

Git	for	Teams
Emma	Jane	Hogbin	Westby

Git	for	Teams
by	Emma	Jane	Hogbin	Westby

Copyright	©	2015	Emma	Jane	Hogbin	Westby.	All	rights	reserved.

Foreword	text	by	Mark	Atwood,	Copyright	©	2015	Hewlett-Packard	Company.
All	rights	reserved.

Foreword	text	by	Johannes	Shindelin,	Copyright	©	2015	Johannes	Shindelin.	All
rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles
(http://safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Rachel	Roumeliotis
Production	Editor:	Colleen	Lobner
Copyeditor:	Kim	Cofer
Proofreader:	Jasmine	Kwityn
Indexer:	WordCo	Indexing	Services
Interior	Designer:	David	Futato
Cover	Designer:	Ellie	Volckhausen
Illustrator:	Emma	Jane	Hogbin	Westby
September	2015:	First	Edition

Revision	History	for	the	First	Edition
2015-08-17:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491911181	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Git	for
Teams,	the	cover	image	of	wagtails,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491911181

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher
and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or
reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-49191118-1

LSI

To	Joe	Shindelar.	Thanks,	eh?

Foreword
At	the	time	of	Git’s	inception,	the	Linux	kernel	development	had	used	the
proprietary	version	control	system	BitKeeper	for	several	years,	with	great
success.	But	there	was	one	problem:	some	Linux	developers	took	exception	with
the	proprietary	nature	of	their	version	control	system	and	what	ensued	was	an
epic	flame	war.	Out	of	this	conflict,	the	free	BitKeeper	license	for	Linux
developers	was	revoked,	and	Git	was	born.	Linus	Torvalds	himself	took	two
weeks	off	from	working	on	Linux,	originally	to	search	for	a	replacement	for
BitKeeper.	Failing	to	find	any	that	met	his	criteria,	he	instead	wrote	the	first,
very	rudimentary	version	of	what	we	now	call	Git:	tiny	programs	cobbled
together	with	shell	scripts,	Unix	style.	An	ironic	twist	is	that	the	distributed
nature	of	Git	was	implemented	using	rsync,	a	tool	which	in	turn	had	been
developed	by	the	very	Linux	developer	who	triggered	the	fallout	with	BitKeeper.

As	to	myself,	I	was	fascinated	by	the	simplicity	of	Git’s	data	structures	and	got
drawn	in	early	on,	first	by	working	on	Git’s	portability,	then	on	more	and	more
general	improvements,	including	the	invention	of	the	“interactive	rebase”	(sorry
for	the	name!),	and	ultimately	maintaining	the	Windows	port	of	Git.	For	the	past
10	years,	I	used	Git	almost	daily	as	a	life	science	researcher,	as	part	of	different
teams	ranging	from	being	the	designated	coder	in	interdisciplinary	projects	to
leading	highly	distributed	Open	Source	projects.

My	first	contact	with	Emma	was	at	the	Git	Merge	conference	in	Paris	celebrating
Git’s	10th	birthday,	where	she	gave	a	compelling	talk	titled	“Teaching	People
Git”.	This	talk	left	quite	the	impression	on	me,	reflecting	Emma’s	broad	skill	set
and	experience	in	teaching	and	project	management.

Reading	Git	for	Teams,	I	learned	a	lot	from	its	unique	perspective	that
emphasizes	how	Git	can	facilitate	teamwork.	It	sounds	so	simple,	but	all	those
years,	I	had	been	focusing	on	technical	details,	and	I	had	been	teaching	Git	in
what	must	be	one	of	the	most	frustrating	ways:	from	the	ground	up.	By	focusing
on	workflows	and	interactions	between	roles,	Git	for	Teams	guides	you,	the
reader,	to	understand	your	exact	needs	within	your	particular	projects.	Equipped
with	this	knowledge,	you	will	then	learn	the	fun	part:	how	to	use	Git	to	best
support	your	needs.

Just	like	her	talk,	Emma’s	writing	style	is	very	enjoyable,	making	this	book	both
educative	and	fun	to	read.	It	gave	me	valuable	insights	into	my	daily	work.

http://bit.ly/teaching-people-git

Whatever	your	role	in	your	daily	work,	let	this	book	be	more	than	just	a	manual.
Explore	the	different	ways	teams	can	work	together,	the	ways	a	modern	version
control	system	can	help	moving	projects	forward,	and	let	it	inspire	you	to
unleash	the	full	power	of	Git	to	support	you	in	what	you	want	to	do.

Dr.	Johannes	Schindelin

Git	for	Windows	maintainer

August	2015

Cologne,	Germany

Foreword
It	is	difficult	to	overstate	the	importance	of	version	control.

I	believe	that	it	is	as	important	as	the	inventions	of	the	chalkboard	and	of	the
book	for	multiplying	the	power	of	people	to	create	together.

Over	my	career,	I	have	watched	the	approach	to	version	control	systems	in
software	development	advance	from	resistance	to	ubiquity,	and	have	watched	the
underlying	technology	make	quantum	jumps,	each	jump	accelerating	the	value
of	the	work	we	create	together	and	the	speed	at	which	we	create	it.	We	are	doing
more,	faster,	with	more	people.

The	latest	jump,	exemplified	by	Git,	imposes	almost	no	arbitrary	constraints	on	a
workflow.	Thus,	we	have	to	discover	and	share	the	workflows	that	suit	our
people	and	our	organizations,	instead	of	living	with	past	awkward	workflows
that	suited	our	machines.	Some	of	those	workflows	are	explored	in	this	book.
I’m	sure	that	more	will	be	discovered	in	the	future.

It	is	also	difficult	to	overstate	the	importance	and	difficulty	of	education.	Not
merely	memorizing	facts	or	merely	training	tasks,	but	the	deeper	kind	of
education:	how	to	think	a	certain	way,	to	understand	why	to	think	that	way,	and
how	to	share	those	thoughts	with	someone	else.

Using	a	version	control	system	properly	is	a	way	to	think:	to	structure,
remember,	and	share	thoughts,	at	the	level	of	depth	and	rigor	demanded	by	the
exhausting	craft	of	writing	software.	Without	that	understanding,	using	Git	will
be,	at	best,	“magical	incantations”,	used	by	rote,	and	full	of	unknown	dangers.
With	that	understanding,	Git	can	become	almost	invisible,	leaving	instead	the
patterns	of	working	up	the	intricate	spells	of	symbols	that	are	the	magic	of
software.

This	book	will	help	you	to	educate	yourself,	to	gain	that	understanding,	and	to
do	that	work.

Mark	Atwood

Director	of	Open	Source	Engagement,	Hewlett-Packard	Company	August	2015

Seattle,	WA

Preface

For	nearly	two	decades,	I’ve	been	working	on	teams	of	one	or	more	in	a
distributed	fashion.	My	first	paid	job	as	a	web	developer	was	in	the	mid-’90s.	At
the	time,	I	maintained	versions	of	my	files	by	simply	changing	the	names	to
denote	a	new	version.	My	workspace	was	littered	with	files	that	had	unusual
extensions;	v4.old-er.bak	was	an	all	too	common	sight.	I	wasn’t	able	to	easily
track	my	work.	On	one	project,	which	was	a	particularly	challenging	one	for	me,
I	resorted	to	the	copyediting	techniques	I	used	for	my	essays:	I’d	print	out	the
Perl	scripts	I	was	working	on,	and	put	the	pages	into	a	ring	binder.	I’d	then	mark
up	my	scripts	with	different	colors	of	pen	and	transcribe	the	changes	back	into
my	text	editor.	(I	wish	I	had	photos	to	share.)	I	tracked	versions	by	flipping
through	the	binder	to	find	previous	versions	of	the	script.	I	had	no	idea	how	to
set	up	an	actual	version	control	system	(VCS),	but	I	was	obsessive	about	not
losing	good	work	if	a	refactoring	failed.

When	I	started	working	with	other	developers,	either	for	open	source	projects	or
client	work,	I	was	never	the	first	developer	on	the	scene	and	there	was	always
some	kind	of	version	control	in	place	by	the	time	I	got	there—typically
Concurrent	Versions	System	(CVS).	It	wasn’t	the	easiest	thing	to	use,	but
compared	to	my	ring	binder	of	changes,	it	was	definitely	more	scalable	for	the
distributed	teams	that	I	worked	with.	Very	quickly	I	came	to	value	the	commit
messages,	and	the	ease	of	being	able	to	review	the	work	others	were	doing.	It
motivated	me	to	watch	others	commit	their	work	to	the	repository.	I	didn’t	want
others	to	think	I	was	slacking	off!

Meanwhile,	I’d	been	teaching	web	development	at	a	couple	of	different
community	colleges.	In	2004,	I	had	my	first	opportunity	to	teach	version	control
in	a	year-long	program	designed	by	Bernie	Monette,	at	Humber	College.	The
class	was	split	into	several	groups.	In	the	first	semester,	the	students	sketched	out
a	development	plan	for	a	website.	In	the	second	semester,	the	teams	were	mixed
up,	and	the	new	teams	were	asked	to	build	the	site	described	by	the	previous
team.	In	the	third	and	final	semester,	the	groups	were	shuffled	again,	and	the
final	task	was	to	do	bug	fixing	and	quality	assurance	on	the	built	site.	Each	team
was	forced	to	use	version	control	to	track	their	work.	The	students,	who	had	no

prior	programming	experience,	weren’t	thrilled	with	having	to	use	version
control	because	they	felt	it	got	in	the	way	of	doing	work.	But	it	also	made	it
easier	because	they	never	accidentally	overwrote	their	classmates’	work.	It
taught	me	a	lot	about	how	to	motivate	people	to	use	a	tool	that	didn’t	feel	like	it
was	core	to	the	job	at	hand.

In	the	decade	since	that	class,	I’ve	learned	a	lot	about	how	to	teach	version
control,	and	a	lot	about	best	practices	in	adult	education.	This	book	is	the
culmination	of	what	I’ve	learned	about	how	to	work	efficiently	with	others	when
using	version	control.	I	encourage	you	throughout	the	book	to	do	whatever	is
best	for	your	team.	There	are	no	Git	police	who	will	show	up	at	your	door	and
tell	you	“you’re	doing	it	wrong.”	That	said,	wherever	I	can,	I	explain	to	you	“the
Git	way”	of	doing	things	so	that	you	have	some	guidance	on	where	you	might
want	to	start	with	your	team,	or	what	you	might	want	to	grow	into.	Using
“common”	ways	of	working	will	help	you	onboard	others	who’ve	previously
used	similar	techniques.

This	book	won’t	be	for	everyone.	This	book	is	for	people	who	love	to	plan	a
route,	and	then	follow	the	clearly	defined	road	ahead.	My	hope	is	that,	if	nothing
else,	this	book	helps	to	fill	the	gaps	that	have	been	missing	in	Git	resources	to
date.	It’s	not	so	much	a	manual	for	the	software	as	a	manual	for	how	teams
collaborate.	If	your	team	of	one	(or	more)	finds	bits	of	this	book	confusing,	I
hope	you’ll	let	me	know	(emma@gitforteams.com);	and	if	you	find	it	useful,	I
hope	you’ll	let	the	world	know.

Acknowledgments
Several	years	ago,	in	a	little	bar	off	the	side	of	a	graveyard	in	Prague,	Carl
Wiedemann	indulged	my	questions	about	Git.	Thank	you,	Carl.	Your	enthusiasm
motivated	me	to	convert	my	frustration	with	Git	into	resources	to	help	others
avoid	the	painful	process	I’d	experienced	when	learning	Git.

I	had	the	wonderful	fortune	to	work	with	Joe	Shindelar	at	my	first	job-job	after	a
decade	of	self-employment.	Joe,	your	passion	for	excellence	has	raised	the	bar
for	my	own	work.	I	am	grateful	for	your	patience	and	leadership.	This	book	was
born	out	of	the	conversations	we	had	about	leadership,	team	structures,	and	the
Git	documentation	we	created	for	the	Drupalize.Me	team.	Thank	you.

mailto:emma@gitforteams.com

O’Reilly	found	the	excellent	Christophe	Portneuve	to	serve	as	one	of	my	tech
reviewers.	Christophe,	thank	you	for	your	patience	as	I	worked	through	the	first
few	chapters.	Your	feedback	was	invaluable.	I	am	grateful	for	the	conversation
we	had	at	Git	Merge,	which	helped	me	to	clarify	the	concepts	I	use	in	this	book
—I	had	lofty	goals	of	transforming	the	way	people	learn	Git.	I	hope	this	book
has	become	a	resource	you	will	be	proud	to	have	been	a	part	of.

Bernie	Monette,	Martin	Poole,	Drew	McLelland:	you	gave	me	a	platform	to
refine	my	understanding	of	version	control	through	your	own	projects.

Lorna	Jane	Mitchell,	your	cheerleading	is	tireless.	Thank	you	for	sharing	your
own	work	on	Git.	It	has	inspired	me	to	raise	the	bar	even	higher.

Much	of	this	book	was	fueled	by	200	Degrees	Coffee,	a	Nottingham-based
roaster.	My	beverage	of	choice	is	a	flat	white	served	from	200	Degrees	Café,	or
Divine	Coffee	at	the	Galleries	of	Justice.	Thanks	for	providing	an	escape	and
letting	me	stay	as	long	as	I	needed	to.

To	the	O’Reilly	family:	you	have	been	superb	at	handling	all	of	my	requests	(and
missed	deadlines).	Thank	you	Rachel,	Heather,	Robert,	Colleen,	Brian,	Josh,
Rebecca,	Kim,	and	the	countless	others	who	worked	behind	the	scenes	to	make
this	book	happen.

To	the	core	Git	community:	thank	you	for	welcoming	me	with	open	arms	at	Git
Merge	in	2015.	You	embraced	my	rant	from	the	stage	about	exploring	new	ways
of	teaching	Git.	You	took	my	suggestions	to	heart,	and	made	improvements	to
the	Git	experience.	I	am	looking	forward	to	participating	more	in	the	wonderful
community	you	have	been	quietly	nurturing.

Thank	you	also	to	my	community	of	reviewers:	Diane	Tani,	Novella	Chiechi,
Amy	Brown,	Blake	Winton,	Stuart	Langridge,	Stewart	Russell,	Dave	Hammond,
John	Wynstra,	Chris	Tankersley,	Mike	Anello,	Piotr	Sipika,	Nancy	Deschenes,
Robert	Day,	Dave	Hammond,	Sébastien	Simard,	Tobias	Hiep,	Nick	Gard,
Christopher	Maneu,	Johannes	Schindelin,	Edward	Thomson,	matt	j.	sorenson,
Douwe	Maan,	Sytse	Sijbrandij,	Rob	Allen,	Steven	Pears,	Laura	Lemay.	Your
feedback	was	invaluable.

To	my	partner,	James	Westby:	thank	you	for	patiently	waiting	as	I	finish	just	one
last	thing.	This	book	would	not	exist	without	your	support	and	encouragement.

Introduction

The	book	takes	a	people-first	approach	to	version	control.	I	don’t	start	with	a
history	of	Git;	instead,	I	begin	with	a	10,000-foot	view	of	how	teams	can	work
together.	Then	we	will	circle	our	way	into	the	commands,	ensuring	you	always
know	the	why	behind	the	command	you’re	about	to	type.	Sometimes	you	can
save	your	future	self	time	(and	confusion)	by	adopting	specific	routines	or
workflows.	These	explanations	give	you	a	holistic	understanding	of	how	your
work	today	affects	your	work	tomorrow—and	hopefully	make	sense	out	of	the
near-religious	insistence	by	some	people	on	why	they	use	Git	the	way	they	do.

Part	I	will	be	most	useful	to	managers,	technical	team	leads,	chief	technology
officers,	project	managers,	and	technical	project	managers	who	need	to	outline	a
workflow	for	their	team.

Good	technology	comes	from	great	teams.	In	Chapter	1,	you	will	learn	about
the	dynamics	of	creating	a	great	team.	By	the	end	of	this	chapter,	you	will	be
able	to	identify	roles	within	a	team;	plan	highly	effective	meetings;	recognize
key	phrases	from	people	who	are	out	of	sync	with	what	your	team	needs;	and
apply	strategies	that	will	help	you	to	cultivate	empathy	and	trust	within	your
team.

Set	the	expectations	early	for	the	type	of	project	you	are	running.	In
Chapter	2,	you	will	learn	about	different	permissions	strategies	used	to	grant	and
deny	access	to	a	Git	repository.	Should	team	members	be	allowed	to	save	their
work	to	the	repository	without	a	review,	or	is	it	more	of	a	trust	and	be	trusted
scenario?	Both	systems	have	their	merits,	and	you’ll	learn	about	them	in	this
chapter.

Make	the	intentions	of	your	work	clear.	In	Git,	you	will	separate	streams	of
work	with	branches.	Chapter	3	shows	you	how	to	separate	each	of	the	ideas	your
team	is	working	on	through	the	use	of	these	branches.	Of	course,	you	will	also
need	to	know	how	to	bring	these	disparate	pieces	of	work	into	a	unified	piece	of
software.	This	chapter	covers	some	of	the	more	common	branching	strategies,
including	GitFlow.

Write	the	documentation	today	that	will	help	you	work	more	efficiently

tomorrow.	Chapter	4	is	the	culmination	of	all	the	ideas	in	Part	I.	You	will	learn
how	to	create	your	own	documentation	and	walk	through	the	process	of	creating
and	deploying	a	simple	software	product.

Part	II	will	be	most	useful	for	developers.	This	is	where	(finally!)	you	will	get	to
learn	how	all	those	Git	commands	are	actually	supposed	to	work.	If	you’re
impatient	and	want	to	get	your	hands	on	code,	you’ll	do	well	to	skip	ahead	to
Part	II	and	then	once	you’ve	completed	it,	go	back	and	read	Part	I.

Ground	yourself	in	practical	skills.	Chapter	5	covers	the	basics	of	distributed
version	control.	In	this	chapter	you	will	learn	how	to	create	repositories,	and
track	your	changes	to	files	locally	through	commits,	branches,	and	tags.

Learn	to	recover	from	your	mistakes.	Chapter	6	allows	you	to	explore	history
revisionism.	This	chapter	covers	how	to	amend	commits,	remove	commits	from
your	time	line,	and	rebase	your	work.

Expand	your	team	to	be	inclusive	of	others.	Now	that	you’re	a	master	of
history	in	your	own	repository,	it’s	time	to	begin	collaborating	with	others.
Chapter	7	will	show	you	how	to	track	remote	changes,	upload	your	code	to	a
shared	repository,	and	update	your	local	repository	with	the	updates	from	others.

Through	peer	review,	share	the	glory	and	the	responsibility	of	a	job	well
done.	In	Chapter	8,	you	will	learn	about	the	process	for	conducting	code	reviews
with	your	team.	We’ll	also	cover	the	commands	for	a	common	reviewing
methodology,	along	with	suggestions	on	how	to	customize	it	for	your	team.

Investigate	history;	it	holds	the	answer	to	the	problem	you’re	facing.	In
Chapter	9,	you	will	learn	some	advanced	methods	to	track	down	bugs	using	Git.
Don’t	be	scared,	though!	The	commands	we’ll	be	using	are	no	more	difficult
than	anything	else	you’ve	done	to	date.

Finally,	Part	III	gives	the	how-to	for	a	few	of	the	popular	code	hosting	systems
on	the	market	today.	It	is	aimed	at	both	managers	and	developers.

Through	open	collaboration	we	grow	our	community.	Chapter	10	covers	the
mechanics	of	starting	and	maintaining	an	open	source	project	on	GitHub.

A	team	must	have	a	repository	of	their	own	if	they	are	to	write	good	code.	In
Chapter	11,	you	will	learn	how	to	collaborate	on	private	repositories.	This
chapter	will	be	especially	useful	for	those	who	want	to	set	up	a	private	repository
but	have	extremely	limited	funds	to	pay	for	private	teams	on	GitHub.

Good	fences	sometimes	do	make	better	neighbors.	In	Chapter	12,	you	will
learn	how	to	host	your	own	instance	of	GitLab,	and	run	projects	through	it.	This
is	particularly	useful	for	developers	who	are	inside	a	firewall	and	cannot	access
public	repositories	on	the	Internet.

This	book	won’t	be	for	everyone.	It	will	be	especially	frustrating	for	people	who
learn	by	poking	at	things	and	tinkering	and	exploring.	This	book,	rather,	is
written	for	people	who	are	a	little	afraid	of	things	that	go	bump	in	the	night.

Additional	resources	and	larger	versions	of	several	of	the	flowcharts	are
available	from	the	book’s	companion	site.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic
Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE

http://gitforteams.com

This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	http://gitforteams.com.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Git	for	Teams	by	Emma	Jane
Hogbin	Westby	(O’Reilly).	Copyright	2015	Emma	Jane	Hogbin	Westby,	978-1-
491-91118-1.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content
in	both	book	and	video	form	from	the	world’s	leading	authors	in	technology	and
business.

http://gitforteams.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Technology	professionals,	software	developers,	web	designers,	and	business	and
creative	professionals	use	Safari	Books	Online	as	their	primary	resource	for
research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,
government,	education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly
Media,	Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft
Press,	Sams,	Que,	Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,
Syngress,	Morgan	Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,
Apress,	Manning,	New	Riders,	McGraw-Hill,	Jones	&	Bartlett,	Course
Technology,	and	hundreds	more.	For	more	information	about	Safari	Books
Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international	or	local)
707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://bit.ly/git-for-teams.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/git-for-teams
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part	I.	Defining	Your	Workflow

It	is	common	to	start	teaching	programming	by	writing	a	trivial	program	that
demonstrates	the	output	of	a	specific	set	of	commands.	This	can	often	leave
adult	learners	thinking	“so	what?”,	unsure	of	how	to	apply	the	commands	to
their	particular	scenario.	This	book	begins	with	a	10,000-foot	view	of	how
structuring	your	workflow	in	specific	ways	will	impact	how	your	team
collaborates.	If	you	prefer	to	tinker	with	the	commands,	skip	this	part	and	start
reading	at	Part	II.	Then,	as	you	begin	to	ask	yourself	“so	what?”,	return	to	the
chapters	in	this	part	so	that	you	can	see	how	your	day-to-day	tasks	with	Git	will
affect	future	collaborations.

This	part	of	the	book	will	be	of	most	use	to	those	overseeing	how	work	gets
done.	These	folks	are	primarily	in	management	roles	and	may	include	technical
team	leaders,	CTOs,	managers,	project	managers,	and	technical	project
managers.

Chapter	1.	Working	in	Teams

I’ve	been	teaching	version	control	for	more	than	a	decade.	The	largest
percentage	of	the	folks	who	attend	my	in-person	workshops	are	dealing	with
political	issues,	not	technical	ones.	The	issues	vary,	of	course.	Perhaps	they	are
struggling	to	get	their	coworkers	to	see	the	light	on	how	important	version
control	is;	perhaps	they	want	to	force	accountability;	or	perhaps	they	have	been
nominated	by	the	team	to	go	figure	out	how	to	make	sense	of	the	mess	that’s
become	the	team’s	workflow.	No	matter	what	the	issue,	understanding	and
dealing	with	the	underlying	social	problems	first	can	make	learning	and	using
Git	a	lot	easier.

By	the	end	of	this	chapter,	you	will	be	able	to:

Identify	roles	within	a	complete	team

Structure	meetings	so	they	have	useful	outcomes

Recognize	key	phrases	from	people	who	are	working	in	an	opposing	state
from	what	the	team	should	be	working	on

Apply	strategies	to	cultivate	empathy	and	trust	within	your	team

You	must	begin	by	understanding	your	team	and	the	requirements	for	your
software.	By	beginning	from	a	place	of	trust	and	compassion,	you	will	almost
always	find	it	easier	to	map	out	the	Git	commands	necessary	to	accomplish	your
goals.	By	working	with	a	trusting	team,	you’ll	be	able	to	help	one	another	out
when	people	get	stuck	with	commands	(and	people	will	be	more	honest	when
they	need	help).	And	when	people	feel	supported,	and	they	understand	the
reasons	why	they	need	to	use	specific	commands	in	Git,	they	will	be	that	much
more	likely	to	make	Git	work	for	them,	rather	than	simply	committing	a	few
commands	to	memory	and	hoping	they’re	all	right.

The	People	on	Your	Team
On	small	teams	you	may	have	one	person	who	performs	many	roles.	It’s
relatively	easy	to	stay	in	touch	with	all	of	the	daily	activities	of	everyone	on	a

small	team.	On	large	teams,	however,	you	may	have	roles	segregated	into
different	departments.	Those	performing	the	user	acceptance	testing	for	your
code	base	might	never	talk	to	the	designers	and	developers	who	designed	and
built	the	product	that’s	being	tested.	Both	types	of	teams	can	have	their	own
challenges:	someone	who’s	being	asked	to	do	too	much	without	the	right	amount
of	context	is	definitely	going	to	miss	something,	eventually.	Having	artificial
barriers	between	teams	will	always	increase	tension	between	them.	Fences	do
not	make	good	neighbors	in	the	development	of	code.

Have	you	heard	the	expression	“begin	with	the	end	in	mind”?	When	I	build
software,	I	am	always	building	it	for	someone.	Even	if	I	think	really	hard,	I	can’t
think	of	a	product	I’ve	built	that	was	just	me	tinkering.	I’m	not	a	hacker	by
nature.	I	was	drawn	to	software	because	of	what	it	could	do	for	others.	Every
time	I	sit	down	to	work	on	a	problem,	I	want	to	be	making	a	better	experience
for	the	user.	I	want	to	avoid	regressions,	and	I	want	to	keep	my	users	safe.	I	want
them	to	feel	clever,	and	not	stupid.	If	there	are	clients	between	myself	and	the
users,	I	sometimes	need	to	help	shape	how	they	think	about	the	problem	in	order
to	accomplish	their	business	goals,	while	maintaining	the	integrity	of	the
experience	for	the	end	user.	Each	time	we	sit	down	to	work,	we	should	be
starting	with	a	description	of	a	problem	we	want	to	solve	for	a	user—literally	a
user	story.

Next,	in	test-driven	development,	you	will	write	the	acceptance	test	so	that	you
have	a	definition	of	how	you	will	know	the	problem	has	been	solved.	Depending
on	how	these	statements	are	written,	they	may	be	used	by	an	automated	testing
suite,	a	quality	assurance	(QA)	team,	or	a	peer	reviewer.	Working	with	the
testing	team	ahead	of	time	to	determine	the	acceptance	test	makes	it	much	easier
for	developers	to	know	what	the	outcome	of	their	work	should	be.	Usually	the
test	should	be	descriptive	of	the	problem	to	be	solved,	not	prescriptive	of	the
technology	that	should	be	used.

Part	of	your	testing	process	should	include	a	security	review.	Larger
organizations	are	very	lucky	to	have	dedicated	security	specialists.	Bring	these
experts	on	as	early	as	you	can	in	the	process	and	get	them	to	teach	you	how	to
write	secure	code.	If	you	have	segregated	QA,	security,	and	development	teams,
bringing	the	teams	together	at	the	beginning	can	make	the	testing	process	that
much	more	fun	as	the	developers	strive	to	provide	perfect	code,	and	the	testing
teams	strive	to	break	it.

If	you	are	not	responsible	for	your	deployments,	bring	the	operations	team	on
board	as	early	as	you	can	as	well.	Ensure	your	development	environment	is	as
close	as	it	can	be	to	the	final	production	environment.	Ideally,	you	will	have
build	scripts	that	can	be	used	to	automatically	duplicate	as	much	as	possible.	You
may	even	choose	to	work	with	Docker	and/or	Vagrant	to	create	an	exact	replica
of	your	environment.	Work	with	your	operations	team	to	create	a	configuration
management	infrastructure	with	something	like	Chef,	Puppet,	or	Ansible.

Moving	along	the	development	stack,	if	you	are	using	open	source	software,	get
to	know	the	community	that	built	the	products	you	will	be	working	with.	We
rarely	encounter	new	problems.	Someone,	somewhere,	has	probably	seen	what
you’re	dealing	with	at	this	moment.	Find	mentors	from	within	your	code
community,	and	offer	to	mentor	others.	Extending	your	team	beyond	the	walls	of
your	office	building	can	make	scary	problems	a	lot	less	stressful.

Wherever	you	can	increase	collaboration	between	departments	that	have	been
isolated	in	larger	corporations,	you	can	reduce	the	time	code	spends	sitting
around	doing	nothing.	Idle	code	costs	you	money	in	several	ways:	it	may	be
preventing	you	from	earning	more	money	if	it’s	a	new	feature,	or	it	may	be
preventing	you	from	not	losing	money	if	it’s	a	bug	fix.	It’s	also	getting	stale.	The
longer	code	has	to	wait	for	a	review,	the	more	likely	it	has	deviated	from	the
main	branch	of	work.	To	bring	the	work	up	to	date	so	that	it	can	be	released	is	an
increasingly	difficult	task	the	more	it	deviates.

Finally,	we	look	inward	to	our	own	team.	A	technical	architect	will	be
responsible	for	planning	how	a	solution	will	be	implemented.	The	architecture
decisions	should	be	documented,	and	shared	wherever	possible.	The	architect
may	also	be	part	of	your	coding	team.	The	coding	team	may	be	comprised	of
frontend	and	backend	developers,	a	designer,	and	a	project	manager.	I’ve
occasionally	worked	with	business	analysts	as	well.	If	you	are	working	in	an
Agile	environment,	you	may	also	have	a	ScrumMaster	and	a	Product	Owner.

I	prefer	working	in	an	environment	where	everyone	is	willing	to	roll	up	their
sleeves	and	pitch	in	where	necessary.	Self-managing	teams	are	often	filled	with
trust	and	respect	for	one	another.	It’s	a	state	that	you	need	to	build	toward,
though.	Consensus-driven	development	works	best	for	smaller,	internal	projects,
but	that	doesn’t	mean	you	can’t	do	your	best	to	collaborate	where	possible.
When	I’m	managing	projects,	I	like	for	developers	to	choose	the	tickets	they’re

http://www.docker.com
http://vagrantup.com
https://www.chef.io/chef/
https://puppetlabs.com/
http://www.ansible.com/home

going	to	work	on.	It	increases	the	sense	of	autonomy,	and	lets	the	developers
take	a	break	from	specific	tasks	if	they	need	to.	I’ve	also	found,	however,	that
some	people	actually	prefer	to	have	their	tickets	picked	for	them.

There	is	no	single	right	way	to	structure	every	team	or	manage	every	project.
The	trick	to	a	motivated,	cohesive	team	is	to	respect	each	of	the	individuals	on
the	team	and,	where	possible,	to	optimize	the	process	to	suit	their	preferences.

Thinking	Strategies
Everyone	on	your	team	will	have	a	preferred	way	to	work.	Different	ways	of
working	can	be	perfect	for	different	situations.	There’s	no	right	way	to	do	things,
and	being	able	to	accommodate	differences	will	actually	make	your	team	more
robust,	if	you	can	share	the	strategies	of	what	makes	each	person	productive.	I
know	I’m	always	looking	for	little	ways	to	work	in	a	more	efficient	manner,	and
I	love	to	hear	about	what	makes	people	able	to	really	sink	their	teeth	into	a
problem.

Several	years	ago,	I	was	exposed	to	a	leadership	training	program,	Lead	and
Succeed	in	4	Dimensions,	by	Bob	Wiele,	which	described	a	series	of	thinking
strategies.	This	program	helped	me	to	identify	why	I	enjoyed	some	types	of
activities	so	much,	while	others	left	me	drained.	It	also	taught	me	a	lot	about
how	to	structure	meetings	and	interactions	to	get	what	I	needed	to	proceed	with
my	own	work.	The	system	works	best	if	everyone	on	the	team	is	aware	of	the
language,	but	it’s	something	you	can	take	advantage	of	without	having	to
convince	others	to	participate.	It	breaks	thinking	into	three	dimensions:	creative
thinking,	understanding	thinking,	and	decision	thinking.	A	fourth	dimension,
personal	spirit,	is	used	to	indicate	how	likely	a	person	is	to	engage—I	think	of	it
as	a	volume	control,	or	modifier	for	those	of	you	who	are	into	role-playing
games.

Individual	preferences	for	different	thinking	strategies	can	derail	teams	quickly.
If	I’m	trying	to	brainstorm	how	to	solve	a	merge	conflict	in	Git,	and	you	tell	me
I	shouldn’t	have	used	rebase,	we’re	at	odds	in	the	conversation.	I’m	trying	to	use
my	“green”	thinking	to	go	through	a	problem,	and	you’ve	just	used	your	“red”
thinking	to	stop	the	conversation.	Being	aware	of	these	preferences	can	help	us
to	have	stronger	collaboration	while	building	new	features,	more	productive

http://onesmartworld.com

code	reviews,	and	overall,	a	healthier,	happier	team.

One	of	the	easiest	places	to	introduce	the	concept	of	playing	into	and	setting
aside	preferences	is	in	meetings	that	explicitly	take	advantage	of	these	three
dimensions.	Focusing	on	the	outcomes	of	the	meeting	can	help	identify	to	people
which	thinking	strategies	to	employ	during	the	meeting,	which	can	then	carry
over	into	code	reviews,	and	supporting	teammates	who	have	procedural
questions	about	how	to	use	Git,	or	more	general	implementation	questions	about
the	product	you’re	working	on	together.

Let’s	review	each	of	these	thinking	strategies	in	a	little	more	detail.

A	creative	thinker’s	greatest	asset	is	the	ability	to	find	unpredictable	solutions	to
problems.	Left	unchecked,	a	creative	thinker	can	sometimes	spend	too	much
time	thinking	about	different	ways	to	do	something,	instead	of	just	committing	to
one	idea	and	getting	the	work	done.	Creative	thinkers:

Envision
To	see	an	alternative	future	(whether	it’s	good	or	bad).	This	is	useful	for
long-term	strategy	work.

Reframe
To	pivot	a	little	bit	away	from	the	current	situation,	or	to	see	the	current
situation	from	a	different	perspective.

Brainstorm
This	is	useful	for	muscling	through	a	problem.	Brainstorming	is	almost	the
ability	to	doodle	through	a	problem.	It	includes	a	constant	action	without
self-censorship.

Employ	flash	of	insight
Where	brainstorming	takes	“muscle,”	flash	of	insight	thinking	happens	when
you’re	not	thinking	about	the	problem.	It	happens	when	you’re	out	for	a
walk,	or	in	the	shower.

Challenge
To	question	the	status	quo.	The	rebel;	the	child	who	points	out	that	the	king
is	not	wearing	clothes.

Flow
To	ignore	distractions	and	focus	wholly	on	a	given	task.	From	this
uninterrupted	flow,	you	are	able	to	get	deeper	into	a	problem	and	understand
it	more	fully.

You	can	recognize	creative	thinkers	from	their	key	phrases:

“Can	we	try	…”

“I	know	we’re	done,	but	what	about	…?”

“OMG!	I	just	had	this	great	idea	…”

“Have	you	thought	about	doing	it	like	this	instead?”

By	developing	creative	thinking	on	your	team,	you	can	generate	entirely	new
ways	of	approaching	problems,	allowing	you	to	improve	your	workflow	and
solve	bigger	problems.

The	next	type	of	thinking	is	understanding	thinking.	It	can	be	broken	into	two
sub-categories:	understanding	information	(analytic),	and	understanding	people
(compassion).	The	analytic	thinker’s	greatest	asset	is	the	ability	to	see	patterns
and	bring	clarity	to	a	situation.	The	tech	industry	tends	to	attract	people	who
enjoy	working	with	these	thinking	strategies.	Analytic	thinkers:

Scan	the	situation
Survey	the	environment	to	gather	as	much	information	as	possible.

Clarify
Sharpen	the	understanding	of	a	situation	by	gathering	information	and	asking
questions.

Structure
Organize	data,	people,	resources,	and	processes	in	meaningful	and
systematic	ways.

Tune-in
Sense	and	connect	with	the	emotional	dimensions	in	a	situation.

Empathize*
Show	compassion	for	another’s	thoughts,	emotions,	and	situations.

Express
Select	the	appropriate	emotional	and	verbal	language	to	get	the	true	message
across	to	the	receiver.

You	can	recognize	analytic	thinkers	from	their	key	phrases:

“So	what	you’re	saying	is	…?”

“Just	to	clarify	…”

“Can	you	tell	me	how	…?”

“Is	this	related	to	…?”

“So	I	made	this	spreadsheet	…”

“That	must	feel	horrible!”

Finally,	we	have	the	“buck	stops	here”	thinking	strategy:	decision	thinking.
Someone	who	favors	“red”	thinking	hates	talking	around	in	circles	forever.	They
want	a	quick	decision	so	they	can	move	on	to	the	action!	Decision-making	skills
help	teams	get	to	the	real	root	of	the	problem,	and	then	decide	how	to	proceed.	A
decision	thinker’s	weakest	point	is	lack	of	patience.	They	often	want	to	jump
ahead	before	the	creative	thinkers	have	had	the	necessary	time	to	suggest	the
best	possible	solution,	or	before	a	careful	analysis	has	been	completed.	Decision
thinkers	can	often	be	misinterpreted	as	being	negative.	They	aren’t.	Using	their
ability	to	cut	through	the	weeds	to	find	the	best	solution	is	invaluable.	Decision
thinkers:

Get	to	the	crux
Determine	the	essence,	or	most	critical	part,	of	a	problem.

Conclude
Reach	a	logical	decision,	or	resolution,	about	the	best	way	to	proceed.

Validate	the	conclusion
Pose	questions	to	eliminate	inferior	options	and	poor	quality	information	in
order	to	critically	assess	and	ensure	the	best	decision.

Experience
Rely	on	experience	to	guide	decision	making	and	problem	solving.

Values-drive
Rely	on	personal	core	beliefs	about	what	is	good	or	bad,	right	or	wrong.

Gut	instinct
Rely,	not	on	information,	but	on	a	hunch	and	deep	instincts	as	a	guide.

You	can	recognize	decision	thinkers	from	their	key	phrases:

“I’m	ready	to	move	on	to	…”

“No.	We’ve	already	made	a	decision	…”

“I	don’t	know	why	I	think	this,	but	…”

“Last	time	we	tried	this	…”

“So	I	think	the	real	problem	is	…”

“My	gut	tells	me	…”

Meeting	as	a	Team
Nearly	my	entire	career	has	been	spent	working	on	a	distributed	team	where	my
coworkers	were	not	in	the	same	office	as	me.	It	is	a	rare	treat	when	people	are	at
least	in	the	same	time	zone	as	me.	This	has	given	me	some	excellent
communication	habits	that	I	often	take	for	granted.	If	you	are	already	working
with	a	prescribed	methodology,	you	may	have	an	established	pattern	of	meetings
that	you	use	to	move	your	project	forward.

Your	project,	and	each	of	the	component	parts	within	the	project,	should	have	an
opening	sequence,	the	bulk	of	the	activity,	and	a	wrap-up.	This	open-engage-
close	sequence	is	also	described	in	great	detail	in	the	excellent	book
Gamestorming	by	Dave	Gray,	Sunni	Brown,	and	James	Macanufo	(O’Reilly).
It’s	also	used	by	teachers	in	the	classroom:	a	teacher	will	first	tell	you	what
you’re	going	to	learn,	engage	you	in	the	learning,	and	then	provide	you	with	a
summary	of	what	you’ve	learned.

All	the	way	down	to	the	planning	of	meetings,	you	should	have	this	pattern	in
mind:	start,	engage,	conclude.	This	becomes	most	apparent	in	meetings.	Too
often	I	see	meetings	with	a	general	outline	of	topics,	but	not	the	intended
outcome	for	the	meeting.	For	example,	if	you	are	at	the	beginning	of	your

http://bit.ly/orm-gamestorming

project,	the	team	might	engage	in	ideation	meetings,	where	your	creative
thinkers	will	be	most	engaged	and	productive:

Agenda:	Ideation	Total	time:	45	minutes

Identify	the	crux	of	the	problem	(10	minutes)

Brainstorm	solutions	(25	minutes)

Structure	ideas	(5	minutes)

Identify	top	three	ideas	to	test	(5	minutes)

Identifying	the	outcome	for	a	meeting	ahead	of	time	can	be	as	simple	as	needing
some	free-flow	time	to	discuss	a	problem.

Kickoff
The	beginning	of	a	project	is	a	chaotic	time,	especially	if	you	are	bringing
together	a	new	group	of	people	who	wouldn’t	normally	work	together.	If	at	all
possible,	have	a	collocated	kickoff	meeting	with	everyone	present.	This	can	be
incredibly	expensive	from	both	a	time	and	money	perspective	if	you	are	a
distributed	team.

FACE-TO-FACE	IS	BEST
Ideally	a	kickoff	meeting	is	conducted	face-to-face.	If	this	is	not	possible,	try	to	have	people	in
as	few	places	as	possible,	and	connected	through	a	video	call.

By	having	everyone	in	the	same	place	at	the	same	time,	you	can	take	advantage
of	a	shared	experience.	You	can	engage	in	kinetic	(motion-based)	processing	of
the	information	through	whiteboards,	flip	charts,	and	sticky	notes.	There’s
something	really	gratifying	about	being	able	to	see	your	collective	decisions,
which	helps	motivate	the	team	into	working	on	the	project.

Tracking	Progress
Once	the	project	has	begun,	you	will	want	to	continue	meeting	with	your	team
regularly.	It	is	very	easy	to	hide	when	you	are	working	on	a	distributed	team.
Falling	behind	can	be	an	embarrassing	and	often	compounding	problem.	Over-

communicating	is	a	great	habit	to	get	into,	but	that	doesn’t	mean	wasting	all	of
your	time	in	meetings.	A	successful	team	will	only	meet	to	achieve	very	specific
outcomes.	I	like	working	in	very	tiny	increments	of	one-week	sprints.	It’s	very
hard	to	hide	problems	with	such	a	small	unit	of	time.	It’s	not	about
micromanaging,	though.	It’s	about	trying	to	achieve	a	consistent	velocity—or
flow.	Each	of	these	meetings	has	a	specific	project-focused	outcome:

Sprint	planning
As	a	project	manager,	I’ve	found	there	are	two	types	of	workers:	those	who
are	ready	to	jump	in	and	take	accountability	for	the	work	that	is	being	done,
and	those	who	prefer	to	have	work	assigned	to	them.	Those	who	prefer
having	work	assigned	to	them	are	often	looking	for	help	in	identifying	which
tasks	they	can	succeed	at,	and	which	tasks	have	the	highest	business	value	to
be	completed	in	the	context	of	the	project	as	a	whole.	You	may	choose	to	do
your	sprint	planning	as	a	group,	or	you	may	find	that	sprint	planning	is	less
time	wasteful	if	it	is	done	among	a	smaller	group	of	client-facing	team
members	and	senior	developers.

Commitment
These	meetings	should	happen	several	times	a	week	at	the	same	time	each
day.	The	outcome	of	this	meeting	is	a	list	of	“promises”	that	team	members
are	making	regarding	their	work.	People	should	not	just	answer	“what	are
you	working	on	today?”	but	“what	are	you	expecting	to	hand	in	before	the
next	time	we	meet?”	This	should	be	a	“no	shame;	no	blame”	round	robin
with	each	person	taking	not	longer	than	three	minutes	for	their	update.
Larger,	specific	problems	can	be	discussed	in	a	follow-up	meeting.	In	Scrum
parlance,	these	commitment	meetings	are	referred	to	as	“stand-ups”	and	are
conducted	with	the	participants	physically	standing	up.	I	find	the	term	“stand
up”	doesn’t	push	enough	accountability	onto	a	team	that	isn’t	trained	in
Scrum.	Use	whatever	term	works	for	your	team,	but	make	sure	you	are
extracting	valuable	information	from	the	meeting.

Project	deep	dives
Any	problems	that	need	further	discussion	than	the	commitment	meeting	will
allow	should	have	a	follow-up	deep	dive.	Ideally	your	team	will	use	a
calendaring	system,	such	as	Google	Calendar,	where	people	who	need	help

http://google.com/calendar

can	review	the	schedules	of	their	coworkers	and	simply	book	an	available
time	to	have	a	follow-up	conversation.	Generally	I	have	blocked	off	one	or
two	deep	dive	time	slots	of	45	minutes	each	week	immediately	following	two
of	the	15	minute	commitment	meetings.	Only	the	affected	people	need	to
attend	to	the	deep	dives,	although	everyone	is	welcome.

Sprint	demos
Once	a	week,	the	team	should	get	together	to	show	off	their	work.	During	the
demo,	each	person	who	completed	work	should	list	the	ticket	number	he	or
she	was	working	on,	and	show	the	outcome	of	that	work.	Having	this	demo
once	a	week	encourages	an	“always	be	finishing”	culture,	which	breaks	work
into	small,	doable	chunks.	This	meeting	can	also	be	a	great	opportunity	to
see	the	site	with	fresh	ideas	and	identify	bugs	that	might	need	to	be
documented	for	fixing	later,	as	well	as	discuss	any	necessary	refinements	to
the	process	for	the	upcoming	work	sprint.	Depending	on	the	cohesion	of	the
team,	and	the	level	of	communication	throughout	the	week,	you	may	find
these	meetings	to	be	unnecessary.	If,	however,	you	are	seeing	an	increase	in
incomplete	features	passing	through	code	review,	or	you	find	great	work
going	unrecognized,	or	you	find	your	team	isn’t	reaching	out	for	help	often
enough,	it	may	be	appropriate	to	introduce	weekly	demos	to	your	team.
Google	Hangouts	and	GoToMeeting	work	well	for	this	type	of	meeting.

Sprint	retrospectives
At	the	end	of	each	sprint,	you	should	assemble	with	your	team	to	discuss	the
process	of	working	together.	Identify	things	that	are	working	well,	and	parts
of	the	process	that	could	be	improved.	One	set	of	questions	I	have	seen	used
effectively	has	each	participant	answer	the	following	prompts	about	the
project:	I	wish;	I	want;	I	wonder.	This	meeting	should	be	restricted	to	the
core	team.	Its	length	may	vary,	but	plan	to	spend	about	an	hour	for	a	small
team.

If	you	are	a	distributed	team,	you	may	also	want	to	have	a	few	scheduled	social
calls.	Lullabot,	a	wholly	distributed	company	of	approximately	50	people,	adds
the	following	nonproject	calls	to	its	schedule.	The	aim	of	these	additional
meetings	is	to	develop	a	greater	empathy	between	staff	members:

Company-wide	stand-ups

http://www.google.com/+/learnmore/hangouts
http://gotomeeting.com
http://lullabot.com

A	weekly	one-hour	call	where	a	lottery	of	staff	members	are	given	up	to	two
minutes	each	to	talk	about	what’s	happening	in	their	personal	and	work	life.
When	the	company	was	smaller,	each	person	was	asked	to	speak	on	this	call.
As	the	company	grew	in	size,	the	lottery	system	was	implemented	and	the
one-on-one	calls	were	added.

One-on-one
A	lottery	system	where	two	to	three	company	members	are	given	the	time	to
talk,	in	a	facilitated	space,	about	the	life,	the	universe,	and	everything.

For	the	most	part,	these	calls	are	conducted	over	a	voice-only	line,	which	also
allows	staff	to	use	the	call	time	to	multitask	(loading	the	dishwasher;	or	even
time	outdoors	for	those	with	good	cell	phone	service).

Cultivating	Empathy
When	you	are	working	in	a	distributed	team,	it	becomes	much	easier	to	think	of
people	on	your	code	team	as	“resources”	and	not	as	human	beings.	It	takes	a
very	conscious	effort	to	cultivate	relationships	and	to	develop	trust	among	the
team.	A	team	that	is	able	to	trust	one	another,	that	is	not	fearful,	is	a	team	that
will	be	able	to	play	more	with	ideas,	and	will	have	greater	capacity	for	finding
appropriate	and	creative	solutions	to	tough	problems.

The	first	step	to	improving	the	empathy	on	your	team	is	to	care	just	enough
about	the	people	you	work	with.	You	don’t	need	to	become	everyone’s	therapist,
but	taking	the	time	to	talk	to	people	about	nonwork	things	is	a	good	investment
of	your	time.	If	you	are	perceived	as	being	a	caring	person,	people	will	also	like
you	more,	which	will	improve	the	trust	between	you	and	the	other	person.	As	a
technical	project	manager,	I’ve	often	been	asked	to	lend	an	ear	to	someone	as
they	talk	through	a	problem.	My	naive	understanding	of	the	problem	as	they
bring	me	up	to	speed	can	force	the	focus	back	onto	the	basics,	where	the	solution
often	lies.	But	those	conversations	are	rare	with	a	new	team—I	must	first	earn
the	trust	of	the	individuals	on	the	team	(that	I	won’t	judge	if	they	don’t	know	the
answer;	and	that	I	can	help	to	focus	attention	instead	of	just	typing	while	they
talk).

There	are	a	few	key	tips	to	caring	“just	enough”:

Collect	stories

Ask	people	questions	about	what’s	happening	in	their	life;	about	interesting
challenges	they’re	working	on;	about	what	they’re	enjoying	(or	hating)	about
the	project	you’re	working	on	together.	This	isn’t	a	gossip	session!	This	is
about	connecting	with	the	people	you’re	speaking	with	about	their	lives.

Listen	with	intention
When	you	talk	with	people,	listen	wholly.	Do	not	multitask.	Listen	to	what
the	person	is	saying,	and	listen	completely.	Do	not	cut	in,	unless	you	are
confused	and	need	to	clarify.	Some	people	are	natural	storytellers	and	have
the	capacity	to	go	on.	And	on.	For	these	folks,	you	might	want	to	schedule	a
time	so	that	you	have	a	predetermined	finishing	point.

Refer	back
If	someone	tells	you	about	their	life,	circle	back	with	them	to	see	how	that
story	has	progressed.	Is	their	daughter	still	teething?	How’s	that	cold	doing;
feeling	better	today?

I	like	to	think	of	this	list	as	“Empathy	for	Beginners”.	Everyone	can,	and	should,
manage	this	small	amount	of	connection	with	the	people	they’re	working	with.

Wrap-Up	and	Retrospectives
These	meetings	can	be	a	prime	time	to	talk	about	what	worked,	and	what	can	be
refined.	They	should	also	be	used	to	clean	up	any	templates	that	have	been	used
during	the	project	to	make	them	reusable	in	future	projects.	The	closing	activity
for	a	period	of	work	should	always	be	a	no-shame,	no-blame	event	where	people
are	able	to	talk	about	things	that	didn’t	go	well.	Only	very	rarely	do	I	regret	my
decisions	as	a	project	manager.	I	rely	on	my	team	to	help	me	to	make	the	best
possible	decision	with	the	available	information.	So	in	retrospect,	I	find	it	quite
easy	to	avoid	the	“shoulda	coulda”	temptation.	What	I	do	try	to	do,	though,	is	to
identify	the	patterns	to	watch	out	for	in	the	future.	In	other	words,	to	discover
ways	we	could	have	altered	what	we	asked	in	meetings	to	get	a	different	set	of
information	available	to	us	(which	might	have	caused	us	to	make	better
decisions	for	that	type	of	project	in	the	future).

From	a	version	control	perspective,	the	end	of	the	project	is	also	a	great
opportunity	to	find	your	favorite	tickets	and	document	the	characteristics	of	what
made	them	excellent.	Perhaps	there	was	a	new	way	of	structuring	the

http://gitforteams.com/resources/cultivating-empathy.html

information	that	you’d	like	to	be	able	to	reuse.	Take	a	peek	in	your	Git
repository	as	well,	and	look	for	especially	good	commit	messages	that	you	can
have	as	examples	in	your	documentation	for	future	projects.

Teamwork	in	Terms	of	Git
If	you	are	absolutely	brand	new	to	distributed	version	control,	there	is	a	set	of
terms	you	will	see	throughout	the	rest	of	the	book.	These	terms	are	easiest	to
understand	in	the	context	of	a	simple	developer	workflow.

Each	developer	has	a	local	copy	of	a	repository.	This	is,	at	its	core,	a	standalone
copy	of	the	history	of	changes	made	in	the	project.	In	order	to	share	changes,
developers	will	typically	publish	a	copy	of	the	repository	to	a	centralized	code
hosting	system,	such	as	GitHub.	Although,	as	you	will	see	later	in	this	chapter,
there	are	other	ways	to	share	code.

From	the	central	copy	of	the	repository,	developers	will	create	a	copy	of	the
repository	that	they	can	make	changes	to.	In	Git	parlance,	this	process	is	referred
to	as	creating	a	clone,	although	this	process	can	also	be	referred	to	as	forking.

When	cloning	a	repository,	software	developers	may	choose	to	make	their	copy
of	the	project	private	or	public.	A	private	repository	makes	a	quiet	decision	to
not	encourage	people	to	look	directly	at	this	copy	of	the	repository,	and	instead
only	look	to	the	main	project	for	officially	accepted	changes.	A	public	copy	of	a
developer’s	repository,	on	the	other	hand,	is	available	for	individuals	to
contribute	to	directly.	This	is	a	more	open	approach	to	software	development,
but	may	cause	confusion	about	which	copy	of	a	repository	ought	to	be	the
starting	point.

It’s	only	through	project	governance	that	one	repository	for	a	project	is	decided
to	be	the	most	important	version.	This	is	because	every	repository	can	accept
changes,	and	share	its	changes	with	others.	The	relationships	between	projects
are	not	fixed	in	stone.	You	can	create	a	web	of	relationships	between	different
copies	of	the	repositories,	or	a	more	linear	chain.	Generally,	though,	the	official
version	of	a	software	product	is	referred	to	as	being	upstream	of	the	current
repository.	For	example,	my	blog	is	created	with	Sculpin.	I	cloned	the	official
release	of	the	software	and	make	changes	directly	to	the	repository	to	write	blog
posts.	If	I	wanted	to	incorporate	the	latest	changes	to	the	software,	I	would	be

https://getsculpin.com

incorporating	the	upstream	changes.

THE	BUTTER	TART	RECIPE	WAS	FORKED
For	long-time	open	source	software	developers,	the	term	fork	is	loaded	with	the	frustrations	of
a	split	community	where	a	group	of	developers	decided	to	“fork	the	project”	and	take	it	in	a
different	direction.	Forks	are	simply	a	divergence,	like	a	path	in	the	woods,	or	like	my	Great
Granny	Austin’s	butter	tart	recipe.	Each	branch	on	a	forked	path	leads	in	a	different	direction.
Or,	in	the	case	of	the	butter	tarts,	the	addition	or	omission	of	currants.	You	can	read	my
family’s	version	of	a	forked	recipe	in	Appendix	A.

Within	a	single	repository,	I	can	store	different	versions	of	the	project.	These	in-
repository	changes	are	tracked	via	branches.	To	switch	from	my	current	branch
to	another	one,	I	will	check	out	the	branch	I	want	to	switch	to.	(In	my	head	I	say,
“This	is	really	cool!	Check!	It!	Out!”)	Before	switching,	Git	will	force	me	to
deal	with	the	uncommitted	changes	by	either	committing	them,	stashing	them,	or
discarding	them.	The	commit	process	will	permanently	store	my	changes	to	the
repository,	whereas	stash	will	temporarily	shelve	the	changes,	allowing	me	to
pull	them	off	the	shelf	and	reapply	them	later.

A	CRAFTER’S	STASH
Knitters,	quilters,	and	other	fiber	artists	will	often	refer	to	having	a	stash	of	yarn	or	fabric.
When	starting	a	new	project,	we	might	“shop	the	stash”	instead	of	going	to	the	store.	Those	of
us	who	have	a	lot	of	stashed	supplies	may	talk	about	having	“achieved	SABLE”	(Stash
Amassed	Beyond	Life	Expectancy).	I	think	this	analogy	works	well	for	Git’s	stash,	and	just
like	in	crafting,	I	recommend	pruning	the	stash	regularly	to	look	for	moth	damage.	If	you	are	a
knitter,	you	may	enjoy	Git	for	Knitters.

The	process	of	incorporating	and	publishing	changes	uses	the	following	set	of
commands.	I	pull	my	changes	from	the	remote	repository	to	automatically
incorporate	them	into	the	repository.	This	procedure	fetches	the	new	changes	and
then	merges	them	into	the	tracked	copy	of	the	local	branch.	At	any	given	time,	I
work	on	a	local	branch	within	my	repository.	If	I	want	to	share	my	changes	with
other	developers,	I	commit	my	work	to	the	repository,	and	then	push	my	branch
to	the	remote	repository.

https://github.com/gitforknitters/gitforknitters

Summary
One	of	my	favorite	things	to	do	is	to	work	with	a	broken-down,	burnt-out	team,
to	help	them	find	a	new	way	of	working	together	in	a	fun	and	creative	way.	It’s
not	always	easy,	because	broken	teams	always	have	at	least	some	degree	of
mistrust.	Sometimes	there	are	tears.	But	the	rewards	are	huge	when	it	can	come
together:

A	trusting,	empathetic	team	is	more	likely	to	help	its	coworkers	with	the
specific	Git	commands	necessary	to	get	the	job	done.

Preferences	for	different	thinking	strategies	can	derail	progress.	Ensuring	the
right	strategies	are	being	used	at	the	right	time	can	reduce	friction,	and	make
work	faster	and	more	fun.

By	having	transparency	around	your	work,	and	by	including	relevant
stakeholders	at	key	points,	you	may	be	able	to	gain	faster	deployments	by
reducing	the	time	needed	to	test	code,	and	by	reducing	the	number	of	bugs
found.

In	the	next	chapter,	you	will	begin	to	sketch	out	the	governance	for	your	project
repositories.

Chapter	2.	Command	and	Control

By	its	very	definition,	distributed	version	control	eschews	centralized	control.
There	are	no	fixed	rules	built	into	Git	that	will	help	you	to	control	access	to	your
code—Git	is,	after	all,	just	a	simple	content	tracker.	This	can	be	a	real	turnoff	for
some	people	who	are	accustomed	to	version	control	systems	that	double	as
gatekeepers	and	access	control	managers.	This	lack	of	centralized	access
controls	doesn’t	mean	your	project	suddenly	turns	into	anarchy.

In	“Project	Governance”,	you	will	learn	about:

Authorship,	copyright,	and	distribution	licenses

Leadership	models,	which	can	set	the	tone	for	how	contributions	are	made	to
your	project

Codes	of	Conduct,	which	establish	firm	guidelines	for	expected	and
acceptable	behavior	of	contributors

Then,	in	“Access	Models”,	you	will	learn	how	to	structure	access	to	your
project.	Three	models	are	described:

Dispersed	contributors

Collocated	contributor	repositories

Shared	maintenance

By	the	end	of	this	chapter,	you	will	be	able	to	confidently	establish	an	access
model	for	your	team	that	keeps	contributors	happy,	and	ensures	you	are	still	able
to	comply	with	any	reporting	requirements	from	regulatory	bodies.

Project	Governance
If	I	were	the	betting	type,	I’d	wager	you	picked	up	this	book	with	the	intention
of	learning	Git.	This	section	talks	about	legal	mumbo	jumbo.	If	you	are	the
impatient	type,	you	may	wonder	exactly	why	I	have	wasted	valuable	time	on	this
esoteric	topic.	Think	of	this	information	as	a	primer	that	outlines	your	rights	as
an	author,	and	also	your	responsiblities	as	a	steward	of	a	project	repository.	The

content	outlined	in	this	section	will	be	slightly	more	relevant	to	public,	open
source	projects.	Increasingly,	though,	government	and	large	enterprises	are
working	with	publicly	available	code,	and	choosing	to	make	their	own	code
open.	(Even	Microsoft	has	many	open	source	libraries	available	today!	Go,
Microsoft!)

PRODUCING	OPEN	SOURCE	SOFTWARE
In	this	chapter	I	cover	the	highlights	for	running	a	project.	Software	developers	and	managers
who	are	considering	running	their	project	as	an	open	source	project	should	also	read	Karl
Fogel’s	Producing	Open	Source	Software.	This	free	book	covers	everything	from	publicitly
and	handling	growth	to	legal	matters	and	political	infrastructure.

In	this	section,	you	will	learn	about	the	assignment	of	authorship	for	a	given
piece	of	code.	Later,	when	you	are	working	with	Git,	you	will	see	that	Git	allows
you	to	track	who	injected	each	tiny	piece	of	code	into	your	repository.	In
addition	to	tracking	authorship,	you	can	even	use	Git	to	“sign	off”	on	new	code
that	is	added	to	a	repository.

Copyright	and	Contributor	Agreements
Copyright	is	the	exclusive,	assignable,	legal	right	to	use	and	distribute	a	piece	of
work.	Around	the	world,	the	details	of	copyright	legislation	vary;	however,	the
general	rule	is	that	the	person	who	created	a	work	owns	the	right	to	copy	and
distribute	the	work.	In	open	source	software,	the	copyright	holders	agree	to
license	their	work	to	a	wider	community.	Popular	Free	Libre	Open	Source
Software	(FLOSS)	distribution	licenses	are	covered	in	the	next	section.

If	the	author	was	compensated	for	his	or	her	work	product,	the	copyright	will
often	be	granted	to	the	payer	or	patron.	In	the	United	States,	this	is	referred	to	as
a	work	for	hire	and	is	almost	always	the	case	in	employer–employee
relationships,	and	is	typically	the	case	for	contract	workers.	If	you’re	not	sure	if
you	own	the	copyright	to	your	work,	check	your	agreement;	and	if	there	isn’t	a
clause,	check	your	local	jurisdiction	to	see	if	there	is	an	established	precedent.	In
the	United	States,	contractors	and	freelancers	don’t	fall	under	the	definition
supplied	by	the	Supreme	Court,	so	it	isn’t	work	for	hire.	The	terms	are	broad,
though.	Ideally,	update	your	contract	so	that	it	explicitly	states	who	owns	the

http://producingoss.com/
http://copyright.gov/circs/circ09.pdf

copyright	to	your	work.

Copyright	only	covers	the	specific	implementation	of	a	work.	You	cannot
copyright	an	idea.	You	may	have	heard	of	reverse	engineering,	which	is	one	way
of	getting	around	a	specific	author’s	moral	claim	to	a	piece	of	work.	Some
jurisdictions	around	the	world	also	have	a	restraint	of	trade	clause.	This
language	prohibits	an	employee	(or	contractor)	from	engaging	in	similar	work
elsewhere	for	a	period	of	time.	Effectively,	this	clause	prevents	employees	from
starting	at	a	new	job	and	reverse	engineering	or	creating	an	equivalent	piece	of
work	from	the	one	they	developed	for	their	former	employer.	It	must	be	deemed
by	the	courts	as	a	“reasonable”	restraint—limited	to	an	industry	or	specifics
about	the	job;	and	cannot	be	so	broadly	interpreted	that	the	worker	is	essentially
prevented	from	working	at	any	job.

Patents,	in	some	jurisdictions,	do	cover	the	idea	behind	an	invention.	Software
patents	are	extremely	contentious	because	they	are	perceived	in	many	cases	to
stifle	innovation.	Patents	are	never	automatically	granted	and	always	involve	an
application	within	a	specific	jurisdiction.

If	you	are	participating	on	an	open	source	project	on	behalf	of	your	employer,
the	assignment	of	copyright	might	be	a	bit	more	complicated.	This	is	especially
true	if	the	project	has	a	policy	to	only	accept	work	from	individuals,	and	your
place	of	employment	retains	all	copyright	on	the	work	you	produce;	it	may	also
be	true	if	your	place	of	employment	has	rules	about	what	you	are	allowed	to
work	on	in	your	free	time.	(I	can	name	specific	examples	of	both	open	source
projects	and	companies	with	these	restrictions.)	I	am	not	a	lawyer	and	cannot
give	you	legal	advice.	Only	you	can	choose	if	you	want	to	ask	permission	or	beg
forgiveness.	I	can,	however,	highlight	the	issue	of	copyright	and	encourage	you
to	consider	what	is	most	appropriate	for	everyone	in	the	long	term.	It	would	be	a
shame	if	your	work	had	to	be	removed	from	an	open	source	project	for	any
reason.	Radical	transparency	is	risky,	but	I	think	it’s	worth	it	in	the	end.

To	increase	their	future	powers,	some	corporations	have	opted	to	put	a
contributor	agreement	on	their	public	projects.	Canonical,	Chef,	Puppet,	Google,
and	.NET	all	have	a	variation	on	a	contributor	license	agreement.	The	agreement
varies	per	company,	but	the	gist	of	most	of	them	is	“if	you	choose	to	submit	a
contribution,	you	agree	to	reassign	your	copyright	to	the	project.”	Just	as	there	is
a	Creative	Commons	license	for	content,	there	is	now	a	Harmony	Agreements

http://bit.ly/ubuntu-cla
http://bit.ly/chef-cla
https://cla.puppetlabs.com/
http://bit.ly/google-cla
https://cla.dotnetfoundation.org
http://harmonyagreements.org/

template	for	contribution	agreements.	The	biggest	rationale	I’ve	seen	for	a
contributor	agreement	is	that	it	allows	the	project	to	change	the	distribution
license	of	a	project	without	explicit	consent	from	individual	contributors.	In
open	source	software,	these	contributor	agreements	are	often	perceived	as	being
against	the	spirit	of	open	source.	On	the	other	hand,	it	can	make	it	difficult	for
corporations	to	make	legal	decisions	regarding	that	software	in	the	future	if	they
don’t	own	the	copyright.

Distribution	Licenses
Once	you	have	determined	copyright	for	your	project,	the	next	piece	you	need	to
establish	is	the	distribution	license.	This	will	clarify	how	you	want	others	to	use,
or	not	use,	your	project.

GitHub	has	put	together	an	excellent	primer	for	the	more	popular	open	source
licenses	it	recommends.	The	primer	includes	the	following	licenses:

The	MIT	License	allows	people	to	do	anything	they	want	with	your	code	as
long	as	they	provide	attribution	back	to	the	original	authors	of	the	work,	and
do	not	hold	you	liable	for	the	software.	jQuery	and	Rails	both	use	an	MIT
license.

The	Apache	License	is	similar	to	the	MIT	License,	but	it	also	explicitly	grants
patent	rights	from	contributing	authors	to	users,	and	requires	a	change	notice
that	describes	how	the	derivative	work	changes	from	the	previous	version.
Apache,	Subversion,	and	NuGet	use	an	Apache	license.

The	GNU	General	Public	License	(GPL),	V2	or	V3,	is	a	sharing-friendly
copyleft	license	that	requires	anyone	who	distributes	your	code	or	a
derivative	work	to	make	the	source	available	under	the	same	terms.	V3	is
similar	to	V2,	but	further	restricts	use	in	hardware	that	forbids	software
alterations.	Linux,	Git,	and	WordPress	use	this	type	of	license.

If	your	content	isn’t	code,	a	Creative	Commons	license	may	be	more
appropriate	for	your	work.	This	license	allows	you	to	grant	redistribution
rights,	with	or	without	modification,	for	commercial	or	noncommercial	use.

You	are	also	welcome	to	not	choose	a	distribution	license;	however,	this
effectively	signals	to	people	that	you	are	not	interested	in	others	using	your	work
without	seeking	explicit	permission.

http://choosealicense.com/
http://opensource.org/licenses/MIT
http://bit.ly/apache-v2
http://bit.ly/gpl-v2
http://bit.ly/gpl-v3
http://creativecommons.org/

WHEN	TO	NOT	USE	A	DISTRIBUTION	LICENSE
Using	a	distribution	license	on	a	public	project	is	almost	always	a	good	idea.	That	said,	I
sometimes	choose	to	omit	a	distribution	license	on	my	public	repositories.	Typically	this
happens	if	I	think	I	may	incorporate	the	work	into	a	full-length	book	with	a	traditional
publisher.	Some	publishers	require	you	to	reassign	copyright	to	them	and	will	protect	the	work
on	your	behalf.	(O’Reilly	leaves	all	copyright	with	the	original	author.)	If	I	have	accepted
contributions	from	others	under	an	open	license,	it	may	impact	my	ability	to	reassign	copyright
later.

If	you	encounter	a	public	project	that	does	not	have	an	explicit	license,	and	you
want	to	incorporate	the	work	into	your	own,	get	in	touch	with	the	project
maintainers	first	and	ask	them	to	add	a	license	to	their	work.

Leadership	Models
Open	source	software	allows	people	to	collaborate	on	building	systems	that	are
more	powerful,	more	secure,	more	feature-rich,	and	more	sustainable	when	the
burden	of	maintenance	is	shared	among	many.	If	you	are	a	project	of	one,	it
might	not	make	sense	to	create	a	governance	document,	but	if	you	are
anticipating	others	contributing	as	well,	you	should	consider	outlining	how	you
want	the	project	to	be	run.

A	few	of	the	governance	models	I	participated	in	include:

Benevolent	Dictator	for	Life	(BDFL)
In	this	model,	the	leader	of	the	project	has	final	say	over	every	decision
about	every	aspect	of	the	code	base.	The	BDFL	may	not	actively	participate
in	every	code	review,	but	ultimately	retains	the	control	to	reject	or	reverse
any	decision	made.	The	community	exists	at	the	whim	of	the	dictator.
Sounds	horrible,	right?	Well,	it	can	be	if	the	dictator	isn’t	benevolent.	This
model	has	been	successfully	used	by	the	Ubuntu	project,	and	others.

Consensus-driven,	leader-approved
The	Drupal	community	works	on	a	consensus	model	where	the	community
most	active	on	a	given	part	of	the	system	is	encouraged	to	find	solutions	that
are	appropriate.	When	the	community	is	happy	with	the	solution,	they	mark
an	issue	as	Reviewed	and	Tested	by	the	Community	(RTBC,	which	is	a

http://bit.ly/wiki-bdfl

backronym	for	Ready	to	be	Committed).	Drupal	has	additional	working
groups	for	content,	licensing,	and	security	issues.

Technical	review	board	or	Project	Management	Committee
A	fork	of	the	Drupal	project,	Backdrop,	distinguished	itself	early	in	the
project	by	adopting	an	explicit	governance	model,	which	is	based	on	the
Apache	project	Project	Management	Committee	(PMC)	model.

If	you	would	like	more	guidance	on	setting	up	a	governance	plan	for	your
project,	I	recommend	resources	by	Lisa	Welchman,	including	her	book
Managing	Chaos	(Rosenfeld	Media).

Code	of	Conduct
Some	communities	have	made	the	difficult	decision	to	reject	code	from
community	members	who	refused	to	behave	in	a	friendly	manner	toward	others
in	the	community.	Other	communities,	however,	are	notorious	for	their
unfriendly,	intolerant	behavior.	You	may	be	able	to	think	of	several	communities
you	enjoy	participating	in,	and	want	to	emulate	in	your	own	project.

Community	culture	is	the	consistent	reinforcement	of	behavioral	standards.
Although	you	may	wish	to	simply	cross	your	fingers	and	hope	that	people	are
excellent	to	each	other,	there	may	come	a	day	when	you	wish	you	had	a	rule
book	you	could	point	to.	A	community	code	of	conduct	allows	you	to	explicitly
detail	what	is	expected	of	those	who	participate	in	your	project.	There	are
several	established	codes	of	conduct	that	have	been	community	vetted.	You	may
wish	to	begin	with	one	of	these	as	your	starting	point.

Flickr	is	the	first	community	code	of	conduct	that	I	was	aware	of	using,	and
which	made	a	point	to	ensure	its	members	knew	there	were	guidelines	in	place.
I’m	sure	it	has	changed	since	I	first	read	the	document;	you	can	read	the	current
version	at	Flickr	Community	Guidelines.

The	Drupal	Code	of	Conduct	is	the	one	I’m	most	familiar	with.	It	was	derived
from	an	early	version	of	the	Ubuntu	Code	of	Conduct	(a	newer	version	is	now
available),	and	has	even	been	used	as	inspiration	for	the	Humanitarian	ID	Code
of	Conduct,	a	project	by	the	United	Nations	Office	for	the	Coordination	of
Humanitarian	Affairs.

https://www.drupal.org/governance
https://backdropcms.org/leadership
http://bit.ly/apache-pmc
http://rosenfeldmedia.com/books/managing-chaos/
https://www.flickr.com/help/guidelines
https://www.drupal.org/dcoc
https://launchpad.net/codeofconduct/1.0.1
http://bit.ly/ubuntu-conduct
http://humanitarian.id/code-of-conduct/

It	is	appropriate	to	add	your	Code	of	Conduct	(CoC)	document	to	the	project’s
supporting	website.	If	you	do	not	have	a	separate	website	for	your	project,	you
could	add	your	CoC	as	a	wiki	page	within	GitHub.	Links	to	wiki	pages	are
available	in	the	righthand	sidebar	from	the	home	page	for	the	project.

Access	Models
If	you	have	been	using	version	control	for	a	long	time,	you	may	remember
systems	like	CVS	or	Subversion	with	a	centralized	repository.	Figure	2-1
demonstrates	how	changes	were	made	in	Subversion’s	centralized	system.	In	this
system,	each	time	you	wanted	to	save	a	snapshot	of	your	work	to	the	repository,
you	were	potentially	saving	to	the	same	place	as	someone	else.	Just	when	you
thought	you	were	ready	to	share	your	work,	or	request	a	code	review,	you	would
sometimes	be	prevented	from	doing	so	if	someone	else	had	recently	updated	the
same	branch	with	their	own	work.

Figure	2-1.	Working	with	files	in	Subversion

Git,	on	the	other	hand,	is	a	distributed	version	control	system.	This	means
instead	of	having	one	central	place	that	everyone	must	use	if	they	want	to	have
their	changes	recorded,	each	person	works	independently	from	the	centralized

code	hosting	system,	and	is	responsible	for	making	commits	to	his	or	her	local
copy	of	the	repository.	This	means	changes	from	other	developers	are	never
forced	into	your	work;	instead,	it	is	your	decision	of	when	to	incorporate	outside
work,	and	when	to	share	your	own.

ESTABLISHING	CONNECTIONS	TO	OTHERS
Although	people	love	to	talk	about	coding	from	airplanes	that	don’t	have	an	Internet
connection	when	working	with	Git,	I	think	the	real	advantage	is	that	you	can	do	more	of	your
thinking	in	private.	You	can	make	new	branches,	think	about	new	ideas	in	code	and—only
when	you’re	ready—establish	a	connection	with	others.

If	you	subscribe	to	Myers-Briggs,	Git	might	be	INTP,	and	Subversion	might	perhaps	be	ESFJ.

Every	time	you	sit	down	to	work	with	Git,	you	are	sort	of	working	in	a
centralized	fashion	as	far	as	your	computer	is	concerned;	your	repository	of
changes	is	entirely	self-contained	on	your	local	machine,	as	shown	in	Figure	2-2.
You	do	some	work,	and	then	save	that	work	to	your	local	repository.	Then,	when
you’re	ready	to	share	your	work	with	others,	you	make	a	connection	to	a	remote
repository	and	push	your	copy	of	a	specific	branch	to	it.

http://bit.ly/wiki-mbti

Figure	2-2.	Working	with	files	in	Git

Keeping	your	work	entirely	local	would	be	very	limiting!	Instead,	we	make
connections	to	other	systems,	and	share	our	code	through	the	remote
repositories.

Git	does	not	have	the	ability	to	control	access—instead,	it	allows	any	developer
full	read/write	access	to	the	repository.	At	the	most	coarse	level,	you	limit	this
control	through	login	controls.	I	develop	on	my	machine,	to	which	you	don’t
have	access,	and	therefore	you	cannot	change	my	repository.	As	soon	as	we	put
the	repository	in	a	shared	location,	such	as	a	centralized	code	hosting	server,	we
need	to	agree	on	how	we	will	govern	our	access	to	the	repository.

Some	Git	hosting	systems,	such	as	Bitbucket,	allow	fine-grained,	per-branch
access	controls;	however,	most	force	you	to	limit	control	on	a	per-repository
basis.	In	other	words,	you	either	are	a	committer	for	any	branch	on	the
repository,	or	you	are	limited	to	making	your	contributions	through	pull	requests.

In	this	section,	we	cover	the	three	most	popular	models:

Single	Repository;	Shared	Maintenance,	wherein	everyone	on	the	team	is
considered	a	maintainer	and	is	granted	access	to	upload	changes	to	the	project
repository.

Collocated	Contributor	Repositories,	wherein	contributing	developers	create
a	remote	copy	of	a	project,	and	have	their	changes	accepted	by	project
maintainers.

Dispersed	Contributor	Repositories,	wherein	code	is	shared	via	a	text-based
patch	file.

At	the	end	of	the	section,	you	will	learn	how	to	chain	these	methods	together	to
create	a	custom	access	model	that	is	perfect	for	your	team.

Dispersed	Contributor	Model
When	Git	was	originally	conceived,	conversations	about	changes	to	the	code
base	of	an	open	source	software	project	commonly	happened	on	public	mailing
lists,	not	on	centralized	web	hubs.	This	model	is	still	used	today	by	the	Git
development	team.	It	is	almost	certainly	not	appropriate	for	your	team	to	use	this
model	for	its	development;	however,	understanding	the	model	has	implications

for	some	of	the	more	advanced	concepts	required	to	use	the	commands	rebase
(Chapter	6)	and	bisect	(Chapter	9).

To	share	their	work	with	the	community,	developers	would	create	a	patch	file
using	the	program	diff.	They	would	then	write	an	email	to	the	discussion
group,	and	attach	their	patch	file	as	shown	in	Figure	2-3.	To	investigate	the
proposed	changes,	members	of	the	mailing	list	would	download	the	attached
patch	file,	and	apply	it	to	their	local	code	base,	using	their	system’s	patch
command.

By	sharing	the	patch	files	via	a	mailing	list,	developers	were	able	to	encapsulate
and	share	their	work—while	efficiently	limiting	what	was	shared	to	that	patch
file	so	that	the	people	evaluating	the	work	could	easily	see	what	had	changed
between	two	specific	points	in	time	within	a	shared	code	base.

FORM	FOLLOWS	FUNCTION
To	make	the	process	of	working	with	emailed	patch	files	easier,	Git	added	the	ability	to	deal
with	patches	that	were	sent	via	a	mailing	list	through	the	command	am.

This	model	is	still	used	by	the	Git	project	today—it	is	still	using	a	mailing	list	to
share	patches,	and	have	conversations	about	what	features	should	be	added	to
Git	and	what	bugs	should	be	removed.

Although	the	model	might	seem	archaic,	it	does	have	some	advantages:

You	don’t	need	to	use	a	specific	version	control	system	locally	because	the
patch	file	doesn’t	require	specific	version	control	software	to	be	installed
locally.

Developers	can	easily	review	the	proposed	changes	from	the	comfort	of	their
email	application.

This	model	encourages	whole	idea	thinking.	If	you	have	to	email	a	group	of
people	each	time	you	make	a	change,	you	are	more	likely	to	ensure
everything	is	right	so	you	can	avoid	the	embarrassment	of	“just	one	more
thing.”

Uploading	your	proposed	changes	to	a	system	that	is	not	the	code	hosting

system	enforces	a	review	procedure	among	the	participants	in	the	software
project.	In	other	words,	as	a	developer,	I	can’t	just	upload	my	changes	to	the
main	repository;	I	have	to	announce	my	completed	work	and	wait	for
someone	else	to	merge	it	in.

Figure	2-3.	The	community	review	process	for	patches

Having	dispersed	repositories	isn’t	specific	to	projects	that	communicate	via
mailing	lists.	At	the	time	of	this	writing,	the	Drupal	project	was	using	a	variant
of	this	model.	Instead	of	using	a	mailing	list	to	share	patches,	though,	it	was
using	a	self-hosted,	centralized	code	hosting	and	ticket	issue	system.	Figure	2-4
shows	a	screenshot	of	an	issue	with	an	attached	patch	file.

Figure	2-4.	A	Drupal	issue	queue	with	attached	patch	file

In	this	model,	you	can	sign	the	individual	commits	before	sharing	them;
however,	this	makes	it	more	difficult	to	unpack	the	history	of	who	made	which
changes	if	multiple	people	were	involved.	The	team	will	need	to,	instead,	adhere
to	a	patch	formatting	policy	(signed	or	not),	and	a	commit	message	style.	Drupal
has	strict	formatting	guidelines	for	its	commit	messages	to	ensure	everyone
receives	credit	for	their	work.

For	most	projects	starting	today,	this	model	is	not	appropriate.	It	does,	however,
help	to	understand	some	of	the	more	advanced	commands,	such	as	bisect,	if
you	are	able	to	think	about	commits	as	whole	ideas.	A	more	modern	approach	to
this	model	is	to	use	fork,	or	clone,	repositories	on	a	single	code	hosting	system.

Collocated	Contributor	Repositories	Model
These	days,	software	developers	are	unlikely	to	trade	patch	files—instead,	they
are	much	more	likely	to	use	a	central	code	hosting	system	that	manages	the
patch	process	for	them.	Using	a	single	code	hosting	system	makes	it	easier	to
programmatically	create	and	submit	patches	between	repositories.	The	method
for	how	these	patches	are	managed	is	the	secret	sauce	that	makes	up	any	code
hosting	system.	The	restrictions	are	presumably	handled	via	Git’s	pre-commit

http://bit.ly/drupal-commit

hooks	to	ensure	access	control	is	respected.

On	a	collocated	system,	the	“upstream”	project	retains	complete	control	over
who	is	allowed	to	write	to	the	primary	project	repository.	Individual	contributors
make	a	clone,	or	fork,	of	the	project	to	their	own	repository	on	the	code	hosting
system.	The	contributors	make	changes	to	the	copy,	and	then	submit	their
requested	changes	in	the	form	of	a	merge	request	or	pull	request,	as	shown	in
Figure	2-5.	If	you	are	working	on	an	open	source	project	with	a	lot	of
contributors,	you	are	most	likely	using	this	model.

Figure	2-5.	Creating	a	chain	of	cloned	repositories

GitHub	has	popularized	this	model	for	development	for	contemporary	open
source	projects.	I’ve	also	seen	this	model	used	for	internal	projects	with	strict
walls	between	departments.	For	example,	if	the	quality	assurance	team	is	solely
responsible	for	the	final	merging	of	code	into	the	stable	release	branch,	the	team
is	likely	using	some	variation	on	this	model.	Another	reason	for	this	separation
would	be	if	you	were	using	extra	contractors	and	you	wanted	to	limit	their	ability
to	accidentally	add	something	to	the	repository	that	hadn’t	first	undergone	a
review	of	some	kind.

GIT	VERSUS	GITHUB	TERMS
It	can	be	difficult	to	know	which	terms	to	use	because	the	GitHub	terms,	which	have	become
commonplace,	don’t	always	match	their	corresponding	Git	commands.	For	example,	the
GitHub	term	fork	uses	the	Git	command	clone	to	create	a	copy	of	a	repository.	Because	the
focus	of	this	book	is	on	the	Git	software,	and	not	just	the	implementation	on	GitHub,	the	Git
commands	will	be	used.	Occasionally	both	terms	will	be	used	because	the	GitHub	terminology
is	sometimes	more	familiar	than	the	individual	commands.

When	GitHub	creates	a	fork	of	a	repository,	it	is	the	same	as	using	the	Git
command	clone	to	make	a	copy	of	a	repository.	Once	you	have	created	a	fork,
you	can	use	the	GitHub	web	interface	to	make	your	changes	directly	to	your
repository,	but	this	isn’t	great	for	more	than	a	very	minor	typo	fix.	Instead,	you
will	likely	create	a	second	clone	of	the	repository—this	time	from	the	forked
repository	to	your	local	workstation.	This	effectively	creates	a	chain	of	clones
from	one	copy	to	another.	Keeping	all	of	the	repositories	in	sync	takes	a	little	bit
of	work;	however,	it’s	a	lot	fewer	commands	to	memorize	than	working	directly
with	patches.	You	win	some,	you	lose	some.

Working	with	repositories	that	share	the	same	infrastructure	should	be	easier
than	the	dispersed	repositories	because	it	allows	you	to	more	easily	use	wrapper
software.	In	addition	to	it	being	a	little	easier	to	keep	the	work	updated,	the
wrapper	software	can	also	give	you	more	control	over	who	is	able	to	commit
work	and	receive	credit	for	their	work.

Typically,	the	first	repository	in	the	chain	can	only	be	altered	by	a	handful	of

core	committers	who	can	add	new	commits	to	the	repository,	or	merge	branches.
Most	of	the	people	working	on	the	project	will,	instead,	be	working	from	a	local
clone	of	the	repository.	In	this	local,	cloned	repository,	each	person	will	have
infinite	control	over	what	happens.	They	can	add	new	branches,	add	new	code,
and	share	their	proposed	changes	with	others	by	pushing	their	work	to	their
public	clone	of	the	main	repository.	Once	the	work	has	been	pushed	to	the	public
clone,	coders	can	solicit	feedback	on	their	work	to	date.	Once	the	work	has	been
fully	reviewed	and	tested	by	the	community,	the	coders	can	make	a	merge
request	or	pull	request	from	their	public	clone	to	the	main	repository.

If	someone	doesn’t	have	the	intention	of	contributing	their	work	back	to	the
main	project,	they	can	skip	creating	a	public	clone,	and	instead	create	a	clone
from	the	main	project	directly	to	their	local	environment.	Things	can	get	a	little
tangled	if	you	realize	you	do	have	changes	you	want	to	submit	back	to	the
project,	and	you’ve	also	done	your	own	work,	which	shouldn’t	be	shared.

It	isn’t	always	easy	to	know	that	you’re	going	to	do	something	that	might	be
useful	to	others,	though.	For	example,	I	was	working	on	my	slide	deck	for
OSCON	with	an	open	source	presentation	framework,	reveal.js.	Your	equivalent
example	might	be	with	a	WordPress	theme,	or	a	frontend	framework,	or	some
other	project	that	gives	you	a	basic	starter	kit	as	part	of	the	initial	package.

Previously	while	working	on	my	slides	with	reveal.js,	I	decided	I	probably
wouldn’t	need	to	upgrade	the	reveal.js	software	I	was	running	and	stopped
worrying	about	keeping	a	Git	connection	to	the	upstream	project.	I	shuffled	all
of	the	folders	around	in	my	repository	to	make	it	work	for	what	I	was	doing.	A
custom	theme	was	created.	Tweaks	were	made.	It	had	truly	become	a	forked
project,	disconnected	from	where	it	began.	(Developers	with	even	a	little	bit	of
open	source	experience	will	be	groaning	at	this	point	because	they’re	already
jumping	ahead	to	the	inevitable	realization	that	I’m	about	to	reveal.)	But	as	I
started	working	on	things,	I	realized	I	couldn’t	get	the	slides	to	format	properly
for	the	handout.	I	wanted	my	speaker	notes	to	appear	alongside	the	slide,	instead
of	having	them	tucked	below	it.	I	opened	a	bug	report	for	the	project	on	GitHub,
and	continued	working.	A	few	people	gave	me	suggestions	on	how	I	might	want
to	reformat	things.	Aha!	I	had	some	ideas	on	how	to	solve	the	problem.	I
considered	my	own	issue	closed,	but	there	were	others	who	were	also	interested
in	my	solution.	Now	I	was	truly	stuck.	I	had	created	my	project	without	the
intention	of	sharing	my	work.

https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js/pull/963

If	you	are	submitting	a	patch,	you	might	have	been	able	to	cheat	and	share	only
snippet	of	your	work,	but	when	you	are	working	with	collocated	contributors,
you	need	a	chain	of	repositories	in	place	to	be	able	to	share	your	work	back.	My
own	project	didn’t	have	a	branch	for	the	upstream	work	because	I	never	had	the
intention	of	sharing	my	work	back	to	the	presentation	framework.	So	I	started	by
creating	a	new	chain	of	repositories.	Figure	2-6	shows	the	sequence	of	what	I	did
next.	On	GitHub,	I	created	a	fork	of	the	main	reveal.js	project.	Then	I	made	a
local	clone	of	this	forked	repository.	To	my	local	clone	I	created	a	new	branch
for	my	changes.	Then	I	copied	the	changes	from	my	OSCON	slide	deck	(there
were	only	a	few,	so	I	didn’t	bother	creating	a	patch,	I	just	used	my	trusty	copy-
and-paste	tools)	into	my	cloned	repository	of	the	presentation	framework.	With
the	changes	in	place,	I	pushed	my	changes	back	to	my	remote	repository	on
GitHub,	and	created	a	pull	request	to	ask	to	have	my	changes	incorporated	back
into	the	project.

The	public	clone	of	the	reveal.js	repository	was	required	because	I	do	not	have
write	permission	for	the	reveal.js	repository.	If	I	did	have	write	access,	I	could
have	skipped	making	the	public	clone	and	just	created	a	local	clone.

Shared	Maintenance	Model
Finally,	we	have	arrived	at	what	is	likely	the	most	typical	permission	model	for
internal	teams	(and	teams	of	one):	shared	maintenance.	In	this	model,	there	is	an
inherent	trust	among	team	members.	It	is	assumed	that	code	will	be	checked	and
verified	before	it	is	committed	to	the	main	project	branch,	and	that,	generally,	the
developers	are	trusted.	In	this	model,	work	is	done	locally	by	all	developers
before	it	is	pushed	into	the	shared	repository	for	the	project.	When	working	with
an	internal	team,	as	shown	in	Figure	2-7,	this	is	often	where	we	start:	with	a
single	shared	repository	that	everyone	has	shared	write	access	into.

https://github.com/emmajane/reveal.js

Figure	2-6.	Suggesting	changes	to	a	project	from	collocated	repositories

Git	does	not	accommodate	permissions	and	instead	relies	on	other	systems	to
grant	or	deny	write	access	to	a	repository.	If	you	do	need	to	prevent	people	from
uploading	their	code	to	a	shared	repository,	you	need	to	use	the	host	system’s
access	control	to	do	so.	If	you	are	not	using	a	Git	hosting	platform,	this	access
control	might	be	controlled	via	SSH	accounts.

In	addition,	Git	further	does	not	allow	you	to	be	locked	out	of	only	some
branches,	as	you	might	find	in	Subversion.	Without	additional	software	in	place,
it	is	by	convention	that	teams	agree	not	to	commit	changes	to	specific	branches

without	the	prerequisite	testing.	Per-branch	access	restrictions	are	available
through	Bitbucket	(Chapter	11)	and	GitLab	(Chapter	12).	If	you	prefer	a	more
lightweight	system,	take	a	look	at	Gitolite.

Figure	2-7.	Everyone	on	the	team	has	write	access	to	the	central	repository	from	their	local	repository

Custom	Access	Models
In	addition	to	these	individual	strategies,	teams	may	also	choose	to	use	multiple
access	models	for	a	given	project.	This	would	be	particularly	useful	for	projects
with	very	strict	regulations	on	who	could	commit	code	to	the	canonical
repository.	Indeed,	most	open	source	projects	will	have	different	levels	of	access
for	different	contributors.

A	common	workflow	is	as	follows:

http://gitolite.com/gitolite/index.html

An	official	project	repository,	to	which	only	a	very	few	people	are	able	to
commit	code.	In	an	open	source	project,	it	would	be	the	project	maintainers;
and	in	a	closed	source,	or	corporate,	project,	it	could	be	the	quality	assurance
team.

A	less	restricted,	internal	copy	of	the	repository,	which	is	used	for	integration
by	each	of	the	contributors	and	project	teams.	This	repository	might	follow	a
shared	maintenance	model,	where	everyone	is	allowed	to	merge	their
branches	into	the	repository	as	part	of	a	code	review	process,	or	even	on	an
ad	hoc	basis.

Individually	created	personal	repositories,	locked	to	the	individual
contributors.	These	are	typically	hosted	on	the	same	code	hosting	system	as
the	official	repository,	because	most	modern	code	hosting	systems	have	easy-
to-integrate	functionality	(usually	called	a	“pull	request”	or	“merge	request”).

This	split	would	commonly	be	seen	in	teams	that	employ	junior	developers,
quality	assurance	teams,	or	perhaps	external	contractors.

Chapter	4	covers	common	workflows	in	more	depth.

Summary
In	this	chapter,	you	learned	about	different	ways	to	grant	and	restrict	access	to
your	project	repository:

Clearly	defining	a	project	governance	model	will	help	ensure	ownership	is
understood	by	all	contributors.

Copyright	of	code	is	typically	assigned	to	the	author,	unless	the	right	has	been
reassigned	to	another	legal	entity	as	a	work	for	hire	or	through	a	contributor
agreement.

The	rules	restricting	distribution,	and	derivative	works	of	a	code	base	are
defined	by	its	software	license.

Git	is	just	a	simple	content	tracker;	it	does	not	include	access	control
mechanisms	out	of	the	box.	Some	code	hosting	systems	have	incorporated
pre-commit	hooks	that	can	be	used	to	limit	access	per-branch.

Access	can	be	limited	or	open	for	any	given	repository.	Changes	submitted	to

a	repository	are	made	via	a	patch.	On	code	hosting	systems,	a	programmed
graphical	interface	is	used	to	manage	the	patch	submission	process.

With	your	permission	structure	in	place	for	your	repository,	we	will	next	look	at
how	you	can	divide	your	repository	so	that	both	work	in	progress	and	finished
work	can	be	shared	among	team	members.

Chapter	3.	Branching	Strategies

In	version	control,	a	branch	is	a	way	to	separate	parallel	thinking	about	how	a
piece	of	code	might	evolve.	A	branch	always	begins	from	a	specific	point	in	the
code	base.	In	Chapter	2	we	talked	about	forking	and	cloning	a	repository.	A
branch	is	like	an	in-repository	split	where	new	work	begins.	A	branch	might	be
created	with	the	intention	of	contributing	work	back,	or	it	might	be	created	with
the	intention	of	keeping	work	separate.	Branches	don’t	care	what	changes
they’re	tracking!	They	just	are.

The	branching	strategy	that	you	use	depends	on	your	release	management
process.	Branches	allow	you	to	change	the	files	that	are	visible	in	the	working
directory	for	your	project,	and	only	one	branch	can	be	active	at	a	time.	Most
branching	strategies	separate	the	work	in	your	project	by	coarse	ideas.	An	idea
could	be	the	version	of	your	software—for	example,	version	1,	version	2,
version	3.	And	spawning	from	those	software	versions	you	might	have	ideas	that
are	in	progress.	These	ideas	are	generally	separated	into	branches	according	to
the	name	of	the	feature	they	represent.	They	might	be	a	bug	fix	or	a	new	feature,
but	they	also	represent	whole	ideas	on	a	smaller	scale.

This	chapter	outlines:

How	to	choose	a	branching	convention	for	your	team

Mainline	development

Branch-per-feature	deployment

State	branching

Scheduled	deployment

There	are	no	limits	to	the	ways	you	can	use	branches.	This	can	be	a	good	thing
and	a	bad	thing.	A	few	artificial	constraints	(conventions)	will	help	you	consider
the	possibilities	for	your	team.

Understanding	Branches

Without	getting	into	the	internals	of	how	Git	works,	having	a	basic
understanding	of	what	a	branch	is	will	help	you	to	choose	and	apply	the
strategies	outlined	in	this	chapter.

Each	Git	repository	contains	a	pool	of	commits.	These	commits	are	linked	to
one-another	through	their	metadata—each	commit	contains	a	reference	to	its
parent.	In	the	case	of	a	merge	commit,	there	may	be	more	than	one	parent
commit	referenced.	I	like	to	think	of	a	branch	as	a	string	of	beads,	with	each
commit	represented	as	a	bead	on	the	string.	The	analogy	isn’t	technically	correct,
but	it	works	quite	well	as	a	mental	model	for	our	purposes.	Branches	in	Git	are
actually	a	named	pointer	to	a	specific	commit.	(Give	yourself	a	magic	wand,	and
tap	on	a	specific	bead	while	saying	a	name.	You	have	just	created	a	named
branch.)	When	you	check	out	a	branch	you	are	copying	the	data	stored	in	the
commit	object	(identified	by	the	pointer)	to	your	working	directory.	Once	the
work	has	been	copied	into	the	working	directory,	you	can	make	as	many	changes
as	you	like	(add,	edit,	delete	files),	and	save	the	changes	as	a	new	commit	object
to	your	local	repository.	The	named	pointer	will	be	automatically	updated	to
point	to	the	new	commit	object	you	have	just	created	and	your	branch	will	be
updated.

Any	commit	objects	you	create	are	local	and	exclusively	yours	until	you	choose
to	explicitly	share	them	with	a	remote	repository.	This	is	radically	different	than
the	centralized	model	of	version	control	where	committing	a	change
automatically	uploads	the	work.	For	some	foreshadowing	of	conflicts	to	come,
just	remember	that	each	developer	has	a	magic	wand	for	his	or	her	own
repository.

To	avoid	conflict,	developers	have	created	conventions	for	the	naming	and	use	of
branches.	These	conventions	help	developers	to	choose	when	to	allow	work	to
diverge	(create	new	branch),	and	when	to	merge	(combine	commit	objects	from
two	or	more	branches).	Generally	there	are	two	types	of	branches	used	in	a
convention:	a	long-running	public	branch;	and	a	short-lived	private	branch.	The
function	of	a	long-running	branch	is	to	act	as	a	mediator	for	code	which	is
contributed	by	lots	of	developers.	The	function	of	a	short-lived	branch	is	to
sandbox	the	development	of	a	new	idea.	These	new	ideas	could	be	bug	fixes,
feature	additions,	or	experimental	refactoring.	It’s	up	to	you!

When	you	share	a	branch	with	others,	you	may	continue	adding	commit	objects

to	your	copy	of	the	branch;	however,	now	that	the	branch	has	been	shared,
someone	else	could	also	be	adding	commit	objects	to	their	copy	of	the	branch.
The	next	time	you	try	synchronize	the	two	copies	of	the	branch	Git,	as	a	simple
content	tracker,	will	defer	to	your	expertise	in	combining	the	two	sets	of	commit
objects	into	a	single	shared	history.	This	pause	in	the	automated	process	is
refered	to	as	a	merge	conflict	which	sounds	scary,	I’ll	admit.	Your	job	is	to
engage	in	conflict	resolution	and	choose	the	best	shared	history	for	the	work	in
question.

You	will	learn	about	strategies	to	keep	your	branches	up	to	date	in	“Updating
Branches”,	and	practical	commands	in	Chapter	7.	Conflict	resolution	is	also
covered	in	Chapter	7.	First,	though,	let’s	take	a	look	at	some	of	the	most
common	branch	naming	strategies	developers	use	for	maintaining	their	work	in
Git.

Choosing	a	Convention
A	convention	is	an	agreed-upon	standard	for	how	things	are	usually	done.	As
developers,	conventions	allow	us	to	quickly	pick	up	the	patterns	of	how	a
software	project	runs	and	integrate	our	work	without	disrupting	the	flow	for
others	on	the	team.	A	documented	convention	makes	onboarding	easier	for	both
the	newcomer	and	others	on	the	team	who	now	need	to	take	less	time	away	from
their	work	to	help	the	new	person.

Choosing	an	appropriate	branching	strategy	for	your	team	requires	a
conversation	with	your	teammates	about	how	you	want	to	release	your	work.
(From	now	on,	I’ll	use	“software”	to	mean	your	project,	even	though	Git	can	be
used	for	other	things	as	well,	such	as	writing	books!)	You	might	want	to	use	a
daily	release	schedule	for	a	website,	but	a	monthly,	quarterly,	or	biannual	release
schedule	for	a	downloadable	software	product.	You	may	even	have	to	comply
with	auditing	or	compliance	regulations	that	have	their	own	requirements.	Once
you	know	how	you	will	release	your	software,	and	whether	you	have	auditing	or
tracking	requirements,	you	can	choose	the	best	branching	strategy	for	your
needs.

If	you	already	know	how	you’ll	be	working,	take	a	few	minutes	to	sketch	out
your	requirements	before	diving	into	the	details	and	choosing	the	branching

strategy	that	best	matches	your	needs.	If	you’re	not	really	sure	what	your	system
will	look	like,	Chapter	4	will	give	you	ideas	about	how	you	might	want	to
structure	your	team	interactions.

As	long	as	your	team	documents	what	they’re	doing,	there	are	no	hard	rules.
Indeed,	if	you	look	at	the	repositories	for	several	open	source	projects,	you’ll	see
that	there’s	no	standard	way	of	doing	things.	I	recommend	using	the	GitHub
mirrors	to	easily	compare	the	branching	strategies	used	by	Drupal,	Git,	and	Sass.
These	three	very	popular	projects	all	use	very	different	branching	strategies.

There	are	no	version	control	police	who	will	show	up	at	your	door	and	tell	you	if
you’re	doing	things	wrong,	and	you’re	almost	guaranteed	to	find	at	least	one
other	team	who’s	making	software	in	a	similar	fashion	to	you.	But	if	you	are	new
to	working	with	version	control,	or	your	team	has	been	struggling	to	figure	out
how	to	make	things	a	little	smoother,	using	one	of	the	conventions	described	in
this	chapter	might	help.

Conventions
When	working	with	software	projects,	there	are	generally	two	different
approaches	teams	can	take:	they	can	either	use	an	“always	be	integrating”
approach,	or	they	can	collate	the	work	that’s	being	done	and	release	a	collection
of	work	all	at	once.	In	between	these	two	opposites	there	are	many	different
variations	on	how	work	can	be	done.

This	section	outlines	several	of	the	most	common	strategies	used	by
development	teams	today.	You	may	choose	to	adopt	one	of	these	strategies
wholesale,	or	adapt	it	for	your	needs.	No	matter	what	you	choose,	remember	to
document	your	decisions.

Mainline	Branch	Development
The	easiest	branching	strategy	to	understand	is	the	mainline	branch	method.	In
this	strategy,	there	are	fewer	branches	to	work	with.	The	developers	are
constantly	committing	their	work	into	a	single,	central	branch—which	is	always
in	a	deployment-ready	state.	In	other	words,	the	main	branch	for	the	project
should	only	contain	tested	work,	and	should	never	be	broken.

https://github.com/drupal/drupal
https://github.com/git/git
https://github.com/sass/sass

As	a	team	of	one,	I	often	work	on	tiny	side	projects	that	only	just	barely	warrant
having	version	control,	such	as	writing	an	article	for	a	magazine.	In	these	cases,
I	commit	all	of	my	work	in	the	default	branch	(named	master	by	Git)	as	is	shown
in	Figure	3-1.	If	I	have	two	unrelated	ideas	that	I	am	working	on,	I	might	be	lazy
and	choose	to	commit	everything,	or	I	might	stash	some	of	the	work	to	save	it
for	later.	For	these	simple	projects,	it	doesn’t	warrant	separating	thinking	into
different	branches	in	order	to	work	efficiently.

READING	BALL-AND-CHAIN	DIAGRAMS
Each	circle	on	the	diagram	represents	a	commit	of	work	stored	in	the	Git	repository	that	can	be
reversed.	The	proper	name	for	these	“ball-and-chain”	commit	diagrams	is	a	directed	acyclic
graph	(DAG).	There’s	no	quiz	where	you	need	to	remember	this.	Promise.	But	it	is	a	useful
term	if	you’re	looking	for	keywords	for	future	research.

Figure	3-1.	Mainline	branch	development:	storing	all	commits	to	a	single	branch

As	the	project	matures,	there	will	be	more	and	more	to	think	about,	and	it	will
get	harder	to	keep	track	of	ideas.	I’ll	start	adding	new	branches	as	I	think	about
new	directions	I	might	want	to	take	my	project	in,	but	that	aren’t	as	fully	thought
out	as	some	of	the	other	pieces	I’m	working	on.	Perhaps	I’ll	even	expand	my
team	and	have	a	reviewer	or	two	with	their	own,	independent	branches,	as
shown	in	Figure	3-2.	As	the	project	grows	in	complexity	(and	team	members),
so	will	the	number	of	branches.	But	they	won’t	all	be	active	all	the	time.	Like	in
the	story	of	Goldilocks	and	the	Three	Bears,	your	team	will	likely	settle	on	a
number	of	branch	types	that	feel	“just	right.”	Each	unit	of	work	(or	sprint)	may
have	an	accordion	effect	on	the	number	of	branches.	At	first,	the	developers	are
all	working	on	their	own	pieces,	and	the	number	of	branches	expands.	Then,	as
each	of	the	developers	finishes	his	or	her	work	and	integrates	it	with	the	others’,
the	accordion	compresses	back	down	again.

At	scale,	this	approach	of	having	a	single	working	branch	is	used	by	teams
working	with	automated	build	procedures.

TERMS	FOR	TEAMS	WHO	ARE	ALWAYS	DEPLOYING
Continuous	integration	is	the	practice	of	having	all	developers	incorporate	their	work	into	the
mainline	of	the	project	several	times	a	day.	Continuous	delivery	is	the	practice	of	automating
the	steps	from	a	developer’s	local	workstation	up	to	the	server	(but	not	deploying	through	an
automated	process).	And	finally,	continuous	deployment	is	the	most	complete	definition	of
automation,	with	all	code	passing	through	a	series	of	test	gates	directly	to	the	production
server.

Figure	3-2.	Mainline	development	with	branching:	branches	separate	the	work	being	contributed	by
multiple	people

Perhaps	it	makes	sense	for	your	team	to	integrate	their	work	into	a	central	branch
regularly,	but	only	deploy	work	occasionally.	As	soon	as	you	start	collecting
your	work,	you	need	to	make	a	distinction	between	what	you	have	locally,	and
what	is	being	used	on	your	production	server.	If	all	code	is	ready	for
deployment,	it	shouldn’t	be	too	big	of	a	deal	to	add	a	little	fix	and	roll	everything
out.	But	what	if	you	have	changes	committed	in	your	repository	that	are	only
mostly	finished?	This	is	where	we	start	to	move	away	from	a	purely	continuous
deployment	strategy,	and	toward	multiple	branches	in	a	scheduled	deployment
strategy.

There	are	several	advantages	to	using	a	branching	strategy	that	encourages
regular	integration	of	your	work:

There	aren’t	very	many	branches	across	the	entire	project.	This	results	in	less
confusion	about	where	a	change	disappeared	into.

Commits	that	are	being	made	into	the	code	base	are	relatively	small.	If	there
is	a	problem,	it	should	be	relatively	quick	to	undo	the	mistake.

There	are	fewer	emergency	fixes,	because	any	code	that	is	saved	into	the
main	branch	is	ready	to	be	deployed.	Deployments	can	often	be	stressful	for
developers	as	they	hold	their	breath	while	code	goes	live	in	production	and
wait	to	hear	back	from	the	code’s	users.	With	tiny	frequent	updates,	this
procedure	becomes	practiced,	and	finally	automated	to	the	point	where	it
should	be	almost	invisible	to	the	end	user.

There	are	disadvantages	to	using	this	strategy	as	well:

The	assumption	is	that	the	main	branch	contains	deployment-ready	code.	If
your	team	doesn’t	have	a	testing	infrastructure,	it	can	be	risky	to	assume	that
new	code	won’t	break	anything,	especially	as	the	project	becomes	more
complex	over	time.

The	notion	of	a	deployment	is	more	appropriate	for	code	that	is	automatically
loaded	onto	a	user’s	device	(for	example,	a	website).	It	is	less	appropriate	for
software	that	must	be	downloaded	and	installed.	While	updates	that	fix
problems	are	welcomed,	even	I	would	get	annoyed	if	I	had	to	download	and

reinstall	an	application	on	my	phone	on	a	daily	basis.

One	of	the	ways	developers	can	verify	code	on	production	is	to	hide	the
feature	behind	a	flag	or	a	flipper.	Facebook,	Flickr,	and	Etsy	are	all	rumored
to	use	this	technique.	The	potential	risk	here	is	that	code	can	be	abandoned
behind	the	flags,	resulting	in	a	large	technical	debt	for	code	that	isn’t	removed
because	it	is	hidden.

Unfortunately,	it	is	out	of	the	book’s	scope	to	describe	how	to	set	up	the
infrastructure	for	continuous	deployment	because	it	will	be	somewhat	dependent
on	the	language	you	are	writing	in	(each	language	has	its	own	testing	libraries)
and	your	deployment	tools.	If	you	would	like	to	read	more	about	the	philosophy,
the	book	Continuous	Delivery:	Reliable	Software	Releases	Through	Build,	Test,
and	Deployment	Automation	by	Jez	Humble	and	David	Farley	(Addison-Wesley
Professional)	is	a	good	starting	place.

Branch-Per-Feature	Deployment
To	overcome	some	of	the	limitations	of	the	single	branch	strategy	just	described,
you	can	introduce	two	additional	types	of	branches:	feature	branches	and
integration	branches.	Technically,	they	aren’t	different	kinds	of	branches;	it’s	just
the	convention	of	what	type	of	work	is	committed	to	the	branch	that	differs.

In	the	branch-per-feature	deployment	strategy,	all	new	work	is	done	in	a	feature
branch,	which	is	as	small	as	it	can	be	to	contain	a	whole	idea.	These	branches	are
kept	up	to	date	with	the	work	being	done	by	other	developers	via	an	integration
branch.	When	it	is	time	to	release	software,	the	build	master	can	selectively
choose	which	features	to	include	in	the	build	and	create	a	new	integration	branch
for	deployment.	As	Figure	3-3	shows,	a	build	does	not	necessarily	include	all	of
the	work	completed	since	the	last	build.

http://bit.ly/aw-continuous-delivery

Figure	3-3.	Branch-per-feature:	feature	branches	are	kept	up	to	date	via	an	integration	branch

By	adding	feature	branches	and	an	integration	branch,	you	can	continue	to	have
deployment-ready	code,	but	also	a	pause	before	deploying	the	code.	The	most
popular	description	of	this	model	is	by	Adam	Dymitruk.	A	slightly	earlier
description	of	this	model	was	by	Scott	Chacon	and	is	named	the	GitHub	Flow.
With	a	few	minor	updates,	this	process	is	still	used	by	GitHub	today.

In	the	GitHub	Flow	branching	model,	anything	in	the	master	branch	is
deployable.	When	working	on	new	code,	GitHub	Flow	has	the	developers	create
a	descriptively	named	feature	branch	and	commit	their	work	regularly	to	this
branch.	This	branch	is	kept	up	to	date	with	master	and	is	regularly	pushed	to	a
branch	on	the	shared	repository,	allowing	others	to	see	which	features	are
actively	being	worked	on.	When	developers	think	their	work	is	complete,	or
when	they	need	help	with	their	work,	they	will	issue	a	pull	request	to	the	master
branch.	In	the	ticketing	system,	there	will	then	be	a	conversation	about	the	work
that	is	being	proposed.

Up	to	this	point,	the	GitHub	Flow	is	virtually	the	same	as	the	Dymitruk	model.

http://bit.ly/branch-per-feature
http://bit.ly/chacon-git-flow
http://bit.ly/ejhw-git-flow

Where	they	differ	is	in	how	the	deployment	happens.	In	the	Dymitruk	model,	a
build	is	made	by	selecting	which	features	are	ready	to	be	incorporated.	In	the
GitHub	Flow	model,	once	a	pull	request	is	accepted,	the	work	is	immediately
ready	to	be	deployed	from	its	feature	branch.	This	makes	the	strategy	closer	to
mainline	development.	Originally,	GitHub	merged	its	feature	branches	into	the
master	branch	and	then	deployed	the	master	branch.	Nowadays,	the	feature
branch	is	deployed	and	if	there	are	no	errors,	it	is	merged	into	master	as	shown
in	Figure	3-4.	This	means	that	if	there	are	problems	with	a	feature	branch,
master	can	immediately	be	redeployed	because	it	is	proven	to	be	in	a	working
state.

Figure	3-4.	GitHub	Flow:	feature	branches	are	deployed	after	a	review	and	then	merged	into	master

There	are	several	advantages	to	using	a	branch-per-feature	deployment	strategy:

Much	like	mainline	development,	the	focus	is	on	rapid	deployment	of	code.

Unlike	the	mainline	development,	there	is	an	optional	build	step.	When	the
build	step	is	used,	there	is	the	option	to	select	which	features	should	be

incorporated	into	the	master	branch	for	deployment.

There	are	disadvantages	to	using	a	branch-per-feature	deployment	branching
strategy	as	well:

If	code	is	kept	on	a	feature	branch,	but	it	is	not	immediately	rolled	into
master,	there	is	an	extra	maintenance	requirement	for	developers	who	need	to
keep	their	features	up	to	date	while	waiting	to	be	rolled	into	the	deployed
branch.

The	semantic	naming	of	the	branches	helps	those	who	are	familiar	with	the
system,	but	it	also	represents	an	insider	language	that	can	make	onboarding
more	difficult	if	there	are	a	lot	of	open	features.

There	is	now	a	housekeeping	requirement	for	developers	to	remove	old
branches	as	they	are	rolled	into	master.	This	isn’t	a	large	burden,	but	it	is
more	than	would	be	required	from	working	out	of	a	single	master	branch.

The	branch-per-feature	strategy	offers	a	nice	middle	ground	between	mainline
development	and	scheduled	deployment.	In	some	ways,	scheduled	deployment
extends	the	branch-per-feature	strategy,	but	with	specific	naming	conventions.

State	Branching
Unlike	the	strategies	up	to	this	point,	state	branching	introduces	the	idea	of	a
location	or	snapshot	for	some	of	the	branches.	Often	our	deployment	diagrams
are	overly	simplified	and	suggest	that	code	moves	between	environments
(Figure	3-5),	but	generally	this	isn’t	really	how	it	happens.	Instead,	Figure	3-6
shows	the	code	is	merged	from	one	branch	to	another,	and	each	of	the	branches
is	deployed	to	a	specific	environment.	(Yes,	we’ll	talk	about	tagged	releases
later.	Patience,	grasshopper.)	As	Figure	3-6	shows,	there’s	often	a	mismatch
between	the	branch	names	that	are	used	and	the	name	of	the	environment	we	are
deploying	to.	(What	does	master	mean?	Is	it	for	production?	For	development?
Are	you	sure?)	This	strategy	was	described	as	the	GitLab	Flow	model.

http://bit.ly/gitlab-flow

Figure	3-5.	Deployment	lies:	code	doesn’t	really	walk	from	the	local	server	to	the	production	server

Figure	3-6.	The	real	deployment	process	uses	a	centralized	code	hosting	system

Through	branch	naming	conventions,	GitLab	Flow	makes	it	clear	what	code	is
going	to	be	used	in	what	environment,	and	therefore	what	conditions	might	need
to	be	met	before	merging	in	commits.	For	example,	you	would	clearly	not	merge
untested	code	into	a	branch	named	production.	Alternatively,	if	you	are	shipping
code	to	“the	outside	world,”	GitLab	Flow	suggests	having	release	branches.
Ideally,	these	release	branches	should	follow	semantic	versioning	conventions,
although	GitLab	Flow	does	not	explicitly	require	it.

KNOW	WHEN	TO	INCREMENT	WITH	SEMANTIC
VERSIONING

In	semantic	versioning,	a	release	should	always	be	numbered	as	follows:
MAJOR.MINOR.PATCH.	The	first	number	(MAJOR)	should	be	incremented	when	you	make
API-level	changes	that	are	not	backward	compatible.	The	second	number	(MINOR)	should	be
incremented	when	you	add	new	functionality	that	does	not	break	existing	functionality	(it	is
backward	compatible).	The	third	number	(PATCH)	should	be	incremented	when	you	make
backward-compatible	bug	fixes.

http://semver.org/

An	interesting	variation	on	the	state	branching	strategy	is	the	branch	naming
convention	that	the	Git	project	uses.	It	has	four	named	integration	branches:

maint
This	branch	contains	code	from	the	most	recent	stable	release	of	Git	as	well
as	additional	commits	for	point	releases	(maintenance).

master
This	branch	contains	the	commits	that	should	go	into	the	next	release.

next
This	branch	is	intended	to	test	topics	that	are	being	considered	for	stability	in
the	master	branch.

pu
The	proposed	updates	branch	contains	commits	that	are	not	quite	ready	for
inclusion.

The	branches	work	much	like	a	stacked	pyramid.	Each	of	the	“lower”	branches
contain	commits	that	are	not	present	in	the	“higher”	branches.	As	is	shown	in
Figure	3-7,	maint	has	the	fewest	commits,	and	pu	has	the	most	commits.	Once
code	has	passed	through	the	review	process,	it	is	incorporated	into	the	next
integration	branch,	getting	closer	to	being	incorporated	into	an	official	release.

http://bit.ly/gitworkflows-docs

Figure	3-7.	Integration	branches	used	by	the	Git	project

There	are	several	advantages	to	using	a	state	branching	strategy:

Branch	names	are	context	specific	and	completely	relevant	to	the	work	at
hand.

There	is	no	guessing	about	the	purpose	of	each	branch,	making	it	easier	for
people	to	select	the	right	branch	when	merging	their	work.

There	are	also	disadvantages	to	using	a	state	branching	strategy:

It’s	not	always	obvious	where	to	start	a	branch	from	without	guidance.

Because	the	branch	names	are	extremely	specific	to	the	context	of	that	team,
it	can	be	harder	to	get	consistency	across	projects,	making	onboarding	more
difficult.

Left	to	my	own	devices,	I	typically	end	up	with	this	style	of	branching	for	my
own	projects.	I	like	using	words	that	mean	something	to	me	instead	of	terms	that
meant	something	to	someone	else	on	some	other	team.	Pedants,	unite!	Unless
you	prefer	your	own	word.	;)

Scheduled	Deployment

Scheduled	deployment	branching	is	the	most	appropriate	strategy	to	use	if	you
do	not	have	a	completely	automated	test	suite,	and	in	any	situation	where	you
must	schedule	a	deployment.	This	may	be	because	you	have	deployment
windows	(for	example,	never	after	4PM,	and	never	on	a	Friday);	or	an	additional
regulatory	gate	you	need	to	pass	through	(for	example,	iOS	applications	being
deployed	to	the	App	Store).	As	soon	as	you	involve	humans	in	a	review	process,
or	someone	else’s	arbitrary	constraints	on	your	deployment	process,	there	will
inevitably	be	delays	somewhere,	and	you	will	need	a	way	to	suspend	your	work
while	you	wait	for	the	humans.

Through	the	different	types	of	branching	strategies,	we	have	been	adding	an
increasing	amount	of	complexity	to	the	branching	that	takes	place	in	a
repository.	We	started	with	just	one	branch,	and	then	we	added	features	and	an
integration	branch.	In	a	scheduled	deployment,	we	add	to	this	again.	However,
scheduled	deployments	can	get	quite	complex	in	their	branching	patterns.	They
should	be	built	up	over	time,	and	only	as	the	complexity	is	warranted.

In	this	section,	I	will	walk	you	through	the	progression	of	how	the	GitFlow
branching	strategy	can	be	implemented	by	a	team.	GitFlow,	the	most	popular
implementation	of	this	strategy,	was	first	described	by	Vincent	Driessen.	It	has
been	used	by	countless	teams	around	the	world	to	structure	software	projects.	It
can	look	very	complex	when	it	is	presented	in	its	final	form.	Fortunately,	though,
software	projects	build	up	to	this	point;	they	don’t	start	out	this	way.	If	there	are
any	parts	of	the	GitFlow	that	which	are	not	relevant	for	your	team,	you	can	omit
them	from	your	project.

Let’s	walk	through	the	model	together.

At	first	your	software	project	has	a	single	branch,	develop.	From	this	branch,
your	programmers	create	a	diverging	branch	and	add	their	features.	Figure	3-8
shows	that	at	this	point,	the	diagram	of	GitFlow	looks	very	similar	to	the
previous	models	described	in	this	chapter.	In	this	case	I	will	use	the	term
“features”	very	broadly.	A	feature	could	actually	be	a	bug	fix,	a	refactoring,	or
indeed	a	completely	new	feature.	Ideally	when	you’re	working	with	a	team,	a
feature	will	be	described	in	a	ticket	before	you	start	your	work,	and	the	branch
name	will	resemble	the	ticket	name.	For	example,	if	you	had	a	ticket	“1234”	that
was	a	bug	report	to	fix	a	broken	link,	and	you	were	using	the	convention
[ticket_id]-[terse_title],	your	branch	name	would	be	1234-

http://bit.ly/nvie-branching-model

fixing_links.

Figure	3-8.	Development	and	feature	branches	used	in	GitFlow

Your	team	works	and	works	and	works	and	then	you	get	to	a	point	where	you
say	“No	new	features!”	We’ll	often	refer	to	this	as	feature	freeze.	At	this	point,	a
new	branch	is	created	from	the	development	branch,	as	shown	in	Figure	3-9,	and
the	only	things	that	can	be	committed	to	this	branch	are	bug	fixes.	These	bugs
may	include	regressions	in	performance,	security	flaws,	and	other	general	bits
and	bobs	that	are	now	broken.	In	more	traditional	Waterfall	team	structures,	this
bug-fixing	period	would	be	led	by	a	quality	assurance	team.	In	a	more	Agile
team,	a	developer	would	follow	the	issues	through	the	series	of	branches	to
deployment,	and	would	even	be	responsible	for	testing	the	work	of	others.	We’ll
talk	more	about	the	review	process	in	Chapter	8.

Figure	3-9.	Feature	freeze	in	GitFlow;	only	bug	fixes	are	allowed

Perhaps	not	all	features	were	completed	when	the	feature	freeze	happened,	so
there	is	still	work	being	committed	to	the	develop	branch.	And	if	bugs	are
reported,	these	bugs	need	to	be	incorporated	“backward”	into	the	develop
branch	as	well.	Figure	3-10	shows	our	first	view	of	a	branching	diagram	with
code	being	merged	in	two	different	directions.	The	longer	your	quality	assurance
period,	the	more	likely	you	are	going	to	have	work	happening	both	on	the
develop	branch	and	also	on	the	release	branch.

Figure	3-10.	Development	continues,	but	is	not	incorporated	into	the	release	branch

After	an	amount	of	time	in	testing,	it	will	be	declared	that	all	bugs	have	been
found,	and	what	remains	is	ready	to	be	deployed.	Congratulations!	At	this	point,
all	code	that	has	passed	quality	assurance	testing	is	committed	to	a	new	branch,
master,	which	is	then	tagged	(like	a	bookmark)	with	the	version	of	the	software

at	that	point.	The	software	is	then	deployed	as	shown	in	Figure	3-11.	Your
project	manager	gives	you	a	heart-shaped	candy,	or	maybe	an	animated	GIF,	and
you	get	the	rest	of	the	day	off.	Good	job,	team!	(If	your	project	manager	is	not
doing	this,	kindly	send	them	my	way	and	I’ll	have	a	little	chat	with	them	on	your
behalf.	We’re	all	friends	here,	it’s	cool.)

Of	course,	reality	dictates	that	sometimes	bugs	that	need	to	be	immediately	fixed
will	sneak	into	the	software.	These	hotfixes	are	so	critical	that	a	programmer
should	not	go	home	for	the	evening	before	they	are	fixed.	They	are	generally
made	by	initiating	a	branch	from	the	production	branch,	and	when	the	hotfixes
are	released,	they	do	not	contain	any	additional	work	that	has	been	happening
since	the	last	official	release,	as	shown	in	Figure	3-12.

Figure	3-11.	Software	is	released	by	merging	onto	a	new	branch,	master,	with	a	tag

DEFINE	“URGENT”	WITH	YOUR	TEAM
A	developer	I	used	to	work	with	once	told	me	that	a	bug	could	only	be	marked	as	a	hotfix	if	he
wasn’t	allowed	to	go	to	the	pub	for	a	pint	of	beer	before	it	was	fixed.	This	radically	changed
my	perception	of	what	it	meant	for	a	problem	to	be	marked	as	urgent.	We	recalibrated	our
definition	of	“urgent”	and	had	fewer	late	nights	as	a	result.	In	the	same	vein,	I	once	worked
with	a	client	who	was	willing	to	mark	tickets	as	“super	very	important,	for	later.”	Have	fun
with	your	naming	conventions	where	you	can	but	make	sure	you	document	what	they	mean	so
you	can	avoid	frustration	of	things	not	being	completed	in	a	timely	manner.

We’ve	slowly	built	up	these	branches	as	we	needed	different	places	for	work	to
continue	happening.	You	don’t	need	to	create	all	of	these	branches	to	start.	In
fact,	it’s	better	if	you	don’t,	because	it	ends	up	being	more	code	to	maintain.
Once	you’ve	got	code	in	production,	and	code	in	development,	you	end	up
having	a	lot	of	wheels	turning	on	your	branching	graph,	as	shown	in	Figure	3-12.
This	can	be	overwhelming	for	a	newcomer,	but	it	will	be	a	natural	progression
for	any	developer	who	has	worked	on	the	project	from	the	beginning.	And	if	you
choose	to	use	this	convention,	it	will	also	feel	familiar	to	any	new	developer	who
has	worked	with	this	model	previously.

Figure	3-12.	A	hotfix	is	made,	rolled	into	master,	and	our	release	tag	is	now	1.0.1

There	are	several	advantages	to	using	a	scheduled	deployment	strategy:

Scheduled	deployment	does	not	require	an	extensive	testing	infrastructure	to
start	using.

The	process	of	building	software,	with	phases	for	development,	quality
assurance,	and	production,	is	very	common.	This	means	GitFlow	conventions
will	feel	very	familiar	to	software	developers	once	they	understand	the
process	of	how	and	where	their	typical	tasks	happen	in	the	branching
convention.

By	adhering	to	conventions,	developers	should	always	be	able	to	determine
from	which	branch	they	should	begin	their	work.

This	is	also	a	good	model	for	versioned	software,	such	as	a	product	that	you’d

download	from	an	app	store	where	it	is	not	appropriate	to	be	deploying	a	new
version	every	few	days.

There	are	disadvantages	to	using	a	scheduled	deployment	branching	strategy	as
well:

There	is	a	lot	of	cognitive	overhead	for	developers	who	are	new	to	software
deployment	and	haven’t	experienced	the	process	of	walking	a	product
through	each	phase	of	development.

If	developers	start	their	work	from	the	wrong	branch,	it	can	be	squirrelly	to
get	everything	back	in	sync.

It’s	not	as	trendy	as	continuous	deployment.

The	scheduled	deployment	strategy	offers	the	most	rigid	conventions	about	how
code	should	be	moved	through	the	review	gates.	It	is	typically	used	when	there
is	little	to	no	automation	for	code	review,	and	it	is	always	present	in	some	form
for	projects	that	are	not	using	an	automatic	deployment	scheme.	Any	time	work
is	collated	before	being	released,	you	will	have	at	least	some	of	the
characteristics	described	in	this	section.

Updating	Branches
This	chapter	has	focused	on	common	strategies	used	to	isolate	and	merge
streams	of	work.	The	strategies	have	focused	on	a	single	best-path	scenario
where	branches	of	work	are	magically	kept	up	to	date	with	all	relevant	work
happening	elsewhere.	In	a	distributed	version	control	system	the	way	you
incorporate	external	work	is	independent	of	the	branching	strategy	that	you’ve
chosen.	When	updating	a	branch,	you	can	choose	from	one	of	two	strategies:
merging	or	rebasing.	Before	diving	into	the	differences	in	these	two	strategies,
let’s	take	a	quick	look	at	how	connections	are	maintained	between	multiple
repositories.

Every	Git	repository	is	an	autonomous	record	of	changes.	Connections	can	be
made	between	repositories	by	establishing	a	remote	reference.	This	reference
allows	a	developer	to	copy	a	record	of	all	commit	objects	made	in	the	remote
repository	to	his	or	her	local	repository.	Remote	connections	are	typically	made
to	repositories	with	at	least	a	partially	shared	history.	For	example,	the	initial

download	of	a	repository	using	the	command	clone	would	result	in	a	duplicate
copy	of	the	remote	repository	and	its	commit	objects.

Let’s	say,	for	example,	you	wanted	to	add	your	work	to	your	coworker’s	branch.
You	make	a	connection	to	their	remote	repository,	fetch	their	branch,	and	try	to
add	your	work.	But	you	can’t!	If	it	were	a	local	branch,	you	could	add	a	few	new
commit	objects	to	the	tip	of	the	branch.	However,	because	it	is	a	remote	branch
you	want	to	update,	you	cannot	assign	a	new	commit	object	as	the	tip	of	the
branch	in	your	repository	because	this	can	only	be	done	by	the	owner	of	the
remote	repository.	Instead,	you	must	first	create	a	new	tracking	branch	to	store
your	changes.

SOME	TRACKING	BRANCHES	ARE	AUTOMATIC
By	default	the	command	clone	will	create	a	tracking	branch	named	master	that	is	identical	to
the	remote	branch	of	the	same	name.

So	now	you	have	a	local	copy	of	a	branch	which	you	can	add	new	commits	to,	a
reference	copy	of	the	branch	which	you	cannot	add	commits	to,	and	the	original
branch	still	exists	in	the	remote	repository.	Inevitably	these	branches	will	get	out
of	sync	as	you	and	your	coworker	make	changes	to	your	respective	repositories.
Remember	when	you	update	your	local	repository	you	have	two	branches	you
need	to	update.	On	its	own	the	command	fetch	will	update	the	reference	copy
of	the	branch,	downloading	any	new	commits.	Your	mutable	tracking	copy	of	the
branch,	however,	can	be	updated	in	more	than	one	way.	The	is	because	you	are
now	merging	two	branches	into	one,	an	action	for	which	there	are	multiple
strategies	in	Git.	And	where	there	is	choice,	there	is	potential	for	disagreement
on	which	method	should	be	used.

The	process	of	updating	your	tracking	branch	from	its	remote	reference	will
typically	be	achieved	by	using	the	command	pull.	However,	pull	is	a
combination	of	two	discrete	steps:	fetch	and	merge	or	fetch	and	rebase.	By
default	the	command	pull	uses	the	merge	strategy	to	update	the	local	branch;
however,	by	adding	the	parameter	--rebase,	a	developer	can	opt	to	bring	his	or
her	local	branch	up	to	date	using	a	rebase	strategy	instead.

All	Your	Rebase	Are	Belong	to	Us
Rebasing	can	be	used	to	update	a	sequence	of	commits	in	one	of	two	ways.	First,
as	an	alternate	method	to	merging	when	incorporate	new	work	from	a	related
branch	(bringing	a	branch	up	to	date).	Second,	to	alter	history	on	the	existing
branch	by	adding,	changing,	or	removing	individual	commits	in	the	branch’s
history	of	commits	to	make	it	a	more	concise	history.	This	section	refers	to	the
former	use	of	the	term.

Rebasing	has	earned	its	reputation	for	being	complicated	and	frustrating.	But
from	a	graphing	perspective,	rebasing	is	actually	the	easiest	strategy	to	read.
Figure	3-13	shows	two	branches	before	and	after	rebasing	one	branch	onto
another.	Typically,	we	explain	rebasing	as	replaying	existing	commits	onto	an
existing	time	line.	This	analogy,	although	technically	incorrect,	works	extremely
well	as	a	mental	model	for	understanding	the	difference	between	merge	and
rebase.

While	the	command	rebase	is	used	to	bring	a	branch	up	to	date,	the	command
merge	is	used	to	introduce	completely	new	work.	When	the	command	merge	is
used	with	the	fast-forward	strategy	the	resulting	graph	is	virtually	identical	to	the
output	of	a	rebased	branch.	This	fast-forward	merging	only	works	if	the	branch
receiving	the	merge	contains	only	commits	that	are	included	in	the	incoming
branch.	As	Figure	3-14	shows,	the	graph	for	a	fast-forward	merge	is	as	clean	as
rebasing.

Figure	3-13.	Rebasing	two	branches	changes	the	history	of	one	branch	so	that	it	appears	as	though	the
other	branch	was	always	in	place

When	there	is	new	work	on	both	branches,	and	you	want	to	combine	the	work,
you	will	need	to	store	the	combined	work	in	a	new	commit.	Several	different
merge	strategies	can	be	applied,	and	Git	will	choose	the	best	one	for	your
particular	situation.	If	you’re	really	curious	about	the	different	merge	strategies,
the	Git	help	pages	for	merging	can	tell	you	how	an	octopus	and	a	recursive
merge	are	different.	To	read	the	documentation,	run	the	command	git help
merge.

NEED	HELP	CHOOSING	BETWEEN	MERGE	AND
REBASE?

The	graphed	output	is	virtually	identical	for	two	branches	which	have	been	combined	using
either	merge	with	fast	forward	or	rebase.	This	can	make	it	confusing	to	know	which	one
should	be	used	at	what	point.	So	confusing,	in	fact,	that	some	teams	choose	to	use	the

commands	interchangeably!	If	you	invest	a	little	time	in	understanding	when	to	use	which
strategy	you	will	have	agility	in	using	different	branching	strategies	for	different	projects	you
may	work	on.	Merge	or	Rebase?	includes	a	decision	tree	diagram	to	help	you	identify	when
you	should	be	using	each	of	the	two	strategies.

Figure	3-14.	Merging	two	branches	using	the	fast-forward	strategy	is	as	clean	as	rebasing

If	you	are	merging	to	bring	your	work	up	to	date,	the	graphed	history	can	get
quite	difficult	to	read	as	the	connections	become	bidirectional.	In	other	words,
history	swerves	between	the	two	branches	as	the	code	is	brought	up	to	date	and
new	features	are	published	into	the	main	branch.	Figure	3-15	shows	how	a
merge	keeps	a	historical	record	of	where	something	came	from.	This	is	great	if
you’re	incorporating	a	feature	branch	into	the	main	development	branch	for	your
project,	but	it	can	be	quite	confusing	if	you’re	trying	to	read	the	history	of	only
the	current	features	because	the	main	development	branch	will	now	be
spaghettied	into	your	history	graph,	with	merged	connections	being	drawn	from
both	the	feature	branch	and	the	integration	branch.

As	a	result	of	this	synchronization	issue,	developers	using	Git	typically	don’t
work	on	the	tracking	branch	when	they	are	planning	to	submit	their	work	back	to

http://gitforteams.com/resources/merge-rebase.html

a	project.	Instead,	a	developer	will	make	a	fourth	copy	of	the	branch	(a	copy	of
the	tracking	branch	which	is	a	copy	of	the	reference	branch	which	is	a	copy	of
the	remote	branch).	Regardless	of	the	branching	strategy,	a	tracking	branch
generally	maps	onto	any	long-running	branch	(e.g.,	master,	or	a	release	branch),
and	the	working	branch	is	a	feature,	ticket,	or	hotfix	branch.

Rebasing	a	branch	to	bring	it	up	to	date	makes	history	easier	to	read	by
simplifying	the	graph.	Rebasing	does,	however,	come	at	a	cost	especially	if	your
copy	of	the	branch	contains	commit	objects	you	have	created.	In	order	to	rebase
a	branch	that	has	its	own	unique	commits,	you	must	replay	each	of	your	commits
onto	the	new	branch	tip—assigning	each	commit	a	completely	new	identifier	in
Git	as	it	is	assigned	a	new	parent.	This	can	cause	confusion	if	the	commit	that	is
assigned	a	new	parent	was	one	that	had	previously	be	shared	in	other	remote
repositories.	In	addition	to	the	new	identifiers,	each	time	you	replay	a	commit,
there	is	a	potential	for	a	merge	conflict,	and	conflicts	are	time	consuming	to	deal
with.	It’s	a	little	like	keeping	timesheets:	so	long	as	you	invest	a	little	time	each
day	to	keep	your	timesheets	up	to	date,	they’re	no	big	deal.	But	if	you’re	really
bad	at	remembering	to	make	entries	on	your	timesheets	each	day,	it	can	be	time
consuming	to	try	and	catch	up.	The	reward	for	maintaining	an	up	to	date	branch
through	a	rebasing	strategy	is	an	easy-to-read	branch	history.	But	is	it	worth	it?	It
can	cost	novice	Git	users	a	fair	amount	of	confidence	if	they	are	not	entirely
comfortable	resolving	merge	conflicts.

Your	homework	is	to	talk	with	your	team	about	which	is	more	important:	ease	of
use	(choose	merging	to	bring	branches	up	to	date),	or	an	easier-to-read	historical
graph	(choose	rebasing	to	bring	branches	up	to	date).

Figure	3-15.	Merging	two	branches	without	the	fast-forward	strategy

Summary
If	you	are	working	with	a	Git	hosting	system,	such	as	GitHub,	Bitbucket,	or
GitLab,	a	branch	might	be	used	to	separate	the	work	being	done	for	a	particular
bug	or	feature	ticket.	Depending	on	your	branching	strategy,	your	goal	may	be	to
keep	the	branches	separate	indefinitely,	or	you	may	want	to	merge	the	branches
every	so	often	to	combine	the	work	that	has	been	done	separately	into	one
deployable	branch.	Even	though	all	of	the	information	is	stored	in	the	repository,
only	one	branch	is	ever	visible	at	a	time.	The	checked-out	branch	is	visible	in	the
working	directory.	So	if	you	have	two	ideas	that	you’ve	been	working	on	and
you	want	them	both	to	be	present	on	your	server,	you’ll	need	to	merge	the	two
branches	into	a	common	branch	so	that	they	can	both	appear	at	once.

This	chapter	covered	several	branching	strategies	that	you	can	use	with	Git,

along	with	variations	within	these	strategies	that	have	been	used	by	some	teams:

Mainline	development

Branch-per-feature	deployment

State	branching

Scheduled	deployment

In	addition	to	these	strategies,	you	will	also	need	to	decide	how	your	team	will
incorporate	new	work	into	shared	branches;	and	keep	branches	up	to	date.	For
very	novice	teams,	there	is	not	always	an	obvious	answer	to	how	branches
should	be	kept	up	to	date.	Two	strategies	were	offered:	rebasing	or	merging.	A
rebasing	strategy	can	be	more	difficult	especially	if	it	is	not	performed	regularly;
however,	it	does	give	your	history	a	cleaner	graph	that	is	easier	to	review.	By
using	merges	to	keep	your	branch	up	to	date,	the	history	of	your	project	will	be
more	difficult	to	review.	So	if	the	origin	of	how	your	work	came	to	be	doesn’t
matter,	you	can	choose	either	strategy,	but	if	you	will	be	reviewing	the	history
often,	rebasing	will	make	future	work	easier	(even	though	it	can	be	more	time
consuming	in	the	moment).

Chapter	4.	Workflows	That	Work

I	love	working	with	teams	of	people	to	hash	out	a	plan	of	action—the	more
sticky	notes	and	whiteboards	the	better.	Throughout	the	process,	there	may	be	a
bit	of	arguing,	and	some	compromises	made,	but	eventually	you	get	to	a	point
where	people	can	agree	on	a	basic	process.	Everyone	gets	back	to	their	desks,
clear	about	the	direction	they	need	to	go	in	and	suddenly,	one	by	one,	people
start	asking,	“But	how	do	I	start?”	The	more	cues	you	can	give	your	team	to	get
working,	the	more	they	can	focus	on	the	hard	bits.	Version	control	should	never
be	the	hard	part.

By	the	end	of	this	chapter,	you	will	be	able	to	create	step-by-step	documentation
covering:

Basic	workflow

Integration	branches

Release	schedules

Post-launch	hotfixes

This	chapter	is	essentially	a	set	of	abstracted	case	studies	on	how	I	have
effectively	used	Git	while	working	in	teams.	You	will	notice	my	strong
preference	for	Agile	methodologies,	in	particular	Scrum,	in	this	chapter.	This
process	for	collaboration	works	well	with	the	popular	workflow	model,	GitFlow.
If	you	are	already	very	familiar	with	GitFlow,	you	should	still	read	the	first
section	in	this	chapter	on	establishing	and	documenting	your	team’s	procedures.

Evolving	Workflows
In	Chapter	2,	you	learned	about	governance	models,	and	in	Chapter	3,	you
learned	about	branching	strategies.	The	way	we	work	together	through	Git	can
get	quite	complicated	very	quickly,	and	the	greater	the	complexity,	the	harder	it
is	to	remember	how	it	all	works.	Establishing	conventions	with	your	team	will
help	to	maintain	consistency,	which	will	help	you	to	quickly	decipher	the	history
of	your	code.

http://bit.ly/nvie-branching-model

In	this	section	you	will	discover:

Basic	tools	to	document	your	team’s	process

Where	documentation	should	be	placed

What	types	of	things	need	to	be	documented

Sample	states	for	your	ticketing	system

It	is	never	too	late	to	talk	to	your	team	about	how	they	want	to	work	together,
and	it’s	never	too	late	to	improve	on	the	processes	you	have	in	place.	If	you	are
using	Agile	methodologies,	you	may	already	have	dedicated	time	for
retrospective	meetings,	or	Kaizens,	to	review	your	development	process.

Documenting	Your	Process
Git,	as	an	inanimate	piece	of	software,	doesn’t	actually	care	how	you	set	things
up.	Rest	easy,	because	Git	won’t	suddenly	reach	out	from	your	computer	and
wag	its	finger	at	you	crossly	if	you	use	the	wrong	branch	name	or	use	merge
when	you	should	have	rebased	(although	sometimes	I	think	it	would	be	nice	if	it
did).	It’s	up	to	you	to	decide	how	you	want	to	use	Git.

The	easiest	way	to	be	consistent	is	to	follow	a	set	of	rules,	or	a	checklist.	Each
time	you	begin	working	on	a	new	site	you	should	document	the	workflow.	By
starting	from	a	template	(Example	4-1),	you	will	ensure	“obvious”	details	are
still	obvious	when	you	onboard	new	people,	or	even	better,	in	a	moment	of
crisis.

Example	4-1.	Template	workflow
Product Manager: Name

Dev site: URL

Branch deployed on dev site: name of branch

Live site: URL

Branch deployed on live site: name of branch

When starting a dev ticket, branch from: name of branch

When starting a hotfix ticket, branch from: name of branch

When updating your work, use: git command

When merging your work post review, use: git command

The	more	details	you	include	in	your	documentation,	the	more	consistency	you
will	have	among	your	teammates,	and	the	easier	it	will	be	to	unpack	the
historical	record	of	your	repository.

If	you	are	collocated,	sit	down	and	sketch	out	the	diagram	of	where	the
permission	divisions	should	be	made	in	your	code.	If	you’re	a	distributed	team,
that	doesn’t	mean	you	can’t	still	sketch	things	out.	And	you	don’t	need	to	be	an
illustrator.	There	are	lots	of	decent	diagram	programs	out	there	to	help	you
sketch	out	your	ideas.	I’m	a	fan	of	Balsamiq	for	very	basic	diagrams.	Others
have	also	recommended	Pencil,	OmniGraffle,	Dia,	and	Inkscape.	The	diagrams
from	Chapter	2	will	be	a	useful	starting	point	for	many	teams.	All	of	the
diagrams	from	this	book	are	also	available	as	both	SVG	files	and	Balsamiq	files.
You	can	download	them	from	the	Git	for	Teams	Diagrams	repository.

Documenting	Encoded	Decisions
Throughout	this	book,	I	will	talk	about	working	on	tickets,	or	issues.	The	rigor
of	open	source	software	projects	has	enforced	more	than	a	few	good	work	habits,
one	of	which	is	the	use	of	a	bug	tracker	to	capture	all	requirements.	For	open
source	projects,	I’ve	used	product-specific	trackers,	such	as	the	Drupal	Project
module	(affectionately	referred	to	as	The	Issue	Queue);	and	generic	solutions,
such	as	GitHub.	For	internal	projects,	I’ve	also	used	Pivotal	Tracker,	JIRA,
Redmine,	and	Unfuddle,	among	others.

Each	of	these	systems	has	positive	and	negative	aspects.	I	don’t	have	any	one
favorite	product.	At	their	core,	these	systems	allow	you	to	document	and	track
the	discussion	of	the	work	to	be	done,	the	tasks	that	need	to	be	completed,	and	a
summary	of	any	follow-up	issues	that	may	have	been	discovered	during	quality
assurance	testing.	I	cannot	imagine	working	with	a	team	where	there	wasn’t	a
centralized	ticket	tracker	capturing	the	information	about	the	work	being	done.

Collocated	teams	may	choose	to	use	a	whiteboard	and	sticky	notes	to	show	what
is	currently	being	worked	on.	Some	teams	also	use	very	simple	spreadsheets	to
track	who	is	currently	working	on	what	task.	Perhaps	the	conversations	and
related	assets	(e.g.,	diagrams,	design	assets,	wireframes)	are	stored	in	a	wiki	so
that	whiteboards	can	be	wiped	down	and	used	for	the	next	conversation.	No
matter	which	system	you	use,	I	encourage	you	to	track	at	least	the	rationale	for
the	decisions	that	are	made	about	why	features	are	being	built	in	an	easy-to-read
and	searchable	system.	If	you	don’t	capture	this	information	in	writing
somewhere,	you	may	have	to	resort	to	guessing	about	why	decisions	were	made
in	the	past.

https://balsamiq.com/
http://pencil.evolus.vn/
https://www.omnigroup.com/omnigraffle
http://dia-installer.de/
http://www.inkscape.org/en/
https://github.com/gitforteams/diagrams
https://drupal.org/project/project
https://github.com/
http://www.pivotaltracker.com/
https://www.atlassian.com/software/jira
http://www.redmine.org/
https://unfuddle.com/

Using	ticketing	systems,	however,	can	make	teams	dependent	on	sticking	with
that	particular	system	if	the	decisions	aren’t	also	captured	in	the	commit
messages	for	each	change	to	the	repository.	Your	team	may	choose	to	think	of
the	conversation	as	ephemeral,	tracking	conclusions	in	commit	messages	and
allowing	themselves	to	move	on	from	the	conversation	itself.

It’s	a	balance.	The	trick	is	to	anticipate	future	conversations	and	ensure	your
tracking	system	has	a	way	to	easily	answer	questions.	Perhaps	you	want	to
prevent	a	future	developer	from	forcing	you	to	rehash	a	conversation	after	a
decision	is	made.	In	this	case,	you’ll	want	a	ticketing	system	that	shows	the
progression	of	arguments	from	both	sides	(as	comments)	as	well	as	the	final
conclusion,	and	a	link	to	the	commit	where	the	decision	was	solidified	as	code.
Perhaps	you	are	creating	software	that	is	subject	to	industry	regulations	and	you
are	required	to	prove	that	software	has	been	through	a	specific	review	process.	In
this	case,	it	may	be	sufficient	for	your	software	repository	to	have	signed
commits	from	individual	quality	assurance	testers.

I	don’t	think	there	is	any	one	system	that	is	better	at	tracking	software
development.	Many	have	strengths,	and	they	all	have	their	limitations.	If	you	are
using	a	specific	process	management	philosophy	that	advocates	a	specific	task
workflow,	you	may	find	it	easier	to	use	software	products	that	have	been
optimized	for	this	process.	For	example,	a	Kanban	board	is	a	very	specific	way
of	dealing	with	tasks.

Most	of	the	Git	hosting	platforms	also	have	a	basic	ticket	tracker	to	help	you
coordinate	the	development	of	your	project.	Part	III	covers	three	of	these
systems	(Bitbucket,	GitHub,	and	GitLab)	in	greater	detail.

Ticket	Progression
Even	if	you	are	working	on	an	internal	project	without	fixed	deadlines,	I
recommend	finding	a	small	unit	of	time	to	iterate	through.	My	personal
preference	is	for	one-week	sprints.	For	internal	projects,	these	sprints	can	act	as
arbitrary	deadlines	to	keep	the	team	motivated	and	moving	forward.	At	the	end
of	each	sprint,	I	recommend	hosting	an	internal	demo	so	that	the	team	can	show
off	their	work.	This	public	display	of	work	keeps	developers	accountable.	If	your
team	is	distributed,	you	can	host	these	demos	over	Google	Hangout,	or

http://www.google.com/+/learnmore/hangouts/

GoToMeeting	for	larger	teams.

Project	methodologies	that	track	the	work	of	people	will	all	have	some	variation
of	these	basic	ideas:

Not	Now
In	Scrum	terms,	this	would	be	referred	to	as	the	product	backlog,	Essentially,
though,	it’s	anything	that	has	not	been	deemed	relevant	for	this	work	effort
(or	sprint).	Developers	should	not	pick	from	this	list	of	tickets.	The	backlog
should	be	prioritized	to	give	hints	to	the	team	on	what	should	be	worked	on
in	the	next	work	sprint.	Recently,	a	team	that	I	worked	with	referred	to	this	as
the	“super	very	important	for	later”	pile.

Ready	for	Work
Prioritized	tickets	for	this	work	iteration.	These	tickets	might	be	blockers	for
tickets	in	the	backlog,	or	simply	be	the	next	piece	the	team	has	chosen	to
work	on.	Your	team	may	want	to	subdivide	this	stage	into	separate
subcategories,	such	as:	Ready	for	Development,	Ready	for	Code	Review,
Ready	for	Testing,	Ready	for	Client	Approval,	and	Ready	for	Deployment.

In	Progress
A	developer	is	currently	working	on	this	ticket,	or	a	quality	assurance	review
is	being	done.	With	larger	teams,	you	may	want	to	break	this	category	down
further	as	well.	For	example:	In	Definition,	In	Development,	and	In	Testing.

Completed
The	work	has	been	finished,	or	has	been	canceled.	Perhaps	there	were
follow-up	tickets,	but	only	very	rarely	should	a	ticket	be	reopened	after	it	has
passed	a	code	review,	quality	assurance	review,	and	a	client	review.

DO	NOT	ALLOW	YOUR	PROJECT	MANAGERS	TO
OVERCATEGORIZE!

Allow	your	team	to	grow	into	states	as	needed.	I	have	worked	on	too	many	projects	where	a
team	of	project	managers	had	decided	on	a	range	of	categories	that	described	every	possible
state.	The	system	was	always	cumbersome	to	use.	(And	I	am	a	category	loving	manager!)	The
developers	never	liked	trying	to	remember	to	micro-shift	their	tickets,	and,	more	often	than
not,	the	tickets	weren’t	in	the	right	state	unless	a	project	manager	was	the	one	moving	the
tickets	through	the	progression	of	states.	Have	compassion	for	developers	who	want	to

http://www.gotomeeting.com/

develop,	not	spend	their	day	updating	timesheets	and	micromanaging	ticket	updates.	Start
simple.	Make	as	few	categories	as	possible.	As	the	team	of	developers	asks	for	new	states,	add
them.

As	an	example	of	a	variation,	the	team	I	worked	with	in	the	fall	of	2014	had	nine
people	working	in	the	ticket	tracker	on	the	tickets	throughout	the	project	(a
relatively	small	project,	but	a	typical	team	size	for	Agile	projects).	The	ticket
tracker	had	summary	columns	for	the	following	statuses:

On	Deck
This	ticket	is	ready	to	be	worked	on,	and	should	be	completed	during	this
week’s	work.

In	Progress
This	ticket	is	actively	being	worked	on.

Pull	Request
The	code	has	been	written,	and	is	ready	to	be	reviewed	and	merged	into	the
main	branch.

Needs	Testing
The	code	has	been	reviewed,	and	rolled	into	the	development	branch.	It	is
ready	to	be	reviewed	on	the	quality	assurance	server	by	a	team	member.

Done
The	ticket	is	completed.	This	state	is	also	used	for	tickets	that	are	closed
without	being	completed	(duplicate	task,	feature	no	longer	needed).

The	backlog	was	simply	a	collection	of	tickets	without	a	status	assigned.

If	a	developer	was	ever	blocked,	he	or	she	would	reassign	the	ticket	to	the	person
most	likely	to	“unstick”	the	issue.	Getting	into	the	habit	of	trading	tickets	to
communicate	with	others	is	a	cultural	piece	that	won’t	work	for	all	teams—but	it
does	seem	to	work	well	for	distributed	teams	where	you	can’t	just	tap	someone
on	the	shoulder	to	get	your	questions	answered.

I	love	a	categorization	system	more	than	the	average	developer;	however,	adding
complexity	has	consequences.	Complexity	increases	the	time	it	takes	people	to

decide	which	variation	their	ticket	currently	belongs	to	(“is	this	Needs	Testing	or
Pull	Request?”).	It	also	increases	the	number	of	times	developers	have	to	open
the	ticketing	system,	instead	of	their	code	editor.	This	has	the	potential	of	both
improving	communication	with	other	developers	and	slowing	down	the	actual
doing	of	the	work.	You’ll	need	to	monitor	this	closely	to	see	where	you	can
make	refinements	to	improve	your	own	process.

PICK	YOUR	OWN	BATTLES
Teams	I’ve	worked	on	have	responded	well	to	developers	being	able	to	self-assign	at	least	a
few	of	their	own	tickets.	Sure,	there	may	be	some	tickets	that	require	the	specialized
knowledge	of	one	person,	but	it’s	amazing	how	much	of	a	difference	it	can	make	when	it’s	that
one	person	who	identifies	he	or	she	needs	to	work	on	that	ticket	instead	of	being	told	what	to
do.

It	is	near	impossible	to	over-communicate	with	your	team	members.	I	don’t
mean	filling	your	time	with	unstructured	meetings;	I	mean	truly	communicating
what	you	are	working	on,	and	what	is	preventing	you	from	getting	your	tasks
completed.	The	ticket	status	helps	you	to	standardize	the	communication—so
make	it	easy	to	keep	up	to	date,	and	ensure	everyone	on	the	team	gets	into	the
habit	of	confirming	their	ticket	status	once	a	day.

A	Basic	Workflow
This	basic	workflow	is	appropriate	for	small	teams	of	one	or	two	trusted
developers.	As	was	mentioned	in	the	introduction,	it	is	a	stripped	down	version
of	GitFlow;	but	without	the	extra	levels	of	complexity,	it	also	resembles	a
branch-per-feature	workflow.	As	such,	you	may	find	it	also	works	well	for	teams
of	developers	with	a	testing	infrastructure,	who	are	aiming	for	rapid	deployment
of	code.

Key	characteristics	include:

Governance	model:	contributors	with	shared	maintenance

Integration	merge:	performed	by	original	developer

Integration	branch:	develop

My	personal	preference	for	this	workflow	is	closer	to	a	Kanban-style	system,
which	allows	tickets	to	flow	through	a	work	board;	however,	I	find	it	much
easier	to	communicate	plans	to	outside	stakeholders	by	using	the	Scrum
approach	to	time-boxed	sprints.	In	Scrum,	a	specific	set	of	tickets	is	loaded	into
a	sprint	and	the	goal	is	to	get	the	number	of	outstanding	tickets	down	to	zero	by
the	deadline.	For	internal	projects,	Scrum-style	sprinting	can	act	as	arbitrary
deadlines	to	keep	teams	motivated	and	moving	forward.

At	the	end	of	each	sprint,	I	recommend	hosting	an	internal	demo	so	that	the	team
can	show	off	their	work	and	ask	for	help	from	the	wider	group	if	they	are	stuck
on	a	specific	piece.

The	workflow	is	as	follows:

1.	 As	you	begin	a	ticket,	update	the	status	in	the	ticket	tracker	to	say	the	ticket
is	In	Progress.	This	will	notify	your	team	about	what	you	are	currently
working	on,	and	will	give	you	the	number	for	the	branch	you	will	create	to
work	on	your	ticket.

2.	 From	the	branch	develop,	create	a	new	branch	whose	name	includes	the
ticket	ID	and	a	terse	description	of	the	work.	If	you	are	working	on	tickets
that	have	subtasks,	ensure	the	branch	name	uses	the	most	relevant	ticket
number.	For	a	bigger	feature,	this	ticket	might	be	referred	to	in	your
ticketing	system	as	a	Meta	ticket	or	Epic	ticket.	If	you	are	working	on	only
part	of	the	larger	feature,	you	should	use	the	smallest	relevant	ticket
number.	Your	ticket	system	might	refer	to	this	as	a	user	story,	an	issue,	or
bug	ticket.

3.	 Work	on	your	ticket,	ensuring	you	keep	the	ticket	branch	up	to	date	with
any	changes	that	might	have	been	incorporated	into	the	branch	master
since	you	started	your	work.	Begin	each	commit	message	with	the	ticket
number	enclosed	in	square	brackets:	[#1234].

4.	 Run	relevant	tests	for	your	code	to	ensure	typos	and	basic	errors	are
caught.	This	may	include	a	spellcheck,	and	a	language	syntax	check
(linting).	If	you	are	working	in	a	test	driven	environment	you	will
definitely	have	additional	tests	to	run.

5.	 When	you	have	completed	your	work	(or	think	you	have!),	make	a	final
commit	with	the	keyword	“Resolves”	and	then	the	ticket	number:

Resolves #1234.

6.	 Optionally,	push	your	ticket	branch	to	the	code	hosting	repository.	With	the
keyword	in	place	in	your	commit	message,	this	will	move	your	ticket
tracker	forward	to	the	next	step.

7.	 In	your	ticket	tracker	add	a	comment	to	the	ticket	to	include	a	note	about
the	rationale	for	the	approach	you	took	and	some	kind	of	proof	that	the
work	was	been	completed.	For	example,	a	screenshot	of	how	the	ticket
changes	the	display	on	your	local	development	environment.	This	acts	as	a
sanity	check	later	if,	suddenly,	things	stop	working.

8.	 Ensure	the	ticket	branch	is	up-to-date	and	then	merge	your	work	in	the
branch	develop,	and,	assuming	there	are	no	merge	conflicts,	push	the
updated	branch	to	the	central	repository.

9.	 Assuming	there	were	no	new	problems	introduced	by	the	new	work
(regressions),	the	ticket	can	be	closed.

10.	 Finally,	delete	your	local	ticket	branch	and	the	remote	copy	of	the	ticket
branch.

TIP
In	some	ticketing	systems,	adding	a	pound	sign	(#)	will	automatically	link	the	commit	message
to	the	ticket	number.	Adding	square	brackets	around	the	ticket	number	will	ensure	that	commit
messages	aren’t	omitted	if	you	choose	to	rebase	your	work	because	lines	beginning	with	a	#
are	ignored	when	commit	messages	are	automatically	composed	for	the	new	commit	objects.
In	many	systems,	including	the	keyword	“resolves”	will	automatically	move	a	ticket	from	In
Progress	to	the	next	state	(for	example,	Needs	Testing	or	Closed);	this	will	vary	depending	on
the	ticketing	system	you’re	using.	Check	the	documentation	for	whatever	system	you	are
using.

This	pattern	works	extremely	well	for	small	teams	with	no	peer	review
requirements.	As	your	team	starts	to	grow,	or	if	you	have	a	specific	quality
assurance	process	you	need	to	undergo,	you	may	find	this	pattern	is	not	rigorous
enough	for	your	needs.

Trusted	Developers	with	Peer	Review

This	expands	the	basic	team	workflow	by	adding	a	peer	review	process.	Now,
every	ticket	is	reviewed	by	someone	on	the	team	from	a	code	perspective.	The
rationale	for	peer	review	testing,	and	not	just	automated	testing	(or	test-driven
development),	is	covered	in	Chapter	8.

Key	characteristics	include:

Governance	model:	contributors	with	shared	maintenance

Integration	merge:	performed	by	the	reviewer

Integration	branch:	develop

The	workflow	is	as	follows:

1.	 As	you	begin	a	ticket,	update	the	status	in	the	ticket	tracker	to	say	the	ticket
is	In	Progress.

2.	 From	your	local	copy	of	the	branch	develop,	create	a	new	branch.

3.	 Work	on	your	ticket,	ensuring	your	branch	is	kept	up	to	date	with	rebasing.
Begin	each	commit	message	with	the	ticket	number	enclosed	in	square
brackets	([#1234]),	or	with	the	keyword	“Resolves”	and	then	the	ticket
number:	Resolves #1234.

4.	 Run	relevant	tests	for	your	code	to	ensure	typos	and	basic	errors	are
caught.	This	may	include	a	spellcheck,	and	a	language	syntax	check
(linting).	If	you	are	working	in	a	test	driven	environment	you	will
definitely	have	additional	tests	to	run.

5.	 Push	your	branch	to	the	code	hosting	repository.	This	acts	as	your	backup,
so	don’t	skimp	on	this	step!

6.	 When	you’ve	finished	working	on	your	ticket,	ensure	the	branch	is	up	to
date	with	develop,	and	uploaded	to	the	code	hosting	system.	Mark	your
ticket	as	Needs	Testing	in	the	ticket	tracker.

Assuming	a	manual	review	is	necessary,	and	there	isn’t	a	series	of	automated
tests,	the	reviewer	will	finish	off	the	remaining	steps:

1.	 Perform	a	review	of	the	work	according	to	the	original	ticket	description.	It
is	the	coder’s	responsibility	to	ensure	his	or	her	work	is	clear,	and	that	the
steps	to	test	the	work	are	coherent.	If	necessary,	send	the	ticket	back	to	the
developer	with	any	necessary	changes,	or	to	bring	the	branch	up	to	date	if

it	has	gotten	out	of	sync	with	develop.

2.	 Merge	the	ticket	branch	into	the	branch	develop,	and,	assuming	there	are
no	merge	conflicts,	push	the	updated	branch	to	the	central	repository.

3.	 Assuming	there	were	no	regressions,	the	reviewer	will	now	close	the	ticket
and	notify	the	developer	that	his	or	her	work	has	been	merged	into	the
main	branch.	Both	the	developer	and	the	reviewer	can	now	delete	their
local	copies	of	the	ticket	branch.	Because	they	are	currently	in	cleanup
mode,	the	reviewer	should	delete	the	remote	copy	of	the	ticket	branch;	the
developer	might	have	to	break	focus	in	the	current	task	to	do	the	cleanup.
Wherever	possible,	we	should	protect	the	focus,	and	flow,	of	our
teammates.

Once	your	team	is	large	enough	to	have	a	review	process,	it	makes	sense	to	also
have	a	shared	development	server	from	which	the	team	can	conduct	regular
demos	of	their	work.	This	development	server	can	also	double	as	a	quality
assurance	machine	during	the	development	process.	To	reduce	the	overhead	for
team	members	needing	to	check	out	the	latest	version	of	the	develop	branch	and
build	the	software,	you	may	choose	to	set	up	a	Jenkins	instance	to	automate	the
process.

Untrusted	Developers	with	QA	Gatekeepers
This	process	is	a	minor	variation	on	the	previous	section	“Trusted	Developers
with	Peer	Review”.	This	time	the	process	assumes	an	untrusted	developer,	who
is	not	allowed	to	merge	anyone’s	work	into	the	main	branch.	Instead,	a	trusted
quality	assurance	(QA)	team	performs	the	final	merge.

Key	characteristics	include:

Governance	model:	contributors	with	collocated	repositories

Integration	merge:	performed	by	the	reviewer

Integration	branch:	develop

Developers	begin	by	creating	a	fork	of	the	project	on	the	code	hosting	system,
and	then	creating	a	local	clone	from	this	forked	copy	of	the	repository.	This	step
is	only	performed	once.

The	workflow	is	as	follows:

http://jenkins-ci.org

1.	 To	begin	a	ticket,	update	the	status	in	the	ticket	tracker	to	say	the	ticket	is
In	Progress.

2.	 From	your	local	copy	of	the	branch	develop,	create	a	new	branch.

3.	 Work	on	your	ticket,	ensuring	your	branch	is	kept	up	to	date	with	rebasing.
Push	your	ticket	branch	to	your	fork	of	the	project	as	a	backup	of	your
work	in	progress.

4.	 Run	relevant	tests	for	your	code	to	ensure	typos	and	basic	errors	are
caught.	This	may	include	a	spellcheck,	and	a	language	syntax	check
(linting).	If	you	are	working	in	a	test	driven	environment	you	will
definitely	have	additional	tests	to	run.

5.	 When	you’ve	finished	working	on	your	ticket,	ensure	the	branch	is	up	to
date	with	develop,	and	push	your	work	to	your	forked	repository.	Open	a
pull	request	(in	some	ticketing	systems,	this	might	be	called	a	merge
request)	for	your	work.

The	reviewer	will	finish	off	the	remaining	steps:

1.	 Perform	a	review	of	the	work	according	to	the	original	ticket	description.

2.	 On	the	main	copy	of	the	repository,	accept	the	pull	request.	Depending	on
the	ticketing	system,	this	might	be	done	via	a	web	UI,	or	in	a	local	clone	of
the	repository.

3.	 Assuming	there	were	no	regressions,	close	the	ticket.	Because	the	work
was	completed	in	a	fork	of	the	main	project,	there	is	no	additional	cleanup
in	the	main	repository.

This	approach	also	works	well	if	your	team	is	mostly	trusted	developers,	but	you
have	a	few	contractors	as	well.	You	might	want	to	have	your	contractors	working
in	a	fork	of	the	repository,	instead	of	giving	them	write	access	to	the	main
project.	For	some	types	of	software,	this	split	might	even	be	a	requirement	for
your	own	staff.	For	example,	if	you	were	working	on	firmware	for	a	medical
device,	you	might	have	very	strict	government	regulations	you	need	to	follow	on
who	is	allowed	to	check	in	work,	and	how	that	work	must	be	reviewed	before	it
is	added	to	a	repository.

Releasing	Software	According	to	Schedule

The	vast	majority	of	the	projects	I	have	worked	on	have	used	a	release	schedule
to	expose	new	versions	of	the	software	to	its	users.	The	process	described	in	this
section	is	based	almost	entirely	on	the	very	popular	workflow,	GitFlow.	If	you
are	deploying	continuously,	and	do	not	collate	multiple	tickets	worth	of	work
into	a	specific	release,	this	section	will	not	be	relevant	to	you.

Publishing	a	Stable	Release
Up	to	this	point,	all	of	the	examples	have	been	working	from	the	branch,
develop.	Eventually,	though,	you’ll	want	to	release	the	product	you’ve	been
working	on.	When	you’re	ready	to	do	this,	you	will	need	to	split	your	repository
into	a	public-facing	stable	version	of	the	product,	and	a	developer-facing	“no
guarantees”	version	of	the	product.

When	the	first	version	of	your	software	is	launched,	a	development	manager	will
prepare	the	repository	for	a	code	release.	Generally	this	work	is	done	locally,	and
then	pushed	up	to	the	main	copy	of	the	repository.

The	workflow	is	as	follows:

1.	 From	an	agreed-upon	commit,	create	a	new	branch	named	master.

2.	 Tag	the	agreed-upon	commit	with	a	version	number	with	an	easy-to-
remember	naming	convention.	For	example,	v1.0.

3.	 Push	the	updated	repository	to	the	central	code	hosting	system.	If	an
automated	build	process	is	not	being	used,	update	the	relevant	servers	with
the	new	code.

Once	the	first	release	has	been	published,	you	will	now	split	your	work	into
stable,	public-facing	work	and	ongoing	development.

Ongoing	Development
Once	an	official	release	of	a	product	has	happened,	your	team	will	effectively	be
forced	to	think	in	two	separate	spaces	at	once:	monitoring	the	health	of	the	live
code,	and	continuing	the	development	process	to	add	new	features	or	improve
those	that	already	exist.

My	preference,	again,	is	for	short	work	sprints.	Developers	are	motivated	to	see
their	work	in	action.	The	longer	the	sprint,	the	longer	people	have	to	wait	to	see

http://bit.ly/nvie-branching-model

others	engaging	with	their	work.

The	one-week	release	schedule	I	commonly	use	has	the	following	routine.	The
days	vary	a	little	from	team	to	team,	but	the	generalized	procedure	is	a	good
starting	point	for	many	teams.

Setup	(Mondays):

All	work	in	the	develop	branch	is	merged	into	the	testing	branch,	qa.	Any
work	that	isn’t	completed	and	peer	reviewed	by	Monday	simply	remains	in	its
ticket	branches.

The	testing	server	is	updated	with	the	latest	version	of	the	qa	branch.

A	QA	checklist	should	be	created	for	each	of	the	user	stories	completed	in	the
last	week	of	work.	A	standardized	ticket	format	will	make	this	list	easy	to
compile.

You	may	want	to	compile	your	QA	checklist	in	a	separate	document,	such	as	a
Google	Doc,	or	an	internal	wiki.	I’ve	also	used	saved	queries	in	JIRA	to	look	for
tickets	resolved	in	the	last	week,	or	which	have	been	tagged	for	a	specific
release.	This	will	depend	entirely	on	how	you	choose	to	track	progress	in	your
ticketing	system.

Testing	(Mondays	and	Tuesdays):

Automated	tests	are	run	to	ensure	no	new	business-critical	interactions	have
suffered	regressions	(site	visitors	and	members	can	still	use	all	expected
functionality).

Team	members	responsible	for	testing	complete	the	checklist	and	update	the
tickets	according	to	a	PASS	or	FAIL	grade.

Any	bugs	that	are	found	have	new	tickets	opened	and	are	addressed	before
launch	day	by	either	a	new	fix,	or	by	removing	the	relevant	commits	from	the
qa	branch.

Launch	Day	(Wednesday):

The	qa	branch	is	merged	into	the	master	branch	and	tagged	with	the	release
version.

The	live	site	is	brought	up	to	date	by	checking	out	the	commit	on	the	master
branch,	which	has	been	designated	as	the	newest	release	for	the	project.

Using	an	explicit	tag	ensures	you	can	easily	roll	back	to	a	previous	known
state.

Announcements	about	the	latest	features	and	fixes	are	posted	to	the	development
blog.	Many	teams	choose	to	wait	a	day	or	two	after	Launch	Day	before
publishing	the	blog	post.	This	allows	the	team	to	ensure	the	release	is	stable	and
does	not	need	to	be	reversed.

Post-Launch	Hotfix
Sometimes	deployed	code	has	mistakes	in	it.	If	a	bug	needs	to	be	fixed	quickly
before	the	next	batch	of	software	is	ready,	an	out-of-cycle	fix	might	need	to	be
made.	These	deployments	are	referred	to	as	a	hotfix.

In	a	hotfix,	the	work	begins	not	from	the	develop	branch,	but	from	the	master
branch.	This	ensures	the	changes	only	introduce	a	fix	that	addresses	the	problem
identified	in	the	deployed	code.

The	workflow	is	as	follows:

1.	 To	create	a	hotfix	branch,	start	by	checking	out	the	master	branch,	not	the
develop	branch.	This	will	ensure	that	no	additional	features	accidentally
sneak	into	the	fix.

2.	 Generate	a	list	of	tag	names,	and	locate	the	latest	tagged	release.

3.	 From	the	latest	tagged	release	on	the	master	branch,	create	a	new	branch,
using	the	branch	name	hotfix-	<ticket_number>-<description>.	For
example,	hotfix-1234-fixing_three_seat_issue.

4.	 Complete	the	same	review	steps	as	you	would	for	a	development	ticket.

5.	 Merge	the	tested	hotfix	branch	into	the	master	branch.

6.	 Tag	the	new	commit	on	the	master	branch	with	the	latest	release	version.
For	example,	v1.0.1.

7.	 Merge	the	tested	hotfix	branch	into	the	development	branch	so	that	the
changes	are	not	lost	in	the	next	official	release	of	the	software.

Collaborating	on	Nonsoftware	Projects

Git	isn’t	just	for	software	developers!	As	a	technical	author,	I’ve	used	Git	a	lot	to
track	changes	to	files	that	weren’t	software—for	example,	configuration	files,
articles	I’m	writing,	and	even	this	book!	Some	people	even	use	Git	to	maintain	a
personal	journal.	To	illustrate	the	importance	of	matching	the	Git	commands	to
the	team’s	process,	let	me	explain	how	I	structured	the	repository	for	this	book.

While	writing	this	book,	I	worked	with	the	O’Reilly	automated	build	tool,	Atlas.
This	system	also	has	a	web-based	GUI,	which	allows	editors	to	work	on	book
files	directly,	and	saved	files	are	immediately	committed	to	the	master	branch.
Due	to	the	GUI,	there	is	no	peer	review	process	because	anyone	on	my	team	is
able	to	make	edits	directly	to	a	file.	My	preference,	however,	is	to	work	locally,
and	not	through	a	web	GUI.	Initially,	I	had	been	keeping	the	branch	overhead
low	locally	and	had	just	been	working	in	master	as	well.	It	only	took	me	one
merge	conflict	to	alter	the	way	I	was	working	locally.

When	I	wanted	to	update	my	work,	I	would	use	the	command	fetch	to	see	if
any	changes	had	been	made	by	my	editors.	With	the	fetch	completed,	I	would
compare	my	copy	of	the	master	branch	with	their	copy	of	the	master	branch
(origin/master).	Assuming	I	agreed	with	all	the	editors’	changes,	I	would
merge	in	the	editors’	copy	of	the	branch;	if	I	disagreed,	I	would	merge	in	their
branch	with	the	strategy	--strategy-option=ours,	effectively	throwing	out
their	changes	but	letting	Git	think	that	the	two	branches	were	merged.

This	can	be	done	on	a	per-commit	basis,	or	if	there	is	a	merge	conflict,	it	can	be
done	on	a	very	granular	line-by-line	basis	with	a	merge	tool.	(It	feels	a	bit
passive-aggressive	to	be	throwing	stuff	out,	but	really	it’s	just	the	limitation	of	a
single	branch	system	where	you	don’t	have	the	ability	to	talk	about	the	proposed
changes	in	a	separate	branch.)	Depending	on	the	granularity	of	the	commits,	I
might	also	choose	to	cherry-pick	some	commits	(and	keep	them),	but	discard
other	commits.

Then	I	started	getting	reviews	as	marked-up	PDFs	and	realized,	once	again,	I
had	another	way	that	I	wanted	to	separate	work.	I	wanted	to	be	able	to	write	a
chapter	and	keep	those	commits	nice	and	tidy,	but	sometimes	I	was	mid-chapter
when	an	edit	came	in	that	I	wanted	to	address	immediately.	Instead	of
intermingling	these	commits,	I	set	up	the	following	structure	for	my	branches:
master,	drafts,	and	one	branch	per	chapter.

https://atlas.oreilly.com/

The	branch	drafts	gave	me	a	place	to	integrate	all	of	the	work	that	I’d	been
doing.	It	was	kept	up	to	date	by	merging	in	chapters	as	they	were	completed,	or
rebasing	the	master	branch	if	changes	had	been	made	by	one	of	my	editors.
When	I	was	first	writing	chapters	on	my	own,	without	others	contributing,
multiple	branches	would	have	been	a	lot	of	overhead	to	maintain,	but	as	more
contributors	started	offering	different	kinds	of	contributions,	more	granularity	in
branches	allowed	me	to	pick	and	choose	how	I	wanted	the	manuscript	to
progress.

As	you	can	see,	my	process	differed	wildly	from	the	workflows	used	for
software	projects,	but	it’s	still	Git	that	I’m	working	with!	Your	work	may	have
its	own	idiosyncrasies	that	justify	nonstandard	branches.	Don’t	be	afraid	to
experiment,	but	when	you	do,	document	your	process	well	so	that	others	can
understand	what	is	expected	of	them.

Summary
The	workflows	described	in	this	chapter	have	been	successfully	implemented	in
teams	I	have	worked	with.	Your	own	team	might	want	to	make	adjustments,	but
starting	from	something	will	be	a	lot	easier	than	starting	from	nothing.

The	workflow	you	use	may	change	before	and	after	the	launch	of	your
product.

Before	launch,	you	will	likely	have	fewer	integration	branches,	because	the
concept	of	a	hotfix	is	unlikely	to	be	an	issue.

By	using	your	documentation	to	complete	your	work,	you	ensure	your
documentation	is	always	up	to	date,	which	makes	it	faster	to	onboard	others	if
you	need	help.

In	Part	II,	you	will	learn	the	commands	necessary	to	implement	the	processes
described	in	this	part.

Part	II.	Applying	the	Commands
to	Your	Workflow

This	part	of	the	book	approaches	the	commands	in	Git	from	a	very	practical
point	of	view.	You	will	be	presented	with	a	scenario	first,	and	then	given	the
commands	you	would	need	to	get	yourself	into	(or	out	of)	trouble.

Hands-on	activities	are	sprinkled	throughout	the	chapters.	Where	possible,	you
should	do	these	activities	because	it	will	help	you	gain	a	greater	understanding
of	the	commands	(and	will	make	the	messages	feel	more	natural	when	working
with	your	own	software	projects).	Where	there	are	diagrams	provided,	you
should	redraw	them	because	every	motion	that	you	make	when	learning	a	new
activity	will	help	to	develop	the	neural	pathways	needed	to	cement	the
information	into	your	mind.

Before	reading	the	chapters	that	follow,	you	should	make	sure	you	have	the
latest	version	of	Git	installed	(see	Appendix	B)	and	that	your	system	is	correctly
configured	(see	Appendix	C).

Chapter	5.	Teams	of	One

Although	this	book	is	aimed	at	teams	of	more	than	one,	there	are	often	times
when	we	are	working	as	a	team	of	one—a	solo	developer.	This	might	be	a
personal	side	project,	or	you	might	actually	be	the	only	developer	on	your	team.
Working	solo	with	no	team	constraints	can	be	intimidating	because	there’s	no
one	available	to	walk	you	through	what	you	should	do,	or	help	you	if	you	get
stuck.	In	this	chapter,	I’ll	show	you	how	I	do	my	work	when	I’m	working	on	my
own	projects.	Of	course	there	are	places	where	I	get	tempted	to	cut	corners	as	a
solo	developer	(after	all,	no	one	is	watching	over	my	shoulder,	so	who	would
know	if	I	took	a	little	shortcut	here	or	there?).	Where	I	can,	I	will	show	you	the
implications	of	those	shortcuts.

By	the	end	of	this	chapter,	you	will	be	able	to:

Create	a	local	copy	of	a	remote	repository

Initialize	version	control	for	an	existing	set	of	files

Create	a	new	repository	from	an	empty	project	directory

Examine	the	history	of	a	repository	via	its	commit	messages

Work	with	branches	to	isolate	different	streams	of	work

Make	commits	to	a	local	repository

Use	tags	to	highlight	individual	commits

Connect	your	project	to	a	remote	code	hosting	system

If	you	are	a	creator	(as	opposed	to	a	reviewer	or	manager),	the	majority	of	your
time	will	likely	be	spent	using	the	commands	outlined	in	this	chapter.	Being	able
to	work	effectively	with	all	of	the	tools	outlined	here	should	be	considered	a
prerequisite	to	the	remaining	chapters	in	this	part.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from
Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

Issue-Based	Version	Control

http://bit.ly/collaborating-with-git

Someone	once	told	me	that	the	person	who	can	best	describe	a	problem	is	the
most	likely	to	solve	it.	In	writing	this	book,	I’ve	found	that	to	be	entirely	too
true.	When	I	write	myself	a	TODO	item	that	is	vague,	such	as	“finish	chapter	4,”
I	rarely	feel	motivated	to	work	on	the	book.	But	when	I	write	the	task	as	“write-
up	sample	workflow	for	small	teams	like	Mai’s,”	I	become	way	more	motivated
to	dive	into	the	writing.	This	isn’t	unique	to	writing	books,	though.	As	a	team	of
one,	you	might	not	feel	entirely	motivated	to	work	on	your	code.	If	you’re	like
me,	though,	if	the	work	is	re-framed	as	a	way	to	help	a	person,	you’re	more
likely	to	get	it	done.

TIP
If	you’ve	never	thought	about	what	motivates	you	as	a	developer,	you	may	enjoy	Joe
Shindelar’s	presentation	“A	Developer’s	Primer	to	Managing	Developers”.

You	might	be	asking	yourself,	“what	does	this	have	to	do	with	Git?”	Each	time
you	sit	down	to	work	on	a	project	in	source	control,	you	should	have	an	idea
about	what	you’re	trying	to	do.	It	doesn’t	matter	if	you’re	developing	a	new
feature,	fixing	a	bug,	refactoring	old	code,	or	just	trying	out	a	new	idea;	you
should	still	have	some	kind	of	motivation	for	tinkering.	There	are	a	lot	of
different	ways	to	write	down	what	you	want	to	work	on,	but	the	following	works
nicely	and	can	be	more	rewarding	than	just	working	on	tickets.

The	ticket	has	three	main	parts:

Problem
A	terse	description	of	what	you’re	trying	to	do

Rationale
The	reason	why	you’d	want	to	do	this	(who	will	it	help	if	this	problem	is
solved?)

Quality	assurance	test
How	will	I	know	that	this	problem	has	been	solved?

This	format	is	quite	similar	to	another	that	I’ve	seen	used	for	Agile	projects:

Card

http://bit.ly/managing-developers

A	terse	description	of	the	problem,	written	from	the	perspective	of	the	user

Conversation
Details	about	the	problem	you’re	trying	to	solve;	where	possible,	it	should
avoid	prescribing	solutions

Confirmation
The	steps	a	user	(from	the	first	part)	will	be	able	to	take	to	verify	the	problem
has	been	solved

In	a	team	of	one,	you	might	feel	that	the	overhead	of	a	ticketing	system	is	a	bit
much	for	you.	Perhaps	your	paper	notebook	is	sufficient.	I	often	think	this	is
true,	but	then	as	I	get	working	on	my	project,	I	start	to	lose	track	of	all	the	little
ideas	I	had.	Sometimes	I	start	a	new	branch	for	each	idea,	but	then	end	up
getting	buried	under	an	avalanche	of	out-of-date	branches.	If	this	sounds	like
you,	take	a	moment	now	to	find	the	ticket	tracking	options	in	whatever	code
hosting	system	you	use,	and	start	to	get	into	the	habit	of	writing	yourself	love
notes	for	what	you	plan	to	do	with	your	software.	At	the	very	least,	it	will	give
you	arbitrary	numbers	that	you	can	use	to	create	branches	and	help	you	keep
track	of	your	code.

TIP
If	you	don’t	have	a	code	hosting	system	yet,	I	recommend	GitLab,	or	its	free	online	offering,
GitLab.com.	It	will	allow	you	to	create	private	repositories	with	unlimited	collaborators	for
free,	and	it	can	be	installed	on	a	local	network	if	you	are	learning	Git	behind	a	firewall.	The
advantage	of	a	private	repository	is	that	you	can	hide	your	work	while	you	learn.	If	your	work
is	hidden,	you	won’t	be	able	to	take	advantage	of	community	support,	but	I	understand	if
you’re	a	bit	shy	right	now.	It	happens	to	the	best	of	us.

Once	you	have	a	way	of	tracking	your	ideas,	the	process	for	doing	work	should
follow	these	steps:

1.	 Create	a	new	ticket	in	your	issue	tracking	system;	note	the	number	on	the
issue.

2.	 In	your	local	repository,	create	a	new	branch	using	the	format
issuenumber-description.

3.	 Do	the	work	described	in	the	ticket	(and	only	the	work	described	in	the
ticket).

4.	 Test	your	work	and	make	sure	it	is	complete	and	correct.	Ensure	it	passes
your	QA	test	from	the	ticket	you	wrote	in	the	development	environment.

5.	 You	now	have	a	“dirty”	working	directory	that	contains	new	and/or
modified	files.	Add	your	changes	to	the	staging	area	of	your	local
repository.

6.	 Commit	your	staged	changes	to	the	repository.

7.	 Push	your	changes	to	a	backup	server.	In	many	cases,	this	will	also	be
where	your	tickets	are	being	tracked,	such	as	GitLab,	Bitbucket,	or	GitHub.
Depending	on	your	ticketing	system,	the	ticket	may	now	be	marked	as
resolved	but	not	necessarily	closed.

8.	 When	you	are	completely	satisfied	with	your	work,	merge	your	ticket
branch	into	your	main	branch	(usually	master)	and	push	the	revised
branches	to	the	code	hosting	system.

9.	 Test	your	work	again	to	ensure	there	are	no	follow-up	issues.

10.	 Update	your	ticket	as	appropriate	to	close	it	out.

Depending	on	the	type	of	code	you’re	writing,	these	steps	may	vary	slightly.
Rewrite	this	list,	in	full,	and	include	any	steps	that	are	different	for	the	way	you
work.	For	example,	you	may	practice	test-driven	development,	or	have	build
scripts	that	you	use	to	deploy	your	code.	Commit	to	following	your	own	process.
If	you’re	not	really	motivated	by	words,	draw	out	your	process	instead	(Figure	5-
1).

However	you	choose	to	do	it,	make	sure	you	capture	your	process.	You	may
choose	to	tuck	it	into	the	repository	as	a	README	file,	or	print	it	out	and	paste	it
to	your	Kanban	board.	By	practicing	consistency	now,	it	will	become	infinitely
easier	to	work	with	your	coworkers	to	establish	a	process	that	everyone	can
follow.

In	the	remainder	of	the	chapter,	you	will	learn	the	commands	needed	to	use	the
process	I	described.	We’ll	start	by	creating	a	new	repository	where	you	can	store
your	work.

Creating	Local	Repositories
When	you	create	a	new	repository	in	Git,	you	generally	begin	from	one	of	three
starting	points:

From	a	clone	of	an	existing	repository

From	an	existing	folder	of	untracked	files

From	an	empty	directory

In	this	section,	you	will	learn	how	to	create	a	new	repository	using	each	of	these
three	methods.

Begin	by	creating	a	folder	that	will	store	all	of	your	sample	repositories
(Example	5-1).	You	may	choose	to	put	this	folder	on	your	desktop,	or	in	your
home	directory,	or	somewhere	else.	Git	won’t	care,	so	long	as	you	remember
where	the	folder	is.

Figure	5-1.	Sketch	a	diagram	of	your	workflow

Example	5-1.	Create	a	project	directory	in	your	home	directory
$ mkdir learning-git-forteams

$ cd learning-git-forteams

Unless	otherwise	stated,	each	of	the	exercises	in	this	book	will	assume	you	have
navigated	to	a	sample	repository	within	this	folder.	If	it	matters	which	repository
you	use,	I	will	specify	it	in	the	instructions.	Generally,	however,	it	will	not
matter.

Cloning	an	Existing	Project
On	code	hosting	systems,	such	as	GitLab	or	BitHub,	when	you	navigate	to	a
project	page,	you	are	typically	given	the	option	to	download	a	.zip	package	of	all
the	files	or	create	a	clone	of	the	repository.	Often	these	options	are	close
together,	but	not	always.	Figure	5-2	shows	the	location	of	the	repository	URL	in
GitLab.

Figure	5-2.	Locating	the	URL	to	clone	a	repository

PRACTICE	WHAT	YOU	WILL	DO	MOST	OFTEN
By	starting	with	a	repository,	you	will	also	have	an	easier	time	of	learning	the	commands
without	having	to	invent	problems	to	fix	as	you	learn	Git.

To	download	a	copy	of	a	project,	you	will	use	the	command	clone,	as	shown	in
Example	5-2.	Unlike	downloading	a	zipped	set	of	files,	creating	a	clone	of	a
project	will	download	a	copy	of	all	the	files	in	the	repository—along	with	the
commit	history—and	it	will	remember	where	you	downloaded	the	code	from	by
setting	up	the	remote	code	hosting	server	as	a	tracked	repository.	Don’t	worry,	it
doesn’t	keep	a	persistent	connection,	but	rather	it	bookmarks	the	location	in	case
you	want	to	check	for	updates	and	download	them	to	your	local	repository	at	a
later	date.

You	will	only	clone	a	project	once.	Once	the	project	is	downloaded,	you	will	use
a	different	set	of	commands	to	keep	it	up	to	date.	In	Chapter	7,	you	will	learn
different	ways	to	work	with	the	command	clone;	in	this	chapter,	we’re	just
going	to	use	it	to	grab	a	snapshot	of	a	project	so	that	you	have	something	to
work	with.

Example	5-2.	Create	a	clone	of	the	Git	for	Teams	repository
$ git clone https://gitlab.com/gitforteams/gitforteams.git

The	following	should	appear	in	the	output	of	your	terminal	window:

Cloning into 'gitforteams'...

remote: Counting objects: 1040, done.

remote: Compressing objects: 100% (449/449), done.

remote: Total 1040 (delta 603), reused 915 (delta 538)

Receiving objects: 100% (1040/1040), 9.49 MiB | 1.68 MiB/s, done.

Resolving deltas: 100% (603/603), done.

Checking connectivity... done.

Congratulations!	You	have	just	cloned	your	first	Git	repository.	You	can	muck
about	in	this	directory	as	much	as	you	like.	If	you	mess	things	up	beyond
recognition,	delete	the	folder	and	run	the	clone	command	again.

Now	that	you	have	this	directory,	you	also	have	all	of	the	support	material	for
this	book.	You	can	explore	the	supporting	files,	look	for	hidden	Easter	eggs,	and

generally	have	something	to	start	with	as	you	learn	the	more	advanced
commands	without	needing	to	worry	about	inventing	weird	scenarios,	or
destroying	your	own	work.

Converting	an	Existing	Project	to	Git
If	I	am	working	with	software	for	the	very	first	time,	I	tend	to	download	a	zipped
package	of	files	and	begin	versioning	with	an	initial	import	of	the	software	at
that	specific	point.	I’ll	rip	things	out,	move	things	around,	and	generally	give
myself	a	trial-by-fire	introduction	of	how	(and	why)	I	might	want	to	keep	things
exactly	the	way	the	original	developers	intended	things	to	be.

In	order	to	compare	the	effect	of	the	commands	you’re	running,	download	a
second	instance	of	the	Git	for	Teams	repository,	but	this	time	grab	a	zipped
package	of	the	same	repository	you	just	cloned:

1.	 Navigate	to	https://gitlab.com/gitforteams/gitforteams.

2.	 Locate	and	download	the	zipped	package	for	the	project.

3.	 Unpack	the	project,	and	place	it	into	your	project	directory	for	this	book.
Because	there	is	already	a	cloned	copy	of	the	files	in	this	directory,	you
should	name	this	new	folder	gitforteams-zip.

You	can	start	with	any	folder	of	files	and	create	a	Git	repository	from	it	using	the
initialization	command,	init,	as	shown	in	Example	5-3.	Git	will	be	aware	of	all
files	in	this	directory,	including	subfolders,	so	make	sure	you	run	the	command
init	from	the	root	folder	for	your	project.

Example	5-3.	Initialize	a	directory	for	version	control
$ git init

You	will	see	a	message	similar	to	the	following:
Initialized empty Git repository in Usersemmajane/gitforteams/gitforteams-zip/.git/

Files	are	not	immediately	added	to	the	repository.	This	is	a	feature	because	Git
allows	you	to	ignore	files	as	well,	and	so	it	is	waiting	for	you	to	tell	it	exactly
which	files	you’d	like	to	track.	If	there	is	a	logical	next	step,	Git	will	almost
always	have	a	useful	suggestion	in	its	status	message.	You	should	get	into	the
habit	of	using	the	command	status	as	frequently	as	you	would	use	Save	in	a
word	processing	program.	This	command	does	not	save	your	work,	but	rather	it

https://gitlab.com/gitforteams/gitforteams

lets	you	know	what’s	happening	at	this	moment	in	your	repository—and
knowing	what’s	happening	is	key	to	understanding	Git.	Go	ahead	and	check	the
status	of	your	repository	now	(Example	5-4).

Example	5-4.	Check	the	status	of	your	repository
$ git status

Git	lets	you	know	the	next	step	is	to	add	the	files	you	would	like	to	track	because
you	have	just	initialized	the	repository:

On branch master

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 [lots of files listed here ...]

nothing added to commit but untracked files present (use "git add" to track)

Getting	your	files	into	Git	is	a	two-step	process.	Although	it	feels	a	little	tedious
when	you’re	first	getting	started,	this	is	a	feature	because	it	allows	you	to	make
multiple	unrelated	changes	at	once	in	your	working	directory.	Changes	can	be
staged	into	groups	of	commits	in	the	index—each	group	getting	a	different
commit	message.	We	want	to	add	everything	that	is	in	our	working	directory
because	this	is	the	initial	import	of	files	(Example	5-5).

Example	5-5.	Add	all	files	to	the	staging	area	of	your	repository
$ git add --all

Once	again	use	the	command	status	to	check	the	status.	The	output	will	let	you
know	the	files	have	been	staged	and	are	ready	to	be	committed:

On branch master

Initial commit

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: [lots of files listed ...]

Now	that	your	files	are	added,	you	can	save	their	current	state	into	the	repository
with	the	command	commit	(Example	5-6).

Example	5-6.	Commit	all	staged	files	to	your	repository
$ git commit -m "Initial import of all project files."

A	lengthy	commit	confirmation	message	will	be	printed	to	the	screen,	notifying
you	that	the	files	have	been	added	to	your	repository.	Your	project	files	are	now
under	version	control.

Initializing	an	Empty	Project
When	we	teach	Git,	it’s	generally	easiest	to	start	with	a	completely	empty
directory,	void	of	any	files.	This	is	because	it’s	easiest	for	the	instructor	and	the
student	to	begin	from	the	same	point.	This	exercise	allows	you	to	introduce
yourself	to	Git	without	worry:

1.	 Create	a	new,	empty	folder:

$ mkdir empty-repository

2.	 Change	into	your	new	folder:

$ cd empty-repository

3.	 Run	the	Git	initialization	command:

$ git init

4.	 Verify	the	hidden	repository	folder	was	added:

$ ls -al

On	Windows:

dir

If	you	see	a	new	hidden	folder,	.git,	your	repository	has	been	created.	This	folder
will	contain	the	record	of	all	the	changes	to	your	repository.	There’s	nothing

scary	contained	in	this	folder,	but	if	you	remove	it,	your	project	will	no	longer	be
tracked.	This	means	you	will	not	be	able	to	recover	previous	versions	of	any	of
the	files	in	your	repository,	you	will	lose	all	commit	messages	for	your
repository,	and	whatever	state	the	files	are	currently	in	will	be	immutable.

At	this	point,	you	can	follow	the	additional	steps	from	the	previous	section	to
add	files	(Example	5-5),	and	commit	them	to	your	repository	(Example	5-6).

Reviewing	History
Once	you	have	made	your	first	commit	into	a	repository,	you	are	ready	to	start
reviewing	history.	Of	course,	the	history	of	your	project	is	a	combination	of	the
work	you	have	done,	as	well	as	the	work	done	by	others	you	have	collaborated
with.	It	may	not	feel	like	collaboration	if	you’ve	merely	downloaded	an	open
source	project,	but	it	is.	Collaboration	can	be	as	simple	as	adding	your	changes
to	someone	else’s	work.

To	review	the	changes	that	have	been	made	in	a	repository,	use	the	command
log	(Example	5-7).	By	default,	this	command	allows	you	to	review	the	commit
message	and	author	information	for	every	commit	in	the	branch	that	is	currently
checked	out	of	your	local	repository.

Example	5-7.	Reviewing	a	repository’s	history	with	log
$ git log

The	command	log	will	output	a	full	history	of	your	repository’s	commit
messages	in	reverse	chronological	order.

ENSURE	YOUR	DETAILS	ARE	CONFIGURED
If	your	name	and	email	address	aren’t	displayed,	refer	to	Appendix	C	for	tips	on	how	to
configure	Git.

If	you’ve	only	made	one	commit	message,	the	initial	import,	there	will	only	be
one	message	displayed:

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca

Author: emmajane <emma@emmajane.net>

Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import of all project files.

If,	however,	you	are	working	with	a	more	established	code	base,	there	will	be	a
lot	of	messages.	This	can	be	quite	overwhelming	and	difficult	to	scan.	You	can
shorten	the	messages	to	just	the	first	line	of	the	message	by	adding	the	parameter
--oneline	as	shown	in	Example	5-8.	To	exit,	press	q.

Example	5-8.	Viewing	a	condensed	history	of	your	project
$ git log --oneline

To	get	a	sense	of	how	the	same	files	can	have	a	different	history,	run	the
commands	from	Examples	5-7	and	5-8	from	both	the	cloned	repository	and	from
the	repository	you	created	from	a	downloaded	.zip	package.	Even	though	the
files	are	identical,	their	history	is	different	(this	will	come	up	again	when	we	talk
about	rebasing	in	Chapter	6).

NOTE
Other	branches	will	have	different	commits,	and	different	copies	of	the	repository	will	have
commits	made	by	different	developers.	It’s	basically	anarchy,	but	limited	to	each	little
repository.	The	conventions	we	establish	as	software	teams	are	what	bring	order	to	the	chaos
and	allow	us	to	share	our	work	in	a	sane	manner.	(Remember	the	branching	strategies	we
learned	in	Chapter	3?	They’ll	keep	the	work	sorted	into	logical	thought	streams.	Remember	the
permission	strategies	from	Chapter	2?	They’ll	keep	people	locked	into	the	right	place,	and
unable	to	make	changes	to	the	“blessed”	repository	without	the	community	gatekeeper’s
consent.)

If	you	have	completed	all	of	the	steps	in	this	section,	you	will	now	have	three
separate	repositories	to	work	from	for	the	remaining	activities.	For	the	section	on
branching,	I	recommend	you	work	with	the	cloned	repository	because	it	has
more	to	look	at.	For	the	other	sections,	you	may	choose	any	of	the	three.

Working	with	Branches
In	version	control,	branches	are	a	way	of	separating	different	ideas.	They	are
used	in	a	lot	of	different	ways.	You	can	use	branches	to	denote	different	versions

of	software.	You	might	use	very	short-term	branches	to	work	on	a	bug	fix,	or
you	might	use	a	longer-term	branch	to	test	out	a	new	idea.

Listing	Branches
To	get	a	list	of	all	branches	(Example	5-9),	you	can	use	either	the	branch
command	on	its	own,	or	add	the	parameter	--list.	At	the	beginning	of	this
chapter,	you	cloned	a	repository;	use	that	repository	for	this	section	because	it
already	has	branches	for	you	to	look	at.

Example	5-9.	Listing	local	branches
$ git branch --list

A	list	of	the	local	branches	will	be	printed:

master

By	default,	the	master	branch	is	copied	into	your	local	repository	and	you	can
begin	working	directly	on	it.	In	addition	to	this	branch,	you	have	also
downloaded	all	other	branches	that	were	available	in	the	remote	repository.	They
are	available	for	reference	purposes,	but	they	are	not	available	to	be	worked	on
until	you	have	set	up	a	working	copy	of	the	remote	branch.	To	list	all	branches	in
your	repository,	use	the	parameter	--all	(Example	5-10).

Example	5-10.	List	all	branches
$ git branch --all

If	you	use	this	command	in	your	local	copy	of	the	cloned	repository,	you	should
see	both	your	local	branches	and	a	list	of	remote	branches.	The	*	denotes	which
branch	you	are	currently	viewing	(or	have	“checked	out”).	The	remainder	of
these	lines	all	begin	with	remotes/origin:	remotes	just	means	“not	here,”	and
origin	is	the	default	convention	used	for	“my	copy	is	cloned	from	here.”	The
final	piece	is	the	name	of	the	branch	(master,	sandbox,	and	video-lessons	are
all	branches):

* master

 remotes/origin/master

 remotes/origin/sandbox

 remotes/origin/video-lessons

The	list	can	be	a	bit	misleading,	though.	The	remote	branch	names	do	not
actually	include	the	word	remotes.	This	is	just	a	piece	of	information	about
what	type	of	branch	it	is.	To	get	a	usable	list	of	the	names	of	the	remote
branches,	use	the	parameter	--remotes	(or	-r	for	short)	instead	(Example	5-11).

Example	5-11.	List	remote	branches
$ git branch --remotes

This	will	give	a	list	of	only	the	remote	branches	(using	their	real	names):

origin/master

origin/sandbox

origin/video-lessons

These	branches	are	all	accessible	to	you,	although	you’ll	need	to	make	your	own
copy	before	committing	changes	to	them.

Updating	the	List	of	Remote	Branches
The	list	of	remote	branches	does	not	stay	up	to	date	automatically,	so	the	list	will
become	out	of	date	over	time.	To	update	the	list,	use	the	command	fetch
(Example	5-12).

Example	5-12.	Fetch	a	revised	list	and	the	contents	of	all	remote	branches
$ git fetch

You	will	learn	more	about	working	with	remotes	in	Chapter	7.

Using	a	Different	Branch
When	you	check	out	a	branch,	you	are	updating	the	visible	files	on	your	system
(the	working	tree)	to	match	the	version	stored	in	the	repository.	This	switch	is
completed	with	the	command	checkout	(Example	5-13).	The	checkout	process
is	a	little	different	from	a	centralized	version	control	system	(VCS),	such	as
Subversion.	In	a	centralized	VCS,	you	would	need	an	Internet	connection	to	use
the	checkout	command	because	the	branches	are	not	stored	locally,	and	must	be
downloaded	in	order	to	use.

Example	5-13.	Switching	branches	with	the	command	checkout

$ git checkout --track origin/video-lessons

Branch video-lessons set up to track remote branch video-lessons from origin.

Switched to a new branch 'video-lessons'

This	command	works	differently	in	older	versions	of	Git.	If	the	previous
command	gave	you	an	error,	you	may	choose	to	upgrade	(see	Appendix	B),	or
run	the	following	variant:

$ git checkout --track -b video-lessons origin/video-lessons

This	command	(checkout -b)	creates	a	new	branch	named	video-lessons
with	tracking	enabled	(--track)	from	the	branch	video-lessons	stored	on	the
remote	repository,	origin.	The	local	copy	of	the	remote	branch	is	available	at
origin/video-lessons,	and	your	copy	of	the	branch	is	available	at	video-
lessons.

You	should	now	have	a	local	copy	of	the	remote	branch	video-lessons
(Figure	5-3).

Figure	5-3.	A	local	copy	of	a	remote	branch	has	been	created

In	your	list	of	branches,	it	will	look	like	the	branch	exists	twice,	except	one
includes	the	reference	information	for	the	remote	repository:

$ git branch -a

 master

* video-lessons

 remotes/origin/master

 remotes/origin/sandbox

 remotes/origin/video-lessons

From	this	new	branch,	you	can	review	history	using	Example	5-22	or
Example	5-23.	Note	the	commit	history	is	not	the	same	between	the	two
branches.

Creating	New	Branches
For	very	tiny	projects,	I	happily	putter	along	in	the	master	branch	with	each
commit	acting	as	a	resolution	to	a	problem;	however,	the	bigger	the	team	gets,
the	more	it	will	benefit	from	having	some	structure	in	how	people	collaborate	on
the	work.	Chapter	3	covered	the	strategies	you	may	want	to	adopt	with	your
team	for	branching	strategies.	As	a	solo	developer	it	can	be	more	difficult	to
know	if	you	should	be	working	on	a	different	branch.	To	help	you	decide,	ask
yourself	a	few	questions:

Is	it	possible	I	will	want	to	completely	abandon	this	idea	if	things	don’t	work
out?

Am	I	creating	something	that	is	a	significant	deviation	from	the	current
published	version	of	the	software?

Does	my	work	need	to	undergo	a	review	before	it’s	published	or	accepted
into	the	published	version	of	the	software?

Is	it	possible	I	will	need	to	switch	tasks	before	I’ve	completed	this	work?

If	you	answered	“yes”	to	any	of	these	questions,	you	should	consider	creating	a
new	branch	for	your	work.	Teaching	yourself	good	habits	now	is	like	buying
insurance.	You	hope	you	never	have	to	use	it,	but	you	buy	it	just	in	case.

The	best	way	to	decide	what	goes	into	a	branch	is	to	start	with	the	issue	tracker.
By	creating	a	written	description	of	what	you’re	about	to	do,	you	will	have	a
clear	sense	of	when	to	start	and	finish	with	your	branch.	Yes,	this	will	often	feel
like	overhead,	but	it	is	a	really	good	habit	to	get	into,	especially	when	you’re
working	in	larger	teams.

When	you	start	a	new	branch,	it	will	contain	the	identical	history	as	the	place
you	are	branching	from	at	the	moment	you	create	it	(Figure	5-4).	When	you

review	the	history	of	a	new	branch	with	the	command	log,	it	will	also	show	the
commits	from	its	ancestor	branch.

Figure	5-4.	New	branches	contain	the	same	commits	as	their	ancestor

Seeing	as	you	are	working	on	issue-based	version	control,	your	branch	name
should	reflect	the	ticket	you	are	working	on.	For	example,	if	the	issue	was	“1:
Add	process	notes	to	README,”	then	the	branch	would	be	named	1-
process_notes.	The	history	for	the	new	branch	will	include	all	of	the	commits
up	to	the	point	of	departure,	so	make	sure	you	begin	your	new	branch	from	the
correct	starting	point.	You	can	do	this	by	either	using	the	command	checkout	to
situate	yourself	in	the	correct	branch	first	(Example	5-14),	or	you	can	add	the
desired	parent	branch	to	your	command	(Example	5-15).

Example	5-14.	Creating	a	new	development	branch

First	checkout	the	branch	you	want	to	use	as	the	starting	point:
$ git checkout master

Switched to branch 'master'

Next,	create	a	new	branch:
$ git branch 1-process_notes

[no message displayed]

Finally,	check	out	the	new	branch:
$ git checkout 1-process_notes

Switched to branch '1-process_notes'

Although	it’s	a	little	more	to	remember,	Example	5-15	does	have	the	advantage
of	creating	a	branch	explicitly	from	the	right	base	branch,	meaning	you	don’t
need	to	remember	the	extra	checkout	step	from	the	previous	instructions.

Example	5-15.	Creating	a	new	development	branch	from	the	master	branch
$ git checkout -b 1-process_notes master

Switched to a new branch '1-process_notes'

Once	you	are	in	your	new	branch,	you	can	go	ahead	and	do	your	work.	As	an
exercise,	I	encourage	you	to	try	adding	your	notes	on	how	your	process	works	to
one	of	the	three	repositories	you’ve	created	in	this	chapter.	Once	you’ve	made	all
of	your	edits,	it’s	time	to	commit	the	changes	to	your	local	repository.

Adding	Changes	to	a	Repository
Each	time	you	make	a	change	to	your	working	directory,	you	will	need	to
explicitly	save	the	changes	to	your	Git	repository.	This	is	a	two-part	process.
Figure	5-5	shows	how	changes	must	be	explicitly	staged	in	the	index,	and	then
saved	to	your	repository.

Figure	5-5.	Changes	in	Git	must	be	staged,	and	then	saved	to	the	repository

When	you	previously	created	a	new	repository,	you	imported	a	series	of	files	all
at	once	(Example	5-5).	You	don’t	have	to	add	all	the	files	at	once,	though.	This
can	be	especially	helpful	if	you	have	been	working	on	unrelated	edits	that	should
be	captured	in	separate	commits.	If	you	do	want	to	separate	the	changes	into
multiple	commits,	you	need	to	change	the	parameter	--all	that	you	used
previously	for	the	filename	you	want	to	stage	(Example	5-16).	You	can	add	one
or	more	filenames	at	a	time;	the	filenames	do	not	need	to	be	the	same	type.

Example	5-16.	Add	selected	changed	files	to	your	Git	repository
$ git add README.md process-diagram.png

$ git add branch-naming-rules.png

For	the	most	part,	I	add	files	to	the	staging	area	one	at	a	time.	I	find	this	prevents
me	from	accidentally	adding	more	than	I	meant	to.	At	the	command	line,	I	can
type	the	first	few	letters	of	the	filename	and	then	press	the	Tab	key,	and	the
remainder	of	the	filename	will	be	automatically	typed	out	(this	is	known	as	tab
completion	and	it’s	one	of	my	favorite	things	to	use).	If,	however,	you	have	a	lot
of	files	you	need	to	add,	and	they’re	all	contained	in	the	same	directory,	you	may
want	to	use	a	wildcard	to	match	files	with	a	subdirectory	(Example	5-17),	or	that
all	have	a	similar	name	(Example	5-18).

Example	5-17.	Add	all	files,	recursively,	from	a	given	path

$ git add <directory_name>/*

Example	5-18.	Add	all	files	with	the	file	extension	.svg
$ git add *.svg

You	can	also	completely	omit	the	filenames,	and	instead	stage	files	according	to
whether	or	not	they	are	known	to	Git.	By	using	the	parameter	--update	you	can
stage	all	files	that	are	known	to	Git,	and	that	have	been	edited	(or	updated)	since
the	last	commit:

$ git add --update

If	you	want	to	be	even	more	outrageous,	you	can	stage	all	changed	files	in	the
working	directory	by	adding	the	parameter	--all.	This	will	restage	any	files	that
have	been	modified	since	they	were	first	staged	(ensuring	all	new	edits	are
captured	in	the	commit);	stage	any	files	that	are	known	to	Git,	but	not	already
staged;	and	stage	any	files	that	are	not	currently	being	tracked	by	Git.	It	is	a	very
greedy	command!	Before	using	it,	you	should	check	the	list	of	files	that	will	be
added:

$ git status

$ git add --all

Once	a	change	has	been	added	to	the	staging	area,	it	must	be	committed.	If	you
continue	to	work	in	any	of	the	files	you’ve	added	to	the	index,	only	the
previously	staged	changes	will	be	added	when	you	next	run	the	command
commit	(Figure	5-6).	If	you	keep	working	on	the	file,	and	want	to	include	these
changes	in	your	commit,	you	will	need	to	repeat	the	previous	command	where
you	added	your	files	to	the	staging	area.

Figure	5-6.	A	commit	will	only	save	the	work	that	has	been	added	to	the	index

You	can	commit	your	staged	changes	to	the	repository	by	running	commit
(Example	5-6).

If	this	feels	frustrating	at	first,	you’re	not	alone!	It	took	me	a	while	to	get	used	to
this	behavior	and	I	felt	it	was	broken	when	it	didn’t	automatically	notice	I’d
changed	the	file	and	stage	the	new	changes.	It	wasn’t	until	I	started	playing
around	with	partial	staging	of	files	that	I	realized	how	powerful	it	was	to	not
have	my	changes	automatically	staged.

Adding	Partial	File	Changes	to	a	Repository
If	you	want	even	more	granularity	over	your	commits,	you	can	choose	to	add
partial	changes	within	a	saved	file	by	using	the	parameter	--patch.	One	of	my
favorite	reasons	for	committing	files	in	this	way	is	to	record	several	unrelated
edits	into	multiple	smaller	commits.

Adding	files	via	the	--patch	process	is	a	multistep	approach	(Example	5-19).
You	will	first	initialize	the	procedure,	and	then	choose	from	a	list	of	options	on
how	you	want	to	create	your	patches.	You	will	be	prompted	to	add	the	change	to
the	staging	area	(y),	or	leave	this	hunk	unchanged	(n).	Changed	lines	will	begin
either	with	a	-	(line	removed)	or	a	+	(line	added).	If	a	line	has	been	changed,	it
will	display	as	both	removed	and	added.

To	separate	the	hunks	into	smaller	units,	you	can	use	the	option	s	to	split	the
hunk.	This	will	only	work	if	there	is	at	least	one	line	of	unchanged	work	between
the	two	hunks.	If	you	want	to	separate	two	adjacent	lines	for	staging	separately,
you	can	edit	(e)	the	hunk.

Example	5-19.	Add	selected	changes	to	your	Git	repository	interactively
$ git add --patch filename

By	adding	the	optional	filename,	you	will	not	need	to	cycle	through	each	file.	If
you	know	exactly	which	file	you	need	to	split	up,	and	you	have	a	lot	of	files	that
need	staging,	it	can	save	you	time	to	work	with	specific	files.	After	running	the
command,	you	will	begin	the	process	of	walking	through	the	files,	looking	for
changes	to	stage:

diff --git a/ch05.asciidoc b/ch05.asciidoc

index 8f82732..e7be9ce 100644

--- a/ch05.asciidoc

+++ b/ch05.asciidoc

@@ -6,7 +6,6 @@ changed significantly in the last few years; however, a few of

the commands we'l easier to remember. Chances are very good that you have Git

installed if you are using Linux or OSX. If you are using Windows, however,

the changes are very good that Git is not installed unless you've explicitly

installed it already.

-. Open a terminal window.

 . Enter the command: +git --version+

 The version of Git you are running should be printed to the screen.

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

In	the	output	displayed,	we	can	see	that	Git	is	asking	if	we	want	to	stage	this	one
line	change	(. Open a terminal window),	which	is	a	proposed	deletion	as
indicated	by	the	-.	Additional	options	for	what	to	do	with	this	hunk	are	available
by	pressing	?.

Committing	Partial	Changes
Assuming	you’ve	only	added	some	changes	from	a	given	file	to	the	staging	area,
when	you	check	the	status	of	your	repository,	you	will	see	that	a	file	is	both
ready	to	be	committed,	and	has	unstaged	changes:

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: ch05.asciidoc

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: ch05.asciidoc

This	is	the	same	message	that	is	displayed	if	you	add	a	file	to	the	staging	area
and	then	continue	to	edit	the	file	before	committing	it	to	the	repository,	or	if	you

only	choose	to	stage	some	hunks	while	while	adding	files	interactively	to	the
index	with	the	parameter	patch.

Removing	a	File	from	the	Stage
If	you	accidentally	add	too	many	files	from	the	staging	area,	and	want	to	break
your	changes	into	smaller	commits,	you	can	unstage	your	proposed	changes
(Example	5-20).	Removing	a	file	from	the	stage	doesn’t	mean	you’ll	be	undoing
the	edits	you’ve	made;	it	notifies	Git	that	you’re	not	ready	for	these	changes	to
be	committed	to	the	repository	yet.

Example	5-20.	Remove	proposed	file	changes	from	the	staging	area
$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: ch05.asciidoc

$ git reset HEAD ch05.asciidoc

Unstaged changes after reset:

M ch05.asciidoc

Optionally,	you	can	also	use	the	--patch	parameter	with	the	command	reset	if
you	only	want	to	unstage	some	of	the	changes	you’ve	made	to	a	file.

Undoing	your	work	will	be	covered	in	greater	detail	in	Chapter	6.

Writing	Extended	Commit	Messages
Up	to	this	point	it’s	possible	you	have	been	writing	terse,	oneline	commit
messages.	While	this	is	fine	if	you’re	just	practicing	version	control	commands,
it’s	not	going	to	make	your	future	self	very	happy	if	you	need	to	figure	out	what
the	commit	message	“Oops.	Trying	again.”	means.

It	took	me	quite	a	while	to	get	out	of	the	habit	of	thinking	of	Git	as	a	place	where
I	saved	my	work	and	instead	as	a	place	where	I	recorded	my	results.	When	I	first
started	working	with	version	control	the	commits	I	was	making	were	granular	to
take	advantage	of	the	advanced	tools	available	to	me	(you’ll	learn	more	about
these	in	Chapter	6).	This	is	because	I	was	coming	the	mindset	of	saving	work

and	undoing	mistakes.	When	in	the	save	mindset,	I	would	think	of	clicking	the
save	button,	or	using	control-Z	to	undo	the	last	few	things	I	typed.	When	the
commits	are	this	small,	the	commit	messages	tend	to	be	nearly	useless	(“stopped
for	lunch”;	“tried	something”;	“didn’t	work”;	“oops”;	“testing”).	If	I	wanted	to
roll	back	history,	how	the	heck	would	I	use	those	commit	messages	to	find	the
spot	where	the	code	was	working	after	something	broke?	It	make	take	you	a
while	to	find	your	stride	as	well.

Your	commit	messages	should	always	include	the	rationale	for	why	you	made	a
change,	as	well	as	a	quick	summary	of	the	changes	you	made.	In	order	to	write	a
detailed	commit	message,	you	will	need	more	than	one	line	the	one	line	short
message	style	you	have	been	using	up	to	now.	I	typically	write	my	commit
messages	with	a	two-step	procedure	(Example	5-21):

1.	 Use	a	terse,	oneline	message	to	commit	the	changes	to	the	repository.

2.	 Amend	the	commit	to	include	a	full	description	of	what	I	was	thinking
when	I	made	the	change.

Example	5-21.	Writing	a	detailed	commit	message
$ git add --all

$ git commit -m "CH05: Adding technical edits."

$ git commit --amend

You	don’t	need	to	do	this	two-step	process;	you	can	jump	straight	into	the
message	editor	by	omitting	the	parameter	-m	when	first	making	your	commit:

$ git commit

Your	default	editor	will	open,	and	you	will	be	prompted	to	add	a	new	commit
message.	The	first	line	of	the	message	will	be	used	for	the	--oneline	display,
and	all	lines	beginning	with	#	will	be	removed	from	the	final	message.	Once
you’ve	crafted	your	commit	message,	you	will	need	to	save	it	and	then	quit	the
editor	to	complete	the	commit.

WORKING	WITH	THE	DEFAULT	EDITOR,	VIM
By	default,	the	commit	editor	is	Vim.	This	works	for	me	because	I	like	Vim,	but	if	you	don’t,	there’s
information	on	changing	the	editor	in	Appendix	C.	You’ll	need	a	few	key	commands	to	navigate	Vim:

i	takes	you	from	visual	mode	to	insert	mode.	You’ll	need	to	do	this	so	that	you	can	begin	typing

your	commit	message.

esc	returns	you	to	visual	mode.	From	here	you	can	navigate	using	the	arrow	keys	to	a	different
line.

:w	saves	the	file	by	writing	it	to	disk.

:q	quits	the	editor,	returning	you	back	to	the	command	line.

You	can	also	chain	these	commands	together.	For	example,	after	writing	your	commit	message,	you
can	save	and	quit	the	editor	with	esc	:wq.

In	Chapter	6	you	will	learn	how	to	squash	granular	commits	into	whole	ideas
with	interactive	rebasing.

Ignoring	Files
Eventually,	you	may	run	into	a	situation	where	Git	keeps	adding	files	to	the
repository	that	you	actually	never	want	to	add.	If	you’re	on	a	Mac,	this	might
include	the	pesky	.DS_Store	files.	If	you’re	on	Linux,	maybe	it’s	your	text
editor’s	.swp	files.	If	you’re	working	on	a	web	project,	this	may	include	the
compiled	CSS	files	created	from	Sass.

If	you	know	that	your	favorite	text	editor,	or	IDE,	creates	temporary	files,	which
are	not	project	specific,	you	should	create	a	global	setting	to	ignore	these	files.

First,	run	the	following	command	to	let	Git	know	which	file	you	would	like	to
store	your	list	of	“ignored”	files	in:

$ git config --global core.excludesfile ~/.gitignore

You	can	now	update	this	file	using	one	filename	per	line.	You	can	use	exact
filenames,	or	wildcards	(for	example:	*.swp	will	match	any	file	ending	in	.swp).
For	a	useful	starting	point	of	files	to	ignore,	check	out	gitignore.io.

Additionally,	you	may	want	specific	repositories	to	ignore	specific	files	or	file
extensions.	In	this	case,	your	best	option	is	to	add	an	extra	.gitignore	file	to	the
repository.	This	has	the	added	benefit	of	ensuring	your	teammates	don’t
accidentally	sneak	in	their	build	files.

Complete	the	following	steps	to	customize	which	files	should	be	ignored	for	a
specific	repository:

1.	 Create	a	file	in	the	root	level	of	your	project	named	.gitignore.

https://www.gitignore.io/

2.	 Using	one	filename	per	line,	add	all	of	the	files	you	never	want	Git	to	add
to	the	repository.	You	can	use	exact	filenames,	or	wildcards	(for	example,
*.swp).

3.	 Add	the	file	.gitignore	to	your	repository	by	using	the	commands	add	and
commit.

Files	with	these	extensions	will	no	longer	be	added	to	your	repository,	even	if
you	are	using	the	parameter	--all.

Working	with	Tags
Tags	are	used	to	pinpoint	specific	commits.	You	can	think	of	them	like	a
bookmark.	I	don’t	use	tags	nearly	as	much	as	I	should.	As	a	result,	I	rely	on	my
commit	messages	to	find	specific	points	in	the	repository.	You	may	find	working
with	tags	is	a	good	habit	to	get	into	because	they	will	allow	you	to	easily
reference	points	in	your	time	line.

Tags	for	Teams	of	More	Than	One
In	this	chapter,	we	are	referring	to	private	repositories	with	no	branches	that	are
shared	with	other	teammates.	When	your	branches	aren’t	shared,	there	are	no
reasons	to	limit	how	and	when	you	use	tags.	Use	them	as	often	as	you’d	like!
The	tags	you	use	on	shared	branches,	however,	are	typically	used	for	deployment
purposes	and	should	follow	a	convention	that	is	useful	to	the	whole	team.

Tags	can	only	be	added	to	specific	commits.	To	know	which	commit	you	want	to
add	your	tag	to,	you’ll	probably	want	to	use	a	combination	of	log	and	show.	The
command	log	will	give	you	a	list	of	all	commits	in	your	repository	(Example	5-
22),	and	the	command	show	will	display	the	detailed	information	for	any	single
commit.

Example	5-22.	Quick	list	of	recent	commits
$ git log --oneline

fa04c30 Initial import

Once	you	think	you	have	found	a	commit	that	you	would	like	to	investigate	a

little	further,	you	can	get	the	detailed	commit	message	beginning	at	that	commit
by	adding	the	commit	ID	(Example	5-23).	To	limit	the	output	to	only	that
commit,	add	the	optional	parameter	--max-depth=	along	with	the	number	of	log
entries	you	would	like	to	show.

Example	5-23.	Log	details	for	a	single	commit
$ git log fa04c30 --max-depth=1

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca

Author: emmajane <emma@emmajane.net>

Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import

If	you	want	even	more	details	about	the	commit	object,	you	can	use	the
command	show	(Example	5-24)	to	list	the	changes	that	happened	in	that	commit
as	text	(of	course,	this	will	be	less	useful	for	binary	files,	such	as	images).

Example	5-24.	Use	show	to	display	the	log	message	and	textual	diff	for	a	single
commit
$ git show fa04c30

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca

Author: emmajane <emma@emmajane.net>

Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import

diff --git a/ch05.asciidoc b/ch05.asciidoc

new file mode 100644

index 0000000..8f82732

--- devnull

+++ b/ch05.asciidoc

@@ -0,0 +1,867 @@

+

+=== Verifying Git

+

+Before we dive into using Git, you'll want to check and see which version is

installed. For our purposes, Gi

[etc]

Once	you	have	identified	a	commit	that	you	want	to	bookmark,	you	can	do	so	by
using	the	command	tag.	In	Example	5-25,	a	new	tag,	import,	is	created	for	the

commit	hash	fa04c30.

Example	5-25.	Adding	a	new	tag,	import,	to	a	commit	object
$ git tag import fa04c30

You	can	now	list	the	available	tags	by	using	the	command	tag	without	any
parameters	(Example	5-26).

Example	5-26.	Listing	all	tags
$ git tag

A	list	of	tags	will	be	printed	to	the	screen.	At	this	point,	only	one	tag	has	been
added,	so	the	list	is	very	short:

import

Once	a	tag	is	made,	you	can	investigate	the	commit	where	the	tag	was	added
(Example	5-27).

Example	5-27.	Reviewing	a	tagged	commit
$ git show import

As	you	have	seen	previously,	the	command	show	will	display	the	log	message
and	textual	diff	for	that	commit.

Connecting	to	Remote	Repositories
In	a	centralized	version	control	system,	like	Subversion,	there	is	one	master	copy
of	the	repository	and	all	work	is	written	into	that	copy.	When	you	commit,	the
information	is	immediately	uploaded	to	that	central	repository	and	available	to
others.	In	a	decentralized	version	control	system,	like	Git,	there	is	no	single
repository	that	everyone	works	with.	It	is	merely	a	convention	that	declares	one
copy	of	the	repository	to	be	privileged	(and	considered	to	be	the	official	source
for	the	code).

When	you’re	a	team	of	one,	a	remote	repository	is	really	more	of	a	backup	to
your	local	repository	because	there	won’t	be	any	changes	happening	on	the
remote	unless	you	put	them	there.	This	remote	repository	can	also	be	used	to
transfer	code	between	your	different	local	development	environments.	For

example,	you	may	use	both	a	laptop	and	a	desktop	for	your	projects.	The	remote
repository	can	be	an	effective	way	to	bounce	your	work	from	one	place	to	the
next	so	that	you	can	continue	working	even	when	switching	machines.

If	you’ve	been	following	along	in	this	chapter,	you	should	now	have	three	local
repositories:	one	created	from	a	clone	of	a	repository	on	GitLab,	one	created
from	a	downloaded	.zip	package,	and	a	third	repository	created	from	an	empty
folder.	They	are	all	local,	however,	and	you	don’t	have	the	option	to	share	your
work	with	others	because	they	either	don’t	have	a	remote	associated	with	them
(repository	from	the	zipped	package,	and	the	repository	that	was	initialized
locally)	or	you	don’t	have	write	access	to	the	remote	repository	(repository	that
you	cloned).

In	order	to	upload	your	work,	you	will	need	to	create	a	new	project	on	GitLab
and	associate	it	with	one	of	your	existing	repositories.

Creating	a	New	Project
If	you	haven’t	already,	you	will	need	to	create	an	account	on	GitLab.com	(it’s
free)	and	sign	into	your	account.	You	can	also	sign	in	via	GitHub,	Twitter,	or
Google.	Although	you	can	also	complete	these	steps	on	another	code	hosting
system,	such	as	GitHub,	GitLab	is	an	open	source	product	that	you	can	host
yourself	for	free	if	you	need	to	practice	source	control	from	behind	a	firewall:

1.	 Log	in	to	your	GitLab	account	and	navigate	to	your	dashboard.

2.	 From	the	project	summary	tab,	click	the	button	New	project.

3.	 Enter	a	Project	path,	such	as	gitforteams.	All	remaining	fields	can	be	left
as	their	defaults.

4.	 Click	Create	project.	You	will	be	redirected	to	the	instruction	page	on	how
to	upload	your	repository.

Adding	a	Second	Remote	Connection
GitLab	gives	you	the	copy/paste	instructions	you	need	to	upload	your	repository
to	its	platform;	however,	you	don’t	necessarily	want	to	complete	all	of	the	steps.
From	your	new	project	page,	take	a	look	at	the	second	section,	Create	a	new
repository	(Example	5-28).

https://gitlab.com
https://gitlab.com

Example	5-28.	Create	a	new	repository	on	GitLab
mkdir my-git-forteams

cd my-git-forteams

git init

touch README.md

git add README.md

git commit -m "first commit"

git remote add origin git@gitlab.com:emmajane/my-git-forteams.git

git push -u origin master

Can	you	see	where	your	starting	point	would	be	if	you	had	already	created	a
repository	locally?	(Hint:	compare	it	with	the	section	labeled	Push	an	existing
Git	repository.)	You’ve	already	done	all	of	the	steps	up	to	the	line	git remote
add origin.	If	you	want	to	create	a	new	repository	from	scratch,	you	would
follow	all	of	these	instructions,	but	you	already	have	three	local	repositories!	So
instead	of	creating	a	new	one	(again),	you	are	going	to	add	the	remote
connection	so	that	you	can	upload	one	of	the	three	repositories	to	this	new
project	on	GitLab.	It	doesn’t	matter	which	of	the	three	you	choose,	but	you	can
only	choose	one	because	each	project	presents	a	single	repository.

When	you	add	a	remote	to	your	repository,	you	must	also	assign	it	a	nickname
(Example	5-29).	By	default,	the	nickname	is	origin.	You	could	name	it
anything	you	like,	though--pickles,	peanutbutter,	kittens--Git	wouldn’t
care.	The	advantage	of	using	origin	is	that	more	tutorials	online	will	be	as	easy
as	copy	and	paste;	the	disadvantage	is	that	origin	doesn’t	really	explain	very
much,	especially	if	your	repository	actually	started	locally.	In	addition	to	this,
origin	is	already	in	use	if	you	created	your	repository	by	cloning	it	from	a
remote	repository.	To	connect	the	project	you	created	to	any	of	the	three
repositories	you	have	locally,	use	the	nickname	my_gitlab.

Example	5-29.	Adding	a	remote	to	a	local	repository	with	a	custom	name
$ git remote add my_gitlab git@gitlab.com:emmajane/my-git-forteams.git

It	wasn’t	until	I	finally	started	taking	control	over	the	names	of	things	in	Git	that
I	really	started	to	understand	how	all	the	pieces	fit	together.	For	example,	I	will
often	nickname	my	remote	according	to	the	name	of	the	code	hosting	system.
My	local	copy	of	the	Git	for	Teams	repository	has	the	following	remotes:
github,	gitlab,	and	bitbucket	(Example	5-30).

Confirm	the	remote	was	correctly	added	with	the	command	remote,	as	shown	in
Example	5-30.

Example	5-30.	List	remote	repositories	connected	to	your	current	repository
$ git remote --verbose

If	you	have	assigned	the	remote	to	the	repository	you	cloned,	you	will	see	two
pairs	of	remotes	listed:

my_gitlab git@gitlab.com:emmajane/my-git-forteams.git (fetch)

my_gitlab git@gitlab.com:emmajane/my-git-forteams.git (push)

origin git@gitlab.com:emmajane/gitforteams.git (fetch)

origin git@gitlab.com:emmajane/gitforteams.git (push)

You	are	now	ready	to	push	your	work	from	any	branch	to	your	remote
repository.

Pushing	Your	Changes
To	upload	your	changes,	you	need	to	have	a	connection	to	the	remote	repository,
permission	to	publish	to	the	repository,	and	the	name	of	the	branch	to	which	you
want	to	upload	your	changes.	The	first	time	you	push	your	branch,	you	will	need
to	explicitly	tell	Git	where	to	put	things.	If	you	start	by	using	the	command
push,	it	will	tell	you	what	to	do	next.

AVOID	THE	HASSLE	OF	TYPING	YOUR	PASSWORD
If	you	haven’t	added	your	SSH	keys	to	the	code	hosting	system	(see	Appendix	D),	you	will
need	to	enter	your	username	and	password	each	time	you	want	to	push	your	changes.

For	example,	if	you’re	currently	using	the	branch	1-process_notes,	and	you
try	to	push	it	to	the	remote	repository	(Example	5-31),	you	will	get	an	error
message	(Example	5-32).

Example	5-31.	Upload	a	branch	using	the	command	push
$ git push

Example	5-32.	Without	an	upstream	branch,	you	will	get	an	error	message

fatal: The current branch 1-process_notes has no upstream branch.

To push the current branch and set the remote as upstream, use

 git push --set-upstream origin 1-process_notes

This	error	message	provides	us	with	very	useful	information,	but	it’s	not	quite
right.	Instead	of	uploading	the	branch	to	the	remote	origin,	we	actually	want	to
use	our	new	remote,	my_gitlab	(Example	5-33).

Example	5-33.	Set	the	upstream	branch	while	uploading	your	local	branch
$ git push --set-upstream my_gitlab 1-process_notes

This	will	upload	your	branch	and	set	it	up	for	future	use.	Now	whenever	you	are
using	this	branch,	you	can	issue	the	much	shorter	command	git push	to	upload
your	work.	By	setting	the	upstream	connection,	you	are	building	a	relationship
between	your	local	copy	of	the	branch	and	the	remote	repository.	This	has	the
same	effect	as	when	you	used	--track	to	check	out	a	remote	branch,	except	in
that	case	you	were	starting	with	the	remote	copy	and	adding	a	tracked	local	copy.

Branch	Maintenance
Once	the	code	has	been	fully	tested,	you	will	want	to	merge	the	ticket	branch
into	the	master	branch	(Example	5-34),	and	delete	the	local	(Example	5-35)	and
remote	copies	of	the	ticket	branch	(Example	5-36).	As	a	team	of	one,	it’s
unlikely	you’ll	need	to	deal	with	merge	conflicts.	Merge	conflicts	will	be
covered	in	Chapter	7.

Example	5-34.	Merging	a	ticket	branch	into	your	main	branch
$ git checkout master

$ git merge 1-process_notes

If	a	true	merge	needs	to	be	performed,	as	opposed	to	just	a	fast-forwarding	of
history,	you	may	be	presented	with	the	editor	for	a	commit	message.	Generally	I
leave	the	default	message	in	place.	Once	the	work	has	been	merged	into	the
master	branch,	you	should	push	the	master	branch	to	the	remote	repository	as
well:

$ git push --set-upstream my_gitlab master

Now	that	the	changes	have	been	merged	into	the	master	branch,	there’s	not	a	lot
of	reason	to	keep	the	ticket	branch	open.	To	keep	your	repository	tidy,	you	can
go	ahead	and	delete	the	ticket	branch	now	(Example	5-35).

Example	5-35.	Delete	your	local	copy	of	the	branch
$ git branch --delete 1-process_notes

Git	will	complain	wildly	if	there	are	changes	that	haven’t	been	merged	into
another	branch,	so	you	don’t	need	to	worry	(too	much)	about	losing	unsaved
work.

Finally,	you	need	to	do	a	bit	of	housekeeping	for	the	remote	repository	as	well.
You	should	also	delete	remote	branches	whose	changes	have	been	merged	into
master	(Example	5-36).

Example	5-36.	Delete	remote	branches	that	are	no	longer	needed
$ git push --delete my_gitlab 1-process_notes

With	your	housekeeping	finished,	it’s	time	to	repeat	this	process	for	your	next
new	idea.

Command	Reference
Table	5-1	lists	the	commands	used	in	this	chapter.	These	commands	are	shell
commands	and	should	be	used	as	written.

Table	5-1.	Basic	shell	commands

Command Use

cd ~ Change	to	your	home	directory

mkdir Make	a	new	directory

cd	directory_name Change	to	a	specified	directory

ls -a List	hidden	files	for	OS	X	and	Linux-based	systems

dir List	files	on	Windows

touch	file_name Create	a	new,	empty	file	with	the	specified	name

Table	5-2	lists	the	subcommands	for	the	Git	application.	They	will	always	be
preceeded	by	the	command	git	when	used	at	the	command	line.

Table	5-2.	Basic	Git	commands

Command Use

git clone	URL Download	a	copy	of	a	remote	repository

git init Convert	the	current	directory	into	a	new	Git	repository

git status Get	a	status	report	for	your	repository

git add --all Add	all	changed	and	new	files	to	the	staging	area	of
your	repository

git commit -m	"message" Commit	all	staged	files	to	your	repository

git log Review	a	repository’s	history

git log --oneline View	a	condensed	history	of	your	project

git branch --list List	all	local	branches

git branch --all List	local	and	remote	branches

git branch --remotes List	all	remote	branches

git checkout --track
remote_name/branch

Create	a	copy	of	a	remote	branch	for	local	use

git checkout	branch Switch	to	a	different	local	branch

git checkout -b	branch	branch_parent Create	a	new	branch	from	a	specified	branch

git add	filename(s) Stage	only	the	specified	file	so	that	it	is	ready	to	be
committed

git add --patch	filename Stage	only	portions	of	a	file	so	that	they	are	ready	to	be
committed

git reset HEAD	filename Remove	proposed	file	changes	from	the	staging	area

git commit --amend Update	the	previous	commit	with	changes	currently
staged,	and	supply	a	new	commit	message

git show	commit Log	details	for	a	single	commit

git tag	tag	commit Add	a	tag	to	a	commit	object

git tag List	all	tags

git show	tag Log	details	for	the	commit	where	the	tag	was	applied

git remote add	remote_name URL Create	a	new	reference	to	a	new	remote	repository

git push Upload	changes	for	the	current	branch	to	a	remote
repository

git remote --verbose List	the	fetch	and	push	URLs	for	all	available
remotes

git push --set-upstream	remote_name
branch_local	branch_remote

Push	a	copy	of	your	local	branch	to	the	remote	server

git merge	branch Incorporate	the	commits	currently	stored	in	another
branch	into	the	current	one

git push --delete	remote_name
branch_remote

Remove	named	branch	from	the	remote	server

Summary
Throughout	this	chapter	you	have	learned	how	to	work	with	Git	as	a	team	of
one.	The	following	is	a	guide	to	the	best	practices	outlined	in	this	chapter:

Always	begin	your	work	by	defining	the	problem	you	want	to	work	on.	This
definition	will	help	you	determine	the	name	of	the	branch,	and	which	piece	of
work	you	want	to	branch	away	from	to	start	your	work.

As	you	are	making	changes	in	your	branch,	you	can	choose	to	add	some	or	all
of	the	changes	you’ve	made	through	the	staging	area.	This	will	help	you	to
craft	commits	with	related	work.

Regardless	of	whether	you	start	your	repository	locally	or	via	a	clone,	you
can	always	start	a	new	project	on	a	code	hosting	system	and	upload	your
work	by	adding	a	new	remote	to	your	local	repository.

Housekeeping	tasks	should	be	performed	as	you	wrap	up	each	line	of	work.
You	can	do	this	by	merging	your	ticket	branches	into	your	main	branch,	and
then	deleting	the	local	and	remote	copies	of	your	branch.

In	the	next	chapter,	you	will	learn	how	to	go	back	in	time	in	the	Git	time

machine	to	undo	your	work	and	change	your	commit	history.

Chapter	6.	Rollbacks,	Reverts,
Resets,	and	Rebasing

This	is	otherwise	known	as	the	“Rrrrgh!”	chapter.	Bad	things	happen	to	good
people.	Fortunately,	Git	can	help	you	undo	some	of	those	past	mistakes	by
traveling	back	in	time.	There	are	several	commands	in	Git	that	vary	in	their
degree	of	severity—making	minor	adjustments	of	a	commit	message	all	the	way
through	to	obliterating	history.	Mistakes	are	typically	committed	and	removed
from	a	personal	repository,	but	the	way	you	deal	with	them	can	impact	how
others	interact	with	the	code	base.	Ensuring	you	are	always	dealing	with
problems	in	the	most	polite	way	possible	will	help	your	team	work	more
efficiently.

By	the	end	of	this	chapter,	you	will	be	able	to:

Amend	a	commit	to	add	new	work

Restore	a	file	to	a	previous	state

Restore	your	working	directory	to	a	previously	committed	state

Revert	previously	made	changes

Reshape	your	commit	history	using	rebase

Remove	a	file	from	your	repository

Remove	commits	added	to	a	branch	from	an	incorrect	merge

Throughout	the	chapter	you	will	be	learning	techniques	that	feel	invisible,	but
have	huge	implications.	Take	the	time	to	slow	down,	and	draw	a	diagram	of	how
you	want	things	to	appear	after	you	have	run	the	sequence	of	commands.	This
will	help	you	to	select	the	right	subcommand	and	the	right	parameters.	It	will
also	help	you	to	recall	information	the	next	time	you	need	to	perform	the	same
task	again.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from
Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

http://bit.ly/collaborating-with-git

Best	Practices
In	this	chapter	you	are	going	to	be	learning	to	manipulate	the	history	of	your
repository.	While	the	exercises	in	this	book	are	easy	to	follow,	there	will	come	a
time	when	you	are	a	little	under	pressure	and	a	little	unpracticed	and	you	will
panic	and	think	you’ve	lost	your	work.	Take	a	deep	breath.	It	will	be	okay.	If
you’ve	committed	something	into	the	repository,	it	will	(almost)	always	be	there
if	you	are	willing	to	do	some	digging.	It’s	very	difficult	to	completely	remove
work	from	a	repository	in	Git;	it	is,	however,	relatively	easy	to	lose	work	and	not
be	able	to	find	it	again.	So	before	you	learn	how	to	muck	about	with	history,	let’s
make	sure	you’ve	got	some	good	recovery	tools	to	help	you	MacGyver	your	way
out	of	difficult	situations.

Describing	Your	Problem
There	are	a	lot	of	ways	to	undo	work	in	Git,	and	each	method	is	exactly	right
some	of	the	time.	In	order	to	choose	the	correct	method,	you	need	to	know
exactly	what	you	want	to	change—and	how	it	should	be	different	after	you	are
finished.	When	I	was	first	learning	version	control,	I	would	often	draw	a	quick
sketch	of	what	I	was	trying	to	accomplish	to	ensure	I	was	using	the	right
command	for	the	job.	Figure	6-1	shows	the	three	concepts	you	need	to	be	aware
of:	the	working	directory	(the	files	currently	visible	on	your	filesystem);	the
staging	area	(the	index	of	changes	that	will	be	written	to	the	repository	after	the
next	commit);	and	the	repository	(which	stores	files	and	records	the	changes
made	to	the	files	over	time).

Figure	6-1.	The	working	directory,	staging	area,	and	repository	each	contain	different	information	about
your	files

The	Staging	Area	is	Not	Automatically	Updated
Figure	6-1	is	a	bit	of	a	lie,	as	you	need	to	explicitly	place	things	into	the	staging
area	using	the	command	add,	but	it’s	a	decent	working	model	to	start	from.

Whenever	you	can	separate	your	problem	into	the	discrete	places	where	Git	is
storing	its	information,	you	have	a	better	chance	of	choosing	the	correct
command	sequence	to	return	your	work	to	the	state	you	want	it	to	be	in.	Table	6-
1	contains	a	series	of	scenarios	might	encounter	while	working	with	Git.

Table	6-1.	Choosing	the	correct	undo	method

You	want	to… Notes Solution

Discard	changes	you’ve	made	to	a	file	in	your
working	directory

Changed	file	is	not	staged,	or
committed

checkout --
filename

Discard	all	unsaved	changes	in	the	working
directory

File	is	staged,	but	not
committed

reset --
hard

Combine	several	commits	up	to,	but	not	including,
a	specific	commit

reset
commit

Remove	all	unsaved	changes,	including	untracked
files

Changed	files	are	not	committed clean -fd

Remove	all	staged	changes	and	previously
committed	work	up	to	a	specific	commit,	but	do	not
remove	new	files	from	the	working	directory

reset --
hard	commit

Remove	previous	work,	but	keep	the	commit
history	intact	(“roll	forward”)

Branch	has	been	published;
working	directory	is	clean

revert
commit

Remove	a	single	commit	from	a	branch’s	history Changed	files	are	committed;
working	directory	is	clean;
branch	has	not	been	published

rebase --
interactive
commit

Keep	previous	work,	but	combine	it	with	another
commit

Select	the	squash	option rebase --
interactive
commit

Figure	6-2	shows	one	diagram	for	the	first	scenario.	Additional	answers	are
available	on	the	Git	for	Teams	website.

Figure	6-2.	You	want	to	discard	changes	you’ve	made	to	a	file	in	your	working	directory;	the	incorrect
copy	of	the	file	is	not	staged	or	committed

As	you	can	see	in	the	examples	outlined	in	Table	6-1,	some	commands	have	two

http://gitforteams.com

different	outcomes	depending	on	the	parameters	used.	Figure	6-3	contains	a
flowchart	of	the	scenarios	you	may	find	yourself	in.	Redraw	this	chart	digitally,
or	on	paper.	The	act	of	re-creating	the	chart	will	reinforce	the	options	you	will	be
forced	to	deal	with	in	Git,	and	it	will	give	you	a	personal	reference	point,	which
is	often	easier	to	remember	than	a	page	in	a	book.

You	may	have	your	own	types	of	changes	you	need	to	recover	from	as	well.
Create	a	list	of	all	the	problem	scenarios	you	may	want	to	recover	from.	The
better	you	are	able	to	describe	what’s	wrong,	the	more	likely	you	are	to	find	the
correct	solution.	As	you	work	through	this	chapter,	you	may	choose	to	expand
on	the	flowchart	in	Figure	6-3	or	create	your	own	diagrams.	Please	share	your
work	on	Twitter	by	using	#gitforteams.	I’d	love	to	see	what	you	come	up	with!

Using	Branches	for	Experimental	Work
On	a	tree,	a	branch	is	independent	from	its	sibling	branches.	Although	they	may
have	a	common	ancestor,	you	can	(typically)	saw	a	branch	off	a	tree	without
impacting	the	other	branches.	In	Git,	the	commits	you	add	to	your	repository	are
connected	to	one	or	more	branches.	If	you	check	out	a	different	branch	and
manipulate	the	commit	objects	in	that	new	branch,	they	are	assigned	a	new
identifier,	leaving	the	original	commit	objects	tied	to	the	original	branch
unchanged.	This	means	it	is	always	safer	to	do	your	work	in	a	new	private
branch,	and	when	you	are	happy	with	the	results,	merge	your	branch	back	into
the	main	branch	(Figure	6-4).

http://bit.ly/hashgitforteams

Figure	6-3.	Create	a	flowchart	to	help	you	select	the	appropriate	command

Figure	6-4.	Working	in	a	branch	protects	you	from	unintended	changes;	merge	your	work	back	into	the
main	branch	only	when	it	is	correct	and	complete

Previously	we’ve	created	and	deleted	branches	using	the	ticket	as	a	starting
point.	But	what	if	you	were	working	on	a	ticket,	and	you	weren’t	sure	which	of
two	approaches	you	should	take?	In	this	case	you	could	create	a	branch	off	of
your	ticket	branch,	make	your	experimental	changes	(Example	6-1),	and	then
merge	your	experimental	branch	into	your	ticket	branch	(Example	6-2)	if	you
want	to	save	the	changes.

Example	6-1.	Use	an	experimental	branch	to	test	changes
$ git checkout -b experimental_idea

 (do work)

$ git add --all

$ git commit

You	may	have	one	or	more	commits	in	your	experimental	branch.	When	you
merge	the	two	branches,	you	can	optionally	combine	all	of	those	commits	into	a
single	one	at	the	time	of	the	merge	with	the	parameter	--squash.	If	you	use	this
parameter,	you	will	still	need	to	run	the	command	commit	separately	to	save	the
changes	from	the	other	branch.	By	merging	the	branch	in	this	way,	you	will	be
unable	to	unmerge	the	branch	later.	As	such,	it’s	appropriate	to	use	--squash
only	when	merging	branches	you	wish	had	never	been	separate	to	begin	with.

Example	6-2.	Merge	your	experimental	branch	back	into	the	main	branch

$ git checkout master

$ git merge experimental_idea --squash

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

$ git commit

After	merging	your	experimental	branch,	you	can	delete	it	(Example	6-3).

Example	6-3.	Delete	your	experimental	branch
$ git branch --delete experimental_idea

If	you	want	to	discard	your	experimental	ideas,	complete	the	preceding	steps,	but
omit	the	step	where	you	merge	your	work	into	your	main	ticket	branch.	To	delete
an	unmerged	branch,	you	will	need	to	use	the	parameter	-D	instead	of	--delete.

Subsequent	sections	of	this	chapter	cover	removing	commits	you	made	in	a
branch	before	you	realized	they	were	just	experiments.

Rebasing	Step	by	Step
Out	of	the	three	commands	rebase,	reset,	and	revert,	rebase	is	the	only
command	which	is	not	exclusively	focused	on	undoing	work.	Generally	when
we	talk	about	about	rebasing,	we	are	referring	to	the	process	of	bringing	a
branch	up	to	date	with	commits	that	have	been	made	on	its	parent	branch.	This	is
typically	a	very	straightforward	process:	from	the	branch	you	want	to	update,
you	run	the	command	rebase	along	with	the	name	of	the	parent	branch.	Git
removes	your	commits	from	the	child	branch	you	have	been	working	on,	adds
the	new	commits	that	were	made	on	the	parent	branch	to	the	tip	of	your	branch,
and	then	adds	an	updated	copy	of	your	commits	to	your	branch.	This	makes	it
seem	as	though	your	commits	were	added	after	the	new	changes	from	the	parent
branch.	It’s	the	Git	equivalent	to	whistling	innocently	and	pretending	nothing
happened	when	actually	it	has	snuck	a	vase	with	flowers	onto	the	table	while
you	weren’t	looking.

Although	we	often	talk	about	rebasing	as	“replaying	your	history,”	rebasing	is
perhaps	more	correctly	defined	as	traveling	back	in	time	and	then	attempting	to
re-enact	history.	If	you	have	seen	Back	to	the	Future	(or	a	modern	time	travel
equivalent)	you	know	that	history	is	never	quite	the	same	the	second	time

around.	This	is	the	case	with	rebase	as	well.	Although	it	appears	as	though	the
commits	are	simply	dropped	back	onto	a	new	branch	tip,	they	are	actually
completely	new	commits	with	their	own	reference	ID.	As	these	new	commits	are
applied	to	the	time	line,	problems	can	arise	if	the	new	history	conflicts	with	the
work	you	are	trying	to	apply.	This	will	result	in	errors	about	being	in	a	detached
HEAD	state.	Mind	blown?	Here	is	another	way	to	think	of	it:	Git	allows	us	to
retell	history,	inserting	new	facts	as	it	pleases	us.	It	does	not,	however,	actually
allow	us	to	change	anything	that	has	happened	in	the	past.	What’s	done	is	done
all	we	can	do	is	change	the	stories	we	tell	about	it.

Most	of	the	time,	when	bringing	a	branch	up-to-date	with	command	rebase,	it	is
virtually	instant	and	happens	automatically.	If,	however,	during	the	rebasing
process	there	are	conflicting	changes	in	the	work	you	have	done	and	the	work
that	you	are	trying	to	sneak	onto	the	parent	branch,	the	process	will	stop	and	Git
will	ask	you	to	resolve	the	conflicts	by	hand	before	it	proceeds.	This	can	be	in-
file	changes,	and	deleted	files	(where	one	deletes	a	file	that	the	other	has	edited).
Git	is,	after	all,	just	a	simple	content	tracker.	A	mediated	conflict	resolution	by
you,	the	expert,	always	results	in	a	better	end	product.	Even	if	you	would	rather
that	Git	just	figured	it	out,	it	is	good	that	it	stops	and	asks	for	help.	Think	of	it	as
a	valuable	life	lesson:	asking	for	help	is	okay.

The	second	cause	of	frustration	is	when	rebase	is	used	to	force	updates	into	a
public	branch.	In	this	case	a	timeline	will	end	up	with	the	same	code	represented
by	two	(or	more)	commit	objects	with	distinct	IDs.	To	help	you	choose	whether
you	should	be	rebasing,	or	merging,	please	use	the	rebase	or	merge	decision	tree.

The	remainder	of	this	section	describes	the	process	of	dealing	with	mid-rebase
conflicts	when	bringing	a	branch	up-to-date.	In	our	example,	the	parent	(or
source)	branch	is	named	master	and	the	branch	we	are	attempting	to	bring	up-
to-date	(the	child	branch)	is	named	feature.

Begin	Rebasing
Ensure	your	local	copy	of	the	parent	branch	is	up	to	date	with	the	most	recent
commits	available	from	the	main	project	repository:

$ git checkout master

$ git pull --rebase=preserve remote_nickname master

http://gitforteams.com/resources/merge-rebase.html

IF	IT	HELPS,	BE	EXPLICIT
When	updating	a	local	copy	of	a	branch	with	the	command	pull,	the	parameters	for	the	name
of	the	remote,	and	name	of	the	remote	branch	are	typically	optional.	Occasionally,	if	I	have
more	than	one	remote	for	a	given	repository,	Git	sometimes	seems	to	miss	if	there	are	updates
available.	Adding	the	two	additional	parameters	seems	to	help.

Change	into	the	branch	that	is	currently	out	of	date	from	the	main	project,	but
which	contains	new	work	that	hasn’t	been	introduced	yet:

$ git checkout feature

Begin	the	rebasing	process:

$ git rebase master

If	there	are	no	conflicts,	Git	will	skip	merrily	through	the	process	and	spit	you
out	the	other	end	with	no	additional	action	required	from	you.	See?	Rebasing	is
easy!	You	should	try	it!	However,	sometimes	there	are	conflicts…

Mid-Rebase	Conflict	from	a	Deleted	File
A	conflict	in	the	rebasing	process	occurs	when	the	changes	you	have	made	occur
on	the	same	line	as	the	changes	which	are	stored	in	one	of	the	new	commits	on
the	parent	branch.	As	a	simple	content	tracker,	Git	doesn’t	feel	qualified	to	know
whether	our	changes	should	be	kept,	or	theirs.	Instead	of	making	guesses,	Git
stops	and	asks	for	your	help.	I	think	that’s	actually	quite	considerate	that	Git
perceives	me	to	be	more	of	an	expert	on	the	content	than	it	is!	Unfortunately	the
process	isn’t	called	“asking	you,	the	expert,	for	help”;	it’s	called	“resolving
conflict	while	in	a	detached	HEAD	state.”	This	is	very	scary	language	for	process
that	is	actually	quite	respectful.

To	resolve	a	conflict	you	will	need	to	put	on	your	content	expert	hat,	and	help
Git	make	some	decisions	about	what	to	do	next.

This	section	covers	an	example	of	a	mid-rebase	conflict.	The	file	ch10.asciidoc
has	been	deleted	in	the	source	branch,	master,	but	I’ve	been	making	updates	to
it	in	feature.	This	is	a	problem	Git	doesn’t	know	how	to	resolve.	Do	I	want	to

keep	the	file?	Should	it	be	deleted?	Git	has	put	me	into	a	detached	HEAD	state	so
that	I	can	explain	to	Git	how	I	want	to	proceed:

First, rewinding head to replay your work on top of it...

Applying: CH10: Stub file added with notes copied from video recording lessons.

Using index info to reconstruct a base tree...

A ch10.asciidoc

Falling back to patching base and 3-way merge...

CONFLICT (modify/delete): ch10.asciidoc deleted in HEAD and modified in CH10:

Stub file added with notes copied from video recording lessons.. Version CH10:

Stub file added with notes copied from video recording lessons. of ch10.asciidoc

left in tree.

Failed to merge in the changes.

Patch failed at 0001 CH10: Stub file added with notes copied from video

recording lessons.

The copy of the patch that failed is found in:

 Usersemmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".

If you prefer to skip this patch, run "git rebase --skip" instead.

To check out the original branch and stop rebasing, run "git rebase --abort".

The	relevant	piece	of	information	from	this	output	is:

When you have resolved this problem, run "git rebase --continue".

This	tells	me	that	I	need	to:

1.	 Resolve	the	merge	conflict.

2.	 Once	I	think	the	merge	conflict	is	resolved,	run	the	command:

git rebase --continue

I	accomplish	step	1	by	opening	the	file	in	question	in	my	designated	file
comparison	tool:

$ git mergetool ch10.asciidoc

There	are	no	merge	conflict	markers	displayed	in	the	file,	so	I	quit	the	merge	tool
and	proceed	to	the	next	step	Git	had	identified:

$ git rebase --continue

The	following	message	is	returned	from	Git:

ch10.asciidoc: needs merge

You must edit all merge conflicts and then

mark them as resolved using git add

That’s	not	very	helpful!	I	just	looked	at	that	file	and	there	were	no	merge
conflicts.	I’ll	ask	Git	what	the	problem	is	using	the	command	status:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (fix conflicts and then run "git rebase --continue")

 (use "git rebase --skip" to skip this patch)

 (use "git rebase --abort" to check out the original branch)

Unmerged paths:

 (use "git reset HEAD <file>..." to unstage)

 (use "git add/rm <file>..." as appropriate to mark resolution)

 deleted by us: ch10.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Aha!	There	are	two	clues	here	for	me.	The	text:	Unmerged paths	and	then	a
little	later	on	the	text:	deleted by us: ch10.asciidoc.	Well,	I	don’t	want	the
file	to	be	deleted.	This	is	useful	because	Git	has	told	me	deleted by us	and	I
know	I	don’t	want	to	delete	the	file;	therefore	I	need	to	unstage	Git’s	change.
Unstaging	a	change	is	effectively	saying	to	Git,	“That	thing	you	were	planning
to	do?	Don’t	do	it.	In	fact,	forget	you	were	even	thinking	about	doing	anything
with	that	file.	Reset	your	HEAD,	Git.”

Git	tells	me	how	to	prevent	this	change	from	happening	with	the	following	text:

(use "git reset HEAD <file>..." to unstage)

Using	this	message	as	a	guide,	I	run	the	following	command:

$ git reset HEAD ch10.asciidoc

Now,	what	this	command	is	actually	doing	is	clearing	out	the	staging	area,	and
moving	the	pointer	back	to	the	most	recent	known	commit.	Because	I	am	knee-
deep	in	a	rebase,	and	in	a	detached	HEAD	state	as	opposed	to	in	a	branch,	reset
clears	away	the	staging	area	and	puts	me	in	the	most	recent	state	from	the
rebasing	process.	In	my	case,	this	leaves	me	with	the	older	version	of	the	file,
which	is	fine.	As	I	proceed	through	the	rebase,	I	will	replace	the	contents	of	the
file	with	the	latest	version	from	the	branch	feature.	If	I	wanted	to	preserve	their
deletion	of	the	file,	I	would	skip	this	step	and	proceed	with	the	instructions,
adding	the	file	to	the	staging	area	as	described	later.

With	my	chapter	file	replaced,	let’s	see	what	clues	Git	is	giving	me	on	how	I
should	proceed:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (all conflicts fixed: run "git rebase --continue")

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 ch10.asciidoc

nothing added to commit but untracked files present (use "git add" to track)

So	I’ve	still	got	the	file	(great!),	but	Git	is	still	confused	about	what	to	do,
because	as	far	as	it’s	concerned,	that	file	should	have	been	deleted.	I	need	to
explicitly	add	the	file	back	into	the	repository,	which	Git	tells	me	to	do	by	giving
me	the	message:

Untracked files: (use "git add <file>..." to include in what will be

committed) ch10.asciidoc

The	formatting	is	awkward	if	there	is	only	one	affected	file	but	in	the	case	of	a
longer	list	of	files,	the	formatting	is	lovely.

Per	Git’s	request,	I	will	now	add	the	file	ch10.asciidoc	to	the	staging	area:

$ git add ch10.asciidoc

Now	at	this	point,	I	know	that	the	command	add	is	just	the	beginning	of	a
process,	and	that	I’m	going	to	need	to	commit	the	file	as	well,	but	this	is	rebasing
and	the	rules	are	different.	I’m	going	to	ask	Git	what	to	do	next	by	checking	the
output	of	the	command	status	again:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: ch10.asciidoc

Okay,	it’s	saying	there	are	changes	to	be	committed	(yup,	already	knew	that),	but
it	doesn’t	tell	me	to	commit	them!	Instead	it	tells	me	to	continue	with	the
rebasing	with	the	message:

all conflicts fixed: run "git rebase --continue"

I	proceed	with	this	command	even	though	add	is	normally	paired	with	commit	to
save	changes:

$ git rebase --continue

Mid-Rebase	Conflict	from	a	Single	File	Merge	Conflict
After	restarting	the	rebasing	process,	Git	has	run	into	another	conflict	as	it

replays	the	commits.	The	output	is	as	follows:

Applying: CH10: Stub file added with notes copied from video recording lessons.

Applying: TOC: Adding Chapter 10 to the book build.

Using index info to reconstruct a base tree...

M book.asciidoc

Falling back to patching base and 3-way merge...

Auto-merging book.asciidoc

CONFLICT (content): Merge conflict in book.asciidoc

Recorded preimage for 'book.asciidoc'

Failed to merge in the changes.

Patch failed at 0002 TOC: Adding Chapter 10 to the book build.

The copy of the patch that failed is found in:

 Usersemmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".

If you prefer to skip this patch, run "git rebase --skip" instead.

To check out the original branch and stop rebasing, run "git rebase --abort".

Another	conflict.	You’re	being	high	maintenance,	Git!	No	wonder	people
complain	about	rebasing!	Okay,	okay,	at	least	it’s	a	different	file	this	time
(CONFLICT	(content):	Merge conflict in book.asciidoc).	I	take	a	closer
look	at	the	output	of	the	command	status	again	to	see	if	Git	gives	me	additional
clues:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (fix conflicts and then run "git rebase --continue")

 (use "git rebase --skip" to skip this patch)

 (use "git rebase --abort" to check out the original branch)

Unmerged paths:

 (use "git reset HEAD <file>..." to unstage)

 (use "git add <file>..." to mark resolution)

 both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Long	sigh.	Alright,	Git.	Let’s	see	what	the	conflict	is	in	this	file:

$ git mergetool book.asciidoc

Opening	up	the	file	in	my	favorite	merge	tool,	I	see	there	is	indeed	a	merge
conflict	in	this	file.	The	merge	conflict	markers	are	displayed	as	three	columns.
One	column	for	each	of	the	two	branches	being	merged,	and	one	column
displaying	how	the	merge	conflict	should	be	resolved.	I	choose	the	hunk	of	text	I
want	to	keep,	which	resolves	the	conflict.	I	save	the	file,	close	the	merge	tool,
and	ask	Git	if	it’s	happy	by	using	the	command	status,	again:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (fix conflicts and then run "git rebase --continue")

 (use "git rebase --skip" to skip this patch)

 (use "git rebase --abort" to check out the original branch)

Unmerged paths:

 (use "git reset HEAD <file>..." to unstage)

 (use "git add <file>..." to mark resolution)

 both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

The	message	is	a	little	misleading	because	I	have	fixed	the	conflicts.	At	this
point,	I	open	the	file	to	double	check.	Nope,	no	conflicts	there.	So	now	I	move
on	to	the	next	group	of	instructions:	unmerged paths: use "git add <file>
…" to mark resolution	and	then	both modified: book.asciidoc:

$ git add book.asciidoc

And	check	the	status	again:

$ git status

The	output	from	Git	is	as	follows:

rebase in progress; onto 6ef4edb

You are currently rebasing branch 'ch10' on '6ef4edb'.

 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: book.asciidoc

As	before,	I	don’t	pair	the	command	add	with	the	command	commit.	Instead,	Git
instructs	me	as	follows:	all conflicts fixed: run "git rebase --
continue",	so	I	proceed	with	the	rebasing	process:

$ git rebase --continue

The	output	from	Git	is	as	follows:

Applying: TOC: Adding Chapter 10 to the book build.

Recorded resolution for 'book.asciidoc'.

Applying: CH10: Outline of GitHub topics

The	rebasing	procedure	has	been	completed.	My	copy	of	the	branch	feature	is
now	up	to	date	with	all	changes	that	had	been	previously	committed	to	the
branch	master.

There	are	a	few	different	ways	that	rebasing	can	kick	up	a	conflict.	Take	your
time,	read	the	instructions	carefully,	and	if	you	aren’t	getting	useful	information,
try	using	the	command	status	to	see	if	there’s	something	more	helpful	that	Git
can	offer.	If	you	are	really	in	a	panic	about	what’s	happening,	you	can	always
abort	the	process	with	the	command	git rebase --abort.	This	will	return	you
the	state	your	branch	was	in	right	before	you	started	the	rebase.

An	Overview	of	Locating	Lost	Work
It	is	very	difficult	to	completely	remove	committed	work	in	Git.	It	is,	however,
pretty	easy	to	misplace	your	work	with	the	same	frequency	that	I	misplace	my

keys,	my	glasses,	my	wallet,	and	my	family’s	patience.	If	you	think	you	have
lost	some	work,	the	first	thing	you	will	need	to	do	is	locate	the	commit	where	the
work	was	stored.	The	command	log	displays	commits	that	have	been	made	to	a
particular	branch;	the	command	reflog	lists	a	history	of	everything	that	has
happened	in	your	local	copy	of	the	repository.	This	means	that	if	you	are
working	with	a	repository	you	cloned	from	a	remote	server,	the	reflog	history
will	begin	at	the	point	where	you	cloned	the	repository	to	your	local
environment—whereas	the	log	history	will	display	all	of	the	commit	messages
since	the	command	init	was	used	to	create	the	repository.

If	you	haven’t	already,	get	a	copy	of	the	project	repository	for	this	book,	and
compare	the	output	of	the	two	commands	reflog	and	log	(Example	6-4).

Example	6-4.	Compare	the	output	of	log	and	reflog
$ git clone https://gitlab.com/gitforteams/gitforteams.git

Cloning into 'gitforteams'...

remote: Counting objects: 1084, done.

remote: Total 1084 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (1084/1084), 12.07 MiB | 813.00 KiB/s, done.

Resolving deltas: 100% (628/628), done.

Checking connectivity... done.

$ git log --oneline

e8d6aff Updating diagram: Adding commit ID reference to rebase.

ae56a1f Adding workflow diagram for: reset, revert, rebase, checkout.

2480520 Merge pull request #5 from xrmxrm/1-markdown_fixes

ee46470 Fix some markdown Issue #1

$ git reflog

2f17715 HEAD@{1}: clone: from https://gitlab.com/gitforteams/gitforteams.git

If	the	only	thing	you	have	done	is	clone	the	repository,	you	will	only	see	one	line
of	history	in	the	reflog.	As	you	do	more	things,	the	reflog	will	start	to	grow.
Following	is	a	sample	of	the	output	from	this	book’s	repository:

fdd19dc HEAD@{157}: merge drafts: Fast-forward

af9e2c8 HEAD@{158}: checkout: moving from drafts to master

fdd19dc HEAD@{159}: merge ch04: Merge made by the 'recursive' strategy.

af9e2c8 HEAD@{160}: checkout: moving from ch04 to drafts

e296faa HEAD@{161}: commit (amend): CH04: first draft complete

dd87941 HEAD@{162}: commit: CH04: first draft complete

This	is	a	private	history.	Only	you	can	see	it,	thank	goodness!	It	will	contain
everything	that	you	have	done	including	things	that	have	no	impact	on	the	code,
such	as	checking	out	a	branch.

Both	of	the	commands	log	and	reflog	show	you	the	commit	ID	for	a	particular
state	that	is	stored	in	the	repository.	So	long	as	you	can	find	this	commit	ID,	you
can	check	it	out	(Example	6-5),	temporarily	restoring	the	state	of	the	code	base
at	that	point	in	time.

Example	6-5.	Check	out	a	specific	commit	in	your	repository
$ git checkout commit

Checking out files: 100% (2979/2979), done.

Note: checking out 'a94b4c4'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b new_branch_name

HEAD is now at a94b4c4... Fixing broken URL to the slides from the main README file.

Was missing the end round bracket.

When	you	check	out	a	commit,	you	will	be	detaching	from	the	connected	history
for	a	particular	branch.	It’s	not	really	as	scary	as	it	sounds,	though.	Normally
when	we	work	in	Git	we	are	working	in	a	linear	representation	of	history.	When
we	check	out	a	single	commit,	we	are	working	in	a	suspended	state	(Figure	6-5).

Figure	6-5.	In	a	detached	HEAD	state,	you	are	temporarily	disconnected	from	the	linear	history	of	a
branch

This	is	typically	where	people	start	to	freak	out	a	bit—understandably—your
HEAD	is	DETACHED!	Following	the	instructions	Git	provides	will	set	you
right.	If	you	want	to	save	the	state	you	are	in,	check	out	a	new	branch	and	your
state	will	be	recorded	in	that	new	branch:

$ git checkout -b restoring_old_commit

At	this	point	you	can	continue	to	add	a	few	fix-ups	in	the	new	branch	if	there’s
anything	missing	you	want	to	add	(or	old	work	that	is	no	longer	relevant	and	that
you	want	to	remove).	Once	you	are	finished,	you	will	need	to	decide	how	you

want	to	incorporate	the	new	branch	back	into	your	working	branch.	You	could
choose	to	merge	the	new	branch	into	an	existing	branch,	or	just	cherry-pick	a
few	commit(s)	that	you	want	to	keep.	Let’s	start	with	a	merge,	because	this	is
something	you	should	already	be	familiar	with	from	Chapter	5:

$ git checkout working_branch

$ git merge restoring_old_commit

With	the	merge	complete,	you	should	now	tidy	up	your	local	repository	by
deleting	the	temporary	branch:

$ git branch --delete restoring_old_commit

If	you	have	published	the	temporary	branch	and	wish	to	delete	it	from	the	remote
repository,	you	will	need	to	do	that	explicitly:

$ git push --delete restoring_old_commit

This	method	has	the	potential	to	make	an	absolute	mess	of	things	if	the
temporary	branch	contains	a	lot	of	unrelated	work.	In	this	case,	it	may	be	more
appropriate	to	use	the	command	cherry-pick	(Example	6-6).	It	can	be	used	in	a
number	of	different	ways—check	the	documentation	for	this	command	with	git
help cherry-pick.	I	tend	to	use	the	commit	ID	that	I	want	to	copy	into	my
current	branch.	The	optional	parameter	-x	appends	a	line	to	the	commit	message
letting	you	know	this	commit	was	cherry-picked	from	somewhere	else,	as
opposed	to	having	been	originally	created	on	this	branch	at	this	point	in	history.
This	addition	makes	it	easier	to	identify	the	commit	later.

Example	6-6.	Copying	commits	onto	a	new	branch	with	cherry-pick
$ git cherry-pick -x commit

Assuming	the	commit	was	cleanly	applied	to	your	current	branch,	you	will	see	a
message	such	as	the	following:

[master 6b60f9c] Adding office hours reminder.

 Date: Tue Jul 22 08:36:54 2014 -0700

 1 file changed, 2 insertions(+)

If	things	don’t	go	well,	you	may	need	to	resolve	a	merge	conflict.	The	output	for
that	would	be	as	follows:

error: could not apply 9d7fbf3... Lesson 9: Removing lesson stubs from

subsequent lessons.

hint: after resolving the conflicts, mark the corrected paths

hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Merge	conflicts	are	covered	in	more	detail	in	Chapter	7.	Skip	ahead	to	that
chapter	if	you	encounter	a	conflict	while	cherry-picking	a	commit.

Another	output	you	may	encounter	is	when	the	commit	you	want	to	incorporate
is	actually	a	merge	commit.	You	will	need	to	select	the	parent	branch	in	this
case.	You	can	recognize	this	case	by	the	following	output	from	Git	when	you
attempt	to	cherry-pick	a	commit:

error: Commit 0075f7eda6 is a merge but no -m option was given.

fatal: cherry-pick failed

Confirm	the	parent	branch	you	want	to	keep	is	the	first	branch	lanes	on	the
graphed	output	of	your	log	(counting	from	left	to	right):

$ git log --oneline --graph

Then,	run	the	command	cherry-pick	again,	this	time	identifying	the	parent
branch	to	keep	with	the	parameter	--mainline:

$ git cherry-pick -x commit --mainline 1

Finally,	if	you	decide	you	don’t	want	to	keep	the	recovered	work,	you	can
obliterate	the	changes:

$ git reset --merge ORIG_HEAD

PUBLISHED	HISTORY	SHOULD	NOT	BE	ALTERED
The	command	reset	should	not	be	used	on	a	shared	branch	to	remove	commits	that	have
already	been	published.	Undoing	changes	on	shared	branches	is	covered	later	in	this	chapter.

If	you	have	worked	on	each	of	the	examples	in	this	section,	you	should	now	be
able	to	check	out	a	single	commit,	create	a	new	branch	to	recover	from	a
detached	HEAD	state,	merge	changes	from	one	branch	into	another,	cherry-pick
commits	into	a	branch,	and	delete	local	branches.

Restoring	Files
You	are	working	along	and	you	just	deleted	the	wrong	file.	You	actually	wanted
to	keep	the	file.	Or	perhaps	you	edited	a	file	that	shouldn’t	have	been	edited.
Before	the	changes	are	locked	into	place	(or	committed),	you	can	check	out	the
files.	This	will	restore	the	contents	of	the	file	to	what	was	stored	in	the	last
known	commit	for	the	branch	you	are	on:

$ rm README.md

$ git status

On branch master

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: README.md

no changes added to commit (use "git add" and/or "git commit -a")

The	status	message	explains	how	to	reverse	the	changes	and	recover	your
deleted	file:

$ git checkout -- README.md

If	you	have	already	staged	the	file,	you	will	need	to	unstage	it	before	you	can
restore	the	file	by	using	the	command	reset.	To	try	this,	you	will	need	to	first
delete	a	file,	then	use	the	command	add	to	add	the	changes	to	the	staging	area,
and	finally	use	the	command	status	to	verify	your	next	action:

$ rm README.md

$ git add README.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: README.md

At	this	point,	the	command	you	used	previously,	checkout,	will	not	work.
Instead,	follow	the	instructions	Git	provides	to	unstage	the	file	you	want	to
restore.	Instead	of	selecting	a	specific	commit,	use	the	Git	short	form	HEAD,
which	refers	to	the	most	recent	commit	on	the	current	branch:

$ git reset HEAD README.md

Once	the	file	is	unstaged,	you	can	use	the	command	checkout	as	you	did
previously	to	restore	the	deleted	file:

$ git checkout -- README.md

If	you	prefer,	you	can	combine	these	two	commands	into	one:

$ git reset --hard HEAD -- README.md

If	you	want	to	undo	all	of	the	changes	in	your	working	directory,	restoring	the
version	of	the	files	that	was	saved	in	the	previous	commit,	you	don’t	need	to
make	the	changes	one	at	a	time.	You	can	do	it	in	bulk:

$ git reset --hard HEAD

You	should	now	be	able	to	restore	a	deleted	file	in	the	working	directory.

Working	with	Commits
A	commit	is	a	snapshot	within	your	repository	that	contains	the	state	of	all	of	the

files	at	that	point	in	time.	Each	of	these	commits	can	be	manipulated	within	your
history.	You	can	remove	the	commit	entirely	with	the	command	reset,	you	can
reverse	the	effects	of	a	commit	(but	maintain	it	in	your	history)	with	the
command	revert,	and	you	can	change	the	order	of	the	commits	with	the
command	rebase.	Altering	the	history	of	your	repository	is	a	big	no-no	if
you’ve	already	published	the	commits.	This	is	because	even	the	slightest	change
will	result	in	a	new	commit	SHA	being	stored	in	the	repository—even	if	the	code
itself	is	exactly	the	same	at	the	tip	of	the	branch.	This	is	because	Git	assumes
that	all	new	commit	IDs	contain	new	information	that	must	be	incorporated,
regardless	of	the	contents	of	the	files	stored	in	those	commits.

In	this	section,	it	is	assumed	you	are	working	with	commits	that	have	not	been
shared	with	others	yet	(i.e.,	you	haven’t	pushed	your	branch).	Tips	for	working
on	changing	history	for	shared	branches	are	covered	separately.

Amending	Commits
If	you	realize	a	commit	you’ve	just	made	is	just	missing	one	little	fix,	you	can
amend	the	commit	to	include	additional	files,	or	update	the	message	that	was
used	for	the	commit.	I	use	this	command	frequently	to	convert	my	terse	oneline
commit	messages	into	well-formed	summaries	of	the	work	I’ve	completed.

DO	NOT	CHANGE	SHARED	HISTORY
If	you	have	already	pushed	the	work,	it	is	considered	bad	form	to	go	back	and	“fix”	shared
history.

If	you	have	made	any	changes	to	the	files	in	your	working	directory,	you	will
need	to	add	the	files	to	the	staging	area	before	amending	your	commit
(Example	6-7).	If	you	are	just	updating	the	commit	message,	and	there	are	no
new,	or	modified	files,	you	can	omit	the	command	add,	and	jump	straight	to	the
command	commit.

Example	6-7.	Updating	the	previous	commit	with	--amend
$ git add --all

$ git commit --amend

Your	new	changes	will	be	added	to	the	previous	commit,	and	a	new	ID	will	be
assigned	to	the	revised	commit	object.

EVEN	MORE	COMMIT	OPTIONS	ARE	AVAILABLE
There	are	even	more	ways	to	construct	your	commit	object.	I’ve	outlined	the	options	I	use
most	frequently.	You	may	find	additional	gems	by	reading	the	relevant	manual	page	for
commit.	This	information	is	accessible	by	running	the	command:	git help commit.

If	you	want	to	amend	more	than	just	the	previous	commit,	though,	you	will	need
to	use	either	reset	or	rebase.

Combining	Commits	with	Reset
The	command	reset	appears	in	many	different	forms	during	the	undo	process.
In	this	example,	we	will	use	it	to	mimic	the	effects	of	squash	in	rebasing.	The
most	basic	explanation	of	what	reset	does	is	essentially	a	pointing	game.
Wherever	you	point	your	finger	is	what	Git	is	going	to	treat	as	the	current	HEAD
(or	tip)	of	your	branch.

RESET	ALTERS	YOUR	LOGGED	HISTORY
This	is	going	to	alter	history	because	it	removes	references	to	commits.	If	someone	were	to
merge	their	old	copy	of	the	branch,	they	would	reintroduce	the	commits	you	had	tried	to
remove.	As	a	result,	it’s	best	to	only	use	reset	to	alter	the	history	of	branches	that	are	not
shared	with	others	(this	means	you	created	the	branch	locally,	and	you	haven’t	pushed	it	to	the
server	yet).

Previously	you	used	the	command	reset	to	unstage	work	before	making	a
commit.	This	time	you	are	using	reset	to	remove	commit	objects	from	your
branch’s	history.	Think	of	a	string	of	beads.	Let’s	say	the	string	is	20	beads	long.
Holding	the	fourth	bead,	allow	the	first	three	beads	to	slide	off	the	string.	You
now	have	a	shorter	string	of	beads	as	well	as	three	loose	beads.	The	parameters
you	use	when	issuing	the	reset	command	are	part	of	what	determines	the	fate	of
those	beads.

If	you	want	to	discard	the	content	contained	in	the	commit	objects	you	removed,
you	need	to	use	reset	with	the	mode	hard.	This	mode	is	enabled	by	using	the
parameter	--hard.	When	you	use	the	mode	hard,	the	commit	objects	will	be
removed,	and	the	working	directory	will	be	updated	so	that	all	content	stored	in
those	commit	objects	are	also	removed.	If	you	do	not	use	--hard	when	you	reset
your	work,	Git	keeps	the	content	of	the	working	directory	the	same,	but	throws
away	the	commit	objects	back	to	the	reference	point.	It	will	be	as	if	you	typed	all
of	the	changes	from	the	previous	commits	into	one	giant	piece	of	work.	It’s	now
waiting	to	be	added	and	committed.

Reset	Reestablishes	the	Tip	of	a	Branch
Somewhere	along	the	way,	I	got	it	stuck	in	my	head	that	reset	ought	to	reverse
the	action	applied	in	a	given	commit.	This	definition	is	correct	for	the	command
revert,	but	not	reset.	The	command	reset	resets	the	tip	of	the	branch	to	the
specified	commit.	Perhaps	if	it	were	named	“restore”	or	“promote”	or	even	just
“set”	my	brain	would	have	made	a	better	separation	between	the	two	commands.
Remember:	the	target	for	reset	is	on	what’s	being	kept,	and	the	target	of
revert	is	what	is	lost.

Using	our	previous	bead	example,	let’s	say	you	wanted	to	reset	your	string	of
beads	so	that	the	most	recent	three	beads	were	replaced	by	a	single	big	bead.	You
would	use	the	command	reset	to	point	the	new	end	for	your	string	to	the	fourth
bead	from	the	end.	You	would	then	slide	the	three	beads	off	the	end	of	the	string.
(If	you	used	the	parameter	--hard,	these	beads	would	be	discarded.)	Instead,
we’re	going	to	remold	these	beads,	and	put	them	back	on	the	string	as	a	new
commit.

COMMITS	MUST	BE	CONSECUTIVE,	AND	END	WITH
THE	MOST	RECENT	COMMIT

For	this	operation	to	work,	you	need	to	be	compressing	consecutive	commits	leading	up	to
your	most	recent	commit.	What	we	are	doing	is	essentially	a	stepping	stone	to	interactive
rebasing.	With	this	use	of	reset	you	will	be	limited	to	the	most	recent	commits.	With
rebasing,	you	will	be	able	to	select	any	range	of	commits.

Using	the	command	log,	identify	the	most	recent	commit	that	you	want	to	keep.
This	will	become	the	new	tip	for	your	branch:

$ git log --oneline

699d8e0 More editing second file

eabb4cc Editing the second file

d955e17 Adding second file

eppb98c Editing the first file

ee3e63c Adding first file

Sticking	with	the	three-bead	analogy,	the	bead	that	I	want	to	have	as	the	new	tip
of	my	necklace	is	eppb98c.	(This	is	the	fourth	bead	from	the	end—not	entirely
intuitive	if	you	are	completely	focused	on	removing	three	beads.)	We’re	going	to
put	our	finger	on	the	bead	we	want	to	keep,	and	slide	the	rest	off	of	the	string:

$ git reset eppb98c

The	are	now	three	loose	beads	rattling	around.	These	beads	will	appear	as
untracked	changes	in	our	repository.	The	content	of	the	files	will	not	have
changed.

You	can	view	what	will	be	in	your	new	commit	by	using	the	command	diff:

$ git diff

To	combine	all	of	the	edits	that	were	made	in	those	three	commits	into	a	single
commit,	use	the	command	add	to	capture	the	changes	in	the	staging	area:

$ git add --all

Ensure	the	files	are	now	staged	and	ready	to	be	saved:

$ git status

Now	that	the	files	have	been	staged,	the	command	diff	will	no	longer	show	you
what	you	are	about	to	commit	to	your	repository.	Instead,	you	will	need	to
examine	the	staged	version	of	the	changes:

$ git diff --staged

STAGING	IS	ALSO	CACHING
The	parameter	--staged	is	an	alias	of	--cached.	I	choose	to	use	the	aliased	version	because	it
more	closely	matches	the	terms	I	use	when	talking	about	staging	changes.	If	you	are	searching
for	more	documentation	about	this	parameter,	be	sure	to	also	look	for	the	original	parameter
name.

Once	you	are	satisfied	with	the	contents	of	your	new	commit,	you	can	go	ahead
and	complete	the	commit	process:

$ git commit -m "Replacing three small beads with this single, giant bead."

The	three	commits	will	now	be	combined	into	one	single	commit.

If	you	are	having	a	hard	time	with	the	word	reset	and	having	to	go	one	past	the
commit	you	are	looking	for,	I	encourage	you	to	use	relative	history	instead	of
commit	IDs.	For	example,	if	you	wanted	to	compress	three	commits	from	your
branch	into	one,	you	would	use	the	following	command:

$ git reset HEAD~3

This	version	of	the	command	puts	your	repository	into	the	same	state	as	the
previous	example,	but	it’s	as	if	the	pointer	was	using	another	language.	Either
approach	is	fine.	Use	whichever	one	makes	more	sense	to	you.	I	personally	find
if	there	are	more	than	a	handful	of	commits	that	I	want	to	reset,	using	the
commit	ID	is	a	lot	easier	than	counting	backward.

If	you’ve	been	following	along	with	the	examples	in	this	section,	you	should
now	be	able	to	restore	a	file	that	was	deleted,	and	combine	several	smaller
commits	into	one.

Altering	Commits	with	Interactive	Rebasing
Rebasing	is	one	of	those	topics	that	has	gained	a	strong	positive	following—and
strong	opponents.	While	I	have	no	technical	problems	using	the	command,	I
openly	admit	that	I	don’t	like	what	it	does.	Rebasing	is	primarily	used	to	change

the	way	history	is	recorded,	often	without	changing	the	content	of	the	files	in
your	working	directory.	Used	incorrectly,	this	can	cause	chaos	on	shared
branches	as	new	commit	objects	with	different	IDs	are	used	to	store	work
identical	work.	But	my	complaints	are	more	to	do	with	the	idea	that	it’s	okay	to
rewrite	history	to	suit	your	fancy.	In	the	nonsoftware	world	historical
revisionism	is	wrong.

Complaints	aside,	rebasing	is	simply	the	model	Git	has	decided	on	and	so	it	fits
quite	well	into	many	workflows.	(I	use	it	when	it	is	appropriate	to	do	so—even
for	my	solo	projects	where	its	use	is	not	being	enforced	by	an	outside	team.)	One
of	the	times	it	is	appropriate	to	use	rebasing	is	when	bringing	a	branch	up-to-date
(as	was	discussed	in	“Rebasing	Step	by	Step”	and	in	Chapter	3);	the	second	is
before	publishing	your	work—interactive	rebasing	allows	you	to	curate	the
commits	into	an	easier-to-read	history.	In	this	section	you	will	learn	about	the
latter	of	these	two	methods.

Interactive	rebasing	can	be	especially	useful	if	you’ve	been	committing	micro
thoughts—leaving	you	with	commits	in	your	history	that	only	capture	partial
ideas.	Interactive	rebasing	is	also	useful	if	you	have	a	number	of	commits	that,
due	to	a	peer	review	or	sober	second	thought,	you’ve	decided	were	not	the
correct	approach.	Cleaning	up	your	history	so	there	are	only	good,	intentional
commits	will	make	it	easier	to	use	the	command	bisect	in	Chapter	9.	To	help
explain	the	concept,	I	created	a	simple	animation	showing	the	basic	principles	of
squashing	several	small	commits	into	one	whole	idea.

The	first	thing	you	need	to	do	is	select	a	commit	in	your	history	that	you	want	to
have	as	your	starting	point	(I	often	choose	one	commit	older	than	what	I	think
I’ll	need—just	in	case).	Let’s	say	your	branch’s	history	has	the	following
commits:

d1dc647 Revert "Adding office hours reminder."

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.

c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

bd5c178 Added feedback request; formatting updates to pro-con lists

876e951 Removing feedback request; added Twitter handle.

http://bit.ly/historical-revisionism
http://bit.ly/interactive-rebasing

You	have	decided	that	the	three	commits	about	jokes	should	be	collapsed	into	a
single	commit.	Looking	to	the	commit	previous	to	this,	you	select	0f187d8	as
your	starting	point.	You	are	now	ready	to	begin	the	rebasing	process:

$ git rebase --interactive 0f187d8

pick 77c00e2 Adding an Easter egg of bad jokes.

pick eed5023 Joke: What goes 'ha ha bonk'?

pick 50605a1 Correcting joke about horses and baths.

pick d1dc647 Revert "Adding office hours reminder."

Rebase 0f187d8..d1dc647 onto 0f187d8

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

The	list	of	commits	has	been	reversed	and	the	oldest	commit	is	now	at	the	top	of
the	list.	Edit	the	list	and	replace	the	second	and	third	use	of	the	word	squash	to
pick.	In	my	case,	the	edited	list	would	appear	as	follows:

pick 77c00e2 Adding an Easter egg of bad jokes.

squash eed5023 Joke: What goes 'ha ha bonk'?

squash 50605a1 Correcting joke about horses and baths.

pick d1dc647 Revert "Adding office hours reminder."

Save	and	quit	your	editor	to	proceed.	A	new	window	commit	message	editor	will
open.	You	will	now	need	to	craft	a	new	commit	message	that	represents	all	of	the
commits	you	are	combining.	The	current	messages	are	provided	as	a	starting
point:

This is a combination of 3 commits.

The first commit's message is:

Adding an Easter egg of bad jokes.

You should add your bad jokes too.

This is the 2nd commit message:

Joke: What goes 'ha ha bonk'?

This is the 3rd commit message:

Correcting joke about horses and baths.

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

#

Date: Wed Sep 10 06:12:01 2014 -0400

#

rebase in progress; onto 0f187d8

You are currently editing a commit while rebasing branch 'practice_rebasing'

on '0f187d8'.

#

Changes to be committed:

new file: badjokes.md

#

In	this	case,	it	is	appropriate	to	update	the	commit	message	as	follows:

Adding an Easter egg of bad jokes.

- New Joke: What goes 'ha ha bonk'?

You	don’t	need	to	remove	lines	starting	with	#.	I	have	done	this	to	make	it	a	little
easier	to	read.

When	you	are	happy	with	the	new	commit	message,	save	and	quit	the	editor	to
proceed:

[detached HEAD 1c10178] Adding an Easter egg of bad jokes.

 Date: Wed Sep 10 06:12:01 2014 -0400

 1 file changed, 7 insertions(+)

 create mode 100644 badjokes.md

Successfully rebased and updated refs/heads/practice_rebasing.

The	rebasing	procedure	is	now	complete.	Your	revised	log	will	appear	as
follows:

$ git log --oneline

ef4409f Revert "Adding office hours reminder."

1c10178 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.

c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

In	the	second	example,	we	are	going	to	separate	changes	that	were	made	in	a
single	commit	so	they	are	available	as	two	commits	instead.	This	would	be
useful	if	you	added	made	several	changes	to	a	single	file	and	commited	all	of
those	changes	as	a	single	commit	but	they	should	have	have	actually	been	saved
as	two	separate	commits.

To	separate	a	commit	into	several,	begin	the	same	way	as	you	did	before.	This
time	when	presented	with	the	list	of	options,	change	pick	to	edit	for	one	of	the
commits.	When	you	save	and	close	the	editor	this	time,	you	will	be	presented
with	the	option	to	amend	your	commit	(you	know	how	to	do	this!	yay!),	and	then
proceed	with	the	rebase	process:

Stopped at 0f187d831260b8e93d37bad11be1f41aaeca835e... Added information

about additional people to be thanked.

You can amend the commit now, with

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

At	this	point	you	are	in	a	detached	HEAD	state	(you’ve	been	here	before!	it’s
okay!),	but	the	files	are	all	committed.	You	need	to	reset	the	working	directory
so	that	it	has	uncommitted	files	that	you	can	work	with.	Do	you	remember	the
command	we	used	previously	to	accomplish	this?	It’s	reset!	Instead	of
selecting	a	specific	commit,	it’s	okay	to	use	the	shorthand	for	“one	commit	ago,”
which	is	HEAD~1:

$ git reset HEAD~1

Unstaged changes after reset:

M README.md

Now	you	have	an	uncommitted	file	in	your	working	directory	that	needs	to	be
added	before	you	can	continue	the	rebasing.

At	this	point,	you	can	stage	your	files	interactively	by	adding	the	parameter	--
patch	when	you	add	your	files.	This	allows	you	to	separate	changes	saved	into
one	file	into	two	(or	more)	commits.	You	do	this	by	adding	one	hunk	of	the
change	to	the	staging	area,	committing	the	change,	and	then	adding	a	new	hunk
to	the	staging	area:

$ git add --patch README.md

You	will	be	asked	if	you	want	to	stage	each	of	the	hunks	in	the	file:

diff --git a/README.md b/README.md

index 291915b..2eceb48 100644

--- a/README.md

+++ b/README.md

@@ -49,3 +49,5 @@ Emma is grateful for the support she received while employed at

 Drupalize.Me (Lullabot) for the development of this material.

 The first version of the reveal.js slides for this work were posted at

 [workflow-git-workshop](https://github.com/DrupalizeMe/workflow-git-workshop).

+

+Emma is also grateful to you for watching her git tutorials!

Stage this hunk [y,n,q,a,d,/,e,?]?

If	you	want	to	include	the	hunk,	choose	y;	otherwise,	choose	n.	If	it’s	a	big	hunk
and	you	want	to	only	include	some	of	it,	choose	s	(this	option	isn’t	available	if
the	hunk	is	too	small).	Proceed	through	each	of	the	changes	in	the	file	and	select
the	appropriate	option.	When	you	get	to	the	end	of	the	list	of	changes,	you	will
be	returned	to	the	prompt.	Use	the	command	git status,	and	assuming	there
was	more	than	one	hunk	to	change,	you	will	see	your	file	is	ready	to	be
committed	and	not	staged	for	commit:

$ git status

rebase in progress; onto bd5c178

You are currently splitting a commit while rebasing branch 'practice_rebasing'

on 'bd5c178'.

 (Once your working directory is clean, run "git rebase --continue")

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: README.md

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

Proceed	by	committing	your	staged	changes:

$ git commit

If	the	remainder	of	the	changes	can	all	be	included	in	the	same	commit,	you	can
omit	the	parameter	--patch	and	add	and	commit	the	file	to	the	repository:

$ git add README.md

$ git commit

With	all	of	your	changes	committed,	you	are	ready	to	proceed	with	the	rebase.	It
seems	like	there	aren’t	any	hints,	but	if	you	check	the	status,	Git	will	remind	you
you	are	not	done	yet:

$ git status

rebase in progress; onto bd5c178

You are currently editing a commit while rebasing branch 'practice_rebasing'

on 'bd5c178'.

 (use "git commit --amend" to amend the current commit)

 (use "git rebase --continue" once you are satisfied with your changes)

nothing to commit, working directory clean

To	complete	the	rebase,	follow	the	command	as	Git	has	described	in	the	status
message:

$ git rebase --continue

Successfully rebased and updated refs/heads/practice_rebasing.

Phew!	You	did	it!	That	was	a	lot	of	steps,	but	they	were	all	concepts	you	have
previously	tried;	this	time	they	were	chained	together.	Well	done,	you.

If	you	have	followed	each	of	the	examples	in	this	section,	you	should	now	be
able	to	amend	commits,	and	alter	the	history	of	a	branch	using	interactive
rebasing.

Unmerging	a	Branch
Mistakes	can	happen	when	you	are	merging	branches.	Maybe	you	had	the	wrong
branch	checked	out	when	you	performed	the	merge;	or	maybe	you	were
supposed	to	use	the	--no-ff	parameter	when	merging,	but	you	forgot.	So	long
as	you	haven’t	published	the	branch,	it	can	be	quite	easy	to	“unmerge”	your
branches.

THERE	IS	NO	SUCH	THING	AS	AN	UNMERGE
“Inconceivable!”	he	cried.	“I	do	not	think	that	word	means	what	you	think	it	means,”	the	other
replied.	With	apologies	to	The	Princess	Bride,	it’s	true;	there’s	no	six-fingered	man	in	Git,	and
there’s	not	really	a	way	to	“unmerge”	something.	You	can,	however,	reverse	the	effects	of	a
merge	by	resetting	the	tip	of	your	branch	to	the	point	immediately	before	you	used	the
command	merge..	Hopefully	this	doesn’t	happen	to	you	often,	because	it’s	possible	it	will	take
years	off	your	life	just	like	The	Machine	does	to	our	hero,	Westley.

Ideally,	you	will	notice	you	have	incorrectly	merged	a	branch	immediately	after
doing	it.	This	is	the	easiest	scenario	to	reverse.	Git	knows	some	of	its	commands
are	more	dangerous	than	others,	so	it	stores	a	pointer	to	the	most	recent	commit
right	before	it	performs	the	dangerous	maneuver.	Git	considers	a	merge	to	be
dangerous,	and	so	you	can	easily	undo	a	merge	right	after	it	occurs	by	running
reset,	and	pointing	the	tip	of	your	branch	back	to	the	commit	right	before	the
merge	took	place:

$ git reset --merge ORIG_HEAD

If	you	did	not	notice	your	mistake	right	away,	you	will	need	to	ask	yourself	a
few	more	questions	before	proceeding.	Figure	6-6	summarizes	the
considerations	you	will	need	to	make	in	order	to	select	the	correct	commands	to
unmerge	your	work.

You	will	need	to	think	carefully	about	what	work	you	may	want	to	retain,	and
what	work	can	be	thrown	out,	before	proceeding.	If	you	have	deleted	the	branch
you	are	removing,	you	may	wish	to	create	a	backup	copy	of	the	commits	in	a
separate	branch.	This	will	save	you	from	having	to	dig	through	the	reflog	to	find
the	lost	commits.

Let’s	say	the	branch	you	are	working	on	is	named	master,	and	you	want	to
create	a	backup	branch	named	preservation_branch:

$ git checkout master

$ git checkout -b preservation_branch

Figure	6-6.	Before	unmerging	your	branch,	consider	what	may	happen	to	the	lost	commits

You	now	have	a	branch	with	the	good	commits	and	the	bad	commits,	and	you
can	proceed	with	removing	the	bad	commits.	This	assumes	there	are	no
additional	commits	you	want	to	save	on	the	branch	that	needs	cleaning:

$ git checkout master

$ git reset --merge ORIG_HEAD

If	you	do	want	to	save	some	of	the	commits,	you	can	now	cherry-pick	them
back	from	the	backup	branch	you	created.

$ git cherry-pick commit_to_restore

The	method	of	using	ORIG_HEAD	as	a	reference	point	will	only	work	if	you
notice	right	away	that	you	need	to	unmerge	the	bad	branch.	If	you	have	been
working	on	other	things,	it’s	possible	that	Git	will	have	already	established	a
new	ORIG_HEAD.	In	this	case,	you	will	need	to	select	the	specific	commit	ID	you
want	to	return	to:

$ git reset last_correct_commit

As	Figure	6-6	shows,	there	are	a	few	different	scenarios	for	unmerging	branches.
Take	your	time	and	remember,	the	reflog	keeps	track	of	everything,	so	if
something	disappears,	you	can	always	go	back	and	check	out	a	specific	commit
to	center	yourself	and	figure	out	what	to	do	without	losing	any	of	your	work.

Undoing	Shared	History
This	chapter	has	been	focused	on	altering	the	unpublished	history	of	your
repository.	As	soon	as	you	start	publishing	your	work	you	will	eventually
publish	something	that	needs	to	be	fixed	up.	There	are	lots	of	reasons	why	this
can	happen—new	requirements	from	a	client;	you	notice	a	bug;	someone	else
notices	a	bug.	There	is	nothing	to	be	ashamed	of	if	you	need	to	make	a	change
and	share	it	with	others,	and	you	almost	certainly	don’t	need	to	hide	your
learning!	Sometimes,	however,	it’s	appropriate	to	clean	up	a	commit	history	that
has	already	been	shared.	For	example,	lots	of	minor	fixes	can	make	debugging
tools,	such	as	bisect,	less	efficient;	and	a	clean	commit	history	is	easier	to	read.
The	most	polite	way	to	modify	shared	history	is	to	not	modify	it	at	all.	Instead	of
a	“roll	back”	to	recover	a	past	working	state,	think	of	your	actions	as	“rolling
forward”	to	a	future	working	state.	You	can	do	this	by	adding	new	commits,	or
by	using	the	command	revert.	In	this	section	you	will	learn	how	to	fix	up	a
shared	history	without	frustrating	your	teammates.

Reverting	a	Previous	Commit
If	there	was	a	commit	in	the	past	that	was	incorrect,	it	is	possible	to	apply	a	new
commit	that	is	the	exact	opposite	of	what	you	had	previously	using	the	command
revert.	If	you	are	into	physics,	revert	is	kind	of	like	noise-canceling
headphones.	The	command	applies	the	exact	opposite	sound	as	the	background

noise,	and	the	net	effect	to	your	ears	is	a	silent	nothingness.

When	you	use	the	command	revert,	you	will	notice	that	your	history	is	not
altered.	Commits	are	not	removed;	rather,	a	new	commit	is	applied	to	the	tip	of
your	branch.	For	example,	if	the	commit	you	are	reverting	applied	three	new
lines,	and	removed	one	line,	the	revert	will	remove	the	three	new	lines	and	add
back	the	deleted	line.

For	example,	you	have	the	following	history	for	your	branch:

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.

c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

bd5c178 Added feedback request; formatting updates to pro-con lists

You	decide	that	you	want	to	remove	the	commit	made	about	the	reminder	for	the
office	hours,	because	that	message	was	only	relevant	for	that	particular	point	in
time.	This	message	was	added	at	c546720:

$ git revert c546720

The	commit	message	editor	will	open.	A	default	message	is	provided,	so	you	can
save	and	quit	to	proceed:

[master d1dc647] Revert "Adding office hours reminder."

 1 file changed, 2 deletions(-)

Your	logged	history	now	includes	a	new	commit	to	undo	the	changes	that	were
added	in	c546720:

d1dc647 Revert "Adding office hours reminder."

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.

c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

Repeat	for	each	commit	that	you	want	to	revert.

If	you	have	followed	along	with	each	of	the	examples	in	this	section,	you	should
now	be	able	to	reverse	the	changes	that	were	implemented	in	a	previous	commit.

Unmerging	a	Shared	Branch
Previously	in	this	chapter	you	learned	how	unmerge	two	branches	using	the
command	reset.	This	command	deletes	commits	from	a	branch’s	history.	As	a
result,	Git	will	treat	them	as	new	commits	if	it	encounters	them	again.	This
happens	if	people	merge	their	(now	out	of	date)	branch	into	the	main	repository.

To	know	which	commands	to	use,	you	will	first	need	to	determine	what	kind	of
merge	it	is.	Figure	6-7	compares	a	fast-forward	merge	and	a	true	merge.	A	fast-
forward	merge	is	aligned	with	the	commits	from	the	branch	it	was	merged	into;	a
true	merge,	however,	is	displayed	as	a	hump	on	the	graph	and	includes	a	commit
where	the	merge	was	performed.

Using	the	command	log,	look	for	the	point	where	the	incorrect	branch	was
merged	in	(Example	6-8).	If	there	is	a	merge	commit,	you’re	in	luck!	If	there	is
no	merge	commit,	you	are	going	to	have	to	do	a	lot	more	work	to	get	the	branch
unmerged.

Figure	6-7.	When	graphed,	a	fast-forward	merge	loses	the	visual	of	a	branch;	a	true	merge	maintains	it.

Example	6-8.	The	graphed	log	of	your	commit	history	will	show	you	if	it’s	a	true
merge
$ git log --oneline --graph

 4f2eaa4 Merge branch 'ch07' into drafts

|\

| c10fbdd CH07: snapshot after editing draft in LibreOffice

| 9716e7b CH07: snapshot before LibreOffice editing

| 8373ad7 App01: moving version check to the appendix from CH07

| d602e51 CH7: Stub file added with notes copied from video recording lessons.

 | 1ae7de0 CH08: Incorrect heading formatting was creating new chapter

 | 7907650 CH08: Draft chapter. Based on ALA article.

 | ad6c422 CH8: Stub file added with notes copied from video recording lessons.

You	may	also	want	to	look	at	a	single	commit	to	confirm	if	it	is	a	true	merge
using	the	command	show.	This	will	list	SHA1	for	the	branches	that	were
merged:

$ git show 90249389

commit 902493896b794d7bc6b19a1130240302efb1757f

Merge: 54a4fdf c077a62

Author: Joe Shindelar <redacted@gmail.com>

Date: Mon Jan 26 18:30:55 2015 -0700

 Merge branch 'dev' into qa

Thanks,	Joe,	for	this	tip!

BEING	CONSISTENT	MAKES	IT	EASIER	TO	SEARCH
SUCCESSFULLY

The	default	commit	message	for	a	merge	commit	is	“Merge	branch	incoming	into	current,”
which	makes	it	easier	to	spot	when	reading	through	the	output	from	the	log	command.	Your
team	might	choose	to	use	a	different	commit	message	template;	however,	you	can	add	the
optional	parameters	--merges	and	--no-merges	to	further	filter	the	logged	history.

Once	you	know	if	there	is	a	merge	commit	present,	you	can	choose	the
appropriate	set	of	commands.	Figure	6-8	summarizes	these	options	as	a
flowchart.

If	the	branch	was	merged	using	a	true	merge,	and	not	a	fast-forward	merge,	the
undo	process	is	as	follows:	use	the	command	revert	to	reverse	the	effects	of	the
merge	commit	(Example	6-9).	This	command	takes	one	additional	parameter,	--

mainline.	This	parameter	tells	Git	which	of	the	branches	it	should	keep	while
undoing	the	merge.	Take	a	look	at	your	graphed	log	and	count	the	lanes	from	left
to	right.	The	first	lane	is	1.	You	almost	always	want	to	keep	the	leftmost	lane,
and	so	the	number	to	use	is	almost	always	1.

Example	6-9.	Reversing	a	merge	commit
$ git checkout branch_to_clean_up

$ git log --graph --oneline

$ git revert --mainline 1 4f2eaa4

The	commit	message	editor	will	open.	A	default	commit	message	is	provided
indicating	a	revert	is	being	performed,	and	including	the	commit	message	from
the	commit	it	is	reversing	(Example	6-10).	I	generally	leave	this	message	in
place	due	to	sheer	laziness;	however,	the	upside	is	that	it	is	quite	easy	to	search
through	my	recorded	history	and	find	any	commits	where	I’ve	reverted	a	merge.

Figure	6-8.	Depending	on	how	your	branch	was	merged,	you	will	use	different	commands	to	unmerge	the
shared	branch

Example	6-10.	Sample	commit	message	for	a	revert	of	a	merge	commit
Revert "Merge branch 'video-lessons' into integration_test"

This reverts commit 0075f7eda67326f174623eca9ec09fd54d7f4b74, reversing

changes made to 0f187d831260b8e93d37bad11be1f41aaeca835e.

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

Your branch and 'origin/master' have diverged,

and have 23 and 2 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)

#

Changes to be committed:

deleted: lessons/01-intro/README.md

deleted: lessons/02-getting-started/README.md

deleted: lessons/03-clone-remote/README.md

deleted: lessons/04-config/README.md

(etc)

#

Occasionally	you	will	run	into	conflicts	when	running	a	revert.	No	reason	to
panic.	Simply	treat	it	as	any	other	merge	conflict	and	follow	Git’s	on-screen
instructions:

$ git revert --mainline 1 a1173fd

error: could not revert a1173fd... Merge branch 'unmerging'

hint: after resolving the conflicts, mark the corrected paths

hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Resolved 'README.md' using previous resolution.

Something	went	wrong—check	the	status	message	to	see	which	files	need
reviewing:

$ git status

On branch master

Your branch and 'origin/master' have diverged,

and have 20 and 2 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

You are currently reverting commit a1173fd.

 (fix conflicts and run "git revert --continue")

 (use "git revert --abort" to cancel the revert operation)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 deleted: badjokes.md

 modified: slides/slides/session-oscon.html

Unmerged paths:

 (use "git reset HEAD <file>..." to unstage)

 (use "git add <file>..." to mark resolution)

 both modified: README.md

The	messages	about	the	repository	being	out	of	sync	with	origin	is	unrelated	to
this	issue.	Skip	that,	and	keep	reading.	The	first	useful	bit	of	information	starts
at:	You are currently reverting.	You	are	given	the	options	on	how	to
proceed,	and	on	how	to	abort	the	process.	Don’t	give	up!	Keep	reading.	The	next
bit	looks	like	a	regular	ol’	dirty	working	directory	with	some	files	that	are	staged,
and	some	that	aren’t.	If	you	were	just	making	edits	to	your	files,	you	would
know	how	to	deal	with	this.	First	you	add	your	changes	to	the	staging	area,	and
then	you	commit	them:

$ git add README.md

$ git commit -m "Reversing the merge commit a1173fd."

[master 291dabe] Reversing the merge commit a1173fd.

 2 files changed, 2 insertions(+), 7 deletions(-)

 delete mode 100644 badjokes.md

If	there	is	no	merge	commit,	you	will	need	to	deal	with	each	of	the	commits	you
want	to	undo	individually.	This	is	going	to	be	especially	frustrating	because	a
fast-forward	merge	does	not	have	any	visual	clues	in	the	graphed	log	about
which	commits	were	in	the	offending	branch.	(After	the	first	time	unpicking	an
incorrect	merge,	you’ll	begin	to	see	the	logic	in	using	a	--no-ff	strategy	when
merging	branches.)

CONSIDER	YOUR	OPTIONS	BY	TALKING	TO	YOUR
TEAM

Before	unpicking	the	commits	one	at	a	time,	you	may	want	to	check	if	there	is	anyone	on	the
team	with	an	unpublished,	unsullied	version	of	the	branch	they	can	share.	Sometimes	it	is
easier	to	break	history	with	a	well-placed	push --force.

The	first	thing	you	need	to	do	is	get	a	sense	of	where	the	bad	commits	are.	If	you
are	not	entirely	sure	how	things	went	wrong,	you	can	get	a	list	of	all	the
branches	a	commit	is	contained	within	by	using	the	command	branch	with	the
parameter	--contains:

$ git branch --contains commit

Assuming	the	merged-in	branch	hasn’t	been	deleted,	you	should	be	able	to	use
the	information	to	figure	out	which	branch	you	are	trying	to	unmerge,	and	what
commits	were	applied	to	that	branch	that	you	might	want	to	remove.	Remember,
though,	the	commits	are	going	to	be	in	both	branches,	so	you	won’t	be	able	to
run	a	comparison	to	find	which	commits	are	different.	This	step	isn’t	necessary	if
you	already	know	which	commits	you	are	targeting.

If	the	commits	you	need	to	revert	are	sequential,	you’re	in	luck!	The	command
revert	can	accept	a	single	commit,	or	a	series	of	commits.	Remember,	though,
that	a	revert	is	going	to	make	a	new	commit	for	each	commit	it	is	reversing.	This
could	get	very	noisy	in	your	commit	history,	so	instead	of	reversing	each	commit
individually,	you	can	group	them	into	a	single	reversal	by	opting	to	save	your
commit	message	to	the	very	end:

$ git revert --no-commit last_commit_to_keep..newest_commit_to_reject

After	running	this	command	you	will	end	up	with	a	dirty	working	directory	with
all	of	the	files	reverted	back.	Review	the	changes.	Then,	complete	the	revert
process:

$ git revert --continue

Review	the	commit	message	and	make	any	necessary	updates	to	improve	the
clarity	of	the	message.	By	default	the	message	will	be	“Revert”	followed	by	the
quoted	text	of	what	was	in	the	newest	of	the	commits	you	are	reversing.	Often

this	will	be	sufficient,	but	you	may	want	to	be	more	descriptive	if	the	original
message	was	subpar.

If	the	commits	are	not	sequential,	you	will	need	to	revert	the	offending	commits
one	at	a	time.	Send	me	a	tweet	at	@emmajanehw	and	I	will	commiserate	and
cheerlead.

$ git revert commit

Unmerging	a	merged	branch	is	not	something	Git	is	designed	to	do	unless	a	very
specific	workflow	has	been	followed.	Your	team	may	never	need	to	unmerge	a
branch.	I	have	definitely	had	the	occasional	bad	merge	on	a	personal	project
where	I	was	a	solo	developer	and	opted	to	swear	a	bit,	and	then	shrug	and	move
on.	Sometimes	history	doesn’t	really	matter	all	that	much;	sometimes	it	does.
With	experience	and	hindsight,	you	know	for	sure	which	commands	you	should
have	been	using.

Really	Removing	History
In	this	chapter,	you’ve	learned	about	updating	the	history	of	your	repository,	and
especially	retrieving	information	you	thought	was	lost.	There	may	be	times	when
you	actually	do	want	to	lose	part	of	your	history—for	example,	if	you
accidentally	commit	a	very	large	data	file	or	a	configuration	file	that	contains	a
password.	Hopefully	you	never	need	to	use	this	section,	but	just	in	case	your
“friend”	ever	needs	help,	I’ve	included	the	instructions.	You	know,	just	in	case.

Published	History	Is	Public	History
If	you	have	published	content	to	a	publicly	available	remote	repository,	you
should	make	the	assumption	that	someone	out	there	cloned	a	copy	of	your
repository	and	has	access	to	the	secrets	you	did	not	mean	to	publish.	Update	any
passwords	and	API	keys	that	were	published	in	the	repository	immediately.

If	you	need	to	do	your	cleanup	on	a	published	branch,	you	should	notify	your
team	members	as	soon	as	you	realize	you	need	to	clean	the	repository.	You
should	let	them	know	you	are	going	to	be	doing	the	cleanup,	and	will	be	“force
pushing”	a	new	history	into	the	repository.	Developers	will	need	to	evaluate	their

local	repository	and	decide	which	state	it	is	in.	Have	each	of	the	developers
search	for	the	offending	file	to	see	if	their	repository	is	tainted:

If	the	file	you	are	trying	to	remove	is	not	in	their	local	repository,	they	will
not	be	affected	by	your	cleanup.

If	their	repository	does	have	the	file,	in	any	of	their	local	branches,	it	is
tainted.	However,	if	they	have	not	done	any	of	their	own	work	since	the	file
was	introduced,	they	will	not	be	affected	by	your	cleanup.	This	may	be	true
for	QA	managers	who	are	not	also	local	developers.	In	this	case,	have	them
remove	their	local	copy	of	the	repository	and	re-clone	the	repository	once	the
cleanup	is	done.

If	their	repository	is	tainted,	and	they	do	have	local	work	that	was	built	from
a	branch	that	includes	the	tainted	history,	they	will	need	to	bring	these
branch(es)	up-to-date	through	rebasing.	If	they	use	merge	to	bring	their
branches	up-to-date,	they	will	reintroduce	the	problem	files	back	into	the
repository	and	your	work	will	have	been	for	naught.	This	can	be	a	little	scary
for	people	if	they	are	not	familiar	with	rebasing,	so	you	may	want	to	suggest
that	they	push	any	branches	that	have	work	they	need	to	keep	so	that	you	can
clean	it	up	for	them.	(Have	them	clone	a	new	repository	once	the	cleanup	is
done.)

While	you	are	working	on	the	cleanup,	your	coworkers	could	have	a	sword	fight
or	something.

With	everyone	on	the	team	notified,	and	with	a	plan	of	what	will	happen	before,
during,	and	after	the	cleanup	on	everyone	else’s	repositories,	you	are	ready	to
proceed.

For	this	procedure,	you	will	use	the	command	filter-branch.	This	command
allows	you	to	rewrite	branch	histories	and	tags.	The	examples	provided	in	the
Git	documentation	are	interesting,	and	worth	reading.	You	can,	for	example,	use
this	command	to	permanently	remove	any	code	submitted	by	a	specific	author.	I
cannot	think	of	an	instance	when	I	would	choose	to	remove	everything	from
someone	without	reviewing	the	implications,	but	it’s	interesting	that	the
command	can	be	used	in	this	way.	(Perhaps	you	know	exactly	how	it	would	be
useful,	though?)

Assuming	the	file	you	want	to	remove	is	named	SECRET.md,	the	command

https://xkcd.com/303/

would	be	as	follows	(this	is	a	single	command,	but	it’s	long;	the	\	allows	you	to
wrap	onto	two	lines):

$ git filter-branch --index-filter \

 'git rm --cached --ignore-unmatch SECRET.md' HEAD

With	the	file	completely	removed	from	the	repository,	add	it	to	your	.gitignore
file	so	that	it	doesn’t	accidentally	sneak	in	again.	Instructions	on	working	with
.gitignore	are	available	in	Appendix	C.

Unlike	the	other	methods	in	this	chapter,	we	are	aiming	to	permanently	remove
the	offending	content	from	your	repository.	For	a	brief	period	of	time	the
commits	will	still	be	available	by	using	the	command	reflog.	When	you	are
sure	you	do	not	need	the	commits	anymore,	you	can	obliterate	them	from	your
system	by	cleaning	out	the	local	history	as	well	and	doing	a	little	garbage
collection	(gc):

$ git reflog expire --expire=now --all

$ git gc --prune=now

Your	repository	is	now	cleaned,	and	you	are	ready	to	push	the	new	version	to
your	remote	repositories:

$ git push origin --force --all --tags

Once	the	new	version	of	history	is	available	from	the	shared	repository,	you	can
tell	your	coworkers	to	update	their	work.	Depending	on	the	conversation	you’ve
had	previously,	they	will	incorporate	your	sanitized	changes	into	their	work	by
one	of	the	following	methods:

Cloning	the	repository	again	from	scratch.	This	method	is	better	for	teams
that	are	not	currently	using	rebasing	and	are	intimidated	by	it.

Updating	their	branches	with	rebase.	This	method	is	better	for	teams	that	are
already	comfortable	with	rebasing	because	it	is	faster	than	starting	a	new
clone,	and	allows	them	to	keep	any	work	they	have	locally:

$ git pull --rebase=preserve

Both	GitHub	and	Bitbucket	offer	articles	on	how	to	do	this	cleanup	for
repositories	stored	on	their	sites.	Both	are	worth	reading	because	they	cover
slightly	different	scenarios.

Now	that	you	know	Git’s	built-in	way	of	sanitizing	a	repository,	check	out	this
stand-alone	package,	BFG	Repo	Cleaner.	It	delivers	the	same	outcome	as
filter-branch,	but	it	is	much	faster	to	use,	and	once	it	is	installed,	it’s	much
easier,	too.	If	you	are	dismayed	by	the	amount	of	time	a	cleanup	is	taking	with
filter-branch,	you	should	definitely	try	using	BFG.

Command	Reference
Table	6-2	lists	the	commands	covered	in	this	chapter.

Table	6-2.	Git	commands	for	undoing	work

Command Use

git checkout -b	branch Create	a	new	branch	with	the	name	branch

git add	filename(s) Stage	files	in	preparation	for	committing
them	to	the	repository

git commit Save	the	staged	changes	to	the	repository

git checkout	branch Switch	to	the	specified	branch

git merge	branch Incorporate	the	commits	from	the	branch
branch	into	the	current	branch

git branch --delete Remove	a	local	branch

git branch -D Remove	a	local	branch	whose	commits	are
not	incorporated	elsewhere

git clone	URL Create	a	local	copy	of	a	remote	repository

git log Read	the	commit	history	for	this	branch

git reflog Read	the	extended	history	for	this	branch

git checkout	commit Check	out	a	specific	commit;	puts	you	into	a
detached	HEAD	state

http://bit.ly/sensitive-data
http://bit.ly/atlassian-git-repo
http://bit.ly/bfg-cleaner

git cherry-pick	commit Copy	a	commit	from	one	branch	to	another

git reset --merge ORIG_HEAD Remove	from	the	current	branch	all	commits
applied	during	a	recent	merge

git checkout --	filename Restore	a	file	that	was	changed,	but	has	not
yet	been	committed

git reset HEAD	filename Unstage	a	file	that	is	currently	staged	so	that
its	changes	are	not	saved	during	the	next
commit

git reset --hard HEAD Restore	all	changed	files	to	the	previously
stored	state

git reset	commit Unstage	all	of	the	changes	that	were
previously	committed	up	to	the	commit	right
before	this	point

git rebase --interactive	commit Edit,	or	squash	commits	since	commit

git rebase --continue After	resolving	a	merge	conflict,	continue
with	the	rebasing	process

git revert	commit Unapply	changes	stored	in	the	identified
commit;	this	creates	a	sharing-friendly
reversal	of	history

git log --oneline --graph Display	the	graphed	history	for	this	branch

git revert --mainline	1	commit Reverse	a	merge	commit

git branch --contains	commit List	all	branches	that	contain	a	specific
commit	object

git revert --no-commit
last_commit_to_keep..newest_commit_to_reject

Reverse	a	group	of	commits	in	a	single
commit,	instead	of	creating	an	object	for
every	commit	that	is	being	undone

git filter-branch Remove	files	from	your	repository
permanently

git reflog expire Forget	about	extended	history,	and	use	only
the	stored	commit	messages

git gc --prune=now Run	the	garbage	collector	and	ensure	all
noncommitted	changes	are	removed	from
local	memory

Summary
Throughout	this	chapter	you	learned	how	to	work	with	the	history	of	your	Git
repository.	We	covered	common	scenarios	for	some	of	the	commands	in	Git
which	are	often	considered	“advanced”	by	new	Git	users.	By	drawing	diagrams
summarizing	the	state	of	your	repository,	and	the	changes	you	wanted	to	make,
you	were	able	to	efficiently	choose	the	correct	Git	command	to	run	for	each	of
the	scenarios	outlined.	You	learned	how	to	use	the	three	“R"s	of	Git:

Reset
Moves	the	tip	of	your	branch	to	a	previous	commit.	This	command	does	not
require	a	commit	message	and	it	may	return	a	dirty	working	directory	if	the
parameter	--hard	is	not	used.

Rebase
Allows	you	to	alter	the	way	the	commits	are	stored	in	the	history	of	a	branch.
Commonly	used	to	squash	multiple	commits	into	a	single	commit	to	clean	up
a	branch;	and	to	bring	a	branch	up-to-date	with	another.

Revert
Reverses	the	changes	made	in	a	particular	commit	on	a	branch	that	has	been
shared	with	others.	This	command	is	paired	with	a	commit	and	it	returns	a
clean	working	directory.

In	the	next	chapter,	you	will	take	the	lessons	you’ve	been	working	on	in	your
local	repository	and	start	integrating	them	with	the	rest	of	the	team’s	work.

Chapter	7.	Teams	of	More	than
One

The	first	few	times	you	work	with	others	on	a	project	will	shape	how	you
approach	version	control.	If	your	collaborators	are	patient	and	empathetic,	you
are	more	likely	to	use	version	control	with	confidence.	Empathetic	teammates
will	document	the	procedure	they	want	you	to	use,	and	support	you	with
questions	(updating	the	documentation	as	necessary).	If	you	are	responsible	for
starting	a	project,	think	of	that	scene	when	Jerry	Maguire	says	to	his	star	player,
“help	me	help	you.”	As	a	project	lead,	this	should	be	your	mantra.	Find	the
sticking	points	and	remove	them.	Where	you	want	consistency,	provide	detailed
instructions,	templates,	and	automated	scripts.	When	something	comes	in	that	is
not	up	to	your	standard,	consider	it	a	process	problem	that	is	yours	to	solve.

In	this	chapter,	we	have	the	culmination	of	everything	covered	in	this	book	so
far.	In	Part	I,	you	learned	about	the	different	considerations	for	setting	up	a
project.	Now	you	will	learn	how	to	implement	those	decisions.	In	Chapters	5	and
6,	you	learned	how	to	run	the	commands	you’ll	use	on	a	daily	basis	as	a
developer.	In	this	chapter,	you	will	learn	how	to	set	up	a	connection	to	a	remote
project,	and	share	your	work	with	others.

By	the	end	of	this	chapter,	you	will	be	able	to:

Set	up	a	new	project	on	a	code	hosting	system

Download	a	remote	repository	with	clone

Upload	your	changes	to	a	project	with	push

Refresh	the	list	of	branches	available	from	the	remote	repository	with	fetch

Incorporate	changes	from	the	remote	repository	with	pull

Explain	the	implications	of	updating	your	branches	with	pull,	rebase,	and
merge

Where	possible,	this	chapter	includes	templates	you	can	use	to	help	onboard	new
developers.	The	easier	it	is	for	people	to	contribute	usable	work,	the	more	likely

they	are	to	enjoy	working	on	your	project.	Even	if	it’s	just	a	job,	there’s	no
reason	we	shouldn’t	all	have	a	little	more	delight	in	our	lives.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from
Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

Setting	Up	the	Project
The	context	for	your	project	will	dictate	a	lot	of	how	the	repository	will	be	set
up.	A	super-secret	internal-only	covert	code	base	will	be	set	up	so	as	to	ensure
privacy;	a	free	and	open	source	code	library	will	be	set	up	for	transparency	and
probably	participation.	Once	the	project	is	established,	the	commands	the
developers	use	daily	will	likely	be	quite	similar.

This	section	covers	the	basic	process	for	creating	a	new	project	on	a	code
hosting	system.	The	specifics	for	GitHub,	Bitbucket,	and	GitLab	are	covered	in
Part	III	(Chapters	10,	11,	and	12,	respectively).

Creating	a	New	Project
In	order	to	share	your	work	with	your	team,	you	will	need	to	establish	a	new
project	in	your	code	hosting	system	of	choice.	These	days	most	code	hosting
systems	offer	more	than	a	place	to	dump	a	shared	repository.	They	also	include
ticketing	systems,	basic	workflow	enhancements,	project	documentation
repositories,	and	more!	In	the	communities	and	teams	I	participate	in,	one	of	the
following	three	services	are	generally	used:	GitHub	(typically	used	by	open
source	projects),	Bitbucket	(typically	used	by	internal	teams	and	small	teams
who	need	free	hosting	for	private	projects),	and	GitLab	(typically	used	by
medium-sized	companies	that	need	to	host	their	code	in	house	for	security
reasons).

No	matter	which	system	you	choose,	the	basics	of	setting	up	a	project	are	going
to	be	the	same.	The	first	question	you’ll	need	to	ask	yourself	is:	which	account
should	you	use	to	create	the	repository?	The	standard	format	for	project	URLs
on	a	web-based	system	is	as	follows:	https://<hosting-url.com>/<project-
owner’s-name>/<project-name>.	If	the	project	is	really	and	truly	yours—for
example,	the	repository	for	your	personal	blog—it’s	appropriate	for	the	URL	to
include	your	username.	If,	however,	the	project	belongs	to	an	agency	of

http://bit.ly/collaborating-with-git
https://<hosting-url.com>/<project-owner’s-name>/<project-name>

developers,	it	would	be	more	appropriate	for	the	project	owner’s	name	to	be	the
name	of	the	agency.	And	finally,	if	the	project	belongs	to	a	number	of	agencies,
such	as	an	open	source	software	project,	the	most	appropriate	project	owner
name	would	be	the	name	of	the	software	project.

The	decisions	you	choose	here	may	also	affect	who	is	able	to	write	directly	to
the	project,	and	may	be	dependent	on	the	code	hosting	system	you’re	using.	For
example,	if	you	choose	to	start	the	project	under	your	personal	name,	you	might
not	want	to	allow	“just	anyone”	to	write	to	the	project	without	a	review	from	you
—especially	so	for	public	projects	where	others	could	be	evaluating	the	body	of
work	under	the	assumption	it	was	yours.

WHAT’S	IN	A	NAME?
The	support	repository	for	this	book	has	existed	in	a	number	of	different	places	over	the	years,
including	my	personal	account,	a	team	account,	and	three	different	code	hosting	systems	(for	a
total	of	six	different	repositories	that	need	to	be	maintained).	Although	the	work	has	been
developed	by	me,	it	becomes	a	question	of	branding	on	which	URL	I	want	to	distribute.	If	I
want	others	to	think	of	the	repository	as	theirs	(such	as	in	a	set	of	abstract	learning	materials
where	people	don’t	have	direct	access	to	me),	I	might	use	the	project	URL;	but	when	I	want
people	to	think	of	me	as	the	author	because	it’s	also	a	promotional	piece,	I	might	give	people
my	personal	URL.	It’s	quite	possible	I	overthink	this,	but	you	should	give	the	naming	of	things
at	least	a	little	consideration.

You	are	probably	reading	this	book	as	a	member	of	a	team	(even	if	it’s	a	very
tiny	team	of	one!),	and	so	you’ll	want	to	select	the	name	of	your	company,
agency,	or	team	as	the	project	owner,	or	the	name	of	the	project	if	you	are
working	on	an	open	source	project.	Fortunately,	you	can	move	the	code	base	to	a
new	name	or	even	a	new	code	hosting	platform	very	easily,	so	it’s	not	absolutely
critical	to	get	it	right	from	the	beginning.	It	is,	however,	more	difficult	to	transfer
any	of	the	metadata	for	your	project	from	one	account	to	another.	Metadata
could	include	the	history	of	tickets	for	your	project,	and	any	documentation
stored	outside	of	the	repository.

With	the	project	owner	selected,	go	ahead	and	create	a	new	empty	project	under
this	account.	Don’t	worry	about	uploading	files	just	yet.

Establishing	Permissions

There	are	two	types	of	permissions	you	will	need	to	set	for	your	project:	who
can	see	the	project	(“read”);	and	who	can	commit	to	the	project	(“write”)—this
was	discussed	in	greater	detail	in	Chapter	2.	If	you	are	an	ultra-transparent	team,
the	project	should	be	visible	to	the	world.	Otherwise,	create	a	private	project.

THE	COST	OF	A	FREE	SERVICE
Some	code	hosting	services	will	charge	a	small	fee	for	private	repositories,	and	some	provide
this	service	for	free.	If	your	code	and	its	history	are	important,	consider	paying	for	hosting.
You	might	choose	to	pay	with	your	time	and	self-host	the	code	internally,	or	you	may	choose
to	pay	a	small	monthly	fee	to	a	third-party	service.	The	advantage	of	paying	is	that	the	hosting
company	is	more	likely	to	be	accountable	to	you	as	a	customer,	and	you	are	more	likely	to
keep	them	in	business	by	helping	to	pay	their	expenses.	Of	course,	if	you	can’t	afford	to	pay
the	fee,	there	are	plenty	of	free	options	available—and	there’s	no	sense	feeling	guilty	if	a
company	has	chosen	to	offer	a	free	service.	Do	what	you	can.

Additionally,	some	hosting	systems	will	allow	you	to	set	per-branch	restrictions.
At	this	time	Bitbucket	and	GitLab	offer	this	functionality.	Configuration	options
are	described	in	Chapters	11	and	12,	respectively.

As	a	distributed	version	control	system,	Git	is	inherently	good	at	dealing	with
incoming	requests	for	changes	to	a	repository.	Generally,	team	projects	will	have
a	single	repository	that	is	considered	The	Project,	and	many	spin-off	projects	that
contain	the	work	of	the	individual	developers	for	the	project.	If	your	project	is
internal,	you	may	choose	to	have	everyone	working	directly	in	The	Project
repository;	but	if	you	prefer	to	maintain	a	cleaner	central	repository,	you	may
choose	to	have	each	of	your	developers	work	in	a	fork	of	The	Project.

THE	PROJECT
Throughout	this	chapter,	you	will	see	reference	made	to	“The	Project.”	I	use	this	shorthand	to
refer	to	the	canonical,	or	official,	repository	for	a	software	project.	This	is	the	repository	that
the	community	has	agreed	to	use	for	official	releases	of	the	software.	Git	itself	has	no	internal
hierarchy	that	forces	one	repository	to	be	more	important	than	another—only	the	declaration
by	the	community	makes	a	repository	the	official	one.

Based	on	the	decisions	you	made	about	your	team	structure	in	Chapter	2,	assign
the	appropriate	permissions	for	any	contributors	who	should	be	allowed	write

access	to	The	Project—additional	contributions	can	be	accepted	from	non-
authorized	developers	via	pull	requests	(these	are	also	referred	to	as	merge
requests	by	some	services).

Uploading	the	Project	Repository
As	a	distributed	version	control	system,	Git	is	a	bit	of	a	social	butterfly.	It	loves
to	connect	with	all	kinds	of	repositories.	It	loves	sharing	stories,	and	making	new
friends	along	the	way.	Git	maintains	its	connections	with	its	faraway	friends
through	a	stored	connection	referred	to	as	a	remote.	A	local	repository	may	have
zero,	one,	or	many	remote	connections.	It	is	typical	for	Git	repositories	to	have
only	one	remote	connection—the	origin.	You’ve	probably	seen	this	term	used
before.	It’s	the	nickname	assigned	to	the	remote	repository	from	which	you
downloaded,	or	cloned,	your	local	copy.	It’s	just	a	nickname,	though.	You	can
use	whatever	names	you	like	for	your	remote	connections.

When	you	first	start	a	new	project,	you	may	have	no	code	written,	or	some	code
written.	(Seems	obvious,	right?)	If	you	have	no	code	written,	you	may	choose	to
start	your	project	by	following	the	instructions	from	your	code	hosting	system
and	cloning	the	empty	project	to	your	local	development	environment.	If,
however,	you	already	have	some	code	locally,	you	will	want	to	upload	what
you’ve	already	got.	To	do	this,	you	will	need	to	make	a	new	connection	from
your	local	repository	to	the	project	hosting	service.

From	your	local	copy	of	the	project	repository,	take	a	look	to	see	if	you	already
have	a	remote	connection	set	up:

$ git remote --verbose

If	you	started	locally,	you	won’t	see	any	remotes	listed,	so	it’s	okay	if	nothing
shows	up	at	this	point.	If	you	do	a	have	a	remote	set	up	for	this	repository,	you
will	see	something	like	the	following:

origin https://github.com:emmajane/gitforteams.git (fetch)

origin https://github.com:emmajane/gitforteams.git (push)

Each	line	begins	with	the	nickname	for	the	remote	connection	(origin),	as	well
as	the	source	for	the	remote	repository.	These	lines	will	always	appear	in	pairs:

the	first	line	of	the	pair	indicates	where	you	will	retrieve	new	work	from
(fetch),	and	the	second	indicates	where	you	will	upload	new	work	to	(push).

Project	owners	will	need	to	have	a	connection	to	the	official	copy	of	a	project;
they	may	also	have	a	connection	to	a	fork	of	a	project	if	they	require	themselves
to	go	through	a	peer	review	process	before	incorporating	their	own	work	(peer
reviews	are	covered	in	Chapter	8).	As	soon	as	you	start	adding	multiple	remote
repositories	for	a	project,	the	default	nickname	(origin)	can	get	a	bit	confusing.
As	a	result,	I	tend	to	name	my	remotes	according	to	their	purpose;	for	example,
official	and	personal,	which	have	meaning	to	me.	When	I	upload	work,	I
then	decide	between	these	two	options.	The	standard	Git	terms	for	my
nicknames	are	upstream	and	origin,	although	origin	is	assigned	to	the	source
of	a	cloned	repository	by	default,	regardless	of	whether	or	not	you	can	write	to
it.

NAME	IT	TO	CLAIM	IT
I’ve	been	working	with	Git	a	very	long	time,	and	I	still	screw	up	the	command	git remote
show origin	on	an	embarrassingly	regular	basis.	Four	words.	It	shouldn’t	be	that	hard	for	me
to	remember	the	order,	right?	I	can	never	seem	to	get	the	order	of	show	and	origin	right.	By
assigning	my	own	names	to	the	remote	repositories,	I	am	more	likely	to	make	more	sense	of
the	command,	and	thus	get	the	order	right.	git remote show official	just	seems	to	make
better	sense	to	my	brain.	You	may	never	have	this	problem,	but	if	you	struggle	to	remember
this	command,	you	might	want	to	personalize	your	remote	names	and	change	the	name	origin
to	something	that	resonates.

To	add	a	new	remote	connection,	you	will	first	need	to	know	the	URL	for	the
project.	The	structure	is	generally	https://<hosting-url.com>/<project-owner’s-
name>/<project-name>.git.	In	newer	versions	of	Git,	the	protocol	https	will	be
available	to	you,	but	in	older	documentation	the	first	block	may	be	replaced	with
something	like	git@hosting-url.com.	Once	you	know	the	URL	for	the	remote
repository,	you	can	make	a	connection	to	it	(Example	7-1).

Example	7-1.	Add	a	connection	to	a	remote	repository
$ git remote add nickname project-url

After	a	connection	is	made	to	a	remote,	you	should	see	two	new	lines	when	you
list	your	remote	connections.	If	you	want	to	use	Git’s	terminology,	you	would

https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

use	the	nickname	upstream	for	the	official	project	repository;	if	you	are	using
my	naming	convention,	you	would	use	official.	This	name	will	never	be
published,	and	there	are	no	Git	police	so	you	can	use	whatever	you	want	and	no
one	will	ever	know.	(You	could	even	call	it	cookies	or	coffee	if	that	made	you
happy.	It	really	doesn’t	matter.)

For	example,	if	I	was	a	participant	in	a	project	named	Mounties,	and	it	was	run
by	the	agency	Oh,	Canada,	I	might	have	a	series	of	remotes	as	follows:

$ git remote --verbose

official https://github.com:ohcanada/mounties.git (fetch)

official https://github.com:ohcanada/mounties.git (push)

personal https://github.com:emmajane/mounties.git (fetch)

personal https://github.com:emmajane/mounties.git (push)

You	can	easily	hook	up	as	many	new	remote	connections	as	you	like.	For
example,	you	might	have	remote	connections	for	devserver,	staging,	and
production;	or	you	may	log	directly	in	to	those	machines	and	pull	code	from
The	Project	repository,	instead	of	pushing	code	directly	to	those	locations.

If	you	already	have	a	remote	connection	set	up	in	your	local	repository	that	you
no	longer	need,	you	can	easily	delete	it	(Example	7-2).

Example	7-2.	Remove	a	remote	connection
$ git remote remove nickname

TIP
You	can	easily	rename	remotes,	and	even	set	up	default	remotes	for	each	of	the	branches	in
your	local	repository.	Git’s	built-in	documentation	for	this	command	is	easy	to	understand.	You
should	read	through	the	documentation	if	you	want	to	personalize	your	list	of	remotes	even
further.

With	the	remote	connection	established	for	your	project,	you	can	now	upload
your	local	copy	of	the	repository	to	the	remote	server:

$ git push nickname branch_name

If	you	want	to	share	all	local	branches	with	others,	you	can	update	this	command
as	follows:

$ git push --all nickname

Once	you	have	uploaded	your	work,	navigate	to	the	project	page	to	ensure	the
repository	was	uploaded	as	expected.	By	default,	most	code	hosting	systems	will
display	the	branch	master	if	there	is	more	than	one	branch	present	in	the
repository.	If	your	local	repository	uses	nonstandard	branch	names,	check	to	see
if	your	code	hosting	system	allows	you	to	assign	the	default	branch	for	the
repository.	This	branch	is	typically	the	most	stable	version	of	the	project,	with
experimental	work	existing	in	other	branches.	Every	project	is	a	little	different,
though.	Your	project	may	use	the	master	branch	as	the	fire	hose	of	new	work
and	it	might	not	be	the	most	stable	version	of	your	software.	Be	explicit	in	your
documentation.

To	upload	a	local	name	under	a	new	name	on	the	remote	server,	use	the
following	syntax:

$ git push nickname branch_local:branch_remote

For	example,	if	you	wanted	to	upload	your	branch	main	to	the	remote	repository
official	and	rename	it	to	master	in	the	remote	repository,	you	would	use	the
following	command:

$ git push official main:master

Your	local	repository	should	now	be	uploaded	to	the	remote	project	repository
and	with	the	desired	branch	names.

Document	the	Project	in	a	README
When	you	navigate	to	your	project	page,	you	will	notice	most	code	hosting
systems	will	display	the	contents	of	the	file	README	if	one	is	present	in	your
project.	This	file	should	be	used	to	give	people	an	overview	of	the	project.	If	it	is
a	development	project	with	dependencies,	those	should	be	listed	here.	If	there
are	installation	instructions,	those	should	be	listed	here	as	well	(or	a	link	should

be	provided	to	a	more	complete	installation	guide).	If	you	would	like	people	to
contribute	to	the	project,	or	report	bugs	to	the	project,	those	instructions	should
be	listed	here,	too.

The	following	projects	have	excellent	README	files	that	clearly	explain	what
the	repository	is	about,	how	you	can	use	the	code	within	it,	and	how	you	can
contribute	to	it:

Sculpin

Sass

Rails

APPLY	A	LICENSE	TO	YOUR	PROJECT
There	is	no	single	international	copyright	law.	As	a	result,	any	project	that	does	not	include	an
explicit	license	is	assumed	to	be	fully	copyrighted,	and	not	intended	for	reuse.	I	openly	admit
that	a	number	of	my	projects	do	not	include	licenses.	This	is	usually	because	I	simply	haven’t
made	the	decision	of	how	I	want	others	to	use	my	work.	(I’m	typically	producing	training
materials	in	environments	where	copyright	ownership	is	more	restricted	than	in	code
communities	where	open	licensing	is	more	prevalent.)	The	license	for	a	given	repository	is
typically	located	in	the	file	LICENSE	or	LICENSE.txt	file.

If	your	local	repository	didn’t	already	have	a	README	file,	now	would	be	a
good	time	to	add	one!	Today,	new	projects	tend	to	use	Markdown	format	for	the
README	file,	and	therefore	rename	the	file	to	README.md	to	ensure	the	file	is
correctly	formatted.

With	the	project	uploaded	and	the	instructions	established,	it	is	now	time	to	start
onboarding	contributors	to	your	project.	The	process	you	use	in	the	remainder	of
this	chapter	should	be	added	to	your	project	repository	as	documentation.	This
will	allow	developers	to	have	a	copy	locally,	and	will	allow	them	easier	access	to
the	information	instead	of	having	to	refer	to	an	external	wiki	page.

Now	that	your	project	is	in	place,	it’s	time	to	flip	the	tables	and	look	at	things
from	a	contributor’s	perspective.

Setting	Up	the	Developers

https://github.com/sculpin/sculpin
https://github.com/sass/sass
https://github.com/rails/rails

When	you	think	about	projects	from	a	developer’s	perspective,	it’s	not	always
entirely	clear	what	the	participation	level	is	going	to	be.	When	it	comes	to
publicly	available	projects,	a	developer	might	engage	in	three	levels	of
participation:

Download	a	zipped	package	of	the	project,	never	to	return	to	the	project	page
again.	This	might	be	seen	in	true	forks	of	a	project	where	the	downstream
developers	have	no	intention	of	checking	back	to	see	how	the	code	has
progressed.	It	might	also	be	used	for	projects	that	are	designed	to	be	a	starting
point—where	the	intention	is	to	hack	up	the	code	and	modify	the	source
significantly.

Clone	the	project	repository	with	the	intention	of	keeping	the	code	up	to	date
locally,	but	without	the	intention	of	making	modifications.	This	could	be	true
of	any	developer	who	is	incorporating	an	open	source	library	into	his	or	her
project.	The	developers	might	extend	the	library,	and	perhaps	make	little
changes	to	the	cloned	library,	but	for	the	most	part	they	are	using	the	project
code	as	is,	relying	on	upstream	developers	for	enhancements	and	security
updates.

Clone	the	project	repository	with	the	intention	of	contributing	work	back.
This	will	be	true	for	open	source	project	volunteers	and	staff,	in-house
developers	on	a	software	project,	as	well	as	staff	at	an	agency	who	are
contributing	to	a	build	for	a	particular	project.

The	main	distinction	between	the	latter	two	options	is	that	a	noncontributor	will
typically	clone	The	Project	directly,	whereas	a	contributor	will	likely	have	a
personal	remote	repository	in	addition	to	the	project	repository.	The	rationale	for
these	choices	was	described	in	greater	detail	in	Chapter	2.

CONSUMERS	VERSUS	CONTRIBUTORS
Forward-thinking	(intermediate	to	advanced)	developers	will	always	assume	they	are	going	to
contribute	back	to	a	project	at	some	point	and	create	their	own	intermediate	remote	repository.
Most	novice	developers,	however,	will	aim	to	streamline	their	workflow	where	possible	and
omit	the	intermediate	step	of	creating	their	own	remote	repository.	This	also	means	they	are
perceiving	of	themselves	only	as	a	consumer,	rather	than	a	potential	contributor,	to	your
project.

Once	developers	identify	themselves	as	consumers	or	contributors	(including
primary	maintainers),	they	will	be	ready	to	choose	a	method	to	download	your
project	repository.

Consumers
Consumers	have	no	intention	to	contribute	back	to	a	project.	They	don’t	expect
to	have	write	access	to	the	code	base,	and	they	can’t	imagine	a	possible	future
where	they	would	want	to	upload	their	changes	to	a	project.	This	type	of
developer	might	download	your	repository	in	one	of	two	ways:

As	a	zipped	package.

As	a	clone	of	the	repository	directly	from	The	Project	page.

A	zipped	package	has	no	connection	back	to	The	Project,	and	contains	no	history
of	the	changes	that	have	happened	over	time.	A	clone,	on	the	other	hand,
maintains	a	connection	to	the	project,	and	can	be	updated	to	the	latest	version	by
running	a	few	Git	commands.	The	structure	to	clone	a	remote	repository	is	as
follows:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

For	example,	if	you	wanted	to	download	a	copy	of	the	project	repository	for	the
Git	for	Teams	workshop,	you	would	issue	the	following	command:

$ git clone https://github.com/gitforteams/gitforteams.git

To	update	your	local	copy	of	the	repository,	first	you	would	need	to	fetch	the
latest	changes	to	The	Project	(for	now,	we’ll	assume	you	have	only	one	remote
connection):

$ git fetch --all

Once	you’ve	fetched	the	changes,	you	can	compare	what’s	changed	in	the	latest
version	to	what	you	have	locally	before	choosing	to	update	your	local	copy.

First,	get	a	list	of	all	branches	in	your	repository:

$ git branch --all

You	will	see	two	groups	of	branches:	your	local	branches	and	the	remote
tracking	branches.	The	currently	checked-out	branch	will	be	marked	with	*.	My
personal	copy	of	the	project	repository	cloned	previously	is	as	follows:

gh-pages

* master

 video-lessons

 remotes/personal/gh-pages

 remotes/personal/master

 remotes/personal/video-lessons

This	list	shows	three	local	branches	as	well	as	three	branches	connected	to	a
remote	that	has	been	nicknamed	personal.

For	even	more	detail	for	each	branch,	use	the	parameter	--verbose:

$ git branch --all --verbose

The	output	includes	the	commit	message	as	well	as	the	status	for	each	branch
compared	to	its	remote	repository:

gh-pages 629b54f Resolving merge conflict; ...

* master 2db982d Changes to "Undo" graphic: ...

 video-lessons 7798eb1 [ahead 11] Lesson 00: ...

 remotes/personal/gh-pages 629b54f Resolving merge conflict; ...

 remotes/personal/master 2db982d Changes to "Undo" graphic ...

 remotes/personal/video-lessons 653f875 Lesson 7: Added intro on ...

To	see	a	history	of	the	changes	that	have	been	added	to	the	repository	on	the
branch	master,	you	can	use	the	command	log:

$ git log personal/master

To	compare	your	local	copy	of	a	branch	to	what	was	just	downloaded,	you	can
add	the	parameter	--patch	to	see	the	per-commit	changes,	or	use	the	command
diff	to	see	a	summary	of	all	changes:

$ git log --patch personal/master

$ git diff master personal/master

This	will	show	you	all	of	the	changes	in	patch	format.	Look	for	lines	that	have
been	added	(marked	with	+),	or	deleted	(marked	with	-).	If	you	prefer	to	check
out	the	code	base	as	a	whole,	you	can	check	out	the	branch	tip:

$ git checkout personal/master

This	will	put	you	into	a	detached	HEAD	state.	To	return	to	the	local	copy	of	the
master	branch,	check	it	out:

$ git checkout master

Once	you’ve	reviewed	the	changes,	you	can	update	your	local	copy	of	the
master	branch	by	rebasing	to	add	the	new	changes:

$ git rebase personal/master

Using	the	command	rebase	provides	a	cleaner	graphed	history;	however,	if	your
team	has	opted	to	use	merging,	you	can	use	the	command	merge	to	bring	your
local	branch	up	to	date:

$ git merge personal/master

If	you	have	multiple	local	branches	that	you	want	to	update,	you	will	need	to
check	out	each	one	individually	and	then	use	this	same	procedure	to	incorporate
the	changes.	This	needs	to	be	done	one	branch	at	a	time	because	if	there	are
conflicts	between	the	two	copies	of	the	branch,	Git	needs	to	give	you	a	working
directory	to	resolve	the	conflicts.

These	few	commands	are	the	only	ones	that	a	consumer	of	a	project	will	need	to
use.	If,	however,	the	developer	makes	a	little	change	to	her	copy	of	the
repository	locally,	and	wants	to	contribute	that	change	back	to	the	project,	she
will	be	limited	to	submitting	a	patch,	or	requesting	access	as	a	developer	(which
is	probably	not	appropriate	to	grant	for	one-off	contributors).	Although	it	is
possible	to	submit	patches,	it	is	not	preferred.	(Yes,	there	are	some	projects	that
still	use	patches,	including	Git	itself!)	Instead,	many	projects	have	come	to
prefer	pull	requests.	Originally	used	by	GitHub,	this	term	has	become	popular	on
other	systems	as	well.	A	pull	request	is	a	meta	feature—it	is	not	something	built

into	Git	itself,	but	rather	it	is	a	feature	of	software	that	sits	alongside	Git.	It
provides	a	visual	prompt	for	a	project	maintainer	to	incorporate	a	branch	of	work
from	a	remote	repository.	The	connection	between	the	two	repositories	exists
only	for	that	one	particular	request;	it	is	not	a	persistent	connection	like	a
developer	would	set	from	his	or	her	local	workstation	to	a	remote	repository.

Contributors
So	you	think	you’re	interested	in	contributing	to	a	software	project.	Cool!	(This
is	where,	as	the	author	of	this	book,	I	let	out	a	huge	sigh	of	relief.	If	you’ve	made
it	this	far	into	the	book	and	weren’t	interested	in	working	on	a	software	project,
I’d	feel	really	bad.)	As	a	distributed	version	control	system,	Git	is	focused	on
what	you	can	do	locally.	The	built-in	tools	for	direct	collaboration	on	shared
repositories	are	extremely	coarse—either	you	have	full	write	access	to	a	project,
or	you	have	none.	There	are	no	per-branch	permissions,	and	indeed,	without	the
support	of	SSH,	there’s	no	authentication	system	at	all	in	Git.	Git	relies	on
wrapper	software	to	provide	the	access	control.

In	order	for	wrapper	software	to	make	the	connection	between	two	repositories,
it	needs	them	to	both	be	accessible	from	the	same	place.	The	easiest	way	to
design	for	this	is	to	have	developers	upload	their	changes	to	the	same	system	that
hosts	The	Project	repository.	GitHub,	as	well	as	every	other	web-based	system,
does	this	by	having	you	create	a	clone,	or	a	fork,	of	The	Project,	and	upload	your
changes	to	the	copied	repository.	Then,	you	use	the	wrapper	software	to	request
that	your	changes	be	pulled	into	The	Project	repository.

Using	GitHub	terms:

1.	 An	aspiring	contributing	developer	(The	Developer)	forks	The	Project
repository.

2.	 The	Developer	then	makes	her	proposed	changes	in	her	copy	of	The
Project.

3.	 When	finished,	The	Developer	initiates	a	pull	request	from	a	branch	in	her
copy	of	the	project	to	a	branch	in	The	Project	repository.

4.	 Using	comments	in	GitHub’s	web	interface,	a	conversation	will	take	place
between	The	Developer	and	The	Maintainer.	Sometimes	additional	updates
will	be	required	by	The	Developer	before	The	Maintainer	is	ready	to

accept	the	proposed	changes	into	The	Project.

5.	 When	the	proposed	changes	are	deemed	worthy,	The	Maintainer	will
incorporate	the	pull	request	into	The	Project.

GITHUB	DOES	NOT	REQUIRE	A	LOCAL	CLONE	OF
THE	PROJECT

GitHub	now	allows	developers	to	make	minor	edits	directly	to	files	through	a	web	interface;
however,	many	developers	will	choose	to	clone	their	copy	of	The	Project	so	they	can	work	on
it	locally.	Then,	when	they	have	completed	their	work,	they	will	push	their	updates	to	their
own	copy	of	the	project	and	initiate	a	pull	request	from	their	copy	of	the	project	to	the	main
project	repository.

The	process	for	submitting	a	pull	request	will	vary	slightly	depending	on	the
wrapper	software	being	used	(e.g.,	GitHub,	Bitbucket,	GitLab,	etc.);	however,
the	basic	process	is	covered	in	Part	III.

Maintainers
A	developer	who	has	direct	commit	access	to	The	Project	repository	is	a	special
kind	of	developer,	known	as	The	Maintainer.	Depending	on	how	your	team	is
structured,	The	Maintainers	might	be	only	those	on	the	quality	assurance	team,
or	they	may	be	handpicked	developers	from	the	community.	For	smaller	internal
projects,	The	Maintainers	may	be	everyone	who	is	working	on	the	project.

In	Chapter	2,	you	learned	a	little	bit	about	project	governance	models.	The	way
The	Maintainer	will	interact	with	the	project	is	a	political,	not	technical,
decision.	Git	doesn’t	actually	care	how	you	structure	your	project,	and	so	you
will	need	to	develop	a	system	that	works	best	for	you.	Defining	the	workflow	for
Consumers	and	Contributors	is	relatively	easy	because	you	aren’t	really	working
with	Git,	but	rather	the	workflow	defined	by	the	wrapper	software	(in	the	case	of
Consumers,	they’re	not	even	really	working	with	Git	at	all).

If	everyone	on	your	team	is	a	Maintainer	(i.e.,	they	are	allowed	to	commit
directly	into	the	repository),	it’s	your	choice	as	to	whether	you	require
developers	to	create	a	separate	clone	of	the	repository.	The	only	limitation	would
be	if	your	code	hosting	system	does	not	have	the	capacity	to	accept	incoming

branches	for	merging	from	within	a	single	repository.	Check	with	your	system	of
choice	to	see	if	it	has	a	recommended	workflow.

Generally	I	work	with	teams	of	fewer	than	10	developers.	Some	of	these	teams
I’ve	worked	with	have	opted	for	separate	remote	repositories	for	each	developer,
and	some	have	allowed	developers	to	commit	their	in-progress	work	directly	to
The	Project	repository.	In	the	Drupal	project,	where	there	are	thousands	of
developers,	only	a	handful	of	people	can	commit	into	the	main	project
repository;	however,	there	are	an	additional	30,000	contributed	modules,	each
with	its	own	maintainers	who	have	direct	access	to	the	project	repository.

THE	ONLY	RULES	ARE	THE	ONES	YOU	DOCUMENT
If	there	are	no	documented	rules,	your	project	will	become	anarchic	so	write	down	the	exact
steps	you	would	like	people	to	follow	when	contributing	to	the	project.

Project	maintainers	will	need	to	have	at	least	a	clone	of	The	Project	repository
locally.	If	you	were	the	developer	who	started	the	project,	you	already	have	a
local	clone	of	this	repository.	If	you	aren’t,	you	will	need	to	clone	the	repository
using	the	following:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

You	learned	how	to	create	a	clone	of	a	project	repository	as	a	team	of	one	in
Chapter	6	with	the	following	command:

$ git clone https://gitlab.com/gitforteams/gitforteams.git

This	will	create	a	local	copy	of	the	repository,	with	the	remote	nickname	origin.

If	your	project	requires	it,	you	may	also	need	to	create	a	clone	of	The	Project	on
the	code	hosting	system.	This	is	covered	in	the	previous	section,	or	you	may
wish	to	follow	the	more	detailed	instructions	available	in	Part	III.	Once	you’ve
created	the	remote	clone,	you	can	add	this	remote	connection	to	your	local
repository.	This	will	allow	you	to	switch	between	the	two	from	within	the	same
directory.	If	you	prefer,	you	can	keep	two	local	directories,	but	I	personally	enjoy
the	efficiency	of	not	having	to	jump	around	as	much.	You	are	welcome	to	use

your	own	naming	conventions	for	the	remotes.	The	syntax	for	adding	a	new
remote	is	as	follows:

$ git remote add nickname https://<hosting-url.com>/<your-name>/<project>.git

If	I	were	to	add	my	personal	clone	from	GitLab,	to	follow	the	previous	example,
I	would	use	the	following	command.	Because	this	connection	was	being	made	to
my	personal	copy	of	the	repository,	I	would	choose	to	use	the	nickname
personal	here:

$ git remote add personal https://gitlab.com/emmajane/gitforteams.git

To	avoid	confusion,	I	might	also	choose	to	rename	the	nickname	for	The	Project
remote	from	origin	to	official:

$ git remote rename origin official

These	nicknames	are	completely	arbitrary	and	are	personal	to	your	system.	They
will	not	be	shared	with	others,	so	use	whatever	names	make	sense	to	you.
Generally	the	convention	is	to	use	origin	for	the	remote	copy	that	most	closely
resembles	your	local	work,	and	upstream	for	the	copy	of	the	repository	that	has
the	most	new	features	being	added	by	other	developers	that	you	might	want	to
incorporate	into	your	own	work.

Once	you’ve	set	up	the	remote	connections	to	the	project,	and	to	your	own
personal	copy	of	the	repository,	you	should	verify	the	names	and	URLs	are	what
you	are	expecting:

$ git remote --verbose

In	my	case,	the	output	is	as	follows:

official git@gitlab.com:gitforteams/gitforteams.git (fetch)

official git@gitlab.com:gitforteams/gitforteams.git (push)

personal git@gitlab.com:emmajane/gitforteams.git (fetch)

personal git@gitlab.com:emmajane/gitforteams.git (push)

You	are	now	ready	to	work	on	your	project	as	both	a	Contributor	and	a

Maintainer.

Participating	in	Development
There	are	four	main	activities	you	will	engage	in	when	working	with	Git:
working	on	new	proposed	changes,	keeping	your	branches	up	to	date,	reviewing
proposed	changes,	and	publishing	completed	worked.	Inevitably,	you	will	also
need	to	work	on	resolving	conflicts	when	you	update	your	branches,	or	when
you	attempt	to	incorporate	proposed	changes	into	The	Project.

Constructing	the	Perfect	Commit
There	are	two	basic	approaches	to	commits:	demonstrate	the	thinking	process
and	present	the	final	solution.	When	I’m	programming	in	a	language	I’m	not
very	familiar	with,	I	think	in	small	increments	focusing	on	little	pieces	of	the
system	at	a	time.	As	I	work,	I	commit	snapshots	of	my	work	as	I	get	to	critical
points.	These	snapshots	act	as	lifelines,	allowing	me	to	track	how	I	thought
through	a	problem.	If	you	were	to	read	my	commit	messages	when	I	code,	you
would	be	able	to	easily	unpack	my	thinking.	Commits	might	represent	units	of
work	in	increments	as	small	as	15–30	minutes	of	effort.	The	commit	messages
are	unlikely	to	explain	why	I’ve	done	something.	The	initial	commit	might
include	a	docblock	of	code	comments	which	outline	what	I’m	about	to	do,	the
next	commit	might	have	the	scaffolding	for	what	I	was	about	to	build,	and	it
would	proceed	from	there.	The	commit	messages	would	add	very	little	value
above	and	beyond	what	is	shown	in	the	diff	for	each	commit.

When	I’m	working	in	on	a	task	I	feel	more	confident	about,	I’m	more	likely	to
make	radical	changes	to	the	working	directory	without	those	tiny	lifeline
commits.	Then,	when	my	work	is	finished,	I’ll	take	a	look	at	the	overall	changes,
and	shape	smaller,	relevant	commits.	This	might	be	done	by	committing	single
changed	files	at	a	time,	or	perhaps	I	might	make	an	even	more	granular	commit
using	the	--patch	mode	to	add	hunks	of	each	file	at	a	time	to	the	staging	area	in
preparation	for	a	commit.	These	curated	commits	will	be	much	more	useful	to
me	later	if	I	need	to	dig	through	history	using	the	command	bisect.	For
example,	in	order	to	use	a	function,	it	must	already	be	created	somewhere,	so	I
might	choose	to	separate	the	creation,	and	use	of	a	function	into	two	separate

commits	even	if	I	wrote	them	at	the	same	time.

I	hesitate	to	refer	to	these	two	approaches	as	novice	and	advanced,	but	that
phrasing	does	ring	true.	Different	source	control	management	systems	will	have
different	ways	of	presenting	commits	in	the	history	of	your	project.	Git	is	very
granular	in	how	it	shows	you	the	commit	history,	and	as	a	result,	thinking	in	tiny
commit	increments	gets	messy	and	frustrating	to	work	with.	This	is	why	we	say
that	as	you	mature	with	Git,	you	will	be	more	likely	to	adopt	the	second
approach.

You	don’t	need	to	give	up	your	tiny	commits	though.	You	can	use	rebase	to
combine	many	little	unpublished	commits	into	a	history	that	is	more	like	the
second	version.	Work	the	way	you	want	to	work,	then	reshape	history	so	that	it
stores	information	in	a	useful	way.

REWRITING	HISTORY
Yes,	I	hate	with	a	screaming	passion	that	Git	allows	you	to	rewrite	history,	and	then	tells	you
how	dangerous	it	is.	To	me	it	feels	too	much	like	arrogant	history	revisionism.	But	that’s	the
model	that	Git	uses.	To	work	effectively	with	Git,	I	set	aside	my	frustrations	and	adopt	the
techniques	that	the	original	software	set	out	as	best	practices.	I’m	not	afraid	of	rebasing;	I	just
don’t	like	that	it	exists	to	begin	with.	I	give	you	permission	not	to	like	it	either;	however,	not
liking	what	it	represents	isn’t	a	valid	reason	for	not	using	it.	It’s	deeply	ingrained	in	the
philosophy	of	how	Git	stores	metadata	about	code’s	history.	Have	a	cookie,	it’ll	be	okay.

If	you	accidentally	do	too	much	work	between	commits,	you	don’t	need	to	forgo
a	granular	commit	history.	Previously	you	learned	to	add	individual	files	to	the
staging	area.	You	can	get	even	more	granular,	assigning	edits	within	a	single	file
to	multiple	commits.	To	add	a	partial	change	within	a	file,	instead	of	the	whole
file,	use	the	command	git add --patch	filename.	This	command	will	walk
through	your	file,	line	by	line,	and	ask	you	if	you	would	like	to	include	each
changed	line	in	the	commit	you	are	building.

Rewriting	History	as	It	Happens
If	you	have	a	culture	of	showing	work	in	progress	on	a	centralized	server,	you
will	need	to	be	careful	in	how	you	rebase	your	work.	When	a	commit	is	rebased,

the	metadata	for	any	commit	object	that	is	altered	is	assigned	a	new	identifier.
For	example,	if	you	are	bringing	a	branch	up	to	date,	your	local	commits	now
have	new	parents	and	get	a	new	ID.	If	you	are	trying	to	clean	up	the	history	of	a
branch,	and	you	squash	two	commits,	a	new	ID	will	be	assigned	to	the	resulting
commit	object	even	though	the	content	is	identical!	This	dual	timeline	can
confuse	Git	and	cause	conflicts.	To	avoid	these	conflicts,	limit	your	use	of
interactive	rebasing	to	short-lived	branches,	such	as	ticket	branches.

Excellent	commit	objects	have	the	following	characteristics:

Contains	only	related	code.	No	scope	creep,	no	“just	fixing	white	space	issues
too.”

Conforms	to	coding	standards	for	your	project,	including	in-code
documentation.

Are	just	the	right	size.	Perhaps	this	is	100	lines	of	code.	Or	perhaps	it’s	a
mega	refactoring	where	a	function	name	changed	and	1,000	lines	of	code
were	affected.

Work	is	described	in	the	best-ever	commit	message	(see	the	next	section).

The	best	rule	of	thumb	I’ve	heard	for	commit	messages	is	“Whatever	it	takes	to
make	future	me	not	get	pissed	off	at	past	me	for	being	lazy.”

Your	commit	messages	should	include:

A	terse	description	(fewer	than	60	characters)	in	a	standard	format	to	make	it
easy	to	scan	logs.

A	longer	explanation	of	why	the	current	code	is	problematic,	and	the	rationale
for	why	the	change	is	important.

A	high-level	description	of	how	the	change	addresses	the	issue	at	hand.

An	outline	of	the	potential	side	effects	the	change	may	have.

A	summary	of	the	changes	made,	so	that	reading	the	diff	of	the	code	confirms
the	commit	message,	but	reading	the	diff	is	not	guesswork	on	what/why
something	has	changed.

A	ticket	number,	or	other	reference	to	sources	where	discussion	about	the
proposed	change	can/has/will	happen.

Who	will	be	affected	by	the	change	(e.g.,	an	optimization	for	developers;	a

speed	improvement	for	users).

A	list	of	places	where	the	documentation	will	need	to	be	updated.

A	bad	commit	message	would	be	as	follows:

git commit -am "rewrote entire site in angular.js - it's faster now, I'm sure"

This	commit	is	insufficient	for	the	following	reasons:

By	using	the	-a	parameter,	all	files	will	be	committed	as	part	of	this	commit
en	masse,	and	without	consideration	of	whether	or	not	they	should	be
included.

By	using	the	-m	flag,	the	tendency	will	always	be	to	write	only	a	terse
message	that	does	not	describe	why	the	change	is	necessary,	and	how	the
change	addresses	this	necessary	change.

The	commit	message	does	not	reference	a	ticket	number,	so	it’s	impossible	to
know	which	issue(s)	are	now	resolved	and	can	be	closed	in	the	ticket	tracker.

To	compare,	a	good	commit	message	would	be	as	follows:

$ git commit

[#321] Stop clipping trainer metadata on video nodes at small screen size.

- Removes an unnecessary overflow: hidden that was causing some clipping.

Resolves #321

This	is	a	good	message	for	the	following	reasons:

It	includes	the	ticket	number,	in	square	brackets,	at	the	beginning	of	the	terse
commit	message,	making	it	easier	to	read	the	logs	later.

The	terse	description	(for	the	short	log	view)	explains	the	symptom	that	was
seen	by	site	visitors.

A	detailed	explanation	explains	the	technical	implementation	that	was	used	to
resolve	the	problem.

The	final	line	of	the	commit	message	(Resolves #321)	will	be	captured	by
the	ticketing	system	and	move	the	ticket	from	open	to	needs	review.

When	making	a	proposed	change,	you	should	keep	the	proposal	small,	and
focused	on	solving	a	single	problem.	This	will	make	it	easier	for	The	Maintainer
of	the	project	to	review	your	submission,	and	accept	your	work.	For	example,	if
you	are	fixing	a	specific	bug	in	one	part	of	the	code	base,	don’t	also	fix	an	extra
line	ending	you	found	elsewhere	in	the	code.	While	projects	likely	have	naming
conventions	for	their	branches,	if	you	are	donating	a	drive-by	fix	that	doesn’t
already	have	an	identified	issue	in	The	Project	repository,	name	your	branch
using	a	terse	description	of	the	problem	you	are	solving—perhaps,	for	example,
css_button_padding	or	improved_test_coverage	(Example	7-3).

Example	7-3.	Make	a	change	to	the	code	base
$ git checkout -b terse_description

(edit files)

$ git add filename(s)

$ git commit

At	this	point,	the	commit	message	editor	will	open	and	you	will	need	to	provide
the	best	commit	message	you’ve	ever	written.

With	the	proposed	change	in	place,	you	can	now	publish	it	to	your	copy	of	the
repository	using	the	command	push:

$ git push

Your	personal	branch	has	been	uploaded,	so	it	is	now	time	to	work	with	a	team
member	to	have	your	changes	incorporated	into	the	main	branch	for	the	project.

Keeping	Branches	Up	to	Date
Branches	stored	in	Git	can	generally	be	thought	of	as	one	of	two	things:	official
project	branches	or	short-lived	suggestion	branches.	Shared	project	branches	are
used	to	integrate	reviewed	and	approved	code	from	multiple	developers	and
contain	the	official	history	of	a	project’s	code.	Your	local	copy	of	these	branches
should	always	be	up	to	date	and	should	always	be	used	as	the	base	branch	for
your	ticket	branches.	By	convention,	it	is	not	appropriate	to	write	new	commits
to	the	local	copy	of	an	official	branch.	Instead,	you	would	create	a	new	branch,
complete	your	work,	and	then	merge	that	branch	back	into	the	official	branch.
Several	branching	strategies	are	discussed	in	Chapter	3—you	may	want	to	go

back	and	review	that	chapter	if	your	team	doesn’t	already	have	a	branching
strategy.	The	second	type	of	branch	is	essentially	a	developer’s	sandbox.	This	is
where	you	test	out	new	ideas	and	get	your	code	ready	for	review.	These	short-
lived	work	branches	must	also	be	kept	up	to	date,	but	they	need	a	slightly
different	approach.

REBASE	VERSUS	MERGE…AGAIN
There	are	still	no	rebasing	police	who	are	going	to	show	up	at	your	team	meetings.	You’ll	need
to	figure	out,	as	a	team,	how	you’re	going	to	tackle	bringing	branches	up	to	date.	(I	still	think
you	need	to	do	whatever	is	best	for	your	team,	but	I’m	going	to	show	you	the	instructions	for
rebasing	where	it	so	that	you	can	see	it’s	not	significantly	more	difficult	to	use	this	method.)
Regardless	of	what	you	choose,	document	your	solution	carefully,	and	support	those	who	are
new	to	Git	to	ensure	they	are	able	to	perform	the	commands	consistently.	The	easiest	way	I’ve
found	to	ensure	consistency	this	is	to	provide	copy/paste-friendly	documentation,	and	have
people	work	at	the	command	line.	Additionally,	flowcharts	can	be	quite	effective.

To	reduce	the	number	of	conflicts	you	need	to	deal	with	when	bringing	short-
lived	branches	together,	you	should	keep	your	working	branch	up	to	date	with
the	project	branch	you	will	eventually	be	merging	into.	How	often	is
“regularly”?	I	recommend	updating	your	branches	at	least	as	often	as	you	drink
coffee.	If	you	don’t	drink	coffee,	I	would	recommend	you	update	your	working
branches	at	least	daily	using	the	commands	in	Example	7-4.	Yes,	this	is	going	to
seem	tedious,	but	it	can	save	you	a	lot	of	time	in	the	long	run	to	keep	your	work
as	up	to	date	as	possible.

Example	7-4.	Update	your	local	copy	of	this	project’s	branches
$ git checkout master

$ git pull --rebase=preserve

Git	will	update	your	local	copy	of	the	master	repository	to	incorporate	the
changes	from	the	upstream	repository.

Once	the	project	branches	are	up	to	date,	you	can	now	update	your	work
branches.	When	you	are	bringing	your	work	branches	up	to	date,	however,	there
will	not	be	an	upstream	branch	that	you	can	pull	your	changes	from	like	you
used	for	the	shared	project	branches.	So	how	do	you	know	if	you	should	be
merging	or	rebasing	at	this	point?	The	rule	of	thumb	is	as	follows:	if	you	started
your	work	right	now	would	the	change	you’re	about	to	incorporate	into	your

http://gitforteams.com/resources/merge-rebase.html

work	branch	already	be	in	place?	If	it’s	a	feature	you	wrote,	it	wouldn’t	already
be	in	the	branch	you’re	bringing	up	to	date	and	therefore	you	should	merge	the
branch	to	incorporate	the	new	work.	If	it’s	a	feature	someone	else	wrote,	you
almost	definitely	want	to	rebase	(if	you	are	on	Team	Rebase).	Another	helpful
tip	is	to	match	the	names.	If	the	changes	you	want	to	incorporate	are	coming
from	a	branch	with	the	same	name,	but	on	a	different	remote,	you	almost
definitely	want	to	rebase.

In	Git,	rebasing	and	fast-forward	merges	both	result	in	a	linear	timeline,	as	they
replay	your	commits	onto	the	work	that	was	done	in	a	different	branch.	As	each
commit	is	replayed,	there	is	the	potential	for	a	merge	conflict,	which	needs	to	be
resolved.	As	a	result,	developers	who	are	less	confident	in	their	ability	to	deal
with	a	merge	conflict	will	opt	to	simplify	the	process,	and	use	the	merge
command	to	bring	their	work	up	to	date.	Using	merge	does	make	your	historical
record	more	difficult	to	read;	it	is,	however,	also	technically	less	complicated
because	it	generally	involves	fewer	merge	conflicts.

If	you	are	working	with	a	complicated	code	base	and	it	is	important	to	be	able	to
run	debugging	tools	quickly,	you	should	spend	the	time	to	get	a	clean	history	by
using	the	command	rebase	to	bring	your	work	branches	up	to	date.	If,	however,
it	is	more	important	for	contributions	to	be	as	easy	as	possible,	you	may	want	to
allow	your	developers	to	use	the	merge	command	to	bring	their	work	up	to	date.
(The	Gittiest	of	Git	readers	just	gritted	their	teeth	while	reading	that	last	bit.	But
you	know	what?	There	are	no	Git	police	who	will	show	up	at	your	door	if	your
team	decides	they	just	want	things	to	be	easier.	Promise.	Insert	picture	of	a
honey	badger	not	caring	here,	and	let’s	move	on.)

The	first	thing	you	need	to	do	when	bringing	your	work	branches	up	to	date	is	to
ensure	your	project	branches	are	up	to	date.	Keeping	a	shared	branch	up	to	date
is	typically	done	with	the	command	pull	(which	uses	the	optional	parameter	--
rebase).	To	bring	your	personal	work	branch	up	to	date,	you	will	need	to
remember	the	source	branch	where	you	initially	branched	from	and	copy	the
changes	made	to	this	branch	over	to	your	work	branch.	If	you	are	following	the
GitFlow	model	described	in	Chapter	3,	this	will	likely	be	the	branch	dev	or
development.

For	example,	if	your	work	branch	was	named	2378-add-test	and	your	source
branch	was	named	development,	the	commands	would	be	as	follows:

$ git checkout development

$ git pull --rebase=preserve

$ git checkout 2378-add-test

$ git rebase development

Each	of	the	commits	you	have	made	in	your	work	branch	will	now	be	reapplied
as	if	the	new	commits	from	the	branch	development	had	always	been	in	place.
These	commits	may	apply	cleanly,	or	you	may	need	to	deal	with	merge	conflicts.
Because	rebasing	is	the	preferred	method	in	Git	for	keeping	a	branch	up	to	date,
I	will	passive-aggressively	omit	giving	you	the	commands	for	how	to	merge	a
branch.	I	am	hopeful	you	will	forgive	me.

In	addition	to	keeping	your	branches	up	to	date,	you	should	also	remember	to
update	your	personal	repositories	whenever	your	own	work	is	incorporated	into
The	Project	because	its	main	branch	will	now	contain	new	commits.	This	will	be
helpful	when	you	are	responsible	for	reviewing	someone	else’s	work	and
merging	it	into	the	master	branch.	The	commands	you	run	are	exactly	as	they
were	described	previously:

$ git checkout master

$ git pull --rebase=preserve

Regardless	of	how	you	choose	to	keep	your	branches	up	to	date,	I	hope	you’ll	at
least	try	to	incorporate	rebasing	into	your	workflow.	As	frustrating	as	it	can	be,	it
will	help	you	to	have	a	cleaner	history	if	you	need	to	use	the	debugging
techniques	described	in	Chapter	9.

Reviewing	Work
In	order	to	review	someone	else’s	work,	you	must	first	get	a	local	copy	of	that
work	into	your	own	repository.	This	might	be	work	that	has	already	been
incorporated	into	the	official	project	branches,	or	it	might	be	a	new	feature,	or	a
bug	fix	that	a	colleague	has	asked	you	to	review	and	merge	into	the	main	project.

Peer	reviewing	new	work	is	a	multistep	process	and	is	covered	in	greater	detail
in	Chapter	8.	The	basic	process	is	as	follows:

1.	 Add	a	remote	connection	to	the	relevant	repository.

2.	 Fetch	the	available	branches	for	that	repository.

3.	 Create	a	local	copy	of	any	branch	you	want	to	examine	in	depth.

4.	 Incorporate	any	changes	from	the	other	branch	that	you	would	like	to	adopt
into	your	own	work.

5.	 Push	the	revised	branch	back	to	the	relevant	remote	repository.

The	first	thing	you	will	need	to	do	is	find	the	repository	that	holds	the	work	you
want	to	incorporate.	To	list	each	of	the	remote	repositories,	use	the	remote
subcommand	show	(Example	7-5).	Just	like	listing	branches,	all	available
remotes	will	be	listed	as	the	output	to	the	command.	In	Example	7-5,	the	two
remotes	I	added	in	the	previous	section	are	displayed.	This	gives	me	a	quick
reminder	of	which	repository	I	want	to	look	at	in	more	depth.

Example	7-5.	A	terse	list	of	remote	repositories
$ git remote show

official

personal

Once	you	have	the	name	of	the	repository,	you	can	get	a	full	listing	for	the
remote	by	adding	the	name	of	the	nickname	to	the	previous	command
(Example	7-6).

Example	7-6.	Full	details	about	the	remote	repository,	personal
$ git remote show personal

* remote personal

 Fetch URL: git@gitlab.com:emmajane/gitforteams.git

 Push URL: git@gitlab.com:emmajane/gitforteams.git

 HEAD branch: master

 Remote branches:

 2-bad_jokes tracked

 master tracked

 sandbox tracked

 video-lessons tracked

 Local branch configured for 'git pull':

 master merges with remote master

 Local ref configured for 'git push':

 master pushes to master (up to date)

Here	I	can	see	there	are	four	branches	stored	in	the	remote	repository,	all	of

which	I	have	a	copy	of	locally	(this	is	indicated	by	the	word	tracked).

UPDATE	YOUR	LOCAL	LIST	OF	BRANCHES
If	you	already	have	a	connection	to	the	remote	repository,	and	you	don’t	see	the	branch	your
partner	has	asked	you	to	review,	ensure	the	list	of	remote	branches	is	up	to	date	by	first
running	the	command	git fetch.

If	you	don’t	want	the	extra	overhead	of	getting	all	the	information	about	the
remote	repository,	you	can	choose	to	show	only	remote	branches	by	using	the
command	branch	and	adding	the	parameter	--remotes	(Example	7-7).	This	will
allow	you	to	locate	the	branch	with	the	work	you	need	to	review.	I	like	using	this
variation	for	branch	instead	of	the	--all	parameter	because	it	gives	the	actual
name	of	the	branch,	instead	of	adding	on	the	reference	information	of	remotes.

Example	7-7.	Listing	remote	branches
$ git branch --remotes

BRANCHES	GROUP	COMMITS
A	branch	is	a	line	of	development	that	links	individual	commit	objects.	Different	instances	of	a
branch	may	have	commits	made	by	different	developers,	and	therefore	repositories	are	not
identical	until	they	are	synced.	It’s	basically	anarchy,	but	limited	to	each	little	repository.	The
conventions	we	establish	as	software	teams	are	what	bring	order	to	the	chaos	and	allow	us	to
share	our	work	in	a	sane	manner.	Remember	the	branching	strategies	we	learned	in	Chapter	3?
They’ll	keep	the	work	sorted	into	logical	thought	streams.	Remember	the	permission	strategies
from	Chapter	2?	They’ll	keep	people	locked	into	the	right	repository,	unable	to	make	changes
without	the	community	gatekeeper’s	help.

If	you	add	the	parameter	--verbose	to	branch,	the	oneline	commit	message	for
the	tip	of	the	branch	will	be	included	in	the	output.	For	example,	I	had	several
active	work	branches,	an	integration	branch,	and	the	official	branch	for	the
project	(Example	7-8).	Although	I	uploaded	my	commits	occasionally	to	the
remote	server,	mostly	I	just	worked	in	the	chapter	branches,	incorporating	my
work	into	the	integration	branch,	drafts,	and	then	the	main	branch,	master.

Example	7-8.	Selected	output	from	git	branch	--verbose	while	working	on	this

chapter
ch02 7313755 CH02: Adding patching workflow diagram.

 ch04 69a3ded CH4: Stub file added with notes copied from Drupalize.Me.

* ch05 80b5200 [official/ch05: ahead 2] CH05: Fixing URL for image 05fig01.

 drafts 80b5200 CH05: Fixing URL for image 05fig01.

 master 319bb53 [official/master] Merge branch 'drafts'. Updates for CH05.

The	first	column	contains	the	branch	name,	the	second	column	contains	the
commit	ID,	and	the	third	column	contains	the	first	line	of	the	most	recent
commit	message.	If	the	branch	is	tracked	remotely,	the	name	of	the	remote
branch	is	included	in	square	brackets	between	the	commit	ID	and	the	commit
message.

Once	you’ve	located	the	remote	branch	that	contains	the	work	you	want	to
review,	you	can	either	copy	the	branch	into	your	local	repository	(Example	7-9),
or	examine	the	reference	to	it	with	the	commands	log	and	diff	(Example	7-10).

Example	7-9.	Copy	a	remote	branch	into	your	local	repository
$ git checkout --tracking remote_nickname/branch

Example	7-10.	Examine	a	remote	branch	without	creating	a	working	copy
$ git log --oneline remote_nickname/branch

$ git diff current_branch...remote_nickname/branch

Assuming	the	work	passes	review,	it’s	time	to	merge	it	into	the	main	project
branch.

Merging	Completed	Work
Before	merging	the	new	work	into	your	project	branch,	you	will	need	to	first
ensure	all	branches	are	up	to	date.	This	is	necessary	because	Git	won’t	allow	you
to	push	your	copy	of	a	remote	repository	if	the	destination	branch	(on	the
remote)	contains	commits	which	are	not	in	your	local	copy.

When	uploading	new	work	to	a	remote	server,	Git	will	only	accept	work	as	a	fast
forward	merge.	This	means	you	don’t	have	to	worry	about	having	a	merge
conflict	when	you	push	your	work.	Because	of	this	restriction,	your	local	branch
needs	to	contain	all	of	the	remote	commits	before	you	can	push	your	branch.	To
update	your	work,	you	will	need	to	use	the	command	pull	to	retrieve	the
changes	from	the	remote	server	and	incorporate	any	new	work	into	your	local

branches.

First,	update	your	local	copy	of	the	destination	branch	(Example	7-11)	by	using
the	command	pull	with	the	parameter	--rebase.

Example	7-11.	Incorporate	updates	from	a	project	branch
$ git checkout master

$ git pull --rebase=preserve

Once	the	public	branch	is	up	to	date,	you	will	need	to	bring	the	feature	branch	up
to	date	as	well	(Example	7-12).

Example	7-12.	Merge	a	completed	ticket	branch	into	a	public	project	branch
$ git checkout 2378-add-test

$ git rebase master

Finally,	you	can	merge	the	ticket	branch	into	the	main	project	branch
(Example	7-13).

Example	7-13.	Merge	the	completed	ticket	branch	into	the	public	project	branch.
$ git checkout master

$ git merge --no-ff 2378-add-test

If	the	changes	that	were	being	introduced	were	unique	from	previous	work	that
had	been	completed,	the	merge	will	now	be	completed;	however,	if	there	was
overlapping	work	in	the	same	area,	Git	will	not	know	how	to	complete	the	merge
and	ask	for	your	guidance.	The	language	is	a	little	scary	as	asking	for	help	in	Git
terminology	is	better	known	as	a	merge	conflict.

Resolving	Merge	and	Rebase	Conflicts
Conflict	sounds	hard	and	scary,	but	in	Git,	a	merge	conflict	is	actually	a	very
small	problem	and	you	won’t	need	to	spend	a	lot	of	money	on	a	mediator	or	a
therapist	to	resolve	it.	Any	time	a	file	is	changed	in	exactly	the	same	place,	Git
can	be	unsure	of	which	version	is	the	correct	version,	so	it	will	ask	you	to	make
that	decision.	Git	refers	to	this	uncertainty	as	a	conflict.

When	you	bring	together	two	branches,	there	is	always	a	chance	that	you	will
have	changes	in	both	our	and	their	version	of	the	code	on	the	exact	same	lines
within	a	file.

Git	will	add	three	lines	into	any	file	that	has	lines	with	conflicting	information	at

exactly	the	same	point:

<<<<<<<

=======

>>>>>>>

This	represents	the	our	code,	and	their	code	separated	by	a	dividing	row	of	=.	To
resolve	a	conflict	you	will	need	to	edit	the	files,	select	the	appropriate	content	to
keep,	and	remove	the	markers.	When	you	open	the	file	to	examine	the	conflict,
look	at	the	surrounding	areas	as	well.	Sometimes	Git	will	have	misjudged	where
to	put	the	markers,	so	you	shouldn’t	just	delete	one	whole	section,	or	the	other
whole	section.	Read	carefully,	and	you	may	find	you	need	to	take	a	little	bit	from
each	when	you	look	at	the	surrounding	code:

<<<<<<< HEAD

 $p++;

}

=======

}

>>>>>>> 2378-add-test

We	don’t	have	enough	information	to	resolve	this	merge	conflict	without
understanding	what	the	code	update	is	trying	to	accomplish.	Probably	the	end
brace	should	be	kept	because	it’s	in	both	sides	of	the	conflict,	but	what	about	the
new	line?	And	what	about	the	increment	of	the	variable?	If	you	run	into	merge
conflicts	you	are	not	sure	how	to	resolve,	you	should	talk	to	the	author	of	the
original	code	if	you	cannot	figure	it	out	just	from	reading	the	code	itself.
Misunderstanding	the	code	and	deleting	too	much	(or	too	little)	may	end	up
unintentionally	adding	new	bugs	to	the	code	if	you	resolve	the	conflict
incorrectly.

RESOLVING	MERGES	STEP	BY	STEP	FROM	VERY
DIVERGENT	BRANCHES

There	is	a	complementary	program,	git-imerge,	which	works	to	merge	the	commits	leading	up
to	the	tip	of	the	two	branches	you	are	attempting	to	merge.	Working	with	the	incremental
commits	can	make	it	easier	to	see	how	the	conflict	should	be	resolved	because	there	is	less	to
compare	at	each	point.	This	is	not	part	of	Git	core,	and	you	will	need	to	download	and	install

https://github.com/mhagger/git-imerge

the	software	separately.	Check	your	favorite	package	manager	if	you	want	to	reduce	the	install
hassle.	I	installed	my	copy	via	OS	X’s	Brew.

When	your	edits	are	complete,	you	can	remove	the	markers	Git	placed	into	the
file	and	continue	using	the	on-screen	instructions	which	Git	provides	in	its	status
message:

$ git status

If	you	were	completing	a	merge,	you	will	need	to	add	the	updated	files	and
commit	them	to	your	repository:

$ git add filename(s)

By	adding	the	files	one	at	a	time,	you	can	use	the	status	command	as	a	TODO
list	of	files	with	outstanding	merge	conflicts	that	need	to	be	resolved:

$ git status

Once	all	the	merge	conflicts	have	been	cleaned	up	in	each	of	the	files,	you	can
commit	your	staged	changes:

$ git commit

At	this	point,	the	default	text	editor	for	Git	will	open	with	additional	information
about	the	commit	you	are	completing.	When	you	have	finished	writing	your
message,	save	the	changes	and	quit	the	editor	to	resume.

If	you	were	attempting	a	rebase	when	the	merge	conflict	occurred,	you	may	be	in
the	middle	of	a	multistep	process.	In	this	case,	you’ll	need	to	proceed	with	the
rebasing	procedure:

$ git rebase --continue

If,	before	starting	the	merge,	you	know	without	a	doubt	that	you	will	always
want	to	use	either	the	incoming	work	(theirs)	or	your	own	work	(ours),	you
can	preemptively	instruct	Git	on	how	you	want	to	address	the	proposed	changes

https://brew.sh

from	the	two	branches.	For	example,	if	you	wanted	to	merge	in	a	branch	that	you
knew	contained	fixes	for	the	problem	you	were	having,	you	could	force	Git	to
use	the	other	branch	when	making	its	updates	to	your	own	branch:

$ git checkout branch_to_update

$ git merge --strategy-option=theirs incoming_branch

Publishing	Work
The	first	time	you	upload	your	changes	for	a	given	branch,	you	will	need	to
specify	the	remote	repository	that	you	want	to	use,	as	well	as	the	branch	name.
The	convention	is	to	keep	the	branch	names	the	same	on	the	local	and	remote
repositories.	You	will	need	to	include	the	nickname	for	the	remote	repository.	In
Example	7-14,	it	is	assumed	the	name	of	the	remote	is	origin.

Example	7-14.	Upload	your	branch	with	the	proposed	changes	to	your	remote
repository
$ git push --set-upstream origin branch

Once	you’ve	set	up	the	branch	for	the	remote	repository,	you	can	upload	your
work	to	the	same	remote	again	using	the	command	push:

$ git push

If	you	have	multiple	remotes	set	for	your	repository,	you	will	need	to	explicitly
push	to	each	of	the	remote	repositories	separately.	By	default,	origin	is	used:

$ git push remote_nickname

The	next	part	of	the	procedure	will	depend	on	the	hosting	system	you’re	using.
Generally,	though,	you	navigate	to	The	Project	page	where	you	will	locate	a	link
for	pull	requests	(the	language	may	be	slightly	different	on	your	system	of
choice).	From	this	link	you	should	be	able	to	initiate	a	request	to	have	your
proposed	updates	included	in	the	project.	The	system	should	already	know
which	of	your	repositories	was	cloned	from	The	Project,	and	it	should	include	a
list	of	all	the	branches	you’ve	worked	on	in	your	copy	that	might	include
proposed	changes	for	The	Project.	You’ll	select	the	branch	you	want	to	submit
for	inclusion	and	walk	through	any	additional	steps	necessary.	This	process	is

covered	in	depth	in	Part	III.

Once	your	pull	request	has	been	submitted,	The	Maintainer	will	review	your
proposed	update.	He	may	accept	your	work	as	is,	or	request	changes	and	ask	you
to	resubmit	your	work.	If	additional	changes	are	needed,	repeat	the	steps
outlined	in	this	section	until	the	pull	request	is	accepted.

To	publish	new	work	into	a	shared	branch,	the	first	thing	you	should	do	is	check
that	the	branch	you	are	going	to	be	merging	into	is	up	to	date.	This	will	ensure
you	can	push	your	work	after	merging	your	changes.	If	the	branch	isn’t	up	to
date,	you	will	not	be	able	to	upload	the	revised	copy	of	the	shared	branch	until
you	have	downloaded	the	new	updates	and	incorporated	them	into	the	branch:

$ git checkout master

$ git pull --rebase=preserve

Once	your	local	copy	of	the	main	project	branch	is	up	to	date,	you	should	ensure
these	changes	are	also	copied	into	the	feature	branch	you	have	been	working	on
so	that	there	is	the	smallest	amount	of	difference	between	the	two	branches
before	the	merge	is	performed:

$ git checkout 2378-add-test

$ git rebase master

Once	the	working	branch	is	up	to	date,	you	are	ready	to	merge	in	the	reviewed
and	accepted	changes:

$ git merge --no-ff 2378-add-test

$ git push

The	work	branch	can	now	be	deleted	from	your	local	repository	and	any	remote
repositories	you	have	write	access	to:

$ git branch --delete 2378-add-test

$ git push remote_nickname --delete 2378-add-test

Your	branches	should	now	be	up-to-date	and	ready	for	your	teammates	to

download.

What	happens	next	will	vary	greatly	depending	on	the	type	of	software	you	are
building.	Web	developers	who	want	to	connect	Git	with	a	continuous	integration
build	server	may	benefit	from	watching	Lorna	Mitchell’s	videos	Git
Fundamentals	for	Web	Developers	(O’Reilly).

Sample	Workflows
The	remainder	of	this	chapter	serves	as	a	template	for	working	with	teams.	You
should	discuss	with	your	team	how	they	would	like	to	work,	and	write	down	the
commands	each	contributor	and	maintainer	will	need	to	use	during	the	project.

Sprint-Based	Workflow
This	process	is	more	or	less	what	I’ve	used	for	several	teams	working	in	a	sprint-
based	release	cycle.	It	is	a	variation	on	GitFlow	and	it	works	well	for	weekly
website	deployments.	The	schedule	for	the	sprint	follows	a	weekly	routine	(as
opposed	to	the	more	“traditional”	two-week	sprint).	This	encourages	granular
tickets	and	helps	the	developers	see	their	work	in	production	as	fast	as	possible.
Some	tickets	will	take	several	“sprints”	to	complete	if	they	are	larger	in	scope.

The	repository	is	set	up	with	five	different	types	of	branches:	development,
ticket,	qa,	master,	and	hotfix	(Table	7-1).	These	branches	are	used	either	as
single-issue	development	branches,	or	as	integration	branches.

Table	7-1.	Branch	types	in	a	weekly	deployment	workflow

Branch	name	/
convention

Type	of
branch

Description Branched
from

dev Integration Used	to	collate	peer	reviewed	code ticket
branches

ticket#-descriptive-
name

Development Used	to	complete	work	identified	in	tickets dev

qa Integration Used	for	quality	assurance	testing	at	the	end	of
each	sprint;	code	that	does	not	pass	QA	testing
is	removed	from	the	branch

dev

master Integration Used	to	deploy	fully	tested	code qa

http://bit.ly/git-fundamentals

hotfix-	ticket#-
description

Development Used	to	develop	solutions	for	urgent	problems
identified	on	production

latest
release	tag
on	master

For	the	developers,	every	day	is	a	development	day.	In	addition,	there	are	three
days	in	the	week	when	all	team	members	rally	toward	the	same	goal.

The	workflow	is	not	overly	complex	(Example	7-15)	for	developers:	all	work
begins	on	a	fresh	ticket	branch	from	the	parent	branch	dev.	Once	completed,	the
work	in	a	ticket	branch	is	pushed	up	to	the	shared	project	repository.	Branches
are	kept	up-to-date	through	rebasing,	which	allows	for	a	cleaner	branch	history
than	merging.

Example	7-15.	Git	commands	to	work	on	tickets

In	this	example,	substitute	origin	for	the	name	of	your	remote,	and	1234-
new_ticket_branch	for	the	name	of	your	ticket	branch:
$ git checkout dev

$ git pull --rebase=preserve origin dev

$ git checkout -b 1234-new_ticket_branch

// do work

$ git add --all

$ git commit

Before	sharing	the	work,	ensure	the	branch	contains	any	new	commits:
$ git checkout dev

$ git pull --rebase=preserve

$ git checkout 1234-new_ticket_branch

$ git rebase dev

Finally,	share	the	new	work	with	others:
$ git push origin 1234-new_ticket_branch

Once	completed,	a	ticket	branch	is	reviewed	by	another	person	on	the	team
(Example	7-16).	If	the	code	passes	review,	the	reviewer	merges	the	ticket	branch
into	the	development	branch	and	removes	the	ticket	branch	from	the	main
repository.	The	review	process	is	covered	in	depth	in	Chapter	8.

Example	7-16.	Git	commands	to	complete	a	peer	review
$ git checkout dev

$ git pull --rebase=preserve

$ git checkout 1234-new_ticket_branch

// review process goes here

$ git merge --no-ff 1234-new_ticket_branch master

$ git branch --delete 1234-new_ticket_branch

$ git push --delete origin 1234-new_ticket_branch

Quality	Assurance	(Monday–Tuesday):

Automated	test	suite	is	run	on	dev	to	catch	any	regressions	that	may	have
snuck	in	while	feature	branches	were	being	added	up	to	this	point.

All	work	in	the	branch	dev	is	merged	into	the	branch	qa	for	testing
(Example	7-17).	Development	work	continues	in	the	branch	dev.

A	sprint	checklist	is	created	in	a	shared	document,	such	as	Google	Docs,	by
copying	and	pasting	the	user	stories	from	the	tickets	that	were	merged	into
the	qa	branch.	Typically,	this	is	the	first	line	of	the	ticket	description—a
convention	that	should	be	adopted	to	make	the	QA	process	faster.

All	team	members	are	responsible	for	running	through	the	list	of	tickets	to	be
tested	in	the	shared	document.	In	addition	to	the	weekly	tickets,	there	may	be
rolling	tests	that	need	to	be	completed	by	a	person.

Anything	that	fails	quality	assurance	has	a	new	ticket	created	so	that	it	can	be
fixed,	or	reverted,	prior	to	release	(Example	7-18).

Example	7-17.	Commands	to	set	up	the	qa	branch
$ git checkout dev

$ git pull --rebase=preserve

$ git checkout qa

$ git merge --no-ff dev

$ git push

Example	7-18.	Commands	to	remove	tickets	that	have	failed	to	pass	QA	in	time
for	release
$ git log --oneline --grep ticket-number

(locate the commits that need to be reversed)

$ git revert commit

$ git revert --mainline 1 merge_commit

(ideally, however, you are merging work branches with --no-ff, which forces a commit

ID

that can be easily undone)

Release	Day	(Wednesday):

The	branch	qa	is	merged	into	the	branch	master	and	tagged	(Example	7-19).

From	the	live	site,	the	repository	is	updated	to	use	the	tagged	commit	for
release.

The	work	for	the	next	week	is	prioritized	with	the	development	team.

Example	7-19.	Commands	to	prepare	for	deployment
$ git checkout master

$ git merge qa

$ git tag

(locate the latest tag so that you can determine the next tag's number)

$ git tag --annotate -m tag_name

$ git push --tags

When	the	tag	is	added,	it	is	signed	with	the	--annotate	parameter,	and	a
message	is	added	with	the	-m	parameter.	This	ensures	the	tag	will	not	be	ignored.

Announcement	Day	(Thursday):

A	public	announcement	is	made	to	the	community	of	users	about	the	changes
that	were	launched	on	the	previous	day.	The	extra	day	gives	the	team	a
chance	to	deal	with	any	unexpected	regressions,	or	bugs,	when	the	code	was
moved	to	the	production	environment.

Development	continues	on	the	new	list	of	priorities	established	on	the
previous	day.

In	the	unlikely	event	that	a	serious	bug	or	regression	is	introduced	to	the
production	environment,	a	hotfix	is	completed.	Serious	is,	of	course,	a	relative
term.	In	this	system,	deployments	are	made	weekly,	so	a	hotfix,	generally
speaking,	is	an	update	that	cannot	wait	a	week	to	be	deployed.

Each	deployment	is	tagged	as	such,	so	the	first	step	is	to	get	a	list	of	all	tags	and
locate	the	current	live	version	of	the	code	base	(Example	7-20).	A	new	branch	is
created	from	this	point,	the	updated	code	is	applied,	and	then	uploaded	for
review	before	deployment.

Example	7-20.	Commands	to	create	a	hotfix	branch
$ git checkout master

$ git tag

(review list of tags to determine the currently live tag)

$ git checkout -b hotfix-issue-description tag_name

The	hotfix	branch	would	then	be	worked	on	as	if	it	were	a	regular	development
branch,	undergoing	a	peer	review	and	quality	assurance	test.	When	it	passes
testing,	it	would	then	be	immediately	incorporated	back	into	the	master	branch
and	tagged	for	deployment	(Example	7-21).

Example	7-21.	Commands	to	prepare	a	hotfix	for	deployment
$ git checkout master

$ git merge --no-ff hotfix-issue-description

$ git tag --annotate -m new_tag_name

$ git push --tags

In	this	system,	semantic	versioning	is	not	used.	Instead,	tag	names	are
incremented	using	the	format	<launch_version>.<sprint_week>.<hotfix>.
For	example,	1.4.3	would	be	used	to	represent	the	third	hotfix	on	the	fourth
week	of	development	(in	other	words:	a	bad	week	for	the	team!).

Trusted	Developers	with	No	Peer	Review
While	writing	this	book,	I	worked	with	the	O’Reilly	automated	build	tool,	Atlas.
This	system	also	has	a	web-based	GUI	that	allows	editors	to	work	on	book	files
directly.	Saved	files	are	immediately	committed	to	the	master	branch.	Due	to
the	GUI,	there	is	no	peer	review	process	because	anyone	on	my	team	is	able	to
make	edits	directly	to	a	file.	My	preference,	however,	is	to	work	locally,	and	not
through	a	web	GUI.	I	had	been	keeping	the	branch	overhead	low	locally	and	had
just	been	working	in	master	as	well.	It	only	took	me	one	local	merge	conflict	to
alter	the	way	I	was	working	locally.

When	I	wanted	to	update	my	work,	I	would	use	the	command	fetch	to	see	if
any	changes	had	been	made	by	my	editors.	With	the	fetch	completed,	I	would
compare	my	copy	of	the	master	branch	with	their	copy	of	the	master	branch
(origin/master).	Assuming	I	agreed	with	all	their	edits,	I	would	merge	in	their
copy	of	the	branch.	If	I	disagreed,	I	would	merge	in	their	branch	with	the
strategy	ours,	effectively	throwing	out	their	changes	but	letting	Git	think	that	the
two	branches	were	up	to	date:

$ git checkout master

$ git fetch origin

https://atlas.oreilly.com/

$ git diff origin/master

Depending	on	whether	or	not	I	wanted	to	keep	the	changes,	I	would	merge	the
work	in	one	of	three	ways:	combine	all	work,	overwrite	their	work	with	mine,	or
overwrite	my	work	with	theirs.

To	combine	all	work	(true	merge):

$ git merge origin/master

To	keep	my	own	work:

$ git merge -X ours origin/master

To	discard	my	own	work	in	favor	of	the	reviewer’s:

$ git merge -X theirs origin/master

This	can	be	done	on	a	per-commit	basis,	or	if	there	is	a	merge	conflict,	it	can	be
done	on	a	very	granular	change-by-change	basis	with	a	merge	tool.	(It	feels	a	bit
passive-aggressive	to	be	throwing	stuff	out,	but	really	it’s	just	the	limitation	of	a
single	branch	system	where	you	don’t	have	the	ability	to	talk	about	the	proposed
changes	in	a	separate	branch.)	Depending	on	the	granularity	of	the	commits,	I
might	also	choose	to	cherry-pick	some	commits	to	keep	them,	while	discarding
other	commits.	Cherry-picking	commits	was	covered	in	Chapter	6.

Finally,	I	would	upload	the	new	version	of	the	book	to	the	repository,	and	update
my	local	working	branch	drafts:

$ git push origin master

$ git checkout drafts

$ git rebase master

Then	I	started	getting	reviews	as	marked-up	PDFs	and	realized,	once	again,	I
had	another	way	that	I	wanted	to	separate	work.	I	wanted	to	be	able	to	write	a
chapter	and	keep	those	commits	nice	and	tidy,	but	sometimes	I	was	mid-chapter
when	an	edit	came	in	that	I	wanted	to	address	immediately.	Instead	of
intermingling	these	commits	I	set	up	the	following	structure	for	my	branches:

master,	drafts,	and	one	branch	per	chapter:

$ git checkout ch04

// write chapter

$ git add ch04.asciidoc

$ git commit

$ git checkout drafts

$ git merge ch04

The	branch	drafts	gave	me	a	place	to	integrate	all	of	the	work	that	I’d	been
doing.	It	was	kept	up	to	date	by	merging	in	chapters	as	they	were	completed,	or
rebasing	the	master	branch	if	changes	had	been	made	by	one	of	my	editors.
When	I	was	first	writing	chapters	on	my	own,	without	others	contributing,
multiple	branches	would	have	been	a	lot	of	overhead	to	maintain,	but	as	more
contributors	started	offering	different	kinds	of	contributions,	more	granularity	in
branches	allowed	me	to	pick	and	choose	how	I	wanted	the	manuscript	to
progress.

Untrusted	Developers	with	Independent	Quality	Assurance
If	your	team	is	mostly	trusted	developers,	but	you	have	a	few	contractors	as	well,
you	might	want	to	have	your	contractors	working	in	a	fork	of	the	repository,
instead	of	giving	them	write	access	to	the	main	project.	For	some	types	of
software,	this	split	might	even	be	a	requirement	for	your	own	staff.	For	example,
if	you	were	working	on	firmware	for	a	medical	device,	you	might	have	very
strict	government	regulations	you	need	to	follow	on	who	is	allowed	to	check	in
work,	and	how	that	work	must	be	reviewed	before	it	is	added	to	a	repository.

This	model	is	the	same	as	what	was	described	for	Contributors	(as	opposed	to
Maintainers)	earlier	in	this	chapter.

A	second	example	was	given	in	the	description	of	the	forking	strategy	in
Chapter	2.	Here	I	included	a	description	of	how	I	offered	a	patch	back	to	the
reveal.js	project.	To	do	this,	I	made	a	fork	of	the	project,	and	then	cloned	the
project	so	that	I	could	edit	the	files	at	my	workstation.	I	then	reversed	the
chaining	to	push	my	changes	back	to	the	original	project	through	a	push	to
upload	my	work,	and	then	a	pull	request	to	submit	my	work	for	review.

Based	on	your	reading	to	date,	put	together	the	commands	that	would	be

necessary	for	these	workflows.	Hint:	there’s	nothing	here	that	you	haven’t	read
about	already	in	this	chapter.	Start	by	drawing	yourself	a	diagram,	then	add
arrows	to	show	the	progression	of	work	through	the	process,	and	finally,	add	the
Git	commands	for	each	of	the	arrows.

Summary
To	work	on	a	new	project,	you	must	first	decide	on	the	governance	structure	for
the	project.	This	will	inform	whether	or	not	developers	need	to	create	a	remote
clone	of	the	project,	or	just	a	local	clone	of	the	project.	The	way	Consumers,
Contributors,	and	Maintainers	set	up	their	access	to	the	project	may	prevent
them	from	doing	some	tasks;	however,	by	adding	remote	repository	connections,
you	can	easily	promote	a	Developer	into	a	Maintainer.

Chapter	8.	Ready	for	Review

Growing	up	I	learned	there	were	two	kinds	of	reviews	I	could	seek	out	from	my
parents.	My	parents	were	predictable	in	their	responses.	One	of	my	parents	gave
reviews	in	the	form	of	a	shower	of	praise.	The	other	parent,	the	one	with	a
degree	from	the	Royal	College	of	Art,	would	put	me	through	a	design	crit.	I’ll	be
honest	and	tell	you	that	to	this	day	I	both	dread	and	crave	the	review	process.

Unfortunately,	developers	are	rarely	exposed	to	the	peer	review	process	in
schools.	The	typical	review	process	is	the	final	submission	of	work	to	the
instructor—with	no	room	for	discussion	on	how	to	improve.	This	methodology
doesn’t	teach	students	to	iterate	based	on	feedback.	Graduates	released	into	the
workforce	may	quietly	scoff	at	shoddy	workmanship	they	find	around	them,
passing	silent	judgment	when	it’s	too	late	to	make	changes.

Completing	a	peer	review	is	time	consuming.	At	the	last	project	where	I
introduced	mandatory	peer	reviews,	we	estimated	that	it	doubled	the	time	to
complete	each	ticket.	It	introduced	more	context	switching	to	the	developers,
and	was	the	source	of	increased	frustration	when	it	came	to	keeping	the	branches
up	to	date	while	waiting	for	a	code	review.	The	benefits,	however,	were	huge.
Junior	coders	were	exposed	to	a	wider	amount	of	the	code	base	than	just	the
portion	they	were	working	on,	senior	developers	had	better	opportunities	to	ask
why	decisions	were	being	made	in	the	code	base	that	could	potentially	affect
future	work,	and	by	adopting	an	as-you-go	peer	review	process	we	reduced	the
amount	of	time	needed	for	human	quality	assurance	testing	at	the	end	of	each
sprint.	We	felt	the	benefits	were	worth	the	time	invested.

Types	of	Reviews
During	the	life	cycle	of	a	project,	several	types	of	reviews	should	be	undertaken.
While	the	majority	of	this	chapter	focuses	on	peer	code	reviews,	you	should	be
aware	of	the	other	types	of	reviews	to	ensure	you’re	not	commenting	too	early
(or	too	late)	on	various	aspects	of	the	project:

Design	critique

Typically	developers	are	not	involved	at	this	stage	of	the	project;	however,
including	a	developer’s	input	may	result	in	minor	user	interface
enhancements	that	radically	simplify	the	build.

Technical	architecture	review
A	peer	review	of	the	underlying	foundation	for	the	code	that	is	about	to	be
built.	At	this	stage,	developers	should	be	ensuring	the	data	model	is	complete
and	can	easily	accommodate	all	parts	of	the	build,	and	perhaps	future
features	as	well.

Automated	self-check
Like	spell-check,	but	for	code;	an	automated	self-check	allows	developers	to
ensure	their	code	is	following	coding	standards	for	the	project.	You	may
have	additional	testing	suites	that	you	want	to	run.	The	purpose	of	this	type
of	review	is	to	automate	any	type	of	review	that	could	easily	be	caught	by	a
machine	check,	instead	of	wasting	time	performing	human	checks.

Ticket-based	peer	code	review
The	majority	of	this	chapter	will	be	spent	discussing	this	type	of	review.

Quality	assurance/user	acceptance	testing
After	the	code	review,	the	new	feature	will	be	merged	into	the	development
branch	and	make	it	available	for	testing	by	human	testers.	This	user	interface
review	is	typically	conducted	on	a	special,	nonproduction	server.

Types	of	Reviewers
Depending	on	the	size	of	your	project,	you	probably	have	a	variation	on	one	of
the	following	types	of	review	processes	(or	maybe	a	combination	of	several):

Peer	Review
We	are	all	equals	and	equally	able	to	review	code	and	accept	it	to	the	project.
We	learn	from	one	another	and	do	our	best	work	when	we	know	our	peers
will	be	judging	it	later.

Automated	Gatekeeper

Our	code	has	test	coverage.	We	trust	our	tests	and	only	submit	work	we
know	will	pass	a	comprehensive	test	suite.	Typically	we	ask	for	a	second
opinion	before	the	code	is	pushed	into	the	test	suite	(for	automated
deployment).

Consensus	Shepherd
Our	community	of	coders	is	vigilant,	and	opinionated.	We	require	consensus
from	interested	parties	before	code	can	be	marked	as	reviewed	by	the
community.	We	may	also	have	a	testbot	that	is	part	of	our	community,
making	it	easier	for	human	coders	to	know	when	a	suggested	change	meets
minimum	standards.

Benevolent	Dictator
My	code,	my	way.	You	are	welcome	to	submit	your	suggestions,	but	I	will
review	or	have	my	lieutenants	review	your	work	with	a	fine-tooth	comb.	I
enjoy	finding	your	mistakes	and	rejecting	your	work.	Only	perfection	is	good
enough.

Peer	reviews	should	not	be	limited	to	those	who	are	of	equal	stature	on	a	team.
The	benefits	will	vary,	but	they	can	be	extended	to	any	combination	of	skill
levels	(Table	8-1).

Table	8-1.	Benefits	to	junior	and	senior	reviewers	and	developers

Junior	Developer Senior	Developer

Junior
Reviewer

Find	bugs;	compliance	with
standards

Learn	to	read	good	code;	suggest	simplifications;
exposure	to	the	whole	code	base

Senior
Reviewer

Suggest	new	techniques;
improve	architecture

Improve	architecture;	cross-functional	team	(exposure
to	more	code)

Software	for	Code	Reviews
The	commands	outlined	in	this	chapter	can	be	used	with	any	Git	hosting	system.
Detailed	instructions	for	code	hosting	systems	are	outlined	in	Part	III—including
instructions	on	using	GitHub	(Chapter	10),	Bitbucket	(Chapter	11),	and	GitLab
(Chapter	12).	The	code	review	capabilities	of	these	systems	are	managed	by	pull
requests	or	merge	requests,	and	they	are	relatively	lightweight,	making	them

easy	to	use	and	integrate	into	most	workflows.

If	your	reporting	requirements	are	more	explicit	due	to	industry	regulations,	you
may	need	to	consider	using	a	more	formal	code	review	and	sign-off	process.	The
following	software	packages	focus	explicitly	on	code	review	and	sign-off.	They
are	appropriate	for	the	code	review	of	extremely	large	software	projects,	and	are
likely	more	software	than	the	typical	project	needs:

Gerrit
Used	by	Android,	OpenStack,	and	Typo3,	this	review	system	is	best	for	very
large	projects.	There	is	a	nice	video	presentation	about	its	design	(and
limitations)	by	Dave	Borowitz.

Review	Board
Used	by	LinkedIn,	the	Apache	Software	Foundation,	and	Yelp,	this	software
includes	additional	information	about	when	lines	of	code	were	moved	within
the	code	base.

In	addition	to	manual,	peer	review	of	code,	it	can	also	help	developers	to	have
automated	tests	to	check	their	work	against	before	requesting	a	peer	review.
Some	open	source	projects,	such	as	Drupal,	have	tools	that	can	be	used	to	verify
that	code	conforms	to	coding	standards	(Coder).	There	are	also	for-pay	services,
such	as	PullReview	for	Ruby	and	bitHound	for	JavaScript,	which	are	language
specific	but	project	agnostic.

Although	we	will	be	focusing	on	technical	code	reviews,	increasingly	non-
technical	reviewers	are	being	included	as	part	of	the	review	process	through
customizable,	on-demand	build	servers.	A	public	example	of	this	is	the
SimplyTest.Me	service	for	Drupal.	This	platform	allows	people	to	deploy	a	test
machine	for	30	minutes	at	a	time	with	a	specific	patch	applied	to	the	code	so	that
they	can	review	the	changes	proposed	in	the	Drupal	issue	queue.	These	build
servers	can	also	benefit	developers.	Instead	of	conducting	reviews	sequentially,	a
reviewer	can	initiate	the	build	process	for	a	number	of	reviews	all	at	once.	Now
the	reviewer	can	avoid	the	(sometimes	lengthy)	procedure	of	building	a	local
environment	for	each	code	review	he	or	she	is	completing,	by	running	the	build
process	in	parallel	for	all	reviews	that	need	to	be	completed.	If	this	sounds
appealing,	you	should	read	the	Lullabot	article	on	working	with	its	pull	request
builder.	Assuming	your	technology	stack	is	a	little	different	than	theirs,	a	web

https://www.gerritcodereview.com
http://bit.ly/git-at-google
https://www.reviewboard.org/
http://drupal.org/project/coder
https://www.pullreview.com/
https://www.bithound.io/
https://simplytest.me/
http://bit.ly/lullabot-pull-request

search	for	“pull	request	builder”	should	get	you	pointed	in	the	right	direction.

Reviewing	the	Issue
Before	beginning	the	local	code	review	process,	you	should	read	through	the
description	of	the	proposed	changes	in	your	team’s	issue	tracker	to	discover	why
the	change	was	proposed.	Is	it	a	bug	fix?	How	was	the	software	broken?	Is	it
adding	a	new	feature?	Who	(and	how)	does	the	feature	help?	Understanding	the
problem	before	you	look	at	the	code	will	help	you	to	answer	“is	this	code	the
best	way	to	solve	this	problem?”	when	the	time	comes.

INVESTIGATE	YOUR	CODE	HOSTING	PLATFORM
Most	code	hosting	systems	also	have	a	web	interface	that	allows	you	to	easily	review	the
proposed	changes	online.	Use	this	interface	to	quickly	review	the	code	before	setting	up	your
local	environment.	If,	for	example,	the	proposed	change	is	just	adding	a	missing	code
comment,	or	fixing	a	spelling	mistake,	you	might	be	able	to	review	the	proposed	changes
online	without	the	hassle	of	downloading	everything	to	your	local	environment.

Once	you	have	a	good	understanding	of	what	the	code	is	supposed	to	be	doing,	it
is	time	to	set	up	your	local	environment	so	that	you	can	replicate	the	“before”
state.	In	other	words,	if	it’s	a	bug,	you	should	make	sure	you	can	replicate	the
bug	in	your	testing	environment.	If	it’s	a	new	feature,	you	should	make	sure	the
feature	doesn’t	already	exist	(to	be	fair,	it	is	pretty	unlikely	that	two	people	will
implement	the	exact	same	new	feature).

The	first	step	in	reviewing	someone	else’s	work	is	to	verify	how	the	code	works
currently.	If	you	are	testing	a	fix	to	a	specific	bug,	that	means	you	should	start	by
replicating	the	bug.	This	is	the	only	way	you’ll	know	for	sure	that	the	new	code
fixes	the	problem,	and	it	isn’t	just	a	difference	of	environments	making	things
appear	to	work.	When	you	apply	the	new	code,	you	also	want	to	be	able	to	catch
any	regressions,	or	problems,	it	might	introduce.	You	can	only	do	this	if	you
know	for	sure	that	the	problems	were	introduced	in	the	code	you	just	applied.

Once	you’ve	got	your	environment	set	up	and	you	have	confirmed	the	current
state	of	the	code,	you	can	now	check	out	a	copy	of	the	code	you	need	to	review.

Applying	the	Proposed	Changes
In	Chapter	2	you	learned	about	several	different	access	control	models	for	Git.
Your	project	might	be	setup	such	that	the	proposed	review	branch	is	in	the	main
project	repository	(“Shared	Repository	Setup”),	or	it	might	be	in	a	forked	copy
of	the	project	repository	(“Forked	Repository	Setup”).	The	instructions	for	the
initial	setup	are	different,	so	skip	ahead	to	the	section	which	is	relevant	to	you.

Shared	Repository	Setup
If	you	are	working	from	a	shared	repository,	you	have	a	very	easy	setup.	Simply
update	your	local	list	of	branches:

$ git fetch

If	you	have	more	than	one	remote,	you	may	need	to	explicitly	name	the	remote
you	would	like	to	update.	Assuming	the	name	of	the	remote	you	want	to	update
is	named	origin,	the	command	is	as	follows:

$ git fetch origin

If	you	are	working	in	an	automated	build	environment	you	may	need	to
explicitly	fetch	the	branch	you	want	to	review	if	you	don’t	have	the	complete
history	for	the	remote	repository	locally.	Replace	origin	with	the	name	of	your
remote	and	61524-broken-link	with	the	name	of	the	branch	you	want	to
review:

$ git fetch origin 61524-broken-link:61524-broken-link

The	third	parameter,	61524-broken-link:61524-broken-link	is	a	refspec
which	maps	the	name	of	the	remote	branch	to	a	local	branch	name
([remote_branch_name]:[local_branch_name]).	Convention	leaves	the
branch	name	the	same	because	it	is	easier	to	remember,	but	it	does	make	for	a
complicated-looking	command	to	have	things	doubled	up.

You	are	now	ready	to	proceed	to	“Checking	Out	the	Proposed	Branch”.

Forked	Repository	Setup
There	are	two	ways	to	approach	a	forked	repository	scenario.	The	first	method	is
to	clone	a	new	copy	of	the	remote	repository	which	contains	the	proposed
branch.	This	method	is	appropriate	if	we	are	just	conducting	a	review,	and	we
will	not	be	responsible	for	incorporating	the	proposed	changes	back	into	the
main	project	repository.	The	second	method	is	to	add	a	new	remote	repository	to
our	own	local	repository	and	pull	the	changes	into	a	new	branch	within	our	own
repository.	This	second	method	will	also	allow	us	to	merge	the	approved	work
back	into	the	main	project	repository.	You	should	proceed	with	the	method	that
is	appropriate	for	your	situation.	If	you	aren’t	sure,	choose	the	second	method
and	add	the	remote	repository	reference	to	your	own	local	repository.

For	both	methods	we	will	need	to	know	the	URL	for	the	remote	repository	which
holds	the	changes	you	want	to	review.	It	may	be	in	the	format	of
https://example.com/username/project.git	or
git@example.com:username/project.git.	Once	you	have	the	remote	URL,
you	are	ready	to	proceed.

If	you	are	using	the	first	method	of	creating	a	new	clone,	navigate	away	from
your	own	copy	of	the	project	repository,	perhaps	to	your	desktop	folder.	Then,
create	a	clone	of	the	repository	you	want	to	review	with	the	following	command:

$ git clone https://example.com/<username>/<project>.git

Navigate	into	the	new	repository	you	have	just	cloned:

$ cd project

You	are	now	ready	to	proceed	to	“Checking	Out	the	Proposed	Branch”.

If	you	are	using	the	second	method	of	adding	a	remote	repository	to	your	own
copy	of	the	project	repository,	you	will	need	to	begin	from	within	your	project
repository.	At	the	command	line,	navigate	to	that	directory	now.

Once	situated	in	your	project	folder,	add	a	new	remote	repository	for	the	fork
that	contains	the	branch	you	need	to	review.	For	the	name	of	the	remote,	use	the
username	of	the	person	whose	work	you	are	reviewing.	For	example,	if	you	are
reviewing	Donna’s	work	and	her	repository	is	available	at

https://example.com/donna/likesgin,	the	command	would	be	as	follows:

$ git add remote donna https://example.com/donna/likesgin

Update	the	list	of	branches	available	to	you	now	that	you	have	a	new	connection
to	a	new	remote	repository:

$ get fetch donna

You	are	now	ready	to	proceed	to	“Checking	Out	the	Proposed	Branch”.

Checking	Out	the	Proposed	Branch
You	should	now	be	situated	inside	a	project	repository	which	contains	the	branch
you	need	to	review.	The	next	step	is	to	check	out	a	copy	of	the	branch	you	need.

List	all	branches	for	your	repository:

$ git branch --all

A	list	of	branches	will	be	returned.	It	may	appear	something	like	this:

* master

 remotes/origin/master

 remotes/origin/HEAD -> origin/master

 remotes/origin/61524-broken-link

The	code	we	need	to	review	is	located	within	the	last	branch	on	that	list.	If	you
have	added	an	additional	remote	to	download	the	branch	you	want	to	review,	the
word	origin	may	be	something	like	donna	instead.	Simply	substitute	the	word
origin	in	the	instructions	that	follow	with	the	nickname	you	have	assigned	the
remote	which	contains	the	branch	you	are	reviewing.

$ git checkout --track origin/61524-broken-link

We	now	have	our	own	copy	of	the	proposed	changes	in	a	local	branch.	This	new
local	copy	of	the	branch	will	be	named	61524-broken-link.	By	adding	the
parameter	--track,	we	made	an	explicit	connection	as	we	switched	to	the	new

https://example.com/donna/likesgin

branch.	This	means	if	we	need	to	run	the	command	push	to	upload	our	changes,
Git	will	know	which	repository	we	want	to	upload	our	changes	to.

We	can	now	begin	our	review.

Reviewing	the	Proposed	Changes
First,	let’s	take	a	look	at	the	commit	history	for	this	branch	with	the	command
log:

$ git log master..

This	gives	us	the	full	log	message	of	all	the	commits	(starting	with	the	most
recent)	that	differ	from	the	branch	you’re	comparing	yours	to.	If	there	are	not
descriptive	commit	messages,	return	the	work	to	the	developer	and	ask	her	to
add	commit	messages.	There	are	instructions	in	Chapter	8	on	how	to	write	a
great	commit	message,	and	instructions	in	Chapter	6	on	how	to	reshape	history
(including	adding	new	commit	messages	to	previous	commits	with	interactive
rebasing).

To	get	a	terse,	but	more	complete	history,	examine	only	the	current	branch	with
the	command	log,	but	in	graph	form.	By	using	the	parameter	--graph,	you	will
get	a	sense	of	how	this	branch	fits	into	the	recent	historical	context	of	the
project:

$ git log --oneline --graph

And	finally,	use	the	command	diff.	This	command	shows	the	difference
between	two	points	in	your	repository.	These	points	can	include	commit	objects,
branch	tips,	and	the	staging	area.	We	want	to	compare	the	current	work	to	where
you’ll	merge	the	branch	“to”—by	convention,	this	is	the	master	branch:

$ git diff master

When	you	run	the	command	to	output	the	difference,	the	information	will	be
presented	as	a	patch	file.	Patch	files	are	ugly	to	read.	You’re	looking	for	lines
beginning	with	+	and	-.	These	are	lines	that	have	been	added	or	removed,

respectively.	You	can	scroll	through	the	changes	using	the	up	and	down	arrows.
When	you	have	finished	reviewing	the	patch,	press	q	to	quit.	If	you	need	an	even
briefer	comparison	of	what’s	happened	in	the	patch,	consider	listing	only	the
files,	and	then	looking	at	the	changed	files	one	at	a	time:

$ git diff master --stat

$ git diff master filename

Let’s	take	a	look	at	the	format	of	a	patch	file:

diff --git a/jokes.txt b/jokes.txt

index a3aa100..a660181 100644

 --- a/jokes.txt

 +++ b/jokes.txt

@@ -4,5 +4,5 @@ an investigator.

 The Past, The Present and The Future walked into a bar.

 It was tense.

-What did one hat say to another's

-You stay here, I'll go on a head!

+What's the difference between a poorly dressed man on a tricycle and a

well dressed man on a bicycle?

+Attire.

The	first	five	lines	tell	us	we	are	looking	at	the	difference	between	two	files,
with	the	line	number	of	where	the	files	begin	to	differ.	There	are	a	few	lines	of
context	provided	leading	up	to	the	changes.	These	lines	are	indented	by	one
space	each.	The	changed	lines	of	code	are	then	displayed	with	a	preceding	-
(line	removed),	or	+	(line	added).

You	can	also	get	a	slightly	better	visual	summary	of	the	same	information	we’ve
looked	at	to	date	by	starting	a	Git	repository	browser.	I	use	gitk,	which	ships
with	the	brew-installed	version	of	Git	(but	not	the	version	Apple	provides).	Any
repository	browser	will	suffice	and	many	GUI	clients	are	available	on	the	Git
website:

$ gitk

When	you	run	the	command,	gitk,	a	graphical	tool	will	launch	from	the
command	line.	Click	each	commit	to	get	more	information	about	it.	Many	ticket

http://bit.ly/git-guis

systems	will	also	allow	you	to	look	at	the	changes	in	a	merge	proposal	side	by
side.	Even	if	you	love	the	command	line	as	I	do,	I	highly	recommend	getting	an
additional	graphical	tool	to	compare	changes.	For	OS	X,	I	like	Kaleidoscope
App	because	it	also	allows	me	to	spot	differences	in	images	as	well	as	code.

Now	that	you’ve	had	a	good	look	at	the	code,	jot	down	your	answers	to	the
following	questions:

Does	the	code	comply	with	your	project’s	identified	coding	standards?

Does	the	code	limit	itself	to	the	scope	identified	in	the	ticket?

Does	the	code	follow	industry	best	practices	in	the	most	efficient	way
possible?

Has	the	code	been	implemented	in	the	best	possible	way	according	to	all	of
your	internal	bug-a-boos?	It’s	important	to	separate	your	preferences	and
stylistic	differences	from	actual	problems	with	the	code.

With	a	sense	of	what	the	code	changes	are,	you	should	go	ahead	and	apply	the
changes	to	your	local	environment.	In	other	words,	display	the	rendered	code
however	is	appropriate	for	your	project.	Assuming	it’s	a	website,	now	is	the	time
to	launch	your	browser	and	view	the	proposed	change.	How	does	it	look?	Does
your	solution	match	what	the	coder	thinks	he’s	built?	If	it	doesn’t	look	right,	do
you	need	to	clear	the	cache,	perhaps	rebuild	the	Sass	output	to	update	the	CSS
for	the	project	based	on	the	changes	you’re	reviewing?

Now	is	the	time	to	also	test	the	code	against	whatever	test	suite	you	use:

Does	the	code	introduce	any	regressions?

Is	the	new	code	as	performant	as	the	old	code?	Does	it	still	fall	within	your
project’s	performance	budget	for	download	and	page	rendering	times?

Are	the	words	all	spelled	correctly,	and	do	they	follow	any	brand-specific
guidelines	you	have	(e.g.,	sentence	case	versus	title	case	for	headings)?

Depending	on	the	nature	of	the	original	problem	for	this	particular	code	change,
there	may	be	other	obvious	questions	you	need	to	address	as	part	of	your	code
review.	Ideally,	your	team	will	develop	its	own	checklist	of	things	to	look	for	as
part	of	a	review.

http://www.kaleidoscopeapp.com/

Preparing	Your	Feedback
Do	your	best	to	create	the	most	comprehensive	list	of	everything	you	can	find
wrong	(and	right)	with	the	code.	It’s	annoying	to	get	dribbles	of	feedback	from
someone	as	part	of	the	review	process,	so	we’ll	try	to	avoid	“just	one	more
thing”	wherever	we	can.

Let’s	assume	you’ve	now	got	a	big	juicy	list	of	feedback.	Maybe	you	have	no
feedback,	but	I	doubt	it.	Release	your	inner	critique	and	let’s	get	your	review
structured	in	a	usable	manner	for	your	teammates.	For	all	the	notes	you’ve
assembled	to	date,	separate	them	into	the	following	categories:

The	code	is	broken
It	doesn’t	compile,	introduces	a	regression,	it	doesn’t	pass	the	testing	suite,
or	in	some	way	actually	fails	demonstrably.	These	are	problems	that
absolutely	must	be	fixed.

The	code	does	not	follow	best	practices
You	have	some	conventions,	the	web	industry	has	some	guidelines.	These
fixes	are	pretty	important	to	make,	but	they	may	have	some	nuances	the
developer	might	not	be	aware	of.

The	code	isn’t	how	you	would	have	written	it
You’re	a	developer	with	battle-tested	opinions;	but	you	can’t	actually	prove
you’re	right	without	getting	out	your	rocking	chair	and	launching	into	story
time.

Submitting	Your	Evaluation
Based	on	this	new	categorization,	you	are	ready	to	engage	in	passive-aggressive
coding.	If	the	problem	is	clearly	a	typo	and	falls	into	one	of	the	first	two
categories,	go	ahead	and	fix	it.	You’ll	increase	the	efficiency	of	the	team	by
reducing	the	number	of	round	trips	the	code	needs	to	take	between	the	developer
and	the	reviewer.	Obvious	typos	don’t	really	need	to	go	back	to	the	original
author,	do	they?	Sure,	your	teammates	will	be	a	little	embarrassed,	but	they’ll
appreciate	you	having	saved	them	a	bit	of	time.	Hopefully	the	next	time	they
won’t	be	so	sloppy.	However,	if	it’s	the	fourth	or	fifth	time,	do	not	fix	the

mistake.	Your	time	is	also	valuable	and	your	teammates	need	to	check	their	own
code	before	it	gets	to	you.

If	the	change	you	are	itching	to	make	falls	into	the	third	category:	stop	right	now.
Do	not	touch	the	code.	Instead,	update	the	ticket	where	the	problem	was	first
identified	and	find	out	why	your	teammate	took	that	particular	approach.	Asking
“Why	did	you	use	this	function	here?”	might	lead	to	a	really	interesting
conversation	about	the	merits	of	the	approach	taken.	It	might	also	reveal
limitations	of	the	approach	to	the	original	developer.	By	starting	a	conversation,
reviews	can	increase	the	institutional	level	of	knowledge.	By	starting	the
conversation	you’re	also	leaving	yourself	open	to	the	possibility	that,	just	maybe,
your	way	of	doing	things	isn’t	the	only	viable	solution.

If	you	“needed”	to	make	any	changes	to	the	code	they	should	be	absolutely	tiny
and	minor.	You	should	not	be	making	substantive	edits	in	a	peer	review	process.
Make	the	tiny	edits	and	then	add	the	changes	to	your	local	repository	as	follows:

$ git add --all

$ git commit -m "Correcting <list problem> identified in peer review."

You	can	keep	it	brief	because	your	changes	should	be	minor.	At	this	point,	you
should	push	the	reviewed	code	back	up	to	the	server	for	the	original	developer	to
test	and	review.	Assuming	you’ve	set	up	the	branch	as	a	tracking	branch,	it
should	just	be	a	matter	of	running	the	command	as	follows:

$ git push

Update	the	issue	queue	as	is	appropriate	for	your	review.	Perhaps	the	code	needs
more	work,	or	perhaps	it	was	good	as	written	and	it	is	now	time	to	close	the
issue	queue.

Repeat	the	steps	in	this	section	until	the	proposed	change	is	complete,	and	ready
to	be	merged	into	the	main	branch.

Completing	the	Review
Up	to	this	point,	we’ve	been	comparing	a	ticket	branch	to	the	master	branch	in
the	repository.	The	final	step	in	the	review	process	will	be	to	merge	the	ticket

branch	into	the	designated	main	branch	(master)	for	the	repository,	and	clean	up
the	corresponding	ticket	branches.

Let’s	start	by	updating	our	master	branch	to	ensure	we	can	publish	our	changes
after	the	merge:

$ git checkout master

$ git pull --rebase=preserve origin master

Take	a	deep	breath,	and	merge	your	ticket	branch	back	into	the	main	branch	for
your	project’s	repository.	As	written,	this	command	will	create	a	new	commit	in
your	repository	history,	which	can	be	used	to	unmerge	a	public	copy	of	the
branch	using	the	command	revert	if	necessary:

$ git merge --no-ff 61524-broken-link

The	merge	will	either	fail,	or	it	will	succeed.	If	the	merge	fails,	the	original
coders	are	often	better	equipped	to	figure	out	how	to	fix	the	merge	errors,	and
you	may	need	to	ask	them	to	resolve	the	conflicts	for	you.	Tips	on	dealing	with
merge	errors	are	covered	in	Chapter	6.

Which	Branching	Strategy	is	Your	Team	Using?
Those	who	are	using	a	streamlined	mainline	branching	strategy	(Chapter	3)
should	ensure	they	bring	their	working	branch	(61524-broken-link)	up	to	date
with	the	destination	branch	(master)	using	the	command	rebase.	After
checking	out	the	destination	branch,	the	new	work	should	be	merged	in	using	the
parameter	--ff-only	instead	of	--no-ff.	This	will	omit	the	merge	commit,
remove	the	trace	of	the	ticket	branch,	and	leave	a	bump-free	graphed	history.
Check	with	your	team	to	see	which	branching	strategy	you	are	using,	and
therefore	which	convention	you	should	use	to	merge	in	your	work.

Once	the	branch	is	merged,	you	are	ready	to	share	the	revised	master	branch	by
uploading	it	to	the	central	repository:

$ git push

Once	the	new	commits	have	been	successfully	integrated	into	the	master
branch,	you	can	delete	the	old	copies	of	the	ticket	branches	both	from	your	local
repository	and	the	central	repository.	It’s	just	basic	housekeeping	at	this	point:

$ git branch --delete 61524-broken-link

$ git push origin --delete 61524-broken-link

Summary
The	peer	review	process	can	help	your	team.	I	have	found	it	improves
communication	before	ideas	are	committed	to	code.	It	fosters	a	mentoring
attitude	among	team	members.	As	a	side	benefit,	it	often	encourages	developers
to	start	looking	for	ways	to	automate	the	process	of	testing	to	improve	the
efficiency	of	the	reviews.	Yes,	it	will	take	more	time,	but	if	you	factor	in	the
improvements	I	believe	it’s	time	well	spent.

Chapter	9.	Finding	and	Fixing
Bugs

Even	the	best	review	processes	will	sometimes	allow	a	bug	into	production.
Perhaps	the	bug	was	introduced	by	a	bad	merge,	or	a	scenario	your	tests	didn’t
cover.	Whatever	the	cause	of	the	problem,	Git	will	be	able	to	help	you	uncover
at	what	point,	and	by	whom,	the	offending	code	was	introduced.	This	will	allow
you	to	understand	the	context	of	how	the	code	ended	up	in	the	system,	and	tell
you	who	the	best	person	is	to	help	you	unpack	a	problem	in	an	area	of	the	code
base	you	might	not	be	familiar	with.

There	are	two	main	ways	to	apply	your	forensic	investigating	skills:	use	the
existing	code	to	locate	the	problem	and	use	the	history	of	the	code	to	locate	the
problem.	You	will	be	most	effective	when	you	use	both	of	these	techniques.
When	I’m	debugging	code,	for	example,	I	almost	always	start	by	looking	at	the
code	itself.	This	is	left	over	from	all	of	the	frontend	web	development	I’ve	done,
where	it’s	easiest	to	use	a	tool	like	Firebug	to	pick	apart	a	web	page	to	find	the
offending	CSS.	It’s	definitely	not	the	only	way	to	debug	code—and	for	many
projects	it	will	not	be	a	viable	strategy.

In	this	chapter,	you	will	learn	how	to:

Set	aside	your	current	work	with	stash	so	you	can	check	out	another	branch

Find	the	history	of	a	file	with	blame

Find	the	last	working	commit	with	bisect

By	the	end	of	this	chapter,	you	will	also	have	a	better	understanding	of	how	you
store	history	in	Git	now	will	affect	how	you	can	recover	from	mistakes
tomorrow.	You	will	hopefully	have	a	new	appreciation	for	how	useful	a	really
great	commit	message	can	be,	and	see	how	a	rebasing	workflow	can	help	you
create	a	history	that	is	easier	to	decipher	with	bisect.	This	chapter	does	not
include	instructions	on	how	you	undo	mistakes	you	find,	because	that	was
covered	in	Chapter	6.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from

Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

Using	stash	to	Work	on	an	Emergency	Bug	Fix
In	Chapter	6,	you	learned	how	to	adjust	commit	messages,	but	in	cases	of
emergency,	it	may	actually	be	more	appropriate	to	put	your	work	on	hold
temporarily.	This	can	be	accomplished	with	the	command	stash.	This	command
allows	you	to	temporarily	put	aside	something	you	are	in	the	middle	of,	and
which	you	want	to	return	to	at	some	point	in	the	future.

REAL-WORLD	GIT	APPLICATIONS
One	of	my	favorite	Git-related	one-liners	was	dropped	by	a	friend,	Jeff	Eaton,	at	DrupalCon
Prague.	He	made	a	comment,	at	exactly	the	right	moment,	about	“having	a	git	stash	for
morality.”	I	wish	I	could	remember	the	context	now	(horror	movies?	beer	gardens?),	but	the
oneliner	itself	has	stuck	with	me.

In	the	code	sense	of	the	command,	stash	allows	you	to	avoid	useless	commits
that	need	to	be	undone	later.	These	useless	commits	are	often	introduced	if	you
are	currently	working	on	a	problem,	but	need	to	switch	to	a	different	branch
temporarily	because	you	can	only	switch	branches	when	you	have	a	clean
working	directory.	Unlike	a	branch,	or	an	individual	commit,	a	stash	cannot	be
shared;	it	is	specific	to	your	local	repository.

To	create	a	new	stash	that	holds	the	changes	currently	in	your	working	directory,
you	need	to	issue	the	command	stash.	If	you	prefer	the	clarity,	you	can	include
the	parameter	save.	It	is	implied,	though,	so	you	don’t	need	to	include	it	if	you
want	to	save	a	few	keystrokes:

$ git stash save

Saved working directory and index state WIP on master: \

 d7fe997 [9387] Adding test: check user exists

HEAD is now at d7fe997 [9387] Adding test: check user exists

You’ll	notice	this	command	will	only	stash	files	Git	already	knows	about.	If	you
have	new	files	that	have	not	been	committed	previously,	these	files	will	not	be

http://bit.ly/collaborating-with-git

incorporated	into	the	stash	as	the	other	changes	are	tucked	into	a	stash—making
it	impossible	for	you	to	switch	to	a	different	branch	until	all	untracked	changes
have	been	cleaned	up.	To	include	untracked	files,	add	the	parameter	--include-
untracked:

$ git stash save --include-untracked

Alternatively,	if	you	want	to	throw	out	those	new	files	instead	of	putting	them
into	your	stash,	you	can	run	the	commands	as	follows:

$ git stash save

$ git clean -d

Each	time	you	issue	the	command	stash	in	a	dirty	working	directory,	a	new
stash	will	be	created.	You	can	see	a	list	of	your	saved	stashes	by	adding	the
parameter	list:

$ git stash list

stash@{0}: WIP on master: d7fe997 [9387] Adding test: check user exists

If	you	only	need	to	remember	one	stash,	and	only	for	a	few	minutes,	this	is
probably	okay.	Your	short-term	memory	may	be	able	to	retain	exactly	what
happened	to	you	a	minute	ago,	but	the	longer	you	need	to	hold	this	memory,	and
the	more	memories	you	need	to	recall,	the	harder	it’s	going	to	be	to	remember
what	is	in	each	stash.

To	see	the	contents	of	a	stash,	use	the	command	show.	The	patch	for	the	selected
stash	will	be	displayed	including	meta	data	and	the	stashed	changes	from	your
working	directory:

$ git show stash@{0}

If	you	don’t	think	you	will	remember	what	you	were	working	on	from	looking	at
the	code,	you	can	replace	the	commit	message	with	a	terse	description	of	what
you	were	working	on	when	you	stashed	your	working	directory.

ADDING	A	DESCRIPTION
If	you	want	to	include	a	description,	you	will	need	to	explicitly	include	the	parameter	save.

Git	allows	you	to	store	multiple	stashes,	so	it	can	be	especially	helpful	to	name
your	stashes	if	you	are	working	on	a	large	problem	and	end	up	creating	a	stash
multiple	times	from	the	same	branch:

$ git stash save --include-untracked "terse description of the stashed work"

Now	if	you	check	your	list	of	stashes	again,	you	will	see	your	previous	stash	as
well	as	the	new	stash:

$ git stash list

stash@{0}: On master: terse description of the stashed work

stash@{1}: WIP on master: d79e997 Revert "Merge branch 'video-lessons' ...

The	newest	stash	will	appear	at	the	top	of	the	list.	Notice	how	the	numbers	used
to	refer	to	the	stashes	change	as	you	create	more	stashes—it’s	a	variable
assignment,	not	a	permanent	reference	number.	This	can	be	a	little	confusing	if
you	create	multiple	stashes	in	the	same	branch—but	if	you	give	each	stash	a
terse	description,	it	can	be	easier	to	recall	which	stash	you	want	to	apply	when
you’re	ready	to	get	back	to	work,	and	which	stashes	are	now	old	and	ready	to	be
deleted.

STASHED	WORK	CAN	BE	APPLIED	TO	ANY	BRANCH
This	command	can	also	be	used	if	you	realize	you	are	working	in	the	wrong	branch,	but	have
not	made	any	commits	yet.	You	can	stash	your	work,	switch	branches,	and	then	reapply	the
work	you	brought	with	you	in	your	stash.

Once	you’re	ready	to	return	to	work,	you	determine	which	stash	you’d	like	to
use,	and	then	apply	it:

$ git stash list

$ git stash apply stash@{0}

If	you	use	the	command	apply,	the	stash	will	persist.	This	can	be	a	little
confusing	if	you	start	hoarding	stashes.	To	remove	a	stash,	use	the	command
drop	to	delete	it:

$ git stash drop stash@{0}

If	you	know	you’re	a	bit	of	a	hoarder,	and	you	think	you	might	not	be	very	good
at	cleaning	up	old	stashes,	you	should	use	apply	and	drop	the	stash	with	the
single	command,	pop.	Assuming	you	have	only	one	stash,	the	command	is	as
follows:

$ git stash pop

You	can	also	pop	off	specific	stashes	using	the	same	structure	as	apply	and
drop:

$ git stash pop stash@{0}

WHEN	IN	DOUBT,	GIT	ASSUMES	YOU	MEANT	THE
LATEST	STASH

If	you	have	only	one	stash	stored,	you	don’t	need	to	list	the	stash	you	want	to	work	with.	If	you
omit	the	name	of	the	stash,	and	there	is	more	than	one,	Git	will	use	the	most	recent	stash	(the
top	one	on	the	list;	it	will	be	named	stash@{0}).

You	should	now	be	able	to	put	your	work	on	hold	temporarily	using	the
command	stash.	Although	you	can	stash	your	work	whenever	you’d	like,	you
should	only	use	this	command	if	you	are	truly	interrupted.	If	you	have	a	coherent
unit	of	work	completed,	use	commit	instead.	If	you	decide	to	add	more	work
later,	you	can	always	choose	to	rebase	your	branch	and	combine	the	commits
you’d	made	previously.

Comparative	Studies	of	Historical	Records

One	of	the	most	basic	tools	you	can	use	to	start	the	search	for	why	code	isn’t
working	is	to	compare	the	broken	code	to	another	instance	of	the	code.	You	can
do	this	easily	by	working	with	relative	history.	Instead	of	reading	through	the	log
for	a	particular	branch,	you	can	compare	a	branch	to	another	branch,	or	to
another	point	in	time.

Most	of	these	commands	have	appeared	previously,	but	this	time,	look	at	them
with	specific	questions	in	mind.	Consider	the	commit	history	graph	in	Figure	9-
1.	There	are	two	branches	with	a	common	history:	one	with	a	known	bug	and
one	that	is	known	to	be	working.	The	branch	with	the	non-working	code	has	four
commits	that	differ	from	the	branch	branch	with	the	code	that	works.	The
working	branch	only	has	two	new	commits,	which	are	not	included	in	the	broken
branch.

Figure	9-1.	Two	branches	diverged	from	a	common	ancestor	with	an	unequal	number	of	commits

NEED	A	SAMPLE	REPOSITORY	TO	PRACTICE	ON?
If	you	want	to	try	the	following	exercises,	download	a	copy	of	the	repository	from	the	Git	for
Teams	website.	This	repository	has	the	necessary	branches	set	up	so	that	you	don’t	need	to

http://gitforteams.com

replicate	the	scenario.

Using	the	command	log,	you	can	isolate	many	pieces	of	history.	Draw	the
diagram	in	a	notebook,	and	create	circles	around	commits	each	of	the	commands
are	showing.	You	can	also	try	each	of	these	commands	with	diff	instead	of	log
for	a	variation	on	the	output.

On	the	current	branch,	this	is	how	I	would	view	everything	except	the	most
recently	committed	work:

$ git log HEAD^

On	the	current	branch,	this	is	how	I	would	view	everything	except	the	three	most
recent	commits:

$ git log HEAD~3

You	can	also	make	comparisons	as	if	you	were	standing	at	different	vantage
points.	You’re	standing	at	the	window	of	a	tall	building,	looking	out	onto	the
street.	You	can	see	the	rooftops	of	other,	shorter	buildings.	Now	imagine	you’re
standing	on	the	street	looking	up	at	the	tall	building.	You	can	see	people	sitting
under	the	café	umbrellas.	In	the	context	of	Git,	this	means	you	can	make
comparisons	using	either	branch	as	the	vantage	point:

$ git log since_last_merge_to..what's_been_added_here --oneline

For	example,	this	is	how	I	would	see	what’s	in	the	working	branch;	but	not	on
the	broken	branch:

$ git log working..broken

What	about	the	opposite?	How	would	I	show	which	commits	are	in	the	broken
branch,	but	missing	from	the	working	branch?	Like	this:

$ git log working..broken

If	I	wanted	to	see	the	code	that	was	included	in	the	broken	branch,	but	missing	in
the	working	branch,	I	would	do	this:

$ git difftool working..broken

You	can	also	make	these	comparisons	with	remote	branches.	Don’t	forget	to
download	the	latest	versions	with	fetch	before	making	the	comparisons:

$ git fetch

$ git log working..remote_nickname/broken

If	you	aren’t	able	to	uncover	sufficient	information,	you	can	use	log	with	the
parameter	-S	to	search	for	a	specific	string	of	text	with	the	commit	message,	or
the	text	that	was	applied	(or	removed)	as	part	of	that	commited	change.
Searching	through	your	repository	in	this	way	is	made	significantly	more	useful
if	you	use	controlled	vocabularies	for	your	commit	messages.	For	example,	I
always	try	to	include	the	name	of	the	file,	or	an	equivalent	shorthand,	in	the
commit	message	so	that	I	can	easily	filter	on	it	later	(when	this	file	is	added	to
the	repository	for	the	book,	it	will	get	a	commit	message	which	includes	the	text
CH09):

$ git log -S foo

If	you	were	excited	by	the	parameter	-S,	have	I	got	news	for	you!	There	is	also
the	ability	to	search	based	on	regular	expressions.	Use	the	parameter	-G.

Using	these	commands	should	help	you	to	isolate	which	files	might	be	causing
the	problems.	Once	you	have	the	filenames,	you	can	investigate	them	more
closely.

Investigating	File	Ancestry	with	blame
When	working	with	teams,	it	can	be	very	useful	to	see	who	has	worked	on	a	file
over	time.	The	people	working	on	files	are	the	ones	best	equipped	to	walk
through	the	history	of	why	something	was	changed—especially	if	the	commit
messages	aren’t	giving	any	additional	clues.	Normally	we	use	the	command	log

to	reveal	how	a	repository	has	changed	over	time,	but	this	doesn’t	give	a	very
good	overview	of	how	all	of	those	changes	have	come	together	to	make	the	file
you	are	currently	looking	at.

The	command	blame	allows	you	to	look	at	a	file	line	by	line,	showing	the	last
time	each	line	was	changed,	by	whom,	and	in	which	commit	it	was	changed
(Figure	9-2).

Figure	9-2.	blame	allows	you	to	list	when	each	line	was	introduced	into	a	file,	by	its	commit	ID	and
author

To	examine	the	file	README.md,	use	the	blame	command	as	shown	in
Example	9-1.

Example	9-1.	Output	of	the	command	blame
$ git blame README.md

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 1) Git for Teams of One...

^00de359 (Emma Jane 2014-04-23 18:54:03 -0700 2) =====================

^00de359 (Emma Jane 2014-04-23 18:54:03 -0700 3)

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 4) Supporting files for ...

7874193c (emmajane 2014-06-26 00:37:41 -0400 5) developer work flow for ...

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 6) version control system, git

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 7)

00000000 (Not Committed Yet 2015-01-15 21:08:09 +0000 8) Test edit!

00000000 (Not Committed Yet 2015-01-15 21:08:09 +0000 9)

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 10) ## Contents

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 11)

5cc35764 (emmajane 2014-06-25 17:45:38 -0400 12) /slides

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 13)

From	left	to	right,	the	columns	show:

Commit	hash	ID

Author	name

Date

Line	number

Content	for	that	particular	line	within	the	file

In	Example	9-1,	you	may	have	noticed	there	were	three	authors	listed:	Not
Committed	Yet,	emmajane,	and	Emma	Jane.	Hopefully	the	first	is	self-
explanatory:	these	are	changes	that	are	in	my	working	directory	but	that	are	not
yet	committed.	The	two	variations	of	my	name	are	a	simple	inconsistency	in
how	I’ve	configured	Git	over	time.	You	can	read	more	about	how	to	customize
your	attributed	name	in	Appendix	C.

Two	of	the	lines	begin	with	^.	These	lines	have	not	been	edited	since	the	initial
commit.

Beware!	The	Word	“blame”	May	Condition	You
into	Negative	Thinking
The	command	blame	is	poorly	named.	It	immediately,	and	unnecessarily,	creates
an	antagonistic	view	of	the	code.	I	much	prefer	the	commands	used	in	one	of
Git’s	competitors,	Bazaar:	annotate,	also	available	under	the	alias	praise.	(Full
disclosure,	Bazaar	also	has	an	alias	of	blame	for	annotate.)	Git	does	have	an
annotate	command,	but	the	documentation	for	this	command	states	that	it	is
only	for	compatibility	reasons.	It	is	not	a	true	alias	and	the	output	of	blame	and
annotate	differs	slightly.

The	last	person	who	changed	a	line	of	code	is	often	the	person	most	qualified	to
explain	what	they	were	trying	to	accomplish;	coming	to	them	with	a	fight	on
your	hands	is	going	to	decrease	the	likelihood	they’ll	come	to	you	for	help	in	the
future,	which	increases	the	chance	of	you	needing	to	deal	with	their	future
mistakes	as	well.	Check	your	attitude	when	using	this	command,	and	see	if	you

can	shift	from	blame	thinking	to	simple	annotation.

Once	you’ve	located	the	line	in	the	file	that	looks	interesting,	you	can	investigate
further	using	the	commit	ID	along	with	the	commands	log,	diff,	and	show.
Table	9-1	outlines	what	each	of	the	commands	can	help	you	to	isolate.

Table	9-1.	Reason	to	use	log,	diff,	and	show

Description Command

Show	the	metadata	for	a	particular	commit log	commit

Show	the	code	changed	in	a	particular	commit show	commit

Show	the	code	changed	since	a	particular	commit diff	commit

Start	by	using	the	command	log	to	look	at	the	commit	message:

$ git show <commit>

If	the	commit	message	was	well	written,	it	should	give	you	an	explanation	for
why	the	changes	were	made	in	this	particular	commit.	If	the	detailed	commit
message	includes	a	reference	back	to	a	ticket	number	in	your	project
management	system,	you	may	even	be	able	to	read	a	discussion	for	the	changes
made—giving	you	even	more	insight	into	what	the	developers	were	thinking
when	they	created	the	fix.	In	the	tracking	system,	you	may	also	see	other
developers	who	were	involved,	and	anyone	who	was	on	the	review	team	for	this
particular	change.

To	see	the	same	amount	of	detail,	but	in	all	commits	since	that	point,	use	the
command	log	as	follows:

$ git log --patch <commit>

The	parameter	--patch	in	this	context	shows	you	the	changes	between	each	of
the	commits,	as	opposed	to	the	command	diff,	which	shows	you	the	difference
between	the	referenced	commit,	and	the	files	in	the	working	directory.

BLAME	ONLY	TELLS	YOU	ABOUT	WHAT	IS	VISIBLE
blame	is	not	perfect.	If	the	bug	was	introduced	in	a	line	that	is	not	present	in	the	version	of	the
file	you	are	looking	at,	blame	will	not	be	able	to	notify	you	about	who	last	edited	the	file.	So	it
is	a	good	tool	to	use,	but	it	is	not	magic.

Using	a	combination	of	blame,	log,	and	diff,	you	should	now	be	able	to	review
the	history	of	a	single	file	in	the	context	of	the	total	combined	history	of	that	file,
and	in	the	context	of	other	changes	made	at	the	same	time.	Using	the	commit
message,	you	may	also	be	able	to	trace	the	rationale	of	why	the	changes	were
made.	With	a	little	bit	of	forensic	investigation,	you	can	turn	your	questioning	of
the	author	of	the	code	into	a	productive	conversation—instead	of	a	Columbo-
style	interrogation.

Historical	Reenactment	with	bisect
Often	it	can	be	difficult	to	figure	out	exactly	when	a	bug	was	introduced	in	your
code	if	you	don’t	know	which	file	is	the	problem.	If	the	error	message	you	are
looking	for	is	printed	to	the	screen,	it	can	be	relatively	easy	to	search	through	the
files	in	your	code	base	to	locate	the	right	file.	Sometimes	the	error	message	will
include	the	filename	and	line	number	where	the	problem	occurred.	In	any	of
these	cases,	you	can	use	the	commands	diff,	log,	and	blame	to	gain	a	better
understanding	of	what	has	gone	wrong.	Sometimes	the	problem	code	does	not
leave	sufficient	clues	in	the	error	messages	to	use	these	tools.	Introducing
bisect!

bisect	performs	a	binary	search	through	past	commits	to	help	you	find	the
commit	where	the	code	went	from	a	known	working	state	to	a	known	broken
state.	Unlike	a	regular	checkout	of	a	commit,	bisect	continues	to	wander
through	your	history	(in	a	very	methodical	way!)	until	you	have	given	it	enough
clues	to	identify	which	commit	introduced	the	dysfunctional	code.	It’s	sort	of
like	a	historical	reenactment	of	what	the	developers	have	done	in	a	code	base.	At
each	point	in	the	bisect	process,	you	can	launch	the	product	(compile	the	code;
load	it	in	a	browser;	install	the	app	on	your	phone;	whatever	is	appropriate	for
your	code	base)	and	determine	whether	the	code	at	this	moment	in	history	was

right,	or	wrong.	Once	you	find	the	point	where	things	went	wrong,	you	can	fix
history	at	that	exact	moment.	It’s	like	Back	to	the	Future—and	Git	is	your
DeLorean.

To	begin,	you	need	to	be	in	the	top-level	directory	of	your	repository.	This	is	the
folder	where	the	hidden	.git	folder	resides.	Begin	the	bisect	process,	and	notify
Git	of	one	commit	ID	where	the	code	is	known	to	be	good	and	one	commit	ID
where	the	code	is	known	to	be	bad	(Example	9-2).

Example	9-2.	Identify	good	and	bad	commits	to	bisect
$ git bisect start

$ git bisect good <commit-id>

$ git bisect bad <commit-id>

Git	will	now	proceed	to	check	out	a	series	of	commits	one	at	a	time,	looking	for
the	commit	where	the	code	went	from	bad	to	good:

$ git bisect start

$ git bisect bad c04f374

$ git bisect good 93b64fc

Bisecting: 10 revisions left to test after this (roughly 4 steps)

[0075f7eda67326f1746] Merge branch 'video-lessons' into integration_test

The	repository	is	now	in	a	detached	HEAD	state.	At	this	point,	you	need	to
confirm	if	the	code	is	good	or	bad	and	report	back	your	findings:

$ git bisect bad

Bisecting: 5 revisions left to test after this (roughly 3 steps)

[ed8056eb4b2aaf00e6d] Lesson 4: Adding details on using git config

$ git bisect bad

Bisecting: 2 revisions left to test after this (roughly 1 step)

[c88a02babc42bb00a83] Lesson 4: Adding new lesson on configuring Git

$ git bisect good

Bisecting: 0 revisions left to test after this (roughly 1 step)

[f1fa8e7e382f68c0558] Lesson 3: Extended descriptions for cloning a ...

$ git bisect good

ed8056eb4b2aaf00e6d is the first bad commit

commit ed8056eb4b2aaf00e6d9d183f974ed612d6f10e6

Author: emmajane <emma@emmajane.net>

Date: Sun Sep 7 12:50:58 2014 +0100

 Lesson 4: Adding details on using git config

 Added commands to customize the following:

 - username (or real name, as you prefer)

 - email address

 - enable color helpers within the git messages

 Added a self-study piece on customizing your command prompt to include

 additional color and branch information.

:040000 040000 e927a1263e6e23eb5237a363a20640f62349b27d

31bc6c57d6acd8de214a63a47914b32d6809a866 M lessons

The	problem	commit	has	been	located.	At	this	point,	you	are	in	a	detached	HEAD
state,	but	you	also	know	which	commit	you	need	to	come	back	to.	To	return	to
the	tip	of	your	branch,	with	the	new	information,	use	the	subcommand	reset.
This	command	can	also	be	used	at	any	point	during	the	bisect	process	to
abandon	the	search	and	return	to	the	most	recent	commit	on	your	branch:

$ git bisect reset

If	you	have	not	done	a	lot	of	programming,	the	binary	search	process	can	feel	a
bit	like	magic.	(Really	freaking	cool	magic,	mind	you.)	If	you	want	to	remove
some	of	the	mystery,	you	can	use	the	subcommand	visualize	to	show	you	the
current	status	of	the	bisect	process	(Figure	9-3).	The	outer	good	and	bad
commits	will	be	identified	in	the	GUI	you	have	configured	for	gitk.

Figure	9-3.	Running	git	bisect	visualize	shows	you	the	current	status	of	the	bisect	process

BISECT	ASSUMES	BAD	THINGS	HAVE	HAPPENED
It	is	assumed	that	the	current	work	is	bad.	So,	you	can’t	go	back	and	find	when	something	is
fixed—you	need	to	go	back	and	find	where	something	broke.	It	can	be	very	confusing	if	you
try	to	find	where	a	fix	was	introduced,	although	it	is	possible.	You	just	need	to	remember	to
reverse	the	definitions	of	good	and	bad.

Summary
I	will	happily	admit	that	I	am	a	crime	drama	TV	junkie,	so	the	chapter	on	using
Git	for	forensic	investigation	appeals	to	me	greatly.	In	this	chapter,	you	have
been	exposed	to	a	few	of	the	commands	I	include	in	my	detective	toolkit:

stash	allows	you	to	set	aside	your	current	work	so	you	can	check	out	another
branch.

blame	allows	you	to	find	the	line-by-line	history	of	a	file.

bisect	allows	you	to	search	methodically	through	history	to	find	the	spot
where	things	went	wrong.

These	tools,	when	paired	with	the	information	in	Chapter	6	on	recovering	from
mistakes,	will	help	you	dig	into,	and	recover	from,	just	about	any	crime	scene
you	may	end	up	investigating.

Part	III.	Git	Hosting

The	first	two	parts	of	the	book	included	commands	specific	to	Git,	not	any	one
particular	code	hosting	platform.	In	Part	III,	you	will	learn	about	three	popular
collaboration	platforms:	GitHub,	Bitbucket,	and	GitLab.	In	the	many	projects
I’ve	worked	on,	I	find	that	my	work	often	falls	into	these	divisions:	open	source
projects	are	often	hosted	on	GitHub;	private,	client	work	is	often	hosted	on
Bitbucket;	and	projects	that	are	concerned	with	autonomy	are	often	hosted
internally	on	GitLab.

There	are	no	formal	restrictions	that	say	you	must	use	these	systems	in	this	way.
Indeed,	there	is	an	enterprise	version	of	GitHub,	which	allows	you	to	purchase	a
“locally	hosted”	instance	of	GitHub;	and	there	is	a	community	edition	of	GitLab,
which	offers	free	hosting	of	private	and	public	Git	repositories.

Entire	books	have	been	written	on	how	to	use	each	of	these	three	platforms.
Instead	of	trying	to	replicate	these	works,	each	of	the	subsequent	chapters	is
designed	as	a	“Getting	Started”	guide	for	the	ways	I	most	commonly	see	these
platforms	used.	Chapter	10	covers	using	GitHub	for	public,	open	source
projects;	Chapter	11	covers	using	Bitbucket	for	private,	closed	source	projects;
and	Chapter	12	covers	using	GitLab	to	host	private,	internal	repositories.

Chapter	10.	Open	Source	Projects
on	GitHub

With	more	than	nine	million	users,	GitHub	is	the	largest	code	hosting	platform	in
the	world	today.	If	you	are	a	web	developer,	or	involved	in	open	source	software
development,	chances	are	good	you	have	at	least	visited	the	GitHub	website	to
download	some	code,	if	not	created	an	account	and	participated	in	a
development	community.	Those	who	are	working	on	proprietary	code
development	may	know	less	about	GitHub,	but	that	doesn’t	make	it	less	relevant
as	a	code	hosting	platform,	because	GitHub	also	allows	you	to	create	private
repositories	if	you	don’t	want	to	share	your	code.

The	focus	of	this	chapter	will	be	using	GitHub	for	open	project	development,
because	this	tends	to	be	how	most	newcomers	will	first	be	exposed	to	the
system.	By	the	end	of	this	chapter,	you	will	be	able	to	complete	the	following	on
GitHub:

Create	a	new	account

Create	an	organization

Create	a	new	project

Solicit	contributions	from	new	collaborators

Accept	pull	requests	from	collaborators

Up	to	this	point,	the	repository	examples	you’ve	been	working	with	were	hosted
on	GitLab.	Unlike	GitLab,	GitHub’s	platform	is	not	based	on	open	source
software.	GitHub	can	definitely	improve	your	experience	with	Git,	but	has
several	of	its	own	GitHub-isms	that	can	make	it	difficult	to	know	when	you’re
working	with	Git	terms,	and	when	you’re	working	with	GitHub	terms.

GitHub	has	a	few	great	features	that	I	have	been	able	to	take	advantage	of	as	a
web	builder.	I	have	used	GitHub	to	publish	simple,	static	websites,	and	even
HTML-based	slide	decks.	Taking	the	same	approach	as	we	have	previously	in
this	book,	you	will	first	learn	to	use	GitHub	as	a	team	of	one,	and	then	you	will
learn	how	to	use	its	features	to	collaborate	with	others.	Of	course,	if	you	are

already	working	on	a	team,	I	encourage	you	to	skip	to	the	section	of	this	chapter
that	is	most	relevant	to	you.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from
Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

Getting	Started	on	GitHub
In	this	section,	you	will	learn	how	to	create	an	account	on	GitHub,	and	publish	a
repository	to	your	own	GitHub	account.	The	goal	is	to	get	yourself	familiarized
with	GitHub	as	a	team	of	one,	so	that	some	of	the	actions	feel	a	little	more
natural	when	you	start	participating	in	larger	teams.

Creating	an	Account
You	don’t	need	an	account	on	GitHub	to	access	public	repositories.	If	you	want
to	upload	code,	or	participate	in	conversations	about	the	code,	you	will	need	to
create	an	account.	It	is,	fortunately,	very	straightforward	to	set	up	an	account;
and	for	public	repositories,	it	is	free.	A	free	account	is	sufficient	for	everything
covered	in	this	chapter.

Step	1:	Create	your	account

1.	 Navigate	to	https://github.com	(Figure	10-1).

2.	 Enter	a	unique	username.	GitHub	will	let	you	know	if	the	name	has	already
been	selected.

3.	 Enter	a	valid	email	address.

4.	 Enter	a	secure	password.

5.	 Click	the	button	Sign	up	for	GitHub	to	proceed.

After	passing	the	validation	tests	for	a	unique	username,	a	valid	email,	and	a
secure	password,	you	will	be	directed	to	the	next	screen.

Step	2:	Select	a	plan

At	this	point,	you	may	choose	to	financially	support	GitHub	by	paying	for	a
plan.	There	is	absolutely	no	requirement	to	pay	for	this	code	hosting	service.	By
default,	GitHub	chooses	the	free	plan	for	you	(Figure	10-2).	You’ll	need	to

http://bit.ly/collaborating-with-git
https://github.com

follow	these	steps:

1.	 Confirm	the	plan	type	you	would	like	to	enable.	By	default,	the	free	plan	is
selected.

2.	 Complete	the	account	creation	process	by	clicking	Finish	sign	up.

Figure	10-1.	Sign	up	for	a	GitHub	account

SUPPORTING	BUSINESSES	SO	THEY	STAY	IN
BUSINESS

If	you	would	like	to	help	ensure	GitHub	stays	in	business,	you	may	want	to	pay	for	a	plan	at
some	point	in	the	future.	One	of	the	benefits	of	a	paid	plan	is	that	you	can	create	private
repositories	that	are	only	available	to	the	developers	you	choose	to	include	in	your	project.

After	you	have	created	your	account,	you	will	receive	an	email	from	GitHub
asking	you	to	confirm	your	email.	You	will	need	to	click	the	link	in	this	email	to
complete	the	account	creation	process.	If	you	do	not	verify	your	email,	you	will
not	be	able	to	complete	some	tasks.

You	are	now	ready	to	use	your	account	to	perform	a	range	of	tasks,	including
creating	new	repositories,	and	contributing	code	to	your	own	and	other
repositories.

SSH	Keys

If	you	use	a	very	secure	password,	you	may	be	using	a	password	generator	and
have	a	password	that	is	45	characters	including	letters,	numbers,	and	special
characters.	No	one	wants	to	retype	this	kind	of	password,	but	in	order	to
authorize	uploads,	you	will	be	prompted	for	your	password	when	you	try	to	push
code	up	to	GitHub.	By	uploading	your	SSH	key,	you	can	avoid	retyping	your
password	each	time	you	want	to	publish	code.

Figure	10-2.	Select	a	plan	for	your	GitHub	account

Appendix	D	includes	instructions	on	how	to	create	and	retrieve	SSH	keys.	Once
you	have	the	public	key	copied	to	your	clipboard,	you	are	ready	to	proceed	to

GitHub:

1.	 Navigate	to	https://github.com/settings/ssh.	You	can	also	access	this	screen
by	logging	in	to	your	account,	clicking	the	configuration	cog	(top	right),
and	then	clicking	SSH	Keys	from	the	set	of	navigation	options	for	your
account.

2.	 On	the	SSH	Keys	summary	screen,	click	Add	SSH	key.

3.	 Optionally,	add	a	title	for	your	SSH	keys.	For	example,	you	might	have	a
personal	set	of	SSH	keys,	rather	than	the	keys	you	generated	for	your	work
computer.

4.	 Paste	the	public	key	that	you	copied	previously	into	the	Key	field.

5.	 Click	the	button	Add	key.

SSH	Keys	Must	Be	Unique
GitHub	will	only	allow	key	pairs	to	be	added	once	on	its	system.	If	you	have
already	use	these	keys	on	a	different	account,	you	will	get	an	error	message
when	you	try	to	save	the	keys.

You	will	now	be	able	to	perform	actions	from	your	local	computer	that	require
authentication	without	typing	your	GitHub	password.

Creating	an	Organization
Assuming	you	will	be	working	on	an	open	source	project,	you	may	want	to
create	an	organization	at	this	point	as	well.	An	organization	is	able	to	own
projects.	Multiple	people	are	able	to	join	(or	be	assigned	to)	an	organization.
This	allows	you	to	manage	a	project	without	having	to	create	a	second	GitHub
account.	Organizations	are	free	to	create,	so	you	may	as	well	take	advantage	of
them.

NAMING	YOUR	ORGANIZATION
Generally	you	will	create	an	organization	name	that	is	the	same	as	the	main	project	repository.
So,	for	example,	if	your	library	is	currently	available	in	the	repository	named	evilrooster,	the
name	you	would	aim	to	secure	for	the	new	project	account	would	also	be	evilrooster.	Once	the
new	organization	is	created,	you	can	reassign	ownership	from	your	personal	account	to	the

https://github.com/settings/ssh

organization	for	the	repository.	This	will	allow	you	to	maintain	the	project	history	for	the
repository.

To	create	an	organization,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	+	symbol	next	to	your	avatar.

2.	 Click	New	organization.	You	will	be	redirected	to	the	setup	form	for	new
organizations.

3.	 On	the	form	Create	an	organization,	enter	the	following:

Organization	Name:	This	will	be	the	URL	for	your	organization.

Billing	email:	This	is	a	required	field	even	if	you	are	selecting	the	free
plan.

Plan:	Open	source	is	selected	by	default.

4.	 Click	Create	organization	to	proceed.

On	the	next	screen	you	can	add	team	members	to	your	organization.	Your	own
account	is	added	by	default.	To	add	additional	accounts,	complete	the	following
steps:

1.	 In	the	search	field,	enter	the	name	or	username	of	the	person	you	want	to
add.

2.	 To	the	right	of	the	person’s	name,	click	the	+	symbol.

3.	 Repeat	steps	1	and	2	for	each	person	you	would	like	to	add.

4.	 Click	Finish	to	send	the	invitations.

Your	organization	has	been	created,	and	it	has	been	assigned	new	members	as
you	designated	while	setting	up	the	organization.

Personal	Repositories
This	section	is	a	brief	overview	of	putting	your	own	repositories	on	GitHub.	You
will	use	your	personal	account	to	create	a	new	repository,	which	is	appropriate
for	projects	you	do	not	intend	to	have	others	contributing	to	on	a	regular	basis,
because	they	are	essentially	yours.	For	example,	when	I	deliver	conference
presentations	with	HTML	slides,	I	often	publish	them	to	a	GitHub	repository	to

share	them.

Creating	a	project
A	repository	on	Git	is	so	much	more	than	what	you	get	locally	on	your	computer
when	you	run	the	command	init	in	a	directory.	It	has	an	issue	tracker,	the
ability	to	convert	Markdown	files	into	web	pages,	supplemental	wiki	pages,
charts,	graphs,	and	more.	GitHub,	however,	still	refers	to	the	process	as	creating
a	repository.

To	begin	the	process	of	creating	a	new	repository,	locate	and	click	the	+	icon	in
the	top-right	corner	of	the	screen,	and	then	select	New	repository	(Figure	10-3).

Figure	10-3.	Create	a	new	repository

Alternatively,	you	can	log	in	and	then	navigate	to	the	home	page	of	GitHub;	then
locate	and	click	the	button	Create	new	repository.

Once	you’ve	initialized	the	process,	you	will	be	redirected	to	a	screen	where	you
are	asked	to	fill	out	the	details	for	this	project	(Figure	10-4).	The	information
you	will	need	is	also	summarized	in	Table	10-1.

Figure	10-4.	Enter	the	details	for	your	new	repository

Table	10-1.	Details	needed	to	create	a	new	GitHub	repository

Field Notes Use	if
importing?

Repository
name

Your	new	project	will	be	available	at	the	URL
https://github.com/<username>/<repo-name>.	Choose	something	short,
but	descriptive.

Yes

Repository
description

This	text	will	appear	at	the	top	of	the	repository	home	page,	above	the	list
of	files.

Yes

Visibility Choose	public	(selected	by	default)	or	private	(requires	a	paid	account). Yes

Initialize
this
repository
with	a
README

Add	an	empty	file	that	can	be	used	for	details	about	your	project.	This	file
will	be	rendered	as	HTML	on	the	home	page	for	your	repository,	but	can
be	written	in	Markdown.

No

Add
.gitignore

Many	programming	languages	will	generate	compiled	files	during	the
build	process	that	should	not	be	included	in	the	repository.	You	can
generate	a	.gitignore	file	now,	which	has	typical	file	extensions	for	your
language	already	included.

No

https://github.com/<username>/<repo-name>

Add
license

Without	a	license	file,	you	do	not	give	people	permission	to	download
and	use	your	code.	You	retain	full	copyright,	and	do	not	grant	permission
for	others	to	use	your	work.	Ideally,	your	project	will	have	a	license.	If
you	would	like	to	include	a	license,	but	aren’t	sure	which	one	to	choose,
Choose	a	License	may	help.

Maybe

If	you	have	already	started	a	repository	locally,	you	may	choose	to	upload	it	to
this	new	project;	however,	if	you	have	created	files	during	the	initialization
process,	you	will	need	to	first	download	these	changes,	incorporate	them	into
your	local	repository,	and	then	push	them	back	up	to	GitHub.	To	avoid	this	extra
step,	if	I	already	have	a	repository	locally,	I	will	omit	the	creation	of	the	files	for
README,	.gitignore,	and	the	license.

Once	you	have	selected	values	for	each	of	the	items	in	Table	10-1,	locate	and
click	the	button	Create	repository.	Your	new	repository	will	be	created,	and	you
will	be	redirected	to	a	summary	page	with	suggestions	on	what	to	do	next
(Figure	10-5).

Figure	10-5.	Your	new	repository	is	ready	for	use

Because	there	were	not	any	files	initialized	during	the	repository	creation

http://choosealicense.com/

process,	you	have	only	two	options	at	this	point:	upload	a	repository	from	your
local	computer,	or	import	a	project	from	a	publicly	available	URL.	If,	for
example,	you	wanted	to	copy	your	GitLab	project	from	earlier	in	the	book,	you
could.	These	options	will	be	covered	next.

Importing	a	repository
If	you	have	been	following	along	from	the	beginning	of	this	book,	you	will	have
created	a	repository	on	GitLab	that	was	a	clone	of	the	workshop	files	for	the	Git
for	Teams	workshop.	You	can	easily	import	this	repository	into	GitHub.	This
process	can	only	be	completed	if	there	are	no	files	in	your	GitHub	repository:

1.	 Navigate	to	your	project	home	page.

2.	 If	the	repository	is	empty,	you	will	be	able	to	locate	and	click	the	button
Import	code.	Clicking	on	this	button	will	redirect	you	to	the	GitHub
importer.

3.	 Enter	the	URL	for	the	repository	you	want	to	import.	This	must	be	a	public
project,	but	it	does	not	need	to	be	a	Git	repository.	You	can	also	import
Subversion	and	Mercurial	repositories.	If	you	are	importing	a	Git	project,
ensure	you	get	the	full	URL,	including	the	.git	extension—this	is	the	same
URL	structure	that	you	would	use	to	clone	a	repository	locally.	Figure	10-6
shows	a	valid	URL	for	a	project
(https://gitlab.com/gitforteams/gitforteams.git).

https://gitlab.com/gitforteams/gitforteams.git

Figure	10-6.	Enter	a	valid	URL	for	a	Git	repository	to	import	it	to	GitHub

4.	 Click	Begin	import.	The	import	process	will	begin.

5.	 When	the	import	process	has	completed,	click	Continue	to	repository.	Your
files	will	have	been	imported	from	the	remote	repository	(Figure	10-7).

Figure	10-7.	The	repository	files	and	history	have	been	successfully	imported	from	GitLab	into	GitHub

Connecting	a	local	repository
In	Chapter	7,	you	learned	how	to	connect	a	local	repository	to	a	new	remote
repository	on	GitLab.	We’ll	repeat	those	steps	here	for	our	new	GitHub
repository.	GitHub	gives	you	copy/paste–friendly	commands	to	complete	these
steps	from	the	project	home	page	if	there	were	no	files	created	during	the
initialization	process.	The	structure	for	the	remote	repository	is
https://github.com/<username>/<repo-name>.git.	For	example,	I	created	a	new
repository	using	the	sample	name	given	to	me	by	GitHub	(glowing-octo-
dangerzone)	with	the	account	gitforteams.	If	I	then	wanted	to	connect	a
repository	on	my	own	computer	to	this	repository,	I	would	complete	steps
outlined	in	Example	10-1.

Example	10-1.	Cloning	a	repository
$ git remote add origin https://github.com/gitforteams/glowing-octo-dangerzone.git

https://github.com/<username>/<repo-name>.git

Once	you	have	completed	these	steps,	navigate	to	the	project	page,	and	you
should	see	all	of	your	files	uploaded.	You	are	now	ready	to	start	working	with
your	repository	as	a	GitHub	project.

Publishing	changes	to	your	GitHub	repository
Once	you’ve	connected	your	local	repository	to	your	GitHub	repository,	you	can
upload	committed	changes	to	any	tracked	branch	using	the	command	push.	To
publish	a	new	branch	to	GitHub,	you	will	need	to	explicitly	tell	Git	which
remote	you	want	to	use	as	the	upstream	for	your	branch	(Example	10-2).

Example	10-2.	Set	the	upstream	branch	for	a	remote	repository
$ git push --set-upstream origin master

After	setting	the	upstream	connection,	you	do	not	need	to	add	the	parameter	--
set-upstream	again.	If	you	want	to	publish	your	changes	to	more	than	one
remote	repository,	you	will	need	to	continue	specifying	which	remote.

Making	Commits	via	the	Web
One	of	the	nice	things	about	using	a	code	hosting	system	such	as	GitHub,	and
not	just	working	at	the	command	line,	are	the	tiny	enhancements	that	are	built
into	the	system.	For	example,	GitHub	allows	you	to	edit	any	of	the	files	in	your
repository	through	a	web	user	interface.	While	I	recommend	you	do	not	use	this
as	your	regular	code	editor,	it	can	be	really	handy	if	you	just	want	to	fix	a	typo	as
a	fly-by	commit.

To	make	an	edit	via	the	web	editor,	complete	the	following	steps:

1.	 Navigate	to	the	specific	instance	of	the	file	you	want	to	edit.	The	URL	for
this	file	will	include	the	branch	name.	For	example,
https://github.com/gitforteams/freezing-batman/blob/master/README.md.

2.	 Locate	and	click	the	pencil	icon	to	edit	this	file	(Figure	10-8);	alternatively,
press	e	on	your	keyboard.

You	will	be	redirected	to	a	browser-based	text	editor	(Figure	10-9).	You	are	now
ready	to	make	changes	to	the	file	in	your	repository.

After	making	edits	you	can	click	the	button	Preview	changes.	New	lines	have	a
green	bar	to	the	left	of	the	changed	text	(wrapped	in	the	HTML	element	ins);
lines	that	have	been	removed	have	a	red	bar	to	the	left	(wrapped	in	the	HTML

https://github.com/gitforteams/freezing-batman/blob/master/README.md

element	is	del).	In	Figure	10-10,	the	first	paragraph	with	a	bar	has	been
removed;	the	second	paragraph	is	new.	Apart	from	color	and	the	HTML
elements,	there	does	not	currently	appear	to	be	a	way	to	perceive	the	difference
in	what’s	been	added	or	removed.

Figure	10-8.	You	can	edit	any	text	file	by	clicking	the	pencil	icon

Figure	10-9.	The	browser-based	text	editor	includes	an	optional	preview

Once	the	edits	have	been	made	to	the	file,	you	are	ready	to	commit	your	changes
back	to	your	repository	(Figure	10-11).	A	default	value	is	provided	for	a	short
commit	message,	which	states	which	file	is	being	updated.	You	should	provide	a
more	descriptive	description	of	the	edits	being	made.	An	optional	extended
message	can	also	be	added.	You	will	need	to	decide	if	you	want	to	just	commit
the	changes	to	the	current	branch,	or	if	you	want	to	create	a	new	pull	request
from	this	change.	By	default,	GitHub	assumes	you	would	like	to	commit	this
change	directly	to	the	repository,	and	on	the	same	branch.

Because	you	are	working	with	your	own	project	at	this	point,	it’s	fine	to	commit
the	change	back	to	the	master	branch;	leave	the	default	option	selected	and	click
the	button	Commit	changes.

Figure	10-10.	The	preview	shows	which	lines	have	been	changed	(the	first	line	has	been	removed;	the
second	has	been	added)

Figure	10-11.	Committing	your	changes	back	to	the	repository

WHY	YOU	MIGHT	WANT	TO	SUBMIT	YOURSELF	A
PULL	REQUEST

If	you	are	the	sole	editor	for	your	project,	you	probably	don’t	need	to	create	a	pull	request	for
your	changes.	Pull	requests,	however,	are	merged	back	into	the	master	branch	with	the
parameter	--no-ff.	This	means	it	will	show	up	in	your	graphed	history	as	a	blip	outside	of	the
straight	line	of	the	master	branch.	If	you	don’t	mind	if	this	commit	appears	exclusively	on	the
main	branch,	it’s	fine	to	omit	the	pull	request	step.	The	step-by-step	instructions	for	creating
and	closing	pull	requests	are	covered	later	in	this	chapter.

Once	you’ve	committed	your	changes	to	the	repository,	you	will	need	to	update
your	local	repository	to	reflect	these	changes.

Updating	Your	Local	Repository
If	you	do	use	the	web-based	editor	to	update	your	branch,	your	local	repository

will	become	out	of	date.	(Don’t	try	to	redo	the	same	edits	in	your	local	branch;
Git	needs	to	have	exactly	the	same	commit	at	exactly	the	same	time	to
understand	the	two	commits	are	the	same.)	You	will	need	to	download	these
changes	and	integrate	them	into	your	local	repository	before	GitHub	will	allow
you	to	upload	new	changes.	This	can	be	completed	with	the	following	sequence.

You	should	begin	from	within	your	local	project	repository	directory.	Next,
ensure	you	are	using	the	same	branch	as	the	remote	edits.	This	is	likely	the
branch	master:

$ git checkout master

Next,	incorporate	the	remote	changes	into	your	local	work.	Because	the	changes
are	being	copied	into	the	same	branch,	and	because	these	are	minor	updates	and
not	new	features,	I	will	use	the	option	--rebase	to	incorporate	the	changes,
instead	of	merge.	This	will	keep	my	graphed	history	cleaner	to	read:

$ git pull --rebase=preserve

Your	local	branch	should	now	be	up	to	date	and	ready	for	new	work.

Using	Public	Projects	on	GitHub
When	working	with	projects,	you	can	choose	to	download	a	zipped	package	of
files,	or	you	can	maintain	a	connection	to	the	remote	repository,	downloading
new	changes	when	they	are	available,	and	potentially	contributing	your	own
changes	back	to	the	project.	In	this	section	you	will	learn	how	to	consume
projects	from	GitHub,	but	not	contribute	to	them.	This	will	be	covered	in	the
next	section.

Downloading	Repository	Snapshots
As	your	Git	superpowers	continue	to	grow,	you	will	be	less	likely	to	download	a
package	from	GitHub.	This	option	does	exist	if	you	want	to	share	the	code	with
someone	who	just	wants	a	.zip	package	(perhaps	even	for	your	own	project).

To	download	the	.zip	package	for	a	project,	complete	the	following	steps:

1.	 Navigate	to	the	project	page	you	want	to	download	the	code	for.

2.	 Locate	and	click	the	button	Download	ZIP.	This	button	(Figure	10-12)	is
conveniently	located	near	the	URL	for	cloning	the	project	locally,	or
through	the	GitHub	desktop	application	(which	is	available	for	Windows
and	OS	X).

The	downloaded	package	of	files	will	be	named	according	to	the	project	and
branch	you	downloaded.	To	change	which	branch	you	download,	complete	the
following	steps:

1.	 Locate	and	click	the	branch	drop-down	button	near	the	top	left	of	the
repository	home	page	(Figure	10-13).

2.	 Select	the	branch	you	would	like	to	download.	Wait	a	moment	for	the	page
to	refresh.

3.	 Locate	and	click	the	button	Download	ZIP.

There	will	not	be	an	indication	in	the	user	interface	that	you	are	downloading	a
different	branch;	however,	the	filename	will	reflect	the	name	of	the	branch
(repository_name-branch_name.zip).

Figure	10-12.	Download	a	snapshot	of	the	repository

Figure	10-13.	Change	the	branch	you	download	by	first	selecting	a	different	branch

Working	Locally
Connecting	to	someone	else’s	project	on	GitHub	is	almost	the	same	process	as
using	your	own,	except	you	won’t	have	write	access	to	the	project	(unless	you
are	added	to	the	project	team,	of	course).	In	this	section,	you	will	learn	how	to
create	a	local	clone.	I	use	this	technique	for	the	Git	for	Teams	website,	which
uses	Sculpin,	a	static	site	generator.

GET	STARTED	WITH	SCULPIN
Sculpin	is	a	static	site	generator	built	in	PHP.	The	instructions	in	this	section	aren’t	enough	to
get	you	up	and	running.	If	you’re	interested	in	trying	Sculpin,	start	at	the	Get	Started	guide.

http://gitforteams.com
https://sculspin.io/getstarted/

In	this	case,	I	want	a	local	copy	of	the	Sculpin	templates	for	my	site.	Although
I’m	also	a	volunteer	on	the	Sculpin	project,	this	repository	is	just	for	my	website.
I’m	unlikely	to	have	contributions	back	to	the	project	in	the	local	copy.	I	do,
however,	want	to	maintain	a	connection	to	the	main	project	so	that	I	can
incorporate	the	latest	updates	into	my	website	easily.	Although	the	commands
are	specific	to	the	Sculpin	project,	you	can	substitute	the	URLs	for	your	project
of	choice.

The	first	step	is	to	create	a	local	clone	of	the	project	(Example	10-3):

1.	 Navigate	to	the	project	page	for	the	repository	you	want	to	download.

2.	 Locate	and	click	the	copy-to-clipboard	icon	(Figure	10-14)	to	get	the	URL
for	the	repository.

3.	 Open	a	terminal	window	(or	Git	Bash	window	on	Windows)	and	navigate
to	the	directory	where	you’d	like	to	download	the	project	to.

4.	 Create	a	local	copy	of	the	project	repository	using	the	command	clone	and
the	URL	you	copied	in	step	2.	Optionally,	add	the	directory	name	to	the
end	of	this	command.

5.	 Change	the	name	of	the	directory	to	a	name	that	is	relevant	to	your	project.
You	can	optionally	do	this	as	part	of	the	previous	step	by	adding	the	new
directory	name	to	the	end	of	the	command.

6.	 Navigate	into	the	local	repository.

Example	10-3.	Create	a	clone	of	the	repository
$ git clone https://github.com/sculpin/sculpin-blog-skeleton.git

$ mv sculpin-blog-skeleton gitforteams.com

$ cd gitforteams.com

The	second	step	(Example	10-4)	is	to	create	an	upstream,	or	“vendor	branch”
that	will	be	kept	free	from	changes	relevant	only	to	your	project.	You	will	be
able	to	keep	this	branch	up	to	date	with	any	changes	to	the	main	project.	For	the
project	I’m	working	with,	the	default	branch	is	master.	You	can	choose	whatever
name	makes	sense	for	you;	sometimes	I	use	the	project	name,	sometimes	I	use
the	generic	nickname	upstream.	I	don’t	think	there’s	an	advantage	of	one	over
the	other	(although	Shakespeare	might	have	said	something	about	my	naming

whimsies).	By	moving	the	branch	instead	of	creating	a	new	one,	I	maintain	the
relationship	between	my	local	branch	and	the	remote	repository.	Optionally,	if
you	prefer	to	work	on	the	master	branch,	you	may	recreate	the	branch	master
branch.

Figure	10-14.	The	copy-to-clipboard	icon	is	located	immediately	above	the	download	button

Example	10-4.	Create	an	upstream	branch
$ git branch --move master upstream

$ git checkout -b master

The	final	step	is	to	add	a	remote	repository	for	your	working	copy	of	the	project
(Example	10-5).	This	new	remote	repository	will	hold	all	of	the	changes	that	you
are	making	for	your	instance	of	the	project.	The	Sculpin	project	shouldn’t	keep	a
record	of	all	the	changes	I’m	implementing	for	the	Git	for	Teams	website,	but	I
need	to	keep	track	of	them.	In	real	life,	I	keep	the	Git	for	Teams	repository	on
Bitbucket	as	a	private	repository.	I	don’t	use	the	issue	tracker,	I	just	toodle	away
in	the	repository	and	upload	it	after	commits,	almost	like	a	backup	plan.	It’s	not
taking	advantage	of	the	features	Bitbucket	offers,	but	it	does	give	me	peace	of
mind.

When	the	project	was	first	cloned,	the	remote	name	origin	was	assigned	to	the
remote	repository.	We’re	going	to	swap	that	nickname	for	upstream,	because	the
convention	is	to	use	origin	for	the	repository	that	most	closely	mimics	our	own.

To	prepare	for	adding	the	new	remote,	you	will	need	to	determine	its	URL.	If
you	don’t	already	have	a	remote	repository	set	up,	follow	the	steps	for	creating	a
project	earlier	in	this	chapter	and	ensure	the	repository	does	not	have	any	files
added	during	the	initialization	process.	Once	you’ve	created	the	new	project,
follow	the	on-screen	instructions	to	add	the	remote	information	to	your

repository	and	then	upload	the	changes.	For	example,	if	your	GitHub	username
was	gitforteams	and	your	new	repository	was	named	superhero-freda,	you	would
add	the	remote	repository	as	shown	in	Example	10-5.

Example	10-5.	Add	a	remote	repository	for	the	working	copy
$ git remote rename origin upstream

$ git remote add origin https://github.com/gitforteams/superhero-freda.git

$ git push -u origin master

You	now	have	both	a	branch	named	upstream	and	a	remote	named	upstream.

Check	the	upstream	repository	regularly	for	updates	(Example	10-6).	You	do	this
by	checking	out	the	branch	you	designated	as	the	upstream	for	the	project,	and
pulling	in	changes.

Example	10-6.	Check	the	upstream	project	for	updates
$ git checkout upstream

$ git pull --rebase=preserve

Assuming	there	have	been	updates	to	the	main	project,	you	can	read	the	changes
to	see	if	you	want	to	incorporate	them	into	your	own	project	(Example	10-7).

Example	10-7.	Compare	the	changes	in	upstream	to	your	local	work
$ git diff master upstream

Or	you	can	just	look	for	a	summary	of	the	specific	commits	with	these	fancy
parameters	added	to	the	command	log:

$ git log --cherry-mark --left-right --oneline master...upstream

We’ve	seen	variations	on	this	command	before;	the	only	real	new	piece	is	--
cherry-mark --left-right.	These	parameters	add	a	symbol	to	the	beginning
of	the	commit	that	indicates	whether	the	change	was	introduced	by	the	first
branch	on	the	list	(points	left),	or	the	second	(points	right).

Once	you	have	an	understanding	of	the	changes,	you	can	bring	your	own	branch
up	to	date	with	the	upstream	changes	(Example	10-8).	This	should	be	completed
as	if	the	changes	were	already	in	place	and	your	own	work	was	starting	fresh
today.	In	other	words,	you	should	bring	your	working	branch	up	to	date	by
rebasing	the	changes	from	upstream	repository	onto	your	own	branch.	(As	I’ve
mentioned	previously,	if	you	are	working	alone,	you	can	also	merge	the	changes

in	if	you	find	this	easier	than	using	rebase.	I	won’t	judge	you.)

Example	10-8.	Incorporate	upstream	changes
$ git checkout master

$ git rebase upstream

If	conflicts	arise,	take	them	one	at	a	time.	There	are	additional	tips	for	dealing
with	rebase	conflicts	in	Chapter	6.

Contributing	to	Projects
You	have	decided	to	make	the	leap	and	submit	a	contribution	to	a	project.
Huzzah!	Congratulations!	This	is	not	significantly	different	than	what	you’ve
done	previously.	The	main	difference	is	that	you	will	be	submitting	a	pull
request,	which	will	be	reviewed	by	someone	else	before	it	is	incorporated	into
the	main	project.

Tracking	Changes	with	Issues
On	public	projects,	issues	are	generally	opened	by	users	who	have	uncovered	a
bug.	A	much	smaller	set	of	contributors	will	create	issues	for	new	features	they
are	interested	in	contributing,	or	design	changes	they	are	interested	in
developing.

ISSUES	ARE	DISABLED	BY	DEFAULT	FOR	FORKS
Issues	are	disabled	by	default	for	repository	forks.	If	you	want	to	track	issues	for	your	fork,
you	can	enable	the	feature	from	the	Settings	screen.

To	create	an	issue,	complete	the	following	steps:

1.	 Navigate	to	the	project	page.

2.	 Locate	and	click	the	tab	labeled	Issues.	It	appears	on	the	right	sidebar
(Figure	10-15).	You	will	be	redirected	to	the	issues	page.

3.	 Locate	and	click	the	button	New	issue.	It	appears	on	the	right	side	of	the
screen	(Figure	10-16).	You	will	be	redirected	to	an	issue	creation	form.

4.	 Enter	a	title,	a	description	of	the	problem	that	you	want	solved	(Figure	10-
17),	and	the	ticket	number	of	the	issue	that	this	pull	request	is	being
submitted	to	solve.	The	more	descriptive	you	can	be	about	the	problem,	the
more	likely	it	is	to	be	solved.

5.	 When	you	are	satisfied	with	your	issue	description,	locate	and	click	the
button	Submit	new	issue.

With	the	issue	created,	you	can	now	go	about	creating	the	pull	request	that
solves	the	issue.

Forking	a	Project
If	you	want	to	contribute	your	changes	back,	complete	the	following	steps:

1.	 Navigate	to	the	project	page.

2.	 Locate	and	click	the	button	Fork.	The	repository	will	be	forked,	and	you
will	receive	a	copy	of	the	repository	set	up	under	your	own	account.

Figure	10-15.	Navigation	icon	for	Issues

Figure	10-16.	Navigation	button	to	create	new	issue

You	can	now	clone	this	copy	of	the	project	to	your	local	computer,	just	as	you
did	in	“Personal	Repositories”.	Once	the	repository	is	downloaded,	you	can
make	changes	to	the	project,	commit	them	to	your	repository,	and	then	push
them	back	up	to	your	forked	copy	of	the	remote	repository.

Once	the	changes	you’d	like	to	incorporate	into	the	main	project	have	been
pushed	back	to	GitHub,	you	are	now	ready	to	initiate	a	pull	request.

Figure	10-17.	Creating	a	new	issue

Initiating	a	Pull	Request
When	you	make	a	fork	of	a	project,	GitHub	maintains	a	connection	to	the

upstream	project.	This	allows	you	to	easily	send	your	changes	from	your	forked
repository	back	to	the	main	project.

Complete	the	following	steps	to	initiate	a	pull	request:

1.	 Navigate	to	the	project	page	for	your	forked	repository.

2.	 Locate	and	click	the	button	pull	request	(Figure	10-18).	It	is	located	near
the	top	left	of	the	project	description,	below	the	title.	You	will	be	redirected
to	a	summary	of	branches	that	can	be	used	for	a	pull	request.	If	there	are
not	four	drop-down	menus	displayed,	click	the	link	compare	across	forks
before	proceeding.

3.	 From	the	list	of	branches,	select	the	branch	you	want	to	submit	to	the
upstream	project	from	the	final	drop-down	menu	(Figure	10-19).	The
differences	between	your	branch	and	the	upstream	branch	will	be
displayed.

Figure	10-18.	The	pull	request	button	is	located	below	the	project	title

Figure	10-19.	Choose	the	branch	you	want	to	submit	to	the	upstream	project	in	your	pull	request

4.	 Locate	and	click	the	button	Create	pull	request	(Figure	10-20).	A	new	form
will	open.

5.	 Enter	a	title,	and	a	description	for	why	you	are	submitting	this	change	to
the	project	(Figure	10-21).

6.	 Locate	and	click	the	button	Create	pull	request	to	complete	your	request	to
have	your	changes	included	in	the	upstream	project.

Once	you	have	completed	your	pull	request,	the	maintainers	of	the	project	will
be	notified	through	their	GitHub	interface	for	the	project,	and	also	via	email	if
they	have	notifications	enabled.

Figure	10-20.	To	initiate	the	pull	request	process,	locate	and	click	button	Create	pull	request

Figure	10-21.	Enter	a	title	and	summary	that	explain	the	reason	for	your	proposed	change

Running	Your	Own	Project
The	technical	part	of	running	a	project	on	GitHub	is	very	easy.	GitHub	provides
you	with	an	issue	queue,	supplementary	documentation	pages	(wiki),	support	for
incoming	code	changes	via	pull	requests,	and	the	ability	to	grant	write	access	to
the	repository.	The	difficult	part,	therefore,	is	the	social	part	of	creating	a
community	of	consumers	and	contributors	around	your	software	project.	You
should	refer	back	to	Chapter	2	to	refresh	your	memory	on	how	to	run	a	good
project.

Creating	a	Project	Repository
Most	of	my	public	GitHub	projects	are	very	tiny—slide	decks	for	various
conference	presentations	and	the	like.	I	do	not	expect	to	have	regular
contributors,	although	I	happily	accept	contributions	if	people	are	interested	in
submitting	a	new	fix.	If	you	are	working	on	a	software	package,	chances	are
better	that	others	will	be	interested	in	contributing	to	your	project.	If	you	are
creating	a	library	or	software	package	that	you	think	will	be	of	interest	to	a	larger
group,	you	should	not	set	it	up	under	your	personal	account,	but	instead	use	an
organization.	By	not	using	your	personal	account,	it	will	allow	other	developers
to	feel	a	greater	sense	of	ownership	over	the	project,	and	be	more	committed	to
contributing	to	it.

To	create	a	new	project,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	+	symbol.

2.	 Click	on	New	repository.	You	will	be	redirected	to	the	new	project	form.

3.	 Beneath	the	label	Owner,	click	your	account	and	change	it	to	your
organization.

4.	 Enter	a	repository	name.	Generally	this	is	the	same	name	as	the
organization	for	single	repository	projects.

5.	 Enter	a	terse	description	for	your	project.

6.	 Click	Create	repository.

Your	new	repository	has	been	created	and	you	are	now	ready	to	begin	using	it	as
if	it	were	one	of	your	personal	GitHub	repositories.

If	the	project	already	exists	under	your	personal	account,	you	can	reassign	it
using	the	following	steps:

1.	 Navigate	to	the	project	page	under	your	personal	account.

2.	 Locate	and	click	the	link	labeled	Settings.

3.	 Locate	and	click	the	button	labeled	Transfer.	A	modal	window	will	appear.

4.	 Enter	the	name	of	the	repository;	and	the	organization,	or	account	name,
for	the	new	owner.

5.	 Click	I	understand,	transfer	this	repo.

Your	project	will	be	reassigned	to	the	new	account	holder.

Based	on	your	rules	of	governance,	you	will	now	need	to	decide	if	you	are	going
to	submit	yourself	to	pull	requests,	or	if	you	will	continue	to	submit	your	work
directly	to	the	project.	Both	have	advantages,	but	they	also	follow	different
leadership	models	(it	is	faster	to	commit	directly;	but	more	equal	for	all
contributors	if	you	also	submit	pull	requests,	which	undergo	a	review).

Granting	Co-Maintainership
To	share	the	burden	of	maintenance,	you	can	grant	write	access	for	the
repository	to	others.	This	is	a	big	responsibility.	You	should	decide	ahead	of	time
how	you	will	deal	with	the	thorny	issues,	such	as	disagreement	on	the	direction
the	code	should	take;	and	other	types	of	bad	behavior,	such	as	being	rude	to
other	contributors.	Assuming	you	have	worked	through	all	of	those	difficult
decisions,	you	can	add	contributors	to	your	project	as	follows:

1.	 Navigate	to	the	project	page.

2.	 From	the	utility	links	in	the	top	right	of	the	page,	click	the	+	and	then
choose	New	collaborator	(Figure	10-22).

3.	 You	will	be	prompted	to	add	your	password.	Do	this	and	then	click
Continue.

4.	 Enter	the	GitHub	username	of	the	person	you	would	like	to	assign	co-
maintainership	to	(Figure	10-23).

Figure	10-22.	Navigating	to	the	Collaborators	page	for	your	project

Figure	10-23.	Adding	a	collaborator	to	your	project

The	person	you’ve	designated	as	being	a	co-maintainer	will	now	have	all	the
same	authoring	powers	as	yourself.	You	may	wish	to	put	together	a	maintenance
cheat	sheet	to	ensure	you	make	decisions	consistently	for	all	community
members.

To	remove	a	collaborator,	follow	the	instructions	as	outlined	previously.	Next	to
the	collaborator’s	name,	click	the	symbol	x	(Figure	10-24).	The	collaborator	will
no	longer	have	commit	access	to	the	repository.

Reviewing	and	Accepting	Pull	Requests
Congratulations!	You’ve	received	your	first	pull	request	to	a	project.	GitHub
provides	you	with	an	easy-to-use	interface	to	review	incoming	pull	requests.
From	here	you	can	add	comments	to	the	request,	reject	the	pull	request	outright,

or	accept	the	pull	request.

Figure	10-24.	Remove	contributors	from	your	project

GitHub	will	notify	you	if	accepting	the	pull	request	will	result	in	a	merge
conflict,	and	in	this	case	will	disable	the	button	to	accept	the	incoming	request.

TEST	IT	OUT	BY	SUBMITTING	YOURSELF	A	PULL
REQUEST

You	can	also	test	this	out	by	making	a	fork	of	your	own	work	and	then	submitting	yourself	pull
requests.

Pull	Requests	with	Merge	Conflicts
If	the	pull	request	cannot	be	accepted	without	a	merge	conflict,	you	will	be
unable	to	accept	the	pull	request	through	the	Web	interface.	Instead,	you	will
need	to	download	the	branch,	resolve	the	conflict	locally,	and	then	push	the	new
branch	to	the	project	repository.

The	first	step	is	to	check	out	the	branch	where	you	want	to	receive	the	incoming
pull	request.	For	example,	you	may	want	to	land	this	into	the	main	branch	for
your	project:

$ git checkout master

Currently	your	branch	doesn’t	know	anything	about	the	contributor’s	repository.
You	will	need	to	add	it	as	a	remote	repository	before	you	can	download	the
proposed	changes.	Instead	of	using	a	generic	nickname	as	we	have	in	the	past
(e.g.,	origin	or	upstream),	be	optimistic	and	use	the	contributor’s	GitHub

username.	This	will	ensure	you	are	ready	to	accept	more	changes	from	them	in
the	future.

In	the	following	example,	replace	<username>	and	<repository-name>	with
the	appropriate	values	for	the	incoming	pull	request	branch:

$ git remote add username git://github.com/<username>/<repository_name>

With	the	remote	repository	added,	you	must	now	download	the	contributor’s
work:

$ git fetch username

The	branch	will	now	be	downloaded	and	available	for	local	review.	You	should
use	the	guidelines	from	Chapter	7	on	how	to	conduct	a	peer	review.	You	may
need	to	provide	feedback	to	the	reviewer	and	request	he	or	she	submit	a	new	pull
request	if	the	code	isn’t	quite	right.	Refer	back	to	your	governance	model	to	see
if	it’s	appropriate	for	you	to	make	the	updates	yourself,	or	if	you	are	required	to
reopen	the	issue	for	further	development.	A	good	rule	of	thumb	is	this:	if	the
contributors	will	learn	something	by	doing	the	work,	give	them	the	opportunity
to	learn.	If	it’s	a	silly	mistake	(a	typo,	or	a	coding	standard	violation),	it	might
make	more	sense	to	make	the	change	yourself	(still	crediting	the	original	author)
instead	of	rejecting	a	pull	request	for	a	trivial	fix.	Where	possible,	reduce	round-
trips	the	code	needs	to	make,	and	be	respectful	of	the	intentions	of	the
contributor.

When	you	are	satisfied	with	the	proposed	change,	you	can	merge	it	into	the	main
branch	for	your	project:

$ git merge --no-ff username/branch_name

If,	however,	you	would	like	to	make	a	few	cleanup	changes	for	minor
whitespace	issues,	or	to	fix	a	typo,	you	can	optionally	add	the	parameter	--no-
commit.	Using	this	option	may	not	be	appropriate	for	your	project	if	you’ve
decided	every	change	must	go	through	the	pull	request	process:

$ git merge --no-ff --no-commit username/branch_name

Regardless	of	which	method	you	choose,	once	the	branch	is	merged,	you	may
push	the	updated	master	branch	up	to	the	server:

$ git push origin master

The	change	will	now	appear	in	the	main	repository	for	the	project.

If	you	find	you	are	working	with	pull	requests	a	lot	for	your	project,	and
frequently	have	to	deal	with	merge	conflicts,	you	may	find	Hub	useful.	It	is	a
command-line	wrapper	that	allows	you	to	perform	more	tasks	from	the	comfort
of	the	command	line	instead	of	having	to	switch	between	GitHub’s	web
interface,	and	Git.

Summary
Throughout	this	chapter,	you	learned	how	to	use	GitHub	as	a	team	of	one,	as	a
consumer	of	other	projects,	as	a	contributor	to	projects,	and	finally,	as	a	project
lead:

As	the	owner	of	the	repository,	you	can	choose	to	contribute	directly	to	it.

As	the	leader	of	a	project,	you	can	choose	to	commit	directly	to	the	project,	or
pass	your	own	contributions	through	a	personal	repository	to	maintain	the
illusion	of	fairness.

Issues	to	your	project	can	be	used	to	track	new	features,	or	bugs.	Issues	are
conversations	and	may	result	in	a	pull	request	being	initiated.

A	pull	request	is	a	request	to	merge	a	branch	from	either	an	outside	repository
or	the	nonmain	branch.	It	can	be	completed	by	anyone	with	write	access	to
the	repository.

If	a	pull	request	will	not	result	in	a	merge	conflict,	it	can	be	completed
through	the	web-based	user	interface;	otherwise,	you	will	need	to	download
the	relevant	branch,	merge	the	request	locally,	and	push	the	resulting	change
back	to	the	main	project	repository.

Although	this	chapter	focused	on	public	repositories,	you	can	also	apply	the
techniques	you	learned	in	this	chapter	to	private	repositories.

For	even	more	information	on	using	GitHub,	you	may	enjoy	the	title	Introducing

https://hub.github.com/
http://bit.ly/intro-github

GitHub	by	Peter	Bell	and	Brent	Beer	(O’Reilly).

Chapter	11.	Private	Team	Work	on
Bitbucket

Bitbucket	is	a	popular	code	hosting	system	by	the	same	folks	who	built	JIRA.
With	approximately	three	million	users,	it	may	have	a	smaller	user	base	than
GitHub,	but	for	small	teams	it	has	two	very	big	advantages:	free	private
repositories	and	per-branch	access	control.	In	addition	to	these	features,	I
generally	find	Bitbucket’s	interface	intuitive,	and	its	documentation
comprehensive.	This	commitment	to	usability	will	go	a	long	way	to	keep
internal	teams	running	smoothly.

By	the	end	of	this	chapter,	you	will	be	able	to	complete	the	following	on
Bitbucket:

Get	set	up	as	a	solo	developer

Share	your	repository	with	other	developers

Limit	access	control	per-branch	for	a	given	project

This	chapter	is	not	meant	to	be	a	comprehensive	guide	to	Bitbucket.	Rather,	it	is
an	up	and	running	overview	of	several	important	features	that	you	may	want	to
use	with	your	team.

Those	who	learn	best	by	following	along	with	video	tutorials	will	benefit	from
Collaborating	with	Git	(O’Reilly),	the	companion	video	series	for	this	book.

Project	Governance	for	Nonpublic	Projects
The	default	options	for	Bitbucket	repositories	have	interesting	implications	when
compared	to	GitHub’s.	Depending	on	your	point	of	view,	you	may	think	of	them
as	“discreet”	or	“antisocial.”	By	default,	Bitbucket	assumes	the	repository	you
are	about	to	create	is	a	private	repository,	and	that	forks	of	the	repository	should
also	be	private.	This	is	the	opposite	to	what	GitHub	chooses	(public	repository,
and	public	forks).	Where	GitHub	coined	the	term	“social	coding,”	Bitbucket
takes	a	very	different	approach,	but	it’s	not	just	the	opposite	of	social.	That	is	to

http://bit.ly/collaborating-with-git

say,	it	does	not	mean	that	Bitbucket	is	anti-social.	Instead,	it	is	chooses
discretion	by	default.

While	private	and	public	projects	may	have	similarities	in	the	commands	you
use	to	move	code	from	one	place	to	another,	they	often	have	a	very	different
political	feeling	to	them	when	everyone	who	is	involved	on	the	project	is	there
by	invitation.	Open	source	projects	tend	to	follow	whole-repository	access
controls.	A	very	small	number	of	maintainers	may	update	any	part	of	the	code.
The	conventions	of	how	code	is	accepted	into	the	project	will	vary,	of	course,
but	generally	there	is	a	submission	made,	some	kind	of	review	period,	and	then
the	code	is	adopted	into	the	main	repository	for	the	project.	Private	projects,	on
the	other	hand,	tend	to	have	very	specific	governance	requirements.	Sometimes
these	requirements	are	outlined	by	a	regulatory	body,	such	as	Payment	Card
Industry	(PCI)	compliance	for	those	handling	financial	transactions,	or
regulations	for	those	building	biomedical	devices.	In	some	cases,	these
regulations	have	strict	requirements	around	auditing	and	accepting	contributions
into	a	code	base.

Currently,	Bitbucket	offers	much	finer-grained	access	control	than	GitHub.	On
Bitbucket,	you	are	able	to	prevent	individuals,	or	groups	of	individuals,	from
pushing	to	specific	branches	and	whole	repositories.	If	you	are	accustomed	to
per-branch	access	in	Subversion,	your	team	will	find	this	feature	quite	useful.
Some	of	these	features	are	also	available	in	GitLab,	which	is	covered	in
Chapter	12.

Getting	Started
In	this	section,	you	will	learn	how	to	create	an	account	on	Bitbucket	and	your
own,	private	repository.	All	developers	on	your	team	should	be	able	to	complete
the	steps	included	in	this	section	before	they	begin	collaborating	on	projects	with
you.

Creating	an	Account
The	signup	process	for	Bitbucket	is	straightforward:

1.	 Navigate	to	https://bitbucket.org.

https://bitbucket.org

2.	 Locate	and	click	the	button	labeled	Get	started	(Figure	11-1).	(There	may
be	more	than	one.	Either	is	fine.)

Figure	11-1.	From	the	home	page,	locate	and	click	one	of	the	Get	started	buttons

You	will	be	presented	with	the	option	to	create	a	new	account,	or	to	sign	up	with
your	Google	account:

1.	 Enter	your	first	name	and	last	name.	These	two	fields	are	optional.

2.	 Enter	your	preferred	username.	Bitbucket	will	let	you	know	if	the	name	has
already	been	selected.

3.	 Enter	a	secure	password.

4.	 Enter	a	valid	email	address.

5.	 Select	a	plan.	By	default	the	free	personal	account	plan	is	selected,	which
is	appropriate	for	solo	developers	and	very	small	teams.

6.	 Enable	the	checkbox	confirming	you	are	not	a	robot.	You	may	also	be
presented	with	a	CAPTCHA	challenge	if	Bitbucket	isn’t	convinced	you’re
human.

7.	 Enable	the	checkbox	for	the	privacy	policy	and	customer	agreement.
Obviously,	you	should	also	click	the	links	and	read	the	agreements	you’re
signing.

8.	 When	you	have	completed	all	of	the	fields,	click	Sign	up	to	proceed

(Figure	11-2).

9.	 You	will	be	sent	an	email	asking	you	to	confirm	your	email	address.	Click
the	button	Confirm	this	email	address.

Figure	11-2.	Complete	each	of	the	fields	in	the	registration	form	and	click	Sign	up

Your	account	is	now	set	up	and	ready	to	use;	however,	to	save	some	time	later
on,	you	should	also	add	your	SSH	keys	so	that	you	can	work	with	private
repositories	without	having	to	re-authenticate	yourself	each	time:

Complete	the	following	steps	to	add	your	SSH	key	to	your	account:

1.	 Using	the	instructions	in	Appendix	D,	locate	and	copy	your	SSH	public
key.

2.	 Navigate	to	the	dashboard	for	your	Bitbucket	account.

3.	 In	the	top-right	corner	of	the	Bitbucket	website,	locate	and	click	the	user

https://bitbucket.org/

icon.

4.	 From	the	drop-down	list,	click	Manage	account.

5.	 From	the	sidebar	navigation,	locate	and	click	SSH	keys.

6.	 Click	on	Add	key.	A	modal	window	will	appear.

7.	 Into	the	form	field,	Key,	paste	your	public	SSH	key.

8.	 Click	Add	key.

Your	SSH	keys	have	been	added	to	your	Bitbucket	account.

Creating	a	Private	Project	from	the	Welcome	Screen
Immediately	after	creating	your	account,	Bitbucket	will	redirect	you	to	a
welcome	screen	(Figure	11-3).	This	screen	is	always	available	at
https://bitbucket.org/welcome.

https://bitbucket.org/welcome

Figure	11-3.	After	completing	the	registration	form,	you	will	be	redirected	to	a	Get	started	welcome
screen

Create	a	new	repository	by	completing	the	following	steps:

1.	 Click	on	the	bucket	icon	with	the	dashed	outline	which	is	labeled	Empty.

2.	 Enter	a	name	for	this	repository.	For	example,	johannes.

3.	 Leave	the	checkbox	This	is	a	private	repository	selected.

4.	 Click	Create.	Your	new	repository	has	been	created.

5.	 Click	Done.	You	will	be	redirected	to	the	repository	setup	configuration
screen.

Once	you	have	completed	these	steps,	proceed	to	Configuring	Your	New
Repository.

Creating	a	Private	Project	from	the	Dashboard
When	you	log	into	your	Bitbucket	account,	you	will	be	redirected	to	a	dashboard
summarizing	your	projects	(Figure	11-4).	From	this	dashboard	you	can	get	an
overview	of	what	is	happening	in	each	of	your	projects,	and	create	a	new
repository.

Figure	11-4.	The	dashboard	also	gives	a	clear	indication	of	how	to	create	a	new	repository

If	you	are	starting	from	the	dashboard	(this	is	also	the	home	page	when	you	are
authenticated),	create	a	new	repository	by	completing	the	following	instructions:

1.	 Locate	and	click	the	link	to	Create	a	repository.	You	will	be	redirected	to
the	form	shown	in	Figure	11-5.

2.	 Enter	a	name	for	this	repository.	For	example,	junio.

3.	 Optionally,	enter	a	description	for	the	repository.

4.	 Leave	the	default	settings	in	place	for	the	following:

Access	level	(checkbox	should	be	enabled	for	this	is	a	private
repository)

Forking	(drop-down	menu	should	be	set	to	Allow	only	private	forks)

Repository	type	(radio	button	should	be	set	to	Git)

5.	 Optionally	turn	on	Issue	tracking,	or	Wiki	pages.	For	personal	projects	I
rarely	turn	these	on	because	I’m	typically	just	using	Bitbucket	as	a	remote
backup	for	my	code,	and	not	as	a	project	management	tool.

6.	 Finally,	locate	and	click	Create	repository.

Figure	11-5.	The	form	to	create	a	new	repository	also	has	some	configuration	options	for	sharing

Your	new	repository	has	been	created,	and	you	have	been	redirected	to	the
repository	setup	configuration	screen.	Proceed	to	Configuring	Your	New
Repository.

Configuring	Your	New	Repository
You	will	be	redirected	to	a	setup	page	(Figure	11-6).

Figure	11-6.	Setup	instructions	are	available	for	GUI,	and	command-line	(new	projects,	or	existing
projects).

Assuming	you	have	been	following	along	in	this	book,	you	likely	already	have	a
local	repository,	or	you	know	how	to	create	one!	I	find	the	final	set	of
instructions	(Figure	11-7)	most	useful	when	setting	up	new	repositories	on
Bitbucket.

To	connect	your	local	repository	to	the	new	repository	on	Bitbucket,	complete
the	following	steps:

1.	 Locate	and	click	on	the	link	I	have	an	existing	project.	A	set	of	additional
instructions	will	appear	on-screen

2.	 At	the	command	line,	navigate	to	a	local	Git	repository.	It’s	okay	if	it	is
already	connected	to	a	different	hosting	system,	you	are	allowed	to	have
multiple	connections	to	remote	repositories.

3.	 Copy	and	paste	the	commands	beginning	with	git	from	the	instructions
(Example	11-1).

Example	11-1.	Sample	instructions	from	Bitbucket	to	add	newly	created
repository	as	a	remote	to	a	local	repository

If	the	repository	is	already	connected	to	a	remote,	you	may	need	to	substitute

origin	for	bitbucket.
git remote add origin https://gitforteams@bitbucket.org/gitforteams/junio.git

git push -u origin --all # pushes up the repo and its refs for the first time

git push -u origin --tags # pushes up any tags

USE	YOUR	INSTRUCTIONS,	NOT	MINE
Do	not	simply	copy	the	instructions	in	the	preceding	snippet.	Instead,	copy	the	instructions
provided	by	Bitbucket	on	the	summary	page	for	the	repository	you	just	created.

Figure	11-7.	Setup	instructions	to	connect	existing	projects	to	Bitbucket.

You	are	now	set	up	to	work	as	a	solo	developer	with	a	private	repository.	You
can	push	your	code	changes	to	Bitbucket	as	frequently	as	you	like.	And,	because
it’s	a	private	repository,	you	never	have	to	worry	about	corrupting	public	history!
If	you	do	rebase	a	branch	and	Bitbucket	stamps	its	feet	and	refuses	to	accept	the
new	version	of	the	branch,	add	the	parameter	--force	to	the	command	you	were
attempting:

$ git push --force

Working	with	a	team?	A	more	polite	version	is	as	follows:

$ git push --force-with-lease

We	will	be	exploring	the	web	interface	in	subsequent	sections.	In	the	meantime,
you	may	find	some	value	in	looking	at	the	options	that	are	available	to	you.	If
you	have	already	been	working	within	GitHub	or	GitLab	from	the	previous

sections	in	the	book,	I	think	you	will	find	a	lot	of	the	options	are	quite	familiar.

Exploring	Your	Project
Once	your	repository	has	been	pushed	to	Bitbucket,	the	project	page	will	update
itself	from	a	set	of	instructions	to	a	project	browser.

If	your	repository	has	a	file	named	README,	this	file	will	be	displayed	on	the
project	home	page.	Figure	11-8	shows	my	project	home	page	for	the	Git	for
Teams	website.

Figure	11-8.	The	project	home	page	displays	a	summary	of	the	status	of	your	site,	as	well	as	the	contents
of	the	file	README

The	following	summaries	are	available	from	the	project	home	page:

Last	updated	date

Language,	if	one	is	set

Access	level	(will	be	set	to	Admin	if	the	repository	is	yours)

http://gitforteams.com

Branches	(click	on	the	number	above	Branch	for	a	list	of	all	branches)

Tags	(click	on	the	number	above	Tags	for	a	list	of	all	tags)

Forks	(click	on	the	number	above	Fork	for	a	list	of	all	public	forks)

Watchers	(click	on	the	number	above	Watcher	for	a	summary	of	accounts
who	are	following	this	repository)

Recent	activity	(visible	in	the	right	sidebar;	includes	recent	commits,	and
merged	branches)

The	left	sidebar	has	the	following	icons	(from	top	to	bottom):

Link	to	the	project	home	page

Quick	actions	(includes	clone,	create	branch,	create	pull	request)

Overview	(appears	to	be	the	same	content	as	the	project	home	page)

Source	(a	list	of	all	files	in	the	repository)

Commits	(the	logged	history	for	this	repository)

Branches	(only	available	if	you	have	pushed	more	than	one	branch	to	the
project)

Pull	requests	(irrelevant	for	personal	projects)

Downloads	(provides	a	list	of	zipped	packages	of	the	current	branch;	you
may	also	add	untracked	binaries	for	your	project	here)

Settings	(includes	access	details,	repository	name,	integrations)

At	the	bottom	of	the	screen	there	is	also	the	option	to	expand	the	icons	to	display
a	text	label	for	each	of	the	icons.	Once	you’ve	expanded	the	sidebar,	you	can
collapse	it	again	by	clicking	the	double	arrows	(Figure	11-9).

Editing	Files	in	Your	Repository
Bitbucket	allows	you	to	edit	text-only	files	from	within	its	web-based	text	editor:

1.	 Click	on	the	sidebar	link	Source.

2.	 Navigate	to	the	page	you	want	to	edit.

3.	 Locate	and	click	the	button	Edit.	A	text	editor	will	appear	(Figure	11-10,	or
Figure	11-11	for	the	project	README	file).

4.	 Across	the	bottom	of	the	editor,	confirm	the	Syntax	mode,	Indent	mode,
and	Number	of	spaces	(not	available	for	all	file	types)	are	correctly	set.

5.	 Edit	the	file	to	make	the	necessary	changes.

6.	 Locate	and	click	the	button	View	diff.

7.	 Confirm	the	changes	made	are	complete,	correct,	and	do	not	introduce
unwanted	spaces.

8.	 Locate	and	click	the	button	Commit.	A	modal	window	will	appear
(Figure	11-12).

9.	 Enter	a	commit	message.	You	will	need	to	add	your	own	formatting.	The
first	line	should	be	a	terse	description	not	longer	than	80	characters.
Subsequent	lines	should	provide	more	detail.

10.	 Locate	and	click	the	button	Commit.

Your	changes	have	been	saved	to	the	repository	on	Bitbucket.

Figure	11-9.	Project	sidebar	expanded

Figure	11-10.	In-repository	text	editor

Figure	11-11.	Project	home	page	editor

Figure	11-12.	Add	a	message	that	describes	the	changes	you	have	made	to	the	project	home	page

With	your	changes	saved	to	Bitbucket,	your	local	repository	will	now	be	out	of
date.	You	will	need	to	update	your	local	repository.	Because	the	respository	is
entirely	your	own,	it	is	appropriate	to	pull	the	changes	into	your	local	copy
without	review	(Example	11-2).	Assuming	you	have	followed	the	instructions
outlined	in	this	section,	the	work	has	been	completed	in	the	main	branch	for	the
project,	which	is	most	likely	to	be	master.

Example	11-2.	Pull	changes	made	in	Bitbucket	into	your	local	repository
$ git checkout master

$ git pull --rebase

The	changes	should	apply	cleanly.	If,	however,	you	end	up	with	a	conflict,	refer
back	to	Chapter	6.

Your	local	repository	is	now	up	to	date.

Project	Setup
You’ve	been	reading	this	book	for	a	while.	Maybe	you	even	started	at	the
beginning.	So,	you	know	I	like	to	write	about	Git.	I	also	know	that	a	lot	of
people	find	documentation	tedious	to	write,	and	a	complete	pain	to	maintain,	so	I
know	that	when	I	say	this	next	part,	your	inner	Clay	Davis	is	going	to	pipe	up
and	say,	“well	sheeeeeeeeeeeeit.”	Ready	for	it?	I	think	process	documentation	is
one	of	the	most	important	things	a	team	can	do	to	ensure	happy,	healthy
relationships.	Now	you	go	ahead	and	give	me	your	best	Clay	Davis	and	then
we’ll	move	on.

Documenting	your	process:

Makes	it	easier	for	people	to	participate	in	your	team.

Sets	the	expectations	for	how	the	work	should	get	done.

Serves	as	a	starting	point	for	conversations	about	why	certain	methodologies
and	commands	are	preferred.

Good	documentation	puts	up	guard	rails	on	the	bowling	alley	that	is	your
project.	It	makes	it	virtually	impossible	for	developers	to	throw	a	gutter	ball,	and
it	makes	it	more	likely	they’ll	succeed	in	knocking	down	all	the	pins	when	it’s
their	turn.	While	the	most	experienced	people	on	your	team	might	have	the
loudest	opinions	about	how	something	should	be	done,	they	may	not	write	the
best	instructions.	Pair	the	team’s	lead	with	a	new	developer	and	have	them	co-
create	the	documentation.	Then,	make	sure	the	entire	team	can	consistently
follow	the	documentation	without	outside	support.

Getting	people	into	consistent	habits	will	make	it	easier	during	high-pressure
times	to	ensure	no	steps	are	missed.	This	documentation	may	also	extend	beyond
the	commands	a	developer	needs	to	run	to	clone	a	repository	and	submit	a	pull
request.	Once	you	see	how	valuable	documentation	can	be	for	the	mundane
tasks,	you	may	even	start	to	look	at	other	processes	that	could	use	some
proactive	documentation	(incident	response	plan,	anyone?).

In	addition	to	the	amazing	commit	messages	you’re	already	in	the	habit	of
writing,	Bitbucket	offers	two	tools	that	will	help	you	to	document	your	work:
wiki	pages	and	issues.	In	the	remainder	of	this	section,	you	will	learn	how	to
enable	each	of	these	tools.

Project	Documentation	in	Wiki	Pages
To	begin	collaborating	with	others,	it	can	be	as	simple	as	granting	repository
access	to	another	Bitbucket	account.	Hold	up,	though!	Before	you	go	jumping
into	a	new	relationship	with	a	new	developer,	you	should	invest	some	time	into
stating	how	you	would	like	to	work.	These	steps	should	be	documented,	and
they	should	be	steps	you	yourself	are	willing	to	use.	Fortunately,	wiki	pages	on
Bitbucket	are	much	easier	to	edit	than	stone	tablets,	so	you	should	consider	your
documentation	to	be	a	starting	point,	not	the	final	word.

To	enable	wiki	pages	for	your	project:

http://bit.ly/drupalizeme-irp

1.	 Locate	and	click	the	settings	cog	for	your	project.

2.	 Locate	and	click	the	link	Wiki	settings.

3.	 Change	the	settings	from	No	wiki	to	Private	wiki	(Figure	11-13).

4.	 Locate	and	click	Save.

Wiki	pages	are	now	enabled	for	your	project.	A	new	icon	will	appear	in	the
sidebar	(Figure	11-14).

In	Bitbucket,	wiki	pages	are	also	repositories	which	you	can	download	and	edit
locally.	Documentation	is	included	on	the	welcome	page	for	your	wiki
(Figure	11-15).	At	the	top	of	each	wiki	page	is	a	breadcrumb	trail.	By	clicking
on	the	name	of	the	project,	you	will	be	redirected	to	a	list	of	all	wiki	pages	for
this	project.

The	editor	for	the	wiki	pages	is	a	typical	toolbar	for	Markdown	files	(Figure	11-
16).

Figure	11-13.	Enable	a	private	wiki	for	your	project

At	a	minimum,	you	should	document	the	following	for	your	project:

Branch	conventions

Step-by-step	instructions	for	submitting	new	work	to	the	project

Step-by-step	instructions	for	peer	reviews

Deployment	instructions,	including	who	to	email,	and	copy/paste	email
templates

Figure	11-14.	The	Wiki	icon	appears	in	the	project	sidebar

Figure	11-15.	The	default	page	provided	for	a	Bitbucket	wiki

Whenever	you	think	there	is	a	possibility	for	people	to	have	different	opinions,
or	where	there’s	a	possibility	a	person	could	forget	a	step,	you	should	have
documentation.	It	doesn’t	need	to	be	long,	but	it	does	need	to	be	correct.	Check
it	regularly	if	your	team	likes	process	hacking.	It’s	possible	the	team	has	found
an	even	more	efficient	way	to	do	something	that	is	not	recorded	in	the
documentation.

Figure	11-16.	The	Markdown	editor	for	wiki	pages

Tracking	Your	Changes	with	Issues
Issue	tracking	is	another	form	of	documentation.	Although	issues	are	much	more
ephemeral	than	wiki	pages,	capturing	the	information	in	a	ticket	provides	the
direct	link	from	the	business	value,	or	rationale	for	building	a	feature,	to	the
development	tasks	that	are	happening	in	code.

To	enable	the	issue	tracker,	complete	the	following	steps:

1.	 Navigate	to	your	project	repository.

2.	 Locate	and	click	on	the	Settings	icon.

3.	 Locate	and	click	on	the	link	Issue	tracker	settings.

4.	 Change	the	form	option	from	No	issue	tracker	to	Private	issue	tracker.

5.	 Optionally,	enter	a	new	issue	message.

6.	 Locate	and	click	the	button	Save.

As	you	can	see	in	Figure	11-17,	I	have	added	a	default	message	for	all	new

issues	in	the	field	New	issue	message.

The	message	reminds	people	to	follow	the	Agile	convention	of	Card,
Conversation,	Confirmation.	This	text	will	appear	above	the	new	issue	form.
Your	team	may	have	a	different	format	they	prefer	to	follow.	Another	format
I’ve	worked	with	and	quite	liked	uses	the	headings:	QA	Test;	Rationale;	Details.

Figure	11-17.	Enabling	the	issue	tracker,	and	adding	a	default	message	for	new	issues

CREATING	GREAT	ISSUES
Make	sure	the	card	clearly	defines	who	benefits	and	how	from	this	feature	being	built — in
other	words:	what	is	the	business	value?	This	will	allow	people	who	are	working	on	the	task	to
ask	questions	with	the	stakeholder	about	the	implementation	detail.	Understanding	the	context
of	how	this	issue	fits	into	the	larger	project	will	ensure	the	right	scaffolding	gets	built	and	that
the	entire	project	isn’t	held	together	with	duct	tape.

Not	all	issues	begin	as	new	features.	Occasionally	bugs	will	sneak	into	your	software.
Excellent	bug	reports	include:	the	steps	to	repeat	the	problem;	the	desired	outcome;	the	actual
outcome	of	the	steps,	including	a	screen	shot,	or	movie	of	the	result.

More	information	on	creating	great	issues	is	available	from	Creating	Tickets	and	Reporting
Issues.

http://gitforteams.com/resources/great-issues.html

Issue	tracking	will	now	be	enabled	for	your	project	(Figure	11-18).

To	create	a	new	issue,	complete	the	following	steps:

1.	 In	the	project	sidebar,	locate	and	click	the	icon	Issues.

2.	 If	this	is	your	first	time	accessing	the	issue	tracker,	you	will	be	directed	to	a
welcome	screen.	Click	Create	your	first	issue	to	continue.	If	it	is	not	your
first	time,	you	will	be	redirected	to	the	summary	page	for	all	issues.	From
this	screen,	locate	and	click	the	button	Create	Issue.	You	will	be	redirected
to	an	issue	creation	form.

3.	 On	the	new	issue	creation	form	(Figure	11-19),	add	a	title	and	a	description
for	your	issue.	The	default	values	for	Assignee,	Kind,	and	Priority	may	be
appropriate.

4.	 When	you	have	described	your	new	issue	as	best	as	possible,	click	the
button	Create	issue.

Figure	11-18.	The	Issues	icon	now	appears	in	the	project	sidebar

Your	issue	has	been	created	(Figure	11-20),	and	is	available	from	the	Issues	icon
in	the	sidebar	of	the	project.	You	are	now	ready	for	someone	to	begin	work	on

this	issue.	First,	though,	you	will	need	to	grant	access	to	the	project	so	that	you
don’t	need	to	complete	every	ticket	yourself.

Figure	11-19.	New	issue	creation	form

Figure	11-20.	Issue	summary	page

Access	Control
Although	I	don’t	have	statistics	to	say	this	is	the	most	popular	way	to	use
Bitbucket,	the	most	common	way	I’ve	seen	teams	use	Bitbucket	is	to	keep	the
defaults:	a	private	repository	with	private	forks	allowed.	The	workflow	I	have
most	commonly	seen	for	small	teams	then	has	developers	creating	their	own
forks,	and	submitting	their	pull	requests	from	their	personal	version	of	the
repository	(Figure	11-21).	Teams	of	only	one	or	two	people,	however,	will
generally	omit	the	step	of	creating	individual	repositories	for	each	person	on	the
team	and,	instead,	essentially	collaborate	directly	into	the	main	repository
(Figure	11-22).

Figure	11-21.	Multiperson	teams	often	use	an	intermediate	repository	within	Bitbucket

Having	a	separate	repository	for	each	developer	does	not	prohibit	people	from
contributing	to	the	main	project	repository.	If	you	are	conducting	peer	reviews,
this	is,	in	fact,	exactly	what	you	will	want:	every	developer	is	able	to	commit	to
the	main	project	repository,	but	the	convention	will	dictate	they	do	not	commit
their	own	work	without	a	review	first.	If,	however,	you	are	working	with	a
quality	assurance	team,	you	may	want	to	restrict	write-access	to	the	main	project
repository	to	only	the	QA	team.	In	this	case,	each	developer	will	need	to	create	a

fork	of	the	project	to	be	able	to	submit	their	work.

Figure	11-22.	Teams	of	one	or	two	often	work	directly	in	a	shared	repository

Shared	Access
If	you	are	working	with	a	team	of	very	trusted	developers,	you	may	choose	to
have	them	all	commit	into	the	same	repository,	and	maintain	a	convention	of
which	branches	should	be	used	for	what	purpose.

To	grant	a	developer	access	to	your	repository,	complete	the	following	steps:

1.	 Navigate	to	Settings	→	Access	management.

2.	 In	the	field	labeled	Users	add	the	Bitbucket	username	or	email	address	for
the	developer	you	want	to	add.

3.	 Change	the	access	level	from	read	to	write.

4.	 Click	Add.

Repeat	these	steps	for	each	developer	you	would	like	to	share	this	repository
with.	Developers	will	be	able	to	do	everything	except	administer	the	project.
You’ve	got	your	documentation	in	place,	right?	Because	the	only	things	holding
this	project	together	right	now	are	the	social	conventions	you’ve	documented
and	have	agreed	to	follow	rigorously	yourself.

Per-Developer	Forks
As	your	team	grows,	you	may	want	to	prevent	some	parts	of	the	team	from
having	direct	write	access	to	the	repository.	Perhaps	you	would	prefer	if	only	the
QA	team	were	allowed	to	write	to	the	main	repository.	In	this	case,	developers
will	need	to	create	a	fork	of	the	project	first,	and	submit	their	work	through	a
pull	request.

Complete	the	following	steps	to	create	a	fork	of	the	project:

1.	 Locate	and	click	the	Actions	icon	in	the	project	sidebar.	These	are	the	three
dots	directly	below	the	logo.

2.	 Click	on	the	link	labeled	Fork.

3.	 You	will	be	redirected	to	a	repository	creation	screen	that	very	closely
matches	the	one	you	saw	when	you	were	first	creating	your	own	Bitbucket
repository.	On	this	form	it	is	acceptable	to	leave	all	of	the	defaults	in	place.

4.	 Optionally	disable	the	Wiki	and	Issues	options.	You	should	use	the	main
project	repository	to	track	this	information.

5.	 To	complete	the	process,	click	Fork	repository.

You	are	now	ready	to	create	a	local	clone	and	begin	your	work:

1.	 Click	the	Actions	icon	in	the	project	sidebar.

2.	 Select	Clone.	A	modal	window	will	appear.

3.	 From	the	pop-up	window,	select	and	copy	the	command	line	instructions.

4.	 At	the	command-line,	navigate	to	the	directory	where	you	would	like	to
place	your	copy	of	the	cloned	repository.

5.	 Paste	the	command	provided	by	Bitbucket.	The	repository	will	begin
downloading.

Once	the	repository	has	downloaded,	you	are	ready	to	create	a	new	branch	and
begin	working	on	your	ticket.

Limiting	Access	with	Protected	Branches
If	you	have	worked	with	Subversion,	you	may	have	been	quite	surprised	when
you	came	to	Git	and	found	virtually	no	access	controls.	Instead	of	building	in
this	functionality,	Git	has	built	in	the	ability	for	you	to	build	your	own	access
controls	through	hooks.	These	hooks	allow	you	to	script	a	response	before	or
after	a	commit	takes	place,	or	before	or	after	a	push	to	a	remote	repository	takes
place.	If	you	are	hosting	your	own	Git	repository,	you	might	think	to	take
advantage	of	these	hooks,	but	if	you	have	become	accustomed	to	using	code
hosting	systems,	you	may	not	have	known	about	this	functionality.	(And	even	if
you	did,	it’s	not	necessarily	something	that	you	would	have	thought	to	script	if
you	were	just	learning	the	basics	of	Git.)

Fortunately,	Bitbucket	has	done	the	work	for	you.	Through	the	web	interface,
you	are	able	to	grant	write	access	per-person	or	per-team.	In	Chapters	2	and	3,
you	worked	through	your	governance	strategy	with	your	team,	and	perhaps	also
your	branching	strategy.	I	won’t	cover	that	again	here.	You	should	go	back	and
review	those	chapters	if	you	aren’t	sure	how	you	might	want	to	take	advantage
of	these	access	control	options.

Previously	you	learned	how	to	grant	access	to	an	entire	repository.	In	this
section,	you	will	learn	how	to	refine	this	access	per-branch.	Before	proceeding
with	this	section,	ensure	you’ve	given	repository	access	to	the	developers	you
want	to	work	with.

To	limit	branch	access,	complete	the	following	steps:

1.	 Navigate	to	Settings	→	Branch	management.

2.	 In	the	first	field	under	the	heading	limit	pushes	to	specific	users	and
groups,	enter	the	name	of	the	branch	you	want	to	limit	control	to;	in	the
second	field,	enter	the	name	of	the	person	who	should	be	allowed	to	update
files	in	this	branch.

3.	 Click	the	button	Add.

The	ability	to	push	code	to	this	branch	has	now	been	limited	from	all	people
except	the	person	listed.	Figure	11-23	shows	that	once	you	have	added	a	person,
you	are	welcome	to	add	more.

Figure	11-23.	Prevent	others	from	pushing	code	to	a	branch

From	the	same	configuration	screen,	Bitbucket	also	gives	you	the	option	to
prevent	the	deletion	of	any	branch,	or	prevent	history	rewrites	on	any	branch.
Although	these	two	options	are	of	less	interest	to	you	now	that	your	team	knows
how	to	safely	work	with	Git,	you	might	need	them	“for	a	friend.”	(It’s	okay,	I
understand.	And	so	does	Atlassian,	which	is	why	it	built	you	these	two	nifty
features.)

Once	implemented,	an	error	will	be	returned	if	someone	tries	to	perform	a
restricted	action.	Example	11-3	shows	an	example	of	what	happens	when	I	tried
to	delete	a	protected	branch	named	master.

Example	11-3.	Error	when	deleting	a	locked	branch
$ git push bitbucket master --delete

remote: permission denied to delete branch master

To git@bitbucket.org:emmajane/gitforteams.git

 ! [remote rejected] locked (pre-receive hook declined)

error: failed to push some refs to 'git@bitbucket.org:emmajane/gitforteams.git'

If	you	do	decide	to	implement	access	controls,	make	sure	you	clearly
communicate	these	restrictions	to	your	team.	This	will	help	to	avoid	absolute
frustration	by	developers	who	cannot	figure	out	why	they	can’t	push	their	code	to

https://www.atlassian.com

the	project	repository.	You	don’t	need	to	provide	lengthy	tomes	no	one	will	read,
but	you	do	need	to	give	people	the	rationale	for	why	decisions	were	made,	and
any	gotchas	that	make	your	system	a	unique	and	special	snowflake	to	work	with.

More	information	about	Branch	management	is	available	from	Bitbucket.	You
may	also	be	interested	to	read	Atlassian’s	overview	of	working	with	Git’s	hooks.

Pull	Requests
For	your	developers	to	add	their	work	back	into	the	project,	they	need	to	have
access.	If	this	access	is	not	available	(either	through	a	social	convention	of
completing	a	peer	review,	or	through	an	enforced	access	control),	the	developers
will	need	to	create	a	pull	request	to	have	their	work	considered	for	inclusion	in
the	main	project.

The	official	documentation	from	Atlassian	on	working	with	Bitbucket	is
exceptional.	Work	with	pull	requests	covers	a	few	extra	features,	and	will	be	up
to	date	if	the	instructions	I’ve	covered	in	this	section	ever	go	stale.

Submitting	a	Pull	Request
After	completing	your	issue-specific	work	in	your	ticket	branch,	and	pushing
your	code	to	the	server,	you	are	ready	to	issue	a	pull	request	to	have	your	work
incorporated	into	the	main	project	repository.	The	interface	options	will	vary
slightly	depending	on	which	access	control	method	you’ve	chosen.	The	basic
process,	however,	is	as	follows:

1.	 Locate	and	click	the	sidebar	icon	Pull	requests.

2.	 Locate	and	click	the	link	Create	pull	request.	A	new	form	will	appear	for
your	request	(Figure	11-24).

3.	 Your	current	repository	will	be	located	on	the	left.	From	this	option,	select
the	branch	that	has	the	change	you	would	like	to	have	incorporated	into	the
main	project.

4.	 The	destination	branch	is	located	on	the	right.	If	your	repository	is	a	fork,
you	will	be	able	to	choose	the	destination	repository	as	well	as	the
destination	branch.

http://bit.ly/bitbucket-branch-mgmt
http://bit.ly/gits-hooks/
http://bit.ly/bitbucket-pull-requests

5.	 Add	a	title,	and	description	for	your	pull	request.	Ideally,	your	description
should	reference	the	issue	you	are	aiming	to	close.

6.	 If	you	would	like	someone	specific	to	review	your	work,	you	can	enter	his
or	her	name	into	the	pull	request.

7.	 You	can	optionally	have	Bitbucket	do	a	little	maintenance	for	you	and
delete	the	ticket	branch	after	the	pull	request	has	been	accepted	and	the
ticket	is	closed.

8.	 Finally,	when	the	form	is	complete,	click	the	button	Create	pull	request.

Figure	11-24.	The	pull	request	creation	form

As	a	developer,	you	must	now	wait	for	your	work	to	be	reviewed	and	accepted
into	the	project,	or	kicked	back	with	requested	updates.

Accepting	a	Pull	Request
Once	a	pull	request	has	been	submitted,	it’s	up	to	a	reviewer	to	decide	if	the
proposed	changes	are	worthy	of	inclusion	in	the	main	branch.	Chapter	8	covered

the	review	process	in	detail.	The	pull	request	summary	page	allows	reviewers	to
comment	on	the	work	that	is	being	proposed.	The	conversation	may	result	in	the
pull	request	being	updated,	or	it	may	confirm	the	work	is	complete,	correct,	and
ready	to	be	incorporated	into	the	project.

Assuming	there	are	no	conflicts,	you	will	be	able	to	accept	a	pull	request	by
clicking	the	button	Merge	from	the	request	itself.

If,	however,	there	are	going	to	be	merge	conflicts,	the	process	is	a	bit	more
complicated.	Often	the	best	person	to	resolve	a	conflict	is	the	developer	of	the
new	code	that	is	being	added.	Typically	what	happens	is	that	the	code	has
become	stale	while	waiting	for	its	review.	Have	the	developer	update	her	ticket
branch	so	that	it	includes	the	latest	changes	from	its	parent	(or	source)	branch:

$ git pull --rebase=preserve

If	the	person	who	submitted	the	pull	request	is	not	available	to	resolve	the	merge
conflicts,	you	may	need	to	complete	this	step	yourself.	Fortunately,	Bitbucket
gives	you	some	copy-paste	commands	for	downloading	the	ticket	branch	and
resolving	the	conflict.

Extending	Bitbucket	with	Atlassian	Connect
In	addition	to	all	of	the	functions	Bitbucket	offers	out	of	the	box,	there	is	also
Atlassian	Connect,	an	API	for	add-ons	that	includes	a	marketplace	of	free	and
paid	add-ons.

To	find	relevant	add-ons	for	your	project,	complete	the	following	steps:

1.	 Navigate	to	your	account	management	page	by	clicking	your	user	icon	in
the	top-right	corner	of	the	page,	then	selecting	Manage	account.

2.	 From	the	left	sidebar	of	your	account,	locate	and	click	Find	new	add-ons.	A
list	of	all	add-ons	will	appear	in	the	main	content	area	(Figure	11-25).

You	can	filter	this	list	further	by	category.	For	example:	Code	analytics,	Code
quality,	Collaboration,	Deployment.	This	is	a	new	service,	so	by	the	time	you	are
reading	this	book,	there	will	be	a	lot	more	add-ons	to	explore.	A	few	to
investigate	include:

bitHound
Rates	your	Javascript	projects	based	on	code	quality,	maintainability,	and
stability.	Paid	service	for	closed	source	projects;	free	for	open	source
projects.

Aerobatic	Hosting
Allows	you	to	deploy	static	websites,	much	like	GitHub	Pages,	except	from	a
private	Bitbucket	repositories.

Pull	Request	Auto	Reviewers
Allows	you	to	automatically	assign	reviewers	to	specific	types	of	pull
requests.

Figure	11-25.	A	list	of	available	add-ons	available	through	Atlassian	Connect

In	addition	to	the	Connect	add-ons,	you	can	also	install	add-ons	you’ve	created
from	a	custom	URL.	You	can	learn	more	about	developing	for	Connect	on	the
Atlassian	Developers’	portal.	Chances	are	good	that	if	your	extension	is	useful	to

https://www.bithound.io/
http://bit.ly/aerobatic
http://bit.ly/atlassian-bb-add-on
http://bit.ly/atlassian-bb

your	team,	it	will	be	useful	to	other	teams	as	well.	As	you	are	building	it,
consider	making	it	abstract	so	that	it	can	be	shared	with	(or	sold	to)	others	in	the
marketplace.

Summary
Throughout	this	chapter,	you	learned	how	to	use	Atlassian’s	popular	code
hosting	system,	Bitbucket.	You	learned	how	to	set	up	a	personal	repository,	and
share	your	repositories	with	others.	To	work	successfully	with	a	team	on	a
private	project,	there	are	several	points	you	learned	about	in	this	chapter,	and
which	you	should	keep	in	mind:

Get	to	know	your	tools	by	creating	a	personal,	private	repository	first.

Prepare	for	new	people	to	be	added	to	your	team	by	creating	excellent
onboarding	documentation	that	is	easily	accessible	from	the	project
repository.

Use	issue-based	updates	to	your	repository,	describing	all	proposed	changes
in	issues	before	creating	new	branches	in	the	repository.

Make	decisions	around	access	control	clear	and	transparent.	If	you	are
limiting	access,	document	the	rationale	for	the	decisions	you’ve	made.

Over	the	years	I	have	been	been	repeatedly	impressed	by	Atlassian	as	a
company.	It	consistently	provides	a	positive	experience	with	easy-to-understand,
organized	documentation,	and	helpful	staff.	On	the	rare	occassion	when	it	has
slipped	up,	it	has	taken	ownership	of	the	problem	in	a	mature	and	respectful	way.
A++,	Atlassian!

Chapter	12.	Self-Hosted
Collaboration	with	GitLab

GitLab	is	an	open	source	code	hosting	system	for	repository	management.	It
allows	you	to	track	issues	for	your	Git	repository,	conduct	code	reviews,	and
create	supplementary	project	documentation	on	wiki	pages—in	other	words,	it’s
much	the	same	as	GitHub	and	Bitbucket.	GitLab’s	unique	advantage	is	that	as	an
open	source	product,	you	are	able	to	install	the	software	wherever	you’d	like,
without	paying	licensing	fees;	and	you	are	welcome	to	extend	the	software
directly,	instead	of	being	restricted	to	creating	add-ons	via	APIs,	and	other
hooks.

By	the	end	of	this	chapter,	you	will	be	able	to:

Locate	relevant	install	instructions	for	your	setup

Create	new	projects,	users,	and	groups

Configure	access	control	for	projects

Establish	cross-project	milestones

This	chapter	focuses	on	some	of	the	unique	tasks	you	can	perform	as	an
administrator	of	a	GitLab	instance,	as	opposed	to	just	using	the	software	as	a
mere	project	lead.

Getting	Started
If	you	have	followed	the	activities	in	this	book	from	the	beginning,	you	will
have	already	created	an	account,	and	played	around	with	a	GitLab	repository	on
the	publicly	available	instance	of	GitLab	at	GitLab.com.	(If	you	need	a	refresher,
the	instructions	on	using	GitLab	as	a	team	of	one	are	covered	in	Chapter	5.)

Installing	GitLab
To	take	advantage	of	the	administrative	functions	covered	in	the	remainder	of

this	chapter,	you	should	create	a	local	instance	of	GitLab	so	that	you	can	log	in
as	the	Administrative	account	holder.	This	chapter	covers	the	Community
Edition,	not	the	Enterprise	Edition	of	GitLab.	The	Enterprise	Edition	is	available
for	a	fee	and	includes	additional	functionality,	such	as	JIRA	integration.	You	can
read	about	the	differences	at	the	feature	comparison	list.

The	recommended	way	to	install	GitLab	is	through	one	of	its	Omnibus	installer
packages.	These	packages	can	be	downloaded	directly	and	placed	onto	a	Linux
server,	or	can	be	deployed	via	a	one-click	install	on	some	provisioning	services.

DigitalOcean	offers	a	one-click	install	package	for	GitLab.	This	package	uses
the	Omnibus	installer	for	GitLab,	which	means	you	will	be	able	to	upgrade
GitLab	easily	if	there	are	new	features	or	security	releases.	At	the	time	this	was
written,	DigitalOcean	was	the	only	service	offering	a	one-click	installer	for	the
Omnibus	package.	Bitnami	and	the	AWS	marketplace	only	offered	deployments
from	source	packages,	which	cannot	be	upgraded	once	deployed.	Read	the
descriptions	carefully	to	ensure	you	are	not	getting	trapped	into	installing	only	a
specific	version.

To	avoid	the	hosting	fees	while	evaluating	GitLab,	you	can	also	install	it	locally
using	the	power	of	virtual	machines.	(It’s	not	as	scary	as	it	sounds.)	Virtualbox
and	Vagrant	are	the	easiest	way	that	I	have	found	to	set	up	a	Linux	server	on	my
Windows	and	OS	X	computers.	The	written	documentation	for	Vagrant	is
phenomenal;	however,	if	you	prefer	hands-on	videos,	I	did	put	together	a	video
series	for	a	slightly	older	version	of	Vagrant.	The	basics	haven’t	changed.

Loosely,	the	steps	are	as	follows:

1.	 Install	Virtalbox.

2.	 Install	Vagrant.

If	you	are	on	OS	X,	there	is	already	a	brew	recipe	for	Virtualbox	and	Vagrant;	it
is	appropriate	to	use	it.

With	those	two	packages	installed,	you	now	have	the	capacity	to	have	an	Ubuntu
server	running	on	your	local	machine.	The	virtual	machine	will	not	have	GitLab
installed,	though.	At	this	point,	you	could	install	GitLab	using	the	Omnibus
package	referenced	previously,	but	I	found	the	following	GitLab	Installer	really
straightforward	to	use.

At	the	command	line,	complete	the	following	steps:

http://bit.ly/gitlab-compare
https://about.gitlab.com/downloads/
http://bit.ly/digitalocean-gitlab
https://drupalize.me/videos/why-vagrant
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads
https://github.com/tuminoid/gitlab-installer

1.	 Clone	the	installer	project	from	GitHub:

$ git clone https://github.com/tuminoid/gitlab-installer.git

2.	 Inside	the	project	repository,	change	the	name	of	the	Ruby	configuration
file	from	gitlab.rb.example	to	gitlab.rb.

3.	 Start	the	virtual	machine:

$ vagrant up

The	new	virtual	machine	will	be	provisioned.	The	username	and	password	will
be	printed	at	the	end	of	the	startup	message	from	Vagrant.	If	you	can’t	remember
it,	or	have	closed	the	window,	the	information	is	also	available	at	the	end	of	the
install	script.

INSTALLING	FROM	SOURCE
If	you	really	prefer	to	install	GitLab	from	source,	there	are	instructions	on	how	to	proceed	in
the	installation	guide.	This	is	strongly	discouraged	because	GitLab	releases	a	new	version	of
its	software	every	month	on	the	22nd.	Using	packages	will	make	it	a	lot	easier	to	keep	your
instance	of	GitLab	up	to	date.

Regardless	of	the	installation	method	you	choose,	you	will	need	to	be	able	to	log
in	as	an	administrator	on	your	new	GitLab	instance	to	take	advantage	of	the
remainder	of	this	chapter.	Once	you	have	logged	in,	you	should	be	redirected	to
the	welcome	screen	shown	in	Figure	12-1.

http://bit.ly/gitlab-installer
https://about.gitlab.com/installation/

Figure	12-1.	The	welcome	screen	for	GitLab

If	you	aren’t	able	to	complete	the	installation,	I	encourage	you	to	skim	through
the	rest	of	the	chapter	to	see	what	would	have	been	available	to	you	so	that	you
can	verify	if	it’s	worth	the	effort	to	get	it	figured	out.

Configuring	the	Administrative	Account
You	may	choose	to	keep	the	admin	account	generic,	or	use	it	as	your	own
account	when	developing	software	with	your	team.	Out	of	habit,	I	tend	to	create
an	account	with	fewer	privileges	for	daily	use	and	maintain	the	root	account	for
tasks	such	as	installing	new	add-ons,	upgrading	the	software,	and	other
administrative	tasks.

To	configure	your	account,	complete	the	following	steps:

1.	 From	the	top	menu,	locate	and	click	the	icon	profile	settings	(head	and
shoulders	of	a	person).

2.	 From	the	left	sidebar,	review	each	of	the	profile	settings	pages:

Profile
Name,	and	public	details	about	yourself,	such	as	Skype	or	Twitter.

Account
Private	token,	Two	Factor	Authentication,	Username,	and	the	ability	to

delete	your	account.

Applications
Manage	applications	that	can	use	GitLab	as	an	OAuth	provider,	and
applications	that	you’ve	authorized	to	use	your	account.

Emails
Primary	email	(avatar,	commit	credits),	notification	email,	public	email
(displayed	email).	Any	of	these	addresses	can	be	used	to	connect	a
commit	to	you.

Password
Reset	your	password.

Notifications
Your	notification	email	as	well	as	your	notification	level.	By	default,
you	will	only	receive	emails	for	related	resources	(your	commits,	your
assets,	etc).	You	may	also	choose	from	Watch	(all	notifications	for	a
given	project);	Mention	(only	when	you	are	@referenced	on	an	issue	or
comment);	or	Disabled	(never	receive	a	notification).

SSH	Keys
Note:	you	will	not	be	able	to	work	with	repositories	over	SSH	unless
you	are	logged	in	to	an	account	with	SSH	keys.	A	reminder	will	appear
until	it	is	dismissed,	or	your	SSH	keys	are	uploaded.

Design
Color	settings	for	the	sidebar,	and	code	syntax	highlighting.

History
All	events	created	by	this	account.	Includes	actions	you’ve	taken	such
as	commits,	creating	new	projects,	etc.

Once	you’ve	configured	the	administrative	account,	you	are	ready	to	proceed.	If
you	decide	to	set	up	a	secondary	account	immediately,	jump	ahead	to	“User
Accounts”.

Administrative	Dashboard
When	logged	in	as	the	administrative	user,	you	will	have	access	to	some
additional	screens,	and	functions	that	are	not	available	to	nonadministrators	on
the	public	GitLab.com	site.	Most	of	these	are	available	from	the	Admin	area.

From	the	top	menu,	click	the	gear	icon	labeled	Admin	area.	You	will	be
redirected	to	the	page	shown	in	Figure	12-2.

Figure	12-2.	The	administrative	dashboard	includes	a	summary	of	site	details,	and	a	status	report
showing	which	version	of	GitLab	is	installed

This	screen	gives	a	summary	of	the	components	installed	for	this	instance	of
GitLab,	including	the	software	version	you	have	installed	for	GitLab,	GitLab
shell,	GitLab	API,	Ruby,	and	Rails.	There	is	also	a	list	of	all	available	features,
with	a	status	indicator	showing	which	ones	are	enabled.	In	Figure	12-2,	you	can
see	that	Sign	up	and	Gravatar	are	enabled;	LDAP	and	OmniAuth	are	disabled.
Gloriously,	they	do	not	rely	on	color	alone.	The	closed	circle	is	green	to	indicate
“on”;	the	“off”	symbol	is	the	icon	for	standby.	Unfortunately	these	symbols	are
provided	by	CSS	alone,	and	there	does	not	currently	appear	to	be	a	text
equivalent.

Each	of	the	options	down	the	left	sidebar	are	fairly	self-explanatory:

Overview
This	is	the	screen	you	see	in	Figure	12-2.	Provides	a	quick	overview	of	stats
for	the	site,	along	with	quick	links	to	create	new	users,	projects,	and	groups.

Projects
Search	for	projects	within	the	site,	including	filters	for	per-user,	in-active	(no
activity	in	the	last	6	months),	and	visibility	level	(private,	internal,	or	public).

Users
Search	for	accounts	within	the	site.	Includes	fitlers	for	administrators,
blocked	accounts,	and	people	without	projects.

Groups
Search	by	name	for	groups	or	add	a	new	group.	There	are	no	filters	available
for	this	screen.

Deploy	keys
A	list	of	all	keys	that	are	being	used	for	deployments;	you	can	also	add	new
ones	from	this	screen.

Logs
The	last	2,000	lines	for	each	of	githost.log,	application.log,	production.log,
and	sidekiq.log.

Messages
The	ability	to	add	a	timed	broadcast	message	to	all	system	accounts.	Useful
for	scheduled	maintenance,	recent	upgrades,	and	more.

System	hooks
A	list	of	all	existing	system	hooks.	From	the	list	of	hooks,	you	can	test	a
hook	or	remove	it.	You	can	also	add	new	hooks	(URLs)	at	this	screen.

Background	jobs
A	summary	of	background	jobs	running	in	sidekiq.

System	OAuth	applications
A	list	of	existing	applications,	and	the	ability	to	add	new	ones	(fields	for	a

http://sidekiq.org/

title,	and	redirect	URIs).

Service	templates
Service	templates	allow	you	to	set	default	values	for	project	services.
Depending	on	the	service,	different	configuration	options	are	available.	For
example,	external	services	such	as	Asana	and	Buildkite	have	fields	for	API
keys.	Some	services,	such	as	JIRA	and	Redmine	also	have	configuration
fields	(Project	URL,	Issues	URL,	New	Issue	URL).	Some	services,	such	as
Emails	on	push,	also	have	toggles	for	the	triggers	(push	events	versus	tag
push	events).	This	is	a	good	screen	to	skim	through	if	you	want	to	integrate
with	third-party	services.

Application	settings
Includes	settings	for	default	project	settings	and	site-wide	configuration
options.

To	lock	down	your	instance	of	GitLab,	you	will	need	to	use	several	of	the
options	on	the	Application	settings	screen.	The	settings	on	GitLab	are	fairly
liberal.	By	default,	the	application	is	open	to	new	registrants,	who	are	restricted
to	10	repositories,	but	the	default	setting	for	a	new	repository	is	private.

The	Features	section	includes	the	following	settings	(all	are	enabled	by	default):

Signup
Allow	people	to	create	accounts.

Signin
Allow	people	to	authenticate	themselves.	If	you	wanted	a	read-only	public
repository,	it	would	be	appropriate	to	use	this	option.

Gravatar
Integration	for	user	profile	pictures—needs	a	connection	to	the	Internet.

Twitter
Show	users	a	button	to	share	their	newly	created	public	or	internal	projects
on	Twitter.

Version	check	enabled

Checks	to	see	if	a	newer	version	of	GitLab	is	available.

Visibility	and	access	control	includes	the	following	settings:

Default	branch	protection
Options	are:

Not	protected	(developers	and	“masters”	can	push	commits;	delete
branches;	and	force	push	new	commits	to	a	branch)
Partially	protected	(developers	can	only	push	new	commits;	masters	can
make	any	changes)
Fully	protected	(only	“masters”	can	make	changes	to	the	repository).
By	default,	Fully	Protected	is	selected.

Default	project	visibility
Options	are:

Private	(project	access	must	be	granted	explicitly	for	each	user.)
Internal	(the	project	can	be	cloned	by	any	logged-in	user.)
Public	(the	project	can	be	cloned	without	any	authentication).
Private	is	selected	by	default.

Default	snippet	visibility
Options	are	Private,	Internal,	or	Public.	Private	is	selected	by	default.

Restricted	visibility	levels
Selected	levels	cannot	be	used	by	nonadmin	users	for	projects	or	snippets.

Restricted	domains	for	signups
Only	allow	accounts	to	be	created	by	those	who	hold	email	accounts	for	the
selected	domain	names.	Wildcards	are	allowed.

There	are	limit	settings:

Default	projects	limit
By	default,	each	account	is	only	permitted	to	have	10	repositories;	this
includes	the	private	forks	a	developer	may	need	to	submit	a	merge	request	to
a	project.	If	developers	are	working	on	several	internal	projects	at	once,	this
number	might	need	to	be	increased.

Maximum	attachment	size	(MB)

By	default,	this	is	set	to	10MB.	This	should	be	sufficient	for	most
screenshots,	but	may	not	be	high	enough	if	you	are	also	attaching	design
assets	to	issues.

And	finally,	sign-in	restrictions:

Home	page	URL
The	URL	people	should	be	redirected	to	when	they	visit	any	page	other	than
the	sign-in	page	as	a	nonauthenticated	user.	If	left	unset,	people	will	be
redirected	to	the	sign-in	page.

Sign	in	text
This	text	appears	on	the	sign-in	page,	below	the	description	of	GitLab.	You
should	begin	with	a	heading	to	separate	your	text	from	the	GitLab
description.

By	configuring	each	of	these	settings,	you	can	create	an	appropriate	starting
point	for	your	instance	of	GitLab.	For	example,	if	you	wanted	to	make	it	for
official	work	only	by	approved	individuals,	you	might	adjust	the	settings	as
follows:

Disable	the	signup	feature.

Disable	the	Twitter	feature	(removes	the	button	from	the	interface	that
encourages	tweeting	about	projects).

Set	the	Restricted	visibility	levels	so	that	public	repositories	and	snippets	are
disabled	(sign-in	will	be	required	to	view	all	repositories).

If	you	wanted	to	make	your	instance	a	bit	more	open,	you	might	adjust	the
settings	as	follows:

Enable	the	signup	feature.

Disable	the	Twitter	feature.

Disable	public	repositories	for	nonadmins.

Restrict	domains	for	signups	to	your	organization.

In	addition	to	these	settings,	you	can	further	customize	the	setup	of	each	project
to	suit	your	needs.

Projects
Your	organization	probably	already	has	a	number	of	code	projects,	which	may	or
may	not	be	versioned	using	Git.	To	begin	your	setup	process	within	GitLab,	you
may	wish	to	begin	with	people,	or	with	projects.	The	advantage	of	starting	with
projects	is	that	there’s	something	in	place	for	people	to	engage	with	when	they
first	log	in.	If	you	are	working	with	experienced	Git	users,	you	may	want	to
grant	access	to	a	few	early	adopters	first	to	set	up	the	projects.

Creating	a	Project
A	project	is	effectively	a	repository	with	the	accompanying	support	tools	such	as
issue	queues	and	wiki	pages.	When	creating	a	new	project	in	GitLab,	you	will
have	the	option	to	import	from	GitHub,	Bitbucket,	Gitorious,	Google	Code,	or
any	other	repository	that	is	available	to	your	GitLab	instance	via	a	URL.

To	create	a	new	project,	complete	the	following	steps:

1.	 From	the	top	menu,	locate	and	click	the	icon	New	repository.	This	is	a	+.
You	will	be	redirected	to	the	project	creation	form.

2.	 Complete	each	of	the	fields	for	the	new	project	as	shown	in	Figure	12-3:

Project	path
This	will	be	the	URL	for	your	project	page.	Use	lowercase	letters	and
hyphens	only.

Namespace
The	name	of	the	account,	or	group,	this	project	should	belong	to.	By
default,	your	own	account	is	selected.

Import	project	from
If	the	project	already	exists,	you	can	import	it	from	one	of	the	listed
services.	GitLab	must	have	access	to	the	service	in	order	to	complete
the	import—in	other	words,	you	can’t	be	behind	a	firewall	without
access	to	the	Internet;	and	you	will	need	to	enable	OAuth	access	to	the
project.	The	instructions	in	the	pop-up	window	(Figure	12-4)	will	take
you	to	the	relevant	documentation	page	for	the	service	you	want	to
connect	to.

Description
Information	about	your	project	to	be	used	in	listings.	This	is	not	a
complete	README.

Visibility	Level
Choose	between	Private	(only	visible	to	authorized	users),	Internal
(visible	to	all	logged	in	users),	or	Public	(visible	to	anyone	visiting	the
site).

3.	 Locate	and	click	the	button	Create	project.

Your	new	project	will	be	created.	If	you	have	selected	the	option	to	import	from
an	external	service,	the	repository,	issues,	and	wiki	pages	will	be	imported	if
supported.	You	will	be	redirected	to	the	new	project	page.

With	the	project	imported,	you	are	now	able	to	add	administrators	and
developers	to	the	project.

User	Accounts
GitLab	allows	you	to	create	users	with	specific	roles.	These	roles	can	be	used	to
adjust	read/write	access	to	projects.	If	you	are	accustomed	to	Subversion’s
branch	locking,	these	access	restrictions	will	feel	familiar	to	you.	In	this	section,
you	will	learn	how	to	set	up	individual	user	accounts	and	add	people	to	projects.

Figure	12-3.	New	project	creation	form

Figure	12-4.	After	clicking	the	button	GitHub,	this	pop-up	window	appears	letting	you	know	GitLab	does
not	have	access	to	import	from	GitHub

Creating	User	Accounts
To	create	a	new	user	account,	you	can	begin	from	a	number	of	different	places.
The	easiest	to	access	is	via	the	Admin	area	overview:

1.	 From	the	top	right,	click	the	gear	icon	labeled	Admin	area.	You	will	be
redirected	to	the	admin	area	overview	page.

2.	 Locate	and	click	the	button	New	user.	You	will	be	redirected	to	the	new
user	creation	form.

The	form,	as	shown	in	Figure	12-5,	is	divided	into	three	sections:	Account,
Access,	and	Profile.

The	fields	in	the	Account	section	are	all	required:

Name
Display	name	for	this	account.

Username
Login	name	for	the	account.

Email
The	email	address	for	this	account.

The	default	values	for	the	Access	details	fields	are	typically	appropriate:

Project	limit
The	default	quantity	is	whatever	you	have	previously	set	site-wide.	GitLab
ships	with	a	default	of	10.

Can	create	group
The	ability	to	cluster	projects.	This	functionality	is	referred	to	as	a	team	or
organization	in	other	systems.	This	is	enabled	by	default.

Admin
Allow	this	person	to	administer	the	GitLab	software.	This	is	disabled	by
default.

Finally,	there	is	the	Profile	section,	which	includes	a	field	to	upload	a	photo	and
social	media	links:

Avatar—if	Gravatar	is	enabled,	it	may	not	be	necessary	to	include	a	separate
user	profile	picture

Skype

LinkedIn

Twitter

Website

Although	you	can	take	the	time	to	fill	in	the	Profile	details,	not	all	employees

will	want	to	link	their	social	media	accounts	to	a	work	system.	It	may	be	more
appropriate	to	leave	them	blank.

To	create	a	user	account,	complete	the	following	steps:

1.	 Fill	in	the	Account	details	as	described	previously.

2.	 Confirm	the	Access	details	are	correct.

3.	 Review	the	Profile	details	to	ensure	they	should	be	left	blank.	Fill	in	any
details	that	are	appropriate	to	add	now.

4.	 Locate	and	click	the	button	Create	user.

Figure	12-5.	The	new	user	account	creation	form	is	divided	into	three	sections:	Account	(required	fields),
Access,	and	Profile

The	new	user	account	has	been	created;	and	a	notification	email	has	been	sent	to
the	person	with	a	one-time	login	link	she	can	use	to	set	up	her	password.

In	addition	to	this	manual	account	creation,	GitLab	also	offers	LDAP	and
OmniAuth	integration.	Setting	up	this	type	of	access	is	covered	in	the	GitLab

http://bit.ly/gitlab-ldap
http://bit.ly/gitlab-omniauth

documentation.	As	of	the	time	of	this	writing,	supported	OmniAuth	providers
included	GitHub,	Twitter,	and	Google.

Adding	People	to	Projects
To	add	people	to	a	project,	complete	the	following	steps:

1.	 Navigate	to	the	project	page.

2.	 From	the	sidebar,	locate	and	click	Settings.

3.	 From	the	left	sidebar,	locate	and	click	Members.

4.	 Locate	and	click	Add	members.	A	new	form	will	open	(Figure	12-6).

5.	 In	the	field	labeled	People,	enter	the	username	or	email	of	the	person	you
want	to	add	to	this	project.

6.	 Adjust	the	field	labeled	Project	Access	to	one	of	the	following:

Guest
Able	to	view	the	project,	create	issues,	leave	comments

Reporter
Able	to	clone	the	repository,	create	code	snippets

Developer
Able	to	commit	code	to	approved	branches

Master
Project	administrator

Owner
Able	to	remove	the	project

7.	 Locate	and	click	Add	users	to	project.

The	accounts	have	been	granted	appropriate	access	to	your	new	project.	If	the
email	was	not	already	registered	in	this	instance	of	GitLab,	an	invitation	will
have	been	sent,	asking	that	person	to	register.

Groups
To	collect	projects,	you	can	use	groups.	You	may	choose	to	think	of	a	Group	as	a
Division,	Team,	Organization,	or	Software	Project	(with	subprojects).	By
default,	Groups	are	private,	and	only	members	of	that	group	may	view	projects
in	the	group.

ANYONE	CAN	CREATE	GROUPS
By	default,	anyone	with	an	account	on	GitLab	is	permitted	to	create	a	group.	You	can	disable
this	per-account	when	the	account	is	created,	or	from	the	account’s	settings	screen.

Figure	12-6.	Adding	users	to	projects;	search	for	a	person,	and	set	the	appropriate	access	level

To	create	a	new	group,	complete	the	following	steps:

1.	 From	the	top	menu	bar,	click	the	gear	icon	for	Admin	area.

2.	 Locate	and	click	New	group.	You	will	be	redirected	to	the	Group	creation
form	(Figure	12-7).

3.	 Enter	the	details	for	each	of	the	form	fields:

Group	path
The	URL	fragment	used	for	this	group.	You	are	limited	to	lowercase
letters	and	hyphens.	In	URLs,	this	will	be	used	in	the	same	way	as	the
usernames.

Details
A	short	description	of	your	team,	organization,	software	project—
essentially	“about”	or	“bio”	field.

Group	avatar
The	display	logo	for	this	group.

4.	 Locate	and	click	Create	group.	You	will	be	redirected	to	the	administration
screen	for	the	group.

Figure	12-7.	Creating	a	new	group

Your	new	group	has	been	created.	You	can	now	add	people	and	projects	to	your
group.

Adding	People	to	Groups

Permissions	are	set	primarily	on	the	projects,	not	the	groups.	There	are,	however,
some	additional	actions	that	users	can	take	if	they	are	granted	group-specific
roles:

Everyone	is	able	to	browse	the	group.

Only	the	Owner	is	allowed	to	edit	the	group,	manage	the	group’s	members,
and	remove	the	group.

Group	Masters	are	also	able	to	create	projects	within	group.

To	add	a	person	to	a	group	and	assign	a	role	to	the	person,	complete	the
following	steps:

1.	 From	the	top	menu,	click	the	gear	icon	for	the	Admin	area.

2.	 From	the	left	sidebar,	click	the	menu	link	Groups.	You	will	be	redirected	to
the	Group	administrative	page.

3.	 Locate	the	form	to	add	a	user	to	the	group	(Figure	12-8).

4.	 Enter	the	details	for	each	user	you	want	to	add	to	the	group:

Username
You	can	add	multiple	people	with	the	same	role	(Figure	12-9).

Role
Choose	one	of	Guest,	Reporter,	Developer,	Master,	or	Owner.

5.	 Click	Add	users	to	group.

Figure	12-8.	Add	a	user	to	a	group

The	group	will	not	be	visible	until	there	is	at	least	one	project	added	to	it.

Adding	Projects	to	Groups
Adding	a	project	to	a	group	is	a	simple	matter	of	adjusting	the	namespace	to	be	a
group,	instead	of	an	individual	account.

To	create	a	new	project	within	a	group,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	icon	+	with	the	label	New	project.

2.	 Enter	a	Project	path,	using	only	lowercase	letters	and	hyphens.

3.	 Next	to	the	label	Namespace,	click	the	down	arrow	and	select	the
appropriate	group	(Figure	12-10).

4.	 Complete	each	of	the	fields	as	you	did	previously	to	create	a	new	project.

5.	 Click	Create	project.

The	new	project	has	been	created	and	is	available	for	development.

Figure	12-9.	You	can	add	multiple	people	to	a	group	at	the	same	time	as	long	as	they	have	the	same	role

Figure	12-10.	The	project	Sea	of	Possibilities	has	been	added	to	the	group	Neverending	Story

If	the	project	already	existed,	and	you	want	to	move	it	to	a	different	namespace
(individual	account,	or	group),	complete	the	following	steps:

1.	 In	the	top	menu,	click	gear	icon	for	the	Admin	area.

2.	 From	the	left	sidebar,	click	Projects.

3.	 Locate	the	project	you	want	to	reassign	and	click	its	name.	You	will	be
redirected	to	an	admin	summary	for	the	project.

4.	 Locate	the	transfer	form	(Figure	12-11).

5.	 In	the	transfer	form,	click	the	down	arrow	on	the	dropdown	box.	A	list	of
groups	and	users	will	appear.	Select	the	group	you	want	to	transfer	this
project	to.

6.	 Click	Transfer.

Figure	12-11.	The	project	transfer	form	allowing	you	to	move	a	project	to	a	different	namespace

The	project	has	been	transfered	to	the	new	group.	Previous	group	members	will
no	longer	have	access	to	the	project.	Anyone	with	a	local	clone	of	the	project
will	need	to	update	the	URL	to	use	the	new	namespace	for	the	project.	(See
Chapter	5	for	details	on	working	with	remotes.)

Access	Control
To	limit	access	to	projects,	there	are	both	project	visibility	settings	and	per-
account	roles.	With	these	two	options,	you	have	a	fair	degree	of	flexibility	over
how	a	project	is	managed.	In	Chapter	2,	you	learned	about	a	number	of	different
ways	to	chain	together	repositories	so	that	people	had	the	correct	level	of	access.
With	GitLab’s	finer-grained	controls,	you	can	ensure	everyone	has	only	exactly
the	access	you	would	like	them	to	have.

Project	Visibility
Within	a	given	project,	you	can	control	the	level	of	access	per-project	and	per-
role:

Private
Project	access	must	be	granted	explicitly	for	each	user.

Internal
The	project	can	be	cloned	by	any	logged-in	user.

Public

The	project	can	be	cloned	without	any	authentication.

To	adjust	the	project	visibility	settings,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	gear	icon	for	Admin	area.

2.	 From	the	left	sidebar,	click	Projects.

3.	 Locate	the	project	you	wish	to	adjust	and	click	its	title.

4.	 From	the	project	admin	summary	page,	locate	and	click	the	button	edit.

5.	 Locate	the	section	of	the	form	Visibility	Level	(Figure	12-12)	and	adjust
the	settings	as	appropriate	for	the	access	level	you	wish	people	to	have
(Private,	Internal,	or	Public).

6.	 Locate	and	click	Save	changes.

Figure	12-12.	Update	the	project	visibility	to	one	of	Public,	Internal,	or	Private

The	visibility	settings	for	your	project	have	been	adjusted.

Limiting	Activities	with	Project	Roles
Once	users	are	able	to	see	a	project,	you	can	further	control	the	activities	they
can	perform	within	the	repository	by	assigning	each	person	a	specific	role.	A
comprehensive	checklist	of	all	permissions	is	available	from	within	your	GitLab
installation	from	help/permissions/permissions.

A	quick	summary	of	the	functionality	available	to	each	role	is	as	follows:

Guest
Able	to	create	new	issues	and	leave	comments,	and	that’s	it!	This	role	may
be	appropriate	for	stakeholders	who	do	not	need	access	to	the	code,	but
should	be	involved	in	the	development	of	the	project.

Reporter
In	addition	to	the	Guest	permissions,	a	Reporter	is	able	to	clone	the	project
and	create	code	snippets.	You	may	want	to	grant	CTOs	this	role	because	they
should	not	be	working	on	code	anymore.	(I’m	mostly	joking.	I	do	think	it’s
great	when	managers	are	able	to	jump	in	and	help	out;	I	also	think	that
managers	should	be	focusing	on	the	outward-facing	tasks	only	they	can
accomplish.)

Developer
In	addition	to	all	of	the	previous	permissions,	Developers	can	also	create
new	branches,	create	merge	requests,	push	to	nonprotected	branches,	add
tags,	write	wiki	pages,	manage	the	issue	tracker,	and	more!	Most	people	on
the	team	will	likely	be	assigned	this	role.	You	can	still	limit	their	access	to
specific	branches,	so	it’s	okay	to	be	generous	with	permissions	at	this	point.

Master
In	addition	to	the	previous	permissions,	Masters	are	also	able	to	create
milestones,	add	new	team	members,	push	to	protected	branches,	add	deploy
keys	to	the	product,	and	edit	the	project	itself.	This	role	is	appropriate	for
team	leaders,	and	possibly	savvy	project	managers	who	might	need	to	change
the	team	composition/access	from	time	to	time.

Owner
The	final	role	is	also	able	to	change	the	project	visibility,	transfer	the	project
to	another	namespace,	and	remove	the	project	altogether.	It	is	appropriate	for
nonteam	administrators	to	have	this	role.

To	update	a	person’s	role	within	a	group,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	gear	icon	for	Admin	area.

2.	 From	the	left	sidebar,	click	Projects.

3.	 Locate	the	name	of	the	project	you	want	to	update.	Next	to	the	name	of	the
project	there	is	a	button	labeled	edit.	Click	this	button.	You	will	be
redirected	from	the	admin	area	to	the	project.

4.	 From	the	left	sidebar,	click	Members.

5.	 Locate	and	click	Edit	group	members.	The	list	of	members	will	be
converted	into	a	configuration	list.

6.	 Locate	the	person	whose	role	you	want	to	change,	and	click	the	pencil
icon.	A	new	dropdown	box	will	appear	(Figure	12-13).

7.	 Update	the	dropdown	box	so	that	it	contains	the	appropriate	role	for	this
person.

8.	 Click	Save.

Figure	12-13.	Update	the	role	for	a	given	team	member

The	new	role	has	been	applied.

Limiting	Access	with	Protected	Branches
The	final	level	of	access	that	GitLab	offers	is	a	per-branch	setting.	By	default,
the	branch	master	is	protected,	and	people	with	the	role	Developer	cannot	push
to	this	branch.	Instead,	they	are	required	to	use	the	Merge	Request	process	to
have	their	work	incorporated	into	the	branch	master	for	the	repository.	If	you
prefer	having	a	shared	access	model,	you	can	remove	this	protection.

To	update	which	branches	are	protected	within	a	given	project,	the	branch	must
already	exist.	Once	it	exists	within	the	repository,	you	can	open	or	close	the
access.	(Remember	that	when	you	first	created	the	project	you	selected	the
default	access	setting	for	new	branches.)	To	set	up	access	control	for	a	given
branch,	complete	the	following	steps:

1.	 From	the	top	menu,	click	the	gear	icon	for	Admin	area.

2.	 From	the	left	sidebar,	click	Projects.

3.	 Locate	the	project	you	wish	to	adjust,	and	click	the	button	labeled	edit	next
to	its	name.	This	will	take	you	to	the	project	page,	instead	of	the	admin
page.

4.	 From	the	left	sidebar,	click	Settings,	then	Protected	branches.

5.	 From	the	dropdown	menu,	select	the	branch	you	would	like	to	protect
(Figure	12-14).

6.	 Locate	and	click	the	button	Protect.

Figure	12-14.	Lock	a	branch	so	that	it	can	only	receive	updates	from	accounts	with	the	Role	“Master”	or
“Owner”	for	this	project	or	team

The	branch	can	no	longer	be	updated	by	the	role	Developer.

To	remove	this	restriction,	complete	the	following	steps	from	the	same	screen:

1.	 Locate	the	section	titled	Already	Protected	(Figure	12-15).

2.	 Locate	the	branch	you	would	like	to	update.

3.	 Click	the	button	Unprotect.

Figure	12-15.	Branches	that	have	already	been	protected	can	be	unprotected

Now	people	with	the	role	Developer	will	be	able	to	push	commits	to	the	branch
you	just	updated.

Milestones

Within	each	project,	you	are	able	to	create	milestones.	These	can	be	used	to
collect	issues,	participants,	and	deadlines.	If	you	are	working	in	a	Scrum	fashion,
you	may	find	them	useful	for	sprint	loading.	Milestones	for	projects	that	are
shared	by	a	group	can	also	be	seen	from	a	single	report	page.	This	can	make	it
easier	to	coordinate	between	projects;	however,	it	is	still	per-repository	so	it	is
not	as	flexible	as	a	full-featured	project	management	tool,	which	allows	you	to
collect	all	issues	for	different	code	bases	into	a	single	project	for	management
purposes.	If	you	use	the	same	names	within	a	group	across	all	of	the	projects,
you	can	cheat	a	little	and	collate	related	items.

To	create	a	new	milestone	for	your	project,	complete	the	following	steps:

1.	 Navigate	to	the	project	page.

2.	 From	the	left	sidebar,	click	Milestones.

3.	 Locate	and	click	the	button	New	milestone.

4.	 Complete	the	form	fields	for	your	new	milestone	(Figure	12-16):

Title

Description,	with	optional	files	attached

Date

5.	 Locate	and	click	the	button	Create	milestone.

Figure	12-16.	You	can	create	date-based	milestones	for	your	project

Your	new	milestone	has	been	created.

To	see	a	list	of	all	milestones	for	one	of	your	groups,	complete	the	following
steps:

1.	 In	the	top-right	corner	on	the	screen,	click	your	user	avatar.

2.	 From	the	left	sidebar,	click	Groups.

3.	 From	the	list	of	groups,	click	the	name	of	the	group	you	want	to	see	the
milestones	for.

4.	 From	the	left	sidebar,	click	Milestones.

You	will	be	redirected	to	a	list	of	all	milestones	for	this	group	(Figure	12-17).

Figure	12-17.	A	list	of	all	milestones	for	a	given	group

Summary
GitLab	is	a	robust,	open	source	code	hosting	system	that	rivals	the	functionality
offered	by	GitHub	and	Bitbucket.	It	is	available	for	you	to	install	on	your	own
network	free	of	charge.

Access	control	can	be	customized	per	repository	(visibility	settings),	per
account	(with	role	settings),	and	per	branch	(with	branch	protection).

You	can	collect	both	Projects	(repositories)	and	Users	(people)	into	Groups
for	easier	management.

If	you	do	not	want	the	responsibility	of	maintaining	your	own	software,
GitLab	also	offers	a	free	cloud	hosting	service	at	GitLab.com.

Appendix	A.	Butter	Tarts

In	Git,	branches	can	be	used	to	maintain	variations	in	code.	These	variations
might	be	a	work	in	progress,	or	they	may	be	a	completely	different	direction.
These	branches	can	feel	similiar	to	variations	of	family	recipes.	This	appendix
contains	two	variations	of	a	recipe	from	my	family	of	a	classic	Canadian	dessert:
butter	tarts.	(For	the	non-Canadians	reading	this,	the	inclusions	are	what	make
this	dessert	controversial.	It’s	like	rebasing;	but	worse.)

Austin	Butter	Tarts
This	is	my	mother’s	recipe,	passed	down	to	her	from	her	grandmother,	Granny
Austin.	It	is	always	made	with	currants,	and	never	anything	else.

Pastry

2-½	cups	flour

1	cup	shortening

Pinch	salt

Ice	water	(enough	to	bind)

1.	 Cut	shortening	into	flour.

2.	 Add	ice	water	(approximately	½	cup).

3.	 Mix	with	fork.

4.	 Roll	out.

5.	 Prick	and	bake	in	a	muffin	tin,	unfilled,	at	450°	F	for	12	minutes.

Filling

1	cup	sugar

½	cup	soft	butter

3	eggs

1	cup	currants

http://bit.ly/butter-tart

2	tablespoons	sweet	or	sour	cream

1.	 Mix	together	the	filling	ingredients.

2.	 Bake	in	the	pastry-filled	muffin	tin	at	400°	F	for	about	25	minutes.

van	der	Heyden	Butter	Tarts
This	is	my	aunt’s	recipe,	passed	down	to	her	from	her	mother,	Pat	van	der
Heyden.	It	is	usually	without	additions,	but	can	have	roasted	nuts,	chocolate
chips,	or	raisins.

Filling

⅔	cup	softened	butter

3	cups	brown	sugar

3	cups	corn	syrup

12	eggs

Cream	together	butter	and	sugar.	Add	corn	syrup,	then	eggs.	Mix	well	together.
Using	your	favorite	pastry	recipe,	roll	out	and	cut	into	suitable	size	for	your	tart,
like	a	muffin	tin.	Using	a	fork,	prick	holes	into	the	bottom	of	each	pastry.	Ladle
in	butter	tart	filling.	Bake	at	400°	F	for	21	minutes	(or	thereabouts).

Options:

Roasted	nuts

Chocolate	chips

Raisins

Pastry

6	cups	all-purpose	flour

3	cups	shortening	(Karin	uses	Crisco;	her	mother	used	lard)

2	eggs

Splash	of	vinegar	plus	2	cups	cold	water

Mix	flour	with	shortening,	leave	it	somewhat	lumpy.	Whisk	eggs,	add	vinegar
and	water.	Add	wet	to	dry	until	you	get	a	workable	consistency.	Freeze	any
unused	pastry	in	plastic	for	next	time.

Appendix	B.	Installing	the	Latest
Version	of	Git

This	book	primarily	covers	the	basics	in	Git,	so	there	aren’t	a	lot	of	new	features
that	you’ll	be	missing	out	on	if	you	don’t	upgrade.	In	general,	I	find	newer
versions	of	the	software	to	be	increasingly	more	friendly	to	use.	The	error
messages	are	clearer,	and	provide	better	“next	action”	suggestions.	The	syntax	of
some	tricky	commands	has	improved,	making	the	commands	easier	to
remember.	(For	example,	the	ability	to	delete	a	remote	branch	using	the
parameter	--delete,	and	not	some	weird	syntax	involving	a	colon.)

So	you	think	you	have	Git	installed.	Sweet!

But	the	version	that	ships	with	your	operating	system	is	90%	likely	to	be	100%
old.	“It’s	all	Git	to	me!”	I	hear	you	saying.	I	know,	I	know.	I	used	to	think	the
same	thing:	Git	is	old	and	complicated	and	hasn’t	changed	in	a	million	Internet
years.	And	then	I	went	to	a	Git	developer	conference.	At	the	conference,	I	met
wonderful	developers	who	were	friendly	and	welcoming	and	patient	and	funny
and	very	much	actively	engaged	in	making	Git	better.	At	the	time,	the	maintainer
of	Git	was	Junio	Hamano,	and	the	Windows	maintainer	was	Johannes
Schindelin.	They	were	both	at	the	conference	and	were	genuinely	interested	in
making	Git	easier	for	you	to	use.	You	won’t	see	what	the	community	has	been
up	to	if	you	don’t	install	the	latest	version!

You	should	always	try	to	use	the	latest	stable	version	of	software,	and	you
definitely	owe	it	to	yourself	to	ensure	you	are	using	at	least	version	2.5	of	Git.
As	of	this	version	of	Git,	the	command	git help	is	much	more	useful.	I’m	very
excited	about	this	change	as	it	was	one	of	the	things	that	bugged	me	about	Git
from	the	very	first	time	I	used	it.	Then,	at	the	Git	developer	conference,	I	made
passing	comment,	which	turned	into	an	unofficial	bug	report…and	a	few	months
later	Sébastien	Guimmara	and	Eric	Sunshine	made	my	wish	into	the	command
you	use	today.	Incredible!

I’m	often	a	few	patches	out	of	date	(e.g.	if	the	latest	version	is	2.5.2,	I	might	be
on	2.5.0),	but	I	do	make	a	careful	effort	to	stay	relatively	current.	If	you	don’t

remember	having	installed	Git	in	the	last	few	months,	you	will	almost	definitely
want	to	upgrade.	You	may	also	need	to	install	Git	if	it’s	not	already	on	your
system	(it’s	not	hard!	there	are	installers	you	can	use!).

Installing	Git	and	Upgrading
There	are	human-friendly	Git	installers	available	for	Windows	and	OS	X.	The
installer	will	generally	attempt	to	keep	your	settings	in	place	when	you	upgrade
Git.

These	installers	are	available	from:

http://git-scm.com/downloads

If	you	are	on	Linux	or	Unix,	you	probably	already	have	Git	installed,	but	you
should	upgrade	to	the	latest	version.	Use	your	package	manager	to	do	this	(tips
in	“Upgrading	on	*nix	Systems”).	OS	X	users	may	also	want	to	use	a	package
manager	to	install	Git	and	keep	it	up	to	date.

Finding	the	Command	Line
This	book	is	focused	on	using	Git	from	the	command	line.	I	make	no	apologies
about	this.	There	are	two	critical	reasons	I	think	you	should	give	it	a	try:

1.	 It’s	easier	to	copy	and	paste	documentation	that	works	on	all	operating
systems	when	everyone	is	working	from	the	command	line.

2.	 You	get	better	error	messages	when	you’re	working	from	the	command
line.	In	a	graphical	interface	it’s	harder	to	copy	and	paste	the	sequence	of
commands	you	ran	right	before	getting	into	the	pickle	you’re	now	in.	By
working	from	the	command	line,	you	will	be	able	to	get	help	faster	from
others	when	things	go	wrong.

As	you	gain	comfort	with	the	concepts	in	this	book,	I	encourage	you	to	transfer
that	knowledge	to	graphical	interfaces	if	you	prefer.

OS	X
1.	 Open	Spotlight.	Spotlight	is	available	from	the	magnifying	glass	in	the	top-

right	corner	of	the	menu	bar,	or	by	pressing	Control	+	Space.

http://git-scm.com/downloads

2.	 Into	the	Spotlight	search	window,	type	terminal	and	press	Return.	A	new
terminal	window	will	appear.

Linux
The	location	of	a	terminal	window	will	vary	depending	on	which	distribution	of
Linux	you	are	using,	and	the	window	manager	you	are	using.	If	you	don’t	know
how	to	open	a	terminal	window	for	your	version	of	Linux,	a	quick	search	with
your	favorite	search	engine	should	be	able	to	help	out.

Windows
The	method	you	use	will	vary	slightly	depending	on	the	version	of	Windows	you
are	running.

Windows	7:

1.	 Click	the	button	labeled	“Start.”

2.	 Select	Program	Files	→	Accessories	→	Command	Prompt.	A	terminal
window	will	open.

Windows	8:

1.	 Navigate	to	the	Apps	screen	(swipe	up;	or	use	a	mouse	and	click	the	down
arrow	at	the	bottom	of	the	screen).

2.	 Locate	the	section	heading	Windows	System	by	swiping	or	scrolling	to	the
right.

3.	 Under	Windows	System,	press	or	click	Command	Prompt.

Upgrading	on	*nix	Systems
Package	managers	are	a	great	way	to	ensure	you	are	using	an	up-to-date	version
of	Git	on	your	system.	On	Linux	and	Unix-variants,	you	will	upgrade	Git	using
the	same	package	manager	that	you	used	to	install	Git	previously	(well,	Git	was
probably	already	installed,	and	you	might	have	needed	to	upgrade).

HOMEBREW	IS	A	PACKAGE	MANAGER	FOR	OS	X.

If	you	are	using	OS	X,	and	already	have	Homebrew	installed,	you	should	use	this	package
manager	to	keep	Git	up	to	date.

When	working	with	a	package	manager,	you	need	to	remember	to	keep	your	list
of	packages	up	to	date.	Generally	this	is	with	the	subcommand	update	for	your
package	manager.	For	example,	on	Ubuntu	I	would	use	apt-get update,	on
Fedora	I	would	use	yum check-update,	and	on	OS	X,	I	would	use	brew
update.

Once	the	list	of	packages	is	up	to	date,	you	can	install	the	latest	packaged
version	of	the	software	for	your	system.	This	is	typically	done	with	the
subcommand	install	or	upgrade.

OS	X:

$ brew install git

Ubuntu,	and	Linux	distributions	using	the	package	manager	apt:

$ apt-get install git

Fedora,	and	Linux	distributions	using	the	package	manager	yum:

$ yum install git

To	ensure	your	packages	are	kept	up	to	date,	you	can	upgrade	them	individually
or	on	demand	(Example	B-1).	This	is	typically	done	with	the	subcommand
upgrade,	although	running	the	install	command	again	will	generally	also
work	to	upgrade	the	software	if	a	newer	package	is	available.

Upgrade	with	Caution.
Careful!	Package	managers	are	only	mostly	awesome,	and	sometimes	upgrading
everything	isn’t	the	smartest	thing	when	you’re	running	towards	a	deadline.

Example	B-1.	Update	packages	with	Brew

OS	X	upgrade	only	Git:

http://brew.sh/

$ brew upgrade git

OS	X	upgrade	all	packages	installed	via	Homebrew:
$ brew upgrade

OS	X	Gotchas
When	I	started	getting	more	involved	in	the	Git	community,	I	began	working
with	custom	builds	instead	of	using	installers	so	that	I	could	test	out	neat	new
features	and	upgraded	documentation.	When	I	tried	to	push	code	to	remote
repositories,	I	sometimes	ran	into	the	following	error:

git: 'credential-osxkeychain' is not a git command. See 'git --help'.

For	some	reason,	my	environment	variable	for	$PATH	wasn’t	behaving	quite	the
way	I	anticipated.	After	getting	tired	of	trying	to	sort	it	out,	I	downloaded
another	copy	of	the	keychain	helper	and	put	it	in	a	known	location	on	my	hard
drive.

It	is	Unlikely	You’ve	Lost	Your	Keychain.
I	very,	very	highly	doubt	you	will	ever	need	to	take	advantage	of	this	section.	It’s
mostly	a	love	note	to	my	future	self	on	how	I	solved	this	problem	previously.
(Yes,	I	use	my	own	books	as	reference.	I	write	down	the	important	stuff	so	that	I
don’t	have	to	store	it	all	in	my	own	head.)

First,	verify	that	you	have	the	correct	authentication	tool	set	up	in	your	global
Git	configuration	file.	This	file	is	located	at	~/.gitconfig	and	should	contain	the
following	settings:

[credential]

 helper = osxkeychain

 useHttpPath = true

If	this	is	not	visible	in	the	configuration	file,	set	it	up	now	by	running	the
following	command:

$ git config --global credential.helper osxkeychain

Check	to	see	if	this	solved	the	problem	by	running	the	following	command:

$ git credential-osxkeychain

You	should	not	receive	the	error	message	you	had	been	receiving	previously.

If	you	do	receive	the	error	message	again,	proceed	with	the	following
instructions.	You	will	download	and	“install”	a	copy	of	the	helper	application
osxkeychain:

$ curl -s -O http://github-media-downloads.s3.amazonaws.com/

 osx/git-credential-osxkeychain

Adjust	the	permissions	so	that	you	are	able	to	run	the	program:

$ chmod u+x git-credential-osxkeychain

Move	the	helper	program	to	the	application	folder	for	Unix-y	programs.	This
program	is	run	as	root,	so	you	will	need	to	enter	your	OS	X	login	password	to
run	the	command:

$ sudo mv git-credential-osxkeychain usrlocal/git/bin

Now	when	you	run	the	following	command,	you	shouldn’t	get	the	error	you
received	previously	about	a	missing	command:

$ git credential-osxkeychain

This	documentation	is	adapted	from	the	instructions	at	“Beginner’s	Setup	Guide
for	Git	&	Github	on	Mac	OS	X”.	Chris	Chernoff,	if	you	ever	read	this,	thank
you!	Your	tips	saved	me	from	having	to	enter	the	42-character	random	password
I’d	set	up	each	time	I	wanted	to	push	updated	branches	for	this	book	to	the	Atlas
build	server	while	running	custom	builds	of	Git.

Accessing	Git	Help	at	the	Command	Line
Git	includes	built-in	documentation	from	the	command	line.	This	information	is

http://bit.ly/git-setup-osx

accessible	by	running	the	following	command:

$ git help

You	can	read	all	of	the	available	documentation	for	a	given	topic	by	specifying
the	topic	name:

$ git help topic

To	navigate	the	help	page,	you	can	can	use	your	keyboard’s	arrow	keys	to	scroll
up	and	down.	When	you	are	finished	reading	the	documentation	page,	press	q	to
exit.

For	a	list	of	all	topics,	use	the	following	command:

$ git help --all

A	handy	glossary	of	Git	terms	is	also	available:

$ git help glossary

Appendix	C.	Configuring	Git

Over	time,	you	will	find	little	shortcuts	that	help	you	use	Git	at	the	command
line.	Personally	I’ve	found	those	who	are	the	most	frustrated	with	it	are	the	ones
with	the	least	amount	of	customization.	There	are	two	types	of	configuration
settings	you	will	be	making	when	working	with	Git:	global	settings,	which	apply
to	all	repositories	that	you	work	on;	and	local	settings,	which	only	apply	to	the
current	repository.	An	example	of	a	global	setting	might	be	your	name,	whereas
your	email	might	be	customized	based	on	personal	projects	and	work	projects.

Global	settings	are	stored	in	the	file	~/.gitconfig,	and	local	settings	are	stored	in
the	file	.git/config	for	the	specific	repository	you	are	working	in.	You	will	always
be	able	to	go	back	and	edit	your	settings	if	you	want	to.

You	can	check	to	see	what	value	is	set.	For	example,	Example	C-1	shows	you
how	to	check	what	your	name	is	set	to.

Example	C-1.	Display	a	configured	value
$ git config --get user.name

You	can	also	get	list	of	all	values	currently	set	(Example	C-2).

Example	C-2.	Display	all	configuration	values	currently	set
$ git config --list

A	list	of	all	variables	is	available	from	the	command	page	for	config.	This	is	also
available	by	running	the	command:

$ git help config

Identifying	Yourself
In	order	to	get	credit	for	your	work,	you	will	need	to	tell	Git	who	you	are.	We
will	store	your	name	(Example	C-3)	and	email	(Example	C-4)	globally.	Because
it’s	a	global	setting,	you	don’t	need	to	be	in	a	specific	repository	to	make	the
change.

http://bit.ly/git-config-options

Example	C-3.	Configure	your	name
$ git config --global user.name 'Your Name'

Example	C-4.	Configure	your	email	address
$ git config --global user.email 'me@example.com'

It	might	be	appropriate	to	use	specific	email	addresses	for	some	repositories	(for
example,	if	you	are	working	on	a	work	versus	personal	project).	You	can	specify
the	changes	should	only	be	applied	to	a	specific	repository	by	completing	the
following	steps:

1.	 Navigate	to	the	directory	that	holds	the	repository	you	want	to	configure.

2.	 Apply	the	configuration	command,	substituting	--global	for	--local.

For	example:

$ git config --local user.email 'me@work.com'

Changing	the	Commit	Message	Editor
By	default,	Git	will	use	the	system	editor.	On	OS	X	and	Linux,	this	is	typically
Vim.	I	really	like	Vim,	so	that’s	what	I	use.	It	is	a	bit	hardcore	though,	so	you
might	want	to	change	your	editor	to	something	else.

Check	to	see	which	editor	Git	will	use	by	running	the	following	command:

$ git config --get core.editor

YOU	MUST	QUIT	TO	COMMIT
The	commit	will	only	be	stored	in	Git	when	you	quit	the	editor,	not	just	save	the	commit
message.	This	may	affect	your	choice	of	text	editors.

If	you	would	like	to	use	Textmate,	use	the	following	command:

$ git config --global core.editor mate -w

If	you	would	prefer	to	use	Sublime,	use	the	following	command:

$ git config --global core.editor subl -n -w

If	you	want	to	change	the	editor	for	Windows,	you	will	need	to	include	the	full
path	to	the	application	file.	As	applications	are	typically	installed	in	the	folder
C:\Program	Files,	you	will	need	to	wrap	the	path	in	quotes.	Additionally,	when
you	use	Bash	to	call	git config,	you	must	quote	the	value,	resulting	in	a
double	quoted	string:

$ git config --global core.editor '"C:\Program Files\Vim\gvim.exe" --nofork'

For	additional	editors,	check	the	configuration	instructions	for	your	editor	of
choice.

Adding	Color
Reading	huge	walls	of	text	can	be	difficult.	Add	some	color	helpers	to	your
command	line	to	make	it	easier	to	see	what	Git	is	doing:

$ git config --global color.ui true

$ git config --global diff.ui auto

Customize	Your	Command	Prompt
If	you	are	working	from	the	command	line,	you	get	zero	clues	about	what	is
going	on	with	your	files,	until	you	explicitly	ask	Git	about	them.	This	is	tedious
to	keep	having	to	ask.	It’s	like	when	you	were	eight	and	sat	in	the	back	of	the	car
whining	at	the	driver	saying,	“Are	we	almost	there	yet?”

Instead	of	having	to	explicitly	ask,	I’ve	modified	my	command-line	prompt	to
tell	me	which	branch	I	currently	have	checked	out	and	whether	or	not	I’ve	made
changes	to	any	of	the	files	in	my	repository.	This	is	a	fairly	common	hack,	but
every	developer	will	have	their	own	little	quirks	on	how	they	implement	it.
Searching	the	Web	for	“bash	prompt	git	status”	will	yield	lots	of	results.	My	own
prompt	is	fairly	simple,	but	others	have	added	a	lot	more	details	to	their	prompt.
For	example:	Show	your	git	status	and	branch	(in	color)	at	the	command	prompt
or	local	file	status.	As	with	all	things	technical,	the	more	you	add	initially,	the
more	you	will	need	to	debug	if	it	does	not	work	right	away.

http://bit.ly/git-config-options
http://bit.ly/bash-git-prompt

I	have	found	the	fancy	prompts	to	be	quite	fussy	to	set	up,	and	ended	up	giving
up	on	the	really	detailed	ones.	I	recommend	starting	with	something	really
simple	and	then	adding	to	it	if	you	really	need	more	information.	The	simple
change	in	color,	along	with	the	name	of	the	branch,	actually	suits	me	just	fine
and	is	less	distracting	without	all	the	extra	information.

Ignoring	System	Files
We	have	all	done	it:	accidentally	added	one	of	OS	X’s	.DS_Store	system	files,	or
a	temporary	.swp	text	editor	file.	You	can	save	yourself	a	little	embarrassment	by
setting	up	a	global	ignore	file	so	that	Git	prevents	these	files	from	being
committed	to	any	local	repository	you	create	or	work	on.	A	comprehensive	list
of	files	to	ignore	is	available.	Pick	and	choose	the	most	appropriate	for	your
system	and	your	projects.

Once	you	have	a	list	of	the	files	you	want	to	ignore,	complete	the	following
steps:

1.	 Create	a	new	text	file	named	.gitignore_global	and	place	it	in	your	home
directory.

2.	 Notify	Git	of	the	configuration	file	to	use	by	running	the	following
command:

$ git config --global core.excludesfile ~/.gitignore_global

You	may	also	have	project-specific	files,	or	even	output	directories	(such	as
build	directories),	that	you	don’t	want	to	commit	to	your	repository.	For	each
repository,	you	can	have	a	custom	“ignore”	file	that	will	further	limit	which	files
can	be	tracked	by	Git:

1.	 Create	a	new	text	file	named	.gitignore	and	place	it	in	the	root	directory	for
your	repository.

2.	 To	this	file	add	the	names	of	the	files	you	want	Git	to	never	add	to	the
repository.	Each	filename	should	have	its	own	line.	You	can	use	pattern
matching	as	well,	such	as	*.swp	for	temporary	editor	files.

This	change	will	need	a	new	commit	in	your	Git	repository:

https://github.com/github/gitignore

$ git add .gitignore

$ git commit -m "Adding list of files to be ignored."

Line	Endings
This	section	is	especially	important	if	you	work	on	a	cross-platform	team	with
developers	on	OS	X,	Linux,	and	Windows.

You	should	set	the	line	endings	globally,	but	adding	the	setting	to	each	repository
as	well	will	ensure	greater	success	for	those	who	may	not	have	explicitly	set	line
endings:

$ git config --global core.autocrlf input

To	explicitly	have	all	contributors	use	the	right	line	endings,	you	will	need	to	add
a	.gitattributes	file	to	your	repository	that	identifies	the	correct	line	ending,	text
files	that	should	be	corrected,	and	binary	files	that	should	never	be	modified.

Create	a	new	text	file	named	.gitattributes	in	the	root	directory	of	your
repository	(the	same	directory	the	.git	folder	is	in).	An	example	of	a	new	file	is
as	follows:

Set the default behavior for all files.

* text=auto

List text files that should have system-specific line endings on checkout.

.php text

.html text

.css text

List files that should have CRLF line endings on checkout, and not

be converted to the local operating system.

.sln text eol=crlf

List all binary files which should not be modified.

.png binary

.jpg binary

.gif binary

.ico binary

Add	the	file	to	the	staging	index:

$ git add .gitattributes

Commit	the	file	to	the	repository:

$ git commit -m "Require the right line endings for everyone, forever."

Fixing	Line	Endings
If	you	are	in	the	unfortunate	position	of	having	to	standardize	line	endings	mid-
project,	you	will	need	to	complete	the	following	steps:

1.	 Decide	on	the	“official”	line	ending	for	your	repository	with	your	team.

2.	 Edit	each	of	the	affected	files	to	reset	the	line	endings.	When	this	happened
to	my	“friend,”	she	used	Vim	and	the	setting	:set ff=unix.	You	may
prefer	to	reset	the	line	endings	by	simply	opening	each	of	the	files	with
your	text	editor	and	re-saving	each	file;	or	use	a	command	line	utility	such
as	dos2unix.

3.	 Add	and	commit	the	updated	files	to	the	repository.

4.	 Add	the	file	.gitattributes	to	your	repository	as	described	in	the	previous
section.

5.	 Push	the	changes	to	the	code	hosting	server.

6.	 Ask	everyone	else	on	your	team	to	update	their	work	using	the	command
rebase	so	that	the	“bad”	line	endings	are	not	reintroduced	into	the
repository	accidentally.

7.	 Pour	yourself	a	hot	chocolate	or	whisky.	You’ve	earned	it.

Appendix	D.	SSH	Keys

SSH	keys	allow	you	to	make	a	connection	to	a	remote	machine	without	having
to	enter	a	password	every	time.	The	keys	themselves	come	in	pairs:	a	public-
facing	key	and	a	private	key.	The	private	key	should	be	treated	like	a	password,
and	never	shared	with	anyone.	The	public-facing	key	will	be	“installed”
elsewhere,	such	as	a	code	hosting	system.

Create	Your	Own	SSH	Keys
To	create	an	SSH	key,	you	will	need	to	run	a	program,	which	will	save	a	pair	of
files.	The	necessary	software	is	already	installed	on	*nix-based	systems,	but
Windows	users	will	need	to	download	additional	(free)	software.

Linux,	OS	X,	and	Unix-variants
To	generate	a	key	pair,	run	the	following	command:

$ ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

You	will	be	prompted	for	the	following	information:

File	location
Accept	the	default	location	by	pressing	Return	to	continue.

Password
It’s	optional,	but	you	really	should	have	one.	Make	it	memorable	or	store	it
in	a	very	secure	password	keeper	that	you	use	regularly.

The	fingerprint	for	your	key	will	be	printed	to	the	screen,	and	the	key	pair	will
be	saved	to	the	appropriate	location	in	~/.ssh/.

You	will	now	need	to	register	this	key	with	your	system	so	that	you	can	begin
using	it.

This	is	where	things	get	a	little	secret	agent.	You	need	to	register	your	keys	with

the	local	“agent”	(using	OS	X?	think	“keychain,”	but	different).	Begin	the	ssh-
agent	application	and	redirect	it	to	use	a	Bourne	shell:

$ eval "$(ssh-agent -s)"

Register	your	SSH	key	with	the	agent:

$ ssh-add ~/.ssh/id_rsa

Your	key	has	been	registered.

If	you	need	to	use	the	key	immediately,	skip	ahead	to	“Retrieving	Your	Public
SSH	Key”.

Windows
To	generate	an	SSH	key-pair	on	Windows	you	will	need	to	use	the	software,
PuTTYgen:

1.	 Locate	the	latest	binary	for	PuTTY	from	the	PuTTY	Download	Page.	The
file	is	named	puttygen.exe.

2.	 Right-click	the	link	puttygen.exe	and	choose	“Save	link	as.”	The	text	may
vary	slightly	depending	on	your	browser.

3.	 When	prompted,	select	a	folder	that	you	can	find	easily	(for	example,	your
desktop	folder).

4.	 Locate	the	PuTTYgen	application	on	your	desktop.	Double-click	the	icon
to	run	the	program.

5.	 At	the	bottom	of	the	window,	below	“Type	of	key	to	generate,”	select	SSH-
2	RSA.

6.	 Locate	and	click	the	button	“Generate.”

7.	 Wiggle	your	mouse.	Seriously.	You’ll	be	making	random	data	(noise),
which	helps	with	the	key-generation	process.	Continue	doing	so	until	the
progress	bar	is	full.

8.	 You	will	be	prompted	for	a	passphrase.	It’s	optional,	but	you	should	add
one.

http://bitly.com/putty-dl-page

9.	 Locate	and	click	the	button	“Save	private	key.”

10.	 Locate	and	click	the	button	“Save	public	key.”

This	should	save	the	keys	to	the	appropriate	location	in	~/.ssh/.

If	you	are	ready	to	use	the	SSH	key	immediately,	complete	the	following	steps	as
well:

1.	 Locate	the	heading	“Public	key	for	pasting	into	OpenSSH	authorized_keys
file.”

2.	 Right-click	the	random	string	below	the	heading.

3.	 Choose	“Select	all,”	and	then	“Copy.”

Your	public	key	has	been	copied	to	the	clipboard.	You	are	ready	to	proceed.

Retrieving	Your	Public	SSH	Key
When	your	code	hosting	system	asks	for	your	“Public	SSH	Key,”	it	needs	the
contents	of	the	file	id_rsa.pub.	This	file	is	usually	stored	in	a	hidden	folder	of
your	home	directory:	.ssh.	To	locate	this	file,	and	copy	its	contents	to	your
clipboard,	complete	the	commands	outlined	next	as	is	relevant	for	your	operating
system.	By	working	from	the	command	line,	you	can	avoid	trying	to	find	an
editor	that	recognizes	a	.pub	file.	It’s	just	text,	but	the	text	editors	you	have
installed	probably	don’t	know	that.

OS	X:

1.	 Open	a	terminal	window.

2.	 Run	the	following	command:	cat ~/.ssh/id_rsa.pub | pbcopy

Linux:

1.	 Open	a	terminal	window.

2.	 Run	the	following	command:	cat ~/.ssh/id_rsa.pub.	You	should	have
a	very	long	string	of	characters	printed	to	the	screen.	It	should	stretch	the
entire	width	of	the	terminal,	and	it	should	not	include	the	words	“PRIVATE
KEY.”	If	the	file	is	not	found,	you	will	need	to	create	an	SSH	key	first.

3.	 Copy	all	of	the	text	that	was	printed	to	the	screen.

Windows:

1.	 Open	a	Git	Bash	window.

2.	 Run	the	following	command:	clip < ~/.ssh/id_rsa.pub.	This	will	copy
your	public	SSH	key	to	the	clipboard.

Your	public	SSH	key	is	now	copied	to	the	clipboard	and	you	are	ready	to	paste	it
into	the	configuration	screen	for	your	code	hosting	system	of	choice.

Index

Symbols
*nix	systems

SSH	key	creation	on,	Linux,	OS	X,	and	Unix-variants

upgrading	Git	on,	Upgrading	on	*nix	Systems

.NET,	Copyright	and	Contributor	Agreements

A
access	control

Bitbucket,	Access	Control-Limiting	Access	with	Protected	Branches

GitLab,	Access	Control-Limiting	Access	with	Protected	Branches

per-developer	forks,	Per-Developer	Forks

protected	branches,	Limiting	Access	with	Protected	Branches

access	models,	Access	Models-Custom	Access	Models

collocated	contributor	repositories,	Collocated	Contributor	Repositories
Model-Collocated	Contributor	Repositories	Model

custom,	Custom	Access	Models

dispersed	contributor,	Dispersed	Contributor	Model-Dispersed
Contributor	Model

shared	maintenance,	Shared	Maintenance	Model

account	creation

Bitbucket,	Creating	an	Account-Creating	an	Account

GitHub,	Creating	an	Account-SSH	Keys

add	command,	Summary,	Command	Reference

--patch	[filename],	Summary

add	files,	Command	Reference

Aerobatic	Hosting,	Extending	Bitbucket	with	Atlassian	Connect

Agile	environment,	The	People	on	Your	Team,	Evolving	Workflows

Android,	Software	for	Code	Reviews

Ansible,	The	People	on	Your	Team

antisocial	coding,	Project	Governance	for	Nonpublic	Projects

Apache,	Distribution	Licenses,	Leadership	Models

Apache	License,	Distribution	Licenses

Apache	Software	Foundation,	Software	for	Code	Reviews

Asana,	Administrative	Dashboard

Atlas,	Collaborating	on	Nonsoftware	Projects,	Trusted	Developers	with	No
Peer	Review

Atlassian,	Limiting	Access	with	Protected	Branches

Atlassian	Connect,	Extending	Bitbucket	with	Atlassian	Connect

automated	gatekeepers,	Types	of	Reviewers

automated	self-check,	Types	of	Reviews

B
backward	compatibility	(see	semantic	versioning)

ball-and-chain	diagrams,	Mainline	Branch	Development

Balsamiq,	Documenting	Your	Process

Benevolent	Dictator	For	Life	(BDFL)	governance	model,	Leadership
Models

benevolent	dictators,	Types	of	Reviewers

BFG	Repo	Cleaner,	Really	Removing	History

bisect	command,	Historical	Reenactment	with	bisect-Historical
Reenactment	with	bisect

bisect	inefficiencies,	Undoing	Shared	History

Bitbucket,	Really	Removing	History

access	control	in,	Access	Control-Limiting	Access	with	Protected
Branches

account	creation	for,	Creating	an	Account-Creating	an	Account

and	Atlassian	Connect,	Extending	Bitbucket	with	Atlassian	Connect

creating	private	project	with,	Creating	a	Private	Project	from	the
Welcome	Screen-Configuring	Your	New	Repository

editing	files	in	repository,	Editing	Files	in	Your	Repository-Editing	Files
in	Your	Repository

exploring	your	project	on,	Exploring	Your	Project-Exploring	Your
Project

getting	started	with,	Getting	Started-Editing	Files	in	Your	Repository

per-developer	forks,	Per-Developer	Forks

private	team	work	on,	Private	Team	Work	on	Bitbucket-Summary

project	documentation	in	wiki	pages,	Project	Documentation	in	Wiki
Pages-Project	Documentation	in	Wiki	Pages

project	governance	for	nonpublic	projects	on,	Project	Governance	for
Nonpublic	Projects

project	setup	with,	Project	Setup-Tracking	Your	Changes	with	Issues

protected	branches,	Limiting	Access	with	Protected	Branches

pull	requests,	Pull	Requests-Accepting	a	Pull	Request

shared	access,	Shared	Access

tracking	changes	with	issues,	Tracking	Your	Changes	with	Issues-
Tracking	Your	Changes	with	Issues

bitHound,	Software	for	Code	Reviews,	Extending	Bitbucket	with	Atlassian
Connect

blame	command,	Investigating	File	Ancestry	with	blame-Investigating	File
Ancestry	with	blame

branch	command,	Teamwork	in	Terms	of	Git

--contains,	Command	Reference

delete	branches,	Command	Reference

delete	branches,	-D,	Command	Reference

list	all	branches,	Command	Reference

list	branches,	Command	Reference

list	remote	branches,	Command	Reference

branch	deployment

advantages,	Mainline	Branch	Development

disadvantages,	Mainline	Branch	Development

branch	types,	Sprint-Based	Workflow

branch,	create	(see	checkout	command)

branch-per-feature	deployment,	Branch-Per-Feature	Deployment-Branch-
Per-Feature	Deployment

advantages,	Branch-Per-Feature	Deployment

disadvantages,	Branch-Per-Feature	Deployment

branches

butter	tart	recipe	example,	Teamwork	in	Terms	of	Git,	Butter	Tarts-van
der	Heyden	Butter	Tarts

creating	new,	Creating	New	Branches-Creating	New	Branches

defined,	Branching	Strategies

for	experimental	work,	Using	Branches	for	Experimental	Work

for	teams	of	one,	Working	with	Branches-Creating	New	Branches

keeping	up	to	date,	Keeping	Branches	Up	to	Date-Keeping	Branches	Up
to	Date

listing,	Listing	Branches

unmerging,	Unmerging	a	Branch-Unmerging	a	Branch,	Unmerging	a

Shared	Branch-Unmerging	a	Shared	Branch

updating	list	of	remote	branches,	Updating	the	List	of	Remote	Branches

using	different,	Using	a	Different	Branch

working	with,	Working	with	Branches-Creating	New	Branches

branching	strategies,	Branching	Strategies-Summary

and	review	process,	Completing	the	Review

branch-per-feature	deployment,	Branch-Per-Feature	Deployment-
Branch-Per-Feature	Deployment

conventions	for,	Choosing	a	Convention

mainline	branch	development,	Mainline	Branch	Development-Mainline
Branch	Development

scheduled	deployment,	Scheduled	Deployment-Scheduled	Deployment

state	branching,	State	Branching-State	Branching

updating	branches,	Updating	Branches-Updating	Branches

Brew,	Resolving	Merge	and	Rebase	Conflicts

broken	branches,	Comparative	Studies	of	Historical	Records

Brown,	Sunni,	Meeting	as	a	Team

browser-based	text	editor

for	Bitbucket	files,	Editing	Files	in	Your	Repository-Editing	Files	in	Your
Repository

for	quick	commits,	Making	Commits	via	the	Web-Making	Commits	via
the	Web

bugs,	finding	and	fixing	(see	debugging)

Buildkite,	Administrative	Dashboard

butter	tart	recipes	(forking/branching	example),	Teamwork	in	Terms	of	Git,
Butter	Tarts-van	der	Heyden	Butter	Tarts

C

cached	parameter,	Combining	Commits	with	Reset

Canonical,	Copyright	and	Contributor	Agreements

cd	shell	command,	Command	Reference

cd	[directory	name]	shell	command,	Command	Reference

Chacon,	Scott,	Branch-Per-Feature	Deployment

changes,	proposed

applying,	Applying	the	Proposed	Changes-Reviewing	the	Proposed
Changes

reviewing,	Reviewing	the	Issue

checkout	command,	Command	Reference

checkout	branch,	Command	Reference

checkout	[commit],	Command	Reference

create	branch,	-b,	Summary,	Command	Reference

tracking	branch,	Command	Reference

Chef,	The	People	on	Your	Team,	Copyright	and	Contributor	Agreements

Chernoff,	Chris,	OS	X	Gotchas

cherry-pick	command,	An	Overview	of	Locating	Lost	Work

cherry-pick	[commit],	Command	Reference

clone	command,	Consumers,	Maintainers

clone	[URL],	Command	Reference,	Command	Reference

clones,	zipped	packages	vs.,	Consumers

cloning	(see	git	clone	[URL]	command)

cloning	repositories,	Teamwork	in	Terms	of	Git

co-maintainership,	Granting	Co-Maintainership-Granting	Co-
Maintainership

Code	of	Conduct	(CoC)	document,	Code	of	Conduct

code	reviews,	software	for,	Software	for	Code	Reviews

Coder,	Software	for	Code	Reviews

codes	of	conduct,	Code	of	Conduct

coding	teams,	The	People	on	Your	Team

collaboration,	The	People	on	Your	Team

collocated	contributor	repositories	access	model,	Access	Models,	Collocated
Contributor	Repositories	Model-Collocated	Contributor	Repositories
Model

color,	adding	to	Git,	Adding	Color

command	and	control,	Command	and	Control-Summary

access	models,	Access	Models-Custom	Access	Models

project	governance,	Project	Governance-Code	of	Conduct

command	prompt	customization,	Customize	Your	Command	Prompt

commands	(see	individual	command	names)

commit	command,	Command	Reference

--amend,	Summary

-m,	Command	Reference

commit	messages

changing	editor	for,	Changing	the	Commit	Message	Editor

detailed,	Writing	Extended	Commit	Messages

commit	process,	Teamwork	in	Terms	of	Git

commitment	meetings,	Tracking	Progress

commits

altering	with	interactive	rebasing,	Altering	Commits	with	Interactive
Rebasing-Altering	Commits	with	Interactive	Rebasing

amending,	Amending	Commits

and	rollbacks,	Working	with	Commits-Unmerging	a	Branch

combining	with	reset,	Combining	Commits	with	Reset-Combining

Commits	with	Reset

publishing	perfect,	Constructing	the	Perfect	Commit-Constructing	the
Perfect	Commit

reverting,	Reverting	a	Previous	Commit

unmerging	a	branch,	Unmerging	a	Branch-Unmerging	a	Branch

via	Web,	Making	Commits	via	the	Web-Making	Commits	via	the	Web

company-wide	stand-up	meetings,	Tracking	Progress

configuration,	Git,	Configuring	Git-Line	Endings

adding	color,	Adding	Color

command	prompt	customization,	Customize	Your	Command	Prompt

ignoring	system	files,	Ignoring	System	Files

line	endings,	Line	Endings

user	name/email	configuration,	Identifying	Yourself

consensus	shepherds,	Types	of	Reviewers

consensus-driven	development,	The	People	on	Your	Team

consensus-driven,	leader-approved	governance	model,	Leadership	Models

consumers

contributors	vs.,	Setting	Up	the	Developers-Maintainers

developers	as,	Consumers-Consumers

continuous	delivery,	Mainline	Branch	Development

Continuous	Delivery	(Humble	and	Farley),	Mainline	Branch	Development

continuous	deployment,	Mainline	Branch	Development

continuous	integration,	Mainline	Branch	Development

contractors

copyright	and,	Copyright	and	Contributor	Agreements

untrusted	developers	with	independent	quality	assurance,	Untrusted
Developers	with	Independent	Quality	Assurance

contributors

consumers	vs.,	Setting	Up	the	Developers-Maintainers

developers	as,	Contributors

conventions,	branching	strategy,	Choosing	a	Convention

copyright	agreements,	Copyright	and	Contributor	Agreements

creating	clones,	Teamwork	in	Terms	of	Git

Creative	Commons	license,	Copyright	and	Contributor	Agreements,
Distribution	Licenses

creative	thinking,	Thinking	Strategies

custom	access	models,	Custom	Access	Models

CVS,	Access	Models

D
debugging,	Finding	and	Fixing	Bugs-Summary

comparative	studies	of	historical	records,	Comparative	Studies	of
Historical	Records-Comparative	Studies	of	Historical	Records

file	ancestry	with	blame	command,	Investigating	File	Ancestry	with
blame-Investigating	File	Ancestry	with	blame

historical	reenactment	with	bisect	command,	Historical	Reenactment
with	bisect-Historical	Reenactment	with	bisect

stash	command	for	emergency	fixes,	Using	stash	to	Work	on	an
Emergency	Bug	Fix-Using	stash	to	Work	on	an	Emergency	Bug	Fix

decision	thinking,	Thinking	Strategies

default	branches,	Mainline	Branch	Development

deleted	file,	mid-rebase	conflict	from,	Mid-Rebase	Conflict	from	a	Deleted
File-Mid-Rebase	Conflict	from	a	Deleted	File

deployment,	Mainline	Branch	Development

design	critique,	Types	of	Reviews

detached	HEAD	state,	Updating	Branches

developers

as	consumers,	Consumers-Consumers

as	contributors,	Contributors

as	maintainers,	Maintainers-Maintainers

setup	for	multi-person	teams,	Setting	Up	the	Developers-Maintainers

trusted,	with	no	peer	review,	Trusted	Developers	with	No	Peer	Review-
Trusted	Developers	with	No	Peer	Review

trusted,	with	peer	review,	Trusted	Developers	with	Peer	Review

untrusted,	with	independent	quality	assurance,	Untrusted	Developers
with	Independent	Quality	Assurance

untrusted,	with	QA	gatekeepers,	Untrusted	Developers	with	QA
Gatekeepers

development

by	teams	of	more	than	one,	Participating	in	Development-Publishing
Work

keeping	branches	up	to	date,	Keeping	Branches	Up	to	Date-Keeping
Branches	Up	to	Date

publishing	perfect	commits,	Constructing	the	Perfect	Commit-
Constructing	the	Perfect	Commit

publishing	work,	Publishing	Work

resolving	merge	conflicts,	Resolving	Merge	and	Rebase	Conflicts-
Resolving	Merge	and	Rebase	Conflicts

reviewing	work,	Reviewing	Work-Merging	Completed	Work

sprint-based	workflow,	Sprint-Based	Workflow-Sprint-Based	Workflow

untrusted	developers	with	independent	quality	assurance,	Untrusted
Developers	with	Independent	Quality	Assurance

with	trusted	developers	with	no	peer	review,	Trusted	Developers	with	No

Peer	Review-Trusted	Developers	with	No	Peer	Review

Dia,	Documenting	Your	Process

diff	command,	Reviewing	the	Proposed	Changes

diff	program,	Dispersed	Contributor	Model

DigitalOcean,	Installing	GitLab

dir	shell	command,	Command	Reference

directed	acyclic	graph	(DAG),	Mainline	Branch	Development

discreet	repositories,	Project	Governance	for	Nonpublic	Projects

dispersed	contributor	access	model,	Dispersed	Contributor	Model-
Dispersed	Contributor	Model

distributed	version	control,	Command	and	Control

distribution	licenses,	Distribution	Licenses

Docker,	The	People	on	Your	Team

documentation

in	Bitbucket	wiki	pages,	Project	Documentation	in	Wiki	Pages-Project
Documentation	in	Wiki	Pages

of	encoded	decisions,	Documenting	Encoded	Decisions

of	workflow	process,	Documenting	Your	Process

README	file	for,	Document	the	Project	in	a	README

Driessen,	Vincent,	Scheduled	Deployment

Drupal,	Leadership	Models

Drupal	Code	of	Conduct,	Code	of	Conduct

Drupal	Project	module,	Documenting	Encoded	Decisions

Dymitruk,	Adam,	Branch-Per-Feature	Deployment

E
Eaton,	Jeff,	Using	stash	to	Work	on	an	Emergency	Bug	Fix

empathy,	cultivating,	Cultivating	Empathy

encoded	decisions,	documentation	of,	Documenting	Encoded	Decisions

Etsy,	Mainline	Branch	Development

experimental	work,	branches	for,	Using	Branches	for	Experimental	Work

F
Facebook,	Mainline	Branch	Development

Farley,	David,	Mainline	Branch	Development

Fedora,	upgrading	Git	on,	Upgrading	on	*nix	Systems

feedback	(review	process),	Preparing	Your	Feedback

fetch	command,	Teamwork	in	Terms	of	Git,	Collaborating	on	Nonsoftware
Projects,	Uploading	the	Project	Repository,	Consumers,	Reviewing	Work,
Trusted	Developers	with	No	Peer	Review

files,	restoring,	Restoring	Files

filter-branch	command,	Really	Removing	History,	Command	Reference

Flickr,	Code	of	Conduct,	Mainline	Branch	Development

forks/forking,	Teamwork	in	Terms	of	Git

butter	tart	recipe	example,	Teamwork	in	Terms	of	Git,	Butter	Tarts-van
der	Heyden	Butter	Tarts

for	public	projects	on	GitHub,	Forking	a	Project

Git	vs.	GitHub	terminology,	Collocated	Contributor	Repositories	Model

issue	tracking,	Tracking	Changes	with	Issues

per-developer	(Bitbucket),	Per-Developer	Forks

Free	Libre	Open	Source	Software	(FLOSS),	Copyright	and	Contributor
Agreements

freelancers,	copyright	and,	Copyright	and	Contributor	Agreements

G
Gamestorming	(Gray,	Brown,	Macanufo),	Meeting	as	a	Team

gc	command

--prune,	Command	Reference

Gerrit,	Software	for	Code	Reviews

Git

adding	color	to,	Adding	Color

command	prompt	customization,	Customize	Your	Command	Prompt

commit	message	editor	changes,	Changing	the	Commit	Message	Editor

configuring,	Configuring	Git-Line	Endings

configuring	to	ignore	system	files,	Ignoring	System	Files

converting	an	existing	project	to,	Converting	an	Existing	Project	to	Git-
Converting	an	Existing	Project	to	Git

finding	command	line	for,	Finding	the	Command	Line

GitHub	terminology	vs.,	Collocated	Contributor	Repositories	Model

installers	for,	Installing	Git	and	Upgrading

installing	latest	version	of,	Installing	the	Latest	Version	of	Git-OS	X
Gotchas

line	ending	configuration,	Line	Endings

OS	X	installation	issues,	OS	X	Gotchas

teamwork	in	terms	of,	Teamwork	in	Terms	of	Git-Summary

upgrading	on	*nix	systems,	Upgrading	on	*nix	Systems

user	name/email	configuration,	Identifying	Yourself

git	command	(see	individual	command	names)

git	commands,	summary,	Command	Reference,	Command	Reference

Git	for	Knitters,	Teamwork	in	Terms	of	Git

Git	for	Teams,	Working	Locally

Git	Fundamentals	for	Web	Developers	(Mitchell),	Publishing	Work

Git	hosting

open	source	projects	on	GitHub,	Open	Source	Projects	on	GitHub-

Summary

private	team	work	with	Bitbucket,	Private	Team	Work	on	Bitbucket-
Summary

self-hosted	collaboration	with	GitLab,	Self-Hosted	Collaboration	with
GitLab-Summary

git-imerge,	Resolving	Merge	and	Rebase	Conflicts

GitFlow

and	sprint-based	workflow,	Sprint-Based	Workflow

for	release	schedule	workflow,	Releasing	Software	According	to	Schedule

scheduled	deployment	branching	with,	Scheduled	Deployment-Scheduled
Deployment

GitHub

account	creation	on,	Creating	an	Account-SSH	Keys

contributing	to	projects,	Contributing	to	Projects-Initiating	a	Pull
Request

downloading	repository	snapshots,	Downloading	Repository	Snapshots

forking,	Forking	a	Project

getting	started	on,	Getting	Started	on	GitHub-Updating	Your	Local
Repository

Git	terminology	vs.,	Collocated	Contributor	Repositories	Model

granting	co-maintainership,	Granting	Co-Maintainership-Granting	Co-
Maintainership

open	source	projects	on,	Open	Source	Projects	on	GitHub-Summary

organization	creating	on,	Creating	an	Organization

personal	repositories	on,	Personal	Repositories-Updating	Your	Local
Repository

public	projects	on,	Using	Public	Projects	on	GitHub-Working	Locally

pull	request	initiation,	Initiating	a	Pull	Request-Initiating	a	Pull	Request

pull	requests	with	merge	conflicts,	Pull	Requests	with	Merge	Conflicts

repository	creation	for,	Creating	a	Project	Repository

reviewing/accepting	pull	requests,	Reviewing	and	Accepting	Pull
Requests

running	your	own	project,	Running	Your	Own	Project-Pull	Requests	with
Merge	Conflicts

SSH	keys	for,	SSH	Keys

tracking	changes	with	issues,	Tracking	Changes	with	Issues-Tracking
Changes	with	Issues

working	locally,	Working	Locally-Working	Locally

GitHub	Flow,	Branch-Per-Feature	Deployment

gitk	command,	Reviewing	the	Proposed	Changes

GitLab,	Issue-Based	Version	Control

access	control,	Access	Control-Limiting	Access	with	Protected	Branches

adding	people	to	groups,	Adding	People	to	Groups-Adding	People	to
Groups

adding	people	to	projects,	Adding	People	to	Projects-Adding	People	to
Projects

adding	projects	to	groups,	Adding	Projects	to	Groups-Adding	Projects	to
Groups

administrative	account	configuration,	Configuring	the	Administrative
Account

administrative	dashboard,	Administrative	Dashboard-Administrative
Dashboard

creating	a	project	with,	Creating	a	Project

creating	user	accounts,	Creating	User	Accounts-Creating	User	Accounts

getting	started	with,	Getting	Started-Administrative	Dashboard

groups,	Groups-Adding	Projects	to	Groups

installing,	Installing	GitLab-Installing	GitLab

limiting	access	with	protected	branches,	Limiting	Access	with	Protected
Branches

limiting	activities	with	project	roles,	Limiting	Activities	with	Project
Roles

milestones,	Milestones

project	visibility,	Project	Visibility

projects,	Projects

self-hosted	collaboration	with,	Self-Hosted	Collaboration	with	GitLab-
Summary

user	accounts	for,	User	Accounts-Adding	People	to	Projects

GitLab	Flow,	State	Branching

Gitorious,	Creating	a	Project

Google,	Creating	a	New	Project,	Creating	User	Accounts

Google	Calendar,	Tracking	Progress,	Copyright	and	Contributor
Agreements

Google	Code,	Creating	a	Project

Google	Docs,	Sprint-Based	Workflow

Google	Hangouts,	Tracking	Progress

GoToMeeting,	Tracking	Progress

governance	(see	project	governance)

governance	models,	Leadership	Models

GPL,	Distribution	Licenses

Gravatar,	Administrative	Dashboard

Gray,	Dave,	Meeting	as	a	Team

H
Hamano,	Junio,	Installing	the	Latest	Version	of	Git

Harmony	Agreements,	Copyright	and	Contributor	Agreements

history

comparative	studies	of	historical	records,	Comparative	Studies	of
Historical	Records-Comparative	Studies	of	Historical	Records

file	ancestry	with	blame	command,	Investigating	File	Ancestry	with
blame-Investigating	File	Ancestry	with	blame

reenactment	with	bisect	command,	Historical	Reenactment	with	bisect-
Historical	Reenactment	with	bisect

removing	completely,	Really	Removing	History-Really	Removing	History

reviewing,	Reviewing	History-Reviewing	History

rewriting,	Constructing	the	Perfect	Commit

history	undoing	shared	(see	shared	history,	undoing)

Homebrew,	Upgrading	on	*nix	Systems

hotfixes

branch	creation	for,	Sprint-Based	Workflow

post-launch,	Post-Launch	Hotfix

prioritizing,	Scheduled	Deployment,	Sprint-Based	Workflow

Humanitarian	ID	Code	of	Conduct,	Code	of	Conduct

Humble,	Jez,	Mainline	Branch	Development

I
ideation	meetings,	Meeting	as	a	Team

init	command,	Command	Reference

Inkscape,	Documenting	Your	Process

integration	branches,	State	Branching

interactive	rebasing,	Altering	Commits	with	Interactive	Rebasing-Altering
Commits	with	Interactive	Rebasing

issue	tracking

Bitbucket,	Tracking	Your	Changes	with	Issues-Tracking	Your	Changes
with	Issues

GitHub,	Tracking	Changes	with	Issues-Tracking	Changes	with	Issues

issue-based	version	control,	Issue-Based	Version	Control-Issue-Based
Version	Control

J
Jenkins	instance,	Trusted	Developers	with	Peer	Review

JIRA,	Documenting	Encoded	Decisions,	Private	Team	Work	on	Bitbucket,
Administrative	Dashboard

jQuery,	Distribution	Licenses

junior	developers,	benefits	to,	Types	of	Reviewers

junior	reviewers,	benefits	to,	Types	of	Reviewers

K
Kaizens,	Evolving	Workflows

Kaleidoscope,	Reviewing	the	Proposed	Changes

kickoff	meetings,	Kickoff

L
LDAP,	Creating	User	Accounts

Lead	and	Succeed	in	4	Different	Dimensions	(program),	Thinking	Strategies

leadership	models,	Leadership	Models

leadership	training	programs,	Thinking	Strategies

licensing,	Document	the	Project	in	a	README

line	endings,	Git	configuration	for,	Line	Endings

LinkedIn,	Software	for	Code	Reviews

Linux,	Distribution	Licenses

finding	Git	command	line	with,	Linux

SSH	key	creation	on,	Linux,	OS	X,	and	Unix-variants

SSH	key	retrieval	on,	Retrieving	Your	Public	SSH	Key

upgrading	Git	on,	Upgrading	on	*nix	Systems

list	parameter,	Listing	Branches

local	repositories

connecting	to	personal	GitHub	repository,	Connecting	a	local	repository

converting	an	existing	project	to	Git,	Converting	an	Existing	Project	to
Git-Converting	an	Existing	Project	to	Git

creating,	for	teams	of	one,	Creating	Local	Repositories-Reviewing	History

downloading	an	existing	project	to,	Cloning	an	Existing	Project

initializing	an	empty	project	on,	Initializing	an	Empty	Project

reviewing	project	history,	Reviewing	History-Reviewing	History

log	command,	Command	Reference,	Command	Reference

--graph,	Command	Reference

--oneline,	Command	Reference,	Command	Reference

ls	-a	shell	command,	Command	Reference

Lullabot,	Tracking	Progress

M
Macanufo

James,	Meeting	as	a	Team

mainline	branch	method,	Mainline	Branch	Development-Mainline	Branch
Development

maint	(maintenance)	integration	branch,	State	Branching

maintainers

developers	as,	Maintainers-Maintainers

granting	co-maintainership,	Granting	Co-Maintainership-Granting	Co-
Maintainership

Managing	Chaos	(Welchman),	Leadership	Models

master	integration	branch,	State	Branching

meetings

and	empathy,	Cultivating	Empathy

for	teams,	Meeting	as	a	Team-Wrap-Up	and	Retrospectives

for	tracking	progress,	Tracking	Progress

kickoff,	Kickoff

wrap-up/retrospective,	Wrap-Up	and	Retrospectives

mentoring,	The	People	on	Your	Team

merge	command,	Teamwork	in	Terms	of	Git,	Summary,	Command
Reference

merge	conflicts

mid-rebase	conflict,	Mid-Rebase	Conflict	from	a	Single	File	Merge
Conflict-Mid-Rebase	Conflict	from	a	Single	File	Merge	Conflict

pull	requests	with,	Pull	Requests	with	Merge	Conflicts

resolving,	Resolving	Merge	and	Rebase	Conflicts-Resolving	Merge	and
Rebase	Conflicts

merge	requests,	Collocated	Contributor	Repositories	Model,	Collocated
Contributor	Repositories	Model

merge,	rebase	vs.,	Keeping	Branches	Up	to	Date

Microsoft,	Project	Governance

mistakes,	undoing	(see	rollbacks)

MIT	License,	Distribution	Licenses

Mitchell,	Lorna,	Publishing	Work

mkdir	shell	command,	Command	Reference

N
next	integration	branch,	State	Branching

nonpublic	projects	(Bitbucket),	Project	Governance	for	Nonpublic	Projects

NuGet,	Distribution	Licenses

O
OmniAuth,	Creating	User	Accounts

Omnibus,	Installing	GitLab

OmniGraffle,	Documenting	Your	Process

one-on-one	meetings,	Tracking	Progress

open	source	projects,	GitHub,	Open	Source	Projects	on	GitHub-Summary

account	creation	on,	Creating	an	Account-SSH	Keys

and	personal	repositories,	Personal	Repositories-Updating	Your	Local
Repository

contributing	to	projects,	Contributing	to	Projects-Initiating	a	Pull
Request

downloading	repository	snapshots,	Downloading	Repository	Snapshots

forking,	Forking	a	Project

getting	started	on,	Getting	Started	on	GitHub-Updating	Your	Local
Repository

granting	co-maintainership,	Granting	Co-Maintainership-Granting	Co-
Maintainership

organization	creating	on,	Creating	an	Organization

public	projects	on,	Using	Public	Projects	on	GitHub-Working	Locally

pull	request	initiation,	Initiating	a	Pull	Request-Initiating	a	Pull	Request

pull	requests	with	merge	conflicts,	Pull	Requests	with	Merge	Conflicts

repository	creation	for,	Creating	a	Project	Repository

reviewing/accepting	pull	requests,	Reviewing	and	Accepting	Pull
Requests

running	your	own	project,	Running	Your	Own	Project-Pull	Requests	with
Merge	Conflicts

SSH	keys	for,	SSH	Keys

tracking	changes	with	issues,	Tracking	Changes	with	Issues-Tracking
Changes	with	Issues

working	locally,	Working	Locally-Working	Locally

OpenStack,	Software	for	Code	Reviews

operations	teams,	The	People	on	Your	Team

organizations	(GitHub),	Creating	an	Organization

origin	command,	Uploading	the	Project	Repository

OS	X

finding	Git	command	line	with,	OS	X

SSH	key	creation	on,	Linux,	OS	X,	and	Unix-variants

SSH	key	retrieval	on,	Retrieving	Your	Public	SSH	Key

upgrading	Git	on,	Upgrading	on	*nix	Systems

overcategorization,	avoiding,	Ticket	Progression

P
patch	files,	Dispersed	Contributor	Model

patch	parameter,	Adding	Partial	File	Changes	to	a	Repository

Payment	Card	Industry	(PCI),	Project	Governance	for	Nonpublic	Projects

peer	reviews,	The	People	on	Your	Team

defined,	Types	of	Reviewers

trusted	developers,	Trusted	Developers	with	Peer	Review

Pencil,	Documenting	Your	Process

permissions,	establishing,	Establishing	Permissions

personal	repositories,	GitHub,	Personal	Repositories-Updating	Your	Local
Repository

connecting	a	local	repository,	Connecting	a	local	repository

creating	project	on,	Creating	a	project-Creating	a	project

importing	a	repository,	Importing	a	repository

making	quick	commits	via	the	Web,	Making	Commits	via	the	Web-
Making	Commits	via	the	Web

publishing	changes	to,	Publishing	changes	to	your	GitHub	repository

updating	local	repository,	Updating	Your	Local	Repository

Pivotal	Tracker,	Documenting	Encoded	Decisions

private	projects	(see	nonpublic	projects)

private	teams	(Bitbucket),	Private	Team	Work	on	Bitbucket-Summary

product	backlog,	Ticket	Progression

Product	Owner	(see	team	composition)

progress,	tracking,	Tracking	Progress

project	deep	dive	meetings,	Tracking	Progress

project	governance,	Project	Governance-Code	of	Conduct

codes	of	conduct,	Code	of	Conduct

copyright	and	contributor	agreements,	Copyright	and	Contributor
Agreements

distribution	licenses,	Distribution	Licenses

for	nonpublic	projects	on	Bitbucket,	Project	Governance	for	Nonpublic
Projects

leadership	models,	Leadership	Models

Project	Management	Committee

PMC,	Leadership	Models

project	setup

creating	new	project,	Creating	a	New	Project

developer	setup,	Setting	Up	the	Developers-Maintainers

documentation	in	README,	Document	the	Project	in	a	README

establishing	permissions,	Establishing	Permissions

for	teams	of	more	than	one,	Setting	Up	the	Project-Document	the	Project

in	a	README

uploading	project	repository,	Uploading	the	Project	Repository-
Uploading	the	Project	Repository

with	Bitbucket,	Project	Setup-Tracking	Your	Changes	with	Issues

protected	branches,	Limiting	Access	with	Protected	Branches

pu	integration	branch,	State	Branching

public	projects,	GitHub,	Using	Public	Projects	on	GitHub-Working	Locally

contributing	to	projects,	Contributing	to	Projects-Initiating	a	Pull
Request

downloading	repository	snapshots,	Downloading	Repository	Snapshots

forking,	Forking	a	Project

granting	co-maintainership,	Granting	Co-Maintainership-Granting	Co-
Maintainership

pull	request	initiation,	Initiating	a	Pull	Request-Initiating	a	Pull	Request

pull	requests	with	merge	conflicts,	Pull	Requests	with	Merge	Conflicts

repository	creation	for,	Creating	a	Project	Repository

reviewing/accepting	pull	requests,	Reviewing	and	Accepting	Pull
Requests

running	your	own	project,	Running	Your	Own	Project-Pull	Requests	with
Merge	Conflicts

tracking	changes	with	issues,	Tracking	Changes	with	Issues-Tracking
Changes	with	Issues

working	locally,	Working	Locally-Working	Locally

public	SSH	key,	retrieving,	Retrieving	Your	Public	SSH	Key

pull	command,	Teamwork	in	Terms	of	Git,	Keeping	Branches	Up	to	Date

pull	request	auto	reviewers,	Extending	Bitbucket	with	Atlassian	Connect

pull	requests

accepting	(Bitbucket),	Accepting	a	Pull	Request

Bitbucket,	Pull	Requests-Accepting	a	Pull	Request,	Submitting	a	Pull
Request

for	public	projects	on	GitHub,	Initiating	a	Pull	Request-Initiating	a	Pull
Request

GitHub	and,	Consumers

reviewing	and	accepting,	Reviewing	and	Accepting	Pull	Requests

with	collocated	contributor	repositories	model,	Collocated	Contributor
Repositories	Model,	Collocated	Contributor	Repositories	Model

with	merge	conflicts,	Pull	Requests	with	Merge	Conflicts

PullReview,	Software	for	Code	Reviews

Puppet,	The	People	on	Your	Team,	Copyright	and	Contributor	Agreements

push

delete	branch,	--delete,	Summary

push	command,	Teamwork	in	Terms	of	Git,	Summary,	Uploading	the
Project	Repository

--set-upstream,	Summary

Q
quality	assurance	(QA)	teams,	The	People	on	Your	Team

quality	assurance	testing,	Types	of	Reviews

R
Rails,	Distribution	Licenses

README	files,	Document	the	Project	in	a	README

reasonable	restraint,	Copyright	and	Contributor	Agreements

rebase	command,	Begin	Rebasing,	Working	with	Commits,	Keeping
Branches	Up	to	Date

--abort,	Mid-Rebase	Conflict	from	a	Single	File	Merge	Conflict

--continue,	Mid-Rebase	Conflict	from	a	Deleted	File,	Command
Reference

--interactive,	Altering	Commits	with	Interactive	Rebasing,	Command
Reference

rebasing,	Updating	Branches,	Rebasing	Step	by	Step-Mid-Rebase	Conflict
from	a	Single	File	Merge	Conflict

altering	commits	with	interactive	rebasing,	Altering	Commits	with
Interactive	Rebasing-Altering	Commits	with	Interactive	Rebasing

beginning,	Begin	Rebasing

mid-rebase	conflict	from	deleted	file,	Mid-Rebase	Conflict	from	a	Deleted
File-Mid-Rebase	Conflict	from	a	Deleted	File

mid-rebase	conflict	from	single	file	merge	conflict,	Mid-Rebase	Conflict
from	a	Single	File	Merge	Conflict-Mid-Rebase	Conflict	from	a	Single	File
Merge	Conflict

Redmine,	Documenting	Encoded	Decisions,	Administrative	Dashboard

reflog	command,	Command	Reference

expire,	Command	Reference

release	schedules

and	ongoing	development,	Ongoing	Development

and	post-launch	hotfix,	Post-Launch	Hotfix

stable	release	publication,	Publishing	a	Stable	Release

workflow	for,	Releasing	Software	According	to	Schedule-Post-Launch
Hotfix

remote	branches,	updating	list	of,	Updating	the	List	of	Remote	Branches

remote	command

--verbose,	Summary

add,	Summary

remote	repositories

branch	maintenance,	Branch	Maintenance

connecting	to,	Connecting	to	Remote	Repositories-Branch	Maintenance

creating	new	projects,	Creating	a	New	Project

pushing	changes	to,	Pushing	Your	Changes

second	remote	connection	for,	Adding	a	Second	Remote	Connection

repositories,	Teamwork	in	Terms	of	Git-Teamwork	in	Terms	of	Git

adding	changes	to,	Adding	Changes	to	a	Repository-Ignoring	Files

adding	partial	file	changes	to,	Adding	Partial	File	Changes	to	a
Repository

branch	maintenance,	Branch	Maintenance

cloning,	Teamwork	in	Terms	of	Git

collocated	contributor	model,	Collocated	Contributor	Repositories
Model-Collocated	Contributor	Repositories	Model

committing	partial	changes	to,	Committing	Partial	Changes

connecting	to	remote,	Connecting	to	Remote	Repositories-Branch
Maintenance

creating,	Creating	a	Project	Repository

creating	new	projects,	Creating	a	New	Project

detailed	commit	messages,	Writing	Extended	Commit	Messages

downloading	snapshots	of,	Downloading	Repository	Snapshots

ignoring	files,	Ignoring	Files

local,	for	teams	of	one,	Creating	Local	Repositories-Reviewing	History

personal,	Personal	Repositories-Updating	Your	Local	Repository

pushing	changes	to,	Pushing	Your	Changes

removing	file	from	stage,	Removing	a	File	from	the	Stage

removing	history	of,	Really	Removing	History-Really	Removing	History

second	remote	connection	for,	Adding	a	Second	Remote	Connection

reset	command,	Restoring	Files,	Combining	Commits	with	Reset-
Combining	Commits	with	Reset,	Command	Reference

--hard	HEAD,	Command	Reference

--merge,	Command	Reference

HEAD,	Summary,	Command	Reference

restoring	files,	Restoring	Files

restraint	of	trade	clause,	Copyright	and	Contributor	Agreements

retrospective	meetings,	Wrap-Up	and	Retrospectives

reverse	engineering,	Copyright	and	Contributor	Agreements

revert	command,	Working	with	Commits,	Reverting	a	Previous	Commit,
Command	Reference

--mainline,	Command	Reference

--no-commit,	Command	Reference

Review	Board	(software),	Software	for	Code	Reviews

review	process,	Ready	for	Review-Summary

applying	proposed	changes,	Applying	the	Proposed	Changes-Reviewing
the	Proposed	Changes

completion	of,	Completing	the	Review

evaluation	submission,	Submitting	Your	Evaluation

feedback	preparation,	Preparing	Your	Feedback

reviews	of	proposed	changes,	Reviewing	the	Issue

software	for	code	reviews,	Software	for	Code	Reviews

types	of	reviewers,	Types	of	Reviewers

types	of	reviews,	Types	of	Reviews

rollbacks,	Rollbacks,	Reverts,	Resets,	and	Rebasing-Summary

altering	commits	with	interactive	rebasing,	Altering	Commits	with

Interactive	Rebasing-Altering	Commits	with	Interactive	Rebasing

amending	commits,	Amending	Commits

best	practices	for,	Best	Practices-Using	Branches	for	Experimental	Work

combining	commits	with	reset,	Combining	Commits	with	Reset-
Combining	Commits	with	Reset

command	reference	for,	Command	Reference-Command	Reference

commits	and,	Working	with	Commits-Unmerging	a	Branch

describing	your	problem,	Describing	Your	Problem-Describing	Your
Problem

locating	lost	work,	An	Overview	of	Locating	Lost	Work-An	Overview	of
Locating	Lost	Work

removing	history	completely,	Really	Removing	History-Really	Removing
History

restoring	files,	Restoring	Files

undoing	shared	history,	Undoing	Shared	History-Unmerging	a	Shared
Branch

unmerging	a	branch,	Unmerging	a	Branch-Unmerging	a	Branch

unmerging	a	shared	branch,	Unmerging	a	Shared	Branch-Unmerging	a
Shared	Branch

using	branches	for	experimental	work,	Using	Branches	for	Experimental
Work

S
scheduled	deployment	branching,	Scheduled	Deployment-Scheduled
Deployment

advantages,	Scheduled	Deployment

disadvantages,	Scheduled	Deployment

Schindelin,	Johannes,	Installing	the	Latest	Version	of	Git

Scrum,	Ticket	Progression

ScrumMaster	(see	team	composition)

Sculpin,	Teamwork	in	Terms	of	Git,	Working	Locally

security	reviews,	The	People	on	Your	Team

self-managing	teams,	The	People	on	Your	Team

semantic	versioning,	State	Branching

senior	developers,	benefits	to,	Types	of	Reviewers

senior	reviewers,	benefits	to,	Types	of	Reviewers

shared	branches,	unmerging,	Unmerging	a	Shared	Branch-Unmerging	a
Shared	Branch

shared	history,	undoing,	Undoing	Shared	History-Unmerging	a	Shared
Branch

reverting	a	previous	commit,	Reverting	a	Previous	Commit

unmerging	a	shared	branch,	Unmerging	a	Shared	Branch-Unmerging	a
Shared	Branch

shared	maintenance	access	model,	Access	Models,	Shared	Maintenance
Model

shell	commands,	Command	Reference

show	command

[commit],	Summary

[tag],	Summary

sidekiq,	Administrative	Dashboard

single	repository,	shared	access	model,	Access	Models

Skype,	Configuring	the	Administrative	Account

social	coding,	Project	Governance	for	Nonpublic	Projects

solo	developers	(see	teams	(one	member))

sprint	demo	meetings,	Tracking	Progress

sprint	planning	meetings,	Tracking	Progress

sprint-based	workflow,	Sprint-Based	Workflow-Sprint-Based	Workflow

sprints,	Mainline	Branch	Development

SSH	keys,	SSH	Keys,	SSH	Keys-Retrieving	Your	Public	SSH	Key

creating	your	own,	Create	Your	Own	SSH	Keys-Windows

retrieving	your	public	key,	Retrieving	Your	Public	SSH	Key

staged	parameter,	Combining	Commits	with	Reset

staging	changes,	Combining	Commits	with	Reset

stand-ups	(see	commitment	meetings)

stash

about,	Teamwork	in	Terms	of	Git

crafter	analogy	for,	Teamwork	in	Terms	of	Git

for	emergency	bug	fixes,	Using	stash	to	Work	on	an	Emergency	Bug	Fix-
Using	stash	to	Work	on	an	Emergency	Bug	Fix

for	side	projects,	Mainline	Branch	Development

state	branching,	State	Branching-State	Branching

advantages,	State	Branching

disadvantages,	State	Branching

status	command,	Command	Reference

Subversion,	Distribution	Licenses,	Access	Models,	Limiting	Access	with
Protected	Branches

system	files,	ignoring,	Ignoring	System	Files

T
tab	completion,	Adding	Changes	to	a	Repository

tag	command,	Summary

tags

for	teams	of	more	than	one,	Working	with	Tags

for	teams	of	one,	Working	with	Tags-Working	with	Tags

working	with,	Working	with	Tags-Working	with	Tags

team	composition

architects,	The	People	on	Your	Team

backend	developers,	The	People	on	Your	Team

business	analysts,	The	People	on	Your	Team

designers,	The	People	on	Your	Team

frontend	developers,	The	People	on	Your	Team

Product	Owner,	The	People	on	Your	Team

project	managers,	The	People	on	Your	Team

ScrumMaster,	The	People	on	Your	Team

teams	(multiple-member),	Teams	of	More	than	One-Summary

and	empathy,	Cultivating	Empathy

creating	new	project,	Creating	a	New	Project

developer	setup	for,	Setting	Up	the	Developers-Maintainers

establishing	permissions,	Establishing	Permissions

for	nonsoftware	projects,	Collaborating	on	Nonsoftware	Projects

kickoff	meetings,	Kickoff

meetings	for,	Meeting	as	a	Team-Wrap-Up	and	Retrospectives

members	of,	The	People	on	Your	Team

participating	in	development,	Participating	in	Development-Publishing
Work

progress-tracking	meetings,	Tracking	Progress

project	setup,	Setting	Up	the	Project-Document	the	Project	in	a
README

sample	workflows	for,	Sample	Workflows-Untrusted	Developers	with
Independent	Quality	Assurance

teamwork	in	terms	of	Git,	Teamwork	in	Terms	of	Git-Summary

thinking	strategies	for,	Thinking	Strategies-Thinking	Strategies

trusted	developers	with	no	peer	review,	Trusted	Developers	with	No	Peer
Review-Trusted	Developers	with	No	Peer	Review

uploading	project	repository,	Uploading	the	Project	Repository-
Uploading	the	Project	Repository

working	in,	Working	in	Teams-Summary

wrap-up/retrospective	meetings,	Wrap-Up	and	Retrospectives

teams	(one-member),	Teams	of	One-Summary

adding	changes	to	a	repository,	Adding	Changes	to	a	Repository-Ignoring
Files

commands	for,	Command	Reference-Command	Reference

connecting	to	remote	repositories,	Connecting	to	Remote	Repositories-
Branch	Maintenance

creating	local	repositories	for,	Creating	Local	Repositories-Reviewing
History

issue-based	version	control,	Issue-Based	Version	Control-Issue-Based
Version	Control

tags	for,	Working	with	Tags-Working	with	Tags

technical	architecture	review,	Types	of	Reviews

technical	review	board	governance	model,	Leadership	Models

testing	process,	The	People	on	Your	Team

testing	teams,	The	People	on	Your	Team

text	editor,	browser-based

for	Bitbucket	files,	Editing	Files	in	Your	Repository-Editing	Files	in	Your
Repository

for	quick	commits,	Making	Commits	via	the	Web-Making	Commits	via
the	Web

thinking	strategies,	Thinking	Strategies-Thinking	Strategies

ticket	progression,	Documenting	Encoded	Decisions

ticket-based	peer	code	review,	Types	of	Reviews

ticketing	systems,	Documenting	Encoded	Decisions

touch	shell	command,	Command	Reference

track	command,	Teamwork	in	Terms	of	Git

tracking	progress,	meetings	for,	Tracking	Progress

true	merges,	Branch	Maintenance

trusted	developers

with	no	peer	review,	Trusted	Developers	with	No	Peer	Review-Trusted
Developers	with	No	Peer	Review

with	peer	review,	Trusted	Developers	with	Peer	Review

Twitter,	Creating	a	New	Project,	Configuring	the	Administrative	Account,
Administrative	Dashboard

Typo3,	Software	for	Code	Reviews

U
Ubuntu

Git	upgrades	with,	Upgrading	on	*nix	Systems

GitLab	and,	Installing	GitLab

Ubuntu	Code	of	Conduct,	Code	of	Conduct

understanding	thinking,	Thinking	Strategies

undo	methods,	Describing	Your	Problem

undoing	(see	rollbacks)

Unfuddle,	Documenting	Encoded	Decisions

Unix

SSH	key	creation	on,	Linux,	OS	X,	and	Unix-variants

upgrading	Git	on,	Upgrading	on	*nix	Systems

unmerging	a	branch,	Unmerging	a	Branch-Unmerging	a	Branch

untracked	changes,	Combining	Commits	with	Reset

untrusted	developers

with	independent	quality	assurance,	Untrusted	Developers	with
Independent	Quality	Assurance

with	QA	gatekeepers,	Untrusted	Developers	with	QA	Gatekeepers

updating	branches,	Updating	Branches-Updating	Branches

upstream	branch,	Working	Locally

upstream	project,	Collocated	Contributor	Repositories	Model

urgent	(term),	Scheduled	Deployment

user	acceptance	testing,	Types	of	Reviews

V
Vagrant,	The	People	on	Your	Team,	Installing	GitLab

vendor	branch,	Working	Locally

Vim

alternatives	to,	Changing	the	Commit	Message	Editor

key	commands	for,	Writing	Extended	Commit	Messages

Virtalbox,	Installing	GitLab

W
web	editor

for	Bitbucket	files,	Editing	Files	in	Your	Repository-Editing	Files	in	Your
Repository

for	quick	commits,	Making	Commits	via	the	Web-Making	Commits	via
the	Web

Welchman,	Lisa,	Leadership	Models

Wiele,	Bob,	Thinking	Strategies

wiki	pages,	Bitbucket,	Project	Documentation	in	Wiki	Pages-Project
Documentation	in	Wiki	Pages

Windows

finding	Git	command	line	with,	Windows

SSH	key	creation	on,	Windows

SSH	key	retrieval	on,	Retrieving	Your	Public	SSH	Key

WordPress,	Distribution	Licenses,	Collocated	Contributor	Repositories
Model

work	for	hire	copyright	arrangements,	Copyright	and	Contributor
Agreements

work,	reviewing,	Reviewing	Work-Merging	Completed	Work

workflow

and	teamwork	in	terms	of	Git,	Teamwork	in	Terms	of	Git-Summary

basic	example,	A	Basic	Workflow-Untrusted	Developers	with	QA
Gatekeepers

branching	strategies,	Branching	Strategies-Summary

command	and	control,	Command	and	Control-Summary

debugging,	Finding	and	Fixing	Bugs-Summary

effective	styles,	Workflows	That	Work-Summary

encoded	decision	documentation,	Documenting	Encoded	Decisions

evolving,	Evolving	Workflows-Documenting	Encoded	Decisions

for	ongoing	development,	Ongoing	Development

for	releasing	software	according	to	schedule,	Releasing	Software
According	to	Schedule-Post-Launch	Hotfix

for	teams	of	more	than	one,	Working	in	Teams-Summary,	Teams	of	More
than	One-Summary

for	teams	of	one,	Teams	of	One-Summary

nonsoftware	projects,	Collaborating	on	Nonsoftware	Projects

ongoing	development,	Ongoing	Development

post-launch	hotfix,	Post-Launch	Hotfix

process	documentation,	Documenting	Your	Process

review	process,	Ready	for	Review-Summary

rollbacks,	Rollbacks,	Reverts,	Resets,	and	Rebasing-Summary

sprint-based,	Sprint-Based	Workflow-Sprint-Based	Workflow

stable	release	publication,	Publishing	a	Stable	Release

ticket	progression,	Documenting	Encoded	Decisions

trusted	developers	with	peer	review,	Trusted	Developers	with	Peer
Review

untrusted	developers	with	QA	gatekeepers,	Untrusted	Developers	with
QA	Gatekeepers

working	branches,	Comparative	Studies	of	Historical	Records

wrap-up	meetings,	Wrap-Up	and	Retrospectives

write	access,	Collocated	Contributor	Repositories	Model

Y
Yelp,	Software	for	Code	Reviews

Z
zipped	packages,	clones	vs.,	Consumers

About	the	Author
Emma	Jane	Hogbin	Westby	has	been	developing	websites	since	1996—
initially	as	a	developer,	and	now	as	a	team	leader.	She	has	been	teaching	web-
related	technologies	since	2002	and	has	delivered	over	100	conference
presentations,	courses,	and	workshops	around	the	world	on	frontend	web
development,	accessibility	standards,	distributed	version	control,	virtualization,
and	change	management.	She	has	previously	authored	two	books	on	web
development.

Emma	encourages	nontraditional	participation	in	technology	through	craft,	and
is	an	amateur	beekeeper.	You	can	follow	her	on	Twitter	at	@emmajanehw.

https://twitter.com/emmajanehw

Colophon
The	animals	on	the	cover	of	Git	for	Teams	are	the	pied	wagtail	(Motacilla	alba),
the	grey	wagtail	(Motacilla	cinerea),	and	the	yellow	wagtail	(Motacilla	flava).

The	genus	name	Motacilla	means	“moving	tail,”	and	as	their	common	name
suggests,	these	small,	energetic	birds	are	known	for	fanning	their	long	tails	up
and	down,	though	the	reasons	for	this	behavior	are	not	certain.	On	average,	these
birds	measure	6	inches	long	and	weigh	up	to	.8	ounces.

The	wagtail	feeds	on	small	insects	and	occasionally	forages	near	groups	of	cattle
in	order	to	capture	the	insects	they	disturb.	It	also	nests	on	the	ground,	laying	4–
7	eggs	at	a	time.

Wagtails	are	widely	distributed,	breeding	throughout	Europe	and	Asia	and
sometimes	migrating	to	tropical	areas	of	Africa.	They	favor	open	country,	such
as	farmlands	and	grasslands.	However,	all	three	species	have	suffered	severe
declines	in	recent	years,	possibly	due	to	changes	in	agriculture.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	Wood’s	Illustrated	Natural	History.	The	cover	fonts	are
URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the
heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s
Ubuntu	Mono.

http://animals.oreilly.com

	Foreword
	Foreword
	Preface
	Acknowledgments

	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	I. Defining Your Workflow
	1. Working in Teams
	The People on Your Team
	Thinking Strategies
	Meeting as a Team
	Kickoff
	Tracking Progress
	Cultivating Empathy
	Wrap-Up and Retrospectives

	Teamwork in Terms of Git
	Summary

	2. Command and Control
	Project Governance
	Copyright and Contributor Agreements
	Distribution Licenses
	Leadership Models
	Code of Conduct

	Access Models
	Dispersed Contributor Model
	Collocated Contributor Repositories Model
	Shared Maintenance Model
	Custom Access Models

	Summary

	3. Branching Strategies
	Understanding Branches
	Choosing a Convention
	Conventions
	Mainline Branch Development
	Branch-Per-Feature Deployment
	State Branching
	Scheduled Deployment

	Updating Branches
	Summary

	4. Workflows That Work
	Evolving Workflows
	Documenting Your Process
	Documenting Encoded Decisions

	Ticket Progression
	A Basic Workflow
	Trusted Developers with Peer Review
	Untrusted Developers with QA Gatekeepers

	Releasing Software According to Schedule
	Publishing a Stable Release
	Ongoing Development
	Post-Launch Hotfix

	Collaborating on Nonsoftware Projects
	Summary

	II. Applying the Commands to Your Workflow
	5. Teams of One
	Issue-Based Version Control
	Creating Local Repositories
	Cloning an Existing Project
	Converting an Existing Project to Git
	Initializing an Empty Project
	Reviewing History

	Working with Branches
	Listing Branches
	Updating the List of Remote Branches
	Using a Different Branch
	Creating New Branches

	Adding Changes to a Repository
	Adding Partial File Changes to a Repository
	Committing Partial Changes
	Removing a File from the Stage
	Writing Extended Commit Messages
	Ignoring Files

	Working with Tags
	Connecting to Remote Repositories
	Creating a New Project
	Adding a Second Remote Connection
	Pushing Your Changes
	Branch Maintenance

	Command Reference
	Summary

	6. Rollbacks, Reverts, Resets, and Rebasing
	Best Practices
	Describing Your Problem
	Using Branches for Experimental Work

	Rebasing Step by Step
	Begin Rebasing
	Mid-Rebase Conflict from a Deleted File
	Mid-Rebase Conflict from a Single File Merge Conflict

	An Overview of Locating Lost Work
	Restoring Files
	Working with Commits
	Amending Commits
	Combining Commits with Reset
	Altering Commits with Interactive Rebasing
	Unmerging a Branch

	Undoing Shared History
	Reverting a Previous Commit
	Unmerging a Shared Branch

	Really Removing History
	Command Reference
	Summary

	7. Teams of More than One
	Setting Up the Project
	Creating a New Project
	Establishing Permissions
	Uploading the Project Repository
	Document the Project in a README

	Setting Up the Developers
	Consumers
	Contributors
	Maintainers

	Participating in Development
	Constructing the Perfect Commit
	Keeping Branches Up to Date
	Reviewing Work
	Merging Completed Work
	Resolving Merge and Rebase Conflicts
	Publishing Work

	Sample Workflows
	Sprint-Based Workflow
	Trusted Developers with No Peer Review
	Untrusted Developers with Independent Quality Assurance

	Summary

	8. Ready for Review
	Types of Reviews
	Types of Reviewers
	Software for Code Reviews
	Reviewing the Issue
	Applying the Proposed Changes
	Shared Repository Setup
	Forked Repository Setup
	Checking Out the Proposed Branch

	Reviewing the Proposed Changes
	Preparing Your Feedback
	Submitting Your Evaluation
	Completing the Review
	Summary

	9. Finding and Fixing Bugs
	Using stash to Work on an Emergency Bug Fix
	Comparative Studies of Historical Records
	Investigating File Ancestry with blame
	Historical Reenactment with bisect
	Summary

	III. Git Hosting
	10. Open Source Projects on GitHub
	Getting Started on GitHub
	Creating an Account
	Creating an Organization
	Personal Repositories

	Using Public Projects on GitHub
	Downloading Repository Snapshots
	Working Locally

	Contributing to Projects
	Tracking Changes with Issues
	Forking a Project
	Initiating a Pull Request

	Running Your Own Project
	Creating a Project Repository
	Granting Co-Maintainership
	Reviewing and Accepting Pull Requests
	Pull Requests with Merge Conflicts

	Summary

	11. Private Team Work on Bitbucket
	Project Governance for Nonpublic Projects
	Getting Started
	Creating an Account
	Creating a Private Project from the Welcome Screen
	Creating a Private Project from the Dashboard
	Configuring Your New Repository
	Exploring Your Project
	Editing Files in Your Repository

	Project Setup
	Project Documentation in Wiki Pages
	Tracking Your Changes with Issues

	Access Control
	Shared Access
	Per-Developer Forks
	Limiting Access with Protected Branches

	Pull Requests
	Submitting a Pull Request
	Accepting a Pull Request

	Extending Bitbucket with Atlassian Connect
	Summary

	12. Self-Hosted Collaboration with GitLab
	Getting Started
	Installing GitLab
	Configuring the Administrative Account
	Administrative Dashboard

	Projects
	Creating a Project

	User Accounts
	Creating User Accounts
	Adding People to Projects

	Groups
	Adding People to Groups
	Adding Projects to Groups

	Access Control
	Project Visibility
	Limiting Activities with Project Roles
	Limiting Access with Protected Branches

	Milestones
	Summary

	A. Butter Tarts
	Austin Butter Tarts
	van der Heyden Butter Tarts

	B. Installing the Latest Version of Git
	Installing Git and Upgrading
	Finding the Command Line
	OS X
	Linux
	Windows

	Upgrading on *nix Systems
	OS X Gotchas
	Accessing Git Help at the Command Line

	C. Configuring Git
	Identifying Yourself
	Changing the Commit Message Editor
	Adding Color
	Customize Your Command Prompt
	Ignoring System Files
	Line Endings
	Fixing Line Endings

	D. SSH Keys
	Create Your Own SSH Keys
	Linux, OS X, and Unix-variants
	Windows

	Retrieving Your Public SSH Key

	Index

