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Praise for Effective Modern C++

So, still interested in C++? You should be! Modern C++ (i.e., C++11/C++14) is far more than just a facelift.
Considering the new features, it seems that it’s more a reinvention. Looking for guidelines and assistance?
Then this book is surely what you are looking for. Concerning C++, Scott Meyers was and still is a
synonym for accuracy, quality, and delight.

Gerhard Kreuzer

Research and Development Engineer, Siemens AG

Finding utmost expertise is hard enough. Finding teaching perfectionism—an author’s obsession with
strategizing and streamlining explanations—is also difficult. You know you’re in for a treat when you get to
find both embodied in the same person. Effective Modern C++ is a towering achievement from a
consummate technical writer. It layers lucid, meaningful, and well-sequenced clarifications on top of
complex and interconnected topics, all in crisp literary style. You’re equally unlikely to find a technical
mistake, a dull moment, or a lazy sentence in Effective Modern C++.

Andrei Alexandrescu Ph.D., Research Scientist, Facebook, and author of Modern C++ Design

As someone with over two decades of C++ experience, to get the most out of modern C++ (both best
practices and pitfalls to avoid), I highly recommend getting this book, reading it thoroughly, and referring to
it often! I’ve certainly learned new things going through it!

Nevin Liber
Senior Software Engineer, DRW Trading Group

Bjarne Stroustrup—the creator of C++—said, “C++11 feels like a new language.” Effective Modern C++
makes us share this same feeling by clearly explaining how everyday programmers can benefit from new
features and idioms of C++11 and C++14. Another great Scott Meyers book.

Cassio Neri

FX Quantitative Analyst, Lloyds Banking Group

Scott has the knack of boiling technical complexity down to an understandable kernel. His Effective C++
books helped to raise the coding style of a previous generation of C++ programmers; the new book seems
positioned to do the same for those using modern C++.

Roger Orr

OR/2 Limited, a member of the ISO C++ standards committee

Effective Modern C++ is a great tool to improve your modern C++ skills. Not only does it teach you how,
when and where to use modern C++ and be effective, it also explains why. Without doubt, Scott’s clear and
insightful writing, spread over 42 well-thought items, gives programmers a much better understanding of
the language.

Bart Vandewoestyne Research and Development Engineer and C++ enthusiast

I love C++, it has been my work vehicle for many decades now. And with the latest raft of features it is



even more powerful and expressive than I would have previously imagined. But with all this choice comes
the question “when and how do I apply these features?” As has always been the case, Scott’s Effective C++
books are the definitive answer to this question.

Damien Watkins

Computation Software Engineering Team Lead, CSIRO

Great read for transitioning to modern C++—new C++11/14 language features are described alongside
C++98, subject items are easy to reference, and advice summarized at the end of each section. Entertaining
and useful for both casual and advanced C++ developers.

Rachel Cheng
F5 Networks

If you’re migrating from C++98/03 to C++11/14, you need the eminently practical and clear information
Scott provides in Effective Modern C++. If you’re already writing C++11 code, you’ll probably discover
issues with the new features through Scott’s thorough discussion of the important new features of the
language. Either way, this book is worth your time.

Rob Stewart

Boost Steering Committee member (boost.org)
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Using Code Examples

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Effective Modern C++ by
Scott Meyers (O’Reilly). Copyright 2015 Scott Meyers, 978-1-491-90399-5.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.
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Introduction

If you’re an experienced C++ programmer and are anything like me, you
initially approached C++11 thinking, “Yes, yes, I get it. It’s C++, only more so0.”
But as you learned more, you were surprised by the scope of the changes. auto
declarations, range-based for loops, lambda expressions, and rvalue references
change the face of C++, to say nothing of the new concurrency features. And
then there are the idiomatic changes. 0 and typedefs are out, nullptr and alias
declarations are in. Enums should now be scoped. Smart pointers are now
preferable to built-in ones. Moving objects is normally better than copying them.

There’s a lot to learn about C++11, not to mention C++14.

More importantly, there’s a lot to learn about making effective use of the new
capabilities. If you need basic information about “modern” C++ features,
resources abound, but if you’re looking for guidance on how to employ the
features to create software that’s correct, efficient, maintainable, and portable,
the search is more challenging. That’s where this book comes in. It’s devoted not
to describing the features of C++11 and C++14, but instead to their effective
application.

The information in the book is broken into guidelines called Items. Want to
understand the various forms of type deduction? Or know when (and when not)
to use auto declarations? Are you interested in why const member functions
should be thread safe, how to implement the Pimpl Idiom using

std: :unique_ptr, why you should avoid default capture modes in lambda
expressions, or the differences between std: :atomic and volatile? The
answers are all here. Furthermore, they’re platform-independent, Standards-
conformant answers. This is a book about portable C++.

The Items in this book are guidelines, not rules, because guidelines have
exceptions. The most important part of each Item is not the advice it offers, but
the rationale behind the advice. Once you’ve read that, you’ll be in a position to
determine whether the circumstances of your project justify a violation of the
Item’s guidance. The true goal of this book isn’t to tell you what to do or what to
avoid doing, but to convey a deeper understanding of how things work in C++11
and C++14.



Terminology and Conventions

To make sure we understand one another, it’s important to agree on some
terminology, beginning, ironically, with “C++.” There have been four official
versions of C++, each named after the year in which the corresponding ISO
Standard was adopted: C++98, C++03, C++11, and C++14. C++98 and
C++03 differ only in technical details, so in this book, I refer to both as C++98.
When I refer to C++11, I mean both C++11 and C++14, because C++14 is
effectively a superset of C++11. When I write C++14, I mean specifically
C++14. And if I simply mention C++, I’'m making a broad statement that
pertains to all language versions.

Term | Use Language Versions | Mean

C++ All

C++98 C++98 and C++03
C++11 C++11 and C++14
C++14 C++14

As a result, I might say that C++ places a premium on efficiency (true for all
versions), that C++98 lacks support for concurrency (true only for C++98 and
C++03), that C++11 supports lambda expressions (true for C++11 and C++14),
and that C++14 offers generalized function return type deduction (true for
C++14 only).

C++11’s most pervasive feature is probably move semantics, and the foundation
of move semantics is distinguishing expressions that are rvalues from those that
are lvalues. That’s because rvalues indicate objects eligible for move operations,
while lvalues generally don’t. In concept (though not always in practice), rvalues
correspond to temporary objects returned from functions, while lvalues
correspond to objects you can refer to, either by name or by following a pointer
or lvalue reference.

A useful heuristic to determine whether an expression is an Ivalue is to ask if
you can take its address. If you can, it typically is. If you can’t, it’s usually an
rvalue. A nice feature of this heuristic is that it helps you remember that the type
of an expression is independent of whether the expression is an lvalue or an
rvalue. That is, given a type T, you can have lvalues of type T as well as rvalues



of type T. It’s especially important to remember this when dealing with a
parameter of rvalue reference type, because the parameter itself is an Ivalue:

class Widget {
public:

Widget(Widget&& rhs); /] rhs is an lvalue, though it has
// an rvalue reference type

}s

Here, it’d be perfectly valid to take rhs’s address inside Widget’s move
constructor, so rhs is an lvalue, even though its type is an rvalue reference. (By
similar reasoning, all parameters are Ivalues.)

That code snippet demonstrates several conventions I normally follow:

m The class name is Widget. I use Widget whenever I want to refer to an
arbitrary user-defined type. Unless I need to show specific details of the class,

I use Widget without declaring it.

m | use the parameter name rhs (“right-hand side”). It’s my preferred parameter
name for the move operations (i.e., move constructor and move assignment
operator) and the copy operations (i.e., copy constructor and copy assignment
operator). I also employ it for the right-hand parameter of binary operators:

Matrix operator+(const Matrix& lhs, const Matrix& rhs);

It’s no surprise, I hope, that Lhs stands for “left-hand side.”

= [ apply special formatting to parts of code or parts of comments to draw your
attention to them. In the Widget move constructor above, I've highlighted the

declaration of rhs and the part of the comment noting that rhs is an Ivalue.
Highlighted code is neither inherently good nor inherently bad. It’s simply
code you should pay particular attention to.

€ »

m [ use “..” to indicate “other code could go here.” This narrow ellipsis is

different from the wide ellipsis (“. . .”) that’s used in the source code for
C++11’s variadic templates. That sounds confusing, but it’s not. For example:



template<typename... Ts> // these are C++
voild processVals(const Ts&... params) // source code
{ // ellipses

// this means "some
// code goes here"

The declaration of processVals shows that I use typename when declaring
type parameters in templates, but that’s merely a personal preference; the
keyword class would work just as well. On those occasions where I show
code excerpts from a C++ Standard, I declare type parameters using class,
because that’s what the Standards do.

When an object is initialized with another object of the same type, the new
object is said to be a copy of the initializing object, even if the copy was created
via the move constructor. Regrettably, there’s no terminology in C++ that
distinguishes between an object that’s a copy-constructed copy and one that’s a
move-constructed copy:

void someFunc(Widget w); // someFunc's parameter w
// is passed by value

Widget wid; // wid i1s some Widget

someFunc(wid); // in this call to someFunc,
// w is a copy of wid that's
// created via copy construction

someFunc(std: :move(wid)); // in this call to SomeFunc,
// w is a copy of wid that's
/| created via move construction

Copies of rvalues are generally move constructed, while copies of lvalues are
usually copy constructed. An implication is that if you know only that an object
is a copy of another object, it’s not possible to say how expensive it was to
construct the copy. In the code above, for example, there’s no way to say how
expensive it is to create the parameter w without knowing whether rvalues or
lvalues are passed to someFunc. (You’d also have to know the cost of moving
and copying Widgets.)



In a function call, the expressions passed at the call site are the function’s
arguments. The arguments are used to initialize the function’s parameters. In the
first call to someFunc above, the argument is wid. In the second call, the
argument is std: :move(wid). In both calls, the parameter is w. The distinction
between arguments and parameters is important, because parameters are lvalues,
but the arguments with which they are initialized may be rvalues or lvalues. This
is especially relevant during the process of perfect forwarding, whereby an
argument passed to a function is passed to a second function such that the
original argument’s rvalueness or lvalueness is preserved. (Perfect forwarding is
discussed in detail in Item 30.)

Well-designed functions are exception safe, meaning they offer at least the basic
exception safety guarantee (i.e., the basic guarantee). Such functions assure
callers that even if an exception is thrown, program invariants remain intact (i.e.,
no data structures are corrupted) and no resources are leaked. Functions offering
the strong exception safety guarantee (i.e., the strong guarantee) assure callers
that if an exception arises, the state of the program remains as it was prior to the
call.

When I refer to a function object, I usually mean an object of a type supporting
an operator () member function. In other words, an object that acts like a
function. Occasionally I use the term in a slightly more general sense to mean
anything that can be invoked using the syntax of a non-member function call
(i.e., “functionName(arguments)”). This broader definition covers not just
objects supporting operator(), but also functions and C-like function pointers.
(The narrower definition comes from C++98, the broader one from C++11.)
Generalizing further by adding member function pointers yields what are known
as callable objects. You can generally ignore the fine distinctions and simply
think of function objects and callable objects as things in C++ that can be
invoked using some kind of function-calling syntax.

Function objects created through lambda expressions are known as closures. It’s
seldom necessary to distinguish between lambda expressions and the closures
they create, so I often refer to both as lambdas. Similarly, I rarely distinguish
between function templates (i.e., templates that generate functions) and template
functions (i.e., the functions generated from function templates). Ditto for class
templates and template classes.



Many things in C++ can be both declared and defined. Declarations introduce
names and types without giving details, such as where storage is located or how
things are implemented:

extern int x; // object declaration
class Widget; // class declaration

bool func(const Widget& w); // function declaration
enum class Color; // scoped enum declaration

// (see Item 10)

Definitions provide the storage locations or implementation details:

int x; // object definition
class Widget { // class definition
I

bool func(const Widget& w)
{ return w.size() < 10; } // function definition

enum class Color
{ Yellow, Red, Blue }; // scoped enum definition

A definition also qualifies as a declaration, so unless it’s really important that
something is a definition, I tend to refer to declarations.

I define a function’s signature to be the part of its declaration that specifies
parameter and return types. Function and parameter names are not part of the
signature. In the example above, func’s signature is bool(const Widget&).
Elements of a function’s declaration other than its parameter and return types
(e.g., noexcept or constexpr, if present), are excluded. (noexcept and
constexpr are described in Items 14 and 15.) The official definition of
“signature” is slightly different from mine, but for this book, my definition is
more useful. (The official definition sometimes omits return types.)

New C++ Standards generally preserve the validity of code written under older
ones, but occasionally the Standardization Committee deprecates features. Such



features are on standardization death row and may be removed from future
Standards. Compilers may or may not warn about the use of deprecated features,
but you should do your best to avoid them. Not only can they lead to future
porting headaches, they’re generally inferior to the features that replace them.
For example, std: :auto_ptr is deprecated in C++11, because

std: :unique_ptr does the same job, only better.

Sometimes a Standard says that the result of an operation is undefined behavior.
That means that runtime behavior is unpredictable, and it should go without
saying that you want to steer clear of such uncertainty. Examples of actions with
undefined behavior include using square brackets (“[ ]”) to index beyond the
bounds of a std: :vector, dereferencing an uninitialized iterator, or engaging in
a data race (i.e., having two or more threads, at least one of which is a writer,
simultaneously access the same memory location).

I call built-in pointers, such as those returned from new, raw pointers. The
opposite of a raw pointer is a smart pointer. Smart pointers normally overload
the pointer-dereferencing operators (operator-> and operator¥*), though
Item 20 explains that std: :weak_ptr is an exception.

In source code comments, I sometimes abbreviate “constructor” as ctor and
“destructor” as dtor.

Reporting Bugs and Suggesting Improvements

I’ve done my best to fill this book with clear, accurate, useful information, but
surely there are ways to make it better. If you find errors of any kind (technical,
expository, grammatical, typographical, etc.), or if you have suggestions for how
the book could be improved, please email me at emc++@aristeia.com. New
printings give me the opportunity to revise Effective Modern C++, and I can’t
address issues I don’t know about!

To view the list of the issues I do know about, consult the book’s errata page,
http://www.aristeia.com/BookErrata/emc+ +-errata.html.
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Chapter 1. Deducing Types

C++98 had a single set of rules for type deduction: the one for function
templates. C++11 modifies that ruleset a bit and adds two more, one for auto
and one for decltype. C++14 then extends the usage contexts in which auto
and decltype may be employed. The increasingly widespread application of
type deduction frees you from the tyranny of spelling out types that are obvious
or redundant. It makes C++ software more adaptable, because changing a type at
one point in the source code automatically propagates through type deduction to
other locations. However, it can render code more difficult to reason about,
because the types deduced by compilers may not be as apparent as you’d like.

Without a solid understanding of how type deduction operates, effective
programming in modern C++ is all but impossible. There are just too many
contexts where type deduction takes place: in calls to function templates, in most
situations where auto appears, in decltype expressions, and, as of C++14,
where the enigmatic decltype(auto) construct is employed.

This chapter provides the information about type deduction that every C++
developer requires. It explains how template type deduction works, how auto
builds on that, and how decltype goes its own way. It even explains how you
can force compilers to make the results of their type deductions visible, thus
enabling you to ensure that compilers are deducing the types you want them to.

Item 1: Understand template type deduction.

When users of a complex system are ignorant of how it works, yet happy with
what it does, that says a lot about the design of the system. By this measure,
template type deduction in C++ is a tremendous success. Millions of
programmers have passed arguments to template functions with completely
satisfactory results, even though many of those programmers would be hard-
pressed to give more than the haziest description of how the types used by those
functions were deduced.



If that group includes you, I have good news and bad news. The good news is
that type deduction for templates is the basis for one of modern C++’s most

compelling features: auto. If you were happy with how C++98 deduced types
for templates, you’re set up to be happy with how C++11 deduces types for

auto. The bad news is that when the template type deduction rules are applied in

the context of auto, they sometimes seem less intuitive than when they’re
applied to templates. For that reason, it’s important to truly understand the

aspects of template type deduction that auto builds on. This Item covers what
you need to know.

If you’re willing to overlook a pinch of pseudocode, we can think of a function
template as looking like this:

template<typename T>
vold f(ParamType param);

A call can look like this:

f(expr); // call f with some expression

During compilation, compilers use expr to deduce two types: one for T and one
for ParamType. These types are frequently different, because ParamType often
contains adornments, e.g., const or reference qualifiers. For example, if the
template is declared like this,

template<typename T>
vold f(const T& param); // ParamType is const T&

and we have this call,

int x = 0;

f(x); // call f with an int

T is deduced to be int, but ParamType is deduced to be const int&.

It’s natural to expect that the type deduced for T is the same as the type of the
argument passed to the function, i.e., that T is the type of expr. In the above



example, that’s the case: x is an int, and T is deduced to be int. But it doesn’t
always work that way. The type deduced for T is dependent not just on the type
of expr, but also on the form of ParamType. There are three cases:

m ParamType is a pointer or reference type, but not a universal reference.
(Universal references are described in Item 24. At this point, all you need to
know is that they exist and that they’re not the same as Ivalue references or
rvalue references.)

m ParamType is a universal reference.

m ParamType is neither a pointer nor a reference.

We therefore have three type deduction scenarios to examine. Each will be based
on our general form for templates and calls to it:

template<typename T>
vold f(ParamType param);

f(expr); // deduce T and ParamType from expr

Case 1: ParamType is a Reference or Pointer, but not a
Universal Reference

The simplest situation is when ParamType is a reference type or a pointer type,
but not a universal reference. In that case, type deduction works like this:

1. If expr’s type is a reference, ignore the reference part.

2. Then pattern-match expr’s type against ParamType to determine T.

For example, if this is our template,

template<typename T>
voild f(T& param); // param is a reference

and we have these variable declarations,

int x = 27; // x is an int



const int cx = x; // cx is a const int
const int& rx = Xx; // rx is a reference to x as a const int

the deduced types for param and T in various calls are as follows:

f(x); // T is int, param's type is inté&

f(cx); // T is const int,
// param's type i1s const inté&

f(rx); // T is const int,
// param's type 1s const inté&

In the second and third calls, notice that because cx and rx designate const
values, T is deduced to be const int, thus yielding a parameter type of const
int&. That’s important to callers. When they pass a const object to a reference
parameter, they expect that object to remain unmodifiable, i.e., for the parameter
to be a reference-to-const. That’s why passing a const object to a template
taking a T& parameter is safe: the constness of the object becomes part of the
type deduced for T.

In the third example, note that even though rx’s type is a reference, T is deduced
to be a non-reference. That’s because rx’s reference-ness is ignored during type
deduction.

These examples all show lvalue reference parameters, but type deduction works
exactly the same way for rvalue reference parameters. Of course, only rvalue
arguments may be passed to rvalue reference parameters, but that restriction has
nothing to do with type deduction.

If we change the type of f’s parameter from T& to const T&, things change a
little, but not in any really surprising ways. The constness of cx and rx
continues to be respected, but because we’re now assuming that paramis a
reference-to-const, there’s no longer a need for const to be deduced as part of
T:

template<typename T>
vold f(const T& param); // param is now a ref-to-const

int x = 27; // as before



const int cx = x;
const int& rx = x;

f(x);

f(cx);

f(rx);

// as before
// as before

// T is int, param's type is const inté&
// T is int, param's type is const inté&

// T is int, param's type is const inté&

As before, rx’s reference-ness is ignored during type deduction.

If param were a pointer (or a pointer to const) instead of a reference, things
would work essentially the same way:

template<typename T>
voild f(T* param);

int x = 27;
const int *px = &x;
f(&x);

f(px);

// param is now a pointer

// as before

// px is a ptr to x as a const int
// T is int, param's type is int*

// T is const int,
// param's type is const int*

By now, you may find yourself yawning and nodding off, because C++’s type
deduction rules work so naturally for reference and pointer parameters, seeing
them in written form is really dull. Everything’s just obvious! Which is exactly
what you want in a type deduction system.

Case 2: ParamType is a Universal Reference

Things are less obvious for templates taking universal reference parameters.
Such parameters are declared like rvalue references (i.e., in a function template

taking a type parameter T, a universal reference’s declared type is T&&), but they
behave differently when lvalue arguments are passed in. The complete story is
told in Item 24, but here’s the headline version:

m If expris an lvalue, both T and ParamType are deduced to be lvalue
references. That’s doubly unusual. First, it’s the only situation in template



type deduction where T is deduced to be a reference. Second, although

ParamType is declared using the syntax for an rvalue reference, its deduced
type is an lvalue reference.

m If expr is an rvalue, the “normal” (i.e., Case 1) rules apply.
For example:

template<typename T>

vold f(T&& param); // param is now a universal reference
int x = 27; // as before

const int cx = x; // as before

const int& rx = x; // as before

f(x); // x is lvalue, so T is int&,

// param's type is also inté&

f(cx); // cx is lvalue, so T is const int&,
// param's type is also const inté&

f(rx); // rx is lvalue, so T is const int&,
// param's type is also const inté&

f(27); /] 27 is rvalue, so T is 1int,
// param's type is therefore inté&é&

Item 24 explains exactly why these examples play out the way they do. The key
point here is that the type deduction rules for universal reference parameters are
different from those for parameters that are lvalue references or rvalue
references. In particular, when universal references are in use, type deduction
distinguishes between Ivalue arguments and rvalue arguments. That never
happens for non-universal references.

Case 3: ParamType is Neither a Pointer nor a Reference
When ParamType is neither a pointer nor a reference, we’re dealing with pass-

by-value:

template<typename T>
vold f(T param); // param is now passed by value



That means that param will be a copy of whatever is passed in—a completely
new object. The fact that param will be a new object motivates the rules that
govern how T is deduced from expr:

1. As before, if expr’s type is a reference, ignore the reference part.

2. 1If, after ignoring expr’s reference-ness, expr is const, ignore that, too. If
it’s volatile, also ignore that. (volatile objects are uncommon. They’re
generally used only for implementing device drivers. For details, see Item

40.)

Hence:
int x = 27; // as before
const int cx = x; // as before

const int& rx = x; // as before

f(x); // T's and param's types are both int
f(cx); // T's and param's types are again both int
f(rx); // T's and param's types are still both int

Note that even though cx and rx represent const values, param isn’t const.
That makes sense. param is an object that’s completely independent of cx and rx
—a copy of cx or rx. The fact that cx and rx can’t be modified says nothing
about whether param can be. That’s why expr’s constness (and volatileness,
if any) is ignored when deducing a type for param: just because expr can’t be
modified doesn’t mean that a copy of it can’t be.

It’s important to recognize that const (and volatile) is ignored only for by-
value parameters. As we’ve seen, for parameters that are references-to- or
pointers-to-const, the constness of expr is preserved during type deduction.
But consider the case where expr is a const pointer to a const object, and expr
is passed to a by-value param:

template<typename T>
vold f(T param); // param is still passed by value



const char* const ptr = // ptr is const pointer to const object
"Fun with pointers";

f(ptr); // pass arg of type const char * const

Here, the const to the right of the asterisk declares ptr to be const: ptr can’t
be made to point to a different location, nor can it be set to null. (The const to
the left of the asterisk says that what ptr points to—the character string—is
const, hence can’t be modified.) When ptr is passed to f, the bits making up
the pointer are copied into param. As such, the pointer itself (ptr) will be passed
by value. In accord with the type deduction rule for by-value parameters, the
constness of ptr will be ignored, and the type deduced for param will be const
char*, i.e., a modifiable pointer to a const character string. The constness of
what ptr points to is preserved during type deduction, but the constness of ptr
itself is ignored when copying it to create the new pointer, param.

Array Arguments

That pretty much covers it for mainstream template type deduction, but there’s a
niche case that’s worth knowing about. It’s that array types are different from
pointer types, even though they sometimes seem to be interchangeable. A
primary contributor to this illusion is that, in many contexts, an array decays into
a pointer to its first element. This decay is what permits code like this to
compile:

const char name[] = "J. P. Briggs"; // name's type is
// const char[13]

const char * ptrToName = name; // array decays to pointer

Here, the const char* pointer ptrToName is being initialized with name, which

is a const char[13]. These types (const char* and const char[13]) are not
the same, but because of the array-to-pointer decay rule, the code compiles.

But what if an array is passed to a template taking a by-value parameter? What
happens then?

template<typename T>



vold f(T param); // template with by-value parameter

f(name); // what types are deduced for T and param?

We begin with the observation that there is no such thing as a function parameter
that’s an array. Yes, yes, the syntax is legal,

vold myFunc(int param[]);

but the array declaration is treated as a pointer declaration, meaning that myFunc
could equivalently be declared like this:

vold myFunc(int* param); // same function as above

This equivalence of array and pointer parameters is a bit of foliage springing
from the C roots at the base of C++, and it fosters the illusion that array and
pointer types are the same.

Because array parameter declarations are treated as if they were pointer
parameters, the type of an array that’s passed to a template function by value is

deduced to be a pointer type. That means that in the call to the template f, its
type parameter T is deduced to be const char*:

f(name); // name is array, but T deduced as const char*

But now comes a curve ball. Although functions can’t declare parameters that
are truly arrays, they can declare parameters that are references to arrays! So if
we modify the template f to take its argument by reference,

template<typename T>
vold f(T& param); // template with by-reference parameter

and we pass an array to it,
f(name); // pass array to f

the type deduced for T is the actual type of the array! That type includes the size
of the array, so in this example, T is deduced to be const char [13], and the



type of f’s parameter (a reference to this array) is const char (&)[13]. Yes, the
syntax looks toxic, but knowing it will score you mondo points with those few
souls who care.

Interestingly, the ability to declare references to arrays enables creation of a
template that deduces the number of elements that an array contains:

// return size of an array as a compile-time constant. (The
// array parameter has no name, because we care only about
// the number of elements it contains.)

template<typename T, std::size_t N> // see info

constexpr std::size_t arraySize(T (&)[N]) noexcept // below on

{ // constexpr
return N; // and

} // noexcept

As Item 15 explains, declaring this function constexpr makes its result
available during compilation. That makes it possible to declare, say, an array
with the same number of elements as a second array whose size is computed
from a braced initializer:

int keyvals[] = { 1, 3, 7, 9, 11, 22, 35 }; // keyVals has
// 7 elements

int mappedVals[arraySize(keyVals)]; // so does
// mappedVals

Of course, as a modern C++ developer, you’d naturally prefer a std: :array to a
built-in array:

std::array<int, arraySize(keyVals)> mappedVals; // mappedVals'
/] size is 7

As for arraySize being declared noexcept, that’s to help compilers generate
better code. For details, see Item 14.

Function Arguments

Arrays aren’t the only things in C++ that can decay into pointers. Function types
can decay into function pointers, and everything we’ve discussed regarding type



deduction for arrays applies to type deduction for functions and their decay into
function pointers. As a result:

void someFunc(int, double); // someFunc is a function;
// type is void(int, double)

template<typename T>
voild f1(T param); // in f1, param passed by value

template<typename T>
vold f2(T& param); // in f2, param passed by ref

f1(someFunc); // param deduced as ptr-to-func;
// type is void (*)(int, double)

f2(someFunc); // param deduced as ref-to-func;
// type is void (&)(int, double)

This rarely makes any difference in practice, but if you’re going to know about
array-to-pointer decay, you might as well know about function-to-pointer decay,
too.

So there you have it: the auto-related rules for template type deduction. I
remarked at the outset that they’re pretty straightforward, and for the most part,
they are. The special treatment accorded lvalues when deducing types for
universal references muddies the water a bit, however, and the decay-to-pointer
rules for arrays and functions stirs up even greater turbidity. Sometimes you
simply want to grab your compilers and demand, “Tell me what type you’re
deducing!” When that happens, turn to Item 4, because it’s devoted to coaxing
compilers into doing just that.

Things to Remember

= During template type deduction, arguments that are references are treated as non-
references, i.e., their reference-ness is ignored.

= When deducing types for universal reference parameters, lvalue arguments get special
treatment.

m When deducing types for by-value parameters, const and/or volatile arguments are
treated as non-const and non-volatile.

m During template type deduction, arguments that are array or function names decay to



pointers, unless they’re used to initialize references.

Item 2: Understand auto type deduction.

If you’ve read Item 1 on template type deduction, you already know almost
everything you need to know about auto type deduction, because, with only one

curious exception, auto type deduction is template type deduction. But how can
that be? Template type deduction involves templates and functions and

parameters, but auto deals with none of those things.

That’s true, but it doesn’t matter. There’s a direct mapping between template

type deduction and auto type deduction. There is literally an algorithmic
transformation from one to the other.

In Item 1, template type deduction is explained using this general function
template

template<typename T>
vold f(ParamType param);

and this general call:
f(expr); // call f with some expression

In the call to f, compilers use expr to deduce types for T and ParamType.

When a variable is declared using auto, auto plays the role of T in the template,

and the type specifier for the variable acts as ParamType. This is easier to show
than to describe, so consider this example:

auto x = 27;

Here, the type specifier for x is simply auto by itself. On the other hand, in this
declaration,

const auto cx = Xx;



the type specifier is const auto. And here,

const auto& rx = x;

the type specifier is const auto&. To deduce types for x, cx, and rx in these
examples, compilers act as if there were a template for each declaration as well
as a call to that template with the corresponding initializing expression:

template<typename T>
vold func_for_x(T param);

func_for_x(27);

template<typename T>

vold func_for_cx(const T param);
func_for_cx(x);

template<typename T>

vold func_for_rx(const T& param);

func_for_rx(x);

// conceptual template for
// deducing x's type

// conceptual call: param's
// deduced type is x's type

// conceptual template for
// deducing cx's type

// conceptual call: param's
// deduced type is cx's type

// conceptual template for
// deducing rx's type

// conceptual call: param's
// deduced type is rx's type

As I said, deducing types for auto is, with only one exception (which we’ll
discuss soon), the same as deducing types for templates.

Item 1 divides template type deduction into three cases, based on the

characteristics of ParamType, the type specifier for param in the general function
template. In a variable declaration using auto, the type specifier takes the place
of ParamType, so there are three cases for that, too:

m Case 1: The type specifier is a pointer or reference, but not a universal

reference.

m Case 2: The type specifier is a universal reference.

m Case 3: The type specifier is neither a pointer nor a reference.

We’ve alreadv seen examples of cases 1 and 3:



auto x = 27; // case 3 (x is neither ptr nor reference)
const auto cx = Xx; // case 3 (cx isn't either)

const auto& rx = x; // case 1 (rx is a non-universal ref.)
Case 2 works as you’d expect:

auto&& urefi

X3 // x is int and lvalue,
// so urefl's type is int&

auto&& uref2 = cx; // cx is const int and lvalue,

// so uref2's type is const int&

auto&& uref3

27; // 27 is int and rvalue,
// so uref3's type is int&&

Item 1 concludes with a discussion of how array and function names decay into

pointers for non-reference type specifiers. That happens in auto type deduction,
too:

const char name[] = // name's type is const char[13]
"R. N. Briggs";

auto arrl = name; // arrl's type is const char*
auto& arr2 = name; /] arr2's type is

// const char (&)[13]
void someFunc(int, double); // someFunc is a function;

// type is void(int, double)

auto funcl = someFunc; // funcl's type is
// void (*)(int, double)

auto& func2 = someFunc; // func2's type is
// void (&)(int, double)

As you can see, auto type deduction works like template type deduction.
They’re essentially two sides of the same coin.



Except for the one way they differ. We’ll start with the observation that if you

want to declare an int with an initial value of 27, C++98 gives you two
syntactic choices:

int x1 = 27;
int x2(27);

C++11, through its support for uniform initialization, adds these:

int x3 = { 27 };
int x4{ 27 };

All in all, four syntaxes, but only one result: an int with value 27.

But as Item 5 explains, there are advantages to declaring variables using auto

instead of fixed types, so it’d be nice to replace int with auto in the above
variable declarations. Straightforward textual substitution yields this code:

auto x1 = 27;
auto x2(27);

auto x3 = { 27 };
auto x4{ 27 };

These declarations all compile, but they don’t have the same meaning as the
ones they replace. The first two statements do, indeed, declare a variable of type

int with value 27. The second two, however, declare a variable of type
std::initializer_list<int> containing a single element with value 27!

auto x1 = 27; // type is 1int, value is 27
auto x2(27); // ditto
auto x3 = { 27 }; // type is std::initializer_list<int>,

// value is { 27 }

auto x4{ 27 }; // ditto

This is due to a special type deduction rule for auto. When the initializer for an
auto-declared variable is enclosed in braces, the deduced type is a



std::initializer_Llist. If such a type can’t be deduced (e.g., because the
values in the braced initializer are of different types), the code will be rejected:

auto x5 ={ 1, 2, 3.0 }; // error! can't deduce T for
// std::initializer_list<T>

As the comment indicates, type deduction will fail in this case, but it’s important
to recognize that there are actually two kinds of type deduction taking place. One
kind stems from the use of auto: x5’s type has to be deduced. Because x5’s
initializer is in braces, x5 must be deduced to be a std: :initializer_list.
But std::initializer_list is a template. Instantiations are
std::initializer_list<T> for some type T, and that means that T’s type must
also be deduced. Such deduction falls under the purview of the second kind of
type deduction occurring here: template type deduction. In this example, that
deduction fails, because the values in the braced initializer don’t have a single

type.

The treatment of braced initializers is the only way in which auto type

deduction and template type deduction differ. When an auto—declared variable
is initialized with a braced initializer, the deduced type is an instantiation of

std::initializer_list. But if the corresponding template is passed the same
initializer, type deduction fails, and the code is rejected:

auto x = { 11, 23, 9 }; // x's type is
// std::initializer_list<int>

template<typename T> // template with parameter
vold f(T param); // declaration equivalent to
// x's declaration

f({ 11, 23, 9 }); // error! can't deduce type for T
However, if you specify in the template that param is a

std::initializer_list<T> for some unknown T, template type deduction will
deduce what T is:

template<typename T>
vold f(std::initializer_list<T> initList);



f({ 11, 23, 9 }); // T deduced as int, and initList's
// type is std::initializer_list<int>

So the only real difference between auto and template type deduction is that
auto assumes that a braced initializer represents a std: :initializer_list,
but template type deduction doesn’t.

You might wonder why auto type deduction has a special rule for braced
initializers, but template type deduction does not. I wonder this myself. Alas, I
have not been able to find a convincing explanation. But the rule is the rule, and
this means you must remember that if you declare a variable using auto and you
initialize it with a braced initializer, the deduced type will always be
std::initializer_list. It’s especially important to bear this in mind if you
embrace the philosophy of uniform initialization—of enclosing initializing
values in braces as a matter of course. A classic mistake in C++11 programming
is accidentally declaring a std: :initializer_list variable when you mean to
declare something else. This pitfall is one of the reasons some developers put
braces around their initializers only when they have to. (When you have to is
discussed in Item 7.)

For C++11, this is the full story, but for C++14, the tale continues. C++14
permits auto to indicate that a function’s return type should be deduced (see
[tem 3), and C++14 lambdas may use auto in parameter declarations. However,
these uses of auto employ template type deduction, not auto type deduction. So
a function with an auto return type that returns a braced initializer won’t
compile:

auto createInitList()

{
return { 1, 2, 3 }; // error: can't deduce type

} /] for {1, 2, 3}

The same is true when auto is used in a parameter type specification in a C++14
lambda:

std::vector<int> v;



auto resetV =
[&v](const auto& newValue) { v = newValue; }; /] C++14

resetV({ 1, 2, 3 }); // error! can't deduce type
/] for {1, 2, 3}

Things to Remember

® auto type deduction is usually the same as template type deduction, but auto type
deduction assumes that a braced initializer represents a std: :initializer_list, and
template type deduction doesn’t.

® auto in a function return type or a lambda parameter implies template type deduction, not
auto type deduction.

Item 3: Understand decltype.

decltype is an odd creature. Given a name or an expression, decltype tells you
the name’s or the expression’s type. Typically, what it tells you is exactly what
you’d predict. Occasionally however, it provides results that leave you
scratching your head and turning to reference works or online Q&A sites for
revelation.

We’ll begin with the typical cases—the ones harboring no surprises. In contrast
to what happens during type deduction for templates and auto (see Items 1 and
2), decltype typically parrots back the exact type of the name or expression you
give it:

const int 1 = 0; // decltype(i) is const int

bool f(const Widget& w); // decltype(w) is const Widgeté&
/] decltype(f) is bool(const Widget&)

struct Point {
int x, y; // decltype(Point::x) is int
}; // decltype(Point::y) is int



Widget w; // decltype(w) is Widget

if (f(w)) .. // decltype(f(w)) is bool
template<typename T> // simplified version of std::vector
class vector {

public:

T& operator[](std::size_t index);

1

vector<int> v; // decltype(v) is vector<int>
if (v[0] == 0) .. // decltype(v[0]) is inté&

See? No surprises.

In C++11, perhaps the primary use for decltype is declaring function templates
where the function’s return type depends on its parameter types. For example,
suppose we’d like to write a function that takes a container that supports
indexing via square brackets (i.e., the use of “[]”) plus an index, then
authenticates the user before returning the result of the indexing operation. The
return type of the function should be the same as the type returned by the
indexing operation.

operator[] on a container of objects of type T typically returns a T&. This is the
case for std: :deque, for example, and it’s almost always the case for
std: :vector. For std: :vector<bool>, however, operator[ ] does not return a

bool&. Instead, it returns a brand new object. The whys and hows of this
situation are explored in Item 6, but what’s important here is that the type

returned by a container’s operator[ ] depends on the container.

decltype makes it easy to express that. Here’s a first cut at the template we’d

like to write, showing the use of decltype to compute the return type. The
template needs a bit of refinement, but we’ll defer that for now:

template<typename Container, typename Index> // works, but
auto authAndAccess(Container& c, Index i) // requires

-> decltype(c[i]) // refinement
{

authenticateUser();



return c[i];

}

The use of auto before the function name has nothing to do with type deduction.
Rather, it indicates that C++11’s trailing return type syntax is being used, i.e.,
that the function’s return type will be declared following the parameter list (after
the “->”). A trailing return type has the advantage that the function’s parameters
can be used in the specification of the return type. In authAndAccess, for
example, we specify the return type using c and i. If we were to have the return

type precede the function name in the conventional fashion, c and i would be
unavailable, because they would not have been declared yet.

With this declaration, authAndAccess returns whatever type operator|[ ]
returns when applied to the passed-in container, exactly as we desire.

C++11 permits return types for single-statement lambdas to be deduced, and
C++14 extends this to both all lambdas and all functions, including those with
multiple statements. In the case of authAndAccess, that means that in C++14 we
can omit the trailing return type, leaving just the leading auto. With that form of
declaration, auto does mean that type deduction will take place. In particular, it

means that compilers will deduce the function’s return type from the function’s
implementation:

template<typename Container, typename Index> /] C++14;
auto authAndAccess(Container& c, Index i) // not quite
{ /| correct
authenticateUser();
return c[i]; // return type deduced from c[1]
}

Item 2 explains that for functions with an auto return type specification,
compilers employ template type deduction. In this case, that’s problematic. As
we’ve discussed, operator[ ] for most containers-of-T returns a T&, but Item 1
explains that during template type deduction, the reference-ness of an initializing
expression is ignored. Consider what that means for this client code:

std: :deque<int> d;

authAndAccess(d, 5) = 10; // authenticate user, return d[5],



// then assign 10 to it;
/] this won't compile!

Here, d[ 5] returns an int&, but auto return type deduction for authAndAccess
will strip off the reference, thus yielding a return type of int. That int, being
the return value of a function, is an rvalue, and the code above thus attempts to
assign 10 to an rvalue int. That’s forbidden in C++, so the code won’t compile.

To get authAndAccess to work as we’d like, we need to use decltype type
deduction for its return type, i.e., to specify that authAndAccess should return
exactly the same type that the expression c[ 1] returns. The guardians of C++,
anticipating the need to use decltype type deduction rules in some cases where
types are inferred, make this possible in C++14 through the decltype(auto)
specifier. What may initially seem contradictory (decltype and auto?) actually
makes perfect sense: auto specifies that the type is to be deduced, and decltype
says that decltype rules should be used during the deduction. We can thus write
authAndAccess like this:

template<typename Container, typename Index> // C++14; works,

decltype(auto) // but still
authAndAccess(Container& c, Index i) // requires
{ // refinement

authenticateUser();
return c[i];

}

Now authAndAccess will truly return whatever c[ 1] returns. In particular, for
the common case where c[1] returns a T&, authAndAccess will also return a T§,

and in the uncommon case where c[1] returns an object, authAndAccess will
return an object, too.

The use of decltype(auto) is not limited to function return types. It can also be

convenient for declaring variables when you want to apply the decltype type
deduction rules to the initializing expression:

Widget w;

const Widget& cw = w;



auto myWidgetl = cw; // auto type deduction:
// myWidgetl's type is Widget

decltype(auto) myWidget2 = cw; // decltype type deduction:
// myWidget2's type is
/] const Widgeté&

But two things are bothering you, I know. One is the refinement to
authAndAccess I mentioned, but have not yet described. Let’s address that now.

Look again at the declaration for the C++14 version of authAndAccess:

template<typename Container, typename Index>
decltype(auto) authAndAccess(Container& c, Index i);

The container is passed by lvalue-reference-to-non-const, because returning a
reference to an element of the container permits clients to modify that container.
But this means it’s not possible to pass rvalue containers to this function.
Rvalues can’t bind to lvalue references (unless they’re lvalue-references-to-

const, which is not the case here).

Admittedly, passing an rvalue container to authAndAccess is an edge case. An
rvalue container, being a temporary object, would typically be destroyed at the
end of the statement containing the call to authAndAccess, and that means that a
reference to an element in that container (which is typically what
authAndAccess would return) would dangle at the end of the statement that
created it. Still, it could make sense to pass a temporary object to
authAndAccess. A client might simply want to make a copy of an element in the
temporary container, for example:

std: :deque<std::string> makeStringDeque(); // factory function

// make copy of 5th element of deque returned
// from makeStringDeque
auto s = authAndAccess(makeStringDeque(), 5);

Supporting such use means we need to revise the declaration for authAndAccess
to accept both lvalues and rvalues. Overloading would work (one overload
would declare an lvalue reference parameter, the other an rvalue reference



parameter), but then we’d have two functions to maintain. A way to avoid that is

to have authAndAccess employ a reference parameter that can bind to lvalues
and rvalues, and Item 24 explains that that’s exactly what universal references
do. authAndAccess can therefore be declared like this:

template<typename Container, typename Index> // c is now a
decltype(auto) authAndAccess(Container&& c, // universal
Index 1); /| reference

In this template, we don’t know what type of container we’re operating on, and
that means we’re equally ignorant of the type of index objects it uses. Employing
pass-by-value for objects of an unknown type generally risks the performance hit
of unnecessary copying, the behavioral problems of object slicing (see Item 41),
and the sting of our coworkers’ derision, but in the case of container indices,
following the example of the Standard Library for index values (e.g., in
operator[] for std::string, std::vector, and std: :deque) seems
reasonable, so we’ll stick with pass-by-value for them.

However, we need to update the template’s implementation to bring it into

accord with Item 25’s admonition to apply std: : forward to universal
references:

template<typename Container, typename Index> // final
decltype(auto) /] C++14
authAndAccess(Container&& c, Index i) // version
{

authenticateUser();
return std::forward<Container>(c)[i];

}

This should do everything we want, but it requires a C++14 compiler. If you
don’t have one, you’ll need to use the C++11 version of the template. It’s the
same as its C++14 counterpart, except that you have to specify the return type
yourself:

template<typename Container, typename Index> // final
auto /] C++11
authAndAccess(Container&& c, Index i) // version

-> decltype(std: :forward<Container>(c)[i])



{

authenticateUser();
return std::forward<Container>(c)[i];

}

The other issue that’s likely to be nagging at you is my remark at the beginning
of this Item that decltype almost always produces the type you expect, that it
rarely surprises. Truth be told, you’re unlikely to encounter these exceptions to
the rule unless you’re a heavy-duty library implementer.

To fully understand decltype’s behavior, you’ll have to familiarize yourself
with a few special cases. Most of these are too obscure to warrant discussion in a

book like this, but looking at one lends insight into decltype as well as its use.

Applying decltype to a name yields the declared type for that name. Names are
lvalue expressions, but that doesn’t affect decltype’s behavior. For lvalue

expressions more complicated than names, however, decltype ensures that the
type reported is always an lvalue reference. That is, if an lvalue expression other

than a name has type T, decltype reports that type as T&. This seldom has any
impact, because the type of most lvalue expressions inherently includes an lvalue
reference qualifier. Functions returning lvalues, for example, always return
lvalue references.

There is an implication of this behavior that is worth being aware of, however. In
int x = 0;

x is the name of a variable, so decltype(x) is int. But wrapping the name x in
parentheses—“(x)”—yields an expression more complicated than a name.
Being a name, x is an lvalue, and C++ defines the expression (x) to be an
lvalue, too. decltype((x)) is therefore int&. Putting parentheses around a
name can change the type that decltype reports for it!

In C++11, this is little more than a curiosity, but in conjunction with C++14’s
support for decltype(auto), it means that a seemingly trivial change in the way
you write a return statement can affect the deduced type for a function:

decltype(auto) f1()
{



int x = 0;

return x; // decltype(x) is int, so f1 returns int

}
decltype(auto) f2()
{
int x = 0;
return (x); // decltype((x)) is int&, so f2 returns inté&
}

Note that not only does f2 have a different return type from f1, it’s also
returning a reference to a local variable! That’s the kind of code that puts you on
the express train to undefined behavior—a train you certainly don’t want to be
on.

The primary lesson is to pay very close attention when using decltype(auto).
Seemingly insignificant details in the expression whose type is being deduced
can affect the type that decltype(auto) reports. To ensure that the type being
deduced is the type you expect, use the techniques described in Item 4.

At the same time, don’t lose sight of the bigger picture. Sure, decltype (both
alone and in conjunction with auto) may occasionally yield type-deduction
surprises, but that’s not the normal situation. Normally, decltype produces the
type you expect. This is especially true when decltype is applied to names,
because in that case, decltype does just what it sounds like: it reports that
name’s declared type.

Things to Remember

m decltype almost always yields the type of a variable or expression without any
modifications.

= For lvalue expressions of type T other than names, decltype always reports a type of T&.

m C++14 supports decltype(auto), which, like auto, deduces a type from its initializer,
but it performs the type deduction using the decltype rules.




Item 4: Know how to view deduced types.

The choice of tools for viewing the results of type deduction is dependent on the
phase of the software development process where you want the information.
We’ll explore three possibilities: getting type deduction information as you edit
your code, getting it during compilation, and getting it at runtime.

IDE Editors

Code editors in IDEs often show the types of program entities (e.g., variables,
parameters, functions, etc.) when you do something like hover your cursor over
the entity. For example, given this code,

const int theAnswer = 42;

theAnswer;
&theAnswer;

auto x
auto y

an IDE editor would likely show that x’s deduced type was int and y’s was
const int*.

For this to work, your code must be in a more or less compilable state, because
what makes it possible for the IDE to offer this kind of information is a C++
compiler (or at least the front end of one) running inside the IDE. If that
compiler can’t make enough sense of your code to parse it and perform type
deduction, it can’t show you what types it deduced.

For simple types like int, information from IDEs is generally fine. As we’ll see
soon, however, when more complicated types are involved, the information
displayed by IDEs may not be particularly helpful.

Compiler Diagnostics

An effective way to get a compiler to show a type it has deduced is to use that
type in a way that leads to compilation problems. The error message reporting
the problem is virtually sure to mention the type that’s causing it.

Suppose, for example, we’d like to see the types that were deduced for x and y in
the previous example. We first declare a class template that we don’t define.



Something like this does nicely:

template<typename T> // declaration only for TD;
class TD; // TD == "Type Displayer"

Attempts to instantiate this template will elicit an error message, because there’s

no template definition to instantiate. To see the types for x and y, just try to
instantiate TD with their types:

TD<decltype(x)> xType; // elicit errors containing
TD<decltype(y)> yType; // x's and y's types

I use variable names of the form variableNameType, because they tend to yield
error messages that help me find the information I’'m looking for. For the code
above, one of my compilers issues diagnostics reading, in part, as follows (I’ve
highlighted the type information we’re after):

error: aggregate 'TD<int> xType' has incomplete type and
cannot be defined

error: aggregate 'TD<const int *> yType' has incomplete type
and cannot be defined

A different compiler provides the same information, but in a different form:

error: 'xType' uses undefined class 'TD<int>'
error: 'yType' uses undefined class 'TD<const int *>'

Formatting differences aside, all the compilers I’ve tested produce error
messages with useful type information when this technique is employed.

Runtime Output

The printf approach to displaying type information (not that I’'m
recommending you use printf) can’t be employed until runtime, but it offers
full control over the formatting of the output. The challenge is to create a textual
representation of the type you care about that is suitable for display. “No sweat,”

you’re thinking, “it’s typeid and std: : type_1info: :name to the rescue.” In our
continuing quest to see the types deduced for x and y, you may figure we can



write this:

std::cout << typeid(x).name() << '\n'; // display types for
std::cout << typeid(y).name() << '\n'; // x and y

This approach relies on the fact that invoking typeid on an object such as x or y
yields a std:: type_info object, and std: : type_info has a member function,
name, that produces a C-style string (i.e., a const char*) representation of the
name of the type.

Calls to std: :type_info: :name are not guaranteed to return anything sensible,
but implementations try to be helpful. The level of helpfulness varies. The GNU
and Clang compilers report that the type of x is “1”, and the type of y is “PK1”,
for example. These results make sense once you learn that, in output from these
compilers, “1” means “int” and “PK” means “pointer to kenst const.” (Both
compilers support a tool, c++filt, that decodes such “mangled” types.)
Microsoft’s compiler produces less cryptic output: “int” for x and “int const

*” fory.

Because these results are correct for the types of x and y, you might be tempted
to view the type-reporting problem as solved, but let’s not be hasty. Consider a
more complex example:

template<typename T> // template function to
vold f(const T& param); // be called
std::vector<Widget> createVec(); // factory function

const auto vw = createVec(); // init vw w/factory return

if (lvw.empty()) {
f(&ww[0]); /] call f

This code, which involves a user-defined type (Widget), an STL container
(std::vector), and an auto variable (vw), is more representative of the
situations where you might want some visibility into the types your compilers
are deducing. For example, it’d be nice to know what types are inferred for the



template type parameter T and the function parameter param in f.

Loosing typeid on the problem is straightforward. Just add some code to f to
display the types you’d like to see:

template<typename T>
vold f(const T& param)
{

using std::cout;

cout << "T = " << typeid(T).name() << '\n'; // show T

cout << "param = " << typeid(param).name() << '\n'; // show

- // param's
} /] type

Executables produced by the GNU and Clang compilers produce this output:

T = PK6Widget
param = PK6Widget

We already know that for these compilers, PK means “pointer to const,” so the
only mystery is the number 6. That’s simply the number of characters in the
class name that follows (Widget). So these compilers tell us that both T and
param are of type const Widget*.

Microsoft’s compiler concurs:

T = class Widget const
param = class Widget const

Three independent compilers producing the same information suggests that the
information is accurate. But look more closely. In the template f, param’s
declared type is const T&. That being the case, doesn’t it seem odd that T and
param have the same type? If T were int, for example, param’s type should be
const int&—not the same type at all.

Sadly, the results of std::type_info::name are not reliable. In this case, for
example, the type that all three compilers report for param are incorrect.
Furthermore, they’re essentially required to be incorrect, because the



specification for std: : type_info: :name mandates that the type be treated as if
it had been passed to a template function as a by-value parameter. As Item 1
explains, that means that if the type is a reference, its reference-ness is ignored,
and if the type after reference removal is const (or volatile), its constness (or
volatileness) is also ignored. That’s why param’s type—which is const
Widget * const &—is reported as const Widget*. First the type’s reference-
ness is removed, and then the constness of the resulting pointer is eliminated.

Equally sadly, the type information displayed by IDE editors is also not reliable
—or at least not reliably useful. For this same example, one IDE editor I know
reports T’s type as (I am not making this up):

const
std::_Simple_types<std:: Wrap_alloc<std::_Vec_base_types<Widget,
std::allocator<Widget> >:: Alloc>::value_type>::value_type *

The same IDE editor shows param’s type as:
const std:: Simple_types<...>::value_type *const &

That’s less intimidating than the type for T, but the “. . .” in the middle is
confusing until you realize that it’s the IDE editor’s way of saying “I’m omitting
all that stuff that’s part of T’s type.” With any luck, your development
environment does a better job on code like this.

If you’re more inclined to rely on libraries than luck, you’ll be pleased to know
that where std: : type_info: :name and IDEs may fail, the Boost Typelndex
library (often written as Boost.Typelndex) is designed to succeed. The library
isn’t part of Standard C++, but neither are IDEs or templates like TD.
Furthermore, the fact that Boost libraries (available at boost.com) are cross-
platform, open source, and available under a license designed to be palatable to
even the most paranoid corporate legal team means that code using Boost
libraries is nearly as portable as code relying on the Standard Library.

Here’s how our function f can produce accurate type information using
Boost. Typelndex:

#include <boost/type_index.hpp>


http://boost.com

template<typename T>
vold f(const T& param)

{
using std::cout;
using boost::typeindex::type_id_with_cvr;

// show T

cout << "T = "
<< type_id_with_cvr<T>().pretty_name()
<< "\n';

// show param's type

cout << "param = "
<< type_id_with_cvr<decltype(param)>().pretty_name()
<< '\n';

The way this works is that the function template
boost::typeindex::type_id_with_cvr takes a type argument (the type about
which we want information) and doesn’t remove const, volatile, or reference
qualifiers (hence the “with_cvr” in the template name). The result is a

boost: :typeindex: :type_index object, whose pretty_name member
function produces a std: :string containing a human-friendly representation of
the type.

With this implementation for f, consider again the call that yields incorrect type
information for param when typeid is used:

std::vector<Widget> createVec(); // factory function

const auto vw = createVec(); // init vw w/factory return

if (lvw.empty()) {
f(&vw[0]); /] call f

Under compilers from GNU and Clang, Boost. Typelndex produces this
(accurate) output:



1= Wiaget const~™
param = Widget const* const&

Results under Microsoft’s compiler are essentially the same:

T = class Widget const
param = class Widget const const &

Such near-uniformity is nice, but it’s important to remember that IDE editors,
compiler error messages, and libraries like Boost. Typelndex are merely tools
you can use to help you figure out what types your compilers are deducing. All
can be helpful, but at the end of the day, there’s no substitute for understanding
the type deduction information in Items 1-3.

Things to Remember

m Deduced types can often be seen using IDE editors, compiler error messages, and the
Boost Typelndex library.

m The results of some tools may be neither helpful nor accurate, so an understanding of
C++’s type deduction rules remains essential.




Chapter 2. auto

In concept, auto is as simple as simple can be, but it’s more subtle than it looks.
Using it saves typing, sure, but it also prevents correctness and performance
issues that can bedevil manual type declarations. Furthermore, some of auto’s
type deduction results, while dutifully conforming to the prescribed algorithm,
are, from the perspective of a programmer, just wrong. When that’s the case, it’s
important to know how to guide auto to the right answer, because falling back
on manual type declarations is an alternative that’s often best avoided.

This brief chapter covers all of auto’s ins and outs.

Item 5: Prefer auto to explicit type declarations.
Ah, the simple joy of

int x;

Wait. Damn. I forgot to initialize x, so its value is indeterminate. Maybe. It
might actually be initialized to zero. Depends on the context. Sigh.

Never mind. Let’s move on to the simple joy of declaring a local variable to be
initialized by dereferencing an iterator:

template<typename It> // algorithm to dwim ("do what I mean")
void dwim(It b, It e) // for all elements in range from
{ // b to e
while (b != e) {
typename std::iterator_traits<It>::value_type
currValue = *b;

Ugh. “typename std::iterator_traits<It>::value_type” to express the
type of the value pointed to by an iterator? Really? I must have blocked out the



memory of how much fun that is. Damn. Wait—didn’t I already say that?

Okay, simple joy (take three): the delight of declaring a local variable whose
type is that of a closure. Oh, right. The type of a closure is known only to the
compiler, hence can’t be written out. Sigh. Damn.

Damn, damn, damn! Programming in C++ is not the joyous experience it should
be!

Well, it didn’t used to be. But as of C++11, all these issues go away, courtesy of
auto. auto variables have their type deduced from their initializer, so they must
be initialized. That means you can wave goodbye to a host of uninitialized
variable problems as you speed by on the modern C++ superhighway:

int x1; // potentially uninitialized
auto x2; // error! initializer required
auto x3 = 0; // fine, x's value is well-defined

Said highway lacks the potholes associated with declaring a local variable whose
value is that of a dereferenced iterator:

template<typename It> // as before
void dwim(It b, It e)

{
while (b != e) {
auto currValue = *b;

And because auto uses type deduction (see Item 2), it can represent types known
only to compilers:

auto derefUPLess = // comparison func.
[J(const std::unique_ptr<Widget>& pi, // for Widgets
const std::unique_ptr<Widget>& p2) // pointed to by
{ return p1 < p2; }; // std::unique_ptrs

Very cool. In C++14, the temperature drops further, because parameters to



lambda expressions may involve auto:

auto dereflLess = // C++14 comparison
[J(const auto& pi, // function for
const auto& p2) // values pointed
{ return p1 < p2; }; // to by anything

// pointer-like

Coolness notwithstanding, perhaps you’re thinking we don’t really need auto to
declare a variable that holds a closure, because we can use a std: : function
object. It’s true, we can, but possibly that’s not what you were thinking. And

maybe now you’re thinking “What’s a std: : function object?” So let’s clear
that up.

std::function is a template in the C++11 Standard Library that generalizes the
idea of a function pointer. Whereas function pointers can point only to functions,
however, std: : function objects can refer to any callable object, i.e., to
anything that can be invoked like a function. Just as you must specify the type of
function to point to when you create a function pointer (i.e., the signature of the
functions you want to point to), you must specify the type of function to refer to
when you create a std: : function object. You do that through

std: :function’s template parameter. For example, to declare a

std::function object named func that could refer to any callable object acting
as if it had this signature,

bool(const std::unique_ptr<Widget>&, // C++11 signature for
const std::unique_ptr<Widget>&) // std::unique ptr<Widget>
// comparison function

you’d write this:

std::function<bool(const std::unique_ptr<Widget>&,
const std::unique_ptr<Widget>&)> func;

Because lambda expressions yield callable objects, closures can be stored in
std: : function objects. That means we could declare the C++11 version of
derefUPLess without using auto as follows:



std: :function<bool(const std::unique_ptr<hWidget>&,
const std::unique_ptr<Widget>&)>
derefUPLess = [](const std::unique_ptr<Widget>& pi,
const std::unique_ptr<Widget>& p2)
{ return p1 < p2; };

It’s important to recognize that even setting aside the syntactic verbosity and
need to repeat the parameter types, using std: : function is not the same as

using auto. An auto-declared variable holding a closure has the same type as
the closure, and as such it uses only as much memory as the closure requires.
The type of a std: : function-declared variable holding a closure is an
instantiation of the std: : function template, and that has a fixed size for any
given signature. This size may not be adequate for the closure it’s asked to store,
and when that’s the case, the std: : function constructor will allocate heap
memory to store the closure. The result is that the std: : function object
typically uses more memory than the auto-declared object. And, thanks to
implementation details that restrict inlining and yield indirect function calls,
invoking a closure via a std: : function object is almost certain to be slower
than calling it via an auto-declared object. In other words, the std: : function
approach is generally bigger and slower than the auto approach, and it may
yield out-of-memory exceptions, too. Plus, as you can see in the examples
above, writing “auto” is a whole lot less work than writing the type of the

std: : function instantiation. In the competition between auto and

std: : function for holding a closure, it’s pretty much game, set, and match for
auto. (A similar argument can be made for auto over std: : function for
holding the result of calls to std: :bind, but in Item 34, I do my best to convince
you to use lambdas instead of std: :bind, anyway.)

The advantages of auto extend beyond the avoidance of uninitialized variables,
verbose variable declarations, and the ability to directly hold closures. One is the
ability to avoid what I call problems related to “type shortcuts.” Here’s
something you’ve probably seen—possibly even written:

std::vector<int> v;

unsigned sz = v.size();



The official return type of v.size() is std: :vector<int>::size_type, but
few developers are aware of that. std: :vector<int>::size_type is specified
to be an unsigned integral type, so a lot of programmers figure that unsigned is
good enough and write code such as the above. This can have some interesting
consequences. On 32-bit Windows, for example, both unsigned and

std: :vector<int>::size_type are the same size, but on 64-bit Windows,
unsigned is 32 bits, while std: :vector<int>::size_ type is 64 bits. This
means that code that works under 32-bit Windows may behave incorrectly under
64-bit Windows, and when porting your application from 32 to 64 bits, who
wants to spend time on issues like that?

Using auto ensures that you don’t have to:
auto sz = v.size(); // sz's type is std::vector<int>::size_ type
Still unsure about the wisdom of using auto? Then consider this code:

std::unordered_map<std::string, int> m;

for (const std::pair<std::string, int>& p : m)

{
// do something with p

}

This looks perfectly reasonable, but there’s a problem. Do you see it?

Recognizing what’s amiss requires remembering that the key part of a

std: :unordered_map is const, so the type of std: :pair in the hash table
(which is what a std: :unordered_map is) isn’t std: :pair<std::string,
int>, it’s std: :pair<const std::string, int>. But that’s not the type
declared for the variable p in the loop above. As a result, compilers will strive to
find a way to convert std: :pair<const std::string, int> objects (i.e.,
what’s in the hash table) to std: :pair<std::string, int> objects (the
declared type for p). They’ll succeed by creating a temporary object of the type
that p wants to bind to by copying each object in m, then binding the reference p
to that temporary object. At the end of each loop iteration, the temporary object
will be destroyed. If you wrote this loop, you’d likely be surprised by this



behavior, because you’d almost certainly intend to simply bind the reference p to
each element in m.

Such unintentional type mismatches can be autoed away:

for (const auto& p : m)

{
// as before

}

This is not only more efficient, it’s also easier to type. Furthermore, this code
has the very attractive characteristic that if you take p’s address, you’re sure to
get a pointer to an element within m. In the code not using auto, you’d get a
pointer to a temporary object—an object that would be destroyed at the end of
the loop iteration.

The last two examples—writing unsigned when you should have written
std::vector<int>::size_type and writing std: :pair<std::string, int>
when you should have written std: :pair<const std::string, int>—
demonstrate how explicitly specifying types can lead to implicit conversions that
you neither want nor expect. If you use auto as the type of the target variable,
you need not worry about mismatches between the type of variable you’re
declaring and the type of the expression used to initialize it.

There are thus several reasons to prefer auto over explicit type declarations. Yet
auto isn’t perfect. The type for each auto variable is deduced from its
initializing expression, and some initializing expressions have types that are
neither anticipated nor desired. The conditions under which such cases arise, and
what you can do about them, are discussed in Items 2 and 6, so I won’t address
them here. Instead, I’ll turn my attention to a different concern you may have
about using auto in place of traditional type declarations: the readability of the
resulting source code.

First, take a deep breath and relax. auto is an option, not a mandate. If, in your
professional judgment, your code will be clearer or more maintainable or in
some other way better by using explicit type declarations, you’re free to continue
using them. But bear in mind that C++ breaks no new ground in adopting what is
generally known in the programming languages world as type inference. Other



statically typed procedural languages (e.g., C#, D, Scala, Visual Basic) have a
more or less equivalent feature, to say nothing of a variety of statically typed
functional languages (e.g., ML, Haskell, OCaml, F#, etc.). In part, this is due to
the success of dynamically typed languages such as Perl, Python, and Ruby,
where variables are rarely explicitly typed. The software development
community has extensive experience with type inference, and it has
demonstrated that there is nothing contradictory about such technology and the
creation and maintenance of large, industrial-strength code bases.

Some developers are disturbed by the fact that using auto eliminates the ability
to determine an object’s type by a quick glance at the source code. However,
IDEs’ ability to show object types often mitigates this problem (even taking into
account the IDE type-display issues mentioned in Item 4), and, in many cases, a
somewhat abstract view of an object’s type is just as useful as the exact type. It
often suffices, for example, to know that an object is a container or a counter or a
smart pointer, without knowing exactly what kind of container, counter, or smart
pointer it is. Assuming well-chosen variable names, such abstract type
information should almost always be at hand.

The fact of the matter is that writing types explicitly often does little more than
introduce opportunities for subtle errors, either in correctness or efficiency or

both. Furthermore, auto types automatically change if the type of their
initializing expression changes, and that means that some refactorings are

facilitated by the use of auto. For example, if a function is declared to return an

int, but you later decide that a Long would be better, the calling code
automatically updates itself the next time you compile if the results of calling the

function are stored in auto variables. If the results are stored in variables

explicitly declared to be int, you’ll need to find all the call sites so that you can
revise them.

Things to Remember

m auto variables must be initialized, are generally immune to type mismatches that can lead
to portability or efficiency problems, can ease the process of refactoring, and typically
require less typing than variables with explicitly specified types.

m auto-typed variables are subject to the pitfalls described in Items 2 and 6.




Item 6: Use the explicitly typed initializer idiom
when auto deduces undesired types.

Item 5 explains that using auto to declare variables offers a number of technical
advantages over explicitly specifying types, but sometimes auto’s type
deduction zigs when you want it to zag. For example, suppose I have a function
that takes a Widget and returns a std: : vector<bool>, where each bool
indicates whether the Widget offers a particular feature:

std::vector<bool> features(const Widget& w);

Further suppose that bit 5 indicates whether the Widget has high priority. We
can thus write code like this:

Widget w;
bool highPriority = features(w)[5]; // is w high priority?

processWidget(w, highPriority); // process w in accord
// with its priority

There’s nothing wrong with this code. It’ll work fine. But if we make the
seemingly innocuous change of replacing the explicit type for highPriority
with auto,

auto highPriority = features(w)[5]; // is w high priority?

the situation changes. All the code will continue to compile, but its behavior is
no longer predictable:

processWidget(w, highPriority); // undefined behavior!

As the comment indicates, the call to processWidget now has undefined
behavior. But why? The answer is likely to be surprising. In the code using



auto, the type of highPriority is no longer bool. Though

std: :vector<bool> conceptually holds bools, operator[] for

std: :vector<bool> doesn’t return a reference to an element of the container
(which is what std: :vector: :operator[ ] returns for every type except bool).
Instead, it returns an object of type std: :vector<bool>: :reference (a class
nested inside std: :vector<bool>).

std::vector<bool>::reference exists because std: :vector<bool> is
specified to represent its bools in packed form, one bit per bool. That creates a
problem for std: :vector<bool>’s operator[ ], because operator[] for

std: :vector<T> is supposed to return a T&, but C++ forbids references to bits.
Not being able to return a bool&, operator[] for std: :vector<bool> returns
an object that acts like a bool&. For this act to succeed,

std: :vector<bool>: :reference objects must be usable in essentially all
contexts where bool&s can be. Among the features in

std: :vector<bool>: :reference that make this work is an implicit conversion
to bool. (Not to bool&, to bool. To explain the full set of techniques used by

std::vector<bool>::reference to emulate the behavior of a bool& would
take us too far afield, so I’ll simply remark that this implicit conversion is only
one stone in a larger mosaic.)

With this information in mind, look again at this part of the original code:

bool highPriority = features(w)[5]; // declare highPriority's
// type explicitly

Here, features returns a std: : vector<bool> object, on which operator[] is
invoked. operator[] returns a std: :vector<bool>::reference object, which
is then implicitly converted to the bool that is needed to initialize
highPriority. highPriority thus ends up with the value of bit 5 in the

std: :vector<bool> returned by features, just like it’s supposed to.

Contrast that with what happens in the auto-ized declaration for highPriority:

auto highPriority = features(w)[5]; // deduce highPriority's
/] type



Again, features returns a std: : vector<bool> object, and, again, operator( ]
is invoked on it. operator[ ] continues to return a

std: :vector<bool>: :reference object, but now there’s a change, because
auto deduces that as the type of highPriority. highPriority doesn’t have the
value of bit 5 of the std: :vector<bool> returned by features at all.

The value it does have depends on how std: :vector<bool>::reference is
implemented. One implementation is for such objects to contain a pointer to the
machine word holding the referenced bit, plus the offset into that word for that

bit. Consider what that means for the initialization of highPriority, assuming
that such a std: :vector<bool>::reference implementation is in place.

The call to features returns a temporary std: : vector<bool> object. This
object has no name, but for purposes of this discussion, I'll call it temp.
operator([] is invoked on temp, and the std: :vector<bool>::reference it
returns contains a pointer to a word in the data structure holding the bits that are
managed by temp, plus the offset into that word corresponding to bit 5.
highPriority is a copy of this std: :vector<bool>::reference object, so
highPriority, too, contains a pointer to a word in temp, plus the offset
corresponding to bit 5. At the end of the statement, temp is destroyed, because
it’s a temporary object. Therefore, highPriority contains a dangling pointer,
and that’s the cause of the undefined behavior in the call to processWidget:

processWidget(w, highPriority); // undefined behavior!
// highPriority contains
// dangling pointer!

std: :vector<bool>::reference is an example of a proxy class: a class that
exists for the purpose of emulating and augmenting the behavior of some other
type. Proxy classes are employed for a variety of purposes.

std: :vector<bool>::reference exists to offer the illusion that operator|[ ]
for std: :vector<bool> returns a reference to a bit, for example, and the
Standard Library’s smart pointer types (see Chapter 4) are proxy classes that
graft resource management onto raw pointers. The utility of proxy classes is
well-established. In fact, the design pattern “Proxy” is one of the most
longstanding members of the software design patterns Pantheon.



Some proxy classes are designed to be apparent to clients. That’s the case for
std: :shared_ptr and std: :unique_ptr, for example. Other proxy classes are
designed to act more or less invisibly. std: :vector<bool>: :reference is an
example of such “invisible” proxies, as is its std: :bitset compatriot,
std::bitset::reference.

Also in that camp are some classes in C++ libraries employing a technique

known as expression templates. Such libraries were originally developed to
improve the efficiency of numeric code. Given a class Matrix and Matrix

objects m1, m2, m3, and m4, for example, the expression

Matrix sum = ml1 + m2 + m3 + m4;

can be computed much more efficiently if operator+ for Matrix objects returns
a proxy for the result instead of the result itself. That is, operator+ for two
Matrix objects would return an object of a proxy class such as Sum<Matrix,
Matrix> instead of a Matrix object. As was the case with

std: :vector<bool>::reference and bool, there’d be an implicit conversion
from the proxy class to Matrix, which would permit the initialization of sum
from the proxy object produced by the expression on the right side of the “=".
(The type of that object would traditionally encode the entire initialization
expression, i.e., be something like Sum<Sum<Sum<Matrix, Matrix>, Matrix>,

Matrix>. That’s definitely a type from which clients should be shielded.)

As a general rule, “invisible” proxy classes don’t play well with auto. Objects of
such classes are often not designed to live longer than a single statement, so
creating variables of those types tends to violate fundamental library design
assumptions. That’s the case with std: :vector<bool>: :reference, and we’ve
seen that violating that assumption can lead to undefined behavior.

You therefore want to avoid code of this form:
auto someVar = expression of "invisible" proxy class type;

But how can you recognize when proxy objects are in use? The software
employing them is unlikely to advertise their existence. They’re supposed to be
invisible, at least conceptually! And once you’ve found them, do you really have



to abandon auto and the many advantages Item 5 demonstrates for it?

Let’s take the how-do-you-find-them question first. Although “invisible” proxy
classes are designed to fly beneath programmer radar in day-to-day use, libraries
using them often document that they do so. The more you’ve familiarized
yourself with the basic design decisions of the libraries you use, the less likely
you are to be blindsided by proxy usage within those libraries.

Where documentation comes up short, header files fill the gap. It’s rarely
possible for source code to fully cloak proxy objects. They’re typically returned
from functions that clients are expected to call, so function signatures usually

reflect their existence. Here’s the spec for std: :vector<bool>: :operator[],
for example:

namespace std { // from C++ Standards

template <class Allocator>
class vector<bool, Allocator> {
public:

class reference { .. };
reference operator[](size_type n);

1
}

Assuming you know that operator[] for std: :vector<T> normally returns a

T&, the unconventional return type for operator[] in this case is a tip-off that a
proxy class is in use. Paying careful attention to the interfaces you’re using can
often reveal the existence of proxy classes.

In practice, many developers discover the use of proxy classes only when they
try to track down mystifying compilation problems or debug incorrect unit test
results. Regardless of how you find them, once auto has been determined to be
deducing the type of a proxy class instead of the type being proxied, the solution
need not involve abandoning auto. auto itself isn’t the problem. The problem is
that auto isn’t deducing the type you want it to deduce. The solution is to force a
different type deduction. The way you do that is what I call the explicitly typed
initializer idiom.



The explicitly typed initializer idiom involves declaring a variable with auto,
but casting the initialization expression to the type you want auto to deduce.
Here’s how it can be used to force highPriority to be a bool, for example:

auto highPriority = static_cast<bool>(features(w)[5]);

Here, features(w)[5] continues to return a std: :vector<bool>::reference
object, just as it always has, but the cast changes the type of the expression to
bool, which auto then deduces as the type for highPriority. At runtime, the
std: :vector<bool>::reference object returned from
std::vector<bool>::operator[ ] executes the conversion to bool that it
supports, and as part of that conversion, the still-valid pointer to the

std: :vector<bool> returned from features is dereferenced. That avoids the
undefined behavior we ran into earlier. The index 5 is then applied to the bits
pointed to by the pointer, and the bool value that emerges is used to initialize
highPriority.

For the Matrix example, the explicitly typed initializer idiom would look like
this:

auto sum = static_cast<Matrix>(ml + m2 + m3 + m4);

Applications of the idiom aren’t limited to initializers yielding proxy class types.
It can also be useful to emphasize that you are deliberately creating a variable of
a type that is different from that generated by the initializing expression. For
example, suppose you have a function to calculate some tolerance value:

double calcEpsilon(); // return tolerance value

calcEpsilon clearly returns a doub'le, but suppose you know that for your
application, the precision of a float is adequate, and you care about the
difference in size between floats and doubles. You could declare a float
variable to store the result of calcEpsilon,

float ep = calcEpsilon(); // impliclitly convert
// double » float



but this hardly announces “I’m deliberately reducing the precision of the value
returned by the function.” A declaration using the explicitly typed initializer
idiom, however, does:

auto ep = static_cast<float>(calcEpsilon());

Similar reasoning applies if you have a floating-point expression that you are
deliberately storing as an integral value. Suppose you need to calculate the index
of an element in a container with random access iterators (e.g., a std: :vector,

std: :deque, or std: :array), and you’re given a double between 0.0 and 1.0
indicating how far from the beginning of the container the desired element is

located. (0.5 would indicate the middle of the container.) Further suppose that
you’re confident that the resulting index will fit in an int. If the container is c
and the double is d, you could calculate the index this way,

int index = d * c.size();

but this obscures the fact that you’re intentionally converting the double on the
right to an int. The explicitly typed initializer idiom makes things transparent:

auto index = static_cast<int>(d * c.size());

Things to Remember

= “Invisible” proxy types can cause auto to deduce the “wrong” type for an initializing
expression.

m The explicitly typed initializer idiom forces auto to deduce the type you want it to have.




Chapter 3. Moving to Modern C++

When it comes to big-name features, C++11 and C++14 have a lot to boast of.
auto, smart pointers, move semantics, lambdas, concurrency—each is so
important, I devote a chapter to it. It’s essential to master those features, but
becoming an effective modern C++ programmer requires a series of smaller
steps, too. Each step answers specific questions that arise during the journey
from C++98 to modern C++. When should you use braces instead of parentheses
for object creation? Why are alias declarations better than typedefs? How does
constexpr differ from const? What’s the relationship between const member
functions and thread safety? The list goes on and on. And one by one, this
chapter provides the answers.

Item 7: Distinguish between () and {} when
creating objects.

Depending on your perspective, syntax choices for object initialization in C++11
embody either an embarrassment of riches or a confusing mess. As a general
rule, initialization values may be specified with parentheses, an equals sign, or

braces: int x(0); // initializer is in parentheses int y = 0; // initializer follows "=
int z{ O }; // initializer is in braces

In many cases, it’s also possible to use an equals sign and braces together: int z =
{ 0 }; // initializer uses "=" and braces

For the remainder of this Item, I’ll generally ignore the equals-sign-plus-braces
syntax, because C++ usually treats it the same as the braces-only version.

The “confusing mess” lobby points out that the use of an equals sign for
initialization often misleads C++ newbies into thinking that an assignment is
taking place, even though it’s not. For built-in types like int, the difference is
academic, but for user-defined types, it’s important to distinguish initialization
from assignment, because different function calls are involved: Widget w1; //
call default constructor Widget w2 = w1; // not an assignment; calls copy ctor



w1 =w2; // an assignment; calls copy operator=

Even with several initialization syntaxes, there were some situations where
C++98 had no way to express a desired initialization. For example, it wasn’t
possible to directly indicate that an STL container should be created holding a
particular set of values (e.g., 1, 3, and 5).

To address the confusion of multiple initialization syntaxes, as well as the fact
that they don’t cover all initialization scenarios, C++11 introduces uniform
initialization: a single initialization syntax that can, at least in concept, be used
anywhere and express everything. It’s based on braces, and for that reason I
prefer the term braced initialization. “Uniform initialization” is an idea. “Braced
initialization” is a syntactic construct.

Braced initialization lets you express the formerly inexpressible. Using braces,
specifying the initial contents of a container is easy: std::vector<int> v{ 1, 3, 5 };
// v's initial content is 1, 3, 5

Braces can also be used to specify default initialization values for non-static data
members. This capability—new to C++11—is shared with the “=" initialization
syntax, but not with parentheses: class Widget { ... private: int x{ 0 }; // fine, x's

default value is 0 int y = 0; // also fine int z(0); // error! };

On the other hand, uncopyable objects (e.g., std: :atomics—see Item 40) may

be initialized using braces or parentheses, but not using “=": std::atomic<int>
ail{ 0 }; // fine std::atomic<int> ai2(0); // fine std::atomic<int> ai3 = 0; // error!

It’s thus easy to understand why braced initialization is called “uniform.” Of
C++’s three ways to designate an initializing expression, only braces can be used
everywhere.

A novel feature of braced initialization is that it prohibits implicit narrowing
conversions among built-in types. If the value of an expression in a braced
initializer isn’t guaranteed to be expressible by the type of the object being
initialized, the code won’t compile: double x, y, z; ... intsum1l{ x +y +z }; //
error! sum of doubles may // not be expressible as int

Initialization using parentheses and “=" doesn’t check for narrowing
conversions, because that could break too much legacy code: int sum2(x +y +
z); // okay (value of expression // truncated to an int) int sum3 =x +y + z; //
ditto



Another noteworthy characteristic of braced initialization is its immunity to
C++’s most vexing parse. A side effect of C++’s rule that anything that can be
parsed as a declaration must be interpreted as one, the most vexing parse most
frequently afflicts developers when they want to default-construct an object, but
inadvertently end up declaring a function instead. The root of the problem is that
if you want to call a constructor with an argument, you can do it like this,
Widget w1(10); // call Widget ctor with argument 10

but if you try to call a Widget constructor with zero arguments using the
analogous syntax, you declare a function instead of an object: Widget w2(); //
most vexing parse! declares a function // named w2 that returns a Widget!

Functions can’t be declared using braces for the parameter list, so default-
constructing an object using braces doesn’t have this problem: Widget w3{}; //
calls Widget ctor with no args

There’s thus a lot to be said for braced initialization. It’s the syntax that can be
used in the widest variety of contexts, it prevents implicit narrowing
conversions, and it’s immune to C++’s most vexing parse. A trifecta of
goodness! So why isn’t this Item entitled something like “Prefer braced
initialization syntax”?

The drawback to braced initialization is the sometimes-surprising behavior that
accompanies it. Such behavior grows out of the unusually tangled relationship
among braced initializers, std: :initializer_lists, and constructor overload
resolution. Their interactions can lead to code that seems like it should do one
thing, but actually does another. For example, Item 2 explains that when an
auto-declared variable has a braced initializer, the type deduced is
std::initializer_list, even though other ways of declaring a variable with
the same initializer would yield a more intuitive type. As a result, the more you
like auto, the less enthusiastic you’re likely to be about braced initialization.

In constructor calls, parentheses and braces have the same meaning as long as
std::initializer_list parameters are not involved: class Widget { public:
Widget(int i, bool b); // ctors not declaring Widget(int i, double d); //
std::initializer_list params ... }; Widget w1(10, true); // calls first ctor Widget
w2{10, true}; // also calls first ctor Widget w3(10, 5.0); // calls second ctor
Widget w4{10, 5.0}; // also calls second ctor



If, however, one or more constructors declare a parameter of type
std::initializer_list, calls using the braced initialization syntax strongly
prefer the overloads taking std: :initializer_lists. Strongly. If there’s any
way for compilers to construe a call using a braced initializer to be to a
constructor taking a std: :initializer_list, compilers will employ that
interpretation. If the Widget class above is augmented with a constructor taking
a std::initializer_list<long double>, for example, class Widget { public:
Widget(int i, bool b); // as before Widget(int i, double d); // as before
Widget(std::initializer_list<long double> il); // added ... };

Widgets w2 and w4 will be constructed using the new constructor, even though
the type of the std: :initializer_list elements (long double) is, compared
to the non-std: :initializer_list constructors, a worse match for both
arguments! Look: Widget w1(10, true); // uses parens and, as before, // calls first
ctor Widget w2{10, true}; // uses braces, but now calls // std::initializer_list ctor
// (10 and true convert to long double) Widget w3(10, 5.0); // uses parens and, as
before, // calls second ctor Widget w4{10, 5.0}; // uses braces, but now calls //
std::initializer_list ctor // (10 and 5.0 convert to long double)

Even what would normally be copy and move construction can be hijacked by
std::initializer_list constructors: class Widget { public: Widget(int i, bool
b); // as before Widget(int i, double d); // as before
Widget(std::initializer_list<long double> il); // as before operator float() const; //
convert ... // to float }; Widget w5(w4); // uses parens, calls copy ctor Widget
w6{w4}; // uses braces, calls // std::initializer_list ctor // (w4 converts to float,
and float // converts to long double) Widget w7(std::move(w4)); // uses parens,
calls move ctor Widget w8{std::move(w4)}; // uses braces, calls //

std: :initializer_list ctor // (for same reason as w6)

Compilers’ determination to match braced initializers with constructors taking
std::initializer_lists is so strong, it prevails even if the best-match
std::initializer_l1ist constructor can’t be called. For example: class Widget
{ public: Widget(int i, bool b); // as before Widget(int i, double d); // as before
Widget(std::initializer_list<bool> il); // element type is // now bool ... // no
implicit }; // conversion funcs Widget w{10, 5.0}; // error! requires narrowing
conversions



Here, compilers will ignore the first two constructors (the second of which offers
an exact match on both argument types) and try to call the constructor taking a
std::initializer_list<bool>. Calling that constructor would require
converting an int (10) and a double (5.0) to bools. Both conversions would be
narrowing (bool can’t exactly represent either value), and narrowing
conversions are prohibited inside braced initializers, so the call is invalid, and
the code is rejected.

Only if there’s no way to convert the types of the arguments in a braced
initializer to the type in a std::initializer_list do compilers fall back on
normal overload resolution. For example, if we replace the
std::initializer_list<bool> constructor with one taking a
std::initializer_list<std::string>, the non-std::initializer_list
constructors become candidates again, because there is no way to convert ints
and bools to std: :strings:

class Widget {

public:
Widget(int 1, bool b); // as before
Widget(int 1, double d); // as before

// std::initializer_list element type is now std::string
Widget(std::initializer_list<std::string> il);
// no implicit

}; // conversion funcs
Widget w1(10, true); // uses parens, still calls first ctor
Widget w2{10, true}; // uses braces, now calls first ctor
Widget w3(10, 5.0); // uses parens, still calls second ctor
Widget w4{10, 5.0}; // uses braces, now calls second ctor

This brings us near the end of our examination of braced initializers and
constructor overloading, but there’s an interesting edge case that needs to be
addressed. Suppose you use an empty set of braces to construct an object that
supports default construction and also supports std: :initializer_list
construction. What do your empty braces mean? If they mean “no arguments,”
you get default construction, but if they mean “empty



std::initializer_list,” you get construction from a
std::initializer_list with no elements.

The rule is that you get default construction. Empty braces mean no arguments,
not an empty std: :initializer_Llist: class Widget { public: Widget(); //
default ctor Widget(std::initializer_list<int> il); // std::initializer // _list ctor ... //
no implicit }; // conversion funcs Widget w1; // calls default ctor Widget w2{};
// also calls default ctor Widget w3(); // most vexing parse! declares a function!

If you want to call a std: :initializer_Llist constructor with an empty
std::initializer_list, you do it by making the empty braces a constructor
argument—Dby putting the empty braces inside the parentheses or braces
demarcating what you’re passing: Widget w4({}); // calls std::initializer_list ctor
// with empty list Widget w5{{}}; // ditto

At this point, with seemingly arcane rules about braced initializers,
std::initializer_lists, and constructor overloading burbling about in your
brain, you may be wondering how much of this information matters in day-to-
day programming. More than you might think, because one of the classes
directly affected is std: :vector. std: :vector has a non-
std::initializer_list constructor that allows you to specify the initial size
of the container and a value each of the initial elements should have, but it also
has a constructor taking a std: :initializer_list that permits you to specify
the initial values in the container. If you create a std: :vector of a numeric type
(e.g., a std: :vector<int>) and you pass two arguments to the constructor,
whether you enclose those arguments in parentheses or braces makes a
tremendous difference: std::vector<int> v1(10, 20); // use non-std: :initializer_list
// ctor: create 10-element // std::vector, all elements have // value of 20
std::vector<int> v2{10, 20}; // use std::initializer_list ctor: // create 2-element
std::vector, // element values are 10 and 20

But let’s step back from std: :vector and also from the details of parentheses,
braces, and constructor overloading resolution rules. There are two primary
takeaways from this discussion. First, as a class author, you need to be aware
that if your set of overloaded constructors includes one or more functions taking
a std::initializer_list, client code using braced initialization may see only
the std::initializer_l1ist overloads. As a result, it’s best to design your



constructors so that the overload called isn’t affected by whether clients use
parentheses or braces. In other words, learn from what is now viewed as an error

in the design of the std: :vector interface, and design your classes to avoid it.

An implication is that if you have a class with no std: :initializer_list
constructor, and you add one, client code using braced initialization may find
that calls that used to resolve to non-std: :initializer_1list constructors now
resolve to the new function. Of course, this kind of thing can happen any time
you add a new function to a set of overloads: calls that used to resolve to one of
the old overloads might start calling the new one. The difference with
std::initializer_list constructor overloads is that a
std::initializer_list overload doesn’t just compete with other overloads, it
overshadows them to the point where the other overloads may hardly be
considered. So add such overloads only with great deliberation.

The second lesson is that as a class client, you must choose carefully between
parentheses and braces when creating objects. Most developers end up choosing
one kind of delimiter as a default, using the other only when they have to.
Braces-by-default folks are attracted by their unrivaled breadth of applicability,
their prohibition of narrowing conversions, and their immunity to C++’s most
vexing parse. Such folks understand that in some cases (e.g., creation of a

std: :vector with a given size and initial element value), parentheses are
required. On the other hand, the go-parentheses-go crowd embraces parentheses
as their default argument delimiter. They’re attracted to its consistency with the
C++98 syntactic tradition, its avoidance of the auto-deduced-a-
std::initializer_list problem, and the knowledge that their object creation
calls won’t be inadvertently waylaid by std: :initializer_list constructors.
They concede that sometimes only braces will do (e.g., when creating a
container with particular values). There’s no consensus that either approach is
better than the other, so my advice is to pick one and apply it consistently.

If you’re a template author, the tension between parentheses and braces for
object creation can be especially frustrating, because, in general, it’s not possible
to know which should be used. For example, suppose you’d like to create an
object of an arbitrary type from an arbitrary number of arguments. A variadic
template makes this conceptually straightforward: template<typename T, // type
of object to create typename... Ts> // types of arguments to use void



doSomeWork(Ts&&... params) { create local T object from params... ... }

There are two ways to turn the line of pseudocode into real code (see Item 25 for
information about std: : forward): T localObject(std::forward<Ts>(params)...);
// using parens T localObject{std::forward<Ts>(params)...}; // using braces

So consider this calling code:

std::vector<int> v;

doSomelWork<std: :vector<int>>(10, 20);

If doSomeWork uses parentheses when creating localObject, the result is a
std: :vector with 10 elements. If doSomeWork uses braces, the result is a
std: :vector with 2 elements. Which is correct? The author of doSomeWork
can’t know. Only the caller can.

This is precisely the problem faced by the Standard Library functions

std: :make_unique and std: :make_shared (see Item 21). These functions
resolve the problem by internally using parentheses and by documenting this
decision as part of their interfaces.’

Things to Remember

m Braced initialization is the most widely usable initialization syntax, it prevents narrowing
conversions, and it’s immune to C++’s most vexing parse.

m During constructor overload resolution, braced initializers are matched to
std::initializer_list parameters if at all possible, even if other constructors offer
seemingly better matches.

= An example of where the choice between parentheses and braces can make a significant
difference is creating a std: :vector<numeric type> with two arguments.

m Choosing between parentheses and braces for object creation inside templates can be
challenging.

Item 8: Prefer nullptr to 0 and NULL.

So here’s the deal: the literal 0 is an int, not a pointer. If C++ finds itself



looking at 0 in a context where only a pointer can be used, it’ll grudgingly
interpret 0 as a null pointer, but that’s a fallback position. C++’s primary policy
is that 0 is an int, not a pointer.

Practically speaking, the same is true of NULL. There is some uncertainty in the
details in NULL’s case, because implementations are allowed to give NULL an
integral type other than int (e.g., Long). That’s not common, but it doesn’t
really matter, because the issue here isn’t the exact type of NULL, it’s that neither
0 nor NULL has a pointer type.

In C++98, the primary implication of this was that overloading on pointer and
integral types could lead to surprises. Passing 0 or NULL to such overloads never
called a pointer overload: void f(int); // three overloads of f void f(bool); void
f(void*); £(0); // calls f(int), not f(void*) f(NULL); // might not compile, but
typically calls // f(int). Never calls f(void*)

The uncertainty regarding the behavior of f(NULL) is a reflection of the leeway
granted to implementations regarding the type of NULL. If NULL is defined to be,
say, OL (i.e., @ as a Long), the call is ambiguous, because conversion from long

to int, long to bool, and OL to void* are considered equally good. The
interesting thing about that call is the contradiction between the apparent
meaning of the source code (“I’m calling f with NULL—the null pointer”) and its
actual meaning (“I’m calling f with some kind of integer—not the null
pointer”). This counterintuitive behavior is what led to the guideline for C++98
programmers to avoid overloading on pointer and integral types. That guideline
remains valid in C++11, because, the advice of this Item notwithstanding, it’s
likely that some developers will continue to use 0 and NULL, even though
nullptr is a better choice.

nullptr’s advantage is that it doesn’t have an integral type. To be honest, it
doesn’t have a pointer type, either, but you can think of it as a pointer of all
types. nullptr’s actual type is std: :nullptr_t, and, in a wonderfully circular
definition, std: :nullptr_t is defined to be the type of nullptr. The type
std: :nullptr_t implicitly converts to all raw pointer types, and that’s what
makes nullptr act as if it were a pointer of all types.

Calling the overloaded function f with nullptr calls the void* overload (i.e.,



the pointer overload), because nullptr can’t be viewed as anything integral:
f(nullptr); // calls f(void*) overload

Using nullptr instead of @ or NULL thus avoids overload resolution surprises,
but that’s not its only advantage. It can also improve code clarity, especially
when auto variables are involved. For example, suppose you encounter this in a
code base: auto result = findRecord( /* arguments */); if (result ==0) { ... }

If you don’t happen to know (or can’t easily find out) what findRecord returns,
it may not be clear whether result is a pointer type or an integral type. After all,
0 (what result is tested against) could go either way. If you see the following,
on the other hand, auto result = findRecord( /* arguments */); if (result ==
nullptr) { ... }

there’s no ambiguity: result must be a pointer type.

nullptr shines especially brightly when templates enter the picture. Suppose
you have some functions that should be called only when the appropriate mutex
has been locked. Each function takes a different kind of pointer: int
f1(std::shared_ptr<Widget> spw); // call these only when double
f2(std::unique_ptr<Widget> upw); // the appropriate bool f3(Widget* pw); //
mutex is locked

Calling code that wants to pass null pointers could look like this: std::mutex f1m,
f2m, f3m; // mutexes for f1, £2, and f3 using MuxGuard = // C++11 typedef; see
[tem 9 std::lock_guard<std::mutex>; ... { MuxGuard g(f1m); // lock mutex for
f1 auto result = f1(0); // pass 0 as null ptr to f1 } // unlock mutex ... { MuxGuard
g(f2m); // lock mutex for f2 auto result = f2(NULL); // pass NULL as null ptr to
f2 } // unlock mutex ... { MuxGuard g(f3m); // lock mutex for f3 auto result =
f3(nullptr); // pass nullptr as null ptr to £3 } // unlock mutex

The failure to use nullptr in the first two calls in this code is sad, but the code
works, and that counts for something. However, the repeated pattern in the
calling code—lock mutex, call function, unlock mutex—is more than sad. It’s
disturbing. This kind of source code duplication is one of the things that
templates are designed to avoid, so let’s templatize the pattern:
template<typename FuncType, typename MuxType, typename PtrType> auto
lockAndCall(FuncType func, MuxType& mutex, PtrType ptr) ->
decltype(func(ptr)) { MuxGuard g(mutex); return func(ptr); }



If the return type of this function (auto .. -> decltype(func(ptr)) has you
scratching your head, do your head a favor and navigate to Item 3, which
explains what’s going on. There you’ll see that in C++14, the return type could
be reduced to a simple decltype(auto): template<typename FuncType,
typename MuxType, typename PtrType> decltype(auto) lockAndCall(FuncType
func, // C++14 MuxType& mutex, PtrType ptr) { MuxGuard g(mutex); return
func(ptr); }

Given the LlockAndCall template (either version), callers can write code like
this: auto resultl = lockAndCall(f1, f1m, 0); // error! ... auto result2 =
lockAndCall(f2, f2m, NULL); // error! ... auto result3 = lockAndCall(f3, f3m,

nullptr); // fine

Well, they can write it, but, as the comments indicate, in two of the three cases,
the code won’t compile. The problem in the first call is that when 0 is passed to
lockAndCall, template type deduction kicks in to figure out its type. The type of
0 is, was, and always will be int, so that’s the type of the parameter ptr inside
the instantiation of this call to LlockAndCall. Unfortunately, this means that in
the call to func inside lockAndCall, an int is being passed, and that’s not
compatible with the std: :shared_ptr<Widget> parameter that f1 expects. The
0 passed in the call to lockAndCall was intended to represent a null pointer, but
what actually got passed was a run-of-the-mill int. Trying to pass this int to f1
as a std::shared_ptr<Widgets> is a type error. The call to LlockAndCall with 0
fails because inside the template, an int is being passed to a function that
requires a std: :shared_ptr<Widget>.

The analysis for the call involving NULL is essentially the same. When NULL is
passed to LlockAndCall, an integral type is deduced for the parameter ptr, and a
type error occurs when ptr—an int or int-like type—is passed to 2, which
expects to get a std: :unique_ptr<Widget>.

In contrast, the call involving nullptr has no trouble. When nullptr is passed
to LockAndCall, the type for ptr is deduced to be std: :nullptr_t. When ptr
is passed to f3, there’s an implicit conversion from std: :nullptr_t to
Widget*, because std: :nullptr_t implicitly converts to all pointer types.

The fact that template type deduction deduces the “wrong” types for 0 and NULL



(i.e., their true types, rather than their fallback meaning as a representation for a
null pointer) is the most compelling reason to use nullptr instead of © or NULL
when you want to refer to a null pointer. With nullptr, templates pose no
special challenge. Combined with the fact that nullptr doesn’t suffer from the
overload resolution surprises that ® and NULL are susceptible to, the case is
ironclad. When you want to refer to a null pointer, use nullptr, not 0 or NULL.

Things to Remember

m Prefer nullptr to ® and NULL.

m Avoid overloading on integral and pointer types.

Item 9: Prefer alias declarations to typedefs.

I’m confident we can agree that using STL containers is a good idea, and I hope
that Item 18 convinces you that using std: :unique_ptr is a good idea, but my
guess is that neither of us is fond of writing types like
“std::unique_ptr<std::unordered map<std::string, std::string>>"
more than once. Just thinking about it probably increases the risk of carpal
tunnel syndrome.

Avoiding such medical tragedies is easy. Introduce a typedef: typedef
std::unique_ptr<std::unordered_map<std::string, std::string>> UPtrMapSS;

But typedefs are soooo C++98. They work in C++11, sure, but C++11 also
offers alias declarations: using UPtrMapSS =
std::unique_ptr<std::unordered_map<std::string, std::string>>;

Given that the typedef and the alias declaration do exactly the same thing, it’s
reasonable to wonder whether there is a solid technical reason for preferring one
over the other.

There is, but before I get to it, I want to mention that many people find the alias
declaration easier to swallow when dealing with types involving function
pointers: // FP is a synonym for a pointer to a function taking an int and // a const
std::string& and returning nothing typedef void (*FP)(int, const std::string&); //



typedef // same meaning as above using FP = void (*)(int, const std::string&); //
alias // declaration

Of course, neither form is particularly easy to choke down, and few people
spend much time dealing with synonyms for function pointer types, anyway, so
this is hardly a compelling reason to choose alias declarations over typedefs.

But a compelling reason does exist: templates. In particular, alias declarations
may be templatized (in which case they’re called alias templates), while
typedefs cannot. This gives C++11 programmers a straightforward mechanism
for expressing things that in C++98 had to be hacked together with typedefs
nested inside templatized structs. For example, consider defining a synonym
for a linked list that uses a custom allocator, MyAlloc. With an alias template,
it’s a piece of cake: template<typename T> // MyAllocList<T> using
MyAllocList = std::list<T, MyAlloc<T>>; // is synonym for // std::list<T, //
MyAlloc<T>> MyAllocList<Widget> lw; // client code

With a typedef, you pretty much have to create the cake from scratch:
template<typename T> // MyAllocList<T>::type struct MyAllocList { // is
synonym for typedef std::list<T, MyAlloc<T>> type; // std::list<T, }; //
MyAlloc<T>> MyAllocList<Widget>::type lw; // client code

It gets worse. If you want to use the typedef inside a template for the purpose of
creating a linked list holding objects of a type specified by a template parameter,
you have to precede the typedef name with typename: template<typename T>
class Widget { // Widget<T> contains private: // a MyAllocList<T> typename
MyAllocList<T>::type list; / as a data member ... };

Here, MyAllocList<T>::type refers to a type that’s dependent on a template
type parameter (T). MyAllocList<T>::type is thus a dependent type, and one of
C++’s many endearing rules is that the names of dependent types must be
preceded by typename.

If MyAllocList is defined as an alias template, this need for typename vanishes
(as does the cumbersome “: : type” suffix): template<typename T> using
MyAllocList = std::list<T, MyAlloc<T>>; // as before template<typename T>
class Widget { private: MyAllocList<T> list; // no "typename", ... // no "::type"
b



To you, MyAllocList<T> (i.e., use of the alias template) may look just as
dependent on the template parameter T as MyAllocList<T>::type (i.e., use of
the nested typedef), but you’re not a compiler. When compilers process the
Widget template and encounter the use of MyAllocList<T> (i.e., use of the alias
template), they know that MyAllocList<T> is the name of a type, because
MyAlloclList is an alias template: it must name a type. MyAllocList<T> is thus
a non-dependent type, and a typename specifier is neither required nor
permitted.

When compilers see MyAllocList<T>::type (i.e., use of the nested typedef) in
the Widget template, on the other hand, they can’t know for sure that it names a
type, because there might be a specialization of MyAllocL1ist that they haven’t
yet seen where MyAllocList<T>:: type refers to something other than a type.
That sounds crazy, but don’t blame compilers for this possibility. It’s the humans
who have been known to produce such code.

For example, some misguided soul may have concocted something like this:
class Wine { ... }; template<> // MyAllocList specialization class
MyAllocList<Wine> { // for when T is Wine private: enum class WineType //
see Item 10 for info on { White, Red, Rose }; // "enum class" WineType type; //
in this class, type is ... / a data member! };

As you can see, MyAllocList<Wine>: :type doesn’t refer to a type. If Widget
were to be instantiated with Wine, MyAllocList<T>: : type inside the Widget
template would refer to a data member, not a type. Inside the Widget template,
then, whether MyAllocList<T>: : type refers to a type is honestly dependent on
what T is, and that’s why compilers insist on your asserting that it is a type by
preceding it with typename.

If you’ve done any template metaprogramming (TMP), you’ve almost certainly
bumped up against the need to take template type parameters and create revised
types from them. For example, given some type T, you might want to strip off
any const- or reference-qualifiers that T contains, e.g., you might want to turn
const std::string& into std::string. Or you might want to add const to a
type or turn it into an lvalue reference, e.g., turn Widget into const Widget or
into Widget&. (If you haven’t done any TMP, that’s too bad, because if you want



to be a truly effective C++ programmer, you need to be familiar with at least the
basics of this facet of C++. You can see examples of TMP in action, including
the kinds of type transformations I just mentioned, in Items 23 and 27.) C++11
gives you the tools to perform these kinds of transformations in the form of type
traits, an assortment of templates inside the header <type_traits>. There are
dozens of type traits in that header, and not all of them perform type
transformations, but the ones that do offer a predictable interface. Given a type T
to which you’d like to apply a transformation, the resulting type is
std::transformation<T>::type. For example: std::remove_const<T>::type //
yields T from const T std::remove_reference<T>::type // yields T from T& and
T&& std::add_lvalue_reference<T>::type // yields T& from T

The comments merely summarize what these transformations do, so don’t take
them too literally. Before using them on a project, you’d look up the precise
specifications, I know.

My motivation here isn’t to give you a tutorial on type traits, anyway. Rather,
note that application of these transformations entails writing “: : type” at the end
of each use. If you apply them to a type parameter inside a template (which is
virtually always how you employ them in real code), you’d also have to precede
each use with typename. The reason for both of these syntactic speed bumps is
that the C++11 type traits are implemented as nested typedefs inside
templatized structs. That’s right, they’re implemented using the type synonym
technology I’ve been trying to convince you is inferior to alias templates!

There’s a historical reason for that, but we’ll skip over it (it’s dull, I promise),
because the Standardization Committee belatedly recognized that alias templates
are the better way to go, and they included such templates in C++14 for all the
C++11 type transformations. The aliases have a common form: for each C++11
transformation std: : transformation<T>: :type, there’s a corresponding
C++14 alias template named std: : transformation_t. Examples will clarify
what I mean: std::remove_const<T>::type / C++11:const T - T
std::remove_const_t<T> // C++14 equivalent std::remove_reference<T>::type //
C++11: T&/T&& — T std::remove_reference_t<T> // C++14 equivalent
std::add_lvalue_reference<T>::type // C++11: T - T&
std::add_lvalue_reference_t<T> // C++14 equivalent

The C++11 constructs remain valid in C++14, but I don’t know why you’d want



to use them. Even if you don’t have access to C++14, writing the alias templates
yourself is child’s play. Only C++11 language features are required, and even
children can mimic a pattern, right? If you happen to have access to an electronic
copy of the C++14 Standard, it’s easier still, because all that’s required is some
copying and pasting. Here, I’ll get you started: template <class T> using
remove_const_t = typename remove_const<T>::type; template <class T> using
remove_reference_t = typename remove_reference<T>::type;

template <class T>
using add_lvalue_reference_t =
typename add_lvalue_reference<T>::type;

See? Couldn’t be easier.

Things to Remember

m typedefs don’t support templatization, but alias declarations do.

m Alias templates avoid the “: : type” suffix and, in templates, the “typename” prefix often
required to refer to typedefs.

m C++14 offers alias templates for all the C++11 type traits transformations.

Item 10: Prefer scoped enums to unscoped enums.

As a general rule, declaring a name inside curly braces limits the visibility of
that name to the scope defined by the braces. Not so for the enumerators
declared in C++98-style enums. The names of such enumerators belong to the
scope containing the enum, and that means that nothing else in that scope may
have the same name: enum Color { black, white, red }; // black, white, red are //
in same scope as Color auto white = false; // error! white already // declared in
this scope

The fact that these enumerator names leak into the scope containing their enum
definition gives rise to the official term for this kind of enum: unscoped. Their
new C++11 counterparts, scoped enums, don’t leak names in this way: enum
class Color { black, white, red }; // black, white, red // are scoped to Color auto



white = false; // fine, no other // "white" in scope Color ¢ = white; // error! no
enumerator named // "white" is in this scope Color c = Color::white; // fine auto
¢ = Color::white; // also fine (and in accord // with Item 5's advice)

Because scoped enums are declared via “enum class”, they’re sometimes
referred to as enum classes.

The reduction in namespace pollution offered by scoped enums is reason enough
to prefer them over their unscoped siblings, but scoped enums have a second
compelling advantage: their enumerators are much more strongly typed.
Enumerators for unscoped enums implicitly convert to integral types (and, from
there, to floating-point types). Semantic travesties such as the following are
therefore completely valid: enum Color { black, white, red }; // unscoped enum
std::vector<std::size_t> // func. returning primeFactors(std::size_t x); // prime
factors of x Color c =red; ... if (c < 14.5) { // compare Color to double (!) auto
factors = // compute prime factors primeFactors(c); // of a Color (!) ... }

Throw a simple “class” after “enum”, however, thus transforming an unscoped
enum into a scoped one, and it’s a very different story. There are no implicit
conversions from enumerators in a scoped enum to any other type: enum class
Color { black, white, red }; // enum is now scoped Color c = Color::red; // as
before, but ... // with scope qualifier if (c < 14.5) { // error! can't compare //
Color and double auto factors = // error! can't pass Color to primeFactors(c); //
function expecting std::size_t ... }

If you honestly want to perform a conversion from Color to a different type, do
what you always do to twist the type system to your wanton desires—use a cast:
if (static_cast<double>(c) < 14.5) { // odd code, but // it's valid auto factors = //

suspect, but primeFactors(static_cast<std::size_t>(c)); // it compiles ... }

It may seem that scoped enums have a third advantage over unscoped enums,

because scoped enums may be forward-declared, i.e., their names may be
declared without specifying their enumerators: enum Color; // error! enum class
Color; // fine

This is misleading. In C++11, unscoped enums may also be forward-declared,
but only after a bit of additional work. The work grows out of the fact that every
enum in C++ has an integral underlying type that is determined by compilers. For



an unscoped enum like Color, enum Color { black, white, red };

compilers might choose char as the underlying type, because there are only

three values to represent. However, some enums have a range of values that is
much larger, e.g.: enum Status { good = 0, failed = 1, incomplete = 100, corrupt
= 200, indeterminate = OXFFFFFFFF };

Here the values to be represented range from 0 to OxFFFFFFFF. Except on
unusual machines (where a char consists of at least 32 bits), compilers will have

to select an integral type larger than char for the representation of Status
values.

To make efficient use of memory, compilers often want to choose the smallest
underlying type for an enum that’s sufficient to represent its range of enumerator
values. In some cases, compilers will optimize for speed instead of size, and in
that case, they may not choose the smallest permissible underlying type, but they
certainly want to be able to optimize for size. To make that possible, C++98
supports only enum definitions (where all enumerators are listed); enum
declarations are not allowed. That makes it possible for compilers to select an
underlying type for each enum prior to the enum being used.

But the inability to forward-declare enums has drawbacks. The most notable is
probably the increase in compilation dependencies. Consider again the Status

enum: enum Status { good = 0, failed = 1, incomplete = 100, corrupt = 200,
indeterminate = OxXFFFFFFFF };

This is the kind of enum that’s likely to be used throughout a system, hence
included in a header file that every part of the system is dependent on. If a new
status value is then introduced, enum Status { good = 0, failed = 1, incomplete =
100, corrupt = 200, audited = 500, indeterminate = OXFFFFFFFF };

it’s likely that the entire system will have to be recompiled, even if only a single
subsystem—possibly only a single function!—uses the new enumerator. This is
the kind of thing that people hate. And it’s the kind of thing that the ability to
forward-declare enums in C++11 eliminates. For example, here’s a perfectly
valid declaration of a scoped enum and a function that takes one as a parameter:
enum class Status; // forward declaration void continueProcessing(Status s); //
use of fwd-declared enum



The header containing these declarations requires no recompilation if Status’s
definition is revised. Furthermore, if Status is modified (e.g., to add the
audited enumerator), but continueProcessing’s behavior is unaffected (e.g.,

because continueProcessing doesn’t use audited), continueProcessing’s
implementation need not be recompiled, either.

But if compilers need to know the size of an enum before it’s used, how can
C++11’s enums get away with forward declarations when C++98’s enums can’t?
The answer is simple: the underlying type for a scoped enum is always known,
and for unscoped enums, you can specify it.

By default, the underlying type for scoped enums is int: enum class Status; //
underlying type is int

If the default doesn’t suit you, you can override it: enum class Status:
std::uint32_t; // underlying type for // Status is std::uint32_t // (from <cstdint>)

Either way, compilers know the size of the enumerators in a scoped enum.

To specify the underlying type for an unscoped enum, you do the same thing as
for a scoped enum, and the result may be forward-declared: enum Color:
std::uint8_t; // fwd decl for unscoped enum; // underlying type is // std::uint8_t

Underlying type specifications can also go on an enum’s definition: enum class
Status: std::uint32_t { good = 0, failed = 1, incomplete = 100, corrupt = 200,
audited = 500, indeterminate = OXFFFFFFFF };

In view of the fact that scoped enums avoid namespace pollution and aren’t
susceptible to nonsensical implicit type conversions, it may surprise you to hear
that there’s at least one situation where unscoped enums may be useful. That’s
when referring to fields within C++11’s std: : tuples. For example, suppose we
have a tuple holding values for the name, email address, and reputation value for
a user at a social networking website: using UserInfo = // type alias; see Item 9
std::tuple<std::string, // name std::string, // email std::size_t> ; // reputation

Though the comments indicate what each field of the tuple represents, that’s
probably not very helpful when you encounter code like this in a separate source
file: UserInfo ulnfo; // object of tuple type ... auto val = std::get<1>(ulnfo); //
get value of field 1



As a programmer, you have a lot of stuff to keep track of. Should you really be
expected to remember that field 1 corresponds to the user’s email address? I

think not. Using an unscoped enum to associate names with field numbers avoids
the need to: enum UserInfoFields { uiName, uiEmail, uiReputation }; UserInfo
ulnfo; // as before ... auto val = std::get<uiEmail>(ulnfo); // ah, get value of //
email field

What makes this work is the implicit conversion from UserInfoFields to
std: :size_t, which is the type that std: :get requires.

The corresponding code with scoped enums is substantially more verbose: enum
class UserInfoFields { uiName, uiEmail, uiReputation }; UserInfo ulnfo; // as
before ... auto val = std::get<static_cast<std::size_t>(UserInfoFields::uiEmail)>
(ulnfo);

The verbosity can be reduced by writing a function that takes an enumerator and
returns its corresponding std: :size_t value, but it’s a bit tricky. std: :getis a
template, and the value you provide is a template argument (notice the use of
angle brackets, not parentheses), so the function that transforms an enumerator

into a std: :size_t has to produce its result during compilation. As Item 15
explains, that means it must be a constexpr function.

In fact, it should really be a constexpr function template, because it should
work with any kind of enum. And if we’re going to make that generalization, we
should generalize the return type, too. Rather than returning std: :size_t, we’ll
return the enum’s underlying type. It’s available via the std: :underlying_type
type trait. (See Item 9 for information on type traits.) Finally, we’ll declare it
noexcept (see Item 14), because we know it will never yield an exception. The

result is a function template toUType that takes an arbitrary enumerator and can
return its value as a compile-time constant: template<typename E> constexpr
typename std::underlying_type<E>::type toUType(E enumerator) noexcept {
return static_cast<typename std::underlying_type<E>::type>(enumerator); }

In C++14, toUType can be simplified by replacing typename

std: :underlying_type<E>::type with the sleeker std: :underlying type t
(see Item 9): template<typename E> // C++14 constexpr
std::underlying_type_t<E> toUType(E enumerator) noexcept { return
static_cast<std::underlying_type_t<E>>(enumerator); }



The even-sleeker auto return type (see Item 3) is also valid in C++14:
template<typename E> // C++14 constexpr auto toUType(E enumerator)
noexcept { return static_cast<std::underlying_type_t<E>>(enumerator); }

Regardless of how it’s written, toUType permits us to access a field of the tuple
like this: auto val = std::get<toUType(UserInfoFields::uiEmail)>(ulnfo);

It’s still more to write than use of the unscoped enum, but it also avoids
namespace pollution and inadvertent conversions involving enumerators. In
many cases, you may decide that typing a few extra characters is a reasonable
price to pay for the ability to avoid the pitfalls of an enum technology that dates
to a time when the state of the art in digital telecommunications was the 2400-
baud modem.

Things to Remember

m C++98-style enums are now known as unscoped enums.

m Enumerators of scoped enums are visible only within the enum. They convert to other types
only with a cast.

= Both scoped and unscoped enums support specification of the underlying type. The default
underlying type for scoped enums is int. Unscoped enums have no default underlying type.

m Scoped enums may always be forward-declared. Unscoped enums may be forward-declared
only if their declaration specifies an underlying type.

Item 11: Prefer deleted functions to private
undefined ones.

If you’re providing code to other developers, and you want to prevent them from
calling a particular function, you generally just don’t declare the function. No
function declaration, no function to call. Easy, peasy. But sometimes C++
declares functions for you, and if you want to prevent clients from calling those
functions, the peasy isn’t quite so easy any more.

The situation arises only for the “special member functions,” i.e., the member
functions that C++ automatically generates when they’re needed. Item 17



discusses these functions in detail, but for now, we’ll worry only about the copy
constructor and the copy assignment operator. This chapter is largely devoted to
common practices in C++98 that have been superseded by better practices in
C++11, and in C++98, if you want to suppress use of a member function, it’s
almost always the copy constructor, the assignment operator, or both.

The C++98 approach to preventing use of these functions is to declare them
private and not define them. For example, near the base of the iostreams
hierarchy in the C++ Standard Library is the class template basic_1ios. All
istream and ostream classes inherit (possibly indirectly) from this class. Copying
istreams and ostreams is undesirable, because it’s not really clear what such
operations should do. An istream object, for example, represents a stream of
input values, some of which may have already been read, and some of which
will potentially be read later. If an istream were to be copied, would that entail
copying all the values that had already been read as well as all the values that
would be read in the future? The easiest way to deal with such questions is to
define them out of existence. Prohibiting the copying of streams does just that.

To render istream and ostream classes uncopyable, basic_1ios is specified in
C++98 as follows (including the comments): template <class charT, class traits =
char_traits<charT> > class basic_ios : public ios_base { public: ... private:
basic_ios(const basic_ios& ); // not defined basic_ios& operator=(const
basic_ios&); // not defined };

Declaring these functions private prevents clients from calling them.
Deliberately failing to define them means that if code that still has access to
them (i.e., member functions or friends of the class) uses them, linking will fail
due to missing function definitions.

In C++11, there’s a better way to achieve essentially the same end: use “=
delete” to mark the copy constructor and the copy assignment operator as
deleted functions. Here’s the same part of basic_1ios as it’s specified in C++11:
template <class charT, class traits = char_traits<charT> > class basic_ios : public
ios_base { public: ... basic_ios(const basic_ios& ) = delete; basic_ios&
operator=(const basic_ios&) = delete; ... };

The difference between deleting these functions and declaring them private
may seem more a matter of fashion than anything else, but there’s greater



substance here than you might think. Deleted functions may not be used in any
way, so even code that’s in member and friend functions will fail to compile if
it tries to copy basic_1ios objects. That’s an improvement over the C++98
behavior, where such improper usage wouldn’t be diagnosed until link-time.

By convention, deleted functions are declared public, not private. There’s a
reason for that. When client code tries to use a member function, C++ checks
accessibility before deleted status. When client code tries to use a deleted
private function, some compilers complain only about the function being
private, even though the function’s accessibility doesn’t really affect whether it
can be used. It’s worth bearing this in mind when revising legacy code to replace
private-and-not-defined member functions with deleted ones, because making
the new functions public will generally result in better error messages.

An important advantage of deleted functions is that any function may be deleted,
while only member functions may be private. For example, suppose we have a
non-member function that takes an integer and returns whether it’s a lucky
number: bool isLucky(int number);

C++’s C heritage means that pretty much any type that can be viewed as vaguely
numerical will implicitly convert to int, but some calls that would compile
might not make sense: if (isLucky('a")) ... //is 'a" a lucky number? if
(isLucky(true)) ... // is "true"? if (isLucky(3.5)) ... // should we truncate to 3 //
before checking for luckiness?

If lucky numbers must really be integers, we’d like to prevent calls such as these
from compiling.

One way to accomplish that is to create deleted overloads for the types we want

to filter out: bool isLucky(int number); // original function bool isLucky(char) =

delete; // reject chars bool isLucky(bool) = delete; // reject bools bool
isLucky(double) = delete; // reject doubles and // floats

(The comment on the double overload that says that both doubles and floats
will be rejected may surprise you, but your surprise will dissipate once you recall
that, given a choice between converting a float to an int or to a double, C++
prefers the conversion to double. Calling isLucky with a float will therefore

call the double overload, not the int one. Well, it’ll try to. The fact that that
overload is deleted will prevent the call from compiling.) Although deleted



functions can’t be used, they are part of your program. As such, they are taken
into account during overload resolution. That’s why, with the deleted function
declarations above, the undesirable calls to isLucky will be rejected: if
(isLucky('a")) ... // error! call to deleted function if (isLucky(true)) ... // error! if
(isLucky(3.5f)) ... // error!

Another trick that deleted functions can perform (and that private member
functions can’t) is to prevent use of template instantiations that should be
disabled. For example, suppose you need a template that works with built-in
pointers (Chapter 4’s advice to prefer smart pointers to raw pointers
notwithstanding): template<typename T> void processPointer(T* ptr);

There are two special cases in the world of pointers. One is void* pointers,
because there is no way to dereference them, to increment or decrement them,

etc. The other is char* pointers, because they typically represent pointers to C-
style strings, not pointers to individual characters. These special cases often call
for special handling, and, in the case of the processPointer template, let’s
assume the proper handling is to reject calls using those types. That is, it should
not be possible to call processPointer with void* or char* pointers.

That’s easily enforced. Just delete those instantiations: template<> void
processPointer<void>(void*) = delete; template<> void processPointer<char>
(char*) = delete;

Now, if calling processPointer with a void* or a char* is invalid, it’s
probably also invalid to call it with a const void* or a const char*, so those
instantiations will typically need to be deleted, too: template<> void
processPointer<const void>(const void*) = delete; template<> void
processPointer<const char>(const char*) = delete;

And if you really want to be thorough, you’ll also delete the const volatile
void* and const volatile char* overloads, and then you’ll get to work on the
overloads for pointers to the other standard character types: std: :wchar_t,
std::char16_t, and std: :char32_t.

Interestingly, if you have a function template inside a class, and you’d like to
disable some instantiations by declaring them private (a la classic C++98
convention), you can’t, because it’s not possible to give a member function
template specialization a different access level from that of the main template. If



processPointer were a member function template inside Widget, for example,
and you wanted to disable calls for void* pointers, this would be the C++98
approach, though it would not compile: class Widget { public: ...
template<typename T> void processPointer(T* ptr) { ... } private: template<> //
error! void processPointer<void>(void*); };

The problem is that template specializations must be written at namespace scope,
not class scope. This issue doesn’t arise for deleted functions, because they don’t
need a different access level. They can be deleted outside the class (hence at
namespace scope):

class Widget {
public:

template<typename T>
void processPointer(T* ptr)

{ ..}
b
template<> /] still
void Widget::processPointer<void>(void*) = delete; // public,
// but
// deleted

The truth is that the C++98 practice of declaring functions private and not
defining them was really an attempt to achieve what C++11’s deleted functions
actually accomplish. As an emulation, the C++98 approach is not as good as the
real thing. It doesn’t work outside classes, it doesn’t always work inside classes,
and when it does work, it may not work until link-time. So stick to deleted
functions.

Things to Remember

m Prefer deleted functions to private undefined ones.

® Any function may be deleted, including non-member functions and template instantiations.




Item 12: Declare overriding functions override.

The world of object-oriented programming in C++ revolves around classes,
inheritance, and virtual functions. Among the most fundamental ideas in this
world is that virtual function implementations in derived classes override the
implementations of their base class counterparts. It’s disheartening, then, to
realize just how easily virtual function overriding can go wrong. It’s almost as if
this part of the language were designed with the idea that Murphy’s Law wasn’t
just to be obeyed, it was to be honored.

Because “overriding” sounds a lot like “overloading,” yet is completely
unrelated, let me make clear that virtual function overriding is what makes it
possible to invoke a derived class function through a base class interface: class
Base { public: virtual void doWork(); // base class virtual function ... }; class
Derived: public Base { public: virtual void doWork(); // overrides Base::doWork
... // ("virtual" is optional }; // here) std::unique_ptr<Base> upb = // create base
class pointer std::make_unique<Derived>(); // to derived class object; // see Item
21 for info on ... // std::make_unique upb->doWork(); // call doWork through
base // class ptr; derived class // function is invoked

For overriding to occur, several requirements must be met:

m The base class function must be virtual.

m The base and derived function names must be identical (except in the case of
destructors).

m The parameter types of the base and derived functions must be identical.

m The constness of the base and derived functions must be identical.

= The return types and exception specifications of the base and derived
functions must be compatible.

To these constraints, which were also part of C++98, C++11 adds one more:

m The functions’ reference qualifiers must be identical. Member function
reference qualifiers are one of C++11’s less-publicized features, so don’t be
surprised if you’ve never heard of them. They make it possible to limit use of



a member function to lvalues only or to rvalues only. Member functions need
not be virtual to use them: class Widget { public: ... void doWork() &; // this
version of doWork applies // only when *this is an lvalue void doWork() &&;
// this version of doWork applies }; // only when *this is an rvalue ... Widget
makeWidget(); // factory function (returns rvalue) Widget w; // normal object
(an lvalue) ... w.doWork(); // calls Widget::doWork for lvalues // (i.e.,
Widget::doWork &) makeWidget().doWork(); // calls Widget::doWork for
rvalues // (i.e., Widget::doWork &&)

I’ll say more about member functions with reference qualifiers later, but for
now, simply note that if a virtual function in a base class has a reference
qualifier, derived class overrides of that function must have exactly the same
reference qualifier. If they don’t, the declared functions will still exist in the
derived class, but they won’t override anything in the base class.

All these requirements for overriding mean that small mistakes can make a big
difference. Code containing overriding errors is typically valid, but its meaning
isn’t what you intended. You therefore can’t rely on compilers notifying you if
you do something wrong. For example, the following code is completely legal
and, at first sight, looks reasonable, but it contains no virtual function overrides
—mnot a single derived class function that is tied to a base class function. Can you
identify the problem in each case, i.e., why each derived class function doesn’t
override the base class function with the same name?

class Base {

public:
virtual void mf1() const;
virtual voild mf2(int x);
virtual void mf3() &;
void mf4() const;

1

class Derived: public Base {
public:
virtual void mf1();
virtual void mf2(unsigned int x);
virtual void mf3() &&;
void mf4() const;

1
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m mf1l is declared const in Base, but not in Derived.

m mf2 takes an int in Base, but an unsigned int in Derived.

m mf3 is lvalue-qualified in Base, but rvalue-qualified in Derived.
m mf4 isn’t declared virtual in Base.

You may think, “Hey, in practice, these things will elicit compiler warnings, so I
don’t need to worry.” Maybe that’s true. But maybe it’s not. With two of the
compilers I checked, the code was accepted without complaint, and that was
with all warnings enabled. (Other compilers provided warnings about some of
the issues, but not all of them.) Because declaring derived class overrides is
important to get right, but easy to get wrong, C++11 gives you a way to make
explicit that a derived class function is supposed to override a base class version:
declare it override. Applying this to the example above would yield this
derived class: class Derived: public Base { public: virtual void mf1() override;
virtual void mf2(unsigned int x) override; virtual void mf3() && override;
virtual void mf4() const override; };

This won’t compile, of course, because when written this way, compilers will
kvetch about all the overriding-related problems. That’s exactly what you want,
and it’s why you should declare all your overriding functions override.

The code using override that does compile looks as follows (assuming that the
goal is for all functions in Derived to override virtuals in Base): class Base {
public: virtual void mf1() const; virtual void mf2(int x); virtual void mf3() &;
virtual void mf4() const; }; class Derived: public Base { public: virtual void
mf1() const override; virtual void mf2(int x) override; virtual void mf3() &
override; void mf4() const override; // adding "virtual" is OK, }; // but not
necessary

Note that in this example, part of getting things to work involves declaring mf4
virtual in Base. Most overriding-related errors occur in derived classes, but it’s
possible for things to be incorrect in base classes, too.

A policy of using override on all your derived class overrides can do more than



just enable compilers to tell you when would-be overrides aren’t overriding
anything. It can also help you gauge the ramifications if you’re contemplating
changing the signature of a virtual function in a base class. If derived classes use
override everywhere, you can just change the signature, recompile your
system, see how much damage you’ve caused (i.e., how many derived classes
fail to compile), then decide whether the signature change is worth the trouble.
Without override, you’d have to hope you have comprehensive unit tests in
place, because, as we’ve seen, derived class virtuals that are supposed to
override base class functions, but don’t, need not elicit compiler diagnostics.

C++ has always had keywords, but C++11 introduces two contextual keywords,
override and final.? These keywords have the characteristic that they are
reserved, but only in certain contexts. In the case of override, it has a reserved
meaning only when it occurs at the end of a member function declaration. That
means that if you have legacy code that already uses the name override, you
don’t need to change it for C++11:

class Warning { // potential legacy class from C++98
public:
void override(); // legal in both C++98 and C++11

// (with the same meaning)

1

That’s all there is to say about override, but it’s not all there is to say about
member function reference qualifiers. I promised I’d provide more information
on them later, and now it’s later.

If we want to write a function that accepts only lvalue arguments, we declare a
non-const Ivalue reference parameter: void doSomething(Widget& w); //
accepts only lvalue Widgets

If we want to write a function that accepts only rvalue arguments, we declare an
rvalue reference parameter: void doSomething(Widget&& w); // accepts only
rvalue Widgets

Member function reference qualifiers simply make it possible to draw the same
distinction for the object on which a member function is invoked, i.e., *this. It’s
precisely analogous to the const at the end of a member function declaration,



which indicates that the object on which the member function is invoked (i.e.,
*this) is const.

The need for reference-qualified member functions is not common, but it can

arise. For example, suppose our Widget class has a std: :vector data member,
and we offer an accessor function that gives clients direct access to it: class
Widget { public: using DataType = std::vector<double>; // see Item 9 for ... //
info on "using" DataType& data() { return values; } ... private: DataType
values; };

This is hardly the most encapsulated design that’s seen the light of day, but set
that aside and consider what happens in this client code: Widget w; ... auto vals1
= w.data(); // copy w.values into vals1

The return type of Widget: :data is an lvalue reference (a

std: :vector<double>&, to be precise), and because lvalue references are
defined to be lvalues, we’re initializing vals1 from an lvalue. vals1 is thus
copy constructed from w.values, just as the comment says.

Now suppose we have a factory function that creates Widgets,
Widget makeWidget();

and we want to initialize a variable with the std: : vector inside the Widget

returned from makelWidget: auto vals2 = makeWidget().data(); // copy values
inside the // Widget into vals2

Again, Widgets: :data returns an lvalue reference, and, again, the lvalue
reference is an lvalue, so, again, our new object (vals?2) is copy constructed
from values inside the Widget. This time, though, the Widget is the temporary
object returned from makeWidget (i.e., an rvalue), so copying the std: :vector
inside it is a waste of time. It’d be preferable to move it, but, because data is
returning an lvalue reference, the rules of C++ require that compilers generate
code for a copy. (There’s some wiggle room for optimization through what is
known as the “as if rule,” but you’d be foolish to rely on your compilers finding
a way to take advantage of it.) What’s needed is a way to specify that when data
is invoked on an rvalue Widget, the result should also be an rvalue. Using
reference qualifiers to overload data for lvalue and rvalue Widgets makes that



possible: class Widget { public: using DataType = std::vector<double>; ...
DataType& data() & // for Ivalue Widgets, { return values; } // return lvalue
DataType data() && // for rvalue Widgets, { return std::move(values); } // return
rvalue ... private: DataType values; };

Notice the differing return types from the data overloads. The lvalue reference
overload returns an lvalue reference (i.e., an lvalue), and the rvalue reference
overload returns a temporary object (i.e., an rvalue). This means that client code
now behaves as we’d like: auto vals1 = w.data(); // calls lvalue overload for //
Widget::data, copy- // constructs vals1 auto vals2 = makeWidget().data(); // calls
rvalue overload for // Widget::data, move- // constructs vals2

This is certainly nice, but don’t let the warm glow of this happy ending distract
you from the true point of this Item. That point is that whenever you declare a
function in a derived class that’s meant to override a virtual function in a base

class, be sure to declare that function override.

Things to Remember

m Declare overriding functions override.

m Member function reference qualifiers make it possible to treat Ivalue and rvalue objects
(*this) differently.

Item 13: Prefer const_iterators to iterators.

const_iterators are the STL equivalent of pointers-to-const. They point to
values that may not be modified. The standard practice of using const whenever

possible dictates that you should use const_1iterators any time you need an
iterator, yet have no need to modify what the iterator points to.

That’s as true for C++98 as for C++11, but in C++98, const_1iterators had
only halfhearted support. It wasn’t that easy to create them, and once you had
one, the ways you could use it were limited. For example, suppose you want to
search a std: :vector<int> for the first occurrence of 1983 (the year “C++”
replaced “C with Classes” as the name of the programming language), then



insert the value 1998 (the year the first ISO C++ Standard was adopted) at that
location. If there’s no 1983 in the vector, the insertion should go at the end of the

vector. Using 1terators in C++98, that was easy: std::vector<int> values; ...
std::vector<int>::iterator it = std::find(values.begin(),values.end(), 1983);
values.insert(it, 1998);

But iterators aren’t really the proper choice here, because this code never
modifies what an iterator points to. Revising the code to use
const_iterators should be trivial, but in C++98, it was anything but. Here’s
one approach that’s conceptually sound, though still not correct: typedef
std::vector<int>::iterator IterT; // type- typedef std::vector<int>::const_iterator
ConstlterT; // defs std::vector<int> values; ... ConstlterT ci =
std::find(static_cast<ConstlterT>(values.begin()), // cast static_cast<ConstIterT>
(values.end()), // cast 1983); values.insert(static_cast<IterT>(ci), 1998); // may
not // compile; see // below

The typedefs aren’t required, of course, but they make the casts in the code
easier to write. (If you’re wondering why I’m showing typedefs instead of
following the advice of Item 9 to use alias declarations, it’s because this example
shows C++98 code, and alias declarations are a feature new to C++11.) The

casts in the call to std: : find are present because values is a non-const
container and in C++98, there was no simple way to get a const_1iterator from
a non-const container. The casts aren’t strictly necessary, because it was
possible to get const_iterators in other ways (e.g., you could bind values to
a reference-to-const variable, then use that variable in place of values in your
code), but one way or another, the process of getting const_iterators to
elements of a non-const container involved some amount of contorting.

Once you had the const_iterators, matters often got worse, because in
C++98, locations for insertions (and erasures) could be specified only by
iterators. const_1iterators weren’t acceptable. That’s why, in the code
above, I cast the const_iterator (that I was so careful to get from std: : find)
into an iterator: passing a const_1iterator to insert wouldn’t compile.

To be honest, the code I’ve shown might not compile, either, because there’s no
portable conversion from a const_1iterator to an iterator, not even with a
static_cast. Even the semantic sledgehammer known as reinterpret_cast



can’t do the job. (That’s not a C++98 restriction. It’s true in C++11, too.
const_iterators simply don’t convert to iterators, no matter how much it
might seem like they should.) There are some portable ways to generate
iterators that point where const_iterators do, but they’re not obvious, not
universally applicable, and not worth discussing in this book. Besides, I hope
that by now my point is clear: const_1iterators were so much trouble in
C++98, they were rarely worth the bother. At the end of the day, developers
don’t use const whenever possible, they use it whenever practical, and in
C++98, const_1iterators just weren’t very practical.

All that changed in C++11. Now const_iterators are both easy to get and easy
to use. The container member functions cbegin and cend produce
const_1iterators, even for non-const containers, and STL member functions
that use iterators to identify positions (e.g., insert and erase) actually use
const_1iterators. Revising the original C++98 code that uses iterators to use
const_iteratorsin C++11 is truly trivial: std::vector<int> values; // as before
... auto it = // use cbegin std::find(values.cbegin(),values.cend(), 1983); // and
cend values.insert(it, 1998);

Now that’s code using const_iterators that’s practical!

About the only situation in which C++11’s support for const_1iterators comes
up a bit short is when you want to write maximally generic library code. Such
code takes into account that some containers and container-like data structures
offer begin and end (plus cbegin, cend, rbegin, etc.) as non-member functions,
rather than members. This is the case for built-in arrays, for example, and it’s
also the case for some third-party libraries with interfaces consisting only of free
functions. Maximally generic code thus uses non-member functions rather than
assuming the existence of member versions.

For example, we could generalize the code we’ve been working with into a
findAndInsert template as follows: template<typename C, typename V> void
findAndInsert(C& container, // in container, find const V& targetVal, // first
occurrence const V& insertVal) // of targetVal, then { // insert insertVal using
std::cbegin; // there using std::cend; auto it = std::find(cbegin(container), // non-
member cbegin cend(container), / non-member cend targetVal);
container.insert(it, insertVal); }



This works fine in C++14, but, sadly, not in C++11. Through an oversight
during standardization, C++11 added the non-member functions begin and end,

but it failed to add cbegin, cend, rbegin, rend, crbegin, and crend. C++14
rectifies that oversight.

If you’re using C++11, you want to write maximally generic code, and none of
the libraries you’re using provides the missing templates for non-member
cbegin and friends, you can throw your own implementations together with
ease. For example, here’s an implementation of non-member cbegin: template
<class C> auto cbegin(const C& container)->decltype(std::begin(container)) {
return std::begin(container); // see explanation below }

You’'re surprised to see that non-member cbegin doesn’t call member cbegin,
aren’t you? So was I. But follow the logic. This cbegin template accepts any
type of argument representing a container-like data structure, C, and it accesses
this argument through its reference-to-const parameter, container. If Cis a
conventional container type (e.g., a std: :vector<int>), container will be a
reference to a const version of that container (e.g., a const

std: :vector<int>&). Invoking the non-member begin function (provided by
C++11) on a const container yields a const_1iterator, and that iterator is what
this template returns. The advantage of implementing things this way is that it
works even for containers that offer a begin member function (which, for
containers, is what C++11’s non-member begin calls), but fail to offer a cbegin
member. You can thus use this non-member cbegin on containers that directly
support only begin.

This template also works if C is a built-in array type. In that case, container
becomes a reference to a const array. C++11 provides a specialized version of
non-member begin for arrays that returns a pointer to the array’s first element.
The elements of a const array are const, so the pointer that non-member begin
returns for a const array is a pointer-to-const, and a pointer-to-const is, in fact,
a const_iterator for an array. (For insight into how a template can be
specialized for built-in arrays, consult Item 1’s discussion of type deduction in
templates that take reference parameters to arrays.) But back to basics. The point
of this Item is to encourage you to use const_1iterators whenever you can. The
fundamental motivation—using const whenever it’s meaningful—predates



C++11, but in C++98, it simply wasn’t practical when working with iterators. In
C++11, it’s eminently practical, and C++14 tidies up the few bits of unfinished
business that C++11 left behind.

Things to Remember

m Prefer const_iteratorsto iterators.

m Tn maximally generic code, prefer non-member versions of begin, end, rbegin, etc., over
their member function counterparts.

Item 14: Declare functions noexcept if they won’t
emit exceptions.

In C++98, exception specifications were rather temperamental beasts. You had
to summarize the exception types a function might emit, so if the function’s
implementation was modified, the exception specification might require
revision, too. Changing an exception specification could break client code,
because callers might be dependent on the original exception specification.
Compilers typically offered no help in maintaining consistency among function
implementations, exception specifications, and client code. Most programmers
ultimately decided that C++98 exception specifications weren’t worth the
trouble.

During work on C++11, a consensus emerged that the truly meaningful
information about a function’s exception-emitting behavior was whether it had
any. Black or white, either a function might emit an exception or it guaranteed
that it wouldn’t. This maybe-or-never dichotomy forms the basis of C++11’s
exception specifications, which essentially replace C++98’s. (C++98-style
exception specifications remain valid, but they’re deprecated.) In C++11,
unconditional noexcept is for functions that guarantee they won’t emit
exceptions.

Whether a function should be so declared is a matter of interface design. The
exception-emitting behavior of a function is of key interest to clients. Callers can

query a function’s noexcept status, and the results of such a query can affect the



exception safety or efficiency of the calling code. As such, whether a function is
noexcept is as important a piece of information as whether a member function

is const. Failure to declare a function noexcept when you know that it won’t
emit an exception is simply poor interface specification.

But there’s an additional incentive to apply noexcept to functions that won’t
produce exceptions: it permits compilers to generate better object code. To
understand why, it helps to examine the difference between the C++98 and
C++11 ways of saying that a function won’t emit exceptions. Consider a
function f that promises callers they’ll never receive an exception. The two ways
of expressing that are: int f(int x) throw(); // no exceptions from f: C++98 style
int f(int x) noexcept; // no exceptions from f: C++11 style

If, at runtime, an exception leaves f, f’s exception specification is violated. With
the C++98 exception specification, the call stack is unwound to f’s caller, and,
after some actions not relevant here, program execution is terminated. With the
C++11 exception specification, runtime behavior is slightly different: the stack is
only possibly unwound before program execution is terminated.

The difference between unwinding the call stack and possibly unwinding it has a
surprisingly large impact on code generation. In a noexcept function, optimizers
need not keep the runtime stack in an unwindable state if an exception would
propagate out of the function, nor must they ensure that objects in a noexcept
function are destroyed in the inverse order of construction should an exception
leave the function. Functions with “throw()” exception specifications lack such
optimization flexibility, as do functions with no exception specification at all.
The situation can be summarized this way: RetType function(params) noexcept;
// most optimizable RetType function(params) throw(); // less optimizable
RetType function(params); // less optimizable

This alone is sufficient reason to declare functions noexcept whenever you
know they won’t produce exceptions.

For some functions, the case is even stronger. The move operations are the
preeminent example. Suppose you have a C++98 code base making use of a

std: :vector<Widget>. Widgets are added to the std: :vector from time to
time via push_back: std::vector<Widget> vw; ... Widget w; ... // work with w
vw.push_back(w); // add w to vw ...



Assume this code works fine, and you have no interest in modifying it for
C++11. However, you do want to take advantage of the fact that C++11’s move
semantics can improve the performance of legacy code when move-enabled

types are involved. You therefore ensure that Widget has move operations,
either by writing them yourself or by seeing to it that the conditions for their
automatic generation are fulfilled (see Item 17).

When a new element is added to a std: :vector, it’s possible that the

std: :vector lacks space for it, i.e., that the std: :vector’s size is equal to its
capacity. When that happens, the std: :vector allocates a new, larger, chunk of
memory to hold its elements, and it transfers the elements from the existing
chunk of memory to the new one. In C++98, the transfer was accomplished by
copying each element from the old memory to the new memory, then destroying
the objects in the old memory. This approach enabled push_back to offer the
strong exception safety guarantee: if an exception was thrown during the
copying of the elements, the state of the std: : vector remained unchanged,
because none of the elements in the old memory were destroyed until all
elements had been successfully copied into the new memory.

In C++11, a natural optimization would be to replace the copying of

std: :vector elements with moves. Unfortunately, doing this runs the risk of
violating push_back’s exception safety guarantee. If n elements have been
moved from the old memory and an exception is thrown moving element n+1,
the push_back operation can’t run to completion. But the original std: :vector
has been modified: n of its elements have been moved from. Restoring their
original state may not be possible, because attempting to move each object back
into the original memory may itself yield an exception.

This is a serious problem, because the behavior of legacy code could depend on
push_back’s strong exception safety guarantee. Therefore, C++11
implementations can’t silently replace copy operations inside push_back with
moves unless it’s known that the move operations won’t emit exceptions. In that
case, having moves replace copies would be safe, and the only side effect would
be improved performance.

std::vector: :push_back takes advantage of this “move if you can, but copy if
you must” strategy, and it’s not the only function in the Standard Library that



does. Other functions sporting the strong exception safety guarantee in C++98
(e.g., std::vector::reserve, std: :deque::insert, etc.) behave the same
way. All these functions replace calls to copy operations in C++98 with calls to
move operations in C++11 only if the move operations are known to not emit
exceptions. But how can a function know if a move operation won’t produce an
exception? The answer is obvious: it checks to see if the operation is declared

noexcept.?

swap functions comprise another case where noexcept is particularly desirable.
swap is a key component of many STL algorithm implementations, and it’s
commonly employed in copy assignment operators, too. Its widespread use
renders the optimizations that noexcept affords especially worthwhile.
Interestingly, whether swaps in the Standard Library are noexcept is sometimes
dependent on whether user-defined swaps are noexcept. For example, the
declarations for the Standard Library’s swaps for arrays and std: :pair are:
template <class T, size_t N> void swap(T (&a)[N], // see T (&b)[N])
noexcept(noexcept(swap(*a, *b))); // below template <class T1, class T2> struct
pair { ... void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
noexcept(swap(second, p.second))); ... };

These functions are conditionally noexcept: whether they are noexcept
depends on whether the expressions inside the noexcept clauses are noexcept.
Given two arrays of Widget, for example, swapping them is noexcept only if
swapping individual elements in the arrays is noexcept, i.e., if swap for Widget
is noexcept. The author of Widget’s swap thus determines whether swapping
arrays of Widget is noexcept. That, in turn, determines whether other swaps,
such as the one for arrays of arrays of Widget, are noexcept. Similarly, whether
swapping two std: : pair objects containing Widgets is noexcept depends on
whether swap for Widgets is noexcept. The fact that swapping higher-level data
structures can generally be noexcept only if swapping their lower-level

constituents is noexcept should motivate you to offer noexcept swap functions
whenever you can.

By now, I hope you’re excited about the optimization opportunities that
noexcept affords. Alas, I must temper your enthusiasm. Optimization is
important, but correctness is more important. I noted at the beginning of this



Item that noexcept is part of a function’s interface, so you should declare a
function noexcept only if you are willing to commit to a noexcept
implementation over the long term. If you declare a function noexcept and later
regret that decision, your options are bleak. You can remove noexcept from the
function’s declaration (i.e., change its interface), thus running the risk of
breaking client code. You can change the implementation such that an exception
could escape, yet keep the original (now incorrect) exception specification. If
you do that, your program will be terminated if an exception tries to leave the
function. Or you can resign yourself to your existing implementation,
abandoning whatever kindled your desire to change the implementation in the
first place. None of these options is appealing.

The fact of the matter is that most functions are exception-neutral. Such
functions throw no exceptions themselves, but functions they call might emit
one. When that happens, the exception-neutral function allows the emitted
exception to pass through on its way to a handler further up the call chain.
Exception-neutral functions are never noexcept, because they may emit such
“just passing through” exceptions. Most functions, therefore, quite properly lack
the noexcept designation.

Some functions, however, have natural implementations that emit no exceptions,
and for a few more—notably the move operations and swap—being noexcept
can have such a significant payoff, it’s worth implementing them in a noexcept
manner if at all possible.* When you can honestly say that a function should
never emit exceptions, you should definitely declare it noexcept.

Please note that I said some functions have natural noexcept implementations.
Twisting a function’s implementation to permit a noexcept declaration is the tail
wagging the dog. Is putting the cart before the horse. Is not seeing the forest for
the trees. Is...choose your favorite metaphor. If a straightforward function
implementation might yield exceptions (e.g., by invoking a function that might
throw), the hoops you’ll jump through to hide that from callers (e.g., catching all
exceptions and replacing them with status codes or special return values) will not
only complicate your function’s implementation, it will typically complicate
code at call sites, too. For example, callers may have to check for status codes or
special return values. The runtime cost of those complications (e.g., extra
branches, larger functions that put more pressure on instruction caches, etc.)



could exceed any speedup you’d hope to achieve via noexcept, plus you’d be
saddled with source code that’s more difficult to comprehend and maintain.
That’d be poor software engineering.

For some functions, being noexcept is so important, they’re that way by default.
In C++98, it was considered bad style to permit the memory deallocation
functions (i.e., operator delete and operator delete[ ]) and destructors to
emit exceptions, and in C++11, this style rule has been all but upgraded to a
language rule. By default, all memory deallocation functions and all destructors
—both user-defined and compiler-generated—are implicitly noexcept. There’s
thus no need to declare them noexcept. (Doing so doesn’t hurt anything, it’s just
unconventional.) The only time a destructor is not implicitly noexcept is when a
data member of the class (including inherited members and those contained
inside other data members) is of a type that expressly states that its destructor
may emit exceptions (e.g., declares it “noexcept(false)”). Such destructors are
uncommon. There are none in the Standard Library, and if the destructor for an
object being used by the Standard Library (e.g., because it’s in a container or
was passed to an algorithm) emits an exception, the behavior of the program is
undefined.

It’s worth noting that some library interface designers distinguish functions with
wide contracts from those with narrow contracts. A function with a wide
contract has no preconditions. Such a function may be called regardless of the
state of the program, and it imposes no constraints on the arguments that callers
pass it.> Functions with wide contracts never exhibit undefined behavior.

Functions without wide contracts have narrow contracts. For such functions, if a
precondition is violated, results are undefined.

If you’re writing a function with a wide contract and you know it won’t emit
exceptions, following the advice of this Item and declaring it noexcept is easy.
For functions with narrow contracts, the situation is trickier. For example,
suppose you’re writing a function f taking a std: : string parameter, and
suppose f’s natural implementation never yields an exception. That suggests that
f should be declared noexcept.

Now suppose that f has a precondition: the length of its std: : string parameter
doesn’t exceed 32 characters. If f were to be called with a std: :string whose



length is greater than 32, behavior would be undefined, because a precondition
violation by definition results in undefined behavior. f is under no obligation to
check this precondition, because functions may assume that their preconditions
are satisfied. (Callers are responsible for ensuring that such assumptions are
valid.) Even with a precondition, then, declaring f noexcept seems appropriate:
void f(const std::string& s) noexcept; // precondition: // s.length() <= 32

But suppose that f’s implementer chooses to check for precondition violations.
Checking isn’t required, but it’s also not forbidden, and checking the
precondition could be useful, e.g., during system testing. Debugging an
exception that’s been thrown is generally easier than trying to track down the
cause of undefined behavior. But how should a precondition violation be
reported such that a test harness or a client error handler could detect it? A
straightforward approach would be to throw a “precondition was violated”
exception, but if f is declared noexcept, that would be impossible; throwing an
exception would lead to program termination. For this reason, library designers
who distinguish wide from narrow contracts generally reserve noexcept for
functions with wide contracts.

As a final point, let me elaborate on my earlier observation that compilers
typically offer no help in identifying inconsistencies between function
implementations and their exception specifications. Consider this code, which is
perfectly legal: void setup(); // functions defined elsewhere void cleanup(); void
doWork() noexcept { setup(); // set up work to be done ... // do the actual work
cleanup(); // perform cleanup actions }

Here, doWork is declared noexcept, even though it calls the non-noexcept
functions setup and cleanup. This seems contradictory, but it could be that

setup and cleanup document that they never emit exceptions, even though
they’re not declared that way. There could be good reasons for their non-

noexcept declarations. For example, they might be part of a library written in C.
(Even functions from the C Standard Library that have been moved into the std
namespace lack exception specifications, e.g., std: :strlen isn’t declared
noexcept.) Or they could be part of a C++98 library that decided not to use
C++98 exception specifications and hasn’t yet been revised for C++11.

Because there are legitimate reasons for noexcept functions to rely on code



lacking the noexcept guarantee, C++ permits such code, and compilers
generally don’t issue warnings about it.

Things to Remember

m noexcept is part of a function’s interface, and that means that callers may depend on it.
m noexcept functions are more optimizable than non-noexcept functions.

m noexcept is particularly valuable for the move operations, swap, memory deallocation
functions, and destructors.

m Most functions are exception-neutral rather than noexcept.

Item 15: Use constexpr whenever possible.

If there were an award for the most confusing new word in C++11, constexpr
would probably win it. When applied to objects, it’s essentially a beefed-up form
of const, but when applied to functions, it has a quite different meaning. Cutting
through the confusion is worth the trouble, because when constexpr
corresponds to what you want to express, you definitely want to use it.

Conceptually, constexpr indicates a value that’s not only constant, it’s known
during compilation. The concept is only part of the story, though, because when
constexpr is applied to functions, things are more nuanced than this suggests.
Lest I ruin the surprise ending, for now I'll just say that you can’t assume that
the results of constexpr functions are const, nor can you take for granted that
their values are known during compilation. Perhaps most intriguingly, these
things are features. It’s good that constexpr functions need not produce results
that are const or known during compilation!

But let’s begin with constexpr objects. Such objects are, in fact, const, and
they do, in fact, have values that are known at compile time. (Technically, their
values are determined during translation, and translation consists not just of
compilation but also of linking. Unless you write compilers or linkers for C++,
however, this has no effect on you, so you can blithely program as if the values

of constexpr objects were determined during compilation.)



Values known during compilation are privileged. They may be placed in read-
only memory, for example, and, especially for developers of embedded systems,
this can be a feature of considerable importance. Of broader applicability is that
integral values that are constant and known during compilation can be used in
contexts where C++ requires an integral constant expression. Such contexts
include specification of array sizes, integral template arguments (including
lengths of std: :array objects), enumerator values, alignment specifiers, and
more. If you want to use a variable for these kinds of things, you certainly want
to declare it constexpr, because then compilers will ensure that it has a
compile-time value: int sz; // non-constexpr variable ... constexpr auto
arraySizel = sz; // error! sz's value not // known at compilation std::array<int,
sz> datal; // error! same problem constexpr auto arraySize2 = 10; // fine, 10 is a
// compile-time constant std::array<int, arraySize2> data2; // fine, arraySize2 // is
constexpr

Note that const doesn’t offer the same guarantee as constexpr, because const
objects need not be initialized with values known during compilation: int sz; // as
before ... const auto arraySize = sz; // fine, arraySize is // const copy of sz
std::array<int, arraySize> data; // error! arraySize's value // not known at
compilation

Simply put, all constexpr objects are const, but not all const objects are
constexpr. If you want compilers to guarantee that a variable has a value that
can be used in contexts requiring compile-time constants, the tool to reach for is
constexpr, not const.

Usage scenarios for constexpr objects become more interesting when
constexpr functions are involved. Such functions produce compile-time
constants when they are called with compile-time constants. If they’re called
with values not known until runtime, they produce runtime values. This may
sound as if you don’t know what they’ll do, but that’s the wrong way to think
about it. The right way to view it is this:

m constexpr functions can be used in contexts that demand compile-time
constants. If the values of the arguments you pass to a constexpr function in
such a context are known during compilation, the result will be computed
during compilation. If any of the arguments’ values is not known during



compilation, your code will be rejected.

= When a constexpr function is called with one or more values that are not
known during compilation, it acts like a normal function, computing its result
at runtime. This means you don’t need two functions to perform the same
operation, one for compile-time constants and one for all other values. The

constexpr function does it all.

Suppose we need a data structure to hold the results of an experiment that can be
run in a variety of ways. For example, the lighting level can be high, low, or off
during the course of the experiment, as can the fan speed and the temperature,
etc. If there are n environmental conditions relevant to the experiment, each of
which has three possible states, the number of combinations is 3". Storing
experimental results for all combinations of conditions thus requires a data
structure with enough room for 3” values. Assuming each result is an int and
that n is known (or can be computed) during compilation, a std: :array could
be a reasonable data structure choice. But we’d need a way to compute 3” during
compilation. The C++ Standard Library provides std: : pow, which is the
mathematical functionality we need, but, for our purposes, there are two
problems with it. First, std: : pow works on floating-point types, and we need an
integral result. Second, std: :pow isn’t constexpr (i.e., isn’t guaranteed to
return a compile-time result when called with compile-time values), so we can’t
use it to specify a std: :array’s size.

Fortunately, we can write the pow we need. I'll show how to do that in a
moment, but first let’s look at how it could be declared and used: constexpr //
pow's a constexpr func int pow(int base, int exp) noexcept // that never throws {
... // impl is below } constexpr auto numConds = 5; // # of conditions
std::array<int, pow(3, numConds)> results; // results has // 3 numConds //
elements

Recall that the constexpr in front of pow doesn’t say that pow returns a const
value, it says that if base and exp are compile-time constants, pow’s result may
be used as a compile-time constant. If base and/or exp are not compile-time
constants, pow’s result will be computed at runtime. That means that pow can not
only be called to do things like compile-time-compute the size of a std: :array,



it can also be called in runtime contexts such as this: auto base =
readFromDB("base"); // get these values auto exp = readFromDB("exponent"); //
at runtime auto baseToExp = pow(base, exp); // call pow function // at runtime

Because constexpr functions must be able to return compile-time results when
called with compile-time values, restrictions are imposed on their
implementations. The restrictions differ between C++11 and C++14.

In C++11, constexpr functions may contain no more than a single executable
statement: a return. That sounds more limiting than it is, because two tricks can
be used to extend the expressiveness of constexpr functions beyond what you
might think. First, the conditional “? :” operator can be used in place of if-else
statements, and second, recursion can be used instead of loops. pow can therefore
be implemented like this: constexpr int pow(int base, int exp) noexcept { return
(exp ==07? 1 : base * pow(base, exp - 1)); }

This works, but it’s hard to imagine that anybody except a hard-core functional
programmer would consider it pretty. In C++14, the restrictions on constexpr
functions are substantially looser, so the following implementation becomes
possible: constexpr int pow(int base, int exp) noexcept // C++14 { auto result =
1; for (int i = 0; i < exp; ++i) result *= base; return result; }

constexpr functions are limited to taking and returning literal types, which
essentially means types that can have values determined during compilation. In
C++11, all built-in types except void qualify, but user-defined types may be
literal, too, because constructors and other member functions may be
constexpr: class Point { public: constexpr Point(double xVal = 0, double yVal
= 0) noexcept : x(xVal), y(yVal) {} constexpr double xValue() const noexcept {
return x; } constexpr double yValue() const noexcept { return y; } void
setX(double newX) noexcept { x = newX; } void setY(double newY’) noexcept {
y =newY; } private: double x, y; };

Here, the Point constructor can be declared constexpr, because if the
arguments passed to it are known during compilation, the value of the data
members of the constructed Point can also be known during compilation.
Points so initialized could thus be constexpr: constexpr Point p1(9.4, 27.7); //
fine, "runs" constexpr // ctor during compilation constexpr Point p2(28.8, 5.3); //
also fine



Similarly, the getters xValue and yValue can be constexpr, because if they’re
invoked on a Point object with a value known during compilation (e.g., a
constexpr Point object), the values of the data members x and y can be known
during compilation. That makes it possible to write constexpr functions that
call Point’s getters and to initialize constexpr objects with the results of such
functions: constexpr Point midpoint(const Point& p1, const Point& p2) noexcept
{ return { (p1.xValue() + p2.xValue()) / 2, // call constexpr (pl.yValue() +
p2.yValue()) / 2 }; // member funcs } constexpr auto mid = midpoint(p1, p2); //
init constexpr // object w/result of // constexpr function

This is very exciting. It means that the object mid, though its initialization
involves calls to constructors, getters, and a non-member function, can be
created in read-only memory! It means you could use an expression like
mid.xValue() * 10 in an argument to a template or in an expression specifying
the value of an enumerator!® It means that the traditionally fairly strict line
between work done during compilation and work done at runtime begins to blur,
and some computations traditionally done at runtime can migrate to compile
time. The more code taking part in the migration, the faster your software will
run. (Compilation may take longer, however.) In C++11, two restrictions prevent
Point’s member functions setX and setY from being declared constexpr.
First, they modify the object they operate on, and in C++11, constexpr member
functions are implicitly const. Second, they have void return types, and void
isn’t a literal type in C++11. Both these restrictions are lifted in C++14, so in
C++14, even Point’s setters can be constexpr: class Point { public: ...
constexpr void setX(double newX) noexcept // C++14 { x = newX; } constexpr
void setY(double newY) noexcept / C++14 { y = newY; } ... };

That makes it possible to write functions like this: // return reflection of p with
respect to the origin (C++14) constexpr Point reflection(const Point& p)
noexcept { Point result; // create non-const Point result.setX(-p.xValue()); // set
its x and y values result.setY(-p.yValue()); return result; // return copy of it }

Client code could look like this: constexpr Point p1(9.4, 27.7); // as above
constexpr Point p2(28.8, 5.3); constexpr auto mid = midpoint(p1, p2); constexpr
auto reflectedMid = // reflectedMid's value is reflection(mid); // (-19.1 -16.5) and
known // during compilation



The advice of this Item is to use constexpr whenever possible, and by now I
hope it’s clear why: both constexpr objects and constexpr functions can be
employed in a wider range of contexts than non-constexpr objects and
functions. By using constexpr whenever possible, you maximize the range of
situations in which your objects and functions may be used.

It’s important to note that constexpr is part of an object’s or function’s
interface. constexpr proclaims “I can be used in a context where C++ requires a
constant expression.” If you declare an object or function constexpr, clients
may use it in such contexts. If you later decide that your use of constexpr was a
mistake and you remove it, you may cause arbitrarily large amounts of client
code to stop compiling. (The simple act of adding I/O to a function for
debugging or performance tuning could lead to such a problem, because 1/0
statements are generally not permitted in constexpr functions.) Part of
“whenever possible” in “Use constexpr whenever possible” is your willingness
to make a long-term commitment to the constraints it imposes on the objects and
functions you apply it to.

Things to Remember

m constexpr objects are const and are initialized with values known during compilation.

m constexpr functions can produce compile-time results when called with arguments whose
values are known during compilation.

m constexpr objects and functions may be used in a wider range of contexts than non-
constexpr objects and functions.

m constexpr is part of an object’s or function’s interface.

Item 16: Make const member functions thread
safe.

If we’re working in a mathematical domain, we might find it convenient to have
a class representing polynomials. Within this class, it would probably be useful
to have a function to compute the root(s) of a polynomial, i.e., values where the



polynomial evaluates to zero. Such a function would not modify the polynomial,
so it’d be natural to declare it const: class Polynomial { public: using
RootsType = // data structure holding values std::vector<double>; // where
polynomial evals to zero ... // (see Item 9 for info on "using") RootsType roots()
const; ... };

Computing the roots of a polynomial can be expensive, so we don’t want to do it
if we don’t have to. And if we do have to do it, we certainly don’t want to do it
more than once. We’ll thus cache the root(s) of the polynomial if we have to
compute them, and we’ll implement roots to return the cached value. Here’s the
basic approach: class Polynomial { public: using RootsType =
std::vector<double>; RootsType roots() const { if (rootsAreValid) { // if cache
not valid ... // compute roots, // store them in rootVals rootsAreValid = true; }
return rootVals; } private: mutable bool rootsAreValid{ false }; // see Item 7 for
info mutable RootsType rootVals{}; // on initializers };

Conceptually, roots doesn’t change the Polynomial object on which it
operates, but, as part of its caching activity, it may need to modify rootVals and
rootsAreValid. That’s a classic use case for mutable, and that’s why it’s part
of the declarations for these data members.

Imagine now that two threads simultaneously call roots on a Polynomial
object: Polynomial p; ... /*----- Thread 1 ----- ------- Thread 2 ------- */ auto
rootsOfP = p.roots(); auto valsGivingZero = p.roots();

This client code is perfectly reasonable. roots is a const member function, and
that means it represents a read operation. Having multiple threads perform a read
operation without synchronization is safe. At least it’s supposed to be. In this
case, it’s not, because inside roots, one or both of these threads might try to
modify the data members rootsAreValid and rootVals. That means that this
code could have different threads reading and writing the same memory without
synchronization, and that’s the definition of a data race. This code has undefined
behavior.

The problem is that roots is declared const, but it’s not thread safe. The const
declaration is as correct in C++11 as it would be in C++98 (retrieving the roots
of a polynomial doesn’t change the value of the polynomial), so what requires
rectification is the lack of thread safety.



The easiest way to address the issue is the usual one: employ a mutex: class
Polynomial { public: using RootsType = std::vector<double>; RootsType roots()
const { std::lock_guard<std::mutex> g(m); // lock mutex if (rootsAreValid) { //
if cache not valid ... // compute/store roots rootsAreValid = true; } return
rootVals; } // unlock mutex private: mutable std::mutex m; mutable bool
rootsAreValid{ false }; mutable RootsType rootVals{}; };

The std: :mutex m is declared mutable, because locking and unlocking it are
non-const member functions, and within roots (a const member function), m
would otherwise be considered a const object.

It’s worth noting that because std: :mutex is a move-only type (i.e., a type that
can be moved, but not copied), a side effect of adding m to Polynomial is that
Polynomial loses the ability to be copied. It can still be moved, however.

In some situations, a mutex is overkill. For example, if all you’re doing is
counting how many times a member function is called, a std: :atomic counter
(i.e, one where other threads are guaranteed to see its operations occur
indivisibly—see Item 40) will often be a less expensive way to go. (Whether it
actually is less expensive depends on the hardware you’re running on and the
implementation of mutexes in your Standard Library.) Here’s how you can
employ a std: :atomic to count calls: class Point { // 2D point public: ... double
distanceFromOrigin() const noexcept // see Item 14 { // for noexcept
++callCount; // atomic increment return std::sqrt((x * x) + (y * y)); } private:
mutable std::atomic<unsigned> callCount{ 0 }; double x, y; };

Like std: :mutexes, std: :atomics are move-only types, so the existence of
callCount in Point means that Point is also move-only.

Because operations on std: :atomic variables are often less expensive than
mutex acquisition and release, you may be tempted to lean on std: :atomics
more heavily than you should. For example, in a class caching an expensive-to-
compute int, you might try to use a pair of std: :atomic variables instead of a
mutex: class Widget { public: ... int magicValue() const { if (cacheValid) return
cachedValue; else { auto vall = expensiveComputation1(); auto val2 =
expensiveComputation2(); cachedValue = vall + val2; // uh oh, part 1
cacheValid = true; // uh oh, part 2 return cachedValue; } } private: mutable
std::atomic<bool> cacheValid{ false }; mutable std::atomic<int> cachedValue;



1
This will work, but sometimes it will work a lot harder than it should. Consider:

m A thread calls Widget: :magicValue, sees cacheValid as false, performs
the two expensive computations, and assigns their sum to cachedValue.

m At that point, a second thread calls Widget: :magicValue, also sees
cacheValid as false, and thus carries out the same expensive computations
that the first thread has just finished. (This “second thread” may in fact be
several other threads.)

Such behavior is contrary to the goal of caching. Reversing the order of the
assignments to cachedValue and CacheValid eliminates that problem, but the
result is even worse: class Widget { public: ... int magicValue() const { if
(cacheValid) return cachedValue; else { auto vall = expensiveComputation1();
auto val2 = expensiveComputation2(); cacheValid = true; // uh oh, part 1 return
cachedValue = vall + val2; /uh oh, part2 } } ... };

Imagine that cacheValid is false, and then:

= One thread calls Widget: :magicValue and executes through the point where
cacheValid is set to true.

» At that moment, a second thread calls Widget: :magicValue and checks
cacheValid. Seeing it true, the thread returns cachedValue, even though
the first thread has not yet made an assignment to it. The returned value is
therefore incorrect.

There’s a lesson here. For a single variable or memory location requiring
synchronization, use of a std: :atomic is adequate, but once you get to two or
more variables or memory locations that require manipulation as a unit, you
should reach for a mutex. For Widget: :magicValue, that would look like this:
class Widget { public: ... int magicValue() const { std::lock_guard<std::mutex>
guard(m); // lock m if (cacheValid) return cachedValue; else { auto vall =
expensiveComputation1(); auto val2 = expensiveComputation2(); cachedValue
= vall + val2; cacheValid = true; return cachedValue; } } // unlock m ... private:
mutable std::mutex m; mutable int cachedValue; // no longer atomic mutable



bool cacheValid{ false }; // no longer atomic };

Now, this Item is predicated on the assumption that multiple threads may
simultaneously execute a const member function on an object. If you’re writing
a const member function where that’s not the case—where you can guarantee
that there will never be more than one thread executing that member function on
an object—the thread safety of the function is immaterial. For example, it’s
unimportant whether member functions of classes designed for exclusively
single-threaded use are thread safe. In such cases, you can avoid the costs
associated with mutexes and std: :atomics, as well as the side effect of their
rendering the classes containing them move-only. However, such threading-free
scenarios are increasingly uncommon, and they’re likely to become rarer still.
The safe bet is that const member functions will be subject to concurrent
execution, and that’s why you should ensure that your const member functions
are thread safe.

Things to Remember

m Make const member functions thread safe unless you’re certain they’ll never be used in a
concurrent context.

m Use of std: :atomic variables may offer better performance than a mutex, but they’re
suited for manipulation of only a single variable or memory location.

Item 17: Understand special member function
generation.

In official C++ parlance, the special member functions are the ones that C++ is
willing to generate on its own. C++98 has four such functions: the default
constructor, the destructor, the copy constructor, and the copy assignment
operator. There’s fine print, of course. These functions are generated only if
they’re needed, i.e., if some code uses them without their being expressly
declared in the class. A default constructor is generated only if the class declares
no constructors at all. (This prevents compilers from creating a default
constructor for a class where you’ve specified that constructor arguments are

required.) Generated special member functions are implicitly public and inline,



and they’re nonvirtual unless the function in question is a destructor in a derived
class inheriting from a base class with a virtual destructor. In that case, the
compiler-generated destructor for the derived class is also virtual.

But you already know these things. Yes, yes, ancient history: Mesopotamia, the
Shang dynasty, FORTRAN, C++98. But times have changed, and the rules for
special member function generation in C++ have changed with them. It’s
important to be aware of the new rules, because few things are as central to
effective C++ programming as knowing when compilers silently insert member
functions into your classes.

As of C++11, the special member functions club has two more inductees: the
move constructor and the move assignment operator. Their signatures are: class
Widget { public: ... Widget(Widget&& rhs); // move constructor Widget&
operator=(Widget&& rhs); // move assignment operator ... };

The rules governing their generation and behavior are analogous to those for
their copying siblings. The move operations are generated only if they’re
needed, and if they are generated, they perform “memberwise moves” on the
non-static data members of the class. That means that the move constructor
move-constructs each non-static data member of the class from the
corresponding member of its parameter rhs, and the move assignment operator
move-assigns each non-static data member from its parameter. The move
constructor also move-constructs its base class parts (if there are any), and the
move assignment operator move-assigns its base class parts.

Now, when I refer to a move operation move-constructing or move-assigning a
data member or base class, there is no guarantee that a move will actually take
place. “Memberwise moves” are, in reality, more like memberwise move
requests, because types that aren’t move-enabled (i.e., that offer no special
support for move operations, e.g., most C++98 legacy classes) will be “moved”
via their copy operations. The heart of each memberwise “move” is application
of std: :move to the object to be moved from, and the result is used during
function overload resolution to determine whether a move or a copy should be
performed. Item 23 covers this process in detail. For this Item, simply remember
that a memberwise move consists of move operations on data members and base
classes that support move operations, but a copy operation for those that don’t.

As is the case with the copy operations, the move operations aren’t generated if



you declare them yourselt. However, the precise conditions under which they are
generated differ a bit from those for the copy operations.

The two copy operations are independent: declaring one doesn’t prevent
compilers from generating the other. So if you declare a copy constructor, but no
copy assignment operator, then write code that requires copy assignment,
compilers will generate the copy assignment operator for you. Similarly, if you
declare a copy assignment operator, but no copy constructor, yet your code
requires copy construction, compilers will generate the copy constructor for you.
That was true in C++98, and it’s still true in C++11.

The two move operations are not independent. If you declare either, that
prevents compilers from generating the other. The rationale is that if you declare,
say, a move constructor for your class, you’re indicating that there’s something
about how move construction should be implemented that’s different from the
default memberwise move that compilers would generate. And if there’s
something wrong with memberwise move construction, there’d probably be
something wrong with memberwise move assignment, too. So declaring a move
constructor prevents a move assignment operator from being generated, and
declaring a move assignment operator prevents compilers from generating a
move constructor.

Furthermore, move operations won’t be generated for any class that explicitly
declares a copy operation. The justification is that declaring a copy operation
(construction or assignment) indicates that the normal approach to copying an
object (memberwise copy) isn’t appropriate for the class, and compilers figure
that if memberwise copy isn’t appropriate for the copy operations, memberwise
move probably isn’t appropriate for the move operations.

This goes in the other direction, too. Declaring a move operation (construction or
assignment) in a class causes compilers to disable the copy operations. (The
copy operations are disabled by deleting them—see Item 11). After all, if
memberwise move isn’t the proper way to move an object, there’s no reason to
expect that memberwise copy is the proper way to copy it. This may sound like
it could break C++98 code, because the conditions under which the copy
operations are enabled are more constrained in C++11 than in C++98, but this is
not the case. C++98 code can’t have move operations, because there was no such
thing as “moving” objects in C++98. The only way a legacy class can have user-



declared move operations is if they were added for C++11, and classes that are
modified to take advantage of move semantics have to play by the C++11 rules
for special member function generation.

Perhaps you’ve heard of a guideline known as the Rule of Three. The Rule of
Three states that if you declare any of a copy constructor, copy assignment
operator, or destructor, you should declare all three. It grew out of the
observation that the need to take over the meaning of a copy operation almost
always stemmed from the class performing some kind of resource management,
and that almost always implied that (1) whatever resource management was
being done in one copy operation probably needed to be done in the other copy
operation and (2) the class destructor would also be participating in management
of the resource (usually releasing it). The classic resource to be managed was
memory, and this is why all Standard Library classes that manage memory (e.g.,
the STL containers that perform dynamic memory management) all declare “the
big three”: both copy operations and a destructor.

A consequence of the Rule of Three is that the presence of a user-declared
destructor indicates that simple memberwise copy is unlikely to be appropriate
for the copying operations in the class. That, in turn, suggests that if a class
declares a destructor, the copy operations probably shouldn’t be automatically
generated, because they wouldn’t do the right thing. At the time C++98 was
adopted, the significance of this line of reasoning was not fully appreciated, so in
C++98, the existence of a user-declared destructor had no impact on compilers’
willingness to generate copy operations. That continues to be the case in C++11,
but only because restricting the conditions under which the copy operations are
generated would break too much legacy code.

The reasoning behind the Rule of Three remains valid, however, and that,
combined with the observation that declaration of a copy operation precludes the
implicit generation of the move operations, motivates the fact that C++11 does
not generate move operations for a class with a user-declared destructor.

So move operations are generated for classes (when needed) only if these three
things are true:

m No copy operations are declared in the class.

m No move operations are declared in the class.



m No destructor is declared in the class.

At some point, analogous rules may be extended to the copy operations, because
C++11 deprecates the automatic generation of copy operations for classes
declaring copy operations or a destructor. This means that if you have code that
depends on the generation of copy operations in classes declaring a destructor or
one of the copy operations, you should consider upgrading these classes to
eliminate the dependence. Provided the behavior of the compiler-generated
functions is correct (i.e, if memberwise copying of the class’s non-static data
members is what you want), your job is easy, because C++11’s “= default” lets
you say that explicitly: class Widget { public: ... ~Widget(); // user-declared dtor
... // default copy ctor Widget(const Widget&) = default; // behavior is OK
Widget& // default copy assign operator=(const Widget&) = default; // behavior
isOK ... };

This approach is often useful in polymorphic base classes, i.e., classes defining
interfaces through which derived class objects are manipulated. Polymorphic
base classes normally have virtual destructors, because if they don’t, some
operations (e.g., the use of delete or typeid on a derived class object through a
base class pointer or reference) yield undefined or misleading results. Unless a
class inherits a destructor that’s already virtual, the only way to make a
destructor virtual is to explicitly declare it that way. Often, the default
implementation would be correct, and “= default” is a good way to express
that. However, a user-declared destructor suppresses generation of the move
operations, so if movability is to be supported, “= default” often finds a second
application. Declaring the move operations disables the copy operations, so if
copyability is also desired, one more round of “= default” does the job: class
Base { public: virtual ~Base() = default; // make dtor virtual Base(Base&&) =
default; // support moving Base& operator=(Base&&) = default; Base(const
Base&) = default; // support copying Base& operator=(const Base&) = default;
8

In fact, even if you have a class where compilers are willing to generate the copy
and move operations and where the generated functions would behave as you

want, you may choose to adopt a policy of declaring them yourself and using “=
default” for their definitions. It’s more work, but it makes your intentions
clearer, and it can help you sidestep some fairly subtle bugs. For example,



suppose you have a class representing a string table, i.e., a data structure that
permits fast lookups of string values via an integer ID: class StringTable {
public: StringTable() {} ... // functions for insertion, erasure, lookup, // etc., but
no copy/move/dtor functionality private: std::map<int, std::string> values; };

Assuming that the class declares no copy operations, no move operations, and no
destructor, compilers will automatically generate these functions if they are used.
That’s very convenient.

But suppose that sometime later, it’s decided that logging the default
construction and the destruction of such objects would be useful. Adding that
functionality is easy: class StringTable { public: StringTable() {
makeLogEntry("Creating StringTable object"); } // added ~StringTable() // also
{ makeLogEntry("Destroying StringTable object™); } // added ... // other funcs
as before private: std::map<int, std::string> values; // as before };

This looks reasonable, but declaring a destructor has a potentially significant
side effect: it prevents the move operations from being generated. However,
creation of the class’s copy operations is unaffected. The code is therefore likely
to compile, run, and pass its functional testing. That includes testing its move
functionality, because even though this class is no longer move-enabled, requests
to move it will compile and run. Such requests will, as noted earlier in this Item,
cause copies to be made. Which means that code “moving” StringTable
objects actually copies them, i.e., copies the underlying std: :map<int,

std: :string> objects. And copying a std: :map<int, std::string> is likely
to be orders of magnitude slower than moving it. The simple act of adding a
destructor to the class could thereby have introduced a significant performance
problem! Had the copy and move operations been explicitly defined using “=
default”, the problem would not have arisen.

Now, having endured my endless blathering about the rules governing the copy
and move operations in C++11, you may wonder when I’ll turn my attention to
the two other special member functions, the default constructor and the
destructor. That time is now, but only for this sentence, because almost nothing
has changed for these member functions: the rules in C++11 are nearly the same
as in C++98.

The C++11 rules governing the special member functions are thus:



m Default constructor: Same rules as C++98. Generated only if the class
contains no user-declared constructors.

» Destructor: Essentially same rules as C++98; sole difference is that

destructors are noexcept by default (see Item 14). As in C++98, virtual only
if a base class destructor is virtual.

= Copy constructor: Same runtime behavior as C++98: memberwise copy
construction of non-static data members. Generated only if the class lacks a
user-declared copy constructor. Deleted if the class declares a move
operation. Generation of this function in a class with a user-declared copy
assignment operator or destructor is deprecated.

= Copy assignment operator: Same runtime behavior as C++98: memberwise
copy assignment of non-static data members. Generated only if the class
lacks a user-declared copy assignment operator. Deleted if the class declares
a move operation. Generation of this function in a class with a user-declared
copy constructor or destructor is deprecated.

=m Move constructor and move assignment operator: Each performs
memberwise moving of non-static data members. Generated only if the class
contains no user-declared copy operations, move operations, or destructor.

Note that there’s nothing in the rules about the existence of a member function
template preventing compilers from generating the special member functions.
That means that if Widget looks like this, class Widget { ... template<typename
T> // construct Widget Widget(const T& rhs); // from anything
template<typename T> // assign Widget Widget& operator=(const T& rhs); //
from anything ... };

compilers will still generate copy and move operations for Widget (assuming the
usual conditions governing their generation are fulfilled), even though these
templates could be instantiated to produce the signatures for the copy constructor
and copy assignment operator. (That would be the case when T is Widget.) In all
likelihood, this will strike you as an edge case barely worth acknowledging, but
there’s a reason I’'m mentioning it. [tem 26 demonstrates that it can have
important consequences.



Things to Remember

m The special member functions are those compilers may generate on their own: default
constructor, destructor, copy operations, and move operations.

m Move operations are generated only for classes lacking explicitly declared move
operations, copy operations, and a destructor.

m The copy constructor is generated only for classes lacking an explicitly declared copy
constructor, and it’s deleted if a move operation is declared. The copy assignment operator
is generated only for classes lacking an explicitly declared copy assignment operator, and
it’s deleted if a move operation is declared. Generation of the copy operations in classes
with an explicitly declared destructor is deprecated.

= Member function templates never suppress generation of special member functions.

! More flexible designs—ones that permit callers to determine whether
parentheses or braces should be used in functions generated from a template—
are possible. For details, see the 5 June 2013 entry of Andrzej’s C++ blog,
“Intuitive interface — Part 1.”

2 Applying final to a virtual function prevents the function from being
overridden in derived classes. final may also be applied to a class, in which
case the class is prohibited from being used as a base class.

? The checking is typically rather roundabout. Functions like
std::vector::push_back call std: :move_1if_noexcept, a variation of

std: :move that conditionally casts to an rvalue (see Item 23), depending on
whether the type’s move constructor is noexcept. In turn,
std::move_1if_noexcept consults std::1s_nothrow_move_constructible,
and the value of this type trait (see Item 9) is set by compilers, based on whether
the move constructor has a noexcept (or throw()) designation.

* The interface specifications for move operations on containers in the Standard
Library lack noexcept. However, implementers are permitted to strengthen
exception specifications for Standard Library functions, and, in practice, it is
common for at least some container move operations to be declared noexcept.
That practice exemplifies this Item’s advice. Having found that it’s possible to
write container move operations such that exceptions aren’t thrown,


http://akrzemi1.wordpress.com/
http://akrzemi1.wordpress.com/2013/06/05/intuitive-interface-part-i/

implementers often declare the operations noexcept, even though the Standard
does not require them to do so.

> “Regardless of the state of the program” and “no constraints” doesn’t legitimize
programs whose behavior is already undefined. For example,

std: :vector::size has a wide contract, but that doesn’t require that it behave
reasonably if you invoke it on a random chunk of memory that you’ve cast to a
std: :vector. The result of the cast is undefined, so there are no behavioral
guarantees for the program containing the cast.

® Because Point: :xValue returns double, the type of mid.xValue() * 10 is
also double. Floating-point types can’t be used to instantiate templates or to
specify enumerator values, but they can be used as part of larger expressions that
yield integral types. For example, static_cast<int>(mid.xValue() * 10)
could be used to instantiate a template or to specify an enumerator value.



Chapter 4. Smart Pointers

Poets and songwriters have a thing about love. And sometimes about counting.
Occasionally both. Inspired by the rather different takes on love and counting by
Elizabeth Barrett Browning (“How do I love thee? Let me count the ways.”) and
Paul Simon (“There must be 50 ways to leave your lover.”), we might try to
enumerate the reasons why a raw pointer is hard to love:

1.

Its declaration doesn’t indicate whether it points to a single object or to an
array.

Its declaration reveals nothing about whether you should destroy what it
points to when you’re done using it, i.e., if the pointer owns the thing it
points to.

If you determine that you should destroy what the pointer points to, there’s
no way to tell how. Should you use delete, or is there a different
destruction mechanism (e.g., a dedicated destruction function the pointer
should be passed to0)?

If you manage to find out that delete is the way to go, Reason 1 means it
may not be possible to know whether to use the single-object form
(“delete”) or the array form (“delete []”). If you use the wrong form,
results are undefined.

Assuming you ascertain that the pointer owns what it points to and you
discover how to destroy it, it’s difficult to ensure that you perform the
destruction exactly once along every path in your code (including those due
to exceptions). Missing a path leads to resource leaks, and doing the
destruction more than once leads to undefined behavior.

There’s typically no way to tell if the pointer dangles, i.e., points to
memory that no longer holds the object the pointer is supposed to point to.
Dangling pointers arise when objects are destroyed while pointers still
point to them.



Raw pointers are powerful tools, to be sure, but decades of experience have
demonstrated that with only the slightest lapse in concentration or discipline,
these tools can turn on their ostensible masters.

Smart pointers are one way to address these issues. Smart pointers are wrappers
around raw pointers that act much like the raw pointers they wrap, but that avoid
many of their pitfalls. You should therefore prefer smart pointers to raw pointers.
Smart pointers can do virtually everything raw pointers can, but with far fewer
opportunities for error.

There are four smart pointers in C++11: std: :auto_ptr, std: :unique_ptr,
std: :shared_ptr, and std: :weak_ptr. All are designed to help manage the
lifetimes of dynamically allocated objects, i.e., to avoid resource leaks by
ensuring that such objects are destroyed in the appropriate manner at the
appropriate time (including in the event of exceptions).

std: :auto_ptr is a deprecated leftover from C++98. It was an attempt to
standardize what later became C++11’s std: :unique_ptr. Doing the job right
required move semantics, but C++98 didn’t have them. As a workaround,

std: :auto_ptr co-opted its copy operations for moves. This led to surprising
code (copying a std: :auto_ptr sets it to null!) and frustrating usage
restrictions (e.g., it’s not possible to store std: :auto_ptrs in containers).

std: :unique_ptr does everything std: :auto_ptr does, plus more. It does it as
efficiently, and it does it without warping what it means to copy an object. It’s
better than std: :auto_ptr in every way. The only legitimate use case for

std: :auto_ptr is a need to compile code with C++98 compilers. Unless you
have that constraint, you should replace std: :auto_ptr with std: :unique_ptr
and never look back.

The smart pointer APIs are remarkably varied. About the only functionality
common to all is default construction. Because comprehensive references for
these APIs are widely available, I’ll focus my discussions on information that’s
often missing from API overviews, e.g., noteworthy use cases, runtime cost
analyses, etc. Mastering such information can be the difference between merely
using these smart pointers and using them effectively.



Item 18: Use std::unique_ptr for exclusive-
ownership resource management.

When you reach for a smart pointer, std: :unique_ptr should generally be the
one closest at hand. It’s reasonable to assume that, by default,

std: :unique_ptrs are the same size as raw pointers, and for most operations
(including dereferencing), they execute exactly the same instructions. This
means you can use them even in situations where memory and cycles are tight. If
a raw pointer is small enough and fast enough for you, a std: :unique_ptr
almost certainly is, too.

std: :unique_ptr embodies exclusive ownership semantics. A non-null

std: :unique_ptr always owns what it points to. Moving a std: :unique_ptr
transfers ownership from the source pointer to the destination pointer. (The
source pointer is set to null.) Copying a std: :unique_ptr isn’t allowed,
because if you could copy a std: :unique_ptr, you’d end up with two

std: :unique_ptrs to the same resource, each thinking it owned (and should
therefore destroy) that resource. std: :unique_ptr is thus a move-only type.
Upon destruction, a non-null std: :unique_ptr destroys its resource. By
default, resource destruction is accomplished by applying delete to the raw
pointer inside the std: :unique_ptr.

A common use for std: :unique_ptr is as a factory function return type for
objects in a hierarchy. Suppose we have a hierarchy for types of investments

(e.g., stocks, bonds, real estate, etc.) with a base class Investment.

class Investment { .. };

class Stock:
public Investment { .. };

class Bond:
public Investment { .. };

class RealEstate:
public Investment { .. };



Investment I

JAN

Stock | Bond | RealEstate

A factory function for such a hierarchy typically allocates an object on the heap
and returns a pointer to it, with the caller being responsible for deleting the
object when it’s no longer needed. That’s a perfect match for std: :unique_ptr,
because the caller acquires responsibility for the resource returned by the factory
(i.e., exclusive ownership of it), and the std: :unique_ptr automatically deletes
what it points to when the std: :unique_ptr is destroyed. A factory function for
the Investment hierarchy could be declared like this:

template<typename... Ts> // return std::unique_ptr
std: :unique_ptr<Investment> // to an object created
makeInvestment(Ts&&... params); // from the given args

Callers could use the returned std: :unique_ptr in a single scope as follows,

{
auto pInvestment = // pInvestment is of type
makeInvestment( arguments ); // std::unique ptr<Investment>
} // destroy *pInvestment

but they could also use it in ownership-migration scenarios, such as when the

std: :unique_ptr returned from the factory is moved into a container, the
container element is subsequently moved into a data member of an object, and



that object is later destroyed. When that happens, the object’s std: :unique_ptr
data member would also be destroyed, and its destruction would cause the
resource returned from the factory to be destroyed. If the ownership chain got
interrupted due to an exception or other atypical control flow (e.g., early
function return or break from a loop), the std: :unique_ptr owning the
managed resource would eventually have its destructor called,” and the resource
it was managing would thereby be destroyed.

By default, that destruction would take place via delete, but, during
construction, std: :unique_ptr objects can be configured to use custom
deleters: arbitrary functions (or function objects, including those arising from
lambda expressions) to be invoked when it’s time for their resources to be
destroyed. If the object created by makeInvestment shouldn’t be directly
deleted, but instead should first have a log entry written, makeInvestment
could be implemented as follows. (An explanation follows the code, so don’t
worry if you see something whose motivation is less than obvious.)

auto delInvmt = [](Investment* pInvestment) // custom
{ // deleter
makeLogEntry(pInvestment); // (a lambda
delete pInvestment; // expression)
I¥
template<typename... Ts> // revised
std: :unique_ptr<Investment, decltype(delInvmt)> // return type
makeInvestment(Ts&&... params)
{
std::unique_ptr<Investment, decltype(delInvmt)> // ptr to be
pInv(nullptr, delInvmt); // returned

if ( /* a Stock object should be created */ )

: pInv.reset(new Stock(std::forward<Ts>(params)...));
ilse if ( /* a Bond object should be created */ )

: pInv.reset(new Bond(std::forward<Ts>(params)...));
ilse if ( /* a RealEstate object should be created */ )
{

pInv.reset(new RealEstate(std::forward<Ts>(params)...));

}



return pInv;

}

In a moment, I’ll explain how this works, but first consider how things look if
you’re a caller. Assuming you store the result of the makeInvestment call in an
auto variable, you frolic in blissful ignorance of the fact that the resource you’re
using requires special treatment during deletion. In fact, you veritably bathe in
bliss, because the use of std: :unique_ptr means you need not concern
yourself with when the resource should be destroyed, much less ensure that the
destruction happens exactly once along every path through the program.

std: :unique_ptr takes care of all those things automatically. From a client’s
perspective, makeInvestment’s interface is sweet.

The implementation is pretty nice, too, once you understand the following:

m delInvmt is the custom deleter for the object returned from

makeInvestment. All custom deletion functions accept a raw pointer to the
object to be destroyed, then do what is necessary to destroy that object. In this

case, the action is to call makeLogEntry and then apply delete. Using a

lambda expression to create delInvmt is convenient, but, as we’ll see shortly,
it’s also more efficient than writing a conventional function.

= When a custom deleter is to be used, its type must be specified as the second
type argument to std: :unique_ptr. In this case, that’s the type of delInvmt,
and that’s why the return type of makeInvestment is
std: :unique_ptr<Investment, decltype(delInvmt)>. (For information
about decltype, see Item 3.)

m The basic strategy of makeInvestment is to create a null std: :unique_ptr,
make it point to an object of the appropriate type, and then return it. To
associate the custom deleter delInvmt with pInv, we pass that as its second
constructor argument.

m Attempting to assign a raw pointer (e.g., from new) to a std: :unique_ptr
won’t compile, because it would constitute an implicit conversion from a raw
to a smart pointer. Such implicit conversions can be problematic, so C++11’s



smart pointers prohibit them. That’s why reset is used to have pInv assume
ownership of the object created via new.

m With each use of new, we use std: : forward to perfect-forward the
arguments passed to makeInvestment (see Item 25). This makes all the
information provided by callers available to the constructors of the objects
being created.

m The custom deleter takes a parameter of type Investment*. Regardless of the
actual type of object created inside makeInvestment (i.e., Stock, Bond, or
RealEstate), it will ultimately be deleted inside the lambda expression as
an Investment* object. This means we’ll be deleting a derived class object

via a base class pointer. For that to work, the base class—Investment—must
have a virtual destructor:

class Investment {

public:
. // essential
virtual ~Investment(); // design

// component!

1

In C++14, the existence of function return type deduction (see Item 3) means

that makeInvestment could be implemented in this simpler and more
encapsulated fashion:

template<typename... Ts>
auto makeInvestment(Ts&&... params) /] C++14
{
auto delInvmt = [](Investment* pInvestment) // this is now
{ // inside
makeLogEntry(pInvestment); // make-
delete pInvestment; // Investment
I¥
std::unique_ptr<Investment, decltype(delInvmt)> // as
pInv(nullptr, delInvmt); // before
if (..) // as before

{



I remarked earlier that, when using the default deleter (i.e., delete), you can

reasonably assume that std: :unique_ptr objects are the same size as raw
pointers. When custom deleters enter the picture, this may no longer be the case.

pInv.reset(new Stock(std::forward<Ts>(params)...));

ilse if (..) // as before
: pInv.reset(new Bond(std::forward<Ts>(params)...));

ilse if (..) // as before
: pInv.reset(new RealEstate(std::forward<Ts>(params)...));
ieturn pInv; // as before

Deleters that are function pointers generally cause the size of a

std: :unique_ptr to grow from one word to two. For deleters that are function
objects, the change in size depends on how much state is stored in the function
object. Stateless function objects (e.g., from lambda expressions with no
captures) incur no size penalty, and this means that when a custom deleter can be
implemented as either a function or a captureless lambda expression, the lambda

is preferable:

auto delInvmtl = [](Investment* pInvestment) // custom
{ // deleter
makeLogEntry(pInvestment); // as
delete pInvestment; /| stateless
}s // lambda
template<typename... Ts> // return type
std: :unique_ptr<Investment, decltype(delInvmtl)> // has size of
makeInvestment(Ts&&... args); // Investment*
void delInvmt2(Investment* pInvestment) // custom
{ // deleter
makeLogEntry(pInvestment); // as function
delete pInvestment;
}
template<typename... Ts> // return type has
std: :unique_ptr<Investment, // size of Investment*

void (*)(Investment*)> // plus at least size



makeInvestment(Ts&&... params); /] of function pointer!

Function object deleters with extensive state can yield std: :unique_ptr objects
of significant size. If you find that a custom deleter makes your

std: :unique_ptrs unacceptably large, you probably need to change your
design.

Factory functions are not the only common use case for std: :unique_ptrs.
They’re even more popular as a mechanism for implementing the Pimpl Idiom.
The code for that isn’t complicated, but in some cases it’s less than
straightforward, so I’ll refer you to Item 22, which is dedicated to the topic.

std: :unique_ptr comes in two forms, one for individual objects

(std: :unique_ptr<T>) and one for arrays (std: :unique_ptr<T[]>). Asa
result, there’s never any ambiguity about what kind of entity a

std: :unique_ptr points to. The std: :unique_ptr API is designed to match
the form you’re using. For example, there’s no indexing operator (operator[])
for the single-object form, while the array form lacks dereferencing operators
(operator* and operator->).

The existence of std: :unique_ptr for arrays should be of only intellectual
interest to you, because std::array, std: :vector, and std: :string are
virtually always better data structure choices than raw arrays. About the only
situation I can conceive of when a std: :unique_ptr<T[ ]> would make sense
would be when you’re using a C-like API that returns a raw pointer to a heap
array that you assume ownership of.

std: :unique_ptr is the C++11 way to express exclusive ownership, but one of
its most attractive features is that it easily and efficiently converts to a

std::shared_ptr:

std::shared_ptr<Investment> sp = // converts std::unique_ptr
makeInvestment( arguments ); // to std::shared_ptr

This is a key part of why std: :unique_ptr is so well suited as a factory
function return type. Factory functions can’t know whether callers will want to
use exclusive-ownership semantics for the object they return or whether shared

ownership (i.e., std: :shared_ptr) would be more appropriate. By returning a



std: :unique_ptr, factories provide callers with the most efficient smart
pointer, but they don’t hinder callers from replacing it with its more flexible
sibling. (For information about std: :shared_ptr, proceed to Item 19.)

Things to Remember

m std::unique_ptr is a small, fast, move-only smart pointer for managing resources with
exclusive-ownership semantics.

m By default, resource destruction takes place via delete, but custom deleters can be
specified. Stateful deleters and function pointers as deleters increase the size of
std: :unique_ptr objects.

m Converting a std: :unique_ptr to a std: :shared_ptr is easy.

Item 19: Use std::shared_ptr for shared-
ownership resource management.

Programmers using languages with garbage collection point and laugh at what
C++ programmers go through to prevent resource leaks. “How primitive!” they
jeer. “Didn’t you get the memo from Lisp in the 1960s? Machines should
manage resource lifetimes, not humans.” C++ developers roll their eyes. “You
mean the memo where the only resource is memory and the timing of resource
reclamation is nondeterministic? We prefer the generality and predictability of
destructors, thank you.” But our bravado is part bluster. Garbage collection
really is convenient, and manual lifetime management really can seem akin to
constructing a mnemonic memory circuit using stone knives and bear skins.
Why can’t we have the best of both worlds: a system that works automatically
(like garbage collection), yet applies to all resources and has predictable timing
(like destructors)?

std: :shared_ptr is the C++11 way of binding these worlds together. An object
accessed via std: :shared_ptrs has its lifetime managed by those pointers
through shared ownership. No specific std: :shared_ptr owns the object.
Instead, all std: :shared_ptrs pointing to it collaborate to ensure its destruction
at the point where it’s no longer needed. When the last std: :shared_ptr



pointing to an object stops pointing there (e.g., because the std: :shared_ptr is
destroyed or made to point to a different object), that std: :shared_ptr destroys
the object it points to. As with garbage collection, clients need not concern
themselves with managing the lifetime of pointed-to objects, but as with
destructors, the timing of the objects’ destruction is deterministic.

A std::shared_ptr can tell whether it’s the last one pointing to a resource by
consulting the resource’s reference count, a value associated with the resource
that keeps track of how many std: :shared_ptrs point to it. std: :shared_ptr
constructors increment this count (usually—see below), std: :shared_ptr
destructors decrement it, and copy assignment operators do both. (If sp1 and sp2
are std: :shared_ptrs to different objects, the assignment “spl = sp2;”
modifies sp1 such that it points to the object pointed to by sp2. The net effect of
the assignment is that the reference count for the object originally pointed to by
spl is decremented, while that for the object pointed to by sp2 is incremented.)
If a std: :shared_ptr sees a reference count of zero after performing a
decrement, no more std: :shared_ptrs point to the resource, so the

std: :shared_ptr destroys it.

The existence of the reference count has performance implications:

m std::shared_ptrs are twice the size of a raw pointer, because they
internally contain a raw pointer to the resource as well as a raw pointer to the
resource’s reference count.®

= Memory for the reference count must be dynamically allocated.
Conceptually, the reference count is associated with the object being pointed
to, but pointed-to objects know nothing about this. They thus have no place to
store a reference count. (A pleasant implication is that any object—even
those of built-in types—may be managed by std: :shared_ptrs.) Item 21
explains that the cost of the dynamic allocation is avoided when the
std: :shared_ptr is created by std: :make_shared, but there are situations
where std: :make_shared can’t be used. Either way, the reference count is
stored as dynamically allocated data.

» Increments and decrements of the reference count must be atomic,
because there can be simultaneous readers and writers in different threads.



For example, a std: :shared_ptr pointing to a resource in one thread could
be executing its destructor (hence decrementing the reference count for the

resource it points to), while, in a different thread, a std: :shared_ptr to the
same object could be copied (and therefore incrementing the same reference
count). Atomic operations are typically slower than non-atomic operations, so
even though reference counts are usually only a word in size, you should
assume that reading and writing them is comparatively costly.

Did I pique your curiosity when I wrote that std: : shared_ptr constructors
only “usually” increment the reference count for the object they point to?
Creating a std: :shared_ptr pointing to an object always yields one more
std: :shared_ptr pointing to that object, so why mustn’t we always increment
the reference count?

Move construction, that’s why. Move-constructing a std: : shared_ptr from
another std: :shared_ptr sets the source std: :shared_ptr to null, and that
means that the old std: :shared_ptr stops pointing to the resource at the
moment the new std: :shared_ptr starts. As a result, no reference count
manipulation is required. Moving std: :shared_ptrs is therefore faster than
copying them: copying requires incrementing the reference count, but moving
doesn’t. This is as true for assignment as for construction, so move construction
is faster than copy construction, and move assignment is faster than copy
assignment.

Like std: :unique_ptr (see Item 18), std: :shared_ptr uses delete as its
default resource-destruction mechanism, but it also supports custom deleters.

The design of this support differs from that for std: :unique_ptr, however. For
std: :unique_ptr, the type of the deleter is part of the type of the smart pointer.
For std: :shared_ptr, it’s not:

auto loggingDel = [](Widget *pw) // custom deleter
{ // (as in Item 18)
makeLogEntry(pw);
delete pw;
I¥
std: :unique_ptr< // deleter type 1is

Widget, decltype(loggingDel) // part of ptr type



> upw(new Widget, loggingDel);

std: :shared_ptr<Widget> // deleter type is not
spw(new Widget, loggingDel); // part of ptr type

The std: :shared_ptr design is more flexible. Consider two
std: :shared_ptr<Widget>s, each with a custom deleter of a different type
(e.g., because the custom deleters are specified via lambda expressions):

auto customDeleter1l
auto customDeleter?

[J(Widget *pw) { .. }; // custom deleters,
[J(Widget *pw) { .. }; // each with a
// different type

std::shared_ptr<Widget> pwl(new Widget, customDeleterl);
std::shared_ptr<Widget> pw2(new Widget, customDeleter2);

Because pwl and pw2 have the same type, they can be placed in a container of
objects of that type:

std::vector<std::shared_ptr<Widget>> vpw{ pwil, pw2 };

They could also be assigned to one another, and they could each be passed to a
function taking a parameter of type std: :shared_ptr<Widget>. None of these
things can be done with std: :unique_ptrs that differ in the types of their
custom deleters, because the type of the custom deleter would affect the type of
the std: :unique_ptr.

In another difference from std: :unique_ptr, specifying a custom deleter
doesn’t change the size of a std: :shared_ptr object. Regardless of deleter, a
std: :shared_ptr object is two pointers in size. That’s great news, but it should
make you vaguely uneasy. Custom deleters can be function objects, and function
objects can contain arbitrary amounts of data. That means they can be arbitrarily

large. How can a std: :shared_ptr refer to a deleter of arbitrary size without
using any more memory?

It can’t. It may have to use more memory. However, that memory isn’t part of
the std: :shared_ptr object. It’s on the heap or, if the creator of the

std: :shared_ptr took advantage of std: :shared_ptr support for custom
allocators, it’s wherever the memory managed by the allocator is located. I



remarked earlier that a std: : shared_ptr object contains a pointer to the
reference count for the object it points to. That’s true, but it’s a bit misleading,
because the reference count is part of a larger data structure known as the control
block. There’s a control block for each object managed by std: :shared_ptrs.
The control block contains, in addition to the reference count, a copy of the
custom deleter, if one has been specified. If a custom allocator was specified, the
control block contains a copy of that, too. The control block may also contain
additional data, including, as Item 21 explains, a secondary reference count
known as the weak count, but we’ll ignore such data in this Item. We can

envision the memory associated with a std: :shared_ptr<T> object as looking
like this:

std::shared ptr<T>
PtrioT
Ptr to Control Block

T Object

Control Block
Reference Count

Weak Count

Other Data
(e.q., custom deleter,
allocator, etc.)

An object’s control block is set up by the function creating the first
std: :shared_ptr to the object. At least that’s what’s supposed to happen. In
general, it’s impossible for a function creating a std: : shared_ptr to an object

to know whether some other std: :shared_ptr already points to that object, so
the following rules for control block creation are used:

m std::make_shared (see Item 21) always creates a control block. It
manufactures a new object to point to, so there is certainly no control block
for that object at the time std: :make_shared is called.



= A control block is created when a std: :shared_ptr is constructed from a
unique-ownership pointer (i.e., a std: :unique_ptr or std: :auto_ptr).
Unique-ownership pointers don’t use control blocks, so there should be no
control block for the pointed-to object. (As part of its construction, the
std: :shared_ptr assumes ownership of the pointed-to object, so the
unique-ownership pointer is set to null.)

= When a std: :shared_ptr constructor is called with a raw pointer, it
creates a control block. If you wanted to create a std: :shared_ptr from an
object that already had a control block, you’d presumably pass a
std::shared_ptr ora std: :weak_ptr (see Item 20) as a constructor
argument, not a raw pointer. std: : shared_ptr constructors taking
std: :shared_ptrs or std: :weak_ptrs as constructor arguments don’t
create new control blocks, because they can rely on the smart pointers passed
to them to point to any necessary control blocks.

A consequence of these rules is that constructing more than one
std::shared_ptr from a single raw pointer gives you a complimentary ride on
the particle accelerator of undefined behavior, because the pointed-to object will
have multiple control blocks. Multiple control blocks means multiple reference
counts, and multiple reference counts means the object will be destroyed

multiple times (once for each reference count). That means that code like this is
bad, bad, bad:

auto pw = new Widget; // pw is raw ptr

std::shared_ptr<Widget> spwl(pw, loggingDel); // create control
// block for *pw

std::shared_ptr<Widget> spw2(pw, loggingDel); // create 2nd
// control block
/] for *pw!

The creation of the raw pointer pw to a dynamically allocated object is bad,
because it runs contrary to the advice behind this entire chapter: to prefer smart



pointers to raw pointers. (If you’ve forgotten the motivation for that advice,
refresh your memory here.) But set that aside. The line creating pw is a stylistic
abomination, but at least it doesn’t cause undefined program behavior.

Now, the constructor for spw1 is called with a raw pointer, so it creates a control
block (and thereby a reference count) for what’s pointed to. In this case, that’s

*pw (i.e., the object pointed to by pw). In and of itself, that’s okay, but the
constructor for spw2 is called with the same raw pointer, so it also creates a

control block (hence a reference count) for *pw. *pw thus has two reference
counts, each of which will eventually become zero, and that will ultimately lead

to an attempt to destroy *pw twice. The second destruction is responsible for the
undefined behavior.

There are at least two lessons regarding std: :shared_ptr use here. First, try to
avoid passing raw pointers to a std: : shared_ptr constructor. The usual
alternative is to use std: :make_shared (see Item 21), but in the example above,
we’re using custom deleters, and that’s not possible with std: :make_shared.
Second, if you must pass a raw pointer to a std: : shared_ptr constructor, pass

the result of new directly instead of going through a raw pointer variable. If the
first part of the code above were rewritten like this,

std::shared_ptr<Widget> spwi(new Widget, // direct use of new
loggingDel);

it’d be a lot less tempting to create a second std: :shared_ptr from the same
raw pointer. Instead, the author of the code creating spw2 would naturally use
spwl as an initialization argument (i.e., would call the std: :shared_ptr copy
constructor), and that would pose no problem whatsoever:

std::shared_ptr<Widget> spw2(spwl); // sSpw2 uses same
// control block as spwil

An especially surprising way that using raw pointer variables as

std: :shared_ptr constructor arguments can lead to multiple control blocks
involves the this pointer. Suppose our program uses std: :shared_ptrs to
manage Widget objects, and we have a data structure that keeps track of



Widgets that have been processed:

std::vector<std::shared_ptr<Widget>> processedWidgets;

Further suppose that Widget has a member function that does the processing;:

class Widget {
public:

void process();

1
Here’s a reasonable-looking approach for Widget: :process:

void Widget::process()

{
. // process the Widget

processedWidgets.emplace_back(this); // add it to list of
} // processed Widgets;
// this is wrong!

The comment about this being wrong says it all—or at least most of it. (The part
that’s wrong is the passing of this, not the use of emplace_back. If you’re not
familiar with emplace_back, see Item 42.) This code will compile, but it’s
passing a raw pointer (this) to a container of std: :shared_ptrs. The

std: :shared_ptr thus constructed will create a new control block for the
pointed-to Widget (*this). That doesn’t sound harmful until you realize that if
there are std: :shared_ptrs outside the member function that already point to
that Widget, it’s game, set, and match for undefined behavior.

The std: :shared_ptr API includes a facility for just this kind of situation. It
has probably the oddest of all names in the Standard C++ Library:

std: :enable_shared_from_this. That’s a template for a base class you inherit
from if you want a class managed by std: :shared_ptrs to be able to safely
create a std: :shared_ptr from a this pointer. In our example, Widget would
inherit from std: :enable_shared _from_this as follows:



class Widget: public std::enable_shared_from_this<Widget> {
public:

void process();

1

As I said, std: :enable_shared_from_this is a base class template. Its type
parameter is always the name of the class being derived, so Widget inherits from
std::enable_shared_from_this<Widget>. If the idea of a derived class
inheriting from a base class templatized on the derived class makes your head
hurt, try not to think about it. The code is completely legal, and the design
pattern behind it is so well established, it has a standard name, albeit one that’s

almost as odd as std: :enable_shared_from_this. The name is The Curiously
Recurring Template Pattern (CRTP). If you’d like to learn more about it,
unleash your search engine, because here we need to get back to
std::enable_shared_from_this.

std::enable_shared_from_this defines a member function that creates a
std::shared_ptr to the current object, but it does it without duplicating control
blocks. The member function is shared_from_this, and you use it in member
functions whenever you want a std: : shared_ptr that points to the same object
as the this pointer. Here’s a safe implementation of Widget: :process:

void Widget::process()

{
// as before, process the Widget

// add std::shared_ptr to current object to processedWidgets
processedWidgets.emplace_back(shared_from_this());

}

Internally, shared_from_this looks up the control block for the current object,

and it creates a new std: :shared_ptr that refers to that control block. The
design relies on the current object having an associated control block. For that to

be the case, there must be an existing std: :shared_ptr (e.g., one outside the
member function calling shared_from_this) that points to the current object. If



no such std: :shared_ptr exists (i.e., if the current object has no associated
control block), behavior is undefined, although shared_from_this typically
throws an exception.

To prevent clients from calling member functions that invoke
shared_from_this before a std: :shared_ptr points to the object, classes
inheriting from std: :enable_shared_from_this often declare their
constructors private and have clients create objects by calling factory functions
that return std: :shared_ptrs. Widget, for example, could look like this:

class Widget: public std::enable_shared_from_this<Widget> {
public:

// factory function that perfect-forwards args

// to a private ctor

template<typename... Ts>

static std::shared_ptr<Widget> create(Ts&&... params);

void process(); // as before

private:
/] ctors

1

By now, you may only dimly recall that our discussion of control blocks was
motivated by a desire to understand the costs associated with

std: :shared_ptrs. Now that we understand how to avoid creating too many
control blocks, let’s return to the original topic.

A control block is typically only a few words in size, although custom deleters
and allocators may make it larger. The usual control block implementation is
more sophisticated than you might expect. It makes use of inheritance, and
there’s even a virtual function. (It’s used to ensure that the pointed-to object is
properly destroyed.) That means that using std: : shared_ptrs also incurs the
cost of the machinery for the virtual function used by the control block.

Having read about dynamically allocated control blocks, arbitrarily large deleters
and allocators, virtual function machinery, and atomic reference count

manipulations, your enthusiasm for std: : shared_ptrs may have waned



somewhat. That’s fine. They’re not the best solution to every resource
management problem. But for the functionality they provide,

std: :shared_ptrs exact a very reasonable cost. Under typical conditions,
where the default deleter and default allocator are used and where the

std: :shared_ptr is created by std: :make_shared, the control block is only
about three words in size, and its allocation is essentially free. (It’s incorporated
into the memory allocation for the object being pointed to. For details, see Item
21.) Dereferencing a std: :shared_ptr is no more expensive than dereferencing
a raw pointer. Performing an operation requiring a reference count manipulation
(e.g., copy construction or copy assignment, destruction) entails one or two
atomic operations, but these operations typically map to individual machine
instructions, so although they may be expensive compared to non-atomic
instructions, they’re still just single instructions. The virtual function machinery
in the control block is generally used only once per object managed by

std: :shared_ptrs: when the object is destroyed.

In exchange for these rather modest costs, you get automatic lifetime
management of dynamically allocated resources. Most of the time, using

std: :shared_ptr is vastly preferable to trying to manage the lifetime of an
object with shared ownership by hand. If you find yourself doubting whether
you can afford use of std: :shared_ptr, reconsider whether you really need
shared ownership. If exclusive ownership will do or even may do,

std: :unique_ptr is a better choice. Its performance profile is close to that for
raw pointers, and “upgrading” from std: :unique_ptr to std: :shared_ptr is
easy, because a std: :shared_ptr can be created from a std: :unique_ptr.

The reverse is not true. Once you’ve turned lifetime management of a resource
over to a std: :shared_ptr, there’s no changing your mind. Even if the
reference count is one, you can’t reclaim ownership of the resource in order to,
say, have a std: :unique_ptr manage it. The ownership contract between a
resource and the std: :shared_ptrs that point to it is of the ’til-death-do-us-part
variety. No divorce, no annulment, no dispensations.

Something else std: :shared_ptrs can’t do is work with arrays. In yet another
difference from std: :unique_ptr, std: :shared_ptr has an API that’s
designed only for pointers to single objects. There’s no std: :shared_ptr<T[]>.



From time to time, “clever” programmers stumble on the idea of using a

std: :shared_ptr<T> to point to an array, specifying a custom deleter to
perform an array delete (i.e., delete [ ]). This can be made to compile, but it’s a
horrible idea. For one thing, std: :shared_ptr offers no operator[], so
indexing into the array requires awkward expressions based on pointer
arithmetic. For another, std: : shared_ptr supports derived-to-base pointer
conversions that make sense for single objects, but that open holes in the type
system when applied to arrays. (For this reason, the std: :unique_ptr<T[]>
API prohibits such conversions.) Most importantly, given the variety of C++11
alternatives to built-in arrays (e.g., std: :array, std::vector, std: :string),
declaring a smart pointer to a dumb array is almost always a sign of bad design.

Things to Remember

m std::shared_ptrs offer convenience approaching that of garbage collection for the
shared lifetime management of arbitrary resources.

m Compared to std: :unique_ptr, std: :shared_ptr objects are typically twice as big,
incur overhead for control blocks, and require atomic reference count manipulations.

m Default resource destruction is via delete, but custom deleters are supported. The type of
the deleter has no effect on the type of the std: :shared_ptr.

m Avoid creating std: :shared_ptrs from variables of raw pointer type.

Item 20: Use std::weak_ptr for std::shared_ptr-
like pointers that can dangle.

Paradoxically, it can be convenient to have a smart pointer that acts like a

std: :shared_ptr (see Item 19), but that doesn’t participate in the shared
ownership of the pointed-to resource. In other words, a pointer like

std: :shared_ptr that doesn’t affect an object’s reference count. This kind of
smart pointer has to contend with a problem unknown to std: :shared_ptrs:
the possibility that what it points to has been destroyed. A truly smart pointer
would deal with this problem by tracking when it dangles, i.e., when the object it
is supposed to point to no longer exists. That’s precisely the kind of smart



pointer std: :weak_ptr is.

You may be wondering how a std: :weak_ptr could be useful. You’ll probably
wonder even more when you examine the std: :weak_ptr API. It looks
anything but smart. std: :weak_ptrs can’t be dereferenced, nor can they be
tested for nullness. That’s because std: :weak_ptr isn’t a standalone smart
pointer. It’s an augmentation of std: :shared_ptr.

The relationship begins at birth. std: :weak_ptrs are typically created from
std: :shared_ptrs. They point to the same place as the std: :shared_ptrs
initializing them, but they don’t affect the reference count of the object they
point to:

auto spw = // after spw is constructed,
std: :make_shared<Widget>(); // the pointed-to Widget's
// ref count (RC) is 1. (See
// Item 21 for info on
// std::make_shared.)

std: :weak_ptr<Widget> wpw(spw); // wpw points to same Widget
// as spw. RC remains 1

spw = nullptr; // RC goes to 0, and the
// Widget is destroyed.
// wpw now dangles

std: :weak_ptrs that dangle are said to have expired. You can test for this
directly,

if (wpw.expired()) .. // if wpw doesn't point
// to an object..

but often what you desire is a check to see if a std: :weak_ptr has expired and,
if it hasn’t (i.e., if it’s not dangling), to access the object it points to. This is
easier desired than done. Because std: :weak_ptrs lack dereferencing
operations, there’s no way to write the code. Even if there were, separating the
check and the dereference would introduce a race condition: between the call to
expired and the dereferencing action, another thread might reassign or destroy



the last std: :shared_ptr pointing to the object, thus causing that object to be
destroyed. In that case, your dereference would yield undefined behavior.

What you need is an atomic operation that checks to see if the std: :weak_ptr
has expired and, if not, gives you access to the object it points to. This is done by

creating a std: :shared_ptr from the std: :weak_ptr. The operation comes in
two forms, depending on what you’d like to have happen if the std: :weak_ptr
has expired when you try to create a std: :shared_ptr from it. One form is
std: :weak_ptr::lock, which returns a std: :shared_ptr. The

std: :shared_ptr is null if the std: :weak_ptr has expired:

std::shared_ptr<Widget> spwl = wpw.lock(); // if wpw's expired,
// spwl is null

auto spw2 = wpw.lock(); // same as above,
// but uses auto

The other form is the std: :shared_ptr constructor taking a std: :weak_ptr as
an argument. In this case, if the std: :weak_ptr has expired, an exception is
thrown:

std: :shared_ptr<Widget> spw3(wpw); // if wpw's expired,
// throw std::bad_weak ptr

But you’re probably still wondering about how std: :weak_ptrs can be useful.
Consider a factory function that produces smart pointers to read-only objects
based on a unique ID. In accord with Item 18’s advice regarding factory function

return types, it returns a std: :unique_ptr:
std::unique_ptr<const Widget> loadWidget(WidgetID id);

If loadWidget is an expensive call (e.g., because it performs file or database
I/0) and it’s common for IDs to be used repeatedly, a reasonable optimization

would be to write a function that does what loadWidget does, but also caches its

results. Clogging the cache with every Widget that has ever been requested can
lead to performance problems of its own, however, so another reasonable

optimization would be to destroy cached Widgets when they’re no longer in use.



For this caching factory function, a std: :unique_ptr return type is not a good
fit. Callers should certainly receive smart pointers to cached objects, and callers
should certainly determine the lifetime of those objects, but the cache needs a
pointer to the objects, too. The cache’s pointers need to be able to detect when
they dangle, because when factory clients are finished using an object returned
by the factory, that object will be destroyed, and the corresponding cache entry
will dangle. The cached pointers should therefore be std: :weak_ptrs—pointers
that can detect when they dangle. That means that the factory’s return type
should be a std: :shared_ptr, because std: :weak_ptrs can detect when they
dangle only when an object’s lifetime is managed by std: :shared_ptrs.

Here’s a quick-and-dirty implementation of a caching version of loadWidget:

std::shared_ptr<const Widget> fastLoadWidget(WidgetID id)
{
static std::unordered_map<WidgetID,
std: :weak_ptr<const Widget>> cache;

auto objPtr = cache[id].lock(); // objPtr is std::shared ptr
// to cached object (or null
// if object's not in cache)

if (lobjPtr) { // if not in cache,
objPtr = loadWidget(id); // load it
cache[1d] = objPtr; // cache it

}

return objPtr;

This implementation employs one of C++11’s hash table containers
(std: :unordered_map), though it doesn’t show the WidgetID hashing and
equality-comparison functions that would also have to be present.

The implementation of fastLoadWidget ignores the fact that the cache may
accumulate expired std: :weak_ptrs corresponding to Widgets that are no
longer in use (and have therefore been destroyed). The implementation can be
refined, but rather than spend time on an issue that lends no additional insight
into std: :weak_ptrs, let’s consider a second use case: the Observer design
pattern. The primary components of this pattern are subjects (objects whose state
may change) and observers (objects to be notified when state changes occur). In



most implementations, each subject contains a data member holding pointers to
its observers. That makes it easy for subjects to issue state change notifications.
Subjects have no interest in controlling the lifetime of their observers (i.e., when
they’re destroyed), but they have a great interest in making sure that if an
observer gets destroyed, subjects don’t try to subsequently access it. A
reasonable design is for each subject to hold a container of std: :weak_ptrs to
its observers, thus making it possible for the subject to determine whether a
pointer dangles before using it.

As a final example of std: :weak_ptr’s utility, consider a data structure with
objects A, B, and C in it, where A and C share ownership of B and therefore hold
std::shared_ptrstoit:

std::shared ptr std::shared ptr

Suppose it’d be useful to also have a pointer from B back to A. What kind of
pointer should this be?

std::shared ptr std::shared ptr
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There are three choices:

= A raw pointer. With this approach, if A is destroyed, but C continues to point
to B, B will contain a pointer to A that will dangle. B won’t be able to detect

that, so B may inadvertently dereference the dangling pointer. That would
yield undefined behavior.

m A std::shared_ptr. In this design, A and B contain std: :shared_ptrs to
each other. The resulting std: :shared_ptr cycle (A points to B and B points
to A) will prevent both A and B from being destroyed. Even if A and B are
unreachable from other program data structures (e.g., because C no longer



points to B), each will have a reference count of one. If that happens, A and B
will have been leaked, for all practical purposes: it will be impossible for the
program to access them, yet their resources will never be reclaimed.

m A std::weak_ptr. This avoids both problems above. If A is destroyed, B’s
pointer back to it will dangle, but B will be able to detect that. Furthermore,
though A and B will point to one another, B’s pointer won’t affect A’s
reference count, hence can’t keep A from being destroyed when
std: :shared_ptrs no longer point to it.

Using std: :weak_ptr is clearly the best of these choices. However, it’s worth
noting that the need to employ std: :weak_ptrs to break prospective cycles of
std: :shared_ptrs is not terribly common. In strictly hierarchal data structures
such as trees, child nodes are typically owned only by their parents. When a
parent node is destroyed, its child nodes should be destroyed, too. Links from
parents to children are thus generally best represented by std: :unique_ptrs.
Back-links from children to parents can be safely implemented as raw pointers,
because a child node should never have a lifetime longer than its parent. There’s
thus no risk of a child node dereferencing a dangling parent pointer.

Of course, not all pointer-based data structures are strictly hierarchical, and
when that’s the case, as well as in situations such as caching and the

implementation of lists of observers, it’s nice to know that std: :weak_ptr
stands at the ready.

From an efficiency perspective, the std: :weak_ptr story is essentially the same
as that for std: :shared_ptr. std: :weak_ptr objects are the same size as

std: :shared_ptr objects, they make use of the same control blocks as

std: :shared_ptrs (see Item 19), and operations such as construction,
destruction, and assignment involve atomic reference count manipulations. That
probably surprises you, because I wrote at the beginning of this Item that

std: :weak_ptrs don’t participate in reference counting. Except that’s not quite
what I wrote. What I wrote was that std: :weak_ptrs don’t participate in the
shared ownership of objects and hence don’t affect the pointed-to object’s
reference count. There’s actually a second reference count in the control block,
and it’s this second reference count that std: :weak_ptrs manipulate. For



details, continue on to Item 21.

Things to Remember

m Use std: :weak_ptr for std: : shared_ptr-like pointers that can dangle.

m Potential use cases for std: :weak_ptr include caching, observer lists, and the prevention
of std: :shared_ptr cycles.

Item 21: Prefer std: :make_unique and
std: :make_shared to direct use of new.

Let’s begin by leveling the playing field for std: :make_unique and

std: :make_shared. std: :make_shared is part of C++11, but, sadly,

std: :make_unique isn’t. It joined the Standard Library as of C++14. If you’re
using C++11, never fear, because a basic version of std: :make_unique is easy
to write yourself. Here, look:

template<typename T, typename... Ts>
std::unique_ptr<T> make_unique(Ts&&... params)
{

return std::unique_ptr<T>(new T(std::forward<Ts>(params)...));

}

As you can see, make_unique just perfect-forwards its parameters to the
constructor of the object being created, constructs a std: :unique_ptr from the
raw pointer new produces, and returns the std: :unique_ptr so created. This
form of the function doesn’t support arrays or custom deleters (see Item 18), but
it demonstrates that with only a little effort, you can create make_unique if you
need to.? Just remember not to put your version in namespace std, because you
won’t want it to clash with a vendor-provided version when you upgrade to a
C++14 Standard Library implementation.

std: :make_unique and std: :make_shared are two of the three make functions:
functions that take an arbitrary set of arguments, perfect-forward them to the
constructor for a dynamically allocated object, and return a smart pointer to that



object. The third make function is std: :allocate_shared. It acts just like

std: :make_shared, except its first argument is an allocator object to be used for
the dynamic memory allocation.

Even the most trivial comparison of smart pointer creation using and not using a
make function reveals the first reason why using such functions is preferable.
Consider:

auto upwil(std::make_unique<Widget>()); // with make func

std::unique_ptr<Widget> upw2(new Widget); // without make func

auto spwil(std::make_shared<Widget>()); // with make func

std::shared_ptr<Widget> spw2(new Widget); // without make func

I’ve highlighted the essential difference: the versions using new repeat the type
being created, but the make functions don’t. Repeating types runs afoul of a key
tenet of software engineering: code duplication should be avoided. Duplication
in source code increases compilation times, can lead to bloated object code, and
generally renders a code base more difficult to work with. It often evolves into
inconsistent code, and inconsistency in a code base often leads to bugs. Besides,
typing something twice takes more effort than typing it once, and who’s not a
fan of reducing their typing burden?

The second reason to prefer make functions has to do with exception safety.
Suppose we have a function to process a Widget in accord with some priority:

vold processWidget(std::shared_ptr<Widget> spw, int priority);

Passing the std: :shared_ptr by value may look suspicious, but Item 41
explains that if processWidget always makes a copy of the std: :shared_ptr
(e.g., by storing it in a data structure tracking Widgets that have been processed),
this can be a reasonable design choice.

Now suppose we have a function to compute the relevant priority,

int computePriority();



and we use that in a call to processWidget that uses new instead of
std: :make_shared:

processWidget(std::shared _ptr<Widget>(new Widget), // potential
computePriority()); /| resource
/] leak!

As the comment indicates, this code could leak the Widget conjured up by new.
But how? Both the calling code and the called function are using

std: :shared_ptrs, and std: :shared_ptrs are designed to prevent resource
leaks. They automatically destroy what they point to when the last

std: :shared_ptr pointing there goes away. If everybody is using
std: :shared_ptrs everywhere, how can this code leak?

The answer has to do with compilers’ translation of source code into object code.
At runtime, the arguments for a function must be evaluated before the function

can be invoked, so in the call to processWidget, the following things must
occur before processWidget can begin execution:

m The expression “new Widget” must be evaluated, i.e., a Widget must be
created on the heap.

m The constructor for the std: :shared_ptr<Widget> responsible for
managing the pointer produced by new must be executed.

m computePriority must run.

Compilers are not required to generate code that executes them in this order.
“new Widget” must be executed before the std: :shared_ptr constructor may
be called, because the result of that new is used as an argument to that

constructor, but computePriority may be executed before those calls, after
them, or, crucially, between them. That is, compilers may emit code to execute
the operations in this order:

1. Perform “new Widget”.

2. Execute computePriority.



3. Run std::shared_ptr constructor.

If such code is generated and, at runtime, computePriority produces an
exception, the dynamically allocated Widget from Step 1 will be leaked, because
it will never be stored in the std: :shared_ptr that’s supposed to start
managing it in Step 3.

Using std: :make_shared avoids this problem. Calling code would look like
this:

processWidget(std: :make_shared<Widget>(), // no potential
computePriority()); // resource leak

At runtime, either std: :make_shared or computePriority will be called first.
If it’s std: :make_shared, the raw pointer to the dynamically allocated Widget
is safely stored in the returned std: :shared_ptr before computePriority is
called. If computePriority then yields an exception, the std: :shared_ptr
destructor will see to it that the Widget it owns is destroyed. And if
computePriority is called first and yields an exception, std: :make_shared
will not be invoked, and there will hence be no dynamically allocated Widget to
worry about.

If we replace std: :shared_ptr and std: :make_shared with

std: :unique_ptr and std: :make_unique, exactly the same reasoning applies.
Using std: :make_unique instead of new is thus just as important in writing
exception-safe code as using std: :make_shared.

A special feature of std: :make_shared (compared to direct use of new) is
improved efficiency. Using std: :make_shared allows compilers to generate
smaller, faster code that employs leaner data structures. Consider the following
direct use of new:

std::shared_ptr<Widget> spw(new Widget);

It’s obvious that this code entails a memory allocation, but it actually performs

two. Item 19 explains that every std: :shared_ptr points to a control block
containing, among other things, the reference count for the pointed-to object.



Memory for this control block is allocated in the std: :shared_ptr constructor.

Direct use of new, then, requires one memory allocation for the Widget and a
second allocation for the control block.

If std: :make_shared is used instead,
auto spw = std::make_shared<Widget>();

one allocation suffices. That’s because std: :make_shared allocates a single

chunk of memory to hold both the Widget object and the control block. This
optimization reduces the static size of the program, because the code contains
only one memory allocation call, and it increases the speed of the executable
code, because memory is allocated only once. Furthermore, using

std: :make_shared obviates the need for some of the bookkeeping information
in the control block, potentially reducing the total memory footprint for the
program.

The efficiency analysis for std: :make_shared is equally applicable to
std: :allocate_shared, so the performance advantages of std: :make_shared
extend to that function, as well.

The arguments for preferring make functions over direct use of new are strong
ones. Despite their software engineering, exception safety, and efficiency
advantages, however, this Item’s guidance is to prefer the make functions, not to
rely on them exclusively. That’s because there are circumstances where they
can’t or shouldn’t be used.

For example, none of the make functions permit the specification of custom
deleters (see Items 18 and 19), but both std: :unique_ptr and

std: :shared_ptr have constructors that do. Given a custom deleter for a
Widget,

auto widgetDeleter = []J(Widget* pw) { .. };
creating a smart pointer using it is straightforward using new:

std::unique_ptr<Widget, decltype(widgetDeleter)>
upw(new Widget, widgetDeleter);



std::shared_ptr<Widget> spw(new Widget, widgetDeleter);

There’s no way to do the same thing with a make function.

A second limitation of make functions stems from a syntactic detail of their
implementations. Item 7 explains that when creating an object whose type
overloads constructors both with and without std: :initializer_list
parameters, creating the object using braces prefers the
std::initializer_list constructor, while creating the object using
parentheses calls the non-std: :initializer_list constructor. The make
functions perfect-forward their parameters to an object’s constructor, but do they
do so using parentheses or using braces? For some types, the answer to this
question makes a big difference. For example, in these calls,

auto upv = std::make_unique<std::vector<int>>(10, 20);

auto spv = std::make_shared<std::vector<int>>(10, 20);

do the resulting smart pointers point to std: : vectors with 10 elements, each of

value 20, or to std: :vectors with two elements, one with value 10 and the
other with value 20? Or is the result indeterminate?

The good news is that it’s not indeterminate: both calls create std: : vectors of
size 10 with all values set to 20. That means that within the make functions, the
perfect forwarding code uses parentheses, not braces. The bad news is that if you
want to construct your pointed-to object using a braced initializer, you must use
new directly. Using a make function would require the ability to perfect-forward
a braced initializer, but, as Item 30 explains, braced initializers can’t be perfect-
forwarded. However, Item 30 also describes a workaround: use auto type
deduction to create a std: :initializer_Llist object from a braced initializer
(see Item 2), then pass the auto-created object through the make function:

// create std::initializer_list
auto initList = { 10, 20 };

// create std::vector using std::initializer_list ctor
auto spv = std::make_shared<std::vector<int>>(initList);



For std: :unique_ptr, these two scenarios (custom deleters and braced
initializers) are the only ones where its make functions are problematic. For
std: :shared_ptr and its make functions, there are two more. Both are edge
cases, but some developers live on the edge, and you may be one of them.

Some classes define their own versions of operator new and operator delete.
The presence of these functions implies that the global memory allocation and
deallocation routines for objects of these types are inappropriate. Often, class-
specific routines are designed only to allocate and deallocate chunks of memory

of precisely the size of objects of the class, e.g., operator new and operator
delete for class Widget are often designed only to handle allocation and
deallocation of chunks of memory of exactly size sizeof(Widget). Such
routines are a poor fit for std: :shared_ptr’s support for custom allocation (via
std: :allocate_shared) and deallocation (via custom deleters), because the
amount of memory that std: :allocate_shared requests isn’t the size of the
dynamically allocated object, it’s the size of that object plus the size of a control
block. Consequently, using make functions to create objects of types with class-
specific versions of operator new and operator delete is typically a poor
idea.

The size and speed advantages of std: :make_shared vis-a-vis direct use of new
stem from std: :shared_ptr’s control block being placed in the same chunk of
memory as the managed object. When that object’s reference count goes to zero,
the object is destroyed (i.e., its destructor is called). However, the memory it
occupies can’t be released until the control block has also been destroyed,
because the same chunk of dynamically allocated memory contains both.

As I noted, the control block contains bookkeeping information beyond just the
reference count itself. The reference count tracks how many std: :shared_ptrs
refer to the control block, but the control block contains a second reference
count, one that tallies how many std: :weak_ptrs refer to the control block.
This second reference count is known as the weak count.'® When a

std: :weak_ptr checks to see if it has expired (see Item 19), it does so by
examining the reference count (not the weak count) in the control block that it
refers to. If the reference count is zero (i.e., if the pointed-to object has no

std: :shared_ptrs referring to it and has thus been destroyed), the



std: :weak_ptr has expired. Otherwise, it hasn’t.

As long as std: :weak_ptrs refer to a control block (i.e., the weak count is
greater than zero), that control block must continue to exist. And as long as a
control block exists, the memory containing it must remain allocated. The

memory allocated by a std: :shared_ptr make function, then, can’t be
deallocated until the last std: :shared_ptr and the last std: :weak_ptr
referring to it have been destroyed.

If the object type is quite large and the time between destruction of the last
std: :shared_ptr and the last std: :weak_ptr is significant, a lag can occur
between when an object is destroyed and when the memory it occupied is freed:

class ReallyBigType { .. };

auto pBigObj = // create very large
std: :make_shared<ReallyBigType>(); // object via
// std::make_shared

/] create std::shared _ptrs and std::weak ptrs to
// large object, use them to work with it

// final std::shared_ptr to object destroyed here,
// but std::weak _ptrs to it remain

// during this period, memory formerly occupied
/] by large object remains allocated

// final std::weak_ptr to object destroyed here;
// memory for control block and object is released

With a direct use of new, the memory for the ReallyBigType object can be
released as soon as the last std: :shared_ptr to it is destroyed:

class ReallyBigType { .. }; // as before
std::shared_ptr<ReallyBigType> pBigObj(new ReallyBigType);
// create very large

// object via new

// as before, create std::shared_ptrs and
// std::weak_ptrs to object, use them with it



// final std::shared _ptr to object destroyed here,
// but std::weak ptrs to it remain;
/] memory for object is deallocated

/] during this period, only memory for the
/] control block remains allocated

// final std::weak_ptr to object destroyed here;
// memory for control block is released

Should you find yourself in a situation where use of std: :make_shared is
impossible or inappropriate, you’ll want to guard yourself against the kind of
exception-safety problems we saw earlier. The best way to do that is to make

sure that when you use new directly, you immediately pass the result to a smart
pointer constructor in a statement that does nothing else. This prevents
compilers from generating code that could emit an exception between the use of

new and invocation of the constructor for the smart pointer that will manage the
newed object.

As an example, consider a minor revision to the exception-unsafe call to the
processhWidget function we examined earlier. This time, we’ll specify a custom
deleter:

vold processWidget(std::shared_ptr<Widget> spw, // as before
int priority);

void cusDel(Widget *ptr); // custom
// deleter

Here’s the exception-unsafe call:

processWidget( // as before,
std::shared_ptr<Widget>(new Widget, cusDel), // potential
computePriority() /] resource
); /] leak!

Recall: if computePriority is called after “new Widget” but before the
std: :shared_ptr constructor, and if computePriority yields an exception, the
dynamically allocated Widget will be leaked.



Here the use of a custom deleter precludes use of std: :make_shared, so the
way to avoid the problem is to put the allocation of the Widget and the
construction of the std: :shared_ptr into their own statement, then call

processWidget with the resulting std: :shared_ptr. Here’s the essence of the
technique, though, as we’ll see in a moment, we can tweak it to improve its
performance:

std::shared_ptr<Widget> spw(new Widget, cusDel);

processWidget(spw, computePriority()); // correct, but not
// optimal; see below

This works, because a std: :shared_ptr assumes ownership of the raw pointer
passed to its constructor, even if that constructor yields an exception. In this
example, if spw’s constructor throws an exception (e.g., due to an inability to
dynamically allocate memory for a control block), it’s still guaranteed that
cusDel will be invoked on the pointer resulting from “new Widget”.

The minor performance hitch is that in the exception-unsafe call, we’re passing
an rvalue to processWidget,

processWidget(
std: :shared_ptr<Widget>(new Widget, cusDel), // arg is rvalue
computePriority()

);
but in the exception-safe call, we’re passing an Ivalue:

processWidget(spw, computePriority()); // arg is lvalue

Because processWidget’s std: :shared_ptr parameter is passed by value,
construction from an rvalue entails only a move, while construction from an
lvalue requires a copy. For std: :shared_ptr, the difference can be significant,
because copying a std: :shared_ptr requires an atomic increment of its
reference count, while moving a std: :shared_ptr requires no reference count
manipulation at all. For the exception-safe code to achieve the level of
performance of the exception-unsafe code, we need to apply std: :move to spw



to turn it into an rvalue (see Item 23):

processWidget(std: :move(spw), // both efficient and
computePriority()); // exception safe

That’s interesting and worth knowing, but it’s also typically irrelevant, because
you’ll rarely have a reason not to use a make function. And unless you have a

compelling reason for doing otherwise, using a make function is what you should
do.

Things to Remember

m Compared to direct use of new, make functions eliminate source code duplication, improve
exception safety, and, for std: :make_shared and std: :allocate_shared, generate code
that’s smaller and faster.

= Situations where use of make functions is inappropriate include the need to specify custom
deleters and a desire to pass braced initializers.

m For std: :shared_ptrs, additional situations where make functions may be ill-advised
include (1) classes with custom memory management and (2) systems with memory
concerns, very large objects, and std: :weak_ptrs that outlive the corresponding
std::shared_ptrs.

Item 22: When using the Pimpl Idiom, define
special member functions in the implementation
file.

If you’ve ever had to combat excessive build times, you’re familiar with the
Pimpl (“pointer to implementation”) Idiom. That’s the technique whereby you
replace the data members of a class with a pointer to an implementation class (or
struct), put the data members that used to be in the primary class into the
implementation class, and access those data members indirectly through the

pointer. For example, suppose Widget looks like this:

class Widget { // in header "widget.h"
public:



Widget();

private:

std::string name;

std::vector<double> data;

Gadget g1, g2, g3; // Gadget is some user-
}; // defined type

Because Widget’s data members are of types std: :string, std: :vector, and
Gadget, headers for those types must be present for Widget to compile, and that
means that Widget clients must #include <string>, <vector>, and gadget.h.

Those headers increase the compilation time for Widget clients, plus they make
those clients dependent on the contents of the headers. If a header’s content

changes, Widget clients must recompile. The standard headers <string> and

<vector> don’t change very often, but it could be that gadget.h is subject to
frequent revision.

Applying the Pimpl Idiom in C++98 could have Widget replace its data
members with a raw pointer to a struct that has been declared, but not defined:

class Widget { // still in header "widget.h"
public:
Widget();
~Widget(); // dtor is needed-see below
private:
struct Impl; // declare implementation struct
Impl *pImpl; // and pointer to it
b

Because Widget no longer mentions the types std: :string, std: :vector, and

Gadget, Widget clients no longer need to #include the headers for these types.
That speeds compilation, and it also means that if something in these headers

changes, Widget clients are unaffected.

A type that has been declared, but not defined, is known as an incomplete type.
Widget::Impl is such a type. There are very few things you can do with an
incomplete type, but declaring a pointer to it is one of them. The Pimpl Idiom
takes advantage of that.



Part 1 of the Pimpl Idiom is the declaration of a data member that’s a pointer to
an incomplete type. Part 2 is the dynamic allocation and deallocation of the
object that holds the data members that used to be in the original class. The
allocation and deallocation code goes in the implementation file, e.g., for

Widget, in widget.cpp:

#include "widget.h" // in impl. file "widget.cpp"
#include "gadget.h"

#include <string>

#include <vector>

struct Widget::Impl { // definition of Widget::Impl
std::string name; // with data members formerly
std: :vector<double> data; // in Widget
Gadget g1, g2, g3;

b

Widget: :Widget() // allocate data members for
: pImpl(new Impl) // this Widget object

{}

Widget: :~Widget() // destroy data members for
{ delete pImpl; } // this object

Here I’m showing #include directives to make clear that the overall

dependencies on the headers for std: :string, std: :vector, and Gadget
continue to exist. However, these dependencies have been moved from

widget.h (which is visible to and used by Widget clients) to widget.cpp
(which is visible to and used only by the Widget implementer). I’ve also
highlighted the code that dynamically allocates and deallocates the Impl object.
The need to deallocate this object when a Widget is destroyed is what
necessitates the Widget destructor.

But I’ve shown you C++98 code, and that reeks of a bygone millennium. It uses
raw pointers and raw new and raw delete and it’s all just so...raw. This chapter
is built on the idea that smart pointers are preferable to raw pointers, and if what
we want is to dynamically allocate a Widget: : Impl object inside the Widget
constructor and have it destroyed at the same time the Widget is,

std: :unique_ptr (see Item 18) is precisely the tool we need. Replacing the raw



pImpl pointer with a std: :unique_ptr yields this code for the header file,

class Widget { // in "widget.h"
public:
Widget();
private:
struct Impl;
std: :unique_ptr<Impl> pImpl; // use smart pointer
}; // instead of raw pointer

and this for the implementation file:

#include "widget.h" // in "widget.cpp"
#include "gadget.h"

#include <string>

#include <vector>

struct Widget::Impl { // as before
std::string name;
std::vector<double> data;
Gadget g1, g2, g3;

b

Widget: :Widget() // per Item 21, create
: pImpl(std::make_unique<Impl>()) // std::unique_ptr

{} // via std::make_unique

You’ll note that the Widget destructor is no longer present. That’s because we
have no code to put into it. std: :unique_ptr automatically deletes what it

points to when it (the std: :unique_ptr) is destroyed, so we need not delete
anything ourselves. That’s one of the attractions of smart pointers: they eliminate
the need for us to sully our hands with manual resource release.

This code compiles, but, alas, the most trivial client use doesn’t:

#include "widget.h"

Widget w; // error!

The error message you receive depends on the compiler you’re using, but the



text generally mentions something about applying sizeof or delete to an
incomplete type. Those operations aren’t among the things you can do with such

types.

This apparent failure of the Pimpl Idiom using std: :unique_ptrs is alarming,
because (1) std: :unique_ptr is advertised as supporting incomplete types, and
(2) the Pimpl Idiom is one of std: :unique_ptrs most common use cases.
Fortunately, getting the code to work is easy. All that’s required is a basic
understanding of the cause of the problem.

The issue arises due to the code that’s generated when w is destroyed (e.g., goes
out of scope). At that point, its destructor is called. In the class definition using

std: :unique_ptr, we didn’t declare a destructor, because we didn’t have any
code to put into it. In accord with the usual rules for compiler-generated special
member functions (see Item 17), the compiler generates a destructor for us.
Within that destructor, the compiler inserts code to call the destructor for
Widget’s data member pImpl. pImplis a std::unique ptr<Widget::Impl>,
i.e., a std::unique_ptr using the default deleter. The default deleter is a
function that uses delete on the raw pointer inside the std: :unique_ptr. Prior
to using delete, however, implementations typically have the default deleter
employ C++11’s static_assert to ensure that the raw pointer doesn’t point to
an incomplete type. When the compiler generates code for the destruction of the
Widget w, then, it generally encounters a static_assert that fails, and that’s
usually what leads to the error message. This message is associated with the
point where w is destroyed, because Widget’s destructor, like all compiler-
generated special member functions, is implicitly inline. The message itself
often refers to the line where w is created, because it’s the source code explicitly
creating the object that leads to its later implicit destruction.

To fix the problem, you just need to make sure that at the point where the code
to destroy the std: :unique_ptr<Widget: :Impl> is generated, Widget::Impl
is a complete type. The type becomes complete when its definition has been
seen, and Widget: :Impl is defined inside widget. cpp. The key to successful
compilation, then, is to have the compiler see the body of Widget’s destructor
(i.e., the place where the compiler will generate code to destroy the

std: :unique_ptr data member) only inside widget.cpp after Widget: :Impl



has been defined.

Arranging for that is simple. Declare Widget’s destructor in widget.h, but don’t
define it there:

class Widget { // as before, in "widget.h"
public:

Widget();

~Widget(); /| declaration only
private: // as before

struct Impl;
std::unique_ptr<Impl> pImpl;
b

Define it in widget.cpp after Widget: :Impl has been defined:

#include "widget.h" // as before, in "widget.cpp"
#include "gadget.h"

#include <string>

#include <vector>

struct Widget::Impl { // as before, definition of
std::string name; // Widget::Impl

std: :vector<double> data;

Gadget g1, g2, g3;

b

Widget: :Widget() // as before

: pImpl(std::make_unique<Impl>())

{}

Widget: :~Widget() // ~Widget definition
{3

This works well, and it requires the least typing, but if you want to emphasize
that the compiler-generated destructor would do the right thing—that the only
reason you declared it was to cause its definition to be generated in Widget’s
implementation file, you can define the destructor body with “= default”:

Widget::~Widget() = default; // same effect as above



Classes using the Pimpl Idiom are natural candidates for move support, because
compiler-generated move operations do exactly what’s desired: perform a move
on the underlying std: :unique_ptr. As Item 17 explains, the declaration of a
destructor in Widget prevents compilers from generating the move operations,
so if you want move support, you must declare the functions yourself. Given that
the compiler-generated versions would behave correctly, you’re likely to be
tempted to implement them as follows:

class Widget { [/ still in
public: // "widget.h"
Widget();
~Widget();
Widget(Widget&& rhs) = default; // right idea,

Widget& operator=(Widget&& rhs) = default; // wrong code!

private: // as before
struct Impl;
std::unique_ptr<Impl> pImpl;

b

This approach leads to the same kind of problem as declaring the class without a
destructor, and for the same fundamental reason. The compiler-generated move
assignment operator needs to destroy the object pointed to by pImpl before
reassigning it, but in the Widget header file, pImp1l points to an incomplete type.
The situation is different for the move constructor. The problem there is that
compilers typically generate code to destroy pImpl in the event that an exception

arises inside the move constructor, and destroying pImpl requires that Impl be
complete.

Because the problem is the same as before, so is the fix—move the definition of
the move operations into the implementation file:

class Widget { // still in "widget.h"
public:

Widget();

~Widget();

Widget(Widget&& rhs); /| declarations



Widget& operator=(Widget&& rhs); // only

private: // as before
struct Impl;
std::unique_ptr<Impl> pImpl;

b
#include <string> // as before,
// in "widget.cpp"
struct Widget::Impl { .. }; // as before
Widget: :Widget() // as before
: pImpl(std::make_unique<Impl>())
{}
Widget::~Widget() = default; // as before
Widget: :Widget(Widget&& rhs) = default; /] defini-

Widget& Widget::operator=(Widget&& rhs) = default; // tions

The Pimpl Idiom is a way to reduce compilation dependencies between a class’s
implementation and the class’s clients, but, conceptually, use of the idiom
doesn’t change what the class represents. The original Widget class contained
std::string, std::vector, and Gadget data members, and, assuming that
Gadgets, like std: :strings and std: :vectors, can be copied, it would make
sense for Widget to support the copy operations. We have to write these
functions ourselves, because (1) compilers won’t generate copy operations for
classes with move-only types like std: :unique_ptr and (2) even if they did,
the generated functions would copy only the std: :unique_ptr (i.e., perform a
shallow copy), and we want to copy what the pointer points to (i.e., perform a
deep copy).

In a ritual that is by now familiar, we declare the functions in the header file and
implement them in the implementation file:

class Widget { // still in "widget.h"
public:
// other funcs, as before



Widget(const Widget& rhs); /| declarations
Widget& operator=(const Widget& rhs); /] only

private: // as before
struct Impl;
std::unique_ptr<Impl> pImpl;

b
#include "widget.h" // as before,
// in "widget.cpp"
struct Widget::Impl { .. }; // as before
Widget::~Widget() = default; // other funcs, as before
Widget: :Widget(const Widget& rhs) // copy ctor
: pImpl(std: :make_unique<Impl>(*rhs.pImpl))
{3

Widget& Widget::operator=(const Widget& rhs) // copy operator=

{
pImpl = rhs.pImpl;
return *this;

}

Both function implementations are conventional. In each case, we simply copy
the fields of the Impl struct from the source object (rhs) to the destination object
(*this). Rather than copy the fields one by one, we take advantage of the fact
that compilers will create the copy operations for Impl, and these operations will
copy each field automatically. We thus implement Widget’s copy operations by
calling Widget: : Impl’s compiler-generated copy operations. In the copy
constructor, note that we still follow the advice of Item 21 to prefer use of

std: :make_unique over direct use of new.

For purposes of implementing the Pimpl Idiom, std: :unique_ptr is the smart
pointer to use, because the pImpl pointer inside an object (e.g., inside a Widget)
has exclusive ownership of the corresponding implementation object (e.g., the
Widget::Impl object). Still, it’s interesting to note that if we were to use
std::shared_ptr instead of std: :unique_ptr for pImpl, we’d find that the
advice of this Item no longer applied. There’d be no need to declare a destructor



in Widget, and without a user-declared destructor, compilers would happily
generate the move operations, which would do exactly what we’d want them to.

That is, given this code in widget.h,

class Widget { // in "widget.h"
public:
Widget();
/] no declarations for dtor
// or move operations

private:
struct Impl;
std::shared_ptr<Impl> pImpl; // std::shared_ptr
}; // instead of std::unique_ptr

and this client code that #includes widget.h,

Widget wi;
auto w2(std::move(wl)); // move-construct w2
wl = std::move(w2); // move-assign wil

everything would compile and run as we’d hope: w1l would be default
constructed, its value would be moved into w2, that value would be moved back
into w1, and then both w1l and w2 would be destroyed (thus causing the pointed-to
Widget::Impl object to be destroyed).

The difference in behavior between std: :unique_ptr and std: :shared_ptr
for pImpl pointers stems from the differing ways these smart pointers support
custom deleters. For std: :unique_ptr, the type of the deleter is part of the type
of the smart pointer, and this makes it possible for compilers to generate smaller
runtime data structures and faster runtime code. A consequence of this greater
efficiency is that pointed-to types must be complete when compiler-generated
special functions (e.g., destructors or move operations) are used. For

std: :shared_ptr, the type of the deleter is not part of the type of the smart
pointer. This necessitates larger runtime data structures and somewhat slower
code, but pointed-to types need not be complete when compiler-generated
special functions are employed.



For the Pimpl Idiom, there’s not really a trade-off between the characteristics of
std: :unique_ptr and std: :shared_ptr, because the relationship between
classes like Widget and classes like Widget: : Impl is exclusive ownership, and
that makes std: :unique_ptr the proper tool for the job. Nevertheless, it’s
worth knowing that in other situations—situations where shared ownership
exists (and std: :shared_ptr is hence a fitting design choice), there’s no need
to jump through the function-definition hoops that use of std: :unique_ptr
entails.

Things to Remember

m The Pimpl Idiom decreases build times by reducing compilation dependencies between
class clients and class implementations.

m For std: :unique_ptr pImpl pointers, declare special member functions in the class
header, but implement them in the implementation file. Do this even if the default function
implementations are acceptable.

m The above advice applies to std: :unique_ptr, but not to std: :shared_ptr.

" There are a few exceptions to this rule. Most stem from abnormal program
termination. If an exception propagates out of a thread’s primary function (e.g.,
main, for the program’s initial thread) or if a noexcept specification is violated
(see Item 14), local objects may not be destroyed, and if std: :abort or an exit
function (i.e., std::_Exit, std::exit, or std: :quick_exit) is called, they
definitely won’t be.

® This implementation is not required by the Standard, but every Standard
Library implementation I’'m familiar with employs it.

9 To create a full-featured make_unique with the smallest effort possible, search
for the standardization document that gave rise to it, then copy the
implementation you’ll find there. The document you want is N3656 by Stephan
T. Lavavej, dated 2013-04-18.

19 In practice, the value of the weak count isn’t always equal to the number of
std: :weak_ptrs referring to the control block, because library implementers
have found ways to slip additional information into the weak count that facilitate



better code generation. For purposes of this Item, we’ll ignore this and assume

that the weak count’s value is the number of std: :weak_ptrs referring to the
control block.



Chapter 5. Rvalue References,
Move Semantics, and Perfect
Forwarding

When you first learn about them, move semantics and perfect forwarding seem
pretty straightforward:

= Move semantics makes it possible for compilers to replace expensive
copying operations with less expensive moves. In the same way that copy
constructors and copy assignment operators give you control over what it
means to copy objects, move constructors and move assignment operators
offer control over the semantics of moving. Move semantics also enables the
creation of move-only types, such as std: :unique_ptr, std: :future, and
std::thread.

» Perfect forwarding makes it possible to write function templates that take
arbitrary arguments and forward them to other functions such that the target
functions receive exactly the same arguments as were passed to the
forwarding functions.

Rvalue references are the glue that ties these two rather disparate features
together. They’re the underlying language mechanism that makes both move
semantics and perfect forwarding possible.

The more experience you have with these features, the more you realize that
your initial impression was based on only the metaphorical tip of the proverbial
iceberg. The world of move semantics, perfect forwarding, and rvalue references
is more nuanced than it appears. std: :move doesn’t move anything, for
example, and perfect forwarding is imperfect. Move operations aren’t always
cheaper than copying; when they are, they’re not always as cheap as you’d
expect; and they’re not always called in a context where moving is valid. The
construct “type&&” doesn’t always represent an rvalue reference.



No matter how far you dig into these features, it can seem that there’s always
more to uncover. Fortunately, there is a limit to their depths. This chapter will
take you to the bedrock. Once you arrive, this part of C++11 will make a lot
more sense. You’ll know the usage conventions for std: :move and
std::forward, for example. You’ll be comfortable with the ambiguous nature
of “type&&”. You’ll understand the reasons for the surprisingly varied
behavioral profiles of move operations. All those pieces will fall into place. At
that point, you’ll be back where you started, because move semantics, perfect
forwarding, and rvalue references will once again seem pretty straightforward.
But this time, they’ll stay that way.

In the Items in this chapter, it’s especially important to bear in mind that a
parameter is always an lvalue, even if its type is an rvalue reference. That is,
given

void f(Widget&& w);

the parameter w is an lvalue, even though its type is rvalue-reference-to-Widget.
(If this surprises you, please review the overview of lvalues and rvalues that
begins here.)

Item 23: Understand std: :move and
std: :forward.

It’s useful to approach std: :move and std: : forward in terms of what they

don’t do. std: :move doesn’t move anything. std: : forward doesn’t forward
anything. At runtime, neither does anything at all. They generate no executable
code. Not a single byte.

std: :move and std: :forward are merely functions (actually function
templates) that perform casts. std: :move unconditionally casts its argument to
an rvalue, while std: : forward performs this cast only if a particular condition
is fulfilled. That’s it. The explanation leads to a new set of questions, but,
fundamentally, that’s the complete story.

To make the story more concrete, here’s a sample implementation of std: :move



in C++11. It’s not fully conforming to the details of the Standard, but it’s very
close.

template<typename T> // in namespace std
typename remove_reference<T>::type&&
move(T&& param)

{

using ReturnType = // alias declaration;
typename remove reference<T>::type&&; // see Item 9

return static_cast<ReturnType>(param);

}

I’ve highlighted two parts of the code for you. One is the name of the function,
because the return type specification is rather noisy, and I don’t want you to lose
your bearings in the din. The other is the cast that comprises the essence of the

function. As you can see, std: :move takes a reference to an object (a universal
reference, to be precise—see Item 24) and it returns a reference to the same
object.

The “&&” part of the function’s return type implies that std: :move returns an
rvalue reference, but, as Item 28 explains, if the type T happens to be an lvalue
reference, T&& would become an lvalue reference. To prevent this from
happening, the type trait (see Item 9) std: : remove_reference is applied to T,
thus ensuring that “&&” is applied to a type that isn’t a reference. That guarantees
that std: :move truly returns an rvalue reference, and that’s important, because

rvalue references returned from functions are rvalues. Thus, std: :move casts its
argument to an rvalue, and that’s all it does.

As an aside, std: :move can be implemented with less fuss in C++14. Thanks to
function return type deduction (see Item 3) and to the Standard Library’s alias
template std: :remove_reference_t (see Item 9), std: :move can be written
this way:

template<typename T> /] C++14; still in
decltype(auto) move(T&& param) // namespace std
{

using ReturnType = remove_reference_t<T>8&&;
return static_cast<ReturnType>(param);

}



Easier on the eyes, no?

Because std: :move does nothing but cast its argument to an rvalue, there have
been suggestions that a better name for it might have been something like

rvalue_cast. Be that as it may, the name we have is std: :move, so it’s

important to remember what std: :move does and doesn’t do. It does cast. It
doesn’t move.

Of course, rvalues are candidates for moving, so applying std: :move to an
object tells the compiler that the object is eligible to be moved from. That’s why
std: :move has the name it does: to make it easy to designate objects that may be
moved from.

In truth, rvalues are only usually candidates for moving. Suppose you’re writing
a class representing annotations. The class’s constructor takes a std: :string
parameter comprising the annotation, and it copies the parameter to a data
member. Flush with the information in Item 41, you declare a by-value
parameter:

class Annotation {

public:
explicit Annotation(std::string text); // param to be copied,
. // so per Item 41,

}; // pass by value

But Annotation’s constructor needs only to read text’s value. It doesn’t need
to modify it. In accord with the time-honored tradition of using const whenever
possible, you revise your declaration such that text is const:

class Annotation {
public:
explicit Annotation(const std::string text)

1

To avoid paying for a copy operation when copying text into a data member,
you remain true to the advice of Item 41 and apply std: :move to text, thus
producing an rvalue:



class Annotation {

public:
explicit Annotation(const std::string text)
: value(std::move(text)) // "move" text into value; this code
{ .} /| doesn't do what it seems to!

private:
std::string value;

1

This code compiles. This code links. This code runs. This code sets the data
member value to the content of text. The only thing separating this code from
a perfect realization of your vision is that text is not moved into value, it’s
copied. Sure, text is cast to an rvalue by std: :move, but text is declared to be
a const std: :string, so before the cast, text is an lvalue const std: :string,
and the result of the cast is an rvalue const std: :string, but throughout it all,
the constness remains.

Consider the effect that has when compilers have to determine which
std: :string constructor to call. There are two possibilities:

class string { // std::string is actually a
public: // typedef for std::basic_string<char>

string(const string& rhs); /] copy ctor
string(string&& rhs); // move ctor

1

In the Annotation constructor’s member initialization list, the result of

std: :move(text) is an rvalue of type const std: :string. That rvalue can’t be
passed to std: :string’s move constructor, because the move constructor takes
an rvalue reference to a non-const std: :string. The rvalue can, however, be
passed to the copy constructor, because an lvalue-reference-to-const is
permitted to bind to a const rvalue. The member initialization therefore invokes
the copy constructor in std: : string, even though text has been cast to an
rvalue! Such behavior is essential to maintaining const-correctness. Moving a



value out of an object generally modifies the object, so the language should not

permit const objects to be passed to functions (such as move constructors) that
could modify them.

There are two lessons to be drawn from this example. First, don’t declare objects
const if you want to be able to move from them. Move requests on const

objects are silently transformed into copy operations. Second, std: : move not
only doesn’t actually move anything, it doesn’t even guarantee that the object
it’s casting will be eligible to be moved. The only thing you know for sure about

the result of applying std: :move to an object is that it’s an rvalue.

The story for std: : forward is similar to that for std: :move, but whereas

std: :move unconditionally casts its argument to an rvalue, std: : forward does
it only under certain conditions. std: : forward is a conditional cast. To
understand when it casts and when it doesn’t, recall how std: :forward is

typically used. The most common scenario is a function template taking a
universal reference parameter that is to be passed to another function:

voild process(const Widget& lvalArg); // process lvalues
vold process(Widget&& rvalArg); // process rvalues
template<typename T> // template that passes
void logAndProcess(T&& param) // param to process
{

auto now = // get current time

std::chrono::system_clock::now();

makeLogEntry("Calling 'process'", now);
process(std: :forward<T>(param));

}

Consider two calls to TlogAndProcess, one with an Ivalue, the other with an
rvalue:

Widget w;
logAndProcess(w); // call with lvalue
logAndProcess(std: :move(w)); // call with rvalue

Inside LogAndProcess, the parameter param is passed to the function process.



process is overloaded for lvalues and rvalues. When we call logAndProcess
with an lvalue, we naturally expect that lvalue to be forwarded to process as an
lvalue, and when we call LogAndProcess with an rvalue, we expect the rvalue
overload of process to be invoked.

But param, like all function parameters, is an lvalue. Every call to process
inside LogAndProcess will thus want to invoke the lvalue overload for process.
To prevent this, we need a mechanism for param to be cast to an rvalue if and
only if the argument with which param was initialized—the argument passed to
logAndProcess—was an rvalue. This is precisely what std: : forward does.

That’s why std: : forward is a conditional cast: it casts to an rvalue only if its
argument was initialized with an rvalue.

You may wonder how std: : forward can know whether its argument was
initialized with an rvalue. In the code above, for example, how can

std: :forward tell whether param was initialized with an lvalue or an rvalue?
The brief answer is that that information is encoded in logAndProcess’s

template parameter T. That parameter is passed to std: : forward, which
recovers the encoded information. For details on exactly how that works, consult
Item 28.

Given that both std: :move and std: : forward boil down to casts, the only
difference being that std: :move always casts, while std: : forward only
sometimes does, you might ask whether we can dispense with std: :move and
just use std: : forward everywhere. From a purely technical perspective, the
answer is yes: std: : forward can do it all. std: :move isn’t necessary. Of
course, neither function is really necessary, because we could write casts
everywhere, but I hope we agree that that would be, well, yucky.

std: :move’s attractions are convenience, reduced likelihood of error, and
greater clarity. Consider a class where we want to track how many times the

move constructor is called. A static counter that’s incremented during move
construction is all we need. Assuming the only non-static data in the class is a

std: :string, here’s the conventional way (i.e., using std: :move) to implement
the move constructor:

class Widget {



public:
Widget(Widget&& rhs)
: s(std::move(rhs.s))
{ ++moveCtorCalls; }

private:
static std::size_t moveCtorCalls;
std::string s;

1

To implement the same behavior with std: : forward, the code would look like
this:

class Widget {

public:
Widget(Widget&& rhs) // unconventional,
: s(std::forward<std::string>(rhs.s)) // undesirable
{ ++moveCtorCalls; } // implementation
I¥

Note first that std: :move requires only a function argument (rhs.s), while

std: : forward requires both a function argument (rhs.s) and a template type
argument (std: :string). Then note that the type we pass to std: : forward
should be a non-reference, because that’s the convention for encoding that the
argument being passed is an rvalue (see Item 28). Together, this means that

std: :move requires less typing than std: : forward, and it spares us the trouble
of passing a type argument that encodes that the argument we’re passing is an
rvalue. It also eliminates the possibility of our passing an incorrect type (e.g.,
std: :string&, which would result in the data member s being copy constructed
instead of move constructed).

More importantly, the use of std: :move conveys an unconditional cast to an
rvalue, while the use of std: : forward indicates a cast to an rvalue only for
references to which rvalues have been bound. Those are two very different
actions. The first one typically sets up a move, while the second one just passes



—forwards—an object to another function in a way that retains its original
lvalueness or rvalueness. Because these actions are so different, it’s good that we
have two different functions (and function names) to distinguish them.

Things to Remember

m std: :move performs an unconditional cast to an rvalue. In and of itself, it doesn’t move
anything.

m std::forward casts its argument to an rvalue only if that argument is bound to an rvalue.

m Neither std: :move nor std: : forward do anything at runtime.

Item 24: Distinguish universal references from
rvalue references.

It’s been said that the truth shall set you free, but under the right circumstances,
a well-chosen lie can be equally liberating. This Item is such a lie. Because
we’re dealing with software, however, let’s eschew the word “lie” and instead
say that this Item comprises an “abstraction.”

To declare an rvalue reference to some type T, you write T&&. It thus seems
reasonable to assume that if you see “T&&” in source code, you’re looking at an
rvalue reference. Alas, it’s not quite that simple:

vold f(Widget&& param); // rvalue reference
Widget&& varl = Widget(); // rvalue reference
auto&& var2 = varl; // not rvalue reference

template<typename T>
void f(std::vector<T>&& param); // rvalue reference

template<typename T>
vold f(T&& param); // not rvalue reference

In fact, “T&&” has two different meanings. One is rvalue reference, of course.



Such references behave exactly the way you expect: they bind only to rvalues,
and their primary raison d’étre is to identify objects that may be moved from.

The other meaning for “T&&” is either rvalue reference or lvalue reference. Such
references look like rvalue references in the source code (i.e., “T&&”), but they

can behave as if they were lvalue references (i.e., “T&”). Their dual nature
permits them to bind to rvalues (like rvalue references) as well as Ivalues (like

lvalue references). Furthermore, they can bind to const or non-const objects, to
volatile or non-volatile objects, even to objects that are both const and

volatile. They can bind to virtually anything. Such unprecedentedly flexible
references deserve a name of their own. I call them universal references.

Universal references arise in two contexts. The most common is function
template parameters, such as this example from the sample code above:

template<typename T>
vold f(T&& param); // param is a universal reference

The second context is auto declarations, including this one from the sample
code above:

auto&& var2 = varl; // var2 is a universal reference

What these contexts have in common is the presence of type deduction. In the
template f, the type of param is being deduced, and in the declaration for var2,
var2’s type is being deduced. Compare that with the following examples (also
from the sample code above), where type deduction is missing. If you see “T&&”
without type deduction, you’re looking at an rvalue reference:

vold f(Widget&& param); // no type deduction;
// param is an rvalue reference

Widget&& varl = Widget(); // no type deduction;
// varl is an rvalue reference

Because universal references are references, they must be initialized. The
initializer for a universal reference determines whether it represents an rvalue
reference or an Ivalue reference. If the initializer is an rvalue, the universal



reference corresponds to an rvalue reference. If the initializer is an Ivalue, the
universal reference corresponds to an lvalue reference. For universal references
that are function parameters, the initializer is provided at the call site:

template<typename T>

vold f(T&& param); // param is a universal reference
Widget w;
f(w); // lvalue passed to f; param's type is

// Widget& (i.e., an lvalue reference)

f(std::move(w)); // rvalue passed to f; param's type is
// Widget&& (i.e., an rvalue reference)

For a reference to be universal, type deduction is necessary, but it’s not
sufficient. The form of the reference declaration must also be correct, and that

form is quite constrained. It must be precisely “T&&”. Look again at this example
from the sample code we saw earlier:

template<typename T>
vold f(std::vector<T>&& param); // param is an rvalue reference

When f is invoked, the type T will be deduced (unless the caller explicitly
specifies it, an edge case we’ll not concern ourselves with). But the form of
param’s type declaration isn’t “T&&”, it’s “std: :vector<T>&&”. That rules out
the possibility that param is a universal reference. paranm is therefore an rvalue
reference, something that your compilers will be happy to confirm for you if you
try to pass an lvalue to f:

std::vector<int> v;
f(v); // error! can't bind lvalue to
// rvalue reference

Even the simple presence of a const qualifier is enough to disqualify a reference
from being universal:

template<typename T>
vold f(const T&& param); // param is an rvalue reference



If you’re in a template and you see a function parameter of type “T&&”, you
might think you can assume that it’s a universal reference. You can’t. That’s
because being in a template doesn’t guarantee the presence of type deduction.

Consider this push_back member function in std: :vector:

template<class T, class Allocator = allocator<T>> // from C++
class vector { // Standards
public:

voild push_back(T&& x);

};

push_back’s parameter certainly has the right form for a universal reference, but
there’s no type deduction in this case. That’s because push_back can’t exist
without a particular vector instantiation for it to be part of, and the type of that
instantiation fully determines the declaration for push_back. That is, saying

std::vector<Widget> v;
causes the std: :vector template to be instantiated as follows:

class vector<Widget, allocator<Widget>> {
public:
voild push_back(Widget&& x); // rvalue reference

};

Now you can see clearly that push_back employs no type deduction. This
push_back for vector<T> (there are two—the function is overloaded) always
declares a parameter of type rvalue-reference-to-T.

In contrast, the conceptually similar emplace_back member function in
std: :vector does employ type deduction:

template<class T, class Allocator = allocator<T>> // still from

class vector { /] C++
public: // Standards
template <class... Args>

vold emplace_back(Args&&... args);



};

Here, the type parameter Args is independent of vector’s type parameter T, so
Args must be deduced each time emplace_back is called. (Okay, Args is really a
parameter pack, not a type parameter, but for purposes of this discussion, we can
treat it as if it were a type parameter.)

The fact that emplace_back’s type parameter is named Args, yet it’s still a
universal reference, reinforces my earlier comment that it’s the form of a
universal reference that must be “T&&”. There’s no requirement that you use the
name T. For example, the following template takes a universal reference,
because the form (“type&&”) is right, and param’s type will be deduced (again,
excluding the corner case where the caller explicitly specifies the type):

template<typename MyTemplateType> // param is a
voild someFunc(MyTemplateType&& param); // universal reference

I remarked earlier that auto variables can also be universal references. To be
more precise, variables declared with the type auto&& are universal references,
because type deduction takes place and they have the correct form (“T&&”). auto
universal references are not as common as universal references used for function
template parameters, but they do crop up from time to time in C++11. They crop
up a lot more in C++14, because C++14 lambda expressions may declare
auto&& parameters. For example, if you wanted to write a C++14 lambda to
record the time taken in an arbitrary function invocation, you could do this:

auto timeFuncInvocation =

[](auto&& func, auto&&... params) /] C++14
{
start timer;
std: :forward<decltype(func)>(func)( // invoke func
std::forward<decltype(params)>(params)... // on params

);
stop timer and record elapsed time;

1

If your reaction to the “std: : forward<decltype(blah blah blah)>” code
inside the lambda is, “What the...?!”, that probably just means you haven’t yet



read Item 33. Don’t worry about it. The important thing in this Item is the
auto&& parameters that the lambda declares. func is a universal reference that
can be bound to any callable object, lvalue or rvalue. args is zero or more
universal references (i.e., a universal reference parameter pack) that can be
bound to any number of objects of arbitrary types. The result, thanks to auto
universal references, is that timeFuncInvocation can time pretty much any
function execution. (For information on the difference between “any” and
“pretty much any,” turn to Item 30.)

Bear in mind that this entire Item—the foundation of universal references—is a
lie...er, an “abstraction.” The underlying truth is known as reference collapsing,
a topic to which Item 28 is dedicated. But the truth doesn’t make the abstraction
any less useful. Distinguishing between rvalue references and universal
references will help you read source code more accurately (“Does that T&& I’'m
looking at bind to rvalues only or to everything?”), and it will avoid ambiguities
when you communicate with your colleagues (“I’m using a universal reference
here, not an rvalue reference...”). It will also allow you to make sense of Items
25 and 26, which rely on the distinction. So embrace the abstraction. Revel in it.
Just as Newton’s laws of motion (which are technically incorrect) are typically
just as useful as and easier to apply than Einstein’s theory of general relativity
(“the truth™), so is the notion of universal references normally preferable to
working through the details of reference collapsing.

Things to Remember

m [If a function template parameter has type T&& for a deduced type T, or if an object is
declared using auto&&, the parameter or object is a universal reference.

m [f the form of the type declaration isn’t precisely type&&, or if type deduction does not
occur, type&& denotes an rvalue reference.

m Universal references correspond to rvalue references if they’re initialized with rvalues.
They correspond to lvalue references if they’re initialized with lvalues.

Item 25: Use std: :move on rvalue references,



std: :forward on universal references.

Rvalue references bind only to objects that are candidates for moving. If you
have an rvalue reference parameter, you know that the object it’s bound to may
be moved:

class Widget {
Widget(Widget&& rhs); /] rhs definitely refers to an
// object eligible for moving

1

That being the case, you’ll want to pass such objects to other functions in a way
that permits those functions to take advantage of the object’s rvalueness. The
way to do that is to cast parameters bound to such objects to rvalues. As Item 23

explains, that’s not only what std: :move does, it’s what it was created for:

class Widget {
public:
Widget(Widget&& rhs) // rhs is rvalue reference
: name(std::move(rhs.name)),
p(std::move(rhs.p))

{13

private:
std::string name;
std::shared_ptr<SomeDataStructure> p;

1

A universal reference, on the other hand (see Item 24), might be bound to an
object that’s eligible for moving. Universal references should be cast to rvalues
only if they were initialized with rvalues. Item 23 explains that this is precisely

what std: : forward does:

class Widget {
public:
template<typename T>
vold setName(T&& newName) // newName is
{ name = std::forward<T>(newName); } // universal reference



1

In short, rvalue references should be unconditionally cast to rvalues (via

std: :move) when forwarding them to other functions, because they’re always
bound to rvalues, and universal references should be conditionally cast to
rvalues (via std: : forward) when forwarding them, because they’re only
sometimes bound to rvalues.

[tem 23 explains that using std: : forward on rvalue references can be made to
exhibit the proper behavior, but the source code is wordy, error-prone, and
unidiomatic, so you should avoid using std: : forward with rvalue references.
Even worse is the idea of using std: :move with universal references, because
that can have the effect of unexpectedly modifying Ivalues (e.g., local variables):

class Widget {

public:
template<typename T>
vold setName(T&& newName) // universal reference
{ name = std::move(newName); } // compiles, but 1is
// bad, bad, bad!
private:

std::string name;
std::shared_ptr<SomeDataStructure> p;

}s

std::string getWidgetName(); // factory function
Widget w;

auto n = getWidgetName(); // n is local variable
w.setName(n); // moves n into w!

// n's value now unknown

Here, the local variable n is passed to w.setName, which the caller can be
forgiven for assuming is a read-only operation on n. But because setName
internally uses std: :move to unconditionally cast its reference parameter to an
rvalue, n’s value will be moved into w.name, and n will come back from the call
to setName with an unspecified value. That’s the kind of behavior that can drive



callers to despair—possibly to violence.

You might argue that setName shouldn’t have declared its parameter to be a
universal reference. Such references can’t be const (see Item 24), yet setName
surely shouldn’t modify its parameter. You might point out that if setName had

simply been overloaded for const Ivalues and for rvalues, the whole problem
could have been avoided. Like this:

class Widget {

public:
voild setName(const std::string& newName) // set from
{ name = newName; } // const lvalue
vold setName(std::string&& newName) // set from
{ name = std::move(newName); } // rvalue
I¥

That would certainly work in this case, but there are drawbacks. First, it’s more
source code to write and maintain (two functions instead of a single template).

Second, it can be less efficient. For example, consider this use of setName:

w.setName("Adela Novak");

With the version of setName taking a universal reference, the string literal
"Adela Novak" would be passed to setName, where it would be conveyed to the
assignment operator for the std: :string inside w. w’s name data member would
thus be assigned directly from the string literal; no temporary std: :string
objects would arise. With the overloaded versions of setName, however, a
temporary std: :string object would be created for setName’s parameter to
bind to, and this temporary std: : string would then be moved into w’s data
member. A call to setName would thus entail execution of one std: :string
constructor (to create the temporary), one std: : string move assignment

operator (to move newName into w.name), and one std: : string destructor (to
destroy the temporary). That’s almost certainly a more expensive execution

sequence than invoking only the std: :string assignment operator taking a



const char* pointer. The additional cost is likely to vary from implementation
to implementation, and whether that cost is worth worrying about will vary from
application to application and library to library, but the fact is that replacing a
template taking a universal reference with a pair of functions overloaded on
lvalue references and rvalue references is likely to incur a runtime cost in some
cases. If we generalize the example such that Widget’s data member may be of
an arbitrary type (rather than knowing that it’s std: : string), the performance
gap can widen considerably, because not all types are as cheap to move as
std::string (see Item 29).

The most serious problem with overloading on lvalues and rvalues, however,
isn’t the volume or idiomaticity of the source code, nor is it the code’s runtime
performance. It’s the poor scalability of the design. Widget: : setName takes
only one parameter, so only two overloads are necessary, but for functions
taking more parameters, each of which could be an lvalue or an rvalue, the
number of overloads grows geometrically: n parameters necessitates 2"
overloads. And that’s not the worst of it. Some functions—function templates,
actually—take an unlimited number of parameters, each of which could be an
lvalue or rvalue. The poster children for such functions are std: :make_shared,
and, as of C++14, std: :make_unique (see Item 21). Check out the declarations
of their most commonly used overloads:

template<class T, class... Args> // from C++11
shared_ptr<T> make_shared(Args&&... args); // Standard
template<class T, class... Args> // from C++14
unique_ptr<T> make_unique(Args&&... args); // Standard

For functions like these, overloading on lvalues and rvalues is not an option:
universal references are the only way to go. And inside such functions, I assure
you, std: :forward is applied to the universal reference parameters when
they’re passed to other functions. Which is exactly what you should do.

Well, usually. Eventually. But not necessarily initially. In some cases, you’ll
want to use the object bound to an rvalue reference or a universal reference more
than once in a single function, and you’ll want to make sure that it’s not moved
from until you’re otherwise done with it. In that case, you’ll want to apply



std: :move (for rvalue references) or std: : forward (for universal references) to
only the final use of the reference. For example:

template<typename T> /] text is
voild setSignText(T&& text) // univ. reference
{

sign.setText(text); // use text, but

// don't modify it

auto now = // get current time
std::chrono::system _clock::now();

signHistory.add(now,
std::forward<T>(text)); // conditionally cast
} // text to rvalue

Here, we want to make sure that text’s value doesn’t get changed by
sign.setText, because we want to use that value when we call

signHistory.add. Ergo the use of std::forward on only the final use of the
universal reference.

For std: :move, the same thinking applies (i.e., apply std: :move to an rvalue
reference the last time it’s used), but it’s important to note that in rare cases,
you’ll want to call std: :move_1if_noexcept instead of std: :move. To learn
when and why, consult Item 14.

If you’re in a function that returns by value, and you’re returning an object
bound to an rvalue reference or a universal reference, you’ll want to apply
std: :move or std: : forward when you return the reference. To see why,
consider an operator+ function to add two matrices together, where the left-
hand matrix is known to be an rvalue (and can hence have its storage reused to
hold the sum of the matrices):

Matrix // by-value return
operator+(Matrix&& lhs, const Matrix& rhs)
{

lhs += rhs;

return std::move(lhs); // move lhs into

} // return value



By casting Lhs to an rvalue in the return statement (via std: :move), Lhs will

be moved into the function’s return value location. If the call to std: :move were
omitted,

Matrix // as above
operator+(Matrix&& lhs, const Matrix& rhs)
{

lhs += rhs;

return lhs; // copy lhs into
} // return value

the fact that Lhs is an lvalue would force compilers to instead copy it into the
return value location. Assuming that the Matrix type supports move
construction, which is more efficient than copy construction, using std: :move in
the return statement yields more efficient code.

If Matrix does not support moving, casting it to an rvalue won’t hurt, because
the rvalue will simply be copied by Matrix’s copy constructor (see Item 23). If
Matrix is later revised to support moving, operator+ will automatically benefit
the next time it is compiled. That being the case, there’s nothing to be lost (and

possibly much to be gained) by applying std: :move to rvalue references being
returned from functions that return by value.

The situation is similar for universal references and std: : forward. Consider a
function template reduceAndCopy that takes a possibly unreduced Fraction
object, reduces it, and then returns a copy of the reduced value. If the original
object is an rvalue, its value should be moved into the return value (thus
avoiding the expense of making a copy), but if the original is an lvalue, an actual
copy must be created. Hence:

template<typename T>

Fraction // by-value return
reduceAndCopy(T&& frac) // universal reference param
{

frac.reduce();

return std::forward<T>(frac); // move rvalue into return
} // value, copy lvalue

If the call to std: : forward were omitted, frac would be unconditionally copied



into reduceAndCopy’s return value.

Some programmers take the information above and try to extend it to situations
where it doesn’t apply. “If using std: :move on an rvalue reference parameter
being copied into a return value turns a copy construction into a move
construction,” they reason, “I can perform the same optimization on local
variables that I’m returning.” In other words, they figure that given a function
returning a local variable by value, such as this,

Widget makeWidget() // "Copying" version of makeWidget
{
Widget w; // local variable

// configure w

return w; // "copy" w into return value

}

they can “optimize” it by turning the “copy” into a move:

Widget makeWidget() // Moving version of makeWidget
{

Widget w;

return std::move(w); // move w into return value
} // (don't do this!)

My liberal use of quotation marks should tip you off that this line of reasoning is
flawed. But why is it flawed?

It’s flawed, because the Standardization Committee is way ahead of such
programmers when it comes to this kind of optimization. It was recognized long
ago that the “copying” version of makeWidget can avoid the need to copy the
local variable w by constructing it in the memory alloted for the function’s return
value. This is known as the return value optimization (RVO), and it’s been
expressly blessed by the C++ Standard for as long as there’s been one.

Wording such a blessing is finicky business, because you want to permit such
copy elision only in places where it won’t affect the observable behavior of the
software. Paraphrasing the legalistic (arguably toxic) prose of the Standard, this
particular blessing says that compilers may elide the copying (or moving) of a



local object' in a function that returns by value if (1) the type of the local object

is the same as that returned by the function and (2) the local object is what’s
being returned. With that in mind, look again at the “copying” version of
makeWidget:

Widget makeWidget() // "Copying" version of makeWidget
{

Widget w;

return w; // "copy" w into return value
}

Both conditions are fulfilled here, and you can trust me when I tell you that for
this code, every decent C++ compiler will employ the RVO to avoid copying w.
That means that the “copying” version of makeWidget doesn’t, in fact, copy
anything.

The moving version of makeWidget does just what its name says it does
(assuming Widget offers a move constructor): it moves the contents of w into
makeWidget’s return value location. But why don’t compilers use the RVO to
eliminate the move, again constructing w in the memory alloted for the
function’s return value? The answer is simple: they can’t. Condition (2)
stipulates that the RVO may be performed only if what’s being returned is a
local object, but that’s not what the moving version of makeWidget is doing.
Look again at its return statement:

return std::move(w);

What’s being returned here isn’t the local object w, it’s a reference to w—the
result of std: :move(w). Returning a reference to a local object doesn’t satisfy
the conditions required for the RVO, so compilers must move w into the
function’s return value location. Developers trying to help their compilers
optimize by applying std: :move to a local variable that’s being returned are
actually limiting the optimization options available to their compilers!

But the RVO is an optimization. Compilers aren’t required to elide copy and
move operations, even when they’re permitted to. Maybe you’re paranoid, and
you worry that your compilers will punish you with copy operations, just



because they can. Or perhaps you’re insightful enough to recognize that there are
cases where the RVO is difficult for compilers to implement, e.g., when different
control paths in a function return different local variables. (Compilers would
have to generate code to construct the appropriate local variable in the memory
allotted for the function’s return value, but how could compilers determine
which local variable would be appropriate?) If so, you might be willing to pay
the price of a move as insurance against the cost of a copy. That is, you might
still think it’s reasonable to apply std: :move to a local object you’re returning,
simply because you’d rest easy knowing you’d never pay for a copy.

In that case, applying std: :move to a local object would still be a bad idea. The
part of the Standard blessing the RVO goes on to say that if the conditions for
the RVO are met, but compilers choose not to perform copy elision, the object
being returned must be treated as an rvalue. In effect, the Standard requires that
when the RVO is permitted, either copy elision takes place or std: :move is
implicitly applied to local objects being returned. So in the “copying” version of
makeWidget,

Widget makeWidget() // as before

{
Widget w;

return w;

}

compilers must either elide the copying of w or they must treat the function as if
it were written like this:

Widget makeWidget()

{
Widget w;

return std::move(w); // treat w as rvalue, because
} // no copy elision was performed

The situation is similar for by-value function parameters. They’re not eligible for
copy elision with respect to their function’s return value, but compilers must
treat them as rvalues if they’re returned. As a result, if your source code looks
like this,



Widget makeWidget(Widget w) // by-value parameter of same
{ // type as function's return

return w;

}
compilers must treat it as if it had been written this way:

Widget makeWidget(Widget w)
{

return std::move(w); // treat w as rvalue

}

This means that if you use std: :move on a local object being returned from a
function that’s returning by value, you can’t help your compilers (they have to
treat the local object as an rvalue if they don’t perform copy elision), but you can
certainly hinder them (by precluding the RVO). There are situations where
applying std: :move to a local variable can be a reasonable thing to do (i.e.,
when you’re passing it to a function and you know you won’t be using the
variable any longer), but as part of a return statement that would otherwise
qualify for the RVO or that returns a by-value parameter isn’t among them.

Things to Remember

m Apply std: :move to rvalue references and std: : forward to universal references the last
time each is used.

m Do the same thing for rvalue references and universal references being returned from
functions that return by value.

m Never apply std: :move or std: : forward to local objects if they would otherwise be
eligible for the return value optimization.

Item 26: Avoid overloading on universal
references.

Suppose you need to write a function that takes a name as a parameter, logs the



current date and time, then adds the name to a global data structure. You might
come up with a function that looks something like this:

std::multiset<std::string> names; // global data structure

vold logAndAdd(const std::string& name)

{
auto now = // get current time
std::chrono::system _clock::now();
log(now, "logAndAdd"); // make log entry
names.emplace(name); // add name to global data
} // structure; see Item 42

// for info on emplace

This isn’t unreasonable code, but it’s not as efficient as it could be. Consider
three potential calls:

std::string petName("Darla");
logAndAdd(petName); // pass lvalue std::string
logAndAdd(std: :string("Persephone")); // pass rvalue std::string

logAndAdd("Patty Dog"); // pass string literal

In the first call, LogAndAdd’s parameter name is bound to the variable petName.
Within logAndAdd, name is ultimately passed to names.emplace. Because name
is an lvalue, it is copied into names. There’s no way to avoid that copy, because
an lvalue (petName) was passed into LogAndAdd.

In the second call, the parameter name is bound to an rvalue (the temporary

std: :string explicitly created from "Persephone"). name itself is an Ivalue, so
it’s copied into names, but we recognize that, in principle, its value could be
moved into names. In this call, we pay for a copy, but we should be able to get
by with only a move.

In the third call, the parameter name is again bound to an rvalue, but this time it’s
to a temporary std: :string that’s implicitly created from "Patty Dog". As in
the second call, name is copied into names, but in this case, the argument



originally passed to LlogAndAdd was a string literal. Had that string literal been
passed directly to emplace, there would have been no need to create a temporary
std: :string at all. Instead, emplace would have used the string literal to create
the std: :string object directly inside the std: :multiset. In this third call,
then, we’re paying to copy a std: :string, yet there’s really no reason to pay
even for a move, much less a copy.

We can eliminate the inefficiencies in the second and third calls by rewriting
logAndAdd to take a universal reference (see Item 24) and, in accord with

Item 25, std: : forwarding this reference to emplace. The results speak for
themselves:

template<typename T>

vold logAndAdd(T&& name)

{
auto now = std::chrono::system_clock::now();
log(now, "logAndAdd");
names.emplace(std: :forward<T>(name));

}
std::string petName("Darla"); // as before
logAndAdd(petName); // as before, copy

// lvalue into multiset

logAndAdd(std: :string("Persephone")); // move rvalue instead
// of copying it

logAndAdd("Patty Dog"); /] create std::string
// in multiset instead
// of copying a temporary
// std::string

Hurray, optimal efficiency!

Were this the end of the story, we could stop here and proudly retire, but I
haven’t told you that clients don’t always have direct access to the names that

logAndAdd requires. Some clients have only an index that LogAndAdd uses to

look up the corresponding name in a table. To support such clients, LogAndAdd
is overloaded:



std::string nameFromIdx(int idx); // return name
// corresponding to idx

void logAndAdd(int idx) // new overload
{

auto now = std::chrono::system_clock::now();
log(now, "logAndAdd");
names.emplace(nameFromIdx(idx));

}

Resolution of calls to the two overloads works as expected:

std::string petName("Darla"); // as before
logAndAdd(petName); // as before, these
logAndAdd(std: :string("Persephone")); // calls all invoke
logAndAdd("Patty Dog"); // the T&& overload
logAndAdd(22); // calls int overload

Actually, resolution works as expected only if you don’t expect too much.
Suppose a client has a short holding an index and passes that to LogAndAdd:

short namelIdx;
// give nameIldx a value

logAndAdd(nameIdx); // error!

The comment on the last line isn’t terribly illuminating, so let me explain what
happens here.

There are two LlogAndAdd overloads. The one taking a universal reference can
deduce T to be short, thus yielding an exact match. The overload with an int
parameter can match the short argument only with a promotion. Per the normal
overload resolution rules, an exact match beats a match with a promotion, so the
universal reference overload is invoked.

Within that overload, the parameter name is bound to the short that’s passed in.
name is then std: : forwarded to the emplace member function on names (a
std::multiset<std: :string>), which, in turn, dutifully forwards it to the
std: :string constructor. There is no constructor for std: :string that takes a



short, so the std: : string constructor call inside the call to

multiset: :emplace inside the call to logAndAdd fails. All because the
universal reference overload was a better match for a short argument than an
int.

Functions taking universal references are the greediest functions in C++. They
instantiate to create exact matches for almost any type of argument. (The few
kinds of arguments where this isn’t the case are described in Item 30.) This is
why combining overloading and universal references is almost always a bad
idea: the universal reference overload vacuums up far more argument types than
the developer doing the overloading generally expects.

An easy way to topple into this pit is to write a perfect forwarding constructor. A
small modification to the LlogAndAdd example demonstrates the problem. Instead
of writing a free function that can take either a std: :string or an index that can

be used to look up a std: :string, imagine a class Person with constructors
that do the same thing:

class Person {

public:
template<typename T>
explicit Person(T&& n) // perfect forwarding ctor;
: name(std::forward<T>(n)) {} // initializes data member
explicit Person(int idx) // int ctor

: name(nameFromIdx(idx)) {}

private:
std::string name;

}s

As was the case with LogAndAdd, passing an integral type other than int (e.g.,
std: :size_t, short, long, etc.) will call the universal reference constructor
overload instead of the int overload, and that will lead to compilation failures.
The problem here is much worse, however, because there’s more overloading
present in Person than meets the eye. Item 17 explains that under the
appropriate conditions, C++ will generate both copy and move constructors, and
this is true even if the class contains a templatized constructor that could be



instantiated to produce the signature of the copy or move constructor. If the copy

and move constructors for Person are thus generated, Person will effectively
look like this:

class Person {

public:
template<typename T> // perfect forwarding ctor
explicit Person(T&& n)
: name(std::forward<T>(n)) {}

explicit Person(int idx); // int ctor

Person(const Person& rhs); // copy ctor
// (compiler-generated)

Person(Person&& rhs); // move ctor
// (compiler-generated)

}s

This leads to behavior that’s intuitive only if you’ve spent so much time around
compilers and compiler-writers, you’ve forgotten what it’s like to be human:

Person p("Nancy");

auto cloneOfP(p); // create new Person from p;
/] this won't compile!

Here we’re trying to create a Person from another Person, which seems like
about as obvious a case for copy construction as one can get. (p’s an lvalue, so
we can banish any thoughts we might have about the “copying” being
accomplished through a move operation.) But this code won’t call the copy
constructor. It will call the perfect-forwarding constructor. That function will
then try to initialize Person’s std: : string data member with a Person object
(p). std: :string having no constructor taking a Person, your compilers will
throw up their hands in exasperation, possibly punishing you with long and
incomprehensible error messages as an expression of their displeasure.

“Why,” you might wonder, “does the perfect-forwarding constructor get called
instead of the copy constructor? We’re initializing a Person with another



Person!” Indeed we are, but compilers are sworn to uphold the rules of C++,
and the rules of relevance here are the ones governing the resolution of calls to
overloaded functions.

Compilers reason as follows. cloneOfP is being initialized with a non-const
lvalue (p), and that means that the templatized constructor can be instantiated to
take a non-const lvalue of type Person. After such instantiation, the Person
class looks like this:

class Person {
public:
explicit Person(Person& n) // instantiated from
: name(std::forward<Person&>(n)) {} // perfect-forwarding
// template

explicit Person(int idx); // as before

Person(const Person& rhs); /] copy ctor
// (compiler-generated)

b
In the statement,

auto cloneOfP(p);

p could be passed to either the copy constructor or the instantiated template.
Calling the copy constructor would require adding const to p to match the copy
constructor’s parameter’s type, but calling the instantiated template requires no
such addition. The overload generated from the template is thus a better match,
so compilers do what they’re designed to do: generate a call to the better-
matching function. “Copying” non-const lvalues of type Person is thus handled
by the perfect-forwarding constructor, not the copy constructor.

If we change the example slightly so that the object to be copied is const, we
hear an entirely different tune:

const Person cp("Nancy"); // object is now const

auto cloneOfP(cp); // calls copy constructor!



Because the object to be copied is now const, it’s an exact match for the
parameter taken by the copy constructor. The templatized constructor can be
instantiated to have the same signature,

class Person {

public:
explicit Person(const Person& n); // instantiated from
// template
Person(const Person& rhs); /] copy ctor
// (compiler-generated)
b

but this doesn’t matter, because one of the overload-resolution rules in C++ is
that in situations where a template instantiation and a non-template function (i.e.,
a “normal” function) are equally good matches for a function call, the normal
function is preferred. The copy constructor (a normal function) thereby trumps
an instantiated template with the same signature.

(If you’re wondering why compilers generate a copy constructor when they
could instantiate a templatized constructor to get the signature that the copy
constructor would have, review Item 17.)

The interaction among perfect-forwarding constructors and compiler-generated
copy and move operations develops even more wrinkles when inheritance enters
the picture. In particular, the conventional implementations of derived class copy
and move operations behave quite surprisingly. Here, take a look:

class SpecialPerson: public Person {

public:
SpecialPerson(const SpecialPerson& rhs) // copy ctor; calls
: Person(rhs) // base class
{ .} // forwarding ctor!
SpecialPerson(SpecialPerson&& rhs) // move ctor; calls
: Person(std::move(rhs)) // base class
{ .} // forwarding ctor!
b

As the comments indicate, the derived class copy and move constructors don’t



call their base class’s copy and move constructors, they call the base class’s
perfect-forwarding constructor! To understand why, note that the derived class
functions are using arguments of type SpecialPerson to pass to their base class,
then work through the template instantiation and overload-resolution
consequences for the constructors in class Person. Ultimately, the code won’t
compile, because there’s no std: : string constructor taking a SpecialPerson.

I hope that by now I’ve convinced you that overloading on universal reference
parameters is something you should avoid if at all possible. But if overloading
on universal references is a bad idea, what do you do if you need a function that
forwards most argument types, yet needs to treat some argument types in a
special fashion? That egg can be unscrambled in a number of ways. So many, in
fact, that I’ve devoted an entire Item to them. It’s Item 27. The next Item. Keep
reading, you’ll bump right into it.

Things to Remember

= Overloading on universal references almost always leads to the universal reference
overload being called more frequently than expected.

m Perfect-forwarding constructors are especially problematic, because they’re typically
better matches than copy constructors for non-const Ivalues, and they can hijack derived
class calls to base class copy and move constructors.

Item 27: Familiarize yourself with alternatives to
overloading on universal references.

Item 26 explains that overloading on universal references can lead to a variety of
problems, both for freestanding and for member functions (especially
constructors). Yet it also gives examples where such overloading could be
useful. If only it would behave the way we’d like! This Item explores ways to
achieve the desired behavior, either through designs that avoid overloading on
universal references or by employing them in ways that constrain the types of
arguments they can match.

The discussion that follows builds on the examples introduced in Item 26. If you



haven’t read that Item recently, you’ll want to review it before continuing.

Abandon overloading

The first example in Item 26, LogAndAdd, is representative of the many functions
that can avoid the drawbacks of overloading on universal references by simply
using different names for the would-be overloads. The two LlogAndAdd
overloads, for example, could be broken into LogAndAddName and
logAndAddNameIdx. Alas, this approach won’t work for the second example we

considered, the Person constructor, because constructor names are fixed by the
language. Besides, who wants to give up overloading?

Pass by const T&

An alternative is to revert to C++98 and replace pass-by-universal-reference with
pass-by-lvalue-reference-to-const. In fact, that’s the first approach Item 26
considers (shown here). The drawback is that the design isn’t as efficient as we’d
prefer. Knowing what we now know about the interaction of universal references
and overloading, giving up some efficiency to keep things simple might be a
more attractive trade-off than it initially appeared.

Pass by value

An approach that often allows you to dial up performance without any increase
in complexity is to replace pass-by-reference parameters with, counterintuitively,
pass by value. The design adheres to the advice in Item 41 to consider passing
objects by value when you know you’ll copy them, so I'll defer to that Item for a
detailed discussion of how things work and how efficient they are. Here, I’1l just

show how the technique could be used in the Person example:

class Person {

public:
explicit Person(std::string n) // replaces T&& ctor; see
: name(std::move(n)) {} // Item 41 for use of std::move
explicit Person(int idx) // as before

: name(nameFromIdx(idx)) {}



private:
std::string name;

1

Because there’s no std: : string constructor taking only an integer, all int and
int-like arguments to a Person constructor (e.g., std: :size_t, short, long)
get funneled to the int overload. Similarly, all arguments of type std: :string
(and things from which std: :strings can be created, e.g., literals such as
"Ruth") get passed to the constructor taking a std: :string. There are thus no
surprises for callers. You could argue, I suppose, that some people might be
surprised that using 0 or NULL to indicate a null pointer would invoke the int
overload, but such people should be referred to Item 8 and required to read it
repeatedly until the thought of using 0 or NULL as a null pointer makes them
recoil.

Use Tag dispatch

Neither pass by lvalue-reference-to-const nor pass by value offers support for
perfect forwarding. If the motivation for the use of a universal reference is
perfect forwarding, we have to use a universal reference; there’s no other choice.
Yet we don’t want to abandon overloading. So if we don’t give up overloading
and we don’t give up universal references, how can we avoid overloading on
universal references?

It’s actually not that hard. Calls to overloaded functions are resolved by looking
at all the parameters of all the overloads as well as all the arguments at the call
site, then choosing the function with the best overall match—taking into account
all parameter/argument combinations. A universal reference parameter generally
provides an exact match for whatever’s passed in, but if the universal reference
is part of a parameter list containing other parameters that are not universal
references, sufficiently poor matches on the non-universal reference parameters
can knock an overload with a universal reference out of the running. That’s the
basis behind the tag dispatch approach, and an example will make the foregoing
description easier to understand.

We’ll apply tag dispatch to the logAndAdd example here. Here’s the code for
that example, lest you get sidetracked looking it up:



std::multiset<std::string> names; // global data structure

template<typename T> // make log entry and add
vold logAndAdd(T&& name) // name to data structure
{

auto now = std::chrono::system_clock::now();
log(now, "logAndAdd");
names.emplace(std: :forward<T>(name));

}

By itself, this function works fine, but were we to introduce the overload taking
an int that’s used to look up objects by index, we’d be back in the troubled land
of Item 26. The goal of this Item is to avoid that. Rather than adding the
overload, we’ll reimplement LogAndAdd to delegate to two other functions, one
for integral values and one for everything else. LogAndAdd itself will accept all
argument types, both integral and non-integral.

The two functions doing the real work will be named LogAndAddImpl, i.e., we’ll
use overloading. One of the functions will take a universal reference. So we’ll
have both overloading and universal references. But each function will also take
a second parameter, one that indicates whether the argument being passed is
integral. This second parameter is what will prevent us from tumbling into the
morass described in Item 26, because we’ll arrange it so that the second
parameter will be the factor that determines which overload is selected.

Yes, I know, “Blah, blah, blah. Stop talking and show me the code!” No
problem. Here’s an almost-correct version of the updated logAndAdd:

template<typename T>
vold logAndAdd(T&& name)

{
logAndAddImpl(std::forward<T>(name),
std::is_integral<T>()); // not quite correct

This function forwards its parameter to LogAndAddImpl, but it also passes an
argument indicating whether that parameter’s type (T) is integral. At least, that’s
what it’s supposed to do. For integral arguments that are rvalues, it’s also what it
does. But, as Item 28 explains, if an Ivalue argument is passed to the universal



reference name, the type deduced for T will be an lvalue reference. So if an
lvalue of type int is passed to LlogAndAdd, T will be deduced to be int&. That’s
not an integral type, because references aren’t integral types. That means that
std::is_integral<T> will be false for any lvalue argument, even if the
argument really does represent an integral value.

Recognizing the problem is tantamount to solving it, because the ever-handy
Standard C++ Library has a type trait (see Item 9), std: : remove_reference,
that does both what its name suggests and what we need: remove any reference

qualifiers from a type. The proper way to write LogAndAdd is therefore:

template<typename T>
vold logAndAdd(T&& name)

{
logAndAddImpl(
std::forward<T>(name),
std::1s_integral<typename std::remove_reference<T>::type>()
)
}

This does the trick. (In C++14, you can save a few keystrokes by using

std: :remove_reference_t<T> in place of the highlighted text. For details, see
Item 9.)

With that taken care of, we can shift our attention to the function being called,
logAndAddImpl. There are two overloads, and the first is applicable only to non-
integral types (i.e., to types where std: :is_integral<typename

std: :remove_reference<T>::type> is false):

template<typename T> // non-integral

vold logAndAddImpl(T&& name, std::false_type) // argument:

{ // add it to
auto now = std::chrono::system_clock::now(); // global data
log(now, "logAndAdd"); // structure
names.emplace(std: :forward<T>(name));

}

This is straightforward code, once you understand the mechanics behind the
highlighted parameter. Conceptually, LlogAndAdd passes a boolean to
logAndAddImpl indicating whether an integral type was passed to LogAndAdd,



but true and false are runtime values, and we need to use overload resolution
—a compile-time phenomenon—to choose the correct LogAndAddImpl overload.
That means we need a type that corresponds to true and a different type that
corresponds to false. This need is common enough that the Standard Library
provides what is required under the names std: : true_type and

std: :false_type. The argument passed to LogAndAddImpl by logAndAdd is an
object of a type that inherits from std: : true_type if T is integral and from
std: :false_type if T is not integral. The net result is that this LogAndAddImpl

overload is a viable candidate for the call in logAndAdd only if T is not an
integral type.

The second overload covers the opposite case: when T is an integral type. In that
event, LogAndAddImpl simply finds the name corresponding to the passed-in
index and passes that name back to LogAndAdd:

std::string nameFromIdx(int idx); // as in Item 26

vold logAndAddImpl(int idx, std::true_type) // integral

{ // argument: look
logAndAdd(nameFromIdx(idx)); // up name and
} // call logAndAdd
// with it

By having LlogAndAddImpl for an index look up the corresponding name and
pass it to LogAndAdd (from where it will be std: : forwarded to the other
logAndAddImpl overload), we avoid the need to put the logging code in both
logAndAddImpl overloads.

In this design, the types std: :true_type and std::false_type are “tags”
whose only purpose is to force overload resolution to go the way we want.
Notice that we don’t even name those parameters. They serve no purpose at
runtime, and in fact we hope that compilers will recognize that the tag
parameters are unused and will optimize them out of the program’s execution
image. (Some compilers do, at least some of the time.) The call to the
overloaded implementation functions inside LogAndAdd “dispatches” the work to
the correct overload by causing the proper tag object to be created. Hence the
name for this design: tag dispatch. It’s a standard building block of template



metaprogramming, and the more you look at code inside contemporary C++
libraries, the more often you’ll encounter it.

For our purposes, what’s important about tag dispatch is less how it works and
more how it permits us to combine universal references and overloading without
the problems described in Item 26. The dispatching function—logAndAdd—
takes an unconstrained universal reference parameter, but this function is not
overloaded. The implementation functions—LlogAndAddImpl—are overloaded,
and one takes a universal reference parameter, but resolution of calls to these
functions depends not just on the universal reference parameter, but also on the
tag parameter, and the tag values are designed so that no more than one overload
will be a viable match. As a result, it’s the tag that determines which overload
gets called. The fact that the universal reference parameter will always generate
an exact match for its argument is immaterial.

Constraining templates that take universal references

A keystone of tag dispatch is the existence of a single (unoverloaded) function as
the client API. This single function dispatches the work to be done to the
implementation functions. Creating an unoverloaded dispatch function is usually
easy, but the second problem case Item 26 considers, that of a perfect-
forwarding constructor for the Person class (shown here), is an exception.
Compilers may generate copy and move constructors themselves, so even if you
write only one constructor and use tag dispatch within it, some constructor calls
may be handled by compiler-generated functions that bypass the tag dispatch
system.

In truth, the real problem is not that the compiler-generated functions sometimes
bypass the tag dispatch design, it’s that they don’t always pass it by. You
virtually always want the copy constructor for a class to handle requests to copy
lvalues of that type, but, as Item 26 demonstrates, providing a constructor taking
a universal reference causes the universal reference constructor (rather than the
copy constructor) to be called when copying non-const lvalues. That Item also
explains that when a base class declares a perfect-forwarding constructor, that
constructor will typically be called when derived classes implement their copy
and move constructors in the conventional fashion, even though the correct
behavior is for the base class’s copy and move constructors to be invoked.



For situations like these, where an overloaded function taking a universal
reference is greedier than you want, yet not greedy enough to act as a single
dispatch function, tag dispatch is not the droid you’re looking for. You need a
different technique, one that lets you rachet down the conditions under which the
function template that the universal reference is part of is permitted to be

employed. What you need, my friend, is std: :enable_if.

std: :enable_if gives you a way to force compilers to behave as if a particular
template didn’t exist. Such templates are said to be disabled. By default, all
templates are enabled, but a template using std: :enable_1if is enabled only if
the condition specified by std: :enable_1if is satisfied. In our case, we’d like to
enable the Person perfect-forwarding constructor only if the type being passed

isn’t Person. If the type being passed is Person, we want to disable the perfect-
forwarding constructor (i.e., cause compilers to ignore it), because that will
cause the class’s copy or move constructor to handle the call, which is what we

want when a Person object is initialized with another Person.

The way to express that idea isn’t particularly difficult, but the syntax is off-
putting, especially if you’ve never seen it before, so I’ll ease you into it. There’s
some boilerplate that goes around the condition part of std: :enable_if, so
we’ll start with that. Here’s the declaration for the perfect-forwarding
constructor in Person, showing only as much of the std: :enable_if as is
required simply to use it. I’'m showing only the declaration for this constructor,
because the use of std: :enable_1if has no effect on the function’s
implementation. The implementation remains the same as in Item 26.

class Person {
public:
template<typename T,
typename = typename std::enable_if<condition>::type>
explicit Person(T&& n);

1

To understand exactly what’s going on in the highlighted text, I must regretfully
suggest that you consult other sources, because the details take a while to



explain, and there’s just not enough space for it in this book. (During your
research, look into “SFINAE” as well as std: :enable_1if, because SFINAE is

the technology that makes std: :enable_if work.) Here, I want to focus on
expression of the condition that will control whether this constructor is enabled.

The condition we want to specify is that T isn’t Person, i.e., that the templatized
constructor should be enabled only if T is a type other than Person. Thanks to a
type trait that determines whether two types are the same (std: :is_same), it
would seem that the condition we want is !std: :is_same<Person, T>::value.
(Notice the “!” at the beginning of the expression. We want for Person and T to
not be the same.) This is close to what we need, but it’s not quite correct,
because, as Item 28 explains, the type deduced for a universal reference

initialized with an lvalue is always an lvalue reference. That means that for code
like this,

Person p("Nancy");

auto cloneOfP(p); // initialize from lvalue

the type T in the universal constructor will be deduced to be Person&. The types
Person and Person& are not the same, and the result of std: :is_same will
reflect that: std: :1s_same<Person, Person&>: :value is false.

If we think more precisely about what we mean when we say that the
templatized constructor in Person should be enabled only if T isn’t Person,
we’ll realize that when we’re looking at T, we want to ignore

» Whether it’s a reference. For the purpose of determining whether the
universal reference constructor should be enabled, the types Person,
Persong&, and Person&& are all the same as Person.

m Whether it’s const or volatile. As far as we’re concerned, a const
Person and a volatile Person and a const volatile Person are all the
same as a Person.

This means we need a way to strip any references, consts, and volatiles from
T before checking to see if that type is the same as Person. Once again, the



Standard Library gives us what we need in the form of a type trait. That trait is
std: :decay. std: :decay<T>::type is the same as T, except that references and
cv-qualifiers (i.e., const or volatile qualifiers) are removed. (I’'m fudging the
truth here, because std: :decay, as its name suggests, also turns array and
function types into pointers (see Item 1), but for purposes of this discussion,
std: :decay behaves as I’ve described.) The condition we want to control
whether our constructor is enabled, then, is

Istd::1s_same<Person, typename std::decay<T>::type>::value

i.e., Person is not the same type as T, ignoring any references or cv-qualifiers.
(As Item 9 explains, the “typename” in front of std: :decay is required, because
the type std: :decay<T>: : type depends on the template parameter T.)

Inserting this condition into the std: :enable_1if boilerplate above, plus
formatting the result to make it easier to see how the pieces fit together, yields

this declaration for Person’s perfect-forwarding constructor:

class Person {
public:
template<
typename T,
typename = typename std::enable_if<
Istd::1s_same<Person,
typename std::decay<T>::type
>::value
>::type
>

explicit Person(T&& n);

1

If you’ve never seen anything like this before, count your blessings. There’s a
reason I saved this design for last. When you can use one of the other
mechanisms to avoid mixing universal references and overloading (and you
almost always can), you should. Still, once you get used to the functional syntax
and the proliferation of angle brackets, it’s not that bad. Furthermore, this gives



you the behavior you’ve been striving for. Given the declaration above,
constructing a Person from another Person—Ivalue or rvalue, const or non-
const, volatile or non-volatile—will never invoke the constructor taking a
universal reference.

Success, right? We’re done!

Um, no. Belay that celebration. There’s still one loose end from Item 26 that
continues to flap about. We need to tie it down.

Suppose a class derived from Person implements the copy and move operations
in the conventional manner:

class SpecialPerson: public Person {

public:
SpecialPerson(const SpecialPerson& rhs) // copy ctor; calls
: Person(rhs) // base class
{ .} // forwarding ctor!
SpecialPerson(SpecialPerson&& rhs) // move ctor; calls
: Person(std::move(rhs)) // base class
{ .} // forwarding ctor!
b

This is the same code I showed in Item 26 (on page 206), including the
comments, which, alas, remain accurate. When we copy or move a

SpecialPerson object, we expect to copy or move its base class parts using the
base class’s copy and move constructors, but in these functions, we’re passing
SpecialPerson objects to the base class’s constructors, and because
SpecialPerson isn’t the same as Person (not even after application of

std: :decay), the universal reference constructor in the base class is enabled,
and it happily instantiates to perform an exact match for a SpecialPerson
argument. This exact match is better than the derived-to-base conversions that
would be necessary to bind the SpecialPerson objects to the Person
parameters in Person’s copy and move constructors, so with the code we have
now, copying and moving SpecialPerson objects would use the Person
perfect-forwarding constructor to copy or move their base class parts! It’s déja
Item 26 all over again.



The derived class is just following the normal rules for implementing derived
class copy and move constructors, so the fix for this problem is in the base class
and, in particular, in the condition that controls whether Person’s universal
reference constructor is enabled. We now realize that we don’t want to enable
the templatized constructor for any argument type other than Person, we want to
enable it for any argument type other than Person or a type derived from
Person. Pesky inheritance!

You should not be surprised to hear that among the standard type traits is one
that determines whether one type is derived from another. It’s called

std::1s_base of.std::1s_base of<T1, T2>::value is true if T2 is derived
from T1. Types are considered to be derived from themselves, so

std: :is_base_of<T, T>::value is true. This is handy, because we want to
revise our condition controlling Person’s perfect-forwarding constructor such
that the constructor is enabled only if the type T, after stripping it of references
and cv-qualifiers, is neither Person nor a class derived from Person. Using
std: :is_base_of instead of std: :is_same gives us what we need:

class Person {
public:
template<
typename T,
typename = typename std::enable_if<
!std::1s_base_of<Person,
typename std::decay<T>::type
>::value
>::type
>

explicit Person(T&& n);

1

Now we’re finally done. Provided we’re writing the code in C++11, that is. If
we’re using C++14, this code will still work, but we can employ alias templates
for std::enable_1if and std: :decay to get rid of the “typename” and
“::type” cruft, thus yielding this somewhat more palatable code:



class Person { /] C++14
public:
template<
typename T,
typename = std::enable_if_t< // less code here
!std::is_base_of<Person,
std::decay_t<T> // and here
>::value
> // and here

>

explicit Person(T&& n);

1

Okay, I admit it: I lied. We’re still not done. But we’re close. Tantalizingly
close. Honest.

We’ve seen how to use std: :enable_1if to selectively disable Person’s
universal reference constructor for argument types we want to have handled by
the class’s copy and move constructors, but we haven’t yet seen how to apply it
to distinguish integral and non-integral arguments. That was, after all, our
original goal; the constructor ambiguity problem was just something we got
dragged into along the way.

All we need to do—and I really do mean that this is everything—is (1) add a

Person constructor overload to handle integral arguments and (2) further
constrain the templatized constructor so that it’s disabled for such arguments.
Pour these ingredients into the pot with everything else we’ve discussed, simmer
over a low flame, and savor the aroma of success:

class Person {
public:
template<
typename T,
typename = std::enable_if_t<
Istd::1s_base_of<Person, std::decay_t<T>>::value
&&
Istd::is_1integral<std::remove_reference_t<T>>::value

>

explicit Person(T&& n) // ctor for std::strings and



: name(std::forward<T>(n)) // args convertible to

{ .} // std::strings

explicit Person(int idx) // ctor for integral args
: name(nameFromIdx(idx))

{ .}

// copy and move ctors, etc.

private:
std::string name;

1

Voila! A thing of beauty! Well, okay, the beauty is perhaps most pronounced for
those with something of a template metaprogramming fetish, but the fact
remains that this approach not only gets the job done, it does it with unique
aplomb. Because it uses perfect forwarding, it offers maximal efficiency, and
because it controls the combination of universal references and overloading
rather than forbidding it, this technique can be applied in circumstances (such as
constructors) where overloading is unavoidable.

Trade-offs

The first three techniques considered in this Item—abandoning overloading,
passing by const T&, and passing by value—specify a type for each parameter in
the function(s) to be called. The last two techniques—tag dispatch and
constraining template eligibility—use perfect forwarding, hence don’t specify
types for the parameters. This fundamental decision—to specify a type or not—
has consequences.

As arule, perfect forwarding is more efficient, because it avoids the creation of
temporary objects solely for the purpose of conforming to the type of a
parameter declaration. In the case of the Person constructor, perfect forwarding
permits a string literal such as "Nancy" to be forwarded to the constructor for the
std::string inside Person, whereas techniques not using perfect forwarding
must create a temporary std: :string object from the string literal to satisfy the
parameter specification for the Person constructor.

But perfect forwarding has drawbacks. One is that some kinds of arguments
can’t be perfect-forwarded, even though they can be passed to functions taking



specific types. Item 30 explores these perfect forwarding failure cases.

A second issue is the comprehensibility of error messages when clients pass
invalid arguments. Suppose, for example, a client creating a Person object
passes a string literal made up of char16_ts (a type introduced in C++11 to
represent 16-bit characters) instead of chars (which is what a std: :string
consists of):

Person p(u"Konrad Zuse"); // "Konrad Zuse" consists of
// characters of type const chari16_t

With the first three approaches examined in this Item, compilers will see that the
available constructors take either int or std: :string, and they’ll produce a
more or less straightforward error message explaining that there’s no conversion
from const char16_t[12] to int or std: :string.

With an approach based on perfect forwarding, however, the array of const
char16_ts gets bound to the constructor’s parameter without complaint. From
there it’s forwarded to the constructor of Person’s std: :string data member,
and it’s only at that point that the mismatch between what the caller passed in (a
const char16_t array) and what’s required (any type acceptable to the

std: :string constructor) is discovered. The resulting error message is likely to
be, er, impressive. With one of the compilers I use, it’s more than 160 lines long.

In this example, the universal reference is forwarded only once (from the Person
constructor to the std: : string constructor), but the more complex the system,
the more likely that a universal reference is forwarded through several layers of
function calls before finally arriving at a site that determines whether the
argument type(s) are acceptable. The more times the universal reference is
forwarded, the more baffling the error message may be when something goes
wrong. Many developers find that this issue alone is grounds to reserve universal
reference parameters for interfaces where performance is a foremost concern.

In the case of Person, we know that the forwarding function’s universal
reference parameter is supposed to be an initializer for a std: :string, so we
can use a static_assert to verify that it can play that role. The

std: :is_constructible type trait performs a compile-time test to determine



whether an object of one type can be constructed from an object (or set of
objects) of a different type (or set of types), so the assertion is easy to write:

class Person {
public:
template< // as before
typename T,
typename = std::enable_if_t<
Istd::1s_base_of<Person, std::decay_t<T>>::value
&&
Istd::1s_integral<std::remove_reference_t<T>>::value

>
explicit Person(T&& n)
: name(std::forward<T>(n))
{
// assert that a std::string can be created from a T object
static_assert(
std::is_constructible<std::string, T>::value,
"Parameter n can't be used to construct a std::string”

);

// the usual ctor work goes here

// remainder of Person class (as before)

1

This causes the specified error message to be produced if client code tries to
create a Person from a type that can’t be used to construct a std: :string.
Unfortunately, in this example the static_assert is in the body of the
constructor, but the forwarding code, being part of the member initialization list,
precedes it. With the compilers I use, the result is that the nice, readable message

arising from the static_assert appears only dafter the usual error messages (up
to 160-plus lines of them) have been emitted.

Things to Remember

m Alternatives to the combination of universal references and overloading include the use of
distinct function names, passing parameters by lvalue-reference-to-const, passing



parameters by value, and using tag dispatch.

= Constraining templates via std: :enable_1if permits the use of universal references and
overloading together, but it controls the conditions under which compilers may use the
universal reference overloads.

m Universal reference parameters often have efficiency advantages, but they typically have
usability disadvantages.

Item 28: Understand reference collapsing.

Item 23 remarks that when an argument is passed to a template function, the type
deduced for the template parameter encodes whether the argument is an lvalue or
an rvalue. The Item fails to mention that this happens only when the argument is
used to initialize a parameter that’s a universal reference, but there’s a good
reason for the omission: universal references aren’t introduced until Item 24.
Together, these observations about universal references and lvalue/rvalue
encoding mean that for this template,

template<typename T>
void func(T&& param);

the deduced template parameter T will encode whether the argument passed to
param was an lvalue or an rvalue.

The encoding mechanism is simple. When an lvalue is passed as an argument, T
is deduced to be an lvalue reference. When an rvalue is passed, T is deduced to
be a non-reference. (Note the asymmetry: lvalues are encoded as lvalue
references, but rvalues are encoded as non-references.) Hence:

Widget widgetFactory(); // function returning rvalue
Widget w; // a variable (an lvalue)
func(w); // call func with lvalue; T deduced

// to be Widget&

func(widgetFactory()); // call func with rvalue; T deduced
// to be Widget



In both calls to func, a Widget is passed, yet because one Widget is an Ivalue

and one is an rvalue, different types are deduced for the template parameter T.
This, as we shall soon see, is what determines whether universal references
become rvalue references or lvalue references, and it’s also the underlying

mechanism through which std: : forward does its work.

Before we can look more closely at std: : forward and universal references, we
must note that references to references are illegal in C++. Should you try to
declare one, your compilers will reprimand you:

int x;

auto& & rx = x; // error! can't declare reference to reference

But consider what happens when an Ivalue is passed to a function template
taking a universal reference:

template<typename T>
vold func(T&& param); // as before

func(w); // invoke func with lvalue;
// T deduced as Widget&

If we take the type deduced for T (i.e., Widget&) and use it to instantiate the
template, we get this:

vold func(Widget& && param);

A reference to a reference! And yet compilers issue no protest. We know from
Item 24 that because the universal reference param is being initialized with an
lvalue, param’s type is supposed to be an lvalue reference, but how does the

compiler get from the result of taking the deduced type for T and substituting it
into the template to the following, which is the ultimate function signature?

voild func(Widget& param);

The answer is reference collapsing. Yes, you are forbidden from declaring
references to references, but compilers may produce them in particular contexts,



template instantiation being among them. When compilers generate references to
references, reference collapsing dictates what happens next.

There are two kinds of references (lvalue and rvalue), so there are four possible
reference-reference combinations (Ivalue to lvalue, lvalue to rvalue, rvalue to
lvalue, and rvalue to rvalue). If a reference to a reference arises in a context
where this is permitted (e.g., during template instantiation), the references
collapse to a single reference according to this rule:

If either reference is an lvalue reference, the result is an Ivalue reference.
Otherwise (i.e., if both are rvalue references) the result is an rvalue reference.

In our example above, substitution of the deduced type Widget& into the

template func yields an rvalue reference to an lvalue reference, and the
reference-collapsing rule tells us that the result is an lvalue reference.

Reference collapsing is a key part of what makes std: : forward work. As

explained in Item 25, std: : forward is applied to universal reference
parameters, so a common use case looks like this:

template<typename T>
vold f(T&& fParam)
{

// do some work

someFunc(std: :forward<T>(fParam)); // forward fParam to
} // someFunc

Because fParam is a universal reference, we know that the type parameter T will
encode whether the argument passed to f (i.e., the expression used to initialize
fParam) was an lvalue or an rvalue. std: : forward’s job is to cast fParam (an
lvalue) to an rvalue if and only if T encodes that the argument passed to f was an
rvalue, i.e., if T is a non-reference type.

Here’s how std: : forward can be implemented to do that:

template<typename T> // in

T&& forward(typename // namespace
remove_reference<T>::type& param) // std

{

return static_cast<T&&>(param);



}

This isn’t quite Standards-conformant (I’ve omitted a few interface details), but
the differences are irrelevant for the purpose of understanding how
std: :forward behaves.

Suppose that the argument passed to f is an Ivalue of type Widget. T will be
deduced as Widget&, and the call to std: : forward will instantiate as

std: :forward<Widget&>. Plugging Widget& into the std: : forward
implementation yields this:

Widget& && forward(typename
remove_reference<Widget&>::type& param)
{ return static_cast<Widget& &&>(param); }

The type trait std: :remove_reference<Widget&>::type yields Widget (see
Item 9), so std: : forward becomes:

Widget& && forward(Widget& param)
{ return static_cast<Widget& &&>(param); }

Reference collapsing is also applied to the return type and the cast, and the result
is the final version of std: :forward for the call:

Widget& forward(Widget& param) // still in
{ return static_cast<Widget&>(param); } // namespace std

As you can see, when an lvalue argument is passed to the function template f,
std: :forward is instantiated to take and return an lvalue reference. The cast
inside std: : forward does nothing, because param’s type is already Widgetg&, so
casting it to Widget& has no effect. An lvalue argument passed to std: : forward
will thus return an lvalue reference. By definition, lvalue references are lvalues,

so passing an lvalue to std: : forward causes an lvalue to be returned, just like
it’s supposed to.

Now suppose that the argument passed to f is an rvalue of type Widget. In this
case, the deduced type for f’s type parameter T will simply be Widget. The call
inside f to std: : forward will thus be to std: : forward<Widget>. Substituting



Widget for T in the std: : forward implementation gives this:

Widget&& forward(typename
remove_reference<Widget>::type& param)
{ return static_cast<Widget&&>(param); }

Applying std: :remove_reference to the non-reference type Widget yields the
same type it started with (Widget), so std: : forward becomes this:

Widget&& forward(Widget& param)
{ return static_cast<Widget&&>(param); }

There are no references to references here, so there’s no reference collapsing,
and this is the final instantiated version of std: : forward for the call.

Rvalue references returned from functions are defined to be rvalues, so in this
case, std: : forward will turn f’s parameter fParam (an lvalue) into an rvalue.
The end result is that an rvalue argument passed to f will be forwarded to
someFunc as an rvalue, which is precisely what is supposed to happen.

In C++14, the existence of std: :remove_reference_t makes it possible to
implement std: : forward a bit more concisely:

template<typename T> /] C++14; still in
T&& forward(remove_reference_t<T>& param) // namespace std
{
return static_cast<T&&>(param);
}

Reference collapsing occurs in four contexts. The first and most common is
template instantiation. The second is type generation for auto variables. The

details are essentially the same as for templates, because type deduction for auto
variables is essentially the same as type deduction for templates (see Item 2).
Consider again this example from earlier in the Item:

template<typename T>
void func(T&& param);

Widget widgetFactory(); // function returning rvalue



Widget w; // a variable (an lvalue)

func(w); // call func with lvalue; T deduced
/] to be Widgeté

func(widgetFactory()); // call func with rvalue; T deduced
// to be Widget

This can be mimicked in auto form. The declaration

auto&& wl = w;

initializes w1 with an Ivalue, thus deducing the type Widget& for auto. Plugging
Widget& in for auto in the declaration for wi yields this reference-to-reference
code,

Widget& && wl = w;
which, after reference collapsing, becomes
Widget& wl = w;

As a result, wl is an lvalue reference.

On the other hand, this declaration,

auto&& w2 = widgetFactory();

initializes w2 with an rvalue, causing the non-reference type Widget to be
deduced for auto. Substituting Widget for auto gives us this:

Widget&& w2 = widgetFactory();

There are no references to references here, so we’re done; w2 is an rvalue
reference.

We’re now in a position to truly understand the universal references introduced
in Item 24. A universal reference isn’t a new kind of reference, it’s actually an
rvalue reference in a context where two conditions are satisfied:



» Type deduction distinguishes lvalues from rvalues. Lvalues of type T are
deduced to have type T&, while rvalues of type T yield T as their deduced
type.

= Reference collapsing occurs.

The concept of universal references is useful, because it frees you from having to
recognize the existence of reference collapsing contexts, to mentally deduce
different types for lvalues and rvalues, and to apply the reference collapsing rule
after mentally substituting the deduced types into the contexts in which they
occur.

I said there were four such contexts, but we’ve discussed only two: template
instantiation and auto type generation. The third is the generation and use of
typedefs and alias declarations (see Item 9). If, during creation or evaluation of
a typedef, references to references arise, reference collapsing intervenes to
eliminate them. For example, suppose we have a Widget class template with an
embedded typedef for an rvalue reference type,

template<typename T>
class Widget {
public:
typedef T&& RvalueRefToT;

-
and suppose we instantiate Widget with an Ivalue reference type:
Widget<int&> w;
Substituting int& for T in the Widget template gives us the following typedef:
typedef int& && RvalueRefToT;
Reference collapsing reduces it to this,

typedef int& RvalueRefToT;



which makes clear that the name we chose for the typedef is perhaps not as
descriptive as we’d hoped: RvalueRefToT is a typedef for an Ivalue reference
when Widget is instantiated with an lvalue reference type.

The final context in which reference collapsing takes place is uses of decltype.

If, during analysis of a type involving decltype, a reference to a reference
arises, reference collapsing will kick in to eliminate it. (For information about

decltype, see Item 3.)

Things to Remember

m Reference collapsing occurs in four contexts: template instantiation, auto type generation,
creation and use of typedefs and alias declarations, and decltype.

m When compilers generate a reference to a reference in a reference collapsing context, the
result becomes a single reference. If either of the original references is an lvalue reference,
the result is an Ivalue reference. Otherwise it’s an rvalue reference.

= Universal references are rvalue references in contexts where type deduction distinguishes
lvalues from rvalues and where reference collapsing occurs.

Item 29: Assume that move operations are not
present, not cheap, and not used.

Move semantics is arguably the premier feature of C++11. “Moving containers
is now as cheap as copying pointers!” you’re likely to hear, and “Copying
temporary objects is now so efficient, coding to avoid it is tantamount to
premature optimization!” Such sentiments are easy to understand. Move
semantics is truly an important feature. It doesn’t just allow compilers to replace
expensive copy operations with comparatively cheap moves, it actually requires
that they do so (when the proper conditions are fulfilled). Take your C++98 code
base, recompile with a C++11-conformant compiler and Standard Library, and
—shazam!—your software runs faster.

Move semantics can really pull that off, and that grants the feature an aura
worthy of legend. Legends, however, are generally the result of exaggeration.
The purpose of this Item is to keep your expectations grounded.



Let’s begin with the observation that many types fail to support move semantics.
The entire C++98 Standard Library was overhauled for C++11 to add move
operations for types where moving could be implemented faster than copying,
and the implementation of the library components was revised to take advantage
of these operations, but chances are that you’re working with a code base that
has not been completely revised to take advantage of C++11. For types in your
applications (or in the libraries you use) where no modifications for C++11 have
been made, the existence of move support in your compilers is likely to do you
little good. True, C++11 is willing to generate move operations for classes that
lack them, but that happens only for classes declaring no copy operations, move
operations, or destructors (see Item 17). Data members or base classes of types
that have disabled moving (e.g., by deleting the move operations—see Item 11)
will also suppress compiler-generated move operations. For types without
explicit support for moving and that don’t qualify for compiler-generated move
operations, there is no reason to expect C++11 to deliver any kind of
performance improvement over C++98.

Even types with explicit move support may not benefit as much as you’d hope.
All containers in the standard C++11 library support moving, for example, but it
would be a mistake to assume that moving all containers is cheap. For some
containers, this is because there’s no truly cheap way to move their contents. For
others, it’s because the truly cheap move operations the containers offer come
with caveats the container elements can’t satisfy.

Consider std: :array, a new container in C++11. std: :array is essentially a
built-in array with an STL interface. This is fundamentally different from the
other standard containers, each of which stores its contents on the heap. Objects
of such container types hold (as data members), conceptually, only a pointer to
the heap memory storing the contents of the container. (The reality is more
complex, but for purposes of this analysis, the differences are not important.)
The existence of this pointer makes it possible to move the contents of an entire
container in constant time: just copy the pointer to the container’s contents from
the source container to the target, and set the source’s pointer to null:

std: :vector<Widget> vwil;

// put data into wwil



// move vwl into vw2. Runs in
/| constant time. Only ptrs

// in vwl and vw2 are modified
auto vw2 = std::move(vwl);

Vil

Widgets

viwl

Widgets

std: :array objects lack such a pointer, because the data for a std: :array’s
contents are stored directly in the std: :array object:

std::array<Widget, 10000> awil;

// put data into awl



// move awl into aw2. Runs in
// linear time. ALl elements in
// awl are moved into aw2

auto aw2 = std::move(awl);

awl

awl

‘ Widgets (moved from) |

dw2

‘ Widgets (moved to) |

Note that the elements in awl are moved into aw2. Assuming that Widget is a




type where moving is faster than copying, moving a std: :array of Widget will
be faster than copying the same std: :array. So std: :array certainly offers
move support. Yet both moving and copying a std: :array have linear-time
computational complexity, because each element in the container must be copied
or moved. This is far from the “moving a container is now as cheap as assigning
a couple of pointers” claim that one sometimes hears.

On the other hand, std: :string offers constant-time moves and linear-time
copies. That makes it sound like moving is faster than copying, but that may not
be the case. Many string implementations employ the small string optimization
(SSO). With the SSO, “small” strings (e.g., those with a capacity of no more
than 15 characters) are stored in a buffer within the std: :string object; no
heap-allocated storage is used. Moving small strings using an SSO-based
implementation is no faster than copying them, because the copy-only-a-pointer
trick that generally underlies the performance advantage of moves over copies
isn’t applicable.

The motivation for the SSO is extensive evidence that short strings are the norm
for many applications. Using an internal buffer to store the contents of such
strings eliminates the need to dynamically allocate memory for them, and that’s
typically an efficiency win. An implication of the win, however, is that moves
are no faster than copies, though one could just as well take a glass-half-full
approach and say that for such strings, copying is no slower than moving.

Even for types supporting speedy move operations, some seemingly sure-fire
move situations can end up making copies. Item 14 explains that some container
operations in the Standard Library offer the strong exception safety guarantee
and that to ensure that legacy C++98 code dependent on that guarantee isn’t
broken when upgrading to C++11, the underlying copy operations may be
replaced with move operations only if the move operations are known to not
throw. A consequence is that even if a type offers move operations that are more
efficient than the corresponding copy operations, and even if, at a particular
point in the code, a move operation would generally be appropriate (e.g., if the
source object is an rvalue), compilers might still be forced to invoke a copy
operation because the corresponding move operation isn’t declared noexcept.

There are thus several scenarios in which C++11’s move semantics do you no
good:



= No move operations: The object to be moved from fails to offer move
operations. The move request therefore becomes a copy request.

= Move not faster: The object to be moved from has move operations that are
no faster than its copy operations.

= Move not usable: The context in which the moving would take place
requires a move operation that emits no exceptions, but that operation isn’t
declared noexcept.

It’s worth mentioning, too, another scenario where move semantics offers no
efficiency gain:

= Source object is Ivalue: With very few exceptions (see e.g., I[tem 25) only
rvalues may be used as the source of a move operation.

But the title of this Item is to assume that move operations are not present, not
cheap, and not used. This is typically the case in generic code, e.g., when writing
templates, because you don’t know all the types you’re working with. In such
circumstances, you must be as conservative about copying objects as you were
in C++98—before move semantics existed. This is also the case for “unstable”
code, i.e., code where the characteristics of the types being used are subject to
relatively frequent modification.

Often, however, you know the types your code uses, and you can rely on their
characteristics not changing (e.g., whether they support inexpensive move
operations). When that’s the case, you don’t need to make assumptions. You can
simply look up the move support details for the types you’re using. If those types
offer cheap move operations, and if you’re using objects in contexts where those
move operations will be invoked, you can safely rely on move semantics to
replace copy operations with their less expensive move counterparts.

Things to Remember

m  Assume that move operations are not present, not cheap, and not used.

m In code with known types or support for move semantics, there is no need for assumptions.




Item 30: Familiarize yourself with perfect
forwarding failure cases.

One of the features most prominently emblazoned on the C++11 box is perfect
forwarding. Perfect forwarding. It’s perfect! Alas, tear the box open, and you’ll
find that there’s “perfect” (the ideal), and then there’s “perfect” (the reality).
C++11’s perfect forwarding is very good, but it achieves true perfection only if
you’re willing to overlook an epsilon or two. This Item is devoted to
familiarizing you with the epsilons.

Before embarking on our epsilon exploration, it’s worthwhile to review what’s
meant by “perfect forwarding.” “Forwarding” just means that one function
passes—forwards—its parameters to another function. The goal is for the second
function (the one being forwarded to) to receive the same objects that the first
function (the one doing the forwarding) received. That rules out by-value
parameters, because they’re copies of what the original caller passed in. We
want the forwarded-to function to be able to work with the originally-passed-in
objects. Pointer parameters are also ruled out, because we don’t want to force
callers to pass pointers. When it comes to general-purpose forwarding, we’ll be
dealing with parameters that are references.

Perfect forwarding means we don’t just forward objects, we also forward their
salient characteristics: their types, whether they’re Ivalues or rvalues, and

whether they’re const or volatile. In conjunction with the observation that
we’ll be dealing with reference parameters, this implies that we’ll be using
universal references (see Item 24), because only universal reference parameters
encode information about the lvalueness and rvalueness of the arguments that
are passed to them.

Let’s assume we have some function f, and we’d like to write a function (in
truth, a function template) that forwards to it. The core of what we need looks
like this:

template<typename T>
void fwd(T&& param) // accept any argument

{
f(std::forward<T>(param)); // forward it to f

}



Forwarding functions are, by their nature, generic. The fwd template, for
example, accepts any type of argument, and it forwards whatever it gets. A
logical extension of this genericity is for forwarding functions to be not just
templates, but variadic templates, thus accepting any number of arguments. The
variadic form for fwd looks like this:

template<typename... Ts>
vold fwd(Ts&&... params) // accept any arguments
{
f(std::forward<Ts>(params)...); // forward them to f
}

This is the form you’ll see in, among other places, the standard containers’
emplacement functions (see Item 42) and the smart pointer factory functions,
std: :make_shared and std: :make_unique (see Item 21).

Given our target function f and our forwarding function fwd, perfect forwarding
fails if calling f with a particular argument does one thing, but calling fwd with
the same argument does something different:

f( expression ); // if this does one thing,
fwd( expression ); // but this does something else, fwd fails
// to perfectly forward expression to f

Several kinds of arguments lead to this kind of failure. Knowing what they are
and how to work around them is important, so let’s tour the kinds of arguments
that can’t be perfect-forwarded.

Braced initializers
Suppose f is declared like this:
void f(const std::vector<int>& v);

In that case, calling f with a braced initializer compiles,

f({1, 2, 3 }); // fine, "{1, 2, 3}" implicitly
// converted to std::vector<int>



but passing the same braced initializer to fwd doesn’t compile:
fwd({ 1, 2, 3 }); // error! doesn't compile

That’s because the use of a braced initializer is a perfect forwarding failure case.

All such failure cases have the same cause. In a direct call to f (such as f({ 1,
2, 3})), compilers see the arguments passed at the call site, and they see the
types of the parameters declared by f. They compare the arguments at the call
site to the parameter declarations to see if they’re compatible, and, if necessary,
they perform implicit conversions to make the call succeed. In the example
above, they generate a temporary std: :vector<int> object from { 1, 2, 3 } so
that f’s parameter v has a std: :vector<int> object to bind to.

When calling f indirectly through the forwarding function template fwd,
compilers no longer compare the arguments passed at fwd’s call site to the
parameter declarations in f. Instead, they deduce the types of the arguments

being passed to fwd, and they compare the deduced types to f’s parameter
declarations. Perfect forwarding fails when either of the following occurs:

= Compilers are unable to deduce a type for one or more of fwd’s
parameters. In this case, the code fails to compile.

= Compilers deduce the “wrong” type for one or more of fwd’s parameters.
Here, “wrong” could mean that fwd’s instantiation won’t compile with the
types that were deduced, but it could also mean that the call to f using fwd’s
deduced types behaves differently from a direct call to f with the arguments

that were passed to fwd. One source of such divergent behavior would be if f
were an overloaded function name, and, due to “incorrect” type deduction,

the overload of f called inside fwd were different from the overload that
would be invoked if f were called directly.

In the “fwd({ 1, 2, 3 })” call above, the problem is that passing a braced
initializer to a function template parameter that’s not declared to be a
std::initializer_list is decreed to be, as the Standard puts it, a “non-
deduced context.” In plain English, that means that compilers are forbidden from
deducing a type for the expression { 1, 2, 3 } in the call to fwd, because fwd’s



parameter isn’t declared to be a std: :initializer_Llist. Being prevented
from deducing a type for fwd’s parameter, compilers must understandably reject
the call.

Interestingly, Item 2 explains that type deduction succeeds for auto variables
initialized with a braced initializer. Such variables are deemed to be
std::initializer_list objects, and this affords a simple workaround for
cases where the type the forwarding function should deduce is a
std::initializer_list—declare a local variable using auto, then pass the
local variable to the forwarding function:

auto il = { 1, 2, 3 }; // il's type deduced to be
// std::initializer_list<int>

fwd(il); // fine, perfect-forwards il to f

O or NULL as null pointers

Item 8 explains that when you try to pass @ or NULL as a null pointer to a
template, type deduction goes awry, deducing an integral type (typically int)
instead of a pointer type for the argument you pass. The result is that neither 0
nor NULL can be perfect-forwarded as a null pointer. The fix is easy, however:
pass nullptr instead of 0 or NULL. For details, consult Item 8.

Declaration-only integral static const data members

As a general rule, there’s no need to define integral static const data members
in classes; declarations alone suffice. That’s because compilers perform const
propagation on such members’ values, thus eliminating the need to set aside
memory for them. For example, consider this code:

class Widget {
public:

static const std::size_t MinVals = 28; // MinVals' declaration
b
. // no defn. for MinVals

std::vector<int> widgetData;



widgetData.reserve(Widget: :MinVals); // use of MinVals

Here, we’re using Widget: :MinVals (henceforth simply MinVals) to specify
widgetData’s initial capacity, even though MinVals lacks a definition.
Compilers work around the missing definition (as they are required to do) by
plopping the value 28 into all places where MinVals is mentioned. The fact that
no storage has been set aside for MinVals’ value is unproblematic. If MinVals’
address were to be taken (e.g., if somebody created a pointer to MinVals), then
MinVals would require storage (so that the pointer had something to point to),
and the code above, though it would compile, would fail at link-time until a
definition for MinVals was provided.

With that in mind, imagine that f (the function fwd forwards its argument to) is
declared like this:

void f(std::size_t val);

Calling f with MinVals is fine, because compilers will just replace MinVals with
its value:

f(Widget::MinVals); // fine, treated as "f(28)"
Alas, things may not go so smoothly if we try to call f through fwd:
fwd(Widget: :MinVals); // error! shouldn't link

This code will compile, but it shouldn’t link. If that reminds you of what

happens if we write code that takes MinVals’ address, that’s good, because the
underlying problem is the same.

Although nothing in the source code takes MinVals’ address, fwd’s parameter is
a universal reference, and references, in the code generated by compilers, are
usually treated like pointers. In the program’s underlying binary code (and on
the hardware), pointers and references are essentially the same thing. At this
level, there’s truth to the adage that references are simply pointers that are
automatically dereferenced. That being the case, passing MinVals by reference is
effectively the same as passing it by pointer, and as such, there has to be some



memory for the pointer to point to. Passing integral static const data members
by reference, then, generally requires that they be defined, and that requirement
can cause code using perfect forwarding to fail where the equivalent code
without perfect forwarding succeeds.

But perhaps you noticed the weasel words I sprinkled through the preceding
discussion. The code “shouldn’t” link. References are “usually” treated like

pointers. Passing integral static const data members by reference “generally”
requires that they be defined. It’s almost like I know something I don’t really
want to tell you...

That’s because I do. According to the Standard, passing MinVals by reference
requires that it be defined. But not all implementations enforce this requirement.
So, depending on your compilers and linkers, you may find that you can perfect-
forward integral static const data members that haven’t been defined. If you
do, congratulations, but there is no reason to expect such code to port. To make
it portable, simply provide a definition for the integral static const data
member in question. For MinVals, that’d look like this:

const std::size_t Widget::MinVals; // in Widget's .cpp file

Note that the definition doesn’t repeat the initializer (28, in the case of MinVals).
Don'’t stress over this detail, however. If you forget and provide the initializer in

both places, your compilers will complain, thus reminding you to specify it only

once.

Overloaded function names and template nhames

Suppose our function f (the one we keep wanting to forward arguments to via
fwd) can have its behavior customized by passing it a function that does some of

its work. Assuming this function takes and returns ints, f could be declared like
this:

vold f(int (*pf)(int)); // pf = "processing function"

It’s worth noting that f could also be declared using a simpler non-pointer
syntax. Such a declaration would look like this, though it’d have the same



meaning as the declaration above:

vold f(int pf(int)); // declares same f as above

Either way, now suppose we have an overloaded function, processVal:

int processVal(int value);
int processVal(int value, int priority);

We can pass processVal to f,

f(processval); // fine

but it’s something of a surprise that we can. f demands a pointer to a function as
its argument, but processVal isn’t a function pointer or even a function, it’s the
name of two different functions. However, compilers know which processVal
they need: the one matching f’s parameter type. They thus choose the
processVal taking one int, and they pass that function’s address to f.

What makes this work is that f’s declaration lets compilers figure out which
version of processVal is required. fwd, however, being a function template,
doesn’t have any information about what type it needs, and that makes it
impossible for compilers to determine which overload should be passed:

fwd(processVal); // error! which processVal?

processVal alone has no type. Without a type, there can be no type deduction,
and without type deduction, we’re left with another perfect forwarding failure
case.

The same problem arises if we try to use a function template instead of (or in
addition to) an overloaded function name. A function template doesn’t represent
one function, it represents many functions:

template<typename T>
T workOnVal(T param) // template for processing values

{13



fwd(workOnVal); // error! which workOnVal
// instantiation?

The way to get a perfect-forwarding function like fwd to accept an overloaded
function name or a template name is to manually specify the overload or
instantiation you want to have forwarded. For example, you can create a function

pointer of the same type as f’s parameter, initialize that pointer with
processVal or workOnVal (thus causing the proper version of processVal to be
selected or the proper instantiation of workOnVal to be generated), and pass the
pointer to fwd:

using ProcessFuncType = // make typedef;
int (*)(int); // see Item 9
ProcessFuncType processValPtr = processVal; // specify needed

// signature for
// processVal

fwd(processValPtr); // fine

fwd(static_cast<ProcessFuncType>(workOnvVal)); // also fine

Of course, this requires that you know the type of function pointer that fwd is
forwarding to. It’s not unreasonable to assume that a perfect-forwarding function
will document that. After all, perfect-forwarding functions are designed to accept
anything, so if there’s no documentation telling you what to pass, how would
you know?

Bitfields

The final failure case for perfect forwarding is when a bitfield is used as a
function argument. To see what this means in practice, observe that an IPv4
header can be modeled as follows:*

struct IPv4Header {
std::uint32_t version:4,
IHL:4,
DSCP:6,
ECN:2,
totalLength:16;



}s

If our long-suffering function f (the perennial target of our forwarding function
fwd) is declared to take a std: :size_t parameter, calling it with, say, the
totalLength field of an IPv4Header object compiles without fuss:

void f(std::size_t sz); // function to call
IPv4Header h;

¥(h.tota1Length); // fine
Trying to forward h.totalLength to f via fwd, however, is a different story:
fwd(h.totalLength); // error!

The problem is that fwd’s parameter is a reference, and h. totalLength is a non-
const bitfield. That may not sound so bad, but the C++ Standard condemns the
combination in unusually clear prose: “A non-const reference shall not be
bound to a bitfield.” There’s an excellent reason for the prohibition. Bitfields
may consist of arbitrary parts of machine words (e.g., bits 3-5 of a 32-bit int),
but there’s no way to directly address such things. I mentioned earlier that
references and pointers are the same thing at the hardware level, and just as
there’s no way to create a pointer to arbitrary bits (C++ dictates that the smallest
thing you can point to is a char), there’s no way to bind a reference to arbitrary
bits, either.

Working around the impossibility of perfect-forwarding a bitfield is easy, once
you realize that any function that accepts a bitfield as an argument will receive a
copy of the bitfield’s value. After all, no function can bind a reference to a
bitfield, nor can any function accept pointers to bitfields, because pointers to
bitfields don’t exist. The only kinds of parameters to which a bitfield can be
passed are by-value parameters and, interestingly, references-to-const. In the
case of by-value parameters, the called function obviously receives a copy of the
value in the bitfield, and it turns out that in the case of a reference-to-const
parameter, the Standard requires that the reference actually bind to a copy of the



bitfield’s value that’s stored in an object of some standard integral type (e.g.,
int). References-to-const don’t bind to bitfields, they bind to “normal” objects
into which the values of the bitfields have been copied.

The key to passing a bitfield into a perfect-forwarding function, then, is to take
advantage of the fact that the forwarded-to function will always receive a copy
of the bitfield’s value. You can thus make a copy yourself and call the
forwarding function with the copy. In the case of our example with IPv4Header,
this code would do the trick:

// copy bitfield value; see Item 6 for info on init. form
auto length = static_cast<std::uint16_t>(h.totalLength);

fwd(length); // forward the copy

Upshot

In most cases, perfect forwarding works exactly as advertised. You rarely have
to think about it. But when it doesn’t work—when reasonable-looking code fails
to compile or, worse, compiles, but doesn’t behave the way you anticipate—it’s
important to know about perfect forwarding’s imperfections. Equally important
is knowing how to work around them. In most cases, this is straightforward.

Things to Remember

m Perfect forwarding fails when template type deduction fails or when it deduces the wrong
type.

m The kinds of arguments that lead to perfect forwarding failure are braced initializers, null
pointers expressed as 0 or NULL, declaration-only integral const static data members,
template and overloaded function names, and bitfields.

"' Ttem 25 explains that universal references should almost always have

std: :forward applied to them, and as this book goes to press, some members of
the C++ community have started referring to universal references as forwarding
references.

12 Eligible local objects include most local variables (such as w inside



makeWidget) as well as temporary objects created as part of a return statement.
Function parameters don’t qualify. Some people draw a distinction between
application of the RVO to named and unnamed (i.e., temporary) local objects,
limiting the term RVO to unnamed objects and calling its application to named
objects the named return value optimization (NRVO).

13 This assumes that bitfields are laid out Isb (least significant bit) to msb (most
significant bit). C++ doesn’t guarantee that, but compilers often provide a
mechanism that allows programmers to control bitfield layout.



Chapter 6. Lambda Expressions

Lambda expressions—Ilambdas—are a game changer in C++ programming.
That’s somewhat surprising, because they bring no new expressive power to the
language. Everything a lambda can do is something you can do by hand with a
bit more typing. But lambdas are such a convenient way to create function
objects, the impact on day-to-day C++ software development is enormous.
Without lambdas, the STL “_1if” algorithms (e.g., std::find_if,

std: :remove_if, std::count_if, etc.) tend to be employed with only the most
trivial predicates, but when lambdas are available, use of these algorithms with
nontrivial conditions blossoms. The same is true of algorithms that can be
customized with comparison functions (e.g., std: :sort, std: :nth_element,
std: :lower_bound, etc.). Outside the STL, lambdas make it possible to quickly
create custom deleters for std: :unique_ptr and std: :shared_ptr (see Items
18 and 19), and they make the specification of predicates for condition variables
in the threading API equally straightforward (see Item 39). Beyond the Standard
Library, lambdas facilitate the on-the-fly specification of callback functions,
interface adaption functions, and context-specific functions for one-off calls.
Lambdas really make C++ a more pleasant programming language.

The vocabulary associated with lambdas can be confusing. Here’s a brief
refresher:

m A lambda expression is just that: an expression. It’s part of the source code.
In std::find_if(container.begin(), container.end(), [](int val) { return 0 < val
&& val < 10; });

the highlighted expression is the lambda.
m A closure is the runtime object created by a lambda. Depending on the
capture mode, closures hold copies of or references to the captured data. In

the call to std: :find_if above, the closure is the object that’s passed at
runtime as the third argument to std: : find_if.

m A closure class is a class from which a closure is instantiated. Each lambda



causes compilers to generate a unique closure class. The statements inside a
lambda become executable instructions in the member functions of its closure
class.

A lambda is often used to create a closure that’s used only as an argument to a
function. That’s the case in the call to std: : find_1if above. However, closures
may generally be copied, so it’s usually possible to have multiple closures of a
closure type corresponding to a single lambda. For example, in the following
code, { int x; // x is local variable ... auto c1 = // c1 is copy of the [x](int y) {
return x * y > 55; }; // closure produced // by the lambda auto c2 = c1; // c2 is
copy of c1 auto c3 = c2;// c3is copy of 2 ... }

c1, c2, and c3 are all copies of the closure produced by the lambda.

Informally, it’s perfectly acceptable to blur the lines between lambdas, closures,
and closure classes. But in the Items that follow, it’s often important to
distinguish what exists during compilation (lambdas and closure classes), what
exists at runtime (closures), and how they relate to one another.

Item 31: Avoid default capture modes.

There are two default capture modes in C++11: by-reference and by-value.
Default by-reference capture can lead to dangling references. Default by-value
capture lures you into thinking you’re immune to that problem (you’re not), and
it lulls you into thinking your closures are self-contained (they may not be).

That’s the executive summary for this Item. If you’re more engineer than
executive, you’ll want some meat on those bones, so let’s start with the danger
of default by-reference capture.

A by-reference capture causes a closure to contain a reference to a local variable
or to a parameter that’s available in the scope where the lambda is defined. If the
lifetime of a closure created from that lambda exceeds the lifetime of the local
variable or parameter, the reference in the closure will dangle. For example,
suppose we have a container of filtering functions, each of which takes an int
and returns a bool indicating whether a passed-in value satisfies the filter: using
FilterContainer = // see Item 9 for std::vector<std::function<bool(int)>>; //
"using", Item 2 // for std::function FilterContainer filters; // filtering funcs



We could add a filter for multiples of 5 like this: filters.emplace_back( // see
Item 42 for [](int value) { return value % 5 == 0; } // info on ); // emplace_back

However, it may be that we need to compute the divisor at runtime, i.e., we can’t
just hard-code 5 into the lambda. So adding the filter might look more like this:
void addDivisorFilter() { auto calcl = computeSomeValuel(); auto calc2 =
computeSomeValue2(); auto divisor = computeDivisor(calcl, calc2);
filters.emplace_back( // danger! [&](int value) { return value % divisor == 0; } //
ref to ); // divisor } // will // dangle!

This code is a problem waiting to happen. The lambda refers to the local variable
divisor, but that variable ceases to exist when addDivisorFilter returns.
That’s immediately after filters.emplace_back returns, so the function that’s

added to filters is essentially dead on arrival. Using that filter yields
undefined behavior from virtually the moment it’s created.

Now, the same problem would exist if divisor’s by-reference capture were
explicit, filters.emplace_back( [&divisor](int value) // danger! ref to { return
value % divisor == 0; } // divisor will ); // still dangle!

but with an explicit capture, it’s easier to see that the viability of the lambda is
dependent on divisor’s lifetime. Also, writing out the name, “divisor,” reminds
us to ensure that divisor lives at least as long as the lambda’s closures. That’s a
more specific memory jog than the general “make sure nothing dangles”
admonition that “[&]” conveys.

If you know that a closure will be used immediately (e.g., by being passed to an
STL algorithm) and won’t be copied, there is no risk that references it holds will
outlive the local variables and parameters in the environment where its lambda is
created. In that case, you might argue, there’s no risk of dangling references,
hence no reason to avoid a default by-reference capture mode. For example, our
filtering lambda might be used only as an argument to C++11’s std: :all_of,
which returns whether all elements in a range satisfy a condition:
template<typename C> void workWithContainer(const C& container) { auto
calcl = computeSomeValuel(); // as above auto calc2 = computeSomeValue2();
// as above auto divisor = computeDivisor(calc1, calc2); // as above using
ContElemT = typename C::value_type; // type of // elements in // container using
std::begin; // for using std::end; // genericity; // see Item 13 if (std::all_of( // if all



values begin(container), end(container), // in container [&](const ContElemT&
value) // are multiples { return value % divisor == 0; }) // of divisor... ) { ... //
they are... } else { ... // at least one } //isn't... }

It’s true, this is safe, but its safety is somewhat precarious. If the lambda were
found to be useful in other contexts (e.g., as a function to be added to the
filters container) and was copy-and-pasted into a context where its closure
could outlive divisor, you’d be back in dangle-city, and there’d be nothing in
the capture clause to specifically remind you to perform lifetime analysis on
divisor.

Long-term, it’s simply better software engineering to explicitly list the local
variables and parameters that a lambda depends on.

By the way, the ability to use auto in C++14 lambda parameter specifications
means that the code above can be simplified in C++14. The ContElemT typedef

can be eliminated, and the if condition can be revised as follows: if
(std::all_of(begin(container), end(container), [&](const auto& value) // C++14 {
return value % divisor == 0; }))

One way to solve our problem with divisor would be a default by-value
capture mode. That is, we could add the lambda to filters as follows:
filters.emplace_back( // now [=](int value) { return value % divisor == 0; } //
divisor ); // can't // dangle

This suffices for this example, but, in general, default by-value capture isn’t the
anti-dangling elixir you might imagine. The problem is that if you capture a
pointer by value, you copy the pointer into the closures arising from the lambda,
but you don’t prevent code outside the lambda from deleteing the pointer and
causing your copies to dangle.

“That could never happen!” you protest. “Having read Chapter 4, I worship at
the house of smart pointers. Only loser C++98 programmers use raw pointers

and de'lete.” That may be true, but it’s irrelevant because you do, in fact, use

raw pointers, and they can, in fact, be deleted out from under you. It’s just that
in your modern C++ programming style, there’s often little sign of it in the
source code.

Suppose one of the things Widgets can do is add entries to the container of



filters: class Widget { public: ... // ctors, etc. void addFilter() const; // add an
entry to filters private: int divisor; // used in Widget's filter };

Widget::addFilter could be defined like this: void Widget::addFilter() const {
filters.emplace_back( [=](int value) { return value % divisor ==0; } ); }

To the blissfully uninitiated, this looks like safe code. The lambda is dependent

on divisor, but the default by-value capture mode ensures that divisor is
copied into any closures arising from the lambda, right?

Wrong. Completely wrong. Horribly wrong. Fatally wrong.

Captures apply only to non-static local variables (including parameters) visible
in the scope where the lambda is created. In the body of Widget: :addFilter,
divisor is not a local variable, it’s a data member of the Widget class. It can’t
be captured. Yet if the default capture mode is eliminated, the code won’t
compile: void Widget::addFilter() const { filters.emplace_back( // error! [](int
value) { return value % divisor == 0; } // divisor ); // not } // available

Furthermore, if an attempt is made to explicitly capture divisor (either by value
or by reference—it doesn’t matter), the capture won’t compile, because divisor
isn’t a local variable or a parameter: void Widget::addFilter() const {
filters.emplace_back( [divisor](int value) // error! no local { return value %
divisor == 0; } // divisor to capture ); }

So if the default by-value capture clause isn’t capturing divisor, yet without the
default by-value capture clause, the code won’t compile, what’s going on?

The explanation hinges on the implicit use of a raw pointer: this. Every non-
static member function has a this pointer, and you use that pointer every time
you mention a data member of the class. Inside any Widget member function,
for example, compilers internally replace uses of divisor with this->divisor.
In the version of Widget: :addFilter with a default by-value capture, void
Widget::addFilter() const { filters.emplace_back( [=](int value) { return value %
divisor==0; } ); }

what’s being captured is the Widget’s this pointer, not divisor. Compilers
treat the code as if it had been written as follows: void Widget::addFilter() const
{ auto currentObjectPtr = this; filters.emplace_back( [currentObjectPtr](int
value) { return value % currentObjectPtr->divisor == 0; } ); }



Understanding this is tantamount to understanding that the viability of the
closures arising from this lambda is tied to the lifetime of the Widget whose
this pointer they contain a copy of. In particular, consider this code, which, in
accord with Chapter 4, uses pointers of only the smart variety: using
FilterContainer = // as before std::vector<std::function<bool(int)>>;
FilterContainer filters; // as before void doSomeWork() { auto pw = // create
Widget; see std::make_unique<Widget>(); // Item 21 for // std::make_unique
pw->addFilter(); // add filter that uses // Widget::divisor ... } // destroy Widget;
filters // now holds dangling pointer!

When a call is made to doSomeWork, a filter is created that depends on the
Widget object produced by std: :make_unique, i.e., a filter that contains a copy
of a pointer to that Widget—the Widget’s this pointer. This filter is added to
filters, but when doSomeWork finishes, the Widget is destroyed by the

std: :unique_ptr managing its lifetime (see Item 18). From that point on,
filters contains an entry with a dangling pointer.

This particular problem can be solved by making a local copy of the data
member you want to capture and then capturing the copy: void
Widget::addFilter() const { auto divisorCopy = divisor; // copy data member
filters.emplace_back( [divisorCopy](int value) // capture the copy { return value
% divisorCopy == 0; } // use the copy ); }

To be honest, if you take this approach, default by-value capture will work, too,
void Widget::addFilter() const { auto divisorCopy = divisor; // copy data
member filters.emplace_back( [=](int value) // capture the copy { return value %
divisorCopy == 0; } // use the copy ); }

but why tempt fate? A default capture mode is what made it possible to
accidentally capture this when you thought you were capturing divisor in the
first place.

In C++14, a better way to capture a data member is to use generalized lambda
capture (see Item 32): void Widget::addFilter() const { filters.emplace_back( //
C++14: [divisor = divisor](int value) // copy divisor to closure { return value %
divisor == 0; } // use the copy ); }

There’s no such thing as a default capture mode for a generalized lambda
capture, however, so even in C++14, the advice of this Item—to avoid default



Capture modes—-sStands.

An additional drawback to default by-value captures is that they can suggest that
the corresponding closures are self-contained and insulated from changes to data
outside the closures. In general, that’s not true, because lambdas may be
dependent not just on local variables and parameters (which may be captured),
but also on objects with static storage duration. Such objects are defined at
global or namespace scope or are declared static inside classes, functions, or
files. These objects can be used inside lambdas, but they can’t be captured. Yet
specification of a default by-value capture mode can lend the impression that
they are. Consider this revised version of the addDivisorFilter function we
saw earlier: void addDivisorFilter() { static auto calcl = computeSomeValuel();
// now static static auto calc2 = computeSomeValue2(); // now static static auto
divisor = // now static computeDivisor(calc1, calc2); filters.emplace_back( [=]
(int value) // captures nothing! { return value % divisor == 0; } // refers to above
static ); ++divisor; / modify divisor }

A casual reader of this code could be forgiven for seeing “[=]" and thinking,
“Okay, the lambda makes a copy of all the objects it uses and is therefore self-
contained.” But it’s not self-contained. This lambda doesn’t use any non-static
local variables, so nothing is captured. Rather, the code for the lambda refers to
the static variable divisor. When, at the end of each invocation of
addDivisorFilter, divisor is incremented, any lambdas that have been added
to filters via this function will exhibit new behavior (corresponding to the new
value of divisor). Practically speaking, this lambda captures divisor by
reference, a direct contradiction to what the default by-value capture clause
seems to imply. If you stay away from default by-value capture clauses, you
eliminate the risk of your code being misread in this way.

Things to Remember

m Default by-reference capture can lead to dangling references.

m Default by-value capture is susceptible to dangling pointers (especially this), and it
misleadingly suggests that lambdas are self-contained.




Item 32: Use init capture to move objects into
closures.

Sometimes neither by-value capture nor by-reference capture is what you want.
If you have a move-only object (e.g., a std: :unique_ptr or a std::future)
that you want to get into a closure, C++11 offers no way to do it. If you have an
object that’s expensive to copy but cheap to move (e.g., most containers in the
Standard Library), and you’d like to get that object into a closure, you’d much
rather move it than copy it. Again, however, C++11 gives you no way to
accomplish that.

But that’s C++11. C++14 is a different story. It offers direct support for moving
objects into closures. If your compilers are C++14-compliant, rejoice and read
on. If you’re still working with C++11 compilers, you should rejoice and read
on, too, because there are ways to approximate move capture in C++11.

The absence of move capture was recognized as a shortcoming even as C++11
was adopted. The straightforward remedy would have been to add it in C++14,
but the Standardization Committee chose a different path. They introduced a
new capture mechanism that’s so flexible, capture-by-move is only one of the
tricks it can perform. The new capability is called init capture. It can do virtually
everything the C++11 capture forms can do, plus more. The one thing you can’t
express with an init capture is a default capture mode, but Item 31 explains that
you should stay away from those, anyway. (For situations covered by C++11
captures, init capture’s syntax is a bit wordier, so in cases where a C++11
capture gets the job done, it’s perfectly reasonable to use it.) Using an init
capture makes it possible for you to specify

1. the name of a data member in the closure class generated from the
lambda and

2. an expression initializing that data member.

Here’s how you can use init capture to move a std: :unique_ptr into a closure:
class Widget { // some useful type public: ... bool isValidated() const; bool
isProcessed() const; bool isArchived() const; private: ... }; auto pw =
std::make_unique<Widget>(); // create Widget; see // Item 21 for info on //
std::make_unique ... // configure *pw auto func = [pw = std::move(pw)] // init



data mbr { return pw->isValidated() // in closure w/ && pw->isArchived(); }; //
std::move(pw)

The highlighted text comprises the init capture. To the left of the “=" is the name
of the data member in the closure class you’re specifying, and to the right is the

initializing expression. Interestingly, the scope on the left of the “=" is different
from the scope on the right. The scope on the left is that of the closure class. The

scope on the right is the same as where the lambda is being defined. In the
example above, the name pw on the left of the “=” refers to a data member in the
closure class, while the name pw on the right refers to the object declared above
the lambda, i.e., the variable initialized by the call to std: :make_unique. So “pw
= std: :move(pw)” means “create a data member pw in the closure, and initialize
that data member with the result of applying std: :move to the local variable

pw »

As usual, code in the body of the lambda is in the scope of the closure class, so
uses of pw there refer to the closure class data member.

The comment “configure *pw” in this example indicates that after the Widget is
created by std: :make_unique and before the std: :unique_ptr to that Widget
is captured by the lambda, the Widget is modified in some way. If no such
configuration is necessary, i.e., if the Widget created by std: :make_unique is
in a state suitable to be captured by the lambda, the local variable pw is
unnecessary, because the closure class’s data member can be directly initialized
by std: :make_unique: auto func = [pw = std::make_unique<Widget>()] // init
data mbr { return pw->isValidated() // in closure w/ && pw->isArchived(); }; //
result of call // to make_unique

This should make clear that the C++14 notion of “capture” is considerably
generalized from C++11, because in C++11, it’s not possible to capture the
result of an expression. As a result, another name for init capture is generalized
lambda capture.

But what if one or more of the compilers you use lacks support for C++14’s init
capture? How can you accomplish move capture in a language lacking support
for move capture?

Remember that a lambda expression is simply a way to cause a class to be



generated and an object of that type to be created. There is nothing you can do
with a lambda that you can’t do by hand. The example C++14 code we just saw,
for example, can be written in C++11 like this: class IsValAndArch { // "is
validated public: // and archived" using DataType = std::unique_ptr<Widget>;
explicit IsValAndArch(DataType&& ptr) // Item 25 explains :
pw(std::move(ptr)) {} // use of std::move bool operator()() const { return pw-
>isValidated() && pw->isArchived(); } private: DataType pw; }; auto func =
IsValAndArch(std::make_unique<Widget>());

That’s more work than writing the lambda, but it doesn’t change the fact that if
you want a class in C++11 that supports move-initialization of its data members,
the only thing between you and your desire is a bit of time with your keyboard.

If you want to stick with lambdas (and given their convenience, you probably
do), move capture can be emulated in C++11 by

1. moving the object to be captured into a function object produced by
std: :bind and

2. giving the lambda a reference to the “captured” object.

If you’re familiar with std: :bind, the code is pretty straightforward. If you’re
not familiar with std: :bind, the code takes a little getting used to, but it’s worth
the trouble.

Suppose you’d like to create a local std: :vector, put an appropriate set of
values into it, then move it into a closure. In C++14, this is easy:
std::vector<double> data; // object to be moved // into closure ... // populate data
auto func = [data = std::move(data)] // C++14 init capture { /* uses of data */ };

I’ve highlighted key parts of this code: the type of object you want to move
(std: :vector<double>), the name of that object (data), and the initializing
expression for the init capture (std: :move(data)). The C++11 equivalent is as
follows, where I’ve highlighted the same key things: std::vector<double> data; //
as above ... // as above auto func = std::bind( // C++11 emulation [](const
std::vector<double>& data) // of init capture { /* uses of data */ },
std::move(data) );

Like lambda expressions, std: :bind produces function objects. I call function



objects returned by std: :bind bind objects. The first argument to std: :bind is
a callable object. Subsequent arguments represent values to be passed to that
object.

A bind object contains copies of all the arguments passed to std: :bind. For
each lvalue argument, the corresponding object in the bind object is copy
constructed. For each rvalue, it’s move constructed. In this example, the second

argument is an rvalue (the result of std: :move—see Item 23), so data is move
constructed into the bind object. This move construction is the crux of move
capture emulation, because moving an rvalue into a bind object is how we work
around the inability to move an rvalue into a C++11 closure.

When a bind object is “called” (i.e., its function call operator is invoked) the
arguments it stores are passed to the callable object originally passed to

std: :bind. In this example, that means that when func (the bind object) is
called, the move-constructed copy of data inside func is passed as an argument
to the lambda that was passed to std: :bind.

This lambda is the same as the lambda we’d use in C++14, except a parameter,
data, has been added to correspond to our pseudo-move-captured object. This

parameter is an lvalue reference to the copy of data in the bind object. (It’s not
an rvalue reference, because although the expression used to initialize the copy

of data (“std: :move(data)”) is an rvalue, the copy of data itself is an lvalue.)
Uses of data inside the lambda will thus operate on the move-constructed copy
of data inside the bind object.

By default, the operator () member function inside the closure class generated
from a lambda is const. That has the effect of rendering all data members in the
closure const within the body of the lambda. The move-constructed copy of
data inside the bind object is not const, however, so to prevent that copy of
data from being modified inside the lambda, the lambda’s parameter is declared
reference-to-const. If the lambda were declared mutable, operator() in its
closure class would not be declared const, and it would be appropriate to omit
const in the lambda’s parameter declaration: auto func = std::bind( // C++11
emulation [](std::vector<double>& data) mutable // of init capture { /* uses of
data */ }, // for mutable lambda std::move(data) );



Because a bind object stores copies of all the arguments passed to std: :bind,
the bind object in our example contains a copy of the closure produced by the
lambda that is its first argument. The lifetime of the closure is therefore the same
as the lifetime of the bind object. That’s important, because it means that as long
as the closure exists, the bind object containing the pseudo-move-captured object
exists, too.

If this is your first exposure to std: :bind, you may need to consult your
favorite C++11 reference before all the details of the foregoing discussion fall
into place. Even if that’s the case, these fundamental points should be clear:

= [t’s not possible to move-construct an object into a C++11 closure, but it is
possible to move-construct an object into a C++11 bind object.

» Emulating move-capture in C++11 consists of move-constructing an object
into a bind object, then passing the move-constructed object to the lambda by
reference.

= Because the lifetime of the bind object is the same as that of the closure, it’s
possible to treat objects in the bind object as if they were in the closure.

As a second example of using std: :bind to emulate move capture, here’s the
C++14 code we saw earlier to create a std: :unique_ptr in a closure: auto func
= [pw = std::make_unique<Widget>()] // as before, { return pw->isValidated() //
create pw && pw->isArchived(); }; // in closure

And here’s the C++11 emulation:

auto func = std::bind(
[J(const std::unique_ptr<Widget>& pw)
{ return pw->isValidated()
&& pw->isArchived(); },
std: :make_unique<Widget>()

)

It’s ironic that I’'m showing how to use std: :bind to work around limitations in
C++11 lambdas, because in Item 34, I advocate the use of lambdas over

std: :bind. However, that Item explains that there are some cases in C++11
where std: :bind can be useful, and this is one of them. (In C++14, features



such as init capture and auto parameters eliminate those cases.)

Things to Remember

m Use C++14’s init capture to move objects into closures.

m [n C++11, emulate init capture via hand-written classes or std: :bind.

Item 33: Use decltype Oon auto&& parameters to
std: :forward them.

One of the most exciting features of C++14 is generic lambdas—Ilambdas that
use auto in their parameter specifications. The implementation of this feature is
straightforward: operator() in the lambda’s closure class is a template. Given
this lambda, for example, auto f = [](auto x){ return func(normalize(x)); };

the closure class’s function call operator looks like this: class
SomeCompilerGeneratedClassName { public: template<typename T> // see [tem
3 for auto operator()(T x) const // auto return type { return func(normalize(x)); }
... // other closure class }; // functionality

In this example, the only thing the lambda does with its parameter x is forward it
to normalize. If normalize treats lvalues differently from rvalues, this lambda
isn’t written properly, because it always passes an lvalue (the parameter x) to
normalize, even if the argument that was passed to the lambda was an rvalue.

The correct way to write the lambda is to have it perfect-forward x to
normalize. Doing that requires two changes to the code. First, x has to become
a universal reference (see Item 24), and second, it has to be passed to normalize
via std::forward (see Item 25). In concept, these are trivial modifications: auto
f = [1(auto&& x) { return func(normalize(std::forward<???>(x))); };

Between concept and realization, however, is the question of what type to pass
to std: :forward, i.e., to determine what should go where I’ve written ???
above.

Normally, when you employ perfect forwarding, you’re in a template function



taking a type parameter T, so you just write std: : forward<T>. In the generic
lambda, though, there’s no type parameter T available to you. There is a T in the
templatized operator() inside the closure class generated by the lambda, but
it’s not possible to refer to it from the lambda, so it does you no good.

Item 28 explains that if an Ivalue argument is passed to a universal reference
parameter, the type of that parameter becomes an lvalue reference. If an rvalue is
passed, the parameter becomes an rvalue reference. This means that in our
lambda, we can determine whether the argument passed was an lvalue or an
rvalue by inspecting the type of the parameter x. decltype gives us a way to do
that (see Item 3). If an Ivalue was passed in, decltype(x) will produce a type

that’s an lvalue reference. If an rvalue was passed, decltype(x) will produce an
rvalue reference type.

Item 28 also explains that when calling std: : forward, convention dictates that
the type argument be an lvalue reference to indicate an lvalue and a non-

reference to indicate an rvalue. In our lambda, if x is bound to an lvalue,
decltype(x) will yield an Ivalue reference. That conforms to convention.

However, if x is bound to an rvalue, decltype(x) will yield an rvalue reference
instead of the customary non-reference.

But look at the sample C++14 implementation for std: : forward from Item 28:
template<typename T> // in namespace T&& forward(remove_reference_t<T>&
param) // std { return static_cast<T&&>(param); }

If client code wants to perfect-forward an rvalue of type Widget, it normally
instantiates std: : forward with the type Widget (i.e, a non-reference type), and
the std: : forward template yields this function: Widget&& forward(Widget&
param) // instantiation of { // std::forward when return static_cast<Widget&&>
(param); // T is Widget }

But consider what would happen if the client code wanted to perfect-forward the
same rvalue of type Widget, but instead of following the convention of
specifying T to be a non-reference type, it specified it to be an rvalue reference.
That is, consider what would happen if T were specified to be Widget&&. After
initial instantiation of std: : forward and application of

std: :remove_reference_t, but before reference collapsing (once again, see



Item 28), std: : forward would look like this: Widget&& & & forward(Widget&
param) // instantiation of { // std::forward when return static_cast<Widget&&
&&>(param); // T is Widget&& } // (before reference- // collapsing)

Applying the reference-collapsing rule that an rvalue reference to an rvalue
reference becomes a single rvalue reference, this instantiation emerges:
Widget&& forward(Widget& param) // instantiation of { // std::forward when
return static_cast<Widget&&>(param); // T is Widget&& } // (after reference- //
collapsing)

If you compare this instantiation with the one that results when std: : forward is
called with T set to Widget, you’ll see that they’re identical. That means that

instantiating std: : forward with an rvalue reference type yields the same result
as instantiating it with a non-reference type.

That’s wonderful news, because decltype(x) yields an rvalue reference type
when an rvalue is passed as an argument to our lambda’s parameter x. We
established above that when an lvalue is passed to our lambda, decltype(x)
yields the customary type to pass to std: : forward, and now we realize that for
rvalues, decltype(x) yields a type to pass to std: : forward that’s not
conventional, but that nevertheless yields the same outcome as the conventional
type. So for both lvalues and rvalues, passing decltype(x) to std: : forward
gives us the result we want. Our perfect-forwarding lambda can therefore be
written like this: auto f = [](auto&& param) { return
func(normalize(std::forward<decltype(param)>(param))); };

From there, it’s just a hop, skip, and six dots to a perfect-forwarding lambda that
accepts not just a single parameter, but any number of parameters, because
C++14 lambdas can also be variadic: auto f = [J(auto&&... params) { return
func(normalize(std::forward<decltype(params)>(params)...)); };

Things to Remember

m Use decltype on auto&& parameters to std: : forward them.




Item 34: Prefer lambdas to std: :bind.

std::bind is the C++11 successor to C++98’s std: :bind1lst and

std: :bind2nd, but, informally, it’s been part of the Standard Library since
2005. That’s when the Standardization Committee adopted a document known
as TR1, which included bind’s specification. (In TR1, bind was in a different
namespace, so it was std: :tril::bind, not std: :bind, and a few interface
details were different.) This history means that some programmers have a decade
or more of experience using std: :bind. If you’re one of them, you may be
reluctant to abandon a tool that’s served you well. That’s understandable, but in
this case, change is good, because in C++11, lambdas are almost always a better
choice than std: :bind. As of C++14, the case for lambdas isn’t just stronger,
it’s downright ironclad.

This Item assumes that you’re familiar with std: :bind. If you’re not, you’ll
want to acquire a basic understanding before continuing. Such an understanding
is worthwhile in any case, because you never know when you might encounter

uses of std: :bind in a code base you have to read or maintain.

As in Item 32, I refer to the function objects returned from std: :bind as bind
objects.

The most important reason to prefer lambdas over std: :bind is that lambdas are
more readable. Suppose, for example, we have a function to set up an audible
alarm: // typedef for a point in time (see Item 9 for syntax) using Time =
std::chrono::steady_clock::time_point; // see Item 10 for "enum class" enum
class Sound { Beep, Siren, Whistle }; // typedef for a length of time using
Duration = std::chrono::steady_clock::duration; // at time t, make sound s for
duration d void setAlarm(Time t, Sound s, Duration d);

Further suppose that at some point in the program, we’ve determined we’ll want
an alarm that will go off an hour after it’s set and that will stay on for 30
seconds. The alarm sound, however, remains undecided. We can write a lambda
that revises setAlarm’s interface so that only a sound needs to be specified: //
setSoundL. ("L" for "lambda") is a function object allowing a // sound to be
specified for a 30-sec alarm to go off an hour // after it's set auto setSoundL =[]
(Sound s) { // make std::chrono components available w/o qualification using
namespace std::chrono; setAlarm(steady_clock::now() + hours(1), // alarm to go



off s, // in an hour for seconds(30)); // 30 seconds };

I’ve highlighted the call to setAlarm inside the lambda. This is a normal-
looking function call, and even a reader with little lambda experience can see

that the parameter s passed to the lambda is passed as an argument to setAlarm.

We can streamline this code in C++14 by availing ourselves of the standard
suffixes for seconds (s), milliseconds (ms), hours (h), etc., that build on C++11’s
support for user-defined literals. These suffixes are implemented in the

std: :literals namespace, so the above code can be rewritten as follows: auto
setSoundL = [](Sound s) { using namespace std::chrono; using namespace
std::literals; // for C++14 suffixes setAlarm(steady_clock::now() + 1h, // C++14,
but s, // same meaning 30s); // as above };

Our first attempt to write the corresponding std: :bind call is below. It has an
error that we’ll fix in a moment, but the correct code is more complicated, and
even this simplified version brings out some important issues: using namespace
std::chrono; // as above using namespace std::literals; using namespace
std::placeholders; // needed for use of "_1" auto setSoundB = // "B" for "bind"
std::bind(setAlarm, steady_clock::now() + 1h, // incorrect! see below _1, 30s);

I’d like to highlight the call to setAlarm here as I did in the lambda, but there’s
no call to highlight. Readers of this code simply have to know that calling
setSoundB invokes setAlarm with the time and duration specified in the call to
std::bind. To the uninitiated, the placeholder “_1” is essentially magic, but
even readers in the know have to mentally map from the number in that
placeholder to its position in the std: :bind parameter list in order to understand
that the first argument in a call to setSoundB is passed as the second argument
to setAlarm. The type of this argument is not identified in the call to

std: :bind, so readers have to consult the setAlarm declaration to determine
what kind of argument to pass to setSoundB.

But, as I said, the code isn’t quite right. In the lambda, it’s clear that the
expression “steady_clock: :now() + 1h” is an argument to setAlarm. It will be
evaluated when setAlarm is called. That makes sense: we want the alarm to go
off an hour after invoking setAlarm. In the std: :bind call, however,
“steady_clock: :now() + 1h” is passed as an argument to std: :bind, not to



setAlarm. That means that the expression will be evaluated when std: :bind is
called, and the time resulting from that expression will be stored inside the
resulting bind object. As a consequence, the alarm will be set to go off an hour

dfter the call to std: :bind, not an hour after the call to setAlarm!

Fixing the problem requires telling std: :bind to defer evaluation of the
expression until setAlarm is called, and the way to do that is to nest a second

call to std: :bind inside the first one: auto setSoundB = std::bind(setAlarm,
std::bind(std::plus<>(), steady_clock::now(), 1h), _1, 30s);

If you’re familiar with the std: :plus template from C++98, you may be
surprised to see that in this code, no type is specified between the angle brackets,
i.e., the code contains “std: :plus<>”, not “std: :plus<type>”. In C++14, the
template type argument for the standard operator templates can generally be
omitted, so there’s no need to provide it here. C++11 offers no such feature, so
the C++11 std: :bind equivalent to the lambda is: using namespace std::chrono;
// as above using namespace std::placeholders; auto setSoundB =
std::bind(setAlarm, std::bind(std::plus<steady_clock::time_point>(),
steady_clock::now(), hours(1)), _1, seconds(30));

If, at this point, the lambda’s not looking a lot more attractive, you should
probably have your eyesight checked.

When setAlarm is overloaded, a new issue arises. Suppose there’s an overload
taking a fourth parameter specifying the alarm volume: enum class Volume {
Normal, Loud, LoudPlusPlus }; void setAlarm(Time t, Sound s, Duration d,
Volume v);

The lambda continues to work as before, because overload resolution chooses

the three-argument version of setAlarm: auto setSoundL = // same as before []
(Sound s) { using namespace std::chrono; setAlarm(steady_clock::now() + 1h, //
fine, calls s, // 3-arg version 30s); // of setAlarm };

The std: :bind call, on the other hand, now fails to compile: auto setSoundB =
/1 error! which std::bind(setAlarm, // setAlarm? std::bind(std::plus<>(),
steady_clock::now(), 1h), _1, 30s);

The problem is that compilers have no way to determine which of the two
setAlarm functions they should pass to std: :bind. All they have is a function



name, and the name alone is ambiguous.

To get the std: :bind call to compile, setAlarm must be cast to the proper
function pointer type: using SetAlarm3ParamType = void(*)(Time t, Sound s,
Duration d); auto setSoundB = // now
std::bind(static_cast<SetAlarm3ParamType>(setAlarm), // okay
std::bind(std::plus<>(), steady_clock::now(), 1h), _1, 30s);

But this brings up another difference between lambdas and std: :bind. Inside
the function call operator for setSoundL (i.e., the function call operator of the

lambda’s closure class), the call to setAlarm is a normal function invocation
that can be inlined by compilers in the usual fashion: setSoundL(Sound::Siren);
// body of setAlarm may // well be inlined here

The call to std: :bind, however, passes a function pointer to setAlarm, and that
means that inside the function call operator for setSoundB (i.e., the function call
operator for the bind object), the call to setAlarm takes place through a function
pointer. Compilers are less likely to inline function calls through function
pointers, and that means that calls to setAlarm through setSoundB are less
likely to be fully inlined than those through setSoundL:
setSoundB(Sound::Siren); // body of setAlarm is less // likely to be inlined here

It’s thus possible that using lambdas generates faster code than using
std::bind.

The setAlarm example involves only a simple function call. If you want to do
anything more complicated, the scales tip even further in favor of lambdas. For
example, consider this C++14 lambda, which returns whether its argument is
between a minimum value (lowVal) and a maximum value (highVal), where
lowVal and highVal are local variables: auto betweenL. = [lowVal, highVal]
(const auto& val) // C++14 { return lowVal <= val && val <= highVal; };

std: :bind can express the same thing, but the construct is an example of job
security through code obscurity: using namespace std::placeholders; // as above
auto betweenB = std::bind(std::logical_and<>(), // C++14
std::bind(std::less_equal<>(), lowVal, 1), std::bind(std::lessequal<>(), _1,
highVal));

In C++11, we’d have to specify the types we wanted to compare, and the



std: :bind call would then look like this: auto betweenB = // C++11 version
std::bind(std::logical_and<bool>(), std::bind(std::less_equal<int>(), lowVal, 1),
std::bind(std: :lessequal<int>(), _1, highVal));

Of course, in C++11, the lambda couldn’t take an auto parameter, so it’d have
to commit to a type, too: auto betweenL. = // C++11 version [lowVal, highVal]
(int val) { return lowVal <= val && val <= highVal; };

Either way, I hope we can agree that the lambda version is not just shorter, but
also more comprehensible and maintainable.

Earlier, I remarked that for those with little std: :bind experience, its
placeholders (e.g., _1, _2, etc.) are essentially magic. But it’s not just the
behavior of the placeholders that’s opaque. Suppose we have a function to create
compressed copies of Widgets, enum class CompLevel { Low, Normal, High };
/I compression // level Widget compress(const Widget& w, // make compressed
CompLevel lev); // copy of w

and we want to create a function object that allows us to specify how much a

particular Widget w should be compressed. This use of std: :bind will create
such an object: Widget w; using namespace std::placeholders; auto
compressRateB = std::bind(compress, w, _1);

Now, when we pass w to std: :bind, it has to be stored for the later call to
compress. It’s stored inside the object compressRateB, but how is it stored—by
value or by reference? It makes a difference, because if w is modified between

the call to std: :bind and a call to compressRateB, storing w by reference will
reflect the changes, while storing it by value won’t.

The answer is that it’s stored by value,'* but the only way to know that is to
memorize how std: :bind works; there’s no sign of it in the call to std: :bind.
Contrast that with a lambda approach, where whether w is captured by value or
by reference is explicit: auto compressRatelL = // w is captured by [w]
(CompLevel lev) // value; lev is { return compress(w, lev); }; // passed by value

Equally explicit is how parameters are passed to the lambda. Here, it’s clear that
the parameter lev is passed by value. Hence:
compressRatel.(CompLevel::High); // arg is passed // by value

But in the call to the object resulting from std: :bind, how is the argument



passed?

compressRateB(CompLevel: :High); // how is arg
// passed?

Again, the only way to know is to memorize how std: :bind works. (The
answer is that all arguments passed to bind objects are passed by reference,
because the function call operator for such objects uses perfect forwarding.)
Compared to lambdas, then, code using std: :bind is less readable, less
expressive, and possibly less efficient. In C++14, there are no reasonable use
cases for std: :bind. In C++11, however, std: :bind can be justified in two
constrained situations:

= Move capture. C++11 lambdas don’t offer move capture, but it can be
emulated through a combination of a lambda and std: :bind. For details,
consult Item 32, which also explains that in C++14, lambdas’ support for init
capture eliminates the need for the emulation.

m Polymorphic function objects. Because the function call operator on a bind
object uses perfect forwarding, it can accept arguments of any type (modulo
the restrictions on perfect forwarding described in Item 30). This can be
useful when you want to bind an object with a templatized function call
operator. For example, given this class, class PolyWidget { public:
template<typename T> void operator()(const T& param); ... };

std: :bind can bind a PolyWidget as follows: PolyWidget pw; auto
boundPW = std::bind(pw, _1);

boundPW can then be called with different types of arguments:
boundPW(1930); // pass int to // PolyWidget::operator() boundPW (nullptr); //
pass nullptr to // PolyWidget::operator() boundPW("Rosebud"); // pass string
literal to // PolyWidget::operator()

There is no way to do this with a C++11 lambda. In C++14, however, it’s

easily achieved via a lambda with an auto parameter: auto boundPW = [pw]
(const auto& param) // C++14 { pw(param); };

These are edge cases, of course, and they’re transient edge cases at that, because
compilers supporting C++14 lambdas are increasingly common.



When bind was unofficially added to C++ in 2005, it was a big improvement
over its 1998 predecessors. The addition of lambda support to C++11 rendered

std: :bind all but obsolete, however, and as of C++14, there are just no good
use cases for it.

Things to Remember

m Lambdas are more readable, more expressive, and may be more efficient than using
std::bind.

m [n C++11 only, std: :bind may be useful for implementing move capture or for binding
objects with templatized function call operators.

4 std: :bind always copies its arguments, but callers can achieve the effect of
having an argument stored by reference by applying std: : ref to it. The result
of auto compressRateB = std::bind(compress, std::ref(w), _1);
is that compressRateB acts as if it holds a reference to w, rather than a copy.



Chapter 7. The Concurrency API

One of C++11’s great triumphs is the incorporation of concurrency into the
language and library. Programmers familiar with other threading APIs (e.g.,
pthreads or Windows threads) are sometimes surprised at the comparatively
Spartan feature set that C++ offers, but that’s because a great deal of C++’s
support for concurrency is in the form of constraints on compiler-writers. The
resulting language assurances mean that for the first time in C++’s history,
programmers can write multithreaded programs with standard behavior across
all platforms. This establishes a solid foundation on which expressive libraries
can be built, and the concurrency elements of the Standard Library (tasks,
futures, threads, mutexes, condition variables, atomic objects, and more) are
merely the beginning of what is sure to become an increasingly rich set of tools
for the development of concurrent C++ software.

In the Items that follow, bear in mind that the Standard Library has two

templates for futures: std: :future and std: :shared_future. In many cases,
the distinction is not important, so I often simply talk about futures, by which I
mean both kinds.

Item 35: Prefer task-based programming to
thread-based.

If you want to run a function doAsyncWork asynchronously, you have two basic

choices. You can create a std: : thread and run doAsyncWork on it, thus
employing a thread-based approach:

int doAsyncWork();

std::thread t(doAsyncWork);

Or you can pass doAsyncWork to std: :async, a strategy known as task-based:

auto fut = std::async(doAsyncWork); /] "fut" for "future"



In such calls, the function object passed to std: :async (e.g., doAsyncWork) is
considered a task.

The task-based approach is typically superior to its thread-based counterpart, and
the tiny amount of code we’ve seen already demonstrates some reasons why.

Here, doAsyncWork produces a return value, which we can reasonably assume

the code invoking doAsyncWork is interested in. With the thread-based
invocation, there’s no straightforward way to get access to it. With the task-

based approach, it’s easy, because the future returned from std: :async offers
the get function. The get function is even more important if doAsyncWork emits
an exception, because get provides access to that, too. With the thread-based
approach, if doAsyncWork throws, the program dies (via a call to
std::terminate).

A more fundamental difference between thread-based and task-based

programming is the higher level of abstraction that task-based embodies. It frees
you from the details of thread management, an observation that reminds me that
I need to summarize the three meanings of “thread” in concurrent C++ software:

m Hardware threads are the threads that actually perform computation.
Contemporary machine architectures offer one or more hardware threads per
CPU core.

m Software threads (also known as OS threads or system threads) are the
threads that the operating system'> manages across all processes and
schedules for execution on hardware threads. It’s typically possible to create
more software threads than hardware threads, because when a software thread
is blocked (e.g., on I/O or waiting for a mutex or condition variable),
throughput can be improved by executing other, unblocked, threads.

m std::threads are objects in a C++ process that act as handles to underlying

software threads. Some std: : thread objects represent “null” handles, i.e.,
correspond to no software thread, because they’re in a default-constructed
state (hence have no function to execute), have been moved from (the moved-

to std: : thread then acts as the handle to the underlying software thread),
have been joined (the function they were to run has finished), or have been
detached (the connection between them and their underlying software thread



has been severed).

Software threads are a limited resource. If you try to create more than the system
can provide, a std: :system_error exception is thrown. This is true even if the
function you want to run can’t throw. For example, even if doAsyncWork is
noexcept,

int doAsyncWork() noexcept; /] see Item 14 for noexcept
this statement could result in an exception:

std::thread t(doAsyncWork); // throws if no more
// threads are available

Well-written software must somehow deal with this possibility, but how? One
approach is to run doAsyncWork on the current thread, but that could lead to
unbalanced loads and, if the current thread is a GUI thread, responsiveness
issues. Another option is to wait for some existing software threads to complete
and then try to create a new std: : thread again, but it’s possible that the

existing threads are waiting for an action that doAsyncWork is supposed to
perform (e.g., produce a result or notify a condition variable).

Even if you don’t run out of threads, you can have trouble with oversubscription.
That’s when there are more ready-to-run (i.e., unblocked) software threads than
hardware threads. When that happens, the thread scheduler (typically part of the
OS) time-slices the software threads on the hardware. When one thread’s time-
slice is finished and another’s begins, a context switch is performed. Such
context switches increase the overall thread management overhead of the
system, and they can be particularly costly when the hardware thread on which a
software thread is scheduled is on a different core than was the case for the
software thread during its last time-slice. In that case, (1) the CPU caches are
typically cold for that software thread (i.e., they contain little data and few
instructions useful to it) and (2) the running of the “new” software thread on that
core “pollutes” the CPU caches for “old” threads that had been running on that
core and are likely to be scheduled to run there again.

Avoiding oversubscription is difficult, because the optimal ratio of software to
hardware threads depends on how often the software threads are runnable. and



that can change dynamically, e.g., when a program goes from an I/O-heavy
region to a computation-heavy region. The best ratio of software to hardware
threads is also dependent on the cost of context switches and how effectively the
software threads use the CPU caches. Furthermore, the number of hardware
threads and the details of the CPU caches (e.g., how large they are and their
relative speeds) depend on the machine architecture, so even if you tune your
application to avoid oversubscription (while still keeping the hardware busy) on
one platform, there’s no guarantee that your solution will work well on other
kinds of machines.

Your life will be easier if you dump these problems on somebody else, and using
std: :async does exactly that:

auto fut = std::async(doAsyncWork); // onus of thread mgmt is
// on implementer of
// the Standard Library

This call shifts the thread management responsibility to the implementer of the
C++ Standard Library. For example, the likelihood of receiving an out-of-
threads exception is significantly reduced, because this call will probably never
yield one. “How can that be?” you might wonder. “If I ask for more software
threads than the system can provide, why does it matter whether I do it by
creating std: : threads or by calling std: :async?” It matters, because

std: :async, when called in this form (i.e., with the default launch policy—see
Item 36), doesn’t guarantee that it will create a new software thread. Rather, it
permits the scheduler to arrange for the specified function (in this example,
doAsyncWork) to be run on the thread requesting doAsyncWork’s result (i.e., on
the thread calling get or wait on fut), and reasonable schedulers take
advantage of that freedom if the system is oversubscribed or is out of threads.

If you pulled this “run it on the thread needing the result” trick yourself, I
remarked that it could lead to load-balancing issues, and those issues don’t go
away simply because it’s std: :async and the runtime scheduler that confront
them instead of you. When it comes to load balancing, however, the runtime
scheduler is likely to have a more comprehensive picture of what’s happening on
the machine than you do, because it manages the threads from all processes, not
just the one your code is running in.



With std: :async, responsiveness on a GUI thread can still be problematic,
because the scheduler has no way of knowing which of your threads has tight
responsiveness requirements. In that case, you’ll want to pass the

std: :launch: :async launch policy to std: :async. That will ensure that the
function you want to run really executes on a different thread (see Item 36).

State-of-the-art thread schedulers employ system-wide thread pools to avoid
oversubscription, and they improve load balancing across hardware cores
through work-stealing algorithms. The C++ Standard does not require the use of
thread pools or work-stealing, and, to be honest, there are some technical aspects
of the C++11 concurrency specification that make it more difficult to employ
them than we’d like. Nevertheless, some vendors take advantage of this
technology in their Standard Library implementations, and it’s reasonable to
expect that progress will continue in this area. If you take a task-based approach
to your concurrent programming, you automatically reap the benefits of such
technology as it becomes more widespread. If, on the other hand, you program
directly with std: : threads, you assume the burden of dealing with thread
exhaustion, oversubscription, and load balancing yourself, not to mention how
your solutions to these problems mesh with the solutions implemented in
programs running in other processes on the same machine.

Compared to thread-based programming, a task-based design spares you the
travails of manual thread management, and it provides a natural way to examine
the results of asynchronously executed functions (i.e., return values or
exceptions). Nevertheless, there are some situations where using threads directly
may be appropriate. They include:

= You need access to the API of the underlying threading implementation.
The C++ concurrency API is typically implemented using a lower-level
platform-specific API, usually pthreads or Windows’ Threads. Those APIs
are currently richer than what C++ offers. (For example, C++ has no notion
of thread priorities or affinities.) To provide access to the API of the
underlying threading implementation, std: : thread objects typically offer
the native_handle member function. There is no counterpart to this
functionality for std: : futures (i.e., for what std: :async returns).

= You need to and are able to optimize thread usage for your application.



This could be the case, for example, if you’re developing server software
with a known execution profile that will be deployed as the only significant
process on a machine with fixed hardware characteristics.

= You need to implement threading technology beyond the C++
concurrency API, e.g., thread pools on platforms where your C++
implementations don’t offer them.

These are uncommon cases, however. Most of the time, you should choose task-
based designs instead of programming with threads.

Things to Remember

m The std: :thread API offers no direct way to get return values from asynchronously run
functions, and if those functions throw, the program is terminated.

m Thread-based programming calls for manual management of thread exhaustion,
oversubscription, load balancing, and adaptation to new platforms.

m Task-based programming via std: :async with the default launch policy handles most of
these issues for you.

Item 36: Specify std::launch::async if
asynchronicity is essential.

When you call std: :async to execute a function (or other callable object),
you’re generally intending to run the function asynchronously. But that’s not
necessarily what you’re asking std: :async to do. You’re really requesting that
the function be run in accord with a std: :async launch policy. There are two
standard policies, each represented by an enumerator in the std: : Launch scoped
enum. (See Item 10 for information on scoped enums.) Assuming a function f is
passed to std: :async for execution,

m The std: :launch: :async launch policy means that f must be run
asynchronously, i.e., on a different thread.

m The std: :launch: :deferred launch policy means that f may run only



when get or wait is called on the future returned by std: :async.'® That is,
f’s execution is deferred until such a call is made. When get or wait is
invoked, f will execute synchronously, i.e., the caller will block until £
finishes running. If neither get nor wait is called, f will never run.

Perhaps surprisingly, std: :async’s default launch policy—the one it uses if you
don’t expressly specify one—is neither of these. Rather, it’s these or-ed together.
The following two calls have exactly the same meaning:

auto futl = std::async(f); // run f using
// default launch
// policy
auto fut2 = std::async(std::launch::async | // run f either
std::launch::deferred, // async or
f); // deferred

The default policy thus permits f to be run either asynchronously or
synchronously. As Item 35 points out, this flexibility permits std: :async and
the thread-management components of the Standard Library to assume
responsibility for thread creation and destruction, avoidance of oversubscription,
and load balancing. That’s among the things that make concurrent programming
with std: :async so convenient.

But using std: : async with the default launch policy has some interesting
implications. Given a thread t executing this statement,

auto fut = std::async(f); // run f using default launch policy

= [t’s not possible to predict whether f will run concurrently with t,
because f might be scheduled to run deferred.

= [t’s not possible to predict whether f runs on a thread different from the
thread invoking get or wait on fut. If that thread is t, the implication is
that it’s not possible to predict whether f runs on a thread different from t.

= It may not be possible to predict whether f runs at all, because it may not



be possible to guarantee that get or wait will be called on fut along every
path through the program.

The default launch policy’s scheduling flexibility often mixes poorly with the
use of thread local variables, because it means that if f reads or writes such
thread-local storage (TLS), it’s not possible to predict which thread’s variables
will be accessed:

auto fut = std::async(f); /] TLS for f possibly for
// independent thread, but
/] possibly for thread
// invoking get or wait on fut

It also affects wait-based loops using timeouts, because calling wait_for or
walt_until on a task (see Item 35) that’s deferred yields the value

std::launch::deferred. This means that the following loop, which looks like
it should eventually terminate, may, in reality, run forever:

using namespace std::literals; // for C++14 duration
// suffixes; see Item 34

void f() /] f sleeps for 1 second,

{ // then returns
std::this_thread::sleep_for(1s);

}

auto fut = std::async(f); // run f asynchronously

/] (conceptually)

while (fut.wait_for(100ms) != // loop until f has

std: :future_status::ready) // finished running...
{ /| which may never happen!
}

If f runs concurrently with the thread calling std: :async (i.e., if the launch
policy chosen for f is std: : launch: :async), there’s no problem here
(assuming f eventually finishes), but if f is deferred, fut.wait_for will always
return std: : future_status: :deferred. That will never be equal to

std: :future_status::ready, so the loop will never terminate.



This kind of bug is easy to overlook during development and unit testing,
because it may manifest itself only under heavy loads. Those are the conditions
that push the machine towards oversubscription or thread exhaustion, and that’s
when a task may be most likely to be deferred. After all, if the hardware isn’t
threatened by oversubscription or thread exhaustion, there’s no reason for the
runtime system not to schedule the task for concurrent execution.

The fix is simple: just check the future corresponding to the std: :async call to
see whether the task is deferred, and, if so, avoid entering the timeout-based
loop. Unfortunately, there’s no direct way to ask a future whether its task is
deferred. Instead, you have to call a timeout-based function—a function such as
wailt_for. In this case, you don’t really want to wait for anything, you just want
to see if the return value is std: : future_status::deferred, so stifle your
mild disbelief at the necessary circumlocution and call wait_for with a zero
timeout:

auto fut = std::async(f); // as above
if (fut.wait_for(0s) == /] if task is
std: :future_status::deferred) // deferred...
{
// ...use wait or get on fut

// to call f synchronously

} else { // task isn't deferred
while (fut.wait_for(100ms) != // infinite loop not
std::future_status::ready) { // possible (assuming

// f finishes)

// task is neither deferred nor ready,
// so do concurrent work until it's ready

// fut is ready

The upshot of these various considerations is that using std: : async with the

default launch policy for a task is fine as long as the following conditions are
fulfilled:



m The task need not run concurrently with the thread calling get or watit.
m [t doesn’t matter which thread’s thread local variables are read or written.

m Either there’s a guarantee that get or wait will be called on the future
returned by std: :async or it’s acceptable that the task may never execute.

m Code using wait_for or wait_until takes the possibility of deferred status
into account.

If any of these conditions fails to hold, you probably want to guarantee that
std: :async will schedule the task for truly asynchronous execution. The way to

do that is to pass std: :launch: :async as the first argument when you make the
call:

auto fut = std::async(std::launch::async, f); // launch f
// asynchronously

In fact, having a function that acts like std: :async, but that automatically uses

std: :launch::async as the launch policy, is a convenient tool to have around,
so it’s nice that it’s easy to write. Here’s the C++11 version:

template<typename F, typename... Ts>

inline

std::future<typename std::result_of<F(Ts...)>::type>
reallyAsync(F&& f, Ts&&... params) // return future

{ // for asynchronous

return std::async(std::launch::async, // call to f(params...)
std::forward<F>(f),
std::forward<Ts>(params)...);

This function receives a callable object f and zero or more parameters params
and perfect-forwards them (see Item 25) to std: :async, passing

std: :launch::async as the launch policy. Like std: :async, it returns a
std::future for the result of invoking f on params. Determining the type of

that result is easy, because the type trait std: :result_of gives it to you. (See
Item 9 for general information on type traits.)



reallyAsync is used just like std: :async:

auto fut = reallyAsync(f); // run f asynchronously;
// throw if std::async
// would throw

In C++14, the ability to deduce reallyAsync’s return type streamlines the
function declaration:

template<typename F, typename... Ts>

inline

auto /] C++14
reallyAsync(F&& f, Ts&&... params)

{

return std::async(std::launch::async,
std::forward<F>(f),
std::forward<Ts>(params)...);

This version makes it crystal clear that reallyAsync does nothing but invoke
std: :async with the std: : launch: :async launch policy.

Things to Remember

m The default launch policy for std: : async permits both asynchronous and synchronous
task execution.

m This flexibility leads to uncertainty when accessing thread_locals, implies that the task
may never execute, and affects program logic for timeout-based wait calls.

m Specify std: :launch: :async if asynchronous task execution is essential.

Item 37: Make std::threads unjoinable on all
paths.

Every std: :thread object is in one of two states: joinable or unjoinable. A
joinable std: : thread corresponds to an underlying asynchronous thread of
execution that is or could be running. A std: : thread corresponding to an



underlying thread that’s blocked or waiting to be scheduled is joinable, for
example. std: : thread objects corresponding to underlying threads that have
run to completion are also considered joinable.

An unjoinable std: : thread is what you’d expect: a std: : thread that’s not
joinable. Unjoinable std: : thread objects include:

» Default-constructed std: :threads. Such std: : threads have no function to
execute, hence don’t correspond to an underlying thread of execution.

m std::thread objects that have been moved from. The result of a move is
that the underlying thread of execution a std: : thread used to correspond to
(if any) now corresponds to a different std: : thread.

m std::threads that have been joined. After a join, the std: :thread
object no longer corresponds to the underlying thread of execution that has
finished running.

m std::threads that have been detached. A detach severs the connection

between a std: : thread object and the underlying thread of execution it
corresponds to.

One reason a std: : thread’s joinability is important is that if the destructor for a
joinable thread is invoked, execution of the program is terminated. For example,
suppose we have a function doWork that takes a filtering function, filter, and a
maximum value, maxVal, as parameters. doWork checks to make sure that all
conditions necessary for its computation are satisfied, then performs the
computation with all the values between 0 and maxVal that pass the filter. If it’s
time-consuming to do the filtering and it’s also time-consuming to determine
whether doWork’s conditions are satisfied, it would be reasonable to do those
two things concurrently.

Our preference would be to employ a task-based design for this (see Item 35),
but let’s assume we’d like to set the priority of the thread doing the filtering.
Item 35 explains that that requires use of the thread’s native handle, and that’s
accessible only through the std: : thread API; the task-based API (i.e., futures)
doesn’t provide it. Our approach will therefore be based on threads, not tasks.



We could come up with code like this:

constexpr auto tenMillion = 10000000; // see Item 15
/| for constexpr

bool doWork(std::function<bool(int)> filter, // returns whether
int maxVal = tenMillion) // computation was
{ // performed; see
// Item 2 for
// std::function

std::vector<int> goodVals; // values that
// satisfy filter

std::thread t([&filter, maxVal, &goodVals] // populate
{ // goodVals
for (auto 1 = 0; 1 <= maxVal; ++1)
{ if (filter(i)) goodVals.push_back(i); }
s

auto nh = t.native_handle(); // use t's native
// handle to set
/] t's priority
if (conditionsAreSatisfied()) {

t.join(); // let t finish
per formComputation(goodVals);
return true; // computation was
} // performed
return false; // computation was
} // not performed

Before I explain why this code is problematic, I’ll remark that tenMillion’s
initializing value can be made more readable in C++14 by taking advantage of
C++14’s ability to use an apostrophe as a digit separator:

constexpr auto tenMillion = 10'000'000; /] C++14

I’ll also remark that setting t’s priority after it has started running is a bit like
closing the proverbial barn door after the equally proverbial horse has bolted. A
better design would be to start t in a suspended state (thus making it possible to
adjust its priority before it does any computation), but I don’t want to distract



you with that code. If you’re more distracted by the code’s absence, turn to Item
39, because it shows how to start threads suspended.

But back to doWork. If conditionsAreSatisfied() returns true, all is well,
but if it returns false or throws an exception, the std: : thread object t will be

joinable when its destructor is called at the end of doWork. That would cause
program execution to be terminated.

You might wonder why the std: : thread destructor behaves this way. It’s
because the two other obvious options are arguably worse. They are:

= An implicit join. In this case, a std: : thread’s destructor would wait for its
underlying asynchronous thread of execution to complete. That sounds
reasonable, but it could lead to performance anomalies that would be difficult
to track down. For example, it would be counterintuitive that doWork would
wait for its filter to be applied to all values if conditionsAreSatisfied()
had already returned false.

= An implicit detach. In this case, a std: : thread’s destructor would sever

the connection between the std: : thread object and its underlying thread of
execution. The underlying thread would continue to run. This sounds no less

reasonable than the join approach, but the debugging problems it can lead to
are worse. In doWork, for example, goodVals is a local variable that is
captured by reference. It’s also modified inside the lambda (via the call to
push_back). Suppose, then, that while the lambda is running asynchronously,
conditionsAreSatisfied() returns false. In that case, doWork would

return, and its local variables (including goodVals) would be destroyed. Its
stack frame would be popped, and execution of its thread would continue at
doWork’s call site.

Statements following that call site would, at some point, make additional
function calls, and at least one such call would probably end up using some or
all of the memory that had once been occupied by the doWork stack frame.
Let’s call such a function f. While f was running, the lambda that doWork
initiated would still be running asynchronously. That lambda could call
push_back on the stack memory that used to be goodVals but that is now
somewhere inside f’s stack frame. Such a call would modify the memory that



used to be goodVals, and that means that from f’s perspective, the content of
memory in its stack frame could spontaneously change! Imagine the fun
you’d have debugging that.

The Standardization Committee decided that the consequences of destroying a
joinable thread were sufficiently dire that they essentially banned it (by
specifying that destruction of a joinable thread causes program termination).

This puts the onus on you to ensure that if you use a std: : thread object, it’s
made unjoinable on every path out of the scope in which it’s defined. But
covering every path can be complicated. It includes flowing off the end of the
scope as well as jumping out via a return, continue, break, goto or exception.
That can be a lot of paths.

Any time you want to perform some action along every path out of a block, the
normal approach is to put that action in the destructor of a local object. Such
objects are known as RAII objects, and the classes they come from are known as
RAII classes. (RAII itself stands for “Resource Acquisition Is Initialization,”
although the crux of the technique is destruction, not initialization). RAII classes
are common in the Standard Library. Examples include the STL containers (each
container’s destructor destroys the container’s contents and releases its memory),
the standard smart pointers (Items 18—20 explain that std: :unique_ptr’s
destructor invokes its deleter on the object it points to, and the destructors in
std: :shared_ptr and std: :weak_ptr decrement reference counts),

std: : fstream objects (their destructors close the files they correspond to), and
many more. And yet there is no standard RAII class for std: : thread objects,
perhaps because the Standardization Committee, having rejected both join and
detach as default options, simply didn’t know what such a class should do.

Fortunately, it’s not difficult to write one yourself. For example, the following
class allows callers to specify whether join or detach should be called when a
ThreadRAII object (an RAII object for a std: : thread) is destroyed:

class ThreadRAII {
public:
enum class DtorAction { join, detach }; // see Item 10 for
// enum class info



ThreadRAII(std::thread&& t, DtorAction a) // in dtor, take

: action(a), t(std::move(t)) {} // action a on t
~ThreadRAII()
{ /] see below for
if (t.joinable()) { // joinability test
if (action == DtorAction::join) {
t.join();
} else {
t.detach();
}
}
}
std::thread& get() { return t; } /] see below
private:

DtorAction action;
std::thread t;

1

I hope this code is largely self-explanatory, but the following points may be
helpful:

m The constructor accepts only std: : thread rvalues, because we want to move
the passed-in std: : thread into the ThreadRAII object. (Recall that
std: : thread objects aren’t copyable.)

m The parameter order in the constructor is designed to be intuitive to callers
(specifying the std: : thread first and the destructor action second makes
more sense than vice versa), but the member initialization list is designed to
match the order of the data members’ declarations. That order puts the
std: : thread object last. In this class, the order makes no difference, but in
general, it’s possible for the initialization of one data member to depend on
another, and because std: : thread objects may start running a function
immediately after they are initialized, it’s a good habit to declare them last in
a class. That guarantees that at the time they are constructed, all the data
members that precede them have already been initialized and can therefore be
safely accessed by the asynchronously running thread that corresponds to the



std: : thread data member.

ThreadRAII offers a get function to provide access to the underlying

std: : thread object. This is analogous to the get functions offered by the
standard smart pointer classes that give access to their underlying raw

pointers. Providing get avoids the need for ThreadRAII to replicate the full
std::thread interface, and it also means that ThreadRAII objects can be
used in contexts where std: : thread objects are required.

Before the ThreadRAII destructor invokes a member function on the
std::thread object t, it checks to make sure that t is joinable. This is
necessary, because invoking join or detach on an unjoinable thread yields
undefined behavior. It’s possible that a client constructed a std: : thread,
created a ThreadRAII object from it, used get to acquire access to t, and
then did a move from t or called join or detach on it. Each of those actions
would render t unjoinable.

If you’re worried that in this code,

if (t.joinable()) {

if (action == DtorAction::join) {
t.join();

} else {
t.detach();

}
}

a race exists, because between execution of t.joinable() and invocation of
join or detach, another thread could render t unjoinable, your intuition is
commendable, but your fears are unfounded. A std: : thread object can
change state from joinable to unjoinable only through a member function call,
e.g., join, detach, or a move operation. At the time a ThreadRAII object’s
destructor is invoked, no other thread should be making member function
calls on that object. If there are simultaneous calls, there is certainly a race,
but it isn’t inside the destructor, it’s in the client code that is trying to invoke
two member functions (the destructor and something else) on one object at



the same time. In general, simultaneous member function calls on a single
object are safe only if all are to const member functions (see Item 16).

Employing ThreadRAII in our doWork example would look like this:

bool doWork(std::function<bool(int)> filter, // as before
int maxVal = tenMillion)

{

std::vector<int> goodVals; // as before

ThreadRAII t( // use RAII object
std::thread([&filter, maxVal, &goodVals]
{

for (auto 1 = 0; 1 <= maxVal; ++1)
{ if (filter(i)) goodVals.push_back(i); }

s
ThreadRAII: :DtorAction::join // RAII action

);

auto nh = t.get().native_handle();

if (conditionsAreSatisfied()) {
t.get().join();
per formComputation(goodVals);
return true;

}

return false;

In this case, we’ve chosen to do a join on the asynchronously running thread in
the ThreadRAII destructor, because, as we saw earlier, doing a detach could

lead to some truly nightmarish debugging. We also saw earlier that doing a join
could lead to performance anomalies (that, to be frank, could also be unpleasant

to debug), but given a choice between undefined behavior (which detach would
get us), program termination (which use of a raw std: : thread would yield), or
performance anomalies, performance anomalies seems like the best of a bad lot.

Alas, Item 39 demonstrates that using ThreadRAII to perform a join on

std: : thread destruction can sometimes lead not just to a performance anomaly,
but to a hung program. The “proper” solution to these kinds of problems would



be to communicate to the asynchronously running lambda that we no longer
need its work and that it should return early, but there’s no support in C++11 for
interruptible threads. They can be implemented by hand, but that’s a topic
beyond the scope of this book."”

Item 17 explains that because ThreadRAII declares a destructor, there will be no
compiler-generated move operations, but there is no reason ThreadRAII objects
shouldn’t be movable. If compilers were to generate these functions, the
functions would do the right thing, so explicitly requesting their creation
isappropriate:

class ThreadRAII {

public:
enum class DtorAction { join, detach }; // as before
ThreadRAII(std::thread&& t, DtorAction a) // as before

: action(a), t(std::move(t)) {}

~ThreadRAII()
{
// as before
}
ThreadRAII(ThreadRAII&&) = default; // support

ThreadRAII& operator=(ThreadRAII&&) = default; // moving
std::thread& get() { return t; } // as before

private: // as before
DtorAction action;
std::thread t;

1

Things to Remember

Make std: : threads unjoinable on all paths.

® join-on-destruction can lead to difficult-to-debug performance anomalies.

detach-on-destruction can lead to difficult-to-debug undefined behavior.

Declare std: : thread objects last in lists of data members.




Item 38: Be aware of varying thread handle
destructor behavior.

Item 37 explains that a joinable std: : thread corresponds to an underlying
system thread of execution. A future for a non-deferred task (see Item 36) has a
similar relationship to a system thread. As such, both std: : thread objects and
future objects can be thought of as handles to system threads.

From this perspective, it’s interesting that std: : threads and futures have such
different behaviors in their destructors. As noted in Item 37, destruction of a
joinable std: : thread terminates your program, because the two obvious
alternatives—an implicit join and an implicit detach—were considered worse
choices. Yet the destructor for a future sometimes behaves as if it did an implicit
join, sometimes as if it did an implicit detach, and sometimes neither. It never
causes program termination. This thread handle behavioral bouillabaisse
deserves closer examination.

We’ll begin with the observation that a future is one end of a communications
channel through which a callee transmits a result to a caller.' The callee (usually
running asynchronously) writes the result of its computation into the
communications channel (typically via a std: : promise object), and the caller
reads that result using a future. You can think of it as follows, where the dashed
arrow shows the flow of information from callee to caller:

e M _____Std::promiser—o =
(typically)

But where is the callee’s result stored? The callee could finish before the caller
invokes get on a corresponding future, so the result can’t be stored in the

callee’s std: : promise. That object, being local to the callee, would be
destroyed when the callee finished.

The result can’t be stored in the caller’s future, either, because (among other
reasons) a std: : future may be used to create a std: :shared_future (thus
transferring ownership of the callee’s result from the std: : future to the

std: :shared_future), which may then be copied many times after the original



std: : future is destroyed. Given that not all result types can be copied (i.e.,
move-only types) and that the result must live at least as long as the last future
referring to it, which of the potentially many futures corresponding to the callee
should be the one to contain its result?

Because neither objects associated with the callee nor objects associated with the
caller are suitable places to store the callee’s result, it’s stored in a location
outside both. This location is known as the shared state. The shared state is
typically represented by a heap-based object, but its type, interface, and
implementation are not specified by the Standard. Standard Library authors are
free to implement shared states in any way they like.

We can envision the relationship among the callee, the caller, and the shared
state as follows, where dashed arrows once again represent the flow of
information:

Shared State
future Callee’s std: :promise
Caller |« Result € (typically (allee

The existence of the shared state is important, because the behavior of a future’s
destructor—the topic of this [tem—is determined by the shared state associated
with the future. In particular,

» The destructor for the last future referring to a shared state for a non-
deferred task launched via std: :async blocks until the task completes. In

essence, the destructor for such a future does an implicit join on the thread
on which the asynchronously executing task is running.

» The destructor for all other futures simply destroys the future object. For
asynchronously running tasks, this is akin to an implicit detach on the
underlying thread. For deferred tasks for which this is the final future, it
means that the deferred task will never run.

These rules sound more complicated than they are. What we’re really dealing
with is a simple “normal” behavior and one lone exception to it. The normal
behavior is that a future’s destructor destroys the future object. That’s it. It



doesn’t join with anything, it doesn’t detach from anything, it doesn’t run
anything. It just destroys the future’s data members. (Well, actually, it does one
more thing. It decrements the reference count inside the shared state that’s

manipulated by both the futures referring to it and the callee’s std: :promise.
This reference count makes it possible for the library to know when the shared
state can be destroyed. For general information about reference counting, see
Item 19.)

The exception to this normal behavior arises only for a future for which all of the
following apply:

= It refers to a shared state that was created due to a call to std: :async.

m The task’s launch policy is std: : Launch: :async (see Item 36), either
because that was chosen by the runtime system or because it was specified in

the call to std: :async.

m The future is the last future referring to the shared state. For
std: : futures, this will always be the case. For std: :shared_futures, if

other std: :shared_futures refer to the same shared state as the future being
destroyed, the future being destroyed follows the normal behavior (i.e., it
simply destroys its data members).

Only when all of these conditions are fulfilled does a future’s destructor exhibit
special behavior, and that behavior is to block until the asynchronously running
task completes. Practically speaking, this amounts to an implicit join with the
thread running the std: : async-created task.

It’s common to hear this exception to normal future destructor behavior

summarized as “Futures from std: :async block in their destructors.” To a first
approximation, that’s correct, but sometimes you need more than a first
approximation. Now you know the truth in all its glory and wonder.

Your wonder may take a different form. It may be of the “I wonder why there’s
a special rule for shared states for non-deferred tasks that are launched by

std: :async” variety. It’s a reasonable question. From what I can tell, the
Standardization Committee wanted to avoid the problems associated with an
implicit detach (see Item 37), but they didn’t want to adopt as radical a policy



as mandatory program termination (as they did for joinable std: : threads—
again, see Item 37), so they compromised on an implicit join. The decision was
not without controversy, and there was serious talk about abandoning this
behavior for C++14. In the end, no change was made, so the behavior of
destructors for futures is consistent in C++11 and C++14.

The API for futures offers no way to determine whether a future refers to a

shared state arising from a call to std: :async, so given an arbitrary future
object, it’s not possible to know whether it will block in its destructor waiting for
an asynchronously running task to finish. This has some interesting implications:

// this container might block in its dtor, because one or more
// contained futures could refer to a shared state for a non-
// deferred task launched via std::async
std::vector<std::future<void>> futs; // see Item 39 for info
// on std::future<void>

class Widget { // Widget objects might
public: // block in their dtors
private:

std: :shared_future<double> fut;
b

Of course, if you have a way of knowing that a given future does not satisfy the
conditions that trigger the special destructor behavior (e.g., due to program
logic), you’re assured that that future won’t block in its destructor. For example,
only shared states arising from calls to std: :async qualify for the special
behavior, but there are other ways that shared states get created. One is the use
of std: :packaged_task. A std: :packaged_task object prepares a function
(or other callable object) for asynchronous execution by wrapping it such that its
result is put into a shared state. A future referring to that shared state can then be
obtained via std: :packaged_task’s get_future function:

int calcValue(); // func to run

std::packaged_task<int()> // wrap calcValue so it
pt(calcValue); // can run asynchronously



auto fut = pt.get_future(); // get future for pt

At this point, we know that the future fut doesn’t refer to a shared state created
by a call to std: :async, so its destructor will behave normally.

Once created, the std: :packaged_task pt can be run on a thread. (It could be
run via a call to std: :async, too, but if you want to run a task using
std: :async, there’s little reason to create a std: : packaged_task, because

std: :async does everything std: : packaged_task does before it schedules the
task for execution.)

std: :packaged_tasks aren’t copyable, so when pt is passed to the

std: : thread constructor, it must be cast to an rvalue (via std: :move—see Item
23):

std::thread t(std::move(pt)); // run pt on t

This example lends some insight into the normal behavior for future destructors,
but it’s easier to see if the statements are put together inside a block:
{ // begin block

std::packaged_task<int()>
pt(calcValue);

auto fut = pt.get_future();
std::thread t(std::move(pt));
/] see below

} // end block

K€ »

The most interesting code here is the “..” that follows creation of the

std: :thread object t and precedes the end of the block. What makes it
interesting is what can happen to t inside the “..” region. There are three basic
possibilities:

= Nothing happens to t. In this case, t will be joinable at the end of the scope.
That will cause the program to be terminated (see Item 37).



= A joinis done on t. In this case, there would be no need for fut to block in
its destructor, because the join is already present in the calling code.

m A detach is done on t. In this case, there would be no need for fut to
detach in its destructor, because the calling code already does that.

In other words, when you have a future corresponding to a shared state that arose
due to a std: :packaged_task, there’s usually no need to adopt a special
destruction policy, because the decision among termination, joining, or
detaching will be made in the code that manipulates the std: : thread on which
the std: :packaged_task is typically run.

Things to Remember

m Future destructors normally just destroy the future’s data members.

m The final future referring to a shared state for a non-deferred task launched via
std: :async blocks until the task completes.

Item 39: Consider void futures for one-shot
event communication.

Sometimes it’s useful for a task to tell a second, asynchronously running task
that a particular event has occurred, because the second task can’t proceed until
the event has taken place. Perhaps a data structure has been initialized, a stage of
computation has been completed, or a significant sensor value has been detected.
When that’s the case, what’s the best way for this kind of inter-thread
communication to take place?

An obvious approach is to use a condition variable (condvar). If we call the task
that detects the condition the detecting task and the task reacting to the condition
the reacting task, the strategy is simple: the reacting task waits on a condition
variable, and the detecting thread notifies that condvar when the event occurs.
Given



std::condition_variable cv; // condvar for event

std::mutex m; // mutex for use with cv
the code in the detecting task is as simple as simple can be:

// detect event

cv.notify_one(); // tell reacting task

If there were multiple reacting tasks to be notified, it would be appropriate to
replace notify_one with notify_all, but for now, we’ll assume there’s only
one reacting task.

The code for the reacting task is a bit more complicated, because before calling
wailt on the condvar, it must lock a mutex through a std: :unique_Llock object.
(Locking a mutex before waiting on a condition variable is typical for threading
libraries. The need to lock the mutex through a std: :unique_Llock object is
simply part of the C++11 APIL.) Here’s the conceptual approach:

// prepare to react
{ // open critical section
std::unique_lock<std::mutex> lk(m); // lock mutex

cv.wait(lk); // wait for notify;
/] this isn't correct!

// react to event
// (m is locked)

} // close crit. section;
// unlock m via 1lk's dtor

// continue reacting
// (m now unlocked)

The first issue with this approach is what’s sometimes termed a code smell: even
if the code works, something doesn’t seem quite right. In this case, the odor
emanates from the need to use a mutex. Mutexes are used to control access to



shared data, but it’s entirely possible that the detecting and reacting tasks have
no need for such mediation. For example, the detecting task might be responsible
for initializing a global data structure, then turning it over to the reacting task for
use. If the detecting task never accesses the data structure after initializing it, and
if the reacting task never accesses it before the detecting task indicates that it’s
ready, the two tasks will stay out of each other’s way through program logic.
There will be no need for a mutex. The fact that the condvar approach requires
one leaves behind the unsettling aroma of suspect design.

Even if you look past that, there are two other problems you should definitely
pay attention to:

= If the detecting task notifies the condvar before the reacting task watits,
the reacting task will hang. In order for notification of a condvar to wake
another task, the other task must be waiting on that condvar. If the detecting
task happens to execute the notification before the reacting task executes the

wait, the reacting task will miss the notification, and it will wait forever.

= The wait statement fails to account for spurious wakeups. A fact of life in
threading APIs (in many languages—not just C++) is that code waiting on a
condition variable may be awakened even if the condvar wasn’t notified.
Such awakenings are known as spurious wakeups. Proper code deals with
them by confirming that the condition being waited for has truly occurred,
and it does this as its first action after waking. The C++ condvar API makes
this exceptionally easy, because it permits a lambda (or other function object)
that tests for the waited-for condition to be passed to wait. That is, the wait
call in the reacting task could be written like this:

cv.walt(lk,
[1{ return whether the event has occurred; });

Taking advantage of this capability requires that the reacting task be able to
determine whether the condition it’s waiting for is true. But in the scenario
we’ve been considering, the condition it’s waiting for is the occurrence of an
event that the detecting thread is responsible for recognizing. The reacting
thread may have no way of determining whether the event it’s waiting for has
taken place. That’s why it’s waiting on a condition variable!



There are many situations where having tasks communicate using a condvar is a
good fit for the problem at hand, but this doesn’t seem to be one of them.

For many developers, the next trick in their bag is a shared boolean flag. The
flag is initially false. When the detecting thread recognizes the event it’s
looking for, it sets the flag:

std::atomic<bool> flag(false); // shared flag; see
// Item 40 for std::atomic

// detect event

flag = true; // tell reacting task

For its part, the reacting thread simply polls the flag. When it sees that the flag is
set, it knows that the event it’s been waiting for has occurred:

// prepare to react
while (!flag); // wait for event

// react to event

This approach suffers from none of the drawbacks of the condvar-based design.
There’s no need for a mutex, no problem if the detecting task sets the flag before
the reacting task starts polling, and nothing akin to a spurious wakeup. Good,
good, good.

Less good is the cost of polling in the reacting task. During the time the task is
waiting for the flag to be set, the task is essentially blocked, yet it’s still running.
As such, it occupies a hardware thread that another task might be able to make
use of, it incurs the cost of a context switch each time it starts or completes its
time-slice, and it could keep a core running that might otherwise be shut down to
save power. A truly blocked task would do none of these things. That’s an

advantage of the condvar-based approach, because a task in a wait call is truly
blocked.

It’s common to combine the condvar and flag-based designs. A flag indicates
whether the event of interest has occurred, but access to the flag is synchronized
by a mutex. Because the mutex prevents concurrent access to the flag, there is,



as Item 40 explains, no need for the flag to be std: :atomic; a simple bool will
do. The detecting task would then look like this:

std::condition_variable cv; // as before
std::mutex m;

bool flag(false); // not std::atomic

// detect event

{
std: :lock_guard<std: :mutex> g(m); // lock m via g's ctor
flag = true; // tell reacting task
/] (part 1)
} // unlock m via g's dtor
cv.notify_one(); // tell reacting task
/] (part 2)

And here’s the reacting task:

// prepare to react

{ // as before
std::unique_lock<std::mutex> 1k(m); // as before

cv.wait(lk, [] { return flag; }); // use lambda to avoid
// spurious wakeups

// react to event
// (m is locked)

// continue reacting
// (m now unlocked)

This approach avoids the problems we’ve discussed. It works regardless of
whether the reacting task waits before the detecting task notifies, it works in the
presence of spurious wakeups, and it doesn’t require polling. Yet an odor
remains, because the detecting task communicates with the reacting task in a
very curious fashion. Notifying the condition variable tells the reacting task that



the event it’s been waiting for has probably occurred, but the reacting task must
check the flag to be sure. Setting the flag tells the reacting task that the event has
definitely occurred, but the detecting task still has to notify the condition
variable so that the reacting task will awaken and check the flag. The approach
works, but it doesn’t seem terribly clean.

An alternative is to avoid condition variables, mutexes, and flags by having the
reacting task wait on a future that’s set by the detecting task. This may seem
like an odd idea. After all, Item 38 explains that a future represents the receiving
end of a communications channel from a callee to a (typically asynchronous)
caller, and here there’s no callee-caller relationship between the detecting and
reacting tasks. However, Item 38 also notes that a communications channel
whose transmitting end is a std: :promise and whose receiving end is a future
can be used for more than just callee-caller communication. Such a
communications channel can be used in any situation where you need to transmit
information from one place in your program to another. In this case, we’ll use it
to transmit information from the detecting task to the reacting task, and the
information we’ll convey will be that the event of interest has taken place.

The design is simple. The detecting task has a std: : promise object (i.e., the
writing end of the communications channel), and the reacting task has a
corresponding future. When the detecting task sees that the event it’s looking for

has occurred, it sets the std: :promise (i.e., writes into the communications
channel). Meanwhile, the reacting task waits on its future. That wait blocks the
reacting task until the std: : promise has been set.

Now, both std: :promise and futures (i.e., std: :future and

std: :shared_future) are templates that require a type parameter. That
parameter indicates the type of data to be transmitted through the
communications channel. In our case, however, there’s no data to be conveyed.
The only thing of interest to the reacting task is that its future has been set. What

we need for the std: :promise and future templates is a type that indicates that
no data is to be conveyed across the communications channel. That type is void.
The detecting task will thus use a std: :promise<void>, and the reacting task a
std::future<void> or std: :shared_future<void>. The detecting task will
set its std: :promise<void> when the event of interest occurs, and the reacting



task will wait on its future. Even though the reacting task won’t receive any data
from the detecting task, the communications channel will permit the reacting

task to know when the detecting task has “written” its void data by calling
set_value onits std: :promise.

So given

std: :promise<void> p; // promise for
// communications channel

the detecting task’s code is trivial,

// detect event

p.set_value(); // tell reacting task
and the reacting task’s code is equally simple:

// prepare to react

p.get_future().wait(); // wait on future
// corresponding to p

// react to event

Like the approach using a flag, this design requires no mutex, works regardless
of whether the detecting task sets its std: : promise before the reacting task
wailts, and is immune to spurious wakeups. (Only condition variables are
susceptible to that problem.) Like the condvar-based approach, the reacting task

is truly blocked after making the wait call, so it consumes no system resources
while waiting. Perfect, right?

Not exactly. Sure, a future-based approach skirts those shoals, but there are other
hazards to worry about. For example, [tem 38 explains that between a

std: :promise and a future is a shared state, and shared states are typically
dynamically allocated. You should therefore assume that this design incurs the
cost of heap-based allocation and deallocation.

Perhaps more importantly, a std: :promise may be set only once. The



communications channel between a std: :promise and a future is a one-shot
mechanism: it can’t be used repeatedly. This is a notable difference from the
condvar-and flag-based designs, both of which can be used to communicate
multiple times. (A condvar can be repeatedly notified, and a flag can always be
cleared and set again.)

The one-shot restriction isn’t as limiting as you might think. Suppose you’d like
to create a system thread in a suspended state. That is, you’d like to get all the
overhead associated with thread creation out of the way so that when you’re
ready to execute something on the thread, the normal thread-creation latency will
be avoided. Or you might want to create a suspended thread so that you could
configure it before letting it run. Such configuration might include things like
setting its priority or core affinity. The C++ concurrency API offers no way to
do those things, but std: : thread objects offer the native_handle member
function, the result of which is intended to give you access to the platform’s
underlying threading API (usually POSIX threads or Windows threads). The
lower-level API often makes it possible to configure thread characteristics such
as priority and affinity.

Assuming you want to suspend a thread only once (after creation, but before it’s
running its thread function), a design using a void future is a reasonable choice.
Here’s the essence of the technique:

std: :promise<void> p;

voild react(); // func for reacting task
void detect() // func for detecting task
: std::thread t([] // create thread
: p.get_future().wait(); // suspend t until
react(); // future is set
1)

// here, t is suspended
// prior to call to react

p.set_value(); // unsuspend t (and thus
// call react)

// do additional work



t.join(); // make t unjoinable
} /] (see Item 37)

Because it’s important that t become unjoinable on all paths out of detect, use

of an RAII class like Item 37’s ThreadRAII seems like it would be advisable.
Code like this comes to mind:

void detect()

{
ThreadRAII tr( // use RAII object
std::thread([]
{
p.get_future().wait();
react();
s
ThreadRAII: :DtorAction::join /] risky! (see below)
);
// thread inside tr
// is suspended here
p.set_value(); // unsuspend thread
// inside tr
}

€ »

This looks safer than it is. The problem is that if in the first “..” region (the one
with the “thread inside tr is suspended here” comment), an exception is emitted,
set_value will never be called on p. That means that the call to wait inside the
lambda will never return. That, in turn, means that the thread running the lambda
will never finish, and that’s a problem, because the RAII object tr has been
configured to perform a join on that thread in tr’s destructor. In other words, if

an exception is emitted from the first “..” region of code, this function will hang,
because tr’s destructor will never complete.

There are ways to address this problem, but I’ll leave them in the form of the
hallowed exercise for the reader.'” Here, I’d like to show how the original code
(i.e., not using ThreadRAII) can be extended to suspend and then unsuspend not
just one reacting task, but many. It’s a simple generalization, because the key is



to use std: :shared_futures instead of a std: : future in the react code.
Once you know that the std: :future’s share member function transfers
ownership of its shared state to the std: :shared_future object produced by
share, the code nearly writes itself. The only subtlety is that each reacting
thread needs its own copy of the std: :shared_future that refers to the shared

state, so the std: :shared_future obtained from share is captured by value by
the lambdas running on the reacting threads:

std: :promise<void> p; // as before
void detect() // now for multiple
{ // reacting tasks

auto sf = p.get_future().share(); // sf's type is
// std::shared_future<void>

std::vector<std::thread> vt; // container for
// reacting threads

for (int 1 = 0; i < threadsToRun; ++i) {

vt.emplace_back([sf]{ sf.wait(); // wait on local
react(); 1}); // copy of sf; see
} // Item 42 for info

// on emplace_back

/] detect hangs 1if

/] this ".." code throws!
p.set_value(); // unsuspend all threads
for (auto& t : vt) { // make all threads

t.join(); // unjoinable; see Item 2
} // for info on "auto&"

}

The fact that a design using futures can achieve this effect is noteworthy, and
that’s why you should consider it for one-shot event communication.

Things to Remember



m For simple event communication, condvar-based designs require a superfluous mutex,
impose constraints on the relative progress of detecting and reacting tasks, and require
reacting tasks to verify that the event has taken place.

= Designs employing a flag avoid those problems, but are based on polling, not blocking.

m A condvar and flag can be used together, but the resulting communications mechanism is
somewhat stilted.

m Using std: :promises and futures dodges these issues, but the approach uses heap
memory for shared states, and it’s limited to one-shot communication.

Item 40: Use std::atomic for concurrency,
volatile for special memory.

Poor volatile. So misunderstood. It shouldn’t even be in this chapter, because
it has nothing to do with concurrent programming. But in other programming
languages (e.g., Java and C#), it is useful for such programming, and even in
C++, some compilers have imbued volatile with semantics that render it
applicable to concurrent software (but only when compiled with those

compilers). It’s thus worthwhile to discuss volatile in a chapter on
concurrency if for no other reason than to dispel the confusion surrounding it.

The C++ feature that programmers sometimes confuse volatile with—the
feature that definitely does belong in this chapter—is the std: :atomic template.
Instantiations of this template (e.g., std: :atomic<int>, std::atomic<bools>,
std: :atomic<Widget*>, etc.) offer operations that are guaranteed to be seen as

atomic by other threads. Once a std: :atomic object has been constructed,
operations on it behave as if they were inside a mutex-protected critical section,
but the operations are generally implemented using special machine instructions
that are more efficient than would be the case if a mutex were employed.

Consider this code using std: :atomic:

std::atomic<int> ai(0); // initialize al to 0
al = 10; // atomically set ai to 10

std::cout << ati; // atomically read ai's value



++ai; // atomically increment ail to 11

--ai; // atomically decrement ai to 10

During execution of these statements, other threads reading ai may see only
values of 0, 10, or 11. No other values are possible (assuming, of course, that

this is the only thread modifying ati).

Two aspects of this example are worth noting. First, in the “std: :cout << ai;”
statement, the fact that ai is a std: :atomic guarantees only that the read of at
is atomic. There is no guarantee that the entire statement proceeds atomically.
Between the time ai’s value is read and operator<< is invoked to write it to the
standard output, another thread may have modified ai’s value. That has no effect
on the behavior of the statement, because operator<< for ints uses a by-value
parameter for the int to output (the outputted value will therefore be the one that
was read from ai), but it’s important to understand that what’s atomic in that
statement is nothing more than the read of ati.

The second noteworthy aspect of the example is the behavior of the last two
statements—the increment and decrement of ai. These are each read-modify-
write (RMW) operations, yet they execute atomically. This is one of the nicest
characteristics of the std: :atomic types: once a std: :atomic object has been
constructed, all member functions on it, including those comprising RMW
operations, are guaranteed to be seen by other threads as atomic.

In contrast, the corresponding code using volatile guarantees virtually nothing
in a multithreaded context:

volatile int vi(0); // initialize vi to 0
vi = 10; // set vi to 10
std::cout << vi; // read vi's value
++vi; // increment vi to 11
--vi; // decrement vi to 10

During execution of this code, if other threads are reading the value of vi, they



may see anything, e.g, -12, 68, 4090727—anything! Such code would have
undefined behavior, because these statements modify vi, so if other threads are
reading vi at the same time, there are simultaneous readers and writers of

memory that’s neither std: : atomic nor protected by a mutex, and that’s the
definition of a data race.

As a concrete example of how the behavior of std: :atomics and volatiles
can differ in a multithreaded program, consider a simple counter of each type
that’s incremented by multiple threads. We’ll initialize each to O:

std::atomic<int> ac(0); // "atomic counter"

volatile int vc(0); // "volatile counter"

We’ll then increment each counter one time in two simultaneously running
threads:

J*----- Thread 1 -----  ------- Thread 2 ------- */
++ac; ++ac;
++VC; +HVC;

When both threads have finished, ac’s value (i.e., the value of the std: :atomic)

must be 2, because each increment occurs as an indivisible operation. vc’s value,
on the other hand, need not be 2, because its increments may not occur

atomically. Each increment consists of reading vc’s value, incrementing the
value that was read, and writing the result back into vc. But these three
operations are not guaranteed to proceed atomically for volatile objects, so it’s

possible that the component parts of the two increments of vc are interleaved as
follows:

1. Thread 1 reads vc’s value, which is 0.
2. Thread 2 reads vc’s value, which is still 0.
3. Thread 1 increments the O it read to 1, then writes that value into vc.

4. Thread 2 increments the 0 it read to 1, then writes that value into vc.



vc’s final value is therefore 1, even though it was incremented twice.

This is not the only possible outcome. vc’s final value is, in general, not
predictable, because vc is involved in a data race, and the Standard’s decree that
data races cause undefined behavior means that compilers may generate code to
do literally anything. Compilers don’t use this leeway to be malicious, of course.
Rather, they perform optimizations that would be valid in programs without data
races, and these optimizations yield unexpected and unpredictable behavior in
programs where races are present.

The use of RMW operations isn’t the only situation where std: :atomics
comprise a concurrency success story and volatiles suffer failure. Suppose one
task computes an important value needed by a second task. When the first task
has computed the value, it must communicate this to the second task. Item 39
explains that one way for the first task to communicate the availability of the
desired value to the second task is by using a std: :atomic<bool>. Code in the
task computing the value would look something like this:

std::atomic<bool> valAvailable(false);
auto imptValue = computelImportantValue(); // compute value

valAvailable = true; // tell other task
// it's available

As humans reading this code, we know it’s crucial that the assignment to
imptValue take place before the assignment to valAvailable, but all compilers
see is a pair of assignments to independent variables. As a general rule,
compilers are permitted to reorder such unrelated assignments. That is, given
this sequence of assignments (where 3, b, X, and y correspond to independent
variables),

a =b;
ys

x
1

compilers may generally reorder them as follows:

X =y;
b;



Even if compilers don’t reorder them, the underlying hardware might do it (or
might make it seem to other cores as if it had), because that can sometimes make
the code run faster.

However, the use of std: :atomics imposes restrictions on how code can be
reordered, and one such restriction is that no code that, in the source code,

precedes a write of a std: :atomic variable may take place (or appear to other
cores to take place) afterwards.?’ That means that in our code,

auto imptValue = computelImportantValue(); // compute value

valAvailable = true; // tell other task
// it's available

not only must compilers retain the order of the assignments to imptValue and
valAvailable, they must generate code that ensures that the underlying
hardware does, too. As a result, declaring valAvailable as std: :atomic
ensures that our critical ordering requirement—imptValue must be seen by all
threads to change no later than valAvailable does—is maintained.

Declaring valAvailable as volatile doesn’t impose the same code reordering
restrictions:

volatile bool valAvailable(false);
auto imptValue = computelImportantValue();

valAvailable = true; // other threads might see this assignment
// before the one to imptValue!

Here, compilers might flip the order of the assignments to imptValue and
valAvailable, and even if they don’t, they might fail to generate machine code
that would prevent the underlying hardware from making it possible for code on
other cores to see valAvailable change before imptValue.

These two issues—no guarantee of operation atomicity and insufficient
restrictions on code reordering—explain why volatile’s not useful for
concurrent programming, but it doesn’t explain what it is useful for. In a
nutshell, it’s for telling compilers that they’re dealing with memory that doesn’t



behave normally.

“Normal” memory has the characteristic that if you write a value to a memory
location, the value remains there until something overwrites it. So if I have a
normal int,

int x;
and a compiler sees the following sequence of operations on it,

auto y = x; // read x
y = X; // read x again

the compiler can optimize the generated code by eliminating the assignment to y,
because it’s redundant with y’s initialization.

Normal memory also has the characteristic that if you write a value to a memory
location, never read it, and then write to that memory location again, the first
write can be eliminated, because it was never used. So given these two adjacent
statements,

x = 10; // write x
20; // write x again

compilers can eliminate the first one. That means that if we have this in the
source code,

auto y = x; // read x
y = X; // read x again
x = 10; /] write x

= 20; // write x again

compilers can treat it as if it had been written like this:

auto y = x; // read x

X = 20; // write x

Lest you wonder who’d write code that performs these kinds of redundant reads



and superfluous writes (technically known as redundant loads and dead stores),
the answer is that humans don’t write it directly—at least we hope they don’t.
However, after compilers take reasonable-looking source code and perform
template instantiation, inlining, and various common kinds of reordering
optimizations, it’s not uncommon for the result to have redundant loads and dead
stores that compilers can get rid of.

Such optimizations are valid only if memory behaves normally. “Special”
memory doesn’t. Probably the most common kind of special memory is memory
used for memory-mapped 1/0. Locations in such memory actually communicate
with peripherals, e.g., external sensors or displays, printers, network ports, etc.
rather than reading or writing normal memory (i.e., RAM). In such a context,
consider again the code with seemingly redundant reads:

auto y = x; // read x
y = X; // read x again

If x corresponds to, say, the value reported by a temperature sensor, the second

read of x is not redundant, because the temperature may have changed between
the first and second reads.

It’s a similar situation for seemingly superfluous writes. In this code, for
example,

x = 10; // write x
20; // write x again

if x corresponds to the control port for a radio transmitter, it could be that the
code is issuing commands to the radio, and the value 10 corresponds to a
different command from the value 20. Optimizing out the first assignment would
change the sequence of commands sent to the radio.

volatile is the way we tell compilers that we’re dealing with special memory.
Its meaning to compilers is “Don’t perform any optimizations on operations on
this memory.” So if x corresponds to special memory, it’d be declared
volatile:

volatile int x;



Consider the effect that has on our original code sequence:

auto y = x; // read x
y = X; // read x again (can't be optimized away)
x = 10; // write x (can't be optimized away)

= 20; // write x again

This is precisely what we want if x is memory-mapped (or has been mapped to a
memory location shared across processes, etc.).

Pop quiz! In that last piece of code, what is y’s type: int or volatile int??!

The fact that seemingly redundant loads and dead stores must be preserved when
dealing with special memory explains, by the way, why std: :atomics are
unsuitable for this kind of work. Compilers are permitted to eliminate such
redundant operations on std: :atomics. The code isn’t written quite the same

way it is for volatiles, but if we overlook that for a moment and focus on what
compilers are permitted to do, we can say that, conceptually, compilers may take
this,

std::atomic<int> x;

auto y = x; // conceptually read x (see below)
y = X; /| conceptually read x again (see below)
x = 10; // write x

= 20; // write x again

and optimize it to this:

auto y = x; // conceptually read x (see below)
X = 20; // write x

For special memory, this is clearly unacceptable behavior.

Now, as it happens, neither of these two statements will compile when x is
std: :atomic:

auto y = x; // error!
y = X; /] error!



That’s because the copy operations for std: : atomic are deleted (see Item 11).
And with good reason. Consider what would happen if the initialization of y
with x compiled. Because x is std: :atomic, y’s type would be deduced to be
std: :atomic, too (see Item 2). I remarked earlier that one of the best things
about std: :atomics is that all their operations are atomic, but in order for the
copy construction of y from x to be atomic, compilers would have to generate
code to read x and write y in a single atomic operation. Hardware generally can’t
do that, so copy construction isn’t supported for std: : atomic types. Copy
assignment is deleted for the same reason, which is why the assignment from x
to y won’t compile. (The move operations aren’t explicitly declared in

std: :atomic, so, per the rules for compiler-generated special functions

described in Item 17, std: :atomic offers neither move construction nor move
assignment.)

It’s possible to get the value of x into y, but it requires use of std: :atomic’s
member functions load and store. The Load member function reads a
std: :atomic’s value atomically, while the store member function writes it

atomically. To initialize y with x, followed by putting x’s value in y, the code
must be written like this:

std::atomic<int> y(x.load()); // read x
y.store(x.load()); // read x again
This compiles, but the fact that reading x (via x. load()) is a separate function

call from initializing or storing to y makes clear that there is no reason to expect
either statement as a whole to execute as a single atomic operation.

Given that code, compilers could “optimize” it by storing x’s value in a register
instead of reading it twice:

register = x.load(); // read x into register
std::atomic<int> y(register); // init y with register value

y.store(register); // store register value into vy



The result, as you can see, reads from x only once, and that’s the kind of
optimization that must be avoided when dealing with special memory. (The
optimization isn’t permitted for volatile variables.)

The situation should thus be clear:

m std::atomic is useful for concurrent programming, but not for accessing
special memory.

m volatile is useful for accessing special memory, but not for concurrent
programming.

Because std: :atomic and volatile serve different purposes, they can even be
used together:

volatile std::atomic<int> vai; // operations on vail are
// atomic and can't be
// optimized away

This could be useful if vai corresponded to a memory-mapped I/O location that
was concurrently accessed by multiple threads.

As a final note, some developers prefer to use std: :atomic’s load and store
member functions even when they’re not required, because it makes explicit in
the source code that the variables involved aren’t “normal.” Emphasizing that
fact isn’t unreasonable. Accessing a std: :atomic is typically much slower than
accessing a non-std: :atomic, and we’ve already seen that the use of

std: :atomics prevents compilers from performing certain kinds of code
reorderings that would otherwise be permitted. Calling out loads and stores of
std: :atomics can therefore help identify potential scalability chokepoints.
From a correctness perspective, not seeing a call to store on a variable meant to
communicate information to other threads (e.g., a flag indicating the availability

of data) could mean that the variable wasn’t declared std: :atomic when it
should have been.

This is largely a style issue, however, and as such is quite different from the
choice between std: :atomic and volatile.




Things to Remember

m std::atomic is for data accessed from multiple threads without using mutexes. It’s a tool
for writing concurrent software.

m volatile is for memory where reads and writes should not be optimized away. It’s a tool
for working with special memory.

> Assuming you have one. Some embedded systems don’t.

16 This is a simplification. What matters isn’t the future on which get or wait is
invoked, it’s the shared state to which the future refers. (Item 38 discusses the
relationship between futures and shared states.) Because std: : futures support
moving and can also be used to construct std: :shared_futures, and because
std: :shared_futures can be copied, the future object referring to the shared
state arising from the call to std: :async to which f was passed is likely to be
different from the one returned by std: :async. That’s a mouthful, however, so
it’s common to fudge the truth and simply talk about invoking get or wait on
the future returned from std: :async.

7 You’ll find a nice treatment in Anthony Williams’ C++ Concurrency in
Action (Manning Publications, 2012), section 9.2.

'8 Ttem 39 explains that the kind of communications channel associated with a
future can be employed for other purposes. For this Item, however, we’ll
consider only its use as a mechanism for a callee to convey its result to a caller.

9 A reasonable place to begin researching the matter is my 24 December 2013
blog post at The View From Aristeia, “ThreadRAII + Thread Suspension =
Trouble?”

20 This is true only for std: :atomics using sequential consistency, which is both
the default and the only consistency model for std: : atomic objects that use the
syntax shown in this book. C++11 also supports consistency models with more
flexible code-reordering rules. Such weak (aka relaxed) models make it possible
to create software that runs faster on some hardware architectures, but the use of
such models yields software that is much more difficult to get right, to
understand, and to maintain. Subtle errors in code using relaxed atomics is not
uncommon, even for experts, so you should stick to sequential consistency if at


http://scottmeyers.blogspot.com/
http://scottmeyers.blogspot.com/2013/12/threadraii-thread-suspension-trouble.html

all possible.

1 'y’s type is auto-deduced, so it uses the rules described in Item 2. Those rules
dictate that for the declaration of non-reference non-pointer types (which is the
case for y), const and volatile qualifiers are dropped. y’s type is therefore
simply int. This means that redundant reads of and writes to y can be
eliminated. In the example, compilers must perform both the initialization of and
the assignment to y, because x is volatile, so the second read of x might yield
a different value from the first one.



Chapter 8. Tweaks

For every general technique or feature in C++, there are circumstances where it’s
reasonable to use it, and there are circumstances where it’s not. Describing when
it makes sense to use a general technique or feature is usually fairly
straightforward, but this chapter covers two exceptions. The general technique is
pass by value, and the general feature is emplacement. The decision about when
to employ them is affected by so many factors, the best advice I can offer is to
consider their use. Nevertheless, both are important players in effective modern
C++ programming, and the Items that follow provide the information you’ll need
to determine whether using them is appropriate for your software.

Item 41: Consider pass by value for copyable
parameters that are cheap to move and always
copied.

Some function parameters are intended to be copied.?? For example, a member

function addName might copy its parameter into a private container. For
efficiency, such a function should copy Ivalue arguments, but move rvalue
arguments:

class Widget {

public:
vold addName(const std::string& newName) // take lvalue;
{ names.push_back(newName); } // copy it
vold addName(std::string&& newName) // take rvalue;
{ names.push_back(std: :move(newName)); } // move it; see
// Item 25 for use
// of std::move
private:
std::vector<std::string> names;
b

This works, but it requires writing two functions that do essentially the same

thina That ~rhafac 2 hite tara Fiinctiance ta dAoaclara tura fiimctinne ta imnlamant



Lllllls. L4114Aat L11AalTO A Ull. LVWU LULILUUILID LU UCTLIalCy LVWU LulivuiuvlLio w llllPlClllCllL,

two functions to document, two functions to maintain. Ugh.

Furthermore, there will be two functions in the object code—something you
might care about if you’re concerned about your program’s footprint. In this
case, both functions will probably be inlined, and that’s likely to eliminate any
bloat issues related to the existence of two functions, but if these functions aren’t
inlined everywhere, you really will get two functions in your object code.

An alternative approach is to make addName a function template taking a
universal reference (see Item 24):

class Widget {

public:
template<typename T> // take lvalues
vold addName(T&& newName) // and rvalues;
{ // copy lvalues,
names.push_back(std: :forward<T>(newName)); // move rvalues;
} // see Item 25
// for use of
// std::forward
b

This reduces the source code you have to deal with, but the use of universal
references leads to other complications. As a template, addName’s
implementation must typically be in a header file. It may yield several functions
in object code, because it not only instantiates differently for lvalues and rvalues,
it also instantiates differently for std: :string and types that are convertible to
std::string (see Item 25). At the same time, there are argument types that
can’t be passed by universal reference (see Item 30), and if clients pass improper
argument types, compiler error messages can be intimidating (see Item 27).

Wouldn’t it be nice if there were a way to write functions like addName such that
lvalues were copied, rvalues were moved, there was only one function to deal
with (in both source and object code), and the idiosyncrasies of universal
references were avoided? As it happens, there is. All you have to do is abandon
one of the first rules you probably learned as a C++ programmer. That rule was
to avoid passing objects of user-defined types by value. For parameters like

newName in functions like addName, pass by value may be an entirely reasonable



strategy.

Before we discuss why pass-by-value may be a good fit for newName and
addName, let’s see how it would be implemented:

class Widget {

public:
vold addName(std::string newName) // take lvalue or
{ names.push_back(std: :move(newName)); } // rvalue; move it
b

The only non-obvious part of this code is the application of std: :move to the
parameter newName. Typically, std: :move is used with rvalue references, but in
this case, we know that (1) newName is a completely independent object from
whatever the caller passed in, so changing newName won’t affect callers and (2)
this is the final use of newName, so moving from it won’t have any impact on the
rest of the function.

The fact that there’s only one addName function explains how we avoid code
duplication, both in the source code and the object code. We’re not using a
universal reference, so this approach doesn’t lead to bloated header files, odd
failure cases, or confounding error messages. But what about the efficiency of
this design? We’re passing by value. Isn’t that expensive?

In C++98, it was a reasonable bet that it was. No matter what callers passed in,
the parameter newName would be created by copy construction. In C++11,
however, addName will be copy constructed only for lvalues. For rvalues, it will
be move constructed. Here, look:

Widget w;

std::string name("Bart");

w.addName(name); // call addName with lvalue



w.addName(name + "Jenne"); // call addName with rvalue
// (see below)

In the first call to addName (when name is passed), the parameter newName is
initialized with an Ivalue. newName is thus copy constructed, just like it would be
in C++98. In the second call, newName is initialized with the std: :string object
resulting from a call to operator+ for std: :string (i.e., the append operation).
That object is an rvalue, and newName is therefore move constructed.

Lvalues are thus copied, and rvalues are moved, just like we want. Neat, huh?

It is neat, but there are some caveats you need to keep in mind. Doing that will
be easier if we recap the three versions of addName we’ve considered:

class Widget { // Approach 1:
public: // overload for
vold addName(const std::string& newName) // lvalues and

{ names.push_back(newName); } // rvalues

vold addName(std::string&& newName)
{ names.push_back(std: :move(newName)); }

private:
std::vector<std::string> names;
b
class Widget { // Approach 2:
public: // use universal
template<typename T> /| reference

vold addName(T&& newName)
{ names.push_back(std::forward<T>(newName)); }

1

class Widget { // Approach 3:
public: // pass by value

vold addName(std::string newName)
{ names.push_back(std: :move(newName)); }

1

I refer to the first two versions as the “by-reference approaches,” because they’re



both based on passing their parameters by reference.

Here are the two calling scenarios we’ve examined:

Widget w;
std::string name("Bart");
w.addName(name); // pass lvalue

w.addName(name + "Jenne"); // pass rvalue

Now consider the cost, in terms of copy and move operations, of adding a name
to a Widget for the two calling scenarios and each of the three addName
implementations we’ve discussed. The accounting will largely ignore the
possibility of compilers optimizing copy and move operations away, because
such optimizations are context-and compiler-dependent and, in practice, don’t
change the essence of the analysis.

m Overloading: Regardless of whether an lvalue or an rvalue is passed, the
caller’s argument is bound to a reference called newName. That costs nothing,
in terms of copy and move operations. In the lvalue overload, newName is
copied into Widget: :names. In the rvalue overload, it’s moved. Cost
summary: one copy for lvalues, one move for rvalues.

m Using a universal reference: As with overloading, the caller’s argument is
bound to the reference newName. This is a no-cost operation. Due to the use of
std: :forward, lvalue std: : string arguments are copied into
Widget: :names, while rvalue std: : string arguments are moved. The cost
summary for std: :string arguments is the same as with overloading: one
copy for lvalues, one move for rvalues.

Item 25 explains that if a caller passes an argument of a type other than
std: :string, it will be forwarded to a std: : string constructor, and that

could cause as few as zero std: :string copy or move operations to be
performed. Functions taking universal references can thus be uniquely
efficient. However, that doesn’t affect the analysis in this Item, so we’ll keep

things simple by assuming that callers always pass std: : string arguments.



m Passing by value: Regardless of whether an lvalue or an rvalue is passed, the
parameter newName must be constructed. If an lvalue is passed, this costs a
copy construction. If an rvalue is passed, it costs a move construction. In the
body of the function, newName is unconditionally moved into
Widget: :names. The cost summary is thus one copy plus one move for
lvalues, and two moves for rvalues. Compared to the by-reference
approaches, that’s one extra move for both lvalues and rvalues.

Look again at this Item’s title:

Consider pass by value for copyable parameters that are cheap to move and
always copied.

It’s worded the way it is for a reason. Four reasons, in fact:

1. You should only consider using pass by value. Yes, it requires writing only
one function. Yes, it generates only one function in the object code. Yes, it
avoids the issues associated with universal references. But it has a higher
cost than the alternatives, and, as we’ll see below, in some cases, there are
expenses we haven’t yet discussed.

2. Consider pass by value only for copyable parameters. Parameters failing
this test must have move-only types, because if they’re not copyable, yet
the function always makes a copy, the copy must be created via the move
constructor.”® Recall that the advantage of pass by value over overloading
is that with pass by value, only one function has to be written. But for
move-only types, there is no need to provide an overload for lvalue
arguments, because copying an lvalue entails calling the copy constructor,
and the copy constructor for move-only types is disabled. That means that
only rvalue arguments need to be supported, and in that case, the
“overloading” solution requires only one overload: the one taking an rvalue
reference.

Consider a class with a std: :unique_ptr<std::string> data member

and a setter for it. std: :unique_ptr is a move-only type, so the
“overloading” approach to its setter consists of a single function:

class Widget {
public:



void setPtr(std::unique_ptr<std::string>&& ptr)
{ p = std::move(ptr); }

private:
std::unique_ptr<std::string> p;

¥
A caller might use it this way:

Widget w;

w.setPtr(std: :make_unique<std::string>("Modern C++"));

Here the rvalue std: :unique_ptr<std: :string> returned from
std: :make_unique (see Item 21) is passed by rvalue reference to setPtr,
where it’s moved into the data member p. The total cost is one move.

If setPtr were to take its parameter by value,

class Widget {
public:

void setPtr(std::unique_ptr<std::string> ptr)
{ p = std::move(ptr); }

1

the same call would move construct the parameter ptr, and ptr would then

be move assigned into the data member p. The total cost would thus be two
moves—twice that of the “overloading” approach.

. Pass by value is worth considering only for parameters that are cheap to
move. When moves are cheap, the cost of an extra one may be acceptable,
but when they’re not, performing an unnecessary move is analogous to
performing an unnecessary copy, and the importance of avoiding
unnecessary copy operations is what led to the C++98 rule about avoiding
pass by value in the first place!



4. You should consider pass by value only for parameters that are always
copied. To see why this is important, suppose that before copying its
parameter into the names container, addName checks to see if the new name
is too short or too long. If it is, the request to add the name is ignored. A
pass-by-value implementation could be written like this:

class Widget {
public:
vold addName(std::string newName)
{
if ((newName.length() >= minLen) &&
(newName.length() <= maxLen))

{
names.push_back(std: :move(newName));
}
}
private:
std::vector<std::string> names;
b

This function incurs the cost of constructing and destroying newName, even
if nothing is added to names. That’s a price the by-reference approaches
wouldn’t be asked to pay.

Even when you’re dealing with a function performing an unconditional copy on
a copyable type that’s cheap to move, there are times when pass by value may
not be appropriate. That’s because a function can copy a parameter in two ways:
via construction (i.e., copy construction or move construction) and via
assignment (i.e., copy assignment or move assignment). addName uses
construction: its parameter newName is passed to vector : : push_back, and
inside that function, newName is copy constructed into a new element created at
the end of the std: :vector. For functions that use construction to copy their
parameter, the analysis we saw earlier is complete: using pass by value incurs
the cost of an extra move for both lvalue and rvalue arguments.

When a parameter is copied using assignment, the situation is more complicated.
Suppose, for example, we have a class representing passwords. Because



passwords can be changed, we provide a setter function, changeTo. Using a
pass-by-value strategy, we could implement Password like this:

class Password {

public:

explicit Password(std::string pwd) // pass by value

: text(std::move(pwd)) {} /| construct text

vold changeTo(std::string newPwd) // pass by value

{ text = std::move(newPwd); } // assign text
private:

std::string text; // text of password
I¥

Storing the password as plain text will whip your software security SWAT team
into a frenzy, but ignore that and consider this code:

std::string initPwd("Supercalifragilisticexpialidocious");

Password p(initPwd);

There are no suprises here: p. text is constructed with the given password, and

using pass by value in the constructor incurs the cost of a std: : string move
construction that would not be necessary if overloading or perfect forwarding
were employed. All is well.

A user of this program may not be as sanguine about the password, however,
because “Supercalifragilisticexpialidocious” is found in many dictionaries. He or
she may therefore take actions that lead to code equivalent to the following
being executed:

std::string newPassword = "Beware the Jabberwock";

p.changeTo(newPassword);

Whether the new password is better than the old one is debatable, but that’s the
user’s problem. Ours is that changeTo’s use of assignment to copy the parameter



newPwd probably causes that function’s pass-by-value strategy to explode in
cost.

The argument passed to changeTo is an Ivalue (newPassword), so when the
parameter newPwd is constructed, it’s the std: : string copy constructor that’s
called. That constructor allocates memory to hold the new password. newPwd is
then move-assigned to text, which causes the memory already held by text to
be deallocated. There are thus two dynamic memory management actions within
changeTo: one to allocate memory for the new password, and one to deallocate
the memory for the old password.

But in this case, the old password (“Supercalifragilisticexpialidocious™) is longer
than the new one (“Beware the Jabberwock™), so there’s no need to allocate or
deallocate anything. If the overloading approach were used, it’s likely that none
would take place:

class Password {

public:
vold changeTo(const std::string& newPwd) // the overload
{ // for lvalues
text = newPwd; // can reuse text's memory if
// text.capacity() >= newPwd.size()
}
private:
std::string text; // as above
I

In this scenario, the cost of pass by value includes an extra memory allocation
and deallocation—costs that are likely to exceed that of a std: :string move
operation by orders of magnitude.

Interestingly, if the old password were shorter than the new one, it would
typically be impossible to avoid an allocation-deallocation pair during the
assignment, and in that case, pass by value would run at about the same speed as
pass by reference. The cost of assignment-based parameter copying can thus



depend on the values of the objects participating in the assignment! This kind of
analysis applies to any parameter type that holds values in dynamically allocated
memory. Not all types qualify, but many—including std: : string and

std: :vector—do.

This potential cost increase generally applies only when lvalue arguments are
passed, because the need to perform memory allocation and deallocation
typically occurs only when true copy operations (i.e., not moves) are performed.
For rvalue arguments, moves almost always suffice.

The upshot is that the extra cost of pass by value for functions that copy a
parameter using assignment depends on the type being passed, the ratio of lvalue
to rvalue arguments, whether the type uses dynamically allocated memory, and,
if so, the implementation of that type’s assignment operators and the likelihood
that the memory associated with the assignment target is at least as large as the
memory associated with the assignment source. For std: :string, it also
depends on whether the implementation uses the small string optimization (SSO
—see Item 29) and, if so, whether the values being assigned fit in the SSO buffer

So, as I said, when parameters are copied via assignment, analyzing the cost of
pass by value is complicated. Usually, the most practical approach is to adopt a
“guilty until proven innocent” policy, whereby you use overloading or universal
references instead of pass by value unless it’s been demonstrated that pass by
value yields acceptably efficient code for the parameter type you need.

Now, for software that must be as fast as possible, pass by value may not be a
viable strategy, because avoiding even cheap moves can be important.
Moreover, it’s not always clear how many moves will take place. In the
Widget: :addName example, pass by value incurs only a single extra move
operation, but suppose that Widget: : addName called Widget: :validateName,
and this function also passed by value. (Presumably it has a reason for always
copying its parameter, e.g., to store it in a data structure of all values it
validates.) And suppose that validateName called a third function that also
passed by value...

You can see where this is headed. When there are chains of function calls, each
of which employs pass by value because “it costs only one inexpensive move,”
the cost for the entire chain of calls may not be something you can tolerate.



Using by-reference parameter passing, chains of calls don’t incur this kind of
accumulated overhead.

An issue unrelated to performance, but still worth keeping in mind, is that pass
by value, unlike pass by reference, is susceptible to the slicing problem. This is
well-trod C++98 ground, so I won’t dwell on it, but if you have a function that is
designed to accept a parameter of a base class type or any type derived from it,
you don’t want to declare a pass-by-value parameter of that type, because you’ll
“slice off” the derived-class characteristics of any derived type object that may
be passed in:

class Widget { .. }; // base class
class SpecialWidget: public Widget { .. }; // derived class

void processWidget(Widget w); // func for any kind of Widget,
// including derived types;
/] suffers from slicing problem

SpeciallWidget sw;

processWidget(sw); // processWidget sees a
// Widget, not a SpeciallWidget!

If you’re not familiar with the slicing problem, search engines and the Internet
are your friends; there’s lots of information available. You’ll find that the
existence of the slicing problem is another reason (on top of the efficiency hit)
why pass by value has a shady reputation in C++98. There are good reasons why
one of the first things you probably learned about C++ programming was to
avoid passing objects of user-defined types by value.

C++11 doesn’t fundamentally change the C++98 wisdom regarding pass by
value. In general, pass by value still entails a performance hit you’d prefer to
avoid, and pass by value can still lead to the slicing problem. What’s new in
C++11 is the distinction between lvalue and rvalue arguments. Implementing
functions that take advantage of move semantics for rvalues of copyable types
requires either overloading or using universal references, both of which have
drawbacks. For the special case of copyable, cheap-to-move types passed to
functions that alwavs conv them and where slicing is not a concern. nass hv
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value can offer an easy-to-implement alternative that’s nearly as efficient as its
pass-by-reference competitors, but avoids their disadvantages.

Things to Remember

m For copyable, cheap-to-move parameters that are always copied, pass by value may be
nearly as efficient as pass by reference, it’s easier to implement, and it can generate less
object code.

m Copying parameters via construction may be significantly more expensive than copying
them via assignment.

m Pass by value is subject to the slicing problem, so it’s typically inappropriate for base class
parameter types.

Item 42: Consider emplacement instead of
insertion.

If you have a container holding, say, std: :strings, it seems logical that when
you add a new element via an insertion function (i.e., insert, push_front,
push_back, or, for std: :forward_list, insert_after), the type of element
you’ll pass to the function will be std: : string. After all, that’s what the
container has in it.

Logical though this may be, it’s not always true. Consider this code:

std::vector<std::string> vs; // container of std::string

vs.push_back("xyzzy"); // add string literal

Here, the container holds std: : strings, but what you have in hand—what
you’re actually trying to push_back—is a string literal, i.e., a sequence of
characters inside quotes. A string literal is not a std: : string, and that means
that the argument you’re passing to push_back is not of the type held by the
container.

push_back for std: :vector is overloaded for lvalues and rvalues as follows:



template <class T, // from the C++11
class Allocator = allocator<T>> // Standard
class vector {

public:
;oid push_back(const T& x); // insert lvalue
voild push_back(T&& x); // insert rvalue
};m
In the call

vs.push_back("xyzzy");

compilers see a mismatch between the type of the argument (const char[6])
and the type of the parameter taken by push_back (a reference to a

std: :string). They address the mismatch by generating code to create a
temporary std: :string object from the string literal, and they pass that

temporary object to push_back. In other words, they treat the call as if it had
been written like this:

vs.push_back(std::string("xyzzy")); // create temp. std::string
// and pass it to push_back

The code compiles and runs, and everybody goes home happy. Everybody
except the performance freaks, that is, because the performance freaks recognize
that this code isn’t as efficient as it should be.

To create a new element in a container of std: : strings, they understand, a

std: :string constructor is going to have to be called, but the code above
doesn’t make just one constructor call. It makes two. And it calls the

std: :string destructor, too. Here’s what happens at runtime in the call to
push_back:

1. A temporary std::string object is created from the string literal
"xyzzy". This object has no name; we’ll call it temp. Construction of temp
is the first std: : string construction. Because it’s a temporary object,
temp is an rvalue.



2. temp is passed to the rvalue overload for push_back, where it’s bound to
the rvalue reference parameter x. A copy of x is then constructed in the
memory for the std: :vector. This construction—the second one—is what
actually creates a new object inside the std: :vector. (The constructor
that’s used to copy x into the std: :vector is the move constructor,

because x, being an rvalue reference, gets cast to an rvalue before it’s
copied. For information about the casting of rvalue reference parameters to
rvalues, see Item 25.)

3. Immediately after push_back returns, temp is destroyed, thus calling the
std: :string destructor.

The performance freaks can’t help but notice that if there were a way to take the
string literal and pass it directly to the code in step 2 that constructs the

std::string object inside the std: : vector, we could avoid constructing and

destroying temp. That would be maximally efficient, and even the performance
freaks could contentedly decamp.

Because you’re a C++ programmer, there’s an above-average chance you’re a
performance freak. If you’re not, you’re still probably sympathetic to their point
of view. (If you’re not at all interested in performance, shouldn’t you be in the
Python room down the hall?) So I’'m pleased to tell you that there is a way to do
exactly what is needed for maximal efficiency in the call to push_back. It’s to
not call push_back. push_back is the wrong function. The function you want is
emplace_back.

emplace_back does exactly what we desire: it uses whatever arguments are

passed to it to construct a std: :string directly inside the std: :vector. No
temporaries are involved:

vs.emplace_back("xyzzy"); // construct std::string inside
// vs directly from "xyzzy"

emplace_back uses perfect forwarding, so, as long as you don’t bump into one
of perfect forwarding’s limitations (see Item 30), you can pass any number of
arguments of any combination of types through emplace_back. For example, if



you’d like to create a std: :stringin vs via the std: :string constructor
taking a character and a repeat count, this would do it:

vs.emplace_back(50, 'x'); // insert std::string consisting
// of 50 'x' characters

emplace_back is available for every standard container that supports
push_back. Similarly, every standard container that supports push_front
supports emplace_front. And every standard container that supports insert
(which is all but std: : forward_list and std: :array) supports emplace. The
associative containers offer emplace_hint to complement their insert
functions that take a “hint” iterator, and std: : forward_list has
emplace_after to match its insert_after.

What makes it possible for emplacement functions to outperform insertion
functions is their more flexible interface. Insertion functions take objects to be
inserted, while emplacement functions take constructor arguments for objects to
be inserted. This difference permits emplacement functions to avoid the creation
and destruction of temporary objects that insertion functions can necessitate.

Because an argument of the type held by the container can be passed to an
emplacement function (the argument thus causes the function to perform copy or
move construction), emplacement can be used even when an insertion function
would require no temporary. In that case, insertion and emplacement do
essentially the same thing. For example, given

std::string queenOfDisco("Donna Summer");

both of the following calls are valid, and both have the same net effect on the
container:

vs.push_back(queenOfDisco); // copy-construct queenOfDisco
// at end of vs

vs.emplace_back(queen0OfDisco); // ditto

Emplacement functions can thus do everything insertion functions can. They
sometimes do it more efficiently, and, at least in theory, they should never do it
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Because, as the saying goes, in theory, there’s no difference between theory and
practice, but in practice, there is. With current implementations of the Standard
Library, there are situations where, as expected, emplacement outperforms
insertion, but, sadly, there are also situations where the insertion functions run
faster. Such situations are not easy to characterize, because they depend on the
types of arguments being passed, the containers being used, the locations in the
containers where insertion or emplacement is requested, the exception safety of
the contained types’ constructors, and, for containers where duplicate values are
prohibited (i.e., std: :set, std: :map, std: :unordered_set,

std: :unordered_map), whether the value to be added is already in the
container. The usual performance-tuning advice thus applies: to determine
whether emplacement or insertion runs faster, benchmark them both.

That’s not very satisfying, of course, so you’ll be pleased to learn that there’s a
heuristic that can help you identify situations where emplacement functions are
most likely to be worthwhile. If all the following are true, emplacement will
almost certainly outperform insertion:

= The value being added is constructed into the container, not assigned.
The example that opened this Item (adding a std: : string with the value
"xyzzy" to a std::vector vs) showed the value being added to the end of
vs—to a place where no object yet existed. The new value therefore had to be
constructed into the std: :vector. If we revise the example such that the new
std: :string goes into a location already occupied by an object, it’s a
different story. Consider:

std::vector<std::string> vs; // as before
// add elements to vs

vs.emplace(vs.begin(), "xyzzy"); // add "xyzzy" to
/] beginning of vs

For this code, few implementations will construct the added std: :string
into the memory occupied by vs[0]. Instead, they’ll move-assign the value
into place. But move assignment requires an object to move from, and that
means that a temporary object will need to be created to be the source of the



move. Because the primary advantage of emplacement over insertion is that
temporary objects are neither created nor destroyed, when the value being
added is put into the container via assignment, emplacement’s edge tends to
disappear.

Alas, whether adding a value to a container is accomplished by construction
or assignment is generally up to the implementer. But, again, heuristics can
help. Node-based containers virtually always use construction to add new
values, and most standard containers are node-based. The only ones that
aren’t are std: :vector, std: :deque, and std: :string. (std::array isn’t,
either, but it doesn’t support insertion or emplacement, so it’s not relevant
here.) Within the non-node-based containers, you can rely on emplace_back
to use construction instead of assignment to get a new value into place, and
for std: :deque, the same is true of emplace_front.

= The argument type(s) being passed differ from the type held by the
container. Again, emplacement’s advantage over insertion generally stems
from the fact that its interface doesn’t require creation and destruction of a
temporary object when the argument(s) passed are of a type other than that
held by the container. When an object of type T is to be added to a
container<T>, there’s no reason to expect emplacement to run faster than
insertion, because no temporary needs to be created to satisfy the insertion
interface.

m The container is unlikely to reject the new value as a duplicate. This
means that the container either permits duplicates or that most of the values
you add will be unique. The reason this matters is that in order to detect
whether a value is already in the container, emplacement implementations
typically create a node with the new value so that they can compare the value
of this node with existing container nodes. If the value to be added isn’t in the
container, the node is linked in. However, if the value is already present, the
emplacement is aborted and the node is destroyed, meaning that the cost of its
construction and destruction was wasted. Such nodes are created for
emplacement functions more often than for insertion functions.

The following calls from earlier in this Item satisfy all the criteria above. They



also run faster than the corresponding calls to push_back.

vs.emplace_back("xyzzy"); // construct new value at end of
// container; don't pass the type in
// container; don't use container
// rejecting duplicates

vs.emplace_back(50, 'x'); // ditto
When deciding whether to use emplacement functions, two other issues are

worth keeping in mind. The first regards resource management. Suppose you
have a container of std: :shared_ptr<Widget>s,

std::list<std::shared_ptr<Widget>> ptrs;

and you want to add a std: : shared_ptr that should be released via a custom
deleter (see Item 19). Item 21 explains that you should use std: :make_shared

to create std: :shared_ptrs whenever you can, but it also concedes that there
are situations where you can’t. One such situation is when you want to specify a

custom deleter. In that case, you must use new directly to get the raw pointer to
be managed by the std: :shared_ptr.

If the custom deleter is this function,
void killWidget(Widget* pWidget);

the code using an insertion function could look like this:
ptrs.push_back(std::shared_ptr<Widget>(new Widget, killWidget));

It could also look like this, though the meaning would be the same:
ptrs.push_back({ new Widget, killWidget });

Either way, a temporary std: :shared_ptr would be constructed before calling
push_back. push_back’s parameter is a reference to a std: :shared_ptr, so
there has to be a std: :shared_ptr for this parameter to refer to.



The creation of the temporary std: :shared_ptr is what emplace_back would
avoid, but in this case, that temporary is worth far more than it costs. Consider
the following potential sequence of events:

1. In either call above, a temporary std: : shared_ptr<Widget> object is
constructed to hold the raw pointer resulting from “new Widget”. Call this
object tenmp.

2. push_back takes temp by reference. During allocation of a list node to
hold a copy of temp, an out-of-memory exception gets thrown.

3. As the exception propagates out of push_back, temp is destroyed. Being
the sole std: :shared_ptr referring to the Widget it’s managing, it
automatically releases that Widget, in this case by calling killWidget.

Even though an exception occurred, nothing leaks: the Widget created via “new
Widget” in the call to push_back is released in the destructor of the
std: :shared_ptr that was created to manage it (temp). Life is good.

Now consider what happens if emplace_back is called instead of push_back:
ptrs.emplace_back(new Widget, killWidget);

1. The raw pointer resulting from “new Widget” is perfect-forwarded to the
point inside emplace_back where a list node is to be allocated. That
allocation fails, and an out-of-memory exception is thrown.

2. As the exception propagates out of emplace_back, the raw pointer that
was the only way to get at the Widget on the heap is lost. That Widget (and
any resources it owns) is leaked.

In this scenario, life is not good, and the fault doesn’t lie with

std: :shared_ptr. The same kind of problem can arise through the use of
std: :unique_ptr with a custom deleter. Fundamentally, the effectiveness of
resource-managing classes like std: :shared_ptr and std: :unique_ptr is
predicated on resources (such as raw pointers from new) being immediately



passed to constructors for resource-managing objects. The fact that functions

like std: :make_shared and std: :make_unique automate this is one of the
reasons they’re so important.

In calls to the insertion functions of containers holding resource-managing
objects (e.g., std::list<std: :shared_ptr<Widget>>), the functions’
parameter types generally ensure that nothing gets between acquisition of a

resource (e.g., use of new) and construction of the object managing the resource.
In the emplacement functions, perfect-forwarding defers the creation of the
resource-managing objects until they can be constructed in the container’s
memory, and that opens a window during which exceptions can lead to resource
leaks. All standard containers are susceptible to this problem. When working
with containers of resource-managing objects, you must take care to ensure that
if you choose an emplacement function over its insertion counterpart, you’re not
paying for improved code efficiency with diminished exception safety.

Frankly, you shouldn’t be passing expressions like “new Widget” to
emplace_back or push_back or most any other function, anyway, because, as
Item 21 explains, this leads to the possibility of exception safety problems of the
kind we just examined. Closing the door requires taking the pointer from “new
Widget” and turning it over to a resource-managing object in a standalone
statement, then passing that object as an rvalue to the function you originally
wanted to pass “new Widget” to. (Item 21 covers this technique in more detail.)
The code using push_back should therefore be written more like this:

std: :shared_ptr<Widget> spw(new Widget, // create Widget and
killWidget); // have spw manage it

ptrs.push_back(std::move(spw)); // add spw as rvalue

The emplace_back version is similar:

std: :shared_ptr<Widget> spw(new Widget, killWidget);
ptrs.emplace_back(std: :move(spw));

Either way, the approach incurs the cost of creating and destroying spw. Given
that the motivation for choosing emplacement over insertion is to avoid the cost



of a temporary object of the type held by the container, yet that’s conceptually
what spw is, emplacement functions are unlikely to outperform insertion
functions when you’re adding resource-managing objects to a container and you
follow the proper practice of ensuring that nothing can intervene between
acquiring a resource and turning it over to a resource-managing object.

A second noteworthy aspect of emplacement functions is their interaction with
explicit constructors. In honor of C++11’s support for regular expressions,
suppose you create a container of regular expression objects:

std::vector<std::regex> regexes;

Distracted by your colleagues’ quarreling over the ideal number of times per day
to check one’s Facebook account, you accidentally write the following
seemingly meaningless code:

regexes.emplace_back(nullptr); // add nullptr to container
// of regexes?

You don’t notice the error as you type it, and your compilers accept the code
without complaint, so you end up wasting a bunch of time debugging. At some
point, you discover that you have inserted a null pointer into your container of
regular expressions. But how is that possible? Pointers aren’t regular
expressions, and if you tried to do something like this,

std::regex r = nullptr; // error! won't compile

compilers would reject your code. Interestingly, they would also reject it if you
called push_back instead of emplace_back:

regexes.push_back(nullptr); // error! won't compile

The curious behavior you’re experiencing stems from the fact that std: : regex
objects can be constructed from character strings. That’s what makes useful code
like this legal:

std::regex upperCaseWord("[A-Z]+");



Creation of a std: : regex from a character string can exact a comparatively
large runtime cost, so, to minimize the likelihood that such an expense will be
incurred unintentionally, the std: : regex constructor taking a const char*
pointer is explicit. That’s why these lines don’t compile:

std::regex r = nullptr; // error! won't compile

regexes.push_back(nullptr); // error! won't compile

In both cases, we’re requesting an implicit conversion from a pointer to a
std: :regex, and the explicitness of that constructor prevents such
conversions.

In the call to emplace_back, however, we’re not claiming to pass a std: : regex

object. Instead, we’re passing a constructor argument for a std: : regex object.
That’s not considered an implicit conversion request. Rather, it’s viewed as if
you’d written this code:

std::regex r(nullptr); // compiles

If the laconic comment “compiles” suggests a lack of enthusiasm, that’s good,
because this code, though it will compile, has undefined behavior. The

std: :regex constructor taking a const char* pointer requires that the pointed-
to string comprise a valid regular expression, and the null pointer fails that
requirement. If you write and compile such code, the best you can hope for is
that it crashes at runtime. If you’re not so lucky, you and your debugger could be
in for a special bonding experience.

Setting aside push_back, emplace_back, and bonding for a moment, notice how
these very similar initialization syntaxes yield different results:

std::regex r1 = nullptr; // error! won't compile

std::regex r2(nullptr); // compiles
In the official terminology of the Standard, the syntax used to initialize r1

(employing the equals sign) corresponds to what is known as copy initialization.
In contrast, the syntax used to initialize r2 (with the parentheses, although braces



may be used instead) yields what is called direct initialization. Copy
initialization is not permitted to use explicit constructors. Direct initialization

is. That’s why the line initializing r1 doesn’t compile, but the line initializing r2
does.

But back to push_back and emplace_back and, more generally, the insertion
functions versus the emplacement functions. Emplacement functions use direct
initialization, which means they may use explicit constructors. Insertion
functions employ copy initialization, so they can’t. Hence:

regexes.emplace_back(nullptr); // compiles. Direct init permits
// use of explicit std::regex
// ctor taking a pointer

regexes.push_back(nullptr); // error! copy init forbids
// use of that ctor

The lesson to take away is that when you use an emplacement function, be
especially careful to make sure you’re passing the correct arguments, because
even explicit constructors will be considered by compilers as they try to find a
way to interpret your code as valid.

Things to Remember

m In principle, emplacement functions should sometimes be more efficient than their
insertion counterparts, and they should never be less efficient.

m [n practice, they’re most likely to be faster when (1) the value being added is constructed
into the container, not assigned; (2) the argument type(s) passed differ from the type held
by the container; and (3) the container won’t reject the value being added due to it being a
duplicate.

®m Emplacement functions may perform type conversions that would be rejected by insertion
functions.

22 In this Item, to “copy” a parameter generally means to use it as the source of a
copy or move operation. Recall from here that C++ has no terminology to
distinguish a copy made by a copy operation from one made by a move
operation.



2> Sentences like this are why it’d be nice to have terminology that distinguishes
copies made via copy operations from copies made via move operations.
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