "

date +"%m-%d-%y %I:%M:%S %p"

echo

sleep 15m

done

exit 0

143

APPENDIX F. PURDUE’S IRB EXEMPTION LETTER

Figure F.1 shows the review exemption letter provided by Purdue’s Institutional
Review Board (IRB) for the research conducted in this study.

Figure F.1. Purdue’s Institutional Review Board exemption letter

144

APPENDIX G. USER INTERACTION SCRIPT FOR VM1
(UBUNTU 17.10)

This document describes the steps the user must follow in order to interact with the
VM Ubuntu 17.10 (IP address: 192.168.10.11):

1. Log in the laptop with the following credentials:
• User: cflstudent
• Password: 2hLMmVGt

2. Send an ICMP echo request to the VM:
2.1. Open a command prompt window by double-clicking on the icon “Command

Prompt”, located at the Desktop.
2.2. Execute the command ping -n X 192.168.10.11, replacing X by a number

between 1 and 10. Figure G.1 displays an example of this step using a value of 5
for X.

Figure G.1. Ping command screen

2.3. Close the command prompt window.
3. Connect to the SSH server running on the VM:

3.1. Open the SSH client by double-clicking on the icon “PuTTY (64 bits)”, located
at the Desktop.

3.2. Double-click on the session “VM1: Ubuntu 17.10” that was previously created
to connect to the IP address 192.168.10.11 and port TCP 22. Figure G.2
displays the Putty screen and the saved session list.

145

Figure G.2. Putty screen

3.3. Log in the Ubuntu system with the following credentials:
• User: cflstudent
• Password: 2hLMmVGt

3.4. Select two commands from the next list and execute them, once at a time:

date ifconfig ps clear df
ls ip ro who w whoami
last cd hostname blkid uname

3.5. Leave the SSH session open (do not close the terminal).

4. Connect to the webserver running on the VM:

4.1. Open the Google Chrome browser by double-clicking on the icon “Google
Chrome”, located at the Desktop.

4.2. In the address bar enter the following URL: http://192.168.10.11
4.3. You should see a web page with the title “Apache2 Ubuntu Default Page”.

Figure G.3 shows and example of the web page retrieved after entering the
mentioned URL.

146

Figure G.3. Chrome screen

4.4. Close the Google Chrome browser.

5. Complete the first available row in the next table, detailing the date and time the
interaction was performed, the X value selected at step 2.2 and the commands
executed at step 3.4.

Test Date Time X value Commands executed
1 05/18 5:40pm 5 ip ro — uname
2 05/20 6:55pm 7 hostname — df
3 05/21 6:25pm 1 ps — clear
4 05/22 5:50pm 3 w — last
5 05/23 5:40pm 10 date — cd
6 05/25 4:10pm 8 df — hostname
7 05/30 6:05pm 3 date — ifconfig
8 06/01 7:15pm 5 clear — cd
9 06/05 11:10am 8 last — df
10 06/08 10:45am 9 whoami — blkid

147

APPENDIX H. USER INTERACTION SCRIPT FOR VM2
(CENTOS7)

This document describes the steps the user must follow in order to interact with the
VM Centos 7 (IP address: 192.168.10.12):

1. Log in the laptop with the following credentials:

• User: cflstudent
• Password: 2hLMmVGt

2. Send an ICMP echo request to the VM:

2.1. Open a command prompt window by double-clicking on the icon “Command
Prompt”, located at the Desktop.

2.2. Execute the command ping -n X 192.168.10.12, replacing X by a number
between 1 and 10. Figure H.1 displays an example of this step using a value of 5
for X.

Figure H.1. Ping command screen

2.3. Close the command prompt window.

3. Connect to the SSH server running on the VM:

3.1. Open the SSH client by double-clicking on the icon “PuTTY (64 bits)”, located
at the Desktop.

3.2. Double-click on the session “VM2: Centos 7” that was previously created to
connect to the IP address 192.168.10.12 and port TCP 22. Figure H.2 displays
the Putty screen and the saved session list.

148

Figure H.2. Putty screen

3.3. Log in the Centos system with the following credentials:
• User: cflstudent
• Password: 2hLMmVGt

3.4. Select two commands from the next list and execute them, once at a time:

date ifconfig ps clear df
ls ip ro who w whoami
last cd hostname blkid uname

3.5. Leave the SSH session open (do not close the terminal).

4. Connect to the FTP server running on the VM:

4.1. Open the FileZilla FTP Client by double-clicking on the icon “FileZilla Client”,
located at the Desktop.

4.2. Go to menu “File” and then select “Site Manager...”.
4.3. Double-click on the entry “Centos 7” that was previously created to connect to

the IP address 192.168.10.12 and port TCP 21, using the same credentials

149

mentioned in the previous step. Figure H.3 displays the FileZilla Site Manager
screen and the aforementioned entry.

Figure H.3. FileZilla Site Manager screen

4.4. Wait until the FTP connection is established. Figure H.4 illustrates the FileZilla
screen at this point, after the content of the directory /home/cflstudent is listed.

150

Figure H.4. FileZilla screen once the FTP connection is established

4.5. Close the FileZilla FTP Client.

5. Complete the first available row in the next table, detailing the date and time the
interaction was performed, the X value selected at step 2.2 and the commands
executed at step 3.4.

Test Date Time X value Commands executed
1 05/18 5:50pm 10 blkid — whoami
2 05/20 7:10pm 9 ifconfig — date
3 05/21 6:30pm 4 ip ro — who
4 05/22 6:00pm 7 ifconfig — uname
5 05/24 7:00pm 1 last — whoami
6 05/25 4:20pm 4 ip ro — blkid
7 05/30 6:20pm 5 ps — uname
8 06/01 7:20pm 10 ifconfig — last
9 06/05 11:15am 2 hostname — w
10 06/08 10:50am 9 ip ro — last

151

APPENDIX I. USER INTERACTION SCRIPT FOR VM3
(WINDOWS 2008)

This document describes the steps the user must follow in order to interact with the
VM Windows 2008 (IP address: 192.168.10.13):

1. Log in the laptop with the following credentials:

• User: cflstudent
• Password: 2hLMmVGt

2. Send an ICMP echo request to the VM:

2.1. Open a command prompt window by double-clicking on the icon “Command
Prompt”, located at the Desktop.

2.2. Execute the command ping -n X 192.168.10.13, replacing X by a number
between 1 and 10. Figure I.1 displays an example of this step using a value of 5
for X.

Figure I.1. Ping command screen

2.3. Close the command prompt window.

3. Connect to the Remote Desktop service running on the VM:

3.1. Open the remote desktop client by double-clicking on the icon “Remote
Desktop”, located at the Desktop.

3.2. In the Computer text-box write the IP address 192.168.10.13 and then click on
the button “Connect”. Figure I.2 displays the remote desktop client screen.

152

Figure I.2. Remote desktop client screen

3.3. Log in the Windows 2008 system with the following credentials:
• User: Administrator
• Password: 2hLMmVGt

3.4. After log in the Windows 2008, complete the next actions inside this system:
3.4.1. Open a command prompt window by double-clicking on the icon

“Command Prompt”, located at the Windows 2008 Desktop.
3.4.2. Select two commands from the next list and execute them, inside the

command prompt window, once at a time:

cls ipconfig route print dir cd
date /t hostname netstat tree ver
time /t vol whoami arp -a dispdiag

3.4.3. Minimize the command prompt window. Do not close it. If it was closed by
mistake start again from step 3.4.1.

3.5. Once the previous actions are completed, leave the remote desktop connection
open (do not close the session, just minimize it to continue with the next step).

4. Query the DNS server running on the VM:

4.1. Open a command prompt window by double-clicking on the icon “Command
Prompt”, located at the Desktop.

4.2. Execute the command nslookup.exe XXX.vpsnet.com 192.168.10.13, replacing
XXX by one of the following options: vm1, vm2, vm3, or vm4. Depending on
the option selected, the IP address reported by the DNS server could be:
192.168.10.11 (for vm1), 192.168.10.12 (for vm2), 192.168.10.13 (for vm3), or
192.168.10.14 (for vm4). Figure I.3 displays an example of this step using the

153

value “vm1” for XXX. In this example, the IP address reported by the DNS
server was 192.168.10.11.

Figure I.3. Nslookup command screen

4.3. Close the command prompt window.
5. Complete the first available row in the next table, detailing the date and time the

interaction was performed, the X value selected at step 2.2 and the commands
executed at step 3.4.2.

Test Date Time X value Commands executed
1 05/18 5:55pm 8 route print — dispdiag
2 05/20 7:20pm 3 vol — ver
3 05/21 6:40pm 2 cls — netstat
4 05/22 6:30pm 5 time /t — date /t
5 05/23 6:10pm 6 tree — vol
6 05/25 4:25pm 1 cls — vol
7 05/30 6:25pm 4 ver — vol
8 06/01 7:25pm 8 ipconfig — arp -a
9 06/05 11:25am 9 date /t — netstat
10 06/08 10:54am 9 cls — date /t

154

APPENDIX J. USER INTERACTION SCRIPT FOR VM4
(WINDOWS 2016)

This document describes the steps the user must follow in order to interact with the
VM Windows 2016 (IP address: 192.168.10.14):

1. Log in the laptop with the following credentials:

• User: cflstudent
• Password: 2hLMmVGt

2. Send an ICMP echo request to the VM:

2.1. Open a command prompt window by double-clicking on the icon “Command
Prompt”, located at the Desktop.

2.2. Execute the command ping -n X 192.168.10.14, replacing X by a number
between 1 and 10. Figure J.1 displays an example of this step using a value of 5
for X.

Figure J.1. Ping command screen

2.3. Close the command prompt window.

3. Connect to the Remote Desktop service running on the VM:

3.1. Open the remote desktop client by double-clicking on the icon “Remote
Desktop”, located at the Desktop.

3.2. In the Computer text-box write the IP address 192.168.10.14 and then click on
the button “Connect”. Figure J.2 displays the remote desktop client screen.

155

Figure J.2. Remote desktop client screen

3.3. Log in the Windows 2016 system with the following credentials:
• User: Administrator
• Password: 2hLMmVGt

3.4. After log in the Windows 2016, complete the next actions inside this system:
3.4.1. Open a command prompt window by double-clicking on the icon

“Command Prompt”, located at the Windows 2016 Desktop.
3.4.2. Select two commands from the next list and execute them, inside the

command prompt window, once at a time:

cls ipconfig route print dir cd
date /t hostname netstat tree ver
time /t vol whoami arp -a dispdiag

3.4.3. Minimize the command prompt window. Do not close it. If it was closed by
mistake start again from step 3.4.1.

3.5. Once the previous actions are completed, leave the remote desktop connection
open (do not close the session, just minimize it to continue with the next step).

4. Connect to the MySQL server running on the VM:

4.1. Open the application MySQL Workbench by double-clicking on the icon
“MySQL Workbench”, located at the Desktop.

4.2. Go to menu “Database” and then select “Connect to Database...”.
4.3. Select the stored connection “VM4: Windows 2016” that was previously created

to connect to the IP address 192.168.10.14, port TCP 3306, and using the root
account. Then click on the button “OK”. Figure J.3 displays the MySQL
Workbench screen and the aforementioned stored connection.

156

Figure J.3. MySQL Workbench screen

4.4. Wait until the MySQL connection is established. Figure J.4 illustrates the
MySQL Workbench screen at this point, after the MySQL connection is
established and ready to accept SQL statements.

Figure J.4. MySQL Workbench screen once the MySQL connection is established

157

4.5. Close the application MySQL Workbench.

5. Complete the first available row in the next table, detailing the date and time the
interaction was performed, the X value selected at step 2.2 and the commands
executed at step 3.4.2.

Test Date Time X value Commands executed
1 05/18 6:10pm 9 tree – arp -a
2 05/20 7:30pm 8 whoami – tree
3 05/21 6:50pm 8 route print – dispdiag
4 05/22 6:35pm 9 ver – netstat
5 05/23 6:30pm 8 hostname – ipconfig
6 05/25 4:30pm 7 netstat – tree
7 05/30 6:20pm 2 dir – whoami
8 06/01 7:30pm 3 date /t – ver
9 06/05 11:30am 5 cls – dispdiag
10 06/08 10:55am 9 ipconfig – hostname

