

Praise	for	Effective	Modern	C++

So,	still	interested	in	C++?	You	should	be!	Modern	C++	(i.e.,	C++11/C++14)	is	far	more	than	just	a	facelift.
Considering	the	new	features,	it	seems	that	it’s	more	a	reinvention.	Looking	for	guidelines	and	assistance?

Then	this	book	is	surely	what	you	are	looking	for.	Concerning	C++,	Scott	Meyers	was	and	still	is	a
synonym	for	accuracy,	quality,	and	delight.

Gerhard	Kreuzer

Research	and	Development	Engineer,	Siemens	AG

Finding	utmost	expertise	is	hard	enough.	Finding	teaching	perfectionism—an	author’s	obsession	with
strategizing	and	streamlining	explanations—is	also	difficult.	You	know	you’re	in	for	a	treat	when	you	get	to

find	both	embodied	in	the	same	person.	Effective	Modern	C++	is	a	towering	achievement	from	a
consummate	technical	writer.	It	layers	lucid,	meaningful,	and	well-sequenced	clarifications	on	top	of

complex	and	interconnected	topics,	all	in	crisp	literary	style.	You’re	equally	unlikely	to	find	a	technical
mistake,	a	dull	moment,	or	a	lazy	sentence	in	Effective	Modern	C++.

Andrei	Alexandrescu	Ph.D.,	Research	Scientist,	Facebook,	and	author	of	Modern	C++	Design

As	someone	with	over	two	decades	of	C++	experience,	to	get	the	most	out	of	modern	C++	(both	best
practices	and	pitfalls	to	avoid),	I	highly	recommend	getting	this	book,	reading	it	thoroughly,	and	referring	to

it	often!	I’ve	certainly	learned	new	things	going	through	it!

Nevin	Liber

Senior	Software	Engineer,	DRW	Trading	Group

Bjarne	Stroustrup—the	creator	of	C++—said,	“C++11	feels	like	a	new	language.”	Effective	Modern	C++
makes	us	share	this	same	feeling	by	clearly	explaining	how	everyday	programmers	can	benefit	from	new

features	and	idioms	of	C++11	and	C++14.	Another	great	Scott	Meyers	book.

Cassio	Neri

FX	Quantitative	Analyst,	Lloyds	Banking	Group

Scott	has	the	knack	of	boiling	technical	complexity	down	to	an	understandable	kernel.	His	Effective	C++
books	helped	to	raise	the	coding	style	of	a	previous	generation	of	C++	programmers;	the	new	book	seems

positioned	to	do	the	same	for	those	using	modern	C++.

Roger	Orr

OR/2	Limited,	a	member	of	the	ISO	C++	standards	committee

Effective	Modern	C++	is	a	great	tool	to	improve	your	modern	C++	skills.	Not	only	does	it	teach	you	how,
when	and	where	to	use	modern	C++	and	be	effective,	it	also	explains	why.	Without	doubt,	Scott’s	clear	and
insightful	writing,	spread	over	42	well-thought	items,	gives	programmers	a	much	better	understanding	of

the	language.

Bart	Vandewoestyne	Research	and	Development	Engineer	and	C++	enthusiast

I	love	C++,	it	has	been	my	work	vehicle	for	many	decades	now.	And	with	the	latest	raft	of	features	it	is

even	more	powerful	and	expressive	than	I	would	have	previously	imagined.	But	with	all	this	choice	comes
the	question	“when	and	how	do	I	apply	these	features?”	As	has	always	been	the	case,	Scott’s	Effective	C++

books	are	the	definitive	answer	to	this	question.

Damien	Watkins

Computation	Software	Engineering	Team	Lead,	CSIRO

Great	read	for	transitioning	to	modern	C++—new	C++11/14	language	features	are	described	alongside
C++98,	subject	items	are	easy	to	reference,	and	advice	summarized	at	the	end	of	each	section.	Entertaining

and	useful	for	both	casual	and	advanced	C++	developers.

Rachel	Cheng

F5	Networks

If	you’re	migrating	from	C++98/03	to	C++11/14,	you	need	the	eminently	practical	and	clear	information
Scott	provides	in	Effective	Modern	C++.	If	you’re	already	writing	C++11	code,	you’ll	probably	discover

issues	with	the	new	features	through	Scott’s	thorough	discussion	of	the	important	new	features	of	the
language.	Either	way,	this	book	is	worth	your	time.

Rob	Stewart

Boost	Steering	Committee	member	(boost.org)

Effective	Modern	C++
Scott	Meyers

Effective	Modern	C++
by	Scott	Meyers	Copyright	©	2015	Scott	Meyers.	All	rights	reserved.

Printed	in	the	Canada.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles
(http://safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Rachel	Roumeliotis

Production	Editor:	Melanie	Yarbrough

Copyeditor:	Jasmine	Kwityn

Proofreader:	Charles	Roumeliotis

Indexer:	Scott	Meyers

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volkhausen

Illustrator:	Rebecca	Demarest

November	2014:	First	Edition

Revision	History	for	the	First	Edition
2014-11-07:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491903995	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Effective
Modern	C++,	the	cover	image	of	a	Rose-crowned	Fruit	Dove,	and	related	trade
dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491903995

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher
and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or
reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-49190399-5

[TI]

	
For	Darla,

black	Labrador	Retriever	extraordinaire

From	the	Publisher

Using	Code	Examples
This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Effective	Modern	C++	by
Scott	Meyers	(O’Reilly).	Copyright	2015	Scott	Meyers,	978-1-491-90399-5.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content
in	both	book	and	video	form	from	the	world’s	leading	authors	in	technology	and
business.

Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for
research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,
government,	education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly
Media,	Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Press,	Sams,	Que,	Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,
Syngress,	Morgan	Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,
Apress,	Manning,	New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course
Technology,	and	hundreds	more.	For	more	information	about	Safari	Books
Online,	please	visit	us	online.

How	to	Contact	Us
Comments	and	questions	concerning	this	book	may	be	addressed	to	the
publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments

I	started	investigating	what	was	then	known	as	C++0x	(the	nascent	C++11)	in
2009.	I	posted	numerous	questions	to	the	Usenet	newsgroup	comp.std.c++,	and
I’m	grateful	to	the	members	of	that	community	(especially	Daniel	Krügler)	for
their	very	helpful	postings.	In	more	recent	years,	I’ve	turned	to	Stack	Overflow
when	I	had	questions	about	C++11	and	C++14,	and	I’m	equally	indebted	to	that
community	for	its	help	in	understanding	the	finer	points	of	modern	C++.	

In	2010,	I	prepared	materials	for	a	training	course	on	C++0x	(ultimately
published	as	Overview	of	the	New	C++,	Artima	Publishing,	2010).	Both	those
materials	and	my	knowledge	greatly	benefited	from	the	technical	vetting
performed	by	Stephan	T.	Lavavej,	Bernhard	Merkle,	Stanley	Friesen,	Leor
Zolman,	Hendrik	Schober,	and	Anthony	Williams.	Without	their	help,	I	would
probably	never	have	been	in	a	position	to	undertake	Effective	Modern	C++.	That
title,	incidentally,	was	suggested	or	endorsed	by	several	readers	responding	to
my	18	February	2014	blog	post,	“Help	me	name	my	book,”	and	Andrei
Alexandrescu	(author	of	Modern	C++	Design,	Addison-Wesley,	2001)	was	kind
enough	to	bless	the	title	as	not	poaching	on	his	terminological	turf.	

I’m	unable	to	identify	the	origins	of	all	the	information	in	this	book,	but	some
sources	had	a	relatively	direct	impact.	Item	4’s	use	of	an	undefined	template	to
coax	type	information	out	of	compilers	was	suggested	by	Stephan	T.	Lavavej,
and	Matt	P.	Dziubinski	brought	Boost.TypeIndex	to	my	attention.	In	Item	5,	the
unsigned-std::vector<int>::size_type	example	is	from	Andrey	Karpov’s
28	February	2010	article,	“In	what	way	can	C++0x	standard	help	you	eliminate
64-bit	errors.”	The	std::pair<std::string,	int>/std::pair<const
std::string,	int>	example	in	the	same	Item	is	from	Stephan	T.	Lavavej’s	talk
at	Going	Native	2012,	“STL11:	Magic	&&	Secrets.”	Item	6	was	inspired	by
Herb	Sutter’s	12	August	2013	article,	“GotW	#94	Solution:	AAA	Style	(Almost
Always	Auto).”	Item	9	was	motivated	by	Martinho	Fernandes’	blog	post	of	27
May	2012,	“Handling	dependent	names.”	The	Item	12	example	demonstrating
overloading	on	reference	qualifiers	is	based	on	Casey’s	answer	to	the	question,
“What’s	a	use	case	for	overloading	member	functions	on	reference	qualifiers?,”

http://stackoverflow.com/
http://www.artima.com/shop/overview_of_the_new_cpp
http://scottmeyers.blogspot.com/2014/02/help-me-name-my-book.html
http://erdani.com/index.php/books/modern-c-design/
http://www.viva64.com/en/b/0060/
http://channel9.msdn.com/Events/GoingNative/GoingNative-2012/STL11-Magic-Secrets
http://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
http://flamingdangerzone.com/cxx11/2012/05/27/dependent-names-bliss.html
http://stackoverflow.com/questions/21052377/whats-a-use-case-for-overloading-member-functions-on-reference-qualifiers

posted	to	Stack	Overflow	on	14	January	2014.	My	Item	15	treatment	of	C++14’s
expanded	support	for	constexpr	functions	incorporates	information	I	received
from	Rein	Halbersma.	Item	16	is	based	on	Herb	Sutter’s	C++	and	Beyond	2012
presentation,	“You	don’t	know	const	and	mutable.”	Item	18’s	advice	to	have
factory	functions	return	std::unique_ptrs	is	based	on	Herb	Sutter’s	30	May
2013	article,	“GotW#	90	Solution:	Factories.”	In	Item	19,	fastLoadWidget	is
derived	from	Herb	Sutter’s	Going	Native	2013	presentation,	“My	Favorite	C++
10-Liner.”	My	treatment	of	std::unique_ptr	and	incomplete	types	in	Item	22
draws	on	Herb	Sutter’s	27	November	2011	article,	“GotW	#100:	Compilation
Firewalls”	as	well	as	Howard	Hinnant’s	22	May	2011	answer	to	the	Stack
Overflow	question,	“Is	std::unique_ptr<T>	required	to	know	the	full	definition
of	T?”	The	Matrix	addition	example	in	Item	25	is	based	on	writings	by	David
Abrahams.	JoeArgonne’s	8	December	2012	comment	on	the	30	November	2012
blog	post,	“Another	alternative	to	lambda	move	capture,”	was	the	source	of	Item
32’s	std::bind-based	approach	to	emulating	init	capture	in	C++11.	Item	37’s
explanation	of	the	problem	with	an	implicit	detach	in	std::thread’s	destructor
is	taken	from	Hans-J.	Boehm’s	4	December	2008	paper,	“N2802:	A	plea	to
reconsider	detach-on-destruction	for	thread	objects.”	Item	41	was	originally
motivated	by	discussions	of	David	Abrahams’	15	August	2009	blog	post,	“Want
speed?	Pass	by	value.”	The	idea	that	move-only	types	deserve	special	treatment
is	due	to	Matthew	Fioravante,	while	the	analysis	of	assignment-based	copying
stems	from	comments	by	Howard	Hinnant.	In	Item	42,	Stephan	T.	Lavavej	and
Howard	Hinnant	helped	me	understand	the	relative	performance	profiles	of
emplacement	and	insertion	functions,	and	Michael	Winterberg	brought	to	my
attention	how	emplacement	can	lead	to	resource	leaks.	(Michael	credits	Sean
Parent’s	Going	Native	2013	presentation,	“C++	Seasoning,”	as	his	source).
Michael	also	pointed	out	how	emplacement	functions	use	direct	initialization,
while	insertion	functions	use	copy	initialization.

Reviewing	drafts	of	a	technical	book	is	a	demanding,	time-consuming,	and
utterly	critical	task,	and	I’m	fortunate	that	so	many	people	were	willing	to	do	it
for	me.	Full	or	partial	drafts	of	Effective	Modern	C++	were	officially	reviewed
by	Cassio	Neri,	Nate	Kohl,	Gerhard	Kreuzer,	Leor	Zolman,	Bart
Vandewoestyne,	Stephan	T.	Lavavej,	Nevin	“:-)”	Liber,	Rachel	Cheng,	Rob
Stewart,	Bob	Steagall,	Damien	Watkins,	Bradley	E.	Needham,	Rainer	Grimm,
Fredrik	Winkler,	Jonathan	Wakely,	Herb	Sutter,	Andrei	Alexandrescu,	Eric

http://herbsutter.com/2013/05/30/gotw-90-solution-factories/
http://channel9.msdn.com/Events/GoingNative/2013/My-Favorite-Cpp-10-Liner
http://herbsutter.com/gotw/_100/
http://stackoverflow.com/questions/6012157/is-stdunique-ptrt-required-to-know-the-full-definition-of-t
http://jrb-programming.blogspot.com/2012/11/another-alternative-to-lambda-move.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2802.html
http://web.archive.org/web/20140113221447/http:/cpp-next.com/archive/2009/08/want-speed-pass-by-value/
http://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning

Niebler,	Thomas	Becker,	Roger	Orr,	Anthony	Williams,	Michael	Winterberg,
Benjamin	Huchley,	Tom	Kirby-Green,	Alexey	A	Nikitin,	William	Dealtry,
Hubert	Matthews,	and	Tomasz	Kamiński.	I	also	received	feedback	from	several
readers	through	O’Reilly’s	Early	Release	EBooks	and	Safari	Books	Online’s
Rough	Cuts,	comments	on	my	blog	(The	View	from	Aristeia),	and	email.	I’m
grateful	to	each	of	these	people.	The	book	is	much	better	than	it	would	have	been
without	their	help.	I’m	particularly	indebted	to	Stephan	T.	Lavavej	and	Rob
Stewart,	whose	extraordinarily	detailed	and	comprehensive	remarks	lead	me	to
worry	that	they	spent	nearly	as	much	time	on	this	book	as	I	did.	Special	thanks
also	go	to	Leor	Zolman,	who,	in	addition	to	reviwing	the	manuscript,	double-
checked	all	the	code	examples.

Dedicated	reviews	of	digital	versions	of	the	book	were	performed	by	Gerhard
Kreuzer,	Emyr	Williams,	and	Bradley	E.	Needham.

My	decision	to	limit	the	line	length	in	code	displays	to	64	characters	(the
maximum	likely	to	display	properly	in	print	as	well	as	across	a	variety	of	digital
devices,	device	orientations,	and	font	configurations)	was	based	on	data
provided	by	Michael	Maher.

Ashley	Morgan	Williams	made	dining	at	the	Lake	Oswego	Pizzicato	uniquely
entertaining.	When	it	comes	to	man-sized	Caesars,	she’s	the	go-to	gal.

More	than	20	years	after	first	living	through	my	playing	author,	my	wife,	Nancy
L.	Urbano,	once	again	tolerated	many	months	of	distracted	conversations	with	a
cocktail	of	resignation,	exasperation,	and	timely	splashes	of	understanding	and
support.	During	the	same	period,	our	dog,	Darla,	was	largely	content	to	doze
away	the	hours	I	spent	staring	at	computer	screens,	but	she	never	let	me	forget
that	there’s	life	beyond	the	keyboard.

http://shop.oreilly.com/category/early-release.do
http://my.safaribooksonline.com/roughcuts
http://scottmeyers.blogspot.com/

Introduction
If	you’re	an	experienced	C++	programmer	and	are	anything	like	me,	you
initially	approached	C++11	thinking,	“Yes,	yes,	I	get	it.	It’s	C++,	only	more	so.”
But	as	you	learned	more,	you	were	surprised	by	the	scope	of	the	changes.	auto
declarations,	range-based	for	loops,	lambda	expressions,	and	rvalue	references
change	the	face	of	C++,	to	say	nothing	of	the	new	concurrency	features.	And
then	there	are	the	idiomatic	changes.	0	and	typedefs	are	out,	nullptr	and	alias
declarations	are	in.	Enums	should	now	be	scoped.	Smart	pointers	are	now
preferable	to	built-in	ones.	Moving	objects	is	normally	better	than	copying	them.

There’s	a	lot	to	learn	about	C++11,	not	to	mention	C++14.

More	importantly,	there’s	a	lot	to	learn	about	making	effective	use	of	the	new
capabilities.	If	you	need	basic	information	about	“modern”	C++	features,
resources	abound,	but	if	you’re	looking	for	guidance	on	how	to	employ	the
features	to	create	software	that’s	correct,	efficient,	maintainable,	and	portable,
the	search	is	more	challenging.	That’s	where	this	book	comes	in.	It’s	devoted	not
to	describing	the	features	of	C++11	and	C++14,	but	instead	to	their	effective
application.

The	information	in	the	book	is	broken	into	guidelines	called	Items.	Want	to
understand	the	various	forms	of	type	deduction?	Or	know	when	(and	when	not)
to	use	auto	declarations?	Are	you	interested	in	why	const	member	functions
should	be	thread	safe,	how	to	implement	the	Pimpl	Idiom	using
std::unique_ptr,	why	you	should	avoid	default	capture	modes	in	lambda
expressions,	or	the	differences	between	std::atomic	and	volatile?	The
answers	are	all	here.	Furthermore,	they’re	platform-independent,	Standards-
conformant	answers.	This	is	a	book	about	portable	C++.

The	Items	in	this	book	are	guidelines,	not	rules,	because	guidelines	have
exceptions.	The	most	important	part	of	each	Item	is	not	the	advice	it	offers,	but
the	rationale	behind	the	advice.	Once	you’ve	read	that,	you’ll	be	in	a	position	to
determine	whether	the	circumstances	of	your	project	justify	a	violation	of	the
Item’s	guidance.	The	true	goal	of	this	book	isn’t	to	tell	you	what	to	do	or	what	to
avoid	doing,	but	to	convey	a	deeper	understanding	of	how	things	work	in	C++11
and	C++14.

Terminology	and	Conventions

Terminology	and	Conventions
To	make	sure	we	understand	one	another,	it’s	important	to	agree	on	some
terminology,	beginning,	ironically,	with	“C++.”	There	have	been	four	official
versions	of	C++,	each	named	after	the	year	in	which	the	corresponding	ISO
Standard	was	adopted:	C++98,	C++03,	C++11,	and	C++14.	C++98	and
C++03	differ	only	in	technical	details,	so	in	this	book,	I	refer	to	both	as	C++98.
When	I	refer	to	C++11,	I	mean	both	C++11	and	C++14,	because	C++14	is
effectively	a	superset	of	C++11.	When	I	write	C++14,	I	mean	specifically
C++14.	And	if	I	simply	mention	C++,	I’m	making	a	broad	statement	that
pertains	to	all	language	versions.			

Term	I	Use Language	Versions	I	Mean

C++ All

C++98 C++98	and	C++03

C++11 C++11	and	C++14

C++14 C++14

As	a	result,	I	might	say	that	C++	places	a	premium	on	efficiency	(true	for	all
versions),	that	C++98	lacks	support	for	concurrency	(true	only	for	C++98	and
C++03),	that	C++11	supports	lambda	expressions	(true	for	C++11	and	C++14),
and	that	C++14	offers	generalized	function	return	type	deduction	(true	for
C++14	only).

C++11’s	most	pervasive	feature	is	probably	move	semantics,	and	the	foundation
of	move	semantics	is	distinguishing	expressions	that	are	rvalues	from	those	that
are	lvalues.	That’s	because	rvalues	indicate	objects	eligible	for	move	operations,
while	lvalues	generally	don’t.	In	concept	(though	not	always	in	practice),	rvalues
correspond	to	temporary	objects	returned	from	functions,	while	lvalues
correspond	to	objects	you	can	refer	to,	either	by	name	or	by	following	a	pointer
or	lvalue	reference.

A	useful	heuristic	to	determine	whether	an	expression	is	an	lvalue	is	to	ask	if
you	can	take	its	address.	If	you	can,	it	typically	is.	If	you	can’t,	it’s	usually	an
rvalue.	A	nice	feature	of	this	heuristic	is	that	it	helps	you	remember	that	the	type
of	an	expression	is	independent	of	whether	the	expression	is	an	lvalue	or	an
rvalue.	That	is,	given	a	type	T,	you	can	have	lvalues	of	type	T	as	well	as	rvalues

of	type	T.	It’s	especially	important	to	remember	this	when	dealing	with	a
parameter	of	rvalue	reference	type,	because	the	parameter	itself	is	an	lvalue:

class Widget {

public:

 Widget(Widget&& rhs); // rhs is an lvalue, though it has

 … // an rvalue reference type

};

Here,	it’d	be	perfectly	valid	to	take	rhs’s	address	inside	Widget’s	move
constructor,	so	rhs	is	an	lvalue,	even	though	its	type	is	an	rvalue	reference.	(By
similar	reasoning,	all	parameters	are	lvalues.)

That	code	snippet	demonstrates	several	conventions	I	normally	follow:

The	class	name	is	Widget.	I	use	Widget	whenever	I	want	to	refer	to	an
arbitrary	user-defined	type.	Unless	I	need	to	show	specific	details	of	the	class,
I	use	Widget	without	declaring	it.

I	use	the	parameter	name	rhs	(“right-hand	side”).	It’s	my	preferred	parameter
name	for	the	move	operations	(i.e.,	move	constructor	and	move	assignment
operator)	and	the	copy	operations	(i.e.,	copy	constructor	and	copy	assignment
operator).	I	also	employ	it	for	the	right-hand	parameter	of	binary	operators:

Matrix operator+(const Matrix& lhs, const Matrix& rhs);

It’s	no	surprise,	I	hope,	that	lhs	stands	for	“left-hand	side.”

I	apply	special	formatting	to	parts	of	code	or	parts	of	comments	to	draw	your
attention	to	them.	In	the	Widget	move	constructor	above,	I’ve	highlighted	the
declaration	of	rhs	and	the	part	of	the	comment	noting	that	rhs	is	an	lvalue.
Highlighted	code	is	neither	inherently	good	nor	inherently	bad.	It’s	simply
code	you	should	pay	particular	attention	to.

I	use	“…”	to	indicate	“other	code	could	go	here.”	This	narrow	ellipsis	is
different	from	the	wide	ellipsis	(“...”)	that’s	used	in	the	source	code	for
C++11’s	variadic	templates.	That	sounds	confusing,	but	it’s	not.	For	example:

template<typename... Ts> // these are C++

void processVals(const Ts&... params) // source code

{ // ellipses

 … // this means "some

 // code goes here"

}

The	declaration	of	processVals	shows	that	I	use	typename	when	declaring
type	parameters	in	templates,	but	that’s	merely	a	personal	preference;	the
keyword	class	would	work	just	as	well.	On	those	occasions	where	I	show
code	excerpts	from	a	C++	Standard,	I	declare	type	parameters	using	class,
because	that’s	what	the	Standards	do.

When	an	object	is	initialized	with	another	object	of	the	same	type,	the	new
object	is	said	to	be	a	copy	of	the	initializing	object,	even	if	the	copy	was	created
via	the	move	constructor.	Regrettably,	there’s	no	terminology	in	C++	that
distinguishes	between	an	object	that’s	a	copy-constructed	copy	and	one	that’s	a
move-constructed	copy:

void someFunc(Widget w); // someFunc's parameter w

 // is passed by value

Widget wid; // wid is some Widget

someFunc(wid); // in this call to someFunc,

 // w is a copy of wid that's

 // created via copy construction

someFunc(std::move(wid)); // in this call to SomeFunc,

 // w is a copy of wid that's

 // created via move construction

Copies	of	rvalues	are	generally	move	constructed,	while	copies	of	lvalues	are
usually	copy	constructed.	An	implication	is	that	if	you	know	only	that	an	object
is	a	copy	of	another	object,	it’s	not	possible	to	say	how	expensive	it	was	to
construct	the	copy.	In	the	code	above,	for	example,	there’s	no	way	to	say	how
expensive	it	is	to	create	the	parameter	w	without	knowing	whether	rvalues	or
lvalues	are	passed	to	someFunc.	(You’d	also	have	to	know	the	cost	of	moving
and	copying	Widgets.)

In	a	function	call,	the	expressions	passed	at	the	call	site	are	the	function’s
arguments.	The	arguments	are	used	to	initialize	the	function’s	parameters.	In	the
first	call	to	someFunc	above,	the	argument	is	wid.	In	the	second	call,	the
argument	is	std::move(wid).	In	both	calls,	the	parameter	is	w.	The	distinction
between	arguments	and	parameters	is	important,	because	parameters	are	lvalues,
but	the	arguments	with	which	they	are	initialized	may	be	rvalues	or	lvalues.	This
is	especially	relevant	during	the	process	of	perfect	forwarding,	whereby	an
argument	passed	to	a	function	is	passed	to	a	second	function	such	that	the
original	argument’s	rvalueness	or	lvalueness	is	preserved.	(Perfect	forwarding	is
discussed	in	detail	in	Item	30.)

Well-designed	functions	are	exception	safe,	meaning	they	offer	at	least	the	basic
exception	safety	guarantee	(i.e.,	the	basic	guarantee).	Such	functions	assure
callers	that	even	if	an	exception	is	thrown,	program	invariants	remain	intact	(i.e.,
no	data	structures	are	corrupted)	and	no	resources	are	leaked.	Functions	offering
the	strong	exception	safety	guarantee	(i.e.,	the	strong	guarantee)	assure	callers
that	if	an	exception	arises,	the	state	of	the	program	remains	as	it	was	prior	to	the
call.

When	I	refer	to	a	function	object,	I	usually	mean	an	object	of	a	type	supporting
an	operator()	member	function.	In	other	words,	an	object	that	acts	like	a
function.	Occasionally	I	use	the	term	in	a	slightly	more	general	sense	to	mean
anything	that	can	be	invoked	using	the	syntax	of	a	non-member	function	call
(i.e.,	“functionName(arguments)”).	This	broader	definition	covers	not	just
objects	supporting	operator(),	but	also	functions	and	C-like	function	pointers.
(The	narrower	definition	comes	from	C++98,	the	broader	one	from	C++11.)
Generalizing	further	by	adding	member	function	pointers	yields	what	are	known
as	callable	objects.	You	can	generally	ignore	the	fine	distinctions	and	simply
think	of	function	objects	and	callable	objects	as	things	in	C++	that	can	be
invoked	using	some	kind	of	function-calling	syntax.

Function	objects	created	through	lambda	expressions	are	known	as	closures.	It’s
seldom	necessary	to	distinguish	between	lambda	expressions	and	the	closures
they	create,	so	I	often	refer	to	both	as	lambdas.	Similarly,	I	rarely	distinguish
between	function	templates	(i.e.,	templates	that	generate	functions)	and	template
functions	(i.e.,	the	functions	generated	from	function	templates).	Ditto	for	class
templates	and	template	classes.

Many	things	in	C++	can	be	both	declared	and	defined.	Declarations	introduce
names	and	types	without	giving	details,	such	as	where	storage	is	located	or	how
things	are	implemented:

extern int x; // object declaration

class Widget; // class declaration

bool func(const Widget& w); // function declaration

enum class Color; // scoped enum declaration

 // (see Item 10)

Definitions	provide	the	storage	locations	or	implementation	details:

int x; // object definition

class Widget { // class definition

 …

};

bool func(const Widget& w)

{ return w.size() < 10; } // function definition

enum class Color

{ Yellow, Red, Blue }; // scoped enum definition

A	definition	also	qualifies	as	a	declaration,	so	unless	it’s	really	important	that
something	is	a	definition,	I	tend	to	refer	to	declarations.

I	define	a	function’s	signature	to	be	the	part	of	its	declaration	that	specifies
parameter	and	return	types.	Function	and	parameter	names	are	not	part	of	the
signature.	In	the	example	above,	func’s	signature	is	bool(const	Widget&).
Elements	of	a	function’s	declaration	other	than	its	parameter	and	return	types
(e.g.,	noexcept	or	constexpr,	if	present),	are	excluded.	(noexcept	and
constexpr	are	described	in	Items	14	and	15.)	The	official	definition	of
“signature”	is	slightly	different	from	mine,	but	for	this	book,	my	definition	is
more	useful.	(The	official	definition	sometimes	omits	return	types.)

New	C++	Standards	generally	preserve	the	validity	of	code	written	under	older
ones,	but	occasionally	the	Standardization	Committee	deprecates	features.	Such

features	are	on	standardization	death	row	and	may	be	removed	from	future
Standards.	Compilers	may	or	may	not	warn	about	the	use	of	deprecated	features,
but	you	should	do	your	best	to	avoid	them.	Not	only	can	they	lead	to	future
porting	headaches,	they’re	generally	inferior	to	the	features	that	replace	them.
For	example,	std::auto_ptr	is	deprecated	in	C++11,	because
std::unique_ptr	does	the	same	job,	only	better.

Sometimes	a	Standard	says	that	the	result	of	an	operation	is	undefined	behavior.
That	means	that	runtime	behavior	is	unpredictable,	and	it	should	go	without
saying	that	you	want	to	steer	clear	of	such	uncertainty.	Examples	of	actions	with
undefined	behavior	include	using	square	brackets	(“[]”)	to	index	beyond	the
bounds	of	a	std::vector,	dereferencing	an	uninitialized	iterator,	or	engaging	in
a	data	race	(i.e.,	having	two	or	more	threads,	at	least	one	of	which	is	a	writer,
simultaneously	access	the	same	memory	location).

I	call	built-in	pointers,	such	as	those	returned	from	new,	raw	pointers.	The
opposite	of	a	raw	pointer	is	a	smart	pointer.	Smart	pointers	normally	overload
the	pointer-dereferencing	operators	(operator->	and	operator*),	though
Item	20	explains	that	std::weak_ptr	is	an	exception.

In	source	code	comments,	I	sometimes	abbreviate	“constructor”	as	ctor	and
“destructor”	as	dtor.		

Reporting	Bugs	and	Suggesting	Improvements
I’ve	done	my	best	to	fill	this	book	with	clear,	accurate,	useful	information,	but
surely	there	are	ways	to	make	it	better.	If	you	find	errors	of	any	kind	(technical,
expository,	grammatical,	typographical,	etc.),	or	if	you	have	suggestions	for	how
the	book	could	be	improved,	please	email	me	at	emc++@aristeia.com.	New
printings	give	me	the	opportunity	to	revise	Effective	Modern	C++,	and	I	can’t
address	issues	I	don’t	know	about!

To	view	the	list	of	the	issues	I	do	know	about,	consult	the	book’s	errata	page,
http://www.aristeia.com/BookErrata/emc++-errata.html.

mailto:emc++@aristeia.com
http://www.aristeia.com/BookErrata/emc++-errata.html

Chapter	1.	Deducing	Types

C++98	had	a	single	set	of	rules	for	type	deduction:	the	one	for	function
templates.	C++11	modifies	that	ruleset	a	bit	and	adds	two	more,	one	for	auto
and	one	for	decltype.	C++14	then	extends	the	usage	contexts	in	which	auto
and	decltype	may	be	employed.	The	increasingly	widespread	application	of
type	deduction	frees	you	from	the	tyranny	of	spelling	out	types	that	are	obvious
or	redundant.	It	makes	C++	software	more	adaptable,	because	changing	a	type	at
one	point	in	the	source	code	automatically	propagates	through	type	deduction	to
other	locations.	However,	it	can	render	code	more	difficult	to	reason	about,
because	the	types	deduced	by	compilers	may	not	be	as	apparent	as	you’d	like.

Without	a	solid	understanding	of	how	type	deduction	operates,	effective
programming	in	modern	C++	is	all	but	impossible.	There	are	just	too	many
contexts	where	type	deduction	takes	place:	in	calls	to	function	templates,	in	most
situations	where	auto	appears,	in	decltype	expressions,	and,	as	of	C++14,
where	the	enigmatic	decltype(auto)	construct	is	employed.

This	chapter	provides	the	information	about	type	deduction	that	every	C++
developer	requires.	It	explains	how	template	type	deduction	works,	how	auto
builds	on	that,	and	how	decltype	goes	its	own	way.	It	even	explains	how	you
can	force	compilers	to	make	the	results	of	their	type	deductions	visible,	thus
enabling	you	to	ensure	that	compilers	are	deducing	the	types	you	want	them	to.

Item	1: Understand	template	type	deduction.
When	users	of	a	complex	system	are	ignorant	of	how	it	works,	yet	happy	with
what	it	does,	that	says	a	lot	about	the	design	of	the	system.	By	this	measure,
template	type	deduction	in	C++	is	a	tremendous	success.	Millions	of
programmers	have	passed	arguments	to	template	functions	with	completely
satisfactory	results,	even	though	many	of	those	programmers	would	be	hard-
pressed	to	give	more	than	the	haziest	description	of	how	the	types	used	by	those
functions	were	deduced.

If	that	group	includes	you,	I	have	good	news	and	bad	news.	The	good	news	is
that	type	deduction	for	templates	is	the	basis	for	one	of	modern	C++’s	most
compelling	features:	auto.	If	you	were	happy	with	how	C++98	deduced	types
for	templates,	you’re	set	up	to	be	happy	with	how	C++11	deduces	types	for
auto.	The	bad	news	is	that	when	the	template	type	deduction	rules	are	applied	in
the	context	of	auto,	they	sometimes	seem	less	intuitive	than	when	they’re
applied	to	templates.	For	that	reason,	it’s	important	to	truly	understand	the
aspects	of	template	type	deduction	that	auto	builds	on.	This	Item	covers	what
you	need	to	know.

If	you’re	willing	to	overlook	a	pinch	of	pseudocode,	we	can	think	of	a	function
template	as	looking	like	this:

template<typename T>

void f(ParamType param);

A	call	can	look	like	this:

f(expr); // call f with some expression

During	compilation,	compilers	use	expr	to	deduce	two	types:	one	for	T	and	one
for	ParamType.	These	types	are	frequently	different,	because	ParamType	often
contains	adornments,	e.g.,	const	or	reference	qualifiers.	For	example,	if	the
template	is	declared	like	this,

template<typename T>

void f(const T& param); // ParamType is const T&

and	we	have	this	call,

int x = 0;

f(x); // call f with an int

T	is	deduced	to	be	int,	but	ParamType	is	deduced	to	be	const int&.

It’s	natural	to	expect	that	the	type	deduced	for	T	is	the	same	as	the	type	of	the
argument	passed	to	the	function,	i.e.,	that	T	is	the	type	of	expr.	In	the	above

example,	that’s	the	case:	x	is	an	int,	and	T	is	deduced	to	be	int.	But	it	doesn’t
always	work	that	way.	The	type	deduced	for	T	is	dependent	not	just	on	the	type
of	expr,	but	also	on	the	form	of	ParamType.	There	are	three	cases:

ParamType	is	a	pointer	or	reference	type,	but	not	a	universal	reference.
(Universal	references	are	described	in	Item	24.	At	this	point,	all	you	need	to
know	is	that	they	exist	and	that	they’re	not	the	same	as	lvalue	references	or
rvalue	references.)

ParamType	is	a	universal	reference.

ParamType	is	neither	a	pointer	nor	a	reference.

We	therefore	have	three	type	deduction	scenarios	to	examine.	Each	will	be	based
on	our	general	form	for	templates	and	calls	to	it:

template<typename T>

void f(ParamType param);

f(expr); // deduce T and ParamType from expr

Case	1:	ParamType	is	a	Reference	or	Pointer,	but	not	a
Universal	Reference
The	simplest	situation	is	when	ParamType	is	a	reference	type	or	a	pointer	type,
but	not	a	universal	reference.	In	that	case,	type	deduction	works	like	this:

1.	 If	expr’s	type	is	a	reference,	ignore	the	reference	part.

2.	 Then	pattern-match	expr’s	type	against	ParamType	to	determine	T.

For	example,	if	this	is	our	template,

template<typename T>

void f(T& param); // param is a reference

and	we	have	these	variable	declarations,

int x = 27; // x is an int

const int cx = x; // cx is a const int

const int& rx = x; // rx is a reference to x as a const int

the	deduced	types	for	param	and	T	in	various	calls	are	as	follows:

f(x); // T is int, param's type is int&

f(cx); // T is const int,

 // param's type is const int&

f(rx); // T is const int,

 // param's type is const int&

In	the	second	and	third	calls,	notice	that	because	cx	and	rx	designate	const
values,	T	is	deduced	to	be	const	int,	thus	yielding	a	parameter	type	of	const
int&.	That’s	important	to	callers.	When	they	pass	a	const	object	to	a	reference
parameter,	they	expect	that	object	to	remain	unmodifiable,	i.e.,	for	the	parameter
to	be	a	reference-to-const.	That’s	why	passing	a	const	object	to	a	template
taking	a	T&	parameter	is	safe:	the	constness	of	the	object	becomes	part	of	the
type	deduced	for	T.

In	the	third	example,	note	that	even	though	rx’s	type	is	a	reference,	T	is	deduced
to	be	a	non-reference.	That’s	because	rx’s	reference-ness	is	ignored	during	type
deduction.

These	examples	all	show	lvalue	reference	parameters,	but	type	deduction	works
exactly	the	same	way	for	rvalue	reference	parameters.	Of	course,	only	rvalue
arguments	may	be	passed	to	rvalue	reference	parameters,	but	that	restriction	has
nothing	to	do	with	type	deduction.

If	we	change	the	type	of	f’s	parameter	from	T&	to	const	T&,	things	change	a
little,	but	not	in	any	really	surprising	ways.	The	constness	of	cx	and	rx
continues	to	be	respected,	but	because	we’re	now	assuming	that	param	is	a
reference-to-const,	there’s	no	longer	a	need	for	const	to	be	deduced	as	part	of
T:

template<typename T>

void f(const T& param); // param is now a ref-to-const

int x = 27; // as before

const int cx = x; // as before

const int& rx = x; // as before

f(x); // T is int, param's type is const int&

f(cx); // T is int, param's type is const int&

f(rx); // T is int, param's type is const int&

As	before,	rx’s	reference-ness	is	ignored	during	type	deduction.

If	param	were	a	pointer	(or	a	pointer	to	const)	instead	of	a	reference,	things
would	work	essentially	the	same	way:

template<typename T>

void f(T* param); // param is now a pointer

int x = 27; // as before

const int *px = &x; // px is a ptr to x as a const int

f(&x); // T is int, param's type is int*

f(px); // T is const int,

 // param's type is const int*

By	now,	you	may	find	yourself	yawning	and	nodding	off,	because	C++’s	type
deduction	rules	work	so	naturally	for	reference	and	pointer	parameters,	seeing
them	in	written	form	is	really	dull.	Everything’s	just	obvious!	Which	is	exactly
what	you	want	in	a	type	deduction	system.

Case	2:	ParamType	is	a	Universal	Reference
Things	are	less	obvious	for	templates	taking	universal	reference	parameters.
Such	parameters	are	declared	like	rvalue	references	(i.e.,	in	a	function	template
taking	a	type	parameter	T,	a	universal	reference’s	declared	type	is	T&&),	but	they
behave	differently	when	lvalue	arguments	are	passed	in.	The	complete	story	is
told	in	Item	24,	but	here’s	the	headline	version:

If	expr	is	an	lvalue,	both	T	and	ParamType	are	deduced	to	be	lvalue
references.	That’s	doubly	unusual.	First,	it’s	the	only	situation	in	template

type	deduction	where	T	is	deduced	to	be	a	reference.	Second,	although
ParamType	is	declared	using	the	syntax	for	an	rvalue	reference,	its	deduced
type	is	an	lvalue	reference.

If	expr	is	an	rvalue,	the	“normal”	(i.e.,	Case	1)	rules	apply.

For	example:

template<typename T>

void f(T&& param); // param is now a universal reference

int x = 27; // as before

const int cx = x; // as before

const int& rx = x; // as before

f(x); // x is lvalue, so T is int&,

 // param's type is also int&

f(cx); // cx is lvalue, so T is const int&,

 // param's type is also const int&

f(rx); // rx is lvalue, so T is const int&,

 // param's type is also const int&

f(27); // 27 is rvalue, so T is int,

 // param's type is therefore int&&

Item	24	explains	exactly	why	these	examples	play	out	the	way	they	do.	The	key
point	here	is	that	the	type	deduction	rules	for	universal	reference	parameters	are
different	from	those	for	parameters	that	are	lvalue	references	or	rvalue
references.	In	particular,	when	universal	references	are	in	use,	type	deduction
distinguishes	between	lvalue	arguments	and	rvalue	arguments.	That	never
happens	for	non-universal	references.

Case	3:	ParamType	is	Neither	a	Pointer	nor	a	Reference
When	ParamType	is	neither	a	pointer	nor	a	reference,	we’re	dealing	with	pass-
by-value:

template<typename T>

void f(T param); // param is now passed by value

That	means	that	param	will	be	a	copy	of	whatever	is	passed	in—a	completely
new	object.	The	fact	that	param	will	be	a	new	object	motivates	the	rules	that
govern	how	T	is	deduced	from	expr:

1.	 As	before,	if	expr’s	type	is	a	reference,	ignore	the	reference	part.

2.	 If,	after	ignoring	expr’s	reference-ness,	expr	is	const,	ignore	that,	too.	If
it’s	volatile,	also	ignore	that.	(volatile	objects	are	uncommon.	They’re
generally	used	only	for	implementing	device	drivers.	For	details,	see	Item
40.)

Hence:

int x = 27; // as before

const int cx = x; // as before

const int& rx = x; // as before

f(x); // T's and param's types are both int

f(cx); // T's and param's types are again both int

f(rx); // T's and param's types are still both int

Note	that	even	though	cx	and	rx	represent	const	values,	param	isn’t	const.
That	makes	sense.	param	is	an	object	that’s	completely	independent	of	cx	and	rx
—a	copy	of	cx	or	rx.	The	fact	that	cx	and	rx	can’t	be	modified	says	nothing
about	whether	param	can	be.	That’s	why	expr’s	constness	(and	volatileness,
if	any)	is	ignored	when	deducing	a	type	for	param:	just	because	expr	can’t	be
modified	doesn’t	mean	that	a	copy	of	it	can’t	be.

It’s	important	to	recognize	that	const	(and	volatile)	is	ignored	only	for	by-
value	parameters.	As	we’ve	seen,	for	parameters	that	are	references-to-	or
pointers-to-const,	the	constness	of	expr	is	preserved	during	type	deduction.
But	consider	the	case	where	expr	is	a	const	pointer	to	a	const	object,	and	expr
is	passed	to	a	by-value	param:

template<typename T>

void f(T param); // param is still passed by value

const char* const ptr = // ptr is const pointer to const object

 "Fun with pointers";

f(ptr); // pass arg of type const char * const

Here,	the	const	to	the	right	of	the	asterisk	declares	ptr	to	be	const:	ptr	can’t
be	made	to	point	to	a	different	location,	nor	can	it	be	set	to	null.	(The	const	to
the	left	of	the	asterisk	says	that	what	ptr	points	to—the	character	string—is
const,	hence	can’t	be	modified.)	When	ptr	is	passed	to	f,	the	bits	making	up
the	pointer	are	copied	into	param.	As	such,	the	pointer	itself	(ptr)	will	be	passed
by	value.	In	accord	with	the	type	deduction	rule	for	by-value	parameters,	the
constness	of	ptr	will	be	ignored,	and	the	type	deduced	for	param	will	be	const
char*,	i.e.,	a	modifiable	pointer	to	a	const	character	string.	The	constness	of
what	ptr	points	to	is	preserved	during	type	deduction,	but	the	constness	of	ptr
itself	is	ignored	when	copying	it	to	create	the	new	pointer,	param.

Array	Arguments
That	pretty	much	covers	it	for	mainstream	template	type	deduction,	but	there’s	a
niche	case	that’s	worth	knowing	about.	It’s	that	array	types	are	different	from
pointer	types,	even	though	they	sometimes	seem	to	be	interchangeable.	A
primary	contributor	to	this	illusion	is	that,	in	many	contexts,	an	array	decays	into
a	pointer	to	its	first	element.	This	decay	is	what	permits	code	like	this	to
compile:

const char name[] = "J. P. Briggs"; // name's type is

 // const char[13]

const char * ptrToName = name; // array decays to pointer

Here,	the	const char*	pointer	ptrToName	is	being	initialized	with	name,	which
is	a	const	char[13].	These	types	(const	char*	and	const	char[13])	are	not
the	same,	but	because	of	the	array-to-pointer	decay	rule,	the	code	compiles.

But	what	if	an	array	is	passed	to	a	template	taking	a	by-value	parameter?	What
happens	then?

template<typename T>

void f(T param); // template with by-value parameter

f(name); // what types are deduced for T and param?

We	begin	with	the	observation	that	there	is	no	such	thing	as	a	function	parameter
that’s	an	array.	Yes,	yes,	the	syntax	is	legal,

void myFunc(int param[]);

but	the	array	declaration	is	treated	as	a	pointer	declaration,	meaning	that	myFunc
could	equivalently	be	declared	like	this:

void myFunc(int* param); // same function as above

This	equivalence	of	array	and	pointer	parameters	is	a	bit	of	foliage	springing
from	the	C	roots	at	the	base	of	C++,	and	it	fosters	the	illusion	that	array	and
pointer	types	are	the	same.

Because	array	parameter	declarations	are	treated	as	if	they	were	pointer
parameters,	the	type	of	an	array	that’s	passed	to	a	template	function	by	value	is
deduced	to	be	a	pointer	type.	That	means	that	in	the	call	to	the	template	f,	its
type	parameter	T	is	deduced	to	be	const	char*:

f(name); // name is array, but T deduced as const char*

But	now	comes	a	curve	ball.	Although	functions	can’t	declare	parameters	that
are	truly	arrays,	they	can	declare	parameters	that	are	references	to	arrays!	So	if
we	modify	the	template	f	to	take	its	argument	by	reference,

template<typename T>

void f(T& param); // template with by-reference parameter

and	we	pass	an	array	to	it,

f(name); // pass array to f

the	type	deduced	for	T	is	the	actual	type	of	the	array!	That	type	includes	the	size
of	the	array,	so	in	this	example,	T	is	deduced	to	be	const	char	[13],	and	the

type	of	f’s	parameter	(a	reference	to	this	array)	is	const	char	(&)[13].	Yes,	the
syntax	looks	toxic,	but	knowing	it	will	score	you	mondo	points	with	those	few
souls	who	care.

Interestingly,	the	ability	to	declare	references	to	arrays	enables	creation	of	a
template	that	deduces	the	number	of	elements	that	an	array	contains:

// return size of an array as a compile-time constant. (The

// array parameter has no name, because we care only about

// the number of elements it contains.)

template<typename T, std::size_t N> // see info

constexpr std::size_t arraySize(T (&)[N]) noexcept // below on

{ // constexpr

 return N; // and

} // noexcept

As	Item	15	explains,	declaring	this	function	constexpr	makes	its	result
available	during	compilation.	That	makes	it	possible	to	declare,	say,	an	array
with	the	same	number	of	elements	as	a	second	array	whose	size	is	computed
from	a	braced	initializer:

int keyVals[] = { 1, 3, 7, 9, 11, 22, 35 }; // keyVals has

 // 7 elements

int mappedVals[arraySize(keyVals)]; // so does

 // mappedVals

Of	course,	as	a	modern	C++	developer,	you’d	naturally	prefer	a	std::array	to	a
built-in	array:

std::array<int, arraySize(keyVals)> mappedVals; // mappedVals'

 // size is 7

As	for	arraySize	being	declared	noexcept,	that’s	to	help	compilers	generate
better	code.	For	details,	see	Item	14.

Function	Arguments
Arrays	aren’t	the	only	things	in	C++	that	can	decay	into	pointers.	Function	types
can	decay	into	function	pointers,	and	everything	we’ve	discussed	regarding	type

deduction	for	arrays	applies	to	type	deduction	for	functions	and	their	decay	into
function	pointers.	As	a	result:

void someFunc(int, double); // someFunc is a function;

 // type is void(int, double)

template<typename T>

void f1(T param); // in f1, param passed by value

template<typename T>

void f2(T& param); // in f2, param passed by ref

f1(someFunc); // param deduced as ptr-to-func;

 // type is void (*)(int, double)

f2(someFunc); // param deduced as ref-to-func;

 // type is void (&)(int, double)

This	rarely	makes	any	difference	in	practice,	but	if	you’re	going	to	know	about
array-to-pointer	decay,	you	might	as	well	know	about	function-to-pointer	decay,
too.

So	there	you	have	it:	the	auto-related	rules	for	template	type	deduction.	I
remarked	at	the	outset	that	they’re	pretty	straightforward,	and	for	the	most	part,
they	are.	The	special	treatment	accorded	lvalues	when	deducing	types	for
universal	references	muddies	the	water	a	bit,	however,	and	the	decay-to-pointer
rules	for	arrays	and	functions	stirs	up	even	greater	turbidity.	Sometimes	you
simply	want	to	grab	your	compilers	and	demand,	“Tell	me	what	type	you’re
deducing!”	When	that	happens,	turn	to	Item	4,	because	it’s	devoted	to	coaxing
compilers	into	doing	just	that.

Things	to	Remember
During	template	type	deduction,	arguments	that	are	references	are	treated	as	non-
references,	i.e.,	their	reference-ness	is	ignored.

When	deducing	types	for	universal	reference	parameters,	lvalue	arguments	get	special
treatment.

When	deducing	types	for	by-value	parameters,	const	and/or	volatile	arguments	are
treated	as	non-const	and	non-volatile.

During	template	type	deduction,	arguments	that	are	array	or	function	names	decay	to

pointers,	unless	they’re	used	to	initialize	references.

Item	2: Understand	auto	type	deduction.
If	you’ve	read	Item	1	on	template	type	deduction,	you	already	know	almost
everything	you	need	to	know	about	auto	type	deduction,	because,	with	only	one
curious	exception,	auto	type	deduction	is	template	type	deduction.	But	how	can
that	be?	Template	type	deduction	involves	templates	and	functions	and
parameters,	but	auto	deals	with	none	of	those	things.

That’s	true,	but	it	doesn’t	matter.	There’s	a	direct	mapping	between	template
type	deduction	and	auto	type	deduction.	There	is	literally	an	algorithmic
transformation	from	one	to	the	other.

In	Item	1,	template	type	deduction	is	explained	using	this	general	function
template

template<typename T>

void f(ParamType param);

and	this	general	call:

f(expr); // call f with some expression

In	the	call	to	f,	compilers	use	expr	to	deduce	types	for	T	and	ParamType.

When	a	variable	is	declared	using	auto,	auto	plays	the	role	of	T	in	the	template,
and	the	type	specifier	for	the	variable	acts	as	ParamType.	This	is	easier	to	show
than	to	describe,	so	consider	this	example:

auto x = 27;

Here,	the	type	specifier	for	x	is	simply	auto	by	itself.	On	the	other	hand,	in	this
declaration,

const auto cx = x;

the	type	specifier	is	const	auto.	And	here,

const auto& rx = x;

the	type	specifier	is	const	auto&.	To	deduce	types	for	x,	cx,	and	rx	in	these
examples,	compilers	act	as	if	there	were	a	template	for	each	declaration	as	well
as	a	call	to	that	template	with	the	corresponding	initializing	expression:

template<typename T> // conceptual template for

void func_for_x(T param); // deducing x's type

func_for_x(27); // conceptual call: param's

 // deduced type is x's type

template<typename T> // conceptual template for

void func_for_cx(const T param); // deducing cx's type

func_for_cx(x); // conceptual call: param's

 // deduced type is cx's type

template<typename T> // conceptual template for

void func_for_rx(const T& param); // deducing rx's type

func_for_rx(x); // conceptual call: param's

 // deduced type is rx's type

As	I	said,	deducing	types	for	auto	is,	with	only	one	exception	(which	we’ll
discuss	soon),	the	same	as	deducing	types	for	templates.

Item	1	divides	template	type	deduction	into	three	cases,	based	on	the
characteristics	of	ParamType,	the	type	specifier	for	param	in	the	general	function
template.	In	a	variable	declaration	using	auto,	the	type	specifier	takes	the	place
of	ParamType,	so	there	are	three	cases	for	that,	too:

Case	1:	The	type	specifier	is	a	pointer	or	reference,	but	not	a	universal
reference.

Case	2:	The	type	specifier	is	a	universal	reference.

Case	3:	The	type	specifier	is	neither	a	pointer	nor	a	reference.

We’ve	already	seen	examples	of	cases	1	and	3:

We’ve	already	seen	examples	of	cases	1	and	3:

auto x = 27; // case 3 (x is neither ptr nor reference)

const auto cx = x; // case 3 (cx isn't either)

const auto& rx = x; // case 1 (rx is a non-universal ref.)

Case	2	works	as	you’d	expect:

auto&& uref1 = x; // x is int and lvalue,

 // so uref1's type is int&

auto&& uref2 = cx; // cx is const int and lvalue,

 // so uref2's type is const int&

auto&& uref3 = 27; // 27 is int and rvalue,

 // so uref3's type is int&&

Item	1	concludes	with	a	discussion	of	how	array	and	function	names	decay	into
pointers	for	non-reference	type	specifiers.	That	happens	in	auto	type	deduction,
too:

const char name[] = // name's type is const char[13]

 "R. N. Briggs";

auto arr1 = name; // arr1's type is const char*

auto& arr2 = name; // arr2's type is

 // const char (&)[13]

void someFunc(int, double); // someFunc is a function;

 // type is void(int, double)

auto func1 = someFunc; // func1's type is

 // void (*)(int, double)

auto& func2 = someFunc; // func2's type is

 // void (&)(int, double)

As	you	can	see,	auto	type	deduction	works	like	template	type	deduction.
They’re	essentially	two	sides	of	the	same	coin.

Except	for	the	one	way	they	differ.	We’ll	start	with	the	observation	that	if	you
want	to	declare	an	int	with	an	initial	value	of	27,	C++98	gives	you	two
syntactic	choices:

int x1 = 27;

int x2(27);

C++11,	through	its	support	for	uniform	initialization,	adds	these:

int x3 = { 27 };

int x4{ 27 };

All	in	all,	four	syntaxes,	but	only	one	result:	an	int	with	value	27.

But	as	Item	5	explains,	there	are	advantages	to	declaring	variables	using	auto
instead	of	fixed	types,	so	it’d	be	nice	to	replace	int	with	auto	in	the	above
variable	declarations.	Straightforward	textual	substitution	yields	this	code:

auto x1 = 27;

auto x2(27);

auto x3 = { 27 };

auto x4{ 27 };

These	declarations	all	compile,	but	they	don’t	have	the	same	meaning	as	the
ones	they	replace.	The	first	two	statements	do,	indeed,	declare	a	variable	of	type
int	with	value	27.	The	second	two,	however,	declare	a	variable	of	type
std::initializer_list<int>	containing	a	single	element	with	value	27!

auto x1 = 27; // type is int, value is 27

auto x2(27); // ditto

auto x3 = { 27 }; // type is std::initializer_list<int>,

 // value is { 27 }

auto x4{ 27 }; // ditto

This	is	due	to	a	special	type	deduction	rule	for	auto.	When	the	initializer	for	an
auto-declared	variable	is	enclosed	in	braces,	the	deduced	type	is	a

std::initializer_list.	If	such	a	type	can’t	be	deduced	(e.g.,	because	the
values	in	the	braced	initializer	are	of	different	types),	the	code	will	be	rejected:

auto x5 = { 1, 2, 3.0 }; // error! can't deduce T for

 // std::initializer_list<T>

As	the	comment	indicates,	type	deduction	will	fail	in	this	case,	but	it’s	important
to	recognize	that	there	are	actually	two	kinds	of	type	deduction	taking	place.	One
kind	stems	from	the	use	of	auto:	x5’s	type	has	to	be	deduced.	Because	x5’s
initializer	is	in	braces,	x5	must	be	deduced	to	be	a	std::initializer_list.
But	std::initializer_list	is	a	template.	Instantiations	are
std::initializer_list<T>	for	some	type	T,	and	that	means	that	T’s	type	must
also	be	deduced.	Such	deduction	falls	under	the	purview	of	the	second	kind	of
type	deduction	occurring	here:	template	type	deduction.	In	this	example,	that
deduction	fails,	because	the	values	in	the	braced	initializer	don’t	have	a	single
type.

The	treatment	of	braced	initializers	is	the	only	way	in	which	auto	type
deduction	and	template	type	deduction	differ.	When	an	auto–declared	variable
is	initialized	with	a	braced	initializer,	the	deduced	type	is	an	instantiation	of
std::initializer_list.	But	if	the	corresponding	template	is	passed	the	same
initializer,	type	deduction	fails,	and	the	code	is	rejected:

auto x = { 11, 23, 9 }; // x's type is

 // std::initializer_list<int>

template<typename T> // template with parameter

void f(T param); // declaration equivalent to

 // x's declaration

f({ 11, 23, 9 }); // error! can't deduce type for T

However,	if	you	specify	in	the	template	that	param	is	a
std::initializer_list<T>	for	some	unknown	T,	template	type	deduction	will
deduce	what	T	is:

template<typename T>

void f(std::initializer_list<T> initList);

f({ 11, 23, 9 }); // T deduced as int, and initList's

 // type is std::initializer_list<int>

So	the	only	real	difference	between	auto	and	template	type	deduction	is	that
auto	assumes	that	a	braced	initializer	represents	a	std::initializer_list,
but	template	type	deduction	doesn’t.

You	might	wonder	why	auto	type	deduction	has	a	special	rule	for	braced
initializers,	but	template	type	deduction	does	not.	I	wonder	this	myself.	Alas,	I
have	not	been	able	to	find	a	convincing	explanation.	But	the	rule	is	the	rule,	and
this	means	you	must	remember	that	if	you	declare	a	variable	using	auto	and	you
initialize	it	with	a	braced	initializer,	the	deduced	type	will	always	be
std::initializer_list.	It’s	especially	important	to	bear	this	in	mind	if	you
embrace	the	philosophy	of	uniform	initialization—of	enclosing	initializing
values	in	braces	as	a	matter	of	course.	A	classic	mistake	in	C++11	programming
is	accidentally	declaring	a	std::initializer_list	variable	when	you	mean	to
declare	something	else.	This	pitfall	is	one	of	the	reasons	some	developers	put
braces	around	their	initializers	only	when	they	have	to.	(When	you	have	to	is
discussed	in	Item	7.)

For	C++11,	this	is	the	full	story,	but	for	C++14,	the	tale	continues.	C++14
permits	auto	to	indicate	that	a	function’s	return	type	should	be	deduced	(see
Item	3),	and	C++14	lambdas	may	use	auto	in	parameter	declarations.	However,
these	uses	of	auto	employ	template	type	deduction,	not	auto	type	deduction.	So
a	function	with	an	auto	return	type	that	returns	a	braced	initializer	won’t
compile:

auto createInitList()

{

 return { 1, 2, 3 }; // error: can't deduce type

} // for { 1, 2, 3 }

The	same	is	true	when	auto	is	used	in	a	parameter	type	specification	in	a	C++14
lambda:

std::vector<int> v;

…

auto resetV =

 [&v](const auto& newValue) { v = newValue; }; // C++14

…

resetV({ 1, 2, 3 }); // error! can't deduce type

 // for { 1, 2, 3 }

Things	to	Remember
auto	type	deduction	is	usually	the	same	as	template	type	deduction,	but	auto	type
deduction	assumes	that	a	braced	initializer	represents	a	std::initializer_list,	and
template	type	deduction	doesn’t.

auto	in	a	function	return	type	or	a	lambda	parameter	implies	template	type	deduction,	not
auto	type	deduction.

Item	3: Understand	decltype.
decltype	is	an	odd	creature.	Given	a	name	or	an	expression,	decltype	tells	you
the	name’s	or	the	expression’s	type.	Typically,	what	it	tells	you	is	exactly	what
you’d	predict.	Occasionally	however,	it	provides	results	that	leave	you
scratching	your	head	and	turning	to	reference	works	or	online	Q&A	sites	for
revelation.

We’ll	begin	with	the	typical	cases—the	ones	harboring	no	surprises.	In	contrast
to	what	happens	during	type	deduction	for	templates	and	auto	(see	Items	1	and
2),	decltype	typically	parrots	back	the	exact	type	of	the	name	or	expression	you
give	it:

const int i = 0; // decltype(i) is const int

bool f(const Widget& w); // decltype(w) is const Widget&

 // decltype(f) is bool(const Widget&)

struct Point {

 int x, y; // decltype(Point::x) is int

}; // decltype(Point::y) is int

Widget w; // decltype(w) is Widget

if (f(w)) … // decltype(f(w)) is bool

template<typename T> // simplified version of std::vector

class vector {

public:

 …

 T& operator[](std::size_t index);

 …

};

vector<int> v; // decltype(v) is vector<int>

…

if (v[0] == 0) … // decltype(v[0]) is int&

See?	No	surprises.

In	C++11,	perhaps	the	primary	use	for	decltype	is	declaring	function	templates
where	the	function’s	return	type	depends	on	its	parameter	types.	For	example,
suppose	we’d	like	to	write	a	function	that	takes	a	container	that	supports
indexing	via	square	brackets	(i.e.,	the	use	of	“[]”)	plus	an	index,	then
authenticates	the	user	before	returning	the	result	of	the	indexing	operation.	The
return	type	of	the	function	should	be	the	same	as	the	type	returned	by	the
indexing	operation.

operator[]	on	a	container	of	objects	of	type	T	typically	returns	a	T&.	This	is	the
case	for	std::deque,	for	example,	and	it’s	almost	always	the	case	for
std::vector.	For	std::vector<bool>,	however,	operator[]	does	not	return	a
bool&.	Instead,	it	returns	a	brand	new	object.	The	whys	and	hows	of	this
situation	are	explored	in	Item	6,	but	what’s	important	here	is	that	the	type
returned	by	a	container’s	operator[]	depends	on	the	container.

decltype	makes	it	easy	to	express	that.	Here’s	a	first	cut	at	the	template	we’d
like	to	write,	showing	the	use	of	decltype	to	compute	the	return	type.	The
template	needs	a	bit	of	refinement,	but	we’ll	defer	that	for	now:

template<typename Container, typename Index> // works, but

auto authAndAccess(Container& c, Index i) // requires

 -> decltype(c[i]) // refinement

{

 authenticateUser();

 return c[i];

}

The	use	of	auto	before	the	function	name	has	nothing	to	do	with	type	deduction.
Rather,	it	indicates	that	C++11’s	trailing	return	type	syntax	is	being	used,	i.e.,
that	the	function’s	return	type	will	be	declared	following	the	parameter	list	(after
the	“->”).	A	trailing	return	type	has	the	advantage	that	the	function’s	parameters
can	be	used	in	the	specification	of	the	return	type.	In	authAndAccess,	for
example,	we	specify	the	return	type	using	c	and	i.	If	we	were	to	have	the	return
type	precede	the	function	name	in	the	conventional	fashion,	c	and	i	would	be
unavailable,	because	they	would	not	have	been	declared	yet.

With	this	declaration,	authAndAccess	returns	whatever	type	operator[]
returns	when	applied	to	the	passed-in	container,	exactly	as	we	desire.

C++11	permits	return	types	for	single-statement	lambdas	to	be	deduced,	and
C++14	extends	this	to	both	all	lambdas	and	all	functions,	including	those	with
multiple	statements.	In	the	case	of	authAndAccess,	that	means	that	in	C++14	we
can	omit	the	trailing	return	type,	leaving	just	the	leading	auto.	With	that	form	of
declaration,	auto	does	mean	that	type	deduction	will	take	place.	In	particular,	it
means	that	compilers	will	deduce	the	function’s	return	type	from	the	function’s
implementation:

template<typename Container, typename Index> // C++14;

auto authAndAccess(Container& c, Index i) // not quite

{ // correct

 authenticateUser();

 return c[i]; // return type deduced from c[i]

}

Item	2	explains	that	for	functions	with	an	auto	return	type	specification,
compilers	employ	template	type	deduction.	In	this	case,	that’s	problematic.	As
we’ve	discussed,	operator[]	for	most	containers-of-T	returns	a	T&,	but	Item	1
explains	that	during	template	type	deduction,	the	reference-ness	of	an	initializing
expression	is	ignored.	Consider	what	that	means	for	this	client	code:

std::deque<int> d;

…

authAndAccess(d, 5) = 10; // authenticate user, return d[5],

 // then assign 10 to it;

 // this won't compile!

Here,	d[5]	returns	an	int&,	but	auto	return	type	deduction	for	authAndAccess
will	strip	off	the	reference,	thus	yielding	a	return	type	of	int.	That	int,	being
the	return	value	of	a	function,	is	an	rvalue,	and	the	code	above	thus	attempts	to
assign	10	to	an	rvalue	int.	That’s	forbidden	in	C++,	so	the	code	won’t	compile.

To	get	authAndAccess	to	work	as	we’d	like,	we	need	to	use	decltype	type
deduction	for	its	return	type,	i.e.,	to	specify	that	authAndAccess	should	return
exactly	the	same	type	that	the	expression	c[i]	returns.	The	guardians	of	C++,
anticipating	the	need	to	use	decltype	type	deduction	rules	in	some	cases	where
types	are	inferred,	make	this	possible	in	C++14	through	the	decltype(auto)
specifier.	What	may	initially	seem	contradictory	(decltype	and	auto?)	actually
makes	perfect	sense:	auto	specifies	that	the	type	is	to	be	deduced,	and	decltype
says	that	decltype	rules	should	be	used	during	the	deduction.	We	can	thus	write
authAndAccess	like	this:

template<typename Container, typename Index> // C++14; works,

decltype(auto) // but still

authAndAccess(Container& c, Index i) // requires

{ // refinement

 authenticateUser();

 return c[i];

}

Now	authAndAccess	will	truly	return	whatever	c[i]	returns.	In	particular,	for
the	common	case	where	c[i]	returns	a	T&,	authAndAccess	will	also	return	a	T&,
and	in	the	uncommon	case	where	c[i]	returns	an	object,	authAndAccess	will
return	an	object,	too.

The	use	of	decltype(auto)	is	not	limited	to	function	return	types.	It	can	also	be
convenient	for	declaring	variables	when	you	want	to	apply	the	decltype	type
deduction	rules	to	the	initializing	expression:

Widget w;

const Widget& cw = w;

auto myWidget1 = cw; // auto type deduction:

 // myWidget1's type is Widget

decltype(auto) myWidget2 = cw; // decltype type deduction:

 // myWidget2's type is

 // const Widget&

But	two	things	are	bothering	you,	I	know.	One	is	the	refinement	to
authAndAccess	I	mentioned,	but	have	not	yet	described.	Let’s	address	that	now.

Look	again	at	the	declaration	for	the	C++14	version	of	authAndAccess:

template<typename Container, typename Index>

decltype(auto) authAndAccess(Container& c, Index i);

The	container	is	passed	by	lvalue-reference-to-non-const,	because	returning	a
reference	to	an	element	of	the	container	permits	clients	to	modify	that	container.
But	this	means	it’s	not	possible	to	pass	rvalue	containers	to	this	function.
Rvalues	can’t	bind	to	lvalue	references	(unless	they’re	lvalue-references-to-
const,	which	is	not	the	case	here).

Admittedly,	passing	an	rvalue	container	to	authAndAccess	is	an	edge	case.	An
rvalue	container,	being	a	temporary	object,	would	typically	be	destroyed	at	the
end	of	the	statement	containing	the	call	to	authAndAccess,	and	that	means	that	a
reference	to	an	element	in	that	container	(which	is	typically	what
authAndAccess	would	return)	would	dangle	at	the	end	of	the	statement	that
created	it.	Still,	it	could	make	sense	to	pass	a	temporary	object	to
authAndAccess.	A	client	might	simply	want	to	make	a	copy	of	an	element	in	the
temporary	container,	for	example:

std::deque<std::string> makeStringDeque(); // factory function

// make copy of 5th element of deque returned

// from makeStringDeque

auto s = authAndAccess(makeStringDeque(), 5);

Supporting	such	use	means	we	need	to	revise	the	declaration	for	authAndAccess
to	accept	both	lvalues	and	rvalues.	Overloading	would	work	(one	overload
would	declare	an	lvalue	reference	parameter,	the	other	an	rvalue	reference

parameter),	but	then	we’d	have	two	functions	to	maintain.	A	way	to	avoid	that	is
to	have	authAndAccess	employ	a	reference	parameter	that	can	bind	to	lvalues
and	rvalues,	and	Item	24	explains	that	that’s	exactly	what	universal	references
do.	authAndAccess	can	therefore	be	declared	like	this:

template<typename Container, typename Index> // c is now a

decltype(auto) authAndAccess(Container&& c, // universal

 Index i); // reference

In	this	template,	we	don’t	know	what	type	of	container	we’re	operating	on,	and
that	means	we’re	equally	ignorant	of	the	type	of	index	objects	it	uses.	Employing
pass-by-value	for	objects	of	an	unknown	type	generally	risks	the	performance	hit
of	unnecessary	copying,	the	behavioral	problems	of	object	slicing	(see	Item	41),
and	the	sting	of	our	coworkers’	derision,	but	in	the	case	of	container	indices,
following	the	example	of	the	Standard	Library	for	index	values	(e.g.,	in
operator[]	for	std::string,	std::vector,	and	std::deque)	seems
reasonable,	so	we’ll	stick	with	pass-by-value	for	them.

However,	we	need	to	update	the	template’s	implementation	to	bring	it	into
accord	with	Item	25’s	admonition	to	apply	std::forward	to	universal
references:

template<typename Container, typename Index> // final

decltype(auto) // C++14

authAndAccess(Container&& c, Index i) // version

{

 authenticateUser();

 return std::forward<Container>(c)[i];

}

This	should	do	everything	we	want,	but	it	requires	a	C++14	compiler.	If	you
don’t	have	one,	you’ll	need	to	use	the	C++11	version	of	the	template.	It’s	the
same	as	its	C++14	counterpart,	except	that	you	have	to	specify	the	return	type
yourself:

template<typename Container, typename Index> // final

auto // C++11

authAndAccess(Container&& c, Index i) // version

-> decltype(std::forward<Container>(c)[i])

{

 authenticateUser();

 return std::forward<Container>(c)[i];

}

The	other	issue	that’s	likely	to	be	nagging	at	you	is	my	remark	at	the	beginning
of	this	Item	that	decltype	almost	always	produces	the	type	you	expect,	that	it
rarely	surprises.	Truth	be	told,	you’re	unlikely	to	encounter	these	exceptions	to
the	rule	unless	you’re	a	heavy-duty	library	implementer.

To	fully	understand	decltype’s	behavior,	you’ll	have	to	familiarize	yourself
with	a	few	special	cases.	Most	of	these	are	too	obscure	to	warrant	discussion	in	a
book	like	this,	but	looking	at	one	lends	insight	into	decltype	as	well	as	its	use.

Applying	decltype	to	a	name	yields	the	declared	type	for	that	name.	Names	are
lvalue	expressions,	but	that	doesn’t	affect	decltype’s	behavior.	For	lvalue
expressions	more	complicated	than	names,	however,	decltype	ensures	that	the
type	reported	is	always	an	lvalue	reference.	That	is,	if	an	lvalue	expression	other
than	a	name	has	type	T,	decltype	reports	that	type	as	T&.	This	seldom	has	any
impact,	because	the	type	of	most	lvalue	expressions	inherently	includes	an	lvalue
reference	qualifier.	Functions	returning	lvalues,	for	example,	always	return
lvalue	references.

There	is	an	implication	of	this	behavior	that	is	worth	being	aware	of,	however.	In

int x = 0;

x	is	the	name	of	a	variable,	so	decltype(x)	is	int.	But	wrapping	the	name	x	in
parentheses—“(x)”—yields	an	expression	more	complicated	than	a	name.
Being	a	name,	x	is	an	lvalue,	and	C++	defines	the	expression	(x)	to	be	an
lvalue,	too.	decltype((x))	is	therefore	int&.	Putting	parentheses	around	a
name	can	change	the	type	that	decltype	reports	for	it!

In	C++11,	this	is	little	more	than	a	curiosity,	but	in	conjunction	with	C++14’s
support	for	decltype(auto),	it	means	that	a	seemingly	trivial	change	in	the	way
you	write	a	return	statement	can	affect	the	deduced	type	for	a	function:

decltype(auto) f1()

{

 int x = 0;

 …

 return x; // decltype(x) is int, so f1 returns int

}

decltype(auto) f2()

{

 int x = 0;

 …

 return (x); // decltype((x)) is int&, so f2 returns int&

}

Note	that	not	only	does	f2	have	a	different	return	type	from	f1,	it’s	also
returning	a	reference	to	a	local	variable!	That’s	the	kind	of	code	that	puts	you	on
the	express	train	to	undefined	behavior—a	train	you	certainly	don’t	want	to	be
on.

The	primary	lesson	is	to	pay	very	close	attention	when	using	decltype(auto).
Seemingly	insignificant	details	in	the	expression	whose	type	is	being	deduced
can	affect	the	type	that	decltype(auto)	reports.	To	ensure	that	the	type	being
deduced	is	the	type	you	expect,	use	the	techniques	described	in	Item	4.

At	the	same	time,	don’t	lose	sight	of	the	bigger	picture.	Sure,	decltype	(both
alone	and	in	conjunction	with	auto)	may	occasionally	yield	type-deduction
surprises,	but	that’s	not	the	normal	situation.	Normally,	decltype	produces	the
type	you	expect.	This	is	especially	true	when	decltype	is	applied	to	names,
because	in	that	case,	decltype	does	just	what	it	sounds	like:	it	reports	that
name’s	declared	type.

	
Things	to	Remember

decltype	almost	always	yields	the	type	of	a	variable	or	expression	without	any
modifications.

For	lvalue	expressions	of	type	T	other	than	names,	decltype	always	reports	a	type	of	T&.

C++14	supports	decltype(auto),	which,	like	auto,	deduces	a	type	from	its	initializer,
but	it	performs	the	type	deduction	using	the	decltype	rules.

Item	4: Know	how	to	view	deduced	types.
The	choice	of	tools	for	viewing	the	results	of	type	deduction	is	dependent	on	the
phase	of	the	software	development	process	where	you	want	the	information.
We’ll	explore	three	possibilities:	getting	type	deduction	information	as	you	edit
your	code,	getting	it	during	compilation,	and	getting	it	at	runtime.

IDE	Editors
Code	editors	in	IDEs	often	show	the	types	of	program	entities	(e.g.,	variables,
parameters,	functions,	etc.)	when	you	do	something	like	hover	your	cursor	over
the	entity.	For	example,	given	this	code,						

const int theAnswer = 42;

auto x = theAnswer;

auto y = &theAnswer;

an	IDE	editor	would	likely	show	that	x’s	deduced	type	was	int	and	y’s	was
const	int*.

For	this	to	work,	your	code	must	be	in	a	more	or	less	compilable	state,	because
what	makes	it	possible	for	the	IDE	to	offer	this	kind	of	information	is	a	C++
compiler	(or	at	least	the	front	end	of	one)	running	inside	the	IDE.	If	that
compiler	can’t	make	enough	sense	of	your	code	to	parse	it	and	perform	type
deduction,	it	can’t	show	you	what	types	it	deduced.

For	simple	types	like	int,	information	from	IDEs	is	generally	fine.	As	we’ll	see
soon,	however,	when	more	complicated	types	are	involved,	the	information
displayed	by	IDEs	may	not	be	particularly	helpful.

Compiler	Diagnostics
An	effective	way	to	get	a	compiler	to	show	a	type	it	has	deduced	is	to	use	that
type	in	a	way	that	leads	to	compilation	problems.	The	error	message	reporting
the	problem	is	virtually	sure	to	mention	the	type	that’s	causing	it.

Suppose,	for	example,	we’d	like	to	see	the	types	that	were	deduced	for	x	and	y	in
the	previous	example.	We	first	declare	a	class	template	that	we	don’t	define.

Something	like	this	does	nicely:

template<typename T> // declaration only for TD;

class TD; // TD == "Type Displayer"

Attempts	to	instantiate	this	template	will	elicit	an	error	message,	because	there’s
no	template	definition	to	instantiate.	To	see	the	types	for	x	and	y,	just	try	to
instantiate	TD	with	their	types:

TD<decltype(x)> xType; // elicit errors containing

TD<decltype(y)> yType; // x's and y's types

I	use	variable	names	of	the	form	variableNameType,	because	they	tend	to	yield
error	messages	that	help	me	find	the	information	I’m	looking	for.	For	the	code
above,	one	of	my	compilers	issues	diagnostics	reading,	in	part,	as	follows	(I’ve
highlighted	the	type	information	we’re	after):

error: aggregate 'TD<int> xType' has incomplete type and

 cannot be defined

error: aggregate 'TD<const int *> yType' has incomplete type

 and cannot be defined

A	different	compiler	provides	the	same	information,	but	in	a	different	form:

error: 'xType' uses undefined class 'TD<int>'

error: 'yType' uses undefined class 'TD<const int *>'

Formatting	differences	aside,	all	the	compilers	I’ve	tested	produce	error
messages	with	useful	type	information	when	this	technique	is	employed.

Runtime	Output
The	printf	approach	to	displaying	type	information	(not	that	I’m
recommending	you	use	printf)	can’t	be	employed	until	runtime,	but	it	offers
full	control	over	the	formatting	of	the	output.	The	challenge	is	to	create	a	textual
representation	of	the	type	you	care	about	that	is	suitable	for	display.	“No	sweat,”
you’re	thinking,	“it’s	typeid	and	std::type_info::name	to	the	rescue.”	In	our
continuing	quest	to	see	the	types	deduced	for	x	and	y,	you	may	figure	we	can

write	this:

std::cout << typeid(x).name() << '\n'; // display types for

std::cout << typeid(y).name() << '\n'; // x and y

This	approach	relies	on	the	fact	that	invoking	typeid	on	an	object	such	as	x	or	y
yields	a	std::type_info	object,	and	std::type_info	has	a	member	function,
name,	that	produces	a	C-style	string	(i.e.,	a	const	char*)	representation	of	the
name	of	the	type.

Calls	to	std::type_info::name	are	not	guaranteed	to	return	anything	sensible,
but	implementations	try	to	be	helpful.	The	level	of	helpfulness	varies.	The	GNU
and	Clang	compilers	report	that	the	type	of	x	is	“i”,	and	the	type	of	y	is	“PKi”,
for	example.	These	results	make	sense	once	you	learn	that,	in	output	from	these
compilers,	“i”	means	“int”	and	“PK”	means	“pointer	to	konst	const.”	(Both
compilers	support	a	tool,	c++filt,	that	decodes	such	“mangled”	types.)
Microsoft’s	compiler	produces	less	cryptic	output:	“int”	for	x	and	“int	const
*”	for	y.

Because	these	results	are	correct	for	the	types	of	x	and	y,	you	might	be	tempted
to	view	the	type-reporting	problem	as	solved,	but	let’s	not	be	hasty.	Consider	a
more	complex	example:

template<typename T> // template function to

void f(const T& param); // be called

std::vector<Widget> createVec(); // factory function

const auto vw = createVec(); // init vw w/factory return

if (!vw.empty()) {

 f(&vw[0]); // call f

 …

}

This	code,	which	involves	a	user-defined	type	(Widget),	an	STL	container
(std::vector),	and	an	auto	variable	(vw),	is	more	representative	of	the
situations	where	you	might	want	some	visibility	into	the	types	your	compilers
are	deducing.	For	example,	it’d	be	nice	to	know	what	types	are	inferred	for	the

template	type	parameter	T	and	the	function	parameter	param	in	f.

Loosing	typeid	on	the	problem	is	straightforward.	Just	add	some	code	to	f	to
display	the	types	you’d	like	to	see:	

template<typename T>

void f(const T& param)

{

 using std::cout;

 cout << "T = " << typeid(T).name() << '\n'; // show T

 cout << "param = " << typeid(param).name() << '\n'; // show

 … // param's

} // type

Executables	produced	by	the	GNU	and	Clang	compilers	produce	this	output:

T = PK6Widget

param = PK6Widget

We	already	know	that	for	these	compilers,	PK	means	“pointer	to	const,”	so	the
only	mystery	is	the	number	6.	That’s	simply	the	number	of	characters	in	the
class	name	that	follows	(Widget).	So	these	compilers	tell	us	that	both	T	and
param	are	of	type	const Widget*.

Microsoft’s	compiler	concurs:

T = class Widget const

param = class Widget const

Three	independent	compilers	producing	the	same	information	suggests	that	the
information	is	accurate.	But	look	more	closely.	In	the	template	f,	param’s
declared	type	is	const	T&.	That	being	the	case,	doesn’t	it	seem	odd	that	T	and
param	have	the	same	type?	If	T	were	int,	for	example,	param’s	type	should	be
const	int&—not	the	same	type	at	all.

Sadly,	the	results	of	std::type_info::name	are	not	reliable.	In	this	case,	for
example,	the	type	that	all	three	compilers	report	for	param	are	incorrect.
Furthermore,	they’re	essentially	required	to	be	incorrect,	because	the

specification	for	std::type_info::name	mandates	that	the	type	be	treated	as	if
it	had	been	passed	to	a	template	function	as	a	by-value	parameter.	As	Item	1
explains,	that	means	that	if	the	type	is	a	reference,	its	reference-ness	is	ignored,
and	if	the	type	after	reference	removal	is	const	(or	volatile),	its	constness	(or
volatileness)	is	also	ignored.	That’s	why	param’s	type—which	is	const
Widget	*	const	&—is	reported	as	const	Widget*.	First	the	type’s	reference-
ness	is	removed,	and	then	the	constness	of	the	resulting	pointer	is	eliminated.

Equally	sadly,	the	type	information	displayed	by	IDE	editors	is	also	not	reliable
—or	at	least	not	reliably	useful.	For	this	same	example,	one	IDE	editor	I	know
reports	T’s	type	as	(I	am	not	making	this	up):

const

std::_Simple_types<std::_Wrap_alloc<std::_Vec_base_types<Widget,

std::allocator<Widget> >::_Alloc>::value_type>::value_type *

The	same	IDE	editor	shows	param’s	type	as:

const std::_Simple_types<...>::value_type *const &

That’s	less	intimidating	than	the	type	for	T,	but	the	“...”	in	the	middle	is
confusing	until	you	realize	that	it’s	the	IDE	editor’s	way	of	saying	“I’m	omitting
all	that	stuff	that’s	part	of	T’s	type.”	With	any	luck,	your	development
environment	does	a	better	job	on	code	like	this.

If	you’re	more	inclined	to	rely	on	libraries	than	luck,	you’ll	be	pleased	to	know
that	where	std::type_info::name	and	IDEs	may	fail,	the	Boost	TypeIndex
library	(often	written	as	Boost.TypeIndex)	is	designed	to	succeed.	The	library
isn’t	part	of	Standard	C++,	but	neither	are	IDEs	or	templates	like	TD.
Furthermore,	the	fact	that	Boost	libraries	(available	at	boost.com)	are	cross-
platform,	open	source,	and	available	under	a	license	designed	to	be	palatable	to
even	the	most	paranoid	corporate	legal	team	means	that	code	using	Boost
libraries	is	nearly	as	portable	as	code	relying	on	the	Standard	Library.

Here’s	how	our	function	f	can	produce	accurate	type	information	using
Boost.TypeIndex:

#include <boost/type_index.hpp>

http://boost.com

template<typename T>

void f(const T& param)

{

 using std::cout;

 using boost::typeindex::type_id_with_cvr;

 // show T

 cout << "T = "

 << type_id_with_cvr<T>().pretty_name()

 << '\n';

 // show param's type

 cout << "param = "

 << type_id_with_cvr<decltype(param)>().pretty_name()

 << '\n';

 …

}

The	way	this	works	is	that	the	function	template
boost::typeindex::type_id_with_cvr	takes	a	type	argument	(the	type	about
which	we	want	information)	and	doesn’t	remove	const,	volatile,	or	reference
qualifiers	(hence	the	“with_cvr”	in	the	template	name).	The	result	is	a
boost::typeindex::type_index	object,	whose	pretty_name	member
function	produces	a	std::string	containing	a	human-friendly	representation	of
the	type.

With	this	implementation	for	f,	consider	again	the	call	that	yields	incorrect	type
information	for	param	when	typeid	is	used:

std::vector<Widget> createVec(); // factory function

const auto vw = createVec(); // init vw w/factory return

if (!vw.empty()) {

 f(&vw[0]); // call f

 …

}

Under	compilers	from	GNU	and	Clang,	Boost.TypeIndex	produces	this
(accurate)	output:

T = Widget const*

T = Widget const*

param = Widget const* const&

Results	under	Microsoft’s	compiler	are	essentially	the	same:

T = class Widget const

param = class Widget const const &

Such	near-uniformity	is	nice,	but	it’s	important	to	remember	that	IDE	editors,
compiler	error	messages,	and	libraries	like	Boost.TypeIndex	are	merely	tools
you	can	use	to	help	you	figure	out	what	types	your	compilers	are	deducing.	All
can	be	helpful,	but	at	the	end	of	the	day,	there’s	no	substitute	for	understanding
the	type	deduction	information	in	Items	1–3.

Things	to	Remember
Deduced	types	can	often	be	seen	using	IDE	editors,	compiler	error	messages,	and	the
Boost	TypeIndex	library.

The	results	of	some	tools	may	be	neither	helpful	nor	accurate,	so	an	understanding	of
C++’s	type	deduction	rules	remains	essential.

Chapter	2.	auto

In	concept,	auto	is	as	simple	as	simple	can	be,	but	it’s	more	subtle	than	it	looks.
Using	it	saves	typing,	sure,	but	it	also	prevents	correctness	and	performance
issues	that	can	bedevil	manual	type	declarations.	Furthermore,	some	of	auto’s
type	deduction	results,	while	dutifully	conforming	to	the	prescribed	algorithm,
are,	from	the	perspective	of	a	programmer,	just	wrong.	When	that’s	the	case,	it’s
important	to	know	how	to	guide	auto	to	the	right	answer,	because	falling	back
on	manual	type	declarations	is	an	alternative	that’s	often	best	avoided.

This	brief	chapter	covers	all	of	auto’s	ins	and	outs.

Item	5: Prefer	auto	to	explicit	type	declarations.
Ah,	the	simple	joy	of

int x;

Wait.	Damn.	I	forgot	to	initialize	x,	so	its	value	is	indeterminate.	Maybe.	It
might	actually	be	initialized	to	zero.	Depends	on	the	context.	Sigh.

Never	mind.	Let’s	move	on	to	the	simple	joy	of	declaring	a	local	variable	to	be
initialized	by	dereferencing	an	iterator:

template<typename It> // algorithm to dwim ("do what I mean")

void dwim(It b, It e) // for all elements in range from

{ // b to e

 while (b != e) {

 typename std::iterator_traits<It>::value_type

 currValue = *b;

 …

 }

}

Ugh.	“typename	std::iterator_traits<It>::value_type”	to	express	the
type	of	the	value	pointed	to	by	an	iterator?	Really?	I	must	have	blocked	out	the

memory	of	how	much	fun	that	is.	Damn.	Wait—didn’t	I	already	say	that?

Okay,	simple	joy	(take	three):	the	delight	of	declaring	a	local	variable	whose
type	is	that	of	a	closure.	Oh,	right.	The	type	of	a	closure	is	known	only	to	the
compiler,	hence	can’t	be	written	out.	Sigh.	Damn.

Damn,	damn,	damn!	Programming	in	C++	is	not	the	joyous	experience	it	should
be!

Well,	it	didn’t	used	to	be.	But	as	of	C++11,	all	these	issues	go	away,	courtesy	of
auto.	auto	variables	have	their	type	deduced	from	their	initializer,	so	they	must
be	initialized.	That	means	you	can	wave	goodbye	to	a	host	of	uninitialized
variable	problems	as	you	speed	by	on	the	modern	C++	superhighway:

int x1; // potentially uninitialized

auto x2; // error! initializer required

auto x3 = 0; // fine, x's value is well-defined

Said	highway	lacks	the	potholes	associated	with	declaring	a	local	variable	whose
value	is	that	of	a	dereferenced	iterator:

template<typename It> // as before

void dwim(It b, It e)

{

 while (b != e) {

 auto currValue = *b;

 …

 }

}

And	because	auto	uses	type	deduction	(see	Item	2),	it	can	represent	types	known
only	to	compilers:

auto derefUPLess = // comparison func.

 [](const std::unique_ptr<Widget>& p1, // for Widgets

 const std::unique_ptr<Widget>& p2) // pointed to by

 { return p1 < p2; }; // std::unique_ptrs

Very	cool.	In	C++14,	the	temperature	drops	further,	because	parameters	to

lambda	expressions	may	involve	auto:

auto derefLess = // C++14 comparison

 [](const auto& p1, // function for

 const auto& p2) // values pointed

 { return p1 < p2; }; // to by anything

 // pointer-like

Coolness	notwithstanding,	perhaps	you’re	thinking	we	don’t	really	need	auto	to
declare	a	variable	that	holds	a	closure,	because	we	can	use	a	std::function
object.	It’s	true,	we	can,	but	possibly	that’s	not	what	you	were	thinking.	And
maybe	now	you’re	thinking	“What’s	a	std::function	object?”	So	let’s	clear
that	up.

std::function	is	a	template	in	the	C++11	Standard	Library	that	generalizes	the
idea	of	a	function	pointer.	Whereas	function	pointers	can	point	only	to	functions,
however,	std::function	objects	can	refer	to	any	callable	object,	i.e.,	to
anything	that	can	be	invoked	like	a	function.	Just	as	you	must	specify	the	type	of
function	to	point	to	when	you	create	a	function	pointer	(i.e.,	the	signature	of	the
functions	you	want	to	point	to),	you	must	specify	the	type	of	function	to	refer	to
when	you	create	a	std::function	object.	You	do	that	through
std::function’s	template	parameter.	For	example,	to	declare	a
std::function	object	named	func	that	could	refer	to	any	callable	object	acting
as	if	it	had	this	signature,

bool(const std::unique_ptr<Widget>&, // C++11 signature for

 const std::unique_ptr<Widget>&) // std::unique_ptr<Widget>

 // comparison function

you’d	write	this:

std::function<bool(const std::unique_ptr<Widget>&,

 const std::unique_ptr<Widget>&)> func;

Because	lambda	expressions	yield	callable	objects,	closures	can	be	stored	in
std::function	objects.	That	means	we	could	declare	the	C++11	version	of
derefUPLess	without	using	auto	as	follows:

std::function<bool(const std::unique_ptr<Widget>&,

 const std::unique_ptr<Widget>&)>

 derefUPLess = [](const std::unique_ptr<Widget>& p1,

 const std::unique_ptr<Widget>& p2)

 { return p1 < p2; };

It’s	important	to	recognize	that	even	setting	aside	the	syntactic	verbosity	and
need	to	repeat	the	parameter	types,	using	std::function	is	not	the	same	as
using	auto.	An	auto-declared	variable	holding	a	closure	has	the	same	type	as
the	closure,	and	as	such	it	uses	only	as	much	memory	as	the	closure	requires.
The	type	of	a	std::function-declared	variable	holding	a	closure	is	an
instantiation	of	the	std::function	template,	and	that	has	a	fixed	size	for	any
given	signature.	This	size	may	not	be	adequate	for	the	closure	it’s	asked	to	store,
and	when	that’s	the	case,	the	std::function	constructor	will	allocate	heap
memory	to	store	the	closure.	The	result	is	that	the	std::function	object
typically	uses	more	memory	than	the	auto-declared	object.	And,	thanks	to
implementation	details	that	restrict	inlining	and	yield	indirect	function	calls,
invoking	a	closure	via	a	std::function	object	is	almost	certain	to	be	slower
than	calling	it	via	an	auto-declared	object.	In	other	words,	the	std::function
approach	is	generally	bigger	and	slower	than	the	auto	approach,	and	it	may
yield	out-of-memory	exceptions,	too.	Plus,	as	you	can	see	in	the	examples
above,	writing	“auto”	is	a	whole	lot	less	work	than	writing	the	type	of	the
std::function	instantiation.	In	the	competition	between	auto	and
std::function	for	holding	a	closure,	it’s	pretty	much	game,	set,	and	match	for
auto.	(A	similar	argument	can	be	made	for	auto	over	std::function	for
holding	the	result	of	calls	to	std::bind,	but	in	Item	34,	I	do	my	best	to	convince
you	to	use	lambdas	instead	of	std::bind,	anyway.)

The	advantages	of	auto	extend	beyond	the	avoidance	of	uninitialized	variables,
verbose	variable	declarations,	and	the	ability	to	directly	hold	closures.	One	is	the
ability	to	avoid	what	I	call	problems	related	to	“type	shortcuts.”	Here’s
something	you’ve	probably	seen—possibly	even	written:

std::vector<int> v;

…

unsigned sz = v.size();

The	official	return	type	of	v.size()	is	std::vector<int>::size_type,	but
few	developers	are	aware	of	that.	std::vector<int>::size_type	is	specified
to	be	an	unsigned	integral	type,	so	a	lot	of	programmers	figure	that	unsigned	is
good	enough	and	write	code	such	as	the	above.	This	can	have	some	interesting
consequences.	On	32-bit	Windows,	for	example,	both	unsigned	and
std::vector<int>::size_type	are	the	same	size,	but	on	64-bit	Windows,
unsigned	is	32	bits,	while	std::vector<int>::size_type	is	64	bits.	This
means	that	code	that	works	under	32-bit	Windows	may	behave	incorrectly	under
64-bit	Windows,	and	when	porting	your	application	from	32	to	64	bits,	who
wants	to	spend	time	on	issues	like	that?

Using	auto	ensures	that	you	don’t	have	to:

auto sz = v.size(); // sz's type is std::vector<int>::size_type

Still	unsure	about	the	wisdom	of	using	auto?	Then	consider	this	code:

std::unordered_map<std::string, int> m;

…

for (const std::pair<std::string, int>& p : m)

{

 … // do something with p

}

This	looks	perfectly	reasonable,	but	there’s	a	problem.	Do	you	see	it?

Recognizing	what’s	amiss	requires	remembering	that	the	key	part	of	a
std::unordered_map	is	const,	so	the	type	of	std::pair	in	the	hash	table
(which	is	what	a	std::unordered_map	is)	isn’t	std::pair<std::string,
int>,	it’s	std::pair<const	std::string,	int>.	But	that’s	not	the	type
declared	for	the	variable	p	in	the	loop	above.	As	a	result,	compilers	will	strive	to
find	a	way	to	convert	std::pair<const std::string,	int>	objects	(i.e.,
what’s	in	the	hash	table)	to	std::pair<std::string,	int>	objects	(the
declared	type	for	p).	They’ll	succeed	by	creating	a	temporary	object	of	the	type
that	p	wants	to	bind	to	by	copying	each	object	in	m,	then	binding	the	reference	p
to	that	temporary	object.	At	the	end	of	each	loop	iteration,	the	temporary	object
will	be	destroyed.	If	you	wrote	this	loop,	you’d	likely	be	surprised	by	this

behavior,	because	you’d	almost	certainly	intend	to	simply	bind	the	reference	p	to
each	element	in	m.

Such	unintentional	type	mismatches	can	be	autoed	away:

for (const auto& p : m)

{

 … // as before

}

This	is	not	only	more	efficient,	it’s	also	easier	to	type.	Furthermore,	this	code
has	the	very	attractive	characteristic	that	if	you	take	p’s	address,	you’re	sure	to
get	a	pointer	to	an	element	within	m.	In	the	code	not	using	auto,	you’d	get	a
pointer	to	a	temporary	object—an	object	that	would	be	destroyed	at	the	end	of
the	loop	iteration.

The	last	two	examples—writing	unsigned	when	you	should	have	written
std::vector<int>::size_type	and	writing	std::pair<std::string,	int>
when	you	should	have	written	std::pair<const	std::string,	int>—
demonstrate	how	explicitly	specifying	types	can	lead	to	implicit	conversions	that
you	neither	want	nor	expect.	If	you	use	auto	as	the	type	of	the	target	variable,
you	need	not	worry	about	mismatches	between	the	type	of	variable	you’re
declaring	and	the	type	of	the	expression	used	to	initialize	it.

There	are	thus	several	reasons	to	prefer	auto	over	explicit	type	declarations.	Yet
auto	isn’t	perfect.	The	type	for	each	auto	variable	is	deduced	from	its
initializing	expression,	and	some	initializing	expressions	have	types	that	are
neither	anticipated	nor	desired.	The	conditions	under	which	such	cases	arise,	and
what	you	can	do	about	them,	are	discussed	in	Items	2	and	6,	so	I	won’t	address
them	here.	Instead,	I’ll	turn	my	attention	to	a	different	concern	you	may	have
about	using	auto	in	place	of	traditional	type	declarations:	the	readability	of	the
resulting	source	code.

First,	take	a	deep	breath	and	relax.	auto	is	an	option,	not	a	mandate.	If,	in	your
professional	judgment,	your	code	will	be	clearer	or	more	maintainable	or	in
some	other	way	better	by	using	explicit	type	declarations,	you’re	free	to	continue
using	them.	But	bear	in	mind	that	C++	breaks	no	new	ground	in	adopting	what	is
generally	known	in	the	programming	languages	world	as	type	inference.	Other

statically	typed	procedural	languages	(e.g.,	C#,	D,	Scala,	Visual	Basic)	have	a
more	or	less	equivalent	feature,	to	say	nothing	of	a	variety	of	statically	typed
functional	languages	(e.g.,	ML,	Haskell,	OCaml,	F#,	etc.).	In	part,	this	is	due	to
the	success	of	dynamically	typed	languages	such	as	Perl,	Python,	and	Ruby,
where	variables	are	rarely	explicitly	typed.	The	software	development
community	has	extensive	experience	with	type	inference,	and	it	has
demonstrated	that	there	is	nothing	contradictory	about	such	technology	and	the
creation	and	maintenance	of	large,	industrial-strength	code	bases.

Some	developers	are	disturbed	by	the	fact	that	using	auto	eliminates	the	ability
to	determine	an	object’s	type	by	a	quick	glance	at	the	source	code.	However,
IDEs’	ability	to	show	object	types	often	mitigates	this	problem	(even	taking	into
account	the	IDE	type-display	issues	mentioned	in	Item	4),	and,	in	many	cases,	a
somewhat	abstract	view	of	an	object’s	type	is	just	as	useful	as	the	exact	type.	It
often	suffices,	for	example,	to	know	that	an	object	is	a	container	or	a	counter	or	a
smart	pointer,	without	knowing	exactly	what	kind	of	container,	counter,	or	smart
pointer	it	is.	Assuming	well-chosen	variable	names,	such	abstract	type
information	should	almost	always	be	at	hand.

The	fact	of	the	matter	is	that	writing	types	explicitly	often	does	little	more	than
introduce	opportunities	for	subtle	errors,	either	in	correctness	or	efficiency	or
both.	Furthermore,	auto	types	automatically	change	if	the	type	of	their
initializing	expression	changes,	and	that	means	that	some	refactorings	are
facilitated	by	the	use	of	auto.	For	example,	if	a	function	is	declared	to	return	an
int,	but	you	later	decide	that	a	long	would	be	better,	the	calling	code
automatically	updates	itself	the	next	time	you	compile	if	the	results	of	calling	the
function	are	stored	in	auto	variables.	If	the	results	are	stored	in	variables
explicitly	declared	to	be	int,	you’ll	need	to	find	all	the	call	sites	so	that	you	can
revise	them.

Things	to	Remember
auto	variables	must	be	initialized,	are	generally	immune	to	type	mismatches	that	can	lead
to	portability	or	efficiency	problems,	can	ease	the	process	of	refactoring,	and	typically
require	less	typing	than	variables	with	explicitly	specified	types.

auto-typed	variables	are	subject	to	the	pitfalls	described	in	Items	2	and	6.

Item	6: Use	the	explicitly	typed	initializer	idiom
when	auto	deduces	undesired	types.
Item	5	explains	that	using	auto	to	declare	variables	offers	a	number	of	technical
advantages	over	explicitly	specifying	types,	but	sometimes	auto’s	type
deduction	zigs	when	you	want	it	to	zag.	For	example,	suppose	I	have	a	function
that	takes	a	Widget	and	returns	a	std::vector<bool>,	where	each	bool
indicates	whether	the	Widget	offers	a	particular	feature:

std::vector<bool> features(const Widget& w);

Further	suppose	that	bit	5	indicates	whether	the	Widget	has	high	priority.	We
can	thus	write	code	like	this:

Widget w;

…

bool highPriority = features(w)[5]; // is w high priority?

…

processWidget(w, highPriority); // process w in accord

 // with its priority

There’s	nothing	wrong	with	this	code.	It’ll	work	fine.	But	if	we	make	the
seemingly	innocuous	change	of	replacing	the	explicit	type	for	highPriority
with	auto,

auto highPriority = features(w)[5]; // is w high priority?

the	situation	changes.	All	the	code	will	continue	to	compile,	but	its	behavior	is
no	longer	predictable:

processWidget(w, highPriority); // undefined behavior!

As	the	comment	indicates,	the	call	to	processWidget	now	has	undefined
behavior.	But	why?	The	answer	is	likely	to	be	surprising.	In	the	code	using

auto,	the	type	of	highPriority	is	no	longer	bool.	Though
std::vector<bool>	conceptually	holds	bools,	operator[]	for
std::vector<bool>	doesn’t	return	a	reference	to	an	element	of	the	container
(which	is	what	std::vector::operator[]	returns	for	every	type	except	bool).
Instead,	it	returns	an	object	of	type	std::vector<bool>::reference	(a	class
nested	inside	std::vector<bool>).

std::vector<bool>::reference	exists	because	std::vector<bool>	is
specified	to	represent	its	bools	in	packed	form,	one	bit	per	bool.	That	creates	a
problem	for	std::vector<bool>’s	operator[],	because	operator[]	for
std::vector<T>	is	supposed	to	return	a	T&,	but	C++	forbids	references	to	bits.
Not	being	able	to	return	a	bool&,	operator[]	for	std::vector<bool>	returns
an	object	that	acts	like	a	bool&.	For	this	act	to	succeed,
std::vector<bool>::reference	objects	must	be	usable	in	essentially	all
contexts	where	bool&s	can	be.	Among	the	features	in
std::vector<bool>::reference	that	make	this	work	is	an	implicit	conversion
to	bool.	(Not	to	bool&,	to	bool.	To	explain	the	full	set	of	techniques	used	by
std::vector<bool>::reference	to	emulate	the	behavior	of	a	bool&	would
take	us	too	far	afield,	so	I’ll	simply	remark	that	this	implicit	conversion	is	only
one	stone	in	a	larger	mosaic.)

With	this	information	in	mind,	look	again	at	this	part	of	the	original	code:

bool highPriority = features(w)[5]; // declare highPriority's

 // type explicitly

Here,	features	returns	a	std::vector<bool>	object,	on	which	operator[]	is
invoked.	operator[]	returns	a	std::vector<bool>::reference	object,	which
is	then	implicitly	converted	to	the	bool	that	is	needed	to	initialize
highPriority.	highPriority	thus	ends	up	with	the	value	of	bit	5	in	the
std::vector<bool>	returned	by	features,	just	like	it’s	supposed	to.

Contrast	that	with	what	happens	in	the	auto-ized	declaration	for	highPriority:

auto highPriority = features(w)[5]; // deduce highPriority's

 // type

Again,	features	returns	a	std::vector<bool>	object,	and,	again,	operator[]
is	invoked	on	it.	operator[]	continues	to	return	a
std::vector<bool>::reference	object,	but	now	there’s	a	change,	because
auto	deduces	that	as	the	type	of	highPriority.	highPriority	doesn’t	have	the
value	of	bit	5	of	the	std::vector<bool>	returned	by	features	at	all.

The	value	it	does	have	depends	on	how	std::vector<bool>::reference	is
implemented.	One	implementation	is	for	such	objects	to	contain	a	pointer	to	the
machine	word	holding	the	referenced	bit,	plus	the	offset	into	that	word	for	that
bit.	Consider	what	that	means	for	the	initialization	of	highPriority,	assuming
that	such	a	std::vector<bool>::reference	implementation	is	in	place.

The	call	to	features	returns	a	temporary	std::vector<bool>	object.	This
object	has	no	name,	but	for	purposes	of	this	discussion,	I’ll	call	it	temp.
operator[]	is	invoked	on	temp,	and	the	std::vector<bool>::reference	it
returns	contains	a	pointer	to	a	word	in	the	data	structure	holding	the	bits	that	are
managed	by	temp,	plus	the	offset	into	that	word	corresponding	to	bit	5.
highPriority	is	a	copy	of	this	std::vector<bool>::reference	object,	so
highPriority,	too,	contains	a	pointer	to	a	word	in	temp,	plus	the	offset
corresponding	to	bit	5.	At	the	end	of	the	statement,	temp	is	destroyed,	because
it’s	a	temporary	object.	Therefore,	highPriority	contains	a	dangling	pointer,
and	that’s	the	cause	of	the	undefined	behavior	in	the	call	to	processWidget:

processWidget(w, highPriority); // undefined behavior!

 // highPriority contains

 // dangling pointer!

std::vector<bool>::reference	is	an	example	of	a	proxy	class:	a	class	that
exists	for	the	purpose	of	emulating	and	augmenting	the	behavior	of	some	other
type.	Proxy	classes	are	employed	for	a	variety	of	purposes.
std::vector<bool>::reference	exists	to	offer	the	illusion	that	operator[]
for	std::vector<bool>	returns	a	reference	to	a	bit,	for	example,	and	the
Standard	Library’s	smart	pointer	types	(see	Chapter	4)	are	proxy	classes	that
graft	resource	management	onto	raw	pointers.	The	utility	of	proxy	classes	is
well-established.	In	fact,	the	design	pattern	“Proxy”	is	one	of	the	most
longstanding	members	of	the	software	design	patterns	Pantheon.

Some	proxy	classes	are	designed	to	be	apparent	to	clients.	That’s	the	case	for
std::shared_ptr	and	std::unique_ptr,	for	example.	Other	proxy	classes	are
designed	to	act	more	or	less	invisibly.	std::vector<bool>::reference	is	an
example	of	such	“invisible”	proxies,	as	is	its	std::bitset	compatriot,
std::bitset::reference.

Also	in	that	camp	are	some	classes	in	C++	libraries	employing	a	technique
known	as	expression	templates.	Such	libraries	were	originally	developed	to
improve	the	efficiency	of	numeric	code.	Given	a	class	Matrix	and	Matrix
objects	m1,	m2,	m3,	and	m4,	for	example,	the	expression

Matrix sum = m1 + m2 + m3 + m4;

can	be	computed	much	more	efficiently	if	operator+	for	Matrix	objects	returns
a	proxy	for	the	result	instead	of	the	result	itself.	That	is,	operator+	for	two
Matrix	objects	would	return	an	object	of	a	proxy	class	such	as	Sum<Matrix,
Matrix>	instead	of	a	Matrix	object.	As	was	the	case	with
std::vector<bool>::reference	and	bool,	there’d	be	an	implicit	conversion
from	the	proxy	class	to	Matrix,	which	would	permit	the	initialization	of	sum
from	the	proxy	object	produced	by	the	expression	on	the	right	side	of	the	“=”.
(The	type	of	that	object	would	traditionally	encode	the	entire	initialization
expression,	i.e.,	be	something	like	Sum<Sum<Sum<Matrix,	Matrix>,	Matrix>,
Matrix>.	That’s	definitely	a	type	from	which	clients	should	be	shielded.)

As	a	general	rule,	“invisible”	proxy	classes	don’t	play	well	with	auto.	Objects	of
such	classes	are	often	not	designed	to	live	longer	than	a	single	statement,	so
creating	variables	of	those	types	tends	to	violate	fundamental	library	design
assumptions.	That’s	the	case	with	std::vector<bool>::reference,	and	we’ve
seen	that	violating	that	assumption	can	lead	to	undefined	behavior.

You	therefore	want	to	avoid	code	of	this	form:

auto someVar = expression of "invisible" proxy class type;

But	how	can	you	recognize	when	proxy	objects	are	in	use?	The	software
employing	them	is	unlikely	to	advertise	their	existence.	They’re	supposed	to	be
invisible,	at	least	conceptually!	And	once	you’ve	found	them,	do	you	really	have

to	abandon	auto	and	the	many	advantages	Item	5	demonstrates	for	it?

Let’s	take	the	how-do-you-find-them	question	first.	Although	“invisible”	proxy
classes	are	designed	to	fly	beneath	programmer	radar	in	day-to-day	use,	libraries
using	them	often	document	that	they	do	so.	The	more	you’ve	familiarized
yourself	with	the	basic	design	decisions	of	the	libraries	you	use,	the	less	likely
you	are	to	be	blindsided	by	proxy	usage	within	those	libraries.

Where	documentation	comes	up	short,	header	files	fill	the	gap.	It’s	rarely
possible	for	source	code	to	fully	cloak	proxy	objects.	They’re	typically	returned
from	functions	that	clients	are	expected	to	call,	so	function	signatures	usually
reflect	their	existence.	Here’s	the	spec	for	std::vector<bool>::operator[],
for	example:

namespace std { // from C++ Standards

 template <class Allocator>

 class vector<bool, Allocator> {

 public:

 …

 class reference { … };

 reference operator[](size_type n);

 …

 };

}

Assuming	you	know	that	operator[]	for	std::vector<T>	normally	returns	a
T&,	the	unconventional	return	type	for	operator[]	in	this	case	is	a	tip-off	that	a
proxy	class	is	in	use.	Paying	careful	attention	to	the	interfaces	you’re	using	can
often	reveal	the	existence	of	proxy	classes.

In	practice,	many	developers	discover	the	use	of	proxy	classes	only	when	they
try	to	track	down	mystifying	compilation	problems	or	debug	incorrect	unit	test
results.	Regardless	of	how	you	find	them,	once	auto	has	been	determined	to	be
deducing	the	type	of	a	proxy	class	instead	of	the	type	being	proxied,	the	solution
need	not	involve	abandoning	auto.	auto	itself	isn’t	the	problem.	The	problem	is
that	auto	isn’t	deducing	the	type	you	want	it	to	deduce.	The	solution	is	to	force	a
different	type	deduction.	The	way	you	do	that	is	what	I	call	the	explicitly	typed
initializer	idiom.

The	explicitly	typed	initializer	idiom	involves	declaring	a	variable	with	auto,
but	casting	the	initialization	expression	to	the	type	you	want	auto	to	deduce.
Here’s	how	it	can	be	used	to	force	highPriority	to	be	a	bool,	for	example:

auto highPriority = static_cast<bool>(features(w)[5]);

Here,	features(w)[5]	continues	to	return	a	std::vector<bool>::reference
object,	just	as	it	always	has,	but	the	cast	changes	the	type	of	the	expression	to
bool,	which	auto	then	deduces	as	the	type	for	highPriority.	At	runtime,	the
std::vector<bool>::reference	object	returned	from
std::vector<bool>::operator[]	executes	the	conversion	to	bool	that	it
supports,	and	as	part	of	that	conversion,	the	still-valid	pointer	to	the
std::vector<bool>	returned	from	features	is	dereferenced.	That	avoids	the
undefined	behavior	we	ran	into	earlier.	The	index	5	is	then	applied	to	the	bits
pointed	to	by	the	pointer,	and	the	bool	value	that	emerges	is	used	to	initialize
highPriority.

For	the	Matrix	example,	the	explicitly	typed	initializer	idiom	would	look	like
this:

auto sum = static_cast<Matrix>(m1 + m2 + m3 + m4);

Applications	of	the	idiom	aren’t	limited	to	initializers	yielding	proxy	class	types.
It	can	also	be	useful	to	emphasize	that	you	are	deliberately	creating	a	variable	of
a	type	that	is	different	from	that	generated	by	the	initializing	expression.	For
example,	suppose	you	have	a	function	to	calculate	some	tolerance	value:

double calcEpsilon(); // return tolerance value

calcEpsilon	clearly	returns	a	double,	but	suppose	you	know	that	for	your
application,	the	precision	of	a	float	is	adequate,	and	you	care	about	the
difference	in	size	between	floats	and	doubles.	You	could	declare	a	float
variable	to	store	the	result	of	calcEpsilon,

float ep = calcEpsilon(); // impliclitly convert

 // double → float

but	this	hardly	announces	“I’m	deliberately	reducing	the	precision	of	the	value
returned	by	the	function.”	A	declaration	using	the	explicitly	typed	initializer
idiom,	however,	does:

auto ep = static_cast<float>(calcEpsilon());

Similar	reasoning	applies	if	you	have	a	floating-point	expression	that	you	are
deliberately	storing	as	an	integral	value.	Suppose	you	need	to	calculate	the	index
of	an	element	in	a	container	with	random	access	iterators	(e.g.,	a	std::vector,
std::deque,	or	std::array),	and	you’re	given	a	double	between	0.0	and	1.0
indicating	how	far	from	the	beginning	of	the	container	the	desired	element	is
located.	(0.5	would	indicate	the	middle	of	the	container.)	Further	suppose	that
you’re	confident	that	the	resulting	index	will	fit	in	an	int.	If	the	container	is	c
and	the	double	is	d,	you	could	calculate	the	index	this	way,

int index = d * c.size();

but	this	obscures	the	fact	that	you’re	intentionally	converting	the	double	on	the
right	to	an	int.	The	explicitly	typed	initializer	idiom	makes	things	transparent:

auto index = static_cast<int>(d * c.size());

Things	to	Remember
“Invisible”	proxy	types	can	cause	auto	to	deduce	the	“wrong”	type	for	an	initializing
expression.

The	explicitly	typed	initializer	idiom	forces	auto	to	deduce	the	type	you	want	it	to	have.

Chapter	3.	Moving	to	Modern	C++

When	it	comes	to	big-name	features,	C++11	and	C++14	have	a	lot	to	boast	of.
auto,	smart	pointers,	move	semantics,	lambdas,	concurrency—each	is	so
important,	I	devote	a	chapter	to	it.	It’s	essential	to	master	those	features,	but
becoming	an	effective	modern	C++	programmer	requires	a	series	of	smaller
steps,	too.	Each	step	answers	specific	questions	that	arise	during	the	journey
from	C++98	to	modern	C++.	When	should	you	use	braces	instead	of	parentheses
for	object	creation?	Why	are	alias	declarations	better	than	typedefs?	How	does
constexpr	differ	from	const?	What’s	the	relationship	between	const	member
functions	and	thread	safety?	The	list	goes	on	and	on.	And	one	by	one,	this
chapter	provides	the	answers.

Item	7: Distinguish	between	()	and	{}	when
creating	objects.
Depending	on	your	perspective,	syntax	choices	for	object	initialization	in	C++11
embody	either	an	embarrassment	of	riches	or	a	confusing	mess.	As	a	general
rule,	initialization	values	may	be	specified	with	parentheses,	an	equals	sign,	or
braces:	int	x(0);	//	initializer	is	in	parentheses	int	y	=	0;	//	initializer	follows	"="
int	z{	0	};	//	initializer	is	in	braces

In	many	cases,	it’s	also	possible	to	use	an	equals	sign	and	braces	together:	int	z	=
{	0	};	//	initializer	uses	"="	and	braces

For	the	remainder	of	this	Item,	I’ll	generally	ignore	the	equals-sign-plus-braces
syntax,	because	C++	usually	treats	it	the	same	as	the	braces-only	version.

The	“confusing	mess”	lobby	points	out	that	the	use	of	an	equals	sign	for
initialization	often	misleads	C++	newbies	into	thinking	that	an	assignment	is
taking	place,	even	though	it’s	not.	For	built-in	types	like	int,	the	difference	is
academic,	but	for	user-defined	types,	it’s	important	to	distinguish	initialization
from	assignment,	because	different	function	calls	are	involved:	Widget	w1;	//
call	default	constructor	Widget	w2	=	w1;	//	not	an	assignment;	calls	copy	ctor

w1	=	w2;	//	an	assignment;	calls	copy	operator=

Even	with	several	initialization	syntaxes,	there	were	some	situations	where
C++98	had	no	way	to	express	a	desired	initialization.	For	example,	it	wasn’t
possible	to	directly	indicate	that	an	STL	container	should	be	created	holding	a
particular	set	of	values	(e.g.,	1,	3,	and	5).

To	address	the	confusion	of	multiple	initialization	syntaxes,	as	well	as	the	fact
that	they	don’t	cover	all	initialization	scenarios,	C++11	introduces	uniform
initialization:	a	single	initialization	syntax	that	can,	at	least	in	concept,	be	used
anywhere	and	express	everything.	It’s	based	on	braces,	and	for	that	reason	I
prefer	the	term	braced	initialization.	“Uniform	initialization”	is	an	idea.	“Braced
initialization”	is	a	syntactic	construct.

Braced	initialization	lets	you	express	the	formerly	inexpressible.	Using	braces,
specifying	the	initial	contents	of	a	container	is	easy:	std::vector<int>	v{	1,	3,	5	};
//	v's	initial	content	is	1,	3,	5

Braces	can	also	be	used	to	specify	default	initialization	values	for	non-static	data
members.	This	capability—new	to	C++11—is	shared	with	the	“=”	initialization
syntax,	but	not	with	parentheses:	class	Widget	{	…	private:	int	x{	0	};	//	fine,	x's
default	value	is	0	int	y	=	0;	//	also	fine	int	z(0);	//	error!	};

On	the	other	hand,	uncopyable	objects	(e.g.,	std::atomics—see	Item	40)	may
be	initialized	using	braces	or	parentheses,	but	not	using	“=”:	std::atomic<int>
ai1{	0	};	//	fine	std::atomic<int>	ai2(0);	//	fine	std::atomic<int>	ai3	=	0;	//	error!

It’s	thus	easy	to	understand	why	braced	initialization	is	called	“uniform.”	Of
C++’s	three	ways	to	designate	an	initializing	expression,	only	braces	can	be	used
everywhere.

A	novel	feature	of	braced	initialization	is	that	it	prohibits	implicit	narrowing
conversions	among	built-in	types.	If	the	value	of	an	expression	in	a	braced
initializer	isn’t	guaranteed	to	be	expressible	by	the	type	of	the	object	being
initialized,	the	code	won’t	compile:	double	x,	y,	z;	…	int	sum1{	x	+	y	+	z	};	//
error!	sum	of	doubles	may	//	not	be	expressible	as	int

Initialization	using	parentheses	and	“=”	doesn’t	check	for	narrowing
conversions,	because	that	could	break	too	much	legacy	code:	int	sum2(x	+	y	+
z);	//	okay	(value	of	expression	//	truncated	to	an	int)	int	sum3	=	x	+	y	+	z;	//
ditto

Another	noteworthy	characteristic	of	braced	initialization	is	its	immunity	to
C++’s	most	vexing	parse.	A	side	effect	of	C++’s	rule	that	anything	that	can	be
parsed	as	a	declaration	must	be	interpreted	as	one,	the	most	vexing	parse	most
frequently	afflicts	developers	when	they	want	to	default-construct	an	object,	but
inadvertently	end	up	declaring	a	function	instead.	The	root	of	the	problem	is	that
if	you	want	to	call	a	constructor	with	an	argument,	you	can	do	it	like	this,
Widget	w1(10);	//	call	Widget	ctor	with	argument	10

but	if	you	try	to	call	a	Widget	constructor	with	zero	arguments	using	the
analogous	syntax,	you	declare	a	function	instead	of	an	object:	Widget	w2();	//
most	vexing	parse!	declares	a	function	//	named	w2	that	returns	a	Widget!

Functions	can’t	be	declared	using	braces	for	the	parameter	list,	so	default-
constructing	an	object	using	braces	doesn’t	have	this	problem:	Widget	w3{};	//
calls	Widget	ctor	with	no	args

There’s	thus	a	lot	to	be	said	for	braced	initialization.	It’s	the	syntax	that	can	be
used	in	the	widest	variety	of	contexts,	it	prevents	implicit	narrowing
conversions,	and	it’s	immune	to	C++’s	most	vexing	parse.	A	trifecta	of
goodness!	So	why	isn’t	this	Item	entitled	something	like	“Prefer	braced
initialization	syntax”?

The	drawback	to	braced	initialization	is	the	sometimes-surprising	behavior	that
accompanies	it.	Such	behavior	grows	out	of	the	unusually	tangled	relationship
among	braced	initializers,	std::initializer_lists,	and	constructor	overload
resolution.	Their	interactions	can	lead	to	code	that	seems	like	it	should	do	one
thing,	but	actually	does	another.	For	example,	Item	2	explains	that	when	an
auto-declared	variable	has	a	braced	initializer,	the	type	deduced	is
std::initializer_list,	even	though	other	ways	of	declaring	a	variable	with
the	same	initializer	would	yield	a	more	intuitive	type.	As	a	result,	the	more	you
like	auto,	the	less	enthusiastic	you’re	likely	to	be	about	braced	initialization.

In	constructor	calls,	parentheses	and	braces	have	the	same	meaning	as	long	as
std::initializer_list	parameters	are	not	involved:	class	Widget	{	public:
Widget(int	i,	bool	b);	//	ctors	not	declaring	Widget(int	i,	double	d);	//
std::initializer_list	params	…	};	Widget	w1(10,	true);	//	calls	first	ctor	Widget
w2{10,	true};	//	also	calls	first	ctor	Widget	w3(10,	5.0);	//	calls	second	ctor
Widget	w4{10,	5.0};	//	also	calls	second	ctor

If,	however,	one	or	more	constructors	declare	a	parameter	of	type
std::initializer_list,	calls	using	the	braced	initialization	syntax	strongly
prefer	the	overloads	taking	std::initializer_lists.	Strongly.	If	there’s	any
way	for	compilers	to	construe	a	call	using	a	braced	initializer	to	be	to	a
constructor	taking	a	std::initializer_list,	compilers	will	employ	that
interpretation.	If	the	Widget	class	above	is	augmented	with	a	constructor	taking
a	std::initializer_list<long	double>,	for	example,	class	Widget	{	public:
Widget(int	i,	bool	b);	//	as	before	Widget(int	i,	double	d);	//	as	before
Widget(std::initializer_list<long	double>	il);	//	added	…	};

Widgets	w2	and	w4	will	be	constructed	using	the	new	constructor,	even	though
the	type	of	the	std::initializer_list	elements	(long	double)	is,	compared
to	the	non-std::initializer_list	constructors,	a	worse	match	for	both
arguments!	Look:	Widget	w1(10,	true);	//	uses	parens	and,	as	before,	//	calls	first
ctor	Widget	w2{10,	true};	//	uses	braces,	but	now	calls	//	std::initializer_list	ctor
//	(10	and	true	convert	to	long	double)	Widget	w3(10,	5.0);	//	uses	parens	and,	as
before,	//	calls	second	ctor	Widget	w4{10,	5.0};	//	uses	braces,	but	now	calls	//
std::initializer_list	ctor	//	(10	and	5.0	convert	to	long	double)

Even	what	would	normally	be	copy	and	move	construction	can	be	hijacked	by
std::initializer_list	constructors:	class	Widget	{	public:	Widget(int	i,	bool
b);	//	as	before	Widget(int	i,	double	d);	//	as	before
Widget(std::initializer_list<long	double>	il);	//	as	before	operator	float()	const;	//
convert	…	//	to	float	};	Widget	w5(w4);	//	uses	parens,	calls	copy	ctor	Widget
w6{w4};	//	uses	braces,	calls	//	std::initializer_list	ctor	//	(w4	converts	to	float,
and	float	//	converts	to	long	double)	Widget	w7(std::move(w4));	//	uses	parens,
calls	move	ctor	Widget	w8{std::move(w4)};	//	uses	braces,	calls	//
std::initializer_list	ctor	//	(for	same	reason	as	w6)

Compilers’	determination	to	match	braced	initializers	with	constructors	taking
std::initializer_lists	is	so	strong,	it	prevails	even	if	the	best-match
std::initializer_list	constructor	can’t	be	called.	For	example:	class	Widget
{	public:	Widget(int	i,	bool	b);	//	as	before	Widget(int	i,	double	d);	//	as	before
Widget(std::initializer_list<bool>	il);	//	element	type	is	//	now	bool	…	//	no
implicit	};	//	conversion	funcs	Widget	w{10,	5.0};	//	error!	requires	narrowing
conversions

Here,	compilers	will	ignore	the	first	two	constructors	(the	second	of	which	offers
an	exact	match	on	both	argument	types)	and	try	to	call	the	constructor	taking	a
std::initializer_list<bool>.	Calling	that	constructor	would	require
converting	an	int	(10)	and	a	double	(5.0)	to	bools.	Both	conversions	would	be
narrowing	(bool	can’t	exactly	represent	either	value),	and	narrowing
conversions	are	prohibited	inside	braced	initializers,	so	the	call	is	invalid,	and
the	code	is	rejected.

Only	if	there’s	no	way	to	convert	the	types	of	the	arguments	in	a	braced
initializer	to	the	type	in	a	std::initializer_list	do	compilers	fall	back	on
normal	overload	resolution.	For	example,	if	we	replace	the
std::initializer_list<bool>	constructor	with	one	taking	a
std::initializer_list<std::string>,	the	non-std::initializer_list
constructors	become	candidates	again,	because	there	is	no	way	to	convert	ints
and	bools	to	std::strings:

class Widget {

public:

 Widget(int i, bool b); // as before

 Widget(int i, double d); // as before

 // std::initializer_list element type is now std::string

 Widget(std::initializer_list<std::string> il);

 … // no implicit

}; // conversion funcs

Widget w1(10, true); // uses parens, still calls first ctor

Widget w2{10, true}; // uses braces, now calls first ctor

Widget w3(10, 5.0); // uses parens, still calls second ctor

Widget w4{10, 5.0}; // uses braces, now calls second ctor

This	brings	us	near	the	end	of	our	examination	of	braced	initializers	and
constructor	overloading,	but	there’s	an	interesting	edge	case	that	needs	to	be
addressed.	Suppose	you	use	an	empty	set	of	braces	to	construct	an	object	that
supports	default	construction	and	also	supports	std::initializer_list
construction.	What	do	your	empty	braces	mean?	If	they	mean	“no	arguments,”
you	get	default	construction,	but	if	they	mean	“empty

std::initializer_list,”	you	get	construction	from	a
std::initializer_list	with	no	elements.

The	rule	is	that	you	get	default	construction.	Empty	braces	mean	no	arguments,
not	an	empty	std::initializer_list:	class	Widget	{	public:	Widget();	//
default	ctor	Widget(std::initializer_list<int>	il);	//	std::initializer	//	_list	ctor	…	//
no	implicit	};	//	conversion	funcs	Widget	w1;	//	calls	default	ctor	Widget	w2{};
//	also	calls	default	ctor	Widget	w3();	//	most	vexing	parse!	declares	a	function!

If	you	want	to	call	a	std::initializer_list	constructor	with	an	empty
std::initializer_list,	you	do	it	by	making	the	empty	braces	a	constructor
argument—by	putting	the	empty	braces	inside	the	parentheses	or	braces
demarcating	what	you’re	passing:	Widget	w4({});	//	calls	std::initializer_list	ctor
//	with	empty	list	Widget	w5{{}};	//	ditto

At	this	point,	with	seemingly	arcane	rules	about	braced	initializers,
std::initializer_lists,	and	constructor	overloading	burbling	about	in	your
brain,	you	may	be	wondering	how	much	of	this	information	matters	in	day-to-
day	programming.	More	than	you	might	think,	because	one	of	the	classes
directly	affected	is	std::vector.	std::vector	has	a	non-
std::initializer_list	constructor	that	allows	you	to	specify	the	initial	size
of	the	container	and	a	value	each	of	the	initial	elements	should	have,	but	it	also
has	a	constructor	taking	a	std::initializer_list	that	permits	you	to	specify
the	initial	values	in	the	container.	If	you	create	a	std::vector	of	a	numeric	type
(e.g.,	a	std::vector<int>)	and	you	pass	two	arguments	to	the	constructor,
whether	you	enclose	those	arguments	in	parentheses	or	braces	makes	a
tremendous	difference:	std::vector<int>	v1(10,	20);	//	use	non-std::initializer_list
//	ctor:	create	10-element	//	std::vector,	all	elements	have	//	value	of	20
std::vector<int>	v2{10,	20};	//	use	std::initializer_list	ctor:	//	create	2-element
std::vector,	//	element	values	are	10	and	20

But	let’s	step	back	from	std::vector	and	also	from	the	details	of	parentheses,
braces,	and	constructor	overloading	resolution	rules.	There	are	two	primary
takeaways	from	this	discussion.	First,	as	a	class	author,	you	need	to	be	aware
that	if	your	set	of	overloaded	constructors	includes	one	or	more	functions	taking
a	std::initializer_list,	client	code	using	braced	initialization	may	see	only
the	std::initializer_list	overloads.	As	a	result,	it’s	best	to	design	your

constructors	so	that	the	overload	called	isn’t	affected	by	whether	clients	use
parentheses	or	braces.	In	other	words,	learn	from	what	is	now	viewed	as	an	error
in	the	design	of	the	std::vector	interface,	and	design	your	classes	to	avoid	it.

An	implication	is	that	if	you	have	a	class	with	no	std::initializer_list
constructor,	and	you	add	one,	client	code	using	braced	initialization	may	find
that	calls	that	used	to	resolve	to	non-std::initializer_list	constructors	now
resolve	to	the	new	function.	Of	course,	this	kind	of	thing	can	happen	any	time
you	add	a	new	function	to	a	set	of	overloads:	calls	that	used	to	resolve	to	one	of
the	old	overloads	might	start	calling	the	new	one.	The	difference	with
std::initializer_list	constructor	overloads	is	that	a
std::initializer_list	overload	doesn’t	just	compete	with	other	overloads,	it
overshadows	them	to	the	point	where	the	other	overloads	may	hardly	be
considered.	So	add	such	overloads	only	with	great	deliberation.

The	second	lesson	is	that	as	a	class	client,	you	must	choose	carefully	between
parentheses	and	braces	when	creating	objects.	Most	developers	end	up	choosing
one	kind	of	delimiter	as	a	default,	using	the	other	only	when	they	have	to.
Braces-by-default	folks	are	attracted	by	their	unrivaled	breadth	of	applicability,
their	prohibition	of	narrowing	conversions,	and	their	immunity	to	C++’s	most
vexing	parse.	Such	folks	understand	that	in	some	cases	(e.g.,	creation	of	a
std::vector	with	a	given	size	and	initial	element	value),	parentheses	are
required.	On	the	other	hand,	the	go-parentheses-go	crowd	embraces	parentheses
as	their	default	argument	delimiter.	They’re	attracted	to	its	consistency	with	the
C++98	syntactic	tradition,	its	avoidance	of	the	auto-deduced-a-
std::initializer_list	problem,	and	the	knowledge	that	their	object	creation
calls	won’t	be	inadvertently	waylaid	by	std::initializer_list	constructors.
They	concede	that	sometimes	only	braces	will	do	(e.g.,	when	creating	a
container	with	particular	values).	There’s	no	consensus	that	either	approach	is
better	than	the	other,	so	my	advice	is	to	pick	one	and	apply	it	consistently.

If	you’re	a	template	author,	the	tension	between	parentheses	and	braces	for
object	creation	can	be	especially	frustrating,	because,	in	general,	it’s	not	possible
to	know	which	should	be	used.	For	example,	suppose	you’d	like	to	create	an
object	of	an	arbitrary	type	from	an	arbitrary	number	of	arguments.	A	variadic
template	makes	this	conceptually	straightforward:	template<typename	T,	//	type
of	object	to	create	typename...	Ts>	//	types	of	arguments	to	use	void

doSomeWork(Ts&&...	params)	{	create	local	T	object	from	params...	…	}

There	are	two	ways	to	turn	the	line	of	pseudocode	into	real	code	(see	Item	25	for
information	about	std::forward):	T	localObject(std::forward<Ts>(params)...);
//	using	parens	T	localObject{std::forward<Ts>(params)...};	//	using	braces

So	consider	this	calling	code:

std::vector<int> v;

…

doSomeWork<std::vector<int>>(10, 20);

If	doSomeWork	uses	parentheses	when	creating	localObject,	the	result	is	a
std::vector	with	10	elements.	If	doSomeWork	uses	braces,	the	result	is	a
std::vector	with	2	elements.	Which	is	correct?	The	author	of	doSomeWork
can’t	know.	Only	the	caller	can.

This	is	precisely	the	problem	faced	by	the	Standard	Library	functions
std::make_unique	and	std::make_shared	(see	Item	21).	These	functions
resolve	the	problem	by	internally	using	parentheses	and	by	documenting	this
decision	as	part	of	their	interfaces.1

Things	to	Remember
Braced	initialization	is	the	most	widely	usable	initialization	syntax,	it	prevents	narrowing
conversions,	and	it’s	immune	to	C++’s	most	vexing	parse.

During	constructor	overload	resolution,	braced	initializers	are	matched	to
std::initializer_list	parameters	if	at	all	possible,	even	if	other	constructors	offer
seemingly	better	matches.

An	example	of	where	the	choice	between	parentheses	and	braces	can	make	a	significant
difference	is	creating	a	std::vector<numeric	type>	with	two	arguments.

Choosing	between	parentheses	and	braces	for	object	creation	inside	templates	can	be
challenging.

Item	8:	Prefer	nullptr	to	0	and	NULL.
So	here’s	the	deal:	the	literal	0	is	an	int,	not	a	pointer.	If	C++	finds	itself

looking	at	0	in	a	context	where	only	a	pointer	can	be	used,	it’ll	grudgingly
interpret	0	as	a	null	pointer,	but	that’s	a	fallback	position.	C++’s	primary	policy
is	that	0	is	an	int,	not	a	pointer.

Practically	speaking,	the	same	is	true	of	NULL.	There	is	some	uncertainty	in	the
details	in	NULL’s	case,	because	implementations	are	allowed	to	give	NULL	an
integral	type	other	than	int	(e.g.,	long).	That’s	not	common,	but	it	doesn’t
really	matter,	because	the	issue	here	isn’t	the	exact	type	of	NULL,	it’s	that	neither
0	nor	NULL	has	a	pointer	type.

In	C++98,	the	primary	implication	of	this	was	that	overloading	on	pointer	and
integral	types	could	lead	to	surprises.	Passing	0	or	NULL	to	such	overloads	never
called	a	pointer	overload:	void	f(int);	//	three	overloads	of	f	void	f(bool);	void
f(void*);	f(0);	//	calls	f(int),	not	f(void*)	f(NULL);	//	might	not	compile,	but
typically	calls	//	f(int).	Never	calls	f(void*)

The	uncertainty	regarding	the	behavior	of	f(NULL)	is	a	reflection	of	the	leeway
granted	to	implementations	regarding	the	type	of	NULL.	If	NULL	is	defined	to	be,
say,	0L	(i.e.,	0	as	a	long),	the	call	is	ambiguous,	because	conversion	from	long
to	int,	long	to	bool,	and	0L	to	void*	are	considered	equally	good.	The
interesting	thing	about	that	call	is	the	contradiction	between	the	apparent
meaning	of	the	source	code	(“I’m	calling	f	with	NULL—the	null	pointer”)	and	its
actual	meaning	(“I’m	calling	f	with	some	kind	of	integer—not	the	null
pointer”).	This	counterintuitive	behavior	is	what	led	to	the	guideline	for	C++98
programmers	to	avoid	overloading	on	pointer	and	integral	types.	That	guideline
remains	valid	in	C++11,	because,	the	advice	of	this	Item	notwithstanding,	it’s
likely	that	some	developers	will	continue	to	use	0	and	NULL,	even	though
nullptr	is	a	better	choice.

nullptr’s	advantage	is	that	it	doesn’t	have	an	integral	type.	To	be	honest,	it
doesn’t	have	a	pointer	type,	either,	but	you	can	think	of	it	as	a	pointer	of	all
types.	nullptr’s	actual	type	is	std::nullptr_t,	and,	in	a	wonderfully	circular
definition,	std::nullptr_t	is	defined	to	be	the	type	of	nullptr.	The	type
std::nullptr_t	implicitly	converts	to	all	raw	pointer	types,	and	that’s	what
makes	nullptr	act	as	if	it	were	a	pointer	of	all	types.

Calling	the	overloaded	function	f	with	nullptr	calls	the	void*	overload	(i.e.,

the	pointer	overload),	because	nullptr	can’t	be	viewed	as	anything	integral:
f(nullptr);	//	calls	f(void*)	overload

Using	nullptr	instead	of	0	or	NULL	thus	avoids	overload	resolution	surprises,
but	that’s	not	its	only	advantage.	It	can	also	improve	code	clarity,	especially
when	auto	variables	are	involved.	For	example,	suppose	you	encounter	this	in	a
code	base:	auto	result	=	findRecord(/*	arguments	*/);	if	(result	==	0)	{	…	}

If	you	don’t	happen	to	know	(or	can’t	easily	find	out)	what	findRecord	returns,
it	may	not	be	clear	whether	result	is	a	pointer	type	or	an	integral	type.	After	all,
0	(what	result	is	tested	against)	could	go	either	way.	If	you	see	the	following,
on	the	other	hand,	auto	result	=	findRecord(/*	arguments	*/);	if	(result	==
nullptr)	{	…	}

there’s	no	ambiguity:	result	must	be	a	pointer	type.

nullptr	shines	especially	brightly	when	templates	enter	the	picture.	Suppose
you	have	some	functions	that	should	be	called	only	when	the	appropriate	mutex
has	been	locked.	Each	function	takes	a	different	kind	of	pointer:	int
f1(std::shared_ptr<Widget>	spw);	//	call	these	only	when	double
f2(std::unique_ptr<Widget>	upw);	//	the	appropriate	bool	f3(Widget*	pw);	//
mutex	is	locked

Calling	code	that	wants	to	pass	null	pointers	could	look	like	this:	std::mutex	f1m,
f2m,	f3m;	//	mutexes	for	f1,	f2,	and	f3	using	MuxGuard	=	//	C++11	typedef;	see
Item	9	std::lock_guard<std::mutex>;	…	{	MuxGuard	g(f1m);	//	lock	mutex	for
f1	auto	result	=	f1(0);	//	pass	0	as	null	ptr	to	f1	}	//	unlock	mutex	…	{	MuxGuard
g(f2m);	//	lock	mutex	for	f2	auto	result	=	f2(NULL);	//	pass	NULL	as	null	ptr	to
f2	}	//	unlock	mutex	…	{	MuxGuard	g(f3m);	//	lock	mutex	for	f3	auto	result	=
f3(nullptr);	//	pass	nullptr	as	null	ptr	to	f3	}	//	unlock	mutex

The	failure	to	use	nullptr	in	the	first	two	calls	in	this	code	is	sad,	but	the	code
works,	and	that	counts	for	something.	However,	the	repeated	pattern	in	the
calling	code—lock	mutex,	call	function,	unlock	mutex—is	more	than	sad.	It’s
disturbing.	This	kind	of	source	code	duplication	is	one	of	the	things	that
templates	are	designed	to	avoid,	so	let’s	templatize	the	pattern:
template<typename	FuncType,	typename	MuxType,	typename	PtrType>	auto
lockAndCall(FuncType	func,	MuxType&	mutex,	PtrType	ptr)	->
decltype(func(ptr))	{	MuxGuard	g(mutex);	return	func(ptr);	}

If	the	return	type	of	this	function	(auto	…	->	decltype(func(ptr))	has	you
scratching	your	head,	do	your	head	a	favor	and	navigate	to	Item	3,	which
explains	what’s	going	on.	There	you’ll	see	that	in	C++14,	the	return	type	could
be	reduced	to	a	simple	decltype(auto):	template<typename	FuncType,
typename	MuxType,	typename	PtrType>	decltype(auto)	lockAndCall(FuncType
func,	//	C++14	MuxType&	mutex,	PtrType	ptr)	{	MuxGuard	g(mutex);	return
func(ptr);	}

Given	the	lockAndCall	template	(either	version),	callers	can	write	code	like
this:	auto	result1	=	lockAndCall(f1,	f1m,	0);	//	error!	…	auto	result2	=
lockAndCall(f2,	f2m,	NULL);	//	error!	…	auto	result3	=	lockAndCall(f3,	f3m,
nullptr);	//	fine

Well,	they	can	write	it,	but,	as	the	comments	indicate,	in	two	of	the	three	cases,
the	code	won’t	compile.	The	problem	in	the	first	call	is	that	when	0	is	passed	to
lockAndCall,	template	type	deduction	kicks	in	to	figure	out	its	type.	The	type	of
0	is,	was,	and	always	will	be	int,	so	that’s	the	type	of	the	parameter	ptr	inside
the	instantiation	of	this	call	to	lockAndCall.	Unfortunately,	this	means	that	in
the	call	to	func	inside	lockAndCall,	an	int	is	being	passed,	and	that’s	not
compatible	with	the	std::shared_ptr<Widget>	parameter	that	f1	expects.	The
0	passed	in	the	call	to	lockAndCall	was	intended	to	represent	a	null	pointer,	but
what	actually	got	passed	was	a	run-of-the-mill	int.	Trying	to	pass	this	int	to	f1
as	a	std::shared_ptr<Widget>	is	a	type	error.	The	call	to	lockAndCall	with	0
fails	because	inside	the	template,	an	int	is	being	passed	to	a	function	that
requires	a	std::shared_ptr<Widget>.

The	analysis	for	the	call	involving	NULL	is	essentially	the	same.	When	NULL	is
passed	to	lockAndCall,	an	integral	type	is	deduced	for	the	parameter	ptr,	and	a
type	error	occurs	when	ptr—an	int	or	int-like	type—is	passed	to	f2,	which
expects	to	get	a	std::unique_ptr<Widget>.

In	contrast,	the	call	involving	nullptr	has	no	trouble.	When	nullptr	is	passed
to	lockAndCall,	the	type	for	ptr	is	deduced	to	be	std::nullptr_t.	When	ptr
is	passed	to	f3,	there’s	an	implicit	conversion	from	std::nullptr_t	to
Widget*,	because	std::nullptr_t	implicitly	converts	to	all	pointer	types.

The	fact	that	template	type	deduction	deduces	the	“wrong”	types	for	0	and	NULL

(i.e.,	their	true	types,	rather	than	their	fallback	meaning	as	a	representation	for	a
null	pointer)	is	the	most	compelling	reason	to	use	nullptr	instead	of	0	or	NULL
when	you	want	to	refer	to	a	null	pointer.	With	nullptr,	templates	pose	no
special	challenge.	Combined	with	the	fact	that	nullptr	doesn’t	suffer	from	the
overload	resolution	surprises	that	0	and	NULL	are	susceptible	to,	the	case	is
ironclad.	When	you	want	to	refer	to	a	null	pointer,	use	nullptr,	not	0	or	NULL.

Things	to	Remember
Prefer	nullptr	to	0	and	NULL.

Avoid	overloading	on	integral	and	pointer	types.

Item	9: Prefer	alias	declarations	to	typedefs.
I’m	confident	we	can	agree	that	using	STL	containers	is	a	good	idea,	and	I	hope
that	Item	18	convinces	you	that	using	std::unique_ptr	is	a	good	idea,	but	my
guess	is	that	neither	of	us	is	fond	of	writing	types	like
“std::unique_ptr<std::unordered_map<std::string,	std::string>>”
more	than	once.	Just	thinking	about	it	probably	increases	the	risk	of	carpal
tunnel	syndrome.

Avoiding	such	medical	tragedies	is	easy.	Introduce	a	typedef:	typedef
std::unique_ptr<std::unordered_map<std::string,	std::string>>	UPtrMapSS;

But	typedefs	are	soooo	C++98.	They	work	in	C++11,	sure,	but	C++11	also
offers	alias	declarations:	using	UPtrMapSS	=
std::unique_ptr<std::unordered_map<std::string,	std::string>>;

Given	that	the	typedef	and	the	alias	declaration	do	exactly	the	same	thing,	it’s
reasonable	to	wonder	whether	there	is	a	solid	technical	reason	for	preferring	one
over	the	other.

There	is,	but	before	I	get	to	it,	I	want	to	mention	that	many	people	find	the	alias
declaration	easier	to	swallow	when	dealing	with	types	involving	function
pointers:	//	FP	is	a	synonym	for	a	pointer	to	a	function	taking	an	int	and	//	a	const
std::string&	and	returning	nothing	typedef	void	(*FP)(int,	const	std::string&);	//

typedef	//	same	meaning	as	above	using	FP	=	void	(*)(int,	const	std::string&);	//
alias	//	declaration

Of	course,	neither	form	is	particularly	easy	to	choke	down,	and	few	people
spend	much	time	dealing	with	synonyms	for	function	pointer	types,	anyway,	so
this	is	hardly	a	compelling	reason	to	choose	alias	declarations	over	typedefs.

But	a	compelling	reason	does	exist:	templates.	In	particular,	alias	declarations
may	be	templatized	(in	which	case	they’re	called	alias	templates),	while
typedefs	cannot.	This	gives	C++11	programmers	a	straightforward	mechanism
for	expressing	things	that	in	C++98	had	to	be	hacked	together	with	typedefs
nested	inside	templatized	structs.	For	example,	consider	defining	a	synonym
for	a	linked	list	that	uses	a	custom	allocator,	MyAlloc.	With	an	alias	template,
it’s	a	piece	of	cake:	template<typename	T>	//	MyAllocList<T>	using
MyAllocList	=	std::list<T,	MyAlloc<T>>;	//	is	synonym	for	//	std::list<T,	//
MyAlloc<T>>	MyAllocList<Widget>	lw;	//	client	code

With	a	typedef,	you	pretty	much	have	to	create	the	cake	from	scratch:
template<typename	T>	//	MyAllocList<T>::type	struct	MyAllocList	{	//	is
synonym	for	typedef	std::list<T,	MyAlloc<T>>	type;	//	std::list<T,	};	//
MyAlloc<T>>	MyAllocList<Widget>::type	lw;	//	client	code

It	gets	worse.	If	you	want	to	use	the	typedef	inside	a	template	for	the	purpose	of
creating	a	linked	list	holding	objects	of	a	type	specified	by	a	template	parameter,
you	have	to	precede	the	typedef	name	with	typename:	template<typename	T>
class	Widget	{	//	Widget<T>	contains	private:	//	a	MyAllocList<T>	typename
MyAllocList<T>::type	list;	//	as	a	data	member	…	};

Here,	MyAllocList<T>::type	refers	to	a	type	that’s	dependent	on	a	template
type	parameter	(T).	MyAllocList<T>::type	is	thus	a	dependent	type,	and	one	of
C++’s	many	endearing	rules	is	that	the	names	of	dependent	types	must	be
preceded	by	typename.

If	MyAllocList	is	defined	as	an	alias	template,	this	need	for	typename	vanishes
(as	does	the	cumbersome	“::type”	suffix):	template<typename	T>	using
MyAllocList	=	std::list<T,	MyAlloc<T>>;	//	as	before	template<typename	T>
class	Widget	{	private:	MyAllocList<T>	list;	//	no	"typename",	…	//	no	"::type"
};

To	you,	MyAllocList<T>	(i.e.,	use	of	the	alias	template)	may	look	just	as
dependent	on	the	template	parameter	T	as	MyAllocList<T>::type	(i.e.,	use	of
the	nested	typedef),	but	you’re	not	a	compiler.	When	compilers	process	the
Widget	template	and	encounter	the	use	of	MyAllocList<T>	(i.e.,	use	of	the	alias
template),	they	know	that	MyAllocList<T>	is	the	name	of	a	type,	because
MyAllocList	is	an	alias	template:	it	must	name	a	type.	MyAllocList<T>	is	thus
a	non-dependent	type,	and	a	typename	specifier	is	neither	required	nor
permitted.

When	compilers	see	MyAllocList<T>::type	(i.e.,	use	of	the	nested	typedef)	in
the	Widget	template,	on	the	other	hand,	they	can’t	know	for	sure	that	it	names	a
type,	because	there	might	be	a	specialization	of	MyAllocList	that	they	haven’t
yet	seen	where	MyAllocList<T>::type	refers	to	something	other	than	a	type.
That	sounds	crazy,	but	don’t	blame	compilers	for	this	possibility.	It’s	the	humans
who	have	been	known	to	produce	such	code.

	For	example,	some	misguided	soul	may	have	concocted	something	like	this:
class	Wine	{	…	};	template<>	//	MyAllocList	specialization	class
MyAllocList<Wine>	{	//	for	when	T	is	Wine	private:	enum	class	WineType	//
see	Item	10	for	info	on	{	White,	Red,	Rose	};	//	"enum	class"	WineType	type;	//
in	this	class,	type	is	…	//	a	data	member!	};

As	you	can	see,	MyAllocList<Wine>::type	doesn’t	refer	to	a	type.	If	Widget
were	to	be	instantiated	with	Wine,	MyAllocList<T>::type	inside	the	Widget
template	would	refer	to	a	data	member,	not	a	type.	Inside	the	Widget	template,
then,	whether	MyAllocList<T>::type	refers	to	a	type	is	honestly	dependent	on
what	T	is,	and	that’s	why	compilers	insist	on	your	asserting	that	it	is	a	type	by
preceding	it	with	typename.

If	you’ve	done	any	template	metaprogramming	(TMP),	you’ve	almost	certainly
bumped	up	against	the	need	to	take	template	type	parameters	and	create	revised
types	from	them.	For	example,	given	some	type	T,	you	might	want	to	strip	off
any	const-	or	reference-qualifiers	that	T	contains,	e.g.,	you	might	want	to	turn
const std::string&	into	std::string.	Or	you	might	want	to	add	const	to	a
type	or	turn	it	into	an	lvalue	reference,	e.g.,	turn	Widget	into	const	Widget	or
into	Widget&.	(If	you	haven’t	done	any	TMP,	that’s	too	bad,	because	if	you	want

to	be	a	truly	effective	C++	programmer,	you	need	to	be	familiar	with	at	least	the
basics	of	this	facet	of	C++.	You	can	see	examples	of	TMP	in	action,	including
the	kinds	of	type	transformations	I	just	mentioned,	in	Items	23	and	27.)	C++11
gives	you	the	tools	to	perform	these	kinds	of	transformations	in	the	form	of	type
traits,	an	assortment	of	templates	inside	the	header	<type_traits>.	There	are
dozens	of	type	traits	in	that	header,	and	not	all	of	them	perform	type
transformations,	but	the	ones	that	do	offer	a	predictable	interface.	Given	a	type	T
to	which	you’d	like	to	apply	a	transformation,	the	resulting	type	is
std::transformation<T>::type.	For	example:	std::remove_const<T>::type	//
yields	T	from	const	T	std::remove_reference<T>::type	//	yields	T	from	T&	and
T&&	std::add_lvalue_reference<T>::type	//	yields	T&	from	T

The	comments	merely	summarize	what	these	transformations	do,	so	don’t	take
them	too	literally.	Before	using	them	on	a	project,	you’d	look	up	the	precise
specifications,	I	know.

My	motivation	here	isn’t	to	give	you	a	tutorial	on	type	traits,	anyway.	Rather,
note	that	application	of	these	transformations	entails	writing	“::type”	at	the	end
of	each	use.	If	you	apply	them	to	a	type	parameter	inside	a	template	(which	is
virtually	always	how	you	employ	them	in	real	code),	you’d	also	have	to	precede
each	use	with	typename.	The	reason	for	both	of	these	syntactic	speed	bumps	is
that	the	C++11	type	traits	are	implemented	as	nested	typedefs	inside
templatized	structs.	That’s	right,	they’re	implemented	using	the	type	synonym
technology	I’ve	been	trying	to	convince	you	is	inferior	to	alias	templates!

There’s	a	historical	reason	for	that,	but	we’ll	skip	over	it	(it’s	dull,	I	promise),
because	the	Standardization	Committee	belatedly	recognized	that	alias	templates
are	the	better	way	to	go,	and	they	included	such	templates	in	C++14	for	all	the
C++11	type	transformations.	The	aliases	have	a	common	form:	for	each	C++11
transformation	std::transformation<T>::type,	there’s	a	corresponding
C++14	alias	template	named	std::transformation_t.	Examples	will	clarify
what	I	mean:	std::remove_const<T>::type	//	C++11:	const	T	→	T
std::remove_const_t<T>	//	C++14	equivalent	std::remove_reference<T>::type	//
C++11:	T&/T&&	→	T	std::remove_reference_t<T>	//	C++14	equivalent
std::add_lvalue_reference<T>::type	//	C++11:	T	→	T&
std::add_lvalue_reference_t<T>	//	C++14	equivalent

The	C++11	constructs	remain	valid	in	C++14,	but	I	don’t	know	why	you’d	want

to	use	them.	Even	if	you	don’t	have	access	to	C++14,	writing	the	alias	templates
yourself	is	child’s	play.	Only	C++11	language	features	are	required,	and	even
children	can	mimic	a	pattern,	right?	If	you	happen	to	have	access	to	an	electronic
copy	of	the	C++14	Standard,	it’s	easier	still,	because	all	that’s	required	is	some
copying	and	pasting.	Here,	I’ll	get	you	started:	template	<class	T>	using
remove_const_t	=	typename	remove_const<T>::type;	template	<class	T>	using
remove_reference_t	=	typename	remove_reference<T>::type;

template <class T>

using add_lvalue_reference_t =

 typename add_lvalue_reference<T>::type;

See?	Couldn’t	be	easier.

Things	to	Remember
typedefs	don’t	support	templatization,	but	alias	declarations	do.

Alias	templates	avoid	the	“::type”	suffix	and,	in	templates,	the	“typename”	prefix	often
required	to	refer	to	typedefs.

C++14	offers	alias	templates	for	all	the	C++11	type	traits	transformations.

Item	10: Prefer	scoped	enums	to	unscoped	enums.
As	a	general	rule,	declaring	a	name	inside	curly	braces	limits	the	visibility	of
that	name	to	the	scope	defined	by	the	braces.	Not	so	for	the	enumerators
declared	in	C++98-style	enums.	The	names	of	such	enumerators	belong	to	the
scope	containing	the	enum,	and	that	means	that	nothing	else	in	that	scope	may
have	the	same	name:	enum	Color	{	black,	white,	red	};	//	black,	white,	red	are	//
in	same	scope	as	Color	auto	white	=	false;	//	error!	white	already	//	declared	in
this	scope

The	fact	that	these	enumerator	names	leak	into	the	scope	containing	their	enum
definition	gives	rise	to	the	official	term	for	this	kind	of	enum:	unscoped.	Their
new	C++11	counterparts,	scoped	enums,	don’t	leak	names	in	this	way:	enum
class	Color	{	black,	white,	red	};	//	black,	white,	red	//	are	scoped	to	Color	auto

white	=	false;	//	fine,	no	other	//	"white"	in	scope	Color	c	=	white;	//	error!	no
enumerator	named	//	"white"	is	in	this	scope	Color	c	=	Color::white;	//	fine	auto
c	=	Color::white;	//	also	fine	(and	in	accord	//	with	Item	5's	advice)

Because	scoped	enums	are	declared	via	“enum	class”,	they’re	sometimes
referred	to	as	enum	classes.

The	reduction	in	namespace	pollution	offered	by	scoped	enums	is	reason	enough
to	prefer	them	over	their	unscoped	siblings,	but	scoped	enums	have	a	second
compelling	advantage:	their	enumerators	are	much	more	strongly	typed.
Enumerators	for	unscoped	enums	implicitly	convert	to	integral	types	(and,	from
there,	to	floating-point	types).	Semantic	travesties	such	as	the	following	are
therefore	completely	valid:	enum	Color	{	black,	white,	red	};	//	unscoped	enum
std::vector<std::size_t>	//	func.	returning	primeFactors(std::size_t	x);	//	prime
factors	of	x	Color	c	=	red;	…	if	(c	<	14.5)	{	//	compare	Color	to	double	(!)	auto
factors	=	//	compute	prime	factors	primeFactors(c);	//	of	a	Color	(!)	…	}

Throw	a	simple	“class”	after	“enum”,	however,	thus	transforming	an	unscoped
enum	into	a	scoped	one,	and	it’s	a	very	different	story.	There	are	no	implicit
conversions	from	enumerators	in	a	scoped	enum	to	any	other	type:	enum	class
Color	{	black,	white,	red	};	//	enum	is	now	scoped	Color	c	=	Color::red;	//	as
before,	but	…	//	with	scope	qualifier	if	(c	<	14.5)	{	//	error!	can't	compare	//
Color	and	double	auto	factors	=	//	error!	can't	pass	Color	to	primeFactors(c);	//
function	expecting	std::size_t	…	}

If	you	honestly	want	to	perform	a	conversion	from	Color	to	a	different	type,	do
what	you	always	do	to	twist	the	type	system	to	your	wanton	desires—use	a	cast:
if	(static_cast<double>(c)	<	14.5)	{	//	odd	code,	but	//	it's	valid	auto	factors	=	//
suspect,	but	primeFactors(static_cast<std::size_t>(c));	//	it	compiles	…	}

It	may	seem	that	scoped	enums	have	a	third	advantage	over	unscoped	enums,
because	scoped	enums	may	be	forward-declared,	i.e.,	their	names	may	be
declared	without	specifying	their	enumerators:	enum	Color;	//	error!	enum	class
Color;	//	fine

This	is	misleading.	In	C++11,	unscoped	enums	may	also	be	forward-declared,
but	only	after	a	bit	of	additional	work.	The	work	grows	out	of	the	fact	that	every
enum	in	C++	has	an	integral	underlying	type	that	is	determined	by	compilers.	For

an	unscoped	enum	like	Color,	enum	Color	{	black,	white,	red	};

compilers	might	choose	char	as	the	underlying	type,	because	there	are	only
three	values	to	represent.	However,	some	enums	have	a	range	of	values	that	is
much	larger,	e.g.:	enum	Status	{	good	=	0,	failed	=	1,	incomplete	=	100,	corrupt
=	200,	indeterminate	=	0xFFFFFFFF	};

Here	the	values	to	be	represented	range	from	0	to	0xFFFFFFFF.	Except	on
unusual	machines	(where	a	char	consists	of	at	least	32	bits),	compilers	will	have
to	select	an	integral	type	larger	than	char	for	the	representation	of	Status
values.

To	make	efficient	use	of	memory,	compilers	often	want	to	choose	the	smallest
underlying	type	for	an	enum	that’s	sufficient	to	represent	its	range	of	enumerator
values.	In	some	cases,	compilers	will	optimize	for	speed	instead	of	size,	and	in
that	case,	they	may	not	choose	the	smallest	permissible	underlying	type,	but	they
certainly	want	to	be	able	to	optimize	for	size.	To	make	that	possible,	C++98
supports	only	enum	definitions	(where	all	enumerators	are	listed);	enum
declarations	are	not	allowed.	That	makes	it	possible	for	compilers	to	select	an
underlying	type	for	each	enum	prior	to	the	enum	being	used.

But	the	inability	to	forward-declare	enums	has	drawbacks.	The	most	notable	is
probably	the	increase	in	compilation	dependencies.	Consider	again	the	Status
enum:	enum	Status	{	good	=	0,	failed	=	1,	incomplete	=	100,	corrupt	=	200,
indeterminate	=	0xFFFFFFFF	};

This	is	the	kind	of	enum	that’s	likely	to	be	used	throughout	a	system,	hence
included	in	a	header	file	that	every	part	of	the	system	is	dependent	on.	If	a	new
status	value	is	then	introduced,	enum	Status	{	good	=	0,	failed	=	1,	incomplete	=
100,	corrupt	=	200,	audited	=	500,	indeterminate	=	0xFFFFFFFF	};

it’s	likely	that	the	entire	system	will	have	to	be	recompiled,	even	if	only	a	single
subsystem—possibly	only	a	single	function!—uses	the	new	enumerator.	This	is
the	kind	of	thing	that	people	hate.	And	it’s	the	kind	of	thing	that	the	ability	to
forward-declare	enums	in	C++11	eliminates.	For	example,	here’s	a	perfectly
valid	declaration	of	a	scoped	enum	and	a	function	that	takes	one	as	a	parameter:
enum	class	Status;	//	forward	declaration	void	continueProcessing(Status	s);	//
use	of	fwd-declared	enum

The	header	containing	these	declarations	requires	no	recompilation	if	Status’s
definition	is	revised.	Furthermore,	if	Status	is	modified	(e.g.,	to	add	the
audited	enumerator),	but	continueProcessing’s	behavior	is	unaffected	(e.g.,
because	continueProcessing	doesn’t	use	audited),	continueProcessing’s
implementation	need	not	be	recompiled,	either.

But	if	compilers	need	to	know	the	size	of	an	enum	before	it’s	used,	how	can
C++11’s	enums	get	away	with	forward	declarations	when	C++98’s	enums	can’t?
The	answer	is	simple:	the	underlying	type	for	a	scoped	enum	is	always	known,
and	for	unscoped	enums,	you	can	specify	it.

By	default,	the	underlying	type	for	scoped	enums	is	int:	enum	class	Status;	//
underlying	type	is	int

If	the	default	doesn’t	suit	you,	you	can	override	it:	enum	class	Status:
std::uint32_t;	//	underlying	type	for	//	Status	is	std::uint32_t	//	(from	<cstdint>)

Either	way,	compilers	know	the	size	of	the	enumerators	in	a	scoped	enum.

To	specify	the	underlying	type	for	an	unscoped	enum,	you	do	the	same	thing	as
for	a	scoped	enum,	and	the	result	may	be	forward-declared:	enum	Color:
std::uint8_t;	//	fwd	decl	for	unscoped	enum;	//	underlying	type	is	//	std::uint8_t

Underlying	type	specifications	can	also	go	on	an	enum’s	definition:	enum	class
Status:	std::uint32_t	{	good	=	0,	failed	=	1,	incomplete	=	100,	corrupt	=	200,
audited	=	500,	indeterminate	=	0xFFFFFFFF	};

In	view	of	the	fact	that	scoped	enums	avoid	namespace	pollution	and	aren’t
susceptible	to	nonsensical	implicit	type	conversions,	it	may	surprise	you	to	hear
that	there’s	at	least	one	situation	where	unscoped	enums	may	be	useful.	That’s
when	referring	to	fields	within	C++11’s	std::tuples.	For	example,	suppose	we
have	a	tuple	holding	values	for	the	name,	email	address,	and	reputation	value	for
a	user	at	a	social	networking	website:	using	UserInfo	=	//	type	alias;	see	Item	9
std::tuple<std::string,	//	name	std::string,	//	email	std::size_t>	;	//	reputation

Though	the	comments	indicate	what	each	field	of	the	tuple	represents,	that’s
probably	not	very	helpful	when	you	encounter	code	like	this	in	a	separate	source
file:	UserInfo	uInfo;	//	object	of	tuple	type	…	auto	val	=	std::get<1>(uInfo);	//
get	value	of	field	1

As	a	programmer,	you	have	a	lot	of	stuff	to	keep	track	of.	Should	you	really	be
expected	to	remember	that	field	1	corresponds	to	the	user’s	email	address?	I
think	not.	Using	an	unscoped	enum	to	associate	names	with	field	numbers	avoids
the	need	to:	enum	UserInfoFields	{	uiName,	uiEmail,	uiReputation	};	UserInfo
uInfo;	//	as	before	…	auto	val	=	std::get<uiEmail>(uInfo);	//	ah,	get	value	of	//
email	field

What	makes	this	work	is	the	implicit	conversion	from	UserInfoFields	to
std::size_t,	which	is	the	type	that	std::get	requires.

The	corresponding	code	with	scoped	enums	is	substantially	more	verbose:	enum
class	UserInfoFields	{	uiName,	uiEmail,	uiReputation	};	UserInfo	uInfo;	//	as
before	…	auto	val	=	std::get<static_cast<std::size_t>(UserInfoFields::uiEmail)>
(uInfo);

The	verbosity	can	be	reduced	by	writing	a	function	that	takes	an	enumerator	and
returns	its	corresponding	std::size_t	value,	but	it’s	a	bit	tricky.	std::get	is	a
template,	and	the	value	you	provide	is	a	template	argument	(notice	the	use	of
angle	brackets,	not	parentheses),	so	the	function	that	transforms	an	enumerator
into	a	std::size_t	has	to	produce	its	result	during	compilation.	As	Item	15
explains,	that	means	it	must	be	a	constexpr	function.

In	fact,	it	should	really	be	a	constexpr	function	template,	because	it	should
work	with	any	kind	of	enum.	And	if	we’re	going	to	make	that	generalization,	we
should	generalize	the	return	type,	too.	Rather	than	returning	std::size_t,	we’ll
return	the	enum’s	underlying	type.	It’s	available	via	the	std::underlying_type
type	trait.	(See	Item	9	for	information	on	type	traits.)	Finally,	we’ll	declare	it
noexcept	(see	Item	14),	because	we	know	it	will	never	yield	an	exception.	The
result	is	a	function	template	toUType	that	takes	an	arbitrary	enumerator	and	can
return	its	value	as	a	compile-time	constant:	template<typename	E>	constexpr
typename	std::underlying_type<E>::type	toUType(E	enumerator)	noexcept	{
return	static_cast<typename	std::underlying_type<E>::type>(enumerator);	}

In	C++14,	toUType	can	be	simplified	by	replacing	typename
std::underlying_type<E>::type	with	the	sleeker	std::underlying_type_t
(see	Item	9):	template<typename	E>	//	C++14	constexpr
std::underlying_type_t<E>	toUType(E	enumerator)	noexcept	{	return
static_cast<std::underlying_type_t<E>>(enumerator);	}

The	even-sleeker	auto	return	type	(see	Item	3)	is	also	valid	in	C++14:
template<typename	E>	//	C++14	constexpr	auto	toUType(E	enumerator)
noexcept	{	return	static_cast<std::underlying_type_t<E>>(enumerator);	}

Regardless	of	how	it’s	written,	toUType	permits	us	to	access	a	field	of	the	tuple
like	this:	auto	val	=	std::get<toUType(UserInfoFields::uiEmail)>(uInfo);

It’s	still	more	to	write	than	use	of	the	unscoped	enum,	but	it	also	avoids
namespace	pollution	and	inadvertent	conversions	involving	enumerators.	In
many	cases,	you	may	decide	that	typing	a	few	extra	characters	is	a	reasonable
price	to	pay	for	the	ability	to	avoid	the	pitfalls	of	an	enum	technology	that	dates
to	a	time	when	the	state	of	the	art	in	digital	telecommunications	was	the	2400-
baud	modem.

Things	to	Remember
C++98-style	enums	are	now	known	as	unscoped	enums.

Enumerators	of	scoped	enums	are	visible	only	within	the	enum.	They	convert	to	other	types
only	with	a	cast.

Both	scoped	and	unscoped	enums	support	specification	of	the	underlying	type.	The	default
underlying	type	for	scoped	enums	is	int.	Unscoped	enums	have	no	default	underlying	type.

Scoped	enums	may	always	be	forward-declared.	Unscoped	enums	may	be	forward-declared
only	if	their	declaration	specifies	an	underlying	type.

Item	11: Prefer	deleted	functions	to	private
undefined	ones.
If	you’re	providing	code	to	other	developers,	and	you	want	to	prevent	them	from
calling	a	particular	function,	you	generally	just	don’t	declare	the	function.	No
function	declaration,	no	function	to	call.	Easy,	peasy.	But	sometimes	C++
declares	functions	for	you,	and	if	you	want	to	prevent	clients	from	calling	those
functions,	the	peasy	isn’t	quite	so	easy	any	more.

The	situation	arises	only	for	the	“special	member	functions,”	i.e.,	the	member
functions	that	C++	automatically	generates	when	they’re	needed.	Item	17

discusses	these	functions	in	detail,	but	for	now,	we’ll	worry	only	about	the	copy
constructor	and	the	copy	assignment	operator.	This	chapter	is	largely	devoted	to
common	practices	in	C++98	that	have	been	superseded	by	better	practices	in
C++11,	and	in	C++98,	if	you	want	to	suppress	use	of	a	member	function,	it’s
almost	always	the	copy	constructor,	the	assignment	operator,	or	both.

The	C++98	approach	to	preventing	use	of	these	functions	is	to	declare	them
private	and	not	define	them.	For	example,	near	the	base	of	the	iostreams
hierarchy	in	the	C++	Standard	Library	is	the	class	template	basic_ios.	All
istream	and	ostream	classes	inherit	(possibly	indirectly)	from	this	class.	Copying
istreams	and	ostreams	is	undesirable,	because	it’s	not	really	clear	what	such
operations	should	do.	An	istream	object,	for	example,	represents	a	stream	of
input	values,	some	of	which	may	have	already	been	read,	and	some	of	which
will	potentially	be	read	later.	If	an	istream	were	to	be	copied,	would	that	entail
copying	all	the	values	that	had	already	been	read	as	well	as	all	the	values	that
would	be	read	in	the	future?	The	easiest	way	to	deal	with	such	questions	is	to
define	them	out	of	existence.	Prohibiting	the	copying	of	streams	does	just	that.

To	render	istream	and	ostream	classes	uncopyable,	basic_ios	is	specified	in
C++98	as	follows	(including	the	comments):	template	<class	charT,	class	traits	=
char_traits<charT>	>	class	basic_ios	:	public	ios_base	{	public:	…	private:
basic_ios(const	basic_ios&);	//	not	defined	basic_ios&	operator=(const
basic_ios&);	//	not	defined	};

Declaring	these	functions	private	prevents	clients	from	calling	them.
Deliberately	failing	to	define	them	means	that	if	code	that	still	has	access	to
them	(i.e.,	member	functions	or	friends	of	the	class)	uses	them,	linking	will	fail
due	to	missing	function	definitions.

In	C++11,	there’s	a	better	way	to	achieve	essentially	the	same	end:	use	“=
delete”	to	mark	the	copy	constructor	and	the	copy	assignment	operator	as
deleted	functions.	Here’s	the	same	part	of	basic_ios	as	it’s	specified	in	C++11:
template	<class	charT,	class	traits	=	char_traits<charT>	>	class	basic_ios	:	public
ios_base	{	public:	…	basic_ios(const	basic_ios&)	=	delete;	basic_ios&
operator=(const	basic_ios&)	=	delete;	…	};

The	difference	between	deleting	these	functions	and	declaring	them	private
may	seem	more	a	matter	of	fashion	than	anything	else,	but	there’s	greater

substance	here	than	you	might	think.	Deleted	functions	may	not	be	used	in	any
way,	so	even	code	that’s	in	member	and	friend	functions	will	fail	to	compile	if
it	tries	to	copy	basic_ios	objects.	That’s	an	improvement	over	the	C++98
behavior,	where	such	improper	usage	wouldn’t	be	diagnosed	until	link-time.

By	convention,	deleted	functions	are	declared	public,	not	private.	There’s	a
reason	for	that.	When	client	code	tries	to	use	a	member	function,	C++	checks
accessibility	before	deleted	status.	When	client	code	tries	to	use	a	deleted
private	function,	some	compilers	complain	only	about	the	function	being
private,	even	though	the	function’s	accessibility	doesn’t	really	affect	whether	it
can	be	used.	It’s	worth	bearing	this	in	mind	when	revising	legacy	code	to	replace
private-and-not-defined	member	functions	with	deleted	ones,	because	making
the	new	functions	public	will	generally	result	in	better	error	messages.

An	important	advantage	of	deleted	functions	is	that	any	function	may	be	deleted,
while	only	member	functions	may	be	private.	For	example,	suppose	we	have	a
non-member	function	that	takes	an	integer	and	returns	whether	it’s	a	lucky
number:	bool	isLucky(int	number);

C++’s	C	heritage	means	that	pretty	much	any	type	that	can	be	viewed	as	vaguely
numerical	will	implicitly	convert	to	int,	but	some	calls	that	would	compile
might	not	make	sense:	if	(isLucky('a'))	…	//	is	'a'	a	lucky	number?	if
(isLucky(true))	…	//	is	"true"?	if	(isLucky(3.5))	…	//	should	we	truncate	to	3	//
before	checking	for	luckiness?

If	lucky	numbers	must	really	be	integers,	we’d	like	to	prevent	calls	such	as	these
from	compiling.

One	way	to	accomplish	that	is	to	create	deleted	overloads	for	the	types	we	want
to	filter	out:	bool	isLucky(int	number);	//	original	function	bool	isLucky(char)	=
delete;	//	reject	chars	bool	isLucky(bool)	=	delete;	//	reject	bools	bool
isLucky(double)	=	delete;	//	reject	doubles	and	//	floats

(The	comment	on	the	double	overload	that	says	that	both	doubles	and	floats
will	be	rejected	may	surprise	you,	but	your	surprise	will	dissipate	once	you	recall
that,	given	a	choice	between	converting	a	float	to	an	int	or	to	a	double,	C++
prefers	the	conversion	to	double.	Calling	isLucky	with	a	float	will	therefore
call	the	double	overload,	not	the	int	one.	Well,	it’ll	try	to.	The	fact	that	that
overload	is	deleted	will	prevent	the	call	from	compiling.)	Although	deleted

functions	can’t	be	used,	they	are	part	of	your	program.	As	such,	they	are	taken
into	account	during	overload	resolution.	That’s	why,	with	the	deleted	function
declarations	above,	the	undesirable	calls	to	isLucky	will	be	rejected:	if
(isLucky('a'))	…	//	error!	call	to	deleted	function	if	(isLucky(true))	…	//	error!	if
(isLucky(3.5f))	…	//	error!

Another	trick	that	deleted	functions	can	perform	(and	that	private	member
functions	can’t)	is	to	prevent	use	of	template	instantiations	that	should	be
disabled.	For	example,	suppose	you	need	a	template	that	works	with	built-in
pointers	(Chapter	4’s	advice	to	prefer	smart	pointers	to	raw	pointers
notwithstanding):	template<typename	T>	void	processPointer(T*	ptr);

There	are	two	special	cases	in	the	world	of	pointers.	One	is	void*	pointers,
because	there	is	no	way	to	dereference	them,	to	increment	or	decrement	them,
etc.	The	other	is	char*	pointers,	because	they	typically	represent	pointers	to	C-
style	strings,	not	pointers	to	individual	characters.	These	special	cases	often	call
for	special	handling,	and,	in	the	case	of	the	processPointer	template,	let’s
assume	the	proper	handling	is	to	reject	calls	using	those	types.	That	is,	it	should
not	be	possible	to	call	processPointer	with	void*	or	char*	pointers.

That’s	easily	enforced.	Just	delete	those	instantiations:	template<>	void
processPointer<void>(void*)	=	delete;	template<>	void	processPointer<char>
(char*)	=	delete;

Now,	if	calling	processPointer	with	a	void*	or	a	char*	is	invalid,	it’s
probably	also	invalid	to	call	it	with	a	const	void*	or	a	const	char*,	so	those
instantiations	will	typically	need	to	be	deleted,	too:	template<>	void
processPointer<const	void>(const	void*)	=	delete;	template<>	void
processPointer<const	char>(const	char*)	=	delete;

And	if	you	really	want	to	be	thorough,	you’ll	also	delete	the	const	volatile
void*	and	const	volatile	char*	overloads,	and	then	you’ll	get	to	work	on	the
overloads	for	pointers	to	the	other	standard	character	types:	std::wchar_t,
std::char16_t,	and	std::char32_t.

Interestingly,	if	you	have	a	function	template	inside	a	class,	and	you’d	like	to
disable	some	instantiations	by	declaring	them	private	(à	la	classic	C++98
convention),	you	can’t,	because	it’s	not	possible	to	give	a	member	function
template	specialization	a	different	access	level	from	that	of	the	main	template.	If

processPointer	were	a	member	function	template	inside	Widget,	for	example,
and	you	wanted	to	disable	calls	for	void*	pointers,	this	would	be	the	C++98
approach,	though	it	would	not	compile:	class	Widget	{	public:	…
template<typename	T>	void	processPointer(T*	ptr)	{	…	}	private:	template<>	//
error!	void	processPointer<void>(void*);	};

The	problem	is	that	template	specializations	must	be	written	at	namespace	scope,
not	class	scope.	This	issue	doesn’t	arise	for	deleted	functions,	because	they	don’t
need	a	different	access	level.	They	can	be	deleted	outside	the	class	(hence	at
namespace	scope):

class Widget {

public:

 …

 template<typename T>

 void processPointer(T* ptr)

 { … }

 …

};

template<> // still

void Widget::processPointer<void>(void*) = delete; // public,

 // but

 // deleted

The	truth	is	that	the	C++98	practice	of	declaring	functions	private	and	not
defining	them	was	really	an	attempt	to	achieve	what	C++11’s	deleted	functions
actually	accomplish.	As	an	emulation,	the	C++98	approach	is	not	as	good	as	the
real	thing.	It	doesn’t	work	outside	classes,	it	doesn’t	always	work	inside	classes,
and	when	it	does	work,	it	may	not	work	until	link-time.	So	stick	to	deleted
functions.

Things	to	Remember
Prefer	deleted	functions	to	private	undefined	ones.

Any	function	may	be	deleted,	including	non-member	functions	and	template	instantiations.

Item	12: Declare	overriding	functions	override.
The	world	of	object-oriented	programming	in	C++	revolves	around	classes,
inheritance,	and	virtual	functions.	Among	the	most	fundamental	ideas	in	this
world	is	that	virtual	function	implementations	in	derived	classes	override	the
implementations	of	their	base	class	counterparts.	It’s	disheartening,	then,	to
realize	just	how	easily	virtual	function	overriding	can	go	wrong.	It’s	almost	as	if
this	part	of	the	language	were	designed	with	the	idea	that	Murphy’s	Law	wasn’t
just	to	be	obeyed,	it	was	to	be	honored.

Because	“overriding”	sounds	a	lot	like	“overloading,”	yet	is	completely
unrelated,	let	me	make	clear	that	virtual	function	overriding	is	what	makes	it
possible	to	invoke	a	derived	class	function	through	a	base	class	interface:	class
Base	{	public:	virtual	void	doWork();	//	base	class	virtual	function	…	};	class
Derived:	public	Base	{	public:	virtual	void	doWork();	//	overrides	Base::doWork
…	//	("virtual"	is	optional	};	//	here)	std::unique_ptr<Base>	upb	=	//	create	base
class	pointer	std::make_unique<Derived>();	//	to	derived	class	object;	//	see	Item
21	for	info	on	…	//	std::make_unique	upb->doWork();	//	call	doWork	through
base	//	class	ptr;	derived	class	//	function	is	invoked

For	overriding	to	occur,	several	requirements	must	be	met:

The	base	class	function	must	be	virtual.

The	base	and	derived	function	names	must	be	identical	(except	in	the	case	of
destructors).

The	parameter	types	of	the	base	and	derived	functions	must	be	identical.

The	constness	of	the	base	and	derived	functions	must	be	identical.

The	return	types	and	exception	specifications	of	the	base	and	derived
functions	must	be	compatible.

To	these	constraints,	which	were	also	part	of	C++98,	C++11	adds	one	more:

The	functions’	reference	qualifiers	must	be	identical.	Member	function
reference	qualifiers	are	one	of	C++11’s	less-publicized	features,	so	don’t	be
surprised	if	you’ve	never	heard	of	them.	They	make	it	possible	to	limit	use	of

a	member	function	to	lvalues	only	or	to	rvalues	only.	Member	functions	need
not	be	virtual	to	use	them:	class	Widget	{	public:	…	void	doWork()	&;	//	this
version	of	doWork	applies	//	only	when	*this	is	an	lvalue	void	doWork()	&&;
//	this	version	of	doWork	applies	};	//	only	when	*this	is	an	rvalue	…	Widget
makeWidget();	//	factory	function	(returns	rvalue)	Widget	w;	//	normal	object
(an	lvalue)	…	w.doWork();	//	calls	Widget::doWork	for	lvalues	//	(i.e.,
Widget::doWork	&)	makeWidget().doWork();	//	calls	Widget::doWork	for
rvalues	//	(i.e.,	Widget::doWork	&&)

I’ll	say	more	about	member	functions	with	reference	qualifiers	later,	but	for
now,	simply	note	that	if	a	virtual	function	in	a	base	class	has	a	reference
qualifier,	derived	class	overrides	of	that	function	must	have	exactly	the	same
reference	qualifier.	If	they	don’t,	the	declared	functions	will	still	exist	in	the
derived	class,	but	they	won’t	override	anything	in	the	base	class.

All	these	requirements	for	overriding	mean	that	small	mistakes	can	make	a	big
difference.	Code	containing	overriding	errors	is	typically	valid,	but	its	meaning
isn’t	what	you	intended.	You	therefore	can’t	rely	on	compilers	notifying	you	if
you	do	something	wrong.	For	example,	the	following	code	is	completely	legal
and,	at	first	sight,	looks	reasonable,	but	it	contains	no	virtual	function	overrides
—not	a	single	derived	class	function	that	is	tied	to	a	base	class	function.	Can	you
identify	the	problem	in	each	case,	i.e.,	why	each	derived	class	function	doesn’t
override	the	base	class	function	with	the	same	name?

class Base {

public:

 virtual void mf1() const;

 virtual void mf2(int x);

 virtual void mf3() &;

 void mf4() const;

};

class Derived: public Base {

public:

 virtual void mf1();

 virtual void mf2(unsigned int x);

 virtual void mf3() &&;

 void mf4() const;

};

Need	some	help?

Need	some	help?

mf1	is	declared	const	in	Base,	but	not	in	Derived.

mf2	takes	an	int	in	Base,	but	an	unsigned	int	in	Derived.

mf3	is	lvalue-qualified	in	Base,	but	rvalue-qualified	in	Derived.

mf4	isn’t	declared	virtual	in	Base.

You	may	think,	“Hey,	in	practice,	these	things	will	elicit	compiler	warnings,	so	I
don’t	need	to	worry.”	Maybe	that’s	true.	But	maybe	it’s	not.	With	two	of	the
compilers	I	checked,	the	code	was	accepted	without	complaint,	and	that	was
with	all	warnings	enabled.	(Other	compilers	provided	warnings	about	some	of
the	issues,	but	not	all	of	them.)	Because	declaring	derived	class	overrides	is
important	to	get	right,	but	easy	to	get	wrong,	C++11	gives	you	a	way	to	make
explicit	that	a	derived	class	function	is	supposed	to	override	a	base	class	version:
declare	it	override.	Applying	this	to	the	example	above	would	yield	this
derived	class:	class	Derived:	public	Base	{	public:	virtual	void	mf1()	override;
virtual	void	mf2(unsigned	int	x)	override;	virtual	void	mf3()	&&	override;
virtual	void	mf4()	const	override;	};

This	won’t	compile,	of	course,	because	when	written	this	way,	compilers	will
kvetch	about	all	the	overriding-related	problems.	That’s	exactly	what	you	want,
and	it’s	why	you	should	declare	all	your	overriding	functions	override.

The	code	using	override	that	does	compile	looks	as	follows	(assuming	that	the
goal	is	for	all	functions	in	Derived	to	override	virtuals	in	Base):	class	Base	{
public:	virtual	void	mf1()	const;	virtual	void	mf2(int	x);	virtual	void	mf3()	&;
virtual	void	mf4()	const;	};	class	Derived:	public	Base	{	public:	virtual	void
mf1()	const	override;	virtual	void	mf2(int	x)	override;	virtual	void	mf3()	&
override;	void	mf4()	const	override;	//	adding	"virtual"	is	OK,	};	//	but	not
necessary

Note	that	in	this	example,	part	of	getting	things	to	work	involves	declaring	mf4
virtual	in	Base.	Most	overriding-related	errors	occur	in	derived	classes,	but	it’s
possible	for	things	to	be	incorrect	in	base	classes,	too.

A	policy	of	using	override	on	all	your	derived	class	overrides	can	do	more	than

just	enable	compilers	to	tell	you	when	would-be	overrides	aren’t	overriding
anything.	It	can	also	help	you	gauge	the	ramifications	if	you’re	contemplating
changing	the	signature	of	a	virtual	function	in	a	base	class.	If	derived	classes	use
override	everywhere,	you	can	just	change	the	signature,	recompile	your
system,	see	how	much	damage	you’ve	caused	(i.e.,	how	many	derived	classes
fail	to	compile),	then	decide	whether	the	signature	change	is	worth	the	trouble.
Without	override,	you’d	have	to	hope	you	have	comprehensive	unit	tests	in
place,	because,	as	we’ve	seen,	derived	class	virtuals	that	are	supposed	to
override	base	class	functions,	but	don’t,	need	not	elicit	compiler	diagnostics.

C++	has	always	had	keywords,	but	C++11	introduces	two	contextual	keywords,
override	and	final.2	These	keywords	have	the	characteristic	that	they	are
reserved,	but	only	in	certain	contexts.	In	the	case	of	override,	it	has	a	reserved
meaning	only	when	it	occurs	at	the	end	of	a	member	function	declaration.	That
means	that	if	you	have	legacy	code	that	already	uses	the	name	override,	you
don’t	need	to	change	it	for	C++11:

class Warning { // potential legacy class from C++98

public:

 …

 void override(); // legal in both C++98 and C++11

 … // (with the same meaning)

};

That’s	all	there	is	to	say	about	override,	but	it’s	not	all	there	is	to	say	about
member	function	reference	qualifiers.	I	promised	I’d	provide	more	information
on	them	later,	and	now	it’s	later.

If	we	want	to	write	a	function	that	accepts	only	lvalue	arguments,	we	declare	a
non-const	lvalue	reference	parameter:	void	doSomething(Widget&	w);	//
accepts	only	lvalue	Widgets

If	we	want	to	write	a	function	that	accepts	only	rvalue	arguments,	we	declare	an
rvalue	reference	parameter:	void	doSomething(Widget&&	w);	//	accepts	only
rvalue	Widgets

Member	function	reference	qualifiers	simply	make	it	possible	to	draw	the	same
distinction	for	the	object	on	which	a	member	function	is	invoked,	i.e.,	*this.	It’s
precisely	analogous	to	the	const	at	the	end	of	a	member	function	declaration,

which	indicates	that	the	object	on	which	the	member	function	is	invoked	(i.e.,
*this)	is	const.

The	need	for	reference-qualified	member	functions	is	not	common,	but	it	can
arise.	For	example,	suppose	our	Widget	class	has	a	std::vector	data	member,
and	we	offer	an	accessor	function	that	gives	clients	direct	access	to	it:	class
Widget	{	public:	using	DataType	=	std::vector<double>;	//	see	Item	9	for	…	//
info	on	"using"	DataType&	data()	{	return	values;	}	…	private:	DataType
values;	};

This	is	hardly	the	most	encapsulated	design	that’s	seen	the	light	of	day,	but	set
that	aside	and	consider	what	happens	in	this	client	code:	Widget	w;	…	auto	vals1
=	w.data();	//	copy	w.values	into	vals1

The	return	type	of	Widget::data	is	an	lvalue	reference	(a
std::vector<double>&,	to	be	precise),	and	because	lvalue	references	are
defined	to	be	lvalues,	we’re	initializing	vals1	from	an	lvalue.	vals1	is	thus
copy	constructed	from	w.values,	just	as	the	comment	says.

Now	suppose	we	have	a	factory	function	that	creates	Widgets,

Widget makeWidget();

and	we	want	to	initialize	a	variable	with	the	std::vector	inside	the	Widget
returned	from	makeWidget:	auto	vals2	=	makeWidget().data();	//	copy	values
inside	the	//	Widget	into	vals2

Again,	Widgets::data	returns	an	lvalue	reference,	and,	again,	the	lvalue
reference	is	an	lvalue,	so,	again,	our	new	object	(vals2)	is	copy	constructed
from	values	inside	the	Widget.	This	time,	though,	the	Widget	is	the	temporary
object	returned	from	makeWidget	(i.e.,	an	rvalue),	so	copying	the	std::vector
inside	it	is	a	waste	of	time.	It’d	be	preferable	to	move	it,	but,	because	data	is
returning	an	lvalue	reference,	the	rules	of	C++	require	that	compilers	generate
code	for	a	copy.	(There’s	some	wiggle	room	for	optimization	through	what	is
known	as	the	“as	if	rule,”	but	you’d	be	foolish	to	rely	on	your	compilers	finding
a	way	to	take	advantage	of	it.)	What’s	needed	is	a	way	to	specify	that	when	data
is	invoked	on	an	rvalue	Widget,	the	result	should	also	be	an	rvalue.	Using
reference	qualifiers	to	overload	data	for	lvalue	and	rvalue	Widgets	makes	that

possible:	class	Widget	{	public:	using	DataType	=	std::vector<double>;	…
DataType&	data()	&	//	for	lvalue	Widgets,	{	return	values;	}	//	return	lvalue
DataType	data()	&&	//	for	rvalue	Widgets,	{	return	std::move(values);	}	//	return
rvalue	…	private:	DataType	values;	};

Notice	the	differing	return	types	from	the	data	overloads.	The	lvalue	reference
overload	returns	an	lvalue	reference	(i.e.,	an	lvalue),	and	the	rvalue	reference
overload	returns	a	temporary	object	(i.e.,	an	rvalue).	This	means	that	client	code
now	behaves	as	we’d	like:	auto	vals1	=	w.data();	//	calls	lvalue	overload	for	//
Widget::data,	copy-	//	constructs	vals1	auto	vals2	=	makeWidget().data();	//	calls
rvalue	overload	for	//	Widget::data,	move-	//	constructs	vals2

This	is	certainly	nice,	but	don’t	let	the	warm	glow	of	this	happy	ending	distract
you	from	the	true	point	of	this	Item.	That	point	is	that	whenever	you	declare	a
function	in	a	derived	class	that’s	meant	to	override	a	virtual	function	in	a	base
class,	be	sure	to	declare	that	function	override.

Things	to	Remember
Declare	overriding	functions	override.

Member	function	reference	qualifiers	make	it	possible	to	treat	lvalue	and	rvalue	objects
(*this)	differently.

Item	13: Prefer	const_iterators	to	iterators.
const_iterators	are	the	STL	equivalent	of	pointers-to-const.	They	point	to
values	that	may	not	be	modified.	The	standard	practice	of	using	const	whenever
possible	dictates	that	you	should	use	const_iterators	any	time	you	need	an
iterator,	yet	have	no	need	to	modify	what	the	iterator	points	to.

That’s	as	true	for	C++98	as	for	C++11,	but	in	C++98,	const_iterators	had
only	halfhearted	support.	It	wasn’t	that	easy	to	create	them,	and	once	you	had
one,	the	ways	you	could	use	it	were	limited.	For	example,	suppose	you	want	to
search	a	std::vector<int>	for	the	first	occurrence	of	1983	(the	year	“C++”
replaced	“C	with	Classes”	as	the	name	of	the	programming	language),	then

insert	the	value	1998	(the	year	the	first	ISO	C++	Standard	was	adopted)	at	that
location.	If	there’s	no	1983	in	the	vector,	the	insertion	should	go	at	the	end	of	the
vector.	Using	iterators	in	C++98,	that	was	easy:	std::vector<int>	values;	…
std::vector<int>::iterator	it	=	std::find(values.begin(),values.end(),	1983);
values.insert(it,	1998);

But	iterators	aren’t	really	the	proper	choice	here,	because	this	code	never
modifies	what	an	iterator	points	to.	Revising	the	code	to	use
const_iterators	should	be	trivial,	but	in	C++98,	it	was	anything	but.	Here’s
one	approach	that’s	conceptually	sound,	though	still	not	correct:	typedef
std::vector<int>::iterator	IterT;	//	type-	typedef	std::vector<int>::const_iterator
ConstIterT;	//	defs	std::vector<int>	values;	…	ConstIterT	ci	=
std::find(static_cast<ConstIterT>(values.begin()),	//	cast	static_cast<ConstIterT>
(values.end()),	//	cast	1983);	values.insert(static_cast<IterT>(ci),	1998);	//	may
not	//	compile;	see	//	below

The	typedefs	aren’t	required,	of	course,	but	they	make	the	casts	in	the	code
easier	to	write.	(If	you’re	wondering	why	I’m	showing	typedefs	instead	of
following	the	advice	of	Item	9	to	use	alias	declarations,	it’s	because	this	example
shows	C++98	code,	and	alias	declarations	are	a	feature	new	to	C++11.)	The
casts	in	the	call	to	std::find	are	present	because	values	is	a	non-const
container	and	in	C++98,	there	was	no	simple	way	to	get	a	const_iterator	from
a	non-const	container.	The	casts	aren’t	strictly	necessary,	because	it	was
possible	to	get	const_iterators	in	other	ways	(e.g.,	you	could	bind	values	to
a	reference-to-const	variable,	then	use	that	variable	in	place	of	values	in	your
code),	but	one	way	or	another,	the	process	of	getting	const_iterators	to
elements	of	a	non-const	container	involved	some	amount	of	contorting.

Once	you	had	the	const_iterators,	matters	often	got	worse,	because	in
C++98,	locations	for	insertions	(and	erasures)	could	be	specified	only	by
iterators.	const_iterators	weren’t	acceptable.	That’s	why,	in	the	code
above,	I	cast	the	const_iterator	(that	I	was	so	careful	to	get	from	std::find)
into	an	iterator:	passing	a	const_iterator	to	insert	wouldn’t	compile.

To	be	honest,	the	code	I’ve	shown	might	not	compile,	either,	because	there’s	no
portable	conversion	from	a	const_iterator	to	an	iterator,	not	even	with	a
static_cast.	Even	the	semantic	sledgehammer	known	as	reinterpret_cast

can’t	do	the	job.	(That’s	not	a	C++98	restriction.	It’s	true	in	C++11,	too.
const_iterators	simply	don’t	convert	to	iterators,	no	matter	how	much	it
might	seem	like	they	should.)	There	are	some	portable	ways	to	generate
iterators	that	point	where	const_iterators	do,	but	they’re	not	obvious,	not
universally	applicable,	and	not	worth	discussing	in	this	book.	Besides,	I	hope
that	by	now	my	point	is	clear:	const_iterators	were	so	much	trouble	in
C++98,	they	were	rarely	worth	the	bother.	At	the	end	of	the	day,	developers
don’t	use	const	whenever	possible,	they	use	it	whenever	practical,	and	in
C++98,	const_iterators	just	weren’t	very	practical.

All	that	changed	in	C++11.	Now	const_iterators	are	both	easy	to	get	and	easy
to	use.	The	container	member	functions	cbegin	and	cend	produce
const_iterators,	even	for	non-const	containers,	and	STL	member	functions
that	use	iterators	to	identify	positions	(e.g.,	insert	and	erase)	actually	use
const_iterators.	Revising	the	original	C++98	code	that	uses	iterators	to	use
const_iterators	in	C++11	is	truly	trivial:	std::vector<int>	values;	//	as	before
…	auto	it	=	//	use	cbegin	std::find(values.cbegin(),values.cend(),	1983);	//	and
cend	values.insert(it,	1998);

Now	that’s	code	using	const_iterators	that’s	practical!

About	the	only	situation	in	which	C++11’s	support	for	const_iterators	comes
up	a	bit	short	is	when	you	want	to	write	maximally	generic	library	code.	Such
code	takes	into	account	that	some	containers	and	container-like	data	structures
offer	begin	and	end	(plus	cbegin,	cend,	rbegin,	etc.)	as	non-member	functions,
rather	than	members.	This	is	the	case	for	built-in	arrays,	for	example,	and	it’s
also	the	case	for	some	third-party	libraries	with	interfaces	consisting	only	of	free
functions.	Maximally	generic	code	thus	uses	non-member	functions	rather	than
assuming	the	existence	of	member	versions.

For	example,	we	could	generalize	the	code	we’ve	been	working	with	into	a
findAndInsert	template	as	follows:	template<typename	C,	typename	V>	void
findAndInsert(C&	container,	//	in	container,	find	const	V&	targetVal,	//	first
occurrence	const	V&	insertVal)	//	of	targetVal,	then	{	//	insert	insertVal	using
std::cbegin;	//	there	using	std::cend;	auto	it	=	std::find(cbegin(container),	//	non-
member	cbegin	cend(container),	//	non-member	cend	targetVal);
container.insert(it,	insertVal);	}

This	works	fine	in	C++14,	but,	sadly,	not	in	C++11.	Through	an	oversight
during	standardization,	C++11	added	the	non-member	functions	begin	and	end,
but	it	failed	to	add	cbegin,	cend,	rbegin,	rend,	crbegin,	and	crend.	C++14
rectifies	that	oversight.

If	you’re	using	C++11,	you	want	to	write	maximally	generic	code,	and	none	of
the	libraries	you’re	using	provides	the	missing	templates	for	non-member
cbegin	and	friends,	you	can	throw	your	own	implementations	together	with
ease.	For	example,	here’s	an	implementation	of	non-member	cbegin:	template
<class	C>	auto	cbegin(const	C&	container)->decltype(std::begin(container))	{
return	std::begin(container);	//	see	explanation	below	}

You’re	surprised	to	see	that	non-member	cbegin	doesn’t	call	member	cbegin,
aren’t	you?	So	was	I.	But	follow	the	logic.	This	cbegin	template	accepts	any
type	of	argument	representing	a	container-like	data	structure,	C,	and	it	accesses
this	argument	through	its	reference-to-const	parameter,	container.	If	C	is	a
conventional	container	type	(e.g.,	a	std::vector<int>),	container	will	be	a
reference	to	a	const	version	of	that	container	(e.g.,	a	const
std::vector<int>&).	Invoking	the	non-member	begin	function	(provided	by
C++11)	on	a	const	container	yields	a	const_iterator,	and	that	iterator	is	what
this	template	returns.	The	advantage	of	implementing	things	this	way	is	that	it
works	even	for	containers	that	offer	a	begin	member	function	(which,	for
containers,	is	what	C++11’s	non-member	begin	calls),	but	fail	to	offer	a	cbegin
member.	You	can	thus	use	this	non-member	cbegin	on	containers	that	directly
support	only	begin.

This	template	also	works	if	C	is	a	built-in	array	type.	In	that	case,	container
becomes	a	reference	to	a	const	array.	C++11	provides	a	specialized	version	of
non-member	begin	for	arrays	that	returns	a	pointer	to	the	array’s	first	element.
The	elements	of	a	const	array	are	const,	so	the	pointer	that	non-member	begin
returns	for	a	const	array	is	a	pointer-to-const,	and	a	pointer-to-const	is,	in	fact,
a	const_iterator	for	an	array.	(For	insight	into	how	a	template	can	be
specialized	for	built-in	arrays,	consult	Item	1’s	discussion	of	type	deduction	in
templates	that	take	reference	parameters	to	arrays.)	But	back	to	basics.	The	point
of	this	Item	is	to	encourage	you	to	use	const_iterators	whenever	you	can.	The
fundamental	motivation—using	const	whenever	it’s	meaningful—predates

C++11,	but	in	C++98,	it	simply	wasn’t	practical	when	working	with	iterators.	In
C++11,	it’s	eminently	practical,	and	C++14	tidies	up	the	few	bits	of	unfinished
business	that	C++11	left	behind.

Things	to	Remember
Prefer	const_iterators	to	iterators.

In	maximally	generic	code,	prefer	non-member	versions	of	begin,	end,	rbegin,	etc.,	over
their	member	function	counterparts.

Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.
In	C++98,	exception	specifications	were	rather	temperamental	beasts.	You	had
to	summarize	the	exception	types	a	function	might	emit,	so	if	the	function’s
implementation	was	modified,	the	exception	specification	might	require
revision,	too.	Changing	an	exception	specification	could	break	client	code,
because	callers	might	be	dependent	on	the	original	exception	specification.
Compilers	typically	offered	no	help	in	maintaining	consistency	among	function
implementations,	exception	specifications,	and	client	code.	Most	programmers
ultimately	decided	that	C++98	exception	specifications	weren’t	worth	the
trouble.

During	work	on	C++11,	a	consensus	emerged	that	the	truly	meaningful
information	about	a	function’s	exception-emitting	behavior	was	whether	it	had
any.	Black	or	white,	either	a	function	might	emit	an	exception	or	it	guaranteed
that	it	wouldn’t.	This	maybe-or-never	dichotomy	forms	the	basis	of	C++11’s
exception	specifications,	which	essentially	replace	C++98’s.	(C++98-style
exception	specifications	remain	valid,	but	they’re	deprecated.)	In	C++11,
unconditional	noexcept	is	for	functions	that	guarantee	they	won’t	emit
exceptions.

Whether	a	function	should	be	so	declared	is	a	matter	of	interface	design.	The
exception-emitting	behavior	of	a	function	is	of	key	interest	to	clients.	Callers	can
query	a	function’s	noexcept	status,	and	the	results	of	such	a	query	can	affect	the

exception	safety	or	efficiency	of	the	calling	code.	As	such,	whether	a	function	is
noexcept	is	as	important	a	piece	of	information	as	whether	a	member	function
is	const.	Failure	to	declare	a	function	noexcept	when	you	know	that	it	won’t
emit	an	exception	is	simply	poor	interface	specification.

But	there’s	an	additional	incentive	to	apply	noexcept	to	functions	that	won’t
produce	exceptions:	it	permits	compilers	to	generate	better	object	code.	To
understand	why,	it	helps	to	examine	the	difference	between	the	C++98	and
C++11	ways	of	saying	that	a	function	won’t	emit	exceptions.	Consider	a
function	f	that	promises	callers	they’ll	never	receive	an	exception.	The	two	ways
of	expressing	that	are:	int	f(int	x)	throw();	//	no	exceptions	from	f:	C++98	style
int	f(int	x)	noexcept;	//	no	exceptions	from	f:	C++11	style

If,	at	runtime,	an	exception	leaves	f,	f’s	exception	specification	is	violated.	With
the	C++98	exception	specification,	the	call	stack	is	unwound	to	f’s	caller,	and,
after	some	actions	not	relevant	here,	program	execution	is	terminated.	With	the
C++11	exception	specification,	runtime	behavior	is	slightly	different:	the	stack	is
only	possibly	unwound	before	program	execution	is	terminated.

The	difference	between	unwinding	the	call	stack	and	possibly	unwinding	it	has	a
surprisingly	large	impact	on	code	generation.	In	a	noexcept	function,	optimizers
need	not	keep	the	runtime	stack	in	an	unwindable	state	if	an	exception	would
propagate	out	of	the	function,	nor	must	they	ensure	that	objects	in	a	noexcept
function	are	destroyed	in	the	inverse	order	of	construction	should	an	exception
leave	the	function.	Functions	with	“throw()”	exception	specifications	lack	such
optimization	flexibility,	as	do	functions	with	no	exception	specification	at	all.
The	situation	can	be	summarized	this	way:	RetType	function(params)	noexcept;
//	most	optimizable	RetType	function(params)	throw();	//	less	optimizable
RetType	function(params);	//	less	optimizable

This	alone	is	sufficient	reason	to	declare	functions	noexcept	whenever	you
know	they	won’t	produce	exceptions.

For	some	functions,	the	case	is	even	stronger.	The	move	operations	are	the
preeminent	example.	Suppose	you	have	a	C++98	code	base	making	use	of	a
std::vector<Widget>.	Widgets	are	added	to	the	std::vector	from	time	to
time	via	push_back:	std::vector<Widget>	vw;	…	Widget	w;	…	//	work	with	w
vw.push_back(w);	//	add	w	to	vw	…

Assume	this	code	works	fine,	and	you	have	no	interest	in	modifying	it	for
C++11.	However,	you	do	want	to	take	advantage	of	the	fact	that	C++11’s	move
semantics	can	improve	the	performance	of	legacy	code	when	move-enabled
types	are	involved.	You	therefore	ensure	that	Widget	has	move	operations,
either	by	writing	them	yourself	or	by	seeing	to	it	that	the	conditions	for	their
automatic	generation	are	fulfilled	(see	Item	17).

When	a	new	element	is	added	to	a	std::vector,	it’s	possible	that	the
std::vector	lacks	space	for	it,	i.e.,	that	the	std::vector’s	size	is	equal	to	its
capacity.	When	that	happens,	the	std::vector	allocates	a	new,	larger,	chunk	of
memory	to	hold	its	elements,	and	it	transfers	the	elements	from	the	existing
chunk	of	memory	to	the	new	one.	In	C++98,	the	transfer	was	accomplished	by
copying	each	element	from	the	old	memory	to	the	new	memory,	then	destroying
the	objects	in	the	old	memory.	This	approach	enabled	push_back	to	offer	the
strong	exception	safety	guarantee:	if	an	exception	was	thrown	during	the
copying	of	the	elements,	the	state	of	the	std::vector	remained	unchanged,
because	none	of	the	elements	in	the	old	memory	were	destroyed	until	all
elements	had	been	successfully	copied	into	the	new	memory.

In	C++11,	a	natural	optimization	would	be	to	replace	the	copying	of
std::vector	elements	with	moves.	Unfortunately,	doing	this	runs	the	risk	of
violating	push_back’s	exception	safety	guarantee.	If	n	elements	have	been
moved	from	the	old	memory	and	an	exception	is	thrown	moving	element	n+1,
the	push_back	operation	can’t	run	to	completion.	But	the	original	std::vector
has	been	modified:	n	of	its	elements	have	been	moved	from.	Restoring	their
original	state	may	not	be	possible,	because	attempting	to	move	each	object	back
into	the	original	memory	may	itself	yield	an	exception.

This	is	a	serious	problem,	because	the	behavior	of	legacy	code	could	depend	on
push_back’s	strong	exception	safety	guarantee.	Therefore,	C++11
implementations	can’t	silently	replace	copy	operations	inside	push_back	with
moves	unless	it’s	known	that	the	move	operations	won’t	emit	exceptions.	In	that
case,	having	moves	replace	copies	would	be	safe,	and	the	only	side	effect	would
be	improved	performance.

std::vector::push_back	takes	advantage	of	this	“move	if	you	can,	but	copy	if
you	must”	strategy,	and	it’s	not	the	only	function	in	the	Standard	Library	that

does.	Other	functions	sporting	the	strong	exception	safety	guarantee	in	C++98
(e.g.,	std::vector::reserve,	std::deque::insert,	etc.)	behave	the	same
way.	All	these	functions	replace	calls	to	copy	operations	in	C++98	with	calls	to
move	operations	in	C++11	only	if	the	move	operations	are	known	to	not	emit
exceptions.	But	how	can	a	function	know	if	a	move	operation	won’t	produce	an
exception?	The	answer	is	obvious:	it	checks	to	see	if	the	operation		is	declared
noexcept.3

swap	functions	comprise	another	case	where	noexcept	is	particularly	desirable.
swap	is	a	key	component	of	many	STL	algorithm	implementations,	and	it’s
commonly	employed	in	copy	assignment	operators,	too.	Its	widespread	use
renders	the	optimizations	that	noexcept	affords	especially	worthwhile.
Interestingly,	whether	swaps	in	the	Standard	Library	are	noexcept	is	sometimes
dependent	on	whether	user-defined	swaps	are	noexcept.	For	example,	the
declarations	for	the	Standard	Library’s	swaps	for	arrays	and	std::pair	are:
template	<class	T,	size_t	N>	void	swap(T	(&a)[N],	//	see	T	(&b)[N])
noexcept(noexcept(swap(*a,	*b)));	//	below	template	<class	T1,	class	T2>	struct
pair	{	…	void	swap(pair&	p)	noexcept(noexcept(swap(first,	p.first))	&&
noexcept(swap(second,	p.second)));	…	};

These	functions	are	conditionally	noexcept:	whether	they	are	noexcept
depends	on	whether	the	expressions	inside	the	noexcept	clauses	are	noexcept.
Given	two	arrays	of	Widget,	for	example,	swapping	them	is	noexcept	only	if
swapping	individual	elements	in	the	arrays	is	noexcept,	i.e.,	if	swap	for	Widget
is	noexcept.	The	author	of	Widget’s	swap	thus	determines	whether	swapping
arrays	of	Widget	is	noexcept.	That,	in	turn,	determines	whether	other	swaps,
such	as	the	one	for	arrays	of	arrays	of	Widget,	are	noexcept.	Similarly,	whether
swapping	two	std::pair	objects	containing	Widgets	is	noexcept	depends	on
whether	swap	for	Widgets	is	noexcept.	The	fact	that	swapping	higher-level	data
structures	can	generally	be	noexcept	only	if	swapping	their	lower-level
constituents	is	noexcept	should	motivate	you	to	offer	noexcept	swap	functions
whenever	you	can.

By	now,	I	hope	you’re	excited	about	the	optimization	opportunities	that
noexcept	affords.	Alas,	I	must	temper	your	enthusiasm.	Optimization	is
important,	but	correctness	is	more	important.	I	noted	at	the	beginning	of	this

Item	that	noexcept	is	part	of	a	function’s	interface,	so	you	should	declare	a
function	noexcept	only	if	you	are	willing	to	commit	to	a	noexcept
implementation	over	the	long	term.	If	you	declare	a	function	noexcept	and	later
regret	that	decision,	your	options	are	bleak.	You	can	remove	noexcept	from	the
function’s	declaration	(i.e.,	change	its	interface),	thus	running	the	risk	of
breaking	client	code.	You	can	change	the	implementation	such	that	an	exception
could	escape,	yet	keep	the	original	(now	incorrect)	exception	specification.	If
you	do	that,	your	program	will	be	terminated	if	an	exception	tries	to	leave	the
function.	Or	you	can	resign	yourself	to	your	existing	implementation,
abandoning	whatever	kindled	your	desire	to	change	the	implementation	in	the
first	place.	None	of	these	options	is	appealing.

The	fact	of	the	matter	is	that	most	functions	are	exception-neutral.	Such
functions	throw	no	exceptions	themselves,	but	functions	they	call	might	emit
one.	When	that	happens,	the	exception-neutral	function	allows	the	emitted
exception	to	pass	through	on	its	way	to	a	handler	further	up	the	call	chain.
Exception-neutral	functions	are	never	noexcept,	because	they	may	emit	such
“just	passing	through”	exceptions.	Most	functions,	therefore,	quite	properly	lack
the	noexcept	designation.

Some	functions,	however,	have	natural	implementations	that	emit	no	exceptions,
and	for	a	few	more—notably	the	move	operations	and	swap—being	noexcept
can	have	such	a	significant	payoff,	it’s	worth	implementing	them	in	a	noexcept
manner	if	at	all	possible.4	When	you	can	honestly	say	that	a	function	should
never	emit	exceptions,	you	should	definitely	declare	it	noexcept.

Please	note	that	I	said	some	functions	have	natural	noexcept	implementations.
Twisting	a	function’s	implementation	to	permit	a	noexcept	declaration	is	the	tail
wagging	the	dog.	Is	putting	the	cart	before	the	horse.	Is	not	seeing	the	forest	for
the	trees.	Is…choose	your	favorite	metaphor.	If	a	straightforward	function
implementation	might	yield	exceptions	(e.g.,	by	invoking	a	function	that	might
throw),	the	hoops	you’ll	jump	through	to	hide	that	from	callers	(e.g.,	catching	all
exceptions	and	replacing	them	with	status	codes	or	special	return	values)	will	not
only	complicate	your	function’s	implementation,	it	will	typically	complicate
code	at	call	sites,	too.	For	example,	callers	may	have	to	check	for	status	codes	or
special	return	values.	The	runtime	cost	of	those	complications	(e.g.,	extra
branches,	larger	functions	that	put	more	pressure	on	instruction	caches,	etc.)

could	exceed	any	speedup	you’d	hope	to	achieve	via	noexcept,	plus	you’d	be
saddled	with	source	code	that’s	more	difficult	to	comprehend	and	maintain.
That’d	be	poor	software	engineering.

For	some	functions,	being	noexcept	is	so	important,	they’re	that	way	by	default.
In	C++98,	it	was	considered	bad	style	to	permit	the	memory	deallocation
functions	(i.e.,	operator	delete	and	operator	delete[])	and	destructors	to
emit	exceptions,	and	in	C++11,	this	style	rule	has	been	all	but	upgraded	to	a
language	rule.	By	default,	all	memory	deallocation	functions	and	all	destructors
—both	user-defined	and	compiler-generated—are	implicitly	noexcept.	There’s
thus	no	need	to	declare	them	noexcept.	(Doing	so	doesn’t	hurt	anything,	it’s	just
unconventional.)	The	only	time	a	destructor	is	not	implicitly	noexcept	is	when	a
data	member	of	the	class	(including	inherited	members	and	those	contained
inside	other	data	members)	is	of	a	type	that	expressly	states	that	its	destructor
may	emit	exceptions	(e.g.,	declares	it	“noexcept(false)”).	Such	destructors	are
uncommon.	There	are	none	in	the	Standard	Library,	and	if	the	destructor	for	an
object	being	used	by	the	Standard	Library	(e.g.,	because	it’s	in	a	container	or
was	passed	to	an	algorithm)	emits	an	exception,	the	behavior	of	the	program	is
undefined.

It’s	worth	noting	that	some	library	interface	designers	distinguish	functions	with
wide	contracts	from	those	with	narrow	contracts.	A	function	with	a	wide
contract	has	no	preconditions.	Such	a	function	may	be	called	regardless	of	the
state	of	the	program,	and	it	imposes	no	constraints	on	the	arguments	that	callers
pass	it.5	Functions	with	wide	contracts	never	exhibit	undefined	behavior.

Functions	without	wide	contracts	have	narrow	contracts.	For	such	functions,	if	a
precondition	is	violated,	results	are	undefined.

If	you’re	writing	a	function	with	a	wide	contract	and	you	know	it	won’t	emit
exceptions,	following	the	advice	of	this	Item	and	declaring	it	noexcept	is	easy.
For	functions	with	narrow	contracts,	the	situation	is	trickier.	For	example,
suppose	you’re	writing	a	function	f	taking	a	std::string	parameter,	and
suppose	f’s	natural	implementation	never	yields	an	exception.	That	suggests	that
f	should	be	declared	noexcept.

Now	suppose	that	f	has	a	precondition:	the	length	of	its	std::string	parameter
doesn’t	exceed	32	characters.	If	f	were	to	be	called	with	a	std::string	whose

length	is	greater	than	32,	behavior	would	be	undefined,	because	a	precondition
violation	by	definition	results	in	undefined	behavior.	f	is	under	no	obligation	to
check	this	precondition,	because	functions	may	assume	that	their	preconditions
are	satisfied.	(Callers	are	responsible	for	ensuring	that	such	assumptions	are
valid.)	Even	with	a	precondition,	then,	declaring	f	noexcept	seems		appropriate:
void	f(const	std::string&	s)	noexcept;	//	precondition:	//	s.length()	<=	32

But	suppose	that	f’s	implementer	chooses	to	check	for	precondition	violations.
Checking	isn’t	required,	but	it’s	also	not	forbidden,	and	checking	the
precondition	could	be	useful,	e.g.,	during	system	testing.	Debugging	an
exception	that’s	been	thrown	is	generally	easier	than	trying	to	track	down	the
cause	of	undefined	behavior.	But	how	should	a	precondition	violation	be
reported	such	that	a	test	harness	or	a	client	error	handler	could	detect	it?	A
straightforward	approach	would	be	to	throw	a	“precondition	was	violated”
exception,	but	if	f	is	declared	noexcept,	that	would	be	impossible;	throwing	an
exception	would	lead	to	program	termination.	For	this	reason,	library	designers
who	distinguish	wide	from	narrow	contracts	generally	reserve	noexcept	for
functions	with	wide	contracts.

As	a	final	point,	let	me	elaborate	on	my	earlier	observation	that	compilers
typically	offer	no	help	in	identifying	inconsistencies	between	function
implementations	and	their	exception	specifications.	Consider	this	code,	which	is
perfectly	legal:	void	setup();	//	functions	defined	elsewhere	void	cleanup();	void
doWork()	noexcept	{	setup();	//	set	up	work	to	be	done	…	//	do	the	actual	work
cleanup();	//	perform	cleanup	actions	}

Here,	doWork	is	declared	noexcept,	even	though	it	calls	the	non-noexcept
functions	setup	and	cleanup.	This	seems	contradictory,	but	it	could	be	that
setup	and	cleanup	document	that	they	never	emit	exceptions,	even	though
they’re	not	declared	that	way.	There	could	be	good	reasons	for	their	non-
noexcept	declarations.	For	example,	they	might	be	part	of	a	library	written	in	C.
(Even	functions	from	the	C	Standard	Library	that	have	been	moved	into	the	std
namespace	lack	exception	specifications,	e.g.,	std::strlen	isn’t	declared
noexcept.)	Or	they	could	be	part	of	a	C++98	library	that	decided	not	to	use
C++98	exception	specifications	and	hasn’t	yet	been	revised	for	C++11.

Because	there	are	legitimate	reasons	for	noexcept	functions	to	rely	on	code

lacking	the	noexcept	guarantee,	C++	permits	such	code,	and	compilers
generally	don’t	issue	warnings	about	it.

Things	to	Remember
noexcept	is	part	of	a	function’s	interface,	and	that	means	that	callers	may	depend	on	it.

noexcept	functions	are	more	optimizable	than	non-noexcept	functions.

noexcept	is	particularly	valuable	for	the	move	operations,	swap,	memory	deallocation
functions,	and	destructors.

Most	functions	are	exception-neutral	rather	than	noexcept.

Item	15: Use	constexpr	whenever	possible.
If	there	were	an	award	for	the	most	confusing	new	word	in	C++11,	constexpr
would	probably	win	it.	When	applied	to	objects,	it’s	essentially	a	beefed-up	form
of	const,	but	when	applied	to	functions,	it	has	a	quite	different	meaning.	Cutting
through	the	confusion	is	worth	the	trouble,	because	when	constexpr
corresponds	to	what	you	want	to	express,	you	definitely	want	to	use	it.

Conceptually,	constexpr	indicates	a	value	that’s	not	only	constant,	it’s	known
during	compilation.	The	concept	is	only	part	of	the	story,	though,	because	when
constexpr	is	applied	to	functions,	things	are	more	nuanced	than	this	suggests.
Lest	I	ruin	the	surprise	ending,	for	now	I’ll	just	say	that	you	can’t	assume	that
the	results	of	constexpr	functions	are	const,	nor	can	you	take	for	granted	that
their	values	are	known	during	compilation.	Perhaps	most	intriguingly,	these
things	are	features.	It’s	good	that	constexpr	functions	need	not	produce	results
that	are	const	or	known	during	compilation!

But	let’s	begin	with	constexpr	objects.	Such	objects	are,	in	fact,	const,	and
they	do,	in	fact,	have	values	that	are	known	at	compile	time.	(Technically,	their
values	are	determined	during	translation,	and	translation	consists	not	just	of
compilation	but	also	of	linking.	Unless	you	write	compilers	or	linkers	for	C++,
however,	this	has	no	effect	on	you,	so	you	can	blithely	program	as	if	the	values
of	constexpr	objects	were	determined	during	compilation.)

Values	known	during	compilation	are	privileged.	They	may	be	placed	in	read-
only	memory,	for	example,	and,	especially	for	developers	of	embedded	systems,
this	can	be	a	feature	of	considerable	importance.	Of	broader	applicability	is	that
integral	values	that	are	constant	and	known	during	compilation	can	be	used	in
contexts	where	C++	requires	an	integral	constant	expression.	Such	contexts
include	specification	of	array	sizes,	integral	template	arguments	(including
lengths	of	std::array	objects),	enumerator	values,	alignment	specifiers,	and
more.	If	you	want	to	use	a	variable	for	these	kinds	of	things,	you	certainly	want
to	declare	it	constexpr,	because	then	compilers	will	ensure	that	it	has	a
compile-time	value:	int	sz;	//	non-constexpr	variable	…	constexpr	auto
arraySize1	=	sz;	//	error!	sz's	value	not	//	known	at	compilation	std::array<int,
sz>	data1;	//	error!	same	problem	constexpr	auto	arraySize2	=	10;	//	fine,	10	is	a
//	compile-time	constant	std::array<int,	arraySize2>	data2;	//	fine,	arraySize2	//	is
constexpr

Note	that	const	doesn’t	offer	the	same	guarantee	as	constexpr,	because	const
objects	need	not	be	initialized	with	values	known	during	compilation:	int	sz;	//	as
before	…	const	auto	arraySize	=	sz;	//	fine,	arraySize	is	//	const	copy	of	sz
std::array<int,	arraySize>	data;	//	error!	arraySize's	value	//	not	known	at
compilation

Simply	put,	all	constexpr	objects	are	const,	but	not	all	const	objects	are
constexpr.	If	you	want	compilers	to	guarantee	that	a	variable	has	a	value	that
can	be	used	in	contexts	requiring	compile-time	constants,	the	tool	to	reach	for	is
constexpr,	not	const.

Usage	scenarios	for	constexpr	objects	become	more	interesting	when
constexpr	functions	are	involved.	Such	functions	produce	compile-time
constants	when	they	are	called	with	compile-time	constants.	If	they’re	called
with	values	not	known	until	runtime,	they	produce	runtime	values.	This	may
sound	as	if	you	don’t	know	what	they’ll	do,	but	that’s	the	wrong	way	to	think
about	it.	The	right	way	to	view	it	is	this:

constexpr	functions	can	be	used	in	contexts	that	demand	compile-time
constants.	If	the	values	of	the	arguments	you	pass	to	a	constexpr	function	in
such	a	context	are	known	during	compilation,	the	result	will	be	computed
during	compilation.	If	any	of	the	arguments’	values	is	not	known	during

compilation,	your	code	will	be	rejected.

When	a	constexpr	function	is	called	with	one	or	more	values	that	are	not
known	during	compilation,	it	acts	like	a	normal	function,	computing	its	result
at	runtime.	This	means	you	don’t	need	two	functions	to	perform	the	same
operation,	one	for	compile-time	constants	and	one	for	all	other	values.	The
constexpr	function	does	it	all.

Suppose	we	need	a	data	structure	to	hold	the	results	of	an	experiment	that	can	be
run	in	a	variety	of	ways.	For	example,	the	lighting	level	can	be	high,	low,	or	off
during	the	course	of	the	experiment,	as	can	the	fan	speed	and	the	temperature,
etc.	If	there	are	n	environmental	conditions	relevant	to	the	experiment,	each	of
which	has	three	possible	states,	the	number	of	combinations	is	3n.	Storing
experimental	results	for	all	combinations	of	conditions	thus	requires	a	data
structure	with	enough	room	for	3n	values.	Assuming	each	result	is	an	int	and
that	n	is	known	(or	can	be	computed)	during	compilation,	a	std::array	could
be	a	reasonable	data	structure	choice.	But	we’d	need	a	way	to	compute	3n	during
compilation.	The	C++	Standard	Library	provides	std::pow,	which	is	the
mathematical	functionality	we	need,	but,	for	our	purposes,	there	are	two
problems	with	it.	First,	std::pow	works	on	floating-point	types,	and	we	need	an
integral	result.	Second,	std::pow	isn’t	constexpr	(i.e.,	isn’t	guaranteed	to
return	a	compile-time	result	when	called	with	compile-time	values),	so	we	can’t
use	it	to	specify	a	std::array’s	size.

Fortunately,	we	can	write	the	pow	we	need.	I’ll	show	how	to	do	that	in	a
moment,	but	first	let’s	look	at	how	it	could	be	declared	and	used:	constexpr	//
pow's	a	constexpr	func	int	pow(int	base,	int	exp)	noexcept	//	that	never	throws	{
…	//	impl	is	below	}	constexpr	auto	numConds	=	5;	//	#	of	conditions
std::array<int,	pow(3,	numConds)>	results;	//	results	has	//	3^numConds	//
elements

Recall	that	the	constexpr	in	front	of	pow	doesn’t	say	that	pow	returns	a	const
value,	it	says	that	if	base	and	exp	are	compile-time	constants,	pow’s	result	may
be	used	as	a	compile-time	constant.	If	base	and/or	exp	are	not	compile-time
constants,	pow’s	result	will	be	computed	at	runtime.	That	means	that	pow	can	not
only	be	called	to	do	things	like	compile-time-compute	the	size	of	a	std::array,

it	can	also	be	called	in	runtime	contexts	such	as	this:	auto	base	=
readFromDB("base");	//	get	these	values	auto	exp	=	readFromDB("exponent");	//
at	runtime	auto	baseToExp	=	pow(base,	exp);	//	call	pow	function	//	at	runtime

Because	constexpr	functions	must	be	able	to	return	compile-time	results	when
called	with	compile-time	values,	restrictions	are	imposed	on	their
implementations.	The	restrictions	differ	between	C++11	and	C++14.

In	C++11,	constexpr	functions	may	contain	no	more	than	a	single	executable
statement:	a	return.	That	sounds	more	limiting	than	it	is,	because	two	tricks	can
be	used	to	extend	the	expressiveness	of	constexpr	functions	beyond	what	you
might	think.	First,	the	conditional	“?:”	operator	can	be	used	in	place	of	if-else
statements,	and	second,	recursion	can	be	used	instead	of	loops.	pow	can	therefore
be	implemented	like	this:	constexpr	int	pow(int	base,	int	exp)	noexcept	{	return
(exp	==	0	?	1	:	base	*	pow(base,	exp	-	1));	}

This	works,	but	it’s	hard	to	imagine	that	anybody	except	a	hard-core	functional
programmer	would	consider	it	pretty.	In	C++14,	the	restrictions	on	constexpr
functions	are	substantially	looser,	so	the	following	implementation	becomes
possible:	constexpr	int	pow(int	base,	int	exp)	noexcept	//	C++14	{	auto	result	=
1;	for	(int	i	=	0;	i	<	exp;	++i)	result	*=	base;	return	result;	}

constexpr	functions	are	limited	to	taking	and	returning	literal	types,	which
essentially	means	types	that	can	have	values	determined	during	compilation.	In
C++11,	all	built-in	types	except	void	qualify,	but	user-defined	types	may	be
literal,	too,	because	constructors	and	other	member	functions	may	be
constexpr:	class	Point	{	public:	constexpr	Point(double	xVal	=	0,	double	yVal
=	0)	noexcept	:	x(xVal),	y(yVal)	{}	constexpr	double	xValue()	const	noexcept	{
return	x;	}	constexpr	double	yValue()	const	noexcept	{	return	y;	}	void
setX(double	newX)	noexcept	{	x	=	newX;	}	void	setY(double	newY)	noexcept	{
y	=	newY;	}	private:	double	x,	y;	};

Here,	the	Point	constructor	can	be	declared	constexpr,	because	if	the
arguments	passed	to	it	are	known	during	compilation,	the	value	of	the	data
members	of	the	constructed	Point	can	also	be	known	during	compilation.
Points	so	initialized	could	thus	be	constexpr:	constexpr	Point	p1(9.4,	27.7);	//
fine,	"runs"	constexpr	//	ctor	during	compilation	constexpr	Point	p2(28.8,	5.3);	//
also	fine

Similarly,	the	getters	xValue	and	yValue	can	be	constexpr,	because	if	they’re
invoked	on	a	Point	object	with	a	value	known	during	compilation	(e.g.,	a
constexpr Point	object),	the	values	of	the	data	members	x	and	y	can	be	known
during	compilation.	That	makes	it	possible	to	write	constexpr	functions	that
call	Point’s	getters	and	to	initialize	constexpr	objects	with	the	results	of	such
functions:	constexpr	Point	midpoint(const	Point&	p1,	const	Point&	p2)	noexcept
{	return	{	(p1.xValue()	+	p2.xValue())	/	2,	//	call	constexpr	(p1.yValue()	+
p2.yValue())	/	2	};	//	member	funcs	}	constexpr	auto	mid	=	midpoint(p1,	p2);	//
init	constexpr	//	object	w/result	of	//	constexpr	function

This	is	very	exciting.	It	means	that	the	object	mid,	though	its	initialization
involves	calls	to	constructors,	getters,	and	a	non-member	function,	can	be
created	in	read-only	memory!	It	means	you	could	use	an	expression	like
mid.xValue()	*	10	in	an	argument	to	a	template	or	in	an	expression	specifying
the	value	of	an	enumerator!6	It	means	that	the	traditionally	fairly	strict	line
between	work	done	during	compilation	and	work	done	at	runtime	begins	to	blur,
and	some	computations	traditionally	done	at	runtime	can	migrate	to	compile
time.	The	more	code	taking	part	in	the	migration,	the	faster	your	software	will
run.	(Compilation	may	take	longer,	however.)	In	C++11,	two	restrictions	prevent
Point’s	member	functions	setX	and	setY	from	being	declared	constexpr.
First,	they	modify	the	object	they	operate	on,	and	in	C++11,	constexpr	member
functions	are	implicitly	const.	Second,	they	have	void	return	types,	and	void
isn’t	a	literal	type	in	C++11.	Both	these	restrictions	are	lifted	in	C++14,	so	in
C++14,	even	Point’s	setters	can	be	constexpr:	class	Point	{	public:	…
constexpr	void	setX(double	newX)	noexcept	//	C++14	{	x	=	newX;	}	constexpr
void	setY(double	newY)	noexcept	//	C++14	{	y	=	newY;	}	…	};

That	makes	it	possible	to	write	functions	like	this:	//	return	reflection	of	p	with
respect	to	the	origin	(C++14)	constexpr	Point	reflection(const	Point&	p)
noexcept	{	Point	result;	//	create	non-const	Point	result.setX(-p.xValue());	//	set
its	x	and	y	values	result.setY(-p.yValue());	return	result;	//	return	copy	of	it	}

Client	code	could	look	like	this:	constexpr	Point	p1(9.4,	27.7);	//	as	above
constexpr	Point	p2(28.8,	5.3);	constexpr	auto	mid	=	midpoint(p1,	p2);	constexpr
auto	reflectedMid	=	//	reflectedMid's	value	is	reflection(mid);	//	(-19.1	-16.5)	and
known	//	during	compilation

The	advice	of	this	Item	is	to	use	constexpr	whenever	possible,	and	by	now	I
hope	it’s	clear	why:	both	constexpr	objects	and	constexpr	functions	can	be
employed	in	a	wider	range	of	contexts	than	non-constexpr	objects	and
functions.	By	using	constexpr	whenever	possible,	you	maximize	the	range	of
situations	in	which	your	objects	and	functions	may	be	used.

It’s	important	to	note	that	constexpr	is	part	of	an	object’s	or	function’s
interface.	constexpr	proclaims	“I	can	be	used	in	a	context	where	C++	requires	a
constant	expression.”	If	you	declare	an	object	or	function	constexpr,	clients
may	use	it	in	such	contexts.	If	you	later	decide	that	your	use	of	constexpr	was	a
mistake	and	you	remove	it,	you	may	cause	arbitrarily	large	amounts	of	client
code	to	stop	compiling.	(The	simple	act	of	adding	I/O	to	a	function	for
debugging	or	performance	tuning	could	lead	to	such	a	problem,	because	I/O
statements	are	generally	not	permitted	in	constexpr	functions.)	Part	of
“whenever	possible”	in	“Use	constexpr	whenever	possible”	is	your	willingness
to	make	a	long-term	commitment	to	the	constraints	it	imposes	on	the	objects	and
functions	you	apply	it	to.

Things	to	Remember
constexpr	objects	are	const	and	are	initialized	with	values	known	during	compilation.

constexpr	functions	can	produce	compile-time	results	when	called	with	arguments	whose
values	are	known	during	compilation.

constexpr	objects	and	functions	may	be	used	in	a	wider	range	of	contexts	than	non-
constexpr	objects	and	functions.

constexpr	is	part	of	an	object’s	or	function’s	interface.

Item	16: Make	const	member	functions	thread
safe.
If	we’re	working	in	a	mathematical	domain,	we	might	find	it	convenient	to	have
a	class	representing	polynomials.	Within	this	class,	it	would	probably	be	useful
to	have	a	function	to	compute	the	root(s)	of	a	polynomial,	i.e.,	values	where	the

polynomial	evaluates	to	zero.	Such	a	function	would	not	modify	the	polynomial,
so	it’d	be	natural	to		declare	it	const:	class	Polynomial	{	public:	using
RootsType	=	//	data	structure	holding	values	std::vector<double>;	//	where
polynomial	evals	to	zero	…	//	(see	Item	9	for	info	on	"using")	RootsType	roots()
const;	…	};

Computing	the	roots	of	a	polynomial	can	be	expensive,	so	we	don’t	want	to	do	it
if	we	don’t	have	to.	And	if	we	do	have	to	do	it,	we	certainly	don’t	want	to	do	it
more	than	once.	We’ll	thus	cache	the	root(s)	of	the	polynomial	if	we	have	to
compute	them,	and	we’ll	implement	roots	to	return	the	cached	value.	Here’s	the
basic	approach:	class	Polynomial	{	public:	using	RootsType	=
std::vector<double>;	RootsType	roots()	const	{	if	(!rootsAreValid)	{	//	if	cache
not	valid	…	//	compute	roots,	//	store	them	in	rootVals	rootsAreValid	=	true;	}
return	rootVals;	}	private:	mutable	bool	rootsAreValid{	false	};	//	see	Item	7	for
info	mutable	RootsType	rootVals{};	//	on	initializers	};

Conceptually,	roots	doesn’t	change	the	Polynomial	object	on	which	it
operates,	but,	as	part	of	its	caching	activity,	it	may	need	to	modify	rootVals	and
rootsAreValid.	That’s	a	classic	use	case	for	mutable,	and	that’s	why	it’s	part
of	the	declarations	for	these	data	members.

Imagine	now	that	two	threads	simultaneously	call	roots	on	a	Polynomial
object:	Polynomial	p;	…	/*-----	Thread	1	-----	-------	Thread	2	-------	*/	auto
rootsOfP	=	p.roots();	auto	valsGivingZero	=	p.roots();

This	client	code	is	perfectly	reasonable.	roots	is	a	const	member	function,	and
that	means	it	represents	a	read	operation.	Having	multiple	threads	perform	a	read
operation	without	synchronization	is	safe.	At	least	it’s	supposed	to	be.	In	this
case,	it’s	not,	because	inside	roots,	one	or	both	of	these	threads	might	try	to
modify	the	data	members	rootsAreValid	and	rootVals.	That	means	that	this
code	could	have	different	threads	reading	and	writing	the	same	memory	without
synchronization,	and	that’s	the	definition	of	a	data	race.	This	code	has	undefined
behavior.

The	problem	is	that	roots	is	declared	const,	but	it’s	not	thread	safe.	The	const
declaration	is	as	correct	in	C++11	as	it	would	be	in	C++98	(retrieving	the	roots
of	a	polynomial	doesn’t	change	the	value	of	the	polynomial),	so	what	requires
rectification	is	the	lack	of	thread	safety.

The	easiest	way	to	address	the	issue	is	the	usual	one:	employ	a	mutex:	class
Polynomial	{	public:	using	RootsType	=	std::vector<double>;	RootsType	roots()
const	{	std::lock_guard<std::mutex>	g(m);	//	lock	mutex	if	(!rootsAreValid)	{	//
if	cache	not	valid	…	//	compute/store	roots	rootsAreValid	=	true;	}	return
rootVals;	}	//	unlock	mutex	private:	mutable	std::mutex	m;	mutable	bool
rootsAreValid{	false	};	mutable	RootsType	rootVals{};	};

The	std::mutex	m	is	declared	mutable,	because	locking	and	unlocking	it	are
non-const	member	functions,	and	within	roots	(a	const	member	function),	m
would	otherwise	be	considered	a	const	object.

It’s	worth	noting	that	because	std::mutex	is	a	move-only	type	(i.e.,	a	type	that
can	be	moved,	but	not	copied),	a	side	effect	of	adding	m	to	Polynomial	is	that
Polynomial	loses	the	ability	to	be	copied.	It	can	still	be	moved,	however.

In	some	situations,	a	mutex	is	overkill.	For	example,	if	all	you’re	doing	is
counting	how	many	times	a	member	function	is	called,	a	std::atomic	counter
(i.e,	one	where	other	threads	are	guaranteed	to	see	its	operations	occur
indivisibly—see	Item	40)	will	often	be	a	less	expensive	way	to	go.	(Whether	it
actually	is	less	expensive	depends	on	the	hardware	you’re	running	on	and	the
implementation	of	mutexes	in	your	Standard	Library.)	Here’s	how	you	can
employ	a	std::atomic	to	count	calls:	class	Point	{	//	2D	point	public:	…	double
distanceFromOrigin()	const	noexcept	//	see	Item	14	{	//	for	noexcept
++callCount;	//	atomic	increment	return	std::sqrt((x	*	x)	+	(y	*	y));	}	private:
mutable	std::atomic<unsigned>	callCount{	0	};	double	x,	y;	};

Like	std::mutexes,	std::atomics	are	move-only	types,	so	the	existence	of
callCount	in	Point	means	that	Point	is	also	move-only.

Because	operations	on	std::atomic	variables	are	often	less	expensive	than
mutex	acquisition	and	release,	you	may	be	tempted	to	lean	on	std::atomics
more	heavily	than	you	should.	For	example,	in	a	class	caching	an	expensive-to-
compute	int,	you	might	try	to	use	a	pair	of	std::atomic	variables	instead	of	a
mutex:	class	Widget	{	public:	…	int	magicValue()	const	{	if	(cacheValid)	return
cachedValue;	else	{	auto	val1	=	expensiveComputation1();	auto	val2	=
expensiveComputation2();	cachedValue	=	val1	+	val2;	//	uh	oh,	part	1
cacheValid	=	true;	//	uh	oh,	part	2	return	cachedValue;	}	}	private:	mutable
std::atomic<bool>	cacheValid{	false	};	mutable	std::atomic<int>	cachedValue;

};

This	will	work,	but	sometimes	it	will	work	a	lot	harder	than	it	should.	Consider:

A	thread	calls	Widget::magicValue,	sees	cacheValid	as	false,	performs
the	two	expensive	computations,	and	assigns	their	sum	to	cachedValue.

At	that	point,	a	second	thread	calls	Widget::magicValue,	also	sees
cacheValid	as	false,	and	thus	carries	out	the	same	expensive	computations
that	the	first	thread	has	just	finished.	(This	“second	thread”	may	in	fact	be
several	other	threads.)

Such	behavior	is	contrary	to	the	goal	of	caching.	Reversing	the	order	of	the
assignments	to	cachedValue	and	CacheValid	eliminates	that	problem,	but	the
result	is	even	worse:	class	Widget	{	public:	…	int	magicValue()	const	{	if
(cacheValid)	return	cachedValue;	else	{	auto	val1	=	expensiveComputation1();
auto	val2	=	expensiveComputation2();	cacheValid	=	true;	//	uh	oh,	part	1	return
cachedValue	=	val1	+	val2;	//	uh	oh,	part	2	}	}	…	};

Imagine	that	cacheValid	is	false,	and	then:

One	thread	calls	Widget::magicValue	and	executes	through	the	point	where
cacheValid	is	set	to	true.

At	that	moment,	a	second	thread	calls	Widget::magicValue	and	checks
cacheValid.	Seeing	it	true,	the	thread	returns	cachedValue,	even	though
the	first	thread	has	not	yet	made	an	assignment	to	it.	The	returned	value	is
therefore	incorrect.

There’s	a	lesson	here.	For	a	single	variable	or	memory	location	requiring
synchronization,	use	of	a	std::atomic	is	adequate,	but	once	you	get	to	two	or
more	variables	or	memory	locations	that	require	manipulation	as	a	unit,	you
should	reach	for	a	mutex.	For	Widget::magicValue,	that	would	look	like	this:
class	Widget	{	public:	…	int	magicValue()	const	{	std::lock_guard<std::mutex>
guard(m);	//	lock	m	if	(cacheValid)	return	cachedValue;	else	{	auto	val1	=
expensiveComputation1();	auto	val2	=	expensiveComputation2();	cachedValue
=	val1	+	val2;	cacheValid	=	true;	return	cachedValue;	}	}	//	unlock	m	…	private:
mutable	std::mutex	m;	mutable	int	cachedValue;	//	no	longer	atomic	mutable

bool	cacheValid{	false	};	//	no	longer	atomic	};

Now,	this	Item	is	predicated	on	the	assumption	that	multiple	threads	may
simultaneously	execute	a	const	member	function	on	an	object.	If	you’re	writing
a	const	member	function	where	that’s	not	the	case—where	you	can	guarantee
that	there	will	never	be	more	than	one	thread	executing	that	member	function	on
an	object—the	thread	safety	of	the	function	is	immaterial.	For	example,	it’s
unimportant	whether	member	functions	of	classes	designed	for	exclusively
single-threaded	use	are	thread	safe.	In	such	cases,	you	can	avoid	the	costs
associated	with	mutexes	and	std::atomics,	as	well	as	the	side	effect	of	their
rendering	the	classes	containing	them	move-only.	However,	such	threading-free
scenarios	are	increasingly	uncommon,	and	they’re	likely	to	become	rarer	still.
The	safe	bet	is	that	const	member	functions	will	be	subject	to	concurrent
execution,	and	that’s	why	you	should	ensure	that	your	const	member	functions
are	thread	safe.

	
Things	to	Remember

Make	const	member	functions	thread	safe	unless	you’re	certain	they’ll	never	be	used	in	a
concurrent	context.

Use	of	std::atomic	variables	may	offer	better	performance	than	a	mutex,	but	they’re
suited	for	manipulation	of	only	a	single	variable	or	memory	location.

Item	17: Understand	special	member	function
generation.
In	official	C++	parlance,	the	special	member	functions	are	the	ones	that	C++	is
willing	to	generate	on	its	own.	C++98	has	four	such	functions:	the	default
constructor,	the	destructor,	the	copy	constructor,	and	the	copy	assignment
operator.	There’s	fine	print,	of	course.	These	functions	are	generated	only	if
they’re	needed,	i.e.,	if	some	code	uses	them	without	their	being	expressly
declared	in	the	class.	A	default	constructor	is	generated	only	if	the	class	declares
no	constructors	at	all.	(This	prevents	compilers	from	creating	a	default
constructor	for	a	class	where	you’ve	specified	that	constructor	arguments	are
required.)	Generated	special	member	functions	are	implicitly	public	and	inline,

and	they’re	nonvirtual	unless	the	function	in	question	is	a	destructor	in	a	derived
class	inheriting	from	a	base	class	with	a	virtual	destructor.	In	that	case,	the
compiler-generated	destructor	for	the	derived	class	is	also	virtual.

But	you	already	know	these	things.	Yes,	yes,	ancient	history:	Mesopotamia,	the
Shang	dynasty,	FORTRAN,	C++98.	But	times	have	changed,	and	the	rules	for
special	member	function	generation	in	C++	have	changed	with	them.	It’s
important	to	be	aware	of	the	new	rules,	because	few	things	are	as	central	to
effective	C++	programming	as	knowing	when	compilers	silently	insert	member
functions	into	your	classes.

As	of	C++11,	the	special	member	functions	club	has	two	more	inductees:	the
move	constructor	and	the	move	assignment	operator.	Their	signatures	are:	class
Widget	{	public:	…	Widget(Widget&&	rhs);	//	move	constructor	Widget&
operator=(Widget&&	rhs);	//	move	assignment	operator	…	};

The	rules	governing	their	generation	and	behavior	are	analogous	to	those	for
their	copying	siblings.	The	move	operations	are	generated	only	if	they’re
needed,	and	if	they	are	generated,	they	perform	“memberwise	moves”	on	the
non-static	data	members	of	the	class.	That	means	that	the	move	constructor
move-constructs	each	non-static	data	member	of	the	class	from	the
corresponding	member	of	its	parameter	rhs,	and	the	move	assignment	operator
move-assigns	each	non-static	data	member	from	its	parameter.	The	move
constructor	also	move-constructs	its	base	class	parts	(if	there	are	any),	and	the
move	assignment	operator	move-assigns	its	base	class	parts.

Now,	when	I	refer	to	a	move	operation	move-constructing	or	move-assigning	a
data	member	or	base	class,	there	is	no	guarantee	that	a	move	will	actually	take
place.	“Memberwise	moves”	are,	in	reality,	more	like	memberwise	move
requests,	because	types	that	aren’t	move-enabled	(i.e.,	that	offer	no	special
support	for	move	operations,	e.g.,	most	C++98	legacy	classes)	will	be	“moved”
via	their	copy	operations.	The	heart	of	each	memberwise	“move”	is	application
of	std::move	to	the	object	to	be	moved	from,	and	the	result	is	used	during
function	overload	resolution	to	determine	whether	a	move	or	a	copy	should	be
performed.	Item	23	covers	this	process	in	detail.	For	this	Item,	simply	remember
that	a	memberwise	move	consists	of	move	operations	on	data	members	and	base
classes	that	support	move	operations,	but	a	copy	operation	for	those	that	don’t.

As	is	the	case	with	the	copy	operations,	the	move	operations	aren’t	generated	if
you	declare	them	yourself.	However,	the	precise	conditions	under	which	they	are

you	declare	them	yourself.	However,	the	precise	conditions	under	which	they	are
generated	differ	a	bit	from	those	for	the	copy	operations.

The	two	copy	operations	are	independent:	declaring	one	doesn’t	prevent
compilers	from	generating	the	other.	So	if	you	declare	a	copy	constructor,	but	no
copy	assignment	operator,	then	write	code	that	requires	copy	assignment,
compilers	will	generate	the	copy	assignment	operator	for	you.	Similarly,	if	you
declare	a	copy	assignment	operator,	but	no	copy	constructor,	yet	your	code
requires	copy	construction,	compilers	will	generate	the	copy	constructor	for	you.
That	was	true	in	C++98,	and	it’s	still	true	in	C++11.

The	two	move	operations	are	not	independent.	If	you	declare	either,	that
prevents	compilers	from	generating	the	other.	The	rationale	is	that	if	you	declare,
say,	a	move	constructor	for	your	class,	you’re	indicating	that	there’s	something
about	how	move	construction	should	be	implemented	that’s	different	from	the
default	memberwise	move	that	compilers	would	generate.	And	if	there’s
something	wrong	with	memberwise	move	construction,	there’d	probably	be
something	wrong	with	memberwise	move	assignment,	too.	So	declaring	a	move
constructor	prevents	a	move	assignment	operator	from	being	generated,	and
declaring	a	move	assignment	operator	prevents	compilers	from	generating	a
move	constructor.

Furthermore,	move	operations	won’t	be	generated	for	any	class	that	explicitly
declares	a	copy	operation.	The	justification	is	that	declaring	a	copy	operation
(construction	or	assignment)	indicates	that	the	normal	approach	to	copying	an
object	(memberwise	copy)	isn’t	appropriate	for	the	class,	and	compilers	figure
that	if	memberwise	copy	isn’t	appropriate	for	the	copy	operations,	memberwise
move	probably	isn’t	appropriate	for	the	move	operations.

This	goes	in	the	other	direction,	too.	Declaring	a	move	operation	(construction	or
assignment)	in	a	class	causes	compilers	to	disable	the	copy	operations.	(The
copy	operations	are	disabled	by	deleting	them—see	Item	11).	After	all,	if
memberwise	move	isn’t	the	proper	way	to	move	an	object,	there’s	no	reason	to
expect	that	memberwise	copy	is	the	proper	way	to	copy	it.	This	may	sound	like
it	could	break	C++98	code,	because	the	conditions	under	which	the	copy
operations	are	enabled	are	more	constrained	in	C++11	than	in	C++98,	but	this	is
not	the	case.	C++98	code	can’t	have	move	operations,	because	there	was	no	such
thing	as	“moving”	objects	in	C++98.	The	only	way	a	legacy	class	can	have	user-

declared	move	operations	is	if	they	were	added	for	C++11,	and	classes	that	are
modified	to	take	advantage	of	move	semantics	have	to	play	by	the	C++11	rules
for	special	member	function	generation.

Perhaps	you’ve	heard	of	a	guideline	known	as	the	Rule	of	Three.	The	Rule	of
Three	states	that	if	you	declare	any	of	a	copy	constructor,	copy	assignment
operator,	or	destructor,	you	should	declare	all	three.	It	grew	out	of	the
observation	that	the	need	to	take	over	the	meaning	of	a	copy	operation	almost
always	stemmed	from	the	class	performing	some	kind	of	resource	management,
and	that	almost	always	implied	that	(1)	whatever	resource	management	was
being	done	in	one	copy	operation	probably	needed	to	be	done	in	the	other	copy
operation	and	(2)	the	class	destructor	would	also	be	participating	in	management
of	the	resource	(usually	releasing	it).	The	classic	resource	to	be	managed	was
memory,	and	this	is	why	all	Standard	Library	classes	that	manage	memory	(e.g.,
the	STL	containers	that	perform	dynamic	memory	management)	all	declare	“the
big	three”:	both	copy	operations	and	a	destructor.	

A	consequence	of	the	Rule	of	Three	is	that	the	presence	of	a	user-declared
destructor	indicates	that	simple	memberwise	copy	is	unlikely	to	be	appropriate
for	the	copying	operations	in	the	class.	That,	in	turn,	suggests	that	if	a	class
declares	a	destructor,	the	copy	operations	probably	shouldn’t	be	automatically
generated,	because	they	wouldn’t	do	the	right	thing.	At	the	time	C++98	was
adopted,	the	significance	of	this	line	of	reasoning	was	not	fully	appreciated,	so	in
C++98,	the	existence	of	a	user-declared	destructor	had	no	impact	on	compilers’
willingness	to	generate	copy	operations.	That	continues	to	be	the	case	in	C++11,
but	only	because	restricting	the	conditions	under	which	the	copy	operations	are
generated	would	break	too	much	legacy	code.

The	reasoning	behind	the	Rule	of	Three	remains	valid,	however,	and	that,
combined	with	the	observation	that	declaration	of	a	copy	operation	precludes	the
implicit	generation	of	the	move	operations,	motivates	the	fact	that	C++11	does
not	generate	move	operations	for	a	class	with	a	user-declared	destructor.

So	move	operations	are	generated	for	classes	(when	needed)	only	if	these	three
things	are	true:

No	copy	operations	are	declared	in	the	class.

No	move	operations	are	declared	in	the	class.

No	destructor	is	declared	in	the	class.

At	some	point,	analogous	rules	may	be	extended	to	the	copy	operations,	because
C++11	deprecates	the	automatic	generation	of	copy	operations	for	classes
declaring	copy	operations	or	a	destructor.	This	means	that	if	you	have	code	that
depends	on	the	generation	of	copy	operations	in	classes	declaring	a	destructor	or
one	of	the	copy	operations,	you	should	consider	upgrading	these	classes	to
eliminate	the	dependence.	Provided	the	behavior	of	the	compiler-generated
functions	is	correct	(i.e,	if	memberwise	copying	of	the	class’s	non-static	data
members	is	what	you	want),	your	job	is	easy,	because	C++11’s	“=	default”	lets
you	say	that	explicitly:	class	Widget	{	public:	…	~Widget();	//	user-declared	dtor
…	//	default	copy	ctor	Widget(const	Widget&)	=	default;	//	behavior	is	OK
Widget&	//	default	copy	assign	operator=(const	Widget&)	=	default;	//	behavior
is	OK	…	};

This	approach	is	often	useful	in	polymorphic	base	classes,	i.e.,	classes	defining
interfaces	through	which	derived	class	objects	are	manipulated.	Polymorphic
base	classes	normally	have	virtual	destructors,	because	if	they	don’t,	some
operations	(e.g.,	the	use	of	delete	or	typeid	on	a	derived	class	object	through	a
base	class	pointer	or	reference)	yield	undefined	or	misleading	results.	Unless	a
class	inherits	a	destructor	that’s	already	virtual,	the	only	way	to	make	a
destructor	virtual	is	to	explicitly	declare	it	that	way.	Often,	the	default
implementation	would	be	correct,	and	“=	default”	is	a	good	way	to	express
that.	However,	a	user-declared	destructor	suppresses	generation	of	the	move
operations,	so	if	movability	is	to	be	supported,	“=	default”	often	finds	a	second
application.	Declaring	the	move	operations	disables	the	copy	operations,	so	if
copyability	is	also	desired,	one	more	round	of	“=	default”	does	the	job:	class
Base	{	public:	virtual	~Base()	=	default;	//	make	dtor	virtual	Base(Base&&)	=
default;	//	support	moving	Base&	operator=(Base&&)	=	default;	Base(const
Base&)	=	default;	//	support	copying	Base&	operator=(const	Base&)	=	default;
…	};

In	fact,	even	if	you	have	a	class	where	compilers	are	willing	to	generate	the	copy
and	move	operations	and	where	the	generated	functions	would	behave	as	you
want,	you	may	choose	to	adopt	a	policy	of	declaring	them	yourself	and	using	“=
default”	for	their	definitions.	It’s	more	work,	but	it	makes	your	intentions
clearer,	and	it	can	help	you	sidestep	some	fairly	subtle	bugs.	For	example,

suppose	you	have	a	class	representing	a	string	table,	i.e.,	a	data	structure	that
permits	fast	lookups	of	string	values	via	an	integer	ID:	class	StringTable	{
public:	StringTable()	{}	…	//	functions	for	insertion,	erasure,	lookup,	//	etc.,	but
no	copy/move/dtor	functionality	private:	std::map<int,	std::string>	values;	};

Assuming	that	the	class	declares	no	copy	operations,	no	move	operations,	and	no
destructor,	compilers	will	automatically	generate	these	functions	if	they	are	used.
That’s	very	convenient.

But	suppose	that	sometime	later,	it’s	decided	that	logging	the	default
construction	and	the	destruction	of	such	objects	would	be	useful.	Adding	that
functionality	is	easy:	class	StringTable	{	public:	StringTable()	{
makeLogEntry("Creating	StringTable	object");	}	//	added	~StringTable()	//	also
{	makeLogEntry("Destroying	StringTable	object");	}	//	added	…	//	other	funcs
as	before	private:	std::map<int,	std::string>	values;	//	as	before	};

This	looks	reasonable,	but	declaring	a	destructor	has	a	potentially	significant
side	effect:	it	prevents	the	move	operations	from	being	generated.	However,
creation	of	the	class’s	copy	operations	is	unaffected.	The	code	is	therefore	likely
to	compile,	run,	and	pass	its	functional	testing.	That	includes	testing	its	move
functionality,	because	even	though	this	class	is	no	longer	move-enabled,	requests
to	move	it	will	compile	and	run.	Such	requests	will,	as	noted	earlier	in	this	Item,
cause	copies	to	be	made.	Which	means	that	code	“moving”	StringTable
objects	actually	copies	them,	i.e.,	copies	the	underlying	std::map<int,
std::string>	objects.	And	copying	a	std::map<int,	std::string>	is	likely
to	be	orders	of	magnitude	slower	than	moving	it.	The	simple	act	of	adding	a
destructor	to	the	class	could	thereby	have	introduced	a	significant	performance
problem!	Had	the	copy	and	move	operations	been	explicitly	defined	using	“=
default”,	the	problem	would	not	have	arisen.

Now,	having	endured	my	endless	blathering	about	the	rules	governing	the	copy
and	move	operations	in	C++11,	you	may	wonder	when	I’ll	turn	my	attention	to
the	two	other	special	member	functions,	the	default	constructor	and	the
destructor.	That	time	is	now,	but	only	for	this	sentence,	because	almost	nothing
has	changed	for	these	member	functions:	the	rules	in	C++11	are	nearly	the	same
as	in	C++98.

The	C++11	rules	governing	the	special	member	functions	are	thus:

Default	constructor:	Same	rules	as	C++98.	Generated	only	if	the	class
contains	no	user-declared	constructors.

Destructor:	Essentially	same	rules	as	C++98;	sole	difference	is	that
destructors	are	noexcept	by	default	(see	Item	14).	As	in	C++98,	virtual	only
if	a	base	class	destructor	is	virtual.

Copy	constructor:	Same	runtime	behavior	as	C++98:	memberwise	copy
construction	of	non-static	data	members.	Generated	only	if	the	class	lacks	a
user-declared	copy	constructor.	Deleted	if	the	class	declares	a	move
operation.	Generation	of	this	function	in	a	class	with	a	user-declared	copy
assignment	operator	or	destructor	is	deprecated.

Copy	assignment	operator:	Same	runtime	behavior	as	C++98:	memberwise
copy	assignment	of	non-static	data	members.	Generated	only	if	the	class
lacks	a	user-declared	copy	assignment	operator.	Deleted	if	the	class	declares
a	move	operation.	Generation	of	this	function	in	a	class	with	a	user-declared
copy	constructor	or	destructor	is	deprecated.

Move	constructor	and	move	assignment	operator:	Each	performs
memberwise	moving	of	non-static	data	members.	Generated	only	if	the	class
contains	no	user-declared	copy	operations,	move	operations,	or	destructor.

Note	that	there’s	nothing	in	the	rules	about	the	existence	of	a	member	function
template	preventing	compilers	from	generating	the	special	member	functions.
That	means	that	if	Widget	looks	like	this,	class	Widget	{	…	template<typename
T>	//	construct	Widget	Widget(const	T&	rhs);	//	from	anything
template<typename	T>	//	assign	Widget	Widget&	operator=(const	T&	rhs);	//
from	anything	…	};

compilers	will	still	generate	copy	and	move	operations	for	Widget	(assuming	the
usual	conditions	governing	their	generation	are	fulfilled),	even	though	these
templates	could	be	instantiated	to	produce	the	signatures	for	the	copy	constructor
and	copy	assignment	operator.	(That	would	be	the	case	when	T	is	Widget.)	In	all
likelihood,	this	will	strike	you	as	an	edge	case	barely	worth	acknowledging,	but
there’s	a	reason	I’m	mentioning	it.	Item	26	demonstrates	that	it	can	have
important	consequences.

Things	to	Remember
The	special	member	functions	are	those	compilers	may	generate	on	their	own:	default
constructor,	destructor,	copy	operations,	and	move	operations.

Move	operations	are	generated	only	for	classes	lacking	explicitly	declared	move
operations,	copy	operations,	and	a	destructor.

The	copy	constructor	is	generated	only	for	classes	lacking	an	explicitly	declared	copy
constructor,	and	it’s	deleted	if	a	move	operation	is	declared.	The	copy	assignment	operator
is	generated	only	for	classes	lacking	an	explicitly	declared	copy	assignment	operator,	and
it’s	deleted	if	a	move	operation	is	declared.	Generation	of	the	copy	operations	in	classes
with	an	explicitly	declared	destructor	is	deprecated.

Member	function	templates	never	suppress	generation	of	special	member	functions.

1	More	flexible	designs—ones	that	permit	callers	to	determine	whether
parentheses	or	braces	should	be	used	in	functions	generated	from	a	template—
are	possible.	For	details,	see	the	5	June	2013	entry	of	Andrzej’s	C++	blog,
“Intuitive	interface	—	Part	I.”
2	Applying	final	to	a	virtual	function	prevents	the	function	from	being
overridden	in	derived	classes.	final	may	also	be	applied	to	a	class,	in	which
case	the	class	is	prohibited	from	being	used	as	a	base	class.
3	The	checking	is	typically	rather	roundabout.	Functions	like
std::vector::push_back	call	std::move_if_noexcept,	a	variation	of
std::move	that	conditionally	casts	to	an	rvalue	(see	Item	23),	depending	on
whether	the	type’s	move	constructor	is	noexcept.	In	turn,
std::move_if_noexcept	consults	std::is_nothrow_move_constructible,
and	the	value	of	this	type	trait	(see	Item	9)	is	set	by	compilers,	based	on	whether
the	move	constructor	has	a	noexcept	(or	throw())	designation.
4	The	interface	specifications	for	move	operations	on	containers	in	the	Standard
Library	lack	noexcept.	However,	implementers	are	permitted	to	strengthen
exception	specifications	for	Standard	Library	functions,	and,	in	practice,	it	is
common	for	at	least	some	container	move	operations	to	be	declared	noexcept.
That	practice	exemplifies	this	Item’s	advice.	Having	found	that	it’s	possible	to
write	container	move	operations	such	that	exceptions	aren’t	thrown,

http://akrzemi1.wordpress.com/
http://akrzemi1.wordpress.com/2013/06/05/intuitive-interface-part-i/

implementers	often	declare	the	operations	noexcept,	even	though	the	Standard
does	not	require	them	to	do	so.
5	“Regardless	of	the	state	of	the	program”	and	“no	constraints”	doesn’t	legitimize
programs	whose	behavior	is	already	undefined.	For	example,
std::vector::size	has	a	wide	contract,	but	that	doesn’t	require	that	it	behave
reasonably	if	you	invoke	it	on	a	random	chunk	of	memory	that	you’ve	cast	to	a
std::vector.	The	result	of	the	cast	is	undefined,	so	there	are	no	behavioral
guarantees	for	the	program	containing	the	cast.
6	Because	Point::xValue	returns	double,	the	type	of	mid.xValue()	*	10	is
also	double.	Floating-point	types	can’t	be	used	to	instantiate	templates	or	to
specify	enumerator	values,	but	they	can	be	used	as	part	of	larger	expressions	that
yield	integral	types.	For	example,	static_cast<int>(mid.xValue()	*	10)
could	be	used	to	instantiate	a	template	or	to	specify	an	enumerator	value.

Chapter	4.	Smart	Pointers

Poets	and	songwriters	have	a	thing	about	love.	And	sometimes	about	counting.
Occasionally	both.	Inspired	by	the	rather	different	takes	on	love	and	counting	by
Elizabeth	Barrett	Browning	(“How	do	I	love	thee?	Let	me	count	the	ways.”)	and
Paul	Simon	(“There	must	be	50	ways	to	leave	your	lover.”),	we	might	try	to
enumerate	the	reasons	why	a	raw	pointer	is	hard	to	love:

1.	 Its	declaration	doesn’t	indicate	whether	it	points	to	a	single	object	or	to	an
array.

2.	 Its	declaration	reveals	nothing	about	whether	you	should	destroy	what	it
points	to	when	you’re	done	using	it,	i.e.,	if	the	pointer	owns	the	thing	it
points	to.

3.	 If	you	determine	that	you	should	destroy	what	the	pointer	points	to,	there’s
no	way	to	tell	how.	Should	you	use	delete,	or	is	there	a	different
destruction	mechanism	(e.g.,	a	dedicated	destruction	function	the	pointer
should	be	passed	to)?

4.	 If	you	manage	to	find	out	that	delete	is	the	way	to	go,	Reason	1	means	it
may	not	be	possible	to	know	whether	to	use	the	single-object	form
(“delete”)	or	the	array	form	(“delete	[]”).	If	you	use	the	wrong	form,
results	are	undefined.

5.	 Assuming	you	ascertain	that	the	pointer	owns	what	it	points	to	and	you
discover	how	to	destroy	it,	it’s	difficult	to	ensure	that	you	perform	the
destruction	exactly	once	along	every	path	in	your	code	(including	those	due
to	exceptions).	Missing	a	path	leads	to	resource	leaks,	and	doing	the
destruction	more	than	once	leads	to	undefined	behavior.

6.	 There’s	typically	no	way	to	tell	if	the	pointer	dangles,	i.e.,	points	to
memory	that	no	longer	holds	the	object	the	pointer	is	supposed	to	point	to.
Dangling	pointers	arise	when	objects	are	destroyed	while	pointers	still
point	to	them.

Raw	pointers	are	powerful	tools,	to	be	sure,	but	decades	of	experience	have
demonstrated	that	with	only	the	slightest	lapse	in	concentration	or	discipline,
these	tools	can	turn	on	their	ostensible	masters.

Smart	pointers	are	one	way	to	address	these	issues.	Smart	pointers	are	wrappers
around	raw	pointers	that	act	much	like	the	raw	pointers	they	wrap,	but	that	avoid
many	of	their	pitfalls.	You	should	therefore	prefer	smart	pointers	to	raw	pointers.
Smart	pointers	can	do	virtually	everything	raw	pointers	can,	but	with	far	fewer
opportunities	for	error.

There	are	four	smart	pointers	in	C++11:	std::auto_ptr,	std::unique_ptr,
std::shared_ptr,	and	std::weak_ptr.	All	are	designed	to	help	manage	the
lifetimes	of	dynamically	allocated	objects,	i.e.,	to	avoid	resource	leaks	by
ensuring	that	such	objects	are	destroyed	in	the	appropriate	manner	at	the
appropriate	time	(including	in	the	event	of	exceptions).

std::auto_ptr	is	a	deprecated	leftover	from	C++98.	It	was	an	attempt	to
standardize	what	later	became	C++11’s	std::unique_ptr.	Doing	the	job	right
required	move	semantics,	but	C++98	didn’t	have	them.	As	a	workaround,
std::auto_ptr	co-opted	its	copy	operations	for	moves.	This	led	to	surprising
code	(copying	a	std::auto_ptr	sets	it	to	null!)	and	frustrating	usage
restrictions	(e.g.,	it’s	not	possible	to	store	std::auto_ptrs	in	containers).

std::unique_ptr	does	everything	std::auto_ptr	does,	plus	more.	It	does	it	as
efficiently,	and	it	does	it	without	warping	what	it	means	to	copy	an	object.	It’s
better	than	std::auto_ptr	in	every	way.	The	only	legitimate	use	case	for
std::auto_ptr	is	a	need	to	compile	code	with	C++98	compilers.	Unless	you
have	that	constraint,	you	should	replace	std::auto_ptr	with	std::unique_ptr
and	never	look	back.

The	smart	pointer	APIs	are	remarkably	varied.	About	the	only	functionality
common	to	all	is	default	construction.	Because	comprehensive	references	for
these	APIs	are	widely	available,	I’ll	focus	my	discussions	on	information	that’s
often	missing	from	API	overviews,	e.g.,	noteworthy	use	cases,	runtime	cost
analyses,	etc.	Mastering	such	information	can	be	the	difference	between	merely
using	these	smart	pointers	and	using	them	effectively.

Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.
When	you	reach	for	a	smart	pointer,	std::unique_ptr	should	generally	be	the
one	closest	at	hand.	It’s	reasonable	to	assume	that,	by	default,
std::unique_ptrs	are	the	same	size	as	raw	pointers,	and	for	most	operations
(including	dereferencing),	they	execute	exactly	the	same	instructions.	This
means	you	can	use	them	even	in	situations	where	memory	and	cycles	are	tight.	If
a	raw	pointer	is	small	enough	and	fast	enough	for	you,	a	std::unique_ptr
almost	certainly	is,	too.

std::unique_ptr	embodies	exclusive	ownership	semantics.	A	non-null
std::unique_ptr	always	owns	what	it	points	to.	Moving	a	std::unique_ptr
transfers	ownership	from	the	source	pointer	to	the	destination	pointer.	(The
source	pointer	is	set	to	null.)	Copying	a	std::unique_ptr	isn’t	allowed,
because	if	you	could	copy	a	std::unique_ptr,	you’d	end	up	with	two
std::unique_ptrs	to	the	same	resource,	each	thinking	it	owned	(and	should
therefore	destroy)	that	resource.	std::unique_ptr	is	thus	a	move-only	type.
Upon	destruction,	a	non-null	std::unique_ptr	destroys	its	resource.	By
default,	resource	destruction	is	accomplished	by	applying	delete	to	the	raw
pointer	inside	the	std::unique_ptr.

A	common	use	for	std::unique_ptr	is	as	a	factory	function	return	type	for
objects	in	a	hierarchy.	Suppose	we	have	a	hierarchy	for	types	of	investments
(e.g.,	stocks,	bonds,	real	estate,	etc.)	with	a	base	class	Investment.

class Investment { … };

class Stock:

 public Investment { … };

class Bond:

 public Investment { … };

class RealEstate:

 public Investment { … };

A	factory	function	for	such	a	hierarchy	typically	allocates	an	object	on	the	heap
and	returns	a	pointer	to	it,	with	the	caller	being	responsible	for	deleting	the
object	when	it’s	no	longer	needed.	That’s	a	perfect	match	for	std::unique_ptr,
because	the	caller	acquires	responsibility	for	the	resource	returned	by	the	factory
(i.e.,	exclusive	ownership	of	it),	and	the	std::unique_ptr	automatically	deletes
what	it	points	to	when	the	std::unique_ptr	is	destroyed.	A	factory	function	for
the	Investment	hierarchy	could	be	declared	like	this:

template<typename... Ts> // return std::unique_ptr

std::unique_ptr<Investment> // to an object created

makeInvestment(Ts&&... params); // from the given args

Callers	could	use	the	returned	std::unique_ptr	in	a	single	scope	as	follows,

{

 …

 auto pInvestment = // pInvestment is of type

 makeInvestment(arguments); // std::unique_ptr<Investment>

 …

} // destroy *pInvestment

but	they	could	also	use	it	in	ownership-migration	scenarios,	such	as	when	the
std::unique_ptr	returned	from	the	factory	is	moved	into	a	container,	the
container	element	is	subsequently	moved	into	a	data	member	of	an	object,	and

that	object	is	later	destroyed.	When	that	happens,	the	object’s	std::unique_ptr
data	member	would	also	be	destroyed,	and	its	destruction	would	cause	the
resource	returned	from	the	factory	to	be	destroyed.	If	the	ownership	chain	got
interrupted	due	to	an	exception	or	other	atypical	control	flow	(e.g.,	early
function	return	or	break	from	a	loop),	the	std::unique_ptr	owning	the
managed	resource	would	eventually	have	its	destructor	called,7	and	the	resource
it	was	managing	would	thereby	be	destroyed.

By	default,	that	destruction	would	take	place	via	delete,	but,	during
construction,	std::unique_ptr	objects	can	be	configured	to	use	custom
deleters:	arbitrary	functions	(or	function	objects,	including	those	arising	from
lambda	expressions)	to	be	invoked	when	it’s	time	for	their	resources	to	be
destroyed.	If	the	object	created	by	makeInvestment	shouldn’t	be	directly
deleted,	but	instead	should	first	have	a	log	entry	written,	makeInvestment
could	be	implemented	as	follows.	(An	explanation	follows	the	code,	so	don’t
worry	if	you	see	something	whose	motivation	is	less	than	obvious.)

auto delInvmt = [](Investment* pInvestment) // custom

 { // deleter

 makeLogEntry(pInvestment); // (a lambda

 delete pInvestment; // expression)

 };

template<typename... Ts> // revised

std::unique_ptr<Investment, decltype(delInvmt)> // return type

makeInvestment(Ts&&... params)

{

 std::unique_ptr<Investment, decltype(delInvmt)> // ptr to be

 pInv(nullptr, delInvmt); // returned

 if (/* a Stock object should be created */)

 {

 pInv.reset(new Stock(std::forward<Ts>(params)...));

 }

 else if (/* a Bond object should be created */)

 {

 pInv.reset(new Bond(std::forward<Ts>(params)...));

 }

 else if (/* a RealEstate object should be created */)

 {

 pInv.reset(new RealEstate(std::forward<Ts>(params)...));

 }

 return pInv;

}

In	a	moment,	I’ll	explain	how	this	works,	but	first	consider	how	things	look	if
you’re	a	caller.	Assuming	you	store	the	result	of	the	makeInvestment	call	in	an
auto	variable,	you	frolic	in	blissful	ignorance	of	the	fact	that	the	resource	you’re
using	requires	special	treatment	during	deletion.	In	fact,	you	veritably	bathe	in
bliss,	because	the	use	of	std::unique_ptr	means	you	need	not	concern
yourself	with	when	the	resource	should	be	destroyed,	much	less	ensure	that	the
destruction	happens	exactly	once	along	every	path	through	the	program.
std::unique_ptr	takes	care	of	all	those	things	automatically.	From	a	client’s
perspective,	makeInvestment’s	interface	is	sweet.

The	implementation	is	pretty	nice,	too,	once	you	understand	the	following:

delInvmt	is	the	custom	deleter	for	the	object	returned	from
makeInvestment.	All	custom	deletion	functions	accept	a	raw	pointer	to	the
object	to	be	destroyed,	then	do	what	is	necessary	to	destroy	that	object.	In	this
case,	the	action	is	to	call	makeLogEntry	and	then	apply	delete.	Using	a
lambda	expression	to	create	delInvmt	is	convenient,	but,	as	we’ll	see	shortly,
it’s	also	more	efficient	than	writing	a	conventional	function.

When	a	custom	deleter	is	to	be	used,	its	type	must	be	specified	as	the	second
type	argument	to	std::unique_ptr.	In	this	case,	that’s	the	type	of	delInvmt,
and	that’s	why	the	return	type	of	makeInvestment	is
std::unique_ptr<Investment,	decltype(delInvmt)>.	(For	information
about	decltype,	see	Item	3.)

The	basic	strategy	of	makeInvestment	is	to	create	a	null	std::unique_ptr,
make	it	point	to	an	object	of	the	appropriate	type,	and	then	return	it.	To
associate	the	custom	deleter	delInvmt	with	pInv,	we	pass	that	as	its	second
constructor	argument.

Attempting	to	assign	a	raw	pointer	(e.g.,	from	new)	to	a	std::unique_ptr
won’t	compile,	because	it	would	constitute	an	implicit	conversion	from	a	raw
to	a	smart	pointer.	Such	implicit	conversions	can	be	problematic,	so	C++11’s

smart	pointers	prohibit	them.	That’s	why	reset	is	used	to	have	pInv	assume
ownership	of	the	object	created	via	new.

With	each	use	of	new,	we	use	std::forward	to	perfect-forward	the
arguments	passed	to	makeInvestment	(see	Item	25).	This	makes	all	the
information	provided	by	callers	available	to	the	constructors	of	the	objects
being	created.

The	custom	deleter	takes	a	parameter	of	type	Investment*.	Regardless	of	the
actual	type	of	object	created	inside	makeInvestment	(i.e.,	Stock,	Bond,	or
RealEstate),	it	will	ultimately	be	deleted	inside	the	lambda	expression	as
an	Investment*	object.	This	means	we’ll	be	deleting	a	derived	class	object
via	a	base	class	pointer.	For	that	to	work,	the	base	class—Investment—must
have	a	virtual	destructor:

class Investment {

public:

 … // essential

 virtual ~Investment(); // design

 … // component!

};

In	C++14,	the	existence	of	function	return	type	deduction	(see	Item	3)	means
that	makeInvestment	could	be	implemented	in	this	simpler	and	more
encapsulated	fashion:

template<typename... Ts>

auto makeInvestment(Ts&&... params) // C++14

{

 auto delInvmt = [](Investment* pInvestment) // this is now

 { // inside

 makeLogEntry(pInvestment); // make-

 delete pInvestment; // Investment

 };

 std::unique_ptr<Investment, decltype(delInvmt)> // as

 pInv(nullptr, delInvmt); // before

 if (…) // as before

 {

 pInv.reset(new Stock(std::forward<Ts>(params)...));

 }

 else if (…) // as before

 {

 pInv.reset(new Bond(std::forward<Ts>(params)...));

 }

 else if (…) // as before

 {

 pInv.reset(new RealEstate(std::forward<Ts>(params)...));

 }

 return pInv; // as before

}

I	remarked	earlier	that,	when	using	the	default	deleter	(i.e.,	delete),	you	can
reasonably	assume	that	std::unique_ptr	objects	are	the	same	size	as	raw
pointers.	When	custom	deleters	enter	the	picture,	this	may	no	longer	be	the	case.
Deleters	that	are	function	pointers	generally	cause	the	size	of	a
std::unique_ptr	to	grow	from	one	word	to	two.	For	deleters	that	are	function
objects,	the	change	in	size	depends	on	how	much	state	is	stored	in	the	function
object.	Stateless	function	objects	(e.g.,	from	lambda	expressions	with	no
captures)	incur	no	size	penalty,	and	this	means	that	when	a	custom	deleter	can	be
implemented	as	either	a	function	or	a	captureless	lambda	expression,	the	lambda
is	preferable:

auto delInvmt1 = [](Investment* pInvestment) // custom

 { // deleter

 makeLogEntry(pInvestment); // as

 delete pInvestment; // stateless

 }; // lambda

template<typename... Ts> // return type

std::unique_ptr<Investment, decltype(delInvmt1)> // has size of

makeInvestment(Ts&&... args); // Investment*

void delInvmt2(Investment* pInvestment) // custom

{ // deleter

 makeLogEntry(pInvestment); // as function

 delete pInvestment;

}

template<typename... Ts> // return type has

std::unique_ptr<Investment, // size of Investment*

 void (*)(Investment*)> // plus at least size

makeInvestment(Ts&&... params); // of function pointer!

Function	object	deleters	with	extensive	state	can	yield	std::unique_ptr	objects
of	significant	size.	If	you	find	that	a	custom	deleter	makes	your
std::unique_ptrs	unacceptably	large,	you	probably	need	to	change	your
design.

Factory	functions	are	not	the	only	common	use	case	for	std::unique_ptrs.
They’re	even	more	popular	as	a	mechanism	for	implementing	the	Pimpl	Idiom.
The	code	for	that	isn’t	complicated,	but	in	some	cases	it’s	less	than
straightforward,	so	I’ll	refer	you	to	Item	22,	which	is	dedicated	to	the	topic.

std::unique_ptr	comes	in	two	forms,	one	for	individual	objects
(std::unique_ptr<T>)	and	one	for	arrays	(std::unique_ptr<T[]>).	As	a
result,	there’s	never	any	ambiguity	about	what	kind	of	entity	a
std::unique_ptr	points	to.	The	std::unique_ptr	API	is	designed	to	match
the	form	you’re	using.	For	example,	there’s	no	indexing	operator	(operator[])
for	the	single-object	form,	while	the	array	form	lacks	dereferencing	operators
(operator*	and	operator->).

The	existence	of	std::unique_ptr	for	arrays	should	be	of	only	intellectual
interest	to	you,	because	std::array,	std::vector,	and	std::string	are
virtually	always	better	data	structure	choices	than	raw	arrays.	About	the	only
situation	I	can	conceive	of	when	a	std::unique_ptr<T[]>	would	make	sense
would	be	when	you’re	using	a	C-like	API	that	returns	a	raw	pointer	to	a	heap
array	that	you	assume	ownership	of.

std::unique_ptr	is	the	C++11	way	to	express	exclusive	ownership,	but	one	of
its	most	attractive	features	is	that	it	easily	and	efficiently	converts	to	a
std::shared_ptr:

std::shared_ptr<Investment> sp = // converts std::unique_ptr

 makeInvestment(arguments); // to std::shared_ptr

This	is	a	key	part	of	why	std::unique_ptr	is	so	well	suited	as	a	factory
function	return	type.	Factory	functions	can’t	know	whether	callers	will	want	to
use	exclusive-ownership	semantics	for	the	object	they	return	or	whether	shared
ownership	(i.e.,	std::shared_ptr)	would	be	more	appropriate.	By	returning	a

std::unique_ptr,	factories	provide	callers	with	the	most	efficient	smart
pointer,	but	they	don’t	hinder	callers	from	replacing	it	with	its	more	flexible
sibling.	(For	information	about	std::shared_ptr,	proceed	to	Item	19.)

Things	to	Remember
std::unique_ptr	is	a	small,	fast,	move-only	smart	pointer	for	managing	resources	with
exclusive-ownership	semantics.

By	default,	resource	destruction	takes	place	via	delete,	but	custom	deleters	can	be
specified.	Stateful	deleters	and	function	pointers	as	deleters	increase	the	size	of
std::unique_ptr	objects.

Converting	a	std::unique_ptr	to	a	std::shared_ptr	is	easy.

Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.
Programmers	using	languages	with	garbage	collection	point	and	laugh	at	what
C++	programmers	go	through	to	prevent	resource	leaks.	“How	primitive!”	they
jeer.	“Didn’t	you	get	the	memo	from	Lisp	in	the	1960s?	Machines	should
manage	resource	lifetimes,	not	humans.”	C++	developers	roll	their	eyes.	“You
mean	the	memo	where	the	only	resource	is	memory	and	the	timing	of	resource
reclamation	is	nondeterministic?	We	prefer	the	generality	and	predictability	of
destructors,	thank	you.”	But	our	bravado	is	part	bluster.	Garbage	collection
really	is	convenient,	and	manual	lifetime	management	really	can	seem	akin	to
constructing	a	mnemonic	memory	circuit	using	stone	knives	and	bear	skins.
	Why	can’t	we	have	the	best	of	both	worlds:	a	system	that	works	automatically
(like	garbage	collection),	yet	applies	to	all	resources	and	has	predictable	timing
(like	destructors)?

std::shared_ptr	is	the	C++11	way	of	binding	these	worlds	together.	An	object
accessed	via	std::shared_ptrs	has	its	lifetime	managed	by	those	pointers
through	shared	ownership.	No	specific	std::shared_ptr	owns	the	object.
Instead,	all	std::shared_ptrs	pointing	to	it	collaborate	to	ensure	its	destruction
at	the	point	where	it’s	no	longer	needed.	When	the	last	std::shared_ptr

pointing	to	an	object	stops	pointing	there	(e.g.,	because	the	std::shared_ptr	is
destroyed	or	made	to	point	to	a	different	object),	that	std::shared_ptr	destroys
the	object	it	points	to.	As	with	garbage	collection,	clients	need	not	concern
themselves	with	managing	the	lifetime	of	pointed-to	objects,	but	as	with
destructors,	the	timing	of	the	objects’	destruction	is	deterministic.

A	std::shared_ptr	can	tell	whether	it’s	the	last	one	pointing	to	a	resource	by
consulting	the	resource’s	reference	count,	a	value	associated	with	the	resource
that	keeps	track	of	how	many	std::shared_ptrs	point	to	it.	std::shared_ptr
constructors	increment	this	count	(usually—see	below),	std::shared_ptr
destructors	decrement	it,	and	copy	assignment	operators	do	both.	(If	sp1	and	sp2
are	std::shared_ptrs	to	different	objects,	the	assignment	“sp1	=	sp2;”
modifies	sp1	such	that	it	points	to	the	object	pointed	to	by	sp2.	The	net	effect	of
the	assignment	is	that	the	reference	count	for	the	object	originally	pointed	to	by
sp1	is	decremented,	while	that	for	the	object	pointed	to	by	sp2	is	incremented.)
If	a	std::shared_ptr	sees	a	reference	count	of	zero	after	performing	a
decrement,	no	more	std::shared_ptrs	point	to	the	resource,	so	the
std::shared_ptr	destroys	it.

The	existence	of	the	reference	count	has	performance	implications:

std::shared_ptrs	are	twice	the	size	of	a	raw	pointer,	because	they
internally	contain	a	raw	pointer	to	the	resource	as	well	as	a	raw	pointer	to	the
resource’s	reference	count.8

Memory	for	the	reference	count	must	be	dynamically	allocated.
Conceptually,	the	reference	count	is	associated	with	the	object	being	pointed
to,	but	pointed-to	objects	know	nothing	about	this.	They	thus	have	no	place	to
store	a	reference	count.	(A	pleasant	implication	is	that	any	object—even
those	of	built-in	types—may	be	managed	by	std::shared_ptrs.)	Item	21
explains	that	the	cost	of	the	dynamic	allocation	is	avoided	when	the
std::shared_ptr	is	created	by	std::make_shared,	but	there	are	situations
where	std::make_shared	can’t	be	used.	Either	way,	the	reference	count	is
stored	as	dynamically	allocated	data.

Increments	and	decrements	of	the	reference	count	must	be	atomic,
because	there	can	be	simultaneous	readers	and	writers	in	different	threads.

For	example,	a	std::shared_ptr	pointing	to	a	resource	in	one	thread	could
be	executing	its	destructor	(hence	decrementing	the	reference	count	for	the
resource	it	points	to),	while,	in	a	different	thread,	a	std::shared_ptr	to	the
same	object	could	be	copied	(and	therefore	incrementing	the	same	reference
count).	Atomic	operations	are	typically	slower	than	non-atomic	operations,	so
even	though	reference	counts	are	usually	only	a	word	in	size,	you	should
assume	that	reading	and	writing	them	is	comparatively	costly.

Did	I	pique	your	curiosity	when	I	wrote	that	std::shared_ptr	constructors
only	“usually”	increment	the	reference	count	for	the	object	they	point	to?
Creating	a	std::shared_ptr	pointing	to	an	object	always	yields	one	more
std::shared_ptr	pointing	to	that	object,	so	why	mustn’t	we	always	increment
the	reference	count?

Move	construction,	that’s	why.	Move-constructing	a	std::shared_ptr	from
another	std::shared_ptr	sets	the	source	std::shared_ptr	to	null,	and	that
means	that	the	old	std::shared_ptr	stops	pointing	to	the	resource	at	the
moment	the	new	std::shared_ptr	starts.	As	a	result,	no	reference	count
manipulation	is	required.	Moving	std::shared_ptrs	is	therefore	faster	than
copying	them:	copying	requires	incrementing	the	reference	count,	but	moving
doesn’t.	This	is	as	true	for	assignment	as	for	construction,	so	move	construction
is	faster	than	copy	construction,	and	move	assignment	is	faster	than	copy
assignment.

Like	std::unique_ptr	(see	Item	18),	std::shared_ptr	uses	delete	as	its
default	resource-destruction	mechanism,	but	it	also	supports	custom	deleters.
The	design	of	this	support	differs	from	that	for	std::unique_ptr,	however.	For
std::unique_ptr,	the	type	of	the	deleter	is	part	of	the	type	of	the	smart	pointer.
For	std::shared_ptr,	it’s	not:

auto loggingDel = [](Widget *pw) // custom deleter

 { // (as in Item 18)

 makeLogEntry(pw);

 delete pw;

 };

std::unique_ptr< // deleter type is

 Widget, decltype(loggingDel) // part of ptr type

 > upw(new Widget, loggingDel);

std::shared_ptr<Widget> // deleter type is not

 spw(new Widget, loggingDel); // part of ptr type

The	std::shared_ptr	design	is	more	flexible.	Consider	two
std::shared_ptr<Widget>s,	each	with	a	custom	deleter	of	a	different	type
(e.g.,	because	the	custom	deleters	are	specified	via	lambda	expressions):

auto customDeleter1 = [](Widget *pw) { … }; // custom deleters,

auto customDeleter2 = [](Widget *pw) { … }; // each with a

 // different type

std::shared_ptr<Widget> pw1(new Widget, customDeleter1);

std::shared_ptr<Widget> pw2(new Widget, customDeleter2);

Because	pw1	and	pw2	have	the	same	type,	they	can	be	placed	in	a	container	of
objects	of	that	type:

std::vector<std::shared_ptr<Widget>> vpw{ pw1, pw2 };

They	could	also	be	assigned	to	one	another,	and	they	could	each	be	passed	to	a
function	taking	a	parameter	of	type	std::shared_ptr<Widget>.	None	of	these
things	can	be	done	with	std::unique_ptrs	that	differ	in	the	types	of	their
custom	deleters,	because	the	type	of	the	custom	deleter	would	affect	the	type	of
the	std::unique_ptr.

In	another	difference	from	std::unique_ptr,	specifying	a	custom	deleter
doesn’t	change	the	size	of	a	std::shared_ptr	object.	Regardless	of	deleter,	a
std::shared_ptr	object	is	two	pointers	in	size.	That’s	great	news,	but	it	should
make	you	vaguely	uneasy.	Custom	deleters	can	be	function	objects,	and	function
objects	can	contain	arbitrary	amounts	of	data.	That	means	they	can	be	arbitrarily
large.	How	can	a	std::shared_ptr	refer	to	a	deleter	of	arbitrary	size	without
using	any	more	memory?

It	can’t.	It	may	have	to	use	more	memory.	However,	that	memory	isn’t	part	of
the	std::shared_ptr	object.	It’s	on	the	heap	or,	if	the	creator	of	the
std::shared_ptr	took	advantage	of	std::shared_ptr	support	for	custom
allocators,	it’s	wherever	the	memory	managed	by	the	allocator	is	located.	I

remarked	earlier	that	a	std::shared_ptr	object	contains	a	pointer	to	the
reference	count	for	the	object	it	points	to.	That’s	true,	but	it’s	a	bit	misleading,
because	the	reference	count	is	part	of	a	larger	data	structure	known	as	the	control
block.	There’s	a	control	block	for	each	object	managed	by	std::shared_ptrs.
The	control	block	contains,	in	addition	to	the	reference	count,	a	copy	of	the
custom	deleter,	if	one	has	been	specified.	If	a	custom	allocator	was	specified,	the
control	block	contains	a	copy	of	that,	too.	The	control	block	may	also	contain
additional	data,	including,	as	Item	21	explains,	a	secondary	reference	count
known	as	the	weak	count,	but	we’ll	ignore	such	data	in	this	Item.	We	can
envision	the	memory	associated	with	a	std::shared_ptr<T>	object	as	looking
like	this:

An	object’s	control	block	is	set	up	by	the	function	creating	the	first
std::shared_ptr	to	the	object.	At	least	that’s	what’s	supposed	to	happen.	In
general,	it’s	impossible	for	a	function	creating	a	std::shared_ptr	to	an	object
to	know	whether	some	other	std::shared_ptr	already	points	to	that	object,	so
the	following	rules	for	control	block	creation	are	used:

std::make_shared	(see	Item	21)	always	creates	a	control	block.	It
manufactures	a	new	object	to	point	to,	so	there	is	certainly	no	control	block
for	that	object	at	the	time	std::make_shared	is	called.

A	control	block	is	created	when	a	std::shared_ptr	is	constructed	from	a
unique-ownership	pointer	(i.e.,	a	std::unique_ptr	or	std::auto_ptr).
Unique-ownership	pointers	don’t	use	control	blocks,	so	there	should	be	no
control	block	for	the	pointed-to	object.	(As	part	of	its	construction,	the
std::shared_ptr	assumes	ownership	of	the	pointed-to	object,	so	the
unique-ownership	pointer	is	set	to	null.)

When	a	std::shared_ptr	constructor	is	called	with	a	raw	pointer,	it
creates	a	control	block.	If	you	wanted	to	create	a	std::shared_ptr	from	an
object	that	already	had	a	control	block,	you’d	presumably	pass	a
std::shared_ptr	or	a	std::weak_ptr	(see	Item	20)	as	a	constructor
argument,	not	a	raw	pointer.	std::shared_ptr	constructors	taking
std::shared_ptrs	or	std::weak_ptrs	as	constructor	arguments	don’t
create	new	control	blocks,	because	they	can	rely	on	the	smart	pointers	passed
to	them	to	point	to	any	necessary	control	blocks.

A	consequence	of	these	rules	is	that	constructing	more	than	one
std::shared_ptr	from	a	single	raw	pointer	gives	you	a	complimentary	ride	on
the	particle	accelerator	of	undefined	behavior,	because	the	pointed-to	object	will
have	multiple	control	blocks.	Multiple	control	blocks	means	multiple	reference
counts,	and	multiple	reference	counts	means	the	object	will	be	destroyed
multiple	times	(once	for	each	reference	count).	That	means	that	code	like	this	is
bad,	bad,	bad:

auto pw = new Widget; // pw is raw ptr

…

std::shared_ptr<Widget> spw1(pw, loggingDel); // create control

 // block for *pw

…

std::shared_ptr<Widget> spw2(pw, loggingDel); // create 2nd

 // control block

 // for *pw!

The	creation	of	the	raw	pointer	pw	to	a	dynamically	allocated	object	is	bad,
because	it	runs	contrary	to	the	advice	behind	this	entire	chapter:	to	prefer	smart

pointers	to	raw	pointers.	(If	you’ve	forgotten	the	motivation	for	that	advice,
refresh	your	memory	here.)	But	set	that	aside.	The	line	creating	pw	is	a	stylistic
abomination,	but	at	least	it	doesn’t	cause	undefined	program	behavior.

Now,	the	constructor	for	spw1	is	called	with	a	raw	pointer,	so	it	creates	a	control
block	(and	thereby	a	reference	count)	for	what’s	pointed	to.	In	this	case,	that’s
*pw	(i.e.,	the	object	pointed	to	by	pw).	In	and	of	itself,	that’s	okay,	but	the
constructor	for	spw2	is	called	with	the	same	raw	pointer,	so	it	also	creates	a
control	block	(hence	a	reference	count)	for	*pw.	*pw	thus	has	two	reference
counts,	each	of	which	will	eventually	become	zero,	and	that	will	ultimately	lead
to	an	attempt	to	destroy	*pw	twice.	The	second	destruction	is	responsible	for	the
undefined	behavior.

There	are	at	least	two	lessons	regarding	std::shared_ptr	use	here.	First,	try	to
avoid	passing	raw	pointers	to	a	std::shared_ptr	constructor.	The	usual
alternative	is	to	use	std::make_shared	(see	Item	21),	but	in	the	example	above,
we’re	using	custom	deleters,	and	that’s	not	possible	with	std::make_shared.
Second,	if	you	must	pass	a	raw	pointer	to	a	std::shared_ptr	constructor,	pass
the	result	of	new	directly	instead	of	going	through	a	raw	pointer	variable.	If	the
first	part	of	the	code	above	were	rewritten	like	this,

std::shared_ptr<Widget> spw1(new Widget, // direct use of new

 loggingDel);

it’d	be	a	lot	less	tempting	to	create	a	second	std::shared_ptr	from	the	same
raw	pointer.	Instead,	the	author	of	the	code	creating	spw2	would	naturally	use
spw1	as	an	initialization	argument	(i.e.,	would	call	the	std::shared_ptr	copy
constructor),	and	that	would	pose	no	problem	whatsoever:

std::shared_ptr<Widget> spw2(spw1); // spw2 uses same

 // control block as spw1

An	especially	surprising	way	that	using	raw	pointer	variables	as
std::shared_ptr	constructor	arguments	can	lead	to	multiple	control	blocks
involves	the	this	pointer.	Suppose	our	program	uses	std::shared_ptrs	to
manage	Widget	objects,	and	we	have	a	data	structure	that	keeps	track	of

Widgets	that	have	been	processed:

std::vector<std::shared_ptr<Widget>> processedWidgets;

Further	suppose	that	Widget	has	a	member	function	that	does	the	processing:

class Widget {

public:

 …

 void process();

 …

};

Here’s	a	reasonable-looking	approach	for	Widget::process:

void Widget::process()

{

 … // process the Widget

 processedWidgets.emplace_back(this); // add it to list of

} // processed Widgets;

 // this is wrong!

The	comment	about	this	being	wrong	says	it	all—or	at	least	most	of	it.	(The	part
that’s	wrong	is	the	passing	of	this,	not	the	use	of	emplace_back.	If	you’re	not
familiar	with	emplace_back,	see	Item	42.)	This	code	will	compile,	but	it’s
passing	a	raw	pointer	(this)	to	a	container	of	std::shared_ptrs.	The
std::shared_ptr	thus	constructed	will	create	a	new	control	block	for	the
pointed-to	Widget	(*this).	That	doesn’t	sound	harmful	until	you	realize	that	if
there	are	std::shared_ptrs	outside	the	member	function	that	already	point	to
that	Widget,	it’s	game,	set,	and	match	for	undefined	behavior.

The	std::shared_ptr	API	includes	a	facility	for	just	this	kind	of	situation.	It
has	probably	the	oddest	of	all	names	in	the	Standard	C++	Library:
std::enable_shared_from_this.	That’s	a	template	for	a	base	class	you	inherit
from	if	you	want	a	class	managed	by	std::shared_ptrs	to	be	able	to	safely
create	a	std::shared_ptr	from	a	this	pointer.	In	our	example,	Widget	would
inherit	from	std::enable_shared_from_this	as	follows:

class Widget: public std::enable_shared_from_this<Widget> {

public:

 …

 void process();

 …

};

As	I	said,	std::enable_shared_from_this	is	a	base	class	template.	Its	type
parameter	is	always	the	name	of	the	class	being	derived,	so	Widget	inherits	from
std::enable_shared_from_this<Widget>.	If	the	idea	of	a	derived	class
inheriting	from	a	base	class	templatized	on	the	derived	class	makes	your	head
hurt,	try	not	to	think	about	it.	The	code	is	completely	legal,	and	the	design
pattern	behind	it	is	so	well	established,	it	has	a	standard	name,	albeit	one	that’s
almost	as	odd	as	std::enable_shared_from_this.	The	name	is	The	Curiously
Recurring	Template	Pattern	(CRTP).	If	you’d	like	to	learn	more	about	it,
unleash	your	search	engine,	because	here	we	need	to	get	back	to
std::enable_shared_from_this.

std::enable_shared_from_this	defines	a	member	function	that	creates	a
std::shared_ptr	to	the	current	object,	but	it	does	it	without	duplicating	control
blocks.	The	member	function	is	shared_from_this,	and	you	use	it	in	member
functions	whenever	you	want	a	std::shared_ptr	that	points	to	the	same	object
as	the	this	pointer.	Here’s	a	safe	implementation	of	Widget::process:

void Widget::process()

{

 // as before, process the Widget

 …

 // add std::shared_ptr to current object to processedWidgets

 processedWidgets.emplace_back(shared_from_this());

}

Internally,	shared_from_this	looks	up	the	control	block	for	the	current	object,
and	it	creates	a	new	std::shared_ptr	that	refers	to	that	control	block.	The
design	relies	on	the	current	object	having	an	associated	control	block.	For	that	to
be	the	case,	there	must	be	an	existing	std::shared_ptr	(e.g.,	one	outside	the
member	function	calling	shared_from_this)	that	points	to	the	current	object.	If

no	such	std::shared_ptr	exists	(i.e.,	if	the	current	object	has	no	associated
control	block),	behavior	is	undefined,	although	shared_from_this	typically
throws	an	exception.

To	prevent	clients	from	calling	member	functions	that	invoke
shared_from_this	before	a	std::shared_ptr	points	to	the	object,	classes
inheriting	from	std::enable_shared_from_this	often	declare	their
constructors	private	and	have	clients	create	objects	by	calling	factory	functions
that	return	std::shared_ptrs.	Widget,	for	example,	could	look	like	this:

class Widget: public std::enable_shared_from_this<Widget> {

public:

 // factory function that perfect-forwards args

 // to a private ctor

 template<typename... Ts>

 static std::shared_ptr<Widget> create(Ts&&... params);

 …

 void process(); // as before

 …

private:

 … // ctors

};

By	now,	you	may	only	dimly	recall	that	our	discussion	of	control	blocks	was
motivated	by	a	desire	to	understand	the	costs	associated	with
std::shared_ptrs.	Now	that	we	understand	how	to	avoid	creating	too	many
control	blocks,	let’s	return	to	the	original	topic.

A	control	block	is	typically	only	a	few	words	in	size,	although	custom	deleters
and	allocators	may	make	it	larger.	The	usual	control	block	implementation	is
more	sophisticated	than	you	might	expect.	It	makes	use	of	inheritance,	and
there’s	even	a	virtual	function.	(It’s	used	to	ensure	that	the	pointed-to	object	is
properly	destroyed.)	That	means	that	using	std::shared_ptrs	also	incurs	the
cost	of	the	machinery	for	the	virtual	function	used	by	the	control	block.

Having	read	about	dynamically	allocated	control	blocks,	arbitrarily	large	deleters
and	allocators,	virtual	function	machinery,	and	atomic	reference	count
manipulations,	your	enthusiasm	for	std::shared_ptrs	may	have	waned

somewhat.	That’s	fine.	They’re	not	the	best	solution	to	every	resource
management	problem.	But	for	the	functionality	they	provide,
std::shared_ptrs	exact	a	very	reasonable	cost.	Under	typical	conditions,
where	the	default	deleter	and	default	allocator	are	used	and	where	the
std::shared_ptr	is	created	by	std::make_shared,	the	control	block	is	only
about	three	words	in	size,	and	its	allocation	is	essentially	free.	(It’s	incorporated
into	the	memory	allocation	for	the	object	being	pointed	to.	For	details,	see	Item
21.)	Dereferencing	a	std::shared_ptr	is	no	more	expensive	than	dereferencing
a	raw	pointer.	Performing	an	operation	requiring	a	reference	count	manipulation
(e.g.,	copy	construction	or	copy	assignment,	destruction)	entails	one	or	two
atomic	operations,	but	these	operations	typically	map	to	individual	machine
instructions,	so	although	they	may	be	expensive	compared	to	non-atomic
instructions,	they’re	still	just	single	instructions.	The	virtual	function	machinery
in	the	control	block	is	generally	used	only	once	per	object	managed	by
std::shared_ptrs:	when	the	object	is	destroyed.

In	exchange	for	these	rather	modest	costs,	you	get	automatic	lifetime
management	of	dynamically	allocated	resources.	Most	of	the	time,	using
std::shared_ptr	is	vastly	preferable	to	trying	to	manage	the	lifetime	of	an
object	with	shared	ownership	by	hand.	If	you	find	yourself	doubting	whether
you	can	afford	use	of	std::shared_ptr,	reconsider	whether	you	really	need
shared	ownership.	If	exclusive	ownership	will	do	or	even	may	do,
std::unique_ptr	is	a	better	choice.	Its	performance	profile	is	close	to	that	for
raw	pointers,	and	“upgrading”	from	std::unique_ptr	to	std::shared_ptr	is
easy,	because	a	std::shared_ptr	can	be	created	from	a	std::unique_ptr.

The	reverse	is	not	true.	Once	you’ve	turned	lifetime	management	of	a	resource
over	to	a	std::shared_ptr,	there’s	no	changing	your	mind.	Even	if	the
reference	count	is	one,	you	can’t	reclaim	ownership	of	the	resource	in	order	to,
say,	have	a	std::unique_ptr	manage	it.	The	ownership	contract	between	a
resource	and	the	std::shared_ptrs	that	point	to	it	is	of	the	’til-death-do-us-part
variety.	No	divorce,	no	annulment,	no	dispensations.

Something	else	std::shared_ptrs	can’t	do	is	work	with	arrays.	In	yet	another
difference	from	std::unique_ptr,	std::shared_ptr	has	an	API	that’s
designed	only	for	pointers	to	single	objects.	There’s	no	std::shared_ptr<T[]>.

From	time	to	time,	“clever”	programmers	stumble	on	the	idea	of	using	a
std::shared_ptr<T>	to	point	to	an	array,	specifying	a	custom	deleter	to
perform	an	array	delete	(i.e.,	delete	[]).	This	can	be	made	to	compile,	but	it’s	a
horrible	idea.	For	one	thing,	std::shared_ptr	offers	no	operator[],	so
indexing	into	the	array	requires	awkward	expressions	based	on	pointer
arithmetic.	For	another,	std::shared_ptr	supports	derived-to-base	pointer
conversions	that	make	sense	for	single	objects,	but	that	open	holes	in	the	type
system	when	applied	to	arrays.	(For	this	reason,	the	std::unique_ptr<T[]>
API	prohibits	such	conversions.)	Most	importantly,	given	the	variety	of	C++11
alternatives	to	built-in	arrays	(e.g.,	std::array,	std::vector,	std::string),
declaring	a	smart	pointer	to	a	dumb	array	is	almost	always	a	sign	of	bad	design.

Things	to	Remember
std::shared_ptrs	offer	convenience	approaching	that	of	garbage	collection	for	the
shared	lifetime	management	of	arbitrary	resources.

Compared	to	std::unique_ptr,	std::shared_ptr	objects	are	typically	twice	as	big,
incur	overhead	for	control	blocks,	and	require	atomic	reference	count	manipulations.

Default	resource	destruction	is	via	delete,	but	custom	deleters	are	supported.	The	type	of
the	deleter	has	no	effect	on	the	type	of	the	std::shared_ptr.

Avoid	creating	std::shared_ptrs	from	variables	of	raw	pointer	type.

Item	20: Use	std::weak_ptr	for	std::shared_ptr-
like	pointers	that	can	dangle.
Paradoxically,	it	can	be	convenient	to	have	a	smart	pointer	that	acts	like	a
std::shared_ptr	(see	Item	19),	but	that	doesn’t	participate	in	the	shared
ownership	of	the	pointed-to	resource.	In	other	words,	a	pointer	like
std::shared_ptr	that	doesn’t	affect	an	object’s	reference	count.	This	kind	of
smart	pointer	has	to	contend	with	a	problem	unknown	to	std::shared_ptrs:
the	possibility	that	what	it	points	to	has	been	destroyed.	A	truly	smart	pointer
would	deal	with	this	problem	by	tracking	when	it	dangles,	i.e.,	when	the	object	it
is	supposed	to	point	to	no	longer	exists.	That’s	precisely	the	kind	of	smart

pointer	std::weak_ptr	is.	

You	may	be	wondering	how	a	std::weak_ptr	could	be	useful.	You’ll	probably
wonder	even	more	when	you	examine	the	std::weak_ptr	API.	It	looks
anything	but	smart.	std::weak_ptrs	can’t	be	dereferenced,	nor	can	they	be
tested	for	nullness.	That’s	because	std::weak_ptr	isn’t	a	standalone	smart
pointer.	It’s	an	augmentation	of	std::shared_ptr.

The	relationship	begins	at	birth.	std::weak_ptrs	are	typically	created	from
std::shared_ptrs.	They	point	to	the	same	place	as	the	std::shared_ptrs
initializing	them,	but	they	don’t	affect	the	reference	count	of	the	object	they
point	to:

auto spw = // after spw is constructed,

 std::make_shared<Widget>(); // the pointed-to Widget's

 // ref count (RC) is 1. (See

 // Item 21 for info on

 // std::make_shared.)

…

std::weak_ptr<Widget> wpw(spw); // wpw points to same Widget

 // as spw. RC remains 1

…

spw = nullptr; // RC goes to 0, and the

 // Widget is destroyed.

 // wpw now dangles

std::weak_ptrs	that	dangle	are	said	to	have	expired.	You	can	test	for	this
directly,

if (wpw.expired()) … // if wpw doesn't point

 // to an object…

but	often	what	you	desire	is	a	check	to	see	if	a	std::weak_ptr	has	expired	and,
if	it	hasn’t	(i.e.,	if	it’s	not	dangling),	to	access	the	object	it	points	to.	This	is
easier	desired	than	done.	Because	std::weak_ptrs	lack	dereferencing
operations,	there’s	no	way	to	write	the	code.	Even	if	there	were,	separating	the
check	and	the	dereference	would	introduce	a	race	condition:	between	the	call	to
expired	and	the	dereferencing	action,	another	thread	might	reassign	or	destroy

the	last	std::shared_ptr	pointing	to	the	object,	thus	causing	that	object	to	be
destroyed.	In	that	case,	your	dereference	would	yield	undefined	behavior.

What	you	need	is	an	atomic	operation	that	checks	to	see	if	the	std::weak_ptr
has	expired	and,	if	not,	gives	you	access	to	the	object	it	points	to.	This	is	done	by
creating	a	std::shared_ptr	from	the	std::weak_ptr.	The	operation	comes	in
two	forms,	depending	on	what	you’d	like	to	have	happen	if	the	std::weak_ptr
has	expired	when	you	try	to	create	a	std::shared_ptr	from	it.	One	form	is
std::weak_ptr::lock,	which	returns	a	std::shared_ptr.	The
std::shared_ptr	is	null	if	the	std::weak_ptr	has	expired:

std::shared_ptr<Widget> spw1 = wpw.lock(); // if wpw's expired,

 // spw1 is null

auto spw2 = wpw.lock(); // same as above,

 // but uses auto

The	other	form	is	the	std::shared_ptr	constructor	taking	a	std::weak_ptr	as
an	argument.	In	this	case,	if	the	std::weak_ptr	has	expired,	an	exception	is
thrown:

std::shared_ptr<Widget> spw3(wpw); // if wpw's expired,

 // throw std::bad_weak_ptr

But	you’re	probably	still	wondering	about	how	std::weak_ptrs	can	be	useful.
Consider	a	factory	function	that	produces	smart	pointers	to	read-only	objects
based	on	a	unique	ID.	In	accord	with	Item	18’s	advice	regarding	factory	function
return	types,	it	returns	a	std::unique_ptr:

std::unique_ptr<const Widget> loadWidget(WidgetID id);

If	loadWidget	is	an	expensive	call	(e.g.,	because	it	performs	file	or	database
I/O)	and	it’s	common	for	IDs	to	be	used	repeatedly,	a	reasonable	optimization
would	be	to	write	a	function	that	does	what	loadWidget	does,	but	also	caches	its
results.	Clogging	the	cache	with	every	Widget	that	has	ever	been	requested	can
lead	to	performance	problems	of	its	own,	however,	so	another	reasonable
optimization	would	be	to	destroy	cached	Widgets	when	they’re	no	longer	in	use.

For	this	caching	factory	function,	a	std::unique_ptr	return	type	is	not	a	good
fit.	Callers	should	certainly	receive	smart	pointers	to	cached	objects,	and	callers
should	certainly	determine	the	lifetime	of	those	objects,	but	the	cache	needs	a
pointer	to	the	objects,	too.	The	cache’s	pointers	need	to	be	able	to	detect	when
they	dangle,	because	when	factory	clients	are	finished	using	an	object	returned
by	the	factory,	that	object	will	be	destroyed,	and	the	corresponding	cache	entry
will	dangle.	The	cached	pointers	should	therefore	be	std::weak_ptrs—pointers
that	can	detect	when	they	dangle.	That	means	that	the	factory’s	return	type
should	be	a	std::shared_ptr,	because	std::weak_ptrs	can	detect	when	they
dangle	only	when	an	object’s	lifetime	is	managed	by	std::shared_ptrs.

Here’s	a	quick-and-dirty	implementation	of	a	caching	version	of	loadWidget:

std::shared_ptr<const Widget> fastLoadWidget(WidgetID id)

{

 static std::unordered_map<WidgetID,

 std::weak_ptr<const Widget>> cache;

 auto objPtr = cache[id].lock(); // objPtr is std::shared_ptr

 // to cached object (or null

 // if object's not in cache)

 if (!objPtr) { // if not in cache,

 objPtr = loadWidget(id); // load it

 cache[id] = objPtr; // cache it

 }

 return objPtr;

}

This	implementation	employs	one	of	C++11’s	hash	table	containers
(std::unordered_map),	though	it	doesn’t	show	the	WidgetID	hashing	and
equality-comparison	functions	that	would	also	have	to	be	present.

The	implementation	of	fastLoadWidget	ignores	the	fact	that	the	cache	may
accumulate	expired	std::weak_ptrs	corresponding	to	Widgets	that	are	no
longer	in	use	(and	have	therefore	been	destroyed).	The	implementation	can	be
refined,	but	rather	than	spend	time	on	an	issue	that	lends	no	additional	insight
into	std::weak_ptrs,	let’s	consider	a	second	use	case:	the	Observer	design
pattern.	The	primary	components	of	this	pattern	are	subjects	(objects	whose	state
may	change)	and	observers	(objects	to	be	notified	when	state	changes	occur).	In

most	implementations,	each	subject	contains	a	data	member	holding	pointers	to
its	observers.	That	makes	it	easy	for	subjects	to	issue	state	change	notifications.
Subjects	have	no	interest	in	controlling	the	lifetime	of	their	observers	(i.e.,	when
they’re	destroyed),	but	they	have	a	great	interest	in	making	sure	that	if	an
observer	gets	destroyed,	subjects	don’t	try	to	subsequently	access	it.	A
reasonable	design	is	for	each	subject	to	hold	a	container	of	std::weak_ptrs	to
its	observers,	thus	making	it	possible	for	the	subject	to	determine	whether	a
pointer	dangles	before	using	it.

As	a	final	example	of	std::weak_ptr’s	utility,	consider	a	data	structure	with
objects	A,	B,	and	C	in	it,	where	A	and	C	share	ownership	of	B	and	therefore	hold
std::shared_ptrs	to	it:

Suppose	it’d	be	useful	to	also	have	a	pointer	from	B	back	to	A.	What	kind	of
pointer	should	this	be?

There	are	three	choices:

A	raw	pointer.	With	this	approach,	if	A	is	destroyed,	but	C	continues	to	point
to	B,	B	will	contain	a	pointer	to	A	that	will	dangle.	B	won’t	be	able	to	detect
that,	so	B	may	inadvertently	dereference	the	dangling	pointer.	That	would
yield	undefined	behavior.

A	std::shared_ptr.	In	this	design,	A	and	B	contain	std::shared_ptrs	to
each	other.	The	resulting	std::shared_ptr	cycle	(A	points	to	B	and	B	points
to	A)	will	prevent	both	A	and	B	from	being	destroyed.	Even	if	A	and	B	are
unreachable	from	other	program	data	structures	(e.g.,	because	C	no	longer

points	to	B),	each	will	have	a	reference	count	of	one.	If	that	happens,	A	and	B
will	have	been	leaked,	for	all	practical	purposes:	it	will	be	impossible	for	the
program	to	access	them,	yet	their	resources	will	never	be	reclaimed.

A	std::weak_ptr.	This	avoids	both	problems	above.	If	A	is	destroyed,	B’s
pointer	back	to	it	will	dangle,	but	B	will	be	able	to	detect	that.	Furthermore,
though	A	and	B	will	point	to	one	another,	B’s	pointer	won’t	affect	A’s
reference	count,	hence	can’t	keep	A	from	being	destroyed	when
std::shared_ptrs	no	longer	point	to	it.

Using	std::weak_ptr	is	clearly	the	best	of	these	choices.	However,	it’s	worth
noting	that	the	need	to	employ	std::weak_ptrs	to	break	prospective	cycles	of
std::shared_ptrs	is	not	terribly	common.	In	strictly	hierarchal	data	structures
such	as	trees,	child	nodes	are	typically	owned	only	by	their	parents.	When	a
parent	node	is	destroyed,	its	child	nodes	should	be	destroyed,	too.	Links	from
parents	to	children	are	thus	generally	best	represented	by	std::unique_ptrs.
Back-links	from	children	to	parents	can	be	safely	implemented	as	raw	pointers,
because	a	child	node	should	never	have	a	lifetime	longer	than	its	parent.	There’s
thus	no	risk	of	a	child	node	dereferencing	a	dangling	parent	pointer.

Of	course,	not	all	pointer-based	data	structures	are	strictly	hierarchical,	and
when	that’s	the	case,	as	well	as	in	situations	such	as	caching	and	the
implementation	of	lists	of	observers,	it’s	nice	to	know	that	std::weak_ptr
stands	at	the	ready.

From	an	efficiency	perspective,	the	std::weak_ptr	story	is	essentially	the	same
as	that	for	std::shared_ptr.	std::weak_ptr	objects	are	the	same	size	as
std::shared_ptr	objects,	they	make	use	of	the	same	control	blocks	as
std::shared_ptrs	(see	Item	19),	and	operations	such	as	construction,
destruction,	and	assignment	involve	atomic	reference	count	manipulations.	That
probably	surprises	you,	because	I	wrote	at	the	beginning	of	this	Item	that
std::weak_ptrs	don’t	participate	in	reference	counting.	Except	that’s	not	quite
what	I	wrote.	What	I	wrote	was	that	std::weak_ptrs	don’t	participate	in	the
shared	ownership	of	objects	and	hence	don’t	affect	the	pointed-to	object’s
reference	count.	There’s	actually	a	second	reference	count	in	the	control	block,
and	it’s	this	second	reference	count	that	std::weak_ptrs	manipulate.	For

details,	continue	on	to	Item	21.

Things	to	Remember
Use	std::weak_ptr	for	std::shared_ptr-like	pointers	that	can	dangle.

Potential	use	cases	for	std::weak_ptr	include	caching,	observer	lists,	and	the	prevention
of	std::shared_ptr	cycles.

Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.
Let’s	begin	by	leveling	the	playing	field	for	std::make_unique	and
std::make_shared.	std::make_shared	is	part	of	C++11,	but,	sadly,
std::make_unique	isn’t.	It	joined	the	Standard	Library	as	of	C++14.	If	you’re
using	C++11,	never	fear,	because	a	basic	version	of	std::make_unique	is	easy
to	write	yourself.	Here,	look:

template<typename T, typename... Ts>

std::unique_ptr<T> make_unique(Ts&&... params)

{

 return std::unique_ptr<T>(new T(std::forward<Ts>(params)...));

}

As	you	can	see,	make_unique	just	perfect-forwards	its	parameters	to	the
constructor	of	the	object	being	created,	constructs	a	std::unique_ptr	from	the
raw	pointer	new	produces,	and	returns	the	std::unique_ptr	so	created.	This
form	of	the	function	doesn’t	support	arrays	or	custom	deleters	(see	Item	18),	but
it	demonstrates	that	with	only	a	little	effort,	you	can	create	make_unique	if	you
need	to.9	Just	remember	not	to	put	your	version	in	namespace	std,	because	you
won’t	want	it	to	clash	with	a	vendor-provided	version	when	you	upgrade	to	a
C++14	Standard	Library	implementation.

std::make_unique	and	std::make_shared	are	two	of	the	three	make	functions:
functions	that	take	an	arbitrary	set	of	arguments,	perfect-forward	them	to	the
constructor	for	a	dynamically	allocated	object,	and	return	a	smart	pointer	to	that

object.	The	third	make	function	is	std::allocate_shared.	It	acts	just	like
std::make_shared,	except	its	first	argument	is	an	allocator	object	to	be	used	for
the	dynamic	memory	allocation.

Even	the	most	trivial	comparison	of	smart	pointer	creation	using	and	not	using	a
make	function	reveals	the	first	reason	why	using	such	functions	is	preferable.
Consider:

auto upw1(std::make_unique<Widget>()); // with make func

std::unique_ptr<Widget> upw2(new Widget); // without make func

auto spw1(std::make_shared<Widget>()); // with make func

std::shared_ptr<Widget> spw2(new Widget); // without make func

I’ve	highlighted	the	essential	difference:	the	versions	using	new	repeat	the	type
being	created,	but	the	make	functions	don’t.	Repeating	types	runs	afoul	of	a	key
tenet	of	software	engineering:	code	duplication	should	be	avoided.	Duplication
in	source	code	increases	compilation	times,	can	lead	to	bloated	object	code,	and
generally	renders	a	code	base	more	difficult	to	work	with.	It	often	evolves	into
inconsistent	code,	and	inconsistency	in	a	code	base	often	leads	to	bugs.	Besides,
typing	something	twice	takes	more	effort	than	typing	it	once,	and	who’s	not	a
fan	of	reducing	their	typing	burden?

The	second	reason	to	prefer	make	functions	has	to	do	with	exception	safety.
Suppose	we	have	a	function	to	process	a	Widget	in	accord	with	some	priority:

void processWidget(std::shared_ptr<Widget> spw, int priority);

Passing	the	std::shared_ptr	by	value	may	look	suspicious,	but	Item	41
explains	that	if	processWidget	always	makes	a	copy	of	the	std::shared_ptr
(e.g.,	by	storing	it	in	a	data	structure	tracking	Widgets	that	have	been	processed),
this	can	be	a	reasonable	design	choice.

Now	suppose	we	have	a	function	to	compute	the	relevant	priority,

int computePriority();

and	we	use	that	in	a	call	to	processWidget	that	uses	new	instead	of
std::make_shared:

processWidget(std::shared_ptr<Widget>(new Widget), // potential

 computePriority()); // resource

 // leak!

As	the	comment	indicates,	this	code	could	leak	the	Widget	conjured	up	by	new.
But	how?	Both	the	calling	code	and	the	called	function	are	using
std::shared_ptrs,	and	std::shared_ptrs	are	designed	to	prevent	resource
leaks.	They	automatically	destroy	what	they	point	to	when	the	last
std::shared_ptr	pointing	there	goes	away.	If	everybody	is	using
std::shared_ptrs	everywhere,	how	can	this	code	leak?

The	answer	has	to	do	with	compilers’	translation	of	source	code	into	object	code.
At	runtime,	the	arguments	for	a	function	must	be	evaluated	before	the	function
can	be	invoked,	so	in	the	call	to	processWidget,	the	following	things	must
occur	before	processWidget	can	begin	execution:

The	expression	“new Widget”	must	be	evaluated,	i.e.,	a	Widget	must	be
created	on	the	heap.

The	constructor	for	the	std::shared_ptr<Widget>	responsible	for
managing	the	pointer	produced	by	new	must	be	executed.

computePriority	must	run.

Compilers	are	not	required	to	generate	code	that	executes	them	in	this	order.
“new	Widget”	must	be	executed	before	the	std::shared_ptr	constructor	may
be	called,	because	the	result	of	that	new	is	used	as	an	argument	to	that
constructor,	but	computePriority	may	be	executed	before	those	calls,	after
them,	or,	crucially,	between	them.	That	is,	compilers	may	emit	code	to	execute
the	operations	in	this	order:

1.	 Perform	“new Widget”.

2.	 Execute	computePriority.

3.	 Run	std::shared_ptr	constructor.

If	such	code	is	generated	and,	at	runtime,	computePriority	produces	an
exception,	the	dynamically	allocated	Widget	from	Step	1	will	be	leaked,	because
it	will	never	be	stored	in	the	std::shared_ptr	that’s	supposed	to	start
managing	it	in	Step	3.

Using	std::make_shared	avoids	this	problem.	Calling	code	would	look	like
this:

processWidget(std::make_shared<Widget>(), // no potential

 computePriority()); // resource leak

At	runtime,	either	std::make_shared	or	computePriority	will	be	called	first.
If	it’s	std::make_shared,	the	raw	pointer	to	the	dynamically	allocated	Widget
is	safely	stored	in	the	returned	std::shared_ptr	before	computePriority	is
called.	If	computePriority	then	yields	an	exception,	the	std::shared_ptr
destructor	will	see	to	it	that	the	Widget	it	owns	is	destroyed.	And	if
computePriority	is	called	first	and	yields	an	exception,	std::make_shared
will	not	be	invoked,	and	there	will	hence	be	no	dynamically	allocated	Widget	to
worry	about.

If	we	replace	std::shared_ptr	and	std::make_shared	with
std::unique_ptr	and	std::make_unique,	exactly	the	same	reasoning	applies.
Using	std::make_unique	instead	of	new	is	thus	just	as	important	in	writing
exception-safe	code	as	using	std::make_shared.

A	special	feature	of	std::make_shared	(compared	to	direct	use	of	new)	is
improved	efficiency.	Using	std::make_shared	allows	compilers	to	generate
smaller,	faster	code	that	employs	leaner	data	structures.	Consider	the	following
direct	use	of	new:

std::shared_ptr<Widget> spw(new Widget);

It’s	obvious	that	this	code	entails	a	memory	allocation,	but	it	actually	performs
two.	Item	19	explains	that	every	std::shared_ptr	points	to	a	control	block
containing,	among	other	things,	the	reference	count	for	the	pointed-to	object.

Memory	for	this	control	block	is	allocated	in	the	std::shared_ptr	constructor.
Direct	use	of	new,	then,	requires	one	memory	allocation	for	the	Widget	and	a
second	allocation	for	the	control	block.

If	std::make_shared	is	used	instead,

auto spw = std::make_shared<Widget>();

one	allocation	suffices.	That’s	because	std::make_shared	allocates	a	single
chunk	of	memory	to	hold	both	the	Widget	object	and	the	control	block.	This
optimization	reduces	the	static	size	of	the	program,	because	the	code	contains
only	one	memory	allocation	call,	and	it	increases	the	speed	of	the	executable
code,	because	memory	is	allocated	only	once.	Furthermore,	using
std::make_shared	obviates	the	need	for	some	of	the	bookkeeping	information
in	the	control	block,	potentially	reducing	the	total	memory	footprint	for	the
program.

The	efficiency	analysis	for	std::make_shared	is	equally	applicable	to
std::allocate_shared,	so	the	performance	advantages	of	std::make_shared
extend	to	that	function,	as	well.

The	arguments	for	preferring	make	functions	over	direct	use	of	new	are	strong
ones.	Despite	their	software	engineering,	exception	safety,	and	efficiency
advantages,	however,	this	Item’s	guidance	is	to	prefer	the	make	functions,	not	to
rely	on	them	exclusively.	That’s	because	there	are	circumstances	where	they
can’t	or	shouldn’t	be	used.

For	example,	none	of	the	make	functions	permit	the	specification	of	custom
deleters	(see	Items	18	and	19),	but	both	std::unique_ptr	and
std::shared_ptr	have	constructors	that	do.	Given	a	custom	deleter	for	a
Widget,

auto widgetDeleter = [](Widget* pw) { … };

creating	a	smart	pointer	using	it	is	straightforward	using	new:

std::unique_ptr<Widget, decltype(widgetDeleter)>

 upw(new Widget, widgetDeleter);

std::shared_ptr<Widget> spw(new Widget, widgetDeleter);

There’s	no	way	to	do	the	same	thing	with	a	make	function.

A	second	limitation	of	make	functions	stems	from	a	syntactic	detail	of	their
implementations.	Item	7	explains	that	when	creating	an	object	whose	type
overloads	constructors	both	with	and	without	std::initializer_list
parameters,	creating	the	object	using	braces	prefers	the
std::initializer_list	constructor,	while	creating	the	object	using
parentheses	calls	the	non-std::initializer_list	constructor.	The	make
functions	perfect-forward	their	parameters	to	an	object’s	constructor,	but	do	they
do	so	using	parentheses	or	using	braces?	For	some	types,	the	answer	to	this
question	makes	a	big	difference.	For	example,	in	these	calls,

auto upv = std::make_unique<std::vector<int>>(10, 20);

auto spv = std::make_shared<std::vector<int>>(10, 20);

do	the	resulting	smart	pointers	point	to	std::vectors	with	10	elements,	each	of
value	20,	or	to	std::vectors	with	two	elements,	one	with	value	10	and	the
other	with	value	20?	Or	is	the	result	indeterminate?

The	good	news	is	that	it’s	not	indeterminate:	both	calls	create	std::vectors	of
size	10	with	all	values	set	to	20.	That	means	that	within	the	make	functions,	the
perfect	forwarding	code	uses	parentheses,	not	braces.	The	bad	news	is	that	if	you
want	to	construct	your	pointed-to	object	using	a	braced	initializer,	you	must	use
new	directly.	Using	a	make	function	would	require	the	ability	to	perfect-forward
a	braced	initializer,	but,	as	Item	30	explains,	braced	initializers	can’t	be	perfect-
forwarded.	However,	Item	30	also	describes	a	workaround:	use	auto	type
deduction	to	create	a	std::initializer_list	object	from	a	braced	initializer
(see	Item	2),	then	pass	the	auto-created	object	through	the	make	function:

// create std::initializer_list

auto initList = { 10, 20 };

// create std::vector using std::initializer_list ctor

auto spv = std::make_shared<std::vector<int>>(initList);

For	std::unique_ptr,	these	two	scenarios	(custom	deleters	and	braced
initializers)	are	the	only	ones	where	its	make	functions	are	problematic.	For
std::shared_ptr	and	its	make	functions,	there	are	two	more.	Both	are	edge
cases,	but	some	developers	live	on	the	edge,	and	you	may	be	one	of	them.

Some	classes	define	their	own	versions	of	operator	new	and	operator	delete.
The	presence	of	these	functions	implies	that	the	global	memory	allocation	and
deallocation	routines	for	objects	of	these	types	are	inappropriate.	Often,	class-
specific	routines	are	designed	only	to	allocate	and	deallocate	chunks	of	memory
of	precisely	the	size	of	objects	of	the	class,	e.g.,	operator	new	and	operator
delete	for	class	Widget	are	often	designed	only	to	handle	allocation	and
deallocation	of	chunks	of	memory	of	exactly	size	sizeof(Widget).	Such
routines	are	a	poor	fit	for	std::shared_ptr’s	support	for	custom	allocation	(via
std::allocate_shared)	and	deallocation	(via	custom	deleters),	because	the
amount	of	memory	that	std::allocate_shared	requests	isn’t	the	size	of	the
dynamically	allocated	object,	it’s	the	size	of	that	object	plus	the	size	of	a	control
block.	Consequently,	using	make	functions	to	create	objects	of	types	with	class-
specific	versions	of	operator	new	and	operator	delete	is	typically	a	poor
idea.

The	size	and	speed	advantages	of	std::make_shared	vis-à-vis	direct	use	of	new
stem	from	std::shared_ptr’s	control	block	being	placed	in	the	same	chunk	of
memory	as	the	managed	object.	When	that	object’s	reference	count	goes	to	zero,
the	object	is	destroyed	(i.e.,	its	destructor	is	called).	However,	the	memory	it
occupies	can’t	be	released	until	the	control	block	has	also	been	destroyed,
because	the	same	chunk	of	dynamically	allocated	memory	contains	both.

As	I	noted,	the	control	block	contains	bookkeeping	information	beyond	just	the
reference	count	itself.	The	reference	count	tracks	how	many	std::shared_ptrs
refer	to	the	control	block,	but	the	control	block	contains	a	second	reference
count,	one	that	tallies	how	many	std::weak_ptrs	refer	to	the	control	block.
This	second	reference	count	is	known	as	the	weak	count.10	When	a
std::weak_ptr	checks	to	see	if	it	has	expired	(see	Item	19),	it	does	so	by
examining	the	reference	count	(not	the	weak	count)	in	the	control	block	that	it
refers	to.	If	the	reference	count	is	zero	(i.e.,	if	the	pointed-to	object	has	no
std::shared_ptrs	referring	to	it	and	has	thus	been	destroyed),	the

std::weak_ptr	has	expired.	Otherwise,	it	hasn’t.

As	long	as	std::weak_ptrs	refer	to	a	control	block	(i.e.,	the	weak	count	is
greater	than	zero),	that	control	block	must	continue	to	exist.	And	as	long	as	a
control	block	exists,	the	memory	containing	it	must	remain	allocated.	The
memory	allocated	by	a	std::shared_ptr	make	function,	then,	can’t	be
deallocated	until	the	last	std::shared_ptr	and	the	last	std::weak_ptr
referring	to	it	have	been	destroyed.

If	the	object	type	is	quite	large	and	the	time	between	destruction	of	the	last
std::shared_ptr	and	the	last	std::weak_ptr	is	significant,	a	lag	can	occur
between	when	an	object	is	destroyed	and	when	the	memory	it	occupied	is	freed:

class ReallyBigType { … };

auto pBigObj = // create very large

 std::make_shared<ReallyBigType>(); // object via

 // std::make_shared

… // create std::shared_ptrs and std::weak_ptrs to

 // large object, use them to work with it

… // final std::shared_ptr to object destroyed here,

 // but std::weak_ptrs to it remain

… // during this period, memory formerly occupied

 // by large object remains allocated

… // final std::weak_ptr to object destroyed here;

 // memory for control block and object is released

With	a	direct	use	of	new,	the	memory	for	the	ReallyBigType	object	can	be
released	as	soon	as	the	last	std::shared_ptr	to	it	is	destroyed:

class ReallyBigType { … }; // as before

std::shared_ptr<ReallyBigType> pBigObj(new ReallyBigType);

 // create very large

 // object via new

… // as before, create std::shared_ptrs and

 // std::weak_ptrs to object, use them with it

… // final std::shared_ptr to object destroyed here,

 // but std::weak_ptrs to it remain;

 // memory for object is deallocated

… // during this period, only memory for the

 // control block remains allocated

… // final std::weak_ptr to object destroyed here;

 // memory for control block is released

Should	you	find	yourself	in	a	situation	where	use	of	std::make_shared	is
impossible	or	inappropriate,	you’ll	want	to	guard	yourself	against	the	kind	of
exception-safety	problems	we	saw	earlier.	The	best	way	to	do	that	is	to	make
sure	that	when	you	use	new	directly,	you	immediately	pass	the	result	to	a	smart
pointer	constructor	in	a	statement	that	does	nothing	else.	This	prevents
compilers	from	generating	code	that	could	emit	an	exception	between	the	use	of
new	and	invocation	of	the	constructor	for	the	smart	pointer	that	will	manage	the
newed	object.

As	an	example,	consider	a	minor	revision	to	the	exception-unsafe	call	to	the
processWidget	function	we	examined	earlier.	This	time,	we’ll	specify	a	custom
deleter:

void processWidget(std::shared_ptr<Widget> spw, // as before

 int priority);

void cusDel(Widget *ptr); // custom

 // deleter

Here’s	the	exception-unsafe	call:

processWidget(// as before,

 std::shared_ptr<Widget>(new Widget, cusDel), // potential

 computePriority() // resource

); // leak!

Recall:	if	computePriority	is	called	after	“new	Widget”	but	before	the
std::shared_ptr	constructor,	and	if	computePriority	yields	an	exception,	the
dynamically	allocated	Widget	will	be	leaked.

Here	the	use	of	a	custom	deleter	precludes	use	of	std::make_shared,	so	the
way	to	avoid	the	problem	is	to	put	the	allocation	of	the	Widget	and	the
construction	of	the	std::shared_ptr	into	their	own	statement,	then	call
processWidget	with	the	resulting	std::shared_ptr.	Here’s	the	essence	of	the
technique,	though,	as	we’ll	see	in	a	moment,	we	can	tweak	it	to	improve	its
performance:

std::shared_ptr<Widget> spw(new Widget, cusDel);

processWidget(spw, computePriority()); // correct, but not

 // optimal; see below

This	works,	because	a	std::shared_ptr	assumes	ownership	of	the	raw	pointer
passed	to	its	constructor,	even	if	that	constructor	yields	an	exception.	In	this
example,	if	spw’s	constructor	throws	an	exception	(e.g.,	due	to	an	inability	to
dynamically	allocate	memory	for	a	control	block),	it’s	still	guaranteed	that
cusDel	will	be	invoked	on	the	pointer	resulting	from	“new	Widget”.

The	minor	performance	hitch	is	that	in	the	exception-unsafe	call,	we’re	passing
an	rvalue	to	processWidget,

processWidget(

 std::shared_ptr<Widget>(new Widget, cusDel), // arg is rvalue

 computePriority()

);

but	in	the	exception-safe	call,	we’re	passing	an	lvalue:

processWidget(spw, computePriority()); // arg is lvalue

Because	processWidget’s	std::shared_ptr	parameter	is	passed	by	value,
construction	from	an	rvalue	entails	only	a	move,	while	construction	from	an
lvalue	requires	a	copy.	For	std::shared_ptr,	the	difference	can	be	significant,
because	copying	a	std::shared_ptr	requires	an	atomic	increment	of	its
reference	count,	while	moving	a	std::shared_ptr	requires	no	reference	count
manipulation	at	all.	For	the	exception-safe	code	to	achieve	the	level	of
performance	of	the	exception-unsafe	code,	we	need	to	apply	std::move	to	spw

to	turn	it	into	an	rvalue	(see	Item	23):

processWidget(std::move(spw), // both efficient and

 computePriority()); // exception safe

That’s	interesting	and	worth	knowing,	but	it’s	also	typically	irrelevant,	because
you’ll	rarely	have	a	reason	not	to	use	a	make	function.	And	unless	you	have	a
compelling	reason	for	doing	otherwise,	using	a	make	function	is	what	you	should
do.

Things	to	Remember
Compared	to	direct	use	of	new,	make	functions	eliminate	source	code	duplication,	improve
exception	safety,	and,	for	std::make_shared	and	std::allocate_shared,	generate	code
that’s	smaller	and	faster.

Situations	where	use	of	make	functions	is	inappropriate	include	the	need	to	specify	custom
deleters	and	a	desire	to	pass	braced	initializers.

For	std::shared_ptrs,	additional	situations	where	make	functions	may	be	ill-advised
include	(1)	classes	with	custom	memory	management	and	(2)	systems	with	memory
concerns,	very	large	objects,	and	std::weak_ptrs	that	outlive	the	corresponding
std::shared_ptrs.

Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation
file.
If	you’ve	ever	had	to	combat	excessive	build	times,	you’re	familiar	with	the
Pimpl	(“pointer	to	implementation”)	Idiom.	That’s	the	technique	whereby	you
replace	the	data	members	of	a	class	with	a	pointer	to	an	implementation	class	(or
struct),	put	the	data	members	that	used	to	be	in	the	primary	class	into	the
implementation	class,	and	access	those	data	members	indirectly	through	the
pointer.	For	example,	suppose	Widget	looks	like		this:

class Widget { // in header "widget.h"

public:

 Widget();

 …

private:

 std::string name;

 std::vector<double> data;

 Gadget g1, g2, g3; // Gadget is some user-

}; // defined type

Because	Widget’s	data	members	are	of	types	std::string,	std::vector,	and
Gadget,	headers	for	those	types	must	be	present	for	Widget	to	compile,	and	that
means	that	Widget	clients	must	#include	<string>,	<vector>,	and	gadget.h.
Those	headers	increase	the	compilation	time	for	Widget	clients,	plus	they	make
those	clients	dependent	on	the	contents	of	the	headers.	If	a	header’s	content
changes,	Widget	clients	must	recompile.	The	standard	headers	<string>	and
<vector>	don’t	change	very	often,	but	it	could	be	that	gadget.h	is	subject	to
frequent	revision.

Applying	the	Pimpl	Idiom	in	C++98	could	have	Widget	replace	its	data
members	with	a	raw	pointer	to	a	struct	that	has	been	declared,	but	not	defined:

class Widget { // still in header "widget.h"

public:

 Widget();

 ~Widget(); // dtor is needed—see below

 …

private:

 struct Impl; // declare implementation struct

 Impl *pImpl; // and pointer to it

};

Because	Widget	no	longer	mentions	the	types	std::string,	std::vector,	and
Gadget,	Widget	clients	no	longer	need	to	#include	the	headers	for	these	types.
That	speeds	compilation,	and	it	also	means	that	if	something	in	these	headers
changes,	Widget	clients	are	unaffected.

A	type	that	has	been	declared,	but	not	defined,	is	known	as	an	incomplete	type.
Widget::Impl	is	such	a	type.	There	are	very	few	things	you	can	do	with	an
incomplete	type,	but	declaring	a	pointer	to	it	is	one	of	them.	The	Pimpl	Idiom
takes	advantage	of	that.

Part	1	of	the	Pimpl	Idiom	is	the	declaration	of	a	data	member	that’s	a	pointer	to
an	incomplete	type.	Part	2	is	the	dynamic	allocation	and	deallocation	of	the
object	that	holds	the	data	members	that	used	to	be	in	the	original	class.	The
allocation	and	deallocation	code	goes	in	the	implementation	file,	e.g.,	for
Widget,	in	widget.cpp:

#include "widget.h" // in impl. file "widget.cpp"

#include "gadget.h"

#include <string>

#include <vector>

struct Widget::Impl { // definition of Widget::Impl

 std::string name; // with data members formerly

 std::vector<double> data; // in Widget

 Gadget g1, g2, g3;

};

Widget::Widget() // allocate data members for

: pImpl(new Impl) // this Widget object

{}

Widget::~Widget() // destroy data members for

{ delete pImpl; } // this object

Here	I’m	showing	#include	directives	to	make	clear	that	the	overall
dependencies	on	the	headers	for	std::string,	std::vector,	and	Gadget
continue	to	exist.	However,	these	dependencies	have	been	moved	from
widget.h	(which	is	visible	to	and	used	by	Widget	clients)	to	widget.cpp
(which	is	visible	to	and	used	only	by	the	Widget	implementer).	I’ve	also
highlighted	the	code	that	dynamically	allocates	and	deallocates	the	Impl	object.
The	need	to	deallocate	this	object	when	a	Widget	is	destroyed	is	what
necessitates	the	Widget	destructor.

But	I’ve	shown	you	C++98	code,	and	that	reeks	of	a	bygone	millennium.	It	uses
raw	pointers	and	raw	new	and	raw	delete	and	it’s	all	just	so…raw.	This	chapter
is	built	on	the	idea	that	smart	pointers	are	preferable	to	raw	pointers,	and	if	what
we	want	is	to	dynamically	allocate	a	Widget::Impl	object	inside	the	Widget
constructor	and	have	it	destroyed	at	the	same	time	the	Widget	is,
std::unique_ptr	(see	Item	18)	is	precisely	the	tool	we	need.	Replacing	the	raw

pImpl	pointer	with	a	std::unique_ptr	yields	this	code	for	the	header	file,

class Widget { // in "widget.h"

public:

 Widget();

 …

private:

 struct Impl;

 std::unique_ptr<Impl> pImpl; // use smart pointer

}; // instead of raw pointer

and	this	for	the	implementation	file:

#include "widget.h" // in "widget.cpp"

#include "gadget.h"

#include <string>

#include <vector>

struct Widget::Impl { // as before

 std::string name;

 std::vector<double> data;

 Gadget g1, g2, g3;

};

Widget::Widget() // per Item 21, create

: pImpl(std::make_unique<Impl>()) // std::unique_ptr

{} // via std::make_unique

You’ll	note	that	the	Widget	destructor	is	no	longer	present.	That’s	because	we
have	no	code	to	put	into	it.	std::unique_ptr	automatically	deletes	what	it
points	to	when	it	(the	std::unique_ptr)	is	destroyed,	so	we	need	not	delete
anything	ourselves.	That’s	one	of	the	attractions	of	smart	pointers:	they	eliminate
the	need	for	us	to	sully	our	hands	with	manual	resource	release.

This	code	compiles,	but,	alas,	the	most	trivial	client	use	doesn’t:

#include "widget.h"

Widget w; // error!

The	error	message	you	receive	depends	on	the	compiler	you’re	using,	but	the

text	generally	mentions	something	about	applying	sizeof	or	delete	to	an
incomplete	type.	Those	operations	aren’t	among	the	things	you	can	do	with	such
types.

This	apparent	failure	of	the	Pimpl	Idiom	using	std::unique_ptrs	is	alarming,
because	(1)	std::unique_ptr	is	advertised	as	supporting	incomplete	types,	and
(2)	the	Pimpl	Idiom	is	one	of	std::unique_ptrs	most	common	use	cases.
Fortunately,	getting	the	code	to	work	is	easy.	All	that’s	required	is	a	basic
understanding	of	the	cause	of	the	problem.

The	issue	arises	due	to	the	code	that’s	generated	when	w	is	destroyed	(e.g.,	goes
out	of	scope).	At	that	point,	its	destructor	is	called.	In	the	class	definition	using
std::unique_ptr,	we	didn’t	declare	a	destructor,	because	we	didn’t	have	any
code	to	put	into	it.	In	accord	with	the	usual	rules	for	compiler-generated	special
member	functions	(see	Item	17),	the	compiler	generates	a	destructor	for	us.
Within	that	destructor,	the	compiler	inserts	code	to	call	the	destructor	for
Widget’s	data	member	pImpl.	pImpl	is	a	std::unique_ptr<Widget::Impl>,
i.e.,	a	std::unique_ptr	using	the	default	deleter.	The	default	deleter	is	a
function	that	uses	delete	on	the	raw	pointer	inside	the	std::unique_ptr.	Prior
to	using	delete,	however,	implementations	typically	have	the	default	deleter
employ	C++11’s	static_assert	to	ensure	that	the	raw	pointer	doesn’t	point	to
an	incomplete	type.	When	the	compiler	generates	code	for	the	destruction	of	the
Widget w,	then,	it	generally	encounters	a	static_assert	that	fails,	and	that’s
usually	what	leads	to	the	error	message.	This	message	is	associated	with	the
point	where	w	is	destroyed,	because	Widget’s	destructor,	like	all	compiler-
generated	special	member	functions,	is	implicitly	inline.	The	message	itself
often	refers	to	the	line	where	w	is	created,	because	it’s	the	source	code	explicitly
creating	the	object	that	leads	to	its	later	implicit	destruction.

To	fix	the	problem,	you	just	need	to	make	sure	that	at	the	point	where	the	code
to	destroy	the	std::unique_ptr<Widget::Impl>	is	generated,	Widget::Impl
is	a	complete	type.	The	type	becomes	complete	when	its	definition	has	been
seen,	and	Widget::Impl	is	defined	inside	widget.cpp.	The	key	to	successful
compilation,	then,	is	to	have	the	compiler	see	the	body	of	Widget’s	destructor
(i.e.,	the	place	where	the	compiler	will	generate	code	to	destroy	the
std::unique_ptr	data	member)	only	inside	widget.cpp	after	Widget::Impl

has	been	defined.

Arranging	for	that	is	simple.	Declare	Widget’s	destructor	in	widget.h,	but	don’t
define	it	there:

class Widget { // as before, in "widget.h"

public:

 Widget();

 ~Widget(); // declaration only

 …

private: // as before

 struct Impl;

 std::unique_ptr<Impl> pImpl;

};

Define	it	in	widget.cpp	after	Widget::Impl	has	been	defined:

#include "widget.h" // as before, in "widget.cpp"

#include "gadget.h"

#include <string>

#include <vector>

 struct Widget::Impl { // as before, definition of

 std::string name; // Widget::Impl

 std::vector<double> data;

 Gadget g1, g2, g3;

};

Widget::Widget() // as before

: pImpl(std::make_unique<Impl>())

{}

Widget::~Widget() // ~Widget definition

{}

This	works	well,	and	it	requires	the	least	typing,	but	if	you	want	to	emphasize
that	the	compiler-generated	destructor	would	do	the	right	thing—that	the	only
reason	you	declared	it	was	to	cause	its	definition	to	be	generated	in	Widget’s
implementation	file,	you	can	define	the	destructor	body	with	“=	default”:

Widget::~Widget() = default; // same effect as above

Classes	using	the	Pimpl	Idiom	are	natural	candidates	for	move	support,	because
compiler-generated	move	operations	do	exactly	what’s	desired:	perform	a	move
on	the	underlying	std::unique_ptr.	As	Item	17	explains,	the	declaration	of	a
destructor	in	Widget	prevents	compilers	from	generating	the	move	operations,
so	if	you	want	move	support,	you	must	declare	the	functions	yourself.	Given	that
the	compiler-generated	versions	would	behave	correctly,	you’re	likely	to	be
tempted	to	implement	them	as	follows:

class Widget { // still in

public: // "widget.h"

 Widget();

 ~Widget();

 Widget(Widget&& rhs) = default; // right idea,

 Widget& operator=(Widget&& rhs) = default; // wrong code!

 …

private: // as before

 struct Impl;

 std::unique_ptr<Impl> pImpl;

};

This	approach	leads	to	the	same	kind	of	problem	as	declaring	the	class	without	a
destructor,	and	for	the	same	fundamental	reason.	The	compiler-generated	move
assignment	operator	needs	to	destroy	the	object	pointed	to	by	pImpl	before
reassigning	it,	but	in	the	Widget	header	file,	pImpl	points	to	an	incomplete	type.
The	situation	is	different	for	the	move	constructor.	The	problem	there	is	that
compilers	typically	generate	code	to	destroy	pImpl	in	the	event	that	an	exception
arises	inside	the	move	constructor,	and	destroying	pImpl	requires	that	Impl	be
complete.

Because	the	problem	is	the	same	as	before,	so	is	the	fix—move	the	definition	of
the	move	operations	into	the	implementation	file:

class Widget { // still in "widget.h"

public:

 Widget();

 ~Widget();

 Widget(Widget&& rhs); // declarations

 Widget& operator=(Widget&& rhs); // only

 …

private: // as before

 struct Impl;

 std::unique_ptr<Impl> pImpl;

};

#include <string> // as before,

… // in "widget.cpp"

struct Widget::Impl { … }; // as before

Widget::Widget() // as before

: pImpl(std::make_unique<Impl>())

{}

Widget::~Widget() = default; // as before

Widget::Widget(Widget&& rhs) = default; // defini-

Widget& Widget::operator=(Widget&& rhs) = default; // tions

The	Pimpl	Idiom	is	a	way	to	reduce	compilation	dependencies	between	a	class’s
implementation	and	the	class’s	clients,	but,	conceptually,	use	of	the	idiom
doesn’t	change	what	the	class	represents.	The	original	Widget	class	contained
std::string,	std::vector,	and	Gadget	data	members,	and,	assuming	that
Gadgets,	like	std::strings	and	std::vectors,	can	be	copied,	it	would	make
sense	for	Widget	to	support	the	copy	operations.	We	have	to	write	these
functions	ourselves,	because	(1)	compilers	won’t	generate	copy	operations	for
classes	with	move-only	types	like	std::unique_ptr	and	(2)	even	if	they	did,
the	generated	functions	would	copy	only	the	std::unique_ptr	(i.e.,	perform	a
shallow	copy),	and	we	want	to	copy	what	the	pointer	points	to	(i.e.,	perform	a
deep	copy).

In	a	ritual	that	is	by	now	familiar,	we	declare	the	functions	in	the	header	file	and
implement	them	in	the	implementation	file:

class Widget { // still in "widget.h"

public:

 … // other funcs, as before

 Widget(const Widget& rhs); // declarations

 Widget& operator=(const Widget& rhs); // only

private: // as before

 struct Impl;

 std::unique_ptr<Impl> pImpl;

};

#include "widget.h" // as before,

… // in "widget.cpp"

struct Widget::Impl { … }; // as before

Widget::~Widget() = default; // other funcs, as before

Widget::Widget(const Widget& rhs) // copy ctor

: pImpl(std::make_unique<Impl>(*rhs.pImpl))

{}

Widget& Widget::operator=(const Widget& rhs) // copy operator=

{

 pImpl = rhs.pImpl;

 return *this;

}

Both	function	implementations	are	conventional.	In	each	case,	we	simply	copy
the	fields	of	the	Impl	struct	from	the	source	object	(rhs)	to	the	destination	object
(*this).	Rather	than	copy	the	fields	one	by	one,	we	take	advantage	of	the	fact
that	compilers	will	create	the	copy	operations	for	Impl,	and	these	operations	will
copy	each	field	automatically.	We	thus	implement	Widget’s	copy	operations	by
calling	Widget::Impl’s	compiler-generated	copy	operations.	In	the	copy
constructor,	note	that	we	still	follow	the	advice	of	Item	21	to	prefer	use	of
std::make_unique	over	direct	use	of	new.

For	purposes	of	implementing	the	Pimpl	Idiom,	std::unique_ptr	is	the	smart
pointer	to	use,	because	the	pImpl	pointer	inside	an	object	(e.g.,	inside	a	Widget)
has	exclusive	ownership	of	the	corresponding	implementation	object	(e.g.,	the
Widget::Impl	object).	Still,	it’s	interesting	to	note	that	if	we	were	to	use
std::shared_ptr	instead	of	std::unique_ptr	for	pImpl,	we’d	find	that	the
advice	of	this	Item	no	longer	applied.	There’d	be	no	need	to	declare	a	destructor

in	Widget,	and	without	a	user-declared	destructor,	compilers	would	happily
generate	the	move	operations,	which	would	do	exactly	what	we’d	want	them	to.
That	is,	given	this	code	in	widget.h,

class Widget { // in "widget.h"

public:

 Widget();

 … // no declarations for dtor

 // or move operations

private:

 struct Impl;

 std::shared_ptr<Impl> pImpl; // std::shared_ptr

}; // instead of std::unique_ptr

and	this	client	code	that	#includes	widget.h,

Widget w1;

auto w2(std::move(w1)); // move-construct w2

w1 = std::move(w2); // move-assign w1

everything	would	compile	and	run	as	we’d	hope:	w1	would	be	default
constructed,	its	value	would	be	moved	into	w2,	that	value	would	be	moved	back
into	w1,	and	then	both	w1	and	w2	would	be	destroyed	(thus	causing	the	pointed-to
Widget::Impl	object	to	be	destroyed).

The	difference	in	behavior	between	std::unique_ptr	and	std::shared_ptr
for	pImpl	pointers	stems	from	the	differing	ways	these	smart	pointers	support
custom	deleters.	For	std::unique_ptr,	the	type	of	the	deleter	is	part	of	the	type
of	the	smart	pointer,	and	this	makes	it	possible	for	compilers	to	generate	smaller
runtime	data	structures	and	faster	runtime	code.	A	consequence	of	this	greater
efficiency	is	that	pointed-to	types	must	be	complete	when	compiler-generated
special	functions	(e.g.,	destructors	or	move	operations)	are	used.	For
std::shared_ptr,	the	type	of	the	deleter	is	not	part	of	the	type	of	the	smart
pointer.	This	necessitates	larger	runtime	data	structures	and	somewhat	slower
code,	but	pointed-to	types	need	not	be	complete	when	compiler-generated
special	functions	are	employed.

For	the	Pimpl	Idiom,	there’s	not	really	a	trade-off	between	the	characteristics	of
std::unique_ptr	and	std::shared_ptr,	because	the	relationship	between
classes	like	Widget	and	classes	like	Widget::Impl	is	exclusive	ownership,	and
that	makes	std::unique_ptr	the	proper	tool	for	the	job.	Nevertheless,	it’s
worth	knowing	that	in	other	situations—situations	where	shared	ownership
exists	(and	std::shared_ptr	is	hence	a	fitting	design	choice),	there’s	no	need
to	jump	through	the	function-definition	hoops	that	use	of	std::unique_ptr
entails.

Things	to	Remember
The	Pimpl	Idiom	decreases	build	times	by	reducing	compilation	dependencies	between
class	clients	and	class	implementations.

For	std::unique_ptr	pImpl	pointers,	declare	special	member	functions	in	the	class
header,	but	implement	them	in	the	implementation	file.	Do	this	even	if	the	default	function
implementations	are	acceptable.

The	above	advice	applies	to	std::unique_ptr,	but	not	to	std::shared_ptr.

7	There	are	a	few	exceptions	to	this	rule.	Most	stem	from	abnormal	program
termination.	If	an	exception	propagates	out	of	a	thread’s	primary	function	(e.g.,
main,	for	the	program’s	initial	thread)	or	if	a	noexcept	specification	is	violated
(see	Item	14),	local	objects	may	not	be	destroyed,	and	if	std::abort	or	an	exit
function	(i.e.,	std::_Exit,	std::exit,	or	std::quick_exit)	is	called,	they
definitely	won’t	be.
8	This	implementation	is	not	required	by	the	Standard,	but	every	Standard
Library	implementation	I’m	familiar	with	employs	it.
9	To	create	a	full-featured	make_unique	with	the	smallest	effort	possible,	search
for	the	standardization	document	that	gave	rise	to	it,	then	copy	the
implementation	you’ll	find	there.	The	document	you	want	is	N3656	by	Stephan
T.	Lavavej,	dated	2013-04-18.
10	In	practice,	the	value	of	the	weak	count	isn’t	always	equal	to	the	number	of
std::weak_ptrs	referring	to	the	control	block,	because	library	implementers
have	found	ways	to	slip	additional	information	into	the	weak	count	that	facilitate

better	code	generation.	For	purposes	of	this	Item,	we’ll	ignore	this	and	assume
that	the	weak	count’s	value	is	the	number	of	std::weak_ptrs	referring	to	the
control	block.

Chapter	5.	Rvalue	References,
Move	Semantics,	and	Perfect
Forwarding

When	you	first	learn	about	them,	move	semantics	and	perfect	forwarding	seem
pretty	straightforward:

Move	semantics	makes	it	possible	for	compilers	to	replace	expensive
copying	operations	with	less	expensive	moves.	In	the	same	way	that	copy
constructors	and	copy	assignment	operators	give	you	control	over	what	it
means	to	copy	objects,	move	constructors	and	move	assignment	operators
offer	control	over	the	semantics	of	moving.	Move	semantics	also	enables	the
creation	of	move-only	types,	such	as	std::unique_ptr,	std::future,	and
std::thread.

Perfect	forwarding	makes	it	possible	to	write	function	templates	that	take
arbitrary	arguments	and	forward	them	to	other	functions	such	that	the	target
functions	receive	exactly	the	same	arguments	as	were	passed	to	the
forwarding	functions.

Rvalue	references	are	the	glue	that	ties	these	two	rather	disparate	features
together.	They’re	the	underlying	language	mechanism	that	makes	both	move
semantics	and	perfect	forwarding	possible.

The	more	experience	you	have	with	these	features,	the	more	you	realize	that
your	initial	impression	was	based	on	only	the	metaphorical	tip	of	the	proverbial
iceberg.	The	world	of	move	semantics,	perfect	forwarding,	and	rvalue	references
is	more	nuanced	than	it	appears.	std::move	doesn’t	move	anything,	for
example,	and	perfect	forwarding	is	imperfect.	Move	operations	aren’t	always
cheaper	than	copying;	when	they	are,	they’re	not	always	as	cheap	as	you’d
expect;	and	they’re	not	always	called	in	a	context	where	moving	is	valid.	The
construct	“type&&”	doesn’t	always	represent	an	rvalue	reference.

No	matter	how	far	you	dig	into	these	features,	it	can	seem	that	there’s	always
more	to	uncover.	Fortunately,	there	is	a	limit	to	their	depths.	This	chapter	will
take	you	to	the	bedrock.	Once	you	arrive,	this	part	of	C++11	will	make	a	lot
more	sense.	You’ll	know	the	usage	conventions	for	std::move	and
std::forward,	for	example.	You’ll	be	comfortable	with	the	ambiguous	nature
of	“type&&”.	You’ll	understand	the	reasons	for	the	surprisingly	varied
behavioral	profiles	of	move	operations.	All	those	pieces	will	fall	into	place.	At
that	point,	you’ll	be	back	where	you	started,	because	move	semantics,	perfect
forwarding,	and	rvalue	references	will	once	again	seem	pretty	straightforward.
But	this	time,	they’ll	stay	that	way.

In	the	Items	in	this	chapter,	it’s	especially	important	to	bear	in	mind	that	a
parameter	is	always	an	lvalue,	even	if	its	type	is	an	rvalue	reference.	That	is,
given

void f(Widget&& w);

the	parameter	w	is	an	lvalue,	even	though	its	type	is	rvalue-reference-to-Widget.
(If	this	surprises	you,	please	review	the	overview	of	lvalues	and	rvalues	that
begins	here.)

Item	23: Understand	std::move	and
std::forward.
It’s	useful	to	approach	std::move	and	std::forward	in	terms	of	what	they
don’t	do.	std::move	doesn’t	move	anything.	std::forward	doesn’t	forward
anything.	At	runtime,	neither	does	anything	at	all.	They	generate	no	executable
code.	Not	a	single	byte.

std::move	and	std::forward	are	merely	functions	(actually	function
templates)	that	perform	casts.	std::move	unconditionally	casts	its	argument	to
an	rvalue,	while	std::forward	performs	this	cast	only	if	a	particular	condition
is	fulfilled.	That’s	it.	The	explanation	leads	to	a	new	set	of	questions,	but,
fundamentally,	that’s	the	complete	story.

To	make	the	story	more	concrete,	here’s	a	sample	implementation	of	std::move

in	C++11.	It’s	not	fully	conforming	to	the	details	of	the	Standard,	but	it’s	very
close.

template<typename T> // in namespace std

typename remove_reference<T>::type&&

move(T&& param)

{

 using ReturnType = // alias declaration;

 typename remove_reference<T>::type&&; // see Item 9

 return static_cast<ReturnType>(param);

}

I’ve	highlighted	two	parts	of	the	code	for	you.	One	is	the	name	of	the	function,
because	the	return	type	specification	is	rather	noisy,	and	I	don’t	want	you	to	lose
your	bearings	in	the	din.	The	other	is	the	cast	that	comprises	the	essence	of	the
function.	As	you	can	see,	std::move	takes	a	reference	to	an	object	(a	universal
reference,	to	be	precise—see	Item	24)	and	it	returns	a	reference	to	the	same
object.

The	“&&”	part	of	the	function’s	return	type	implies	that	std::move	returns	an
rvalue	reference,	but,	as	Item	28	explains,	if	the	type	T	happens	to	be	an	lvalue
reference,	T&&	would	become	an	lvalue	reference.	To	prevent	this	from
happening,	the	type	trait	(see	Item	9)	std::remove_reference	is	applied	to	T,
thus	ensuring	that	“&&”	is	applied	to	a	type	that	isn’t	a	reference.	That	guarantees
that	std::move	truly	returns	an	rvalue	reference,	and	that’s	important,	because
rvalue	references	returned	from	functions	are	rvalues.	Thus,	std::move	casts	its
argument	to	an	rvalue,	and	that’s	all	it	does.

As	an	aside,	std::move	can	be	implemented	with	less	fuss	in	C++14.	Thanks	to
function	return	type	deduction	(see	Item	3)	and	to	the	Standard	Library’s	alias
template	std::remove_reference_t	(see	Item	9),	std::move	can	be	written
this	way:

template<typename T> // C++14; still in

decltype(auto) move(T&& param) // namespace std

{

 using ReturnType = remove_reference_t<T>&&;

 return static_cast<ReturnType>(param);

}

Easier	on	the	eyes,	no?

Because	std::move	does	nothing	but	cast	its	argument	to	an	rvalue,	there	have
been	suggestions	that	a	better	name	for	it	might	have	been	something	like
rvalue_cast.	Be	that	as	it	may,	the	name	we	have	is	std::move,	so	it’s
important	to	remember	what	std::move	does	and	doesn’t	do.	It	does	cast.	It
doesn’t	move.

Of	course,	rvalues	are	candidates	for	moving,	so	applying	std::move	to	an
object	tells	the	compiler	that	the	object	is	eligible	to	be	moved	from.	That’s	why
std::move	has	the	name	it	does:	to	make	it	easy	to	designate	objects	that	may	be
moved	from.

In	truth,	rvalues	are	only	usually	candidates	for	moving.	Suppose	you’re	writing
a	class	representing	annotations.	The	class’s	constructor	takes	a	std::string
parameter	comprising	the	annotation,	and	it	copies	the	parameter	to	a	data
member.	Flush	with	the	information	in	Item	41,	you	declare	a	by-value
parameter:

class Annotation {

public:

 explicit Annotation(std::string text); // param to be copied,

 … // so per Item 41,

}; // pass by value

But	Annotation’s	constructor	needs	only	to	read	text’s	value.	It	doesn’t	need
to	modify	it.	In	accord	with	the	time-honored	tradition	of	using	const	whenever
possible,	you	revise	your	declaration	such	that	text	is	const:

class Annotation {

public:

 explicit Annotation(const std::string text)

 …

};

To	avoid	paying	for	a	copy	operation	when	copying	text	into	a	data	member,
you	remain	true	to	the	advice	of	Item	41	and	apply	std::move	to	text,	thus
producing	an	rvalue:

class Annotation {

public:

 explicit Annotation(const std::string text)

 : value(std::move(text)) // "move" text into value; this code

 { … } // doesn't do what it seems to!

 …

private:

 std::string value;

};

This	code	compiles.	This	code	links.	This	code	runs.	This	code	sets	the	data
member	value	to	the	content	of	text.	The	only	thing	separating	this	code	from
a	perfect	realization	of	your	vision	is	that	text	is	not	moved	into	value,	it’s
copied.	Sure,	text	is	cast	to	an	rvalue	by	std::move,	but	text	is	declared	to	be
a	const	std::string,	so	before	the	cast,	text	is	an	lvalue	const	std::string,
and	the	result	of	the	cast	is	an	rvalue	const	std::string,	but	throughout	it	all,
the	constness	remains.

Consider	the	effect	that	has	when	compilers	have	to	determine	which
std::string	constructor	to	call.	There	are	two	possibilities:

class string { // std::string is actually a

public: // typedef for std::basic_string<char>

 …

 string(const string& rhs); // copy ctor

 string(string&& rhs); // move ctor

 …

};

In	the	Annotation	constructor’s	member	initialization	list,	the	result	of
std::move(text)	is	an	rvalue	of	type	const	std::string.	That	rvalue	can’t	be
passed	to	std::string’s	move	constructor,	because	the	move	constructor	takes
an	rvalue	reference	to	a	non-const	std::string.	The	rvalue	can,	however,	be
passed	to	the	copy	constructor,	because	an	lvalue-reference-to-const	is
permitted	to	bind	to	a	const	rvalue.	The	member	initialization	therefore	invokes
the	copy	constructor	in	std::string,	even	though	text	has	been	cast	to	an
rvalue!	Such	behavior	is	essential	to	maintaining	const-correctness.	Moving	a

value	out	of	an	object	generally	modifies	the	object,	so	the	language	should	not
permit	const	objects	to	be	passed	to	functions	(such	as	move	constructors)	that
could	modify	them.

There	are	two	lessons	to	be	drawn	from	this	example.	First,	don’t	declare	objects
const	if	you	want	to	be	able	to	move	from	them.	Move	requests	on	const
objects	are	silently	transformed	into	copy	operations.	Second,	std::move	not
only	doesn’t	actually	move	anything,	it	doesn’t	even	guarantee	that	the	object
it’s	casting	will	be	eligible	to	be	moved.	The	only	thing	you	know	for	sure	about
the	result	of	applying	std::move	to	an	object	is	that	it’s	an	rvalue.

The	story	for	std::forward	is	similar	to	that	for	std::move,	but	whereas
std::move	unconditionally	casts	its	argument	to	an	rvalue,	std::forward	does
it	only	under	certain	conditions.	std::forward	is	a	conditional	cast.	To
understand	when	it	casts	and	when	it	doesn’t,	recall	how	std::forward	is
typically	used.	The	most	common	scenario	is	a	function	template	taking	a
universal	reference	parameter	that	is	to	be	passed	to	another	function:

void process(const Widget& lvalArg); // process lvalues

void process(Widget&& rvalArg); // process rvalues

template<typename T> // template that passes

void logAndProcess(T&& param) // param to process

{

 auto now = // get current time

 std::chrono::system_clock::now();

 makeLogEntry("Calling 'process'", now);

 process(std::forward<T>(param));

}

Consider	two	calls	to	logAndProcess,	one	with	an	lvalue,	the	other	with	an
rvalue:

Widget w;

logAndProcess(w); // call with lvalue

logAndProcess(std::move(w)); // call with rvalue

Inside	logAndProcess,	the	parameter	param	is	passed	to	the	function	process.

process	is	overloaded	for	lvalues	and	rvalues.	When	we	call	logAndProcess
with	an	lvalue,	we	naturally	expect	that	lvalue	to	be	forwarded	to	process	as	an
lvalue,	and	when	we	call	logAndProcess	with	an	rvalue,	we	expect	the	rvalue
overload	of	process	to	be	invoked.

But	param,	like	all	function	parameters,	is	an	lvalue.	Every	call	to	process
inside	logAndProcess	will	thus	want	to	invoke	the	lvalue	overload	for	process.
To	prevent	this,	we	need	a	mechanism	for	param	to	be	cast	to	an	rvalue	if	and
only	if	the	argument	with	which	param	was	initialized—the	argument	passed	to
logAndProcess—was	an	rvalue.	This	is	precisely	what	std::forward	does.
That’s	why	std::forward	is	a	conditional	cast:	it	casts	to	an	rvalue	only	if	its
argument	was	initialized	with	an	rvalue.

You	may	wonder	how	std::forward	can	know	whether	its	argument	was
initialized	with	an	rvalue.	In	the	code	above,	for	example,	how	can
std::forward	tell	whether	param	was	initialized	with	an	lvalue	or	an	rvalue?
The	brief	answer	is	that	that	information	is	encoded	in	logAndProcess’s
template	parameter	T.	That	parameter	is	passed	to	std::forward,	which
recovers	the	encoded	information.	For	details	on	exactly	how	that	works,	consult
Item	28.

Given	that	both	std::move	and	std::forward	boil	down	to	casts,	the	only
difference	being	that	std::move	always	casts,	while	std::forward	only
sometimes	does,	you	might	ask	whether	we	can	dispense	with	std::move	and
just	use	std::forward	everywhere.	From	a	purely	technical	perspective,	the
answer	is	yes:	std::forward	can	do	it	all.	std::move	isn’t	necessary.	Of
course,	neither	function	is	really	necessary,	because	we	could	write	casts
everywhere,	but	I	hope	we	agree	that	that	would	be,	well,	yucky.

std::move’s	attractions	are	convenience,	reduced	likelihood	of	error,	and
greater	clarity.	Consider	a	class	where	we	want	to	track	how	many	times	the
move	constructor	is	called.	A	static	counter	that’s	incremented	during	move
construction	is	all	we	need.	Assuming	the	only	non-static	data	in	the	class	is	a
std::string,	here’s	the	conventional	way	(i.e.,	using	std::move)	to	implement
the	move	constructor:

class Widget {

public:

 Widget(Widget&& rhs)

 : s(std::move(rhs.s))

 { ++moveCtorCalls; }

 …

private:

 static std::size_t moveCtorCalls;

 std::string s;

};

To	implement	the	same	behavior	with	std::forward,	the	code	would	look	like
this:

class Widget {

public:

 Widget(Widget&& rhs) // unconventional,

 : s(std::forward<std::string>(rhs.s)) // undesirable

 { ++moveCtorCalls; } // implementation

 …

};

Note	first	that	std::move	requires	only	a	function	argument	(rhs.s),	while
std::forward	requires	both	a	function	argument	(rhs.s)	and	a	template	type
argument	(std::string).	Then	note	that	the	type	we	pass	to	std::forward
should	be	a	non-reference,	because	that’s	the	convention	for	encoding	that	the
argument	being	passed	is	an	rvalue	(see	Item	28).	Together,	this	means	that
std::move	requires	less	typing	than	std::forward,	and	it	spares	us	the	trouble
of	passing	a	type	argument	that	encodes	that	the	argument	we’re	passing	is	an
rvalue.	It	also	eliminates	the	possibility	of	our	passing	an	incorrect	type	(e.g.,
std::string&,	which	would	result	in	the	data	member	s	being	copy	constructed
instead	of	move	constructed).

More	importantly,	the	use	of	std::move	conveys	an	unconditional	cast	to	an
rvalue,	while	the	use	of	std::forward	indicates	a	cast	to	an	rvalue	only	for
references	to	which	rvalues	have	been	bound.	Those	are	two	very	different
actions.	The	first	one	typically	sets	up	a	move,	while	the	second	one	just	passes

—forwards—an	object	to	another	function	in	a	way	that	retains	its	original
lvalueness	or	rvalueness.	Because	these	actions	are	so	different,	it’s	good	that	we
have	two	different	functions	(and	function	names)	to	distinguish	them.

Things	to	Remember
std::move	performs	an	unconditional	cast	to	an	rvalue.	In	and	of	itself,	it	doesn’t	move
anything.

std::forward	casts	its	argument	to	an	rvalue	only	if	that	argument	is	bound	to	an	rvalue.

Neither	std::move	nor	std::forward	do	anything	at	runtime.

Item	24: Distinguish	universal	references	from
rvalue	references.
It’s	been	said	that	the	truth	shall	set	you	free,	but	under	the	right	circumstances,
a	well-chosen	lie	can	be	equally	liberating.	This	Item	is	such	a	lie.	Because
we’re	dealing	with	software,	however,	let’s	eschew	the	word	“lie”	and	instead
say	that	this	Item	comprises	an	“abstraction.”		

To	declare	an	rvalue	reference	to	some	type	T,	you	write	T&&.	It	thus	seems
reasonable	to	assume	that	if	you	see	“T&&”	in	source	code,	you’re	looking	at	an
rvalue	reference.	Alas,	it’s	not	quite	that	simple:

void f(Widget&& param); // rvalue reference

Widget&& var1 = Widget(); // rvalue reference

auto&& var2 = var1; // not rvalue reference

template<typename T>

void f(std::vector<T>&& param); // rvalue reference

template<typename T>

void f(T&& param); // not rvalue reference

In	fact,	“T&&”	has	two	different	meanings.	One	is	rvalue	reference,	of	course.

Such	references	behave	exactly	the	way	you	expect:	they	bind	only	to	rvalues,
and	their	primary	raison	d’être	is	to	identify	objects	that	may	be	moved	from.

The	other	meaning	for	“T&&”	is	either	rvalue	reference	or	lvalue	reference.	Such
references	look	like	rvalue	references	in	the	source	code	(i.e.,	“T&&”),	but	they
can	behave	as	if	they	were	lvalue	references	(i.e.,	“T&”).	Their	dual	nature
permits	them	to	bind	to	rvalues	(like	rvalue	references)	as	well	as	lvalues	(like
lvalue	references).	Furthermore,	they	can	bind	to	const	or	non-const	objects,	to
volatile	or	non-volatile	objects,	even	to	objects	that	are	both	const	and
volatile.	They	can	bind	to	virtually	anything.	Such	unprecedentedly	flexible
references	deserve	a	name	of	their	own.	I	call	them	universal	references.11

Universal	references	arise	in	two	contexts.	The	most	common	is	function
template	parameters,	such	as	this	example	from	the	sample	code	above:

template<typename T>

void f(T&& param); // param is a universal reference

The	second	context	is	auto	declarations,	including	this	one	from	the	sample
code	above:

auto&& var2 = var1; // var2 is a universal reference

What	these	contexts	have	in	common	is	the	presence	of	type	deduction.	In	the
template	f,	the	type	of	param	is	being	deduced,	and	in	the	declaration	for	var2,
var2’s	type	is	being	deduced.	Compare	that	with	the	following	examples	(also
from	the	sample	code	above),	where	type	deduction	is	missing.	If	you	see	“T&&”
without	type	deduction,	you’re	looking	at	an	rvalue	reference:

void f(Widget&& param); // no type deduction;

 // param is an rvalue reference

Widget&& var1 = Widget(); // no type deduction;

 // var1 is an rvalue reference

Because	universal	references	are	references,	they	must	be	initialized.	The
initializer	for	a	universal	reference	determines	whether	it	represents	an	rvalue
reference	or	an	lvalue	reference.	If	the	initializer	is	an	rvalue,	the	universal

reference	corresponds	to	an	rvalue	reference.	If	the	initializer	is	an	lvalue,	the
universal	reference	corresponds	to	an	lvalue	reference.	For	universal	references
that	are	function	parameters,	the	initializer	is	provided	at	the	call	site:

template<typename T>

void f(T&& param); // param is a universal reference

Widget w;

f(w); // lvalue passed to f; param's type is

 // Widget& (i.e., an lvalue reference)

f(std::move(w)); // rvalue passed to f; param's type is

 // Widget&& (i.e., an rvalue reference)

For	a	reference	to	be	universal,	type	deduction	is	necessary,	but	it’s	not
sufficient.	The	form	of	the	reference	declaration	must	also	be	correct,	and	that
form	is	quite	constrained.	It	must	be	precisely	“T&&”.	Look	again	at	this	example
from	the	sample	code	we	saw	earlier:

template<typename T>

void f(std::vector<T>&& param); // param is an rvalue reference

When	f	is	invoked,	the	type	T	will	be	deduced	(unless	the	caller	explicitly
specifies	it,	an	edge	case	we’ll	not	concern	ourselves	with).	But	the	form	of
param’s	type	declaration	isn’t	“T&&”,	it’s	“std::vector<T>&&”.	That	rules	out
the	possibility	that	param	is	a	universal	reference.	param	is	therefore	an	rvalue
reference,	something	that	your	compilers	will	be	happy	to	confirm	for	you	if	you
try	to	pass	an	lvalue	to	f:

std::vector<int> v;

f(v); // error! can't bind lvalue to

 // rvalue reference

Even	the	simple	presence	of	a	const	qualifier	is	enough	to	disqualify	a	reference
from	being	universal:

template<typename T>

void f(const T&& param); // param is an rvalue reference

If	you’re	in	a	template	and	you	see	a	function	parameter	of	type	“T&&”,	you
might	think	you	can	assume	that	it’s	a	universal	reference.	You	can’t.	That’s
because	being	in	a	template	doesn’t	guarantee	the	presence	of	type	deduction.
Consider	this	push_back	member	function	in	std::vector:

template<class T, class Allocator = allocator<T>> // from C++

class vector { // Standards

public:

 void push_back(T&& x);

 …

};

push_back’s	parameter	certainly	has	the	right	form	for	a	universal	reference,	but
there’s	no	type	deduction	in	this	case.	That’s	because	push_back	can’t	exist
without	a	particular	vector	instantiation	for	it	to	be	part	of,	and	the	type	of	that
instantiation	fully	determines	the	declaration	for	push_back.	That	is,	saying

std::vector<Widget> v;

causes	the	std::vector	template	to	be	instantiated	as	follows:

class vector<Widget, allocator<Widget>> {

public:

 void push_back(Widget&& x); // rvalue reference

 …

};

Now	you	can	see	clearly	that	push_back	employs	no	type	deduction.	This
push_back	for	vector<T>	(there	are	two—the	function	is	overloaded)	always
declares	a	parameter	of	type	rvalue-reference-to-T.

In	contrast,	the	conceptually	similar	emplace_back	member	function	in
std::vector	does	employ	type	deduction:

template<class T, class Allocator = allocator<T>> // still from

class vector { // C++

public: // Standards

 template <class... Args>

 void emplace_back(Args&&... args);

 …

};

Here,	the	type	parameter	Args	is	independent	of	vector’s	type	parameter	T,	so
Args	must	be	deduced	each	time	emplace_back	is	called.	(Okay,	Args	is	really	a
parameter	pack,	not	a	type	parameter,	but	for	purposes	of	this	discussion,	we	can
treat	it	as	if	it	were	a	type	parameter.)

The	fact	that	emplace_back’s	type	parameter	is	named	Args,	yet	it’s	still	a
universal	reference,	reinforces	my	earlier	comment	that	it’s	the	form	of	a
universal	reference	that	must	be	“T&&”.	There’s	no	requirement	that	you	use	the
name	T.	For	example,	the	following	template	takes	a	universal	reference,
because	the	form	(“type&&”)	is	right,	and	param’s	type	will	be	deduced	(again,
excluding	the	corner	case	where	the	caller	explicitly	specifies	the	type):

template<typename MyTemplateType> // param is a

void someFunc(MyTemplateType&& param); // universal reference

I	remarked	earlier	that	auto	variables	can	also	be	universal	references.	To	be
more	precise,	variables	declared	with	the	type	auto&&	are	universal	references,
because	type	deduction	takes	place	and	they	have	the	correct	form	(“T&&”).	auto
universal	references	are	not	as	common	as	universal	references	used	for	function
template	parameters,	but	they	do	crop	up	from	time	to	time	in	C++11.	They	crop
up	a	lot	more	in	C++14,	because	C++14	lambda	expressions	may	declare
auto&&	parameters.	For	example,	if	you	wanted	to	write	a	C++14	lambda	to
record	the	time	taken	in	an	arbitrary	function	invocation,	you	could	do	this:

auto timeFuncInvocation =

 [](auto&& func, auto&&... params) // C++14

 {

 start timer;

 std::forward<decltype(func)>(func)(// invoke func

 std::forward<decltype(params)>(params)... // on params

);

 stop timer and record elapsed time;

 };

If	your	reaction	to	the	“std::forward<decltype(blah	blah	blah)>”	code
inside	the	lambda	is,	“What	the…?!”,	that	probably	just	means	you	haven’t	yet

read	Item	33.	Don’t	worry	about	it.	The	important	thing	in	this	Item	is	the
auto&&	parameters	that	the	lambda	declares.	func	is	a	universal	reference	that
can	be	bound	to	any	callable	object,	lvalue	or	rvalue.	args	is	zero	or	more
universal	references	(i.e.,	a	universal	reference	parameter	pack)	that	can	be
bound	to	any	number	of	objects	of	arbitrary	types.	The	result,	thanks	to	auto
universal	references,	is	that	timeFuncInvocation	can	time	pretty	much	any
function	execution.	(For	information	on	the	difference	between	“any”	and
“pretty	much	any,”	turn	to	Item	30.)

Bear	in	mind	that	this	entire	Item—the	foundation	of	universal	references—is	a
lie…er,	an	“abstraction.”	The	underlying	truth	is	known	as	reference	collapsing,
a	topic	to	which	Item	28	is	dedicated.	But	the	truth	doesn’t	make	the	abstraction
any	less	useful.	Distinguishing	between	rvalue	references	and	universal
references	will	help	you	read	source	code	more	accurately	(“Does	that	T&&	I’m
looking	at	bind	to	rvalues	only	or	to	everything?”),	and	it	will	avoid	ambiguities
when	you	communicate	with	your	colleagues	(“I’m	using	a	universal	reference
here,	not	an	rvalue	reference…”).	It	will	also	allow	you	to	make	sense	of	Items
25	and	26,	which	rely	on	the	distinction.	So	embrace	the	abstraction.	Revel	in	it.
Just	as	Newton’s	laws	of	motion	(which	are	technically	incorrect)	are	typically
just	as	useful	as	and	easier	to	apply	than	Einstein’s	theory	of	general	relativity
(“the	truth”),	so	is	the	notion	of	universal	references	normally	preferable	to
working	through	the	details	of	reference	collapsing.

Things	to	Remember
If	a	function	template	parameter	has	type	T&&	for	a	deduced	type	T,	or	if	an	object	is
declared	using	auto&&,	the	parameter	or	object	is	a	universal	reference.

If	the	form	of	the	type	declaration	isn’t	precisely	type&&,	or	if	type	deduction	does	not
occur,	type&&	denotes	an	rvalue	reference.

Universal	references	correspond	to	rvalue	references	if	they’re	initialized	with	rvalues.
They	correspond	to	lvalue	references	if	they’re	initialized	with	lvalues.		

Item	25: Use	std::move	on	rvalue	references,

std::forward	on	universal	references.
Rvalue	references	bind	only	to	objects	that	are	candidates	for	moving.	If	you
have	an	rvalue	reference	parameter,	you	know	that	the	object	it’s	bound	to	may
be	moved:

class Widget {

 Widget(Widget&& rhs); // rhs definitely refers to an

 … // object eligible for moving

};

That	being	the	case,	you’ll	want	to	pass	such	objects	to	other	functions	in	a	way
that	permits	those	functions	to	take	advantage	of	the	object’s	rvalueness.	The
way	to	do	that	is	to	cast	parameters	bound	to	such	objects	to	rvalues.	As	Item	23
explains,	that’s	not	only	what	std::move	does,	it’s	what	it	was	created	for:

class Widget {

public:

 Widget(Widget&& rhs) // rhs is rvalue reference

 : name(std::move(rhs.name)),

 p(std::move(rhs.p))

 { … }

 …

private:

 std::string name;

 std::shared_ptr<SomeDataStructure> p;

};

A	universal	reference,	on	the	other	hand	(see	Item	24),	might	be	bound	to	an
object	that’s	eligible	for	moving.	Universal	references	should	be	cast	to	rvalues
only	if	they	were	initialized	with	rvalues.	Item	23	explains	that	this	is	precisely
what	std::forward	does:

class Widget {

public:

 template<typename T>

 void setName(T&& newName) // newName is

 { name = std::forward<T>(newName); } // universal reference

 …

};

In	short,	rvalue	references	should	be	unconditionally	cast	to	rvalues	(via
std::move)	when	forwarding	them	to	other	functions,	because	they’re	always
bound	to	rvalues,	and	universal	references	should	be	conditionally	cast	to
rvalues	(via	std::forward)	when	forwarding	them,	because	they’re	only
sometimes	bound	to	rvalues.

Item	23	explains	that	using	std::forward	on	rvalue	references	can	be	made	to
exhibit	the	proper	behavior,	but	the	source	code	is	wordy,	error-prone,	and
unidiomatic,	so	you	should	avoid	using	std::forward	with	rvalue	references.
Even	worse	is	the	idea	of	using	std::move	with	universal	references,	because
that	can	have	the	effect	of	unexpectedly	modifying	lvalues	(e.g.,	local	variables):

class Widget {

public:

 template<typename T>

 void setName(T&& newName) // universal reference

 { name = std::move(newName); } // compiles, but is

 … // bad, bad, bad!

private:

 std::string name;

 std::shared_ptr<SomeDataStructure> p;

};

std::string getWidgetName(); // factory function

Widget w;

auto n = getWidgetName(); // n is local variable

w.setName(n); // moves n into w!

… // n's value now unknown

Here,	the	local	variable	n	is	passed	to	w.setName,	which	the	caller	can	be
forgiven	for	assuming	is	a	read-only	operation	on	n.	But	because	setName
internally	uses	std::move	to	unconditionally	cast	its	reference	parameter	to	an
rvalue,	n’s	value	will	be	moved	into	w.name,	and	n	will	come	back	from	the	call
to	setName	with	an	unspecified	value.	That’s	the	kind	of	behavior	that	can	drive

callers	to	despair—possibly	to	violence.

You	might	argue	that	setName	shouldn’t	have	declared	its	parameter	to	be	a
universal	reference.	Such	references	can’t	be	const	(see	Item	24),	yet	setName
surely	shouldn’t	modify	its	parameter.	You	might	point	out	that	if	setName	had
simply	been	overloaded	for	const	lvalues	and	for	rvalues,	the	whole	problem
could	have	been	avoided.	Like	this:

class Widget {

public:

 void setName(const std::string& newName) // set from

 { name = newName; } // const lvalue

 void setName(std::string&& newName) // set from

 { name = std::move(newName); } // rvalue

 …

};

That	would	certainly	work	in	this	case,	but	there	are	drawbacks.	First,	it’s	more
source	code	to	write	and	maintain	(two	functions	instead	of	a	single	template).
Second,	it	can	be	less	efficient.	For	example,	consider	this	use	of	setName:

w.setName("Adela Novak");

With	the	version	of	setName	taking	a	universal	reference,	the	string	literal
"Adela Novak"	would	be	passed	to	setName,	where	it	would	be	conveyed	to	the
assignment	operator	for	the	std::string	inside	w.	w’s	name	data	member	would
thus	be	assigned	directly	from	the	string	literal;	no	temporary	std::string
objects	would	arise.	With	the	overloaded	versions	of	setName,	however,	a
temporary	std::string	object	would	be	created	for	setName’s	parameter	to
bind	to,	and	this	temporary	std::string	would	then	be	moved	into	w’s	data
member.	A	call	to	setName	would	thus	entail	execution	of	one	std::string
constructor	(to	create	the	temporary),	one	std::string	move	assignment
operator	(to	move	newName	into	w.name),	and	one	std::string	destructor	(to
destroy	the	temporary).	That’s	almost	certainly	a	more	expensive	execution
sequence	than	invoking	only	the	std::string	assignment	operator	taking	a

const	char*	pointer.	The	additional	cost	is	likely	to	vary	from	implementation
to	implementation,	and	whether	that	cost	is	worth	worrying	about	will	vary	from
application	to	application	and	library	to	library,	but	the	fact	is	that	replacing	a
template	taking	a	universal	reference	with	a	pair	of	functions	overloaded	on
lvalue	references	and	rvalue	references	is	likely	to	incur	a	runtime	cost	in	some
cases.	If	we	generalize	the	example	such	that	Widget’s	data	member	may	be	of
an	arbitrary	type	(rather	than	knowing	that	it’s	std::string),	the	performance
gap	can	widen	considerably,	because	not	all	types	are	as	cheap	to	move	as
std::string	(see	Item	29).

The	most	serious	problem	with	overloading	on	lvalues	and	rvalues,	however,
isn’t	the	volume	or	idiomaticity	of	the	source	code,	nor	is	it	the	code’s	runtime
performance.	It’s	the	poor	scalability	of	the	design.	Widget::setName	takes
only	one	parameter,	so	only	two	overloads	are	necessary,	but	for	functions
taking	more	parameters,	each	of	which	could	be	an	lvalue	or	an	rvalue,	the
number	of	overloads	grows	geometrically:	n	parameters	necessitates	2n
overloads.	And	that’s	not	the	worst	of	it.	Some	functions—function	templates,
actually—take	an	unlimited	number	of	parameters,	each	of	which	could	be	an
lvalue	or	rvalue.	The	poster	children	for	such	functions	are	std::make_shared,
and,	as	of	C++14,	std::make_unique	(see	Item	21).	Check	out	the	declarations
of	their	most	commonly	used	overloads:

template<class T, class... Args> // from C++11

shared_ptr<T> make_shared(Args&&... args); // Standard

template<class T, class... Args> // from C++14

unique_ptr<T> make_unique(Args&&... args); // Standard

For	functions	like	these,	overloading	on	lvalues	and	rvalues	is	not	an	option:
universal	references	are	the	only	way	to	go.	And	inside	such	functions,	I	assure
you,	std::forward	is	applied	to	the	universal	reference	parameters	when
they’re	passed	to	other	functions.	Which	is	exactly	what	you	should	do.

Well,	usually.	Eventually.	But	not	necessarily	initially.	In	some	cases,	you’ll
want	to	use	the	object	bound	to	an	rvalue	reference	or	a	universal	reference	more
than	once	in	a	single	function,	and	you’ll	want	to	make	sure	that	it’s	not	moved
from	until	you’re	otherwise	done	with	it.	In	that	case,	you’ll	want	to	apply

std::move	(for	rvalue	references)	or	std::forward	(for	universal	references)	to
only	the	final	use	of	the	reference.	For	example:

template<typename T> // text is

void setSignText(T&& text) // univ. reference

{

 sign.setText(text); // use text, but

 // don't modify it

 auto now = // get current time

 std::chrono::system_clock::now();

 signHistory.add(now,

 std::forward<T>(text)); // conditionally cast

} // text to rvalue

Here,	we	want	to	make	sure	that	text’s	value	doesn’t	get	changed	by
sign.setText,	because	we	want	to	use	that	value	when	we	call
signHistory.add.	Ergo	the	use	of	std::forward	on	only	the	final	use	of	the
universal	reference.

For	std::move,	the	same	thinking	applies	(i.e.,	apply	std::move	to	an	rvalue
reference	the	last	time	it’s	used),	but	it’s	important	to	note	that	in	rare	cases,
you’ll	want	to	call	std::move_if_noexcept	instead	of	std::move.	To	learn
when	and	why,	consult	Item	14.

If	you’re	in	a	function	that	returns	by	value,	and	you’re	returning	an	object
bound	to	an	rvalue	reference	or	a	universal	reference,	you’ll	want	to	apply
std::move	or	std::forward	when	you	return	the	reference.	To	see	why,
consider	an	operator+	function	to	add	two	matrices	together,	where	the	left-
hand	matrix	is	known	to	be	an	rvalue	(and	can	hence	have	its	storage	reused	to
hold	the	sum	of	the	matrices):

Matrix // by-value return

operator+(Matrix&& lhs, const Matrix& rhs)

{

 lhs += rhs;

 return std::move(lhs); // move lhs into

} // return value

By	casting	lhs	to	an	rvalue	in	the	return	statement	(via	std::move),	lhs	will
be	moved	into	the	function’s	return	value	location.	If	the	call	to	std::move	were
omitted,

Matrix // as above

operator+(Matrix&& lhs, const Matrix& rhs)

{

 lhs += rhs;

 return lhs; // copy lhs into

} // return value

the	fact	that	lhs	is	an	lvalue	would	force	compilers	to	instead	copy	it	into	the
return	value	location.	Assuming	that	the	Matrix	type	supports	move
construction,	which	is	more	efficient	than	copy	construction,	using	std::move	in
the	return	statement	yields	more	efficient	code.

If	Matrix	does	not	support	moving,	casting	it	to	an	rvalue	won’t	hurt,	because
the	rvalue	will	simply	be	copied	by	Matrix’s	copy	constructor	(see	Item	23).	If
Matrix	is	later	revised	to	support	moving,	operator+	will	automatically	benefit
the	next	time	it	is	compiled.	That	being	the	case,	there’s	nothing	to	be	lost	(and
possibly	much	to	be	gained)	by	applying	std::move	to	rvalue	references	being
returned	from	functions	that	return	by	value.

The	situation	is	similar	for	universal	references	and	std::forward.	Consider	a
function	template	reduceAndCopy	that	takes	a	possibly	unreduced	Fraction
object,	reduces	it,	and	then	returns	a	copy	of	the	reduced	value.	If	the	original
object	is	an	rvalue,	its	value	should	be	moved	into	the	return	value	(thus
avoiding	the	expense	of	making	a	copy),	but	if	the	original	is	an	lvalue,	an	actual
copy	must	be	created.	Hence:

template<typename T>

Fraction // by-value return

reduceAndCopy(T&& frac) // universal reference param

{

 frac.reduce();

 return std::forward<T>(frac); // move rvalue into return

} // value, copy lvalue

If	the	call	to	std::forward	were	omitted,	frac	would	be	unconditionally	copied

into	reduceAndCopy’s	return	value.

Some	programmers	take	the	information	above	and	try	to	extend	it	to	situations
where	it	doesn’t	apply.	“If	using	std::move	on	an	rvalue	reference	parameter
being	copied	into	a	return	value	turns	a	copy	construction	into	a	move
construction,”	they	reason,	“I	can	perform	the	same	optimization	on	local
variables	that	I’m	returning.”	In	other	words,	they	figure	that	given	a	function
returning	a	local	variable	by	value,	such	as	this,

Widget makeWidget() // "Copying" version of makeWidget

{

 Widget w; // local variable

 … // configure w

 return w; // "copy" w into return value

}

they	can	“optimize”	it	by	turning	the	“copy”	into	a	move:

Widget makeWidget() // Moving version of makeWidget

{

 Widget w;

 …

 return std::move(w); // move w into return value

} // (don't do this!)

My	liberal	use	of	quotation	marks	should	tip	you	off	that	this	line	of	reasoning	is
flawed.	But	why	is	it	flawed?

It’s	flawed,	because	the	Standardization	Committee	is	way	ahead	of	such
programmers	when	it	comes	to	this	kind	of	optimization.	It	was	recognized	long
ago	that	the	“copying”	version	of	makeWidget	can	avoid	the	need	to	copy	the
local	variable	w	by	constructing	it	in	the	memory	alloted	for	the	function’s	return
value.	This	is	known	as	the	return	value	optimization	(RVO),	and	it’s	been
expressly	blessed	by	the	C++	Standard	for	as	long	as	there’s	been	one.

Wording	such	a	blessing	is	finicky	business,	because	you	want	to	permit	such
copy	elision	only	in	places	where	it	won’t	affect	the	observable	behavior	of	the
software.	Paraphrasing	the	legalistic	(arguably	toxic)	prose	of	the	Standard,	this
particular	blessing	says	that	compilers	may	elide	the	copying	(or	moving)	of	a

local	object12	in	a	function	that	returns	by	value	if	(1)	the	type	of	the	local	object
is	the	same	as	that	returned	by	the	function	and	(2)	the	local	object	is	what’s
being	returned.	With	that	in	mind,	look	again	at	the	“copying”	version	of
makeWidget:

Widget makeWidget() // "Copying" version of makeWidget

{

 Widget w;

 …

 return w; // "copy" w into return value

}

Both	conditions	are	fulfilled	here,	and	you	can	trust	me	when	I	tell	you	that	for
this	code,	every	decent	C++	compiler	will	employ	the	RVO	to	avoid	copying	w.
That	means	that	the	“copying”	version	of	makeWidget	doesn’t,	in	fact,	copy
anything.

The	moving	version	of	makeWidget	does	just	what	its	name	says	it	does
(assuming	Widget	offers	a	move	constructor):	it	moves	the	contents	of	w	into
makeWidget’s	return	value	location.	But	why	don’t	compilers	use	the	RVO	to
eliminate	the	move,	again	constructing	w	in	the	memory	alloted	for	the
function’s	return	value?	The	answer	is	simple:	they	can’t.	Condition	(2)
stipulates	that	the	RVO	may	be	performed	only	if	what’s	being	returned	is	a
local	object,	but	that’s	not	what	the	moving	version	of	makeWidget	is	doing.
Look	again	at	its	return	statement:

return std::move(w);

What’s	being	returned	here	isn’t	the	local	object	w,	it’s	a	reference	to	w—the
result	of	std::move(w).	Returning	a	reference	to	a	local	object	doesn’t	satisfy
the	conditions	required	for	the	RVO,	so	compilers	must	move	w	into	the
function’s	return	value	location.	Developers	trying	to	help	their	compilers
optimize	by	applying	std::move	to	a	local	variable	that’s	being	returned	are
actually	limiting	the	optimization	options	available	to	their	compilers!

But	the	RVO	is	an	optimization.	Compilers	aren’t	required	to	elide	copy	and
move	operations,	even	when	they’re	permitted	to.	Maybe	you’re	paranoid,	and
you	worry	that	your	compilers	will	punish	you	with	copy	operations,	just

because	they	can.	Or	perhaps	you’re	insightful	enough	to	recognize	that	there	are
cases	where	the	RVO	is	difficult	for	compilers	to	implement,	e.g.,	when	different
control	paths	in	a	function	return	different	local	variables.	(Compilers	would
have	to	generate	code	to	construct	the	appropriate	local	variable	in	the	memory
allotted	for	the	function’s	return	value,	but	how	could	compilers	determine
which	local	variable	would	be	appropriate?)	If	so,	you	might	be	willing	to	pay
the	price	of	a	move	as	insurance	against	the	cost	of	a	copy.	That	is,	you	might
still	think	it’s	reasonable	to	apply	std::move	to	a	local	object	you’re	returning,
simply	because	you’d	rest	easy	knowing	you’d	never	pay	for	a	copy.

In	that	case,	applying	std::move	to	a	local	object	would	still	be	a	bad	idea.	The
part	of	the	Standard	blessing	the	RVO	goes	on	to	say	that	if	the	conditions	for
the	RVO	are	met,	but	compilers	choose	not	to	perform	copy	elision,	the	object
being	returned	must	be	treated	as	an	rvalue.	In	effect,	the	Standard	requires	that
when	the	RVO	is	permitted,	either	copy	elision	takes	place	or	std::move	is
implicitly	applied	to	local	objects	being	returned.	So	in	the	“copying”	version	of
makeWidget,

Widget makeWidget() // as before

{

 Widget w;

 …

 return w;

}

compilers	must	either	elide	the	copying	of	w	or	they	must	treat	the	function	as	if
it	were	written	like	this:

Widget makeWidget()

{

 Widget w;

 …

 return std::move(w); // treat w as rvalue, because

} // no copy elision was performed

The	situation	is	similar	for	by-value	function	parameters.	They’re	not	eligible	for
copy	elision	with	respect	to	their	function’s	return	value,	but	compilers	must
treat	them	as	rvalues	if	they’re	returned.	As	a	result,	if	your	source	code	looks
like	this,

Widget makeWidget(Widget w) // by-value parameter of same

{ // type as function's return

 …

 return w;

}

compilers	must	treat	it	as	if	it	had	been	written	this	way:

Widget makeWidget(Widget w)

{

 …

 return std::move(w); // treat w as rvalue

}

This	means	that	if	you	use	std::move	on	a	local	object	being	returned	from	a
function	that’s	returning	by	value,	you	can’t	help	your	compilers	(they	have	to
treat	the	local	object	as	an	rvalue	if	they	don’t	perform	copy	elision),	but	you	can
certainly	hinder	them	(by	precluding	the	RVO).	There	are	situations	where
applying	std::move	to	a	local	variable	can	be	a	reasonable	thing	to	do	(i.e.,
when	you’re	passing	it	to	a	function	and	you	know	you	won’t	be	using	the
variable	any	longer),	but	as	part	of	a	return	statement	that	would	otherwise
qualify	for	the	RVO	or	that	returns	a	by-value	parameter	isn’t	among	them.

Things	to	Remember
Apply	std::move	to	rvalue	references	and	std::forward	to	universal	references	the	last
time	each	is	used.

Do	the	same	thing	for	rvalue	references	and	universal	references	being	returned	from
functions	that	return	by	value.

Never	apply	std::move	or	std::forward	to	local	objects	if	they	would	otherwise	be
eligible	for	the	return	value	optimization.

Item	26: Avoid	overloading	on	universal
references.
Suppose	you	need	to	write	a	function	that	takes	a	name	as	a	parameter,	logs	the

current	date	and	time,	then	adds	the	name	to	a	global	data	structure.	You	might
come	up	with	a	function	that	looks	something	like	this:

std::multiset<std::string> names; // global data structure

void logAndAdd(const std::string& name)

{

 auto now = // get current time

 std::chrono::system_clock::now();

 log(now, "logAndAdd"); // make log entry

 names.emplace(name); // add name to global data

} // structure; see Item 42

 // for info on emplace

This	isn’t	unreasonable	code,	but	it’s	not	as	efficient	as	it	could	be.	Consider
three	potential	calls:

std::string petName("Darla");

logAndAdd(petName); // pass lvalue std::string

logAndAdd(std::string("Persephone")); // pass rvalue std::string

logAndAdd("Patty Dog"); // pass string literal

In	the	first	call,	logAndAdd’s	parameter	name	is	bound	to	the	variable	petName.
Within	logAndAdd,	name	is	ultimately	passed	to	names.emplace.	Because	name
is	an	lvalue,	it	is	copied	into	names.	There’s	no	way	to	avoid	that	copy,	because
an	lvalue	(petName)	was	passed	into	logAndAdd.

In	the	second	call,	the	parameter	name	is	bound	to	an	rvalue	(the	temporary
std::string	explicitly	created	from	"Persephone").	name	itself	is	an	lvalue,	so
it’s	copied	into	names,	but	we	recognize	that,	in	principle,	its	value	could	be
moved	into	names.	In	this	call,	we	pay	for	a	copy,	but	we	should	be	able	to	get
by	with	only	a	move.

In	the	third	call,	the	parameter	name	is	again	bound	to	an	rvalue,	but	this	time	it’s
to	a	temporary	std::string	that’s	implicitly	created	from	"Patty Dog".	As	in
the	second	call,	name	is	copied	into	names,	but	in	this	case,	the	argument

originally	passed	to	logAndAdd	was	a	string	literal.	Had	that	string	literal	been
passed	directly	to	emplace,	there	would	have	been	no	need	to	create	a	temporary
std::string	at	all.	Instead,	emplace	would	have	used	the	string	literal	to	create
the	std::string	object	directly	inside	the	std::multiset.	In	this	third	call,
then,	we’re	paying	to	copy	a	std::string,	yet	there’s	really	no	reason	to	pay
even	for	a	move,	much	less	a	copy.

We	can	eliminate	the	inefficiencies	in	the	second	and	third	calls	by	rewriting
logAndAdd	to	take	a	universal	reference	(see	Item	24)	and,	in	accord	with
Item	25,	std::forwarding	this	reference	to	emplace.	The	results	speak	for
themselves:

template<typename T>

void logAndAdd(T&& name)

{

 auto now = std::chrono::system_clock::now();

 log(now, "logAndAdd");

 names.emplace(std::forward<T>(name));

}

std::string petName("Darla"); // as before

logAndAdd(petName); // as before, copy

 // lvalue into multiset

logAndAdd(std::string("Persephone")); // move rvalue instead

 // of copying it

logAndAdd("Patty Dog"); // create std::string

 // in multiset instead

 // of copying a temporary

 // std::string

Hurray,	optimal	efficiency!

Were	this	the	end	of	the	story,	we	could	stop	here	and	proudly	retire,	but	I
haven’t	told	you	that	clients	don’t	always	have	direct	access	to	the	names	that
logAndAdd	requires.	Some	clients	have	only	an	index	that	logAndAdd	uses	to
look	up	the	corresponding	name	in	a	table.	To	support	such	clients,	logAndAdd
is	overloaded:

std::string nameFromIdx(int idx); // return name

 // corresponding to idx

void logAndAdd(int idx) // new overload

{

 auto now = std::chrono::system_clock::now();

 log(now, "logAndAdd");

 names.emplace(nameFromIdx(idx));

}

Resolution	of	calls	to	the	two	overloads	works	as	expected:

std::string petName("Darla"); // as before

logAndAdd(petName); // as before, these

logAndAdd(std::string("Persephone")); // calls all invoke

logAndAdd("Patty Dog"); // the T&& overload

logAndAdd(22); // calls int overload

Actually,	resolution	works	as	expected	only	if	you	don’t	expect	too	much.
Suppose	a	client	has	a	short	holding	an	index	and	passes	that	to	logAndAdd:

short nameIdx;

… // give nameIdx a value

logAndAdd(nameIdx); // error!

The	comment	on	the	last	line	isn’t	terribly	illuminating,	so	let	me	explain	what
happens	here.

There	are	two	logAndAdd	overloads.	The	one	taking	a	universal	reference	can
deduce	T	to	be	short,	thus	yielding	an	exact	match.	The	overload	with	an	int
parameter	can	match	the	short	argument	only	with	a	promotion.	Per	the	normal
overload	resolution	rules,	an	exact	match	beats	a	match	with	a	promotion,	so	the
universal	reference	overload	is	invoked.

Within	that	overload,	the	parameter	name	is	bound	to	the	short	that’s	passed	in.
name	is	then	std::forwarded	to	the	emplace	member	function	on	names	(a
std::multiset<std::string>),	which,	in	turn,	dutifully	forwards	it	to	the
std::string	constructor.	There	is	no	constructor	for	std::string	that	takes	a

short,	so	the	std::string	constructor	call	inside	the	call	to
multiset::emplace	inside	the	call	to	logAndAdd	fails.	All	because	the
universal	reference	overload	was	a	better	match	for	a	short	argument	than	an
int.

Functions	taking	universal	references	are	the	greediest	functions	in	C++.	They
instantiate	to	create	exact	matches	for	almost	any	type	of	argument.	(The	few
kinds	of	arguments	where	this	isn’t	the	case	are	described	in	Item	30.)	This	is
why	combining	overloading	and	universal	references	is	almost	always	a	bad
idea:	the	universal	reference	overload	vacuums	up	far	more	argument	types	than
the	developer	doing	the	overloading	generally	expects.

An	easy	way	to	topple	into	this	pit	is	to	write	a	perfect	forwarding	constructor.	A
small	modification	to	the	logAndAdd	example	demonstrates	the	problem.	Instead
of	writing	a	free	function	that	can	take	either	a	std::string	or	an	index	that	can
be	used	to	look	up	a	std::string,	imagine	a	class	Person	with	constructors
that	do	the	same		thing:

class Person {

public:

 template<typename T>

 explicit Person(T&& n) // perfect forwarding ctor;

 : name(std::forward<T>(n)) {} // initializes data member

 explicit Person(int idx) // int ctor

 : name(nameFromIdx(idx)) {}

 …

private:

 std::string name;

};

As	was	the	case	with	logAndAdd,	passing	an	integral	type	other	than	int	(e.g.,
std::size_t,	short,	long,	etc.)	will	call	the	universal	reference	constructor
overload	instead	of	the	int	overload,	and	that	will	lead	to	compilation	failures.
The	problem	here	is	much	worse,	however,	because	there’s	more	overloading
present	in	Person	than	meets	the	eye.	Item	17	explains	that	under	the
appropriate	conditions,	C++	will	generate	both	copy	and	move	constructors,	and
this	is	true	even	if	the	class	contains	a	templatized	constructor	that	could	be

instantiated	to	produce	the	signature	of	the	copy	or	move	constructor.	If	the	copy
and	move	constructors	for	Person	are	thus	generated,	Person	will	effectively
look	like	this:

class Person {

public:

 template<typename T> // perfect forwarding ctor

 explicit Person(T&& n)

 : name(std::forward<T>(n)) {}

 explicit Person(int idx); // int ctor

 Person(const Person& rhs); // copy ctor

 // (compiler-generated)

 Person(Person&& rhs); // move ctor

 … // (compiler-generated)

};

This	leads	to	behavior	that’s	intuitive	only	if	you’ve	spent	so	much	time	around
compilers	and	compiler-writers,	you’ve	forgotten	what	it’s	like	to	be	human:

Person p("Nancy");

auto cloneOfP(p); // create new Person from p;

 // this won't compile!

Here	we’re	trying	to	create	a	Person	from	another	Person,	which	seems	like
about	as	obvious	a	case	for	copy	construction	as	one	can	get.	(p’s	an	lvalue,	so
we	can	banish	any	thoughts	we	might	have	about	the	“copying”	being
accomplished	through	a	move	operation.)	But	this	code	won’t	call	the	copy
constructor.	It	will	call	the	perfect-forwarding	constructor.	That	function	will
then	try	to	initialize	Person’s	std::string	data	member	with	a	Person	object
(p).	std::string	having	no	constructor	taking	a	Person,	your	compilers	will
throw	up	their	hands	in	exasperation,	possibly	punishing	you	with	long	and
incomprehensible	error	messages	as	an	expression	of	their	displeasure.

“Why,”	you	might	wonder,	“does	the	perfect-forwarding	constructor	get	called
instead	of	the	copy	constructor?	We’re	initializing	a	Person	with	another

Person!”	Indeed	we	are,	but	compilers	are	sworn	to	uphold	the	rules	of	C++,
and	the	rules	of	relevance	here	are	the	ones	governing	the	resolution	of	calls	to
overloaded	functions.

Compilers	reason	as	follows.	cloneOfP	is	being	initialized	with	a	non-const
lvalue	(p),	and	that	means	that	the	templatized	constructor	can	be	instantiated	to
take	a	non-const	lvalue	of	type	Person.	After	such	instantiation,	the	Person
class	looks	like	this:

class Person {

public:

 explicit Person(Person& n) // instantiated from

 : name(std::forward<Person&>(n)) {} // perfect-forwarding

 // template

 explicit Person(int idx); // as before

 Person(const Person& rhs); // copy ctor

 … // (compiler-generated)

};

In	the	statement,

auto cloneOfP(p);

p	could	be	passed	to	either	the	copy	constructor	or	the	instantiated	template.
Calling	the	copy	constructor	would	require	adding	const	to	p	to	match	the	copy
constructor’s	parameter’s	type,	but	calling	the	instantiated	template	requires	no
such	addition.	The	overload	generated	from	the	template	is	thus	a	better	match,
so	compilers	do	what	they’re	designed	to	do:	generate	a	call	to	the	better-
matching	function.	“Copying”	non-const	lvalues	of	type	Person	is	thus	handled
by	the	perfect-forwarding	constructor,	not	the	copy	constructor.

If	we	change	the	example	slightly	so	that	the	object	to	be	copied	is	const,	we
hear	an	entirely	different	tune:

const Person cp("Nancy"); // object is now const

auto cloneOfP(cp); // calls copy constructor!

Because	the	object	to	be	copied	is	now	const,	it’s	an	exact	match	for	the
parameter	taken	by	the	copy	constructor.	The	templatized	constructor	can	be
instantiated	to	have	the	same	signature,

class Person {

public:

 explicit Person(const Person& n); // instantiated from

 // template

 Person(const Person& rhs); // copy ctor

 // (compiler-generated)

 …

};

but	this	doesn’t	matter,	because	one	of	the	overload-resolution	rules	in	C++	is
that	in	situations	where	a	template	instantiation	and	a	non-template	function	(i.e.,
a	“normal”	function)	are	equally	good	matches	for	a	function	call,	the	normal
function	is	preferred.	The	copy	constructor	(a	normal	function)	thereby	trumps
an	instantiated	template	with	the	same	signature.

(If	you’re	wondering	why	compilers	generate	a	copy	constructor	when	they
could	instantiate	a	templatized	constructor	to	get	the	signature	that	the	copy
constructor	would	have,	review	Item	17.)

The	interaction	among	perfect-forwarding	constructors	and	compiler-generated
copy	and	move	operations	develops	even	more	wrinkles	when	inheritance	enters
the	picture.	In	particular,	the	conventional	implementations	of	derived	class	copy
and	move	operations	behave	quite	surprisingly.	Here,	take	a	look:

class SpecialPerson: public Person {

public:

 SpecialPerson(const SpecialPerson& rhs) // copy ctor; calls

 : Person(rhs) // base class

 { … } // forwarding ctor!

 SpecialPerson(SpecialPerson&& rhs) // move ctor; calls

 : Person(std::move(rhs)) // base class

 { … } // forwarding ctor!

};

As	the	comments	indicate,	the	derived	class	copy	and	move	constructors	don’t

call	their	base	class’s	copy	and	move	constructors,	they	call	the	base	class’s
perfect-forwarding	constructor!	To	understand	why,	note	that	the	derived	class
functions	are	using	arguments	of	type	SpecialPerson	to	pass	to	their	base	class,
then	work	through	the	template	instantiation	and	overload-resolution
consequences	for	the	constructors	in	class	Person.	Ultimately,	the	code	won’t
compile,	because	there’s	no	std::string	constructor	taking	a	SpecialPerson.

I	hope	that	by	now	I’ve	convinced	you	that	overloading	on	universal	reference
parameters	is	something	you	should	avoid	if	at	all	possible.	But	if	overloading
on	universal	references	is	a	bad	idea,	what	do	you	do	if	you	need	a	function	that
forwards	most	argument	types,	yet	needs	to	treat	some	argument	types	in	a
special	fashion?	That	egg	can	be	unscrambled	in	a	number	of	ways.	So	many,	in
fact,	that	I’ve	devoted	an	entire	Item	to	them.	It’s	Item	27.	The	next	Item.	Keep
reading,	you’ll	bump	right	into	it.

Things	to	Remember
Overloading	on	universal	references	almost	always	leads	to	the	universal	reference
overload	being	called	more	frequently	than	expected.

Perfect-forwarding	constructors	are	especially	problematic,	because	they’re	typically
better	matches	than	copy	constructors	for	non-const	lvalues,	and	they	can	hijack	derived
class	calls	to	base	class	copy	and	move	constructors.

Item	27: Familiarize	yourself	with	alternatives	to
overloading	on	universal	references.
Item	26	explains	that	overloading	on	universal	references	can	lead	to	a	variety	of
problems,	both	for	freestanding	and	for	member	functions	(especially
constructors).	Yet	it	also	gives	examples	where	such	overloading	could	be
useful.	If	only	it	would	behave	the	way	we’d	like!	This	Item	explores	ways	to
achieve	the	desired	behavior,	either	through	designs	that	avoid	overloading	on
universal	references	or	by	employing	them	in	ways	that	constrain	the	types	of
arguments	they	can	match.

The	discussion	that	follows	builds	on	the	examples	introduced	in	Item	26.	If	you

haven’t	read	that	Item	recently,	you’ll	want	to	review	it	before	continuing.

Abandon	overloading
The	first	example	in	Item	26,	logAndAdd,	is	representative	of	the	many	functions
that	can	avoid	the	drawbacks	of	overloading	on	universal	references	by	simply
using	different	names	for	the	would-be	overloads.	The	two	logAndAdd
overloads,	for	example,	could	be	broken	into	logAndAddName	and
logAndAddNameIdx.	Alas,	this	approach	won’t	work	for	the	second	example	we
considered,	the	Person	constructor,	because	constructor	names	are	fixed	by	the
language.	Besides,	who	wants	to	give	up	overloading?

Pass	by	const	T&
An	alternative	is	to	revert	to	C++98	and	replace	pass-by-universal-reference	with
pass-by-lvalue-reference-to-const.	In	fact,	that’s	the	first	approach	Item	26
considers	(shown	here).	The	drawback	is	that	the	design	isn’t	as	efficient	as	we’d
prefer.	Knowing	what	we	now	know	about	the	interaction	of	universal	references
and	overloading,	giving	up	some	efficiency	to	keep	things	simple	might	be	a
more	attractive	trade-off	than	it	initially	appeared.

Pass	by	value
An	approach	that	often	allows	you	to	dial	up	performance	without	any	increase
in	complexity	is	to	replace	pass-by-reference	parameters	with,	counterintuitively,
pass	by	value.	The	design	adheres	to	the	advice	in	Item	41	to	consider	passing
objects	by	value	when	you	know	you’ll	copy	them,	so	I’ll	defer	to	that	Item	for	a
detailed	discussion	of	how	things	work	and	how	efficient	they	are.	Here,	I’ll	just
show	how	the	technique	could	be	used	in	the	Person	example:

class Person {

public:

 explicit Person(std::string n) // replaces T&& ctor; see

 : name(std::move(n)) {} // Item 41 for use of std::move

 explicit Person(int idx) // as before

 : name(nameFromIdx(idx)) {}

 …

private:

 std::string name;

};

Because	there’s	no	std::string	constructor	taking	only	an	integer,	all	int	and
int-like	arguments	to	a	Person	constructor	(e.g.,	std::size_t,	short,	long)
get	funneled	to	the	int	overload.	Similarly,	all	arguments	of	type	std::string
(and	things	from	which	std::strings	can	be	created,	e.g.,	literals	such	as
"Ruth")	get	passed	to	the	constructor	taking	a	std::string.	There	are	thus	no
surprises	for	callers.	You	could	argue,	I	suppose,	that	some	people	might	be
surprised	that	using	0	or	NULL	to	indicate	a	null	pointer	would	invoke	the	int
overload,	but	such	people	should	be	referred	to	Item	8	and	required	to	read	it
repeatedly	until	the	thought	of	using	0	or	NULL	as	a	null	pointer	makes	them
recoil.

Use	Tag	dispatch
Neither	pass	by	lvalue-reference-to-const	nor	pass	by	value	offers	support	for
perfect	forwarding.	If	the	motivation	for	the	use	of	a	universal	reference	is
perfect	forwarding,	we	have	to	use	a	universal	reference;	there’s	no	other	choice.
Yet	we	don’t	want	to	abandon	overloading.	So	if	we	don’t	give	up	overloading
and	we	don’t	give	up	universal	references,	how	can	we	avoid	overloading	on
universal	references?

It’s	actually	not	that	hard.	Calls	to	overloaded	functions	are	resolved	by	looking
at	all	the	parameters	of	all	the	overloads	as	well	as	all	the	arguments	at	the	call
site,	then	choosing	the	function	with	the	best	overall	match—taking	into	account
all	parameter/argument	combinations.	A	universal	reference	parameter	generally
provides	an	exact	match	for	whatever’s	passed	in,	but	if	the	universal	reference
is	part	of	a	parameter	list	containing	other	parameters	that	are	not	universal
references,	sufficiently	poor	matches	on	the	non-universal	reference	parameters
can	knock	an	overload	with	a	universal	reference	out	of	the	running.	That’s	the
basis	behind	the	tag	dispatch	approach,	and	an	example	will	make	the	foregoing
description	easier	to	understand.

We’ll	apply	tag	dispatch	to	the	logAndAdd	example	here.	Here’s	the	code	for
that	example,	lest	you	get	sidetracked	looking	it	up:

std::multiset<std::string> names; // global data structure

template<typename T> // make log entry and add

void logAndAdd(T&& name) // name to data structure

{

 auto now = std::chrono::system_clock::now();

 log(now, "logAndAdd");

 names.emplace(std::forward<T>(name));

}

By	itself,	this	function	works	fine,	but	were	we	to	introduce	the	overload	taking
an	int	that’s	used	to	look	up	objects	by	index,	we’d	be	back	in	the	troubled	land
of	Item	26.	The	goal	of	this	Item	is	to	avoid	that.	Rather	than	adding	the
overload,	we’ll	reimplement	logAndAdd	to	delegate	to	two	other	functions,	one
for	integral	values	and	one	for	everything	else.	logAndAdd	itself	will	accept	all
argument	types,	both	integral	and	non-integral.

The	two	functions	doing	the	real	work	will	be	named	logAndAddImpl,	i.e.,	we’ll
use	overloading.	One	of	the	functions	will	take	a	universal	reference.	So	we’ll
have	both	overloading	and	universal	references.	But	each	function	will	also	take
a	second	parameter,	one	that	indicates	whether	the	argument	being	passed	is
integral.	This	second	parameter	is	what	will	prevent	us	from	tumbling	into	the
morass	described	in	Item	26,	because	we’ll	arrange	it	so	that	the	second
parameter	will	be	the	factor	that	determines	which	overload	is	selected.

Yes,	I	know,	“Blah,	blah,	blah.	Stop	talking	and	show	me	the	code!”	No
problem.	Here’s	an	almost-correct	version	of	the	updated	logAndAdd:

template<typename T>

void logAndAdd(T&& name)

{

 logAndAddImpl(std::forward<T>(name),

 std::is_integral<T>()); // not quite correct

}

This	function	forwards	its	parameter	to	logAndAddImpl,	but	it	also	passes	an
argument	indicating	whether	that	parameter’s	type	(T)	is	integral.	At	least,	that’s
what	it’s	supposed	to	do.	For	integral	arguments	that	are	rvalues,	it’s	also	what	it
does.	But,	as	Item	28	explains,	if	an	lvalue	argument	is	passed	to	the	universal

reference	name,	the	type	deduced	for	T	will	be	an	lvalue	reference.	So	if	an
lvalue	of	type	int	is	passed	to	logAndAdd,	T	will	be	deduced	to	be	int&.	That’s
not	an	integral	type,	because	references	aren’t	integral	types.	That	means	that
std::is_integral<T>	will	be	false	for	any	lvalue	argument,	even	if	the
argument	really	does	represent	an	integral	value.

Recognizing	the	problem	is	tantamount	to	solving	it,	because	the	ever-handy
Standard	C++	Library	has	a	type	trait	(see	Item	9),	std::remove_reference,
that	does	both	what	its	name	suggests	and	what	we	need:	remove	any	reference
qualifiers	from	a	type.	The	proper	way	to	write	logAndAdd	is	therefore:

template<typename T>

void logAndAdd(T&& name)

{

 logAndAddImpl(

 std::forward<T>(name),

 std::is_integral<typename std::remove_reference<T>::type>()

);

}

This	does	the	trick.	(In	C++14,	you	can	save	a	few	keystrokes	by	using
std::remove_reference_t<T>	in	place	of	the	highlighted	text.	For	details,	see
Item	9.)

With	that	taken	care	of,	we	can	shift	our	attention	to	the	function	being	called,
logAndAddImpl.	There	are	two	overloads,	and	the	first	is	applicable	only	to	non-
integral	types	(i.e.,	to	types	where	std::is_integral<typename
std::remove_reference<T>::type>	is	false):

template<typename T> // non-integral

void logAndAddImpl(T&& name, std::false_type) // argument:

{ // add it to

 auto now = std::chrono::system_clock::now(); // global data

 log(now, "logAndAdd"); // structure

 names.emplace(std::forward<T>(name));

}

This	is	straightforward	code,	once	you	understand	the	mechanics	behind	the
highlighted	parameter.	Conceptually,	logAndAdd	passes	a	boolean	to
logAndAddImpl	indicating	whether	an	integral	type	was	passed	to	logAndAdd,

but	true	and	false	are	runtime	values,	and	we	need	to	use	overload	resolution
—a	compile-time	phenomenon—to	choose	the	correct	logAndAddImpl	overload.
That	means	we	need	a	type	that	corresponds	to	true	and	a	different	type	that
corresponds	to	false.	This	need	is	common	enough	that	the	Standard	Library
provides	what	is	required	under	the	names	std::true_type	and
std::false_type.	The	argument	passed	to	logAndAddImpl	by	logAndAdd	is	an
object	of	a	type	that	inherits	from	std::true_type	if	T	is	integral	and	from
std::false_type	if	T	is	not	integral.	The	net	result	is	that	this	logAndAddImpl
overload	is	a	viable	candidate	for	the	call	in	logAndAdd	only	if	T	is	not	an
integral	type.

The	second	overload	covers	the	opposite	case:	when	T	is	an	integral	type.	In	that
event,	logAndAddImpl	simply	finds	the	name	corresponding	to	the	passed-in
index	and	passes	that	name	back	to	logAndAdd:

std::string nameFromIdx(int idx); // as in Item 26

void logAndAddImpl(int idx, std::true_type) // integral

{ // argument: look

 logAndAdd(nameFromIdx(idx)); // up name and

} // call logAndAdd

 // with it

By	having	logAndAddImpl	for	an	index	look	up	the	corresponding	name	and
pass	it	to	logAndAdd	(from	where	it	will	be	std::forwarded	to	the	other
logAndAddImpl	overload),	we	avoid	the	need	to	put	the	logging	code	in	both
logAndAddImpl	overloads.

In	this	design,	the	types	std::true_type	and	std::false_type	are	“tags”
whose	only	purpose	is	to	force	overload	resolution	to	go	the	way	we	want.
Notice	that	we	don’t	even	name	those	parameters.	They	serve	no	purpose	at
runtime,	and	in	fact	we	hope	that	compilers	will	recognize	that	the	tag
parameters	are	unused	and	will	optimize	them	out	of	the	program’s	execution
image.	(Some	compilers	do,	at	least	some	of	the	time.)	The	call	to	the
overloaded	implementation	functions	inside	logAndAdd	“dispatches”	the	work	to
the	correct	overload	by	causing	the	proper	tag	object	to	be	created.	Hence	the
name	for	this	design:	tag	dispatch.	It’s	a	standard	building	block	of	template

metaprogramming,	and	the	more	you	look	at	code	inside	contemporary	C++
libraries,	the	more	often	you’ll	encounter	it.

For	our	purposes,	what’s	important	about	tag	dispatch	is	less	how	it	works	and
more	how	it	permits	us	to	combine	universal	references	and	overloading	without
the	problems	described	in	Item	26.	The	dispatching	function—logAndAdd—
takes	an	unconstrained	universal	reference	parameter,	but	this	function	is	not
overloaded.	The	implementation	functions—logAndAddImpl—are	overloaded,
and	one	takes	a	universal	reference	parameter,	but	resolution	of	calls	to	these
functions	depends	not	just	on	the	universal	reference	parameter,	but	also	on	the
tag	parameter,	and	the	tag	values	are	designed	so	that	no	more	than	one	overload
will	be	a	viable	match.	As	a	result,	it’s	the	tag	that	determines	which	overload
gets	called.	The	fact	that	the	universal	reference	parameter	will	always	generate
an	exact	match	for	its	argument	is	immaterial.

Constraining	templates	that	take	universal	references
A	keystone	of	tag	dispatch	is	the	existence	of	a	single	(unoverloaded)	function	as
the	client	API.	This	single	function	dispatches	the	work	to	be	done	to	the
implementation	functions.	Creating	an	unoverloaded	dispatch	function	is	usually
easy,	but	the	second	problem	case	Item	26	considers,	that	of	a	perfect-
forwarding	constructor	for	the	Person	class	(shown	here),	is	an	exception.
Compilers	may	generate	copy	and	move	constructors	themselves,	so	even	if	you
write	only	one	constructor	and	use	tag	dispatch	within	it,	some	constructor	calls
may	be	handled	by	compiler-generated	functions	that	bypass	the	tag	dispatch
system.

In	truth,	the	real	problem	is	not	that	the	compiler-generated	functions	sometimes
bypass	the	tag	dispatch	design,	it’s	that	they	don’t	always	pass	it	by.	You
virtually	always	want	the	copy	constructor	for	a	class	to	handle	requests	to	copy
lvalues	of	that	type,	but,	as	Item	26	demonstrates,	providing	a	constructor	taking
a	universal	reference	causes	the	universal	reference	constructor	(rather	than	the
copy	constructor)	to	be	called	when	copying	non-const	lvalues.	That	Item	also
explains	that	when	a	base	class	declares	a	perfect-forwarding	constructor,	that
constructor	will	typically	be	called	when	derived	classes	implement	their	copy
and	move	constructors	in	the	conventional	fashion,	even	though	the	correct
behavior	is	for	the	base	class’s	copy	and	move	constructors	to	be	invoked.

For	situations	like	these,	where	an	overloaded	function	taking	a	universal
reference	is	greedier	than	you	want,	yet	not	greedy	enough	to	act	as	a	single
dispatch	function,	tag	dispatch	is	not	the	droid	you’re	looking	for.	You	need	a
different	technique,	one	that	lets	you	rachet	down	the	conditions	under	which	the
function	template	that	the	universal	reference	is	part	of	is	permitted	to	be
employed.	What	you	need,	my	friend,	is	std::enable_if.

std::enable_if	gives	you	a	way	to	force	compilers	to	behave	as	if	a	particular
template	didn’t	exist.	Such	templates	are	said	to	be	disabled.	By	default,	all
templates	are	enabled,	but	a	template	using	std::enable_if	is	enabled	only	if
the	condition	specified	by	std::enable_if	is	satisfied.	In	our	case,	we’d	like	to
enable	the	Person	perfect-forwarding	constructor	only	if	the	type	being	passed
isn’t	Person.	If	the	type	being	passed	is	Person,	we	want	to	disable	the	perfect-
forwarding	constructor	(i.e.,	cause	compilers	to	ignore	it),	because	that	will
cause	the	class’s	copy	or	move	constructor	to	handle	the	call,	which	is	what	we
want	when	a	Person	object	is	initialized	with	another	Person.

The	way	to	express	that	idea	isn’t	particularly	difficult,	but	the	syntax	is	off-
putting,	especially	if	you’ve	never	seen	it	before,	so	I’ll	ease	you	into	it.	There’s
some	boilerplate	that	goes	around	the	condition	part	of	std::enable_if,	so
we’ll	start	with	that.	Here’s	the	declaration	for	the	perfect-forwarding
constructor	in	Person,	showing	only	as	much	of	the	std::enable_if	as	is
required	simply	to	use	it.	I’m	showing	only	the	declaration	for	this	constructor,
because	the	use	of	std::enable_if	has	no	effect	on	the	function’s
implementation.	The	implementation	remains	the	same	as	in	Item	26.

class Person {

public:

 template<typename T,

 typename = typename std::enable_if<condition>::type>

 explicit Person(T&& n);

 …

};

To	understand	exactly	what’s	going	on	in	the	highlighted	text,	I	must	regretfully
suggest	that	you	consult	other	sources,	because	the	details	take	a	while	to

explain,	and	there’s	just	not	enough	space	for	it	in	this	book.	(During	your
research,	look	into	“SFINAE”	as	well	as	std::enable_if,	because	SFINAE	is
the	technology	that	makes	std::enable_if	work.)	Here,	I	want	to	focus	on
expression	of	the	condition	that	will	control	whether	this	constructor	is	enabled.

The	condition	we	want	to	specify	is	that	T	isn’t	Person,	i.e.,	that	the	templatized
constructor	should	be	enabled	only	if	T	is	a	type	other	than	Person.	Thanks	to	a
type	trait	that	determines	whether	two	types	are	the	same	(std::is_same),	it
would	seem	that	the	condition	we	want	is	!std::is_same<Person,	T>::value.
(Notice	the	“!”	at	the	beginning	of	the	expression.	We	want	for	Person	and	T	to
not	be	the	same.)	This	is	close	to	what	we	need,	but	it’s	not	quite	correct,
because,	as	Item	28	explains,	the	type	deduced	for	a	universal	reference
initialized	with	an	lvalue	is	always	an	lvalue	reference.	That	means	that	for	code
like	this,

Person p("Nancy");

auto cloneOfP(p); // initialize from lvalue

the	type	T	in	the	universal	constructor	will	be	deduced	to	be	Person&.	The	types
Person	and	Person&	are	not	the	same,	and	the	result	of	std::is_same	will
reflect	that:	std::is_same<Person,	Person&>::value	is	false.

If	we	think	more	precisely	about	what	we	mean	when	we	say	that	the
templatized	constructor	in	Person	should	be	enabled	only	if	T	isn’t	Person,
we’ll	realize	that	when	we’re	looking	at	T,	we	want	to	ignore

Whether	it’s	a	reference.	For	the	purpose	of	determining	whether	the
universal	reference	constructor	should	be	enabled,	the	types	Person,
Person&,	and	Person&&	are	all	the	same	as	Person.

Whether	it’s	const	or	volatile.	As	far	as	we’re	concerned,	a	const
Person	and	a	volatile	Person	and	a	const	volatile Person	are	all	the
same	as	a	Person.

This	means	we	need	a	way	to	strip	any	references,	consts,	and	volatiles	from
T	before	checking	to	see	if	that	type	is	the	same	as	Person.	Once	again,	the

Standard	Library	gives	us	what	we	need	in	the	form	of	a	type	trait.	That	trait	is
std::decay.	std::decay<T>::type	is	the	same	as	T,	except	that	references	and
cv-qualifiers	(i.e.,	const	or	volatile	qualifiers)	are	removed.	(I’m	fudging	the
truth	here,	because	std::decay,	as	its	name	suggests,	also	turns	array	and
function	types	into	pointers	(see	Item	1),	but	for	purposes	of	this	discussion,
std::decay	behaves	as	I’ve	described.)	The	condition	we	want	to	control
whether	our	constructor	is	enabled,	then,	is

!std::is_same<Person, typename std::decay<T>::type>::value

i.e.,	Person	is	not	the	same	type	as	T,	ignoring	any	references	or	cv-qualifiers.
(As	Item	9	explains,	the	“typename”	in	front	of	std::decay	is	required,	because
the	type	std::decay<T>::type	depends	on	the	template	parameter	T.)

Inserting	this	condition	into	the	std::enable_if	boilerplate	above,	plus
formatting	the	result	to	make	it	easier	to	see	how	the	pieces	fit	together,	yields
this	declaration	for	Person’s	perfect-forwarding	constructor:

class Person {

public:

 template<

 typename T,

 typename = typename std::enable_if<

 !std::is_same<Person,

 typename std::decay<T>::type

 >::value

 >::type

 >

 explicit Person(T&& n);

 …

};

If	you’ve	never	seen	anything	like	this	before,	count	your	blessings.	There’s	a
reason	I	saved	this	design	for	last.	When	you	can	use	one	of	the	other
mechanisms	to	avoid	mixing	universal	references	and	overloading	(and	you
almost	always	can),	you	should.	Still,	once	you	get	used	to	the	functional	syntax
and	the	proliferation	of	angle	brackets,	it’s	not	that	bad.	Furthermore,	this	gives

you	the	behavior	you’ve	been	striving	for.	Given	the	declaration	above,
constructing	a	Person	from	another	Person—lvalue	or	rvalue,	const	or	non-
const,	volatile	or	non-volatile—will	never	invoke	the	constructor	taking	a
universal	reference.

Success,	right?	We’re	done!

Um,	no.	Belay	that	celebration.	There’s	still	one	loose	end	from	Item	26	that
continues	to	flap	about.	We	need	to	tie	it	down.

Suppose	a	class	derived	from	Person	implements	the	copy	and	move	operations
in	the	conventional	manner:

class SpecialPerson: public Person {

public:

 SpecialPerson(const SpecialPerson& rhs) // copy ctor; calls

 : Person(rhs) // base class

 { … } // forwarding ctor!

 SpecialPerson(SpecialPerson&& rhs) // move ctor; calls

 : Person(std::move(rhs)) // base class

 { … } // forwarding ctor!

 …

};

This	is	the	same	code	I	showed	in	Item	26	(on	page	206),	including	the
comments,	which,	alas,	remain	accurate.	When	we	copy	or	move	a
SpecialPerson	object,	we	expect	to	copy	or	move	its	base	class	parts	using	the
base	class’s	copy	and	move	constructors,	but	in	these	functions,	we’re	passing
SpecialPerson	objects	to	the	base	class’s	constructors,	and	because
SpecialPerson	isn’t	the	same	as	Person	(not	even	after	application	of
std::decay),	the	universal	reference	constructor	in	the	base	class	is	enabled,
and	it	happily	instantiates	to	perform	an	exact	match	for	a	SpecialPerson
argument.	This	exact	match	is	better	than	the	derived-to-base	conversions	that
would	be	necessary	to	bind	the	SpecialPerson	objects	to	the	Person
parameters	in	Person’s	copy	and	move	constructors,	so	with	the	code	we	have
now,	copying	and	moving	SpecialPerson	objects	would	use	the	Person
perfect-forwarding	constructor	to	copy	or	move	their	base	class	parts!	It’s	déjà
Item	26	all	over	again.

The	derived	class	is	just	following	the	normal	rules	for	implementing	derived
class	copy	and	move	constructors,	so	the	fix	for	this	problem	is	in	the	base	class
and,	in	particular,	in	the	condition	that	controls	whether	Person’s	universal
reference	constructor	is	enabled.	We	now	realize	that	we	don’t	want	to	enable
the	templatized	constructor	for	any	argument	type	other	than	Person,	we	want	to
enable	it	for	any	argument	type	other	than	Person	or	a	type	derived	from
Person.	Pesky	inheritance!

You	should	not	be	surprised	to	hear	that	among	the	standard	type	traits	is	one
that	determines	whether	one	type	is	derived	from	another.	It’s	called
std::is_base_of.	std::is_base_of<T1,	T2>::value	is	true	if	T2	is	derived
from	T1.	Types	are	considered	to	be	derived	from	themselves,	so
std::is_base_of<T,	T>::value	is	true.	This	is	handy,	because	we	want	to
revise	our	condition	controlling	Person’s	perfect-forwarding	constructor	such
that	the	constructor	is	enabled	only	if	the	type	T,	after	stripping	it	of	references
and	cv-qualifiers,	is	neither	Person	nor	a	class	derived	from	Person.	Using
std::is_base_of	instead	of	std::is_same	gives	us	what	we	need:

class Person {

public:

 template<

 typename T,

 typename = typename std::enable_if<

 !std::is_base_of<Person,

 typename std::decay<T>::type

 >::value

 >::type

 >

 explicit Person(T&& n);

 …

};

Now	we’re	finally	done.	Provided	we’re	writing	the	code	in	C++11,	that	is.	If
we’re	using	C++14,	this	code	will	still	work,	but	we	can	employ	alias	templates
for	std::enable_if	and	std::decay	to	get	rid	of	the	“typename”	and
“::type”	cruft,	thus	yielding	this	somewhat	more	palatable	code:

class Person { // C++14

public:

 template<

 typename T,

 typename = std::enable_if_t< // less code here

 !std::is_base_of<Person,

 std::decay_t<T> // and here

 >::value

 > // and here

 >

 explicit Person(T&& n);

 …

};

Okay,	I	admit	it:	I	lied.	We’re	still	not	done.	But	we’re	close.	Tantalizingly
close.	Honest.

We’ve	seen	how	to	use	std::enable_if	to	selectively	disable	Person’s
universal	reference	constructor	for	argument	types	we	want	to	have	handled	by
the	class’s	copy	and	move	constructors,	but	we	haven’t	yet	seen	how	to	apply	it
to	distinguish	integral	and	non-integral	arguments.	That	was,	after	all,	our
original	goal;	the	constructor	ambiguity	problem	was	just	something	we	got
dragged	into	along	the	way.

All	we	need	to	do—and	I	really	do	mean	that	this	is	everything—is	(1)	add	a
Person	constructor	overload	to	handle	integral	arguments	and	(2)	further
constrain	the	templatized	constructor	so	that	it’s	disabled	for	such	arguments.
Pour	these	ingredients	into	the	pot	with	everything	else	we’ve	discussed,	simmer
over	a	low	flame,	and	savor	the	aroma	of	success:

class Person {

public:

 template<

 typename T,

 typename = std::enable_if_t<

 !std::is_base_of<Person, std::decay_t<T>>::value

 &&

 !std::is_integral<std::remove_reference_t<T>>::value

 >

 >

 explicit Person(T&& n) // ctor for std::strings and

 : name(std::forward<T>(n)) // args convertible to

 { … } // std::strings

 explicit Person(int idx) // ctor for integral args

 : name(nameFromIdx(idx))

 { … }

 … // copy and move ctors, etc.

private:

 std::string name;

};

Voilà!	A	thing	of	beauty!	Well,	okay,	the	beauty	is	perhaps	most	pronounced	for
those	with	something	of	a	template	metaprogramming	fetish,	but	the	fact
remains	that	this	approach	not	only	gets	the	job	done,	it	does	it	with	unique
aplomb.	Because	it	uses	perfect	forwarding,	it	offers	maximal	efficiency,	and
because	it	controls	the	combination	of	universal	references	and	overloading
rather	than	forbidding	it,	this	technique	can	be	applied	in	circumstances	(such	as
constructors)	where	overloading	is	unavoidable.

Trade-offs
The	first	three	techniques	considered	in	this	Item—abandoning	overloading,
passing	by	const	T&,	and	passing	by	value—specify	a	type	for	each	parameter	in
the	function(s)	to	be	called.	The	last	two	techniques—tag	dispatch	and
constraining	template	eligibility—use	perfect	forwarding,	hence	don’t	specify
types	for	the	parameters.	This	fundamental	decision—to	specify	a	type	or	not—
has	consequences.

As	a	rule,	perfect	forwarding	is	more	efficient,	because	it	avoids	the	creation	of
temporary	objects	solely	for	the	purpose	of	conforming	to	the	type	of	a
parameter	declaration.	In	the	case	of	the	Person	constructor,	perfect	forwarding
permits	a	string	literal	such	as	"Nancy"	to	be	forwarded	to	the	constructor	for	the
std::string	inside	Person,	whereas	techniques	not	using	perfect	forwarding
must	create	a	temporary	std::string	object	from	the	string	literal	to	satisfy	the
parameter	specification	for	the	Person	constructor.

But	perfect	forwarding	has	drawbacks.	One	is	that	some	kinds	of	arguments
can’t	be	perfect-forwarded,	even	though	they	can	be	passed	to	functions	taking

specific	types.	Item	30	explores	these	perfect	forwarding	failure	cases.

A	second	issue	is	the	comprehensibility	of	error	messages	when	clients	pass
invalid	arguments.	Suppose,	for	example,	a	client	creating	a	Person	object
passes	a	string	literal	made	up	of	char16_ts	(a	type	introduced	in	C++11	to
represent	16-bit	characters)	instead	of	chars	(which	is	what	a	std::string
consists	of):

Person p(u"Konrad Zuse"); // "Konrad Zuse" consists of

 // characters of type const char16_t

With	the	first	three	approaches	examined	in	this	Item,	compilers	will	see	that	the
available	constructors	take	either	int	or	std::string,	and	they’ll	produce	a
more	or	less	straightforward	error	message	explaining	that	there’s	no	conversion
from	const	char16_t[12]	to	int	or	std::string.

With	an	approach	based	on	perfect	forwarding,	however,	the	array	of	const
char16_ts	gets	bound	to	the	constructor’s	parameter	without	complaint.	From
there	it’s	forwarded	to	the	constructor	of	Person’s	std::string	data	member,
and	it’s	only	at	that	point	that	the	mismatch	between	what	the	caller	passed	in	(a
const	char16_t	array)	and	what’s	required	(any	type	acceptable	to	the
std::string	constructor)	is	discovered.	The	resulting	error	message	is	likely	to
be,	er,	impressive.	With	one	of	the	compilers	I	use,	it’s	more	than	160	lines	long.

In	this	example,	the	universal	reference	is	forwarded	only	once	(from	the	Person
constructor	to	the	std::string	constructor),	but	the	more	complex	the	system,
the	more	likely	that	a	universal	reference	is	forwarded	through	several	layers	of
function	calls	before	finally	arriving	at	a	site	that	determines	whether	the
argument	type(s)	are	acceptable.	The	more	times	the	universal	reference	is
forwarded,	the	more	baffling	the	error	message	may	be	when	something	goes
wrong.	Many	developers	find	that	this	issue	alone	is	grounds	to	reserve	universal
reference	parameters	for	interfaces	where	performance	is	a	foremost	concern.

In	the	case	of	Person,	we	know	that	the	forwarding	function’s	universal
reference	parameter	is	supposed	to	be	an	initializer	for	a	std::string,	so	we
can	use	a	static_assert	to	verify	that	it	can	play	that	role.	The
std::is_constructible	type	trait	performs	a	compile-time	test	to	determine

whether	an	object	of	one	type	can	be	constructed	from	an	object	(or	set	of
objects)	of	a	different	type	(or	set	of	types),	so	the	assertion	is	easy	to	write:

class Person {

public:

 template< // as before

 typename T,

 typename = std::enable_if_t<

 !std::is_base_of<Person, std::decay_t<T>>::value

 &&

 !std::is_integral<std::remove_reference_t<T>>::value

 >

 >

 explicit Person(T&& n)

 : name(std::forward<T>(n))

 {

 // assert that a std::string can be created from a T object

 static_assert(

 std::is_constructible<std::string, T>::value,

 "Parameter n can't be used to construct a std::string"

);

 … // the usual ctor work goes here

 }

 … // remainder of Person class (as before)

};

This	causes	the	specified	error	message	to	be	produced	if	client	code	tries	to
create	a	Person	from	a	type	that	can’t	be	used	to	construct	a	std::string.
Unfortunately,	in	this	example	the	static_assert	is	in	the	body	of	the
constructor,	but	the	forwarding	code,	being	part	of	the	member	initialization	list,
precedes	it.	With	the	compilers	I	use,	the	result	is	that	the	nice,	readable	message
arising	from	the	static_assert	appears	only	after	the	usual	error	messages	(up
to	160-plus	lines	of	them)	have	been	emitted.	

Things	to	Remember
Alternatives	to	the	combination	of	universal	references	and	overloading	include	the	use	of
distinct	function	names,	passing	parameters	by	lvalue-reference-to-const,	passing

parameters	by	value,	and	using	tag	dispatch.

Constraining	templates	via	std::enable_if	permits	the	use	of	universal	references	and
overloading	together,	but	it	controls	the	conditions	under	which	compilers	may	use	the
universal	reference	overloads.

Universal	reference	parameters	often	have	efficiency	advantages,	but	they	typically	have
usability	disadvantages.

Item	28: Understand	reference	collapsing.
Item	23	remarks	that	when	an	argument	is	passed	to	a	template	function,	the	type
deduced	for	the	template	parameter	encodes	whether	the	argument	is	an	lvalue	or
an	rvalue.	The	Item	fails	to	mention	that	this	happens	only	when	the	argument	is
used	to	initialize	a	parameter	that’s	a	universal	reference,	but	there’s	a	good
reason	for	the	omission:	universal	references	aren’t	introduced	until	Item	24.
Together,	these	observations	about	universal	references	and	lvalue/rvalue
encoding	mean	that	for	this	template,

template<typename T>

void func(T&& param);

the	deduced	template	parameter	T	will	encode	whether	the	argument	passed	to
param	was	an	lvalue	or	an	rvalue.

The	encoding	mechanism	is	simple.	When	an	lvalue	is	passed	as	an	argument,	T
is	deduced	to	be	an	lvalue	reference.	When	an	rvalue	is	passed,	T	is	deduced	to
be	a	non-reference.	(Note	the	asymmetry:	lvalues	are	encoded	as	lvalue
references,	but	rvalues	are	encoded	as	non-references.)	Hence:

Widget widgetFactory(); // function returning rvalue

Widget w; // a variable (an lvalue)

func(w); // call func with lvalue; T deduced

 // to be Widget&

func(widgetFactory()); // call func with rvalue; T deduced

 // to be Widget

In	both	calls	to	func,	a	Widget	is	passed,	yet	because	one	Widget	is	an	lvalue
and	one	is	an	rvalue,	different	types	are	deduced	for	the	template	parameter	T.
This,	as	we	shall	soon	see,	is	what	determines	whether	universal	references
become	rvalue	references	or	lvalue	references,	and	it’s	also	the	underlying
mechanism	through	which	std::forward	does	its	work.

Before	we	can	look	more	closely	at	std::forward	and	universal	references,	we
must	note	that	references	to	references	are	illegal	in	C++.	Should	you	try	to
declare	one,	your	compilers	will	reprimand	you:

int x;

…

auto& & rx = x; // error! can't declare reference to reference

But	consider	what	happens	when	an	lvalue	is	passed	to	a	function	template
taking	a	universal	reference:

template<typename T>

void func(T&& param); // as before

func(w); // invoke func with lvalue;

 // T deduced as Widget&

If	we	take	the	type	deduced	for	T	(i.e.,	Widget&)	and	use	it	to	instantiate	the
template,	we	get	this:

void func(Widget& && param);

A	reference	to	a	reference!	And	yet	compilers	issue	no	protest.	We	know	from
Item	24	that	because	the	universal	reference	param	is	being	initialized	with	an
lvalue,	param’s	type	is	supposed	to	be	an	lvalue	reference,	but	how	does	the
compiler	get	from	the	result	of	taking	the	deduced	type	for	T	and	substituting	it
into	the	template	to	the	following,	which	is	the	ultimate	function	signature?

void func(Widget& param);

The	answer	is	reference	collapsing.	Yes,	you	are	forbidden	from	declaring
references	to	references,	but	compilers	may	produce	them	in	particular	contexts,

template	instantiation	being	among	them.	When	compilers	generate	references	to
references,	reference	collapsing	dictates	what	happens	next.

There	are	two	kinds	of	references	(lvalue	and	rvalue),	so	there	are	four	possible
reference-reference	combinations	(lvalue	to	lvalue,	lvalue	to	rvalue,	rvalue	to
lvalue,	and	rvalue	to	rvalue).	If	a	reference	to	a	reference	arises	in	a	context
where	this	is	permitted	(e.g.,	during	template	instantiation),	the	references
collapse	to	a	single	reference	according	to	this	rule:

If	either	reference	is	an	lvalue	reference,	the	result	is	an	lvalue	reference.
Otherwise	(i.e.,	if	both	are	rvalue	references)	the	result	is	an	rvalue	reference.

In	our	example	above,	substitution	of	the	deduced	type	Widget&	into	the
template	func	yields	an	rvalue	reference	to	an	lvalue	reference,	and	the
reference-collapsing	rule	tells	us	that	the	result	is	an	lvalue	reference.

Reference	collapsing	is	a	key	part	of	what	makes	std::forward	work.	As
explained	in	Item	25,	std::forward	is	applied	to	universal	reference
parameters,	so	a	common	use	case	looks	like	this:

template<typename T>

void f(T&& fParam)

{

 … // do some work

 someFunc(std::forward<T>(fParam)); // forward fParam to

} // someFunc

Because	fParam	is	a	universal	reference,	we	know	that	the	type	parameter	T	will
encode	whether	the	argument	passed	to	f	(i.e.,	the	expression	used	to	initialize
fParam)	was	an	lvalue	or	an	rvalue.	std::forward’s	job	is	to	cast	fParam	(an
lvalue)	to	an	rvalue	if	and	only	if	T	encodes	that	the	argument	passed	to	f	was	an
rvalue,	i.e.,	if	T	is	a	non-reference	type.

Here’s	how	std::forward	can	be	implemented	to	do	that:

template<typename T> // in

T&& forward(typename // namespace

 remove_reference<T>::type& param) // std

{

 return static_cast<T&&>(param);

}

This	isn’t	quite	Standards-conformant	(I’ve	omitted	a	few	interface	details),	but
the	differences	are	irrelevant	for	the	purpose	of	understanding	how
std::forward	behaves.

Suppose	that	the	argument	passed	to	f	is	an	lvalue	of	type	Widget.	T	will	be
deduced	as	Widget&,	and	the	call	to	std::forward	will	instantiate	as
std::forward<Widget&>.	Plugging	Widget&	into	the	std::forward
implementation	yields	this:

Widget& && forward(typename

 remove_reference<Widget&>::type& param)

{ return static_cast<Widget& &&>(param); }

The	type	trait	std::remove_reference<Widget&>::type	yields	Widget	(see
Item	9),	so	std::forward	becomes:

Widget& && forward(Widget& param)

{ return static_cast<Widget& &&>(param); }

Reference	collapsing	is	also	applied	to	the	return	type	and	the	cast,	and	the	result
is	the	final	version	of	std::forward	for	the	call:

Widget& forward(Widget& param) // still in

{ return static_cast<Widget&>(param); } // namespace std

As	you	can	see,	when	an	lvalue	argument	is	passed	to	the	function	template	f,
std::forward	is	instantiated	to	take	and	return	an	lvalue	reference.	The	cast
inside	std::forward	does	nothing,	because	param’s	type	is	already	Widget&,	so
casting	it	to	Widget&	has	no	effect.	An	lvalue	argument	passed	to	std::forward
will	thus	return	an	lvalue	reference.	By	definition,	lvalue	references	are	lvalues,
so	passing	an	lvalue	to	std::forward	causes	an	lvalue	to	be	returned,	just	like
it’s	supposed	to.

Now	suppose	that	the	argument	passed	to	f	is	an	rvalue	of	type	Widget.	In	this
case,	the	deduced	type	for	f’s	type	parameter	T	will	simply	be	Widget.	The	call
inside	f	to	std::forward	will	thus	be	to	std::forward<Widget>.	Substituting

Widget	for	T	in	the	std::forward	implementation	gives	this:

Widget&& forward(typename

 remove_reference<Widget>::type& param)

{ return static_cast<Widget&&>(param); }

Applying	std::remove_reference	to	the	non-reference	type	Widget	yields	the
same	type	it	started	with	(Widget),	so	std::forward	becomes	this:

Widget&& forward(Widget& param)

{ return static_cast<Widget&&>(param); }

There	are	no	references	to	references	here,	so	there’s	no	reference	collapsing,
and	this	is	the	final	instantiated	version	of	std::forward	for	the	call.

Rvalue	references	returned	from	functions	are	defined	to	be	rvalues,	so	in	this
case,	std::forward	will	turn	f’s	parameter	fParam	(an	lvalue)	into	an	rvalue.
The	end	result	is	that	an	rvalue	argument	passed	to	f	will	be	forwarded	to
someFunc	as	an	rvalue,	which	is	precisely	what	is	supposed	to	happen.

In	C++14,	the	existence	of	std::remove_reference_t	makes	it	possible	to
implement	std::forward	a	bit	more	concisely:

template<typename T> // C++14; still in

T&& forward(remove_reference_t<T>& param) // namespace std

{

 return static_cast<T&&>(param);

}

Reference	collapsing	occurs	in	four	contexts.	The	first	and	most	common	is
template	instantiation.	The	second	is	type	generation	for	auto	variables.	The
details	are	essentially	the	same	as	for	templates,	because	type	deduction	for	auto
variables	is	essentially	the	same	as	type	deduction	for	templates	(see	Item	2).
Consider	again	this	example	from	earlier	in	the	Item:

template<typename T>

void func(T&& param);

Widget widgetFactory(); // function returning rvalue

Widget w; // a variable (an lvalue)

func(w); // call func with lvalue; T deduced

 // to be Widget&

func(widgetFactory()); // call func with rvalue; T deduced

 // to be Widget

This	can	be	mimicked	in	auto	form.	The	declaration

auto&& w1 = w;

initializes	w1	with	an	lvalue,	thus	deducing	the	type	Widget&	for	auto.	Plugging
Widget&	in	for	auto	in	the	declaration	for	w1	yields	this	reference-to-reference
code,

Widget& && w1 = w;

which,	after	reference	collapsing,	becomes

Widget& w1 = w;

As	a	result,	w1	is	an	lvalue	reference.

On	the	other	hand,	this	declaration,

auto&& w2 = widgetFactory();

initializes	w2	with	an	rvalue,	causing	the	non-reference	type	Widget	to	be
deduced	for	auto.	Substituting	Widget	for	auto	gives	us	this:

Widget&& w2 = widgetFactory();

There	are	no	references	to	references	here,	so	we’re	done;	w2	is	an	rvalue
reference.

We’re	now	in	a	position	to	truly	understand	the	universal	references	introduced
in	Item	24.	A	universal	reference	isn’t	a	new	kind	of	reference,	it’s	actually	an
rvalue	reference	in	a	context	where	two	conditions	are	satisfied:

Type	deduction	distinguishes	lvalues	from	rvalues.	Lvalues	of	type	T	are
deduced	to	have	type	T&,	while	rvalues	of	type	T	yield	T	as	their	deduced
type.

Reference	collapsing	occurs.

The	concept	of	universal	references	is	useful,	because	it	frees	you	from	having	to
recognize	the	existence	of	reference	collapsing	contexts,	to	mentally	deduce
different	types	for	lvalues	and	rvalues,	and	to	apply	the	reference	collapsing	rule
after	mentally	substituting	the	deduced	types	into	the	contexts	in	which	they
occur.

I	said	there	were	four	such	contexts,	but	we’ve	discussed	only	two:	template
instantiation	and	auto	type	generation.	The	third	is	the	generation	and	use	of
typedefs	and	alias	declarations	(see	Item	9).	If,	during	creation	or	evaluation	of
a	typedef,	references	to	references	arise,	reference	collapsing	intervenes	to
eliminate	them.	For	example,	suppose	we	have	a	Widget	class	template	with	an
embedded	typedef	for	an	rvalue	reference	type,

template<typename T>

class Widget {

public:

 typedef T&& RvalueRefToT;

 …

};

and	suppose	we	instantiate	Widget	with	an	lvalue	reference	type:

Widget<int&> w;

Substituting	int&	for	T	in	the	Widget	template	gives	us	the	following	typedef:

typedef int& && RvalueRefToT;

Reference	collapsing	reduces	it	to	this,

typedef int& RvalueRefToT;

which	makes	clear	that	the	name	we	chose	for	the	typedef	is	perhaps	not	as
descriptive	as	we’d	hoped:	RvalueRefToT	is	a	typedef	for	an	lvalue	reference
when	Widget	is	instantiated	with	an	lvalue	reference	type.

The	final	context	in	which	reference	collapsing	takes	place	is	uses	of	decltype.
If,	during	analysis	of	a	type	involving	decltype,	a	reference	to	a	reference
arises,	reference	collapsing	will	kick	in	to	eliminate	it.	(For	information	about
decltype,	see	Item	3.)

Things	to	Remember
Reference	collapsing	occurs	in	four	contexts:	template	instantiation,	auto	type	generation,
creation	and	use	of	typedefs	and	alias	declarations,	and	decltype.

When	compilers	generate	a	reference	to	a	reference	in	a	reference	collapsing	context,	the
result	becomes	a	single	reference.	If	either	of	the	original	references	is	an	lvalue	reference,
the	result	is	an	lvalue	reference.	Otherwise	it’s	an	rvalue	reference.

Universal	references	are	rvalue	references	in	contexts	where	type	deduction	distinguishes
lvalues	from	rvalues	and	where	reference	collapsing	occurs.

Item	29: Assume	that	move	operations	are	not
present,	not	cheap,	and	not	used.
Move	semantics	is	arguably	the	premier	feature	of	C++11.	“Moving	containers
is	now	as	cheap	as	copying	pointers!”	you’re	likely	to	hear,	and	“Copying
temporary	objects	is	now	so	efficient,	coding	to	avoid	it	is	tantamount	to
premature	optimization!”	Such	sentiments	are	easy	to	understand.	Move
semantics	is	truly	an	important	feature.	It	doesn’t	just	allow	compilers	to	replace
expensive	copy	operations	with	comparatively	cheap	moves,	it	actually	requires
that	they	do	so	(when	the	proper	conditions	are	fulfilled).	Take	your	C++98	code
base,	recompile	with	a	C++11-conformant	compiler	and	Standard	Library,	and
—shazam!—your	software	runs	faster.

Move	semantics	can	really	pull	that	off,	and	that	grants	the	feature	an	aura
worthy	of	legend.	Legends,	however,	are	generally	the	result	of	exaggeration.
The	purpose	of	this	Item	is	to	keep	your	expectations	grounded.

Let’s	begin	with	the	observation	that	many	types	fail	to	support	move	semantics.
The	entire	C++98	Standard	Library	was	overhauled	for	C++11	to	add	move
operations	for	types	where	moving	could	be	implemented	faster	than	copying,
and	the	implementation	of	the	library	components	was	revised	to	take	advantage
of	these	operations,	but	chances	are	that	you’re	working	with	a	code	base	that
has	not	been	completely	revised	to	take	advantage	of	C++11.	For	types	in	your
applications	(or	in	the	libraries	you	use)	where	no	modifications	for	C++11	have
been	made,	the	existence	of	move	support	in	your	compilers	is	likely	to	do	you
little	good.	True,	C++11	is	willing	to	generate	move	operations	for	classes	that
lack	them,	but	that	happens	only	for	classes	declaring	no	copy	operations,	move
operations,	or	destructors	(see	Item	17).	Data	members	or	base	classes	of	types
that	have	disabled	moving	(e.g.,	by	deleting	the	move	operations—see	Item	11)
will	also	suppress	compiler-generated	move	operations.	For	types	without
explicit	support	for	moving	and	that	don’t	qualify	for	compiler-generated	move
operations,	there	is	no	reason	to	expect	C++11	to	deliver	any	kind	of
performance	improvement	over	C++98.

Even	types	with	explicit	move	support	may	not	benefit	as	much	as	you’d	hope.
All	containers	in	the	standard	C++11	library	support	moving,	for	example,	but	it
would	be	a	mistake	to	assume	that	moving	all	containers	is	cheap.	For	some
containers,	this	is	because	there’s	no	truly	cheap	way	to	move	their	contents.	For
others,	it’s	because	the	truly	cheap	move	operations	the	containers	offer	come
with	caveats	the	container	elements	can’t	satisfy.

Consider	std::array,	a	new	container	in	C++11.	std::array	is	essentially	a
built-in	array	with	an	STL	interface.	This	is	fundamentally	different	from	the
other	standard	containers,	each	of	which	stores	its	contents	on	the	heap.	Objects
of	such	container	types	hold	(as	data	members),	conceptually,	only	a	pointer	to
the	heap	memory	storing	the	contents	of	the	container.	(The	reality	is	more
complex,	but	for	purposes	of	this	analysis,	the	differences	are	not	important.)
The	existence	of	this	pointer	makes	it	possible	to	move	the	contents	of	an	entire
container	in	constant	time:	just	copy	the	pointer	to	the	container’s	contents	from
the	source	container	to	the	target,	and	set	the	source’s	pointer	to	null:

std::vector<Widget> vw1;

// put data into vw1

…

// move vw1 into vw2. Runs in

// constant time. Only ptrs

// in vw1 and vw2 are modified

auto vw2 = std::move(vw1);

std::array	objects	lack	such	a	pointer,	because	the	data	for	a	std::array’s
contents	are	stored	directly	in	the	std::array	object:

std::array<Widget, 10000> aw1;

// put data into aw1

…

// move aw1 into aw2. Runs in

// linear time. All elements in

// aw1 are moved into aw2

auto aw2 = std::move(aw1);

Note	that	the	elements	in	aw1	are	moved	into	aw2.	Assuming	that	Widget	is	a

type	where	moving	is	faster	than	copying,	moving	a	std::array	of	Widget	will
be	faster	than	copying	the	same	std::array.	So	std::array	certainly	offers
move	support.	Yet	both	moving	and	copying	a	std::array	have	linear-time
computational	complexity,	because	each	element	in	the	container	must	be	copied
or	moved.	This	is	far	from	the	“moving	a	container	is	now	as	cheap	as	assigning
a	couple	of	pointers”	claim	that	one	sometimes	hears.

On	the	other	hand,	std::string	offers	constant-time	moves	and	linear-time
copies.	That	makes	it	sound	like	moving	is	faster	than	copying,	but	that	may	not
be	the	case.	Many	string	implementations	employ	the	small	string	optimization
(SSO).	With	the	SSO,	“small”	strings	(e.g.,	those	with	a	capacity	of	no	more
than	15	characters)	are	stored	in	a	buffer	within	the	std::string	object;	no
heap-allocated	storage	is	used.	Moving	small	strings	using	an	SSO-based
implementation	is	no	faster	than	copying	them,	because	the	copy-only-a-pointer
trick	that	generally	underlies	the	performance	advantage	of	moves	over	copies
isn’t	applicable.

The	motivation	for	the	SSO	is	extensive	evidence	that	short	strings	are	the	norm
for	many	applications.	Using	an	internal	buffer	to	store	the	contents	of	such
strings	eliminates	the	need	to	dynamically	allocate	memory	for	them,	and	that’s
typically	an	efficiency	win.	An	implication	of	the	win,	however,	is	that	moves
are	no	faster	than	copies,	though	one	could	just	as	well	take	a	glass-half-full
approach	and	say	that	for	such	strings,	copying	is	no	slower	than	moving.

Even	for	types	supporting	speedy	move	operations,	some	seemingly	sure-fire
move	situations	can	end	up	making	copies.	Item	14	explains	that	some	container
operations	in	the	Standard	Library	offer	the	strong	exception	safety	guarantee
and	that	to	ensure	that	legacy	C++98	code	dependent	on	that	guarantee	isn’t
broken	when	upgrading	to	C++11,	the	underlying	copy	operations	may	be
replaced	with	move	operations	only	if	the	move	operations	are	known	to	not
throw.	A	consequence	is	that	even	if	a	type	offers	move	operations	that	are	more
efficient	than	the	corresponding	copy	operations,	and	even	if,	at	a	particular
point	in	the	code,	a	move	operation	would	generally	be	appropriate	(e.g.,	if	the
source	object	is	an	rvalue),	compilers	might	still	be	forced	to	invoke	a	copy
operation	because	the	corresponding	move	operation	isn’t	declared	noexcept.

There	are	thus	several	scenarios	in	which	C++11’s	move	semantics	do	you	no
good:

No	move	operations:	The	object	to	be	moved	from	fails	to	offer	move
operations.	The	move	request	therefore	becomes	a	copy	request.

Move	not	faster:	The	object	to	be	moved	from	has	move	operations	that	are
no	faster	than	its	copy	operations.

Move	not	usable:	The	context	in	which	the	moving	would	take	place
requires	a	move	operation	that	emits	no	exceptions,	but	that	operation	isn’t
declared	noexcept.

It’s	worth	mentioning,	too,	another	scenario	where	move	semantics	offers	no
efficiency	gain:

Source	object	is	lvalue:	With	very	few	exceptions	(see	e.g.,	Item	25)	only
rvalues	may	be	used	as	the	source	of	a	move	operation.

But	the	title	of	this	Item	is	to	assume	that	move	operations	are	not	present,	not
cheap,	and	not	used.	This	is	typically	the	case	in	generic	code,	e.g.,	when	writing
templates,	because	you	don’t	know	all	the	types	you’re	working	with.	In	such
circumstances,	you	must	be	as	conservative	about	copying	objects	as	you	were
in	C++98—before	move	semantics	existed.	This	is	also	the	case	for	“unstable”
code,	i.e.,	code	where	the	characteristics	of	the	types	being	used	are	subject	to
relatively	frequent	modification.

Often,	however,	you	know	the	types	your	code	uses,	and	you	can	rely	on	their
characteristics	not	changing	(e.g.,	whether	they	support	inexpensive	move
operations).	When	that’s	the	case,	you	don’t	need	to	make	assumptions.	You	can
simply	look	up	the	move	support	details	for	the	types	you’re	using.	If	those	types
offer	cheap	move	operations,	and	if	you’re	using	objects	in	contexts	where	those
move	operations	will	be	invoked,	you	can	safely	rely	on	move	semantics	to
replace	copy	operations	with	their	less	expensive	move	counterparts.

Things	to	Remember
Assume	that	move	operations	are	not	present,	not	cheap,	and	not	used.

In	code	with	known	types	or	support	for	move	semantics,	there	is	no	need	for	assumptions.

Item	30: Familiarize	yourself	with	perfect
forwarding	failure	cases.
One	of	the	features	most	prominently	emblazoned	on	the	C++11	box	is	perfect
forwarding.	Perfect	forwarding.	It’s	perfect!	Alas,	tear	the	box	open,	and	you’ll
find	that	there’s	“perfect”	(the	ideal),	and	then	there’s	“perfect”	(the	reality).
C++11’s	perfect	forwarding	is	very	good,	but	it	achieves	true	perfection	only	if
you’re	willing	to	overlook	an	epsilon	or	two.	This	Item	is	devoted	to
familiarizing	you	with	the	epsilons.

Before	embarking	on	our	epsilon	exploration,	it’s	worthwhile	to	review	what’s
meant	by	“perfect	forwarding.”	“Forwarding”	just	means	that	one	function
passes—forwards—its	parameters	to	another	function.	The	goal	is	for	the	second
function	(the	one	being	forwarded	to)	to	receive	the	same	objects	that	the	first
function	(the	one	doing	the	forwarding)	received.	That	rules	out	by-value
parameters,	because	they’re	copies	of	what	the	original	caller	passed	in.	We
want	the	forwarded-to	function	to	be	able	to	work	with	the	originally-passed-in
objects.	Pointer	parameters	are	also	ruled	out,	because	we	don’t	want	to	force
callers	to	pass	pointers.	When	it	comes	to	general-purpose	forwarding,	we’ll	be
dealing	with	parameters	that	are	references.

Perfect	forwarding	means	we	don’t	just	forward	objects,	we	also	forward	their
salient	characteristics:	their	types,	whether	they’re	lvalues	or	rvalues,	and
whether	they’re	const	or	volatile.	In	conjunction	with	the	observation	that
we’ll	be	dealing	with	reference	parameters,	this	implies	that	we’ll	be	using
universal	references	(see	Item	24),	because	only	universal	reference	parameters
encode	information	about	the	lvalueness	and	rvalueness	of	the	arguments	that
are	passed	to	them.

Let’s	assume	we	have	some	function	f,	and	we’d	like	to	write	a	function	(in
truth,	a	function	template)	that	forwards	to	it.	The	core	of	what	we	need	looks
like	this:

template<typename T>

void fwd(T&& param) // accept any argument

{

 f(std::forward<T>(param)); // forward it to f

}

Forwarding	functions	are,	by	their	nature,	generic.	The	fwd	template,	for
example,	accepts	any	type	of	argument,	and	it	forwards	whatever	it	gets.	A
logical	extension	of	this	genericity	is	for	forwarding	functions	to	be	not	just
templates,	but	variadic	templates,	thus	accepting	any	number	of	arguments.	The
variadic	form	for	fwd	looks	like	this:

template<typename... Ts>

void fwd(Ts&&... params) // accept any arguments

{

 f(std::forward<Ts>(params)...); // forward them to f

}

This	is	the	form	you’ll	see	in,	among	other	places,	the	standard	containers’
emplacement	functions	(see	Item	42)	and	the	smart	pointer	factory	functions,
std::make_shared	and	std::make_unique	(see	Item	21).

Given	our	target	function	f	and	our	forwarding	function	fwd,	perfect	forwarding
fails	if	calling	f	with	a	particular	argument	does	one	thing,	but	calling	fwd	with
the	same	argument	does	something	different:

f(expression); // if this does one thing,

fwd(expression); // but this does something else, fwd fails

 // to perfectly forward expression to f

Several	kinds	of	arguments	lead	to	this	kind	of	failure.	Knowing	what	they	are
and	how	to	work	around	them	is	important,	so	let’s	tour	the	kinds	of	arguments
that	can’t	be	perfect-forwarded.

Braced	initializers
Suppose	f	is	declared	like	this:

void f(const std::vector<int>& v);

In	that	case,	calling	f	with	a	braced	initializer	compiles,

f({ 1, 2, 3 }); // fine, "{1, 2, 3}" implicitly

 // converted to std::vector<int>

but	passing	the	same	braced	initializer	to	fwd	doesn’t	compile:

fwd({ 1, 2, 3 }); // error! doesn't compile

That’s	because	the	use	of	a	braced	initializer	is	a	perfect	forwarding	failure	case.

All	such	failure	cases	have	the	same	cause.	In	a	direct	call	to	f	(such	as	f({	1,
2,	3	})),	compilers	see	the	arguments	passed	at	the	call	site,	and	they	see	the
types	of	the	parameters	declared	by	f.	They	compare	the	arguments	at	the	call
site	to	the	parameter	declarations	to	see	if	they’re	compatible,	and,	if	necessary,
they	perform	implicit	conversions	to	make	the	call	succeed.	In	the	example
above,	they	generate	a	temporary	std::vector<int>	object	from	{	1,	2,	3	}	so
that	f’s	parameter	v	has	a	std::vector<int>	object	to	bind	to.

When	calling	f	indirectly	through	the	forwarding	function	template	fwd,
compilers	no	longer	compare	the	arguments	passed	at	fwd’s	call	site	to	the
parameter	declarations	in	f.	Instead,	they	deduce	the	types	of	the	arguments
being	passed	to	fwd,	and	they	compare	the	deduced	types	to	f’s	parameter
declarations.	Perfect	forwarding	fails	when	either	of	the	following	occurs:

Compilers	are	unable	to	deduce	a	type	for	one	or	more	of	fwd’s
parameters.	In	this	case,	the	code	fails	to	compile.

Compilers	deduce	the	“wrong”	type	for	one	or	more	of	fwd’s	parameters.
Here,	“wrong”	could	mean	that	fwd’s	instantiation	won’t	compile	with	the
types	that	were	deduced,	but	it	could	also	mean	that	the	call	to	f	using	fwd’s
deduced	types	behaves	differently	from	a	direct	call	to	f	with	the	arguments
that	were	passed	to	fwd.	One	source	of	such	divergent	behavior	would	be	if	f
were	an	overloaded	function	name,	and,	due	to	“incorrect”	type	deduction,
the	overload	of	f	called	inside	fwd	were	different	from	the	overload	that
would	be	invoked	if	f	were	called	directly.

In	the	“fwd({	1,	2,	3	})”	call	above,	the	problem	is	that	passing	a	braced
initializer	to	a	function	template	parameter	that’s	not	declared	to	be	a
std::initializer_list	is	decreed	to	be,	as	the	Standard	puts	it,	a	“non-
deduced	context.”	In	plain	English,	that	means	that	compilers	are	forbidden	from
deducing	a	type	for	the	expression	{	1,	2,	3	}	in	the	call	to	fwd,	because	fwd’s

parameter	isn’t	declared	to	be	a	std::initializer_list.	Being	prevented
from	deducing	a	type	for	fwd’s	parameter,	compilers	must	understandably	reject
the	call.

Interestingly,	Item	2	explains	that	type	deduction	succeeds	for	auto	variables
initialized	with	a	braced	initializer.	Such	variables	are	deemed	to	be
std::initializer_list	objects,	and	this	affords	a	simple	workaround	for
cases	where	the	type	the	forwarding	function	should	deduce	is	a
std::initializer_list—declare	a	local	variable	using	auto,	then	pass	the
local	variable	to	the	forwarding	function:

auto il = { 1, 2, 3 }; // il's type deduced to be

 // std::initializer_list<int>

fwd(il); // fine, perfect-forwards il to f

0	or	NULL	as	null	pointers
Item	8	explains	that	when	you	try	to	pass	0	or	NULL	as	a	null	pointer	to	a
template,	type	deduction	goes	awry,	deducing	an	integral	type	(typically	int)
instead	of	a	pointer	type	for	the	argument	you	pass.	The	result	is	that	neither	0
nor	NULL	can	be	perfect-forwarded	as	a	null	pointer.	The	fix	is	easy,	however:
pass	nullptr	instead	of	0	or	NULL.	For	details,	consult	Item	8.

Declaration-only	integral	static	const	data	members
As	a	general	rule,	there’s	no	need	to	define	integral	static	const	data	members
in	classes;	declarations	alone	suffice.	That’s	because	compilers	perform	const
propagation	on	such	members’	values,	thus	eliminating	the	need	to	set	aside
memory	for	them.	For	example,	consider	this	code:

class Widget {

public:

 static const std::size_t MinVals = 28; // MinVals' declaration

 …

};

… // no defn. for MinVals

std::vector<int> widgetData;

widgetData.reserve(Widget::MinVals); // use of MinVals

Here,	we’re	using	Widget::MinVals	(henceforth	simply	MinVals)	to	specify
widgetData’s	initial	capacity,	even	though	MinVals	lacks	a	definition.
Compilers	work	around	the	missing	definition	(as	they	are	required	to	do)	by
plopping	the	value	28	into	all	places	where	MinVals	is	mentioned.	The	fact	that
no	storage	has	been	set	aside	for	MinVals’	value	is	unproblematic.	If	MinVals’
address	were	to	be	taken	(e.g.,	if	somebody	created	a	pointer	to	MinVals),	then
MinVals	would	require	storage	(so	that	the	pointer	had	something	to	point	to),
and	the	code	above,	though	it	would	compile,	would	fail	at	link-time	until	a
definition	for	MinVals	was	provided.

With	that	in	mind,	imagine	that	f	(the	function	fwd	forwards	its	argument	to)	is
declared	like	this:

void f(std::size_t val);

Calling	f	with	MinVals	is	fine,	because	compilers	will	just	replace	MinVals	with
its	value:

f(Widget::MinVals); // fine, treated as "f(28)"

Alas,	things	may	not	go	so	smoothly	if	we	try	to	call	f	through	fwd:

fwd(Widget::MinVals); // error! shouldn't link

This	code	will	compile,	but	it	shouldn’t	link.	If	that	reminds	you	of	what
happens	if	we	write	code	that	takes	MinVals’	address,	that’s	good,	because	the
underlying	problem	is	the	same.

Although	nothing	in	the	source	code	takes	MinVals’	address,	fwd’s	parameter	is
a	universal	reference,	and	references,	in	the	code	generated	by	compilers,	are
usually	treated	like	pointers.	In	the	program’s	underlying	binary	code	(and	on
the	hardware),	pointers	and	references	are	essentially	the	same	thing.	At	this
level,	there’s	truth	to	the	adage	that	references	are	simply	pointers	that	are
automatically	dereferenced.	That	being	the	case,	passing	MinVals	by	reference	is
effectively	the	same	as	passing	it	by	pointer,	and	as	such,	there	has	to	be	some

memory	for	the	pointer	to	point	to.	Passing	integral	static	const	data	members
by	reference,	then,	generally	requires	that	they	be	defined,	and	that	requirement
can	cause	code	using	perfect	forwarding	to	fail	where	the	equivalent	code
without	perfect	forwarding	succeeds.

But	perhaps	you	noticed	the	weasel	words	I	sprinkled	through	the	preceding
discussion.	The	code	“shouldn’t”	link.	References	are	“usually”	treated	like
pointers.	Passing	integral	static	const	data	members	by	reference	“generally”
requires	that	they	be	defined.	It’s	almost	like	I	know	something	I	don’t	really
want	to	tell	you…

That’s	because	I	do.	According	to	the	Standard,	passing	MinVals	by	reference
requires	that	it	be	defined.	But	not	all	implementations	enforce	this	requirement.
So,	depending	on	your	compilers	and	linkers,	you	may	find	that	you	can	perfect-
forward	integral	static	const	data	members	that	haven’t	been	defined.	If	you
do,	congratulations,	but	there	is	no	reason	to	expect	such	code	to	port.	To	make
it	portable,	simply	provide	a	definition	for	the	integral	static	const	data
member	in	question.	For	MinVals,	that’d	look	like	this:

const std::size_t Widget::MinVals; // in Widget's .cpp file

Note	that	the	definition	doesn’t	repeat	the	initializer	(28,	in	the	case	of	MinVals).
Don’t	stress	over	this	detail,	however.	If	you	forget	and	provide	the	initializer	in
both	places,	your	compilers	will	complain,	thus	reminding	you	to	specify	it	only
once.

Overloaded	function	names	and	template	names
Suppose	our	function	f	(the	one	we	keep	wanting	to	forward	arguments	to	via
fwd)	can	have	its	behavior	customized	by	passing	it	a	function	that	does	some	of
its	work.	Assuming	this	function	takes	and	returns	ints,	f	could	be	declared	like
this:

void f(int (*pf)(int)); // pf = "processing function"

It’s	worth	noting	that	f	could	also	be	declared	using	a	simpler	non-pointer
syntax.	Such	a	declaration	would	look	like	this,	though	it’d	have	the	same

meaning	as	the	declaration	above:

void f(int pf(int)); // declares same f as above

Either	way,	now	suppose	we	have	an	overloaded	function,	processVal:

int processVal(int value);

int processVal(int value, int priority);

We	can	pass	processVal	to	f,

f(processVal); // fine

but	it’s	something	of	a	surprise	that	we	can.	f	demands	a	pointer	to	a	function	as
its	argument,	but	processVal	isn’t	a	function	pointer	or	even	a	function,	it’s	the
name	of	two	different	functions.	However,	compilers	know	which	processVal
they	need:	the	one	matching	f’s	parameter	type.	They	thus	choose	the
processVal	taking	one	int,	and	they	pass	that	function’s	address	to	f.

What	makes	this	work	is	that	f’s	declaration	lets	compilers	figure	out	which
version	of	processVal	is	required.	fwd,	however,	being	a	function	template,
doesn’t	have	any	information	about	what	type	it	needs,	and	that	makes	it
impossible	for	compilers	to	determine	which	overload	should	be	passed:

fwd(processVal); // error! which processVal?

processVal	alone	has	no	type.	Without	a	type,	there	can	be	no	type	deduction,
and	without	type	deduction,	we’re	left	with	another	perfect	forwarding	failure
case.

The	same	problem	arises	if	we	try	to	use	a	function	template	instead	of	(or	in
addition	to)	an	overloaded	function	name.	A	function	template	doesn’t	represent
one	function,	it	represents	many	functions:

template<typename T>

T workOnVal(T param) // template for processing values

{ … }

fwd(workOnVal); // error! which workOnVal

 // instantiation?

The	way	to	get	a	perfect-forwarding	function	like	fwd	to	accept	an	overloaded
function	name	or	a	template	name	is	to	manually	specify	the	overload	or
instantiation	you	want	to	have	forwarded.	For	example,	you	can	create	a	function
pointer	of	the	same	type	as	f’s	parameter,	initialize	that	pointer	with
processVal	or	workOnVal	(thus	causing	the	proper	version	of	processVal	to	be
selected	or	the	proper	instantiation	of	workOnVal	to	be	generated),	and	pass	the
pointer	to	fwd:

using ProcessFuncType = // make typedef;

 int (*)(int); // see Item 9

ProcessFuncType processValPtr = processVal; // specify needed

 // signature for

 // processVal

fwd(processValPtr); // fine

fwd(static_cast<ProcessFuncType>(workOnVal)); // also fine

Of	course,	this	requires	that	you	know	the	type	of	function	pointer	that	fwd	is
forwarding	to.	It’s	not	unreasonable	to	assume	that	a	perfect-forwarding	function
will	document	that.	After	all,	perfect-forwarding	functions	are	designed	to	accept
anything,	so	if	there’s	no	documentation	telling	you	what	to	pass,	how	would
you	know?

Bitfields
The	final	failure	case	for	perfect	forwarding	is	when	a	bitfield	is	used	as	a
function	argument.	To	see	what	this	means	in	practice,	observe	that	an	IPv4
header	can	be	modeled	as	follows:13

struct IPv4Header {

 std::uint32_t version:4,

 IHL:4,

 DSCP:6,

 ECN:2,

 totalLength:16;

 …

 …

};

If	our	long-suffering	function	f	(the	perennial	target	of	our	forwarding	function
fwd)	is	declared	to	take	a	std::size_t	parameter,	calling	it	with,	say,	the
totalLength	field	of	an	IPv4Header	object	compiles	without	fuss:

void f(std::size_t sz); // function to call

IPv4Header h;

…

f(h.totalLength); // fine

Trying	to	forward	h.totalLength	to	f	via	fwd,	however,	is	a	different	story:

fwd(h.totalLength); // error!

The	problem	is	that	fwd’s	parameter	is	a	reference,	and	h.totalLength	is	a	non-
const	bitfield.	That	may	not	sound	so	bad,	but	the	C++	Standard	condemns	the
combination	in	unusually	clear	prose:	“A	non-const	reference	shall	not	be
bound	to	a	bitfield.”	There’s	an	excellent	reason	for	the	prohibition.	Bitfields
may	consist	of	arbitrary	parts	of	machine	words	(e.g.,	bits	3-5	of	a	32-bit	int),
but	there’s	no	way	to	directly	address	such	things.	I	mentioned	earlier	that
references	and	pointers	are	the	same	thing	at	the	hardware	level,	and	just	as
there’s	no	way	to	create	a	pointer	to	arbitrary	bits	(C++	dictates	that	the	smallest
thing	you	can	point	to	is	a	char),	there’s	no	way	to	bind	a	reference	to	arbitrary
bits,	either.

Working	around	the	impossibility	of	perfect-forwarding	a	bitfield	is	easy,	once
you	realize	that	any	function	that	accepts	a	bitfield	as	an	argument	will	receive	a
copy	of	the	bitfield’s	value.	After	all,	no	function	can	bind	a	reference	to	a
bitfield,	nor	can	any	function	accept	pointers	to	bitfields,	because	pointers	to
bitfields	don’t	exist.	The	only	kinds	of	parameters	to	which	a	bitfield	can	be
passed	are	by-value	parameters	and,	interestingly,	references-to-const.	In	the
case	of	by-value	parameters,	the	called	function	obviously	receives	a	copy	of	the
value	in	the	bitfield,	and	it	turns	out	that	in	the	case	of	a	reference-to-const
parameter,	the	Standard	requires	that	the	reference	actually	bind	to	a	copy	of	the

bitfield’s	value	that’s	stored	in	an	object	of	some	standard	integral	type	(e.g.,
int).	References-to-const	don’t	bind	to	bitfields,	they	bind	to	“normal”	objects
into	which	the	values	of	the	bitfields	have	been	copied.

The	key	to	passing	a	bitfield	into	a	perfect-forwarding	function,	then,	is	to	take
advantage	of	the	fact	that	the	forwarded-to	function	will	always	receive	a	copy
of	the	bitfield’s	value.	You	can	thus	make	a	copy	yourself	and	call	the
forwarding	function	with	the	copy.	In	the	case	of	our	example	with	IPv4Header,
this	code	would	do	the	trick:

// copy bitfield value; see Item 6 for info on init. form

auto length = static_cast<std::uint16_t>(h.totalLength);

fwd(length); // forward the copy

Upshot
In	most	cases,	perfect	forwarding	works	exactly	as	advertised.	You	rarely	have
to	think	about	it.	But	when	it	doesn’t	work—when	reasonable-looking	code	fails
to	compile	or,	worse,	compiles,	but	doesn’t	behave	the	way	you	anticipate—it’s
important	to	know	about	perfect	forwarding’s	imperfections.	Equally	important
is	knowing	how	to	work	around	them.	In	most	cases,	this	is	straightforward.	

Things	to	Remember
Perfect	forwarding	fails	when	template	type	deduction	fails	or	when	it	deduces	the	wrong
type.

The	kinds	of	arguments	that	lead	to	perfect	forwarding	failure	are	braced	initializers,	null
pointers	expressed	as	0	or	NULL,	declaration-only	integral	const	static	data	members,
template	and	overloaded	function	names,	and	bitfields.

11	Item	25	explains	that	universal	references	should	almost	always	have
std::forward	applied	to	them,	and	as	this	book	goes	to	press,	some	members	of
the	C++	community	have	started	referring	to	universal	references	as	forwarding
references.
12	Eligible	local	objects	include	most	local	variables	(such	as	w	inside

makeWidget)	as	well	as	temporary	objects	created	as	part	of	a	return	statement.
Function	parameters	don’t	qualify.	Some	people	draw	a	distinction	between
application	of	the	RVO	to	named	and	unnamed	(i.e.,	temporary)	local	objects,
limiting	the	term	RVO	to	unnamed	objects	and	calling	its	application	to	named
objects	the	named	return	value	optimization	(NRVO).
13	This	assumes	that	bitfields	are	laid	out	lsb	(least	significant	bit)	to	msb	(most
significant	bit).	C++	doesn’t	guarantee	that,	but	compilers	often	provide	a
mechanism	that	allows	programmers	to	control	bitfield	layout.

Chapter	6.	Lambda	Expressions

Lambda	expressions—lambdas—are	a	game	changer	in	C++	programming.
That’s	somewhat	surprising,	because	they	bring	no	new	expressive	power	to	the
language.	Everything	a	lambda	can	do	is	something	you	can	do	by	hand	with	a
bit	more	typing.	But	lambdas	are	such	a	convenient	way	to	create	function
objects,	the	impact	on	day-to-day	C++	software	development	is	enormous.
Without	lambdas,	the	STL	“_if”	algorithms	(e.g.,	std::find_if,
std::remove_if,	std::count_if,	etc.)	tend	to	be	employed	with	only	the	most
trivial	predicates,	but	when	lambdas	are	available,	use	of	these	algorithms	with
nontrivial	conditions	blossoms.	The	same	is	true	of	algorithms	that	can	be
customized	with	comparison	functions	(e.g.,	std::sort,	std::nth_element,
std::lower_bound,	etc.).	Outside	the	STL,	lambdas	make	it	possible	to	quickly
create	custom	deleters	for	std::unique_ptr	and	std::shared_ptr	(see	Items
18	and	19),	and	they	make	the	specification	of	predicates	for	condition	variables
in	the	threading	API	equally	straightforward	(see	Item	39).	Beyond	the	Standard
Library,	lambdas	facilitate	the	on-the-fly	specification	of	callback	functions,
interface	adaption	functions,	and	context-specific	functions	for	one-off	calls.
Lambdas	really	make	C++	a	more	pleasant	programming	language.

The	vocabulary	associated	with	lambdas	can	be	confusing.	Here’s	a	brief
refresher:

A	lambda	expression	is	just	that:	an	expression.	It’s	part	of	the	source	code.
In	std::find_if(container.begin(),	container.end(),	[](int	val)	{	return	0	<	val
&&	val	<	10;	});

the	highlighted	expression	is	the	lambda.

A	closure	is	the	runtime	object	created	by	a	lambda.	Depending	on	the
capture	mode,	closures	hold	copies	of	or	references	to	the	captured	data.	In
the	call	to	std::find_if	above,	the	closure	is	the	object	that’s	passed	at
runtime	as	the	third	argument	to	std::find_if.

A	closure	class	is	a	class	from	which	a	closure	is	instantiated.	Each	lambda

causes	compilers	to	generate	a	unique	closure	class.	The	statements	inside	a
lambda	become	executable	instructions	in	the	member	functions	of	its	closure
class.

A	lambda	is	often	used	to	create	a	closure	that’s	used	only	as	an	argument	to	a
function.	That’s	the	case	in	the	call	to	std::find_if	above.	However,	closures
may	generally	be	copied,	so	it’s	usually	possible	to	have	multiple	closures	of	a
closure	type	corresponding	to	a	single	lambda.	For	example,	in	the	following
code,	{	int	x;	//	x	is	local	variable	…	auto	c1	=	//	c1	is	copy	of	the	[x](int	y)	{
return	x	*	y	>	55;	};	//	closure	produced	//	by	the	lambda	auto	c2	=	c1;	//	c2	is
copy	of	c1	auto	c3	=	c2;	//	c3	is	copy	of	c2	…	}

c1,	c2,	and	c3	are	all	copies	of	the	closure	produced	by	the	lambda.

Informally,	it’s	perfectly	acceptable	to	blur	the	lines	between	lambdas,	closures,
and	closure	classes.	But	in	the	Items	that	follow,	it’s	often	important	to
distinguish	what	exists	during	compilation	(lambdas	and	closure	classes),	what
exists	at	runtime	(closures),	and	how	they	relate	to	one	another.

Item	31: Avoid	default	capture	modes.
There	are	two	default	capture	modes	in	C++11:	by-reference	and	by-value.
Default	by-reference	capture	can	lead	to	dangling	references.	Default	by-value
capture	lures	you	into	thinking	you’re	immune	to	that	problem	(you’re	not),	and
it	lulls	you	into	thinking	your	closures	are	self-contained	(they	may	not	be).

That’s	the	executive	summary	for	this	Item.	If	you’re	more	engineer	than
executive,	you’ll	want	some	meat	on	those	bones,	so	let’s	start	with	the	danger
of	default	by-reference	capture.

A	by-reference	capture	causes	a	closure	to	contain	a	reference	to	a	local	variable
or	to	a	parameter	that’s	available	in	the	scope	where	the	lambda	is	defined.	If	the
lifetime	of	a	closure	created	from	that	lambda	exceeds	the	lifetime	of	the	local
variable	or	parameter,	the	reference	in	the	closure	will	dangle.	For	example,
suppose	we	have	a	container	of	filtering	functions,	each	of	which	takes	an	int
and	returns	a	bool	indicating	whether	a	passed-in	value	satisfies	the	filter:	using
FilterContainer	=	//	see	Item	9	for	std::vector<std::function<bool(int)>>;	//
"using",	Item	2	//	for	std::function	FilterContainer	filters;	//	filtering	funcs

We	could	add	a	filter	for	multiples	of	5	like	this:	filters.emplace_back(//	see
Item	42	for	[](int	value)	{	return	value	%	5	==	0;	}	//	info	on);	//	emplace_back

However,	it	may	be	that	we	need	to	compute	the	divisor	at	runtime,	i.e.,	we	can’t
just	hard-code	5	into	the	lambda.	So	adding	the	filter	might	look	more	like	this:
void	addDivisorFilter()	{	auto	calc1	=	computeSomeValue1();	auto	calc2	=
computeSomeValue2();	auto	divisor	=	computeDivisor(calc1,	calc2);
filters.emplace_back(//	danger!	[&](int	value)	{	return	value	%	divisor	==	0;	}	//
ref	to);	//	divisor	}	//	will	//	dangle!

This	code	is	a	problem	waiting	to	happen.	The	lambda	refers	to	the	local	variable
divisor,	but	that	variable	ceases	to	exist	when	addDivisorFilter	returns.
That’s	immediately	after	filters.emplace_back	returns,	so	the	function	that’s
added	to	filters	is	essentially	dead	on	arrival.	Using	that	filter	yields
undefined	behavior	from	virtually	the	moment	it’s	created.

Now,	the	same	problem	would	exist	if	divisor’s	by-reference	capture	were
explicit,	filters.emplace_back([&divisor](int	value)	//	danger!	ref	to	{	return
value	%	divisor	==	0;	}	//	divisor	will);	//	still	dangle!

but	with	an	explicit	capture,	it’s	easier	to	see	that	the	viability	of	the	lambda	is
dependent	on	divisor’s	lifetime.	Also,	writing	out	the	name,	“divisor,”	reminds
us	to	ensure	that	divisor	lives	at	least	as	long	as	the	lambda’s	closures.	That’s	a
more	specific	memory	jog	than	the	general	“make	sure	nothing	dangles”
admonition	that	“[&]”	conveys.

If	you	know	that	a	closure	will	be	used	immediately	(e.g.,	by	being	passed	to	an
STL	algorithm)	and	won’t	be	copied,	there	is	no	risk	that	references	it	holds	will
outlive	the	local	variables	and	parameters	in	the	environment	where	its	lambda	is
created.	In	that	case,	you	might	argue,	there’s	no	risk	of	dangling	references,
hence	no	reason	to	avoid	a	default	by-reference	capture	mode.	For	example,	our
filtering	lambda	might	be	used	only	as	an	argument	to	C++11’s	std::all_of,
which	returns	whether	all	elements	in	a	range	satisfy	a	condition:
template<typename	C>	void	workWithContainer(const	C&	container)	{	auto
calc1	=	computeSomeValue1();	//	as	above	auto	calc2	=	computeSomeValue2();
//	as	above	auto	divisor	=	computeDivisor(calc1,	calc2);	//	as	above	using
ContElemT	=	typename	C::value_type;	//	type	of	//	elements	in	//	container	using
std::begin;	//	for	using	std::end;	//	genericity;	//	see	Item	13	if	(std::all_of(//	if	all

values	begin(container),	end(container),	//	in	container	[&](const	ContElemT&
value)	//	are	multiples	{	return	value	%	divisor	==	0;	})	//	of	divisor...)	{	…	//
they	are...	}	else	{	…	//	at	least	one	}	//	isn't...	}

It’s	true,	this	is	safe,	but	its	safety	is	somewhat	precarious.	If	the	lambda	were
found	to	be	useful	in	other	contexts	(e.g.,	as	a	function	to	be	added	to	the
filters	container)	and	was	copy-and-pasted	into	a	context	where	its	closure
could	outlive	divisor,	you’d	be	back	in	dangle-city,	and	there’d	be	nothing	in
the	capture	clause	to	specifically	remind	you	to	perform	lifetime	analysis	on
divisor.

Long-term,	it’s	simply	better	software	engineering	to	explicitly	list	the	local
variables	and	parameters	that	a	lambda	depends	on.

By	the	way,	the	ability	to	use	auto	in	C++14	lambda	parameter	specifications
means	that	the	code	above	can	be	simplified	in	C++14.	The	ContElemT	typedef
can	be	eliminated,	and	the	if	condition	can	be	revised	as	follows:	if
(std::all_of(begin(container),	end(container),	[&](const	auto&	value)	//	C++14	{
return	value	%	divisor	==	0;	}))

One	way	to	solve	our	problem	with	divisor	would	be	a	default	by-value
capture	mode.	That	is,	we	could	add	the	lambda	to	filters	as	follows:
filters.emplace_back(//	now	[=](int	value)	{	return	value	%	divisor	==	0;	}	//
divisor);	//	can't	//	dangle

This	suffices	for	this	example,	but,	in	general,	default	by-value	capture	isn’t	the
anti-dangling	elixir	you	might	imagine.	The	problem	is	that	if	you	capture	a
pointer	by	value,	you	copy	the	pointer	into	the	closures	arising	from	the	lambda,
but	you	don’t	prevent	code	outside	the	lambda	from	deleteing	the	pointer	and
causing	your	copies	to	dangle.

“That	could	never	happen!”	you	protest.	“Having	read	Chapter	4,	I	worship	at
the	house	of	smart	pointers.	Only	loser	C++98	programmers	use	raw	pointers
and	delete.”	That	may	be	true,	but	it’s	irrelevant	because	you	do,	in	fact,	use
raw	pointers,	and	they	can,	in	fact,	be	deleted	out	from	under	you.	It’s	just	that
in	your	modern	C++	programming	style,	there’s	often	little	sign	of	it	in	the
source	code.

Suppose	one	of	the	things	Widgets	can	do	is	add	entries	to	the	container		of

filters:	class	Widget	{	public:	…	//	ctors,	etc.	void	addFilter()	const;	//	add	an
entry	to	filters	private:	int	divisor;	//	used	in	Widget's	filter	};

Widget::addFilter	could	be	defined	like	this:	void	Widget::addFilter()	const	{
filters.emplace_back([=](int	value)	{	return	value	%	divisor	==	0;	});	}

To	the	blissfully	uninitiated,	this	looks	like	safe	code.	The	lambda	is	dependent
on	divisor,	but	the	default	by-value	capture	mode	ensures	that	divisor	is
copied	into	any	closures	arising	from	the	lambda,	right?

Wrong.	Completely	wrong.	Horribly	wrong.	Fatally	wrong.

Captures	apply	only	to	non-static	local	variables	(including	parameters)	visible
in	the	scope	where	the	lambda	is	created.	In	the	body	of	Widget::addFilter,
divisor	is	not	a	local	variable,	it’s	a	data	member	of	the	Widget	class.	It	can’t
be	captured.	Yet	if	the	default	capture	mode	is	eliminated,	the	code	won’t
compile:	void	Widget::addFilter()	const	{	filters.emplace_back(//	error!	[](int
value)	{	return	value	%	divisor	==	0;	}	//	divisor);	//	not	}	//	available

Furthermore,	if	an	attempt	is	made	to	explicitly	capture	divisor	(either	by	value
or	by	reference—it	doesn’t	matter),	the	capture	won’t	compile,	because	divisor
isn’t	a	local	variable	or	a	parameter:	void	Widget::addFilter()	const	{
filters.emplace_back([divisor](int	value)	//	error!	no	local	{	return	value	%
divisor	==	0;	}	//	divisor	to	capture);	}

So	if	the	default	by-value	capture	clause	isn’t	capturing	divisor,	yet	without	the
default	by-value	capture	clause,	the	code	won’t	compile,	what’s	going	on?

The	explanation	hinges	on	the	implicit	use	of	a	raw	pointer:	this.	Every	non-
static	member	function	has	a	this	pointer,	and	you	use	that	pointer	every	time
you	mention	a	data	member	of	the	class.	Inside	any	Widget	member	function,
for	example,	compilers	internally	replace	uses	of	divisor	with	this->divisor.
In	the	version	of	Widget::addFilter	with	a	default	by-value	capture,	void
Widget::addFilter()	const	{	filters.emplace_back([=](int	value)	{	return	value	%
divisor	==	0;	});	}

what’s	being	captured	is	the	Widget’s	this	pointer,	not	divisor.	Compilers
treat	the	code	as	if	it	had	been	written	as	follows:	void	Widget::addFilter()	const
{	auto	currentObjectPtr	=	this;	filters.emplace_back([currentObjectPtr](int
value)	{	return	value	%	currentObjectPtr->divisor	==	0;	});	}

Understanding	this	is	tantamount	to	understanding	that	the	viability	of	the
closures	arising	from	this	lambda	is	tied	to	the	lifetime	of	the	Widget	whose
this	pointer	they	contain	a	copy	of.	In	particular,	consider	this	code,	which,	in
accord	with	Chapter	4,	uses	pointers	of	only	the	smart	variety:	using
FilterContainer	=	//	as	before	std::vector<std::function<bool(int)>>;
FilterContainer	filters;	//	as	before	void	doSomeWork()	{	auto	pw	=	//	create
Widget;	see	std::make_unique<Widget>();	//	Item	21	for	//	std::make_unique
pw->addFilter();	//	add	filter	that	uses	//	Widget::divisor	…	}	//	destroy	Widget;
filters	//	now	holds	dangling	pointer!

When	a	call	is	made	to	doSomeWork,	a	filter	is	created	that	depends	on	the
Widget	object	produced	by	std::make_unique,	i.e.,	a	filter	that	contains	a	copy
of	a	pointer	to	that	Widget—the	Widget’s	this	pointer.	This	filter	is	added	to
filters,	but	when	doSomeWork	finishes,	the	Widget	is	destroyed	by	the
std::unique_ptr	managing	its	lifetime	(see	Item	18).	From	that	point	on,
filters	contains	an	entry	with	a	dangling	pointer.

This	particular	problem	can	be	solved	by	making	a	local	copy	of	the	data
member	you	want	to	capture	and	then	capturing	the	copy:	void
Widget::addFilter()	const	{	auto	divisorCopy	=	divisor;	//	copy	data	member
filters.emplace_back([divisorCopy](int	value)	//	capture	the	copy	{	return	value
%	divisorCopy	==	0;	}	//	use	the	copy);	}

To	be	honest,	if	you	take	this	approach,	default	by-value	capture	will	work,	too,
void	Widget::addFilter()	const	{	auto	divisorCopy	=	divisor;	//	copy	data
member	filters.emplace_back([=](int	value)	//	capture	the	copy	{	return	value	%
divisorCopy	==	0;	}	//	use	the	copy);	}

but	why	tempt	fate?	A	default	capture	mode	is	what	made	it	possible	to
accidentally	capture	this	when	you	thought	you	were	capturing	divisor	in	the
first	place.

In	C++14,	a	better	way	to	capture	a	data	member	is	to	use	generalized	lambda
capture	(see	Item	32):	void	Widget::addFilter()	const	{	filters.emplace_back(//
C++14:	[divisor	=	divisor](int	value)	//	copy	divisor	to	closure	{	return	value	%
divisor	==	0;	}	//	use	the	copy);	}

There’s	no	such	thing	as	a	default	capture	mode	for	a	generalized	lambda
capture,	however,	so	even	in	C++14,	the	advice	of	this	Item—to	avoid	default
capture	modes—stands.

capture	modes—stands.

An	additional	drawback	to	default	by-value	captures	is	that	they	can	suggest	that
the	corresponding	closures	are	self-contained	and	insulated	from	changes	to	data
outside	the	closures.	In	general,	that’s	not	true,	because	lambdas	may	be
dependent	not	just	on	local	variables	and	parameters	(which	may	be	captured),
but	also	on	objects	with	static	storage	duration.	Such	objects	are	defined	at
global	or	namespace	scope	or	are	declared	static	inside	classes,	functions,	or
files.	These	objects	can	be	used	inside	lambdas,	but	they	can’t	be	captured.	Yet
specification	of	a	default	by-value	capture	mode	can	lend	the	impression	that
they	are.	Consider	this	revised	version	of	the	addDivisorFilter	function	we
saw	earlier:	void	addDivisorFilter()	{	static	auto	calc1	=	computeSomeValue1();
//	now	static	static	auto	calc2	=	computeSomeValue2();	//	now	static	static	auto
divisor	=	//	now	static	computeDivisor(calc1,	calc2);	filters.emplace_back([=]
(int	value)	//	captures	nothing!	{	return	value	%	divisor	==	0;	}	//	refers	to	above
static);	++divisor;	//	modify	divisor	}

A	casual	reader	of	this	code	could	be	forgiven	for	seeing	“[=]”	and	thinking,
“Okay,	the	lambda	makes	a	copy	of	all	the	objects	it	uses	and	is	therefore	self-
contained.”	But	it’s	not	self-contained.	This	lambda	doesn’t	use	any	non-static
local	variables,	so	nothing	is	captured.	Rather,	the	code	for	the	lambda	refers	to
the	static	variable	divisor.	When,	at	the	end	of	each	invocation	of
addDivisorFilter,	divisor	is	incremented,	any	lambdas	that	have	been	added
to	filters	via	this	function	will	exhibit	new	behavior	(corresponding	to	the	new
value	of	divisor).	Practically	speaking,	this	lambda	captures	divisor	by
reference,	a	direct	contradiction	to	what	the	default	by-value	capture	clause
seems	to	imply.	If	you	stay	away	from	default	by-value	capture	clauses,	you
eliminate	the	risk	of	your	code	being	misread	in	this	way.

Things	to	Remember
Default	by-reference	capture	can	lead	to	dangling	references.

Default	by-value	capture	is	susceptible	to	dangling	pointers	(especially	this),	and	it
misleadingly	suggests	that	lambdas	are	self-contained.

Item	32: Use	init	capture	to	move	objects	into
closures.
Sometimes	neither	by-value	capture	nor	by-reference	capture	is	what	you	want.
If	you	have	a	move-only	object	(e.g.,	a	std::unique_ptr	or	a	std::future)
that	you	want	to	get	into	a	closure,	C++11	offers	no	way	to	do	it.	If	you	have	an
object	that’s	expensive	to	copy	but	cheap	to	move	(e.g.,	most	containers	in	the
Standard	Library),	and	you’d	like	to	get	that	object	into	a	closure,	you’d	much
rather	move	it	than	copy	it.	Again,	however,	C++11	gives	you	no	way	to
accomplish	that.

But	that’s	C++11.	C++14	is	a	different	story.	It	offers	direct	support	for	moving
objects	into	closures.	If	your	compilers	are	C++14-compliant,	rejoice	and	read
on.	If	you’re	still	working	with	C++11	compilers,	you	should	rejoice	and	read
on,	too,	because	there	are	ways	to	approximate	move	capture	in	C++11.

The	absence	of	move	capture	was	recognized	as	a	shortcoming	even	as	C++11
was	adopted.	The	straightforward	remedy	would	have	been	to	add	it	in	C++14,
but	the	Standardization	Committee	chose	a	different	path.	They	introduced	a
new	capture	mechanism	that’s	so	flexible,	capture-by-move	is	only	one	of	the
tricks	it	can	perform.	The	new	capability	is	called	init	capture.	It	can	do	virtually
everything	the	C++11	capture	forms	can	do,	plus	more.	The	one	thing	you	can’t
express	with	an	init	capture	is	a	default	capture	mode,	but	Item	31	explains	that
you	should	stay	away	from	those,	anyway.	(For	situations	covered	by	C++11
captures,	init	capture’s	syntax	is	a	bit	wordier,	so	in	cases	where	a	C++11
capture	gets	the	job	done,	it’s	perfectly	reasonable	to	use	it.)	Using	an	init
capture	makes	it	possible	for	you	to	specify

1.	 the	name	of	a	data	member	in	the	closure	class	generated	from	the
lambda	and

2.	 an	expression	initializing	that	data	member.

Here’s	how	you	can	use	init	capture	to	move	a	std::unique_ptr	into	a	closure:
class	Widget	{	//	some	useful	type	public:	…	bool	isValidated()	const;	bool
isProcessed()	const;	bool	isArchived()	const;	private:	…	};	auto	pw	=
std::make_unique<Widget>();	//	create	Widget;	see	//	Item	21	for	info	on	//
std::make_unique	…	//	configure	*pw	auto	func	=	[pw	=	std::move(pw)]	//	init

data	mbr	{	return	pw->isValidated()	//	in	closure	w/	&&	pw->isArchived();	};	//
std::move(pw)

The	highlighted	text	comprises	the	init	capture.	To	the	left	of	the	“=”	is	the	name
of	the	data	member	in	the	closure	class	you’re	specifying,	and	to	the	right	is	the
initializing	expression.	Interestingly,	the	scope	on	the	left	of	the	“=”	is	different
from	the	scope	on	the	right.	The	scope	on	the	left	is	that	of	the	closure	class.	The
scope	on	the	right	is	the	same	as	where	the	lambda	is	being	defined.	In	the
example	above,	the	name	pw	on	the	left	of	the	“=”	refers	to	a	data	member	in	the
closure	class,	while	the	name	pw	on	the	right	refers	to	the	object	declared	above
the	lambda,	i.e.,	the	variable	initialized	by	the	call	to	std::make_unique.	So	“pw
=	std::move(pw)”	means	“create	a	data	member	pw	in	the	closure,	and	initialize
that	data	member	with	the	result	of	applying	std::move	to	the	local	variable
pw.”

As	usual,	code	in	the	body	of	the	lambda	is	in	the	scope	of	the	closure	class,	so
uses	of	pw	there	refer	to	the	closure	class	data	member.

The	comment	“configure	*pw”	in	this	example	indicates	that	after	the	Widget	is
created	by	std::make_unique	and	before	the	std::unique_ptr	to	that	Widget
is	captured	by	the	lambda,	the	Widget	is	modified	in	some	way.	If	no	such
configuration	is	necessary,	i.e.,	if	the	Widget	created	by	std::make_unique	is
in	a	state	suitable	to	be	captured	by	the	lambda,	the	local	variable	pw	is
unnecessary,	because	the	closure	class’s	data	member	can	be	directly	initialized
by	std::make_unique:	auto	func	=	[pw	=	std::make_unique<Widget>()]	//	init
data	mbr	{	return	pw->isValidated()	//	in	closure	w/	&&	pw->isArchived();	};	//
result	of	call	//	to	make_unique

This	should	make	clear	that	the	C++14	notion	of	“capture”	is	considerably
generalized	from	C++11,	because	in	C++11,	it’s	not	possible	to	capture	the
result	of	an	expression.	As	a	result,	another	name	for	init	capture	is	generalized
lambda	capture.

But	what	if	one	or	more	of	the	compilers	you	use	lacks	support	for	C++14’s	init
capture?	How	can	you	accomplish	move	capture	in	a	language	lacking	support
for	move	capture?

Remember	that	a	lambda	expression	is	simply	a	way	to	cause	a	class	to	be

generated	and	an	object	of	that	type	to	be	created.	There	is	nothing	you	can	do
with	a	lambda	that	you	can’t	do	by	hand.	The	example	C++14	code	we	just	saw,
for	example,	can	be	written	in	C++11	like	this:	class	IsValAndArch	{	//	"is
validated	public:	//	and	archived"	using	DataType	=	std::unique_ptr<Widget>;
explicit	IsValAndArch(DataType&&	ptr)	//	Item	25	explains	:
pw(std::move(ptr))	{}	//	use	of	std::move	bool	operator()()	const	{	return	pw-
>isValidated()	&&	pw->isArchived();	}	private:	DataType	pw;	};	auto	func	=
IsValAndArch(std::make_unique<Widget>());

That’s	more	work	than	writing	the	lambda,	but	it	doesn’t	change	the	fact	that	if
you	want	a	class	in	C++11	that	supports	move-initialization	of	its	data	members,
the	only	thing	between	you	and	your	desire	is	a	bit	of	time	with	your	keyboard.

If	you	want	to	stick	with	lambdas	(and	given	their	convenience,	you	probably
do),	move	capture	can	be	emulated	in	C++11	by

1.	 moving	the	object	to	be	captured	into	a	function	object	produced	by
std::bind	and

2.	 giving	the	lambda	a	reference	to	the	“captured”	object.

If	you’re	familiar	with	std::bind,	the	code	is	pretty	straightforward.	If	you’re
not	familiar	with	std::bind,	the	code	takes	a	little	getting	used	to,	but	it’s	worth
the	trouble.

Suppose	you’d	like	to	create	a	local	std::vector,	put	an	appropriate	set	of
values	into	it,	then	move	it	into	a	closure.	In	C++14,	this	is	easy:
std::vector<double>	data;	//	object	to	be	moved	//	into	closure	…	//	populate	data
auto	func	=	[data	=	std::move(data)]	//	C++14	init	capture	{	/*	uses	of	data	*/	};

I’ve	highlighted	key	parts	of	this	code:	the	type	of	object	you	want	to	move
(std::vector<double>),	the	name	of	that	object	(data),	and	the	initializing
expression	for	the	init	capture	(std::move(data)).	The	C++11	equivalent	is	as
follows,	where	I’ve	highlighted	the	same	key	things:	std::vector<double>	data;	//
as	above	…	//	as	above	auto	func	=	std::bind(//	C++11	emulation	[](const
std::vector<double>&	data)	//	of	init	capture	{	/*	uses	of	data	*/	},
std::move(data));

Like	lambda	expressions,	std::bind	produces	function	objects.	I	call	function

objects	returned	by	std::bind	bind	objects.	The	first	argument	to	std::bind	is
a	callable	object.	Subsequent	arguments	represent	values	to	be	passed	to	that
object.

A	bind	object	contains	copies	of	all	the	arguments	passed	to	std::bind.	For
each	lvalue	argument,	the	corresponding	object	in	the	bind	object	is	copy
constructed.	For	each	rvalue,	it’s	move	constructed.	In	this	example,	the	second
argument	is	an	rvalue	(the	result	of	std::move—see	Item	23),	so	data	is	move
constructed	into	the	bind	object.	This	move	construction	is	the	crux	of	move
capture	emulation,	because	moving	an	rvalue	into	a	bind	object	is	how	we	work
around	the	inability	to	move	an	rvalue	into	a	C++11	closure.

When	a	bind	object	is	“called”	(i.e.,	its	function	call	operator	is	invoked)	the
arguments	it	stores	are	passed	to	the	callable	object	originally	passed	to
std::bind.	In	this	example,	that	means	that	when	func	(the	bind	object)	is
called,	the	move-constructed	copy	of	data	inside	func	is	passed	as	an	argument
to	the	lambda	that	was	passed	to	std::bind.

This	lambda	is	the	same	as	the	lambda	we’d	use	in	C++14,	except	a	parameter,
data,	has	been	added	to	correspond	to	our	pseudo-move-captured	object.	This
parameter	is	an	lvalue	reference	to	the	copy	of	data	in	the	bind	object.	(It’s	not
an	rvalue	reference,	because	although	the	expression	used	to	initialize	the	copy
of	data	(“std::move(data)”)	is	an	rvalue,	the	copy	of	data	itself	is	an	lvalue.)
Uses	of	data	inside	the	lambda	will	thus	operate	on	the	move-constructed	copy
of	data	inside	the	bind	object.

By	default,	the	operator()	member	function	inside	the	closure	class	generated
from	a	lambda	is	const.	That	has	the	effect	of	rendering	all	data	members	in	the
closure	const	within	the	body	of	the	lambda.	The	move-constructed	copy	of
data	inside	the	bind	object	is	not	const,	however,	so	to	prevent	that	copy	of
data	from	being	modified	inside	the	lambda,	the	lambda’s	parameter	is	declared
reference-to-const.	If	the	lambda	were	declared	mutable,	operator()	in	its
closure	class	would	not	be	declared	const,	and	it	would	be	appropriate	to	omit
const	in	the	lambda’s	parameter	declaration:	auto	func	=	std::bind(//	C++11
emulation	[](std::vector<double>&	data)	mutable	//	of	init	capture	{	/*	uses	of
data	*/	},	//	for	mutable	lambda	std::move(data));

Because	a	bind	object	stores	copies	of	all	the	arguments	passed	to	std::bind,
the	bind	object	in	our	example	contains	a	copy	of	the	closure	produced	by	the
lambda	that	is	its	first	argument.	The	lifetime	of	the	closure	is	therefore	the	same
as	the	lifetime	of	the	bind	object.	That’s	important,	because	it	means	that	as	long
as	the	closure	exists,	the	bind	object	containing	the	pseudo-move-captured	object
exists,	too.

If	this	is	your	first	exposure	to	std::bind,	you	may	need	to	consult	your
favorite	C++11	reference	before	all	the	details	of	the	foregoing	discussion	fall
into	place.	Even	if	that’s	the	case,	these	fundamental	points	should	be	clear:

It’s	not	possible	to	move-construct	an	object	into	a	C++11	closure,	but	it	is
possible	to	move-construct	an	object	into	a	C++11	bind	object.

Emulating	move-capture	in	C++11	consists	of	move-constructing	an	object
into	a	bind	object,	then	passing	the	move-constructed	object	to	the	lambda	by
reference.

Because	the	lifetime	of	the	bind	object	is	the	same	as	that	of	the	closure,	it’s
possible	to	treat	objects	in	the	bind	object	as	if	they	were	in	the	closure.

As	a	second	example	of	using	std::bind	to	emulate	move	capture,	here’s	the
C++14	code	we	saw	earlier	to	create	a	std::unique_ptr	in	a	closure:	auto	func
=	[pw	=	std::make_unique<Widget>()]	//	as	before,	{	return	pw->isValidated()	//
create	pw	&&	pw->isArchived();	};	//	in	closure

And	here’s	the	C++11	emulation:

auto func = std::bind(

 [](const std::unique_ptr<Widget>& pw)

 { return pw->isValidated()

 && pw->isArchived(); },

 std::make_unique<Widget>()

);

It’s	ironic	that	I’m	showing	how	to	use	std::bind	to	work	around	limitations	in
C++11	lambdas,	because	in	Item	34,	I	advocate	the	use	of	lambdas	over
std::bind.	However,	that	Item	explains	that	there	are	some	cases	in	C++11
where	std::bind	can	be	useful,	and	this	is	one	of	them.	(In	C++14,	features

such	as	init	capture	and	auto	parameters	eliminate	those	cases.)

Things	to	Remember
Use	C++14’s	init	capture	to	move	objects	into	closures.

In	C++11,	emulate	init	capture	via	hand-written	classes	or	std::bind.

Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.
One	of	the	most	exciting	features	of	C++14	is	generic	lambdas—lambdas	that
use	auto	in	their	parameter	specifications.	The	implementation	of	this	feature	is
straightforward:	operator()	in	the	lambda’s	closure	class	is	a	template.	Given
this	lambda,	for	example,	auto	f	=	[](auto	x){	return	func(normalize(x));	};

the	closure	class’s	function	call	operator	looks	like	this:	class
SomeCompilerGeneratedClassName	{	public:	template<typename	T>	//	see	Item
3	for	auto	operator()(T	x)	const	//	auto	return	type	{	return	func(normalize(x));	}
…	//	other	closure	class	};	//	functionality

In	this	example,	the	only	thing	the	lambda	does	with	its	parameter	x	is	forward	it
to	normalize.	If	normalize	treats	lvalues	differently	from	rvalues,	this	lambda
isn’t	written	properly,	because	it	always	passes	an	lvalue	(the	parameter	x)	to
normalize,	even	if	the	argument	that	was	passed	to	the	lambda	was	an	rvalue.

The	correct	way	to	write	the	lambda	is	to	have	it	perfect-forward	x	to
normalize.	Doing	that	requires	two	changes	to	the	code.	First,	x	has	to	become
a	universal	reference	(see	Item	24),	and	second,	it	has	to	be	passed	to	normalize
via	std::forward	(see	Item	25).	In	concept,	these	are	trivial	modifications:	auto
f	=	[](auto&&	x)	{	return	func(normalize(std::forward<???>(x)));	};

Between	concept	and	realization,	however,	is	the	question	of	what	type	to	pass
to	std::forward,	i.e.,	to	determine	what	should	go	where	I’ve	written	???
above.

Normally,	when	you	employ	perfect	forwarding,	you’re	in	a	template	function

taking	a	type	parameter	T,	so	you	just	write	std::forward<T>.	In	the	generic
lambda,	though,	there’s	no	type	parameter	T	available	to	you.	There	is	a	T	in	the
templatized	operator()	inside	the	closure	class	generated	by	the	lambda,	but
it’s	not	possible	to	refer	to	it	from	the	lambda,	so	it	does	you	no	good.

Item	28	explains	that	if	an	lvalue	argument	is	passed	to	a	universal	reference
parameter,	the	type	of	that	parameter	becomes	an	lvalue	reference.	If	an	rvalue	is
passed,	the	parameter	becomes	an	rvalue	reference.	This	means	that	in	our
lambda,	we	can	determine	whether	the	argument	passed	was	an	lvalue	or	an
rvalue	by	inspecting	the	type	of	the	parameter	x.	decltype	gives	us	a	way	to	do
that	(see	Item	3).	If	an	lvalue	was	passed	in,	decltype(x)	will	produce	a	type
that’s	an	lvalue	reference.	If	an	rvalue	was	passed,	decltype(x)	will	produce	an
rvalue	reference	type.

Item	28	also	explains	that	when	calling	std::forward,	convention	dictates	that
the	type	argument	be	an	lvalue	reference	to	indicate	an	lvalue	and	a	non-
reference	to	indicate	an	rvalue.	In	our	lambda,	if	x	is	bound	to	an	lvalue,
decltype(x)	will	yield	an	lvalue	reference.	That	conforms	to	convention.
However,	if	x	is	bound	to	an	rvalue,	decltype(x)	will	yield	an	rvalue	reference
instead	of	the	customary	non-reference.

But	look	at	the	sample	C++14	implementation	for	std::forward	from	Item	28:
template<typename	T>	//	in	namespace	T&&	forward(remove_reference_t<T>&
param)	//	std	{	return	static_cast<T&&>(param);	}

If	client	code	wants	to	perfect-forward	an	rvalue	of	type	Widget,	it	normally
instantiates	std::forward	with	the	type	Widget	(i.e,	a	non-reference	type),	and
the	std::forward	template	yields	this	function:	Widget&&	forward(Widget&
param)	//	instantiation	of	{	//	std::forward	when	return	static_cast<Widget&&>
(param);	//	T	is	Widget	}

But	consider	what	would	happen	if	the	client	code	wanted	to	perfect-forward	the
same	rvalue	of	type	Widget,	but	instead	of	following	the	convention	of
specifying	T	to	be	a	non-reference	type,	it	specified	it	to	be	an	rvalue	reference.
That	is,	consider	what	would	happen	if	T	were	specified	to	be	Widget&&.	After
initial	instantiation	of	std::forward	and	application	of
std::remove_reference_t,	but	before	reference	collapsing	(once	again,	see

Item	28),	std::forward	would	look	like	this:	Widget&&	&&	forward(Widget&
param)	//	instantiation	of	{	//	std::forward	when	return	static_cast<Widget&&
&&>(param);	//	T	is	Widget&&	}	//	(before	reference-	//	collapsing)

Applying	the	reference-collapsing	rule	that	an	rvalue	reference	to	an	rvalue
reference	becomes	a	single	rvalue	reference,	this	instantiation	emerges:
Widget&&	forward(Widget&	param)	//	instantiation	of	{	//	std::forward	when
return	static_cast<Widget&&>(param);	//	T	is	Widget&&	}	//	(after	reference-	//
collapsing)

If	you	compare	this	instantiation	with	the	one	that	results	when	std::forward	is
called	with	T	set	to	Widget,	you’ll	see	that	they’re	identical.	That	means	that
instantiating	std::forward	with	an	rvalue	reference	type	yields	the	same	result
as	instantiating	it	with	a	non-reference	type.

That’s	wonderful	news,	because	decltype(x)	yields	an	rvalue	reference	type
when	an	rvalue	is	passed	as	an	argument	to	our	lambda’s	parameter	x.	We
established	above	that	when	an	lvalue	is	passed	to	our	lambda,	decltype(x)
yields	the	customary	type	to	pass	to	std::forward,	and	now	we	realize	that	for
rvalues,	decltype(x)	yields	a	type	to	pass	to	std::forward	that’s	not
conventional,	but	that	nevertheless	yields	the	same	outcome	as	the	conventional
type.	So	for	both	lvalues	and	rvalues,	passing	decltype(x)	to	std::forward
gives	us	the	result	we	want.	Our	perfect-forwarding	lambda	can	therefore	be
written	like	this:	auto	f	=	[](auto&&	param)	{	return
func(normalize(std::forward<decltype(param)>(param)));	};

From	there,	it’s	just	a	hop,	skip,	and	six	dots	to	a	perfect-forwarding	lambda	that
accepts	not	just	a	single	parameter,	but	any	number	of	parameters,	because
C++14	lambdas	can	also	be	variadic:	auto	f	=	[](auto&&...	params)	{	return
func(normalize(std::forward<decltype(params)>(params)...));	};

Things	to	Remember
Use	decltype	on	auto&&	parameters	to	std::forward	them.

Item	34: Prefer	lambdas	to	std::bind.
std::bind	is	the	C++11	successor	to	C++98’s	std::bind1st	and
std::bind2nd,	but,	informally,	it’s	been	part	of	the	Standard	Library	since
2005.	That’s	when	the	Standardization	Committee	adopted	a	document	known
as	TR1,	which	included	bind’s	specification.	(In	TR1,	bind	was	in	a	different
namespace,	so	it	was	std::tr1::bind,	not	std::bind,	and	a	few	interface
details	were	different.)	This	history	means	that	some	programmers	have	a	decade
or	more	of	experience	using	std::bind.	If	you’re	one	of	them,	you	may	be
reluctant	to	abandon	a	tool	that’s	served	you	well.	That’s	understandable,	but	in
this	case,	change	is	good,	because	in	C++11,	lambdas	are	almost	always	a	better
choice	than	std::bind.	As	of	C++14,	the	case	for	lambdas	isn’t	just	stronger,
it’s	downright	ironclad.

This	Item	assumes	that	you’re	familiar	with	std::bind.	If	you’re	not,	you’ll
want	to	acquire	a	basic	understanding	before	continuing.	Such	an	understanding
is	worthwhile	in	any	case,	because	you	never	know	when	you	might	encounter
uses	of	std::bind	in	a	code	base	you	have	to	read	or	maintain.

As	in	Item	32,	I	refer	to	the	function	objects	returned	from	std::bind	as	bind
objects.

The	most	important	reason	to	prefer	lambdas	over	std::bind	is	that	lambdas	are
more	readable.	Suppose,	for	example,	we	have	a	function	to	set	up	an	audible
alarm:	//	typedef	for	a	point	in	time	(see	Item	9	for	syntax)	using	Time	=
std::chrono::steady_clock::time_point;	//	see	Item	10	for	"enum	class"	enum
class	Sound	{	Beep,	Siren,	Whistle	};	//	typedef	for	a	length	of	time	using
Duration	=	std::chrono::steady_clock::duration;	//	at	time	t,	make	sound	s	for
duration	d	void	setAlarm(Time	t,	Sound	s,	Duration	d);

Further	suppose	that	at	some	point	in	the	program,	we’ve	determined	we’ll	want
an	alarm	that	will	go	off	an	hour	after	it’s	set	and	that	will	stay	on	for	30
seconds.	The	alarm	sound,	however,	remains	undecided.	We	can	write	a	lambda
that	revises	setAlarm’s	interface	so	that	only	a	sound	needs	to	be	specified:	//
setSoundL	("L"	for	"lambda")	is	a	function	object	allowing	a	//	sound	to	be
specified	for	a	30-sec	alarm	to	go	off	an	hour	//	after	it's	set	auto	setSoundL	=	[]
(Sound	s)	{	//	make	std::chrono	components	available	w/o	qualification	using
namespace	std::chrono;	setAlarm(steady_clock::now()	+	hours(1),	//	alarm	to	go

off	s,	//	in	an	hour	for	seconds(30));	//	30	seconds	};

I’ve	highlighted	the	call	to	setAlarm	inside	the	lambda.	This	is	a	normal-
looking	function	call,	and	even	a	reader	with	little	lambda	experience	can	see
that	the	parameter	s	passed	to	the	lambda	is	passed	as	an	argument	to	setAlarm.

We	can	streamline	this	code	in	C++14	by	availing	ourselves	of	the	standard
suffixes	for	seconds	(s),	milliseconds	(ms),	hours	(h),	etc.,	that	build	on	C++11’s
support	for	user-defined	literals.	These	suffixes	are	implemented	in	the
std::literals	namespace,	so	the	above	code	can	be	rewritten	as	follows:	auto
setSoundL	=	[](Sound	s)	{	using	namespace	std::chrono;	using	namespace
std::literals;	//	for	C++14	suffixes	setAlarm(steady_clock::now()	+	1h,	//	C++14,
but	s,	//	same	meaning	30s);	//	as	above	};

Our	first	attempt	to	write	the	corresponding	std::bind	call	is	below.	It	has	an
error	that	we’ll	fix	in	a	moment,	but	the	correct	code	is	more	complicated,	and
even	this	simplified	version	brings	out	some	important	issues:	using	namespace
std::chrono;	//	as	above	using	namespace	std::literals;	using	namespace
std::placeholders;	//	needed	for	use	of	"_1"	auto	setSoundB	=	//	"B"	for	"bind"
std::bind(setAlarm,	steady_clock::now()	+	1h,	//	incorrect!	see	below	_1,	30s);

I’d	like	to	highlight	the	call	to	setAlarm	here	as	I	did	in	the	lambda,	but	there’s
no	call	to	highlight.	Readers	of	this	code	simply	have	to	know	that	calling
setSoundB	invokes	setAlarm	with	the	time	and	duration	specified	in	the	call	to
std::bind.	To	the	uninitiated,	the	placeholder	“_1”	is	essentially	magic,	but
even	readers	in	the	know	have	to	mentally	map	from	the	number	in	that
placeholder	to	its	position	in	the	std::bind	parameter	list	in	order	to	understand
that	the	first	argument	in	a	call	to	setSoundB	is	passed	as	the	second	argument
to	setAlarm.	The	type	of	this	argument	is	not	identified	in	the	call	to
std::bind,	so	readers	have	to	consult	the	setAlarm	declaration	to	determine
what	kind	of	argument	to	pass	to	setSoundB.

But,	as	I	said,	the	code	isn’t	quite	right.	In	the	lambda,	it’s	clear	that	the
expression	“steady_clock::now()	+	1h”	is	an	argument	to	setAlarm.	It	will	be
evaluated	when	setAlarm	is	called.	That	makes	sense:	we	want	the	alarm	to	go
off	an	hour	after	invoking	setAlarm.	In	the	std::bind	call,	however,
“steady_clock::now()	+	1h”	is	passed	as	an	argument	to	std::bind,	not	to

setAlarm.	That	means	that	the	expression	will	be	evaluated	when	std::bind	is
called,	and	the	time	resulting	from	that	expression	will	be	stored	inside	the
resulting	bind	object.	As	a	consequence,	the	alarm	will	be	set	to	go	off	an	hour
after	the	call	to	std::bind,	not	an	hour	after	the	call	to	setAlarm!

Fixing	the	problem	requires	telling	std::bind	to	defer	evaluation	of	the
expression	until	setAlarm	is	called,	and	the	way	to	do	that	is	to	nest	a	second
call	to	std::bind	inside	the	first	one:	auto	setSoundB	=	std::bind(setAlarm,
std::bind(std::plus<>(),	steady_clock::now(),	1h),	_1,	30s);

If	you’re	familiar	with	the	std::plus	template	from	C++98,	you	may	be
surprised	to	see	that	in	this	code,	no	type	is	specified	between	the	angle	brackets,
i.e.,	the	code	contains	“std::plus<>”,	not	“std::plus<type>”.	In	C++14,	the
template	type	argument	for	the	standard	operator	templates	can	generally	be
omitted,	so	there’s	no	need	to	provide	it	here.	C++11	offers	no	such	feature,	so
the	C++11	std::bind	equivalent	to	the	lambda	is:	using	namespace	std::chrono;
//	as	above	using	namespace	std::placeholders;	auto	setSoundB	=
std::bind(setAlarm,	std::bind(std::plus<steady_clock::time_point>(),
steady_clock::now(),	hours(1)),	_1,	seconds(30));

If,	at	this	point,	the	lambda’s	not	looking	a	lot	more	attractive,	you	should
probably	have	your	eyesight	checked.

When	setAlarm	is	overloaded,	a	new	issue	arises.	Suppose	there’s	an	overload
taking	a	fourth	parameter	specifying	the	alarm	volume:	enum	class	Volume	{
Normal,	Loud,	LoudPlusPlus	};	void	setAlarm(Time	t,	Sound	s,	Duration	d,
Volume	v);

The	lambda	continues	to	work	as	before,	because	overload	resolution	chooses
the	three-argument	version	of	setAlarm:	auto	setSoundL	=	//	same	as	before	[]
(Sound	s)	{	using	namespace	std::chrono;	setAlarm(steady_clock::now()	+	1h,	//
fine,	calls	s,	//	3-arg	version	30s);	//	of	setAlarm	};

The	std::bind	call,	on	the	other	hand,	now	fails	to	compile:	auto	setSoundB	=
//	error!	which	std::bind(setAlarm,	//	setAlarm?	std::bind(std::plus<>(),
steady_clock::now(),	1h),	_1,	30s);

The	problem	is	that	compilers	have	no	way	to	determine	which	of	the	two
setAlarm	functions	they	should	pass	to	std::bind.	All	they	have	is	a	function

name,	and	the	name	alone	is	ambiguous.

To	get	the	std::bind	call	to	compile,	setAlarm	must	be	cast	to	the	proper
function	pointer	type:	using	SetAlarm3ParamType	=	void(*)(Time	t,	Sound	s,
Duration	d);	auto	setSoundB	=	//	now
std::bind(static_cast<SetAlarm3ParamType>(setAlarm),	//	okay
std::bind(std::plus<>(),	steady_clock::now(),	1h),	_1,	30s);

But	this	brings	up	another	difference	between	lambdas	and	std::bind.	Inside
the	function	call	operator	for	setSoundL	(i.e.,	the	function	call	operator	of	the
lambda’s	closure	class),	the	call	to	setAlarm	is	a	normal	function	invocation
that	can	be	inlined	by	compilers	in	the	usual	fashion:	setSoundL(Sound::Siren);
//	body	of	setAlarm	may	//	well	be	inlined	here

The	call	to	std::bind,	however,	passes	a	function	pointer	to	setAlarm,	and	that
means	that	inside	the	function	call	operator	for	setSoundB	(i.e.,	the	function	call
operator	for	the	bind	object),	the	call	to	setAlarm	takes	place	through	a	function
pointer.	Compilers	are	less	likely	to	inline	function	calls	through	function
pointers,	and	that	means	that	calls	to	setAlarm	through	setSoundB	are	less
likely	to	be	fully	inlined	than	those	through	setSoundL:
setSoundB(Sound::Siren);	//	body	of	setAlarm	is	less	//	likely	to	be	inlined	here

It’s	thus	possible	that	using	lambdas	generates	faster	code	than	using
std::bind.

The	setAlarm	example	involves	only	a	simple	function	call.	If	you	want	to	do
anything	more	complicated,	the	scales	tip	even	further	in	favor	of	lambdas.	For
example,	consider	this	C++14	lambda,	which	returns	whether	its	argument	is
between	a	minimum	value	(lowVal)	and	a	maximum	value	(highVal),	where
lowVal	and	highVal	are	local	variables:	auto	betweenL	=	[lowVal,	highVal]
(const	auto&	val)	//	C++14	{	return	lowVal	<=	val	&&	val	<=	highVal;	};

std::bind	can	express	the	same	thing,	but	the	construct	is	an	example	of	job
security	through	code	obscurity:	using	namespace	std::placeholders;	//	as	above
auto	betweenB	=	std::bind(std::logical_and<>(),	//	C++14
std::bind(std::less_equal<>(),	lowVal,	1),	std::bind(std::lessequal<>(),	_1,
highVal));

In	C++11,	we’d	have	to	specify	the	types	we	wanted	to	compare,	and	the

std::bind	call	would	then	look	like	this:	auto	betweenB	=	//	C++11	version
std::bind(std::logical_and<bool>(),	std::bind(std::less_equal<int>(),	lowVal,	1),
std::bind(std::lessequal<int>(),	_1,	highVal));

Of	course,	in	C++11,	the	lambda	couldn’t	take	an	auto	parameter,	so	it’d	have
to	commit	to	a	type,	too:	auto	betweenL	=	//	C++11	version	[lowVal,	highVal]
(int	val)	{	return	lowVal	<=	val	&&	val	<=	highVal;	};

Either	way,	I	hope	we	can	agree	that	the	lambda	version	is	not	just	shorter,	but
also	more	comprehensible	and	maintainable.

Earlier,	I	remarked	that	for	those	with	little	std::bind	experience,	its
placeholders	(e.g.,	_1,	_2,	etc.)	are	essentially	magic.	But	it’s	not	just	the
behavior	of	the	placeholders	that’s	opaque.	Suppose	we	have	a	function	to	create
compressed	copies	of	Widgets,	enum	class	CompLevel	{	Low,	Normal,	High	};
//	compression	//	level	Widget	compress(const	Widget&	w,	//	make	compressed
CompLevel	lev);	//	copy	of	w

and	we	want	to	create	a	function	object	that	allows	us	to	specify	how	much	a
particular	Widget	w	should	be	compressed.	This	use	of	std::bind	will	create
such	an	object:	Widget	w;	using	namespace	std::placeholders;	auto
compressRateB	=	std::bind(compress,	w,	_1);

Now,	when	we	pass	w	to	std::bind,	it	has	to	be	stored	for	the	later	call	to
compress.	It’s	stored	inside	the	object	compressRateB,	but	how	is	it	stored—by
value	or	by	reference?	It	makes	a	difference,	because	if	w	is	modified	between
the	call	to	std::bind	and	a	call	to	compressRateB,	storing	w	by	reference	will
reflect	the	changes,	while	storing	it	by	value	won’t.

The	answer	is	that	it’s	stored	by	value,14	but	the	only	way	to	know	that	is	to
memorize	how	std::bind	works;	there’s	no	sign	of	it	in	the	call	to	std::bind.
Contrast	that	with	a	lambda	approach,	where	whether	w	is	captured	by	value	or
by	reference	is	explicit:	auto	compressRateL	=	//	w	is	captured	by	[w]
(CompLevel	lev)	//	value;	lev	is	{	return	compress(w,	lev);	};	//	passed	by	value

Equally	explicit	is	how	parameters	are	passed	to	the	lambda.	Here,	it’s	clear	that
the	parameter	lev	is	passed	by	value.	Hence:
compressRateL(CompLevel::High);	//	arg	is	passed	//	by	value

But	in	the	call	to	the	object	resulting	from	std::bind,	how	is	the	argument

passed?

compressRateB(CompLevel::High); // how is arg

 // passed?

Again,	the	only	way	to	know	is	to	memorize	how	std::bind	works.	(The
answer	is	that	all	arguments	passed	to	bind	objects	are	passed	by	reference,
because	the	function	call	operator	for	such	objects	uses	perfect	forwarding.)
Compared	to	lambdas,	then,	code	using	std::bind	is	less	readable,	less
expressive,	and	possibly	less	efficient.	In	C++14,	there	are	no	reasonable	use
cases	for	std::bind.	In	C++11,	however,	std::bind	can	be	justified	in	two
constrained	situations:

Move	capture.	C++11	lambdas	don’t	offer	move	capture,	but	it	can	be
emulated	through	a	combination	of	a	lambda	and	std::bind.	For	details,
consult	Item	32,	which	also	explains	that	in	C++14,	lambdas’	support	for	init
capture	eliminates	the	need	for	the	emulation.

Polymorphic	function	objects.	Because	the	function	call	operator	on	a	bind
object	uses	perfect	forwarding,	it	can	accept	arguments	of	any	type	(modulo
the	restrictions	on	perfect	forwarding	described	in	Item	30).	This	can	be
useful	when	you	want	to	bind	an	object	with	a	templatized	function	call
operator.	For	example,	given	this	class,	class	PolyWidget	{	public:
template<typename	T>	void	operator()(const	T&	param);	…	};

std::bind	can	bind	a	PolyWidget	as	follows:	PolyWidget	pw;	auto
boundPW	=	std::bind(pw,	_1);

boundPW	can	then	be	called	with	different	types	of		arguments:
boundPW(1930);	//	pass	int	to	//	PolyWidget::operator()	boundPW(nullptr);	//
pass	nullptr	to	//	PolyWidget::operator()	boundPW("Rosebud");	//	pass	string
literal	to	//	PolyWidget::operator()

There	is	no	way	to	do	this	with	a	C++11	lambda.	In	C++14,	however,	it’s
easily	achieved	via	a	lambda	with	an	auto	parameter:	auto	boundPW	=	[pw]
(const	auto&	param)	//	C++14	{	pw(param);	};

These	are	edge	cases,	of	course,	and	they’re	transient	edge	cases	at	that,	because
compilers	supporting	C++14	lambdas	are	increasingly	common.

When	bind	was	unofficially	added	to	C++	in	2005,	it	was	a	big	improvement
over	its	1998	predecessors.	The	addition	of	lambda	support	to	C++11	rendered
std::bind	all	but	obsolete,	however,	and	as	of	C++14,	there	are	just	no	good
use	cases	for	it.

Things	to	Remember
Lambdas	are	more	readable,	more	expressive,	and	may	be	more	efficient	than	using
std::bind.

In	C++11	only,	std::bind	may	be	useful	for	implementing	move	capture	or	for	binding
objects	with	templatized	function	call	operators.

14	std::bind	always	copies	its	arguments,	but	callers	can	achieve	the	effect	of
having	an	argument	stored	by	reference	by	applying	std::ref	to	it.	The	result
of	 auto compressRateB = std::bind(compress, std::ref(w), _1);
is	that	compressRateB	acts	as	if	it	holds	a	reference	to	w,	rather	than	a	copy.

Chapter	7.	The	Concurrency	API

One	of	C++11’s	great	triumphs	is	the	incorporation	of	concurrency	into	the
language	and	library.	Programmers	familiar	with	other	threading	APIs	(e.g.,
pthreads	or	Windows	threads)	are	sometimes	surprised	at	the	comparatively
Spartan	feature	set	that	C++	offers,	but	that’s	because	a	great	deal	of	C++’s
support	for	concurrency	is	in	the	form	of	constraints	on	compiler-writers.	The
resulting	language	assurances	mean	that	for	the	first	time	in	C++’s	history,
programmers	can	write	multithreaded	programs	with	standard	behavior	across
all	platforms.	This	establishes	a	solid	foundation	on	which	expressive	libraries
can	be	built,	and	the	concurrency	elements	of	the	Standard	Library	(tasks,
futures,	threads,	mutexes,	condition	variables,	atomic	objects,	and	more)	are
merely	the	beginning	of	what	is	sure	to	become	an	increasingly	rich	set	of	tools
for	the	development	of	concurrent	C++	software.

In	the	Items	that	follow,	bear	in	mind	that	the	Standard	Library	has	two
templates	for	futures:	std::future	and	std::shared_future.	In	many	cases,
the	distinction	is	not	important,	so	I	often	simply	talk	about	futures,	by	which	I
mean	both	kinds.

Item	35: Prefer	task-based	programming	to
thread-based.
If	you	want	to	run	a	function	doAsyncWork	asynchronously,	you	have	two	basic
choices.	You	can	create	a	std::thread	and	run	doAsyncWork	on	it,	thus
employing	a	thread-based	approach:

int doAsyncWork();

std::thread t(doAsyncWork);

Or	you	can	pass	doAsyncWork	to	std::async,	a	strategy	known	as	task-based:

auto fut = std::async(doAsyncWork); // "fut" for "future"

In	such	calls,	the	function	object	passed	to	std::async	(e.g.,	doAsyncWork)	is
considered	a	task.

The	task-based	approach	is	typically	superior	to	its	thread-based	counterpart,	and
the	tiny	amount	of	code	we’ve	seen	already	demonstrates	some	reasons	why.
Here,	doAsyncWork	produces	a	return	value,	which	we	can	reasonably	assume
the	code	invoking	doAsyncWork	is	interested	in.	With	the	thread-based
invocation,	there’s	no	straightforward	way	to	get	access	to	it.	With	the	task-
based	approach,	it’s	easy,	because	the	future	returned	from	std::async	offers
the	get	function.	The	get	function	is	even	more	important	if	doAsyncWork	emits
an	exception,	because	get	provides	access	to	that,	too.	With	the	thread-based
approach,	if	doAsyncWork	throws,	the	program	dies	(via	a	call	to
std::terminate).

A	more	fundamental	difference	between	thread-based	and	task-based
programming	is	the	higher	level	of	abstraction	that	task-based	embodies.	It	frees
you	from	the	details	of	thread	management,	an	observation	that	reminds	me	that
I	need	to	summarize	the	three	meanings	of	“thread”	in	concurrent	C++	software:

Hardware	threads	are	the	threads	that	actually	perform	computation.
Contemporary	machine	architectures	offer	one	or	more	hardware	threads	per
CPU	core.

Software	threads	(also	known	as	OS	threads	or	system	threads)	are	the
threads	that	the	operating	system15	manages	across	all	processes	and
schedules	for	execution	on	hardware	threads.	It’s	typically	possible	to	create
more	software	threads	than	hardware	threads,	because	when	a	software	thread
is	blocked	(e.g.,	on	I/O	or	waiting	for	a	mutex	or	condition	variable),
throughput	can	be	improved	by	executing	other,	unblocked,	threads.

std::threads	are	objects	in	a	C++	process	that	act	as	handles	to	underlying
software	threads.	Some	std::thread	objects	represent	“null”	handles,	i.e.,
correspond	to	no	software	thread,	because	they’re	in	a	default-constructed
state	(hence	have	no	function	to	execute),	have	been	moved	from	(the	moved-
to	std::thread	then	acts	as	the	handle	to	the	underlying	software	thread),
have	been	joined	(the	function	they	were	to	run	has	finished),	or	have	been
detached	(the	connection	between	them	and	their	underlying	software	thread

has	been	severed).

Software	threads	are	a	limited	resource.	If	you	try	to	create	more	than	the	system
can	provide,	a	std::system_error	exception	is	thrown.	This	is	true	even	if	the
function	you	want	to	run	can’t	throw.	For	example,	even	if	doAsyncWork	is
noexcept,

int doAsyncWork() noexcept; // see Item 14 for noexcept

this	statement	could	result	in	an	exception:

std::thread t(doAsyncWork); // throws if no more

 // threads are available

Well-written	software	must	somehow	deal	with	this	possibility,	but	how?	One
approach	is	to	run	doAsyncWork	on	the	current	thread,	but	that	could	lead	to
unbalanced	loads	and,	if	the	current	thread	is	a	GUI	thread,	responsiveness
issues.	Another	option	is	to	wait	for	some	existing	software	threads	to	complete
and	then	try	to	create	a	new	std::thread	again,	but	it’s	possible	that	the
existing	threads	are	waiting	for	an	action	that	doAsyncWork	is	supposed	to
perform	(e.g.,	produce	a	result	or	notify	a	condition	variable).

Even	if	you	don’t	run	out	of	threads,	you	can	have	trouble	with	oversubscription.
That’s	when	there	are	more	ready-to-run	(i.e.,	unblocked)	software	threads	than
hardware	threads.	When	that	happens,	the	thread	scheduler	(typically	part	of	the
OS)	time-slices	the	software	threads	on	the	hardware.	When	one	thread’s	time-
slice	is	finished	and	another’s	begins,	a	context	switch	is	performed.	Such
context	switches	increase	the	overall	thread	management	overhead	of	the
system,	and	they	can	be	particularly	costly	when	the	hardware	thread	on	which	a
software	thread	is	scheduled	is	on	a	different	core	than	was	the	case	for	the
software	thread	during	its	last	time-slice.	In	that	case,	(1)	the	CPU	caches	are
typically	cold	for	that	software	thread	(i.e.,	they	contain	little	data	and	few
instructions	useful	to	it)	and	(2)	the	running	of	the	“new”	software	thread	on	that
core	“pollutes”	the	CPU	caches	for	“old”	threads	that	had	been	running	on	that
core	and	are	likely	to	be	scheduled	to	run	there	again.

Avoiding	oversubscription	is	difficult,	because	the	optimal	ratio	of	software	to
hardware	threads	depends	on	how	often	the	software	threads	are	runnable,	and

hardware	threads	depends	on	how	often	the	software	threads	are	runnable,	and
that	can	change	dynamically,	e.g.,	when	a	program	goes	from	an	I/O-heavy
region	to	a	computation-heavy	region.	The	best	ratio	of	software	to	hardware
threads	is	also	dependent	on	the	cost	of	context	switches	and	how	effectively	the
software	threads	use	the	CPU	caches.	Furthermore,	the	number	of	hardware
threads	and	the	details	of	the	CPU	caches	(e.g.,	how	large	they	are	and	their
relative	speeds)	depend	on	the	machine	architecture,	so	even	if	you	tune	your
application	to	avoid	oversubscription	(while	still	keeping	the	hardware	busy)	on
one	platform,	there’s	no	guarantee	that	your	solution	will	work	well	on	other
kinds	of	machines.

Your	life	will	be	easier	if	you	dump	these	problems	on	somebody	else,	and	using
std::async	does	exactly	that:

auto fut = std::async(doAsyncWork); // onus of thread mgmt is

 // on implementer of

 // the Standard Library

This	call	shifts	the	thread	management	responsibility	to	the	implementer	of	the
C++	Standard	Library.	For	example,	the	likelihood	of	receiving	an	out-of-
threads	exception	is	significantly	reduced,	because	this	call	will	probably	never
yield	one.	“How	can	that	be?”	you	might	wonder.	“If	I	ask	for	more	software
threads	than	the	system	can	provide,	why	does	it	matter	whether	I	do	it	by
creating	std::threads	or	by	calling	std::async?”	It	matters,	because
std::async,	when	called	in	this	form	(i.e.,	with	the	default	launch	policy—see
Item	36),	doesn’t	guarantee	that	it	will	create	a	new	software	thread.	Rather,	it
permits	the	scheduler	to	arrange	for	the	specified	function	(in	this	example,
doAsyncWork)	to	be	run	on	the	thread	requesting	doAsyncWork’s	result	(i.e.,	on
the	thread	calling	get	or	wait	on	fut),	and	reasonable	schedulers	take
advantage	of	that	freedom	if	the	system	is	oversubscribed	or	is	out	of	threads.

If	you	pulled	this	“run	it	on	the	thread	needing	the	result”	trick	yourself,	I
remarked	that	it	could	lead	to	load-balancing	issues,	and	those	issues	don’t	go
away	simply	because	it’s	std::async	and	the	runtime	scheduler	that	confront
them	instead	of	you.	When	it	comes	to	load	balancing,	however,	the	runtime
scheduler	is	likely	to	have	a	more	comprehensive	picture	of	what’s	happening	on
the	machine	than	you	do,	because	it	manages	the	threads	from	all	processes,	not
just	the	one	your	code	is	running	in.

With	std::async,	responsiveness	on	a	GUI	thread	can	still	be	problematic,
because	the	scheduler	has	no	way	of	knowing	which	of	your	threads	has	tight
responsiveness	requirements.	In	that	case,	you’ll	want	to	pass	the
std::launch::async	launch	policy	to	std::async.	That	will	ensure	that	the
function	you	want	to	run	really	executes	on	a	different	thread	(see	Item	36).

State-of-the-art	thread	schedulers	employ	system-wide	thread	pools	to	avoid
oversubscription,	and	they	improve	load	balancing	across	hardware	cores
through	work-stealing	algorithms.	The	C++	Standard	does	not	require	the	use	of
thread	pools	or	work-stealing,	and,	to	be	honest,	there	are	some	technical	aspects
of	the	C++11	concurrency	specification	that	make	it	more	difficult	to	employ
them	than	we’d	like.	Nevertheless,	some	vendors	take	advantage	of	this
technology	in	their	Standard	Library	implementations,	and	it’s	reasonable	to
expect	that	progress	will	continue	in	this	area.	If	you	take	a	task-based	approach
to	your	concurrent	programming,	you	automatically	reap	the	benefits	of	such
technology	as	it	becomes	more	widespread.	If,	on	the	other	hand,	you	program
directly	with	std::threads,	you	assume	the	burden	of	dealing	with	thread
exhaustion,	oversubscription,	and	load	balancing	yourself,	not	to	mention	how
your	solutions	to	these	problems	mesh	with	the	solutions	implemented	in
programs	running	in	other	processes	on	the	same	machine.

Compared	to	thread-based	programming,	a	task-based	design	spares	you	the
travails	of	manual	thread	management,	and	it	provides	a	natural	way	to	examine
the	results	of	asynchronously	executed	functions	(i.e.,	return	values	or
exceptions).	Nevertheless,	there	are	some	situations	where	using	threads	directly
may	be	appropriate.	They	include:

You	need	access	to	the	API	of	the	underlying	threading	implementation.
The	C++	concurrency	API	is	typically	implemented	using	a	lower-level
platform-specific	API,	usually	pthreads	or	Windows’	Threads.	Those	APIs
are	currently	richer	than	what	C++	offers.	(For	example,	C++	has	no	notion
of	thread	priorities	or	affinities.)	To	provide	access	to	the	API	of	the
underlying	threading	implementation,	std::thread	objects	typically	offer
the	native_handle	member	function.	There	is	no	counterpart	to	this
functionality	for	std::futures	(i.e.,	for	what	std::async	returns).

You	need	to	and	are	able	to	optimize	thread	usage	for	your	application.

This	could	be	the	case,	for	example,	if	you’re	developing	server	software
with	a	known	execution	profile	that	will	be	deployed	as	the	only	significant
process	on	a	machine	with	fixed	hardware	characteristics.

You	need	to	implement	threading	technology	beyond	the	C++
concurrency	API,	e.g.,	thread	pools	on	platforms	where	your	C++
implementations	don’t	offer	them.

These	are	uncommon	cases,	however.	Most	of	the	time,	you	should	choose	task-
based	designs	instead	of	programming	with	threads.

Things	to	Remember
The	std::thread	API	offers	no	direct	way	to	get	return	values	from	asynchronously	run
functions,	and	if	those	functions	throw,	the	program	is	terminated.

Thread-based	programming	calls	for	manual	management	of	thread	exhaustion,
oversubscription,	load	balancing,	and	adaptation	to	new	platforms.

Task-based	programming	via	std::async	with	the	default	launch	policy	handles	most	of
these	issues	for	you.

Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.
When	you	call	std::async	to	execute	a	function	(or	other	callable	object),
you’re	generally	intending	to	run	the	function	asynchronously.	But	that’s	not
necessarily	what	you’re	asking	std::async	to	do.	You’re	really	requesting	that
the	function	be	run	in	accord	with	a	std::async	launch	policy.	There	are	two
standard	policies,	each	represented	by	an	enumerator	in	the	std::launch	scoped
enum.	(See	Item	10	for	information	on	scoped	enums.)	Assuming	a	function	f	is
passed	to	std::async	for	execution,

The	std::launch::async	launch	policy	means	that	f	must	be	run
asynchronously,	i.e.,	on	a	different	thread.

The	std::launch::deferred	launch	policy	means	that	f	may	run	only

when	get	or	wait	is	called	on	the	future	returned	by	std::async.16	That	is,
f’s	execution	is	deferred	until	such	a	call	is	made.	When	get	or	wait	is
invoked,	f	will	execute	synchronously,	i.e.,	the	caller	will	block	until	f
finishes	running.	If	neither	get	nor	wait	is	called,	f	will	never	run.

Perhaps	surprisingly,	std::async’s	default	launch	policy—the	one	it	uses	if	you
don’t	expressly	specify	one—is	neither	of	these.	Rather,	it’s	these	or-ed	together.
The	following	two	calls	have	exactly	the	same	meaning:

auto fut1 = std::async(f); // run f using

 // default launch

 // policy

auto fut2 = std::async(std::launch::async | // run f either

 std::launch::deferred, // async or

 f); // deferred

The	default	policy	thus	permits	f	to	be	run	either	asynchronously	or
synchronously.	As	Item	35	points	out,	this	flexibility	permits	std::async	and
the	thread-management	components	of	the	Standard	Library	to	assume
responsibility	for	thread	creation	and	destruction,	avoidance	of	oversubscription,
and	load	balancing.	That’s	among	the	things	that	make	concurrent	programming
with	std::async	so	convenient.

But	using	std::async	with	the	default	launch	policy	has	some	interesting
implications.	Given	a	thread	t	executing	this	statement,

auto fut = std::async(f); // run f using default launch policy

It’s	not	possible	to	predict	whether	f	will	run	concurrently	with	t,
because	f	might	be	scheduled	to	run	deferred.

It’s	not	possible	to	predict	whether	f	runs	on	a	thread	different	from	the
thread	invoking	get	or	wait	on	fut.	If	that	thread	is	t,	the	implication	is
that	it’s	not	possible	to	predict	whether	f	runs	on	a	thread	different	from	t.

It	may	not	be	possible	to	predict	whether	f	runs	at	all,	because	it	may	not

be	possible	to	guarantee	that	get	or	wait	will	be	called	on	fut	along	every
path	through	the	program.

The	default	launch	policy’s	scheduling	flexibility	often	mixes	poorly	with	the
use	of	thread_local	variables,	because	it	means	that	if	f	reads	or	writes	such
thread-local	storage	(TLS),	it’s	not	possible	to	predict	which	thread’s	variables
will	be	accessed:

auto fut = std::async(f); // TLS for f possibly for

 // independent thread, but

 // possibly for thread

 // invoking get or wait on fut

It	also	affects	wait-based	loops	using	timeouts,	because	calling	wait_for	or
wait_until	on	a	task	(see	Item	35)	that’s	deferred	yields	the	value
std::launch::deferred.	This	means	that	the	following	loop,	which	looks	like
it	should	eventually	terminate,	may,	in	reality,	run	forever:

using namespace std::literals; // for C++14 duration

 // suffixes; see Item 34

void f() // f sleeps for 1 second,

{ // then returns

 std::this_thread::sleep_for(1s);

}

auto fut = std::async(f); // run f asynchronously

 // (conceptually)

while (fut.wait_for(100ms) != // loop until f has

 std::future_status::ready) // finished running...

{ // which may never happen!

 …

}

If	f	runs	concurrently	with	the	thread	calling	std::async	(i.e.,	if	the	launch
policy	chosen	for	f	is	std::launch::async),	there’s	no	problem	here
(assuming	f	eventually	finishes),	but	if	f	is	deferred,	fut.wait_for	will	always
return	std::future_status::deferred.	That	will	never	be	equal	to
std::future_status::ready,	so	the	loop	will	never	terminate.

This	kind	of	bug	is	easy	to	overlook	during	development	and	unit	testing,
because	it	may	manifest	itself	only	under	heavy	loads.	Those	are	the	conditions
that	push	the	machine	towards	oversubscription	or	thread	exhaustion,	and	that’s
when	a	task	may	be	most	likely	to	be	deferred.	After	all,	if	the	hardware	isn’t
threatened	by	oversubscription	or	thread	exhaustion,	there’s	no	reason	for	the
runtime	system	not	to	schedule	the	task	for	concurrent	execution.

The	fix	is	simple:	just	check	the	future	corresponding	to	the	std::async	call	to
see	whether	the	task	is	deferred,	and,	if	so,	avoid	entering	the	timeout-based
loop.	Unfortunately,	there’s	no	direct	way	to	ask	a	future	whether	its	task	is
deferred.	Instead,	you	have	to	call	a	timeout-based	function—a	function	such	as
wait_for.	In	this	case,	you	don’t	really	want	to	wait	for	anything,	you	just	want
to	see	if	the	return	value	is	std::future_status::deferred,	so	stifle	your
mild	disbelief	at	the	necessary	circumlocution	and	call	wait_for	with	a	zero
timeout:

auto fut = std::async(f); // as above

if (fut.wait_for(0s) == // if task is

 std::future_status::deferred) // deferred...

{

 // ...use wait or get on fut

 … // to call f synchronously

} else { // task isn't deferred

 while (fut.wait_for(100ms) != // infinite loop not

 std::future_status::ready) { // possible (assuming

 // f finishes)

 … // task is neither deferred nor ready,

 // so do concurrent work until it's ready

 }

 … // fut is ready

}

The	upshot	of	these	various	considerations	is	that	using	std::async	with	the
default	launch	policy	for	a	task	is	fine	as	long	as	the	following	conditions	are
fulfilled:

The	task	need	not	run	concurrently	with	the	thread	calling	get	or	wait.

It	doesn’t	matter	which	thread’s	thread_local	variables	are	read	or	written.

Either	there’s	a	guarantee	that	get	or	wait	will	be	called	on	the	future
returned	by	std::async	or	it’s	acceptable	that	the	task	may	never	execute.

Code	using	wait_for	or	wait_until	takes	the	possibility	of	deferred	status
into	account.

If	any	of	these	conditions	fails	to	hold,	you	probably	want	to	guarantee	that
std::async	will	schedule	the	task	for	truly	asynchronous	execution.	The	way	to
do	that	is	to	pass	std::launch::async	as	the	first	argument	when	you	make	the
call:

auto fut = std::async(std::launch::async, f); // launch f

 // asynchronously

In	fact,	having	a	function	that	acts	like	std::async,	but	that	automatically	uses
std::launch::async	as	the	launch	policy,	is	a	convenient	tool	to	have	around,
so	it’s	nice	that	it’s	easy	to	write.	Here’s	the	C++11	version:

template<typename F, typename... Ts>

inline

std::future<typename std::result_of<F(Ts...)>::type>

reallyAsync(F&& f, Ts&&... params) // return future

{ // for asynchronous

 return std::async(std::launch::async, // call to f(params...)

 std::forward<F>(f),

 std::forward<Ts>(params)...);

}

This	function	receives	a	callable	object	f	and	zero	or	more	parameters	params
and	perfect-forwards	them	(see	Item	25)	to	std::async,	passing
std::launch::async	as	the	launch	policy.	Like	std::async,	it	returns	a
std::future	for	the	result	of	invoking	f	on	params.	Determining	the	type	of
that	result	is	easy,	because	the	type	trait	std::result_of	gives	it	to	you.	(See
Item	9	for	general	information	on	type	traits.)

reallyAsync	is	used	just	like	std::async:

auto fut = reallyAsync(f); // run f asynchronously;

 // throw if std::async

 // would throw

In	C++14,	the	ability	to	deduce	reallyAsync’s	return	type	streamlines	the
function	declaration:

template<typename F, typename... Ts>

inline

auto // C++14

reallyAsync(F&& f, Ts&&... params)

{

 return std::async(std::launch::async,

 std::forward<F>(f),

 std::forward<Ts>(params)...);

}

This	version	makes	it	crystal	clear	that	reallyAsync	does	nothing	but	invoke
std::async	with	the	std::launch::async	launch	policy.

Things	to	Remember
The	default	launch	policy	for	std::async	permits	both	asynchronous	and	synchronous
task	execution.

This	flexibility	leads	to	uncertainty	when	accessing	thread_locals,	implies	that	the	task
may	never	execute,	and	affects	program	logic	for	timeout-based	wait	calls.

Specify	std::launch::async	if	asynchronous	task	execution	is	essential.

Item	37: Make	std::threads	unjoinable	on	all
paths.
Every	std::thread	object	is	in	one	of	two	states:	joinable	or	unjoinable.	A
joinable	std::thread	corresponds	to	an	underlying	asynchronous	thread	of
execution	that	is	or	could	be	running.	A	std::thread	corresponding	to	an

underlying	thread	that’s	blocked	or	waiting	to	be	scheduled	is	joinable,	for
example.	std::thread	objects	corresponding	to	underlying	threads	that	have
run	to	completion	are	also	considered	joinable.

An	unjoinable	std::thread	is	what	you’d	expect:	a	std::thread	that’s	not
joinable.	Unjoinable	std::thread	objects	include:

Default-constructed	std::threads.	Such	std::threads	have	no	function	to
execute,	hence	don’t	correspond	to	an	underlying	thread	of	execution.

std::thread	objects	that	have	been	moved	from.	The	result	of	a	move	is
that	the	underlying	thread	of	execution	a	std::thread	used	to	correspond	to
(if	any)	now	corresponds	to	a	different	std::thread.

std::threads	that	have	been	joined.	After	a	join,	the	std::thread
object	no	longer	corresponds	to	the	underlying	thread	of	execution	that	has
finished	running.

std::threads	that	have	been	detached.	A	detach	severs	the	connection
between	a	std::thread	object	and	the	underlying	thread	of	execution	it
corresponds	to.

One	reason	a	std::thread’s	joinability	is	important	is	that	if	the	destructor	for	a
joinable	thread	is	invoked,	execution	of	the	program	is	terminated.	For	example,
suppose	we	have	a	function	doWork	that	takes	a	filtering	function,	filter,	and	a
maximum	value,	maxVal,	as	parameters.	doWork	checks	to	make	sure	that	all
conditions	necessary	for	its	computation	are	satisfied,	then	performs	the
computation	with	all	the	values	between	0	and	maxVal	that	pass	the	filter.	If	it’s
time-consuming	to	do	the	filtering	and	it’s	also	time-consuming	to	determine
whether	doWork’s	conditions	are	satisfied,	it	would	be	reasonable	to	do	those
two	things	concurrently.

Our	preference	would	be	to	employ	a	task-based	design	for	this	(see	Item	35),
but	let’s	assume	we’d	like	to	set	the	priority	of	the	thread	doing	the	filtering.
Item	35	explains	that	that	requires	use	of	the	thread’s	native	handle,	and	that’s
accessible	only	through	the	std::thread	API;	the	task-based	API	(i.e.,	futures)
doesn’t	provide	it.	Our	approach	will	therefore	be	based	on	threads,	not	tasks.

We	could	come	up	with	code	like	this:

constexpr auto tenMillion = 10000000; // see Item 15

 // for constexpr

bool doWork(std::function<bool(int)> filter, // returns whether

 int maxVal = tenMillion) // computation was

{ // performed; see

 // Item 2 for

 // std::function

 std::vector<int> goodVals; // values that

 // satisfy filter

 std::thread t([&filter, maxVal, &goodVals] // populate

 { // goodVals

 for (auto i = 0; i <= maxVal; ++i)

 { if (filter(i)) goodVals.push_back(i); }

 });

 auto nh = t.native_handle(); // use t's native

 … // handle to set

 // t's priority

 if (conditionsAreSatisfied()) {

 t.join(); // let t finish

 performComputation(goodVals);

 return true; // computation was

 } // performed

 return false; // computation was

} // not performed

Before	I	explain	why	this	code	is	problematic,	I’ll	remark	that	tenMillion’s
initializing	value	can	be	made	more	readable	in	C++14	by	taking	advantage	of
C++14’s	ability	to	use	an	apostrophe	as	a	digit	separator:

constexpr auto tenMillion = 10'000'000; // C++14

I’ll	also	remark	that	setting	t’s	priority	after	it	has	started	running	is	a	bit	like
closing	the	proverbial	barn	door	after	the	equally	proverbial	horse	has	bolted.	A
better	design	would	be	to	start	t	in	a	suspended	state	(thus	making	it	possible	to
adjust	its	priority	before	it	does	any	computation),	but	I	don’t	want	to	distract

you	with	that	code.	If	you’re	more	distracted	by	the	code’s	absence,	turn	to	Item
39,	because	it	shows	how	to	start	threads	suspended.

But	back	to	doWork.	If	conditionsAreSatisfied()	returns	true,	all	is	well,
but	if	it	returns	false	or	throws	an	exception,	the	std::thread	object	t	will	be
joinable	when	its	destructor	is	called	at	the	end	of	doWork.	That	would	cause
program	execution	to	be	terminated.

You	might	wonder	why	the	std::thread	destructor	behaves	this	way.	It’s
because	the	two	other	obvious	options	are	arguably	worse.	They	are:

An	implicit	join.	In	this	case,	a	std::thread’s	destructor	would	wait	for	its
underlying	asynchronous	thread	of	execution	to	complete.	That	sounds
reasonable,	but	it	could	lead	to	performance	anomalies	that	would	be	difficult
to	track	down.	For	example,	it	would	be	counterintuitive	that	doWork	would
wait	for	its	filter	to	be	applied	to	all	values	if	conditionsAreSatisfied()
had	already	returned	false.

An	implicit	detach.	In	this	case,	a	std::thread’s	destructor	would	sever
the	connection	between	the	std::thread	object	and	its	underlying	thread	of
execution.	The	underlying	thread	would	continue	to	run.	This	sounds	no	less
reasonable	than	the	join	approach,	but	the	debugging	problems	it	can	lead	to
are	worse.	In	doWork,	for	example,	goodVals	is	a	local	variable	that	is
captured	by	reference.	It’s	also	modified	inside	the	lambda	(via	the	call	to
push_back).	Suppose,	then,	that	while	the	lambda	is	running	asynchronously,
conditionsAreSatisfied()	returns	false.	In	that	case,	doWork	would
return,	and	its	local	variables	(including	goodVals)	would	be	destroyed.	Its
stack	frame	would	be	popped,	and	execution	of	its	thread	would	continue	at
doWork’s	call	site.

Statements	following	that	call	site	would,	at	some	point,	make	additional
function	calls,	and	at	least	one	such	call	would	probably	end	up	using	some	or
all	of	the	memory	that	had	once	been	occupied	by	the	doWork	stack	frame.
Let’s	call	such	a	function	f.	While	f	was	running,	the	lambda	that	doWork
initiated	would	still	be	running	asynchronously.	That	lambda	could	call
push_back	on	the	stack	memory	that	used	to	be	goodVals	but	that	is	now
somewhere	inside	f’s	stack	frame.	Such	a	call	would	modify	the	memory	that

used	to	be	goodVals,	and	that	means	that	from	f’s	perspective,	the	content	of
memory	in	its	stack	frame	could	spontaneously	change!	Imagine	the	fun
you’d	have	debugging	that.

The	Standardization	Committee	decided	that	the	consequences	of	destroying	a
joinable	thread	were	sufficiently	dire	that	they	essentially	banned	it	(by
specifying	that	destruction	of	a	joinable	thread	causes	program	termination).

This	puts	the	onus	on	you	to	ensure	that	if	you	use	a	std::thread	object,	it’s
made	unjoinable	on	every	path	out	of	the	scope	in	which	it’s	defined.	But
covering	every	path	can	be	complicated.	It	includes	flowing	off	the	end	of	the
scope	as	well	as	jumping	out	via	a	return,	continue,	break,	goto	or	exception.
That	can	be	a	lot	of	paths.

Any	time	you	want	to	perform	some	action	along	every	path	out	of	a	block,	the
normal	approach	is	to	put	that	action	in	the	destructor	of	a	local	object.	Such
objects	are	known	as	RAII	objects,	and	the	classes	they	come	from	are	known	as
RAII	classes.	(RAII	itself	stands	for	“Resource	Acquisition	Is	Initialization,”
although	the	crux	of	the	technique	is	destruction,	not	initialization).	RAII	classes
are	common	in	the	Standard	Library.	Examples	include	the	STL	containers	(each
container’s	destructor	destroys	the	container’s	contents	and	releases	its	memory),
the	standard	smart	pointers	(Items	18–20	explain	that	std::unique_ptr’s
destructor	invokes	its	deleter	on	the	object	it	points	to,	and	the	destructors	in
std::shared_ptr	and	std::weak_ptr	decrement	reference	counts),
std::fstream	objects	(their	destructors	close	the	files	they	correspond	to),	and
many	more.	And	yet	there	is	no	standard	RAII	class	for	std::thread	objects,
perhaps	because	the	Standardization	Committee,	having	rejected	both	join	and
detach	as	default	options,	simply	didn’t	know	what	such	a	class	should	do.	

Fortunately,	it’s	not	difficult	to	write	one	yourself.	For	example,	the	following
class	allows	callers	to	specify	whether	join	or	detach	should	be	called	when	a
ThreadRAII	object	(an	RAII	object	for	a	std::thread)	is	destroyed:

class ThreadRAII {

public:

 enum class DtorAction { join, detach }; // see Item 10 for

 // enum class info

 ThreadRAII(std::thread&& t, DtorAction a) // in dtor, take

 : action(a), t(std::move(t)) {} // action a on t

 ~ThreadRAII()

 { // see below for

 if (t.joinable()) { // joinability test

 if (action == DtorAction::join) {

 t.join();

 } else {

 t.detach();

 }

 }

 }

 std::thread& get() { return t; } // see below

private:

 DtorAction action;

 std::thread t;

};

I	hope	this	code	is	largely	self-explanatory,	but	the	following	points	may	be
helpful:

The	constructor	accepts	only	std::thread	rvalues,	because	we	want	to	move
the	passed-in	std::thread	into	the	ThreadRAII	object.	(Recall	that
std::thread	objects	aren’t	copyable.)

The	parameter	order	in	the	constructor	is	designed	to	be	intuitive	to	callers
(specifying	the	std::thread	first	and	the	destructor	action	second	makes
more	sense	than	vice	versa),	but	the	member	initialization	list	is	designed	to
match	the	order	of	the	data	members’	declarations.	That	order	puts	the
std::thread	object	last.	In	this	class,	the	order	makes	no	difference,	but	in
general,	it’s	possible	for	the	initialization	of	one	data	member	to	depend	on
another,	and	because	std::thread	objects	may	start	running	a	function
immediately	after	they	are	initialized,	it’s	a	good	habit	to	declare	them	last	in
a	class.	That	guarantees	that	at	the	time	they	are	constructed,	all	the	data
members	that	precede	them	have	already	been	initialized	and	can	therefore	be
safely	accessed	by	the	asynchronously	running	thread	that	corresponds	to	the

std::thread	data	member.

ThreadRAII	offers	a	get	function	to	provide	access	to	the	underlying
std::thread	object.	This	is	analogous	to	the	get	functions	offered	by	the
standard	smart	pointer	classes	that	give	access	to	their	underlying	raw
pointers.	Providing	get	avoids	the	need	for	ThreadRAII	to	replicate	the	full
std::thread	interface,	and	it	also	means	that	ThreadRAII	objects	can	be
used	in	contexts	where	std::thread	objects	are	required.

Before	the	ThreadRAII	destructor	invokes	a	member	function	on	the
std::thread	object	t,	it	checks	to	make	sure	that	t	is	joinable.	This	is
necessary,	because	invoking	join	or	detach	on	an	unjoinable	thread	yields
undefined	behavior.	It’s	possible	that	a	client	constructed	a	std::thread,
created	a	ThreadRAII	object	from	it,	used	get	to	acquire	access	to	t,	and
then	did	a	move	from	t	or	called	join	or	detach	on	it.	Each	of	those	actions
would	render	t	unjoinable.

If	you’re	worried	that	in	this	code,

if (t.joinable()) {

 if (action == DtorAction::join) {

 t.join();

 } else {

 t.detach();

 }

}

a	race	exists,	because	between	execution	of	t.joinable()	and	invocation	of
join	or	detach,	another	thread	could	render	t	unjoinable,	your	intuition	is
commendable,	but	your	fears	are	unfounded.	A	std::thread	object	can
change	state	from	joinable	to	unjoinable	only	through	a	member	function	call,
e.g.,	join,	detach,	or	a	move	operation.	At	the	time	a	ThreadRAII	object’s
destructor	is	invoked,	no	other	thread	should	be	making	member	function
calls	on	that	object.	If	there	are	simultaneous	calls,	there	is	certainly	a	race,
but	it	isn’t	inside	the	destructor,	it’s	in	the	client	code	that	is	trying	to	invoke
two	member	functions	(the	destructor	and	something	else)	on	one	object	at

the	same	time.	In	general,	simultaneous	member	function	calls	on	a	single
object	are	safe	only	if	all	are	to	const	member	functions	(see	Item	16).

Employing	ThreadRAII	in	our	doWork	example	would	look	like	this:

bool doWork(std::function<bool(int)> filter, // as before

 int maxVal = tenMillion)

{

 std::vector<int> goodVals; // as before

 ThreadRAII t(// use RAII object

 std::thread([&filter, maxVal, &goodVals]

 {

 for (auto i = 0; i <= maxVal; ++i)

 { if (filter(i)) goodVals.push_back(i); }

 }),

 ThreadRAII::DtorAction::join // RAII action

);

 auto nh = t.get().native_handle();

 …

 if (conditionsAreSatisfied()) {

 t.get().join();

 performComputation(goodVals);

 return true;

 }

 return false;

}

In	this	case,	we’ve	chosen	to	do	a	join	on	the	asynchronously	running	thread	in
the	ThreadRAII	destructor,	because,	as	we	saw	earlier,	doing	a	detach	could
lead	to	some	truly	nightmarish	debugging.	We	also	saw	earlier	that	doing	a	join
could	lead	to	performance	anomalies	(that,	to	be	frank,	could	also	be	unpleasant
to	debug),	but	given	a	choice	between	undefined	behavior	(which	detach	would
get	us),	program	termination	(which	use	of	a	raw	std::thread	would	yield),	or
performance	anomalies,	performance	anomalies	seems	like	the	best	of	a	bad	lot.

Alas,	Item	39	demonstrates	that	using	ThreadRAII	to	perform	a	join	on
std::thread	destruction	can	sometimes	lead	not	just	to	a	performance	anomaly,
but	to	a	hung	program.	The	“proper”	solution	to	these	kinds	of	problems	would

be	to	communicate	to	the	asynchronously	running	lambda	that	we	no	longer
need	its	work	and	that	it	should	return	early,	but	there’s	no	support	in	C++11	for
interruptible	threads.	They	can	be	implemented	by	hand,	but	that’s	a	topic
beyond	the	scope	of	this		book.17

Item	17	explains	that	because	ThreadRAII	declares	a	destructor,	there	will	be	no
compiler-generated	move	operations,	but	there	is	no	reason	ThreadRAII	objects
shouldn’t	be	movable.	If	compilers	were	to	generate	these	functions,	the
functions	would	do	the	right	thing,	so	explicitly	requesting	their	creation
isappropriate:

class ThreadRAII {

public:

 enum class DtorAction { join, detach }; // as before

 ThreadRAII(std::thread&& t, DtorAction a) // as before

 : action(a), t(std::move(t)) {}

 ~ThreadRAII()

 {

 … // as before

 }

 ThreadRAII(ThreadRAII&&) = default; // support

 ThreadRAII& operator=(ThreadRAII&&) = default; // moving

 std::thread& get() { return t; } // as before

private: // as before

 DtorAction action;

 std::thread t;

};

Things	to	Remember
Make	std::threads	unjoinable	on	all	paths.

join-on-destruction	can	lead	to	difficult-to-debug	performance	anomalies.

detach-on-destruction	can	lead	to	difficult-to-debug	undefined	behavior.

Declare	std::thread	objects	last	in	lists	of	data	members.

Item	38: Be	aware	of	varying	thread	handle
destructor	behavior.
Item	37	explains	that	a	joinable	std::thread	corresponds	to	an	underlying
system	thread	of	execution.	A	future	for	a	non-deferred	task	(see	Item	36)	has	a
similar	relationship	to	a	system	thread.	As	such,	both	std::thread	objects	and
future	objects	can	be	thought	of	as	handles	to	system	threads.

From	this	perspective,	it’s	interesting	that	std::threads	and	futures	have	such
different	behaviors	in	their	destructors.	As	noted	in	Item	37,	destruction	of	a
joinable	std::thread	terminates	your	program,	because	the	two	obvious
alternatives—an	implicit	join	and	an	implicit	detach—were	considered	worse
choices.	Yet	the	destructor	for	a	future	sometimes	behaves	as	if	it	did	an	implicit
join,	sometimes	as	if	it	did	an	implicit	detach,	and	sometimes	neither.	It	never
causes	program	termination.	This	thread	handle	behavioral	bouillabaisse
deserves	closer	examination.

We’ll	begin	with	the	observation	that	a	future	is	one	end	of	a	communications
channel	through	which	a	callee	transmits	a	result	to	a	caller.18	The	callee	(usually
running	asynchronously)	writes	the	result	of	its	computation	into	the
communications	channel	(typically	via	a	std::promise	object),	and	the	caller
reads	that	result	using	a	future.	You	can	think	of	it	as	follows,	where	the	dashed
arrow	shows	the	flow	of	information	from	callee	to	caller:

But	where	is	the	callee’s	result	stored?	The	callee	could	finish	before	the	caller
invokes	get	on	a	corresponding	future,	so	the	result	can’t	be	stored	in	the
callee’s	std::promise.	That	object,	being	local	to	the	callee,	would	be
destroyed	when	the	callee	finished.

The	result	can’t	be	stored	in	the	caller’s	future,	either,	because	(among	other
reasons)	a	std::future	may	be	used	to	create	a	std::shared_future	(thus
transferring	ownership	of	the	callee’s	result	from	the	std::future	to	the
std::shared_future),	which	may	then	be	copied	many	times	after	the	original

std::future	is	destroyed.	Given	that	not	all	result	types	can	be	copied	(i.e.,
move-only	types)	and	that	the	result	must	live	at	least	as	long	as	the	last	future
referring	to	it,	which	of	the	potentially	many	futures	corresponding	to	the	callee
should	be	the	one	to	contain	its	result?

Because	neither	objects	associated	with	the	callee	nor	objects	associated	with	the
caller	are	suitable	places	to	store	the	callee’s	result,	it’s	stored	in	a	location
outside	both.	This	location	is	known	as	the	shared	state.	The	shared	state	is
typically	represented	by	a	heap-based	object,	but	its	type,	interface,	and
implementation	are	not	specified	by	the	Standard.	Standard	Library	authors	are
free	to	implement	shared	states	in	any	way	they	like.

We	can	envision	the	relationship	among	the	callee,	the	caller,	and	the	shared
state	as	follows,	where	dashed	arrows	once	again	represent	the	flow	of
information:

The	existence	of	the	shared	state	is	important,	because	the	behavior	of	a	future’s
destructor—the	topic	of	this	Item—is	determined	by	the	shared	state	associated
with	the	future.	In	particular,

The	destructor	for	the	last	future	referring	to	a	shared	state	for	a	non-
deferred	task	launched	via	std::async	blocks	until	the	task	completes.	In
essence,	the	destructor	for	such	a	future	does	an	implicit	join	on	the	thread
on	which	the	asynchronously	executing	task	is	running.

The	destructor	for	all	other	futures	simply	destroys	the	future	object.	For
asynchronously	running	tasks,	this	is	akin	to	an	implicit	detach	on	the
underlying	thread.	For	deferred	tasks	for	which	this	is	the	final	future,	it
means	that	the	deferred	task	will	never	run.

These	rules	sound	more	complicated	than	they	are.	What	we’re	really	dealing
with	is	a	simple	“normal”	behavior	and	one	lone	exception	to	it.	The	normal
behavior	is	that	a	future’s	destructor	destroys	the	future	object.	That’s	it.	It

doesn’t	join	with	anything,	it	doesn’t	detach	from	anything,	it	doesn’t	run
anything.	It	just	destroys	the	future’s	data	members.	(Well,	actually,	it	does	one
more	thing.	It	decrements	the	reference	count	inside	the	shared	state	that’s
manipulated	by	both	the	futures	referring	to	it	and	the	callee’s	std::promise.
This	reference	count	makes	it	possible	for	the	library	to	know	when	the	shared
state	can	be	destroyed.	For	general	information	about	reference	counting,	see
Item	19.)

The	exception	to	this	normal	behavior	arises	only	for	a	future	for	which	all	of	the
following	apply:

It	refers	to	a	shared	state	that	was	created	due	to	a	call	to	std::async.

The	task’s	launch	policy	is	std::launch::async	(see	Item	36),	either
because	that	was	chosen	by	the	runtime	system	or	because	it	was	specified	in
the	call	to	std::async.

The	future	is	the	last	future	referring	to	the	shared	state.	For
std::futures,	this	will	always	be	the	case.	For	std::shared_futures,	if
other	std::shared_futures	refer	to	the	same	shared	state	as	the	future	being
destroyed,	the	future	being	destroyed	follows	the	normal	behavior	(i.e.,	it
simply	destroys	its	data	members).

Only	when	all	of	these	conditions	are	fulfilled	does	a	future’s	destructor	exhibit
special	behavior,	and	that	behavior	is	to	block	until	the	asynchronously	running
task	completes.	Practically	speaking,	this	amounts	to	an	implicit	join	with	the
thread	running	the	std::async-created	task.

It’s	common	to	hear	this	exception	to	normal	future	destructor	behavior
summarized	as	“Futures	from	std::async	block	in	their	destructors.”	To	a	first
approximation,	that’s	correct,	but	sometimes	you	need	more	than	a	first
approximation.	Now	you	know	the	truth	in	all	its	glory	and	wonder.

Your	wonder	may	take	a	different	form.	It	may	be	of	the	“I	wonder	why	there’s
a	special	rule	for	shared	states	for	non-deferred	tasks	that	are	launched	by
std::async”	variety.	It’s	a	reasonable	question.	From	what	I	can	tell,	the
Standardization	Committee	wanted	to	avoid	the	problems	associated	with	an
implicit	detach	(see	Item	37),	but	they	didn’t	want	to	adopt	as	radical	a	policy

as	mandatory	program	termination	(as	they	did	for	joinable	std::threads—
again,	see	Item	37),	so	they	compromised	on	an	implicit	join.	The	decision	was
not	without	controversy,	and	there	was	serious	talk	about	abandoning	this
behavior	for	C++14.	In	the	end,	no	change	was	made,	so	the	behavior	of
destructors	for	futures	is	consistent	in	C++11	and	C++14.

The	API	for	futures	offers	no	way	to	determine	whether	a	future	refers	to	a
shared	state	arising	from	a	call	to	std::async,	so	given	an	arbitrary	future
object,	it’s	not	possible	to	know	whether	it	will	block	in	its	destructor	waiting	for
an	asynchronously	running	task	to	finish.	This	has	some	interesting	implications:

// this container might block in its dtor, because one or more

// contained futures could refer to a shared state for a non-

// deferred task launched via std::async

std::vector<std::future<void>> futs; // see Item 39 for info

 // on std::future<void>

class Widget { // Widget objects might

public: // block in their dtors

 …

private:

 std::shared_future<double> fut;

};

Of	course,	if	you	have	a	way	of	knowing	that	a	given	future	does	not	satisfy	the
conditions	that	trigger	the	special	destructor	behavior	(e.g.,	due	to	program
logic),	you’re	assured	that	that	future	won’t	block	in	its	destructor.	For	example,
only	shared	states	arising	from	calls	to	std::async	qualify	for	the	special
behavior,	but	there	are	other	ways	that	shared	states	get	created.	One	is	the	use
of	std::packaged_task.	A	std::packaged_task	object	prepares	a	function
(or	other	callable	object)	for	asynchronous	execution	by	wrapping	it	such	that	its
result	is	put	into	a	shared	state.	A	future	referring	to	that	shared	state	can	then	be
obtained	via	std::packaged_task’s	get_future	function:

int calcValue(); // func to run

std::packaged_task<int()> // wrap calcValue so it

 pt(calcValue); // can run asynchronously

auto fut = pt.get_future(); // get future for pt

At	this	point,	we	know	that	the	future	fut	doesn’t	refer	to	a	shared	state	created
by	a	call	to	std::async,	so	its	destructor	will	behave	normally.

Once	created,	the	std::packaged_task	pt	can	be	run	on	a	thread.	(It	could	be
run	via	a	call	to	std::async,	too,	but	if	you	want	to	run	a	task	using
std::async,	there’s	little	reason	to	create	a	std::packaged_task,	because
std::async	does	everything	std::packaged_task	does	before	it	schedules	the
task	for	execution.)

std::packaged_tasks	aren’t	copyable,	so	when	pt	is	passed	to	the
std::thread	constructor,	it	must	be	cast	to	an	rvalue	(via	std::move—see	Item
23):

std::thread t(std::move(pt)); // run pt on t

This	example	lends	some	insight	into	the	normal	behavior	for	future	destructors,
but	it’s	easier	to	see	if	the	statements	are	put	together	inside	a	block:

{ // begin block

 std::packaged_task<int()>

 pt(calcValue);

 auto fut = pt.get_future();

 std::thread t(std::move(pt));

 … // see below

} // end block

The	most	interesting	code	here	is	the	“…”	that	follows	creation	of	the
std::thread	object	t	and	precedes	the	end	of	the	block.	What	makes	it
interesting	is	what	can	happen	to	t	inside	the	“…”	region.	There	are	three	basic
possibilities:

Nothing	happens	to	t.	In	this	case,	t	will	be	joinable	at	the	end	of	the	scope.
That	will	cause	the	program	to	be	terminated	(see	Item	37).

A	join	is	done	on	t.	In	this	case,	there	would	be	no	need	for	fut	to	block	in
its	destructor,	because	the	join	is	already	present	in	the	calling	code.

A	detach	is	done	on	t.	In	this	case,	there	would	be	no	need	for	fut	to
detach	in	its	destructor,	because	the	calling	code	already	does	that.

In	other	words,	when	you	have	a	future	corresponding	to	a	shared	state	that	arose
due	to	a	std::packaged_task,	there’s	usually	no	need	to	adopt	a	special
destruction	policy,	because	the	decision	among	termination,	joining,	or
detaching	will	be	made	in	the	code	that	manipulates	the	std::thread	on	which
the	std::packaged_task	is	typically	run.

Things	to	Remember
Future	destructors	normally	just	destroy	the	future’s	data	members.

The	final	future	referring	to	a	shared	state	for	a	non-deferred	task	launched	via
std::async	blocks	until	the	task	completes.

Item	39: Consider	void	futures	for	one-shot
event	communication.
Sometimes	it’s	useful	for	a	task	to	tell	a	second,	asynchronously	running	task
that	a	particular	event	has	occurred,	because	the	second	task	can’t	proceed	until
the	event	has	taken	place.	Perhaps	a	data	structure	has	been	initialized,	a	stage	of
computation	has	been	completed,	or	a	significant	sensor	value	has	been	detected.
When	that’s	the	case,	what’s	the	best	way	for	this	kind	of	inter-thread
communication	to	take	place?

An	obvious	approach	is	to	use	a	condition	variable	(condvar).	If	we	call	the	task
that	detects	the	condition	the	detecting	task	and	the	task	reacting	to	the	condition
the	reacting	task,	the	strategy	is	simple:	the	reacting	task	waits	on	a	condition
variable,	and	the	detecting	thread	notifies	that	condvar	when	the	event	occurs.
Given

std::condition_variable cv; // condvar for event

std::mutex m; // mutex for use with cv

the	code	in	the	detecting	task	is	as	simple	as	simple	can	be:

… // detect event

cv.notify_one(); // tell reacting task

If	there	were	multiple	reacting	tasks	to	be	notified,	it	would	be	appropriate	to
replace	notify_one	with	notify_all,	but	for	now,	we’ll	assume	there’s	only
one	reacting	task.

The	code	for	the	reacting	task	is	a	bit	more	complicated,	because	before	calling
wait	on	the	condvar,	it	must	lock	a	mutex	through	a	std::unique_lock	object.
(Locking	a	mutex	before	waiting	on	a	condition	variable	is	typical	for	threading
libraries.	The	need	to	lock	the	mutex	through	a	std::unique_lock	object	is
simply	part	of	the	C++11	API.)	Here’s	the	conceptual	approach:

… // prepare to react

{ // open critical section

 std::unique_lock<std::mutex> lk(m); // lock mutex

 cv.wait(lk); // wait for notify;

 // this isn't correct!

 … // react to event

 // (m is locked)

} // close crit. section;

 // unlock m via lk's dtor

… // continue reacting

 // (m now unlocked)

The	first	issue	with	this	approach	is	what’s	sometimes	termed	a	code	smell:	even
if	the	code	works,	something	doesn’t	seem	quite	right.	In	this	case,	the	odor
emanates	from	the	need	to	use	a	mutex.	Mutexes	are	used	to	control	access	to

shared	data,	but	it’s	entirely	possible	that	the	detecting	and	reacting	tasks	have
no	need	for	such	mediation.	For	example,	the	detecting	task	might	be	responsible
for	initializing	a	global	data	structure,	then	turning	it	over	to	the	reacting	task	for
use.	If	the	detecting	task	never	accesses	the	data	structure	after	initializing	it,	and
if	the	reacting	task	never	accesses	it	before	the	detecting	task	indicates	that	it’s
ready,	the	two	tasks	will	stay	out	of	each	other’s	way	through	program	logic.
There	will	be	no	need	for	a	mutex.	The	fact	that	the	condvar	approach	requires
one	leaves	behind	the	unsettling	aroma	of	suspect	design.

Even	if	you	look	past	that,	there	are	two	other	problems	you	should	definitely
pay	attention	to:

If	the	detecting	task	notifies	the	condvar	before	the	reacting	task	waits,
the	reacting	task	will	hang.	In	order	for	notification	of	a	condvar	to	wake
another	task,	the	other	task	must	be	waiting	on	that	condvar.	If	the	detecting
task	happens	to	execute	the	notification	before	the	reacting	task	executes	the
wait,	the	reacting	task	will	miss	the	notification,	and	it	will	wait	forever.

The	wait	statement	fails	to	account	for	spurious	wakeups.	A	fact	of	life	in
threading	APIs	(in	many	languages—not	just	C++)	is	that	code	waiting	on	a
condition	variable	may	be	awakened	even	if	the	condvar	wasn’t	notified.
Such	awakenings	are	known	as	spurious	wakeups.	Proper	code	deals	with
them	by	confirming	that	the	condition	being	waited	for	has	truly	occurred,
and	it	does	this	as	its	first	action	after	waking.	The	C++	condvar	API	makes
this	exceptionally	easy,	because	it	permits	a	lambda	(or	other	function	object)
that	tests	for	the	waited-for	condition	to	be	passed	to	wait.	That	is,	the	wait
call	in	the	reacting	task	could	be	written	like	this:

cv.wait(lk,

 []{ return whether the event has occurred; });

Taking	advantage	of	this	capability	requires	that	the	reacting	task	be	able	to
determine	whether	the	condition	it’s	waiting	for	is	true.	But	in	the	scenario
we’ve	been	considering,	the	condition	it’s	waiting	for	is	the	occurrence	of	an
event	that	the	detecting	thread	is	responsible	for	recognizing.	The	reacting
thread	may	have	no	way	of	determining	whether	the	event	it’s	waiting	for	has
taken	place.	That’s	why	it’s	waiting	on	a	condition	variable!

There	are	many	situations	where	having	tasks	communicate	using	a	condvar	is	a
good	fit	for	the	problem	at	hand,	but	this	doesn’t	seem	to	be	one	of	them.

For	many	developers,	the	next	trick	in	their	bag	is	a	shared	boolean	flag.	The
flag	is	initially	false.	When	the	detecting	thread	recognizes	the	event	it’s
looking	for,	it	sets	the	flag:

std::atomic<bool> flag(false); // shared flag; see

 // Item 40 for std::atomic

… // detect event

flag = true; // tell reacting task

For	its	part,	the	reacting	thread	simply	polls	the	flag.	When	it	sees	that	the	flag	is
set,	it	knows	that	the	event	it’s	been	waiting	for	has	occurred:

… // prepare to react

while (!flag); // wait for event

… // react to event

This	approach	suffers	from	none	of	the	drawbacks	of	the	condvar-based	design.
There’s	no	need	for	a	mutex,	no	problem	if	the	detecting	task	sets	the	flag	before
the	reacting	task	starts	polling,	and	nothing	akin	to	a	spurious	wakeup.	Good,
good,	good.

Less	good	is	the	cost	of	polling	in	the	reacting	task.	During	the	time	the	task	is
waiting	for	the	flag	to	be	set,	the	task	is	essentially	blocked,	yet	it’s	still	running.
As	such,	it	occupies	a	hardware	thread	that	another	task	might	be	able	to	make
use	of,	it	incurs	the	cost	of	a	context	switch	each	time	it	starts	or	completes	its
time-slice,	and	it	could	keep	a	core	running	that	might	otherwise	be	shut	down	to
save	power.	A	truly	blocked	task	would	do	none	of	these	things.	That’s	an
advantage	of	the	condvar-based	approach,	because	a	task	in	a	wait	call	is	truly
blocked.

It’s	common	to	combine	the	condvar	and	flag-based	designs.	A	flag	indicates
whether	the	event	of	interest	has	occurred,	but	access	to	the	flag	is	synchronized
by	a	mutex.	Because	the	mutex	prevents	concurrent	access	to	the	flag,	there	is,

as	Item	40	explains,	no	need	for	the	flag	to	be	std::atomic;	a	simple	bool	will
do.	The	detecting	task	would	then	look	like	this:

std::condition_variable cv; // as before

std::mutex m;

bool flag(false); // not std::atomic

… // detect event

{

 std::lock_guard<std::mutex> g(m); // lock m via g's ctor

 flag = true; // tell reacting task

 // (part 1)

} // unlock m via g's dtor

cv.notify_one(); // tell reacting task

 // (part 2)

And	here’s	the	reacting	task:

… // prepare to react

{ // as before

 std::unique_lock<std::mutex> lk(m); // as before

 cv.wait(lk, [] { return flag; }); // use lambda to avoid

 // spurious wakeups

 … // react to event

 // (m is locked)

}

… // continue reacting

 // (m now unlocked)

This	approach	avoids	the	problems	we’ve	discussed.	It	works	regardless	of
whether	the	reacting	task	waits	before	the	detecting	task	notifies,	it	works	in	the
presence	of	spurious	wakeups,	and	it	doesn’t	require	polling.	Yet	an	odor
remains,	because	the	detecting	task	communicates	with	the	reacting	task	in	a
very	curious	fashion.	Notifying	the	condition	variable	tells	the	reacting	task	that

the	event	it’s	been	waiting	for	has	probably	occurred,	but	the	reacting	task	must
check	the	flag	to	be	sure.	Setting	the	flag	tells	the	reacting	task	that	the	event	has
definitely	occurred,	but	the	detecting	task	still	has	to	notify	the	condition
variable	so	that	the	reacting	task	will	awaken	and	check	the	flag.	The	approach
works,	but	it	doesn’t	seem	terribly	clean.

An	alternative	is	to	avoid	condition	variables,	mutexes,	and	flags	by	having	the
reacting	task	wait	on	a	future	that’s	set	by	the	detecting	task.	This	may	seem
like	an	odd	idea.	After	all,	Item	38	explains	that	a	future	represents	the	receiving
end	of	a	communications	channel	from	a	callee	to	a	(typically	asynchronous)
caller,	and	here	there’s	no	callee-caller	relationship	between	the	detecting	and
reacting	tasks.	However,	Item	38	also	notes	that	a	communications	channel
whose	transmitting	end	is	a	std::promise	and	whose	receiving	end	is	a	future
can	be	used	for	more	than	just	callee-caller	communication.	Such	a
communications	channel	can	be	used	in	any	situation	where	you	need	to	transmit
information	from	one	place	in	your	program	to	another.	In	this	case,	we’ll	use	it
to	transmit	information	from	the	detecting	task	to	the	reacting	task,	and	the
information	we’ll	convey	will	be	that	the	event	of	interest	has	taken	place.

The	design	is	simple.	The	detecting	task	has	a	std::promise	object	(i.e.,	the
writing	end	of	the	communications	channel),	and	the	reacting	task	has	a
corresponding	future.	When	the	detecting	task	sees	that	the	event	it’s	looking	for
has	occurred,	it	sets	the	std::promise	(i.e.,	writes	into	the	communications
channel).	Meanwhile,	the	reacting	task	waits	on	its	future.	That	wait	blocks	the
reacting	task	until	the	std::promise	has	been	set.

Now,	both	std::promise	and	futures	(i.e.,	std::future	and
std::shared_future)	are	templates	that	require	a	type	parameter.	That
parameter	indicates	the	type	of	data	to	be	transmitted	through	the
communications	channel.	In	our	case,	however,	there’s	no	data	to	be	conveyed.
The	only	thing	of	interest	to	the	reacting	task	is	that	its	future	has	been	set.	What
we	need	for	the	std::promise	and	future	templates	is	a	type	that	indicates	that
no	data	is	to	be	conveyed	across	the	communications	channel.	That	type	is	void.
The	detecting	task	will	thus	use	a	std::promise<void>,	and	the	reacting	task	a
std::future<void>	or	std::shared_future<void>.	The	detecting	task	will
set	its	std::promise<void>	when	the	event	of	interest	occurs,	and	the	reacting

task	will	wait	on	its	future.	Even	though	the	reacting	task	won’t	receive	any	data
from	the	detecting	task,	the	communications	channel	will	permit	the	reacting
task	to	know	when	the	detecting	task	has	“written”	its	void	data	by	calling
set_value	on	its	std::promise.

So	given

std::promise<void> p; // promise for

 // communications channel

the	detecting	task’s	code	is	trivial,

… // detect event

p.set_value(); // tell reacting task

and	the	reacting	task’s	code	is	equally	simple:

… // prepare to react

p.get_future().wait(); // wait on future

 // corresponding to p

… // react to event

Like	the	approach	using	a	flag,	this	design	requires	no	mutex,	works	regardless
of	whether	the	detecting	task	sets	its	std::promise	before	the	reacting	task
waits,	and	is	immune	to	spurious	wakeups.	(Only	condition	variables	are
susceptible	to	that	problem.)	Like	the	condvar-based	approach,	the	reacting	task
is	truly	blocked	after	making	the	wait	call,	so	it	consumes	no	system	resources
while	waiting.	Perfect,	right?

Not	exactly.	Sure,	a	future-based	approach	skirts	those	shoals,	but	there	are	other
hazards	to	worry	about.	For	example,	Item	38	explains	that	between	a
std::promise	and	a	future	is	a	shared	state,	and	shared	states	are	typically
dynamically	allocated.	You	should	therefore	assume	that	this	design	incurs	the
cost	of	heap-based	allocation	and	deallocation.

Perhaps	more	importantly,	a	std::promise	may	be	set	only	once.	The

communications	channel	between	a	std::promise	and	a	future	is	a	one-shot
mechanism:	it	can’t	be	used	repeatedly.	This	is	a	notable	difference	from	the
condvar-and	flag-based	designs,	both	of	which	can	be	used	to	communicate
multiple	times.	(A	condvar	can	be	repeatedly	notified,	and	a	flag	can	always	be
cleared	and	set	again.)

The	one-shot	restriction	isn’t	as	limiting	as	you	might	think.	Suppose	you’d	like
to	create	a	system	thread	in	a	suspended	state.	That	is,	you’d	like	to	get	all	the
overhead	associated	with	thread	creation	out	of	the	way	so	that	when	you’re
ready	to	execute	something	on	the	thread,	the	normal	thread-creation	latency	will
be	avoided.	Or	you	might	want	to	create	a	suspended	thread	so	that	you	could
configure	it	before	letting	it	run.	Such	configuration	might	include	things	like
setting	its	priority	or	core	affinity.	The	C++	concurrency	API	offers	no	way	to
do	those	things,	but	std::thread	objects	offer	the	native_handle	member
function,	the	result	of	which	is	intended	to	give	you	access	to	the	platform’s
underlying	threading	API	(usually	POSIX	threads	or	Windows	threads).	The
lower-level	API	often	makes	it	possible	to	configure	thread	characteristics	such
as	priority	and	affinity.

Assuming	you	want	to	suspend	a	thread	only	once	(after	creation,	but	before	it’s
running	its	thread	function),	a	design	using	a	void	future	is	a	reasonable	choice.
Here’s	the	essence	of	the	technique:

std::promise<void> p;

void react(); // func for reacting task

void detect() // func for detecting task

{

 std::thread t([] // create thread

 {

 p.get_future().wait(); // suspend t until

 react(); // future is set

 });

 … // here, t is suspended

 // prior to call to react

 p.set_value(); // unsuspend t (and thus

 // call react)

 … // do additional work

 t.join(); // make t unjoinable

} // (see Item 37)

Because	it’s	important	that	t	become	unjoinable	on	all	paths	out	of	detect,	use
of	an	RAII	class	like	Item	37’s	ThreadRAII	seems	like	it	would	be	advisable.
Code	like	this	comes	to	mind:

void detect()

{

 ThreadRAII tr(// use RAII object

 std::thread([]

 {

 p.get_future().wait();

 react();

 }),

 ThreadRAII::DtorAction::join // risky! (see below)

);

 … // thread inside tr

 // is suspended here

 p.set_value(); // unsuspend thread

 // inside tr

 …

}

This	looks	safer	than	it	is.	The	problem	is	that	if	in	the	first	“…”	region	(the	one
with	the	“thread	inside	tr	is	suspended	here”	comment),	an	exception	is	emitted,
set_value	will	never	be	called	on	p.	That	means	that	the	call	to	wait	inside	the
lambda	will	never	return.	That,	in	turn,	means	that	the	thread	running	the	lambda
will	never	finish,	and	that’s	a	problem,	because	the	RAII	object	tr	has	been
configured	to	perform	a	join	on	that	thread	in	tr’s	destructor.	In	other	words,	if
an	exception	is	emitted	from	the	first	“…”	region	of	code,	this	function	will	hang,
because	tr’s	destructor	will	never	complete.

There	are	ways	to	address	this	problem,	but	I’ll	leave	them	in	the	form	of	the
hallowed	exercise	for	the	reader.19	Here,	I’d	like	to	show	how	the	original	code
(i.e.,	not	using	ThreadRAII)	can	be	extended	to	suspend	and	then	unsuspend	not
just	one	reacting	task,	but	many.	It’s	a	simple	generalization,	because	the	key	is

to	use	std::shared_futures	instead	of	a	std::future	in	the	react	code.
Once	you	know	that	the	std::future’s	share	member	function	transfers
ownership	of	its	shared	state	to	the	std::shared_future	object	produced	by
share,	the	code	nearly	writes	itself.	The	only	subtlety	is	that	each	reacting
thread	needs	its	own	copy	of	the	std::shared_future	that	refers	to	the	shared
state,	so	the	std::shared_future	obtained	from	share	is	captured	by	value	by
the	lambdas	running	on	the	reacting	threads:

std::promise<void> p; // as before

void detect() // now for multiple

{ // reacting tasks

 auto sf = p.get_future().share(); // sf's type is

 // std::shared_future<void>

 std::vector<std::thread> vt; // container for

 // reacting threads

 for (int i = 0; i < threadsToRun; ++i) {

 vt.emplace_back([sf]{ sf.wait(); // wait on local

 react(); }); // copy of sf; see

 } // Item 42 for info

 // on emplace_back

 … // detect hangs if

 // this "…" code throws!

 p.set_value(); // unsuspend all threads

 …

 for (auto& t : vt) { // make all threads

 t.join(); // unjoinable; see Item 2

 } // for info on "auto&"

}

The	fact	that	a	design	using	futures	can	achieve	this	effect	is	noteworthy,	and
that’s	why	you	should	consider	it	for	one-shot	event	communication.

Things	to	Remember

For	simple	event	communication,	condvar-based	designs	require	a	superfluous	mutex,
impose	constraints	on	the	relative	progress	of	detecting	and	reacting	tasks,	and	require
reacting	tasks	to	verify	that	the	event	has	taken	place.

Designs	employing	a	flag	avoid	those	problems,	but	are	based	on	polling,	not	blocking.

A	condvar	and	flag	can	be	used	together,	but	the	resulting	communications	mechanism	is
somewhat	stilted.

Using	std::promises	and	futures	dodges	these	issues,	but	the	approach	uses	heap
memory	for	shared	states,	and	it’s	limited	to	one-shot	communication.

Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.
Poor	volatile.	So	misunderstood.	It	shouldn’t	even	be	in	this	chapter,	because
it	has	nothing	to	do	with	concurrent	programming.	But	in	other	programming
languages	(e.g.,	Java	and	C#),	it	is	useful	for	such	programming,	and	even	in
C++,	some	compilers	have	imbued	volatile	with	semantics	that	render	it
applicable	to	concurrent	software	(but	only	when	compiled	with	those
compilers).	It’s	thus	worthwhile	to	discuss	volatile	in	a	chapter	on
concurrency	if	for	no	other	reason	than	to	dispel	the	confusion	surrounding	it.

The	C++	feature	that	programmers	sometimes	confuse	volatile	with—the
feature	that	definitely	does	belong	in	this	chapter—is	the	std::atomic	template.
Instantiations	of	this	template	(e.g.,	std::atomic<int>,	std::atomic<bool>,
std::atomic<Widget*>,	etc.)	offer	operations	that	are	guaranteed	to	be	seen	as
atomic	by	other	threads.	Once	a	std::atomic	object	has	been	constructed,
operations	on	it	behave	as	if	they	were	inside	a	mutex-protected	critical	section,
but	the	operations	are	generally	implemented	using	special	machine	instructions
that	are	more	efficient	than	would	be	the	case	if	a	mutex	were	employed.

Consider	this	code	using	std::atomic:

std::atomic<int> ai(0); // initialize ai to 0

ai = 10; // atomically set ai to 10

std::cout << ai; // atomically read ai's value

++ai; // atomically increment ai to 11

--ai; // atomically decrement ai to 10

During	execution	of	these	statements,	other	threads	reading	ai	may	see	only
values	of	0,	10,	or	11.	No	other	values	are	possible	(assuming,	of	course,	that
this	is	the	only	thread	modifying	ai).

Two	aspects	of	this	example	are	worth	noting.	First,	in	the	“std::cout	<<	ai;”
statement,	the	fact	that	ai	is	a	std::atomic	guarantees	only	that	the	read	of	ai
is	atomic.	There	is	no	guarantee	that	the	entire	statement	proceeds	atomically.
Between	the	time	ai’s	value	is	read	and	operator<<	is	invoked	to	write	it	to	the
standard	output,	another	thread	may	have	modified	ai’s	value.	That	has	no	effect
on	the	behavior	of	the	statement,	because	operator<<	for	ints	uses	a	by-value
parameter	for	the	int	to	output	(the	outputted	value	will	therefore	be	the	one	that
was	read	from	ai),	but	it’s	important	to	understand	that	what’s	atomic	in	that
statement	is	nothing	more	than	the	read	of	ai.

The	second	noteworthy	aspect	of	the	example	is	the	behavior	of	the	last	two
statements—the	increment	and	decrement	of	ai.	These	are	each	read-modify-
write	(RMW)	operations,	yet	they	execute	atomically.	This	is	one	of	the	nicest
characteristics	of	the	std::atomic	types:	once	a	std::atomic	object	has	been
constructed,	all	member	functions	on	it,	including	those	comprising	RMW
operations,	are	guaranteed	to	be	seen	by	other	threads	as	atomic.

In	contrast,	the	corresponding	code	using	volatile	guarantees	virtually	nothing
in	a	multithreaded	context:

volatile int vi(0); // initialize vi to 0

vi = 10; // set vi to 10

std::cout << vi; // read vi's value

++vi; // increment vi to 11

--vi; // decrement vi to 10

During	execution	of	this	code,	if	other	threads	are	reading	the	value	of	vi,	they

may	see	anything,	e.g,	-12,	68,	4090727—anything!	Such	code	would	have
undefined	behavior,	because	these	statements	modify	vi,	so	if	other	threads	are
reading	vi	at	the	same	time,	there	are	simultaneous	readers	and	writers	of
memory	that’s	neither	std::atomic	nor	protected	by	a	mutex,	and	that’s	the
definition	of	a	data	race.

As	a	concrete	example	of	how	the	behavior	of	std::atomics	and	volatiles
can	differ	in	a	multithreaded	program,	consider	a	simple	counter	of	each	type
that’s	incremented	by	multiple	threads.	We’ll	initialize	each	to	0:

std::atomic<int> ac(0); // "atomic counter"

volatile int vc(0); // "volatile counter"

We’ll	then	increment	each	counter	one	time	in	two	simultaneously	running
threads:

/*----- Thread 1 ----- ------- Thread 2 ------- */

 ++ac; ++ac;

 ++vc; ++vc;

When	both	threads	have	finished,	ac’s	value	(i.e.,	the	value	of	the	std::atomic)
must	be	2,	because	each	increment	occurs	as	an	indivisible	operation.	vc’s	value,
on	the	other	hand,	need	not	be	2,	because	its	increments	may	not	occur
atomically.	Each	increment	consists	of	reading	vc’s	value,	incrementing	the
value	that	was	read,	and	writing	the	result	back	into	vc.	But	these	three
operations	are	not	guaranteed	to	proceed	atomically	for	volatile	objects,	so	it’s
possible	that	the	component	parts	of	the	two	increments	of	vc	are	interleaved	as
follows:

1.	 Thread	1	reads	vc’s	value,	which	is	0.

2.	 Thread	2	reads	vc’s	value,	which	is	still	0.

3.	 Thread	1	increments	the	0	it	read	to	1,	then	writes	that	value	into	vc.

4.	 Thread	2	increments	the	0	it	read	to	1,	then	writes	that	value	into	vc.

vc’s	final	value	is	therefore	1,	even	though	it	was	incremented	twice.

This	is	not	the	only	possible	outcome.	vc’s	final	value	is,	in	general,	not
predictable,	because	vc	is	involved	in	a	data	race,	and	the	Standard’s	decree	that
data	races	cause	undefined	behavior	means	that	compilers	may	generate	code	to
do	literally	anything.	Compilers	don’t	use	this	leeway	to	be	malicious,	of	course.
Rather,	they	perform	optimizations	that	would	be	valid	in	programs	without	data
races,	and	these	optimizations	yield	unexpected	and	unpredictable	behavior	in
programs	where	races	are	present.

The	use	of	RMW	operations	isn’t	the	only	situation	where	std::atomics
comprise	a	concurrency	success	story	and	volatiles	suffer	failure.	Suppose	one
task	computes	an	important	value	needed	by	a	second	task.	When	the	first	task
has	computed	the	value,	it	must	communicate	this	to	the	second	task.	Item	39
explains	that	one	way	for	the	first	task	to	communicate	the	availability	of	the
desired	value	to	the	second	task	is	by	using	a	std::atomic<bool>.	Code	in	the
task	computing	the	value	would	look	something	like	this:

std::atomic<bool> valAvailable(false);

auto imptValue = computeImportantValue(); // compute value

valAvailable = true; // tell other task

 // it's available

As	humans	reading	this	code,	we	know	it’s	crucial	that	the	assignment	to
imptValue	take	place	before	the	assignment	to	valAvailable,	but	all	compilers
see	is	a	pair	of	assignments	to	independent	variables.	As	a	general	rule,
compilers	are	permitted	to	reorder	such	unrelated	assignments.	That	is,	given
this	sequence	of	assignments	(where	a,	b,	x,	and	y	correspond	to	independent
variables),

a = b;

x = y;

compilers	may	generally	reorder	them	as	follows:

x = y;

a = b;

Even	if	compilers	don’t	reorder	them,	the	underlying	hardware	might	do	it	(or
might	make	it	seem	to	other	cores	as	if	it	had),	because	that	can	sometimes	make
the	code	run	faster.

However,	the	use	of	std::atomics	imposes	restrictions	on	how	code	can	be
reordered,	and	one	such	restriction	is	that	no	code	that,	in	the	source	code,
precedes	a	write	of	a	std::atomic	variable	may	take	place	(or	appear	to	other
cores	to	take	place)	afterwards.20	That	means	that	in	our	code,

auto imptValue = computeImportantValue(); // compute value

valAvailable = true; // tell other task

 // it's available

not	only	must	compilers	retain	the	order	of	the	assignments	to	imptValue	and
valAvailable,	they	must	generate	code	that	ensures	that	the	underlying
hardware	does,	too.	As	a	result,	declaring	valAvailable	as	std::atomic
ensures	that	our	critical	ordering	requirement—imptValue	must	be	seen	by	all
threads	to	change	no	later	than	valAvailable	does—is	maintained.

Declaring	valAvailable	as	volatile	doesn’t	impose	the	same	code	reordering
restrictions:

volatile bool valAvailable(false);

auto imptValue = computeImportantValue();

valAvailable = true; // other threads might see this assignment

 // before the one to imptValue!

Here,	compilers	might	flip	the	order	of	the	assignments	to	imptValue	and
valAvailable,	and	even	if	they	don’t,	they	might	fail	to	generate	machine	code
that	would	prevent	the	underlying	hardware	from	making	it	possible	for	code	on
other	cores	to	see	valAvailable	change	before	imptValue.

These	two	issues—no	guarantee	of	operation	atomicity	and	insufficient
restrictions	on	code	reordering—explain	why	volatile’s	not	useful	for
concurrent	programming,	but	it	doesn’t	explain	what	it	is	useful	for.	In	a
nutshell,	it’s	for	telling	compilers	that	they’re	dealing	with	memory	that	doesn’t

behave	normally.

“Normal”	memory	has	the	characteristic	that	if	you	write	a	value	to	a	memory
location,	the	value	remains	there	until	something	overwrites	it.	So	if	I	have	a
normal	int,

int x;

and	a	compiler	sees	the	following	sequence	of	operations	on	it,

auto y = x; // read x

y = x; // read x again

the	compiler	can	optimize	the	generated	code	by	eliminating	the	assignment	to	y,
because	it’s	redundant	with	y’s	initialization.

Normal	memory	also	has	the	characteristic	that	if	you	write	a	value	to	a	memory
location,	never	read	it,	and	then	write	to	that	memory	location	again,	the	first
write	can	be	eliminated,	because	it	was	never	used.	So	given	these	two	adjacent
statements,

x = 10; // write x

x = 20; // write x again

compilers	can	eliminate	the	first	one.	That	means	that	if	we	have	this	in	the
source	code,

auto y = x; // read x

y = x; // read x again

x = 10; // write x

x = 20; // write x again

compilers	can	treat	it	as	if	it	had	been	written	like	this:

auto y = x; // read x

x = 20; // write x

Lest	you	wonder	who’d	write	code	that	performs	these	kinds	of	redundant	reads

and	superfluous	writes	(technically	known	as	redundant	loads	and	dead	stores),
the	answer	is	that	humans	don’t	write	it	directly—at	least	we	hope	they	don’t.
However,	after	compilers	take	reasonable-looking	source	code	and	perform
template	instantiation,	inlining,	and	various	common	kinds	of	reordering
optimizations,	it’s	not	uncommon	for	the	result	to	have	redundant	loads	and	dead
stores	that	compilers	can	get	rid	of.

Such	optimizations	are	valid	only	if	memory	behaves	normally.	“Special”
memory	doesn’t.	Probably	the	most	common	kind	of	special	memory	is	memory
used	for	memory-mapped	I/O.	Locations	in	such	memory	actually	communicate
with	peripherals,	e.g.,	external	sensors	or	displays,	printers,	network	ports,	etc.
rather	than	reading	or	writing	normal	memory	(i.e.,	RAM).	In	such	a	context,
consider	again	the	code	with	seemingly	redundant	reads:

auto y = x; // read x

y = x; // read x again

If	x	corresponds	to,	say,	the	value	reported	by	a	temperature	sensor,	the	second
read	of	x	is	not	redundant,	because	the	temperature	may	have	changed	between
the	first	and	second	reads.

It’s	a	similar	situation	for	seemingly	superfluous	writes.	In	this	code,	for
example,

x = 10; // write x

x = 20; // write x again

if	x	corresponds	to	the	control	port	for	a	radio	transmitter,	it	could	be	that	the
code	is	issuing	commands	to	the	radio,	and	the	value	10	corresponds	to	a
different	command	from	the	value	20.	Optimizing	out	the	first	assignment	would
change	the	sequence	of	commands	sent	to	the	radio.

volatile	is	the	way	we	tell	compilers	that	we’re	dealing	with	special	memory.
Its	meaning	to	compilers	is	“Don’t	perform	any	optimizations	on	operations	on
this	memory.”	So	if	x	corresponds	to	special	memory,	it’d	be	declared
volatile:

volatile int x;

Consider	the	effect	that	has	on	our	original	code	sequence:

auto y = x; // read x

y = x; // read x again (can't be optimized away)

x = 10; // write x (can't be optimized away)

x = 20; // write x again

This	is	precisely	what	we	want	if	x	is	memory-mapped	(or	has	been	mapped	to	a
memory	location	shared	across	processes,	etc.).

Pop	quiz!	In	that	last	piece	of	code,	what	is	y’s	type:	int	or	volatile	int?21

The	fact	that	seemingly	redundant	loads	and	dead	stores	must	be	preserved	when
dealing	with	special	memory	explains,	by	the	way,	why	std::atomics	are
unsuitable	for	this	kind	of	work.	Compilers	are	permitted	to	eliminate	such
redundant	operations	on	std::atomics.	The	code	isn’t	written	quite	the	same
way	it	is	for	volatiles,	but	if	we	overlook	that	for	a	moment	and	focus	on	what
compilers	are	permitted	to	do,	we	can	say	that,	conceptually,	compilers	may	take
this,

std::atomic<int> x;

auto y = x; // conceptually read x (see below)

y = x; // conceptually read x again (see below)

x = 10; // write x

x = 20; // write x again

and	optimize	it	to	this:

auto y = x; // conceptually read x (see below)

x = 20; // write x

For	special	memory,	this	is	clearly	unacceptable	behavior.

Now,	as	it	happens,	neither	of	these	two	statements	will	compile	when	x	is
std::atomic:

auto y = x; // error!

y = x; // error!

That’s	because	the	copy	operations	for	std::atomic	are	deleted	(see	Item	11).
And	with	good	reason.	Consider	what	would	happen	if	the	initialization	of	y
with	x	compiled.	Because	x	is	std::atomic,	y’s	type	would	be	deduced	to	be
std::atomic,	too	(see	Item	2).	I	remarked	earlier	that	one	of	the	best	things
about	std::atomics	is	that	all	their	operations	are	atomic,	but	in	order	for	the
copy	construction	of	y	from	x	to	be	atomic,	compilers	would	have	to	generate
code	to	read	x	and	write	y	in	a	single	atomic	operation.	Hardware	generally	can’t
do	that,	so	copy	construction	isn’t	supported	for	std::atomic	types.	Copy
assignment	is	deleted	for	the	same	reason,	which	is	why	the	assignment	from	x
to	y	won’t	compile.	(The	move	operations	aren’t	explicitly	declared	in
std::atomic,	so,	per	the	rules	for	compiler-generated	special	functions
described	in	Item	17,	std::atomic	offers	neither	move	construction	nor	move
assignment.)

It’s	possible	to	get	the	value	of	x	into	y,	but	it	requires	use	of	std::atomic’s
member	functions	load	and	store.	The	load	member	function	reads	a
std::atomic’s	value	atomically,	while	the	store	member	function	writes	it
atomically.	To	initialize	y	with	x,	followed	by	putting	x’s	value	in	y,	the	code
must	be	written	like	this:

std::atomic<int> y(x.load()); // read x

y.store(x.load()); // read x again

This	compiles,	but	the	fact	that	reading	x	(via	x.load())	is	a	separate	function
call	from	initializing	or	storing	to	y	makes	clear	that	there	is	no	reason	to	expect
either	statement	as	a	whole	to	execute	as	a	single	atomic	operation.

Given	that	code,	compilers	could	“optimize”	it	by	storing	x’s	value	in	a	register
instead	of	reading	it	twice:

register = x.load(); // read x into register

std::atomic<int> y(register); // init y with register value

y.store(register); // store register value into y

The	result,	as	you	can	see,	reads	from	x	only	once,	and	that’s	the	kind	of
optimization	that	must	be	avoided	when	dealing	with	special	memory.	(The
optimization	isn’t	permitted	for	volatile	variables.)

The	situation	should	thus	be	clear:

std::atomic	is	useful	for	concurrent	programming,	but	not	for	accessing
special	memory.

volatile	is	useful	for	accessing	special	memory,	but	not	for	concurrent
programming.

Because	std::atomic	and	volatile	serve	different	purposes,	they	can	even	be
used	together:

volatile std::atomic<int> vai; // operations on vai are

 // atomic and can't be

 // optimized away

This	could	be	useful	if	vai	corresponded	to	a	memory-mapped	I/O	location	that
was	concurrently	accessed	by	multiple	threads.

As	a	final	note,	some	developers	prefer	to	use	std::atomic’s	load	and	store
member	functions	even	when	they’re	not	required,	because	it	makes	explicit	in
the	source	code	that	the	variables	involved	aren’t	“normal.”	Emphasizing	that
fact	isn’t	unreasonable.	Accessing	a	std::atomic	is	typically	much	slower	than
accessing	a	non-std::atomic,	and	we’ve	already	seen	that	the	use	of
std::atomics	prevents	compilers	from	performing	certain	kinds	of	code
reorderings	that	would	otherwise	be	permitted.	Calling	out	loads	and	stores	of
std::atomics	can	therefore	help	identify	potential	scalability	chokepoints.
From	a	correctness	perspective,	not	seeing	a	call	to	store	on	a	variable	meant	to
communicate	information	to	other	threads	(e.g.,	a	flag	indicating	the	availability
of	data)	could	mean	that	the	variable	wasn’t	declared	std::atomic	when	it
should	have	been.

This	is	largely	a	style	issue,	however,	and	as	such	is	quite	different	from	the
choice	between	std::atomic	and	volatile.

Things	to	Remember

Things	to	Remember
std::atomic	is	for	data	accessed	from	multiple	threads	without	using	mutexes.	It’s	a	tool
for	writing	concurrent	software.

volatile	is	for	memory	where	reads	and	writes	should	not	be	optimized	away.	It’s	a	tool
for	working	with	special	memory.

15	Assuming	you	have	one.	Some	embedded	systems	don’t.
16	This	is	a	simplification.	What	matters	isn’t	the	future	on	which	get	or	wait	is
invoked,	it’s	the	shared	state	to	which	the	future	refers.	(Item	38	discusses	the
relationship	between	futures	and	shared	states.)	Because	std::futures	support
moving	and	can	also	be	used	to	construct	std::shared_futures,	and	because
std::shared_futures	can	be	copied,	the	future	object	referring	to	the	shared
state	arising	from	the	call	to	std::async	to	which	f	was	passed	is	likely	to	be
different	from	the	one	returned	by	std::async.	That’s	a	mouthful,	however,	so
it’s	common	to	fudge	the	truth	and	simply	talk	about	invoking	get	or	wait	on
the	future	returned	from	std::async.
17	You’ll	find	a	nice	treatment	in	Anthony	Williams’	C++	Concurrency	in
Action	(Manning	Publications,	2012),	section	9.2.
18	Item	39	explains	that	the	kind	of	communications	channel	associated	with	a
future	can	be	employed	for	other	purposes.	For	this	Item,	however,	we’ll
consider	only	its	use	as	a	mechanism	for	a	callee	to	convey	its	result	to	a	caller.
19	A	reasonable	place	to	begin	researching	the	matter	is	my	24	December	2013
blog	post	at	The	View	From	Aristeia,	“ThreadRAII	+	Thread	Suspension	=
Trouble?”
20	This	is	true	only	for	std::atomics	using	sequential	consistency,	which	is	both
the	default	and	the	only	consistency	model	for	std::atomic	objects	that	use	the
syntax	shown	in	this	book.	C++11	also	supports	consistency	models	with	more
flexible	code-reordering	rules.	Such	weak	(aka	relaxed)	models	make	it	possible
to	create	software	that	runs	faster	on	some	hardware	architectures,	but	the	use	of
such	models	yields	software	that	is	much	more	difficult	to	get	right,	to
understand,	and	to	maintain.	Subtle	errors	in	code	using	relaxed	atomics	is	not
uncommon,	even	for	experts,	so	you	should	stick	to	sequential	consistency	if	at

http://scottmeyers.blogspot.com/
http://scottmeyers.blogspot.com/2013/12/threadraii-thread-suspension-trouble.html

all	possible.
21	y’s	type	is	auto-deduced,	so	it	uses	the	rules	described	in	Item	2.	Those	rules
dictate	that	for	the	declaration	of	non-reference	non-pointer	types	(which	is	the
case	for	y),	const	and	volatile	qualifiers	are	dropped.	y’s	type	is	therefore
simply	int.	This	means	that	redundant	reads	of	and	writes	to	y	can	be
eliminated.	In	the	example,	compilers	must	perform	both	the	initialization	of	and
the	assignment	to	y,	because	x	is	volatile,	so	the	second	read	of	x	might	yield
a	different	value	from	the	first	one.

Chapter	8.	Tweaks

For	every	general	technique	or	feature	in	C++,	there	are	circumstances	where	it’s
reasonable	to	use	it,	and	there	are	circumstances	where	it’s	not.	Describing	when
it	makes	sense	to	use	a	general	technique	or	feature	is	usually	fairly
straightforward,	but	this	chapter	covers	two	exceptions.	The	general	technique	is
pass	by	value,	and	the	general	feature	is	emplacement.	The	decision	about	when
to	employ	them	is	affected	by	so	many	factors,	the	best	advice	I	can	offer	is	to
consider	their	use.	Nevertheless,	both	are	important	players	in	effective	modern
C++	programming,	and	the	Items	that	follow	provide	the	information	you’ll	need
to	determine	whether	using	them	is	appropriate	for	your	software.

Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always
copied.
Some	function	parameters	are	intended	to	be	copied.22	For	example,	a	member
function	addName	might	copy	its	parameter	into	a	private	container.	For
efficiency,	such	a	function	should	copy	lvalue	arguments,	but	move	rvalue
arguments:

class Widget {

public:

 void addName(const std::string& newName) // take lvalue;

 { names.push_back(newName); } // copy it

 void addName(std::string&& newName) // take rvalue;

 { names.push_back(std::move(newName)); } // move it; see

 … // Item 25 for use

 // of std::move

private:

 std::vector<std::string> names;

};

This	works,	but	it	requires	writing	two	functions	that	do	essentially	the	same
thing.	That	chafes	a	bit:	two	functions	to	declare,	two	functions	to	implement,

thing.	That	chafes	a	bit:	two	functions	to	declare,	two	functions	to	implement,
two	functions	to	document,	two	functions	to	maintain.	Ugh.

Furthermore,	there	will	be	two	functions	in	the	object	code—something	you
might	care	about	if	you’re	concerned	about	your	program’s	footprint.	In	this
case,	both	functions	will	probably	be	inlined,	and	that’s	likely	to	eliminate	any
bloat	issues	related	to	the	existence	of	two	functions,	but	if	these	functions	aren’t
inlined	everywhere,	you	really	will	get	two	functions	in	your	object	code.

An	alternative	approach	is	to	make	addName	a	function	template	taking	a
universal	reference	(see	Item	24):

class Widget {

public:

 template<typename T> // take lvalues

 void addName(T&& newName) // and rvalues;

 { // copy lvalues,

 names.push_back(std::forward<T>(newName)); // move rvalues;

 } // see Item 25

 // for use of

 … // std::forward

};

This	reduces	the	source	code	you	have	to	deal	with,	but	the	use	of	universal
references	leads	to	other	complications.	As	a	template,	addName’s
implementation	must	typically	be	in	a	header	file.	It	may	yield	several	functions
in	object	code,	because	it	not	only	instantiates	differently	for	lvalues	and	rvalues,
it	also	instantiates	differently	for	std::string	and	types	that	are	convertible	to
std::string	(see	Item	25).	At	the	same	time,	there	are	argument	types	that
can’t	be	passed	by	universal	reference	(see	Item	30),	and	if	clients	pass	improper
argument	types,	compiler	error	messages	can	be	intimidating	(see	Item	27).

Wouldn’t	it	be	nice	if	there	were	a	way	to	write	functions	like	addName	such	that
lvalues	were	copied,	rvalues	were	moved,	there	was	only	one	function	to	deal
with	(in	both	source	and	object	code),	and	the	idiosyncrasies	of	universal
references	were	avoided?	As	it	happens,	there	is.	All	you	have	to	do	is	abandon
one	of	the	first	rules	you	probably	learned	as	a	C++	programmer.	That	rule	was
to	avoid	passing	objects	of	user-defined	types	by	value.	For	parameters	like
newName	in	functions	like	addName,	pass	by	value	may	be	an	entirely	reasonable

strategy.

Before	we	discuss	why	pass-by-value	may	be	a	good	fit	for	newName	and
addName,	let’s	see	how	it	would	be	implemented:

class Widget {

public:

 void addName(std::string newName) // take lvalue or

 { names.push_back(std::move(newName)); } // rvalue; move it

 …

};

The	only	non-obvious	part	of	this	code	is	the	application	of	std::move	to	the
parameter	newName.	Typically,	std::move	is	used	with	rvalue	references,	but	in
this	case,	we	know	that	(1)	newName	is	a	completely	independent	object	from
whatever	the	caller	passed	in,	so	changing	newName	won’t	affect	callers	and	(2)
this	is	the	final	use	of	newName,	so	moving	from	it	won’t	have	any	impact	on	the
rest	of	the	function.

The	fact	that	there’s	only	one	addName	function	explains	how	we	avoid	code
duplication,	both	in	the	source	code	and	the	object	code.	We’re	not	using	a
universal	reference,	so	this	approach	doesn’t	lead	to	bloated	header	files,	odd
failure	cases,	or	confounding	error	messages.	But	what	about	the	efficiency	of
this	design?	We’re	passing	by	value.	Isn’t	that	expensive?

In	C++98,	it	was	a	reasonable	bet	that	it	was.	No	matter	what	callers	passed	in,
the	parameter	newName	would	be	created	by	copy	construction.	In	C++11,
however,	addName	will	be	copy	constructed	only	for	lvalues.	For	rvalues,	it	will
be	move	constructed.	Here,	look:

Widget w;

…

std::string name("Bart");

w.addName(name); // call addName with lvalue

…

w.addName(name + "Jenne"); // call addName with rvalue

 // (see below)

In	the	first	call	to	addName	(when	name	is	passed),	the	parameter	newName	is
initialized	with	an	lvalue.	newName	is	thus	copy	constructed,	just	like	it	would	be
in	C++98.	In	the	second	call,	newName	is	initialized	with	the	std::string	object
resulting	from	a	call	to	operator+	for	std::string	(i.e.,	the	append	operation).
That	object	is	an	rvalue,	and	newName	is	therefore	move	constructed.

Lvalues	are	thus	copied,	and	rvalues	are	moved,	just	like	we	want.	Neat,	huh?

It	is	neat,	but	there	are	some	caveats	you	need	to	keep	in	mind.	Doing	that	will
be	easier	if	we	recap	the	three	versions	of	addName	we’ve	considered:

class Widget { // Approach 1:

public: // overload for

 void addName(const std::string& newName) // lvalues and

 { names.push_back(newName); } // rvalues

 void addName(std::string&& newName)

 { names.push_back(std::move(newName)); }

 …

private:

 std::vector<std::string> names;

};

class Widget { // Approach 2:

public: // use universal

 template<typename T> // reference

 void addName(T&& newName)

 { names.push_back(std::forward<T>(newName)); }

 …

};

class Widget { // Approach 3:

public: // pass by value

 void addName(std::string newName)

 { names.push_back(std::move(newName)); }

 …

};

I	refer	to	the	first	two	versions	as	the	“by-reference	approaches,”	because	they’re

both	based	on	passing	their	parameters	by	reference.

Here	are	the	two	calling	scenarios	we’ve	examined:

Widget w;

…

std::string name("Bart");

w.addName(name); // pass lvalue

…

w.addName(name + "Jenne"); // pass rvalue

Now	consider	the	cost,	in	terms	of	copy	and	move	operations,	of	adding	a	name
to	a	Widget	for	the	two	calling	scenarios	and	each	of	the	three	addName
implementations	we’ve	discussed.	The	accounting	will	largely	ignore	the
possibility	of	compilers	optimizing	copy	and	move	operations	away,	because
such	optimizations	are	context-and	compiler-dependent	and,	in	practice,	don’t
change	the	essence	of	the	analysis.

Overloading:	Regardless	of	whether	an	lvalue	or	an	rvalue	is	passed,	the
caller’s	argument	is	bound	to	a	reference	called	newName.	That	costs	nothing,
in	terms	of	copy	and	move	operations.	In	the	lvalue	overload,	newName	is
copied	into	Widget::names.	In	the	rvalue	overload,	it’s	moved.	Cost
summary:	one	copy	for	lvalues,	one	move	for	rvalues.

Using	a	universal	reference:	As	with	overloading,	the	caller’s	argument	is
bound	to	the	reference	newName.	This	is	a	no-cost	operation.	Due	to	the	use	of
std::forward,	lvalue	std::string	arguments	are	copied	into
Widget::names,	while	rvalue	std::string	arguments	are	moved.	The	cost
summary	for	std::string	arguments	is	the	same	as	with	overloading:	one
copy	for	lvalues,	one	move	for	rvalues.

Item	25	explains	that	if	a	caller	passes	an	argument	of	a	type	other	than
std::string,	it	will	be	forwarded	to	a	std::string	constructor,	and	that
could	cause	as	few	as	zero	std::string	copy	or	move	operations	to	be
performed.	Functions	taking	universal	references	can	thus	be	uniquely
efficient.	However,	that	doesn’t	affect	the	analysis	in	this	Item,	so	we’ll	keep
things	simple	by	assuming	that	callers	always	pass	std::string	arguments.

Passing	by	value:	Regardless	of	whether	an	lvalue	or	an	rvalue	is	passed,	the
parameter	newName	must	be	constructed.	If	an	lvalue	is	passed,	this	costs	a
copy	construction.	If	an	rvalue	is	passed,	it	costs	a	move	construction.	In	the
body	of	the	function,	newName	is	unconditionally	moved	into
Widget::names.	The	cost	summary	is	thus	one	copy	plus	one	move	for
lvalues,	and	two	moves	for	rvalues.	Compared	to	the	by-reference
approaches,	that’s	one	extra	move	for	both	lvalues	and	rvalues.

Look	again	at	this	Item’s	title:

Consider	pass	by	value	for	copyable	parameters	that	are	cheap	to	move	and
always	copied.

It’s	worded	the	way	it	is	for	a	reason.	Four	reasons,	in	fact:

1.	 You	should	only	consider	using	pass	by	value.	Yes,	it	requires	writing	only
one	function.	Yes,	it	generates	only	one	function	in	the	object	code.	Yes,	it
avoids	the	issues	associated	with	universal	references.	But	it	has	a	higher
cost	than	the	alternatives,	and,	as	we’ll	see	below,	in	some	cases,	there	are
expenses	we	haven’t	yet	discussed.

2.	 Consider	pass	by	value	only	for	copyable	parameters.	Parameters	failing
this	test	must	have	move-only	types,	because	if	they’re	not	copyable,	yet
the	function	always	makes	a	copy,	the	copy	must	be	created	via	the	move
constructor.23	Recall	that	the	advantage	of	pass	by	value	over	overloading
is	that	with	pass	by	value,	only	one	function	has	to	be	written.	But	for
move-only	types,	there	is	no	need	to	provide	an	overload	for	lvalue
arguments,	because	copying	an	lvalue	entails	calling	the	copy	constructor,
and	the	copy	constructor	for	move-only	types	is	disabled.	That	means	that
only	rvalue	arguments	need	to	be	supported,	and	in	that	case,	the
“overloading”	solution	requires	only	one	overload:	the	one	taking	an	rvalue
reference.

Consider	a	class	with	a	std::unique_ptr<std::string>	data	member
and	a	setter	for	it.	std::unique_ptr	is	a	move-only	type,	so	the
“overloading”	approach	to	its	setter	consists	of	a	single	function:

class Widget {

public:

 …

 void setPtr(std::unique_ptr<std::string>&& ptr)

 { p = std::move(ptr); }

private:

 std::unique_ptr<std::string> p;

};

A	caller	might	use	it	this	way:

Widget w;

…

w.setPtr(std::make_unique<std::string>("Modern C++"));

Here	the	rvalue	std::unique_ptr<std::string>	returned	from
std::make_unique	(see	Item	21)	is	passed	by	rvalue	reference	to	setPtr,
where	it’s	moved	into	the	data	member	p.	The	total	cost	is	one	move.

If	setPtr	were	to	take	its	parameter	by	value,

class Widget {

public:

 …

 void setPtr(std::unique_ptr<std::string> ptr)

 { p = std::move(ptr); }

 …

};

the	same	call	would	move	construct	the	parameter	ptr,	and	ptr	would	then
be	move	assigned	into	the	data	member	p.	The	total	cost	would	thus	be	two
moves—twice	that	of	the	“overloading”	approach.

3.	 Pass	by	value	is	worth	considering	only	for	parameters	that	are	cheap	to
move.	When	moves	are	cheap,	the	cost	of	an	extra	one	may	be	acceptable,
but	when	they’re	not,	performing	an	unnecessary	move	is	analogous	to
performing	an	unnecessary	copy,	and	the	importance	of	avoiding
unnecessary	copy	operations	is	what	led	to	the	C++98	rule	about	avoiding
pass	by	value	in	the	first	place!

4.	 You	should	consider	pass	by	value	only	for	parameters	that	are	always
copied.	To	see	why	this	is	important,	suppose	that	before	copying	its
parameter	into	the	names	container,	addName	checks	to	see	if	the	new	name
is	too	short	or	too	long.	If	it	is,	the	request	to	add	the	name	is	ignored.	A
pass-by-value	implementation	could	be	written	like	this:

class Widget {

public:

 void addName(std::string newName)

 {

 if ((newName.length() >= minLen) &&

 (newName.length() <= maxLen))

 {

 names.push_back(std::move(newName));

 }

 }

 …

private:

 std::vector<std::string> names;

};

This	function	incurs	the	cost	of	constructing	and	destroying	newName,	even
if	nothing	is	added	to	names.	That’s	a	price	the	by-reference	approaches
wouldn’t	be	asked	to	pay.

Even	when	you’re	dealing	with	a	function	performing	an	unconditional	copy	on
a	copyable	type	that’s	cheap	to	move,	there	are	times	when	pass	by	value	may
not	be	appropriate.	That’s	because	a	function	can	copy	a	parameter	in	two	ways:
via	construction	(i.e.,	copy	construction	or	move	construction)	and	via
assignment	(i.e.,	copy	assignment	or	move	assignment).	addName	uses
construction:	its	parameter	newName	is	passed	to	vector::push_back,	and
inside	that	function,	newName	is	copy	constructed	into	a	new	element	created	at
the	end	of	the	std::vector.	For	functions	that	use	construction	to	copy	their
parameter,	the	analysis	we	saw	earlier	is	complete:	using	pass	by	value	incurs
the	cost	of	an	extra	move	for	both	lvalue	and	rvalue	arguments.

When	a	parameter	is	copied	using	assignment,	the	situation	is	more	complicated.
Suppose,	for	example,	we	have	a	class	representing	passwords.	Because

passwords	can	be	changed,	we	provide	a	setter	function,	changeTo.	Using	a
pass-by-value	strategy,	we	could	implement	Password	like	this:

class Password {

public:

 explicit Password(std::string pwd) // pass by value

 : text(std::move(pwd)) {} // construct text

 void changeTo(std::string newPwd) // pass by value

 { text = std::move(newPwd); } // assign text

 …

private:

 std::string text; // text of password

};

Storing	the	password	as	plain	text	will	whip	your	software	security	SWAT	team
into	a	frenzy,	but	ignore	that	and	consider	this	code:

std::string initPwd("Supercalifragilisticexpialidocious");

Password p(initPwd);

There	are	no	suprises	here:	p.text	is	constructed	with	the	given	password,	and
using	pass	by	value	in	the	constructor	incurs	the	cost	of	a	std::string	move
construction	that	would	not	be	necessary	if	overloading	or	perfect	forwarding
were	employed.	All	is	well.

A	user	of	this	program	may	not	be	as	sanguine	about	the	password,	however,
because	“Supercalifragilisticexpialidocious”	is	found	in	many	dictionaries.	He	or
she	may	therefore	take	actions	that	lead	to	code	equivalent	to	the	following
being	executed:

std::string newPassword = "Beware the Jabberwock";

p.changeTo(newPassword);

Whether	the	new	password	is	better	than	the	old	one	is	debatable,	but	that’s	the
user’s	problem.	Ours	is	that	changeTo’s	use	of	assignment	to	copy	the	parameter

newPwd	probably	causes	that	function’s	pass-by-value	strategy	to	explode	in
cost.

The	argument	passed	to	changeTo	is	an	lvalue	(newPassword),	so	when	the
parameter	newPwd	is	constructed,	it’s	the	std::string	copy	constructor	that’s
called.	That	constructor	allocates	memory	to	hold	the	new	password.	newPwd	is
then	move-assigned	to	text,	which	causes	the	memory	already	held	by	text	to
be	deallocated.	There	are	thus	two	dynamic	memory	management	actions	within
changeTo:	one	to	allocate	memory	for	the	new	password,	and	one	to	deallocate
the	memory	for	the	old	password.

But	in	this	case,	the	old	password	(“Supercalifragilisticexpialidocious”)	is	longer
than	the	new	one	(“Beware	the	Jabberwock”),	so	there’s	no	need	to	allocate	or
deallocate	anything.	If	the	overloading	approach	were	used,	it’s	likely	that	none
would	take	place:

class Password {

public:

 …

 void changeTo(const std::string& newPwd) // the overload

 { // for lvalues

 text = newPwd; // can reuse text's memory if

 // text.capacity() >= newPwd.size()

 }

 …

private:

 std::string text; // as above

};

In	this	scenario,	the	cost	of	pass	by	value	includes	an	extra	memory	allocation
and	deallocation—costs	that	are	likely	to	exceed	that	of	a	std::string	move
operation	by	orders	of	magnitude.

Interestingly,	if	the	old	password	were	shorter	than	the	new	one,	it	would
typically	be	impossible	to	avoid	an	allocation-deallocation	pair	during	the
assignment,	and	in	that	case,	pass	by	value	would	run	at	about	the	same	speed	as
pass	by	reference.	The	cost	of	assignment-based	parameter	copying	can	thus

depend	on	the	values	of	the	objects	participating	in	the	assignment!	This	kind	of
analysis	applies	to	any	parameter	type	that	holds	values	in	dynamically	allocated
memory.	Not	all	types	qualify,	but	many—including	std::string	and
std::vector—do.

This	potential	cost	increase	generally	applies	only	when	lvalue	arguments	are
passed,	because	the	need	to	perform	memory	allocation	and	deallocation
typically	occurs	only	when	true	copy	operations	(i.e.,	not	moves)	are	performed.
For	rvalue	arguments,	moves	almost	always	suffice.

The	upshot	is	that	the	extra	cost	of	pass	by	value	for	functions	that	copy	a
parameter	using	assignment	depends	on	the	type	being	passed,	the	ratio	of	lvalue
to	rvalue	arguments,	whether	the	type	uses	dynamically	allocated	memory,	and,
if	so,	the	implementation	of	that	type’s	assignment	operators	and	the	likelihood
that	the	memory	associated	with	the	assignment	target	is	at	least	as	large	as	the
memory	associated	with	the	assignment	source.	For	std::string,	it	also
depends	on	whether	the	implementation	uses	the	small	string	optimization	(SSO
—see	Item	29)	and,	if	so,	whether	the	values	being	assigned	fit	in	the	SSO	buffer.

So,	as	I	said,	when	parameters	are	copied	via	assignment,	analyzing	the	cost	of
pass	by	value	is	complicated.	Usually,	the	most	practical	approach	is	to	adopt	a
“guilty	until	proven	innocent”	policy,	whereby	you	use	overloading	or	universal
references	instead	of	pass	by	value	unless	it’s	been	demonstrated	that	pass	by
value	yields	acceptably	efficient	code	for	the	parameter	type	you	need.

Now,	for	software	that	must	be	as	fast	as	possible,	pass	by	value	may	not	be	a
viable	strategy,	because	avoiding	even	cheap	moves	can	be	important.
Moreover,	it’s	not	always	clear	how	many	moves	will	take	place.	In	the
Widget::addName	example,	pass	by	value	incurs	only	a	single	extra	move
operation,	but	suppose	that	Widget::addName	called	Widget::validateName,
and	this	function	also	passed	by	value.	(Presumably	it	has	a	reason	for	always
copying	its	parameter,	e.g.,	to	store	it	in	a	data	structure	of	all	values	it
validates.)	And	suppose	that	validateName	called	a	third	function	that	also
passed	by	value…

You	can	see	where	this	is	headed.	When	there	are	chains	of	function	calls,	each
of	which	employs	pass	by	value	because	“it	costs	only	one	inexpensive	move,”
the	cost	for	the	entire	chain	of	calls	may	not	be	something	you	can	tolerate.

Using	by-reference	parameter	passing,	chains	of	calls	don’t	incur	this	kind	of
accumulated	overhead.

An	issue	unrelated	to	performance,	but	still	worth	keeping	in	mind,	is	that	pass
by	value,	unlike	pass	by	reference,	is	susceptible	to	the	slicing	problem.	This	is
well-trod	C++98	ground,	so	I	won’t	dwell	on	it,	but	if	you	have	a	function	that	is
designed	to	accept	a	parameter	of	a	base	class	type	or	any	type	derived	from	it,
you	don’t	want	to	declare	a	pass-by-value	parameter	of	that	type,	because	you’ll
“slice	off”	the	derived-class	characteristics	of	any	derived	type	object	that	may
be	passed	in:

class Widget { … }; // base class

class SpecialWidget: public Widget { … }; // derived class

void processWidget(Widget w); // func for any kind of Widget,

 // including derived types;

… // suffers from slicing problem

SpecialWidget sw;

…

processWidget(sw); // processWidget sees a

 // Widget, not a SpecialWidget!

If	you’re	not	familiar	with	the	slicing	problem,	search	engines	and	the	Internet
are	your	friends;	there’s	lots	of	information	available.	You’ll	find	that	the
existence	of	the	slicing	problem	is	another	reason	(on	top	of	the	efficiency	hit)
why	pass	by	value	has	a	shady	reputation	in	C++98.	There	are	good	reasons	why
one	of	the	first	things	you	probably	learned	about	C++	programming	was	to
avoid	passing	objects	of	user-defined	types	by	value.

C++11	doesn’t	fundamentally	change	the	C++98	wisdom	regarding	pass	by
value.	In	general,	pass	by	value	still	entails	a	performance	hit	you’d	prefer	to
avoid,	and	pass	by	value	can	still	lead	to	the	slicing	problem.	What’s	new	in
C++11	is	the	distinction	between	lvalue	and	rvalue	arguments.	Implementing
functions	that	take	advantage	of	move	semantics	for	rvalues	of	copyable	types
requires	either	overloading	or	using	universal	references,	both	of	which	have
drawbacks.	For	the	special	case	of	copyable,	cheap-to-move	types	passed	to
functions	that	always	copy	them	and	where	slicing	is	not	a	concern,	pass	by

functions	that	always	copy	them	and	where	slicing	is	not	a	concern,	pass	by
value	can	offer	an	easy-to-implement	alternative	that’s	nearly	as	efficient	as	its
pass-by-reference	competitors,	but	avoids	their	disadvantages.

Things	to	Remember
For	copyable,	cheap-to-move	parameters	that	are	always	copied,	pass	by	value	may	be
nearly	as	efficient	as	pass	by	reference,	it’s	easier	to	implement,	and	it	can	generate	less
object	code.

Copying	parameters	via	construction	may	be	significantly	more	expensive	than	copying
them	via	assignment.

Pass	by	value	is	subject	to	the	slicing	problem,	so	it’s	typically	inappropriate	for	base	class
parameter	types.

Item	42: Consider	emplacement	instead	of
insertion.
If	you	have	a	container	holding,	say,	std::strings,	it	seems	logical	that	when
you	add	a	new	element	via	an	insertion	function	(i.e.,	insert,	push_front,
push_back,	or,	for	std::forward_list,	insert_after),	the	type	of	element
you’ll	pass	to	the	function	will	be	std::string.	After	all,	that’s	what	the
container	has	in	it.

Logical	though	this	may	be,	it’s	not	always	true.	Consider	this	code:

std::vector<std::string> vs; // container of std::string

vs.push_back("xyzzy"); // add string literal

Here,	the	container	holds	std::strings,	but	what	you	have	in	hand—what
you’re	actually	trying	to	push_back—is	a	string	literal,	i.e.,	a	sequence	of
characters	inside	quotes.	A	string	literal	is	not	a	std::string,	and	that	means
that	the	argument	you’re	passing	to	push_back	is	not	of	the	type	held	by	the
container.

push_back	for	std::vector	is	overloaded	for	lvalues	and	rvalues	as	follows:

template <class T, // from the C++11

 class Allocator = allocator<T>> // Standard

class vector {

public:

 …

 void push_back(const T& x); // insert lvalue

 void push_back(T&& x); // insert rvalue

 …

};

In	the	call

vs.push_back("xyzzy");

compilers	see	a	mismatch	between	the	type	of	the	argument	(const	char[6])
and	the	type	of	the	parameter	taken	by	push_back	(a	reference	to	a
std::string).	They	address	the	mismatch	by	generating	code	to	create	a
temporary	std::string	object	from	the	string	literal,	and	they	pass	that
temporary	object	to	push_back.	In	other	words,	they	treat	the	call	as	if	it	had
been	written	like	this:

vs.push_back(std::string("xyzzy")); // create temp. std::string

 // and pass it to push_back

The	code	compiles	and	runs,	and	everybody	goes	home	happy.	Everybody
except	the	performance	freaks,	that	is,	because	the	performance	freaks	recognize
that	this	code	isn’t	as	efficient	as	it	should	be.

To	create	a	new	element	in	a	container	of	std::strings,	they	understand,	a
std::string	constructor	is	going	to	have	to	be	called,	but	the	code	above
doesn’t	make	just	one	constructor	call.	It	makes	two.	And	it	calls	the
std::string	destructor,	too.	Here’s	what	happens	at	runtime	in	the	call	to
push_back:

1.	 A	temporary	std::string	object	is	created	from	the	string	literal
"xyzzy".	This	object	has	no	name;	we’ll	call	it	temp.	Construction	of	temp
is	the	first	std::string	construction.	Because	it’s	a	temporary	object,
temp	is	an	rvalue.

2.	 temp	is	passed	to	the	rvalue	overload	for	push_back,	where	it’s	bound	to
the	rvalue	reference	parameter	x.	A	copy	of	x	is	then	constructed	in	the
memory	for	the	std::vector.	This	construction—the	second	one—is	what
actually	creates	a	new	object	inside	the	std::vector.	(The	constructor
that’s	used	to	copy	x	into	the	std::vector	is	the	move	constructor,
because	x,	being	an	rvalue	reference,	gets	cast	to	an	rvalue	before	it’s
copied.	For	information	about	the	casting	of	rvalue	reference	parameters	to
rvalues,	see	Item	25.)

3.	 Immediately	after	push_back	returns,	temp	is	destroyed,	thus	calling	the
std::string	destructor.

The	performance	freaks	can’t	help	but	notice	that	if	there	were	a	way	to	take	the
string	literal	and	pass	it	directly	to	the	code	in	step	2	that	constructs	the
std::string	object	inside	the	std::vector,	we	could	avoid	constructing	and
destroying	temp.	That	would	be	maximally	efficient,	and	even	the	performance
freaks	could	contentedly	decamp.

Because	you’re	a	C++	programmer,	there’s	an	above-average	chance	you’re	a
performance	freak.	If	you’re	not,	you’re	still	probably	sympathetic	to	their	point
of	view.	(If	you’re	not	at	all	interested	in	performance,	shouldn’t	you	be	in	the
Python	room	down	the	hall?)	So	I’m	pleased	to	tell	you	that	there	is	a	way	to	do
exactly	what	is	needed	for	maximal	efficiency	in	the	call	to	push_back.	It’s	to
not	call	push_back.	push_back	is	the	wrong	function.	The	function	you	want	is
emplace_back.

emplace_back	does	exactly	what	we	desire:	it	uses	whatever	arguments	are
passed	to	it	to	construct	a	std::string	directly	inside	the	std::vector.	No
temporaries	are	involved:

vs.emplace_back("xyzzy"); // construct std::string inside

 // vs directly from "xyzzy"

emplace_back	uses	perfect	forwarding,	so,	as	long	as	you	don’t	bump	into	one
of	perfect	forwarding’s	limitations	(see	Item	30),	you	can	pass	any	number	of
arguments	of	any	combination	of	types	through	emplace_back.	For	example,	if

you’d	like	to	create	a	std::string	in	vs	via	the	std::string	constructor
taking	a	character	and	a	repeat	count,	this	would	do	it:

vs.emplace_back(50, 'x'); // insert std::string consisting

 // of 50 'x' characters

emplace_back	is	available	for	every	standard	container	that	supports
push_back.	Similarly,	every	standard	container	that	supports	push_front
supports	emplace_front.	And	every	standard	container	that	supports	insert
(which	is	all	but	std::forward_list	and	std::array)	supports	emplace.	The
associative	containers	offer	emplace_hint	to	complement	their	insert
functions	that	take	a	“hint”	iterator,	and	std::forward_list	has
emplace_after	to	match	its	insert_after.

What	makes	it	possible	for	emplacement	functions	to	outperform	insertion
functions	is	their	more	flexible	interface.	Insertion	functions	take	objects	to	be
inserted,	while	emplacement	functions	take	constructor	arguments	for	objects	to
be	inserted.	This	difference	permits	emplacement	functions	to	avoid	the	creation
and	destruction	of	temporary	objects	that	insertion	functions	can	necessitate.

Because	an	argument	of	the	type	held	by	the	container	can	be	passed	to	an
emplacement	function	(the	argument	thus	causes	the	function	to	perform	copy	or
move	construction),	emplacement	can	be	used	even	when	an	insertion	function
would	require	no	temporary.	In	that	case,	insertion	and	emplacement	do
essentially	the	same	thing.	For	example,	given

std::string queenOfDisco("Donna Summer");

both	of	the	following	calls	are	valid,	and	both	have	the	same	net	effect	on	the
container:

vs.push_back(queenOfDisco); // copy-construct queenOfDisco

 // at end of vs

vs.emplace_back(queenOfDisco); // ditto

Emplacement	functions	can	thus	do	everything	insertion	functions	can.	They
sometimes	do	it	more	efficiently,	and,	at	least	in	theory,	they	should	never	do	it
less	efficiently.	So	why	not	use	them	all	the	time?

less	efficiently.	So	why	not	use	them	all	the	time?

Because,	as	the	saying	goes,	in	theory,	there’s	no	difference	between	theory	and
practice,	but	in	practice,	there	is.	With	current	implementations	of	the	Standard
Library,	there	are	situations	where,	as	expected,	emplacement	outperforms
insertion,	but,	sadly,	there	are	also	situations	where	the	insertion	functions	run
faster.	Such	situations	are	not	easy	to	characterize,	because	they	depend	on	the
types	of	arguments	being	passed,	the	containers	being	used,	the	locations	in	the
containers	where	insertion	or	emplacement	is	requested,	the	exception	safety	of
the	contained	types’	constructors,	and,	for	containers	where	duplicate	values	are
prohibited	(i.e.,	std::set,	std::map,	std::unordered_set,
std::unordered_map),	whether	the	value	to	be	added	is	already	in	the
container.	The	usual	performance-tuning	advice	thus	applies:	to	determine
whether	emplacement	or	insertion	runs	faster,	benchmark	them	both.

That’s	not	very	satisfying,	of	course,	so	you’ll	be	pleased	to	learn	that	there’s	a
heuristic	that	can	help	you	identify	situations	where	emplacement	functions	are
most	likely	to	be	worthwhile.	If	all	the	following	are	true,	emplacement	will
almost	certainly	outperform	insertion:

The	value	being	added	is	constructed	into	the	container,	not	assigned.	
The	example	that	opened	this	Item	(adding	a	std::string	with	the	value
"xyzzy"	to	a	std::vector	vs)	showed	the	value	being	added	to	the	end	of
vs—to	a	place	where	no	object	yet	existed.	The	new	value	therefore	had	to	be
constructed	into	the	std::vector.	If	we	revise	the	example	such	that	the	new
std::string	goes	into	a	location	already	occupied	by	an	object,	it’s	a
different	story.	Consider:

std::vector<std::string> vs; // as before

… // add elements to vs

vs.emplace(vs.begin(), "xyzzy"); // add "xyzzy" to

 // beginning of vs

For	this	code,	few	implementations	will	construct	the	added	std::string
into	the	memory	occupied	by	vs[0].	Instead,	they’ll	move-assign	the	value
into	place.	But	move	assignment	requires	an	object	to	move	from,	and	that
means	that	a	temporary	object	will	need	to	be	created	to	be	the	source	of	the

move.	Because	the	primary	advantage	of	emplacement	over	insertion	is	that
temporary	objects	are	neither	created	nor	destroyed,	when	the	value	being
added	is	put	into	the	container	via	assignment,	emplacement’s	edge	tends	to
disappear.

Alas,	whether	adding	a	value	to	a	container	is	accomplished	by	construction
or	assignment	is	generally	up	to	the	implementer.	But,	again,	heuristics	can
help.	Node-based	containers	virtually	always	use	construction	to	add	new
values,	and	most	standard	containers	are	node-based.	The	only	ones	that
aren’t	are	std::vector,	std::deque,	and	std::string.	(std::array	isn’t,
either,	but	it	doesn’t	support	insertion	or	emplacement,	so	it’s	not	relevant
here.)	Within	the	non-node-based	containers,	you	can	rely	on	emplace_back
to	use	construction	instead	of	assignment	to	get	a	new	value	into	place,	and
for	std::deque,	the	same	is	true	of	emplace_front.

The	argument	type(s)	being	passed	differ	from	the	type	held	by	the
container.	Again,	emplacement’s	advantage	over	insertion	generally	stems
from	the	fact	that	its	interface	doesn’t	require	creation	and	destruction	of	a
temporary	object	when	the	argument(s)	passed	are	of	a	type	other	than	that
held	by	the	container.	When	an	object	of	type	T	is	to	be	added	to	a
container<T>,	there’s	no	reason	to	expect	emplacement	to	run	faster	than
insertion,	because	no	temporary	needs	to	be	created	to	satisfy	the	insertion
interface.

The	container	is	unlikely	to	reject	the	new	value	as	a	duplicate.	This
means	that	the	container	either	permits	duplicates	or	that	most	of	the	values
you	add	will	be	unique.	The	reason	this	matters	is	that	in	order	to	detect
whether	a	value	is	already	in	the	container,	emplacement	implementations
typically	create	a	node	with	the	new	value	so	that	they	can	compare	the	value
of	this	node	with	existing	container	nodes.	If	the	value	to	be	added	isn’t	in	the
container,	the	node	is	linked	in.	However,	if	the	value	is	already	present,	the
emplacement	is	aborted	and	the	node	is	destroyed,	meaning	that	the	cost	of	its
construction	and	destruction	was	wasted.	Such	nodes	are	created	for
emplacement	functions	more	often	than	for	insertion	functions.

The	following	calls	from	earlier	in	this	Item	satisfy	all	the	criteria	above.	They

also	run	faster	than	the	corresponding	calls	to	push_back.

vs.emplace_back("xyzzy"); // construct new value at end of

 // container; don't pass the type in

 // container; don't use container

 // rejecting duplicates

vs.emplace_back(50, 'x'); // ditto

When	deciding	whether	to	use	emplacement	functions,	two	other	issues	are
worth	keeping	in	mind.	The	first	regards	resource	management.	Suppose	you
have	a	container	of	std::shared_ptr<Widget>s,

std::list<std::shared_ptr<Widget>> ptrs;

and	you	want	to	add	a	std::shared_ptr	that	should	be	released	via	a	custom
deleter	(see	Item	19).	Item	21	explains	that	you	should	use	std::make_shared
to	create	std::shared_ptrs	whenever	you	can,	but	it	also	concedes	that	there
are	situations	where	you	can’t.	One	such	situation	is	when	you	want	to	specify	a
custom	deleter.	In	that	case,	you	must	use	new	directly	to	get	the	raw	pointer	to
be	managed	by	the	std::shared_ptr.

If	the	custom	deleter	is	this	function,

void killWidget(Widget* pWidget);

the	code	using	an	insertion	function	could	look	like	this:

ptrs.push_back(std::shared_ptr<Widget>(new Widget, killWidget));

It	could	also	look	like	this,	though	the	meaning	would	be	the	same:

ptrs.push_back({ new Widget, killWidget });

Either	way,	a	temporary	std::shared_ptr	would	be	constructed	before	calling
push_back.	push_back’s	parameter	is	a	reference	to	a	std::shared_ptr,	so
there	has	to	be	a	std::shared_ptr	for	this	parameter	to	refer	to.

The	creation	of	the	temporary	std::shared_ptr	is	what	emplace_back	would
avoid,	but	in	this	case,	that	temporary	is	worth	far	more	than	it	costs.	Consider
the	following	potential	sequence	of	events:

1.	 In	either	call	above,	a	temporary	std::shared_ptr<Widget>	object	is
constructed	to	hold	the	raw	pointer	resulting	from	“new	Widget”.	Call	this
object	temp.

2.	 push_back	takes	temp	by	reference.	During	allocation	of	a	list	node	to
hold	a	copy	of	temp,	an	out-of-memory	exception	gets	thrown.

3.	 As	the	exception	propagates	out	of	push_back,	temp	is	destroyed.	Being
the	sole	std::shared_ptr	referring	to	the	Widget	it’s	managing,	it
automatically	releases	that	Widget,	in	this	case	by	calling	killWidget.

Even	though	an	exception	occurred,	nothing	leaks:	the	Widget	created	via	“new
Widget”	in	the	call	to	push_back	is	released	in	the	destructor	of	the
std::shared_ptr	that	was	created	to	manage	it	(temp).	Life	is	good.

Now	consider	what	happens	if	emplace_back	is	called	instead	of	push_back:

ptrs.emplace_back(new Widget, killWidget);

1.	 The	raw	pointer	resulting	from	“new	Widget”	is	perfect-forwarded	to	the
point	inside	emplace_back	where	a	list	node	is	to	be	allocated.	That
allocation	fails,	and	an	out-of-memory	exception	is	thrown.

2.	 As	the	exception	propagates	out	of	emplace_back,	the	raw	pointer	that
was	the	only	way	to	get	at	the	Widget	on	the	heap	is	lost.	That	Widget	(and
any	resources	it	owns)	is	leaked.

In	this	scenario,	life	is	not	good,	and	the	fault	doesn’t	lie	with
std::shared_ptr.	The	same	kind	of	problem	can	arise	through	the	use	of
std::unique_ptr	with	a	custom	deleter.	Fundamentally,	the	effectiveness	of
resource-managing	classes	like	std::shared_ptr	and	std::unique_ptr	is
predicated	on	resources	(such	as	raw	pointers	from	new)	being	immediately

passed	to	constructors	for	resource-managing	objects.	The	fact	that	functions
like	std::make_shared	and	std::make_unique	automate	this	is	one	of	the
reasons	they’re	so	important.

In	calls	to	the	insertion	functions	of	containers	holding	resource-managing
objects	(e.g.,	std::list<std::shared_ptr<Widget>>),	the	functions’
parameter	types	generally	ensure	that	nothing	gets	between	acquisition	of	a
resource	(e.g.,	use	of	new)	and	construction	of	the	object	managing	the	resource.
In	the	emplacement	functions,	perfect-forwarding	defers	the	creation	of	the
resource-managing	objects	until	they	can	be	constructed	in	the	container’s
memory,	and	that	opens	a	window	during	which	exceptions	can	lead	to	resource
leaks.	All	standard	containers	are	susceptible	to	this	problem.	When	working
with	containers	of	resource-managing	objects,	you	must	take	care	to	ensure	that
if	you	choose	an	emplacement	function	over	its	insertion	counterpart,	you’re	not
paying	for	improved	code	efficiency	with	diminished	exception	safety.

Frankly,	you	shouldn’t	be	passing	expressions	like	“new	Widget”	to
emplace_back	or	push_back	or	most	any	other	function,	anyway,	because,	as
Item	21	explains,	this	leads	to	the	possibility	of	exception	safety	problems	of	the
kind	we	just	examined.	Closing	the	door	requires	taking	the	pointer	from	“new
Widget”	and	turning	it	over	to	a	resource-managing	object	in	a	standalone
statement,	then	passing	that	object	as	an	rvalue	to	the	function	you	originally
wanted	to	pass	“new	Widget”	to.	(Item	21	covers	this	technique	in	more	detail.)
The	code	using	push_back	should	therefore	be	written	more	like	this:

std::shared_ptr<Widget> spw(new Widget, // create Widget and

 killWidget); // have spw manage it

ptrs.push_back(std::move(spw)); // add spw as rvalue

The	emplace_back	version	is	similar:

std::shared_ptr<Widget> spw(new Widget, killWidget);

ptrs.emplace_back(std::move(spw));

Either	way,	the	approach	incurs	the	cost	of	creating	and	destroying	spw.	Given
that	the	motivation	for	choosing	emplacement	over	insertion	is	to	avoid	the	cost

of	a	temporary	object	of	the	type	held	by	the	container,	yet	that’s	conceptually
what	spw	is,	emplacement	functions	are	unlikely	to	outperform	insertion
functions	when	you’re	adding	resource-managing	objects	to	a	container	and	you
follow	the	proper	practice	of	ensuring	that	nothing	can	intervene	between
acquiring	a	resource	and	turning	it	over	to	a	resource-managing	object.

	A	second	noteworthy	aspect	of	emplacement	functions	is	their	interaction	with
explicit	constructors.	In	honor	of	C++11’s	support	for	regular	expressions,
suppose	you	create	a	container	of	regular	expression	objects:

std::vector<std::regex> regexes;

Distracted	by	your	colleagues’	quarreling	over	the	ideal	number	of	times	per	day
to	check	one’s	Facebook	account,	you	accidentally	write	the	following
seemingly	meaningless	code:

regexes.emplace_back(nullptr); // add nullptr to container

 // of regexes?

You	don’t	notice	the	error	as	you	type	it,	and	your	compilers	accept	the	code
without	complaint,	so	you	end	up	wasting	a	bunch	of	time	debugging.	At	some
point,	you	discover	that	you	have	inserted	a	null	pointer	into	your	container	of
regular	expressions.	But	how	is	that	possible?	Pointers	aren’t	regular
expressions,	and	if	you	tried	to	do	something	like	this,

std::regex r = nullptr; // error! won't compile

compilers	would	reject	your	code.	Interestingly,	they	would	also	reject	it	if	you
called	push_back	instead	of	emplace_back:

regexes.push_back(nullptr); // error! won't compile

The	curious	behavior	you’re	experiencing	stems	from	the	fact	that	std::regex
objects	can	be	constructed	from	character	strings.	That’s	what	makes	useful	code
like	this	legal:

std::regex upperCaseWord("[A-Z]+");

Creation	of	a	std::regex	from	a	character	string	can	exact	a	comparatively
large	runtime	cost,	so,	to	minimize	the	likelihood	that	such	an	expense	will	be
incurred	unintentionally,	the	std::regex	constructor	taking	a	const	char*
pointer	is	explicit.	That’s	why	these	lines	don’t	compile:

std::regex r = nullptr; // error! won't compile

regexes.push_back(nullptr); // error! won't compile

In	both	cases,	we’re	requesting	an	implicit	conversion	from	a	pointer	to	a
std::regex,	and	the	explicitness	of	that	constructor	prevents	such
conversions.

In	the	call	to	emplace_back,	however,	we’re	not	claiming	to	pass	a	std::regex
object.	Instead,	we’re	passing	a	constructor	argument	for	a	std::regex	object.
That’s	not	considered	an	implicit	conversion	request.	Rather,	it’s	viewed	as	if
you’d	written	this	code:

std::regex r(nullptr); // compiles

If	the	laconic	comment	“compiles”	suggests	a	lack	of	enthusiasm,	that’s	good,
because	this	code,	though	it	will	compile,	has	undefined	behavior.	The
std::regex	constructor	taking	a	const	char*	pointer	requires	that	the	pointed-
to	string	comprise	a	valid	regular	expression,	and	the	null	pointer	fails	that
requirement.	If	you	write	and	compile	such	code,	the	best	you	can	hope	for	is
that	it	crashes	at	runtime.	If	you’re	not	so	lucky,	you	and	your	debugger	could	be
in	for	a	special	bonding	experience.

Setting	aside	push_back,	emplace_back,	and	bonding	for	a	moment,	notice	how
these	very	similar	initialization	syntaxes	yield	different	results:

std::regex r1 = nullptr; // error! won't compile

std::regex r2(nullptr); // compiles

In	the	official	terminology	of	the	Standard,	the	syntax	used	to	initialize	r1
(employing	the	equals	sign)	corresponds	to	what	is	known	as	copy	initialization.
In	contrast,	the	syntax	used	to	initialize	r2	(with	the	parentheses,	although	braces

may	be	used	instead)	yields	what	is	called	direct	initialization.	Copy
initialization	is	not	permitted	to	use	explicit	constructors.	Direct	initialization
is.	That’s	why	the	line	initializing	r1	doesn’t	compile,	but	the	line	initializing	r2
does.

But	back	to	push_back	and	emplace_back	and,	more	generally,	the	insertion
functions	versus	the	emplacement	functions.	Emplacement	functions	use	direct
initialization,	which	means	they	may	use	explicit	constructors.	Insertion
functions	employ	copy	initialization,	so	they	can’t.	Hence:

regexes.emplace_back(nullptr); // compiles. Direct init permits

 // use of explicit std::regex

 // ctor taking a pointer

regexes.push_back(nullptr); // error! copy init forbids

 // use of that ctor

The	lesson	to	take	away	is	that	when	you	use	an	emplacement	function,	be
especially	careful	to	make	sure	you’re	passing	the	correct	arguments,	because
even	explicit	constructors	will	be	considered	by	compilers	as	they	try	to	find	a
way	to	interpret	your	code	as	valid.

Things	to	Remember
In	principle,	emplacement	functions	should	sometimes	be	more	efficient	than	their
insertion	counterparts,	and	they	should	never	be	less	efficient.

In	practice,	they’re	most	likely	to	be	faster	when	(1)	the	value	being	added	is	constructed
into	the	container,	not	assigned;	(2)	the	argument	type(s)	passed	differ	from	the	type	held
by	the	container;	and	(3)	the	container	won’t	reject	the	value	being	added	due	to	it	being	a
duplicate.

Emplacement	functions	may	perform	type	conversions	that	would	be	rejected	by	insertion
functions.

22	In	this	Item,	to	“copy”	a	parameter	generally	means	to	use	it	as	the	source	of	a
copy	or	move	operation.	Recall	from	here	that	C++	has	no	terminology	to
distinguish	a	copy	made	by	a	copy	operation	from	one	made	by	a	move
operation.

23	Sentences	like	this	are	why	it’d	be	nice	to	have	terminology	that	distinguishes
copies	made	via	copy	operations	from	copies	made	via	move	operations.

Index

Symbols
&&,	meanings	of,	Item	24: Distinguish	universal	references	from	rvalue
references.

0	(zero)

overloading	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.

templates	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.

type	of,	Item	8:	Prefer	nullptr	to	0	and	NULL.

=	(equals	sign),	assignment	vs.	initialization,	Item	7: Distinguish	between	()
and	{}	when	creating	objects.

=default,	Item	17: Understand	special	member	function	generation.,	Item
22: When	using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.,	Item	37: Make	std::threads	unjoinable	on	all	paths.

=delete	(see	deleted	functions)

A
Abrahams,	David,	Acknowledgments

"Adventure",	allusion	to,	Item	42: Consider	emplacement	instead	of
insertion.

Alexandrescu,	Andrei,	Acknowledgments

alias	declarations

alias	templates	and,	Item	9: Prefer	alias	declarations	to	typedefs.-Item

9: Prefer	alias	declarations	to	typedefs.

definition	of,	Item	9: Prefer	alias	declarations	to	typedefs.

reference	collapsing	and,	Item	28: Understand	reference	collapsing.

vs.	typedefs,	Item	9: Prefer	alias	declarations	to	typedefs.-Item	9: Prefer
alias	declarations	to	typedefs.

alias	templates,	Item	9: Prefer	alias	declarations	to	typedefs.

allusions

to	"Adventure",	Item	42: Consider	emplacement	instead	of	insertion.

to	"Citizen	Kane",	Item	34: Prefer	lambdas	to	std::bind.

to	"Jabberwocky",	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

to	"Mary	Poppins",	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

to	"Star	Trek",	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

to	"Star	Wars",	Constraining	templates	that	take	universal	references

to	"The	Hitchhiker's	Guide	to	the	Galaxy",	IDE	Editors

to	Dave	Barry,	Runtime	Output

to	John	8:32,	Item	24: Distinguish	universal	references	from	rvalue
references.

apostrophe,	as	digit	separator,	Item	37: Make	std::threads	unjoinable	on

all	paths.

arguments,	bound	and	unbound,	Item	34: Prefer	lambdas	to	std::bind.

array

arguments,	Array	Arguments-Array	Arguments

decay,	definition	of,	Array	Arguments

parameters,	Array	Arguments

reference	to,	Array	Arguments

size,	deducing,	Array	Arguments

auto,	auto-Item	6: Use	the	explicitly	typed	initializer	idiom	when	auto
deduces	undesired	types.

advantages	of,	Item	5: Prefer	auto	to	explicit	type	declarations.-Item	5: 
Prefer	auto	to	explicit	type	declarations.

braced	initializers	and,	Item	2: Understand	auto	type	deduction.-Item
2: Understand	auto	type	deduction.

code	readability	and,	Item	5: Prefer	auto	to	explicit	type	declarations.

maintenance	and,	Item	5: Prefer	auto	to	explicit	type	declarations.

proxy	classes	and,	Item	6: Use	the	explicitly	typed	initializer	idiom	when
auto	deduces	undesired	types.-Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.

refactoring	and,	Item	5: Prefer	auto	to	explicit	type	declarations.

reference	collapsing	and,	Item	28: Understand	reference	collapsing.

return	type	deduction	and	braced	initializers	and,	Item	2: Understand
auto	type	deduction.-Item	2: Understand	auto	type	deduction.

std::initializer_list	and,	Item	2: Understand	auto	type	deduction.

trailing	return	types	and,	Item	3: Understand	decltype.

type	deduction,	Function	Arguments-Item	2: Understand	auto	type
deduction.

universal	references	and,	Item	24: Distinguish	universal	references	from
rvalue	references.

vs.	std::function	for	function	objects,	Item	5: Prefer	auto	to	explicit	type
declarations.

B
back	pointers,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers
that	can	dangle.

Barry,	Dave,	allusion	to,	Runtime	Output

basic	guarantee,	definition	of,	Terminology	and	Conventions

Becker,	Thomas,	Acknowledgments

big	three,	the,	Item	17: Understand	special	member	function	generation.

bitfield	arguments,	Bitfields

boolean	flags	and	event	communication,	Item	39: Consider	void	futures	for
one-shot	event	communication.

Boost.TypeIndex,	Runtime	Output-Runtime	Output

braced	initialization,	Item	7: Distinguish	between	()	and	{}	when	creating

objects.-Item	7: Distinguish	between	()	and	{}	when	creating	objects.
auto	and,	Item	2: Understand	auto	type	deduction.-Item	2: Understand
auto	type	deduction.

definition	of,	Item	7: Distinguish	between	()	and	{}	when	creating	objects.

perfect	forwarding	and,	Braced	initializers-Braced	initializers

return	type	deduction	and,	Item	2: Understand	auto	type	deduction.

std::initializer_lists	and,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.-Item	7: Distinguish	between	()	and	{}	when	creating
objects.

Browning,	Elizabeth	Barrett,	Smart	Pointers

by-reference	captures,	Item	31: Avoid	default	capture	modes.-Item	31: 
Avoid	default	capture	modes.

by-value	capture

pointers	and,	Item	31: Avoid	default	capture	modes.

problems	with,	Item	31: Avoid	default	capture	modes.-Item	31: Avoid
default	capture	modes.

std::move	and,	Item	41: Consider	pass	by	value	for	copyable	parameters
that	are	cheap	to	move	and	always	copied.

by-value	parameters,	std::move	and,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.

C
C	with	Classes,	Item	13: Prefer	const_iterators	to	iterators.

"C++	Concurrency	in	Action"	(book),	Item	37: Make	std::threads
unjoinable	on	all	paths.

C++03,	definition	of,	Terminology	and	Conventions

C++11,	definition	of,	Terminology	and	Conventions

C++14,	definition	of,	Terminology	and	Conventions

C++98

definition	of,	Terminology	and	Conventions

exception	specifications,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

c++filt,	Runtime	Output

caching	factory	function,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-
like	pointers	that	can	dangle.

callable	objects,	definition	of,	Terminology	and	Conventions

captures

by-reference,	Item	31: Avoid	default	capture	modes.

by-value,	Item	31: Avoid	default	capture	modes.

default	modes,	Item	31: Avoid	default	capture	modes.-Item	31: Avoid
default	capture	modes.

this	pointer	and,	Item	31: Avoid	default	capture	modes.-Item	31: Avoid
default	capture	modes.

casts

conditional	vs.	unconditional,	Item	23: Understand	std::move	and

std::forward.

std::move	vs.	std::forward,	Item	23: Understand	std::move	and
std::forward.

cbegin,	Item	13: Prefer	const_iterators	to	iterators.

cend,	Item	13: Prefer	const_iterators	to	iterators.

Cheng,	Rachel,	Acknowledgments

"Citizen	Kane",	allusion	to,	Item	34: Prefer	lambdas	to	std::bind.

class	templates,	definition	of,	Terminology	and	Conventions

closures

closure	class,	definition	of,	Lambda	Expressions

copies	of,	Lambda	Expressions

definition	of,	Terminology	and	Conventions,	Lambda	Expressions

code	examples	(see	example	classes/templates;	example	functions/templates)

code	reordering

std::atomic	and,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

volatile	and,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

code	smells,	Item	39: Consider	void	futures	for	one-shot	event
communication.

compiler	warnings,	Item	12: Declare	overriding	functions	override.

noexcept	and,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

virtual	function	overriding	and,	Item	12: Declare	overriding	functions
override.

condition	variables

event	communication	and,	Item	39: Consider	void	futures	for	one-shot
event	communication.-Item	39: Consider	void	futures	for	one-shot	event
communication.

spurious	wakeups	and,	Item	39: Consider	void	futures	for	one-shot	event
communication.

timing	dependencies	and,	Item	39: Consider	void	futures	for	one-shot
event	communication.

condvar	(see	condition	variables)

const

const	member	functions	and	thread	safety,	Item	16: Make	const	member
functions	thread	safe.-Item	16: Make	const	member	functions	thread
safe.

const	propagation,	definition	of,	Declaration-only	integral	static	const
data	members

const	T&&,	Item	24: Distinguish	universal	references	from	rvalue
references.

pointers	and	type	deduction,	Case	3:	ParamType	is	Neither	a	Pointer	nor
a	Reference

vs.	constexpr,	Item	15: Use	constexpr	whenever	possible.

constexpr,	Item	15: Use	constexpr	whenever	possible.-Item	15: Use
constexpr	whenever	possible.

constexpr	functions,	Item	15: Use	constexpr	whenever	possible.-Item
15: Use	constexpr	whenever	possible.
restrictions	on,	Item	15: Use	constexpr	whenever	possible.-Item	15: 
Use	constexpr	whenever	possible.

runtime	arguments	and,	Item	15: Use	constexpr	whenever	possible.

constexpr	objects,	Item	15: Use	constexpr	whenever	possible.-Item	15: 
Use	constexpr	whenever	possible.

interface	design	and,	Item	15: Use	constexpr	whenever	possible.

vs.	const,	Item	15: Use	constexpr	whenever	possible.

constructors

constructor	calls,	braces	vs.	parentheses,	Item	7: Distinguish	between	()
and	{}	when	creating	objects.-Item	7: Distinguish	between	()	and	{}	when
creating	objects.

explicit,	Item	42: Consider	emplacement	instead	of	insertion.-Item	42: 
Consider	emplacement	instead	of	insertion.

universal	references	and,	Item	26: Avoid	overloading	on	universal
references.-Item	26: Avoid	overloading	on	universal	references.,
Constraining	templates	that	take	universal	references-Constraining
templates	that	take	universal	references

const_iterators

converting	to	iterators,	Item	13: Prefer	const_iterators	to	iterators.

vs.	iterators,	Item	13: Prefer	const_iterators	to	iterators.-Item	13: Prefer

const_iterators	to	iterators.

contextual	keywords,	definition	of,	Item	12: Declare	overriding	functions
override.

contracts,	wide	vs.	narrow,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

control	blocks,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.-Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.

definition	of,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

size	of,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.

std::shared_ptr	and,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

copy	elision,	definition	of,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.

copy	of	an	object,	definition	of,	Terminology	and	Conventions

copy	operations

automatic	generation	of,	Item	17: Understand	special	member	function
generation.

defaulting,	Item	17: Understand	special	member	function	generation.-
Item	17: Understand	special	member	function	generation.

definition	of,	Terminology	and	Conventions

for	classes	declaring	copy	operations	or	dtor,	Item	17: Understand
special	member	function	generation.

for	std::atomic,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

implicit

in	classes	declaring	move	operations,	Item	17: Understand	special
member	function	generation.

Pimpl	Idiom	and,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.-Item	22: When	using	the
Pimpl	Idiom,	define	special	member	functions	in	the	implementation	file.

relationship	to	destructor	and	resource	management,	Item	17: 
Understand	special	member	function	generation.

via	construction	vs.	assignment,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.-Item
41: Consider	pass	by	value	for	copyable	parameters	that	are	cheap	to
move	and	always	copied.

CRTP	(Curiously	Recurring	Template	Pattern),	Item	19: Use
std::shared_ptr	for	shared-ownership	resource	management.

ctor	(see	constructor)

Curiously	Recurring	Template	Pattern	(CRTP),	Item	19: Use
std::shared_ptr	for	shared-ownership	resource	management.

custom	deleters,	definition	of,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.

D

dangling	pointer,	definition	of,	Item	20: Use	std::weak_ptr	for
std::shared_ptr-like	pointers	that	can	dangle.

dangling	references,	Item	31: Avoid	default	capture	modes.

dead	stores,	definition	of,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

Dealtry,	William,	Acknowledgments

declarations,	definition	of,	Terminology	and	Conventions

decltype,	Item	2: Understand	auto	type	deduction.-Item	3: Understand
decltype.

auto&&	parameters	in	lambdas	and,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.-Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

decltype(auto)	and,	Item	3: Understand	decltype.

reference	collapsing	and,	Item	28: Understand	reference	collapsing.

return	expressions	and,	Item	3: Understand	decltype.

treatment	of	names	vs.	treatment	of	expressions,	Item	3: Understand
decltype.

deduced	types,	viewing,	Item	3: Understand	decltype.-Runtime	Output

deduction,	type	(see	type	deduction)

deep	copy,	definition	of,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.

default	capture	modes,	Item	31: Avoid	default	capture	modes.-Item	31: 

Avoid	default	capture	modes.

default	launch	policy,	Item	36: Specify	std::launch::async	if	asynchronicity
is	essential.-Item	36: Specify	std::launch::async	if	asynchronicity	is
essential.

thread-local	storage	and,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

defaulted	dtor,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

defaulted	member	functions,	Item	17: Understand	special	member	function
generation.

defaulted	virtual	destructors,	Item	17: Understand	special	member
function	generation.

definition	of	terms

alias	template,	Item	9: Prefer	alias	declarations	to	typedefs.

alias	templates,	Item	9: Prefer	alias	declarations	to	typedefs.

array	decay,	Array	Arguments

basic	guarantee,	Terminology	and	Conventions

braced	initialization,	Item	7: Distinguish	between	()	and	{}	when	creating
objects.

C++03,	Terminology	and	Conventions

C++11,	Terminology	and	Conventions

C++14,	Terminology	and	Conventions

C++98,	Terminology	and	Conventions

callable	object,	Terminology	and	Conventions

class	template,	Terminology	and	Conventions

closure,	Terminology	and	Conventions,	Lambda	Expressions

closure	class,	Lambda	Expressions

code	smell,	Item	39: Consider	void	futures	for	one-shot	event
communication.

const	propagation,	Declaration-only	integral	static	const	data	members

contextual	keyword,	Item	12: Declare	overriding	functions	override.

control	block,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

copy	of	an	object,	Terminology	and	Conventions

copy	operation,	Terminology	and	Conventions

CRTP	(Curiously	Recurring	Template	Pattern),	Item	19: Use
std::shared_ptr	for	shared-ownership	resource	management.

ctor,	Terminology	and	Conventions

custom	deleter,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

dangling	pointer,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

dead	stores,	Item	40: Use	std::atomic	for	concurrency,	volatile	for	special

memory.

declaration,	Terminology	and	Conventions

deep	copy,	Item	22: When	using	the	Pimpl	Idiom,	define	special	member
functions	in	the	implementation	file.

definition,	Terminology	and	Conventions

deleted	function,	Item	11: Prefer	deleted	functions	to	private	undefined
ones.

dependent	type,	Item	9: Prefer	alias	declarations	to	typedefs.

deprecated	feature,	Terminology	and	Conventions

disabled	templates,	Constraining	templates	that	take	universal	references

dtor,	Terminology	and	Conventions

enabled	templates,	Constraining	templates	that	take	universal	references

exception	safe,	Terminology	and	Conventions

exception-neutral,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

exclusive	ownership,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.

expired	std::weak_ptr,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-
like	pointers	that	can	dangle.

function	argument,	Terminology	and	Conventions

function	objects,	Terminology	and	Conventions

function	parameter,	Terminology	and	Conventions

function	signature,	Terminology	and	Conventions

generalized	lambda	capture,	Item	32: Use	init	capture	to	move	objects
into	closures.

generic	lambdas,	Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.

hardware	thread,	Item	35: Prefer	task-based	programming	to	thread-
based.

incomplete	type,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

init	capture,	Item	32: Use	init	capture	to	move	objects	into	closures.

integral	constant	expression,	Item	15: Use	constexpr	whenever	possible.

interruptible	thread,	Item	37: Make	std::threads	unjoinable	on	all	paths.

joinable	std::thread,	Item	37: Make	std::threads	unjoinable	on	all	paths.

lambda,	Terminology	and	Conventions,	Lambda	Expressions

lambda	expression,	Lambda	Expressions

lhs,	Terminology	and	Conventions

literal	types,	Item	15: Use	constexpr	whenever	possible.

lvalue,	Terminology	and	Conventions

make	function,	Item	21: Prefer	std::make_unique	and	std::make_shared
to	direct	use	of	new.

memory-mapped	I/O,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

most	vexing	parse,	Item	7: Distinguish	between	()	and	{}	when	creating
objects.

move	operation,	Terminology	and	Conventions

move	semantic,	Rvalue	References,	Move	Semantics,	and	Perfect
Forwarding

move-only	type,	Item	16: Make	const	member	functions	thread	safe.,
Item	18: Use	std::unique_ptr	for	exclusive-ownership	resource
management.

named	return	value	optimization	(NRVO),	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.

narrow	contracts,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

narrowing	conversions,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.

non-dependent	type,	Item	9: Prefer	alias	declarations	to	typedefs.

NRVO	(named	return	value	optimization),	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.

override,	Item	12: Declare	overriding	functions	override.

oversubscription,	Item	35: Prefer	task-based	programming	to	thread-
based.

parameter	forwarding,	Item	30: Familiarize	yourself	with	perfect
forwarding	failure	cases.

perfect	forwarding,	Terminology	and	Conventions,	Rvalue	References,
Move	Semantics,	and	Perfect	Forwarding,	Item	30: Familiarize	yourself
with	perfect	forwarding	failure	cases.

Pimpl	Idiom,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

RAII	classes,	Item	37: Make	std::threads	unjoinable	on	all	paths.

RAII	object,	Item	37: Make	std::threads	unjoinable	on	all	paths.

RAII	objects,	Item	37: Make	std::threads	unjoinable	on	all	paths.

raw	pointer,	Terminology	and	Conventions

redundant	loads,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

reference	collapsing,	Item	28: Understand	reference	collapsing.

reference	count,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

reference	qualifier,	Item	12: Declare	overriding	functions	override.

relaxed	memory	consistency,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

resource	ownership,	Smart	Pointers

return	value	optimization	(RVO),	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

rhs,	Terminology	and	Conventions

Rule	of	Three,	Item	17: Understand	special	member	function	generation.

rvalue,	Terminology	and	Conventions

RVO	(return	value	optimization),	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

scoped	enums,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

sequential	memory	consistency,	Item	40: Use	std::atomic	for
concurrency,	volatile	for	special	memory.

shallow	copy,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

shared	ownership,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

shared	state,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.

small	string	optimization	(SSO),	Item	29: Assume	that	move	operations
are	not	present,	not	cheap,	and	not	used.

smart	pointers,	Terminology	and	Conventions

software	threads,	Item	35: Prefer	task-based	programming	to	thread-
based.

special	member	functions,	Item	17: Understand	special	member	function
generation.

spurious	wakeups,	Item	39: Consider	void	futures	for	one-shot	event

communication.

static	storage	duration,	Item	31: Avoid	default	capture	modes.

strong	guarantee,	Terminology	and	Conventions

tag	dispatch,	Use	Tag	dispatch

task-based	programming,	Item	35: Prefer	task-based	programming	to
thread-based.

template	class,	Terminology	and	Conventions

template	function,	Terminology	and	Conventions

thread	local	storage	(TLS),	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

thread-based	programming,	Item	35: Prefer	task-based	programming	to
thread-based.

trailing	return	type,	Item	3: Understand	decltype.

translation,	Item	15: Use	constexpr	whenever	possible.

undefined	behavior,	Terminology	and	Conventions

uniform	initialization,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.

unjoinable	std::thread,	Item	37: Make	std::threads	unjoinable	on	all
paths.

unscoped	enum,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

unscoped	enums,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

weak	count,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

weak	memory	consistency,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

wide	contracts,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

Widget,	Terminology	and	Conventions

definitions	of	terms

alias	declarations,	Item	9: Prefer	alias	declarations	to	typedefs.

copy	elision,	Item	25: Use	std::move	on	rvalue	references,	std::forward
on	universal	references.

definitions,	definition	of,	Terminology	and	Conventions

deleted	functions,	Item	11: Prefer	deleted	functions	to	private	undefined
ones.-Item	11: Prefer	deleted	functions	to	private	undefined	ones.
definition	of,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.

vs.	private	and	undefined	ones,	Item	11: Prefer	deleted	functions	to
private	undefined	ones.-Item	11: Prefer	deleted	functions	to	private
undefined	ones.

deleters

custom,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

std::unique_ptr	vs.	std::shared_ptr,	Item	19: Use	std::shared_ptr	for
shared-ownership	resource	management.,	Item	22: When	using	the

Pimpl	Idiom,	define	special	member	functions	in	the	implementation	file.

deleting	non-member	functions,	Item	11: Prefer	deleted	functions	to
private	undefined	ones.-Item	11: Prefer	deleted	functions	to	private
undefined	ones.

deleting	template	instantiations,	Item	11: Prefer	deleted	functions	to
private	undefined	ones.-Item	11: Prefer	deleted	functions	to	private
undefined	ones.

dependent	type,	definition	of,	Item	9: Prefer	alias	declarations	to	typedefs.

deprecated	features

automatic	copy	operation	generation,	Item	17: Understand	special
member	function	generation.

C++98-style	exception	specifications,	Item	14: Declare	functions	noexcept
if	they	won’t	emit	exceptions.

definition	of,	Terminology	and	Conventions

std::auto_ptr,	Smart	Pointers

destructor

defaulted,	Item	17: Understand	special	member	function	generation.,
Item	22: When	using	the	Pimpl	Idiom,	define	special	member	functions
in	the	implementation	file.

relationship	to	copy	operations	and	resource	management,	Item	17: 
Understand	special	member	function	generation.

digit	separators,	apostrophes	as,	Item	37: Make	std::threads	unjoinable	on
all	paths.

disabled	templates,	definition	of,	Constraining	templates	that	take	universal
references

dtor	(see	destructor)

Dziubinski,	Matt	P.,	Acknowledgments

E
Einstein's	theory	of	general	relativity,	Item	24: Distinguish	universal
references	from	rvalue	references.

ellipses,	narrow	vs.	wide,	Terminology	and	Conventions

emplacement

construction	vs.	assignment	and,	Item	42: Consider	emplacement	instead
of	insertion.

emplacement	functions,	Item	42: Consider	emplacement	instead	of
insertion.-Item	42: Consider	emplacement	instead	of	insertion.

exception	safety	and,	Item	42: Consider	emplacement	instead	of
insertion.-Item	42: Consider	emplacement	instead	of	insertion.

explicit	constructors	and,	Item	42: Consider	emplacement	instead	of
insertion.-Item	42: Consider	emplacement	instead	of	insertion.

heuristic	for	use	of,	Item	42: Consider	emplacement	instead	of	insertion.-
Item	42: Consider	emplacement	instead	of	insertion.

perfect	forwarding	and,	Item	42: Consider	emplacement	instead	of
insertion.

vs.	insertion,	Item	42: Consider	emplacement	instead	of	insertion.-Item
42: Consider	emplacement	instead	of	insertion.

enabled	templates,	definition	of,	Constraining	templates	that	take	universal
references

enums

compilation	dependencies	and,	Item	10: Prefer	scoped	enums	to
unscoped	enums.

enum	classes	(see	scoped	enums)

forward	declaring,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-
Item	10: Prefer	scoped	enums	to	unscoped	enums.

implicit	conversions	and,	Item	10: Prefer	scoped	enums	to	unscoped
enums.

scoped	vs.	unscoped,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

std::get	and,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-Item
10: Prefer	scoped	enums	to	unscoped	enums.

std::tuples	and,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-Item
10: Prefer	scoped	enums	to	unscoped	enums.

underlying	type	for,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-
Item	10: Prefer	scoped	enums	to	unscoped	enums.

equals	sign	(=),	assignment	vs.	initialization,	Item	7: Distinguish	between	()
and	{}	when	creating	objects.

errata	list	for	this	book,	Reporting	Bugs	and	Suggesting	Improvements

error	messages,	universal	reference	and,	Trade-offs

event	communication

boolean	flags,	Item	39: Consider	void	futures	for	one-shot	event

communication.

condition	variables	and,	Item	39: Consider	void	futures	for	one-shot
event	communication.

cost	and	efficiency	of	polling,	Item	39: Consider	void	futures	for	one-shot
event	communication.

future	as	mechanism	for,	Item	39: Consider	void	futures	for	one-shot
event	communication.-Item	39: Consider	void	futures	for	one-shot	event
communication.

example	classes/templates,	Deducing	Types

(see	also	std::)

Base,	Item	12: Declare	overriding	functions	override.-Item	12: Declare
overriding	functions	override.,	Item	17: Understand	special	member
function	generation.

Bond,	Item	18: Use	std::unique_ptr	for	exclusive-ownership	resource
management.

Derived,	Item	12: Declare	overriding	functions	override.,	Item	12: 
Declare	overriding	functions	override.-Item	12: Declare	overriding
functions	override.

Investment,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.

IPv4Header,	Bitfields

IsValAndArch,	Item	32: Use	init	capture	to	move	objects	into	closures.

MyAllocList,	Item	9: Prefer	alias	declarations	to	typedefs.

MyAllocList<Wine>,	Item	9: Prefer	alias	declarations	to	typedefs.

Password,	Item	41: Consider	pass	by	value	for	copyable	parameters	that
are	cheap	to	move	and	always	copied.-Item	41: Consider	pass	by	value
for	copyable	parameters	that	are	cheap	to	move	and	always	copied.

Person,	Item	26: Avoid	overloading	on	universal	references.-Item	26: 
Avoid	overloading	on	universal	references.,	Pass	by	value,	Constraining
templates	that	take	universal	references,	Constraining	templates	that
take	universal	references,	Constraining	templates	that	take	universal
references,	Trade-offs

Point,	Item	3: Understand	decltype.,	Item	15: Use	constexpr	whenever
possible.,	Item	15: Use	constexpr	whenever	possible.,	Item	16: Make
const	member	functions	thread	safe.

Polynomial,	Item	16: Make	const	member	functions	thread	safe.-Item
16: Make	const	member	functions	thread	safe.

PolyWidget,	Item	34: Prefer	lambdas	to	std::bind.

RealEstate,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

ReallyBigType,	Item	21: Prefer	std::make_unique	and	std::make_shared
to	direct	use	of	new.

SomeCompilerGeneratedClassName,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

SpecialPerson,	Item	26: Avoid	overloading	on	universal	references.,
Constraining	templates	that	take	universal	references

SpecialWidget,	Item	41: Consider	pass	by	value	for	copyable	parameters

that	are	cheap	to	move	and	always	copied.

std::add_lvalue_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::basic_ios,	Item	11: Prefer	deleted	functions	to	private	undefined
ones.

std::get,	Item	37: Make	std::threads	unjoinable	on	all	paths.

std::pair,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

std::remove_const,	Item	9: Prefer	alias	declarations	to	typedefs.

std::remove_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::string,	Item	23: Understand	std::move	and	std::forward.

std::vector,	Item	3: Understand	decltype.,	Item	24: Distinguish	universal
references	from	rvalue	references.,	Item	42: Consider	emplacement
instead	of	insertion.

std::vector<bool>,	Item	6: Use	the	explicitly	typed	initializer	idiom	when
auto	deduces	undesired	types.

Stock,	Item	18: Use	std::unique_ptr	for	exclusive-ownership	resource
management.

StringTable,	Item	17: Understand	special	member	function	generation.

struct	Point,	Item	3: Understand	decltype.

TD,	Compiler	Diagnostics

ThreadRAII,	Item	37: Make	std::threads	unjoinable	on	all	paths.,	Item
37: Make	std::threads	unjoinable	on	all	paths.

Warning,	Item	12: Declare	overriding	functions	override.

Widget,	Terminology	and	Conventions,	Terminology	and	Conventions,
Item	7: Distinguish	between	()	and	{}	when	creating	objects.,	Item	7: 
Distinguish	between	()	and	{}	when	creating	objects.,	Item	9: Prefer	alias
declarations	to	typedefs.,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.,	Item	12: Declare	overriding	functions	override.,	Item
12: Declare	overriding	functions	override.,	Item	16: Make	const	member
functions	thread	safe.-Item	16: Make	const	member	functions	thread
safe.,	Item	17: Understand	special	member	function	generation.,	Item
17: Understand	special	member	function	generation.,	Item	17: 
Understand	special	member	function	generation.,	Item	19: Use
std::shared_ptr	for	shared-ownership	resource	management.-Item	19: 
Use	std::shared_ptr	for	shared-ownership	resource	management.,	Item
22: When	using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.-Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.,	Item	23: Understand
std::move	and	std::forward.,	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.-Item	25: Use	std::move
on	rvalue	references,	std::forward	on	universal	references.,	Item	28: 
Understand	reference	collapsing.,	Declaration-only	integral	static	const
data	members,	Item	31: Avoid	default	capture	modes.,	Item	32: Use	init
capture	to	move	objects	into	closures.,	Item	38: Be	aware	of	varying
thread	handle	destructor	behavior.,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.-Item
41: Consider	pass	by	value	for	copyable	parameters	that	are	cheap	to
move	and	always	copied.,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

Widget::Impl,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.-Item	22: When	using	the
Pimpl	Idiom,	define	special	member	functions	in	the	implementation	file.

Widget::processPointer,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

Wine,	Item	9: Prefer	alias	declarations	to	typedefs.

example	functions/templates,	Item	31: Avoid	default	capture	modes.
(see	also	std::)

addDivisorFilter,	Item	31: Avoid	default	capture	modes.,	Item	31: Avoid
default	capture	modes.

arraySize,	Array	Arguments

authAndAccess,	Item	3: Understand	decltype.-Item	3: Understand
decltype.,	Item	3: Understand	decltype.-Item	3: Understand	decltype.

Base::Base,	Item	17: Understand	special	member	function	generation.

Base::doWork,	Item	12: Declare	overriding	functions	override.

Base::mf1,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Base::mf2,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Base::mf3,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Base::mf4,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Base::operator=,	Item	17: Understand	special	member	function
generation.

Base::~Base,	Item	17: Understand	special	member	function	generation.

calcEpsilon,	Item	6: Use	the	explicitly	typed	initializer	idiom	when	auto
deduces	undesired	types.

calcValue,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.

cbegin,	Item	13: Prefer	const_iterators	to	iterators.

cleanup,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

compress,	Item	34: Prefer	lambdas	to	std::bind.

computerPriority,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

continueProcessing,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

createInitList,	Item	2: Understand	auto	type	deduction.

createVec,	Runtime	Output,	Runtime	Output

cusDel,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

delInvmt2,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

Derived::doWork,	Item	12: Declare	overriding	functions	override.

Derived::mf1,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Derived::mf2,	Item	12: Declare	overriding	functions	override.-Item	12: 

Declare	overriding	functions	override.

Derived::mf3,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Derived::mf4,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

detect,	Item	39: Consider	void	futures	for	one-shot	event
communication.,	Item	39: Consider	void	futures	for	one-shot	event
communication.

doAsyncWork,	Item	35: Prefer	task-based	programming	to	thread-
based.-Item	35: Prefer	task-based	programming	to	thread-based.

doSomething,	Item	12: Declare	overriding	functions	override.

doSomeWork,	Item	7: Distinguish	between	()	and	{}	when	creating
objects.,	Item	31: Avoid	default	capture	modes.

doWork,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.,	Item	37: Make	std::threads	unjoinable	on	all	paths.,	Item
37: Make	std::threads	unjoinable	on	all	paths.

dwim,	Item	5: Prefer	auto	to	explicit	type	declarations.-Item	5: Prefer
auto	to	explicit	type	declarations.

f,	Item	1: Understand	template	type	deduction.-Array	Arguments,	Item
2: Understand	auto	type	deduction.,	Item	2: Understand	auto	type
deduction.-Item	2: Understand	auto	type	deduction.,	Runtime	Output,
Runtime	Output,	Item	8:	Prefer	nullptr	to	0	and	NULL.,	Item	14: 
Declare	functions	noexcept	if	they	won’t	emit	exceptions.,	Item	14: 
Declare	functions	noexcept	if	they	won’t	emit	exceptions.,	Item	24: 
Distinguish	universal	references	from	rvalue	references.-Item	24: 

Distinguish	universal	references	from	rvalue	references.,	Item	28: 
Understand	reference	collapsing.,	Braced	initializers,	Item	36: Specify
std::launch::async	if	asynchronicity	is	essential.

f1,	Function	Arguments,	Item	3: Understand	decltype.,	Item	8:	Prefer
nullptr	to	0	and	NULL.

f2,	Function	Arguments,	Item	3: Understand	decltype.,	Item	8:	Prefer
nullptr	to	0	and	NULL.

f3,	Item	8:	Prefer	nullptr	to	0	and	NULL.

fastLoadWidget,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

features,	Item	6: Use	the	explicitly	typed	initializer	idiom	when	auto
deduces	undesired	types.

findAndInsert,	Item	13: Prefer	const_iterators	to	iterators.

func,	Terminology	and	Conventions,	Item	5: Prefer	auto	to	explicit	type
declarations.,	Item	28: Understand	reference	collapsing.-Item	28: 
Understand	reference	collapsing.,	Item	28: Understand	reference
collapsing.

func_for_cx,	Item	2: Understand	auto	type	deduction.

func_for_rx,	Item	2: Understand	auto	type	deduction.

func_for_x,	Item	2: Understand	auto	type	deduction.

fwd,	Item	30: Familiarize	yourself	with	perfect	forwarding	failure	cases.

Investment::~Investment,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.

isLucky,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.

IsValAndArch::IsValAndArch,	Item	32: Use	init	capture	to	move	objects
into	closures.

IsValAndArch::operator(),	Item	32: Use	init	capture	to	move	objects	into
closures.

killWidget,	Item	42: Consider	emplacement	instead	of	insertion.

loadWidget,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers
that	can	dangle.

lockAndCall,	Item	8:	Prefer	nullptr	to	0	and	NULL.

logAndAdd,	Item	26: Avoid	overloading	on	universal	references.-Item
26: Avoid	overloading	on	universal	references.,	Use	Tag	dispatch-Use
Tag	dispatch

logAndAddImpl,	Use	Tag	dispatch-Use	Tag	dispatch

logAndProcess,	Item	23: Understand	std::move	and	std::forward.

makeInvestment,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.-Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.,	Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.-Item	18: Use	std::unique_ptr
for	exclusive-ownership	resource	management.

makeStringDeque,	Item	3: Understand	decltype.

makeWidget,	Item	12: Declare	overriding	functions	override.,	Item	12: 
Declare	overriding	functions	override.,	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.-Item	25: Use	std::move
on	rvalue	references,	std::forward	on	universal	references.

midpoint,	Item	15: Use	constexpr	whenever	possible.

myFunc,	Array	Arguments

nameFromIdx,	Item	26: Avoid	overloading	on	universal	references.

operator+,	Terminology	and	Conventions,	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.-Item	25: Use
std::move	on	rvalue	references,	std::forward	on	universal	references.

Password::changeTo,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.-Item	41: Consider
pass	by	value	for	copyable	parameters	that	are	cheap	to	move	and	always
copied.

Password::Password,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

Person::Person,	Item	26: Avoid	overloading	on	universal	references.-
Item	26: Avoid	overloading	on	universal	references.,	Pass	by	value,
Constraining	templates	that	take	universal	references,	Constraining
templates	that	take	universal	references,	Constraining	templates	that
take	universal	references-Constraining	templates	that	take	universal
references,	Trade-offs

Point::distanceFromOrigin,	Item	16: Make	const	member	functions
thread	safe.

Point::Point,	Item	15: Use	constexpr	whenever	possible.

Point::setX,	Item	15: Use	constexpr	whenever	possible.-Item	15: Use
constexpr	whenever	possible.

Point::setY,	Item	15: Use	constexpr	whenever	possible.

Point::xValue,	Item	15: Use	constexpr	whenever	possible.

Point::yValue,	Item	15: Use	constexpr	whenever	possible.-Item	15: Use
constexpr	whenever	possible.

Polynomial::roots,	Item	16: Make	const	member	functions	thread	safe.-
Item	16: Make	const	member	functions	thread	safe.

PolyWidget::operator(),	Item	34: Prefer	lambdas	to	std::bind.

pow,	Item	15: Use	constexpr	whenever	possible.-Item	15: Use	constexpr
whenever	possible.

primeFactors,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

process,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.,	Item	23: Understand	std::move	and
std::forward.

processPointer,	Item	11: Prefer	deleted	functions	to	private	undefined
ones.,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.

processPointer<char>,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

processPointer<const	char>,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

processPointer<const	void>,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

processPointer<void>,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

processVal,	Overloaded	function	names	and	template	names

processVals,	Terminology	and	Conventions

processWidget,	Item	21: Prefer	std::make_unique	and	std::make_shared
to	direct	use	of	new.

react,	Item	39: Consider	void	futures	for	one-shot	event	communication.

reallyAsync,	Item	36: Specify	std::launch::async	if	asynchronicity	is
essential.

reduceAndCopy,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.

reflection,	Item	15: Use	constexpr	whenever	possible.

setAlarm,	Item	34: Prefer	lambdas	to	std::bind.,	Item	34: Prefer
lambdas	to	std::bind.

setSignText,	Item	25: Use	std::move	on	rvalue	references,	std::forward
on	universal	references.

setup,	Item	14: Declare	functions	noexcept	if	they	won’t	emit	exceptions.

SomeCompilerGeneratedClassName::operator(),	Item	33: Use	decltype
on	auto&&	parameters	to	std::forward	them.

someFunc,	Terminology	and	Conventions,	Function	Arguments,	Item	2: 
Understand	auto	type	deduction.,	Item	24: Distinguish	universal
references	from	rvalue	references.

SpecialPerson::SpecialPerson,	Item	26: Avoid	overloading	on	universal
references.,	Constraining	templates	that	take	universal	references

SpecialWidget::processWidget,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.

std::add_lvalue_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::basic_ios::basic_ios,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.,	Item	23: Understand	std::move	and	std::forward.

std::basic_ios::operator=,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.,	Item	23: Understand	std::move	and	std::forward.

std::forward,	Item	28: Understand	reference	collapsing.-Item	28: 
Understand	reference	collapsing.,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

std::get,	Item	37: Make	std::threads	unjoinable	on	all	paths.

std::make_shared,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.,	Item	25: 
Use	std::move	on	rvalue	references,	std::forward	on	universal	references.

std::make_unique,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.,	Item	25: 
Use	std::move	on	rvalue	references,	std::forward	on	universal	references.

std::move,	Item	23: Understand	std::move	and	std::forward.

std::pair::swap,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

std::remove_const,	Item	9: Prefer	alias	declarations	to	typedefs.

std::remove_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::swap,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

std::vector::emplace_back,	Item	24: Distinguish	universal	references
from	rvalue	references.

std::vector::operator[],	Item	3: Understand	decltype.,	Item	3: 
Understand	decltype.

std::vector::push_back,	Item	24: Distinguish	universal	references	from
rvalue	references.,	Item	42: Consider	emplacement	instead	of	insertion.

std::vector<bool>::operator[],	Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.

StringTable::StringTable,	Item	17: Understand	special	member	function
generation.

StringTable::~StringTable,	Item	17: Understand	special	member
function	generation.

ThreadRAII::get,	Item	37: Make	std::threads	unjoinable	on	all	paths.,
Item	37: Make	std::threads	unjoinable	on	all	paths.

ThreadRAII::operator=,	Item	37: Make	std::threads	unjoinable	on	all
paths.

ThreadRAII::ThreadRAII,	Item	37: Make	std::threads	unjoinable	on	all
paths.,	Item	37: Make	std::threads	unjoinable	on	all	paths.

ThreadRAII::~ThreadRAII,	Item	37: Make	std::threads	unjoinable	on
all	paths.,	Item	37: Make	std::threads	unjoinable	on	all	paths.

toUType,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

Warning::override,	Item	12: Declare	overriding	functions	override.

Widget::addFilter,	Item	31: Avoid	default	capture	modes.-Item	31: 
Avoid	default	capture	modes.

Widget::addName,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.-Item	41: Consider
pass	by	value	for	copyable	parameters	that	are	cheap	to	move	and	always
copied.

Widget::create,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

Widget::data,	Item	12: Declare	overriding	functions	override.-Item	12: 
Declare	overriding	functions	override.

Widget::doWork,	Item	12: Declare	overriding	functions	override.

Widget::isArchived,	Item	32: Use	init	capture	to	move	objects	into
closures.

Widget::isProcessed,	Item	32: Use	init	capture	to	move	objects	into
closures.

Widget::isValidated,	Item	32: Use	init	capture	to	move	objects	into
closures.

Widget::magicValue,	Item	16: Make	const	member	functions	thread
safe.-Item	16: Make	const	member	functions	thread	safe.

Widget::operator	float,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.

Widget::operator=,	Item	17: Understand	special	member	function
generation.,	Item	17: Understand	special	member	function	generation.,

Item	17: Understand	special	member	function	generation.,	Item	22: 
When	using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.-Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

Widget::process,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.-Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

Widget::processPointer<char>,	Item	11: Prefer	deleted	functions	to
private	undefined	ones.

Widget::processPointer<void>,	Item	11: Prefer	deleted	functions	to
private	undefined	ones.

Widget::processWidget,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

Widget::setName,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

Widget::setPtr,	Item	41: Consider	pass	by	value	for	copyable	parameters
that	are	cheap	to	move	and	always	copied.

Widget::Widget,	Terminology	and	Conventions,	Item	7: Distinguish
between	()	and	{}	when	creating	objects.-Item	7: Distinguish	between	()
and	{}	when	creating	objects.,	Item	17: Understand	special	member
function	generation.,	Item	17: Understand	special	member	function
generation.,	Item	17: Understand	special	member	function	generation.,
Item	22: When	using	the	Pimpl	Idiom,	define	special	member	functions
in	the	implementation	file.-Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.,	Item	23: 
Understand	std::move	and	std::forward.,	Item	25: Use	std::move	on

rvalue	references,	std::forward	on	universal	references.-Item	25: Use
std::move	on	rvalue	references,	std::forward	on	universal	references.

Widget::~Widget,	Item	17: Understand	special	member	function
generation.,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.,	Item	22: When	using	the
Pimpl	Idiom,	define	special	member	functions	in	the	implementation	file.

widgetFactory,	Item	28: Understand	reference	collapsing.

workOnVal,	Overloaded	function	names	and	template	names

workWithContainer,	Item	31: Avoid	default	capture	modes.

example	structs	(see	example	classes/templates)

exception	safety

alternatives	to	std::make_shared,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.,	Item	42: 
Consider	emplacement	instead	of	insertion.

definition	of,	Terminology	and	Conventions

emplacement	and,	Item	42: Consider	emplacement	instead	of	insertion.-
Item	42: Consider	emplacement	instead	of	insertion.

make	functions	and,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.,	Item	42: Consider	emplacement
instead	of	insertion.

exception	specifications,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

exception-neutral,	definition	of,	Item	14: Declare	functions	noexcept	if	they

won’t	emit	exceptions.

exclusive	ownership,	definition	of,	Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.

expired	std::weak_ptr,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

explicit	constructors,	insertion	functions	and,	Item	42: Consider
emplacement	instead	of	insertion.

explicitly	typed	initializer	idiom,	Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.-Item	6: Use	the	explicitly	typed
initializer	idiom	when	auto	deduces	undesired	types.

F
Facebook,	Item	42: Consider	emplacement	instead	of	insertion.

feminine	manifestation	of	the	divine	(see	Urbano,	Nancy	L.)

Fernandes,	Martinho,	Acknowledgments

final	keyword,	Item	12: Declare	overriding	functions	override.

Fioravante,	Matthew,	Acknowledgments

forwarding	(see	perfect	forwarding)

forwarding	references,	Item	24: Distinguish	universal	references	from
rvalue	references.

French,	gratuitous	use	of,	Item	24: Distinguish	universal	references	from
rvalue	references.,	Constraining	templates	that	take	universal	references

Friesen,	Stanley,	Acknowledgments

function

arguments,	definition	of,	Terminology	and	Conventions

conditionally	noexcept,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

decay,	Function	Arguments

defaulted	(see	defaulted	member	functions)

deleted,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.-Item
11: Prefer	deleted	functions	to	private	undefined	ones.

greediest	in	C++,	Item	26: Avoid	overloading	on	universal	references.

member,	Item	13: Prefer	const_iterators	to	iterators.

member	reference	qualifiers	and,	Item	12: Declare	overriding	functions
override.-Item	12: Declare	overriding	functions	override.

member	templates,	Item	17: Understand	special	member	function
generation.

member,	defaulted,	Item	17: Understand	special	member	function
generation.

names,	overloaded,	Overloaded	function	names	and	template	names-
Overloaded	function	names	and	template	names

non-member,	Item	13: Prefer	const_iterators	to	iterators.

objects,	definition	of,	Terminology	and	Conventions

parameters,	definition	of,	Terminology	and	Conventions

pointer	parameter	syntaxes,	Overloaded	function	names	and	template
names

private	and	undefined,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

return	type	deduction,	Item	3: Understand	decltype.-Item	3: Understand
decltype.

signature,	definition	of,	Terminology	and	Conventions

universal	references	and,	Item	26: Avoid	overloading	on	universal
references.

G
generalized	lambda	capture,	definition	of,	Item	32: Use	init	capture	to
move	objects	into	closures.

generic	code,	move	operations	and,	Item	29: Assume	that	move	operations
are	not	present,	not	cheap,	and	not	used.

generic	lambdas

definition	of,	Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.

operator()	in,	Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.

gratuitous	swipe	at	Python,	Item	42: Consider	emplacement	instead	of
insertion.

gratuitous	use

of	French,	Item	24: Distinguish	universal	references	from	rvalue
references.,	Constraining	templates	that	take	universal	references

of	Yiddish,	Item	12: Declare	overriding	functions	override.

greediest	functions	in	C++,	Item	26: Avoid	overloading	on	universal
references.

Grimm,	Rainer,	Acknowledgments

H
Halbersma,	Rein,	Acknowledgments

hardware	threads,	definition	of,	Item	35: Prefer	task-based	programming
to	thread-based.

highlighting	in	this	book,	Terminology	and	Conventions

Hinnant,	Howard,	Acknowledgments

"Hitchhiker's	Guide	to	the	Galaxy,	The",	allusion	to,	IDE	Editors

Huchley,	Benjamin,	Acknowledgments

I
implicit	copy	operations,	in	classes	declaring	move	operations,	Item	17: 
Understand	special	member	function	generation.

implicit	generation	of	special	member	functions,	Item	17: Understand
special	member	function	generation.-Item	17: Understand	special	member
function	generation.

incomplete	type,	definition	of,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.

indeterminate	destructor	behavior	for	futures,	Item	38: Be	aware	of
varying	thread	handle	destructor	behavior.

inference,	type	(see	type	deduction)

init	capture,	Item	32: Use	init	capture	to	move	objects	into	closures.-Item
32: Use	init	capture	to	move	objects	into	closures.
definition	of,	Item	32: Use	init	capture	to	move	objects	into	closures.

initialization

braced,	Item	7: Distinguish	between	()	and	{}	when	creating	objects.

order	with	std::thread	data	members,	Item	37: Make	std::threads
unjoinable	on	all	paths.

syntaxes	for,	Item	7: Distinguish	between	()	and	{}	when	creating	objects.

uniform,	Item	7: Distinguish	between	()	and	{}	when	creating	objects.

inlining,	in	lambdas	vs.	std::bind,	Item	34: Prefer	lambdas	to	std::bind.

insertion

explicit	constructors	and,	Item	42: Consider	emplacement	instead	of
insertion.

vs.	emplacement,	Item	42: Consider	emplacement	instead	of	insertion.-
Item	42: Consider	emplacement	instead	of	insertion.

integral	constant	expression,	definition	of,	Item	15: Use	constexpr
whenever	possible.

interface	design

constexpr	and,	Item	15: Use	constexpr	whenever	possible.

exception	specifications	and,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

wide	vs.	narrow	contracts,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

interruptible	threads,	definition	of,	Item	37: Make	std::threads	unjoinable
on	all	paths.

J
"Jabberwocky",	allusion	to,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

John	8:32,	allusion	to,	Item	24: Distinguish	universal	references	from
rvalue	references.

joinability,	testing	std::threads	for,	Item	37: Make	std::threads	unjoinable
on	all	paths.

joinable	std::threads

definition	of,	Item	37: Make	std::threads	unjoinable	on	all	paths.

destruction	of,	Item	37: Make	std::threads	unjoinable	on	all	paths.-Item
37: Make	std::threads	unjoinable	on	all	paths.

testing	for	joinability,	Item	37: Make	std::threads	unjoinable	on	all
paths.

K
Kaminski,	Tomasz,	Acknowledgments

Karpov,	Andrey,	Acknowledgments

keywords,	contextual,	Item	12: Declare	overriding	functions	override.

Kirby-Green,Tom,	Acknowledgments

Kohl,	Nate,	Acknowledgments

Kreuzer,	Gerhard,	Acknowledgments,	Acknowledgments

Krügler,	Daniel,	Acknowledgments

L
lambdas

auto&&	parameters	and	decltype	in,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.-Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

bound	and	unbound	arguments	and,	Item	34: Prefer	lambdas	to
std::bind.

by-reference	captures	and,	Item	31: Avoid	default	capture	modes.-Item
31: Avoid	default	capture	modes.

by-value	capture,	drawbacks	of,	Item	31: Avoid	default	capture	modes.-
Item	31: Avoid	default	capture	modes.

by-value	capture,	pointers	and,	Item	31: Avoid	default	capture	modes.

creating	closures	with,	Lambda	Expressions

dangling	references	and,	Item	31: Avoid	default	capture	modes.-Item
31: Avoid	default	capture	modes.

default	capture	modes	and,	Item	31: Avoid	default	capture	modes.-Item
31: Avoid	default	capture	modes.

definition	of,	Terminology	and	Conventions,	Lambda	Expressions

expressive	power	of,	Lambda	Expressions

generic,	Item	33: Use	decltype	on	auto&&	parameters	to	std::forward

them.

implicit	capture	of	the	this	pointer,	Item	31: Avoid	default	capture
modes.-Item	31: Avoid	default	capture	modes.

init	capture,	Item	32: Use	init	capture	to	move	objects	into	closures.-Item
32: Use	init	capture	to	move	objects	into	closures.

inlining	and,	Item	34: Prefer	lambdas	to	std::bind.

lambda	capture	and	objects	of	static	storage	duration,	Item	31: Avoid
default	capture	modes.

move	capture	and,	Item	34: Prefer	lambdas	to	std::bind.

overloading	and,	Item	34: Prefer	lambdas	to	std::bind.

polymorphic	function	objects	and,	Item	34: Prefer	lambdas	to	std::bind.

variadic,	Item	33: Use	decltype	on	auto&&	parameters	to	std::forward
them.

vs.	std::bind,	Item	34: Prefer	lambdas	to	std::bind.-Item	34: Prefer
lambdas	to	std::bind.

bound	arguments,	treatment	of,	Item	34: Prefer	lambdas	to	std::bind.

inlining	and,	Item	34: Prefer	lambdas	to	std::bind.

move	capture	and,	Item	34: Prefer	lambdas	to	std::bind.

polymorphic	functions	objects	and,	Item	34: Prefer	lambdas	to
std::bind.

readability	and,	Item	34: Prefer	lambdas	to	std::bind.-Item	34: Prefer
lambdas	to	std::bind.

unbound	arguments,	treatment	of,	Item	34: Prefer	lambdas	to
std::bind.

Lavavej,	Stephan	T.,	Acknowledgments,	Item	21: Prefer	std::make_unique
and	std::make_shared	to	direct	use	of	new.

legacy	types,	move	operations	and,	Item	29: Assume	that	move	operations
are	not	present,	not	cheap,	and	not	used.

lhs,	definition	of,	Terminology	and	Conventions

Liber,	Nevin	“:-)”,	Acknowledgments

literal	types,	definition	of,	Item	15: Use	constexpr	whenever	possible.

load	balancing,	Item	35: Prefer	task-based	programming	to	thread-based.

local	variables

by-value	return	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

when	not	destroyed,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.

lvalues,	definition	of,	Terminology	and	Conventions

M
Maher,	Michael,	Acknowledgments

make	functions

avoiding	code	duplication	and,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

custom	deleters	and,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

definition	of,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

exception	safety	and,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.,	Item	42: 
Consider	emplacement	instead	of	insertion.

parentheses	vs.	braces,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

"Mary	Poppins",	allusion	to,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

Matthews,	Hubert,	Acknowledgments

memory

consistency	models,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

memory-mapped	I/O,	definition	of,	Item	40: Use	std::atomic	for
concurrency,	volatile	for	special	memory.

Merkle,	Bernhard,	Acknowledgments

Mesopotamia,	Item	17: Understand	special	member	function	generation.

"Modern	C++	Design"	(book),	Acknowledgments

most	vexing	parse,	definition	of,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.

move	capture,	Item	32: Use	init	capture	to	move	objects	into	closures.
emulation	with	std::bind,	Item	32: Use	init	capture	to	move	objects	into
closures.-Item	32: Use	init	capture	to	move	objects	into	closures.,	Item
34: Prefer	lambdas	to	std::bind.

lambdas	and,	Item	34: Prefer	lambdas	to	std::bind.

move	operations

defaulting,	Item	17: Understand	special	member	function	generation.-
Item	17: Understand	special	member	function	generation.

definition	of,	Terminology	and	Conventions

generic	code	and,	Item	29: Assume	that	move	operations	are	not	present,
not	cheap,	and	not	used.

implicitly	generated,	Item	17: Understand	special	member	function
generation.-Item	17: Understand	special	member	function	generation.

legacy	types	and,	Item	29: Assume	that	move	operations	are	not	present,
not	cheap,	and	not	used.

Pimpl	Idiom	and,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.-Item	22: When	using	the
Pimpl	Idiom,	define	special	member	functions	in	the	implementation	file.

std::array	and,	Item	29: Assume	that	move	operations	are	not	present,
not	cheap,	and	not	used.

std::shared_ptr	and,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

std::string	and,	Item	29: Assume	that	move	operations	are	not	present,
not	cheap,	and	not	used.

strong	guarantee	and,	Item	29: Assume	that	move	operations	are	not
present,	not	cheap,	and	not	used.

templates	and,	Item	29: Assume	that	move	operations	are	not	present,
not	cheap,	and	not	used.

move	operations	and

move	semantics,	definition	of,	Rvalue	References,	Move	Semantics,	and
Perfect	Forwarding

move-enabled	types,	Item	17: Understand	special	member	function
generation.

move-only	type,	definition	of,	Item	16: Make	const	member	functions
thread	safe.,	Item	18: Use	std::unique_ptr	for	exclusive-ownership	resource
management.

N
named	return	value	optimization	(NRVO),	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.

narrow	contracts,	definition	of,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

narrow	ellipsis,	Terminology	and	Conventions

narrowing	conversions,	definition	of,	Item	7: Distinguish	between	()	and	{}
when	creating	objects.

Needham,	Bradley	E.,	Acknowledgments,	Acknowledgments

Neri,	Cassio,	Acknowledgments

Newton's	laws	of	motion,	Item	24: Distinguish	universal	references	from
rvalue	references.

Niebler,	Eric,	Acknowledgments

Nikitin,	Alexey	A.,	Acknowledgments

noexcept,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

compiler	warnings	and,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

conditional,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

deallocation	functions	and,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

destructors	and,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

function	interfaces	and,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.

move	operations	and,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

operator	delete	and,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

optimization	and,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit

exceptions.

strong	guarantee	and,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

swap	functions	and,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

non-dependent	type,	definition	of,	Item	9: Prefer	alias	declarations	to
typedefs.

non-member	functions,	Item	13: Prefer	const_iterators	to	iterators.
deleting,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.

Novak,	Adela,	Item	25: Use	std::move	on	rvalue	references,	std::forward
on	universal	references.

NRVO	(named	return	value	optimization),	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.

NULL

overloading	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.

templates	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.

nullptr

overloading	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.

templates	and,	Item	8:	Prefer	nullptr	to	0	and	NULL.-Item	8:	Prefer
nullptr	to	0	and	NULL.

type	of,	Item	8:	Prefer	nullptr	to	0	and	NULL.

vs.	0	and	NULL,	Item	8:	Prefer	nullptr	to	0	and	NULL.-Item	8:	Prefer
nullptr	to	0	and	NULL.

O
objects

()	vs.	{}	for	creation	of,	Moving	to	Modern	C++-Item	7: Distinguish
between	()	and	{}	when	creating	objects.

destruction	of,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

operator	templates,	type	arguments	and,	Item	34: Prefer	lambdas	to
std::bind.

operator(),	in	generic	lambdas,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

operator[],	return	type	of,	Item	3: Understand	decltype.,	Item	6: Use	the
explicitly	typed	initializer	idiom	when	auto	deduces	undesired	types.

Orr,	Roger,	Acknowledgments

OS	threads,	definition	of,	Item	35: Prefer	task-based	programming	to
thread-based.

overloading

alternatives	to,	Item	27: Familiarize	yourself	with	alternatives	to
overloading	on	universal	references.-Trade-offs

lambdas	and,	Item	34: Prefer	lambdas	to	std::bind.

pointer	and	integral	types,	Item	8:	Prefer	nullptr	to	0	and	NULL.

scalability	of,	Item	25: Use	std::move	on	rvalue	references,	std::forward

on	universal	references.

universal	references	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.,	Item	26: Avoid	overloading	on
universal	references.-Trade-offs

override,	Item	12: Declare	overriding	functions	override.-Item	12: Declare
overriding	functions	override.

as	keyword,	Item	12: Declare	overriding	functions	override.

requirements	for	overriding,	Item	12: Declare	overriding	functions
override.-Item	12: Declare	overriding	functions	override.

virtual	functions	and,	Item	12: Declare	overriding	functions	override.-
Item	12: Declare	overriding	functions	override.

oversubscription,	definition	of,	Item	35: Prefer	task-based	programming	to
thread-based.

"Overview	of	the	New	C++"	(book),	Acknowledgments

P
parameters

forwarding,	definition	of,	Item	30: Familiarize	yourself	with	perfect
forwarding	failure	cases.

of	rvalue	reference	type,	Terminology	and	Conventions

Parent,	Sean,	Acknowledgments

pass	by	value,	Item	41: Consider	pass	by	value	for	copyable	parameters
that	are	cheap	to	move	and	always	copied.-Item	41: Consider	pass	by	value
for	copyable	parameters	that	are	cheap	to	move	and	always	copied.

efficiency	of,	Item	41: Consider	pass	by	value	for	copyable	parameters

that	are	cheap	to	move	and	always	copied.-Item	41: Consider	pass	by
value	for	copyable	parameters	that	are	cheap	to	move	and	always	copied.

slicing	problem	and,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

perfect	forwarding,	Item	34: Prefer	lambdas	to	std::bind.
(see	also	universal	references)

constructors,	Item	26: Avoid	overloading	on	universal	references.-Item
26: Avoid	overloading	on	universal	references.,	Constraining	templates
that	take	universal	references-Constraining	templates	that	take	universal
references

copying	objects	and,	Item	26: Avoid	overloading	on	universal
references.-Item	26: Avoid	overloading	on	universal	references.

inheritance	and,	Item	26: Avoid	overloading	on	universal	references.,
Constraining	templates	that	take	universal	references-Constraining
templates	that	take	universal	references

definition	of,	Terminology	and	Conventions,	Rvalue	References,	Move
Semantics,	and	Perfect	Forwarding,	Item	30: Familiarize	yourself	with
perfect	forwarding	failure	cases.

emplacement	and,	Item	42: Consider	emplacement	instead	of	insertion.

failure	cases,	Item	30: Familiarize	yourself	with	perfect	forwarding
failure	cases.-Upshot

bitfields,	Bitfields

braced	initializers,	Braced	initializers

declaration-only	integral	static	const	data	members,	Declaration-only

integral	static	const	data	members-Declaration-only	integral	static
const	data	members

overloaded	function/template	names,	Overloaded	function	names	and
template	names

std::bind	and,	Item	34: Prefer	lambdas	to	std::bind.

Pimpl	Idiom,	Item	22: When	using	the	Pimpl	Idiom,	define	special	member
functions	in	the	implementation	file.-Item	22: When	using	the	Pimpl	Idiom,
define	special	member	functions	in	the	implementation	file.

compilation	time	and,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.

copy	operations	and,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.-Item	22: When
using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.

definition	of,	Item	22: When	using	the	Pimpl	Idiom,	define	special
member	functions	in	the	implementation	file.

move	operations	and,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.-Item	22: When
using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.

std::shared_ptr	and,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.-Item	22: When
using	the	Pimpl	Idiom,	define	special	member	functions	in	the
implementation	file.

std::unique_ptr	and,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.

polling,	cost/efficiency	of,	Item	39: Consider	void	futures	for	one-shot	event
communication.

polymorphic	function	objects,	Item	34: Prefer	lambdas	to	std::bind.

private	and	undefined	functions,	vs.	deleted	functions,	Item	11: Prefer
deleted	functions	to	private	undefined	ones.

proxy	class,	Item	6: Use	the	explicitly	typed	initializer	idiom	when	auto
deduces	undesired	types.-Item	6: Use	the	explicitly	typed	initializer	idiom
when	auto	deduces	undesired	types.

Python,	gratuitous	swipe	at,	Item	42: Consider	emplacement	instead	of
insertion.

R
races,	testing	for	std::thread	joinability	and,	Item	37: Make	std::threads
unjoinable	on	all	paths.

RAII	classes

definition	of,	Item	37: Make	std::threads	unjoinable	on	all	paths.

for	std::thread	objects,	Item	39: Consider	void	futures	for	one-shot	event
communication.

RAII	objects,	definition	of,	Item	37: Make	std::threads	unjoinable	on	all
paths.

raw	pointers

as	back	pointers,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

definition	of,	Terminology	and	Conventions

disadvantages	of,	Smart	Pointers

read-modify-write	(RMW)	operations,	Item	40: Use	std::atomic	for
concurrency,	volatile	for	special	memory.

std::atomic	and,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

volatile	and,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

redundant	loads,	definition	of,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

reference	collapsing,	Item	28: Understand	reference	collapsing.-Item	28: 
Understand	reference	collapsing.

alias	declarations	and,	Item	28: Understand	reference	collapsing.

auto	and,	Item	28: Understand	reference	collapsing.

contexts	for,	Item	28: Understand	reference	collapsing.-Item	28: 
Understand	reference	collapsing.

decltype	and,	Item	28: Understand	reference	collapsing.

rules	for,	Item	28: Understand	reference	collapsing.

typedefs	and,	Item	28: Understand	reference	collapsing.

reference	count,	definition	of,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

reference	counting	control	blocks	(see	control	blocks)

reference	qualifiers

definition	of,	Item	12: Declare	overriding	functions	override.

on	member	functions,	Item	12: Declare	overriding	functions	override.-
Item	12: Declare	overriding	functions	override.

references

dangling,	Item	31: Avoid	default	capture	modes.

forwarding,	Item	24: Distinguish	universal	references	from	rvalue
references.

in	binary	code,	Declaration-only	integral	static	const	data	members

to	arrays,	Array	Arguments

to	references,	illegality	of,	Item	28: Understand	reference	collapsing.

relaxed	memory	consistency,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

reporting	bugs	and	suggesting	improvements,	Introduction

Resource	Acquisition	is	Initialization	(see	RAII)

resource	management

copy	operations	and	destructor	and,	Item	17: Understand	special
member	function	generation.

deletion	and,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

resource	ownership,	definition	of,	Smart	Pointers

return	value	optimization	(RVO),	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.-Item	25: Use	std::move	on

rvalue	references,	std::forward	on	universal	references.

rhs,	definition	of,	Terminology	and	Conventions

RMW	(read-modify-write)	operations,	Item	40: Use	std::atomic	for
concurrency,	volatile	for	special	memory.

Rule	of	Three,	definition	of,	Item	17: Understand	special	member	function
generation.

rvalue	references

definition	of,	Terminology	and	Conventions

final	use	of,	Item	25: Use	std::move	on	rvalue	references,	std::forward	on
universal	references.

parameters,	Terminology	and	Conventions

passing	to	std::forward,	Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.-Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.

vs.	universal	references,	Item	24: Distinguish	universal	references	from
rvalue	references.-Item	24: Distinguish	universal	references	from	rvalue
references.

rvalue_cast,	Item	23: Understand	std::move	and	std::forward.

RVO	(see	return	value	optimization)

S
Schober,	Hendrik,	Acknowledgments

scoped	enums

definition	of,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

vs.	unscoped	enums,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-
Item	10: Prefer	scoped	enums	to	unscoped	enums.

sequential	consistency,	definition	of,	Item	40: Use	std::atomic	for
concurrency,	volatile	for	special	memory.

SFINAE	technology,	Constraining	templates	that	take	universal	references

shallow	copy,	definition	of,	Item	22: When	using	the	Pimpl	Idiom,	define
special	member	functions	in	the	implementation	file.

shared	ownership,	definition	of,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

shared	state

definition	of,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.

future	destructor	behavior	and,	Item	38: Be	aware	of	varying	thread
handle	destructor	behavior.

reference	count	in,	Item	38: Be	aware	of	varying	thread	handle
destructor	behavior.

shared_from_this,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

Simon,	Paul,	Smart	Pointers

slicing	problem,	Item	41: Consider	pass	by	value	for	copyable	parameters
that	are	cheap	to	move	and	always	copied.

small	string	optimization	(SSO),	Item	29: Assume	that	move	operations	are

not	present,	not	cheap,	and	not	used.,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.

smart	pointers,	Smart	Pointers-Item	22: When	using	the	Pimpl	Idiom,
define	special	member	functions	in	the	implementation	file.

dangling	pointers	and,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-
like	pointers	that	can	dangle.

definition	of,	Terminology	and	Conventions,	Smart	Pointers

exclusive-ownership	resource	management	and,	Item	18: Use
std::unique_ptr	for	exclusive-ownership	resource	management.

vs.	raw	pointers,	Smart	Pointers

software	threads,	definition	of,	Item	35: Prefer	task-based	programming	to
thread-based.

special	member	functions

definition	of,	Item	17: Understand	special	member	function	generation.

implicit	generation	of,	Item	17: Understand	special	member	function
generation.-Item	17: Understand	special	member	function	generation.

member	function	templates	and,	Item	17: Understand	special	member
function	generation.

"special"	memory,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.-Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

spurious	wakeups,	definition	of,	Item	39: Consider	void	futures	for	one-
shot	event	communication.

SSO	(small	string	optimization),	Item	29: Assume	that	move	operations	are
not	present,	not	cheap,	and	not	used.,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.

"Star	Trek",	allusion	to,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

"Star	Wars",	allusion	to,	Constraining	templates	that	take	universal
references

static	storage	duration,	definition	of,	Item	31: Avoid	default	capture	modes.

static_assert,	Item	22: When	using	the	Pimpl	Idiom,	define	special	member
functions	in	the	implementation	file.,	Trade-offs

std::add_lvalue_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::add_lvalue_reference_t,	Item	9: Prefer	alias	declarations	to	typedefs.

std::allocate_shared

and	classes	with	custom	memory	management	and,	Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.

efficiency	of,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

std::all_of,	Item	31: Avoid	default	capture	modes.

std::array,	move	operations	and,	Item	29: Assume	that	move	operations
are	not	present,	not	cheap,	and	not	used.

std::async,	Item	35: Prefer	task-based	programming	to	thread-based.
default	launch	policy,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.-Item	36: Specify	std::launch::async	if

asynchronicity	is	essential.

destructors	for	futures	from,	Item	38: Be	aware	of	varying	thread	handle
destructor	behavior.

launch	policy,	Item	36: Specify	std::launch::async	if	asynchronicity	is
essential.

launch	policy	and	thread-local	storage,	Item	36: Specify
std::launch::async	if	asynchronicity	is	essential.-Item	36: Specify
std::launch::async	if	asynchronicity	is	essential.

launch	policy	and	timeout-based	loops,	Item	36: Specify
std::launch::async	if	asynchronicity	is	essential.

std::packaged_task	and,	Item	38: Be	aware	of	varying	thread	handle
destructor	behavior.

std::atomic

code	reordering	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

copy	operations	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

multiple	variables	and	transactions	and,	Item	16: Make	const	member
functions	thread	safe.-Item	16: Make	const	member	functions	thread
safe.

RMW	operations	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

use	with	volatile,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

vs.	volatile,	Item	40: Use	std::atomic	for	concurrency,	volatile	for	special
memory.-Item	40: Use	std::atomic	for	concurrency,	volatile	for	special
memory.

std::auto_ptr,	Smart	Pointers

std::basic_ios,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.
std::basic_ios::basic_ios,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

std::basic_ios::operator=,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

std::bind

bound	and	unbound	arguments	and,	Item	34: Prefer	lambdas	to
std::bind.

inlining	and,	Item	34: Prefer	lambdas	to	std::bind.

move	capture	and,	Item	34: Prefer	lambdas	to	std::bind.

move	capture	emulation	and,	Item	32: Use	init	capture	to	move	objects
into	closures.-Item	32: Use	init	capture	to	move	objects	into	closures.

overloading	and,	Item	34: Prefer	lambdas	to	std::bind.

perfect	forwarding	and,	Item	34: Prefer	lambdas	to	std::bind.

polymorphic	function	objects	and,	Item	34: Prefer	lambdas	to	std::bind.

readability	and,	Item	34: Prefer	lambdas	to	std::bind.-Item	34: Prefer
lambdas	to	std::bind.

vs.	lambdas,	Item	34: Prefer	lambdas	to	std::bind.-Item	34: Prefer
lambdas	to	std::bind.

std::cbegin,	Item	13: Prefer	const_iterators	to	iterators.

std::cend,	Item	13: Prefer	const_iterators	to	iterators.

std::crbegin,	Item	13: Prefer	const_iterators	to	iterators.

std::crend,	Item	13: Prefer	const_iterators	to	iterators.

std::decay,	Constraining	templates	that	take	universal	references

std::enable_if,	Constraining	templates	that	take	universal	references-
Constraining	templates	that	take	universal	references

std::enable_shared_from_this,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.-Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

std::false_type,	Use	Tag	dispatch

std::forward,	Item	23: Understand	std::move	and	std::forward.-Item	23: 
Understand	std::move	and	std::forward.,	Item	28: Understand	reference
collapsing.-Item	28: Understand	reference	collapsing.
by-value	return	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

casts	and,	Item	23: Understand	std::move	and	std::forward.

passing	rvalue	references	to,	Item	33: Use	decltype	on	auto&&
parameters	to	std::forward	them.

replacing	std::move	with,	Item	23: Understand	std::move	and
std::forward.

universal	references	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

std::function,	Item	5: Prefer	auto	to	explicit	type	declarations.-Item	5: 
Prefer	auto	to	explicit	type	declarations.

std::future<void>,	Item	39: Consider	void	futures	for	one-shot	event
communication.

std::initializer_lists,	braced	initializers	and,	Item	7: Distinguish	between	()
and	{}	when	creating	objects.

std::is_base_of,	Constraining	templates	that	take	universal	references

std::is_constructible,	Trade-offs

std::is_nothrow_move_constructible,	Item	14: Declare	functions	noexcept	if
they	won’t	emit	exceptions.

std::is_same,	Constraining	templates	that	take	universal	references-
Constraining	templates	that	take	universal	references

std::launch::async,	Item	36: Specify	std::launch::async	if	asynchronicity	is
essential.

automating	use	as	launch	policy,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

std::launch::deferred,	Item	36: Specify	std::launch::async	if	asynchronicity
is	essential.

timeout-based	loops	and,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

std::literals,	Item	34: Prefer	lambdas	to	std::bind.

std::make_shared,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.-Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.,	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.,	Item	25: Use	std::move
on	rvalue	references,	std::forward	on	universal	references.

(see	also	make	functions)

alternatives	to,	Item	42: Consider	emplacement	instead	of	insertion.

classes	with	custom	memory	management	and,	Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.

efficiency	of,	Item	21: Prefer	std::make_unique	and	std::make_shared	to
direct	use	of	new.

large	objects	and,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer
std::make_unique	and	std::make_shared	to	direct	use	of	new.

std::make_unique,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.-Item	21: Prefer	std::make_unique
and	std::make_shared	to	direct	use	of	new.,	Item	25: Use	std::move	on
rvalue	references,	std::forward	on	universal	references.,	Item	25: Use
std::move	on	rvalue	references,	std::forward	on	universal	references.

(see	also	make	functions)

std::move,	Item	23: Understand	std::move	and	std::forward.-Item	23: 
Understand	std::move	and	std::forward.

by-value	parameters	and,	Item	41: Consider	pass	by	value	for	copyable
parameters	that	are	cheap	to	move	and	always	copied.

by-value	return	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue

references,	std::forward	on	universal	references.

casts	and,	Item	23: Understand	std::move	and	std::forward.

const	objects	and,	Item	23: Understand	std::move	and	std::forward.-
Item	23: Understand	std::move	and	std::forward.

replacing	with	std::forward,	Item	23: Understand	std::move	and
std::forward.-Item	23: Understand	std::move	and	std::forward.

rvalue	references	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.-Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

universal	references	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.

std::move_if_noexcept,	Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

std::nullptr_t,	Item	8:	Prefer	nullptr	to	0	and	NULL.

std::operator,	Item	23: Understand	std::move	and	std::forward.

std::operator=,	Item	11: Prefer	deleted	functions	to	private	undefined	ones.

std::operator[],	Item	3: Understand	decltype.,	Item	6: Use	the	explicitly
typed	initializer	idiom	when	auto	deduces	undesired	types.

std::packaged_task,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.-Item	38: Be	aware	of	varying	thread	handle	destructor	behavior.
std::async	and,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.

std::pair,	Item	14: Declare	functions	noexcept	if	they	won’t	emit

exceptions.

std::pair::swap,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

std::plus,	Item	34: Prefer	lambdas	to	std::bind.

std::promise,	Item	38: Be	aware	of	varying	thread	handle	destructor
behavior.

setting,	Item	39: Consider	void	futures	for	one-shot	event
communication.

std::promise<void>,	Item	39: Consider	void	futures	for	one-shot	event
communication.

std::rbegin,	Item	13: Prefer	const_iterators	to	iterators.

std::ref,	Item	34: Prefer	lambdas	to	std::bind.

std::remove_const,	Item	9: Prefer	alias	declarations	to	typedefs.

std::remove_const_t,	Item	9: Prefer	alias	declarations	to	typedefs.

std::remove_reference,	Item	9: Prefer	alias	declarations	to	typedefs.

std::remove_reference_t,	Item	9: Prefer	alias	declarations	to	typedefs.

std::rend,	Item	13: Prefer	const_iterators	to	iterators.

std::result_of,	Item	36: Specify	std::launch::async	if	asynchronicity	is
essential.

std::shared_future<void>,	Item	39: Consider	void	futures	for	one-shot
event	communication.

std::shared_ptr,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.-Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

arrays	and,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.

construction	from	raw	pointer,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.-Item	19: Use	std::shared_ptr	for
shared-ownership	resource	management.

construction	from	this,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.-Item	19: Use	std::shared_ptr	for
shared-ownership	resource	management.

conversion	from	std::unique_ptr,	Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.

creating	from	std::weak_ptr,	Item	20: Use	std::weak_ptr	for
std::shared_ptr-like	pointers	that	can	dangle.

cycles	and,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers
that	can	dangle.

deleters	and,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.

vs.	std::unique_ptr	deleters,	Item	22: When	using	the	Pimpl	Idiom,
define	special	member	functions	in	the	implementation	file.

efficiency	of,	Item	19: Use	std::shared_ptr	for	shared-ownership
resource	management.,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

move	operations	and,	Item	19: Use	std::shared_ptr	for	shared-ownership

resource	management.

multiple	control	blocks	and,	Item	19: Use	std::shared_ptr	for	shared-
ownership	resource	management.

size	of,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.

vs.	std::weak_ptr,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

std::string,	move	operations	and,	Item	29: Assume	that	move	operations
are	not	present,	not	cheap,	and	not	used.

std::swap,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

std::system_error,	Item	35: Prefer	task-based	programming	to	thread-
based.

std::threads

as	data	members,	member	initialization	order	and,	Item	37: Make
std::threads	unjoinable	on	all	paths.

destroying	joinable,	Item	37: Make	std::threads	unjoinable	on	all	paths.-
Item	37: Make	std::threads	unjoinable	on	all	paths.

implicit	join	or	detach,	Item	37: Make	std::threads	unjoinable	on	all
paths.

joinable	vs.	unjoinable,	Item	37: Make	std::threads	unjoinable	on	all
paths.

RAII	class	for,	Item	37: Make	std::threads	unjoinable	on	all	paths.-Item
37: Make	std::threads	unjoinable	on	all	paths.,	Item	39: Consider	void

futures	for	one-shot	event	communication.

std::true_type,	Use	Tag	dispatch

std::unique_ptr,	Smart	Pointers-Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.

conversion	to	std::shared_ptr,	Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.

deleters	and,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.-Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.,	Item	19: Use	std::shared_ptr	for
shared-ownership	resource	management.

vs.	std::shared_ptr	deleters,	Item	22: When	using	the	Pimpl	Idiom,
define	special	member	functions	in	the	implementation	file.

efficiency	of,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

factory	functions	and,	Item	18: Use	std::unique_ptr	for	exclusive-
ownership	resource	management.-Item	18: Use	std::unique_ptr	for
exclusive-ownership	resource	management.

for	arrays,	Item	18: Use	std::unique_ptr	for	exclusive-ownership
resource	management.

size	of,	Item	18: Use	std::unique_ptr	for	exclusive-ownership	resource
management.

std::vector,	Item	3: Understand	decltype.,	Item	24: Distinguish	universal
references	from	rvalue	references.,	Item	42: Consider	emplacement	instead
of	insertion.

std::vector	constructors,	Item	7: Distinguish	between	()	and	{}	when

creating	objects.

std::vector::emplace_back,	Item	24: Distinguish	universal	references
from	rvalue	references.

std::vector::push_back,	Item	24: Distinguish	universal	references	from
rvalue	references.,	Item	42: Consider	emplacement	instead	of	insertion.

std::vector<bool>,	Item	6: Use	the	explicitly	typed	initializer	idiom	when
auto	deduces	undesired	types.-Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.

std::vector<bool>::operator[],	Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.

std::vector<bool>::reference,	Item	6: Use	the	explicitly	typed	initializer
idiom	when	auto	deduces	undesired	types.-Item	6: Use	the	explicitly
typed	initializer	idiom	when	auto	deduces	undesired	types.

std::weak_ptr,	Item	19: Use	std::shared_ptr	for	shared-ownership	resource
management.-Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers
that	can	dangle.

caching	and,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

construction	of	std::shared_ptr	with,	Item	20: Use	std::weak_ptr	for
std::shared_ptr-like	pointers	that	can	dangle.

cycles	and,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers
that	can	dangle.

efficiency	of,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

expired,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like	pointers

that	can	dangle.

observer	design	pattern	and,	Item	20: Use	std::weak_ptr	for
std::shared_ptr-like	pointers	that	can	dangle.

vs.	std::shared_ptr,	Item	20: Use	std::weak_ptr	for	std::shared_ptr-like
pointers	that	can	dangle.

Steagall,	Bob,	Acknowledgments

Stewart,	Rob,	Acknowledgments

strong	guarantee

definition	of,	Terminology	and	Conventions

move	operations	and,	Item	29: Assume	that	move	operations	are	not
present,	not	cheap,	and	not	used.

noexcept	and,	Item	14: Declare	functions	noexcept	if	they	won’t	emit
exceptions.

Summer,	Donna,	Item	42: Consider	emplacement	instead	of	insertion.

Supercalifragilisticexpialidocious,	Item	41: Consider	pass	by	value	for
copyable	parameters	that	are	cheap	to	move	and	always	copied.

Sutter,	Herb,	Acknowledgments

system	threads,	Item	35: Prefer	task-based	programming	to	thread-based.

T
T&&,	meanings	of,	Item	24: Distinguish	universal	references	from	rvalue
references.

tag	dispatch,	Use	Tag	dispatch-Use	Tag	dispatch

task-based	programming,	definition	of,	Item	35: Prefer	task-based
programming	to	thread-based.

tasks

load	balancing	and,	Item	35: Prefer	task-based	programming	to	thread-
based.

querying	for	deferred	status,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

vs.	threads,	Item	35: Prefer	task-based	programming	to	thread-based.-
Item	35: Prefer	task-based	programming	to	thread-based.

template

alias	templates,	Item	9: Prefer	alias	declarations	to	typedefs.-Item	9: 
Prefer	alias	declarations	to	typedefs.

aliases,	Item	9: Prefer	alias	declarations	to	typedefs.

classes,	definition	of,	Terminology	and	Conventions

disabled	vs.	enabled,	Constraining	templates	that	take	universal
references

functions,	definition	of,	Terminology	and	Conventions

instantiations,	deleting,	Item	11: Prefer	deleted	functions	to	private
undefined	ones.

move	operations	and,	Item	29: Assume	that	move	operations	are	not
present,	not	cheap,	and	not	used.

names,	perfect	forwarding	and,	Overloaded	function	names	and	template
names

parentheses	vs.	braces	in,	Item	7: Distinguish	between	()	and	{}	when
creating	objects.

standard	operators	and	type	arguments	for,	Item	34: Prefer	lambdas	to
std::bind.

type	deduction,	Deducing	Types-Function	Arguments

array	arguments	and,	Array	Arguments-Array	Arguments

for	pass	by	value,	Case	2:	ParamType	is	a	Universal	Reference-Case	3:
ParamType	is	Neither	a	Pointer	nor	a	Reference

for	pointer	and	reference	types,	Item	1: Understand	template	type
deduction.-Case	2:	ParamType	is	a	Universal	Reference

for	universal	references,	Case	1:	ParamType	is	a	Reference	or	Pointer,
but	not	a	Universal	Reference-Case	2:	ParamType	is	a	Universal
Reference

function	arguments	and,	Array	Arguments

vs.	auto	type	deduction,	Item	2: Understand	auto	type	deduction.-Item
2: Understand	auto	type	deduction.

terminology	and	conventions,	Introduction-Terminology	and	Conventions

testing	std::threads	for	joinability,	Item	37: Make	std::threads	unjoinable
on	all	paths.

"The	Hitchhiker's	Guide	to	the	Galaxy",	allusion	to,	IDE	Editors

"The	View	from	Aristeia"	(blog),	Acknowledgments,	Item	39: Consider
void	futures	for	one-shot	event	communication.

thread	handle	destructor	behavior,	Item	38: Be	aware	of	varying	thread

handle	destructor	behavior.-Item	38: Be	aware	of	varying	thread	handle
destructor	behavior.

thread	local	storage	(TLS),	definition	of,	Item	36: Specify
std::launch::async	if	asynchronicity	is	essential.

thread-based	programming,	definition	of,	Item	35: Prefer	task-based
programming	to	thread-based.

threads

destruction,	Item	37: Make	std::threads	unjoinable	on	all	paths.

exhaustion,	Item	35: Prefer	task-based	programming	to	thread-based.

function	return	values	and,	Item	35: Prefer	task-based	programming	to
thread-based.

hardware,	Item	35: Prefer	task-based	programming	to	thread-based.

implicit	join	or	detach,	Item	37: Make	std::threads	unjoinable	on	all
paths.

joinable	vs.	unjoinable,	Item	37: Make	std::threads	unjoinable	on	all
paths.

OS	threads,	Item	35: Prefer	task-based	programming	to	thread-based.

setting	priority/affinity,	Item	35: Prefer	task-based	programming	to
thread-based.,	Item	37: Make	std::threads	unjoinable	on	all	paths.,	Item
39: Consider	void	futures	for	one-shot	event	communication.

software,	Item	35: Prefer	task-based	programming	to	thread-based.

suspending,	Item	39: Consider	void	futures	for	one-shot	event
communication.-Item	39: Consider	void	futures	for	one-shot	event

communication.

system	threads,	Item	35: Prefer	task-based	programming	to	thread-
based.

testing	for	joinability,	Item	37: Make	std::threads	unjoinable	on	all
paths.

vs.	tasks,	Item	35: Prefer	task-based	programming	to	thread-based.-Item
35: Prefer	task-based	programming	to	thread-based.

thread_local	variables,	Item	36: Specify	std::launch::async	if
asynchronicity	is	essential.

time	suffixes,	Item	34: Prefer	lambdas	to	std::bind.

timeout-based	loops,	Item	36: Specify	std::launch::async	if	asynchronicity
is	essential.

TLS	(see	thread-local	storage)

translation,	definition	of,	Item	15: Use	constexpr	whenever	possible.

type	arguments,	operator	templates	and,	Item	34: Prefer	lambdas	to
std::bind.

type	deduction,	Deducing	Types-Item	3: Understand	decltype.
(see	also	template,	type	deduction)

for	auto,	Function	Arguments-Item	2: Understand	auto	type	deduction.

emplace_back	and,	Item	24: Distinguish	universal	references	from	rvalue
references.

universal	references	and,	Item	24: Distinguish	universal	references	from

rvalue	references.

type	inference	(see	type	deduction)

type	traits,	Item	9: Prefer	alias	declarations	to	typedefs.-Item	9: Prefer
alias	declarations	to	typedefs.

type	transformations,	Item	9: Prefer	alias	declarations	to	typedefs.

typedefs,	reference	collapsing	and,	Item	28: Understand	reference
collapsing.

typeid	and	viewing	deduced	types,	Runtime	Output-Runtime	Output

typename

dependent	type	and,	Item	9: Prefer	alias	declarations	to	typedefs.

non-dependent	type	and,	Item	9: Prefer	alias	declarations	to	typedefs.

vs.	class	for	template	parameters,	Terminology	and	Conventions

types,	testing	for	equality,	Constraining	templates	that	take	universal
references

U
undefined	behavior,	definition	of,	Terminology	and	Conventions

undefined	template	to	elicit	compiler	error	messages,	Compiler	Diagnostics

uniform	initialization,	Item	7: Distinguish	between	()	and	{}	when	creating
objects.

universal	references,	Item	24: Distinguish	universal	references	from	rvalue
references.

(see	also	perfect	forwarding)

advantages	over	overloading,	Item	25: Use	std::move	on	rvalue
references,	std::forward	on	universal	references.

alternatives	to	overloading	on,	Item	26: Avoid	overloading	on	universal
references.-Trade-offs

auto	and,	Item	24: Distinguish	universal	references	from	rvalue
references.

constructors	and,	Item	26: Avoid	overloading	on	universal	references.-
Item	26: Avoid	overloading	on	universal	references.,	Constraining
templates	that	take	universal	references-Constraining	templates	that	take
universal	references

efficiency	and,	Item	26: Avoid	overloading	on	universal	references.

error	messages	and,	Trade-offs-Trade-offs

final	use	of,	Item	25: Use	std::move	on	rvalue	references,	std::forward	on
universal	references.

greedy	functions	and,	Item	26: Avoid	overloading	on	universal
references.

initializers	and,	Item	24: Distinguish	universal	references	from	rvalue
references.

lvalue/rvalue	encoding,	Item	28: Understand	reference	collapsing.

names	of,	Item	24: Distinguish	universal	references	from	rvalue
references.

overloading	and,	Item	26: Avoid	overloading	on	universal	references.-
Trade-offs

real	meaning	of,	Item	28: Understand	reference	collapsing.

std::move	and,	Item	25: Use	std::move	on	rvalue	references,
std::forward	on	universal	references.

syntactic	form	of,	Item	24: Distinguish	universal	references	from	rvalue
references.

type	deduction	and,	Item	24: Distinguish	universal	references	from
rvalue	references.

vs.	rvalue	references,	Item	24: Distinguish	universal	references	from
rvalue	references.-Item	24: Distinguish	universal	references	from	rvalue
references.

unjoinable	std::threads,	definition	of,	Item	37: Make	std::threads
unjoinable	on	all	paths.

unscoped	enums

definition	of,	Item	10: Prefer	scoped	enums	to	unscoped	enums.

vs.	scoped	enums,	Item	10: Prefer	scoped	enums	to	unscoped	enums.-
Item	10: Prefer	scoped	enums	to	unscoped	enums.

Urbano,	Nancy	L.	(see	feminine	manifestation	of	the	divine)

V
Vandewoestyn,	Bart,	Acknowledgments

variadic	lambdas,	Item	33: Use	decltype	on	auto&&	parameters	to
std::forward	them.

"View	from	Aristeia,	The"	(blog),	Acknowledgments,	Item	39: Consider
void	futures	for	one-shot	event	communication.

virtual	functions,	override	and,	Item	12: Declare	overriding	functions
override.-Item	12: Declare	overriding	functions	override.

void	future,	Item	39: Consider	void	futures	for	one-shot	event
communication.

volatile

code	reordering	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

dead	stores	and,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

redundant	loads	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

RMW	operations	and,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

"special"	memory	and,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.-Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

use	with	std::atomic,	Item	40: Use	std::atomic	for	concurrency,	volatile
for	special	memory.

vs.	std::atomic,	Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.-Item	40: Use	std::atomic	for	concurrency,	volatile	for
special	memory.

W
Wakely,	Jonathan,	Acknowledgments

warnings,	compiler	(see	compiler	warnings)

Watkins,	Damien,	Acknowledgments

weak	count,	definition	of,	Item	21: Prefer	std::make_unique	and
std::make_shared	to	direct	use	of	new.

weak	memory	consistency,	Item	40: Use	std::atomic	for	concurrency,
volatile	for	special	memory.

wide	contracts,	definition	of,	Item	14: Declare	functions	noexcept	if	they
won’t	emit	exceptions.-Item	14: Declare	functions	noexcept	if	they	won’t
emit	exceptions.

wide	ellipsis,	Terminology	and	Conventions

Widget,	definition	of,	Terminology	and	Conventions

Williams,	Anthony,	Acknowledgments,	Item	37: Make	std::threads
unjoinable	on	all	paths.

Williams,	Ashley	Morgan,	Acknowledgments

Williams,	Emyr,	Acknowledgments

Winkler,	Fredrik,	Acknowledgments

Winterberg,	Michael,	Acknowledgments

Y
Yiddish,	gratuitous	use	of,	Item	12: Declare	overriding	functions	override.

Z
Zolman,	Leor,	Acknowledgments,	Acknowledgments

Zuse,	Konrad,	Trade-offs

About	the	Author
Scott	Meyers	is	one	of	the	world’s	foremost	experts	on	C++.	A	sought-after
trainer,	consultant,	and	conference	presenter,	his	Effective	C++	books	(Effective
C++,	More	Effective	C++,	and	Effective	STL)	have	set	the	bar	for	C++
programming	guidance	for	more	than	20	years.	He	has	a	Ph.D.	in	computer
science	from	Brown	University.	His	website	is	aristeia.com.

http://aristeia.com

Colophon
The	animal	on	the	cover	of	Effective	Modern	C++	is	a	Rose-crowned	fruit	dove
(Ptilinopus	regina).	This	species	of	dove	also	goes	by	the	names	pink-capped
fruit	dove	or	Swainson’s	fruit	dove.	It	is	distinguished	by	its	striking	plumage:
grey	head	and	breast,	orange	belly,	whitish	throat,	yellow-orange	iris,	and	grey
green	bill	and	feet.

Distributed	in	lowland	rainforests	in	eastern	Australia,	monsoon	forests	in
northern	Australia,	and	the	Lesser	Sunda	Islands	and	Maluku	Islands	of
Indonesia,	the	Rose-crowned	fruit	dove’s	diet	consists	of	various	fruits	like	figs
(which	it	swallows	whole),	palms,	and	vines.	Camphor	Laurel,	a	large	evergreen
tree,	is	another	food	source	for	the	fruit	dove.	They	feed—in	pairs,	small	parties,
or	singly—in	rainforest	canopies,	usually	in	the	morning	or	late	afternoon.	To
hydrate,	they	get	water	from	leaves	or	dew,	not	from	the	ground.

The	fruit	dove	is	considered	vulnerable	in	New	South	Wales	due	to	rainforest
clearing	and	fragmentation,	logging,	weeds,	fire	regime–altered	habitats,	and	the
removal	of	Laurel	Camphor	without	adequate	alternatives.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	Wood’s	Illustrated	Natural	History,	bird	volume.	The
cover	fonts	are	URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe
Minion	Pro;	the	heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is
Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

	From the Publisher
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Acknowledgments
	Introduction
	Terminology and Conventions
	Reporting Bugs and Suggesting Improvements

	1. Deducing Types
	Item 1: Understand template type deduction.
	Case 1: ParamType is a Reference or Pointer, but not a Universal Reference
	Case 2: ParamType is a Universal Reference
	Case 3: ParamType is Neither a Pointer nor a Reference
	Array Arguments
	Function Arguments

	Item 2: Understand auto type deduction.
	Item 3: Understand decltype.
	Item 4: Know how to view deduced types.
	IDE Editors
	Compiler Diagnostics
	Runtime Output

	2. auto
	Item 5: Prefer auto to explicit type declarations.
	Item 6: Use the explicitly typed initializer idiom when auto deduces undesired types.

	3. Moving to Modern C++
	Item 7: Distinguish between () and {} when creating objects.
	Item 8: Prefer nullptr to 0 and NULL.
	Item 9: Prefer alias declarations to typedefs.
	Item 10: Prefer scoped enums to unscoped enums.
	Item 11: Prefer deleted functions to private undefined ones.
	Item 12: Declare overriding functions override.
	Item 13: Prefer const_iterators to iterators.
	Item 14: Declare functions noexcept if they won’t emit exceptions.
	Item 15: Use constexpr whenever possible.
	Item 16: Make const member functions thread safe.
	Item 17: Understand special member function generation.

	4. Smart Pointers
	Item 18: Use std::unique_ptr for exclusive-ownership resource management.
	Item 19: Use std::shared_ptr for shared-ownership resource management.
	Item 20: Use std::weak_ptr for std::shared_ptr-like pointers that can dangle.
	Item 21: Prefer std::make_unique and std::make_shared to direct use of new.
	Item 22: When using the Pimpl Idiom, define special member functions in the implementation file.

	5. Rvalue References, Move Semantics, and Perfect Forwarding
	Item 23: Understand std::move and std::forward.
	Item 24: Distinguish universal references from rvalue references.
	Item 25: Use std::move on rvalue references, std::forward on universal references.
	Item 26: Avoid overloading on universal references.
	Item 27: Familiarize yourself with alternatives to overloading on universal references.
	Abandon overloading
	Pass by const T&
	Pass by value
	Use Tag dispatch
	Constraining templates that take universal references
	Trade-offs

	Item 28: Understand reference collapsing.
	Item 29: Assume that move operations are not present, not cheap, and not used.
	Item 30: Familiarize yourself with perfect forwarding failure cases.
	Braced initializers
	0 or NULL as null pointers
	Declaration-only integral static const data members
	Overloaded function names and template names
	Bitfields
	Upshot

	6. Lambda Expressions
	Item 31: Avoid default capture modes.
	Item 32: Use init capture to move objects into closures.
	Item 33: Use decltype on auto&& parameters to std::forward them.
	Item 34: Prefer lambdas to std::bind.

	7. The Concurrency API
	Item 35: Prefer task-based programming to thread-based.
	Item 36: Specify std::launch::async if asynchronicity is essential.
	Item 37: Make std::threads unjoinable on all paths.
	Item 38: Be aware of varying thread handle destructor behavior.
	Item 39: Consider void futures for one-shot event communication.
	Item 40: Use std::atomic for concurrency, volatile for special memory.

	8. Tweaks
	Item 41: Consider pass by value for copyable parameters that are cheap to move and always copied.
	Item 42: Consider emplacement instead of insertion.

	Index

