OREILLY"

A USER-CENTERED APPROACH TO CREATING EFFICIENT
WORKFLOWS IN GIT

Emma Jane Hogbin Westby

Git for Teams

Emma Jane Hogbin Westby

Git for Teams
by Emma Jane Hogbin Westby
Copyright © 2015 Emma Jane Hogbin Westby. All rights reserved.

Foreword text by Mark Atwood, Copyright © 2015 Hewlett-Packard Company.
All rights reserved.

Foreword text by Johannes Shindelin, Copyright © 2015 Johannes Shindelin. All
rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles
(http://safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

m Editor: Rachel Roumeliotis

» Production Editor: Colleen Lobner

m Copyeditor: Kim Cofer

m Proofreader: Jasmine Kwityn

» Indexer: WordCo Indexing Services

m Interior Designer: David Futato

m Cover Designer: Ellie Volckhausen

m [llustrator: Emma Jane Hogbin Westby

m September 2015: First Edition
Revision History for the First Edition
m 2015-08-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491911181 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Git for
Teams, the cover image of wagtails, and related trade dress are trademarks of
O’Reilly Media, Inc.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491911181

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher
and the author disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-49191118-1
LSI

To Joe Shindelar. Thanks, eh?

Foreword

At the time of Git’s inception, the Linux kernel development had used the
proprietary version control system BitKeeper for several years, with great
success. But there was one problem: some Linux developers took exception with
the proprietary nature of their version control system and what ensued was an
epic flame war. Out of this conflict, the free BitKeeper license for Linux
developers was revoked, and Git was born. Linus Torvalds himself took two
weeks off from working on Linux, originally to search for a replacement for
BitKeeper. Failing to find any that met his criteria, he instead wrote the first,
very rudimentary version of what we now call Git: tiny programs cobbled
together with shell scripts, Unix style. An ironic twist is that the distributed
nature of Git was implemented using rsync, a tool which in turn had been
developed by the very Linux developer who triggered the fallout with BitKeeper.

As to myself, I was fascinated by the simplicity of Git’s data structures and got
drawn in early on, first by working on Git’s portability, then on more and more
general improvements, including the invention of the “interactive rebase” (sorry
for the name!), and ultimately maintaining the Windows port of Git. For the past
10 years, I used Git almost daily as a life science researcher, as part of different
teams ranging from being the designated coder in interdisciplinary projects to
leading highly distributed Open Source projects.

My first contact with Emma was at the Git Merge conference in Paris celebrating
Git’s 10th birthday, where she gave a compelling talk titled “Teaching People
Git”. This talk left quite the impression on me, reflecting Emma’s broad skill set
and experience in teaching and project management.

Reading Git for Teams, I learned a lot from its unique perspective that
emphasizes how Git can facilitate teamwork. It sounds so simple, but all those
years, I had been focusing on technical details, and I had been teaching Git in
what must be one of the most frustrating ways: from the ground up. By focusing
on workflows and interactions between roles, Git for Teams guides you, the
reader, to understand your exact needs within your particular projects. Equipped
with this knowledge, you will then learn the fun part: how to use Git to best
support your needs.

Just like her talk, Emma’s writing style is very enjoyable, making this book both
educative and fun to read. It gave me valuable insights into my daily work.

http://bit.ly/teaching-people-git

Whatever your role in your daily work, let this book be more than just a manual.
Explore the different ways teams can work together, the ways a modern version
control system can help moving projects forward, and let it inspire you to
unleash the full power of Git to support you in what you want to do.

Dr. Johannes Schindelin
Git for Windows maintainer
August 2015

Cologne, Germany

Foreword
It is difficult to overstate the importance of version control.

I believe that it is as important as the inventions of the chalkboard and of the
book for multiplying the power of people to create together.

Over my career, I have watched the approach to version control systems in
software development advance from resistance to ubiquity, and have watched the
underlying technology make quantum jumps, each jump accelerating the value
of the work we create together and the speed at which we create it. We are doing
more, faster, with more people.

The latest jump, exemplified by Git, imposes almost no arbitrary constraints on a
workflow. Thus, we have to discover and share the workflows that suit our
people and our organizations, instead of living with past awkward workflows
that suited our machines. Some of those workflows are explored in this book.
I’m sure that more will be discovered in the future.

It is also difficult to overstate the importance and difficulty of education. Not
merely memorizing facts or merely training tasks, but the deeper kind of
education: how to think a certain way, to understand why to think that way, and
how to share those thoughts with someone else.

Using a version control system properly is a way to think: to structure,
remember, and share thoughts, at the level of depth and rigor demanded by the
exhausting craft of writing software. Without that understanding, using Git will
be, at best, “magical incantations”, used by rote, and full of unknown dangers.
With that understanding, Git can become almost invisible, leaving instead the
patterns of working up the intricate spells of symbols that are the magic of
software.

This book will help you to educate yourself, to gain that understanding, and to
do that work.

Mark Atwood
Director of Open Source Engagement, Hewlett-Packard Company August 2015
Seattle, WA

Preface

For nearly two decades, I’ve been working on teams of one or more in a
distributed fashion. My first paid job as a web developer was in the mid-’90s. At
the time, I maintained versions of my files by simply changing the names to
denote a new version. My workspace was littered with files that had unusual
extensions; v4.old-er.bak was an all too common sight. I wasn’t able to easily
track my work. On one project, which was a particularly challenging one for me,
I resorted to the copyediting techniques I used for my essays: I’d print out the
Perl scripts I was working on, and put the pages into a ring binder. I'd then mark
up my scripts with different colors of pen and transcribe the changes back into
my text editor. (I wish I had photos to share.) I tracked versions by flipping
through the binder to find previous versions of the script. I had no idea how to
set up an actual version control system (VCS), but I was obsessive about not
losing good work if a refactoring failed.

When I started working with other developers, either for open source projects or
client work, I was never the first developer on the scene and there was always
some kind of version control in place by the time I got there—typically
Concurrent Versions System (CVS). It wasn’t the easiest thing to use, but
compared to my ring binder of changes, it was definitely more scalable for the
distributed teams that I worked with. Very quickly I came to value the commit
messages, and the ease of being able to review the work others were doing. It
motivated me to watch others commit their work to the repository. I didn’t want
others to think I was slacking off!

Meanwhile, I’d been teaching web development at a couple of different
community colleges. In 2004, I had my first opportunity to teach version control
in a year-long program designed by Bernie Monette, at Humber College. The
class was split into several groups. In the first semester, the students sketched out
a development plan for a website. In the second semester, the teams were mixed
up, and the new teams were asked to build the site described by the previous
team. In the third and final semester, the groups were shuffled again, and the
final task was to do bug fixing and quality assurance on the built site. Each team
was forced to use version control to track their work. The students, who had no

prior programming experience, weren’t thrilled with having to use version
control because they felt it got in the way of doing work. But it also made it
easier because they never accidentally overwrote their classmates’ work. It
taught me a lot about how to motivate people to use a tool that didn’t feel like it
was core to the job at hand.

In the decade since that class, I’ve learned a lot about how to teach version
control, and a lot about best practices in adult education. This book is the
culmination of what I’ve learned about how to work efficiently with others when
using version control. I encourage you throughout the book to do whatever is
best for your team. There are no Git police who will show up at your door and
tell you “you’re doing it wrong.” That said, wherever I can, I explain to you “the
Git way” of doing things so that you have some guidance on where you might
want to start with your team, or what you might want to grow into. Using
“common” ways of working will help you onboard others who’ve previously
used similar techniques.

This book won’t be for everyone. This book is for people who love to plan a
route, and then follow the clearly defined road ahead. My hope is that, if nothing
else, this book helps to fill the gaps that have been missing in Git resources to
date. It’s not so much a manual for the software as a manual for how teams
collaborate. If your team of one (or more) finds bits of this book confusing, I
hope you’ll let me know (emma@gitforteams.com); and if you find it useful, I
hope you’ll let the world know.

Acknowledgments

Several years ago, in a little bar off the side of a graveyard in Prague, Carl
Wiedemann indulged my questions about Git. Thank you, Carl. Your enthusiasm
motivated me to convert my frustration with Git into resources to help others
avoid the painful process I’d experienced when learning Git.

I had the wonderful fortune to work with Joe Shindelar at my first job-job after a
decade of self-employment. Joe, your passion for excellence has raised the bar
for my own work. I am grateful for your patience and leadership. This book was
born out of the conversations we had about leadership, team structures, and the
Git documentation we created for the Drupalize.Me team. Thank you.

mailto:emma@gitforteams.com

O’Reilly found the excellent Christophe Portneuve to serve as one of my tech
reviewers. Christophe, thank you for your patience as I worked through the first
few chapters. Your feedback was invaluable. I am grateful for the conversation
we had at Git Merge, which helped me to clarify the concepts I use in this book
—1I had lofty goals of transforming the way people learn Git. I hope this book
has become a resource you will be proud to have been a part of.

Bernie Monette, Martin Poole, Drew McLelland: you gave me a platform to
refine my understanding of version control through your own projects.

Lorna Jane Mitchell, your cheerleading is tireless. Thank you for sharing your
own work on Git. It has inspired me to raise the bar even higher.

Much of this book was fueled by 200 Degrees Coffee, a Nottingham-based
roaster. My beverage of choice is a flat white served from 200 Degrees Café, or
Divine Coffee at the Galleries of Justice. Thanks for providing an escape and
letting me stay as long as I needed to.

To the O’Reilly family: you have been superb at handling all of my requests (and
missed deadlines). Thank you Rachel, Heather, Robert, Colleen, Brian, Josh,
Rebecca, Kim, and the countless others who worked behind the scenes to make
this book happen.

To the core Git community: thank you for welcoming me with open arms at Git
Merge in 2015. You embraced my rant from the stage about exploring new ways
of teaching Git. You took my suggestions to heart, and made improvements to
the Git experience. I am looking forward to participating more in the wonderful
community you have been quietly nurturing.

Thank you also to my community of reviewers: Diane Tani, Novella Chiechi,
Amy Brown, Blake Winton, Stuart Langridge, Stewart Russell, Dave Hammond,
John Wynstra, Chris Tankersley, Mike Anello, Piotr Sipika, Nancy Deschenes,
Robert Day, Dave Hammond, Sébastien Simard, Tobias Hiep, Nick Gard,
Christopher Maneu, Johannes Schindelin, Edward Thomson, matt j. sorenson,
Douwe Maan, Sytse Sijbrandij, Rob Allen, Steven Pears, Laura Lemay. Your
feedback was invaluable.

To my partner, James Westby: thank you for patiently waiting as I finish just one
last thing. This book would not exist without your support and encouragement.

Introduction

The book takes a people-first approach to version control. I don’t start with a
history of Git; instead, I begin with a 10,000-foot view of how teams can work
together. Then we will circle our way into the commands, ensuring you always
know the why behind the command you’re about to type. Sometimes you can
save your future self time (and confusion) by adopting specific routines or
workflows. These explanations give you a holistic understanding of how your
work today affects your work tomorrow—and hopefully make sense out of the
near-religious insistence by some people on why they use Git the way they do.

Part I will be most useful to managers, technical team leads, chief technology
officers, project managers, and technical project managers who need to outline a
workflow for their team.

Good technology comes from great teams. In Chapter 1, you will learn about
the dynamics of creating a great team. By the end of this chapter, you will be
able to identify roles within a team; plan highly effective meetings; recognize
key phrases from people who are out of sync with what your team needs; and
apply strategies that will help you to cultivate empathy and trust within your
team.

Set the expectations early for the type of project you are running. In
Chapter 2, you will learn about different permissions strategies used to grant and
deny access to a Git repository. Should team members be allowed to save their
work to the repository without a review, or is it more of a trust and be trusted
scenario? Both systems have their merits, and you’ll learn about them in this
chapter.

Make the intentions of your work clear. In Git, you will separate streams of
work with branches. Chapter 3 shows you how to separate each of the ideas your
team is working on through the use of these branches. Of course, you will also
need to know how to bring these disparate pieces of work into a unified piece of
software. This chapter covers some of the more common branching strategies,
including GitFlow.

Write the documentation today that will help you work more efficiently

tomorrow. Chapter 4 is the culmination of all the ideas in Part I. You will learn
how to create your own documentation and walk through the process of creating
and deploying a simple software product.

Part IT will be most useful for developers. This is where (finally!) you will get to
learn how all those Git commands are actually supposed to work. If you’re
impatient and want to get your hands on code, you’ll do well to skip ahead to
Part II and then once you’ve completed it, go back and read Part I.

Ground yourself in practical skills. Chapter 5 covers the basics of distributed
version control. In this chapter you will learn how to create repositories, and
track your changes to files locally through commits, branches, and tags.

Learn to recover from your mistakes. Chapter 6 allows you to explore history
revisionism. This chapter covers how to amend commits, remove commits from
your time line, and rebase your work.

Expand your team to be inclusive of others. Now that you’re a master of
history in your own repository, it’s time to begin collaborating with others.
Chapter 7 will show you how to track remote changes, upload your code to a
shared repository, and update your local repository with the updates from others.

Through peer review, share the glory and the responsibility of a job well
done. In Chapter 8, you will learn about the process for conducting code reviews
with your team. We’ll also cover the commands for a common reviewing
methodology, along with suggestions on how to customize it for your team.

Investigate history; it holds the answer to the problem you’re facing. In
Chapter 9, you will learn some advanced methods to track down bugs using Git.
Don’t be scared, though! The commands we’ll be using are no more difficult
than anything else you’ve done to date.

Finally, Part III gives the how-to for a few of the popular code hosting systems
on the market today. It is aimed at both managers and developers.

Through open collaboration we grow our community. Chapter 10 covers the
mechanics of starting and maintaining an open source project on GitHub.

A team must have a repository of their own if they are to write good code. In
Chapter 11, you will learn how to collaborate on private repositories. This
chapter will be especially useful for those who want to set up a private repository
but have extremely limited funds to pay for private teams on GitHub.

Good fences sometimes do make better neighbors. In Chapter 12, you will
learn how to host your own instance of GitLab, and run projects through it. This
is particularly useful for developers who are inside a firewall and cannot access
public repositories on the Internet.

This book won’t be for everyone. It will be especially frustrating for people who
learn by poking at things and tinkering and exploring. This book, rather, is
written for people who are a little afraid of things that go bump in the night.

Additional resources and larger versions of several of the flowcharts are
available from the book’s companion site.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

http://gitforteams.com

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download
at http://gitforteams.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Git for Teams by Emma Jane
Hogbin Westby (O’Reilly). Copyright 2015 Emma Jane Hogbin Westby, 978-1-
491-91118-1.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business.

http://gitforteams.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise,
government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books
Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
= O’Reilly Media, Inc.

m 1005 Gravenstein Highway North

m Sebastopol, CA 95472

= 800-998-9938 (in the United States or Canada)

= 707-829-0515 (international or local)

= 707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/git-for-teams.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/git-for-teams
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Part |. Defining Your Workflow

It is common to start teaching programming by writing a trivial program that
demonstrates the output of a specific set of commands. This can often leave
adult learners thinking “so what?”, unsure of how to apply the commands to
their particular scenario. This book begins with a 10,000-foot view of how
structuring your workflow in specific ways will impact how your team
collaborates. If you prefer to tinker with the commands, skip this part and start
reading at Part II. Then, as you begin to ask yourself “so what?”, return to the
chapters in this part so that you can see how your day-to-day tasks with Git will
affect future collaborations.

This part of the book will be of most use to those overseeing how work gets
done. These folks are primarily in management roles and may include technical
team leaders, CTOs, managers, project managers, and technical project
managers.

Chapter 1. Working in Teams

I’ve been teaching version control for more than a decade. The largest
percentage of the folks who attend my in-person workshops are dealing with
political issues, not technical ones. The issues vary, of course. Perhaps they are
struggling to get their coworkers to see the light on how important version
control is; perhaps they want to force accountability; or perhaps they have been
nominated by the team to go figure out how to make sense of the mess that’s
become the team’s workflow. No matter what the issue, understanding and
dealing with the underlying social problems first can make learning and using
Git a lot easier.

By the end of this chapter, you will be able to:
m Identify roles within a complete team
m Structure meetings so they have useful outcomes

m Recognize key phrases from people who are working in an opposing state
from what the team should be working on

m Apply strategies to cultivate empathy and trust within your team

You must begin by understanding your team and the requirements for your
software. By beginning from a place of trust and compassion, you will almost
always find it easier to map out the Git commands necessary to accomplish your
goals. By working with a trusting team, you’ll be able to help one another out
when people get stuck with commands (and people will be more honest when
they need help). And when people feel supported, and they understand the
reasons why they need to use specific commands in Git, they will be that much
more likely to make Git work for them, rather than simply committing a few
commands to memory and hoping they’re all right.

The People on Your Team

On small teams you may have one person who performs many roles. It’s
relatively easy to stay in touch with all of the daily activities of everyone on a

small team. On large teams, however, you may have roles segregated into
different departments. Those performing the user acceptance testing for your
code base might never talk to the designers and developers who designed and
built the product that’s being tested. Both types of teams can have their own
challenges: someone who’s being asked to do too much without the right amount
of context is definitely going to miss something, eventually. Having artificial
barriers between teams will always increase tension between them. Fences do
not make good neighbors in the development of code.

Have you heard the expression “begin with the end in mind”? When I build
software, I am always building it for someone. Even if I think really hard, I can’t
think of a product I’ve built that was just me tinkering. I’m not a hacker by
nature. I was drawn to software because of what it could do for others. Every
time I sit down to work on a problem, I want to be making a better experience
for the user. I want to avoid regressions, and I want to keep my users safe. I want
them to feel clever, and not stupid. If there are clients between myself and the
users, | sometimes need to help shape how they think about the problem in order
to accomplish their business goals, while maintaining the integrity of the
experience for the end user. Each time we sit down to work, we should be
starting with a description of a problem we want to solve for a user—Iliterally a
user story.

Next, in test-driven development, you will write the acceptance test so that you
have a definition of how you will know the problem has been solved. Depending
on how these statements are written, they may be used by an automated testing
suite, a quality assurance (QA) team, or a peer reviewer. Working with the
testing team ahead of time to determine the acceptance test makes it much easier
for developers to know what the outcome of their work should be. Usually the
test should be descriptive of the problem to be solved, not prescriptive of the
technology that should be used.

Part of your testing process should include a security review. Larger
organizations are very lucky to have dedicated security specialists. Bring these
experts on as early as you can in the process and get them to teach you how to
write secure code. If you have segregated QA, security, and development teams,
bringing the teams together at the beginning can make the testing process that
much more fun as the developers strive to provide perfect code, and the testing
teams strive to break it.

If you are not responsible for your deployments, bring the operations team on
board as early as you can as well. Ensure your development environment is as
close as it can be to the final production environment. Ideally, you will have
build scripts that can be used to automatically duplicate as much as possible. You
may even choose to work with Docker and/or Vagrant to create an exact replica
of your environment. Work with your operations team to create a configuration
management infrastructure with something like Chef, Puppet, or Ansible.

Moving along the development stack, if you are using open source software, get
to know the community that built the products you will be working with. We
rarely encounter new problems. Someone, somewhere, has probably seen what
you’re dealing with at this moment. Find mentors from within your code
community, and offer to mentor others. Extending your team beyond the walls of
your office building can make scary problems a lot less stressful.

Wherever you can increase collaboration between departments that have been
isolated in larger corporations, you can reduce the time code spends sitting
around doing nothing. Idle code costs you money in several ways: it may be
preventing you from earning more money if it’s a new feature, or it may be
preventing you from not losing money if it’s a bug fix. It’s also getting stale. The
longer code has to wait for a review, the more likely it has deviated from the
main branch of work. To bring the work up to date so that it can be released is an
increasingly difficult task the more it deviates.

Finally, we look inward to our own team. A technical architect will be
responsible for planning how a solution will be implemented. The architecture
decisions should be documented, and shared wherever possible. The architect
may also be part of your coding team. The coding team may be comprised of
frontend and backend developers, a designer, and a project manager. I’ve
occasionally worked with business analysts as well. If you are working in an
Agile environment, you may also have a ScrumMaster and a Product Owner.

I prefer working in an environment where everyone is willing to roll up their
sleeves and pitch in where necessary. Self-managing teams are often filled with
trust and respect for one another. It’s a state that you need to build toward,
though. Consensus-driven development works best for smaller, internal projects,
but that doesn’t mean you can’t do your best to collaborate where possible.
When I’'m managing projects, I like for developers to choose the tickets they’re

http://www.docker.com
http://vagrantup.com
https://www.chef.io/chef/
https://puppetlabs.com/
http://www.ansible.com/home

going to work on. It increases the sense of autonomy, and lets the developers
take a break from specific tasks if they need to. I've also found, however, that
some people actually prefer to have their tickets picked for them.

There is no single right way to structure every team or manage every project.
The trick to a motivated, cohesive team is to respect each of the individuals on
the team and, where possible, to optimize the process to suit their preferences.

Thinking Strategies

Everyone on your team will have a preferred way to work. Different ways of
working can be perfect for different situations. There’s no right way to do things,
and being able to accommodate differences will actually make your team more
robust, if you can share the strategies of what makes each person productive. I
know I’m always looking for little ways to work in a more efficient manner, and
I love to hear about what makes people able to really sink their teeth into a
problem.

Several years ago, I was exposed to a leadership training program, Lead and
Succeed in 4 Dimensions, by Bob Wiele, which described a series of thinking
strategies. This program helped me to identify why I enjoyed some types of
activities so much, while others left me drained. It also taught me a lot about
how to structure meetings and interactions to get what I needed to proceed with
my own work. The system works best if everyone on the team is aware of the
language, but it’s something you can take advantage of without having to
convince others to participate. It breaks thinking into three dimensions: creative
thinking, understanding thinking, and decision thinking. A fourth dimension,
personal spirit, is used to indicate how likely a person is to engage—I think of it
as a volume control, or modifier for those of you who are into role-playing
games.

Individual preferences for different thinking strategies can derail teams quickly.
If I’'m trying to brainstorm how to solve a merge conflict in Git, and you tell me
I shouldn’t have used rebase, we’re at odds in the conversation. I'm trying to use
my “green” thinking to go through a problem, and you’ve just used your “red”
thinking to stop the conversation. Being aware of these preferences can help us
to have stronger collaboration while building new features, more productive

http://onesmartworld.com

code reviews, and overall, a healthier, happier team.

One of the easiest places to introduce the concept of playing into and setting
aside preferences is in meetings that explicitly take advantage of these three
dimensions. Focusing on the outcomes of the meeting can help identify to people
which thinking strategies to employ during the meeting, which can then carry
over into code reviews, and supporting teammates who have procedural
questions about how to use Git, or more general implementation questions about
the product you’re working on together.

Let’s review each of these thinking strategies in a little more detail.

A creative thinker’s greatest asset is the ability to find unpredictable solutions to
problems. Left unchecked, a creative thinker can sometimes spend too much
time thinking about different ways to do something, instead of just committing to
one idea and getting the work done. Creative thinkers:

Envision
To see an alternative future (whether it’s good or bad). This is useful for
long-term strategy work.

Reframe
To pivot a little bit away from the current situation, or to see the current
situation from a different perspective.

Brainstorm

This is useful for muscling through a problem. Brainstorming is almost the
ability to doodle through a problem. It includes a constant action without
self-censorship.

Employ flash of insight

Where brainstorming takes “muscle,” flash of insight thinking happens when
you’re not thinking about the problem. It happens when you’re out for a
walk, or in the shower.

Challenge

To question the status quo. The rebel; the child who points out that the king
is not wearing clothes.

Flow

To ignore distractions and focus wholly on a given task. From this
uninterrupted flow, you are able to get deeper into a problem and understand
it more fully.

You can recognize creative thinkers from their key phrases:
m “Canwetry...”

m “] know we’re done, but what about ...?”

m “OMG! I just had this great idea ...”

= “Have you thought about doing it like this instead?”

By developing creative thinking on your team, you can generate entirely new
ways of approaching problems, allowing you to improve your workflow and
solve bigger problems.

The next type of thinking is understanding thinking. It can be broken into two
sub-categories: understanding information (analytic), and understanding people
(compassion). The analytic thinker’s greatest asset is the ability to see patterns
and bring clarity to a situation. The tech industry tends to attract people who
enjoy working with these thinking strategies. Analytic thinkers:

Scan the situation

Survey the environment to gather as much information as possible.

Clarify
Sharpen the understanding of a situation by gathering information and asking
questions.

Structure
Organize data, people, resources, and processes in meaningful and
systematic ways.

Tune-in

Sense and connect with the emotional dimensions in a situation.

Empathize*

Show compassion for another’s thoughts, emotions, and situations.

Express

Select the appropriate emotional and verbal language to get the true message
across to the receiver.

You can recognize analytic thinkers from their key phrases:
= “So what you’re saying is ...?”

m “Just to clarify ...”

= “Can you tell me how ...?”

m “Is this related to ...?”

= “So I made this spreadsheet ...”

m “That must feel horrible!”

Finally, we have the “buck stops here” thinking strategy: decision thinking.
Someone who favors “red” thinking hates talking around in circles forever. They
want a quick decision so they can move on to the action! Decision-making skills
help teams get to the real root of the problem, and then decide how to proceed. A
decision thinker’s weakest point is lack of patience. They often want to jump
ahead before the creative thinkers have had the necessary time to suggest the
best possible solution, or before a careful analysis has been completed. Decision
thinkers can often be misinterpreted as being negative. They aren’t. Using their
ability to cut through the weeds to find the best solution is invaluable. Decision
thinkers:

Get to the crux

Determine the essence, or most critical part, of a problem.

Conclude

Reach a logical decision, or resolution, about the best way to proceed.

Validate the conclusion
Pose questions to eliminate inferior options and poor quality information in
order to critically assess and ensure the best decision.

Experience

Rely on experience to guide decision making and problem solving.

Values-drive

Rely on personal core beliefs about what is good or bad, right or wrong.

Gut instinct
Rely, not on information, but on a hunch and deep instincts as a guide.
You can recognize decision thinkers from their key phrases:
= “I’m ready to move onto...”
= “No. We’ve already made a decision ...”
m “I don’t know why I think this, but ...”
m “Last time we tried this ...”
m “So I think the real problem is ...”
= “My gut tells me ...”

Meeting as a Team

Nearly my entire career has been spent working on a distributed team where my
coworkers were not in the same office as me. It is a rare treat when people are at
least in the same time zone as me. This has given me some excellent
communication habits that I often take for granted. If you are already working
with a prescribed methodology, you may have an established pattern of meetings
that you use to move your project forward.

Your project, and each of the component parts within the project, should have an
opening sequence, the bulk of the activity, and a wrap-up. This open-engage-
close sequence is also described in great detail in the excellent book
Gamestorming by Dave Gray, Sunni Brown, and James Macanufo (O’Reilly).
It’s also used by teachers in the classroom: a teacher will first tell you what
you’re going to learn, engage you in the learning, and then provide you with a
summary of what you’ve learned.

All the way down to the planning of meetings, you should have this pattern in
mind: start, engage, conclude. This becomes most apparent in meetings. Too
often I see meetings with a general outline of topics, but not the intended
outcome for the meeting. For example, if you are at the beginning of your

http://bit.ly/orm-gamestorming

project, the team might engage in ideation meetings, where your creative
thinkers will be most engaged and productive:

Agenda: Ideation Total time: 45 minutes

m [dentify the crux of the problem (10 minutes)
= Brainstorm solutions (25 minutes)

= Structure ideas (5 minutes)

m [dentify top three ideas to test (5 minutes)

Identifying the outcome for a meeting ahead of time can be as simple as needing
some free-flow time to discuss a problem.

Kickoff

The beginning of a project is a chaotic time, especially if you are bringing
together a new group of people who wouldn’t normally work together. If at all
possible, have a collocated kickoff meeting with everyone present. This can be
incredibly expensive from both a time and money perspective if you are a
distributed team.

FACE-TO-FACE IS BEST

Ideally a kickoff meeting is conducted face-to-face. If this is not possible, try to have people in
as few places as possible, and connected through a video call.

By having everyone in the same place at the same time, you can take advantage
of a shared experience. You can engage in kinetic (motion-based) processing of
the information through whiteboards, flip charts, and sticky notes. There’s
something really gratifying about being able to see your collective decisions,
which helps motivate the team into working on the project.

Tracking Progress

Once the project has begun, you will want to continue meeting with your team
regularly. It is very easy to hide when you are working on a distributed team.
Falling behind can be an embarrassing and often compounding problem. Over-

communicating is a great habit to get into, but that doesn’t mean wasting all of
your time in meetings. A successful team will only meet to achieve very specific
outcomes. I like working in very tiny increments of one-week sprints. It’s very
hard to hide problems with such a small unit of time. It’s not about
micromanaging, though. It’s about trying to achieve a consistent velocity—or
flow. Each of these meetings has a specific project-focused outcome:

Sprint planning

As a project manager, I’ve found there are two types of workers: those who
are ready to jump in and take accountability for the work that is being done,
and those who prefer to have work assigned to them. Those who prefer
having work assigned to them are often looking for help in identifying which
tasks they can succeed at, and which tasks have the highest business value to
be completed in the context of the project as a whole. You may choose to do
your sprint planning as a group, or you may find that sprint planning is less
time wasteful if it is done among a smaller group of client-facing team
members and senior developers.

Commitment

These meetings should happen several times a week at the same time each
day. The outcome of this meeting is a list of “promises” that team members
are making regarding their work. People should not just answer “what are
you working on today?” but “what are you expecting to hand in before the
next time we meet?” This should be a “no shame; no blame” round robin
with each person taking not longer than three minutes for their update.
Larger, specific problems can be discussed in a follow-up meeting. In Scrum
parlance, these commitment meetings are referred to as “stand-ups” and are
conducted with the participants physically standing up. I find the term “stand
up” doesn’t push enough accountability onto a team that isn’t trained in
Scrum. Use whatever term works for your team, but make sure you are
extracting valuable information from the meeting.

Project deep dives

Any problems that need further discussion than the commitment meeting will
allow should have a follow-up deep dive. Ideally your team will use a
calendaring system, such as Google Calendar, where people who need help

http://google.com/calendar

can review the schedules of their coworkers and simply book an available
time to have a follow-up conversation. Generally I have blocked off one or
two deep dive time slots of 45 minutes each week immediately following two
of the 15 minute commitment meetings. Only the affected people need to
attend to the deep dives, although everyone is welcome.

Sprint demos

Once a week, the team should get together to show off their work. During the
demo, each person who completed work should list the ticket number he or
she was working on, and show the outcome of that work. Having this demo
once a week encourages an “always be finishing” culture, which breaks work
into small, doable chunks. This meeting can also be a great opportunity to
see the site with fresh ideas and identify bugs that might need to be
documented for fixing later, as well as discuss any necessary refinements to
the process for the upcoming work sprint. Depending on the cohesion of the
team, and the level of communication throughout the week, you may find
these meetings to be unnecessary. If, however, you are seeing an increase in
incomplete features passing through code review, or you find great work
going unrecognized, or you find your team isn’t reaching out for help often
enough, it may be appropriate to introduce weekly demos to your team.
Google Hangouts and GoToMeeting work well for this type of meeting.

Sprint retrospectives

At the end of each sprint, you should assemble with your team to discuss the
process of working together. Identify things that are working well, and parts
of the process that could be improved. One set of questions I have seen used
effectively has each participant answer the following prompts about the
project: I wish; I want; I wonder. This meeting should be restricted to the
core team. Its length may vary, but plan to spend about an hour for a small
team.

If you are a distributed team, you may also want to have a few scheduled social
calls. Lullabot, a wholly distributed company of approximately 50 people, adds
the following nonproject calls to its schedule. The aim of these additional
meetings is to develop a greater empathy between staff members:

Company-wide stand-ups

http://www.google.com/+/learnmore/hangouts
http://gotomeeting.com
http://lullabot.com

A weekly one-hour call where a lottery of staff members are given up to two
minutes each to talk about what’s happening in their personal and work life.
When the company was smaller, each person was asked to speak on this call.
As the company grew in size, the lottery system was implemented and the
one-on-one calls were added.

One-on-one

A lottery system where two to three company members are given the time to
talk, in a facilitated space, about the life, the universe, and everything.

For the most part, these calls are conducted over a voice-only line, which also
allows staff to use the call time to multitask (loading the dishwasher; or even
time outdoors for those with good cell phone service).

Cultivating Empathy

When you are working in a distributed team, it becomes much easier to think of
people on your code team as “resources” and not as human beings. It takes a
very conscious effort to cultivate relationships and to develop trust among the
team. A team that is able to trust one another, that is not fearful, is a team that
will be able to play more with ideas, and will have greater capacity for finding
appropriate and creative solutions to tough problems.

The first step to improving the empathy on your team is to care just enough
about the people you work with. You don’t need to become everyone’s therapist,
but taking the time to talk to people about nonwork things is a good investment
of your time. If you are perceived as being a caring person, people will also like
you more, which will improve the trust between you and the other person. As a
technical project manager, I’ve often been asked to lend an ear to someone as
they talk through a problem. My naive understanding of the problem as they
bring me up to speed can force the focus back onto the basics, where the solution
often lies. But those conversations are rare with a new team—I must first earn
the trust of the individuals on the team (that I won’t judge if they don’t know the
answer; and that I can help to focus attention instead of just typing while they
talk).

There are a few key tips to caring “just enough”:

Collect stories

Ask people questions about what’s happening in their life; about interesting
challenges they’re working on; about what they’re enjoying (or hating) about
the project you’re working on together. This isn’t a gossip session! This is
about connecting with the people you’re speaking with about their lives.

Listen with intention

When you talk with people, listen wholly. Do not multitask. Listen to what
the person is saying, and listen completely. Do not cut in, unless you are
confused and need to clarify. Some people are natural storytellers and have
the capacity to go on. And on. For these folks, you might want to schedule a
time so that you have a predetermined finishing point.

Refer back

If someone tells you about their life, circle back with them to see how that
story has progressed. Is their daughter still teething? How’s that cold doing;
feeling better today?

I like to think of this list as “Empathy for Beginners”. Everyone can, and should,
manage this small amount of connection with the people they’re working with.

Wrap-Up and Retrospectives

These meetings can be a prime time to talk about what worked, and what can be
refined. They should also be used to clean up any templates that have been used
during the project to make them reusable in future projects. The closing activity
for a period of work should always be a no-shame, no-blame event where people
are able to talk about things that didn’t go well. Only very rarely do I regret my
decisions as a project manager. I rely on my team to help me to make the best
possible decision with the available information. So in retrospect, I find it quite
easy to avoid the “shoulda coulda” temptation. What I do try to do, though, is to
identify the patterns to watch out for in the future. In other words, to discover
ways we could have altered what we asked in meetings to get a different set of
information available to us (which might have caused us to make better
decisions for that type of project in the future).

From a version control perspective, the end of the project is also a great
opportunity to find your favorite tickets and document the characteristics of what
made them excellent. Perhaps there was a new way of structuring the

http://gitforteams.com/resources/cultivating-empathy.html

information that you’d like to be able to reuse. Take a peek in your Git
repository as well, and look for especially good commit messages that you can
have as examples in your documentation for future projects.

Teamwork in Terms of Git

If you are absolutely brand new to distributed version control, there is a set of
terms you will see throughout the rest of the book. These terms are easiest to
understand in the context of a simple developer workflow.

Each developer has a local copy of a repository. This is, at its core, a standalone
copy of the history of changes made in the project. In order to share changes,
developers will typically publish a copy of the repository to a centralized code
hosting system, such as GitHub. Although, as you will see later in this chapter,
there are other ways to share code.

From the central copy of the repository, developers will create a copy of the
repository that they can make changes to. In Git parlance, this process is referred
to as creating a clone, although this process can also be referred to as forking.

When cloning a repository, software developers may choose to make their copy
of the project private or public. A private repository makes a quiet decision to
not encourage people to look directly at this copy of the repository, and instead
only look to the main project for officially accepted changes. A public copy of a
developer’s repository, on the other hand, is available for individuals to
contribute to directly. This is a more open approach to software development,
but may cause confusion about which copy of a repository ought to be the
starting point.

It’s only through project governance that one repository for a project is decided
to be the most important version. This is because every repository can accept
changes, and share its changes with others. The relationships between projects
are not fixed in stone. You can create a web of relationships between different
copies of the repositories, or a more linear chain. Generally, though, the official
version of a software product is referred to as being upstream of the current
repository. For example, my blog is created with Sculpin. I cloned the official
release of the software and make changes directly to the repository to write blog
posts. If I wanted to incorporate the latest changes to the software, I would be

https://getsculpin.com

incorporating the upstream changes.

THE BUTTER TART RECIPE WAS FORKED

For long-time open source software developers, the term fork is loaded with the frustrations of
a split community where a group of developers decided to “fork the project” and take it in a
different direction. Forks are simply a divergence, like a path in the woods, or like my Great
Granny Austin’s butter tart recipe. Each branch on a forked path leads in a different direction.
Or, in the case of the butter tarts, the addition or omission of currants. You can read my
family’s version of a forked recipe in Appendix A.

Within a single repository, I can store different versions of the project. These in-
repository changes are tracked via branches. To switch from my current branch
to another one, I will check out the branch I want to switch to. (In my head I say,
“This is really cool! Check! It! Out!”) Before switching, Git will force me to
deal with the uncommitted changes by either committing them, stashing them, or
discarding them. The commit process will permanently store my changes to the
repository, whereas stash will temporarily shelve the changes, allowing me to
pull them off the shelf and reapply them later.

A CRAFTER’S STASH

Kanitters, quilters, and other fiber artists will often refer to having a stash of yarn or fabric.
When starting a new project, we might “shop the stash” instead of going to the store. Those of
us who have a lot of stashed supplies may talk about having “achieved SABLE” (Stash
Amassed Beyond Life Expectancy). I think this analogy works well for Git’s stash, and just
like in crafting, I recommend pruning the stash regularly to look for moth damage. If you are a
knitter, you may enjoy Git for Knitters.

The process of incorporating and publishing changes uses the following set of
commands. I pull my changes from the remote repository to automatically
incorporate them into the repository. This procedure fetches the new changes and
then merges them into the tracked copy of the local branch. At any given time, I
work on a local branch within my repository. If I want to share my changes with
other developers, I commit my work to the repository, and then push my branch
to the remote repository.

https://github.com/gitforknitters/gitforknitters

Summary

One of my favorite things to do is to work with a broken-down, burnt-out team,
to help them find a new way of working together in a fun and creative way. It’s
not always easy, because broken teams always have at least some degree of
mistrust. Sometimes there are tears. But the rewards are huge when it can come
together:

m A trusting, empathetic team is more likely to help its coworkers with the
specific Git commands necessary to get the job done.

m Preferences for different thinking strategies can derail progress. Ensuring the
right strategies are being used at the right time can reduce friction, and make
work faster and more fun.

» By having transparency around your work, and by including relevant
stakeholders at key points, you may be able to gain faster deployments by
reducing the time needed to test code, and by reducing the number of bugs
found.

In the next chapter, you will begin to sketch out the governance for your project
repositories.

Chapter 2. Command and Control

By its very definition, distributed version control eschews centralized control.
There are no fixed rules built into Git that will help you to control access to your
code—Git is, after all, just a simple content tracker. This can be a real turnoff for
some people who are accustomed to version control systems that double as
gatekeepers and access control managers. This lack of centralized access
controls doesn’t mean your project suddenly turns into anarchy.

In “Project Governance”, you will learn about:
m Authorship, copyright, and distribution licenses

m [eadership models, which can set the tone for how contributions are made to
your project

m Codes of Conduct, which establish firm guidelines for expected and
acceptable behavior of contributors

Then, in “Access Models”, you will learn how to structure access to your
project. Three models are described:

m Dispersed contributors
m Collocated contributor repositories
m Shared maintenance

By the end of this chapter, you will be able to confidently establish an access
model for your team that keeps contributors happy, and ensures you are still able
to comply with any reporting requirements from regulatory bodies.

Project Governance

If T were the betting type, I’d wager you picked up this book with the intention
of learning Git. This section talks about legal mumbo jumbo. If you are the
impatient type, you may wonder exactly why I have wasted valuable time on this
esoteric topic. Think of this information as a primer that outlines your rights as
an author, and also your responsiblities as a steward of a project repository. The

content outlined in this section will be slightly more relevant to public, open
source projects. Increasingly, though, government and large enterprises are
working with publicly available code, and choosing to make their own code
open. (Even Microsoft has many open source libraries available today! Go,
Microsoft!)

PRODUCING OPEN SOURCE SOFTWARE

In this chapter I cover the highlights for running a project. Software developers and managers
who are considering running their project as an open source project should also read Karl
Fogel’s Producing Open Source Software. This free book covers everything from publicitly
and handling growth to legal matters and political infrastructure.

In this section, you will learn about the assignment of authorship for a given
piece of code. Later, when you are working with Git, you will see that Git allows
you to track who injected each tiny piece of code into your repository. In
addition to tracking authorship, you can even use Git to “sign off” on new code
that is added to a repository.

Copyright and Contributor Agreements

Copyright is the exclusive, assignable, legal right to use and distribute a piece of
work. Around the world, the details of copyright legislation vary; however, the
general rule is that the person who created a work owns the right to copy and
distribute the work. In open source software, the copyright holders agree to
license their work to a wider community. Popular Free Libre Open Source
Software (FLOSS) distribution licenses are covered in the next section.

If the author was compensated for his or her work product, the copyright will
often be granted to the payer or patron. In the United States, this is referred to as
a work for hire and is almost always the case in employer—employee
relationships, and is typically the case for contract workers. If you’re not sure if
you own the copyright to your work, check your agreement; and if there isn’t a
clause, check your local jurisdiction to see if there is an established precedent. In
the United States, contractors and freelancers don’t fall under the definition
supplied by the Supreme Court, so it isn’t work for hire. The terms are broad,
though. Ideally, update your contract so that it explicitly states who owns the

http://producingoss.com/
http://copyright.gov/circs/circ09.pdf

copyright to your work.

Copyright only covers the specific implementation of a work. You cannot
copyright an idea. You may have heard of reverse engineering, which is one way
of getting around a specific author’s moral claim to a piece of work. Some
jurisdictions around the world also have a restraint of trade clause. This
language prohibits an employee (or contractor) from engaging in similar work
elsewhere for a period of time. Effectively, this clause prevents employees from
starting at a new job and reverse engineering or creating an equivalent piece of
work from the one they developed for their former employer. It must be deemed
by the courts as a “reasonable” restraint—Ilimited to an industry or specifics
about the job; and cannot be so broadly interpreted that the worker is essentially
prevented from working at any job.

Patents, in some jurisdictions, do cover the idea behind an invention. Software
patents are extremely contentious because they are perceived in many cases to
stifle innovation. Patents are never automatically granted and always involve an
application within a specific jurisdiction.

If you are participating on an open source project on behalf of your employer,
the assignment of copyright might be a bit more complicated. This is especially
true if the project has a policy to only accept work from individuals, and your
place of employment retains all copyright on the work you produce; it may also
be true if your place of employment has rules about what you are allowed to
work on in your free time. (I can name specific examples of both open source
projects and companies with these restrictions.) I am not a lawyer and cannot
give you legal advice. Only you can choose if you want to ask permission or beg
forgiveness. I can, however, highlight the issue of copyright and encourage you
to consider what is most appropriate for everyone in the long term. It would be a
shame if your work had to be removed from an open source project for any
reason. Radical transparency is risky, but I think it’s worth it in the end.

To increase their future powers, some corporations have opted to put a
contributor agreement on their public projects. Canonical, Chef, Puppet, Google,
and .NET all have a variation on a contributor license agreement. The agreement
varies per company, but the gist of most of them is “if you choose to submit a
contribution, you agree to reassign your copyright to the project.” Just as there is
a Creative Commons license for content, there is now a Harmony Agreements

http://bit.ly/ubuntu-cla
http://bit.ly/chef-cla
https://cla.puppetlabs.com/
http://bit.ly/google-cla
https://cla.dotnetfoundation.org
http://harmonyagreements.org/

template for contribution agreements. The biggest rationale I’ve seen for a
contributor agreement is that it allows the project to change the distribution
license of a project without explicit consent from individual contributors. In
open source software, these contributor agreements are often perceived as being
against the spirit of open source. On the other hand, it can make it difficult for
corporations to make legal decisions regarding that software in the future if they
don’t own the copyright.

Distribution Licenses

Once you have determined copyright for your project, the next piece you need to
establish is the distribution license. This will clarify how you want others to use,
or not use, your project.

GitHub has put together an excellent primer for the more popular open source
licenses it recommends. The primer includes the following licenses:

m The MIT License allows people to do anything they want with your code as
long as they provide attribution back to the original authors of the work, and
do not hold you liable for the software. jQuery and Rails both use an MIT
license.

m The Apache License is similar to the MIT License, but it also explicitly grants
patent rights from contributing authors to users, and requires a change notice
that describes how the derivative work changes from the previous version.
Apache, Subversion, and NuGet use an Apache license.

m The GNU General Public License (GPL), V2 or V3, is a sharing-friendly
copyleft license that requires anyone who distributes your code or a
derivative work to make the source available under the same terms. V3 is
similar to V2, but further restricts use in hardware that forbids software
alterations. Linux, Git, and WordPress use this type of license.

m [f your content isn’t code, a Creative Commons license may be more
appropriate for your work. This license allows you to grant redistribution
rights, with or without modification, for commercial or noncommercial use.

You are also welcome to not choose a distribution license; however, this
effectively signals to people that you are not interested in others using your work
without seeking explicit permission.

http://choosealicense.com/
http://opensource.org/licenses/MIT
http://bit.ly/apache-v2
http://bit.ly/gpl-v2
http://bit.ly/gpl-v3
http://creativecommons.org/

WHEN TO NOT USE A DISTRIBUTION LICENSE

Using a distribution license on a public project is almost always a good idea. That said, I
sometimes choose to omit a distribution license on my public repositories. Typically this
happens if I think I may incorporate the work into a full-length book with a traditional
publisher. Some publishers require you to reassign copyright to them and will protect the work
on your behalf. (O’Reilly leaves all copyright with the original author.) If I have accepted
contributions from others under an open license, it may impact my ability to reassign copyright
later.

If you encounter a public project that does not have an explicit license, and you
want to incorporate the work into your own, get in touch with the project
maintainers first and ask them to add a license to their work.

Leadership Models

Open source software allows people to collaborate on building systems that are
more powerful, more secure, more feature-rich, and more sustainable when the
burden of maintenance is shared among many. If you are a project of one, it
might not make sense to create a governance document, but if you are
anticipating others contributing as well, you should consider outlining how you
want the project to be run.

A few of the governance models I participated in include:
Benevolent Dictator for Life (BDFL)

In this model, the leader of the project has final say over every decision
about every aspect of the code base. The BDFL may not actively participate
in every code review, but ultimately retains the control to reject or reverse
any decision made. The community exists at the whim of the dictator.
Sounds horrible, right? Well, it can be if the dictator isn’t benevolent. This
model has been successfully used by the Ubuntu project, and others.

Consensus-driven, leader-approved

The Drupal community works on a consensus model where the community
most active on a given part of the system is encouraged to find solutions that
are appropriate. When the community is happy with the solution, they mark
an issue as Reviewed and Tested by the Community (RTBC, which is a

http://bit.ly/wiki-bdfl

backronym for Ready to be Committed). Drupal has additional working
groups for content, licensing, and security issues.

Technical review board or Project Management Committee

A fork of the Drupal project, Backdrop, distinguished itself early in the
project by adopting an explicit governance model, which is based on the
Apache project Project Management Committee (PMC) model.

If you would like more guidance on setting up a governance plan for your
project, I recommend resources by Lisa Welchman, including her book
Managing Chaos (Rosenfeld Media).

Code of Conduct

Some communities have made the difficult decision to reject code from
community members who refused to behave in a friendly manner toward others
in the community. Other communities, however, are notorious for their
unfriendly, intolerant behavior. You may be able to think of several communities
you enjoy participating in, and want to emulate in your own project.

Community culture is the consistent reinforcement of behavioral standards.
Although you may wish to simply cross your fingers and hope that people are
excellent to each other, there may come a day when you wish you had a rule
book you could point to. A community code of conduct allows you to explicitly
detail what is expected of those who participate in your project. There are
several established codes of conduct that have been community vetted. You may
wish to begin with one of these as your starting point.

Flickr is the first community code of conduct that I was aware of using, and
which made a point to ensure its members knew there were guidelines in place.
I’m sure it has changed since I first read the document; you can read the current
version at Flickr Community Guidelines.

The Drupal Code of Conduct is the one I’'m most familiar with. It was derived
from an early version of the Ubuntu Code of Conduct (a newer version is now
available), and has even been used as inspiration for the Humanitarian ID Code
of Conduct, a project by the United Nations Office for the Coordination of
Humanitarian Affairs.

https://www.drupal.org/governance
https://backdropcms.org/leadership
http://bit.ly/apache-pmc
http://rosenfeldmedia.com/books/managing-chaos/
https://www.flickr.com/help/guidelines
https://www.drupal.org/dcoc
https://launchpad.net/codeofconduct/1.0.1
http://bit.ly/ubuntu-conduct
http://humanitarian.id/code-of-conduct/

It is appropriate to add your Code of Conduct (CoC) document to the project’s
supporting website. If you do not have a separate website for your project, you
could add your CoC as a wiki page within GitHub. Links to wiki pages are
available in the righthand sidebar from the home page for the project.

Access Models

If you have been using version control for a long time, you may remember
systems like CVS or Subversion with a centralized repository. Figure 2-1
demonstrates how changes were made in Subversion’s centralized system. In this
system, each time you wanted to save a snapshot of your work to the repository,
you were potentially saving to the same place as someone else. Just when you
thought you were ready to share your work, or request a code review, you would
sometimes be prevented from doing so if someone else had recently updated the
same branch with their own work.

upload work download work
Centralized Code

Hosting System

commit checkout

C

Figure 2-1. Working with files in Subversion

Git, on the other hand, is a distributed version control system. This means
instead of having one central place that everyone must use if they want to have
their changes recorded, each person works independently from the centralized

code hosting system, and is responsible for making commits to his or her local
copy of the repository. This means changes from other developers are never
forced into your work; instead, it is your decision of when to incorporate outside
work, and when to share your own.

ESTABLISHING CONNECTIONS TO OTHERS

Although people love to talk about coding from airplanes that don’t have an Internet
connection when working with Git, I think the real advantage is that you can do more of your
thinking in private. You can make new branches, think about new ideas in code and—only
when you’re ready—establish a connection with others.

If you subscribe to Myers-Briggs, Git might be INTP, and Subversion might perhaps be ESFJ.

Every time you sit down to work with Git, you are sort of working in a
centralized fashion as far as your computer is concerned; your repository of
changes is entirely self-contained on your local machine, as shown in Figure 2-2.
You do some work, and then save that work to your local repository. Then, when
you’re ready to share your work with others, you make a connection to a remote
repository and push your copy of a specific branch to it.

committed work is then uploaded _ update local copy of the repository
(entralized Code
Hosting System
push pull
Local foca)
HEpesltary Repository

O

" checkout
commit

. choose a branch to begin working on
work is saved locally

http://bit.ly/wiki-mbti

Figure 2-2. Working with files in Git

Keeping your work entirely local would be very limiting! Instead, we make
connections to other systems, and share our code through the remote
repositories.

Git does not have the ability to control access—instead, it allows any developer
full read/write access to the repository. At the most coarse level, you limit this
control through login controls. I develop on my machine, to which you don’t
have access, and therefore you cannot change my repository. As soon as we put
the repository in a shared location, such as a centralized code hosting server, we
need to agree on how we will govern our access to the repository.

Some Git hosting systems, such as Bitbucket, allow fine-grained, per-branch
access controls; however, most force you to limit control on a per-repository
basis. In other words, you either are a committer for any branch on the
repository, or you are limited to making your contributions through pull requests.

In this section, we cover the three most popular models:

m Single Repository; Shared Maintenance, wherein everyone on the team is
considered a maintainer and is granted access to upload changes to the project
repository.

= Collocated Contributor Repositories, wherein contributing developers create

a remote copy of a project, and have their changes accepted by project
maintainers.

» Dispersed Contributor Repositories, wherein code is shared via a text-based
patch file.

At the end of the section, you will learn how to chain these methods together to
create a custom access model that is perfect for your team.

Dispersed Contributor Model

When Git was originally conceived, conversations about changes to the code
base of an open source software project commonly happened on public mailing
lists, not on centralized web hubs. This model is still used today by the Git
development team. It is almost certainly not appropriate for your team to use this
model for its development; however, understanding the model has implications

for some of the more advanced concepts required to use the commands rebase
(Chapter 6) and bisect (Chapter 9).

To share their work with the community, developers would create a patch file
using the program diff. They would then write an email to the discussion
group, and attach their patch file as shown in Figure 2-3. To investigate the
proposed changes, members of the mailing list would download the attached
patch file, and apply it to their local code base, using their system’s patch
command.

By sharing the patch files via a mailing list, developers were able to encapsulate
and share their work—while efficiently limiting what was shared to that patch
file so that the people evaluating the work could easily see what had changed
between two specific points in time within a shared code base.

FORM FOLLOWS FUNCTION

To make the process of working with emailed patch files easier, Git added the ability to deal
with patches that were sent via a mailing list through the command am.

This model is still used by the Git project today—it is still using a mailing list to
share patches, and have conversations about what features should be added to
Git and what bugs should be removed.

Although the model might seem archaic, it does have some advantages:

® You don’t need to use a specific version control system locally because the
patch file doesn’t require specific version control software to be installed
locally.

= Developers can easily review the proposed changes from the comfort of their
email application.

m This model encourages whole idea thinking. If you have to email a group of
people each time you make a change, you are more likely to ensure
everything is right so you can avoid the embarrassment of “just one more
thing.”

m Uploading your proposed changes to a system that is not the code hosting

system enforces a review procedure among the participants in the software

project. In other words, as a developer, I can’t just upload my changes to the

main repository; I have to announce my completed work and wait for
someone else to merge it in.

Centralized Code

Hosting System
push pull
Local

/\ Repository

checkout |
Local commit)
oca :
Repository 5

commit developer
after completing work,
e e

patch is submitted for review :

core maintainer v
N

-~

reviewer-approved patch is then™ .
committed to the official repository

reviewer
Figure 2-3. The community review process for patches

reviewer

Having dispersed repositories isn’t specific to projects that communicate via
mailing lists. At the time of this writing, the Drupal project was using a variant
of this model. Instead of using a mailing list to share patches, though, it was
using a self-hosted, centralized code hosting and ticket issue system. Figure 2-4
shows a screenshot of an issue with an attached patch file.

Q emm aj dne commented § years ago
Status: Active » Needs review

Status File Size
D removing-pleases.patch 4.37 KB
NEWw Passed: 12875 passes, 0 fails, 0 exceptions

View | Retest
Just looked at the welcome screen with fresh eyes on a new install. There were three
"please"s. Patch attached to remove my Canadian-isms.)

Figure 2-4. A Drupal issue queue with attached patch file

In this model, you can sign the individual commits before sharing them;
however, this makes it more difficult to unpack the history of who made which
changes if multiple people were involved. The team will need to, instead, adhere
to a patch formatting policy (signed or not), and a commit message style. Drupal
has strict formatting guidelines for its commit messages to ensure everyone
receives credit for their work.

For most projects starting today, this model is not appropriate. It does, however,
help to understand some of the more advanced commands, such as bisect, if
you are able to think about commits as whole ideas. A more modern approach to
this model is to use fork, or clone, repositories on a single code hosting system.

Collocated Contributor Repositories Model

These days, software developers are unlikely to trade patch files—instead, they
are much more likely to use a central code hosting system that manages the
patch process for them. Using a single code hosting system makes it easier to
programmatically create and submit patches between repositories. The method
for how these patches are managed is the secret sauce that makes up any code
hosting system. The restrictions are presumably handled via Git’s pre-commit

http://bit.ly/drupal-commit

hooks to ensure access control is respected.

On a collocated system, the “upstream” project retains complete control over
who is allowed to write to the primary project repository. Individual contributors
make a clone, or fork, of the project to their own repository on the code hosting
system. The contributors make changes to the copy, and then submit their
requested changes in the form of a merge request or pull request, as shown in
Figure 2-5. If you are working on an open source project with a lot of
contributors, you are most likely using this model.

(entralized Code Hosting System

““““““““

ull request
Bl clone

push

checkout

Local
Repository

-~ 7

commit

Figure 2-5. Creating a chain of cloned repositories

GitHub has popularized this model for development for contemporary open
source projects. I’ve also seen this model used for internal projects with strict
walls between departments. For example, if the quality assurance team is solely
responsible for the final merging of code into the stable release branch, the team
is likely using some variation on this model. Another reason for this separation
would be if you were using extra contractors and you wanted to limit their ability
to accidentally add something to the repository that hadn’t first undergone a
review of some kind.

GIT VERSUS GITHUB TERMS

It can be difficult to know which terms to use because the GitHub terms, which have become
commonplace, don’t always match their corresponding Git commands. For example, the
GitHub term fork uses the Git command clone to create a copy of a repository. Because the
focus of this book is on the Git software, and not just the implementation on GitHub, the Git
commands will be used. Occasionally both terms will be used because the GitHub terminology
is sometimes more familiar than the individual commands.

When GitHub creates a fork of a repository, it is the same as using the Git
command clone to make a copy of a repository. Once you have created a fork,
you can use the GitHub web interface to make your changes directly to your
repository, but this isn’t great for more than a very minor typo fix. Instead, you
will likely create a second clone of the repository—this time from the forked
repository to your local workstation. This effectively creates a chain of clones
from one copy to another. Keeping all of the repositories in sync takes a little bit
of work; however, it’s a lot fewer commands to memorize than working directly
with patches. You win some, you lose some.

Working with repositories that share the same infrastructure should be easier
than the dispersed repositories because it allows you to more easily use wrapper
software. In addition to it being a little easier to keep the work updated, the
wrapper software can also give you more control over who is able to commit
work and receive credit for their work.

Typically, the first repository in the chain can only be altered by a handful of

core committers who can add new commits to the repository, or merge branches.
Most of the people working on the project will, instead, be working from a local
clone of the repository. In this local, cloned repository, each person will have
infinite control over what happens. They can add new branches, add new code,
and share their proposed changes with others by pushing their work to their
public clone of the main repository. Once the work has been pushed to the public
clone, coders can solicit feedback on their work to date. Once the work has been
fully reviewed and tested by the community, the coders can make a merge
request or pull request from their public clone to the main repository.

If someone doesn’t have the intention of contributing their work back to the
main project, they can skip creating a public clone, and instead create a clone
from the main project directly to their local environment. Things can get a little
tangled if you realize you do have changes you want to submit back to the
project, and you’ve also done your own work, which shouldn’t be shared.

It isn’t always easy to know that you’re going to do something that might be
useful to others, though. For example, I was working on my slide deck for
OSCON with an open source presentation framework, reveal.js. Your equivalent
example might be with a WordPress theme, or a frontend framework, or some
other project that gives you a basic starter kit as part of the initial package.

Previously while working on my slides with reveal.js, I decided I probably
wouldn’t need to upgrade the reveal.js software I was running and stopped
worrying about keeping a Git connection to the upstream project. I shuffled all
of the folders around in my repository to make it work for what I was doing. A
custom theme was created. Tweaks were made. It had truly become a forked
project, disconnected from where it began. (Developers with even a little bit of
open source experience will be groaning at this point because they’re already
jumping ahead to the inevitable realization that I’m about to reveal.) But as I
started working on things, I realized I couldn’t get the slides to format properly
for the handout. I wanted my speaker notes to appear alongside the slide, instead
of having them tucked below it. I opened a bug report for the project on GitHub,
and continued working. A few people gave me suggestions on how I might want
to reformat things. Aha! I had some ideas on how to solve the problem. I
considered my own issue closed, but there were others who were also interested
in my solution. Now I was truly stuck. I had created my project without the
intention of sharing my work.

https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js/pull/963

If you are submitting a patch, you might have been able to cheat and share only
snippet of your work, but when you are working with collocated contributors,
you need a chain of repositories in place to be able to share your work back. My
own project didn’t have a branch for the upstream work because I never had the
intention of sharing my work back to the presentation framework. So I started by
creating a new chain of repositories. Figure 2-6 shows the sequence of what I did
next. On GitHub, I created a fork of the main reveal.js project. Then I made a
local clone of this forked repository. To my local clone I created a new branch
for my changes. Then I copied the changes from my OSCON slide deck (there
were only a few, so I didn’t bother creating a patch, I just used my trusty copy-
and-paste tools) into my cloned repository of the presentation framework. With
the changes in place, I pushed my changes back to my remote repository on
GitHub, and created a pull request to ask to have my changes incorporated back
into the project.

The public clone of the reveal.js repository was required because I do not have
write permission for the reveal.js repository. If I did have write access, I could
have skipped making the public clone and just created a local clone.

Shared Maintenance Model

Finally, we have arrived at what is likely the most typical permission model for
internal teams (and teams of one): shared maintenance. In this model, there is an
inherent trust among team members. It is assumed that code will be checked and
verified before it is committed to the main project branch, and that, generally, the
developers are trusted. In this model, work is done locally by all developers
before it is pushed into the shared repository for the project. When working with
an internal team, as shown in Figure 2-7, this is often where we start: with a
single shared repository that everyone has shared write access into.

https://github.com/emmajane/reveal.js

GitHub

----------------------- fork
reveal.js personal, forked copy
official repository of reveal.js repository
»
[] forked the project pull request i
cloned the remote
created a new local branch
checked out the new branch push
[] edited files to match OSCON (SS
committed new (SS changes
pushed branch to cloned remote
submitted a pull request checkout
%, local clone
j \ of reveal.js repository
[\
/ \ _/
L _
commit

Figure 2-6. Suggesting changes to a project from collocated repositories

Git does not accommodate permissions and instead relies on other systems to
grant or deny write access to a repository. If you do need to prevent people from
uploading their code to a shared repository, you need to use the host system’s
access control to do so. If you are not using a Git hosting platform, this access
control might be controlled via SSH accounts.

In addition, Git further does not allow you to be locked out of only some
branches, as you might find in Subversion. Without additional software in place,
it is by convention that teams agree not to commit changes to specific branches

without the prerequisite testing. Per-branch access restrictions are available
through Bitbucket (Chapter 11) and GitLab (Chapter 12). If you prefer a more
lightweight system, take a look at Gitolite.

Centralized Code Hosting System

Team Repository

clone
push
push clone
Local Local

Repository Repository

checkout& \commit checkoutg \commit
[N .
"

Figure 2-7. Everyone on the team has write access to the central repository from their local repository

Custom Access Models

In addition to these individual strategies, teams may also choose to use multiple
access models for a given project. This would be particularly useful for projects
with very strict regulations on who could commit code to the canonical
repository. Indeed, most open source projects will have different levels of access
for different contributors.

A common workflow is as follows:

http://gitolite.com/gitolite/index.html

An official project repository, to which only a very few people are able to
commit code. In an open source project, it would be the project maintainers;
and in a closed source, or corporate, project, it could be the quality assurance
team.

A less restricted, internal copy of the repository, which is used for integration
by each of the contributors and project teams. This repository might follow a
shared maintenance model, where everyone is allowed to merge their
branches into the repository as part of a code review process, or even on an
ad hoc basis.

Individually created personal repositories, locked to the individual
contributors. These are typically hosted on the same code hosting system as
the official repository, because most modern code hosting systems have easy-
to-integrate functionality (usually called a “pull request” or “merge request™).

This split would commonly be seen in teams that employ junior developers,
quality assurance teams, or perhaps external contractors.

Chapter 4 covers common workflows in more depth.

Summary

In this chapter, you learned about different ways to grant and restrict access to
your project repository:

Clearly defining a project governance model will help ensure ownership is
understood by all contributors.

Copyright of code is typically assigned to the author, unless the right has been
reassigned to another legal entity as a work for hire or through a contributor
agreement.

The rules restricting distribution, and derivative works of a code base are
defined by its software license.

Git is just a simple content tracker; it does not include access control
mechanisms out of the box. Some code hosting systems have incorporated
pre-commit hooks that can be used to limit access per-branch.

Access can be limited or open for any given repository. Changes submitted to

a repository are made via a patch. On code hosting systems, a programmed
graphical interface is used to manage the patch submission process.

With your permission structure in place for your repository, we will next look at
how you can divide your repository so that both work in progress and finished
work can be shared among team members.

Chapter 3. Branching Strategies

In version control, a branch is a way to separate parallel thinking about how a
piece of code might evolve. A branch always begins from a specific point in the
code base. In Chapter 2 we talked about forking and cloning a repository. A
branch is like an in-repository split where new work begins. A branch might be
created with the intention of contributing work back, or it might be created with
the intention of keeping work separate. Branches don’t care what changes
they’re tracking! They just are.

The branching strategy that you use depends on your release management
process. Branches allow you to change the files that are visible in the working
directory for your project, and only one branch can be active at a time. Most
branching strategies separate the work in your project by coarse ideas. An idea
could be the version of your software—for example, version 1, version 2,
version 3. And spawning from those software versions you might have ideas that
are in progress. These ideas are generally separated into branches according to
the name of the feature they represent. They might be a bug fix or a new feature,
but they also represent whole ideas on a smaller scale.

This chapter outlines:

= How to choose a branching convention for your team
= Mainline development

» Branch-per-feature deployment

m State branching

m Scheduled deployment

There are no limits to the ways you can use branches. This can be a good thing
and a bad thing. A few artificial constraints (conventions) will help you consider
the possibilities for your team.

Understanding Branches

Without getting into the internals of how Git works, having a basic
understanding of what a branch is will help you to choose and apply the
strategies outlined in this chapter.

Each Git repository contains a pool of commits. These commits are linked to
one-another through their metadata—each commit contains a reference to its
parent. In the case of a merge commit, there may be more than one parent
commit referenced. I like to think of a branch as a string of beads, with each
commit represented as a bead on the string. The analogy isn’t technically correct,
but it works quite well as a mental model for our purposes. Branches in Git are
actually a named pointer to a specific commit. (Give yourself a magic wand, and
tap on a specific bead while saying a name. You have just created a named
branch.) When you check out a branch you are copying the data stored in the
commit object (identified by the pointer) to your working directory. Once the
work has been copied into the working directory, you can make as many changes
as you like (add, edit, delete files), and save the changes as a new commit object
to your local repository. The named pointer will be automatically updated to
point to the new commit object you have just created and your branch will be
updated.

Any commit objects you create are local and exclusively yours until you choose
to explicitly share them with a remote repository. This is radically different than
the centralized model of version control where committing a change
automatically uploads the work. For some foreshadowing of conflicts to come,
just remember that each developer has a magic wand for his or her own
repository.

To avoid conflict, developers have created conventions for the naming and use of
branches. These conventions help developers to choose when to allow work to
diverge (create new branch), and when to merge (combine commit objects from
two or more branches). Generally there are two types of branches used in a
convention: a long-running public branch; and a short-lived private branch. The
function of a long-running branch is to act as a mediator for code which is
contributed by lots of developers. The function of a short-lived branch is to
sandbox the development of a new idea. These new ideas could be bug fixes,
feature additions, or experimental refactoring. It’s up to you!

When you share a branch with others, you may continue adding commit objects

to your copy of the branch; however, now that the branch has been shared,
someone else could also be adding commit objects to their copy of the branch.
The next time you try synchronize the two copies of the branch Git, as a simple
content tracker, will defer to your expertise in combining the two sets of commit
objects into a single shared history. This pause in the automated process is
refered to as a merge conflict which sounds scary, I’'ll admit. Your job is to
engage in conflict resolution and choose the best shared history for the work in
question.

You will learn about strategies to keep your branches up to date in “Updating
Branches”, and practical commands in Chapter 7. Conflict resolution is also
covered in Chapter 7. First, though, let’s take a look at some of the most
common branch naming strategies developers use for maintaining their work in
Git.

Choosing a Convention

A convention is an agreed-upon standard for how things are usually done. As
developers, conventions allow us to quickly pick up the patterns of how a
software project runs and integrate our work without disrupting the flow for
others on the team. A documented convention makes onboarding easier for both
the newcomer and others on the team who now need to take less time away from
their work to help the new person.

Choosing an appropriate branching strategy for your team requires a
conversation with your teammates about how you want to release your work.
(From now on, I’ll use “software” to mean your project, even though Git can be
used for other things as well, such as writing books!) You might want to use a
daily release schedule for a website, but a monthly, quarterly, or biannual release
schedule for a downloadable software product. You may even have to comply
with auditing or compliance regulations that have their own requirements. Once
you know how you will release your software, and whether you have auditing or
tracking requirements, you can choose the best branching strategy for your
needs.

If you already know how you’ll be working, take a few minutes to sketch out
your requirements before diving into the details and choosing the branching

strategy that best matches your needs. If you’re not really sure what your system
will look like, Chapter 4 will give you ideas about how you might want to
structure your team interactions.

As long as your team documents what they’re doing, there are no hard rules.
Indeed, if you look at the repositories for several open source projects, you’ll see
that there’s no standard way of doing things. I recommend using the GitHub
mirrors to easily compare the branching strategies used by Drupal, Git, and Sass.
These three very popular projects all use very different branching strategies.

There are no version control police who will show up at your door and tell you if
you’re doing things wrong, and you’re almost guaranteed to find at least one
other team who’s making software in a similar fashion to you. But if you are new
to working with version control, or your team has been struggling to figure out
how to make things a little smoother, using one of the conventions described in
this chapter might help.

Conventions

When working with software projects, there are generally two different
approaches teams can take: they can either use an “always be integrating”
approach, or they can collate the work that’s being done and release a collection
of work all at once. In between these two opposites there are many different
variations on how work can be done.

This section outlines several of the most common strategies used by
development teams today. You may choose to adopt one of these strategies
wholesale, or adapt it for your needs. No matter what you choose, remember to
document your decisions.

Mainline Branch Development

The easiest branching strategy to understand is the mainline branch method. In
this strategy, there are fewer branches to work with. The developers are
constantly committing their work into a single, central branch—which is always
in a deployment-ready state. In other words, the main branch for the project
should only contain tested work, and should never be broken.

https://github.com/drupal/drupal
https://github.com/git/git
https://github.com/sass/sass

As a team of one, I often work on tiny side projects that only just barely warrant
having version control, such as writing an article for a magazine. In these cases,

I commit all of my work in the default branch (named master by Git) as is shown
in Figure 3-1. If I have two unrelated ideas that I am working on, I might be lazy
and choose to commit everything, or I might stash some of the work to save it
for later. For these simple projects, it doesn’t warrant separating thinking into
different branches in order to work efficiently.

READING BALL-AND-CHAIN DIAGRAMS

Each circle on the diagram represents a commit of work stored in the Git repository that can be
reversed. The proper name for these “ball-and-chain” commit diagrams is a directed acyclic
graph (DAG). There’s no quiz where you need to remember this. Promise. But it is a useful
term if you’re looking for keywords for future research.

right now

newest commit object

commit object

commit object

oldest commit object

the past

Figure 3-1. Mainline branch development: storing all commits to a single branch

As the project matures, there will be more and more to think about, and it will
get harder to keep track of ideas. I'll start adding new branches as I think about
new directions I might want to take my project in, but that aren’t as fully thought
out as some of the other pieces I’'m working on. Perhaps I’ll even expand my
team and have a reviewer or two with their own, independent branches, as
shown in Figure 3-2. As the project grows in complexity (and team members),
so will the number of branches. But they won’t all be active all the time. Like in
the story of Goldilocks and the Three Bears, your team will likely settle on a
number of branch types that feel “just right.” Each unit of work (or sprint) may
have an accordion effect on the number of branches. At first, the developers are
all working on their own pieces, and the number of branches expands. Then, as
each of the developers finishes his or her work and integrates it with the others’,
the accordion compresses back down again.

At scale, this approach of having a single working branch is used by teams
working with automated build procedures.

TERMS FOR TEAMS WHO ARE ALWAYS DEPLOYING

Continuous integration is the practice of having all developers incorporate their work into the
mainline of the project several times a day. Continuous delivery is the practice of automating
the steps from a developer’s local workstation up to the server (but not deploying through an
automated process). And finally, continuous deployment is the most complete definition of
automation, with all code passing through a series of test gates directly to the production
server.

master

branches containing changes from editors

Novella

A

Joe

A

Christophe

A

->0—@

/ branch

Figure 3-2. Mainline development with branching: branches separate the work being contributed by
multiple people

Perhaps it makes sense for your team to integrate their work into a central branch
regularly, but only deploy work occasionally. As soon as you start collecting
your work, you need to make a distinction between what you have locally, and
what is being used on your production server. If all code is ready for
deployment, it shouldn’t be too big of a deal to add a little fix and roll everything
out. But what if you have changes committed in your repository that are only
mostly finished? This is where we start to move away from a purely continuous
deployment strategy, and toward multiple branches in a scheduled deployment
strategy.

There are several advantages to using a branching strategy that encourages
regular integration of your work:

m There aren’t very many branches across the entire project. This results in less
confusion about where a change disappeared into.

m Commits that are being made into the code base are relatively small. If there
is a problem, it should be relatively quick to undo the mistake.

m There are fewer emergency fixes, because any code that is saved into the
main branch is ready to be deployed. Deployments can often be stressful for
developers as they hold their breath while code goes live in production and
wait to hear back from the code’s users. With tiny frequent updates, this
procedure becomes practiced, and finally automated to the point where it
should be almost invisible to the end user.

There are disadvantages to using this strategy as well:

m The assumption is that the main branch contains deployment-ready code. If
your team doesn’t have a testing infrastructure, it can be risky to assume that
new code won’t break anything, especially as the project becomes more
complex over time.

m The notion of a deployment is more appropriate for code that is automatically
loaded onto a user’s device (for example, a website). It is less appropriate for
software that must be downloaded and installed. While updates that fix
problems are welcomed, even I would get annoyed if I had to download and

reinstall an application on my phone on a daily basis.

= One of the ways developers can verify code on production is to hide the
feature behind a flag or a flipper. Facebook, Flickr, and Etsy are all rumored
to use this technique. The potential risk here is that code can be abandoned
behind the flags, resulting in a large technical debt for code that isn’t removed
because it is hidden.

Unfortunately, it is out of the book’s scope to describe how to set up the
infrastructure for continuous deployment because it will be somewhat dependent
on the language you are writing in (each language has its own testing libraries)
and your deployment tools. If you would like to read more about the philosophy,
the book Continuous Delivery: Reliable Software Releases Through Build, Test,
and Deployment Automation by Jez Humble and David Farley (Addison-Wesley
Professional) is a good starting place.

Branch-Per-Feature Deployment

To overcome some of the limitations of the single branch strategy just described,
you can introduce two additional types of branches: feature branches and
integration branches. Technically, they aren’t different kinds of branches; it’s just
the convention of what type of work is committed to the branch that differs.

In the branch-per-feature deployment strategy, all new work is done in a feature
branch, which is as small as it can be to contain a whole idea. These branches are
kept up to date with the work being done by other developers via an integration
branch. When it is time to release software, the build master can selectively
choose which features to include in the build and create a new integration branch
for deployment. As Figure 3-3 shows, a build does not necessarily include all of
the work completed since the last build.

http://bit.ly/aw-continuous-delivery

master integration feature 1 feature 2

A A A
Assuming feature 1 and feature 2
integrate well: merge the combined I S ‘) I N R R
changes in the integrration branch
into the master branch.

— o — — e — == —

Figure 3-3. Branch-per-feature: feature branches are kept up to date via an integration branch

By adding feature branches and an integration branch, you can continue to have
deployment-ready code, but also a pause before deploying the code. The most
popular description of this model is by Adam Dymitruk. A slightly earlier
description of this model was by Scott Chacon and is named the GitHub Flow.
With a few minor updates, this process is still used by GitHub today.

In the GitHub Flow branching model, anything in the master branch is
deployable. When working on new code, GitHub Flow has the developers create
a descriptively named feature branch and commit their work regularly to this
branch. This branch is kept up to date with master and is regularly pushed to a
branch on the shared repository, allowing others to see which features are
actively being worked on. When developers think their work is complete, or
when they need help with their work, they will issue a pull request to the master
branch. In the ticketing system, there will then be a conversation about the work
that is being proposed.

Up to this point, the GitHub Flow is virtually the same as the Dymitruk model.

http://bit.ly/branch-per-feature
http://bit.ly/chacon-git-flow
http://bit.ly/ejhw-git-flow

Where they differ is in how the deployment happens. In the Dymitruk model, a
build is made by selecting which features are ready to be incorporated. In the
GitHub Flow model, once a pull request is accepted, the work is immediately
ready to be deployed from its feature branch. This makes the strategy closer to
mainline development. Originally, GitHub merged its feature branches into the
master branch and then deployed the master branch. Nowadays, the feature
branch is deployed and if there are no errors, it is merged into master as shown
in Figure 3-4. This means that if there are problems with a feature branch,
master can immediately be redeployed because it is proven to be in a working
state.

master integration feature 1 feature 2
A A A A
fix the errors
< ifnoerors: ... deploy ‘) D SRR RIS . then re-try
merge to master deployment

if there are errors: «------ deploy O D S PR RE .

_re-deploy master

s
< ifno errors; - deploy p O .
merge to master

A A
[/

/ /

/ /
/ /
/7 Ve
s / s
g s/ e
- - -~

— — — =
— — o o — — — — —

Figure 3-4. GitHub Flow: feature branches are deployed after a review and then merged into master

There are several advantages to using a branch-per-feature deployment strategy:
m Much like mainline development, the focus is on rapid deployment of code.

m Unlike the mainline development, there is an optional build step. When the
build step is used, there is the option to select which features should be

incorporated into the master branch for deployment.

There are disadvantages to using a branch-per-feature deployment branching
strategy as well:

m If code is kept on a feature branch, but it is not immediately rolled into
master, there is an extra maintenance requirement for developers who need to
keep their features up to date while waiting to be rolled into the deployed
branch.

» The semantic naming of the branches helps those who are familiar with the
system, but it also represents an insider language that can make onboarding
more difficult if there are a lot of open features.

m There is now a housekeeping requirement for developers to remove old
branches as they are rolled into master. This isn’t a large burden, but it is
more than would be required from working out of a single master branch.

The branch-per-feature strategy offers a nice middle ground between mainline
development and scheduled deployment. In some ways, scheduled deployment
extends the branch-per-feature strategy, but with specific naming conventions.

State Branching

Unlike the strategies up to this point, state branching introduces the idea of a
location or snapshot for some of the branches. Often our deployment diagrams
are overly simplified and suggest that code moves between environments
(Figure 3-5), but generally this isn’t really how it happens. Instead, Figure 3-6
shows the code is merged from one branch to another, and each of the branches
is deployed to a specific environment. (Yes, we’ll talk about tagged releases
later. Patience, grasshopper.) As Figure 3-6 shows, there’s often a mismatch
between the branch names that are used and the name of the environment we are
deploying to. (What does master mean? Is it for production? For development?
Are you sure?) This strategy was described as the GitLab Flow model.

Local Dev Release Prep Production

o [C—=x
—» —>_D0—>C_T0
o C—x

http://bit.ly/gitlab-flow

Figure 3-5. Deployment lies: code doesn’t really walk from the local server to the production server

Development Staging Production
Code Hosting Code Hosting Code Hosting
Local Dev Local Stagmg Local Production

Git Repository Branches \ j \/
...... merge-....... -

....... (L0 —— - e B) _ — » __
...... merge.-----="" -

Figure 3-6. The real deployment process uses a centralized code hosting system

Through branch naming conventions, GitLab Flow makes it clear what code is
going to be used in what environment, and therefore what conditions might need
to be met before merging in commits. For example, you would clearly not merge
untested code into a branch named production. Alternatively, if you are shipping
code to “the outside world,” GitLab Flow suggests having release branches.
Ideally, these release branches should follow semantic versioning conventions,
although GitLab Flow does not explicitly require it.

KNOW WHEN TO INCREMENT WITH SEMANTIC
VERSIONING

In semantic versioning, a release should always be numbered as follows:
MAJOR.MINOR.PATCH. The first number (MAJOR) should be incremented when you make
API-level changes that are not backward compatible. The second number (MINOR) should be
incremented when you add new functionality that does not break existing functionality (it is
backward compatible). The third number (PATCH) should be incremented when you make
backward-compatible bug fixes.

http://semver.org/

An interesting variation on the state branching strategy is the branch naming
convention that the Git project uses. It has four named integration branches:

maint
This branch contains code from the most recent stable release of Git as well
as additional commits for point releases (maintenance).

master

This branch contains the commits that should go into the next release.

next

This branch is intended to test topics that are being considered for stability in
the master branch.

pu
The proposed updates branch contains commits that are not quite ready for
inclusion.

The branches work much like a stacked pyramid. Each of the “lower” branches
contain commits that are not present in the “higher” branches. As is shown in
Figure 3-7, maint has the fewest commits, and pu has the most commits. Once
code has passed through the review process, it is incorporated into the next
integration branch, getting closer to being incorporated into an official release.

http://bit.ly/gitworkflows-docs

Idea Generation Community Vetting Official Release

proposed updates |» [next |---» | master |--»| maintenance
feature . -
.. .
o
‘ i e
---------------- ’

; feature
I
|
|
| AY

! \

\ N

~ Sl ~

Figure 3-7. Integration branches used by the Git project

There are several advantages to using a state branching strategy:

» Branch names are context specific and completely relevant to the work at
hand.

m There is no guessing about the purpose of each branch, making it easier for
people to select the right branch when merging their work.

There are also disadvantages to using a state branching strategy:
= [t’s not always obvious where to start a branch from without guidance.

m Because the branch names are extremely specific to the context of that team,
it can be harder to get consistency across projects, making onboarding more
difficult.

Left to my own devices, I typically end up with this style of branching for my
own projects. I like using words that mean something to me instead of terms that
meant something to someone else on some other team. Pedants, unite! Unless
you prefer your own word. ;)

Scheduled Deployment

Scheduled deployment branching is the most appropriate strategy to use if you
do not have a completely automated test suite, and in any situation where you
must schedule a deployment. This may be because you have deployment
windows (for example, never after 4PM, and never on a Friday); or an additional
regulatory gate you need to pass through (for example, iOS applications being
deployed to the App Store). As soon as you involve humans in a review process,
or someone else’s arbitrary constraints on your deployment process, there will
inevitably be delays somewhere, and you will need a way to suspend your work
while you wait for the humans.

Through the different types of branching strategies, we have been adding an
increasing amount of complexity to the branching that takes place in a
repository. We started with just one branch, and then we added features and an
integration branch. In a scheduled deployment, we add to this again. However,
scheduled deployments can get quite complex in their branching patterns. They
should be built up over time, and only as the complexity is warranted.

In this section, I will walk you through the progression of how the GitFlow
branching strategy can be implemented by a team. GitFlow, the most popular
implementation of this strategy, was first described by Vincent Driessen. It has
been used by countless teams around the world to structure software projects. It
can look very complex when it is presented in its final form. Fortunately, though,
software projects build up to this point; they don’t start out this way. If there are
any parts of the GitFlow that which are not relevant for your team, you can omit
them from your project.

Let’s walk through the model together.

At first your software project has a single branch, develop. From this branch,
your programmers create a diverging branch and add their features. Figure 3-8
shows that at this point, the diagram of GitFlow looks very similar to the
previous models described in this chapter. In this case I will use the term
“features” very broadly. A feature could actually be a bug fix, a refactoring, or
indeed a completely new feature. Ideally when you’re working with a team, a
feature will be described in a ticket before you start your work, and the branch
name will resemble the ticket name. For example, if you had a ticket “1234” that
was a bug report to fix a broken link, and you were using the convention

[ticket_id]-[terse_title], your branch name would be 1234-

http://bit.ly/nvie-branching-model

fixing_links.

develop 1234-fixing_links 1235-horse 1236-cart

A
. work in progress

I I
/ /
/ /
/ /
4
— o ~ g - - g
branch- - - -pp»
merge.----------)

short-lived branches; usually ticket focused

Figure 3-8. Development and feature branches used in GitFlow

Your team works and works and works and then you get to a point where you
say “No new features!” We’ll often refer to this as feature freeze. At this point, a
new branch is created from the development branch, as shown in Figure 3-9, and
the only things that can be committed to this branch are bug fixes. These bugs
may include regressions in performance, security flaws, and other general bits
and bobs that are now broken. In more traditional Waterfall team structures, this
bug-fixing period would be led by a quality assurance team. In a more Agile
team, a developer would follow the issues through the series of branches to
deployment, and would even be responsible for testing the work of others. We’ll
talk more about the review process in Chapter 8.

release-1.0 develop 1234-fixing_links 1235-horse 1236-cart

release bug fixed
------ » merge bug fix back into develop

O
‘___ ‘
A

A

branch- - - -p» / /

short-lived branches; usually ticket-focused Q, = = e

Figure 3-9. Feature freeze in GitFlow; only bug fixes are allowed

Perhaps not all features were completed when the feature freeze happened, so
there is still work being committed to the develop branch. And if bugs are

reported, these bugs need to be incorporated “backward” into the develop
branch as well. Figure 3-10 shows our first view of a branching diagram with
code being merged in two different directions. The longer your quality assurance
period, the more likely you are going to have work happening both on the
develop branch and also on the release branch.

release-1.0 develop 1234-fixing_links 1235-horse 1236-cart

branch- - - -p» / /

short-lived branches; usually ticket-focused Q, = = B S E

Figure 3-10. Development continues, but is not incorporated into the release branch

After an amount of time in testing, it will be declared that all bugs have been
found, and what remains is ready to be deployed. Congratulations! At this point,
all code that has passed quality assurance testing is committed to a new branch,
master, which is then tagged (like a bookmark) with the version of the software

at that point. The software is then deployed as shown in Figure 3-11. Your
project manager gives you a heart-shaped candy, or maybe an animated GIF, and
you get the rest of the day off. Good job, team! (If your project manager is not
doing this, kindly send them my way and I’ll have a little chat with them on your
behalf. We’re all friends here, it’s cool.)

Of course, reality dictates that sometimes bugs that need to be immediately fixed
will sneak into the software. These hotfixes are so critical that a programmer
should not go home for the evening before they are fixed. They are generally
made by initiating a branch from the production branch, and when the hotfixes
are released, they do not contain any additional work that has been happening
since the last official release, as shown in Figure 3-12.

master release-1.0 develop 1234-fixing_links 1235-horse 1236-cart

A

feature completed and merged
)4. ...

‘Q

branch- - - -p» / /
/ /
merge----------) 4 > y
s = s
short-lived branches; usually ticket-focused (P: - __ - -7

Figure 3-11. Software is released by merging onto a new branch, master, with a tag

DEFINE “URGENT” WITH YOUR TEAM

A developer I used to work with once told me that a bug could only be marked as a hotfix if he
wasn’t allowed to go to the pub for a pint of beer before it was fixed. This radically changed
my perception of what it meant for a problem to be marked as urgent. We recalibrated our
definition of “urgent” and had fewer late nights as a result. In the same vein, I once worked
with a client who was willing to mark tickets as “super very important, for later.” Have fun
with your naming conventions where you can but make sure you document what they mean so
you can avoid frustration of things not being completed in a timely manner.

We’ve slowly built up these branches as we needed different places for work to
continue happening. You don’t need to create all of these branches to start. In
fact, it’s better if you don’t, because it ends up being more code to maintain.
Once you’ve got code in production, and code in development, you end up
having a lot of wheels turning on your branching graph, as shown in Figure 3-12.
This can be overwhelming for a newcomer, but it will be a natural progression
for any developer who has worked on the project from the beginning. And if you
choose to use this convention, it will also feel familiar to any new developer who
has worked with this model previously.

master hotfix-1237-reins release-1.0 develop 1234-fixing_links 1235-horse 1236-cart

v1.01 C)‘ """"" O PR R

v1.0 ’< ..) merge bUg fix back into develop
initial release

/ !
branch- - - -J» / /
// /
merge..........) 4 ; p
/ A -7
i . P -
short-lived branches; usually ticket-focused Q, = = o

Figure 3-12. A hotfix is made, rolled into master, and our release tag is now 1.0.1

There are several advantages to using a scheduled deployment strategy:

m Scheduled deployment does not require an extensive testing infrastructure to
start using.

m The process of building software, with phases for development, quality
assurance, and production, is very common. This means GitFlow conventions
will feel very familiar to software developers once they understand the
process of how and where their typical tasks happen in the branching
convention.

» By adhering to conventions, developers should always be able to determine
from which branch they should begin their work.

m This is also a good model for versioned software, such as a product that you’d

download from an app store where it is not appropriate to be deploying a new
version every few days.

There are disadvantages to using a scheduled deployment branching strategy as
well:

m There is a lot of cognitive overhead for developers who are new to software
deployment and haven’t experienced the process of walking a product
through each phase of development.

m [f developers start their work from the wrong branch, it can be squirrelly to
get everything back in sync.

m [t’s not as trendy as continuous deployment.

The scheduled deployment strategy offers the most rigid conventions about how
code should be moved through the review gates. It is typically used when there
is little to no automation for code review, and it is always present in some form
for projects that are not using an automatic deployment scheme. Any time work
is collated before being released, you will have at least some of the
characteristics described in this section.

Updating Branches

This chapter has focused on common strategies used to isolate and merge
streams of work. The strategies have focused on a single best-path scenario
where branches of work are magically kept up to date with all relevant work
happening elsewhere. In a distributed version control system the way you
incorporate external work is independent of the branching strategy that you’ve
chosen. When updating a branch, you can choose from one of two strategies:
merging or rebasing. Before diving into the differences in these two strategies,
let’s take a quick look at how connections are maintained between multiple
repositories.

Every Git repository is an autonomous record of changes. Connections can be
made between repositories by establishing a remote reference. This reference
allows a developer to copy a record of all commit objects made in the remote
repository to his or her local repository. Remote connections are typically made
to repositories with at least a partially shared history. For example, the initial

download of a repository using the command clone would result in a duplicate
copy of the remote repository and its commit objects.

Let’s say, for example, you wanted to add your work to your coworker’s branch.
You make a connection to their remote repository, fetch their branch, and try to
add your work. But you can’t! If it were a local branch, you could add a few new
commit objects to the tip of the branch. However, because it is a remote branch
you want to update, you cannot assign a new commit object as the tip of the
branch in your repository because this can only be done by the owner of the
remote repository. Instead, you must first create a new tracking branch to store
your changes.

SOME TRACKING BRANCHES ARE AUTOMATIC

By default the command clone will create a tracking branch named master that is identical to
the remote branch of the same name.

So now you have a local copy of a branch which you can add new commits to, a
reference copy of the branch which you cannot add commits to, and the original
branch still exists in the remote repository. Inevitably these branches will get out
of sync as you and your coworker make changes to your respective repositories.
Remember when you update your local repository you have two branches you
need to update. On its own the command fetch will update the reference copy
of the branch, downloading any new commits. Your mutable tracking copy of the
branch, however, can be updated in more than one way. The is because you are
now merging two branches into one, an action for which there are multiple
strategies in Git. And where there is choice, there is potential for disagreement
on which method should be used.

The process of updating your tracking branch from its remote reference will
typically be achieved by using the command pull. However, pullis a
combination of two discrete steps: fetch and merge or fetch and rebase. By
default the command pull uses the merge strategy to update the local branch;
however, by adding the parameter - - rebase, a developer can opt to bring his or
her local branch up to date using a rebase strategy instead.

All Your Rebase Are Belong to Us

Rebasing can be used to update a sequence of commits in one of two ways. First,
as an alternate method to merging when incorporate new work from a related
branch (bringing a branch up to date). Second, to alter history on the existing
branch by adding, changing, or removing individual commits in the branch’s
history of commits to make it a more concise history. This section refers to the
former use of the term.

Rebasing has earned its reputation for being complicated and frustrating. But
from a graphing perspective, rebasing is actually the easiest strategy to read.
Figure 3-13 shows two branches before and after rebasing one branch onto
another. Typically, we explain rebasing as replaying existing commits onto an
existing time line. This analogy, although technically incorrect, works extremely
well as a mental model for understanding the difference between merge and
rebase.

While the command rebase is used to bring a branch up to date, the command
merge is used to introduce completely new work. When the command merge is
used with the fast-forward strategy the resulting graph is virtually identical to the
output of a rebased branch. This fast-forward merging only works if the branch
receiving the merge contains only commits that are included in the incoming
branch. As Figure 3-14 shows, the graph for a fast-forward merge is as clean as
rebasing.

master work branch master work branch

A A A A

| after rebasing

before rebasing

4 branch

/

Figure 3-13. Rebasing two branches changes the history of one branch so that it appears as though the
other branch was always in place

When there is new work on both branches, and you want to combine the work,
you will need to store the combined work in a new commit. Several different
merge strategies can be applied, and Git will choose the best one for your
particular situation. If you’re really curious about the different merge strategies,
the Git help pages for merging can tell you how an octopus and a recursive
merge are different. To read the documentation, run the command git help
merge.

NEED HELP CHOOSING BETWEEN MERGE AND
REBASE?
The graphed output is virtually identical for two branches which have been combined using

either merge with fast forward or rebase. This can make it confusing to know which one
should be used at what point. So confusing, in fact, that some teams choose to use the

commands interchangeably! If you invest a little time in understanding when to use which
strategy you will have agility in using different branching strategies for different projects you
may work on. Merge or Rebase? includes a decision tree diagram to help you identify when
you should be using each of the two strategies.

master ~ work branch master
before merge | after merge | commits are still available

with no fast forward with no fast forward | from the work branch until
it is deleted

Figure 3-14. Merging two branches using the fast-forward strategy is as clean as rebasing

If you are merging to bring your work up to date, the graphed history can get
quite difficult to read as the connections become bidirectional. In other words,
history swerves between the two branches as the code is brought up to date and
new features are published into the main branch. Figure 3-15 shows how a
merge keeps a historical record of where something came from. This is great if
you’re incorporating a feature branch into the main development branch for your
project, but it can be quite confusing if you’re trying to read the history of only
the current features because the main development branch will now be
spaghettied into your history graph, with merged connections being drawn from
both the feature branch and the integration branch.

As a result of this synchronization issue, developers using Git typically don’t
work on the tracking branch when they are planning to submit their work back to

http://gitforteams.com/resources/merge-rebase.html

a project. Instead, a developer will make a fourth copy of the branch (a copy of
the tracking branch which is a copy of the reference branch which is a copy of
the remote branch). Regardless of the branching strategy, a tracking branch
generally maps onto any long-running branch (e.g., master, or a release branch),
and the working branch is a feature, ticket, or hotfix branch.

Rebasing a branch to bring it up to date makes history easier to read by
simplifying the graph. Rebasing does, however, come at a cost especially if your
copy of the branch contains commit objects you have created. In order to rebase
a branch that has its own unique commits, you must replay each of your commits
onto the new branch tip—assigning each commit a completely new identifier in
Git as it is assigned a new parent. This can cause confusion if the commit that is
assigned a new parent was one that had previously be shared in other remote
repositories. In addition to the new identifiers, each time you replay a commit,
there is a potential for a merge conflict, and conflicts are time consuming to deal
with. It’s a little like keeping timesheets: so long as you invest a little time each
day to keep your timesheets up to date, they’re no big deal. But if you’re really
bad at remembering to make entries on your timesheets each day, it can be time
consuming to try and catch up. The reward for maintaining an up to date branch
through a rebasing strategy is an easy-to-read branch history. But is it worth it? It
can cost novice Git users a fair amount of confidence if they are not entirely
comfortable resolving merge conflicts.

Your homework is to talk with your team about which is more important: ease of
use (choose merging to bring branches up to date), or an easier-to-read historical
graph (choose rebasing to bring branches up to date).

master work branch master work branch master work branch

merge commit ﬁ‘
do more work
merge commit
| | |
[[
| 4 | | | :
i / /
- | |
before merge update branch using merge merge of work branch

into shared master branch
Figure 3-15. Merging two branches without the fast-forward strategy

Summary

If you are working with a Git hosting system, such as GitHub, Bitbucket, or
GitLab, a branch might be used to separate the work being done for a particular
bug or feature ticket. Depending on your branching strategy, your goal may be to
keep the branches separate indefinitely, or you may want to merge the branches
every so often to combine the work that has been done separately into one
deployable branch. Even though all of the information is stored in the repository,
only one branch is ever visible at a time. The checked-out branch is visible in the
working directory. So if you have two ideas that you’ve been working on and
you want them both to be present on your server, you’ll need to merge the two
branches into a common branch so that they can both appear at once.

This chapter covered several branching strategies that you can use with Git,

along with variations within these strategies that have been used by some teams:
m Mainline development

» Branch-per-feature deployment

m State branching

» Scheduled deployment

In addition to these strategies, you will also need to decide how your team will
incorporate new work into shared branches; and keep branches up to date. For
very novice teams, there is not always an obvious answer to how branches
should be kept up to date. Two strategies were offered: rebasing or merging. A
rebasing strategy can be more difficult especially if it is not performed regularly;
however, it does give your history a cleaner graph that is easier to review. By
using merges to keep your branch up to date, the history of your project will be
more difficult to review. So if the origin of how your work came to be doesn’t
matter, you can choose either strategy, but if you will be reviewing the history
often, rebasing will make future work easier (even though it can be more time
consuming in the moment).

Chapter 4. Workflows That Work

I love working with teams of people to hash out a plan of action—the more
sticky notes and whiteboards the better. Throughout the process, there may be a
bit of arguing, and some compromises made, but eventually you get to a point
where people can agree on a basic process. Everyone gets back to their desks,
clear about the direction they need to go in and suddenly, one by one, people
start asking, “But how do I start?” The more cues you can give your team to get
working, the more they can focus on the hard bits. Version control should never
be the hard part.

By the end of this chapter, you will be able to create step-by-step documentation
covering:

m Basic workflow

m Integration branches
m Release schedules

m Post-launch hotfixes

This chapter is essentially a set of abstracted case studies on how I have
effectively used Git while working in teams. You will notice my strong
preference for Agile methodologies, in particular Scrum, in this chapter. This
process for collaboration works well with the popular workflow model, GitFlow.
If you are already very familiar with GitFlow, you should still read the first
section in this chapter on establishing and documenting your team’s procedures.

Evolving Workflows

In Chapter 2, you learned about governance models, and in Chapter 3, you
learned about branching strategies. The way we work together through Git can
get quite complicated very quickly, and the greater the complexity, the harder it
is to remember how it all works. Establishing conventions with your team will
help to maintain consistency, which will help you to quickly decipher the history
of your code.

http://bit.ly/nvie-branching-model

In this section you will discover:

m Basic tools to document your team’s process
= Where documentation should be placed

m What types of things need to be documented
m Sample states for your ticketing system

It is never too late to talk to your team about how they want to work together,
and it’s never too late to improve on the processes you have in place. If you are
using Agile methodologies, you may already have dedicated time for
retrospective meetings, or Kaizens, to review your development process.

Documenting Your Process

Git, as an inanimate piece of software, doesn’t actually care how you set things
up. Rest easy, because Git won’t suddenly reach out from your computer and
wag its finger at you crossly if you use the wrong branch name or use merge
when you should have rebased (although sometimes I think it would be nice if it
did). It’s up to you to decide how you want to use Git.

The easiest way to be consistent is to follow a set of rules, or a checklist. Each
time you begin working on a new site you should document the workflow. By
starting from a template (Example 4-1), you will ensure “obvious” details are
still obvious when you onboard new people, or even better, in a moment of
crisis.

Example 4-1. Template workflow

Product Manager: Name

Dev site: URL

Branch deployed on dev site: name of branch

Live site: URL

Branch deployed on live site: name of branch

When starting a dev ticket, branch from: name of branch
When starting a hotfix ticket, branch from: name of branch
When updating your work, use: git command

When merging your work post review, use: git command

The more details you include in your documentation, the more consistency you
will have among your teammates, and the easier it will be to unpack the
historical record of your repository.

If you are collocated, sit down and sketch out the diagram of where the
permission divisions should be made in your code. If you’re a distributed team,
that doesn’t mean you can’t still sketch things out. And you don’t need to be an
illustrator. There are lots of decent diagram programs out there to help you
sketch out your ideas. I'm a fan of Balsamiq for very basic diagrams. Others
have also recommended Pencil, OmniGraffle, Dia, and Inkscape. The diagrams
from Chapter 2 will be a useful starting point for many teams. All of the
diagrams from this book are also available as both SVG files and Balsamiq files.
You can download them from the Git for Teams Diagrams repository.

Documenting Encoded Decisions

Throughout this book, I will talk about working on tickets, or issues. The rigor
of open source software projects has enforced more than a few good work habits,
one of which is the use of a bug tracker to capture all requirements. For open
source projects, I’ve used product-specific trackers, such as the Drupal Project
module (affectionately referred to as The Issue Queue); and generic solutions,
such as GitHub. For internal projects, I’ve also used Pivotal Tracker, JIRA,
Redmine, and Unfuddle, among others.

Each of these systems has positive and negative aspects. I don’t have any one
favorite product. At their core, these systems allow you to document and track
the discussion of the work to be done, the tasks that need to be completed, and a
summary of any follow-up issues that may have been discovered during quality
assurance testing. I cannot imagine working with a team where there wasn’t a
centralized ticket tracker capturing the information about the work being done.

Collocated teams may choose to use a whiteboard and sticky notes to show what
is currently being worked on. Some teams also use very simple spreadsheets to
track who is currently working on what task. Perhaps the conversations and
related assets (e.g., diagrams, design assets, wireframes) are stored in a wiki so
that whiteboards can be wiped down and used for the next conversation. No
matter which system you use, I encourage you to track at least the rationale for
the decisions that are made about why features are being built in an easy-to-read
and searchable system. If you don’t capture this information in writing
somewhere, you may have to resort to guessing about why decisions were made
in the past.

https://balsamiq.com/
http://pencil.evolus.vn/
https://www.omnigroup.com/omnigraffle
http://dia-installer.de/
http://www.inkscape.org/en/
https://github.com/gitforteams/diagrams
https://drupal.org/project/project
https://github.com/
http://www.pivotaltracker.com/
https://www.atlassian.com/software/jira
http://www.redmine.org/
https://unfuddle.com/

Using ticketing systems, however, can make teams dependent on sticking with
that particular system if the decisions aren’t also captured in the commit
messages for each change to the repository. Your team may choose to think of
the conversation as ephemeral, tracking conclusions in commit messages and
allowing themselves to move on from the conversation itself.

It’s a balance. The trick is to anticipate future conversations and ensure your
tracking system has a way to easily answer questions. Perhaps you want to
prevent a future developer from forcing you to rehash a conversation after a
decision is made. In this case, you’ll want a ticketing system that shows the
progression of arguments from both sides (as comments) as well as the final
conclusion, and a link to the commit where the decision was solidified as code.
Perhaps you are creating software that is subject to industry regulations and you
are required to prove that software has been through a specific review process. In
this case, it may be sufficient for your software repository to have signed
commits from individual quality assurance testers.

I don’t think there is any one system that is better at tracking software
development. Many have strengths, and they all have their limitations. If you are
using a specific process management philosophy that advocates a specific task
workflow, you may find it easier to use software products that have been
optimized for this process. For example, a Kanban board is a very specific way
of dealing with tasks.

Most of the Git hosting platforms also have a basic ticket tracker to help you
coordinate the development of your project. Part III covers three of these
systems (Bitbucket, GitHub, and GitLab) in greater detail.

Ticket Progression

Even if you are working on an internal project without fixed deadlines, I
recommend finding a small unit of time to iterate through. My personal
preference is for one-week sprints. For internal projects, these sprints can act as
arbitrary deadlines to keep the team motivated and moving forward. At the end
of each sprint, I recommend hosting an internal demo so that the team can show
off their work. This public display of work keeps developers accountable. If your
team is distributed, you can host these demos over Google Hangout, or

http://www.google.com/+/learnmore/hangouts/

GoToMeeting for larger teams.

Project methodologies that track the work of people will all have some variation
of these basic ideas:

Not Now

In Scrum terms, this would be referred to as the product backlog, Essentially,
though, it’s anything that has not been deemed relevant for this work effort
(or sprint). Developers should not pick from this list of tickets. The backlog
should be prioritized to give hints to the team on what should be worked on
in the next work sprint. Recently, a team that I worked with referred to this as
the “super very important for later” pile.

Ready for Work

Prioritized tickets for this work iteration. These tickets might be blockers for
tickets in the backlog, or simply be the next piece the team has chosen to
work on. Your team may want to subdivide this stage into separate
subcategories, such as: Ready for Development, Ready for Code Review,
Ready for Testing, Ready for Client Approval, and Ready for Deployment.

In Progress

A developer is currently working on this ticket, or a quality assurance review
is being done. With larger teams, you may want to break this category down
further as well. For example: In Definition, In Development, and In Testing.

Completed

The work has been finished, or has been canceled. Perhaps there were
follow-up tickets, but only very rarely should a ticket be reopened after it has
passed a code review, quality assurance review, and a client review.

DO NOT ALLOW YOUR PROJECT MANAGERS TO
OVERCATEGORIZE!

Allow your team to grow into states as needed. I have worked on too many projects where a
team of project managers had decided on a range of categories that described every possible
state. The system was always cumbersome to use. (And I am a category loving manager!) The
developers never liked trying to remember to micro-shift their tickets, and, more often than
not, the tickets weren’t in the right state unless a project manager was the one moving the
tickets through the progression of states. Have compassion for developers who want to

http://www.gotomeeting.com/

develop, not spend their day updating timesheets and micromanaging ticket updates. Start
simple. Make as few categories as possible. As the team of developers asks for new states, add
them.

As an example of a variation, the team I worked with in the fall of 2014 had nine
people working in the ticket tracker on the tickets throughout the project (a
relatively small project, but a typical team size for Agile projects). The ticket
tracker had summary columns for the following statuses:

On Deck
This ticket is ready to be worked on, and should be completed during this
week’s work.

In Progress

This ticket is actively being worked on.

Pull Request
The code has been written, and is ready to be reviewed and merged into the
main branch.
Needs Testing
The code has been reviewed, and rolled into the development branch. It is
ready to be reviewed on the quality assurance server by a team member.
Done

The ticket is completed. This state is also used for tickets that are closed
without being completed (duplicate task, feature no longer needed).

The backlog was simply a collection of tickets without a status assigned.

If a developer was ever blocked, he or she would reassign the ticket to the person
most likely to “unstick” the issue. Getting into the habit of trading tickets to
communicate with others is a cultural piece that won’t work for all teams—but it
does seem to work well for distributed teams where you can’t just tap someone
on the shoulder to get your questions answered.

I love a categorization system more than the average developer; however, adding
complexity has consequences. Complexity increases the time it takes people to

decide which variation their ticket currently belongs to (“is this Needs Testing or
Pull Request?”). It also increases the number of times developers have to open
the ticketing system, instead of their code editor. This has the potential of both
improving communication with other developers and slowing down the actual
doing of the work. You’ll need to monitor this closely to see where you can
make refinements to improve your own process.

PICK YOUR OWN BATTLES

Teams I’ve worked on have responded well to developers being able to self-assign at least a
few of their own tickets. Sure, there may be some tickets that require the specialized
knowledge of one person, but it’s amazing how much of a difference it can make when it’s that
one person who identifies he or she needs to work on that ticket instead of being told what to
do.

It is near impossible to over-communicate with your team members. I don’t
mean filling your time with unstructured meetings; I mean truly communicating
what you are working on, and what is preventing you from getting your tasks
completed. The ticket status helps you to standardize the communication—so
make it easy to keep up to date, and ensure everyone on the team gets into the
habit of confirming their ticket status once a day.

A Basic Workflow

This basic workflow is appropriate for small teams of one or two trusted
developers. As was mentioned in the introduction, it is a stripped down version
of GitFlow; but without the extra levels of complexity, it also resembles a
branch-per-feature workflow. As such, you may find it also works well for teams
of developers with a testing infrastructure, who are aiming for rapid deployment
of code.

Key characteristics include:
= Governance model: contributors with shared maintenance
» Integration merge: performed by original developer

m Integration branch: develop

My personal preference for this workflow is closer to a Kanban-style system,
which allows tickets to flow through a work board; however, I find it much
easier to communicate plans to outside stakeholders by using the Scrum
approach to time-boxed sprints. In Scrum, a specific set of tickets is loaded into
a sprint and the goal is to get the number of outstanding tickets down to zero by
the deadline. For internal projects, Scrum-style sprinting can act as arbitrary
deadlines to keep teams motivated and moving forward.

At the end of each sprint, I recommend hosting an internal demo so that the team
can show off their work and ask for help from the wider group if they are stuck
on a specific piece.

The workflow is as follows:

1. As you begin a ticket, update the status in the ticket tracker to say the ticket
is In Progress. This will notify your team about what you are currently
working on, and will give you the number for the branch you will create to
work on your ticket.

2. From the branch develop, create a new branch whose name includes the
ticket ID and a terse description of the work. If you are working on tickets
that have subtasks, ensure the branch name uses the most relevant ticket
number. For a bigger feature, this ticket might be referred to in your
ticketing system as a Meta ticket or Epic ticket. If you are working on only
part of the larger feature, you should use the smallest relevant ticket
number. Your ticket system might refer to this as a user story, an issue, or
bug ticket.

3. Work on your ticket, ensuring you keep the ticket branch up to date with
any changes that might have been incorporated into the branch master
since you started your work. Begin each commit message with the ticket
number enclosed in square brackets: [#1234].

4. Run relevant tests for your code to ensure typos and basic errors are
caught. This may include a spellcheck, and a language syntax check
(linting). If you are working in a test driven environment you will
definitely have additional tests to run.

5. When you have completed your work (or think you have!), make a final
commit with the keyword “Resolves” and then the ticket number:

Resolves #1234.

6. Optionally, push your ticket branch to the code hosting repository. With the

keyword in place in your commit message, this will move your ticket
tracker forward to the next step.

7. In your ticket tracker add a comment to the ticket to include a note about
the rationale for the approach you took and some kind of proof that the
work was been completed. For example, a screenshot of how the ticket

changes the display on your local development environment. This acts as a

sanity check later if, suddenly, things stop working.

8. Ensure the ticket branch is up-to-date and then merge your work in the

branch develop, and, assuming there are no merge conflicts, push the
updated branch to the central repository.

9. Assuming there were no new problems introduced by the new work
(regressions), the ticket can be closed.

10. Finally, delete your local ticket branch and the remote copy of the ticket
branch.

TIP

In some ticketing systems, adding a pound sign (#) will automatically link the commit message
to the ticket number. Adding square brackets around the ticket number will ensure that commit
messages aren’t omitted if you choose to rebase your work because lines beginning with a #
are ignored when commit messages are automatically composed for the new commit objects.
In many systems, including the keyword “resolves” will automatically move a ticket from In
Progress to the next state (for example, Needs Testing or Closed); this will vary depending on
the ticketing system you’re using. Check the documentation for whatever system you are
using.

This pattern works extremely well for small teams with no peer review
requirements. As your team starts to grow, or if you have a specific quality

assurance process you need to undergo, you may find this pattern is not rigorous

enough for your needs.

Trusted Developers with Peer Review

This expands the basic team workflow by adding a peer review process. Now,
every ticket is reviewed by someone on the team from a code perspective. The
rationale for peer review testing, and not just automated testing (or test-driven
development), is covered in Chapter 8.

Key characteristics include:

m Governance model: contributors with shared maintenance

» Integration merge: performed by the reviewer

» Integration branch: develop

The workflow is as follows:

1.

As you begin a ticket, update the status in the ticket tracker to say the ticket
is In Progress.

From your local copy of the branch develop, create a new branch.

Work on your ticket, ensuring your branch is kept up to date with rebasing.
Begin each commit message with the ticket number enclosed in square
brackets ([#1234]), or with the keyword “Resolves” and then the ticket
number: Resolves #1234,

Run relevant tests for your code to ensure typos and basic errors are
caught. This may include a spellcheck, and a language syntax check
(linting). If you are working in a test driven environment you will
definitely have additional tests to run.

Push your branch to the code hosting repository. This acts as your backup,
so don’t skimp on this step!

When you’ve finished working on your ticket, ensure the branch is up to
date with develop, and uploaded to the code hosting system. Mark your
ticket as Needs Testing in the ticket tracker.

Assuming a manual review is necessary, and there isn’t a series of automated
tests, the reviewer will finish off the remaining steps:

1.

Perform a review of the work according to the original ticket description. It
is the coder’s responsibility to ensure his or her work is clear, and that the
steps to test the work are coherent. If necessary, send the ticket back to the
developer with any necessary changes, or to bring the branch up to date if

it has gotten out of sync with develop.

2. Merge the ticket branch into the branch develop, and, assuming there are
no merge conflicts, push the updated branch to the central repository.

3. Assuming there were no regressions, the reviewer will now close the ticket
and notify the developer that his or her work has been merged into the
main branch. Both the developer and the reviewer can now delete their
local copies of the ticket branch. Because they are currently in cleanup
mode, the reviewer should delete the remote copy of the ticket branch; the
developer might have to break focus in the current task to do the cleanup.
Wherever possible, we should protect the focus, and flow, of our
teammates.

Once your team is large enough to have a review process, it makes sense to also
have a shared development server from which the team can conduct regular
demos of their work. This development server can also double as a quality
assurance machine during the development process. To reduce the overhead for
team members needing to check out the latest version of the develop branch and
build the software, you may choose to set up a Jenkins instance to automate the
process.

Untrusted Developers with QA Gatekeepers

This process is a minor variation on the previous section “Trusted Developers
with Peer Review”. This time the process assumes an untrusted developer, who
is not allowed to merge anyone’s work into the main branch. Instead, a trusted
quality assurance (QA) team performs the final merge.

Key characteristics include:

= Governance model: contributors with collocated repositories
m Integration merge: performed by the reviewer

m Integration branch: develop

Developers begin by creating a fork of the project on the code hosting system,
and then creating a local clone from this forked copy of the repository. This step
is only performed once.

The workflow is as follows:

http://jenkins-ci.org

1. To begin a ticket, update the status in the ticket tracker to say the ticket is
In Progress.

2. From your local copy of the branch develop, create a new branch.

3. Work on your ticket, ensuring your branch is kept up to date with rebasing.
Push your ticket branch to your fork of the project as a backup of your
work in progress.

4. Run relevant tests for your code to ensure typos and basic errors are
caught. This may include a spellcheck, and a language syntax check
(linting). If you are working in a test driven environment you will
definitely have additional tests to run.

5. When you’ve finished working on your ticket, ensure the branch is up to
date with develop, and push your work to your forked repository. Open a
pull request (in some ticketing systems, this might be called a merge
request) for your work.

The reviewer will finish off the remaining steps:
1. Perform a review of the work according to the original ticket description.

2. On the main copy of the repository, accept the pull request. Depending on
the ticketing system, this might be done via a web UI, or in a local clone of
the repository.

3. Assuming there were no regressions, close the ticket. Because the work
was completed in a fork of the main project, there is no additional cleanup
in the main repository.

This approach also works well if your team is mostly trusted developers, but you
have a few contractors as well. You might want to have your contractors working
in a fork of the repository, instead of giving them write access to the main
project. For some types of software, this split might even be a requirement for
your own staff. For example, if you were working on firmware for a medical
device, you might have very strict government regulations you need to follow on
who is allowed to check in work, and how that work must be reviewed before it
is added to a repository.

Releasing Software According to Schedule

The vast majority of the projects I have worked on have used a release schedule
to expose new versions of the software to its users. The process described in this
section is based almost entirely on the very popular workflow, GitFlow. If you
are deploying continuously, and do not collate multiple tickets worth of work
into a specific release, this section will not be relevant to you.

Publishing a Stable Release

Up to this point, all of the examples have been working from the branch,
develop. Eventually, though, you’ll want to release the product you’ve been
working on. When you’re ready to do this, you will need to split your repository
into a public-facing stable version of the product, and a developer-facing “no
guarantees” version of the product.

When the first version of your software is launched, a development manager will
prepare the repository for a code release. Generally this work is done locally, and
then pushed up to the main copy of the repository.

The workflow is as follows:
1. From an agreed-upon commit, create a new branch named master.

2. Tag the agreed-upon commit with a version number with an easy-to-
remember naming convention. For example, v1.0.

3. Push the updated repository to the central code hosting system. If an
automated build process is not being used, update the relevant servers with
the new code.

Once the first release has been published, you will now split your work into
stable, public-facing work and ongoing development.

Ongoing Development

Once an official release of a product has happened, your team will effectively be
forced to think in two separate spaces at once: monitoring the health of the live
code, and continuing the development process to add new features or improve
those that already exist.

My preference, again, is for short work sprints. Developers are motivated to see
their work in action. The longer the sprint, the longer people have to wait to see

http://bit.ly/nvie-branching-model

others engaging with their work.

The one-week release schedule I commonly use has the following routine. The
days vary a little from team to team, but the generalized procedure is a good
starting point for many teams.

Setup (Mondays):

= All work in the develop branch is merged into the testing branch, ga. Any
work that isn’t completed and peer reviewed by Monday simply remains in its
ticket branches.

m The testing server is updated with the latest version of the ga branch.

m A QA checklist should be created for each of the user stories completed in the
last week of work. A standardized ticket format will make this list easy to
compile.

You may want to compile your QA checklist in a separate document, such as a
Google Doc, or an internal wiki. I’ve also used saved queries in JIRA to look for
tickets resolved in the last week, or which have been tagged for a specific
release. This will depend entirely on how you choose to track progress in your
ticketing system.

Testing (Mondays and Tuesdays):

= Automated tests are run to ensure no new business-critical interactions have
suffered regressions (site visitors and members can still use all expected
functionality).

» Team members responsible for testing complete the checklist and update the
tickets according to a PASS or FAIL grade.

= Any bugs that are found have new tickets opened and are addressed before
launch day by either a new fix, or by removing the relevant commits from the
ga branch.

Launch Day (Wednesday):

m The ga branch is merged into the master branch and tagged with the release
version.

m The live site is brought up to date by checking out the commit on the master
branch, which has been designated as the newest release for the project.

Using an explicit tag ensures you can easily roll back to a previous known
state.

Announcements about the latest features and fixes are posted to the development
blog. Many teams choose to wait a day or two after Launch Day before
publishing the blog post. This allows the team to ensure the release is stable and
does not need to be reversed.

Post-Launch Hotfix

Sometimes deployed code has mistakes in it. If a bug needs to be fixed quickly
before the next batch of software is ready, an out-of-cycle fix might need to be
made. These deployments are referred to as a hotfix.

In a hotfix, the work begins not from the develop branch, but from the master
branch. This ensures the changes only introduce a fix that addresses the problem
identified in the deployed code.

The workflow is as follows:

1. To create a hotfix branch, start by checking out the master branch, not the

develop branch. This will ensure that no additional features accidentally
sneak into the fix.

2. Generate a list of tag names, and locate the latest tagged release.

3. From the latest tagged release on the master branch, create a new branch,
using the branch name hotfix- <ticket_number>-<description>. For
example, hotfix-1234-fixing_three_seat_issue.

4. Complete the same review steps as you would for a development ticket.
5. Merge the tested hotfix branch into the master branch.

6. Tag the new commit on the master branch with the latest release version.
For example, v1.0.1.

7. Merge the tested hotfix branch into the development branch so that the
changes are not lost in the next official release of the software.

Collaborating on Nonsoftware Projects

Git isn’t just for software developers! As a technical author, I've used Git a lot to
track changes to files that weren’t software—for example, configuration files,
articles I'm writing, and even this book! Some people even use Git to maintain a
personal journal. To illustrate the importance of matching the Git commands to
the team’s process, let me explain how I structured the repository for this book.

While writing this book, I worked with the O’Reilly automated build tool, Atlas.
This system also has a web-based GUI, which allows editors to work on book
files directly, and saved files are immediately committed to the master branch.
Due to the GUI, there is no peer review process because anyone on my team is
able to make edits directly to a file. My preference, however, is to work locally,
and not through a web GUI. Initially, I had been keeping the branch overhead
low locally and had just been working in master as well. It only took me one
merge conflict to alter the way I was working locally.

When I wanted to update my work, I would use the command fetch to see if
any changes had been made by my editors. With the fetch completed, I would
compare my copy of the master branch with their copy of the master branch
(origin/master). Assuming I agreed with all the editors’ changes, I would
merge in the editors’ copy of the branch; if I disagreed, I would merge in their
branch with the strategy - -strategy-option=ours, effectively throwing out
their changes but letting Git think that the two branches were merged.

This can be done on a per-commit basis, or if there is a merge conflict, it can be
done on a very granular line-by-line basis with a merge tool. (It feels a bit
passive-aggressive to be throwing stuff out, but really it’s just the limitation of a
single branch system where you don’t have the ability to talk about the proposed
changes in a separate branch.) Depending on the granularity of the commits, I
might also choose to cherry-pick some commits (and keep them), but discard
other commits.

Then I started getting reviews as marked-up PDFs and realized, once again, I
had another way that I wanted to separate work. I wanted to be able to write a
chapter and keep those commits nice and tidy, but sometimes I was mid-chapter
when an edit came in that [wanted to address immediately. Instead of
intermingling these commits, I set up the following structure for my branches:
master, drafts, and one branch per chapter.

https://atlas.oreilly.com/

The branch drafts gave me a place to integrate all of the work that I’d been
doing. It was kept up to date by merging in chapters as they were completed, or
rebasing the master branch if changes had been made by one of my editors.
When I was first writing chapters on my own, without others contributing,
multiple branches would have been a lot of overhead to maintain, but as more
contributors started offering different kinds of contributions, more granularity in
branches allowed me to pick and choose how I wanted the manuscript to
progress.

As you can see, my process differed wildly from the workflows used for
software projects, but it’s still Git that I'm working with! Your work may have
its own idiosyncrasies that justify nonstandard branches. Don’t be afraid to
experiment, but when you do, document your process well so that others can
understand what is expected of them.

Summary

The workflows described in this chapter have been successfully implemented in
teams I have worked with. Your own team might want to make adjustments, but
starting from something will be a lot easier than starting from nothing.

m The workflow you use may change before and after the launch of your
product.

m Before launch, you will likely have fewer integration branches, because the
concept of a hotfix is unlikely to be an issue.

= By using your documentation to complete your work, you ensure your
documentation is always up to date, which makes it faster to onboard others if
you need help.

In Part II, you will learn the commands necessary to implement the processes
described in this part.

Part Il. Applying the Commands
to Your Workflow

This part of the book approaches the commands in Git from a very practical
point of view. You will be presented with a scenario first, and then given the
commands you would need to get yourself into (or out of) trouble.

Hands-on activities are sprinkled throughout the chapters. Where possible, you
should do these activities because it will help you gain a greater understanding
of the commands (and will make the messages feel more natural when working
with your own software projects). Where there are diagrams provided, you
should redraw them because every motion that you make when learning a new
activity will help to develop the neural pathways needed to cement the
information into your mind.

Before reading the chapters that follow, you should make sure you have the
latest version of Git installed (see Appendix B) and that your system is correctly
configured (see Appendix C).

Chapter 5. Teams of One

Although this book is aimed at teams of more than one, there are often times
when we are working as a team of one—a solo developer. This might be a
personal side project, or you might actually be the only developer on your team.
Working solo with no team constraints can be intimidating because there’s no
one available to walk you through what you should do, or help you if you get
stuck. In this chapter, I'll show you how I do my work when I’'m working on my
own projects. Of course there are places where I get tempted to cut corners as a
solo developer (after all, no one is watching over my shoulder, so who would
know if I took a little shortcut here or there?). Where I can, I will show you the
implications of those shortcuts.

By the end of this chapter, you will be able to:

m Create a local copy of a remote repository

m [nitialize version control for an existing set of files

= Create a new repository from an empty project directory

m Examine the history of a repository via its commit messages
m Work with branches to isolate different streams of work

m Make commits to a local repository

m Use tags to highlight individual commits

m Connect your project to a remote code hosting system

If you are a creator (as opposed to a reviewer or manager), the majority of your
time will likely be spent using the commands outlined in this chapter. Being able
to work effectively with all of the tools outlined here should be considered a
prerequisite to the remaining chapters in this part.

Those who learn best by following along with video tutorials will benefit from
Collaborating with Git (O’Reilly), the companion video series for this book.

Issue-Based Version Control

http://bit.ly/collaborating-with-git

Someone once told me that the person who can best describe a problem is the
most likely to solve it. In writing this book, I’ve found that to be entirely too
true. When I write myself a TODO item that is vague, such as “finish chapter 4,”
I rarely feel motivated to work on the book. But when I write the task as “write-
up sample workflow for small teams like Mai’s,” I become way more motivated
to dive into the writing. This isn’t unique to writing books, though. As a team of
one, you might not feel entirely motivated to work on your code. If you’re like
me, though, if the work is re-framed as a way to help a person, you’re more

likely to get it done.

TIP

If you’ve never thought about what motivates you as a developer, you may enjoy Joe
Shindelar’s presentation “A Developer’s Primer to Managing Developers”.

You might be asking yourself, “what does this have to do with Git?” Each time
you sit down to work on a project in source control, you should have an idea
about what you’re trying to do. It doesn’t matter if you’re developing a new
feature, fixing a bug, refactoring old code, or just trying out a new idea; you
should still have some kind of motivation for tinkering. There are a lot of
different ways to write down what you want to work on, but the following works
nicely and can be more rewarding than just working on tickets.

The ticket has three main parts:
Problem

A terse description of what you’re trying to do

Rationale
The reason why you’d want to do this (who will it help if this problem is
solved?)

Quality assurance test
How will I know that this problem has been solved?

This format is quite similar to another that I’ve seen used for Agile projects:

Card

http://bit.ly/managing-developers

A terse description of the problem, written from the perspective of the user

Conversation

Details about the problem you’re trying to solve; where possible, it should
avoid prescribing solutions

Confirmation

The steps a user (from the first part) will be able to take to verify the problem
has been solved

In a team of one, you might feel that the overhead of a ticketing system is a bit
much for you. Perhaps your paper notebook is sufficient. I often think this is
true, but then as I get working on my project, I start to lose track of all the little
ideas I had. Sometimes I start a new branch for each idea, but then end up
getting buried under an avalanche of out-of-date branches. If this sounds like
you, take a moment now to find the ticket tracking options in whatever code
hosting system you use, and start to get into the habit of writing yourself love
notes for what you plan to do with your software. At the very least, it will give
you arbitrary numbers that you can use to create branches and help you keep
track of your code.

TIP

If you don’t have a code hosting system yet, I recommend GitLab, or its free online offering,
GitLab.com. It will allow you to create private repositories with unlimited collaborators for
free, and it can be installed on a local network if you are learning Git behind a firewall. The
advantage of a private repository is that you can hide your work while you learn. If your work
is hidden, you won’t be able to take advantage of community support, but I understand if
you’re a bit shy right now. It happens to the best of us.

Once you have a way of tracking your ideas, the process for doing work should
follow these steps:

1. Create a new ticket in your issue tracking system; note the number on the
issue.

2. In your local repository, create a new branch using the format
issuenumber-description.

3. Do the work described in the ticket (and only the work described in the
ticket).

4. Test your work and make sure it is complete and correct. Ensure it passes
your QA test from the ticket you wrote in the development environment.

5. You now have a “dirty” working directory that contains new and/or
modified files. Add your changes to the staging area of your local
repository.

6. Commit your staged changes to the repository.

7. Push your changes to a backup server. In many cases, this will also be
where your tickets are being tracked, such as GitLab, Bitbucket, or GitHub.
Depending on your ticketing system, the ticket may now be marked as
resolved but not necessarily closed.

8. When you are completely satisfied with your work, merge your ticket
branch into your main branch (usually master) and push the revised
branches to the code hosting system.

9. Test your work again to ensure there are no follow-up issues.
10. Update your ticket as appropriate to close it out.

Depending on the type of code you’re writing, these steps may vary slightly.
Rewrite this list, in full, and include any steps that are different for the way you
work. For example, you may practice test-driven development, or have build
scripts that you use to deploy your code. Commit to following your own process.
If you’re not really motivated by words, draw out your process instead (Figure 5-
1).

However you choose to do it, make sure you capture your process. You may
choose to tuck it into the repository as a README file, or print it out and paste it
to your Kanban board. By practicing consistency now, it will become infinitely
easier to work with your coworkers to establish a process that everyone can
follow.

In the remainder of the chapter, you will learn the commands needed to use the
process I described. We’ll start by creating a new repository where you can store
your work.

Creating Local Repositories

When you create a new repository in Git, you generally begin from one of three
starting points:

= From a clone of an existing repository
» From an existing folder of untracked files
= From an empty directory

In this section, you will learn how to create a new repository using each of these
three methods.

Begin by creating a folder that will store all of your sample repositories
(Example 5-1). You may choose to put this folder on your desktop, or in your
home directory, or somewhere else. Git won’t care, so long as you remember
where the folder is.

Before | start working
on code, the first thing
I need to do is create a

ticket to track my work.

master

1234-ticket
A

With my ticket created,
| can create a new branch
with the right name

and start working.

2

I think I'm done ...

work is fully tested
code conforms to relevant standards
relevant test suites have been run
code is commented / documented
work has been spell-checked

git add --all

Now | can add my
edits to the staging area.

1234-ticket

With my changes staged
| can commit the work to my

) s git push (entralized Code
git commit local repository so that it's Hosting System
A ready to share. :
/
J)
Lz staging server ‘
t Repository for stakeholder
master approval
’\,‘ gitmerge Local /m
o ; Repository 9P Centralized Code
. Hosting System
A r
/ ‘\‘
- _)
Time to wrap up! ;.'
Merge into master; deploy to production
master environment

prod; close the ticket.

Figure 5-1. Sketch a diagram of your workflow

Example 5-1. Create a project directory in your home directory

$ mkdir learning-git-forteams
$ cd learning-git-forteams

Unless otherwise stated, each of the exercises in this book will assume you have
navigated to a sample repository within this folder. If it matters which repository
you use, I will specify it in the instructions. Generally, however, it will not
matter.

Cloning an Existing Project

On code hosting systems, such as GitLab or BitHub, when you navigate to a
project page, you are typically given the option to download a .zip package of all
the files or create a clone of the repository. Often these options are close
together, but not always. Figure 5-2 shows the location of the repository URL in
GitLab.

« C & nttps://gitlab.com/gitforteams/gitforteams Te @ Ea; =T O ¢ - ® p =
Git for Teams / Git for Teams
& Project — README.md W% Star 0 F Fork 47
& 7 8SH HTTPS qgit@gitlab.com:gitforteams/gitforteams.git @ public & Download zip |~ =
2 Commits
p Network Activity Readme 85 commits 4 branches Otags 13.5MB
i Graphs
&L Pushevents [Merge events % Comments & Team Compare code

o Issues (1]
= Merge Requests 1] -.

o 3 fi:zif Git for Teams pushed to branch master at Git for Teams / Git ... 22 days ago Created on Sep 09, 2014
& Wiki a715c@69 Adding workflow diagram for: reset, revert, rebase, checkout. Owned by Git for Teams

794e4473 Updating feedback URL on final slide to TrueNorthPHP.,

... and 1 more commits. Compare — eedfSdad...a715c069

:- Git for Teams pushed to branch master at Git for Teams / Git ... 4 months ago
eedf5dad OSCON webinar updates.
7798eb1@ Lesson 00: introduction to the learning series

... and 31 more commits. Compare — c5487205...eedfSdad
: Git for Teams pushed new branch 1-bad_jokes at Git for Tea...

' Git for Teams pushed to branch video-lessons at Git for Team... 4 months ago

91157879 New table of contents on the PDF summary of lessons

Figure 5-2. Locating the URL to clone a repository

PRACTICE WHAT YOU WILL DO MOST OFTEN

By starting with a repository, you will also have an easier time of learning the commands
without having to invent problems to fix as you learn Git.

To download a copy of a project, you will use the command clone, as shown in
Example 5-2. Unlike downloading a zipped set of files, creating a clone of a
project will download a copy of all the files in the repository—along with the
commit history—and it will remember where you downloaded the code from by
setting up the remote code hosting server as a tracked repository. Don’t worry;, it
doesn’t keep a persistent connection, but rather it bookmarks the location in case
you want to check for updates and download them to your local repository at a
later date.

You will only clone a project once. Once the project is downloaded, you will use
a different set of commands to keep it up to date. In Chapter 7, you will learn
different ways to work with the command clone; in this chapter, we’re just
going to use it to grab a snapshot of a project so that you have something to
work with.

Example 5-2. Create a clone of the Git for Teams repository

$ git clone https://gitlab.com/gitforteams/gitforteams.git

The following should appear in the output of your terminal window:

Cloning into 'gitforteams'...

remote: Counting objects: 1040, done.

remote: Compressing objects: 100% (449/449), done.

remote: Total 1040 (delta 603), reused 915 (delta 538)

Receilving objects: 100% (1040/1040), 9.49 MiB | 1.68 MiB/s, done.
Resolving deltas: 100% (603/603), done.

Checking connectivity... done.

Congratulations! You have just cloned your first Git repository. You can muck
about in this directory as much as you like. If you mess things up beyond
recognition, delete the folder and run the clone command again.

Now that you have this directory, you also have all of the support material for
this book. You can explore the supporting files, look for hidden Easter eggs, and

generally have something to start with as you learn the more advanced
commands without needing to worry about inventing weird scenarios, or
destroying your own work.

Converting an Existing Project to Git

If I am working with software for the very first time, I tend to download a zipped
package of files and begin versioning with an initial import of the software at
that specific point. I'll rip things out, move things around, and generally give
myself a trial-by-fire introduction of how (and why) I might want to keep things
exactly the way the original developers intended things to be.

In order to compare the effect of the commands you’re running, download a
second instance of the Git for Teams repository, but this time grab a zipped
package of the same repository you just cloned:

1. Navigate to https://gitlab.com/gitforteams/gitforteams.
2. Locate and download the zipped package for the project.

3. Unpack the project, and place it into your project directory for this book.
Because there is already a cloned copy of the files in this directory, you
should name this new folder gitforteams-zip.

You can start with any folder of files and create a Git repository from it using the
initialization command, init, as shown in Example 5-3. Git will be aware of all
files in this directory, including subfolders, so make sure you run the command
init from the root folder for your project.

Example 5-3. Initialize a directory for version control

$ git init
You will see a message similar to the following:
Initialized empty Git repository in Usersemmajane/gitforteams/gitforteams-zip/.git/

Files are not immediately added to the repository. This is a feature because Git
allows you to ignore files as well, and so it is waiting for you to tell it exactly
which files you’d like to track. If there is a logical next step, Git will almost
always have a useful suggestion in its status message. You should get into the
habit of using the command status as frequently as you would use Save in a
word processing program. This command does not save your work, but rather it

https://gitlab.com/gitforteams/gitforteams

lets you know what’s happening at this moment in your repository—and
knowing what’s happening is key to understanding Git. Go ahead and check the
status of your repository now (Example 5-4).

Example 5-4. Check the status of your repository

$ git status

Git lets you know the next step is to add the files you would like to track because
you have just initialized the repository:

On branch master
Initial commit

Untracked files:
(use "git add <file>...

to include in what will be committed)
[lots of files listed here ...]

nothing added to commit but untracked files present (use "git add" to track)

Getting your files into Git is a two-step process. Although it feels a little tedious
when you’re first getting started, this is a feature because it allows you to make
multiple unrelated changes at once in your working directory. Changes can be
staged into groups of commits in the index—each group getting a different
commit message. We want to add everything that is in our working directory
because this is the initial import of files (Example 5-5).

Example 5-5. Add all files to the staging area of your repository
$ git add --all

Once again use the command status to check the status. The output will let you
know the files have been staged and are ready to be committed:

On branch master
Initial commit

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

new file: [lots of files listed ...]

Now that your files are added, you can save their current state into the repository
with the command commit (Example 5-6).

Example 5-6. Commit all staged files to your repository

$ git commit -m "Initial import of all project files."

A lengthy commit confirmation message will be printed to the screen, notifying
you that the files have been added to your repository. Your project files are now
under version control.

Initializing an Empty Project

When we teach Git, it’s generally easiest to start with a completely empty
directory, void of any files. This is because it’s easiest for the instructor and the
student to begin from the same point. This exercise allows you to introduce
yourself to Git without worry:

1. Create a new, empty folder:
$ mkdir empty-repository
2. Change into your new folder:
$ cd empty-repository
3. Run the Git initialization command:
$ git init
4. Verify the hidden repository folder was added:
$ 1s -al
On Windows:
dir

If you see a new hidden folder, .git, your repository has been created. This folder
will contain the record of all the changes to your repository. There’s nothing

scary contained in this folder, but if you remove it, your project will no longer be
tracked. This means you will not be able to recover previous versions of any of
the files in your repository, you will lose all commit messages for your
repository, and whatever state the files are currently in will be immutable.

At this point, you can follow the additional steps from the previous section to
add files (Example 5-5), and commit them to your repository (Example 5-6).

Reviewing History

Once you have made your first commit into a repository, you are ready to start
reviewing history. Of course, the history of your project is a combination of the
work you have done, as well as the work done by others you have collaborated
with. It may not feel like collaboration if you’ve merely downloaded an open
source project, but it is. Collaboration can be as simple as adding your changes
to someone else’s work.

To review the changes that have been made in a repository, use the command

log (Example 5-7). By default, this command allows you to review the commit
message and author information for every commit in the branch that is currently
checked out of your local repository.

Example 5-7. Reviewing a repository’s history with log

$ git log

The command log will output a full history of your repository’s commit
messages in reverse chronological order.

ENSURE YOUR DETAILS ARE CONFIGURED

If your name and email address aren’t displayed, refer to Appendix C for tips on how to
configure Git.

If you’ve only made one commit message, the initial import, there will only be
one message displayed:

commit fa®4c309e3bb8de33f77c54c1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>

Date: Sat Oct 25 12:44:39 2014 +0100

Initial import of all project files.

If, however, you are working with a more established code base, there will be a
lot of messages. This can be quite overwhelming and difficult to scan. You can
shorten the messages to just the first line of the message by adding the parameter
--oneline as shown in Example 5-8. To exit, press q.

Example 5-8. Viewing a condensed history of your project

$ git log --oneline

To get a sense of how the same files can have a different history, run the
commands from Examples 5-7 and 5-8 from both the cloned repository and from
the repository you created from a downloaded .zip package. Even though the
files are identical, their history is different (this will come up again when we talk
about rebasing in Chapter 6).

NOTE

Other branches will have different commits, and different copies of the repository will have
commits made by different developers. It’s basically anarchy, but limited to each little
repository. The conventions we establish as software teams are what bring order to the chaos
and allow us to share our work in a sane manner. (Remember the branching strategies we
learned in Chapter 3? They’ll keep the work sorted into logical thought streams. Remember the
permission strategies from Chapter 2? They’ll keep people locked into the right place, and
unable to make changes to the “blessed” repository without the community gatekeeper’s
consent.)

If you have completed all of the steps in this section, you will now have three
separate repositories to work from for the remaining activities. For the section on
branching, I recommend you work with the cloned repository because it has
more to look at. For the other sections, you may choose any of the three.

Working with Branches

In version control, branches are a way of separating different ideas. They are
used in a lot of different ways. You can use branches to denote different versions

of software. You might use very short-term branches to work on a bug fix, or
you might use a longer-term branch to test out a new idea.

Listing Branches

To get a list of all branches (Example 5-9), you can use either the branch
command on its own, or add the parameter - - list. At the beginning of this
chapter, you cloned a repository; use that repository for this section because it
already has branches for you to look at.

Example 5-9. Listing local branches

$ git branch --list

A list of the local branches will be printed:

master

By default, the master branch is copied into your local repository and you can
begin working directly on it. In addition to this branch, you have also
downloaded all other branches that were available in the remote repository. They
are available for reference purposes, but they are not available to be worked on
until you have set up a working copy of the remote branch. To list all branches in

your repository, use the parameter - -all (Example 5-10).

Example 5-10. List all branches

$ git branch --all

If you use this command in your local copy of the cloned repository, you should
see both your local branches and a list of remote branches. The * denotes which
branch you are currently viewing (or have “checked out”). The remainder of

these lines all begin with remotes/origin: remotes just means “not here,” and
origin is the default convention used for “my copy is cloned from here.” The

final piece is the name of the branch (master, sandbox, and video-lessons are
all branches):

* master
remotes/origin/master
remotes/origin/sandbox
remotes/origin/video-lessons

The list can be a bit misleading, though. The remote branch names do not

actually include the word remotes. This is just a piece of information about
what type of branch it is. To get a usable list of the names of the remote

branches, use the parameter - -remotes (or -r for short) instead (Example 5-11).

Example 5-11. List remote branches

$ git branch --remotes

This will give a list of only the remote branches (using their real names):

origin/master
origin/sandbox
origin/video-lessons

These branches are all accessible to you, although you’ll need to make your own
copy before committing changes to them.

Updating the List of Remote Branches

The list of remote branches does not stay up to date automatically, so the list will

become out of date over time. To update the list, use the command fetch
(Example 5-12).

Example 5-12. Fetch a revised list and the contents of all remote branches

$ git fetch

You will learn more about working with remotes in Chapter 7.

Using a Different Branch

When you check out a branch, you are updating the visible files on your system
(the working tree) to match the version stored in the repository. This switch is
completed with the command checkout (Example 5-13). The checkout process
is a little different from a centralized version control system (VCS), such as
Subversion. In a centralized VCS, you would need an Internet connection to use
the checkout command because the branches are not stored locally, and must be
downloaded in order to use.

Example 5-13. Switching branches with the command checkout

$ git checkout --track origin/video-lessons

Branch video-lessons set up to track remote branch video-lessons from origin.
Switched to a new branch 'video-lessons'

This command works differently in older versions of Git. If the previous
command gave you an error, you may choose to upgrade (see Appendix B), or
run the following variant:

$ git checkout --track -b video-lessons origin/video-lessons

This command (checkout -b) creates a new branch named video-lessons
with tracking enabled (- - track) from the branch video-lessons stored on the
remote repository, origin. The local copy of the remote branch is available at
origin/video-lessons, and your copy of the branch is available at video-
lessons.

You should now have a local copy of the remote branch video-lessons
(Figure 5-3).

local repository

g -
-

p checkout branch with tracking

1
remote repository ‘ '

A

working directory
(editable files)

Figure 5-3. A local copy of a remote branch has been created

branches

In your list of branches, it will look like the branch exists twice, except one
includes the reference information for the remote repository:

$ git branch -a

master
* video-lessons

remotes/origin/master
remotes/origin/sandbox
remotes/origin/video-lessons

From this new branch, you can review history using Example 5-22 or
Example 5-23. Note the commit history is not the same between the two
branches.

Creating New Branches

For very tiny projects, I happily putter along in the master branch with each
commit acting as a resolution to a problem; however, the bigger the team gets,
the more it will benefit from having some structure in how people collaborate on
the work. Chapter 3 covered the strategies you may want to adopt with your
team for branching strategies. As a solo developer it can be more difficult to
know if you should be working on a different branch. To help you decide, ask
yourself a few questions:

m [s it possible I will want to completely abandon this idea if things don’t work
out?

= Am I creating something that is a significant deviation from the current
published version of the software?

= Does my work need to undergo a review before it’s published or accepted
into the published version of the software?

m [s it possible I will need to switch tasks before I’ve completed this work?

If you answered “yes” to any of these questions, you should consider creating a
new branch for your work. Teaching yourself good habits now is like buying
insurance. You hope you never have to use it, but you buy it just in case.

The best way to decide what goes into a branch is to start with the issue tracker.
By creating a written description of what you’re about to do, you will have a
clear sense of when to start and finish with your branch. Yes, this will often feel
like overhead, but it is a really good habit to get into, especially when you’re
working in larger teams.

When you start a new branch, it will contain the identical history as the place
you are branching from at the moment you create it (Figure 5-4). When you

review the history of a new branch with the command log, it will also show the
commits from its ancestor branch.

parent or ancestor branch new branch

4 A

Figure 5-4. New branches contain the same commits as their ancestor

Seeing as you are working on issue-based version control, your branch name
should reflect the ticket you are working on. For example, if the issue was “1:
Add process notes to README,” then the branch would be named 1 -
process_notes. The history for the new branch will include all of the commits
up to the point of departure, so make sure you begin your new branch from the
correct starting point. You can do this by either using the command checkout to
situate yourself in the correct branch first (Example 5-14), or you can add the
desired parent branch to your command (Example 5-15).

Example 5-14. Creating a new development branch

First checkout the branch you want to use as the starting point:
$ git checkout master

Switched to branch 'master'

Next, create a new branch:

$ git branch 1-process_notes
[no message displayed]

Finally, check out the new branch:
$ git checkout 1-process_notes

Switched to branch '1-process_notes'

Although it’s a little more to remember, Example 5-15 does have the advantage
of creating a branch explicitly from the right base branch, meaning you don’t
need to remember the extra checkout step from the previous instructions.

Example 5-15. Creating a new development branch from the master branch

$ git checkout -b 1-process_notes master
Switched to a new branch '1-process_notes'

Once you are in your new branch, you can go ahead and do your work. As an
exercise, I encourage you to try adding your notes on how your process works to
one of the three repositories you’ve created in this chapter. Once you’ve made all
of your edits, it’s time to commit the changes to your local repository.

Adding Changes to a Repository

Each time you make a change to your working directory, you will need to
explicitly save the changes to your Git repository. This is a two-part process.
Figure 5-5 shows how changes must be explicitly staged in the index, and then
saved to your repository.

e ™

_ - Thiswastheold text, [~~~ "77==- =5
local repository <

. ommit | 4 Thisis the new text. |T|_,
staging area
\ g g =

working directory
(editable files)

Figure 5-5. Changes in Git must be staged, and then saved to the repository

When you previously created a new repository, you imported a series of files all
at once (Example 5-5). You don’t have to add all the files at once, though. This
can be especially helpful if you have been working on unrelated edits that should
be captured in separate commits. If you do want to separate the changes into
multiple commits, you need to change the parameter --all that you used
previously for the filename you want to stage (Example 5-16). You can add one
or more filenames at a time; the filenames do not need to be the same type.

Example 5-16. Add selected changed files to your Git repository

$ git add README.md process-diagram.png
$ git add branch-naming-rules.png

For the most part, I add files to the staging area one at a time. I find this prevents
me from accidentally adding more than I meant to. At the command line, I can
type the first few letters of the filename and then press the Tab key, and the
remainder of the filename will be automatically typed out (this is known as tab
completion and it’s one of my favorite things to use). If, however, you have a lot
of files you need to add, and they’re all contained in the same directory, you may
want to use a wildcard to match files with a subdirectory (Example 5-17), or that
all have a similar name (Example 5-18).

Example 5-17. Add all files, recursively, from a given path

$ git add <directory_name>[*

Example 5-18. Add all files with the file extension .svg

$ git add *.svg

You can also completely omit the filenames, and instead stage files according to
whether or not they are known to Git. By using the parameter - -update you can
stage all files that are known to Git, and that have been edited (or updated) since
the last commit:

$ git add --update

If you want to be even more outrageous, you can stage all changed files in the
working directory by adding the parameter - -all. This will restage any files that
have been modified since they were first staged (ensuring all new edits are
captured in the commit); stage any files that are known to Git, but not already
staged; and stage any files that are not currently being tracked by Git. It is a very
greedy command! Before using it, you should check the list of files that will be
added:

$ git status
$ git add --all

Once a change has been added to the staging area, it must be committed. If you
continue to work in any of the files you’ve added to the index, only the
previously staged changes will be added when you next run the command
commit (Figure 5-6). If you keep working on the file, and want to include these
changes in your commit, you will need to repeat the previous command where
you added your files to the staging area.

more edits

changes not staged

changes not staged

Figure 5-6. A commit will only save the work that has been added to the index

You can commit your staged changes to the repository by running commit
(Example 5-6).

If this feels frustrating at first, you’re not alone! It took me a while to get used to
this behavior and I felt it was broken when it didn’t automatically notice I’d
changed the file and stage the new changes. It wasn’t until I started playing
around with partial staging of files that I realized how powerful it was to not
have my changes automatically staged.

Adding Partial File Changes to a Repository

If you want even more granularity over your commits, you can choose to add
partial changes within a saved file by using the parameter - -patch. One of my
favorite reasons for committing files in this way is to record several unrelated
edits into multiple smaller commits.

Adding files via the - -patch process is a multistep approach (Example 5-19).
You will first initialize the procedure, and then choose from a list of options on
how you want to create your patches. You will be prompted to add the change to
the staging area (y), or leave this hunk unchanged (n). Changed lines will begin

either with a - (line removed) or a + (line added). If a line has been changed, it
will display as both removed and added.

To separate the hunks into smaller units, you can use the option s to split the
hunk. This will only work if there is at least one line of unchanged work between
the two hunks. If you want to separate two adjacent lines for staging separately,
you can edit (e) the hunk.

Example 5-19. Add selected changes to your Git repository interactively

$ git add --patch filename

By adding the optional filename, you will not need to cycle through each file. If
you know exactly which file you need to split up, and you have a lot of files that
need staging, it can save you time to work with specific files. After running the
command, you will begin the process of walking through the files, looking for
changes to stage:

diff --git a/ch@5.asciidoc b/ch@5.asciidoc

index 8f82732..e7be9%ce 100644

--- a/ch05.asciidoc

+++ b/ch05.asciidoc

@@ -6,7 +6,6 @@ changed significantly in the last few years; however, a few of
the commands we'l easier to remember. Chances are very good that you have Git
installed if you are using Linux or O0SX. If you are using Windows, however,
the changes are very good that Git is not installed unless you've explicitly
installed it already.

-. Open a terminal window.
. Enter the command: +git --version+

The version of Git you are running should be printed to the screen.

Stage this hunk [y,n,q,a,d,/,j,],9,e,?]?

In the output displayed, we can see that Git is asking if we want to stage this one
line change (. Open a terminal window), which is a proposed deletion as
indicated by the -. Additional options for what to do with this hunk are available
by pressing ?.

Committing Partial Changes

Assuming you’ve only added some changes from a given file to the staging area,
when you check the status of your repository, you will see that a file is both
ready to be committed, and has unstaged changes:

On branch master
Changes to be committed:
(use "git reset HEAD <file>...

to unstage)
modified: ch@5.asciidoc
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: ch05.asciidoc

This is the same message that is displayed if you add a file to the staging area
and then continue to edit the file before committing it to the repository, or if you

only choose to stage some hunks while while adding files interactively to the
index with the parameter patch.

Removing a File from the Stage

If you accidentally add too many files from the staging area, and want to break
your changes into smaller commits, you can unstage your proposed changes
(Example 5-20). Removing a file from the stage doesn’t mean you’ll be undoing
the edits you’ve made; it notifies Git that you’re not ready for these changes to
be committed to the repository yet.

Example 5-20. Remove proposed file changes from the staging area

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

modified: ch05.asciidoc

$ git reset HEAD ch05.asciidoc
Unstaged changes after reset:
M ch05.asciidoc

Optionally, you can also use the - -patch parameter with the command reset if
you only want to unstage some of the changes you’ve made to a file.

Undoing your work will be covered in greater detail in Chapter 6.

Writing Extended Commit Messages

Up to this point it’s possible you have been writing terse, oneline commit
messages. While this is fine if you’re just practicing version control commands,
it’s not going to make your future self very happy if you need to figure out what
the commit message “Oops. Trying again.” means.

It took me quite a while to get out of the habit of thinking of Git as a place where
I saved my work and instead as a place where I recorded my results. When I first
started working with version control the commits I was making were granular to
take advantage of the advanced tools available to me (you’ll learn more about
these in Chapter 6). This is because I was coming the mindset of saving work

and undoing mistakes. When in the save mindset, I would think of clicking the
save button, or using control-Z to undo the last few things I typed. When the
commits are this small, the commit messages tend to be nearly useless (“stopped
for lunch”; “tried something”; “didn’t work™; “oops”; “testing”). If I wanted to
roll back history, how the heck would I use those commit messages to find the
spot where the code was working after something broke? It make take you a
while to find your stride as well.

Your commit messages should always include the rationale for why you made a
change, as well as a quick summary of the changes you made. In order to write a
detailed commit message, you will need more than one line the one line short
message style you have been using up to now. I typically write my commit
messages with a two-step procedure (Example 5-21):

1. Use a terse, oneline message to commit the changes to the repository.

2. Amend the commit to include a full description of what I was thinking
when I made the change.

Example 5-21. Writing a detailed commit message

$ git add --all

$ git commit -m "CHO5: Adding technical edits."

$ git commit --amend

You don’t need to do this two-step process; you can jump straight into the
message editor by omitting the parameter -m when first making your commit:

$ git commit

Your default editor will open, and you will be prompted to add a new commit
message. The first line of the message will be used for the - -oneline display,

and all lines beginning with # will be removed from the final message. Once
you’ve crafted your commit message, you will need to save it and then quit the
editor to complete the commit.

WORKING WITH THE DEFAULT EDITOR, VIM

By default, the commit editor is Vim. This works for me because I like Vim, but if you don’t, there’s
information on changing the editor in Appendix C. You’ll need a few key commands to navigate Vim:

= 1 takes you from visual mode to insert mode. You’ll need to do this so that you can begin typing

your commit message.

= esc returns you to visual mode. From here you can navigate using the arrow keys to a different
line.

= :wsaves the file by writing it to disk.
= :q quits the editor, returning you back to the command line.

You can also chain these commands together. For example, after writing your commit message, you
can save and quit the editor with esc :wgq.

In Chapter 6 you will learn how to squash granular commits into whole ideas
with interactive rebasing.

Ignoring Files

Eventually, you may run into a situation where Git keeps adding files to the
repository that you actually never want to add. If you’re on a Mac, this might
include the pesky .DS_Store files. If you’re on Linux, maybe it’s your text
editor’s .swp files. If you’re working on a web project, this may include the
compiled CSS files created from Sass.

If you know that your favorite text editor, or IDE, creates temporary files, which
are not project specific, you should create a global setting to ignore these files.

First, run the following command to let Git know which file you would like to
store your list of “ignored” files in:

$ git config --global core.excludesfile ~/.gitignore

You can now update this file using one filename per line. You can use exact
filenames, or wildcards (for example: *. swp will match any file ending in .swp).
For a useful starting point of files to ignore, check out gitignore.io.

Additionally, you may want specific repositories to ignore specific files or file
extensions. In this case, your best option is to add an extra .gitignore file to the
repository. This has the added benefit of ensuring your teammates don’t
accidentally sneak in their build files.

Complete the following steps to customize which files should be ignored for a
specific repository:

1. Create a file in the root level of your project named .gitignore.

https://www.gitignore.io/

2. Using one filename per line, add all of the files you never want Git to add
to the repository. You can use exact filenames, or wildcards (for example,
* . swp).

3. Add the file .gitignore to your repository by using the commands add and
commit.

Files with these extensions will no longer be added to your repository, even if
you are using the parameter --all.

Working with Tags

Tags are used to pinpoint specific commits. You can think of them like a
bookmark. I don’t use tags nearly as much as I should. As a result, I rely on my
commit messages to find specific points in the repository. You may find working
with tags is a good habit to get into because they will allow you to easily
reference points in your time line.

Tags for Teams of More Than One

In this chapter, we are referring to private repositories with no branches that are
shared with other teammates. When your branches aren’t shared, there are no
reasons to limit how and when you use tags. Use them as often as you’d like!
The tags you use on shared branches, however, are typically used for deployment
purposes and should follow a convention that is useful to the whole team.

Tags can only be added to specific commits. To know which commit you want to
add your tag to, you’ll probably want to use a combination of log and show. The
command log will give you a list of all commits in your repository (Example 5-

22), and the command show will display the detailed information for any single
commit.

Example 5-22. Quick list of recent commits

$ git log --oneline
faf4c30 Initial import

Once you think you have found a commit that you would like to investigate a

little further, you can get the detailed commit message beginning at that commit
by adding the commit ID (Example 5-23). To limit the output to only that
commit, add the optional parameter - -max-depth= along with the number of log
entries you would like to show.

Example 5-23. Log details for a single commit

$ git log fa@4c36 --max-depth=1

commit fa04c309e3bb8de33f77c54ci1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>
Date: Sat Oct 25 12:44:39 2014 +0100

Initial import

If you want even more details about the commit object, you can use the

command show (Example 5-24) to list the changes that happened in that commit
as text (of course, this will be less useful for binary files, such as images).

Example 5-24. Use show to display the log message and textual diff for a single
commit

$ git show fa@4c36

commit fa04c309e3bb8de33f77c54ci1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>
Date: Sat Oct 25 12:44:39 2014 +0100

Initial import

diff --git a/ch@5.asciidoc b/ch@5.asciidoc
new file mode 100644

index 0000000..8f82732

--- devnull

+++ b/ch05.asciidoc

@@ -0,0 +1,867 @@

+

+=== Verifying Git

+

+Before we dive into using Git, you'll want to check and see which version is
installed. For our purposes, Gi

[etc]

Once you have identified a commit that you want to bookmark, you can do so by
using the command tag. In Example 5-25, a new tag, import, is created for the

commit hash fa04c30.

Example 5-25. Adding a new tag, import, to a commit object

$ git tag import fa04c30

You can now list the available tags by using the command tag without any
parameters (Example 5-26).

Example 5-26. Listing all tags

$ git tag

A list of tags will be printed to the screen. At this point, only one tag has been
added, so the list is very short:

import

Once a tag is made, you can investigate the commit where the tag was added
(Example 5-27).

Example 5-27. Reviewing a tagged commit

$ git show import

As you have seen previously, the command show will display the log message
and textual diff for that commit.

Connecting to Remote Repositories

In a centralized version control system, like Subversion, there is one master copy
of the repository and all work is written into that copy. When you commit, the
information is immediately uploaded to that central repository and available to
others. In a decentralized version control system, like Git, there is no single
repository that everyone works with. It is merely a convention that declares one
copy of the repository to be privileged (and considered to be the official source
for the code).

When you’re a team of one, a remote repository is really more of a backup to
your local repository because there won’t be any changes happening on the
remote unless you put them there. This remote repository can also be used to
transfer code between your different local development environments. For

example, you may use both a laptop and a desktop for your projects. The remote
repository can be an effective way to bounce your work from one place to the
next so that you can continue working even when switching machines.

If you’ve been following along in this chapter, you should now have three local
repositories: one created from a clone of a repository on GitLab, one created
from a downloaded .zip package, and a third repository created from an empty
folder. They are all local, however, and you don’t have the option to share your
work with others because they either don’t have a remote associated with them
(repository from the zipped package, and the repository that was initialized
locally) or you don’t have write access to the remote repository (repository that
you cloned).

In order to upload your work, you will need to create a new project on GitLab
and associate it with one of your existing repositories.

Creating a New Project

If you haven’t already, you will need to create an account on GitLab.com (it’s
free) and sign into your account. You can also sign in via GitHub, Twitter, or
Google. Although you can also complete these steps on another code hosting
system, such as GitHub, GitLab is an open source product that you can host
yourself for free if you need to practice source control from behind a firewall:

1. Log in to your GitLab account and navigate to your dashboard.

2. From the project summary tab, click the button New project.

3. Enter a Project path, such as gitforteams. All remaining fields can be left
as their defaults.

4. Click Create project. You will be redirected to the instruction page on how
to upload your repository.

Adding a Second Remote Connection

GitLab gives you the copy/paste instructions you need to upload your repository
to its platform; however, you don’t necessarily want to complete all of the steps.
From your new project page, take a look at the second section, Create a new
repository (Example 5-28).

https://gitlab.com
https://gitlab.com

Example 5-28. Create a new repository on GitLab

mkdir my-git-forteams

cd my-git-forteams

git init

touch README.md

git add README.md

git commit -m "first commit"

git remote add origin git@gitlab.com:emmajane/my-git-forteams.git
git push -u origin master

Can you see where your starting point would be if you had already created a
repository locally? (Hint: compare it with the section labeled Push an existing
Git repository.) You’ve already done all of the steps up to the line git remote
add origin. If you want to create a new repository from scratch, you would
follow all of these instructions, but you already have three local repositories! So
instead of creating a new one (again), you are going to add the remote
connection so that you can upload one of the three repositories to this new
project on GitLab. It doesn’t matter which of the three you choose, but you can
only choose one because each project presents a single repository.

When you add a remote to your repository, you must also assign it a nickname
(Example 5-29). By default, the nickname is origin. You could name it
anything you like, though--pickles, peanutbutter, kittens--Git wouldn’t
care. The advantage of using origin is that more tutorials online will be as easy
as copy and paste; the disadvantage is that origin doesn’t really explain very
much, especially if your repository actually started locally. In addition to this,
originis already in use if you created your repository by cloning it from a
remote repository. To connect the project you created to any of the three
repositories you have locally, use the nickname my_gitlab.

Example 5-29. Adding a remote to a local repository with a custom name

$ git remote add my_gitlab git@gitlab.com:emmajane/my-git-forteams.git

It wasn’t until I finally started taking control over the names of things in Git that
I really started to understand how all the pieces fit together. For example, I will
often nickname my remote according to the name of the code hosting system.
My local copy of the Git for Teams repository has the following remotes:
github, gitlab, and bitbucket (Example 5-30).

Confirm the remote was correctly added with the command remote, as shown in
Example 5-30.

Example 5-30. List remote repositories connected to your current repository

$ git remote --verbose

If you have assigned the remote to the repository you cloned, you will see two
pairs of remotes listed:

my_gitlab git@gitlab.com:emmajane/my-git-forteams.git (fetch)
my_gitlab git@gitlab.com:emmajane/my-git-forteams.git (push)
origin git@gitlab.com:emmajane/gitforteams.git (fetch)
origin git@gitlab.com:emmajane/gitforteams.git (push)

You are now ready to push your work from any branch to your remote
repository.

Pushing Your Changes

To upload your changes, you need to have a connection to the remote repository,
permission to publish to the repository, and the name of the branch to which you
want to upload your changes. The first time you push your branch, you will need
to explicitly tell Git where to put things. If you start by using the command

push, it will tell you what to do next.

AVOID THE HASSLE OF TYPING YOUR PASSWORD

If you haven’t added your SSH keys to the code hosting system (see Appendix D), you will
need to enter your username and password each time you want to push your changes.

For example, if you’re currently using the branch 1-process_notes, and you
try to push it to the remote repository (Example 5-31), you will get an error
message (Example 5-32).

Example 5-31. Upload a branch using the command push

$ git push

Example 5-32. Without an upstream branch, you will get an error message

fatal: The current branch 1-process_notes has no upstream branch.
To push the current branch and set the remote as upstream, use

git push --set-upstream origin 1-process_notes

This error message provides us with very useful information, but it’s not quite
right. Instead of uploading the branch to the remote origin, we actually want to
use our new remote, my_gitlab (Example 5-33).

Example 5-33. Set the upstream branch while uploading your local branch

$ git push --set-upstream my_gitlab 1-process_notes

This will upload your branch and set it up for future use. Now whenever you are
using this branch, you can issue the much shorter command git push to upload
your work. By setting the upstream connection, you are building a relationship
between your local copy of the branch and the remote repository. This has the
same effect as when you used - - track to check out a remote branch, except in
that case you were starting with the remote copy and adding a tracked local copy.

Branch Maintenance

Once the code has been fully tested, you will want to merge the ticket branch
into the master branch (Example 5-34), and delete the local (Example 5-35) and
remote copies of the ticket branch (Example 5-36). As a team of one, it’s
unlikely you’ll need to deal with merge conflicts. Merge conflicts will be
covered in Chapter 7.

Example 5-34. Merging a ticket branch into your main branch

$ git checkout master
$ git merge 1-process_notes

If a true merge needs to be performed, as opposed to just a fast-forwarding of
history, you may be presented with the editor for a commit message. Generally I
leave the default message in place. Once the work has been merged into the
master branch, you should push the master branch to the remote repository as
well:

$ git push --set-upstream my_gitlab master

Now that the changes have been merged into the master branch, there’s not a lot
of reason to keep the ticket branch open. To keep your repository tidy, you can
go ahead and delete the ticket branch now (Example 5-35).

Example 5-35. Delete your local copy of the branch

$ git branch --delete 1-process_notes

Git will complain wildly if there are changes that haven’t been merged into
another branch, so you don’t need to worry (too much) about losing unsaved
work.

Finally, you need to do a bit of housekeeping for the remote repository as well.
You should also delete remote branches whose changes have been merged into
master (Example 5-36).

Example 5-36. Delete remote branches that are no longer needed

$ git push --delete my _gitlab 1-process_notes

With your housekeeping finished, it’s time to repeat this process for your next
new idea.

Command Reference

Table 5-1 lists the commands used in this chapter. These commands are shell
commands and should be used as written.

Table 5-1. Basic shell commands

Command Use
cd ~ Change to your home directory
mkdir Make a new directory

cd directory_name Change to a specified directory
s -a List hidden files for OS X and Linux-based systems
dir List files on Windows

touch file_name Create a new, empty file with the specified name

Table 5-2 lists the subcommands for the Git application. They will always be
preceeded by the command git when used at the command line.

Table 5-2. Basic Git commands

Command Use

git clone URL Download a copy of a remote repository

git init Convert the current directory into a new Git repository
git status Get a status report for your repository

git add --all Add all changed and new files to the staging area of

your repository

git commit -m "message” Commit all staged files to your repository
git log Review a repository’s history

git log --oneline View a condensed history of your project

git branch --list List all local branches

git branch --all List local and remote branches

git branch --remotes List all remote branches

git checkout --track Create a copy of a remote branch for local use

remote_name/branch
git checkout branch Switch to a different local branch

git checkout -b branch branch_parent Create a new branch from a specified branch

git add filename(s) Stage only the specified file so that it is ready to be
committed

git add --patch filename Stage only portions of a file so that they are ready to be
committed

git reset HEAD filename Remove proposed file changes from the staging area

git commit --amend Update the previous commit with changes currently

staged, and supply a new commit message

git show commit Log details for a single commit

git tag tag commit Add a tag to a commit object

git tag List all tags

git show tag Log details for the commit where the tag was applied

git remote add remote_name URL Create a new reference to a new remote repository

git push Upload changes for the current branch to a remote
repository

git remote --verbose List the fetch and push URLs for all available
remotes

git push --set-upstream remote_name Push a copy of your local branch to the remote server
branch_local branch_remote

git merge branch Incorporate the commits currently stored in another
branch into the current one

git push --delete remote_name Remove named branch from the remote server
branch_remote

Summary

Throughout this chapter you have learned how to work with Git as a team of
one. The following is a guide to the best practices outlined in this chapter:

» Always begin your work by defining the problem you want to work on. This
definition will help you determine the name of the branch, and which piece of
work you want to branch away from to start your work.

m As you are making changes in your branch, you can choose to add some or all
of the changes you’ve made through the staging area. This will help you to
craft commits with related work.

m Regardless of whether you start your repository locally or via a clone, you
can always start a new project on a code hosting system and upload your
work by adding a new remote to your local repository.

m Housekeeping tasks should be performed as you wrap up each line of work.
You can do this by merging your ticket branches into your main branch, and
then deleting the local and remote copies of your branch.

In the next chapter, you will learn how to go back in time in the Git time

machine to undo your work and change your commit history.

Chapter 6. Rollbacks, Reverts,
Resets, and Rebasing

This is otherwise known as the “Rrrrgh!” chapter. Bad things happen to good
people. Fortunately, Git can help you undo some of those past mistakes by
traveling back in time. There are several commands in Git that vary in their
degree of severity—making minor adjustments of a commit message all the way
through to obliterating history. Mistakes are typically committed and removed
from a personal repository, but the way you deal with them can impact how
others interact with the code base. Ensuring you are always dealing with
problems in the most polite way possible will help your team work more
efficiently.

By the end of this chapter, you will be able to:

» Amend a commit to add new work

m Restore a file to a previous state

m Restore your working directory to a previously committed state
m Revert previously made changes

m Reshape your commit history using rebase

= Remove a file from your repository

» Remove commits added to a branch from an incorrect merge

Throughout the chapter you will be learning techniques that feel invisible, but
have huge implications. Take the time to slow down, and draw a diagram of how
you want things to appear after you have run the sequence of commands. This
will help you to select the right subcommand and the right parameters. It will
also help you to recall information the next time you need to perform the same
task again.

Those who learn best by following along with video tutorials will benefit from
Collaborating with Git (O’Reilly), the companion video series for this book.

http://bit.ly/collaborating-with-git

Best Practices

In this chapter you are going to be learning to manipulate the history of your
repository. While the exercises in this book are easy to follow, there will come a
time when you are a little under pressure and a little unpracticed and you will
panic and think you’ve lost your work. Take a deep breath. It will be okay. If
you’ve committed something into the repository, it will (almost) always be there
if you are willing to do some digging. It’s very difficult to completely remove
work from a repository in Git; it is, however, relatively easy to lose work and not
be able to find it again. So before you learn how to muck about with history, let’s
make sure you’ve got some good recovery tools to help you MacGyver your way
out of difficult situations.

Describing Your Problem

There are a lot of ways to undo work in Git, and each method is exactly right
some of the time. In order to choose the correct method, you need to know
exactly what you want to change—and how it should be different after you are
finished. When I was first learning version control, I would often draw a quick
sketch of what I was trying to accomplish to ensure I was using the right
command for the job. Figure 6-1 shows the three concepts you need to be aware
of: the working directory (the files currently visible on your filesystem); the
staging area (the index of changes that will be written to the repository after the
next commit); and the repository (which stores files and records the changes
made to the files over time).

what is stored what can be seen

repository staging area working directory

the difference between what is stored and what is seen

Figure 6-1. The working directory, staging area, and repository each contain different information about
your files

The Staging Area is Not Automatically Updated

Figure 6-1 is a bit of a lie, as you need to explicitly place things into the staging
area using the command add, but it’s a decent working model to start from.
Whenever you can separate your problem into the discrete places where Git is
storing its information, you have a better chance of choosing the correct

command sequence to return your work to the state you want it to be in. Table 6-
1 contains a series of scenarios might encounter while working with Git.

Table 6-1. Choosing the correct undo method

You want to... Notes Solution
Discard changes you’ve made to a file in your Changed file is not staged, or checkout --
working directory committed filename
Discard all unsaved changes in the working File is staged, but not reset --
directory committed hard
Combine several commits up to, but not including, reset

a specific commit commit

Remove all unsaved changes, including untracked = Changed files are not committed clean -fd
files

Remove all staged changes and previously reset --
committed work up to a specific commit, but do not hard commit
remove new files from the working directory

Remove previous work, but keep the commit Branch has been published; revert

history intact (“roll forward”) working directory is clean commit

Remove a single commit from a branch’s history Changed files are committed; rebase --
working directory is clean; interactive

branch has not been published commit

Keep previous work, but combine it with another ~ Select the squash option rebase --
commit interactive
commit

Figure 6-2 shows one diagram for the first scenario. Additional answers are
available on the Git for Teams website.

repository

: taging area
O S
SIS bad edits

Figure 6-2. You want to discard changes you’ve made to a file in your working directory; the incorrect
copy of the file is not staged or committed

As you can see in the examples outlined in Table 6-1, some commands have two

http://gitforteams.com

different outcomes depending on the parameters used. Figure 6-3 contains a
flowchart of the scenarios you may find yourself in. Redraw this chart digitally,
or on paper. The act of re-creating the chart will reinforce the options you will be
forced to deal with in Git, and it will give you a personal reference point, which
is often easier to remember than a page in a book.

You may have your own types of changes you need to recover from as well.
Create a list of all the problem scenarios you may want to recover from. The
better you are able to describe what’s wrong, the more likely you are to find the
correct solution. As you work through this chapter, you may choose to expand
on the flowchart in Figure 6-3 or create your own diagrams. Please share your
work on Twitter by using #gitforteams. I’d love to see what you come up with!

Using Branches for Experimental Work

On a tree, a branch is independent from its sibling branches. Although they may
have a common ancestor, you can (typically) saw a branch off a tree without
impacting the other branches. In Git, the commits you add to your repository are
connected to one or more branches. If you check out a different branch and
manipulate the commit objects in that new branch, they are assigned a new
identifier, leaving the original commit objects tied to the original branch
unchanged. This means it is always safer to do your work in a new private
branch, and when you are happy with the results, merge your branch back into
the main branch (Figure 6-4).

http://bit.ly/hashgitforteams

You want to remove
changes to your file(s).

Has the change
been committed?

Is the change in

' 2
i the staging areg

checkout -- <filename> revert <commit>

f

It is not appropriate
to rewrite history.

hreithgretedit Is this branch shared?

reset --hard

reset <filename>

Is the change in
the most recent
commit(s)?

rebase --interactive <commit>

Are there changes
in the working directory
you want to save? yes

=N

Figure 6-3. Create a flowchart to help you select the appropriate command

main branch dangerous idea
A main branch

main branch protected |
from the radical changes bt ¢
you're experimenting with | |

A |

_— -

- : /
Figure 6-4. Working in a branch protects you from unintended changes; merge your work back into the
main branch only when it is correct and complete

Previously we’ve created and deleted branches using the ticket as a starting
point. But what if you were working on a ticket, and you weren’t sure which of
two approaches you should take? In this case you could create a branch off of
your ticket branch, make your experimental changes (Example 6-1), and then
merge your experimental branch into your ticket branch (Example 6-2) if you
want to save the changes.

Example 6-1. Use an experimental branch to test changes

$ git checkout -b experimental_idea
(do work)

$ git add --all

$ git commit

You may have one or more commits in your experimental branch. When you
merge the two branches, you can optionally combine all of those commits into a
single one at the time of the merge with the parameter - - squash. If you use this
parameter, you will still need to run the command commit separately to save the
changes from the other branch. By merging the branch in this way, you will be
unable to unmerge the branch later. As such, it’s appropriate to use - - squash
only when merging branches you wish had never been separate to begin with.

Example 6-2. Merge your experimental branch back into the main branch

$ git checkout master
$ git merge experimental_idea --squash

Squash commit -- not updating HEAD
Automatic merge went well; stopped before committing as requested

$ git commit

After merging your experimental branch, you can delete it (Example 6-3).

Example 6-3. Delete your experimental branch

$ git branch --delete experimental_idea

If you want to discard your experimental ideas, complete the preceding steps, but
omit the step where you merge your work into your main ticket branch. To delete
an unmerged branch, you will need to use the parameter -D instead of - -delete.

Subsequent sections of this chapter cover removing commits you made in a
branch before you realized they were just experiments.

Rebasing Step by Step

Out of the three commands rebase, reset, and revert, rebase is the only
command which is not exclusively focused on undoing work. Generally when
we talk about about rebasing, we are referring to the process of bringing a
branch up to date with commits that have been made on its parent branch. This is
typically a very straightforward process: from the branch you want to update,
you run the command rebase along with the name of the parent branch. Git
removes your commits from the child branch you have been working on, adds
the new commits that were made on the parent branch to the tip of your branch,
and then adds an updated copy of your commits to your branch. This makes it
seem as though your commits were added after the new changes from the parent
branch. It’s the Git equivalent to whistling innocently and pretending nothing
happened when actually it has snuck a vase with flowers onto the table while
you weren’t looking.

Although we often talk about rebasing as “replaying your history,” rebasing is
perhaps more correctly defined as traveling back in time and then attempting to
re-enact history. If you have seen Back to the Future (or a modern time travel
equivalent) you know that history is never quite the same the second time

around. This is the case with rebase as well. Although it appears as though the
commits are simply dropped back onto a new branch tip, they are actually
completely new commits with their own reference ID. As these new commits are
applied to the time line, problems can arise if the new history conflicts with the
work you are trying to apply. This will result in errors about being in a detached
HEAD state. Mind blown? Here is another way to think of it: Git allows us to
retell history, inserting new facts as it pleases us. It does not, however, actually
allow us to change anything that has happened in the past. What’s done is done
all we can do is change the stories we tell about it.

Most of the time, when bringing a branch up-to-date with command rebase, it is
virtually instant and happens automatically. If, however, during the rebasing
process there are conflicting changes in the work you have done and the work
that you are trying to sneak onto the parent branch, the process will stop and Git
will ask you to resolve the conflicts by hand before it proceeds. This can be in-
file changes, and deleted files (where one deletes a file that the other has edited).
Git is, after all, just a simple content tracker. A mediated conflict resolution by
you, the expert, always results in a better end product. Even if you would rather
that Git just figured it out, it is good that it stops and asks for help. Think of it as
a valuable life lesson: asking for help is okay.

The second cause of frustration is when rebase is used to force updates into a
public branch. In this case a timeline will end up with the same code represented
by two (or more) commit objects with distinct IDs. To help you choose whether
you should be rebasing, or merging, please use the rebase or merge decision tree.

The remainder of this section describes the process of dealing with mid-rebase
conflicts when bringing a branch up-to-date. In our example, the parent (or
source) branch is named master and the branch we are attempting to bring up-
to-date (the child branch) is named feature.

Begin Rebasing

Ensure your local copy of the parent branch is up to date with the most recent
commits available from the main project repository:

$ git checkout master
$ git pull --rebase=preserve remote_nickname master

http://gitforteams.com/resources/merge-rebase.html

IF IT HELPS, BE EXPLICIT

When updating a local copy of a branch with the command pull, the parameters for the name
of the remote, and name of the remote branch are typically optional. Occasionally, if I have
more than one remote for a given repository, Git sometimes seems to miss if there are updates
available. Adding the two additional parameters seems to help.

Change into the branch that is currently out of date from the main project, but
which contains new work that hasn’t been introduced yet:

$ git checkout feature
Begin the rebasing process:
$ git rebase master

If there are no conflicts, Git will skip merrily through the process and spit you
out the other end with no additional action required from you. See? Rebasing is
easy! You should try it! However, sometimes there are conflicts...

Mid-Rebase Conflict from a Deleted File

A conflict in the rebasing process occurs when the changes you have made occur
on the same line as the changes which are stored in one of the new commits on
the parent branch. As a simple content tracker, Git doesn’t feel qualified to know
whether our changes should be kept, or theirs. Instead of making guesses, Git
stops and asks for your help. I think that’s actually quite considerate that Git
perceives me to be more of an expert on the content than it is! Unfortunately the
process isn’t called “asking you, the expert, for help”; it’s called “resolving
conflict while in a detached HEAD state.” This is very scary language for process
that is actually quite respectful.

To resolve a conflict you will need to put on your content expert hat, and help
Git make some decisions about what to do next.

This section covers an example of a mid-rebase conflict. The file ch10.asciidoc
has been deleted in the source branch, master, but I’ve been making updates to
it in feature. This is a problem Git doesn’t know how to resolve. Do I want to

keep the file? Should it be deleted? Git has put me into a detached HEAD state so
that I can explain to Git how I want to proceed:

First, rewinding head to replay your work on top of it...

Applying: CH10: Stub file added with notes copied from video recording lessons.

Using index info to reconstruct a base tree...

A ch10.asciidoc

Falling back to patching base and 3-way merge...

CONFLICT (modify/delete): ch10.asciidoc deleted in HEAD and modified in CH10:

Stub file added with notes copied from video recording lessons.. Version CH10:

Stub file added with notes copied from video recording lessons. of ch10.asciidoc

left in tree.

Failed to merge in the changes.

Patch failed at 0001 CH10: Stub file added with notes copied from video

recording lessons.

The copy of the patch that failed is found in:
Usersemmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

The relevant piece of information from this output is:
When you have resolved this problem, run "git rebase --continue".

This tells me that I need to:
1. Resolve the merge conflict.

2. Once I think the merge conflict is resolved, run the command:
git rebase --continue

I accomplish step 1 by opening the file in question in my designated file
comparison tool:

$ git mergetool ch10.asciidoc

There are no merge conflict markers displayed in the file, so I quit the merge tool
and proceed to the next step Git had identified:

$ git rebase --continue
The following message is returned from Git:

ch10.asciidoc: needs merge
You must edit all merge conflicts and then
mark them as resolved using git add

That’s not very helpful! I just looked at that file and there were no merge
conflicts. I’'ll ask Git what the problem is using the command status:

$ git status
The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
(fix conflicts and then run "git rebase --continue")
(use "git rebase --skip" to skip this patch)
(use "git rebase --abort" to check out the original branch)

Unmerged paths:
(use "git reset HEAD <file>...
(use "git add/rm <file>..."

to unstage)
as appropriate to mark resolution)

deleted by us: ch10.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Aha! There are two clues here for me. The text: Unmerged paths and then a
little later on the text: deleted by us: ch10.asciidoc. Well, I don’t want the
file to be deleted. This is useful because Git has told me deleted by us and I

know I don’t want to delete the file; therefore I need to unstage Git’s change.

Unstaging a change is effectively saying to Git, “That thing you were planning
to do? Don’t do it. In fact, forget you were even thinking about doing anything
with that file. Reset your HEAD, Git.”

Git tells me how to prevent this change from happening with the following text:

(use "git reset HEAD <file>..." to unstage)

Using this message as a guide, I run the following command:
$ git reset HEAD chi10.asciidoc

Now, what this command is actually doing is clearing out the staging area, and
moving the pointer back to the most recent known commit. Because I am knee-
deep in a rebase, and in a detached HEAD state as opposed to in a branch, reset
clears away the staging area and puts me in the most recent state from the
rebasing process. In my case, this leaves me with the older version of the file,
which is fine. As I proceed through the rebase, I will replace the contents of the
file with the latest version from the branch feature. If I wanted to preserve their
deletion of the file, I would skip this step and proceed with the instructions,
adding the file to the staging area as described later.

With my chapter file replaced, let’s see what clues Git is giving me on how I
should proceed:

$ git status
The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
(all conflicts fixed: run "git rebase --continue")

Untracked files:
(use "git add <file>...

to include in what will be committed)
ch10.asciidoc

nothing added to commit but untracked files present (use "git add" to track)

So I’ve still got the file (great!), but Git is still confused about what to do,
because as far as it’s concerned, that file should have been deleted. I need to
explicitly add the file back into the repository, which Git tells me to do by giving
me the message:

Untracked files: (use "git add <file>..." to include in what will be

committed) ch10.asciidoc

The formatting is awkward if there is only one affected file but in the case of a
longer list of files, the formatting is lovely.

Per Git’s request, I will now add the file ch10.asciidoc to the staging area:

$ git add chi10.asciidoc

Now at this point, I know that the command add is just the beginning of a

process, and that I’'m going to need to commit the file as well, but this is rebasing
and the rules are different. I'm going to ask Git what to do next by checking the
output of the command status again:

$ git status
The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
(all conflicts fixed: run "git rebase --continue")

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

new file: ch10.asciidoc

Okay, it’s saying there are changes to be committed (yup, already knew that), but
it doesn’t tell me to commit them! Instead it tells me to continue with the
rebasing with the message:

all conflicts fixed: run "git rebase --continue"

I proceed with this command even though add is normally paired with commit to
save changes:

$ git rebase --continue

Mid-Rebase Conflict from a Single File Merge Conflict

After restarting the rebasing process, Git has run into another conflict as it

replays the commits. The output is as follows:

Applying: CH10: Stub file added with notes copied from video recording lessons.

Applying: TOC: Adding Chapter 10 to the book build.

Using index info to reconstruct a base tree...

M book.asciidoc

Falling back to patching base and 3-way merge...

Auto-merging book.asciidoc

CONFLICT (content): Merge conflict in book.asciidoc

Recorded preimage for 'book.asciidoc'

Failed to merge in the changes.

Patch failed at 0002 TOC: Adding Chapter 10 to the book build.

The copy of the patch that failed is found in:
Usersemmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

Another conflict. You’re being high maintenance, Git! No wonder people
complain about rebasing! Okay, okay, at least it’s a different file this time
(CONFLICT (content): Merge conflict in book.asciidoc). I take a closer

look at the output of the command status again to see if Git gives me additional
clues:

$ git status
The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
(fix conflicts and then run "git rebase --continue")
(use "git rebase --skip" to skip this patch)
(use "git rebase --abort" to check out the original branch)

Unmerged paths:
(use "git reset HEAD <file>..." to unstage)
(use "git add <file>..." to mark resolution)

both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Long sigh. Alright, Git. Let’s see what the conflict is in this file:
$ git mergetool book.asciidoc

Opening up the file in my favorite merge tool, I see there is indeed a merge
conflict in this file. The merge conflict markers are displayed as three columns.
One column for each of the two branches being merged, and one column
displaying how the merge conflict should be resolved. I choose the hunk of text I
want to keep, which resolves the conflict. I save the file, close the merge tool,

and ask Git if it’s happy by using the command status, again:
$ git status
The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
(fix conflicts and then run "git rebase --continue")
(use "git rebase --skip" to skip this patch)
(use "git rebase --abort" to check out the original branch)

Unmerged paths:
(use "git reset HEAD <file>..." to unstage)
(use "git add <file>..." to mark resolution)

both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

The message is a little misleading because I have fixed the conflicts. At this
point, I open the file to double check. Nope, no conflicts there. So now I move

on to the next group of instructions: unmerged paths: use "git add <file>
" to mark resolution and then both modified: book.asciidoc:

$ git add book.asciidoc
And check the status again:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6efdedb'.
(all conflicts fixed: run "git rebase --continue")

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

modified: book.asciidoc

As before, I don’t pair the command add with the command commit. Instead, Git
instructs me as follows: all conflicts fixed: run "git rebase --
continue", so I proceed with the rebasing process:

$ git rebase --continue
The output from Git is as follows:

Applying: TOC: Adding Chapter 10 to the book build.
Recorded resolution for 'book.asciidoc'.
Applying: CH10: Outline of GitHub topics

The rebasing procedure has been completed. My copy of the branch feature is
now up to date with all changes that had been previously committed to the
branch master.

There are a few different ways that rebasing can kick up a conflict. Take your
time, read the instructions carefully, and if you aren’t getting useful information,
try using the command status to see if there’s something more helpful that Git
can offer. If you are really in a panic about what’s happening, you can always
abort the process with the command git rebase --abort. This will return you
the state your branch was in right before you started the rebase.

An Overview of Locating Lost Work

It is very difficult to completely remove committed work in Git. It is, however,
pretty easy to misplace your work with the same frequency that I misplace my

keys, my glasses, my wallet, and my family’s patience. If you think you have
lost some work, the first thing you will need to do is locate the commit where the
work was stored. The command log displays commits that have been made to a
particular branch; the command reflog lists a history of everything that has
happened in your local copy of the repository. This means that if you are
working with a repository you cloned from a remote server, the reflog history
will begin at the point where you cloned the repository to your local
environment—whereas the log history will display all of the commit messages
since the command init was used to create the repository.

If you haven’t already, get a copy of the project repository for this book, and
compare the output of the two commands reflog and log (Example 6-4).

Example 6-4. Compare the output of log and reflog

$ git clone https://gitlab.com/gitforteams/gitforteams.git

Cloning into 'gitforteams'...

remote: Counting objects: 1084, done.

remote: Total 1084 (delta 0), reused 0 (delta 0)

Receilving objects: 100% (1084/1084), 12.07 MiB | 813.00 KiB/s, done.
Resolving deltas: 100% (628/628), done.

Checking connectivity... done.

$ git log --oneline

e8d6aff Updating diagram: Adding commit ID reference to rebase.
ae56al1f Adding workflow diagram for: reset, revert, rebase, checkout.
2480520 Merge pull request #5 from xrmxrm/1-markdown_fixes

eed46470 Fix some markdown Issue #1

$ git reflog
2f17715 HEAD@{1}: clone: from https://gitlab.com/gitforteams/gitforteams.git

If the only thing you have done is clone the repository, you will only see one line
of history in the reflog. As you do more things, the reflog will start to grow.
Following is a sample of the output from this book’s repository:

fdd19dc HEAD@{157}: merge drafts: Fast-forward

af9e2c8 HEAD@{158}: checkout: moving from drafts to master

fdd19dc HEAD@{159}: merge ch04: Merge made by the 'recursive' strategy.
af9e2c8 HEAD@{160}: checkout: moving from ch04 to drafts

e296faa HEAD@{161}: commit (amend): CHO4: first draft complete
dd87941 HEAD@{162}: commit: CHO4: first draft complete

This is a private history. Only you can see it, thank goodness! It will contain
everything that you have done including things that have no impact on the code,
such as checking out a branch.

Both of the commands log and reflog show you the commit ID for a particular
state that is stored in the repository. So long as you can find this commit ID, you
can check it out (Example 6-5), temporarily restoring the state of the code base
at that point in time.

Example 6-5. Check out a specific commit in your repository

$ git checkout commit
Checking out files: 100% (2979/2979), done.
Note: checking out 'a94b4c4'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b new_branch_name

HEAD is now at a94b4c4... Fixing broken URL to the slides from the main README file.
Was missing the end round bracket.

When you check out a commit, you will be detaching from the connected history
for a particular branch. It’s not really as scary as it sounds, though. Normally
when we work in Git we are working in a linear representation of history. When
we check out a single commit, we are working in a suspended state (Figure 6-5).

checkout <commit>

-

| -
working directory
| (editable files)

Figure 6-5. In a detached HEAD state, you are temporarily disconnected from the linear history of a
branch

This is typically where people start to freak out a bit—understandably—your
HEAD is DETACHED! Following the instructions Git provides will set you
right. If you want to save the state you are in, check out a new branch and your
state will be recorded in that new branch:

$ git checkout -b restoring_old_commit

At this point you can continue to add a few fix-ups in the new branch if there’s
anything missing you want to add (or old work that is no longer relevant and that
you want to remove). Once you are finished, you will need to decide how you

want to incorporate the new branch back into your working branch. You could
choose to merge the new branch into an existing branch, or just cherry-pick a
few commit(s) that you want to keep. Let’s start with a merge, because this is
something you should already be familiar with from Chapter 5:

$ git checkout working_branch
$ git merge restoring_old_commit

With the merge complete, you should now tidy up your local repository by
deleting the temporary branch:

$ git branch --delete restoring_old commit

If you have published the temporary branch and wish to delete it from the remote
repository, you will need to do that explicitly:

$ git push --delete restoring_old_commit

This method has the potential to make an absolute mess of things if the
temporary branch contains a lot of unrelated work. In this case, it may be more

appropriate to use the command cherry-pick (Example 6-6). It can be used in a
number of different ways—check the documentation for this command with git
help cherry-pick. I tend to use the commit ID that I want to copy into my

current branch. The optional parameter -x appends a line to the commit message
letting you know this commit was cherry-picked from somewhere else, as
opposed to having been originally created on this branch at this point in history.
This addition makes it easier to identify the commit later.

Example 6-6. Copying commits onto a new branch with cherry-pick

$ git cherry-pick -x commit

Assuming the commit was cleanly applied to your current branch, you will see a
message such as the following:

[master 6b60f9c] Adding office hours reminder.
Date: Tue Jul 22 08:36:54 2014 -0700
1 file changed, 2 insertions(+)

If things don’t go well, you may need to resolve a merge conflict. The output for
that would be as follows:

error: could not apply 9d7fbf3... Lesson 9: Removing lesson stubs from
subsequent lessons.

hint: after resolving the conflicts, mark the corrected paths

hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Merge conflicts are covered in more detail in Chapter 7. Skip ahead to that
chapter if you encounter a conflict while cherry-picking a commit.

Another output you may encounter is when the commit you want to incorporate
is actually a merge commit. You will need to select the parent branch in this
case. You can recognize this case by the following output from Git when you
attempt to cherry-pick a commit:

error: Commit 0075f7eda6 is a merge but no -m option was given.
fatal: cherry-pick failed

Confirm the parent branch you want to keep is the first branch lanes on the
graphed output of your log (counting from left to right):

$ git log --oneline --graph

Then, run the command cherry-pick again, this time identifying the parent
branch to keep with the parameter - -mainline:

$ git cherry-pick -x commit --mainline 1

Finally, if you decide you don’t want to keep the recovered work, you can
obliterate the changes:

$ git reset --merge ORIG_HEAD

PUBLISHED HISTORY SHOULD NOT BE ALTERED

The command reset should not be used on a shared branch to remove commits that have
already been published. Undoing changes on shared branches is covered later in this chapter.

If you have worked on each of the examples in this section, you should now be
able to check out a single commit, create a new branch to recover from a
detached HEAD state, merge changes from one branch into another, cherry-pick
commits into a branch, and delete local branches.

Restoring Files

You are working along and you just deleted the wrong file. You actually wanted
to keep the file. Or perhaps you edited a file that shouldn’t have been edited.
Before the changes are locked into place (or committed), you can check out the
files. This will restore the contents of the file to what was stored in the last
known commit for the branch you are on:

S rm README.md

$ git status

On branch master

Changes not staged for commit:
(use "git add/rm <file>..."
(use "git checkout -- <file>...

to update what will be committed)
" to discard changes in working directory)

deleted: README .md

no changes added to commit (use "git add" and/or "git commit -a")

The status message explains how to reverse the changes and recover your
deleted file:

$ git checkout -- README.md

If you have already staged the file, you will need to unstage it before you can
restore the file by using the command reset. To try this, you will need to first
delete a file, then use the command add to add the changes to the staging area,
and finally use the command status to verify your next action:

S rm README.md
$ git add README.md

$ git status
On branch master

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

deleted: README .md

At this point, the command you used previously, checkout, will not work.
Instead, follow the instructions Git provides to unstage the file you want to

restore. Instead of selecting a specific commit, use the Git short form HEAD,
which refers to the most recent commit on the current branch:

$ git reset HEAD README.md

Once the file is unstaged, you can use the command checkout as you did
previously to restore the deleted file:

$ git checkout -- README.md
If you prefer, you can combine these two commands into one:
$ git reset --hard HEAD -- README.md

If you want to undo all of the changes in your working directory, restoring the
version of the files that was saved in the previous commit, you don’t need to
make the changes one at a time. You can do it in bulk:

$ git reset --hard HEAD

You should now be able to restore a deleted file in the working directory.

Working with Commits

A commit is a snapshot within your repository that contains the state of all of the

files at that point in time. Each of these commits can be manipulated within your
history. You can remove the commit entirely with the command reset, you can
reverse the effects of a commit (but maintain it in your history) with the
command revert, and you can change the order of the commits with the
command rebase. Altering the history of your repository is a big no-no if
you’ve already published the commits. This is because even the slightest change
will result in a new commit SHA being stored in the repository—even if the code
itself is exactly the same at the tip of the branch. This is because Git assumes
that all new commit IDs contain new information that must be incorporated,
regardless of the contents of the files stored in those commits.

In this section, it is assumed you are working with commits that have not been
shared with others yet (i.e., you haven’t pushed your branch). Tips for working
on changing history for shared branches are covered separately.

Amending Commits

If you realize a commit you’ve just made is just missing one little fix, you can
amend the commit to include additional files, or update the message that was
used for the commit. I use this command frequently to convert my terse oneline
commit messages into well-formed summaries of the work I’ve completed.

DO NOT CHANGE SHARED HISTORY

If you have already pushed the work, it is considered bad form to go back and “fix” shared
history.

If you have made any changes to the files in your working directory, you will
need to add the files to the staging area before amending your commit
(Example 6-7). If you are just updating the commit message, and there are no
new, or modified files, you can omit the command add, and jump straight to the
command commit.

Example 6-7. Updating the previous commit with --amend

$ git add --all
$ git commit --amend

Your new changes will be added to the previous commit, and a new ID will be
assigned to the revised commit object.

EVEN MORE COMMIT OPTIONS ARE AVAILABLE

There are even more ways to construct your commit object. I’ve outlined the options I use
most frequently. You may find additional gems by reading the relevant manual page for
commit. This information is accessible by running the command: git help commit.

If you want to amend more than just the previous commit, though, you will need
to use either reset or rebase.

Combining Commits with Reset

The command reset appears in many different forms during the undo process.
In this example, we will use it to mimic the effects of squash in rebasing. The
most basic explanation of what reset does is essentially a pointing game.
Wherever you point your finger is what Git is going to treat as the current HEAD
(or tip) of your branch.

RESET ALTERS YOUR LOGGED HISTORY

This is going to alter history because it removes references to commits. If someone were to
merge their old copy of the branch, they would reintroduce the commits you had tried to
remove. As a result, it’s best to only use reset to alter the history of branches that are not
shared with others (this means you created the branch locally, and you haven’t pushed it to the
server yet).

Previously you used the command reset to unstage work before making a
commit. This time you are using reset to remove commit objects from your
branch’s history. Think of a string of beads. Let’s say the string is 20 beads long.
Holding the fourth bead, allow the first three beads to slide off the string. You
now have a shorter string of beads as well as three loose beads. The parameters
you use when issuing the reset command are part of what determines the fate of
those beads.

If you want to discard the content contained in the commit objects you removed,
you need to use reset with the mode hard. This mode is enabled by using the
parameter - -hard. When you use the mode hard, the commit objects will be
removed, and the working directory will be updated so that all content stored in
those commit objects are also removed. If you do not use - -hard when you reset
your work, Git keeps the content of the working directory the same, but throws
away the commit objects back to the reference point. It will be as if you typed all
of the changes from the previous commits into one giant piece of work. It’s now
waiting to be added and committed.

Reset Reestablishes the Tip of a Branch

Somewhere along the way, I got it stuck in my head that reset ought to reverse
the action applied in a given commit. This definition is correct for the command
revert, but not reset. The command reset resets the tip of the branch to the
specified commit. Perhaps if it were named “restore” or “promote” or even just
“set” my brain would have made a better separation between the two commands.
Remember: the target for reset is on what’s being kept, and the target of
revert is what is lost.

Using our previous bead example, let’s say you wanted to reset your string of
beads so that the most recent three beads were replaced by a single big bead. You
would use the command reset to point the new end for your string to the fourth
bead from the end. You would then slide the three beads off the end of the string.
(If you used the parameter - -hard, these beads would be discarded.) Instead,
we’re going to remold these beads, and put them back on the string as a new
commit.

COMMITS MUST BE CONSECUTIVE, AND END WITH
THE MOST RECENT COMMIT

For this operation to work, you need to be compressing consecutive commits leading up to
your most recent commit. What we are doing is essentially a stepping stone to interactive
rebasing. With this use of reset you will be limited to the most recent commits. With
rebasing, you will be able to select any range of commits.

Using the command log, identify the most recent commit that you want to keep.
This will become the new tip for your branch:

$ git log --oneline

699d8e0® More editing second file
eabb4cc Editing the second file
d955e17 Adding second file
eppb98c Editing the first file
ee3e63c Adding first file

Sticking with the three-bead analogy, the bead that I want to have as the new tip
of my necklace is eppb98c. (This is the fourth bead from the end—not entirely
intuitive if you are completely focused on removing three beads.) We’re going to
put our finger on the bead we want to keep, and slide the rest off of the string:

$ git reset eppb98c

The are now three loose beads rattling around. These beads will appear as
untracked changes in our repository. The content of the files will not have
changed.

You can view what will be in your new commit by using the command diff:
$ git diff

To combine all of the edits that were made in those three commits into a single
commit, use the command add to capture the changes in the staging area:

$ git add --all
Ensure the files are now staged and ready to be saved:

$ git status

Now that the files have been staged, the command diff will no longer show you
what you are about to commit to your repository. Instead, you will need to
examine the staged version of the changes:

$ git diff --staged

STAGING IS ALSO CACHING

The parameter - -staged is an alias of - -cached. I choose to use the aliased version because it
more closely matches the terms I use when talking about staging changes. If you are searching
for more documentation about this parameter, be sure to also look for the original parameter
name.

Once you are satisfied with the contents of your new commit, you can go ahead
and complete the commit process:

$ git commit -m "Replacing three small beads with this single, giant bead."

The three commits will now be combined into one single commit.

If you are having a hard time with the word reset and having to go one past the
commit you are looking for, I encourage you to use relative history instead of
commit IDs. For example, if you wanted to compress three commits from your
branch into one, you would use the following command:

$ git reset HEAD~3

This version of the command puts your repository into the same state as the
previous example, but it’s as if the pointer was using another language. Either
approach is fine. Use whichever one makes more sense to you. I personally find
if there are more than a handful of commits that I want to reset, using the
commit ID is a lot easier than counting backward.

If you’ve been following along with the examples in this section, you should
now be able to restore a file that was deleted, and combine several smaller
commits into one.

Altering Commits with Interactive Rebasing

Rebasing is one of those topics that has gained a strong positive following—and
strong opponents. While I have no technical problems using the command, I
openly admit that I don’t like what it does. Rebasing is primarily used to change

the way history is recorded, often without changing the content of the files in
your working directory. Used incorrectly, this can cause chaos on shared
branches as new commit objects with different IDs are used to store work
identical work. But my complaints are more to do with the idea that it’s okay to
rewrite history to suit your fancy. In the nonsoftware world historical
revisionism is wrong.

Complaints aside, rebasing is simply the model Git has decided on and so it fits
quite well into many workflows. (I use it when it is appropriate to do so—even
for my solo projects where its use is not being enforced by an outside team.) One
of the times it is appropriate to use rebasing is when bringing a branch up-to-date
(as was discussed in “Rebasing Step by Step” and in Chapter 3); the second is
before publishing your work—interactive rebasing allows you to curate the
commits into an easier-to-read history. In this section you will learn about the
latter of these two methods.

Interactive rebasing can be especially useful if you’ve been committing micro
thoughts—Ileaving you with commits in your history that only capture partial
ideas. Interactive rebasing is also useful if you have a number of commits that,
due to a peer review or sober second thought, you’ve decided were not the
correct approach. Cleaning up your history so there are only good, intentional

commits will make it easier to use the command bisect in Chapter 9. To help
explain the concept, I created a simple animation showing the basic principles of
squashing several small commits into one whole idea.

The first thing you need to do is select a commit in your history that you want to
have as your starting point (I often choose one commit older than what I think
I’ll need—just in case). Let’s say your branch’s history has the following
COmmits:

d1dc647 Revert "Adding office hours reminder."

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

bd5c178 Added feedback request; formatting updates to pro-con lists
876e€951 Removing feedback request; added Twitter handle.

http://bit.ly/historical-revisionism
http://bit.ly/interactive-rebasing

You have decided that the three commits about jokes should be collapsed into a

single commit. Looking to the commit previous to this, you select 0f187d8 as
your starting point. You are now ready to begin the rebasing process:

$ git rebase --interactive 0f187d8

pick 77c00e2 Adding an Easter egg of bad jokes.

pick eed5023 Joke: What goes 'ha ha bonk'?

pick 50605al1 Correcting joke about horses and baths.
pick di1dc647 Revert "Adding office hours reminder."

Rebase 0f187d8..d1dc647 onto 0f187d8

#
#
Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
#
#
#
#
#
#
#

These lines can be re-ordered; they are executed from top to bottom.
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.

Note that empty commits are commented out

The list of commits has been reversed and the oldest commit is now at the top of
the list. Edit the list and replace the second and third use of the word squash to
pick. In my case, the edited list would appear as follows:

pick 77c00e2 Adding an Easter egg of bad jokes.

squash eed5023 Joke: What goes 'ha ha bonk'?

squash 50605a1 Correcting joke about horses and baths.
pick di1dc647 Revert "Adding office hours reminder."

Save and quit your editor to proceed. A new window commit message editor will
open. You will now need to craft a new commit message that represents all of the
commits you are combining. The current messages are provided as a starting
point:

This i1s a combination of 3 commits.
The first commit's message is:
Adding an Easter egg of bad jokes.
You should add your bad jokes too.

This is the 2nd commit message:
Joke: What goes 'ha ha bonk'?

This is the 3rd commit message:

Correcting joke about horses and baths.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#

Date: Wed Sep 10 06:12:01 2014 -0400

#

rebase in progress; onto 0f187d8

You are currently editing a commit while rebasing branch 'practice_rebasing'
on '0f187d8'.

#

Changes to be committed:

new file: badjokes.md

#

In this case, it is appropriate to update the commit message as follows:

Adding an Easter egg of bad jokes.

- New Joke: What goes 'ha ha bonk'?

You don’t need to remove lines starting with #. I have done this to make it a little
easier to read.

When you are happy with the new commit message, save and quit the editor to
proceed:

[detached HEAD 1c10178] Adding an Easter egg of bad jokes.
Date: Wed Sep 10 06:12:01 2014 -0400

1 file changed, 7 insertions(+)

create mode 100644 badjokes.md
Successfully rebased and updated refs/heads/practice_rebasing.

The rebasing procedure is now complete. Your revised log will appear as
follows:

$ git log --oneline

ef4409f Revert "Adding office hours reminder."

1c10178 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

In the second example, we are going to separate changes that were made in a
single commit so they are available as two commits instead. This would be
useful if you added made several changes to a single file and commited all of
those changes as a single commit but they should have have actually been saved
as two separate commits.

To separate a commit into several, begin the same way as you did before. This
time when presented with the list of options, change pick to edit for one of the
commits. When you save and close the editor this time, you will be presented
with the option to amend your commit (you know how to do this! yay!), and then
proceed with the rebase process:

Stopped at 0f187d831260b8e93d37bad11be1f41aaeca835e... Added information
about additional people to be thanked.
You can amend the commit now, with

git commit --amend
Once you are satisfied with your changes, run

git rebase --continue

At this point you are in a detached HEAD state (you’ve been here before! it’s
okay!), but the files are all committed. You need to reset the working directory
so that it has uncommitted files that you can work with. Do you remember the
command we used previously to accomplish this? It’s reset! Instead of
selecting a specific commit, it’s okay to use the shorthand for “one commit ago,”
which is HEAD~1:

$ git reset HEAD~1

Unstaged changes after reset:
M README .md

Now you have an uncommitted file in your working directory that needs to be
added before you can continue the rebasing.

At this point, you can stage your files interactively by adding the parameter - -
patch when you add your files. This allows you to separate changes saved into
one file into two (or more) commits. You do this by adding one hunk of the
change to the staging area, committing the change, and then adding a new hunk
to the staging area:

$ git add --patch README.md
You will be asked if you want to stage each of the hunks in the file:

diff --git a/README.md b/README.md

index 291915b..2eceb48 100644

--- a/README.md

+++ b/README.md

@@ -49,3 +49,5 @@ Emma is grateful for the support she received while employed at
Drupalize.Me (Lullabot) for the development of this material.

The first version of the reveal.js slides for this work were posted at
[workflow-git-workshop](https://github.com/DrupalizeMe/workflow-git-workshop).

+

+Emma 1s also grateful to you for watching her git tutorials!

Stage this hunk [y,n,q,a,d,/,e,?]?

If you want to include the hunk, choose y; otherwise, choose n. If it’s a big hunk
and you want to only include some of it, choose s (this option isn’t available if
the hunk is too small). Proceed through each of the changes in the file and select
the appropriate option. When you get to the end of the list of changes, you will
be returned to the prompt. Use the command git status, and assuming there
was more than one hunk to change, you will see your file is ready to be
committed and not staged for commit:

$ git status

rebase in progress; onto bd5c178
You are currently splitting a commit while rebasing branch 'practice_rebasing'
on 'bd5c178"'.

(Once your working directory is clean, run "git rebase --continue")

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)
modified: README .md
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md
Proceed by committing your staged changes:
$ git commit

If the remainder of the changes can all be included in the same commit, you can
omit the parameter - -patch and add and commit the file to the repository:

$ git add README.md
$ git commit

With all of your changes committed, you are ready to proceed with the rebase. It
seems like there aren’t any hints, but if you check the status, Git will remind you
you are not done yet:

$ git status

rebase in progress; onto bd5c178
You are currently editing a commit while rebasing branch 'practice_rebasing'
on 'bd5c178"'.

(use "git commit --amend" to amend the current commit)

(use "git rebase --continue" once you are satisfied with your changes)

nothing to commit, working directory clean

To complete the rebase, follow the command as Git has described in the status
message:

$ git rebase --continue

Successfully rebased and updated refs/heads/practice_rebasing.

Phew! You did it! That was a lot of steps, but they were all concepts you have
previously tried; this time they were chained together. Well done, you.

If you have followed each of the examples in this section, you should now be
able to amend commits, and alter the history of a branch using interactive
rebasing.

Unmerging a Branch

Mistakes can happen when you are merging branches. Maybe you had the wrong
branch checked out when you performed the merge; or maybe you were
supposed to use the - -no-ff parameter when merging, but you forgot. So long
as you haven’t published the branch, it can be quite easy to “unmerge” your
branches.

THERE IS NO SUCH THING AS AN UNMERGE

“Inconceivable!” he cried. “I do not think that word means what you think it means,” the other
replied. With apologies to The Princess Bride, it’s true; there’s no six-fingered man in Git, and
there’s not really a way to “unmerge” something. You can, however, reverse the effects of a
merge by resetting the tip of your branch to the point immediately before you used the
command merge.. Hopefully this doesn’t happen to you often, because it’s possible it will take
years off your life just like The Machine does to our hero, Westley.

Ideally, you will notice you have incorrectly merged a branch immediately after
doing it. This is the easiest scenario to reverse. Git knows some of its commands
are more dangerous than others, so it stores a pointer to the most recent commit
right before it performs the dangerous maneuver. Git considers a merge to be
dangerous, and so you can easily undo a merge right after it occurs by running
reset, and pointing the tip of your branch back to the commit right before the
merge took place:

$ git reset --merge ORIG_HEAD

If you did not notice your mistake right away, you will need to ask yourself a
few more questions before proceeding. Figure 6-6 summarizes the
considerations you will need to make in order to select the correct commands to
unmerge your work.

You will need to think carefully about what work you may want to retain, and
what work can be thrown out, before proceeding. If you have deleted the branch
you are removing, you may wish to create a backup copy of the commits in a
separate branch. This will save you from having to dig through the reflog to find
the lost commits.

Let’s say the branch you are working on is named master, and you want to
create a backup branch named preservation_branch:

$ git checkout master

$ git checkout -b preservation_branch

Have there been
commits in the current
branch since the bad
merge?

Has the othe
branch been
deleted?

Are good commits
in another branch you
can re-merge’

no

reset —merge ORIG_HEAD reset <last_correct_commit>

merge <branch_with_good_commits>

Do you want to
re-attempt the
merge later?

checkout <commit_before_bad_merge>
checkout -b safe_branch
cherry-pick <commit_to_save>

checkout -b safe._branch checkout <branch_to_fix>

heckout <branch_to_fix> 1——/

Figure 6-6. Before unmerging your branch, consider what may happen to the lost commits

You now have a branch with the good commits and the bad commits, and you

can proceed with removing the bad commits. This assumes there are no

additional commits you want to save on the branch that needs cleaning:

$ git checkout master
$ git reset --merge ORIG_HEAD

If you do want to save some of the commits, you can now cherry-pick them

back from the backup branch you created.

$ git cherry-pick commit_to_restore

The method of using ORIG_HEAD as a reference point will only work if you
notice right away that you need to unmerge the bad branch. If you have been
working on other things, it’s possible that Git will have already established a
new ORIG_HEAD. In this case, you will need to select the specific commit ID you
want to return to:

$ git reset last_correct_commit

As Figure 6-6 shows, there are a few different scenarios for unmerging branches.
Take your time and remember, the reflog keeps track of everything, so if
something disappears, you can always go back and check out a specific commit
to center yourself and figure out what to do without losing any of your work.

Undoing Shared History

This chapter has been focused on altering the unpublished history of your
repository. As soon as you start publishing your work you will eventually
publish something that needs to be fixed up. There are lots of reasons why this
can happen—new requirements from a client; you notice a bug; someone else
notices a bug. There is nothing to be ashamed of if you need to make a change
and share it with others, and you almost certainly don’t need to hide your
learning! Sometimes, however, it’s appropriate to clean up a commit history that
has already been shared. For example, lots of minor fixes can make debugging
tools, such as bisect, less efficient; and a clean commit history is easier to read.
The most polite way to modify shared history is to not modify it at all. Instead of
a “roll back” to recover a past working state, think of your actions as “rolling
forward” to a future working state. You can do this by adding new commits, or
by using the command revert. In this section you will learn how to fix up a
shared history without frustrating your teammates.

Reverting a Previous Commit

If there was a commit in the past that was incorrect, it is possible to apply a new
commit that is the exact opposite of what you had previously using the command
revert. If you are into physics, revert is kind of like noise-canceling
headphones. The command applies the exact opposite sound as the background

noise, and the net effect to your ears is a silent nothingness.

When you use the command revert, you will notice that your history is not
altered. Commits are not removed; rather, a new commit is applied to the tip of
your branch. For example, if the commit you are reverting applied three new
lines, and removed one line, the revert will remove the three new lines and add
back the deleted line.

For example, you have the following history for your branch:

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

bd5c178 Added feedback request; formatting updates to pro-con lists

You decide that you want to remove the commit made about the reminder for the
office hours, because that message was only relevant for that particular point in
time. This message was added at c546720:

$ git revert c546720

The commit message editor will open. A default message is provided, so you can
save and quit to proceed:

[master d1dc647] Revert "Adding office hours reminder."
1 file changed, 2 deletions(-)

Your logged history now includes a new commit to undo the changes that were
added in c546720:

d1dc647 Revert "Adding office hours reminder."

50605a1 Correcting joke about horses and baths.

eed5023 Joke: What goes 'ha ha bonk'?

77c00e2 Adding an Easter egg of bad jokes.

0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.

3184b5d Switching back to BADCamp version of the deck.

Repeat for each commit that you want to revert.

If you have followed along with each of the examples in this section, you should
now be able to reverse the changes that were implemented in a previous commit.

Unmerging a Shared Branch

Previously in this chapter you learned how unmerge two branches using the
command reset. This command deletes commits from a branch’s history. As a
result, Git will treat them as new commits if it encounters them again. This
happens if people merge their (now out of date) branch into the main repository.

To know which commands to use, you will first need to determine what kind of
merge it is. Figure 6-7 compares a fast-forward merge and a true merge. A fast-
forward merge is aligned with the commits from the branch it was merged into; a
true merge, however, is displayed as a hump on the graph and includes a commit
where the merge was performed.

Using the command log, look for the point where the incorrect branch was
merged in (Example 6-8). If there is a merge commit, you’re in luck! If there is
no merge commit, you are going to have to do a lot more work to get the branch
unmerged.

&
branch to merge

A

“receiving" (master) branch |

additional commits will 4
prevent fast-forward merge

/
1> -7
. l J/
true merge fast-forward merge
(no rebasing needed) (requires rebasing first)
e A N\ + + p
' A= T after rebasing;
merge commit branch now ready for ! f
fast-forward merge |
o | ' after
after true merge I
(no fast forward) * A | fast-forward
| n merge
| I I
I ,
/
o | |
. ! I J
(. J

Figure 6-7. When graphed, a fast-forward merge loses the visual of a branch; a true merge maintains it.

Example 6-8. The graphed log of your commit history will show you if it’s a true
merge

$ git log --oneline --graph

4f2eaad Merge branch 'ch07' into drafts

I

| c10fbdd CHO7: snapshot after editing draft in LibreOffice

| 9716e7b CHO7: snapshot before LibreOffice editing

| 8373ad7 App0O1: moving version check to the appendix from CHO7

| d602e51 CH7: Stub file added with notes copied from video recording lessons.
| 1ae7de® CHO8: Incorrect heading formatting was creating new chapter

| 7907650 CHO8: Draft chapter. Based on ALA article.

| ad6c422 CH8: Stub file added with notes copied from video recording lessons.

You may also want to look at a single commit to confirm if it is a true merge

using the command show. This will list SHA1 for the branches that were
merged:

$ git show 90249389

commit 902493896b794d7bc6b19a1130240302efb1757f
Merge: 54a4fdf c077a62

Author: Joe Shindelar <redacted@gmail.com>
Date: Mon Jan 26 18:30:55 2015 -0700

Merge branch 'dev' into qa

Thanks, Joe, for this tip!

BEING CONSISTENT MAKES IT EASIER TO SEARCH
SUCCESSFULLY

The default commit message for a merge commit is “Merge branch incoming into current,”
which makes it easier to spot when reading through the output from the log command. Your
team might choose to use a different commit message template; however, you can add the
optional parameters - -merges and - -no-merges to further filter the logged history.

Once you know if there is a merge commit present, you can choose the
appropriate set of commands. Figure 6-8 summarizes these options as a
flowchart.

If the branch was merged using a true merge, and not a fast-forward merge, the
undo process is as follows: use the command revert to reverse the effects of the
merge commit (Example 6-9). This command takes one additional parameter, - -

mainline. This parameter tells Git which of the branches it should keep while
undoing the merge. Take a look at your graphed log and count the lanes from left
to right. The first lane is 1. You almost always want to keep the leftmost lane,
and so the number to use is almost always 1.

Example 6-9. Reversing a merge commit

$ git checkout branch_to_clean_up
$ git log --graph --oneline
$ git revert --mainline 1 4f2eaa4

The commit message editor will open. A default commit message is provided
indicating a revert is being performed, and including the commit message from
the commit it is reversing (Example 6-10). I generally leave this message in
place due to sheer laziness; however, the upside is that it is quite easy to search
through my recorded history and find any commits where I’ve reverted a merge.

no

——

branch --contains <commit>

yes

Y

revert --mainline N <commit>

Is there a merge commit?

Typically N=1.

Check with: git log --oneline --graph

Count branch lanes from left to right to get .
<commit> must be a merge commit

Are the commits
sequential?

revert <commit>
Repeat for each bad commit.

revert --no-commit <commit_keep>..<commit_reject>
add <filename(s)>
commit

Figure 6-8. Depending on how your branch was merged, you will use different commands to unmerge the
shared branch

Example 6-10. Sample commit message for a revert of a merge commit

Revert "Merge branch 'video-lessons' into integration_test"

This reverts commit 0075f7eda67326f174623eca9ec09fd54d7f4b74, reversing
changes made to 0f187d831260b8e93d37bad11belf41aaeca835e.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Your branch and 'origin/master' have diverged,
and have 23 and 2 different commits each, respectively.

(use "git pull" to merge the remote branch into yours)

Changes to be committed:
deleted: lessons/01-intro/README.md
deleted: lessons/02-getting-started/README.md
deleted: lessons/03-clone-remote/README.md
deleted: lessons/04-config/README.md

etc)

H oS HF OH OH O OH O OH O H O H R

Occasionally you will run into conflicts when running a revert. No reason to
panic. Simply treat it as any other merge conflict and follow Git’s on-screen
instructions:

$ git revert --mainline 1 a1173fd

error: could not revert a1173fd... Merge branch 'unmerging'
hint: after resolving the conflicts, mark the corrected paths
hint: with 'git add <paths>' or 'git rm <paths>'

hint: and commit the result with 'git commit'

Resolved 'README.md' using previous resolution.

Something went wrong—check the status message to see which files need
reviewing:

$ git status

On branch master
Your branch and 'origin/master' have diverged,
and have 20 and 2 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)
You are currently reverting commit a1173fd.
(fix conflicts and run "git revert --continue")

(use "git revert --abort" to cancel the revert operation)

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

deleted: badjokes.md
modified: slides/slides/session-oscon.html

Unmerged paths:
(use "git reset HEAD <file>..." to unstage)
(use "git add <file>..." to mark resolution)

both modified: README . md

The messages about the repository being out of sync with origin is unrelated to
this issue. Skip that, and keep reading. The first useful bit of information starts
at: You are currently reverting. You are given the options on how to
proceed, and on how to abort the process. Don’t give up! Keep reading. The next
bit looks like a regular ol’ dirty working directory with some files that are staged,
and some that aren’t. If you were just making edits to your files, you would
know how to deal with this. First you add your changes to the staging area, and
then you commit them:

$ git add README.md
$ git commit -m "Reversing the merge commit a1173fd."

[master 291dabe] Reversing the merge commit a1173fd.
2 files changed, 2 insertions(+), 7 deletions(-)
delete mode 100644 badjokes.md

If there is no merge commit, you will need to deal with each of the commits you
want to undo individually. This is going to be especially frustrating because a
fast-forward merge does not have any visual clues in the graphed log about
which commits were in the offending branch. (After the first time unpicking an
incorrect merge, you’ll begin to see the logic in using a - -no-ff strategy when
merging branches.)

CONSIDER YOUR OPTIONS BY TALKING TO YOUR
TEAM

Before unpicking the commits one at a time, you may want to check if there is anyone on the
team with an unpublished, unsullied version of the branch they can share. Sometimes it is
easier to break history with a well-placed push --force.

The first thing you need to do is get a sense of where the bad commits are. If you
are not entirely sure how things went wrong, you can get a list of all the
branches a commit is contained within by using the command branch with the
parameter - -contains:

$ git branch --contains commit

Assuming the merged-in branch hasn’t been deleted, you should be able to use
the information to figure out which branch you are trying to unmerge, and what
commits were applied to that branch that you might want to remove. Remember,
though, the commits are going to be in both branches, so you won’t be able to
run a comparison to find which commits are different. This step isn’t necessary if
you already know which commits you are targeting.

If the commits you need to revert are sequential, you’re in luck! The command
revert can accept a single commit, or a series of commits. Remember, though,
that a revert is going to make a new commit for each commit it is reversing. This
could get very noisy in your commit history, so instead of reversing each commit
individually, you can group them into a single reversal by opting to save your
commit message to the very end:

$ git revert --no-commit last_commit_to_keep..newest_commit_to_reject

After running this command you will end up with a dirty working directory with
all of the files reverted back. Review the changes. Then, complete the revert
process:

$ git revert --continue

Review the commit message and make any necessary updates to improve the
clarity of the message. By default the message will be “Revert” followed by the
quoted text of what was in the newest of the commits you are reversing. Often

this will be sufficient, but you may want to be more descriptive if the original
message was subpar.

If the commits are not sequential, you will need to revert the offending commits
one at a time. Send me a tweet at @emmajanehw and I will commiserate and
cheerlead.

$ git revert commit

Unmerging a merged branch is not something Git is designed to do unless a very
specific workflow has been followed. Your team may never need to unmerge a
branch. I have definitely had the occasional bad merge on a personal project
where I was a solo developer and opted to swear a bit, and then shrug and move
on. Sometimes history doesn’t really matter all that much; sometimes it does.
With experience and hindsight, you know for sure which commands you should
have been using.

Really Removing History

In this chapter, you’ve learned about updating the history of your repository, and
especially retrieving information you thought was lost. There may be times when
you actually do want to lose part of your history—for example, if you
accidentally commit a very large data file or a configuration file that contains a
password. Hopefully you never need to use this section, but just in case your
“friend” ever needs help, I’ve included the instructions. You know, just in case.

Published History Is Public History

If you have published content to a publicly available remote repository, you
should make the assumption that someone out there cloned a copy of your
repository and has access to the secrets you did not mean to publish. Update any
passwords and API keys that were published in the repository immediately.

If you need to do your cleanup on a published branch, you should notify your
team members as soon as you realize you need to clean the repository. You
should let them know you are going to be doing the cleanup, and will be “force
pushing” a new history into the repository. Developers will need to evaluate their

local repository and decide which state it is in. Have each of the developers
search for the offending file to see if their repository is tainted:

m [f the file you are trying to remove is not in their local repository, they will
not be affected by your cleanup.

m [f their repository does have the file, in any of their local branches, it is
tainted. However, if they have not done any of their own work since the file
was introduced, they will not be affected by your cleanup. This may be true
for QA managers who are not also local developers. In this case, have them
remove their local copy of the repository and re-clone the repository once the
cleanup is done.

m [f their repository is tainted, and they do have local work that was built from
a branch that includes the tainted history, they will need to bring these
branch(es) up-to-date through rebasing. If they use merge to bring their
branches up-to-date, they will reintroduce the problem files back into the
repository and your work will have been for naught. This can be a little scary
for people if they are not familiar with rebasing, so you may want to suggest
that they push any branches that have work they need to keep so that you can
clean it up for them. (Have them clone a new repository once the cleanup is
done.)

While you are working on the cleanup, your coworkers could have a sword fight
or something.

With everyone on the team notified, and with a plan of what will happen before,
during, and after the cleanup on everyone else’s repositories, you are ready to
proceed.

For this procedure, you will use the command filter-branch. This command
allows you to rewrite branch histories and tags. The examples provided in the
Git documentation are interesting, and worth reading. You can, for example, use
this command to permanently remove any code submitted by a specific author. I
cannot think of an instance when I would choose to remove everything from
someone without reviewing the implications, but it’s interesting that the
command can be used in this way. (Perhaps you know exactly how it would be
useful, though?)

Assuming the file you want to remove is named SECRET.md, the command

https://xkcd.com/303/

would be as follows (this is a single command, but it’s long; the \ allows you to
wrap onto two lines):

$ git filter-branch --index-filter \
'gilt rm --cached --ignore-unmatch SECRET.md' HEAD

With the file completely removed from the repository, add it to your .gitignore
file so that it doesn’t accidentally sneak in again. Instructions on working with
.gitignore are available in Appendix C.

Unlike the other methods in this chapter, we are aiming to permanently remove
the offending content from your repository. For a brief period of time the
commits will still be available by using the command reflog. When you are
sure you do not need the commits anymore, you can obliterate them from your
system by cleaning out the local history as well and doing a little garbage
collection (gc):

$ git reflog expire --expire=now --all
$ git gc --prune=now

Your repository is now cleaned, and you are ready to push the new version to
your remote repositories:

$ git push origin --force --all --tags

Once the new version of history is available from the shared repository, you can
tell your coworkers to update their work. Depending on the conversation you’ve
had previously, they will incorporate your sanitized changes into their work by
one of the following methods:

m Cloning the repository again from scratch. This method is better for teams
that are not currently using rebasing and are intimidated by it.

m Updating their branches with rebase. This method is better for teams that are
already comfortable with rebasing because it is faster than starting a new
clone, and allows them to keep any work they have locally:

$ git pull --rebase=preserve

Both GitHub and Bitbucket offer articles on how to do this cleanup for
repositories stored on their sites. Both are worth reading because they cover
slightly different scenarios.

Now that you know Git’s built-in way of sanitizing a repository, check out this
stand-alone package, BFG Repo Cleaner. It delivers the same outcome as
filter-branch, but it is much faster to use, and once it is installed, it’s much
easier, too. If you are dismayed by the amount of time a cleanup is taking with
filter-branch, you should definitely try using BFG.

Command Reference

Table 6-2 lists the commands covered in this chapter.

Table 6-2. Git commands for undoing work

Command Use
git checkout -b branch Create a new branch with the name branch
git add filename(s) Stage files in preparation for committing

them to the repository

git commit Save the staged changes to the repository
git checkout branch Switch to the specified branch
git merge branch Incorporate the commits from the branch

branch into the current branch
git branch --delete Remove a local branch

git branch -D Remove a local branch whose commits are
not incorporated elsewhere

git clone URL Create a local copy of a remote repository
git log Read the commit history for this branch

git reflog Read the extended history for this branch
git checkout commit Check out a specific commit; puts you into a

detached HEAD state

http://bit.ly/sensitive-data
http://bit.ly/atlassian-git-repo
http://bit.ly/bfg-cleaner

git

git

git

git

git

git

git

git

git

git

git

git

git

last_commit_to_keep..newest_commit_to_reject

git

git

git

cherry-pick commit

reset --merge ORIG_HEAD

checkout -- filename

reset HEAD filename

reset --hard HEAD

reset commit

rebase --interactive commit

rebase --continue

revert commit

log --oneline --graph

revert --mainline 1 commit

branch --contains commit

revert --no-commit

filter-branch

reflog expire

gc --prune=now

Copy a commit from one branch to another

Remove from the current branch all commits
applied during a recent merge

Restore a file that was changed, but has not
yet been committed

Unstage a file that is currently staged so that
its changes are not saved during the next
commit

Restore all changed files to the previously
stored state

Unstage all of the changes that were
previously committed up to the commit right
before this point

Edit, or squash commits since commit

After resolving a merge conflict, continue
with the rebasing process

Unapply changes stored in the identified
commit; this creates a sharing-friendly
reversal of history

Display the graphed history for this branch
Reverse a merge commit

List all branches that contain a specific
commit object

Reverse a group of commits in a single
commit, instead of creating an object for
every commit that is being undone

Remove files from your repository
permanently

Forget about extended history, and use only
the stored commit messages

Run the garbage collector and ensure all
noncommitted changes are removed from
local memory

Summary

Throughout this chapter you learned how to work with the history of your Git
repository. We covered common scenarios for some of the commands in Git
which are often considered “advanced” by new Git users. By drawing diagrams
summarizing the state of your repository, and the changes you wanted to make,
you were able to efficiently choose the correct Git command to run for each of
the scenarios outlined. You learned how to use the three “R"s of Git:

Reset

Moves the tip of your branch to a previous commit. This command does not
require a commit message and it may return a dirty working directory if the
parameter - -hard is not used.

Rebase

Allows you to alter the way the commits are stored in the history of a branch.
Commonly used to squash multiple commits into a single commit to clean up
a branch; and to bring a branch up-to-date with another.

Revert

Reverses the changes made in a particular commit on a branch that has been
shared with others. This command is paired with a commit and it returns a
clean working directory.

In the next chapter, you will take the lessons you’ve been working on in your
local repository and start integrating them with the rest of the team’s work.

Chapter 7. Teams of More than
One

The first few times you work with others on a project will shape how you
approach version control. If your collaborators are patient and empathetic, you
are more likely to use version control with confidence. Empathetic teammates
will document the procedure they want you to use, and support you with
questions (updating the documentation as necessary). If you are responsible for
starting a project, think of that scene when Jerry Maguire says to his star player,
“help me help you.” As a project lead, this should be your mantra. Find the
sticking points and remove them. Where you want consistency, provide detailed
instructions, templates, and automated scripts. When something comes in that is
not up to your standard, consider it a process problem that is yours to solve.

In this chapter, we have the culmination of everything covered in this book so
far. In Part I, you learned about the different considerations for setting up a
project. Now you will learn how to implement those decisions. In Chapters 5 and
6, you learned how to run the commands you’ll use on a daily basis as a
developer. In this chapter, you will learn how to set up a connection to a remote
project, and share your work with others.

By the end of this chapter, you will be able to:

m Set up a new project on a code hosting system

m Download a remote repository with clone

m Upload your changes to a project with push

m Refresh the list of branches available from the remote repository with fetch
m Incorporate changes from the remote repository with pull

m Explain the implications of updating your branches with pull, rebase, and
merge

Where possible, this chapter includes templates you can use to help onboard new
developers. The easier it is for people to contribute usable work, the more likely

they are to enjoy working on your project. Even if it’s just a job, there’s no
reason we shouldn’t all have a little more delight in our lives.

Those who learn best by following along with video tutorials will benefit from
Collaborating with Git (O’Reilly), the companion video series for this book.

Setting Up the Project

The context for your project will dictate a lot of how the repository will be set
up. A super-secret internal-only covert code base will be set up so as to ensure
privacy; a free and open source code library will be set up for transparency and
probably participation. Once the project is established, the commands the
developers use daily will likely be quite similar.

This section covers the basic process for creating a new project on a code
hosting system. The specifics for GitHub, Bitbucket, and GitLab are covered in
Part III (Chapters 10, 11, and 12, respectively).

Creating a New Project

In order to share your work with your team, you will need to establish a new
project in your code hosting system of choice. These days most code hosting
systems offer more than a place to dump a shared repository. They also include
ticketing systems, basic workflow enhancements, project documentation
repositories, and more! In the communities and teams I participate in, one of the
following three services are generally used: GitHub (typically used by open
source projects), Bitbucket (typically used by internal teams and small teams
who need free hosting for private projects), and GitLab (typically used by
medium-sized companies that need to host their code in house for security
reasons).

No matter which system you choose, the basics of setting up a project are going
to be the same. The first question you’ll need to ask yourself is: which account
should you use to create the repository? The standard format for project URLs
on a web-based system is as follows: https://<hosting-url.com>/<project-
owner s-name>/<project-name>. If the project is really and truly yours—for
example, the repository for your personal blog—it’s appropriate for the URL to
include your username. If, however, the project belongs to an agency of

http://bit.ly/collaborating-with-git
https://<hosting-url.com>/<project-owner’s-name>/<project-name>

developers, it would be more appropriate for the project owner’s name to be the
name of the agency. And finally, if the project belongs to a number of agencies,
such as an open source software project, the most appropriate project owner
name would be the name of the software project.

The decisions you choose here may also affect who is able to write directly to
the project, and may be dependent on the code hosting system you’re using. For
example, if you choose to start the project under your personal name, you might
not want to allow “just anyone” to write to the project without a review from you
—especially so for public projects where others could be evaluating the body of
work under the assumption it was yours.

WHAT’'S IN A NAME?

The support repository for this book has existed in a number of different places over the years,
including my personal account, a team account, and three different code hosting systems (for a
total of six different repositories that need to be maintained). Although the work has been
developed by me, it becomes a question of branding on which URL I want to distribute. If I
want others to think of the repository as theirs (such as in a set of abstract learning materials
where people don’t have direct access to me), I might use the project URL; but when I want
people to think of me as the author because it’s also a promotional piece, I might give people
my personal URL. It’s quite possible I overthink this, but you should give the naming of things
at least a little consideration.

You are probably reading this book as a member of a team (even if it’s a very
tiny team of one!), and so you’ll want to select the name of your company,
agency, or team as the project owner, or the name of the project if you are
working on an open source project. Fortunately, you can move the code base to a
new name or even a new code hosting platform very easily, so it’s not absolutely
critical to get it right from the beginning. It is, however, more difficult to transfer
any of the metadata for your project from one account to another. Metadata
could include the history of tickets for your project, and any documentation
stored outside of the repository.

With the project owner selected, go ahead and create a new empty project under
this account. Don’t worry about uploading files just yet.

Establishing Permissions

There are two types of permissions you will need to set for your project: who
can see the project (“read”); and who can commit to the project (“write”)—this
was discussed in greater detail in Chapter 2. If you are an ultra-transparent team,
the project should be visible to the world. Otherwise, create a private project.

THE COST OF A FREE SERVICE

Some code hosting services will charge a small fee for private repositories, and some provide
this service for free. If your code and its history are important, consider paying for hosting.
You might choose to pay with your time and self-host the code internally, or you may choose
to pay a small monthly fee to a third-party service. The advantage of paying is that the hosting
company is more likely to be accountable to you as a customer, and you are more likely to
keep them in business by helping to pay their expenses. Of course, if you can’t afford to pay
the fee, there are plenty of free options available—and there’s no sense feeling guilty if a
company has chosen to offer a free service. Do what you can.

Additionally, some hosting systems will allow you to set per-branch restrictions.
At this time Bitbucket and GitLab offer this functionality. Configuration options
are described in Chapters 11 and 12, respectively.

As a distributed version control system, Git is inherently good at dealing with
incoming requests for changes to a repository. Generally, team projects will have
a single repository that is considered The Project, and many spin-off projects that
contain the work of the individual developers for the project. If your project is
internal, you may choose to have everyone working directly in The Project
repository; but if you prefer to maintain a cleaner central repository, you may
choose to have each of your developers work in a fork of The Project.

THE PROJECT

Throughout this chapter, you will see reference made to “The Project.” I use this shorthand to
refer to the canonical, or official, repository for a software project. This is the repository that
the community has agreed to use for official releases of the software. Git itself has no internal
hierarchy that forces one repository to be more important than another—only the declaration
by the community makes a repository the official one.

Based on the decisions you made about your team structure in Chapter 2, assign
the appropriate permissions for any contributors who should be allowed write

access to The Project—additional contributions can be accepted from non-
authorized developers via pull requests (these are also referred to as merge
requests by some services).

Uploading the Project Repository

As a distributed version control system, Git is a bit of a social butterfly. It loves
to connect with all kinds of repositories. It loves sharing stories, and making new
friends along the way. Git maintains its connections with its faraway friends
through a stored connection referred to as a remote. A local repository may have
zero, one, or many remote connections. It is typical for Git repositories to have
only one remote connection—the origin. You’ve probably seen this term used
before. It’s the nickname assigned to the remote repository from which you
downloaded, or cloned, your local copy. It’s just a nickname, though. You can
use whatever names you like for your remote connections.

When you first start a new project, you may have no code written, or some code
written. (Seems obvious, right?) If you have no code written, you may choose to
start your project by following the instructions from your code hosting system
and cloning the empty project to your local development environment. If,
however, you already have some code locally, you will want to upload what
you’ve already got. To do this, you will need to make a new connection from
your local repository to the project hosting service.

From your local copy of the project repository, take a look to see if you already
have a remote connection set up:

$ git remote --verbose

If you started locally, you won’t see any remotes listed, so it’s okay if nothing
shows up at this point. If you do a have a remote set up for this repository, you
will see something like the following:

origin https://github.com:emmajane/gitforteams.git (fetch)
origin https://github.com:emmajane/gitforteams.git (push)

Each line begins with the nickname for the remote connection (origin), as well
as the source for the remote repository. These lines will always appear in pairs:

the first line of the pair indicates where you will retrieve new work from
(fetch), and the second indicates where you will upload new work to (push).

Project owners will need to have a connection to the official copy of a project;
they may also have a connection to a fork of a project if they require themselves
to go through a peer review process before incorporating their own work (peer
reviews are covered in Chapter 8). As soon as you start adding multiple remote
repositories for a project, the default nickname (origin) can get a bit confusing.
As aresult, I tend to name my remotes according to their purpose; for example,
official and personal, which have meaning to me. When I upload work, I
then decide between these two options. The standard Git terms for my
nicknames are upstream and origin, although origin is assigned to the source
of a cloned repository by default, regardless of whether or not you can write to
it.

NAME IT TO CLAIMIT

I’ve been working with Git a very long time, and I still screw up the command git remote
show origin on an embarrassingly regular basis. Four words. It shouldn’t be that hard for me
to remember the order, right? I can never seem to get the order of show and origin right. By
assigning my own names to the remote repositories, I am more likely to make more sense of
the command, and thus get the order right. git remote show official just seems to make
better sense to my brain. You may never have this problem, but if you struggle to remember
this command, you might want to personalize your remote names and change the name origin
to something that resonates.

To add a new remote connection, you will first need to know the URL for the
project. The structure is generally https://<hosting-url.com>/<project-owner ’s-
name>/<project-name>.git. In newer versions of Git, the protocol https will be
available to you, but in older documentation the first block may be replaced with
something like git@hosting-url.com. Once you know the URL for the remote
repository, you can make a connection to it (Example 7-1).

Example 7-1. Add a connection to a remote repository

$ git remote add nickname project-url

After a connection is made to a remote, you should see two new lines when you
list your remote connections. If you want to use Git’s terminology, you would

https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

use the nickname upstream for the official project repository; if you are using
my naming convention, you would use of ficial. This name will never be
published, and there are no Git police so you can use whatever you want and no

one will ever know. (You could even call it cookies or cof fee if that made you
happy. It really doesn’t matter.)

For example, if I was a participant in a project named Mounties, and it was run
by the agency Oh, Canada, I might have a series of remotes as follows:

$ git remote --verbose

official https://github.com:ohcanada/mounties.git (fetch)
official https://github.com:ohcanada/mounties.git (push)
personal https://github.com:emmajane/mounties.git (fetch)
personal https://github.com:emmajane/mounties.git (push)

You can easily hook up as many new remote connections as you like. For
example, you might have remote connections for devserver, staging, and
production; or you may log directly in to those machines and pull code from
The Project repository, instead of pushing code directly to those locations.

If you already have a remote connection set up in your local repository that you
no longer need, you can easily delete it (Example 7-2).

Example 7-2. Remove a remote connection

$ git remote remove nickname

TIP

You can easily rename remotes, and even set up default remotes for each of the branches in
your local repository. Git’s built-in documentation for this command is easy to understand. You
should read through the documentation if you want to personalize your list of remotes even
further.

With the remote connection established for your project, you can now upload
your local copy of the repository to the remote server:

$ git push nickname branch_name

If you want to share all local branches with others, you can update this command
as follows:

$ git push --all nickname

Once you have uploaded your work, navigate to the project page to ensure the
repository was uploaded as expected. By default, most code hosting systems will
display the branch master if there is more than one branch present in the
repository. If your local repository uses nonstandard branch names, check to see
if your code hosting system allows you to assign the default branch for the
repository. This branch is typically the most stable version of the project, with
experimental work existing in other branches. Every project is a little different,
though. Your project may use the master branch as the fire hose of new work
and it might not be the most stable version of your software. Be explicit in your
documentation.

To upload a local name under a new name on the remote server, use the
following syntax:

$ git push nickname branch_local:branch_remote

For example, if you wanted to upload your branch main to the remote repository
official and rename it to master in the remote repository, you would use the
following command:

$ git push official main:master

Your local repository should now be uploaded to the remote project repository
and with the desired branch names.

Document the Project in a README

When you navigate to your project page, you will notice most code hosting
systems will display the contents of the file README if one is present in your
project. This file should be used to give people an overview of the project. If it is
a development project with dependencies, those should be listed here. If there
are installation instructions, those should be listed here as well (or a link should

be provided to a more complete installation guide). If you would like people to
contribute to the project, or report bugs to the project, those instructions should
be listed here, too.

The following projects have excellent README files that clearly explain what
the repository is about, how you can use the code within it, and how you can
contribute to it:

= Sculpin
m Sass

m Rails

APPLY A LICENSE TO YOUR PROJECT

There is no single international copyright law. As a result, any project that does not include an
explicit license is assumed to be fully copyrighted, and not intended for reuse. I openly admit
that a number of my projects do not include licenses. This is usually because I simply haven’t
made the decision of how I want others to use my work. (I'm typically producing training
materials in environments where copyright ownership is more restricted than in code
communities where open licensing is more prevalent.) The license for a given repository is
typically located in the file LICENSE or LICENSE.txt file.

If your local repository didn’t already have a README file, now would be a
good time to add one! Today, new projects tend to use Markdown format for the
README file, and therefore rename the file to README.md to ensure the file is
correctly formatted.

With the project uploaded and the instructions established, it is now time to start
onboarding contributors to your project. The process you use in the remainder of
this chapter should be added to your project repository as documentation. This
will allow developers to have a copy locally, and will allow them easier access to
the information instead of having to refer to an external wiki page.

Now that your project is in place, it’s time to flip the tables and look at things
from a contributor’s perspective.

Setting Up the Developers

https://github.com/sculpin/sculpin
https://github.com/sass/sass
https://github.com/rails/rails

When you think about projects from a developer’s perspective, it’s not always
entirely clear what the participation level is going to be. When it comes to
publicly available projects, a developer might engage in three levels of
participation:

» Download a zipped package of the project, never to return to the project page
again. This might be seen in true forks of a project where the downstream
developers have no intention of checking back to see how the code has
progressed. It might also be used for projects that are designed to be a starting
point—where the intention is to hack up the code and modify the source
significantly.

= Clone the project repository with the intention of keeping the code up to date
locally, but without the intention of making modifications. This could be true
of any developer who is incorporating an open source library into his or her
project. The developers might extend the library, and perhaps make little
changes to the cloned library, but for the most part they are using the project
code as is, relying on upstream developers for enhancements and security
updates.

m Clone the project repository with the intention of contributing work back.
This will be true for open source project volunteers and staff, in-house
developers on a software project, as well as staff at an agency who are
contributing to a build for a particular project.

The main distinction between the latter two options is that a noncontributor will
typically clone The Project directly, whereas a contributor will likely have a
personal remote repository in addition to the project repository. The rationale for
these choices was described in greater detail in Chapter 2.

CONSUMERS VERSUS CONTRIBUTORS

Forward-thinking (intermediate to advanced) developers will always assume they are going to
contribute back to a project at some point and create their own intermediate remote repository.
Most novice developers, however, will aim to streamline their workflow where possible and
omit the intermediate step of creating their own remote repository. This also means they are
perceiving of themselves only as a consumer, rather than a potential contributor, to your
project.

Once developers identify themselves as consumers or contributors (including
primary maintainers), they will be ready to choose a method to download your
project repository.

Consumers

Consumers have no intention to contribute back to a project. They don’t expect
to have write access to the code base, and they can’t imagine a possible future
where they would want to upload their changes to a project. This type of
developer might download your repository in one of two ways:

m As a zipped package.
= As a clone of the repository directly from The Project page.

A zipped package has no connection back to The Project, and contains no history
of the changes that have happened over time. A clone, on the other hand,
maintains a connection to the project, and can be updated to the latest version by
running a few Git commands. The structure to clone a remote repository is as
follows:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

For example, if you wanted to download a copy of the project repository for the
Git for Teams workshop, you would issue the following command:

$ git clone https://github.com/gitforteams/gitforteams.git

To update your local copy of the repository, first you would need to fetch the
latest changes to The Project (for now, we’ll assume you have only one remote
connection):

$ git fetch --all

Once you’ve fetched the changes, you can compare what’s changed in the latest
version to what you have locally before choosing to update your local copy.

First, get a list of all branches in your repository:

$ git branch --all

You will see two groups of branches: your local branches and the remote
tracking branches. The currently checked-out branch will be marked with *. My
personal copy of the project repository cloned previously is as follows:

gh-pages

* master
video-lessons
remotes/personal/gh-pages
remotes/personal/master
remotes/personal/video-lessons

This list shows three local branches as well as three branches connected to a
remote that has been nicknamed personal.

For even more detail for each branch, use the parameter - -verbose:
$ git branch --all --verbose

The output includes the commit message as well as the status for each branch
compared to its remote repository:

gh-pages 629b54f Resolving merge conflict; ..

* master 2db982d Changes to "Undo" graphic: ...
video-lessons 7798eb1 [ahead 11] Lesson 00:
remotes/personal/gh-pages 629b54f Resolving merge conflict;
remotes/personal/master 2db982d Changes to "Undo" graphic
remotes/personal/video-lessons 653f875 Lesson 7: Added intro on

To see a history of the changes that have been added to the repository on the
branch master, you can use the command log:

$ git log personal/master

To compare your local copy of a branch to what was just downloaded, you can
add the parameter - - patch to see the per-commit changes, or use the command
diff to see a summary of all changes:

$ git log --patch personal/master
$ git diff master personal/master

This will show you all of the changes in patch format. Look for lines that have

been added (marked with +), or deleted (marked with -). If you prefer to check
out the code base as a whole, you can check out the branch tip:

$ git checkout personal/master

This will put you into a detached HEAD state. To return to the local copy of the
master branch, check it out:

$ git checkout master

Once you’ve reviewed the changes, you can update your local copy of the
master branch by rebasing to add the new changes:

$ git rebase personal/master

Using the command rebase provides a cleaner graphed history; however, if your
team has opted to use merging, you can use the command merge to bring your
local branch up to date:

$ git merge personal/master

If you have multiple local branches that you want to update, you will need to
check out each one individually and then use this same procedure to incorporate
the changes. This needs to be done one branch at a time because if there are
conflicts between the two copies of the branch, Git needs to give you a working
directory to resolve the conflicts.

These few commands are the only ones that a consumer of a project will need to
use. If, however, the developer makes a little change to her copy of the
repository locally, and wants to contribute that change back to the project, she
will be limited to submitting a patch, or requesting access as a developer (which
is probably not appropriate to grant for one-off contributors). Although it is
possible to submit patches, it is not preferred. (Yes, there are some projects that
still use patches, including Git itself!) Instead, many projects have come to
prefer pull requests. Originally used by GitHub, this term has become popular on
other systems as well. A pull request is a meta feature—it is not something built

into Git itself, but rather it is a feature of software that sits alongside Git. It
provides a visual prompt for a project maintainer to incorporate a branch of work
from a remote repository. The connection between the two repositories exists
only for that one particular request; it is not a persistent connection like a
developer would set from his or her local workstation to a remote repository.

Contributors

So you think you’re interested in contributing to a software project. Cool! (This
is where, as the author of this book, I let out a huge sigh of relief. If you’ve made
it this far into the book and werent interested in working on a software project,
I’d feel really bad.) As a distributed version control system, Git is focused on
what you can do locally. The built-in tools for direct collaboration on shared
repositories are extremely coarse—either you have full write access to a project,
or you have none. There are no per-branch permissions, and indeed, without the
support of SSH, there’s no authentication system at all in Git. Git relies on
wrapper software to provide the access control.

In order for wrapper software to make the connection between two repositories,
it needs them to both be accessible from the same place. The easiest way to
design for this is to have developers upload their changes to the same system that
hosts The Project repository. GitHub, as well as every other web-based system,
does this by having you create a clone, or a fork, of The Project, and upload your
changes to the copied repository. Then, you use the wrapper software to request
that your changes be pulled into The Project repository.

Using GitHub terms:

1. An aspiring contributing developer (The Developer) forks The Project
repository.

2. The Developer then makes her proposed changes in her copy of The
Project.

3. When finished, The Developer initiates a pull request from a branch in her
copy of the project to a branch in The Project repository.

4. Using comments in GitHub’s web interface, a conversation will take place
between The Developer and The Maintainer. Sometimes additional updates
will be required by The Developer before The Maintainer is ready to

accept the proposed changes into The Project.

5. When the proposed changes are deemed worthy, The Maintainer will
incorporate the pull request into The Project.

GITHUB DOES NOT REQUIRE A LOCAL CLONE OF
THE PROJECT

GitHub now allows developers to make minor edits directly to files through a web interface;
however, many developers will choose to clone their copy of The Project so they can work on
it locally. Then, when they have completed their work, they will push their updates to their
own copy of the project and initiate a pull request from their copy of the project to the main
project repository.

The process for submitting a pull request will vary slightly depending on the
wrapper software being used (e.g., GitHub, Bitbucket, GitLab, etc.); however,
the basic process is covered in Part III.

Maintainers

A developer who has direct commit access to The Project repository is a special
kind of developer, known as The Maintainer. Depending on how your team is
structured, The Maintainers might be only those on the quality assurance team,
or they may be handpicked developers from the community. For smaller internal
projects, The Maintainers may be everyone who is working on the project.

In Chapter 2, you learned a little bit about project governance models. The way
The Maintainer will interact with the project is a political, not technical,
decision. Git doesn’t actually care how you structure your project, and so you
will need to develop a system that works best for you. Defining the workflow for
Consumers and Contributors is relatively easy because you aren’t really working
with Git, but rather the workflow defined by the wrapper software (in the case of
Consumers, they’re not even really working with Git at all).

If everyone on your team is a Maintainer (i.e., they are allowed to commit
directly into the repository), it’s your choice as to whether you require
developers to create a separate clone of the repository. The only limitation would
be if your code hosting system does not have the capacity to accept incoming

branches for merging from within a single repository. Check with your system of
choice to see if it has a recommended workflow.

Generally I work with teams of fewer than 10 developers. Some of these teams
I’ve worked with have opted for separate remote repositories for each developer,
and some have allowed developers to commit their in-progress work directly to
The Project repository. In the Drupal project, where there are thousands of
developers, only a handful of people can commit into the main project
repository; however, there are an additional 30,000 contributed modules, each
with its own maintainers who have direct access to the project repository.

THE ONLY RULES ARE THE ONES YOU DOCUMENT

If there are no documented rules, your project will become anarchic so write down the exact
steps you would like people to follow when contributing to the project.

Project maintainers will need to have at least a clone of The Project repository
locally. If you were the developer who started the project, you already have a
local clone of this repository. If you aren’t, you will need to clone the repository
using the following:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

You learned how to create a clone of a project repository as a team of one in
Chapter 6 with the following command:

$ git clone https://gitlab.com/gitforteams/gitforteams.git

This will create a local copy of the repository, with the remote nickname origin.

If your project requires it, you may also need to create a clone of The Project on
the code hosting system. This is covered in the previous section, or you may
wish to follow the more detailed instructions available in Part III. Once you’ve
created the remote clone, you can add this remote connection to your local
repository. This will allow you to switch between the two from within the same
directory. If you prefer, you can keep two local directories, but I personally enjoy
the efficiency of not having to jump around as much. You are welcome to use

your own naming conventions for the remotes. The syntax for adding a new
remote is as follows:

$ git remote add nickname https://<hosting-url.com>/<your-name>/<project>.git

If I were to add my personal clone from GitLab, to follow the previous example,
I would use the following command. Because this connection was being made to
my personal copy of the repository, I would choose to use the nickname
personal here:

$ git remote add personal https://gitlab.com/emmajane/gitforteams.git

To avoid confusion, I might also choose to rename the nickname for The Project
remote from originto official:

$ git remote rename origin official

These nicknames are completely arbitrary and are personal to your system. They
will not be shared with others, so use whatever names make sense to you.

Generally the convention is to use origin for the remote copy that most closely

resembles your local work, and upstream for the copy of the repository that has
the most new features being added by other developers that you might want to
incorporate into your own work.

Once you’ve set up the remote connections to the project, and to your own
personal copy of the repository, you should verify the names and URLSs are what
you are expecting:

$ git remote --verbose

In my case, the output is as follows:

official git@gitlab.com:gitforteams/gitforteams.git (fetch)
official git@gitlab.com:gitforteams/gitforteams.git (push)
personal git@gitlab.com:emmajane/gitforteams.git (fetch)
personal git@gitlab.com:emmajane/gitforteams.git (push)

You are now ready to work on your project as both a Contributor and a

Maintainer.

Participating in Development

There are four main activities you will engage in when working with Git:
working on new proposed changes, keeping your branches up to date, reviewing
proposed changes, and publishing completed worked. Inevitably, you will also
need to work on resolving conflicts when you update your branches, or when
you attempt to incorporate proposed changes into The Project.

Constructing the Perfect Commit

There are two basic approaches to commits: demonstrate the thinking process
and present the final solution. When I’'m programming in a language I’m not
very familiar with, I think in small increments focusing on little pieces of the
system at a time. As I work, I commit snapshots of my work as I get to critical
points. These snapshots act as lifelines, allowing me to track how I thought
through a problem. If you were to read my commit messages when I code, you
would be able to easily unpack my thinking. Commits might represent units of
work in increments as small as 15-30 minutes of effort. The commit messages
are unlikely to explain why I’ve done something. The initial commit might
include a docblock of code comments which outline what I’m about to do, the
next commit might have the scaffolding for what I was about to build, and it
would proceed from there. The commit messages would add very little value
above and beyond what is shown in the diff for each commit.

When I’'m working in on a task I feel more confident about, I'm more likely to
make radical changes to the working directory without those tiny lifeline
commits. Then, when my work is finished, I’ll take a look at the overall changes,
and shape smaller, relevant commits. This might be done by committing single
changed files at a time, or perhaps I might make an even more granular commit
using the - -patch mode to add hunks of each file at a time to the staging area in
preparation for a commit. These curated commits will be much more useful to
me later if I need to dig through history using the command bisect. For
example, in order to use a function, it must already be created somewhere, so |
might choose to separate the creation, and use of a function into two separate

commits even if I wrote them at the same time.

I hesitate to refer to these two approaches as novice and advanced, but that
phrasing does ring true. Different source control management systems will have
different ways of presenting commits in the history of your project. Git is very
granular in how it shows you the commit history, and as a result, thinking in tiny
commit increments gets messy and frustrating to work with. This is why we say
that as you mature with Git, you will be more likely to adopt the second
approach.

You don’t need to give up your tiny commits though. You can use rebase to
combine many little unpublished commits into a history that is more like the
second version. Work the way you want to work, then reshape history so that it
stores information in a useful way.

REWRITING HISTORY

Yes, I hate with a screaming passion that Git allows you to rewrite history, and then tells you
how dangerous it is. To me it feels too much like arrogant history revisionism. But that’s the
model that Git uses. To work effectively with Git, I set aside my frustrations and adopt the
techniques that the original software set out as best practices. I’m not afraid of rebasing; I just
don’t like that it exists to begin with. I give you permission not to like it either; however, not
liking what it represents isn’t a valid reason for not using it. It’s deeply ingrained in the
philosophy of how Git stores metadata about code’s history. Have a cookie, it’ll be okay.

If you accidentally do too much work between commits, you don’t need to forgo
a granular commit history. Previously you learned to add individual files to the
staging area. You can get even more granular, assigning edits within a single file
to multiple commits. To add a partial change within a file, instead of the whole
file, use the command git add --patch filename. This command will walk
through your file, line by line, and ask you if you would like to include each
changed line in the commit you are building.

Rewriting History as It Happens

If you have a culture of showing work in progress on a centralized server, you
will need to be careful in how you rebase your work. When a commit is rebased,

the metadata for any commit object that is altered is assigned a new identifier.
For example, if you are bringing a branch up to date, your local commits now
have new parents and get a new ID. If you are trying to clean up the history of a
branch, and you squash two commits, a new ID will be assigned to the resulting
commit object even though the content is identical! This dual timeline can
confuse Git and cause conflicts. To avoid these conflicts, limit your use of
interactive rebasing to short-lived branches, such as ticket branches.

Excellent commit objects have the following characteristics:

m Contains only related code. No scope creep, no “just fixing white space issues
too.”

m Conforms to coding standards for your project, including in-code
documentation.

= Are just the right size. Perhaps this is 100 lines of code. Or perhaps it’s a
mega refactoring where a function name changed and 1,000 lines of code
were affected.

m Work is described in the best-ever commit message (see the next section).

The best rule of thumb I’ve heard for commit messages is “Whatever it takes to
make future me not get pissed off at past me for being lazy.”

Your commit messages should include:

= A terse description (fewer than 60 characters) in a standard format to make it
easy to scan logs.

» A longer explanation of why the current code is problematic, and the rationale
for why the change is important.

m A high-level description of how the change addresses the issue at hand.
= An outline of the potential side effects the change may have.

m A summary of the changes made, so that reading the diff of the code confirms
the commit message, but reading the diff is not guesswork on what/why
something has changed.

= A ticket number, or other reference to sources where discussion about the
proposed change can/has/will happen.

= Who will be affected by the change (e.g., an optimization for developers; a

speed improvement for users).
m A list of places where the documentation will need to be updated.

A bad commit message would be as follows:
git commit -am "rewrote entire site in angular.js - it's faster now, I'm sure"

This commit is insufficient for the following reasons:

= By using the -a parameter, all files will be committed as part of this commit
en masse, and without consideration of whether or not they should be
included.

» By using the -m flag, the tendency will always be to write only a terse
message that does not describe why the change is necessary, and how the
change addresses this necessary change.

= The commit message does not reference a ticket number, so it’s impossible to
know which issue(s) are now resolved and can be closed in the ticket tracker.

To compare, a good commit message would be as follows:

$ git commit
[#321] Stop clipping trainer metadata on video nodes at small screen size.
- Removes an unnecessary overflow: hidden that was causing some clipping.

Resolves #321

This is a good message for the following reasons:

= [t includes the ticket number, in square brackets, at the beginning of the terse
commit message, making it easier to read the logs later.

m The terse description (for the short log view) explains the symptom that was
seen by site visitors.

= A detailed explanation explains the technical implementation that was used to
resolve the problem.

m The final line of the commit message (Resolves #321) will be captured by
the ticketing system and move the ticket from open to needs review.

When making a proposed change, you should keep the proposal small, and
focused on solving a single problem. This will make it easier for The Maintainer
of the project to review your submission, and accept your work. For example, if
you are fixing a specific bug in one part of the code base, don’t also fix an extra
line ending you found elsewhere in the code. While projects likely have naming
conventions for their branches, if you are donating a drive-by fix that doesn’t
already have an identified issue in The Project repository, name your branch
using a terse description of the problem you are solving—perhaps, for example,
css_button_padding or improved_test_coverage (Example 7-3).

Example 7-3. Make a change to the code base

$ git checkout -b terse_description
(edit files)

$ git add filename(s)
$ git commit

At this point, the commit message editor will open and you will need to provide
the best commit message you’ve ever written.

With the proposed change in place, you can now publish it to your copy of the
repository using the command push:

$ git push

Your personal branch has been uploaded, so it is now time to work with a team
member to have your changes incorporated into the main branch for the project.

Keeping Branches Up to Date

Branches stored in Git can generally be thought of as one of two things: official
project branches or short-lived suggestion branches. Shared project branches are
used to integrate reviewed and approved code from multiple developers and
contain the official history of a project’s code. Your local copy of these branches
should always be up to date and should always be used as the base branch for
your ticket branches. By convention, it is not appropriate to write new commits
to the local copy of an official branch. Instead, you would create a new branch,
complete your work, and then merge that branch back into the official branch.
Several branching strategies are discussed in Chapter 3—you may want to go

back and review that chapter if your team doesn’t already have a branching
strategy. The second type of branch is essentially a developer’s sandbox. This is
where you test out new ideas and get your code ready for review. These short-
lived work branches must also be kept up to date, but they need a slightly
different approach.

REBASE VERSUS MERGE...AGAIN

There are still no rebasing police who are going to show up at your team meetings. You’ll need
to figure out, as a team, how you’re going to tackle bringing branches up to date. (I still think
you need to do whatever is best for your team, but I’'m going to show you the instructions for
rebasing where it so that you can see it’s not significantly more difficult to use this method.)
Regardless of what you choose, document your solution carefully, and support those who are
new to Git to ensure they are able to perform the commands consistently. The easiest way I've
found to ensure consistency this is to provide copy/paste-friendly documentation, and have
people work at the command line. Additionally, flowcharts can be quite effective.

To reduce the number of conflicts you need to deal with when bringing short-
lived branches together, you should keep your working branch up to date with
the project branch you will eventually be merging into. How often is
“regularly”? I recommend updating your branches at least as often as you drink
coffee. If you don’t drink coffee, I would recommend you update your working
branches at least daily using the commands in Example 7-4. Yes, this is going to
seem tedious, but it can save you a lot of time in the long run to keep your work
as up to date as possible.

Example 7-4. Update your local copy of this project’s branches

$ git checkout master
$ git pull --rebase=preserve

Git will update your local copy of the master repository to incorporate the
changes from the upstream repository.

Once the project branches are up to date, you can now update your work
branches. When you are bringing your work branches up to date, however, there
will not be an upstream branch that you can pull your changes from like you
used for the shared project branches. So how do you know if you should be
merging or rebasing at this point? The rule of thumb is as follows: if you started
your work right now would the change you’re about to incorporate into your

http://gitforteams.com/resources/merge-rebase.html

work branch already be in place? If it’s a feature you wrote, it wouldn’t already
be in the branch you’re bringing up to date and therefore you should merge the
branch to incorporate the new work. If it’s a feature someone else wrote, you
almost definitely want to rebase (if you are on Team Rebase). Another helpful
tip is to match the names. If the changes you want to incorporate are coming
from a branch with the same name, but on a different remote, you almost
definitely want to rebase.

In Git, rebasing and fast-forward merges both result in a linear timeline, as they
replay your commits onto the work that was done in a different branch. As each
commit is replayed, there is the potential for a merge conflict, which needs to be
resolved. As a result, developers who are less confident in their ability to deal
with a merge conflict will opt to simplify the process, and use the merge
command to bring their work up to date. Using merge does make your historical
record more difficult to read; it is, however, also technically less complicated
because it generally involves fewer merge conflicts.

If you are working with a complicated code base and it is important to be able to
run debugging tools quickly, you should spend the time to get a clean history by
using the command rebase to bring your work branches up to date. If, however,
it is more important for contributions to be as easy as possible, you may want to
allow your developers to use the merge command to bring their work up to date.
(The Gittiest of Git readers just gritted their teeth while reading that last bit. But
you know what? There are no Git police who will show up at your door if your
team decides they just want things to be easier. Promise. Insert picture of a
honey badger not caring here, and let’s move on.)

The first thing you need to do when bringing your work branches up to date is to
ensure your project branches are up to date. Keeping a shared branch up to date
is typically done with the command pull (which uses the optional parameter - -
rebase). To bring your personal work branch up to date, you will need to
remember the source branch where you initially branched from and copy the
changes made to this branch over to your work branch. If you are following the
GitFlow model described in Chapter 3, this will likely be the branch dev or
development.

For example, if your work branch was named 2378-add- test and your source
branch was named development, the commands would be as follows:

$ git checkout development

$ git pull --rebase=preserve
$ git checkout 2378-add-test
$ git rebase development

Each of the commits you have made in your work branch will now be reapplied
as if the new commits from the branch development had always been in place.
These commits may apply cleanly, or you may need to deal with merge conflicts.
Because rebasing is the preferred method in Git for keeping a branch up to date,
I will passive-aggressively omit giving you the commands for how to merge a
branch. I am hopeful you will forgive me.

In addition to keeping your branches up to date, you should also remember to
update your personal repositories whenever your own work is incorporated into
The Project because its main branch will now contain new commits. This will be
helpful when you are responsible for reviewing someone else’s work and
merging it into the master branch. The commands you run are exactly as they
were described previously:

$ git checkout master
$ git pull --rebase=preserve

Regardless of how you choose to keep your branches up to date, I hope you’ll at
least try to incorporate rebasing into your workflow. As frustrating as it can be, it
will help you to have a cleaner history if you need to use the debugging
techniques described in Chapter 9.

Reviewing Work

In order to review someone else’s work, you must first get a local copy of that
work into your own repository. This might be work that has already been
incorporated into the official project branches, or it might be a new feature, or a
bug fix that a colleague has asked you to review and merge into the main project.

Peer reviewing new work is a multistep process and is covered in greater detail
in Chapter 8. The basic process is as follows:

1. Add a remote connection to the relevant repository.

2. Fetch the available branches for that repository.
3. Create a local copy of any branch you want to examine in depth.

4. Incorporate any changes from the other branch that you would like to adopt
into your own work.

5. Push the revised branch back to the relevant remote repository.

The first thing you will need to do is find the repository that holds the work you
want to incorporate. To list each of the remote repositories, use the remote
subcommand show (Example 7-5). Just like listing branches, all available
remotes will be listed as the output to the command. In Example 7-5, the two
remotes I added in the previous section are displayed. This gives me a quick
reminder of which repository I want to look at in more depth.

Example 7-5. A terse list of remote repositories

$ git remote show

official
personal

Once you have the name of the repository, you can get a full listing for the
remote by adding the name of the nickname to the previous command
(Example 7-6).

Example 7-6. Full details about the remote repository, personal

$ git remote show personal

* remote personal
Fetch URL: git@gitlab.com:emmajane/gitforteams.git
Push URL: git@gitlab.com:emmajane/gitforteams.git
HEAD branch: master
Remote branches:
2-bad_jokes tracked
master tracked
sandbox tracked
video-lessons tracked
Local branch configured for 'git pull':
master merges with remote master
Local ref configured for 'git push':
master pushes to master (up to date)

Here I can see there are four branches stored in the remote repository, all of

which I have a copy of locally (this is indicated by the word tracked).

UPDATE YOUR LOCAL LIST OF BRANCHES

If you already have a connection to the remote repository, and you don’t see the branch your
partner has asked you to review, ensure the list of remote branches is up to date by first
running the command git fetch.

If you don’t want the extra overhead of getting all the information about the
remote repository, you can choose to show only remote branches by using the

command branch and adding the parameter - - remotes (Example 7-7). This will
allow you to locate the branch with the work you need to review. I like using this

variation for branch instead of the - -all parameter because it gives the actual
name of the branch, instead of adding on the reference information of remotes.

Example 7-7. Listing remote branches

$ git branch --remotes

BRANCHES GROUP COMMITS

A branch is a line of development that links individual commit objects. Different instances of a
branch may have commits made by different developers, and therefore repositories are not
identical until they are synced. It’s basically anarchy, but limited to each little repository. The
conventions we establish as software teams are what bring order to the chaos and allow us to
share our work in a sane manner. Remember the branching strategies we learned in Chapter 3?
They’ll keep the work sorted into logical thought streams. Remember the permission strategies
from Chapter 2? They’ll keep people locked into the right repository, unable to make changes
without the community gatekeeper’s help.

If you add the parameter - -verbose to branch, the oneline commit message for
the tip of the branch will be included in the output. For example, I had several
active work branches, an integration branch, and the official branch for the
project (Example 7-8). Although I uploaded my commits occasionally to the
remote server, mostly I just worked in the chapter branches, incorporating my
work into the integration branch, drafts, and then the main branch, master.

Example 7-8. Selected output from git branch --verbose while working on this

chapter

che2 7313755 CHO2: Adding patching workflow diagram.
ch04 69a3ded CH4: Stub file added with notes copied from Drupalize.Me.

* cho5 80b5200 [official/ch05: ahead 2] CHO5: Fixing URL for image 05fig01.
drafts 80b5200 CHO5: Fixing URL for image 05fig01.
master 319bb53 [official/master] Merge branch 'drafts'. Updates for CHOS5.

The first column contains the branch name, the second column contains the
commit ID, and the third column contains the first line of the most recent
commit message. If the branch is tracked remotely, the name of the remote
branch is included in square brackets between the commit ID and the commit
message.

Once you’ve located the remote branch that contains the work you want to
review, you can either copy the branch into your local repository (Example 7-9),
or examine the reference to it with the commands log and diff (Example 7-10).

Example 7-9. Copy a remote branch into your local repository

$ git checkout --tracking remote_nickname/branch

Example 7-10. Examine a remote branch without creating a working copy

$ git log --oneline remote_nickname/branch
$ git diff current_branch...remote_nickname/branch

Assuming the work passes review, it’s time to merge it into the main project
branch.

Merging Completed Work

Before merging the new work into your project branch, you will need to first
ensure all branches are up to date. This is necessary because Git won’t allow you
to push your copy of a remote repository if the destination branch (on the
remote) contains commits which are not in your local copy.

When uploading new work to a remote server, Git will only accept work as a fast
forward merge. This means you don’t have to worry about having a merge
conflict when you push your work. Because of this restriction, your local branch
needs to contain all of the remote commits before you can push your branch. To
update your work, you will need to use the command pull to retrieve the
changes from the remote server and incorporate any new work into your local

branches.

First, update your local copy of the destination branch (Example 7-11) by using
the command pull with the parameter - -rebase.

Example 7-11. Incorporate updates from a project branch

$ git checkout master
$ git pull --rebase=preserve

Once the public branch is up to date, you will need to bring the feature branch up
to date as well (Example 7-12).

Example 7-12. Merge a completed ticket branch into a public project branch

$ git checkout 2378-add-test
$ git rebase master

Finally, you can merge the ticket branch into the main project branch
(Example 7-13).

Example 7-13. Merge the completed ticket branch into the public project branch.

$ git checkout master
$ git merge --no-ff 2378-add-test

If the changes that were being introduced were unique from previous work that
had been completed, the merge will now be completed; however, if there was
overlapping work in the same area, Git will not know how to complete the merge
and ask for your guidance. The language is a little scary as asking for help in Git
terminology is better known as a merge conflict.

Resolving Merge and Rebase Conflicts

Conflict sounds hard and scary, but in Git, a merge conflict is actually a very
small problem and you won’t need to spend a lot of money on a mediator or a
therapist to resolve it. Any time a file is changed in exactly the same place, Git
can be unsure of which version is the correct version, so it will ask you to make
that decision. Git refers to this uncertainty as a conflict.

When you bring together two branches, there is always a chance that you will
have changes in both our and their version of the code on the exact same lines
within a file.

Git will add three lines into any file that has lines with conflicting information at

exactly the same point:

<L L L L

S>S>5>5>>>

This represents the our code, and their code separated by a dividing row of =. To
resolve a conflict you will need to edit the files, select the appropriate content to
keep, and remove the markers. When you open the file to examine the conflict,
look at the surrounding areas as well. Sometimes Git will have misjudged where
to put the markers, so you shouldn’t just delete one whole section, or the other
whole section. Read carefully, and you may find you need to take a little bit from
each when you look at the surrounding code:

<<<<<<< HEAD

$p++;

>>>>>>> 2378-add-test

We don’t have enough information to resolve this merge conflict without
understanding what the code update is trying to accomplish. Probably the end
brace should be kept because it’s in both sides of the conflict, but what about the
new line? And what about the increment of the variable? If you run into merge
conflicts you are not sure how to resolve, you should talk to the author of the
original code if you cannot figure it out just from reading the code itself.
Misunderstanding the code and deleting too much (or too little) may end up
unintentionally adding new bugs to the code if you resolve the conflict
incorrectly.

RESOLVING MERGES STEP BY STEP FROM VERY
DIVERGENT BRANCHES

There is a complementary program, git-imerge, which works to merge the commits leading up
to the tip of the two branches you are attempting to merge. Working with the incremental
commits can make it easier to see how the conflict should be resolved because there is less to
compare at each point. This is not part of Git core, and you will need to download and install

https://github.com/mhagger/git-imerge

the software separately. Check your favorite package manager if you want to reduce the install
hassle. I installed my copy via OS X’s Brew.

When your edits are complete, you can remove the markers Git placed into the
file and continue using the on-screen instructions which Git provides in its status
message:

$ git status

If you were completing a merge, you will need to add the updated files and
commit them to your repository:

$ git add filename(s)

By adding the files one at a time, you can use the status command as a TODO
list of files with outstanding merge conflicts that need to be resolved:

$ git status

Once all the merge conflicts have been cleaned up in each of the files, you can
commit your staged changes:

$ git commit

At this point, the default text editor for Git will open with additional information
about the commit you are completing. When you have finished writing your
message, save the changes and quit the editor to resume.

If you were attempting a rebase when the merge conflict occurred, you may be in
the middle of a multistep process. In this case, you’ll need to proceed with the
rebasing procedure:

$ git rebase --continue

If, before starting the merge, you know without a doubt that you will always
want to use either the incoming work (theirs) or your own work (ours), you
can preemptively instruct Git on how you want to address the proposed changes

https://brew.sh

from the two branches. For example, if you wanted to merge in a branch that you
knew contained fixes for the problem you were having, you could force Git to
use the other branch when making its updates to your own branch:

$ git checkout branch_to_update
$ git merge --strategy-option=theirs incoming_branch

Publishing Work

The first time you upload your changes for a given branch, you will need to
specify the remote repository that you want to use, as well as the branch name.
The convention is to keep the branch names the same on the local and remote
repositories. You will need to include the nickname for the remote repository. In

Example 7-14, it is assumed the name of the remote is origin.

Example 7-14. Upload your branch with the proposed changes to your remote
repository

$ git push --set-upstream origin branch

Once you’ve set up the branch for the remote repository, you can upload your
work to the same remote again using the command push:

$ git push

If you have multiple remotes set for your repository, you will need to explicitly
push to each of the remote repositories separately. By default, origin is used:

$ git push remote_nickname

The next part of the procedure will depend on the hosting system you’re using.
Generally, though, you navigate to The Project page where you will locate a link
for pull requests (the language may be slightly different on your system of
choice). From this link you should be able to initiate a request to have your
proposed updates included in the project. The system should already know
which of your repositories was cloned from The Project, and it should include a
list of all the branches you’ve worked on in your copy that might include
proposed changes for The Project. You’ll select the branch you want to submit
for inclusion and walk through any additional steps necessary. This process is

covered in depth in Part III.

Once your pull request has been submitted, The Maintainer will review your
proposed update. He may accept your work as is, or request changes and ask you
to resubmit your work. If additional changes are needed, repeat the steps
outlined in this section until the pull request is accepted.

To publish new work into a shared branch, the first thing you should do is check
that the branch you are going to be merging into is up to date. This will ensure
you can push your work after merging your changes. If the branch isn’t up to
date, you will not be able to upload the revised copy of the shared branch until
you have downloaded the new updates and incorporated them into the branch:

$ git checkout master
$ git pull --rebase=preserve

Once your local copy of the main project branch is up to date, you should ensure
these changes are also copied into the feature branch you have been working on
so that there is the smallest amount of difference between the two branches
before the merge is performed:

$ git checkout 2378-add-test
$ git rebase master

Once the working branch is up to date, you are ready to merge in the reviewed
and accepted changes:

$ git merge --no-ff 2378-add-test
$ git push

The work branch can now be deleted from your local repository and any remote
repositories you have write access to:

$ git branch --delete 2378-add-test
$ git push remote_nickname --delete 2378-add-test

Your branches should now be up-to-date and ready for your teammates to

download.

What happens next will vary greatly depending on the type of software you are
building. Web developers who want to connect Git with a continuous integration
build server may benefit from watching Lorna Mitchell’s videos Git
Fundamentals for Web Developers (O’Reilly).

Sample Workflows

The remainder of this chapter serves as a template for working with teams. You
should discuss with your team how they would like to work, and write down the
commands each contributor and maintainer will need to use during the project.

Sprint-Based Workflow

This process is more or less what I’ve used for several teams working in a sprint-
based release cycle. It is a variation on GitFlow and it works well for weekly
website deployments. The schedule for the sprint follows a weekly routine (as
opposed to the more “traditional” two-week sprint). This encourages granular
tickets and helps the developers see their work in production as fast as possible.
Some tickets will take several “sprints” to complete if they are larger in scope.

The repository is set up with five different types of branches: development,
ticket, ga, master, and hotfix (Table 7-1). These branches are used either as
single-issue development branches, or as integration branches.

Table 7-1. Branch types in a weekly deployment workflow

Branch name / Type of Description Branched

convention branch from

dev Integration ~ Used to collate peer reviewed code ticket
branches

ticket#-descriptive- Development Used to complete work identified in tickets dev

name

qa Integration Used for quality assurance testing at the end of dev

each sprint; code that does not pass QA testing
is removed from the branch

master Integration Used to deploy fully tested code qa

http://bit.ly/git-fundamentals

hotfix- ticket#- Development Used to develop solutions for urgent problems latest
description identified on production release tag
on master

For the developers, every day is a development day. In addition, there are three
days in the week when all team members rally toward the same goal.

The workflow is not overly complex (Example 7-15) for developers: all work
begins on a fresh ticket branch from the parent branch dev. Once completed, the
work in a ticket branch is pushed up to the shared project repository. Branches
are kept up-to-date through rebasing, which allows for a cleaner branch history
than merging.

Example 7-15. Git commands to work on tickets

In this example, substitute origin for the name of your remote, and 1234-

new_ticket_branch for the name of your ticket branch:

$ git checkout dev

$ git pull --rebase=preserve origin dev

$ git checkout -b 1234-new_ticket_branch

// do work

$ git add --all

$ git commit

Before sharing the work, ensure the branch contains any new commits:

$ git checkout dev

$ git pull --rebase=preserve

$ git checkout 1234-new_ticket_branch
$ git rebase dev

Finally, share the new work with others:
$ git push origin 1234-new_ticket_branch

Once completed, a ticket branch is reviewed by another person on the team
(Example 7-16). If the code passes review, the reviewer merges the ticket branch
into the development branch and removes the ticket branch from the main
repository. The review process is covered in depth in Chapter 8.

Example 7-16. Git commands to complete a peer review

$ git checkout dev

$ git pull --rebase=preserve

$ git checkout 1234-new_ticket_branch
// review process goes here

$ git merge --no-ff 1234-new_ticket_branch master
$ git branch --delete 1234-new_ticket_branch
$ git push --delete origin 1234-new_ticket_branch

Quality Assurance (Monday—Tuesday):

= Automated test suite is run on dev to catch any regressions that may have
snuck in while feature branches were being added up to this point.

m All work in the branch dev is merged into the branch ga for testing
(Example 7-17). Development work continues in the branch dev.

m A sprint checklist is created in a shared document, such as Google Docs, by
copying and pasting the user stories from the tickets that were merged into
the ga branch. Typically, this is the first line of the ticket description—a
convention that should be adopted to make the QA process faster.

= All team members are responsible for running through the list of tickets to be
tested in the shared document. In addition to the weekly tickets, there may be
rolling tests that need to be completed by a person.

= Anything that fails quality assurance has a new ticket created so that it can be
fixed, or reverted, prior to release (Example 7-18).

Example 7-17. Commands to set up the qa branch

$ git checkout dev

$ git pull --rebase=preserve
$ git checkout ga

$ git merge --no-ff dev

$ git push

Example 7-18. Commands to remove tickets that have failed to pass QA in time
for release

$ git log --oneline --grep ticket-number
(locate the commits that need to be reversed)

$ git revert commit

$ git revert --mainline 1 merge_commit

(ideally, however, you are merging work branches with --no-ff, which forces a commit
ID

that can be easily undone)

Release Day (Wednesday):

m The branch ga is merged into the branch master and tagged (Example 7-19).

» From the live site, the repository is updated to use the tagged commit for
release.

m The work for the next week is prioritized with the development team.

Example 7-19. Commands to prepare for deployment

$ git checkout master

$ git merge ga

$ git tag

(locate the latest tag so that you can determine the next tag's number)

$ git tag --annotate -m tag_name
$ git push --tags

When the tag is added, it is signed with the - -annotate parameter, and a
message is added with the -m parameter. This ensures the tag will not be ignored.

Announcement Day (Thursday):

m A public announcement is made to the community of users about the changes
that were launched on the previous day. The extra day gives the team a
chance to deal with any unexpected regressions, or bugs, when the code was
moved to the production environment.

= Development continues on the new list of priorities established on the
previous day.

In the unlikely event that a serious bug or regression is introduced to the
production environment, a hotfix is completed. Serious is, of course, a relative
term. In this system, deployments are made weekly, so a hotfix, generally
speaking, is an update that cannot wait a week to be deployed.

Each deployment is tagged as such, so the first step is to get a list of all tags and
locate the current live version of the code base (Example 7-20). A new branch is
created from this point, the updated code is applied, and then uploaded for
review before deployment.

Example 7-20. Commands to create a hotfix branch

$ git checkout master
$ git tag
(review list of tags to determine the currently live tag)

$ git checkout -b hotfix-issue-description tag_name

The hotfix branch would then be worked on as if it were a regular development
branch, undergoing a peer review and quality assurance test. When it passes

testing, it would then be immediately incorporated back into the master branch
and tagged for deployment (Example 7-21).

Example 7-21. Commands to prepare a hotfix for deployment

$ git checkout master

$ git merge --no-ff hotfix-issue-description

$ git tag --annotate -m new_tag_name

$ git push --tags

In this system, semantic versioning is not used. Instead, tag names are
incremented using the format <launch_version>.<sprint_week>.<hotfix>.
For example, 1.4.3 would be used to represent the third hotfix on the fourth
week of development (in other words: a bad week for the team!).

Trusted Developers with No Peer Review

While writing this book, I worked with the O’Reilly automated build tool, Atlas.
This system also has a web-based GUI that allows editors to work on book files

directly. Saved files are immediately committed to the master branch. Due to
the GUI, there is no peer review process because anyone on my team is able to
make edits directly to a file. My preference, however, is to work locally, and not
through a web GUI. I had been keeping the branch overhead low locally and had

just been working in master as well. It only took me one local merge conflict to
alter the way I was working locally.

When I wanted to update my work, I would use the command fetch to see if
any changes had been made by my editors. With the fetch completed, I would
compare my copy of the master branch with their copy of the master branch
(origin/master). Assuming I agreed with all their edits, I would merge in their
copy of the branch. If I disagreed, I would merge in their branch with the
strategy ours, effectively throwing out their changes but letting Git think that the
two branches were up to date:

$ git checkout master
$ git fetch origin

https://atlas.oreilly.com/

$ git diff origin/master

Depending on whether or not I wanted to keep the changes, I would merge the
work in one of three ways: combine all work, overwrite their work with mine, or
overwrite my work with theirs.

To combine all work (true merge):
$ git merge origin/master

To keep my own work:
$ git merge -X ours origin/master

To discard my own work in favor of the reviewer’s:
$ git merge -X theirs origin/master

This can be done on a per-commit basis, or if there is a merge conflict, it can be
done on a very granular change-by-change basis with a merge tool. (It feels a bit
passive-aggressive to be throwing stuff out, but really it’s just the limitation of a
single branch system where you don’t have the ability to talk about the proposed
changes in a separate branch.) Depending on the granularity of the commits, I
might also choose to cherry-pick some commits to keep them, while discarding
other commits. Cherry-picking commits was covered in Chapter 6.

Finally, I would upload the new version of the book to the repository, and update
my local working branch drafts:

$ git push origin master
$ git checkout drafts
$ git rebase master

Then I started getting reviews as marked-up PDFs and realized, once again, I
had another way that I wanted to separate work. I wanted to be able to write a
chapter and keep those commits nice and tidy, but sometimes I was mid-chapter
when an edit came in that [wanted to address immediately. Instead of
intermingling these commits I set up the following structure for my branches:

master, drafts, and one branch per chapter:

$ git checkout cho4

// write chapter

$ git add ch04.asciidoc
$ git commit

$ git checkout drafts

$ git merge cho4

The branch drafts gave me a place to integrate all of the work that I’d been
doing. It was kept up to date by merging in chapters as they were completed, or
rebasing the master branch if changes had been made by one of my editors.
When I was first writing chapters on my own, without others contributing,
multiple branches would have been a lot of overhead to maintain, but as more
contributors started offering different kinds of contributions, more granularity in
branches allowed me to pick and choose how I wanted the manuscript to
progress.

Untrusted Developers with Independent Quality Assurance

If your team is mostly trusted developers, but you have a few contractors as well,
you might want to have your contractors working in a fork of the repository,
instead of giving them write access to the main project. For some types of
software, this split might even be a requirement for your own staff. For example,
if you were working on firmware for a medical device, you might have very
strict government regulations you need to follow on who is allowed to check in
work, and how that work must be reviewed before it is added to a repository.

This model is the same as what was described for Contributors (as opposed to
Maintainers) earlier in this chapter.

A second example was given in the description of the forking strategy in
Chapter 2. Here I included a description of how I offered a patch back to the
reveal.js project. To do this, I made a fork of the project, and then cloned the
project so that I could edit the files at my workstation. I then reversed the
chaining to push my changes back to the original project through a push to
upload my work, and then a pull request to submit my work for review.

Based on your reading to date, put together the commands that would be

necessary for these workflows. Hint: there’s nothing here that you haven’t read
about already in this chapter. Start by drawing yourself a diagram, then add
arrows to show the progression of work through the process, and finally, add the
Git commands for each of the arrows.

Summary

To work on a new project, you must first decide on the governance structure for
the project. This will inform whether or not developers need to create a remote
clone of the project, or just a local clone of the project. The way Consumers,
Contributors, and Maintainers set up their access to the project may prevent
them from doing some tasks; however, by adding remote repository connections,
you can easily promote a Developer into a Maintainer.

Chapter 8. Ready for Review

Growing up I learned there were two kinds of reviews I could seek out from my
parents. My parents were predictable in their responses. One of my parents gave
reviews in the form of a shower of praise. The other parent, the one with a
degree from the Royal College of Art, would put me through a design crit. I’ll be
honest and tell you that to this day I both dread and crave the review process.

Unfortunately, developers are rarely exposed to the peer review process in
schools. The typical review process is the final submission of work to the
instructor—with no room for discussion on how to improve. This methodology
doesn’t teach students to iterate based on feedback. Graduates released into the
workforce may quietly scoff at shoddy workmanship they find around them,
passing silent judgment when it’s too late to make changes.

Completing a peer review is time consuming. At the last project where I
introduced mandatory peer reviews, we estimated that it doubled the time to
complete each ticket. It introduced more context switching to the developers,
and was the source of increased frustration when it came to keeping the branches
up to date while waiting for a code review. The benefits, however, were huge.
Junior coders were exposed to a wider amount of the code base than just the
portion they were working on, senior developers had better opportunities to ask
why decisions were being made in the code base that could potentially affect
future work, and by adopting an as-you-go peer review process we reduced the
amount of time needed for human quality assurance testing at the end of each
sprint. We felt the benefits were worth the time invested.

Types of Reviews

During the life cycle of a project, several types of reviews should be undertaken.
While the majority of this chapter focuses on peer code reviews, you should be
aware of the other types of reviews to ensure you’re not commenting too early
(or too late) on various aspects of the project:

Design critique

Typically developers are not involved at this stage of the project; however,
including a developer’s input may result in minor user interface
enhancements that radically simplify the build.

Technical architecture review

A peer review of the underlying foundation for the code that is about to be
built. At this stage, developers should be ensuring the data model is complete
and can easily accommodate all parts of the build, and perhaps future
features as well.

Automated self-check

Like spell-check, but for code; an automated self-check allows developers to

ensure their code is following coding standards for the project. You may

have additional testing suites that you want to run. The purpose of this type

of review is to automate any type of review that could easily be caught by a

machine check, instead of wasting time performing human checks.
Ticket-based peer code review

The majority of this chapter will be spent discussing this type of review.

Quality assurance/user acceptance testing

After the code review, the new feature will be merged into the development
branch and make it available for testing by human testers. This user interface
review is typically conducted on a special, nonproduction server.

Types of Reviewers

Depending on the size of your project, you probably have a variation on one of
the following types of review processes (or maybe a combination of several):

Peer Review

We are all equals and equally able to review code and accept it to the project.
We learn from one another and do our best work when we know our peers
will be judging it later.

Automated Gatekeeper

Our code has test coverage. We trust our tests and only submit work we
know will pass a comprehensive test suite. Typically we ask for a second
opinion before the code is pushed into the test suite (for automated
deployment).

Consensus Shepherd

Our community of coders is vigilant, and opinionated. We require consensus
from interested parties before code can be marked as reviewed by the
community. We may also have a testbot that is part of our community,
making it easier for human coders to know when a suggested change meets
minimum standards.

Benevolent Dictator

My code, my way. You are welcome to submit your suggestions, but I will
review or have my lieutenants review your work with a fine-tooth comb. I
enjoy finding your mistakes and rejecting your work. Only perfection is good
enough.

Peer reviews should not be limited to those who are of equal stature on a team.
The benefits will vary, but they can be extended to any combination of skill
levels (Table 8-1).

Table 8-1. Benefits to junior and senior reviewers and developers

Junior Developer Senior Developer
Junior Find bugs; compliance with Learn to read good code; suggest simplifications;
Reviewer standards exposure to the whole code base
Senior Suggest new techniques; Improve architecture; cross-functional team (exposure
Reviewer improve architecture to more code)

Software for Code Reviews

The commands outlined in this chapter can be used with any Git hosting system.
Detailed instructions for code hosting systems are outlined in Part [II—including
instructions on using GitHub (Chapter 10), Bitbucket (Chapter 11), and GitLab
(Chapter 12). The code review capabilities of these systems are managed by pull
requests or merge requests, and they are relatively lightweight, making them

easy to use and integrate into most workflows.

If your reporting requirements are more explicit due to industry regulations, you
may need to consider using a more formal code review and sign-off process. The
following software packages focus explicitly on code review and sign-off. They

are appropriate for the code review of extremely large software projects, and are
likely more software than the typical project needs:

Gerrit

Used by Android, OpenStack, and Typo3, this review system is best for very
large projects. There is a nice video presentation about its design (and
limitations) by Dave Borowitz.

Review Board

Used by LinkedIn, the Apache Software Foundation, and Yelp, this software
includes additional information about when lines of code were moved within
the code base.

In addition to manual, peer review of code, it can also help developers to have
automated tests to check their work against before requesting a peer review.
Some open source projects, such as Drupal, have tools that can be used to verify
that code conforms to coding standards (Coder). There are also for-pay services,
such as PullReview for Ruby and bitHound for JavaScript, which are language
specific but project agnostic.

Although we will be focusing on technical code reviews, increasingly non-
technical reviewers are being included as part of the review process through
customizable, on-demand build servers. A public example of this is the
SimplyTest.Me service for Drupal. This platform allows people to deploy a test
machine for 30 minutes at a time with a specific patch applied to the code so that
they can review the changes proposed in the Drupal issue queue. These build
servers can also benefit developers. Instead of conducting reviews sequentially, a
reviewer can initiate the build process for a number of reviews all at once. Now
the reviewer can avoid the (sometimes lengthy) procedure of building a local
environment for each code review he or she is completing, by running the build
process in parallel for all reviews that need to be completed. If this sounds
appealing, you should read the Lullabot article on working with its pull request
builder. Assuming your technology stack is a little different than theirs, a web

https://www.gerritcodereview.com
http://bit.ly/git-at-google
https://www.reviewboard.org/
http://drupal.org/project/coder
https://www.pullreview.com/
https://www.bithound.io/
https://simplytest.me/
http://bit.ly/lullabot-pull-request

search for “pull request builder” should get you pointed in the right direction.

Reviewing the Issue

Before beginning the local code review process, you should read through the
description of the proposed changes in your team’s issue tracker to discover why
the change was proposed. Is it a bug fix? How was the software broken? Is it
adding a new feature? Who (and how) does the feature help? Understanding the
problem before you look at the code will help you to answer “is this code the
best way to solve this problem?” when the time comes.

INVESTIGATE YOUR CODE HOSTING PLATFORM

Most code hosting systems also have a web interface that allows you to easily review the
proposed changes online. Use this interface to quickly review the code before setting up your
local environment. If, for example, the proposed change is just adding a missing code
comment, or fixing a spelling mistake, you might be able to review the proposed changes
online without the hassle of downloading everything to your local environment.

Once you have a good understanding of what the code is supposed to be doing, it
is time to set up your local environment so that you can replicate the “before”
state. In other words, if it’s a bug, you should make sure you can replicate the
bug in your testing environment. If it’s a new feature, you should make sure the
feature doesn’t already exist (to be fair, it is pretty unlikely that two people will
implement the exact same new feature).

The first step in reviewing someone else’s work is to verify how the code works
currently. If you are testing a fix to a specific bug, that means you should start by
replicating the bug. This is the only way you’ll know for sure that the new code
fixes the problem, and it isn’t just a difference of environments making things
appear to work. When you apply the new code, you also want to be able to catch
any regressions, or problems, it might introduce. You can only do this if you
know for sure that the problems were introduced in the code you just applied.

Once you’ve got your environment set up and you have confirmed the current
state of the code, you can now check out a copy of the code you need to review.

Applying the Proposed Changes

In Chapter 2 you learned about several different access control models for Git.
Your project might be setup such that the proposed review branch is in the main
project repository (“Shared Repository Setup”), or it might be in a forked copy
of the project repository (“Forked Repository Setup”). The instructions for the
initial setup are different, so skip ahead to the section which is relevant to you.

Shared Repository Setup

If you are working from a shared repository, you have a very easy setup. Simply
update your local list of branches:

$ git fetch

If you have more than one remote, you may need to explicitly name the remote
you would like to update. Assuming the name of the remote you want to update

is named origin, the command is as follows:
$ git fetch origin

If you are working in an automated build environment you may need to
explicitly fetch the branch you want to review if you don’t have the complete

history for the remote repository locally. Replace origin with the name of your
remote and 61524 -broken- link with the name of the branch you want to
review:

$ git fetch origin 61524-broken-1link:61524-broken-1link

The third parameter, 61524-broken-1ink:61524-broken-1ink is a refspec
which maps the name of the remote branch to a local branch name
([remote_branch_name]:[local_branch_name]). Convention leaves the
branch name the same because it is easier to remember, but it does make for a
complicated-looking command to have things doubled up.

You are now ready to proceed to “Checking Out the Proposed Branch™.

Forked Repository Setup

There are two ways to approach a forked repository scenario. The first method is
to clone a new copy of the remote repository which contains the proposed
branch. This method is appropriate if we are just conducting a review, and we
will not be responsible for incorporating the proposed changes back into the
main project repository. The second method is to add a new remote repository to
our own local repository and pull the changes into a new branch within our own
repository. This second method will also allow us to merge the approved work
back into the main project repository. You should proceed with the method that
is appropriate for your situation. If you aren’t sure, choose the second method
and add the remote repository reference to your own local repository.

For both methods we will need to know the URL for the remote repository which
holds the changes you want to review. It may be in the format of
https://example.com/username/project.git or
git@example.com:username/project.git. Once you have the remote URL,
you are ready to proceed.

If you are using the first method of creating a new clone, navigate away from
your own copy of the project repository, perhaps to your desktop folder. Then,
create a clone of the repository you want to review with the following command:

$ git clone https://example.com/<username>/<project>.git
Navigate into the new repository you have just cloned:
$ cd project

You are now ready to proceed to “Checking Out the Proposed Branch™.

If you are using the second method of adding a remote repository to your own
copy of the project repository, you will need to begin from within your project
repository. At the command line, navigate to that directory now.

Once situated in your project folder, add a new remote repository for the fork
that contains the branch you need to review. For the name of the remote, use the
username of the person whose work you are reviewing. For example, if you are
reviewing Donna’s work and her repository is available at

https://example.com/donna/likesgin, the command would be as follows:
$ git add remote donna https://example.com/donna/likesgin

Update the list of branches available to you now that you have a new connection
to a new remote repository:

$ get fetch donna

You are now ready to proceed to “Checking Out the Proposed Branch™.

Checking Out the Proposed Branch

You should now be situated inside a project repository which contains the branch
you need to review. The next step is to check out a copy of the branch you need.

List all branches for your repository:
$ git branch --all
A list of branches will be returned. It may appear something like this:

* master
remotes/origin/master
remotes/origin/HEAD -> origin/master
remotes/origin/61524-broken-1ink

The code we need to review is located within the last branch on that list. If you
have added an additional remote to download the branch you want to review, the
word origin may be something like donna instead. Simply substitute the word
origin in the instructions that follow with the nickname you have assigned the
remote which contains the branch you are reviewing.

$ git checkout --track origin/61524-broken-1link

We now have our own copy of the proposed changes in a local branch. This new
local copy of the branch will be named 61524-broken- link. By adding the
parameter - - track, we made an explicit connection as we switched to the new

https://example.com/donna/likesgin

branch. This means if we need to run the command push to upload our changes,
Git will know which repository we want to upload our changes to.

We can now begin our review.

Reviewing the Proposed Changes

First, let’s take a look at the commit history for this branch with the command
log:

$ git log master..

This gives us the full log message of all the commits (starting with the most
recent) that differ from the branch you’re comparing yours to. If there are not
descriptive commit messages, return the work to the developer and ask her to
add commit messages. There are instructions in Chapter 8 on how to write a
great commit message, and instructions in Chapter 6 on how to reshape history
(including adding new commit messages to previous commits with interactive
rebasing).

To get a terse, but more complete history, examine only the current branch with
the command log, but in graph form. By using the parameter - -graph, you will
get a sense of how this branch fits into the recent historical context of the
project:

$ git log --oneline --graph

And finally, use the command diff. This command shows the difference
between two points in your repository. These points can include commit objects,
branch tips, and the staging area. We want to compare the current work to where

you’ll merge the branch “to”—by convention, this is the master branch:
$ git diff master

When you run the command to output the difference, the information will be
presented as a patch file. Patch files are ugly to read. You’re looking for lines

beginning with + and -. These are lines that have been added or removed,

respectively. You can scroll through the changes using the up and down arrows.
When you have finished reviewing the patch, press q to quit. If you need an even
briefer comparison of what’s happened in the patch, consider listing only the
files, and then looking at the changed files one at a time:

$ git diff master --stat
$ git diff master filename

Let’s take a look at the format of a patch file:

diff --git a/jokes.txt b/jokes.txt
index 33aal00..a660181 100644
- a/jokes.txt
+++ b/jokes.txt
@@ -4,5 +4,5 @@ an investigator.
The Past, The Present and The Future walked into a bar.
It was tense.

-What did one hat say to another's

-You stay here, I'll go on a head!

+What's the difference between a poorly dressed man on a tricycle and a
well dressed man on a bicycle?

+Attire.

The first five lines tell us we are looking at the difference between two files,
with the line number of where the files begin to differ. There are a few lines of
context provided leading up to the changes. These lines are indented by one
space each. The changed lines of code are then displayed with a preceding -
(line removed), or + (line added).

You can also get a slightly better visual summary of the same information we’ve
looked at to date by starting a Git repository browser. I use gitk, which ships
with the brew-installed version of Git (but not the version Apple provides). Any
repository browser will suffice and many GUI clients are available on the Git
website:

$ gitk

When you run the command, gitk, a graphical tool will launch from the
command line. Click each commit to get more information about it. Many ticket

http://bit.ly/git-guis

systems will also allow you to look at the changes in a merge proposal side by
side. Even if you love the command line as I do, I highly recommend getting an
additional graphical tool to compare changes. For OS X, I like Kaleidoscope
App because it also allows me to spot differences in images as well as code.

Now that you’ve had a good look at the code, jot down your answers to the
following questions:

= Does the code comply with your project’s identified coding standards?
= Does the code limit itself to the scope identified in the ticket?

m Does the code follow industry best practices in the most efficient way
possible?

m Has the code been implemented in the best possible way according to all of
your internal bug-a-boos? It’s important to separate your preferences and
stylistic differences from actual problems with the code.

With a sense of what the code changes are, you should go ahead and apply the
changes to your local environment. In other words, display the rendered code
however is appropriate for your project. Assuming it’s a website, now is the time
to launch your browser and view the proposed change. How does it look? Does
your solution match what the coder thinks he’s built? If it doesn’t look right, do
you need to clear the cache, perhaps rebuild the Sass output to update the CSS
for the project based on the changes you’re reviewing?

Now is the time to also test the code against whatever test suite you use:
= Does the code introduce any regressions?

m [s the new code as performant as the old code? Does it still fall within your
project’s performance budget for download and page rendering times?

m Are the words all spelled correctly, and do they follow any brand-specific
guidelines you have (e.g., sentence case versus title case for headings)?

Depending on the nature of the original problem for this particular code change,
there may be other obvious questions you need to address as part of your code
review. Ideally, your team will develop its own checklist of things to look for as
part of a review.

http://www.kaleidoscopeapp.com/

Preparing Your Feedback

Do your best to create the most comprehensive list of everything you can find
wrong (and right) with the code. It’s annoying to get dribbles of feedback from
someone as part of the review process, so we’ll try to avoid “just one more
thing” wherever we can.

Let’s assume you’ve now got a big juicy list of feedback. Maybe you have no
feedback, but I doubt it. Release your inner critique and let’s get your review
structured in a usable manner for your teammates. For all the notes you’ve
assembled to date, separate them into the following categories:

The code is broken

It doesn’t compile, introduces a regression, it doesn’t pass the testing suite,
or in some way actually fails demonstrably. These are problems that
absolutely must be fixed.

The code does not follow best practices

You have some conventions, the web industry has some guidelines. These
fixes are pretty important to make, but they may have some nuances the
developer might not be aware of.

The code isn’t how you would have written it

You’'re a developer with battle-tested opinions; but you can’t actually prove
you’re right without getting out your rocking chair and launching into story
time.

Submitting Your Evaluation

Based on this new categorization, you are ready to engage in passive-aggressive
coding. If the problem is clearly a typo and falls into one of the first two
categories, go ahead and fix it. You’ll increase the efficiency of the team by
reducing the number of round trips the code needs to take between the developer
and the reviewer. Obvious typos don’t really need to go back to the original
author, do they? Sure, your teammates will be a little embarrassed, but they’ll
appreciate you having saved them a bit of time. Hopefully the next time they
won’t be so sloppy. However, if it’s the fourth or fifth time, do not fix the

mistake. Your time is also valuable and your teammates need to check their own
code before it gets to you.

If the change you are itching to make falls into the third category: stop right now.
Do not touch the code. Instead, update the ticket where the problem was first
identified and find out why your teammate took that particular approach. Asking
“Why did you use this function here?” might lead to a really interesting
conversation about the merits of the approach taken. It might also reveal
limitations of the approach to the original developer. By starting a conversation,
reviews can increase the institutional level of knowledge. By starting the
conversation you’re also leaving yourself open to the possibility that, just maybe,
your way of doing things isn’t the only viable solution.

If you “needed” to make any changes to the code they should be absolutely tiny
and minor. You should not be making substantive edits in a peer review process.
Make the tiny edits and then add the changes to your local repository as follows:

$ git add --all
$ git commit -m "Correcting <list problem> identified in peer review."

You can keep it brief because your changes should be minor. At this point, you
should push the reviewed code back up to the server for the original developer to
test and review. Assuming you’ve set up the branch as a tracking branch, it
should just be a matter of running the command as follows:

$ git push

Update the issue queue as is appropriate for your review. Perhaps the code needs
more work, or perhaps it was good as written and it is now time to close the
issue queue.

Repeat the steps in this section until the proposed change is complete, and ready
to be merged into the main branch.

Completing the Review

Up to this point, we’ve been comparing a ticket branch to the master branch in
the repository. The final step in the review process will be to merge the ticket

branch into the designated main branch (master) for the repository, and clean up
the corresponding ticket branches.

Let’s start by updating our master branch to ensure we can publish our changes
after the merge:

$ git checkout master
$ git pull --rebase=preserve origin master

Take a deep breath, and merge your ticket branch back into the main branch for
your project’s repository. As written, this command will create a new commit in
your repository history, which can be used to unmerge a public copy of the
branch using the command revert if necessary:

$ git merge --no-ff 61524-broken-link

The merge will either fail, or it will succeed. If the merge fails, the original
coders are often better equipped to figure out how to fix the merge errors, and
you may need to ask them to resolve the conflicts for you. Tips on dealing with
merge errors are covered in Chapter 6.

Which Branching Strategy is Your Team Using?

Those who are using a streamlined mainline branching strategy (Chapter 3)
should ensure they bring their working branch (61524-broken- link) up to date
with the destination branch (master) using the command rebase. After
checking out the destination branch, the new work should be merged in using the
parameter - - ff-only instead of - -no-ff. This will omit the merge commit,
remove the trace of the ticket branch, and leave a bump-free graphed history.
Check with your team to see which branching strategy you are using, and
therefore which convention you should use to merge in your work.

Once the branch is merged, you are ready to share the revised master branch by
uploading it to the central repository:

$ git push

Once the new commits have been successfully integrated into the master
branch, you can delete the old copies of the ticket branches both from your local
repository and the central repository. It’s just basic housekeeping at this point:

$ git branch --delete 61524-broken-link
$ git push origin --delete 61524-broken-link

Summary

The peer review process can help your team. I have found it improves
communication before ideas are committed to code. It fosters a mentoring
attitude among team members. As a side benefit, it often encourages developers
to start looking for ways to automate the process of testing to improve the
efficiency of the reviews. Yes, it will take more time, but if you factor in the
improvements I believe it’s time well spent.

Chapter 9. Finding and Fixing
Bugs

Even the best review processes will sometimes allow a bug into production.
Perhaps the bug was introduced by a bad merge, or a scenario your tests didn’t
cover. Whatever the cause of the problem, Git will be able to help you uncover
at what point, and by whom, the offending code was introduced. This will allow
you to understand the context of how the code ended up in the system, and tell
you who the best person is to help you unpack a problem in an area of the code
base you might not be familiar with.

There are two main ways to apply your forensic investigating skills: use the
existing code to locate the problem and use the history of the code to locate the
problem. You will be most effective when you use both of these techniques.
When I’'m debugging code, for example, I almost always start by looking at the
code itself. This is left over from all of the frontend web development I’ve done,
where it’s easiest to use a tool like Firebug to pick apart a web page to find the
offending CSS. It’s definitely not the only way to debug code—and for many
projects it will not be a viable strategy.

In this chapter, you will learn how to:
m Set aside your current work with stash so you can check out another branch
= Find the history of a file with blame

» Find the last working commit with bisect

By the end of this chapter, you will also have a better understanding of how you
store history in Git now will affect how you can recover from mistakes
tomorrow. You will hopefully have a new appreciation for how useful a really
great commit message can be, and see how a rebasing workflow can help you
create a history that is easier to decipher with bisect. This chapter does not
include instructions on how you undo mistakes you find, because that was
covered in Chapter 6.

Those who learn best by following along with video tutorials will benefit from

Collaborating with Git (O’Reilly), the companion video series for this book.

Using stash to Work on an Emergency Bug Fix

In Chapter 6, you learned how to adjust commit messages, but in cases of
emergency, it may actually be more appropriate to put your work on hold
temporarily. This can be accomplished with the command stash. This command
allows you to temporarily put aside something you are in the middle of, and
which you want to return to at some point in the future.

REAL-WORLD GIT APPLICATIONS

One of my favorite Git-related one-liners was dropped by a friend, Jeff Eaton, at DrupalCon
Prague. He made a comment, at exactly the right moment, about “having a git stash for
morality.” I wish I could remember the context now (horror movies? beer gardens?), but the
oneliner itself has stuck with me.

In the code sense of the command, stash allows you to avoid useless commits
that need to be undone later. These useless commits are often introduced if you
are currently working on a problem, but need to switch to a different branch
temporarily because you can only switch branches when you have a clean
working directory. Unlike a branch, or an individual commit, a stash cannot be
shared; it is specific to your local repository.

To create a new stash that holds the changes currently in your working directory,
you need to issue the command stash. If you prefer the clarity, you can include
the parameter save. It is implied, though, so you don’t need to include it if you
want to save a few keystrokes:

$ git stash save

Saved working directory and index state WIP on master: \
d7fe997 [9387] Adding test: check user exists
HEAD is now at d7fe997 [9387] Adding test: check user exists

You’ll notice this command will only stash files Git already knows about. If you
have new files that have not been committed previously, these files will not be

http://bit.ly/collaborating-with-git

incorporated into the stash as the other changes are tucked into a stash—making
it impossible for you to switch to a different branch until all untracked changes
have been cleaned up. To include untracked files, add the parameter - -include-
untracked:

$ git stash save --include-untracked

Alternatively, if you want to throw out those new files instead of putting them
into your stash, you can run the commands as follows:

$ git stash save
$ git clean -d

Each time you issue the command stash in a dirty working directory, a new
stash will be created. You can see a list of your saved stashes by adding the

parameter list:

$ git stash list

stash@{0}: WIP on master: d7fe997 [9387] Adding test: check user exists

If you only need to remember one stash, and only for a few minutes, this is
probably okay. Your short-term memory may be able to retain exactly what
happened to you a minute ago, but the longer you need to hold this memory, and
the more memories you need to recall, the harder it’s going to be to remember
what is in each stash.

To see the contents of a stash, use the command show. The patch for the selected
stash will be displayed including meta data and the stashed changes from your
working directory:

$ git show stash@{0}

If you don’t think you will remember what you were working on from looking at
the code, you can replace the commit message with a terse description of what
you were working on when you stashed your working directory.

ADDING A DESCRIPTION

If you want to include a description, you will need to explicitly include the parameter save.

Git allows you to store multiple stashes, so it can be especially helpful to name
your stashes if you are working on a large problem and end up creating a stash
multiple times from the same branch:

$ git stash save --include-untracked "terse description of the stashed work"

Now if you check your list of stashes again, you will see your previous stash as
well as the new stash:

$ git stash list

stash@{0}: On master: terse description of the stashed work
stash@{1}: WIP on master: d79e997 Revert "Merge branch 'video-lessons' ...

The newest stash will appear at the top of the list. Notice how the numbers used
to refer to the stashes change as you create more stashes—it’s a variable
assignment, not a permanent reference number. This can be a little confusing if
you create multiple stashes in the same branch—but if you give each stash a
terse description, it can be easier to recall which stash you want to apply when
you’re ready to get back to work, and which stashes are now old and ready to be
deleted.

STASHED WORK CAN BE APPLIED TO ANY BRANCH

This command can also be used if you realize you are working in the wrong branch, but have
not made any commits yet. You can stash your work, switch branches, and then reapply the
work you brought with you in your stash.

Once you’re ready to return to work, you determine which stash you’d like to
use, and then apply it:

$ git stash list

$ git stash apply stash@{0}

If you use the command apply, the stash will persist. This can be a little
confusing if you start hoarding stashes. To remove a stash, use the command

drop to delete it:
$ git stash drop stash@{0}

If you know you’re a bit of a hoarder, and you think you might not be very good
at cleaning up old stashes, you should use apply and drop the stash with the

single command, pop. Assuming you have only one stash, the command is as
follows:

$ git stash pop

You can also pop off specific stashes using the same structure as apply and
drop:

$ git stash pop stash@{0}

WHEN IN DOUBT, GIT ASSUMES YOU MEANT THE
LATEST STASH

If you have only one stash stored, you don’t need to list the stash you want to work with. If you
omit the name of the stash, and there is more than one, Git will use the most recent stash (the
top one on the list; it will be named stash@{0}).

You should now be able to put your work on hold temporarily using the

command stash. Although you can stash your work whenever you’d like, you
should only use this command if you are truly interrupted. If you have a coherent

unit of work completed, use commit instead. If you decide to add more work
later, you can always choose to rebase your branch and combine the commits
you’d made previously.

Comparative Studies of Historical Records

One of the most basic tools you can use to start the search for why code isn’t
working is to compare the broken code to another instance of the code. You can
do this easily by working with relative history. Instead of reading through the log
for a particular branch, you can compare a branch to another branch, or to
another point in time.

Most of these commands have appeared previously, but this time, look at them
with specific questions in mind. Consider the commit history graph in Figure 9-
1. There are two branches with a common history: one with a known bug and
one that is known to be working. The branch with the non-working code has four
commits that differ from the branch branch with the code that works. The
working branch only has two new commits, which are not included in the broken
branch.

working
broken

parent or ancestor branch

Figure 9-1. Two branches diverged from a common ancestor with an unequal number of commits

NEED A SAMPLE REPOSITORY TO PRACTICE ON?

If you want to try the following exercises, download a copy of the repository from the Git for
Teams website. This repository has the necessary branches set up so that you don’t need to

http://gitforteams.com

replicate the scenario.

Using the command log, you can isolate many pieces of history. Draw the
diagram in a notebook, and create circles around commits each of the commands

are showing. You can also try each of these commands with diff instead of log
for a variation on the output.

On the current branch, this is how I would view everything except the most
recently committed work:

$ git log HEAD?

On the current branch, this is how I would view everything except the three most
recent cCommits:

$ git log HEAD~3

You can also make comparisons as if you were standing at different vantage
points. You’re standing at the window of a tall building, looking out onto the
street. You can see the rooftops of other, shorter buildings. Now imagine you’re
standing on the street looking up at the tall building. You can see people sitting
under the café umbrellas. In the context of Git, this means you can make
comparisons using either branch as the vantage point:

$ git log since_last_merge_to..what's_been_added here --oneline

For example, this is how I would see what’s in the working branch; but not on
the broken branch:

$ git log working..broken

What about the opposite? How would I show which commits are in the broken
branch, but missing from the working branch? Like this:

$ git log working..broken

If I wanted to see the code that was included in the broken branch, but missing in
the working branch, I would do this:

$ git difftool working..broken

You can also make these comparisons with remote branches. Don’t forget to
download the latest versions with fetch before making the comparisons:

$ git fetch
$ git log working..remote_nickname/broken

If you aren’t able to uncover sufficient information, you can use log with the
parameter -S to search for a specific string of text with the commit message, or
the text that was applied (or removed) as part of that commited change.
Searching through your repository in this way is made significantly more useful
if you use controlled vocabularies for your commit messages. For example, I
always try to include the name of the file, or an equivalent shorthand, in the
commit message so that I can easily filter on it later (when this file is added to
the repository for the book, it will get a commit message which includes the text

CHO9):
$ git log -S foo

If you were excited by the parameter -S, have I got news for you! There is also
the ability to search based on regular expressions. Use the parameter -G.

Using these commands should help you to isolate which files might be causing
the problems. Once you have the filenames, you can investigate them more
closely.

Investigating File Ancestry with blame

When working with teams, it can be very useful to see who has worked on a file
over time. The people working on files are the ones best equipped to walk
through the history of why something was changed—especially if the commit
messages aren’t giving any additional clues. Normally we use the command log

to reveal how a repository has changed over time, but this doesn’t give a very
good overview of how all of those changes have come together to make the file
you are currently looking at.

The command blame allows you to look at a file line by line, showing the last
time each line was changed, by whom, and in which commit it was changed
(Figure 9-2).

lines modified as part of the same commit

commitid line number text at that line

3e524e0b 4) [partintro]

3e524e0b 5) -

3e524e0b 6) This section approaches the commands in Git
8baf4735 7)

7f2550a8 8) Hands-on activities are sprinkled throughout ...
8baf4735 9)

[3e524e0b 10) This section is divided into the following ... j
8baf4735 11)

3e524e0b 12) * <<ch05>> covers the basics of distributed ...
[3,e524e0b 13) * <<ch06>> allows you to explore historyre ...

Figure 9-2. blame allows you to list when each line was introduced into a file, by its commit ID and

author

To examine the file README.md, use the blame command as shown in
Example 9-1.

Example 9-1. Output of the command blame

$ git blame README.md

3e9dd558
~00de359
~00de359
3e9dd558
7874193c
3e9dd558
3e9dd558
00000000
00000000
3e9dd558
3e9dd558
5cc35764

(emmajane 2014-04-23 22:11:40 -0400 1) Git for Teams of One...
(Emma Jane 2014-04-23 18:54:03 -0700 2)

(Emma Jane 2014-04-23 18:54:03 -0700 3)

(emmajane 2014-04-23 22:11:40 -0400 4) Supporting files for ...
(emmajane 2014-06-26 00:37:41 -0400 5) developer work flow for ...
(emmajane 2014-04-23 22:11:40 -0400 6) version control system, git
(emmajane 2014-04-23 22:11:40 -0400 7)

(Not Committed Yet 2015-01-15 21:08:09 +0000 8) Test edit!

(Not Committed Yet 2015-01-15 21:08:09 +0000 9)

(emmajane 2014-04-23 22:11:40 -0400 10) ## Contents

(emmajane 2014-04-23 22:11:40 -0400 11)

(emmajane 2014-06-25 17:45:38 -0400 12) /slides

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 13)

From left to right, the columns show:
Commit hash ID

Author name

Date

Line number

Content for that particular line within the file

In Example 9-1, you may have noticed there were three authors listed: Not
Committed Yet, emmajane, and Emma Jane. Hopefully the first is self-
explanatory: these are changes that are in my working directory but that are not
yet committed. The two variations of my name are a simple inconsistency in
how I’ve configured Git over time. You can read more about how to customize
your attributed name in Appendix C.

Two of the lines begin with ». These lines have not been edited since the initial
commit.

Beware! The Word “blame” May Condition You
iInto Negative Thinking

The command blame is poorly named. It immediately, and unnecessarily, creates
an antagonistic view of the code. I much prefer the commands used in one of

Git’s competitors, Bazaar: annotate, also available under the alias praise. (Full
disclosure, Bazaar also has an alias of blame for annotate.) Git does have an
annotate command, but the documentation for this command states that it is
only for compatibility reasons. It is not a true alias and the output of blame and
annotate differs slightly.

The last person who changed a line of code is often the person most qualified to
explain what they were trying to accomplish; coming to them with a fight on
your hands is going to decrease the likelihood they’ll come to you for help in the
future, which increases the chance of you needing to deal with their future
mistakes as well. Check your attitude when using this command, and see if you

can shift from blame thinking to simple annotation.

Once you’ve located the line in the file that looks interesting, you can investigate
further using the commit ID along with the commands log, diff, and show.
Table 9-1 outlines what each of the commands can help you to isolate.

Table 9-1. Reason to use log, diff, and show

Description Command
Show the metadata for a particular commit log commit
Show the code changed in a particular commit show commit

Show the code changed since a particular commit diff commit

Start by using the command log to look at the commit message:
$ git show <commit>

If the commit message was well written, it should give you an explanation for
why the changes were made in this particular commit. If the detailed commit
message includes a reference back to a ticket number in your project
management system, you may even be able to read a discussion for the changes
made—giving you even more insight into what the developers were thinking
when they created the fix. In the tracking system, you may also see other
developers who were involved, and anyone who was on the review team for this
particular change.

To see the same amount of detail, but in all commits since that point, use the
command log as follows:

$ git log --patch <commit>

The parameter - -patch in this context shows you the changes between each of

the commits, as opposed to the command diff, which shows you the difference
between the referenced commit, and the files in the working directory.

BLAME ONLY TELLS YOU ABOUT WHAT IS VISIBLE

blame is not perfect. If the bug was introduced in a line that is not present in the version of the
file you are looking at, blame will not be able to notify you about who last edited the file. So it
is a good tool to use, but it is not magic.

Using a combination of blame, log, and diff, you should now be able to review
the history of a single file in the context of the total combined history of that file,
and in the context of other changes made at the same time. Using the commit
message, you may also be able to trace the rationale of why the changes were
made. With a little bit of forensic investigation, you can turn your questioning of
the author of the code into a productive conversation—instead of a Columbo-
style interrogation.

Historical Reenactment with bisect

Often it can be difficult to figure out exactly when a bug was introduced in your
code if you don’t know which file is the problem. If the error message you are
looking for is printed to the screen, it can be relatively easy to search through the
files in your code base to locate the right file. Sometimes the error message will
include the filename and line number where the problem occurred. In any of
these cases, you can use the commands diff, log, and blame to gain a better
understanding of what has gone wrong. Sometimes the problem code does not
leave sufficient clues in the error messages to use these tools. Introducing
bisect!

bisect performs a binary search through past commits to help you find the
commit where the code went from a known working state to a known broken
state. Unlike a regular checkout of a commit, bisect continues to wander
through your history (in a very methodical way!) until you have given it enough
clues to identify which commit introduced the dysfunctional code. It’s sort of
like a historical reenactment of what the developers have done in a code base. At
each point in the bisect process, you can launch the product (compile the code;
load it in a browser; install the app on your phone; whatever is appropriate for
your code base) and determine whether the code at this moment in history was

right, or wrong. Once you find the point where things went wrong, you can fix
history at that exact moment. It’s like Back to the Future—and Git is your
DeLorean.

To begin, you need to be in the top-level directory of your repository. This is the
folder where the hidden .git folder resides. Begin the bisect process, and notify
Git of one commit ID where the code is known to be good and one commit ID
where the code is known to be bad (Example 9-2).

Example 9-2. Identify good and bad commits to bisect

$ git bisect start

$ git bisect good <commit-id>

$ git bisect bad <commit-id>

Git will now proceed to check out a series of commits one at a time, looking for
the commit where the code went from bad to good:

$ git bisect start
$ git bisect bad c04f374
$ git bisect good 93b64fc

Bisecting: 10 revisions left to test after this (roughly 4 steps)
[0075f7eda67326f1746] Merge branch 'video-lessons' into integration_test

The repository is now in a detached HEAD state. At this point, you need to
confirm if the code is good or bad and report back your findings:

$ git bisect bad

Bisecting: 5 revisions left to test after this (roughly 3 steps)
[ed8056eb4b2aaf@0e6d] Lesson 4: Adding details on using git config

$ git bisect bad

Bisecting: 2 revisions left to test after this (roughly 1 step)
[c88a02babc42bb00a83] Lesson 4: Adding new lesson on configuring Git
$ git bisect good

Bisecting: 0 revisions left to test after this (roughly 1 step)
[f1fa8e7e382f68c0558] Lesson 3: Extended descriptions for cloning a ...

$ git bisect good

ed8056eb4b2aaf00e6d is the first bad commit
commit ed8056eb4b2aaf00e6d9d183f974ed612d6f10e6
Author: emmajane <emma@emmajane.net>

Date: Sun Sep 7 12:50:58 2014 +0100

Lesson 4: Adding details on using git config
Added commands to customize the following:

- username (or real name, as you prefer)
- emaill address
- enable color helpers within the git messages

Added a self-study piece on customizing your command prompt to include
additional color and branch information.

1040000 040000 e927a1263e6e23eb5237a363a20640f62349b27d
31bc6c57d6acd8de214a63a47914b32d6809a866 M lessons

The problem commit has been located. At this point, you are in a detached HEAD
state, but you also know which commit you need to come back to. To return to

the tip of your branch, with the new information, use the subcommand reset.
This command can also be used at any point during the bisect process to
abandon the search and return to the most recent commit on your branch:

$ git bisect reset

If you have not done a lot of programming, the binary search process can feel a
bit like magic. (Really freaking cool magic, mind you.) If you want to remove
some of the mystery, you can use the subcommand visualize to show you the
current status of the bisect process (Figure 9-3). The outer good and bad
commits will be identified in the GUI you have configured for gitk.

® [] gitk: start-from-remote-clone

Revert "Revert "Adding office hours reminder.™ emmajane <emma@emmajane:r 2015-01-00 22:00:16
® Reversing the merge commit al173fd. emmajane <emmaglemmajane.r 2015-01-09 21:59:36

® Revert "unmerging third change” emmajane <emma@emmajane.r 2015-01-08 16:36:29
Merge branch 'unmerging' = i . 2015-01-08
unmerging third change 2015-01-08
unmerging second change 2015-01-08
unmerging first change 2015-01-08

Revert "Adding office hours reminder.” 2015-01-06 .
Correcting joke about horses and baths. 2014-09-10 16:53:5
loke: What goes ‘ha ha bonk'? 2014-0%-10 13:00:
sandbox = a 2014-09-101
Merge branch 'video-lessons’ into integration_test 2014-09-10 1!
Lessan 7: Added intra on branching; reformatted the lessons 2014-09-09 0
Lezsan 9° Removing lesson stubs from subsaguent lessons. 2014-09-08 1
Lesson 6: Extended descriptions for adding remotes 2014-09-08 11:59:5
Lesson 5: Extending notes for starting a loczl repository
Lesson 4: Adding details on using git config
Lesson 3. Extended descriptions for cloning a repositary, and using git log
Renumbering lessons after addding Lesson 4 on configuration
Lesson 4: Adding new lesson on configuring Git

Adding sample bash profile for coloured prompt, and branch name
Adding sample git config file
® Added information about additional people to be thanked.

Adding office hours reminder.

BAhALAA

remotes/upstream/sandbox | Adding an Easter egg of bad jokes.

ERBC

2014-09-07
2014-09-07
2014-09-07
2014-0%-09 21:21:19
2014-07-22 16:36:54

?...ODIOOT?ﬁ

BAAALAAALAAA

BE7Sf7edab 7E26 {1 P4623ecadechd fdS4d7 4074 Row 12 | 24
Find <, N commit containing: Exact All fields
Search » Patch Tree
+ Diff Old version = Mew version Lines of context: = o lgnore space change Line diff oS

Author: emmajane {emmafemmajone.net> 2014-69-16 19:43:03

Commi tter: emmajone <emmofemnmajone.nety ZO14-89-18 10:43:83

Parent: Bf157d5831 266h5e03d37badl 1bel f41agecaS35e (Added information about additional people to be thamked.)
Forent: 053 1875bSbO4E rE4460800 f9b5a f45200dd98295 {Lesson 7: Fdded intro on bronching; reformatted the lessons)
Child: all?3fdZ?afif]Sedc30e721 8100e663025350081d (MHerge branch 'ummerging'}

Branches: integration_test, master, master_reset, right_before_merge

Follows: osconoffice hours

Precedas:

Merge branch 'vides—lessons' into integration_test

Figure 9-3. Running git bisect visualize shows you the current status of the bisect process

BISECT ASSUMES BAD THINGS HAVE HAPPENED

It is assumed that the current work is bad. So, you can’t go back and find when something is
fixed—you need to go back and find where something broke. It can be very confusing if you
try to find where a fix was introduced, although it is possible. You just need to remember to
reverse the definitions of good and bad.

Summary

I will happily admit that I am a crime drama TV junkie, so the chapter on using
Git for forensic investigation appeals to me greatly. In this chapter, you have
been exposed to a few of the commands I include in my detective toolkit:

m stash allows you to set aside your current work so you can check out another
branch.

= blame allows you to find the line-by-line history of a file.

m bisect allows you to search methodically through history to find the spot
where things went wrong.

These tools, when paired with the information in Chapter 6 on recovering from
mistakes, will help you dig into, and recover from, just about any crime scene
you may end up investigating.

Part lll. Git Hosting

The first two parts of the book included commands specific to Git, not any one
particular code hosting platform. In Part III, you will learn about three popular
collaboration platforms: GitHub, Bitbucket, and GitLab. In the many projects
I’ve worked on, I find that my work often falls into these divisions: open source
projects are often hosted on GitHub; private, client work is often hosted on
Bitbucket; and projects that are concerned with autonomy are often hosted
internally on GitLab.

There are no formal restrictions that say you must use these systems in this way.

Indeed, there is an enterprise version of GitHub, which allows you to purchase a
“locally hosted” instance of GitHub; and there is a community edition of GitLab,
which offers free hosting of private and public Git repositories.

Entire books have been written on how to use each of these three platforms.
Instead of trying to replicate these works, each of the subsequent chapters is
designed as a “Getting Started” guide for the ways I most commonly see these
platforms used. Chapter 10 covers using GitHub for public, open source
projects; Chapter 11 covers using Bitbucket for private, closed source projects;
and Chapter 12 covers using GitLab to host private, internal repositories.

Chapter 10. Open Source Projects
on GitHub

With more than nine million users, GitHub is the largest code hosting platform in
the world today. If you are a web developer, or involved in open source software
development, chances are good you have at least visited the GitHub website to
download some code, if not created an account and participated in a
development community. Those who are working on proprietary code
development may know less about GitHub, but that doesn’t make it less relevant
as a code hosting platform, because GitHub also allows you to create private
repositories if you don’t want to share your code.

The focus of this chapter will be using GitHub for open project development,
because this tends to be how most newcomers will first be exposed to the
system. By the end of this chapter, you will be able to complete the following on
GitHub:

m Create a new account

Create an organization

Create a new project

Solicit contributions from new collaborators

Accept pull requests from collaborators

Up to this point, the repository examples you’ve been working with were hosted
on GitLab. Unlike GitLab, GitHub’s platform is not based on open source
software. GitHub can definitely improve your experience with Git, but has
several of its own GitHub-isms that can make it difficult to know when you’re
working with Git terms, and when you’re working with GitHub terms.

GitHub has a few great features that I have been able to take advantage of as a
web builder. I have used GitHub to publish simple, static websites, and even
HTML-based slide decks. Taking the same approach as we have previously in
this book, you will first learn to use GitHub as a team of one, and then you will
learn how to use its features to collaborate with others. Of course, if you are

already working on a team, I encourage you to skip to the section of this chapter
that is most relevant to you.

Those who learn best by following along with video tutorials will benefit from
Collaborating with Git (O’Reilly), the companion video series for this book.

Getting Started on GitHub

In this section, you will learn how to create an account on GitHub, and publish a
repository to your own GitHub account. The goal is to get yourself familiarized
with GitHub as a team of one, so that some of the actions feel a little more
natural when you start participating in larger teams.

Creating an Account

You don’t need an account on GitHub to access public repositories. If you want
to upload code, or participate in conversations about the code, you will need to
create an account. It is, fortunately, very straightforward to set up an account;
and for public repositories, it is free. A free account is sufficient for everything
covered in this chapter.

Step 1: Create your account
1. Navigate to https://github.com (Figure 10-1).

2. Enter a unique username. GitHub will let you know if the name has already
been selected.

3. Enter a valid email address.
4. Enter a secure password.
5. Click the button Sign up for GitHub to proceed.

After passing the validation tests for a unique username, a valid email, and a
secure password, you will be directed to the next screen.

Step 2: Select a plan

At this point, you may choose to financially support GitHub by paying for a
plan. There is absolutely no requirement to pay for this code hosting service. By
default, GitHub chooses the free plan for you (Figure 10-2). You’ll need to

http://bit.ly/collaborating-with-git
https://github.com

follow these steps:

1. Confirm the plan type you would like to enable. By default, the free plan is
selected.

2. Complete the account creation process by clicking Finish sign up.

GitHub Explore Features Enterprise Blog Sign in

-
Build software

better, together. e

er, one numeral, and

Powerful collaboration, code review, and code management for
open source and private projects. Need private repositories?

Figure 10-1. Sign up for a GitHub account

SUPPORTING BUSINESSES SO THEY STAY IN
BUSINESS

If you would like to help ensure GitHub stays in business, you may want to pay for a plan at
some point in the future. One of the benefits of a paid plan is that you can create private
repositories that are only available to the developers you choose to include in your project.

After you have created your account, you will receive an email from GitHub
asking you to confirm your email. You will need to click the link in this email to
complete the account creation process. If you do not verify your email, you will
not be able to complete some tasks.

You are now ready to use your account to perform a range of tasks, including
creating new repositories, and contributing code to your own and other
repositories.

SSH Keys

If you use a very secure password, you may be using a password generator and
have a password that is 45 characters including letters, numbers, and special
characters. No one wants to retype this kind of password, but in order to
authorize uploads, you will be prompted for your password when you try to push
code up to GitHub. By uploading your SSH key, you can avoid retyping your
password each time you want to publish code.

Welcome to GitHub

You've taken your first step into a larger world, @gitforteams.

%fw Completed [[D Step 2:
Set up a personal account Choose your plan

Choose your personal plan
Each plan includes:

Plan Cost (view in GBP) Private repos

Unlimited collaborators
Large $50/month 50 Choose

Unlimited public repositories
Medium $22/month 20 Choose

« Free setup
Small $12/month 10 Choose + SSL Protection

+ Email support
Micro $7/month 5 Choose

« Wikis, Issues, Pages, & more
Free $0/month 0 Chosen

Charges to your account will be made in US Dollars. Converted prices are provided “
as a convenlence and are only an estimate based on current exchange rates. Local
prices will change as the exchange rate fluctuates.

Don't worry, you can cancel or upgrade at any time.

Help me set up an organization next

Organizations are separate from personal accounts and are best suited for
businesses who need to manage permissions for many employees.

Learn more about organizations.

N

Figure 10-2. Select a plan for your GitHub account

Appendix D includes instructions on how to create and retrieve SSH keys. Once
you have the public key copied to your clipboard, you are ready to proceed to

GitHub:

1. Navigate to https://github.com/settings/ssh. You can also access this screen
by logging in to your account, clicking the configuration cog (top right),
and then clicking SSH Keys from the set of navigation options for your
account.

2. On the SSH Keys summary screen, click Add SSH key.

3. Optionally, add a title for your SSH keys. For example, you might have a
personal set of SSH keys, rather than the keys you generated for your work
computer.

4. Paste the public key that you copied previously into the Key field.
5. Click the button Add key.

SSH Keys Must Be Unique

GitHub will only allow key pairs to be added once on its system. If you have
already use these keys on a different account, you will get an error message
when you try to save the keys.

You will now be able to perform actions from your local computer that require
authentication without typing your GitHub password.

Creating an Organization

Assuming you will be working on an open source project, you may want to
create an organization at this point as well. An organization is able to own
projects. Multiple people are able to join (or be assigned to) an organization.
This allows you to manage a project without having to create a second GitHub
account. Organizations are free to create, so you may as well take advantage of
them.

NAMING YOUR ORGANIZATION

Generally you will create an organization name that is the same as the main project repository.
So, for example, if your library is currently available in the repository named evilrooster, the
name you would aim to secure for the new project account would also be evilrooster. Once the
new organization is created, you can reassign ownership from your personal account to the

https://github.com/settings/ssh

organization for the repository. This will allow you to maintain the project history for the
repository.

To create an organization, complete the following steps:
1. From the top menu, click the + symbol next to your avatar.

2. Click New organization. You will be redirected to the setup form for new
organizations.

3. On the form Create an organization, enter the following:
m Organization Name: This will be the URL for your organization.

» Billing email: This is a required field even if you are selecting the free
plan.

= Plan: Open source is selected by default.
4. Click Create organization to proceed.

On the next screen you can add team members to your organization. Your own
account is added by default. To add additional accounts, complete the following
steps:

1. In the search field, enter the name or username of the person you want to
add.

2. To the right of the person’s name, click the + symbol.
3. Repeat steps 1 and 2 for each person you would like to add.
4. Click Finish to send the invitations.

Your organization has been created, and it has been assigned new members as
you designated while setting up the organization.

Personal Repositories

This section is a brief overview of putting your own repositories on GitHub. You
will use your personal account to create a new repository, which is appropriate
for projects you do not intend to have others contributing to on a regular basis,
because they are essentially yours. For example, when I deliver conference
presentations with HTML slides, I often publish them to a GitHub repository to

share them.

Creating a project

A repository on Git is so much more than what you get locally on your computer
when you run the command init in a directory. It has an issue tracker, the
ability to convert Markdown files into web pages, supplemental wiki pages,
charts, graphs, and more. GitHub, however, still refers to the process as creating
a repository.

To begin the process of creating a new repository, locate and click the + icon in
the top-right corner of the screen, and then select New repository (Figure 10-3).

gitforteams 4+~ [& |

New repository

S5H Probl Mew organization

Figure 10-3. Create a new repository

Alternatively, you can log in and then navigate to the home page of GitHub; then
locate and click the button Create new repository.

Once you’ve initialized the process, you will be redirected to a screen where you
are asked to fill out the details for this project (Figure 10-4). The information
you will need is also summarized in Table 10-1.

Owner Repository name
gitforteams ~
Great repository names are short and memorable. Meed inspiration? How about freezing-batman.

Description (optional)

(-] Public
Anyone can see this repository. You choose who can commit,

Private
You choose who can see and commit to this repository.

| Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository.

Add .gitignore: None « Add a license: None

Figure 10-4. Enter the details for your new repository

Table 10-1. Details needed to create a new GitHub repository

Field Notes Use if
importing?

Repository Your new project will be available at the URL Yes

name https://github.com/<username>/<repo-name>. Choose something short,

but descriptive.

Repository This text will appear at the top of the repository home page, above the list Yes
description of files.

Visibility =~ Choose public (selected by default) or private (requires a paid account). Yes

Initialize ~ Add an empty file that can be used for details about your project. This file No

this will be rendered as HTML on the home page for your repository, but can
repository be written in Markdown.

with a

README

Add Many programming languages will generate compiled files during the No

.gitignore build process that should not be included in the repository. You can
generate a .gitignore file now, which has typical file extensions for your
language already included.

https://github.com/<username>/<repo-name>

Add Without a license file, you do not give people permission to download Maybe
license and use your code. You retain full copyright, and do not grant permission

for others to use your work. Ideally, your project will have a license. If

you would like to include a license, but aren’t sure which one to choose,

Choose a License may help.

If you have already started a repository locally, you may choose to upload it to
this new project; however, if you have created files during the initialization
process, you will need to first download these changes, incorporate them into
your local repository, and then push them back up to GitHub. To avoid this extra
step, if I already have a repository locally, I will omit the creation of the files for
README, .gitignore, and the license.

Once you have selected values for each of the items in Table 10-1, locate and
click the button Create repository. Your new repository will be created, and you
will be redirected to a summary page with suggestions on what to do next
(Figure 10-5).

gitforteams / freezing-batman @Unwateh~ 1 4 Star 0
Quick setup — if you've done this kind of thing before &5 Cods
[a Set up in Desktop oOr | HTTPS = SSH nhttps://github.com/gitforteams/freezing-batman.git i. pasas &
We recommend every repository include a README, LICENSE, and .gitignore.
Pull requests 0
...0r create a new repository on the command line Wiki

(¥l

echo "# freezing-batman" => README.md
git init Pulse
git add README.md

git commit -m "first commit" GiioH
git remote add origin https://github.com/gitforteams/freezing-batman.git rapns
git push -u origin master

Seftings

...or push an existing repository from the command line

G

git remote add origin https://github.com/gitforteams/freezing-batman.git
git push -u origin master

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

Figure 10-5. Your new repository is ready for use

Because there were not any files initialized during the repository creation

http://choosealicense.com/

process, you have only two options at this point: upload a repository from your
local computer, or import a project from a publicly available URL. If, for
example, you wanted to copy your GitLab project from earlier in the book, you
could. These options will be covered next.

Importing a repository

If you have been following along from the beginning of this book, you will have
created a repository on GitLab that was a clone of the workshop files for the Git
for Teams workshop. You can easily import this repository into GitHub. This
process can only be completed if there are no files in your GitHub repository:

1. Navigate to your project home page.

2. If the repository is empty, you will be able to locate and click the button
Import code. Clicking on this button will redirect you to the GitHub
importer.

3. Enter the URL for the repository you want to import. This must be a public
project, but it does not need to be a Git repository. You can also import
Subversion and Mercurial repositories. If you are importing a Git project,
ensure you get the full URL, including the .git extension—this is the same
URL structure that you would use to clone a repository locally. Figure 10-6
shows a valid URL for a project
(https://gitlab.com/gitforteams/gitforteams.git).

https://gitlab.com/gitforteams/gitforteams.git

GitHubImporter Cancel

Importing into gitforteams / freezing-batman

Enter the URL of the repository you'd like to import. This should be the URL you use to clone or
check out your code.

hitps/fgitlab.com/gitforteams/gitforteams. git

Examples

http:fexample.com/svn/ <= Don't include “trunk™ or "branches”
http:fexample.com/hg

httpsAfs.example.com/tfs <= We'll figure out which project next

Figure 10-6. Enter a valid URL for a Git repository to import it to GitHub

4. Click Begin import. The import process will begin.

5. When the import process has completed, click Continue to repository. Your
files will have been imported from the remote repository (Figure 10-7).

gitforteams / freezing-batman @Unwatch~ 1 4 Star 0 YFork 0

Description Website
Save or Cancel <> Code
@ Issues 0
148 commits 4 branches 0 releases 4 contributors
L — i1 Pull requests 0

Your recently pushed branches:

= Wiki
¥ sandbox (less than a minute ag
i# 1-bad_jokes (less than a minute ago) {1 Compare & pull request | o Buks
fr branch: master v | freezing-batman / + = Lk Graphs

Changes to "Undo" graphic: add credits, add license, clean export ==
¢/ Settings

gitforteams authored 19 days ago latest commit 2db982dbfd E&
handouts OSCON webinar updates. 6 months ago P]
lessons Lessons were renumbered o match O'Reilly conventions. 2 months ago https://github.cor | ER
resources Changes to "Undo" graphic: add credits, add license, clean export 19 days ago You can clone wilh HTTES, S5H,
or Subversion. @
slides Resolving merge conflict; fixing broken link 2 months ago
[Clone in Desktop
B .gitignore Ignoring swap files from vim. 6 months ago
) Download ZIP
E README.md Add a line to Readme. 2 months ago

README.md

Git for Teams of One or More
Figure 10-7. The repository files and history have been successfully imported from GitLab into GitHub

Connecting a local repository

In Chapter 7, you learned how to connect a local repository to a new remote
repository on GitLab. We’ll repeat those steps here for our new GitHub
repository. GitHub gives you copy/paste—friendly commands to complete these
steps from the project home page if there were no files created during the
initialization process. The structure for the remote repository is
https://github.com/<username>/<repo-name>.git. For example, I created a new
repository using the sample name given to me by GitHub (glowing-octo-
dangerzone) with the account gitforteams. If 1 then wanted to connect a
repository on my own computer to this repository, I would complete steps
outlined in Example 10-1.

Example 10-1. Cloning a repository

$ git remote add origin https://github.com/gitforteams/glowing-octo-dangerzone.git

https://github.com/<username>/<repo-name>.git

Once you have completed these steps, navigate to the project page, and you
should see all of your files uploaded. You are now ready to start working with
your repository as a GitHub project.

Publishing changes to your GitHub repository

Once you’ve connected your local repository to your GitHub repository, you can

upload committed changes to any tracked branch using the command push. To
publish a new branch to GitHub, you will need to explicitly tell Git which
remote you want to use as the upstream for your branch (Example 10-2).

Example 10-2. Set the upstream branch for a remote repository

$ git push --set-upstream origin master

After setting the upstream connection, you do not need to add the parameter - -
set-upstream again. If you want to publish your changes to more than one
remote repository, you will need to continue specifying which remote.

Making Commits via the Web

One of the nice things about using a code hosting system such as GitHub, and
not just working at the command line, are the tiny enhancements that are built
into the system. For example, GitHub allows you to edit any of the files in your
repository through a web user interface. While I recommend you do not use this
as your regular code editor, it can be really handy if you just want to fix a typo as
a fly-by commit.

To make an edit via the web editor, complete the following steps:

1. Navigate to the specific instance of the file you want to edit. The URL for
this file will include the branch name. For example,
https://github.com/gitforteams/freezing-batman/blob/master/README.md.

2. Locate and click the pencil icon to edit this file (Figure 10-8); alternatively,
press e on your keyboard.

You will be redirected to a browser-based text editor (Figure 10-9). You are now
ready to make changes to the file in your repository.

After making edits you can click the button Preview changes. New lines have a

green bar to the left of the changed text (wrapped in the HTML element ins);
lines that have been removed have a red bar to the left (wrapped in the HTML

https://github.com/gitforteams/freezing-batman/blob/master/README.md

element is del). In Figure 10-10, the first paragraph with a bar has been
removed; the second paragraph is new. Apart from color and the HTML
elements, there does not currently appear to be a way to perceive the difference
in what’s been added or removed.

iii
G

jp branch: master v freezing-batman / README.md
5 <
E xrmxrm on Jan 24 Add a line to Readme.

2 contributors B E

54 lines (39 sloc) 2197 kb Raw Blame History [

Git for Teams of One or More T

Supporting files for workshops and sessions about creating a developer work flow for your project (and your team) with
the version control system, git. Basis of ORM video course

Contents

/slides
Reveal.js slides for various workshops and conference sessions.

+ 2014: LoneStar PHP
© one-page summary
o slide deck
o PDF slides

Figure 10-8. You can edit any text file by clicking the pencil icon

freezing-batman /| README.md EL | orcancel

<> Edit file @ Preview changes Spaces o |2 [|Softwap [T

Git for Teams of One or More

Supporting files for workshops and sessions about creating a
developer work flow for your project (and your team) with the
version control system, git.

Basis of ORM video course

- ## Contents
*/slides=
Reveal.js slides for various workshops and conference sessions.

- 2814: LoneStar PHP

- [one-page summary] (slides/slides/session-lonestarphp-strategy.md)

- [slide deck](http://emmajane.github.io/gitforteams/slides/slides/session-lonestar.html)

- [PDF slides](http://emmajane.github.io/gitforteams/handouts/slides—gitforteams—lonestarphp.pdf)
- 2814: DSCON workshop

- [one-page summary] (slides/slides/workshep-oscon—gitforteams.md)

- [slide deck](http://emmajane.github.io/gitforteams/slides/slides/workshop-oscon.html)

- [PDF slides](http://emmajane.github.io/gitforteams/handouts/slides—gitforteams—-oscon.pdf)

*/resourcess

The following work flow documents are referenced in the presentation

Commit changes

Figure 10-9. The browser-based text editor includes an optional preview

Once the edits have been made to the file, you are ready to commit your changes
back to your repository (Figure 10-11). A default value is provided for a short
commit message, which states which file is being updated. You should provide a
more descriptive description of the edits being made. An optional extended
message can also be added. You will need to decide if you want to just commit
the changes to the current branch, or if you want to create a new pull request
from this change. By default, GitHub assumes you would like to commit this
change directly to the repository, and on the same branch.

Because you are working with your own project at this point, it’s fine to commit
the change back to the master branch; leave the default option selected and click
the button Commit changes.

<> Editfle @ Preview changes spaces [(2 [(sorwap | &

Git for Teams of One or More

Supporting files for workshops and sessions about creating a developer work flow for your project (and your team)
with the version control system, git. Basis of ORM video course

This is a new description of the repository.

Figure 10-10. The preview shows which lines have been changed (the first line has been removed; the
second has been added)

Commit changes

(-] Commit directly to the master branch

1] Create a new branch for this commit and start a pull request. Learn more about pull requests.

Figure 10-11. Committing your changes back to the repository

WHY YOU MIGHT WANT TO SUBMIT YOURSELF A
PULL REQUEST

If you are the sole editor for your project, you probably don’t need to create a pull request for
your changes. Pull requests, however, are merged back into the master branch with the
parameter - -no-ff. This means it will show up in your graphed history as a blip outside of the
straight line of the master branch. If you don’t mind if this commit appears exclusively on the
main branch, it’s fine to omit the pull request step. The step-by-step instructions for creating
and closing pull requests are covered later in this chapter.

Once you’ve committed your changes to the repository, you will need to update
your local repository to reflect these changes.

Updating Your Local Repository

If you do use the web-based editor to update your branch, your local repository

will become out of date. (Don’t try to redo the same edits in your local branch;
Git needs to have exactly the same commit at exactly the same time to
understand the two commits are the same.) You will need to download these
changes and integrate them into your local repository before GitHub will allow
you to upload new changes. This can be completed with the following sequence.

You should begin from within your local project repository directory. Next,
ensure you are using the same branch as the remote edits. This is likely the
branch master:

$ git checkout master

Next, incorporate the remote changes into your local work. Because the changes
are being copied into the same branch, and because these are minor updates and

not new features, I will use the option - - rebase to incorporate the changes,
instead of merge. This will keep my graphed history cleaner to read:

$ git pull --rebase=preserve

Your local branch should now be up to date and ready for new work.

Using Public Projects on GitHub

When working with projects, you can choose to download a zipped package of
files, or you can maintain a connection to the remote repository, downloading
new changes when they are available, and potentially contributing your own
changes back to the project. In this section you will learn how to consume
projects from GitHub, but not contribute to them. This will be covered in the
next section.

Downloading Repository Snapshots

As your Git superpowers continue to grow, you will be less likely to download a
package from GitHub. This option does exist if you want to share the code with
someone who just wants a .zip package (perhaps even for your own project).

To download the .zip package for a project, complete the following steps:

1. Navigate to the project page you want to download the code for.

2. Locate and click the button Download ZIP. This button (Figure 10-12) is
conveniently located near the URL for cloning the project locally, or
through the GitHub desktop application (which is available for Windows
and OS X).

The downloaded package of files will be named according to the project and
branch you downloaded. To change which branch you download, complete the
following steps:

1. Locate and click the branch drop-down button near the top left of the
repository home page (Figure 10-13).

2. Select the branch you would like to download. Wait a moment for the page
to refresh.

3. Locate and click the button Download ZIP.

There will not be an indication in the user interface that you are downloading a
different branch; however, the filename will reflect the name of the branch
(repository_name-branch_name.zip).

HTTPS

o
T

You can clone with HTTPS, S5H,
or Subversion. &

[l Clone in Desktop

@Dawnlnad ZIP

Figure 10-12. Download a snapshot of the repository

gitforteams / freezing-batman

Description

148 commits 5 branches

j# branch: master~ | freezing-batman / -

Chany Switch branchesftags

'EI"[‘

he

n

Branches Tags

EEE
W re gitforteams-patch-1 P
. i « master]
2 g sandbox g

B Rl

video-lessons

Figure 10-13. Change the branch you download by first selecting a different branch

Working Locally

Connecting to someone else’s project on GitHub is almost the same process as
using your own, except you won’t have write access to the project (unless you
are added to the project team, of course). In this section, you will learn how to

create a local clone. I use this technique for the Git for Teams website, which
uses Sculpin, a static site generator.

GET STARTED WITH SCULPIN

Sculpin is a static site generator built in PHP. The instructions in this section aren’t enough to
get you up and running. If you’re interested in trying Sculpin, start at the Get Started guide.

http://gitforteams.com
https://sculspin.io/getstarted/

In this case, I want a local copy of the Sculpin templates for my site. Although
I’m also a volunteer on the Sculpin project, this repository is just for my website.
I’m unlikely to have contributions back to the project in the local copy. I do,
however, want to maintain a connection to the main project so that I can
incorporate the latest updates into my website easily. Although the commands
are specific to the Sculpin project, you can substitute the URLSs for your project
of choice.

The first step is to create a local clone of the project (Example 10-3):
1. Navigate to the project page for the repository you want to download.

2. Locate and click the copy-to-clipboard icon (Figure 10-14) to get the URL
for the repository.

3. Open a terminal window (or Git Bash window on Windows) and navigate
to the directory where you’d like to download the project to.

4. Create a local copy of the project repository using the command clone and
the URL you copied in step 2. Optionally, add the directory name to the
end of this command.

5. Change the name of the directory to a name that is relevant to your project.
You can optionally do this as part of the previous step by adding the new
directory name to the end of the command.

6. Navigate into the local repository.

Example 10-3. Create a clone of the repository

$ git clone https://github.com/sculpin/sculpin-blog-skeleton.git
$ mv sculpin-blog-skeleton gitforteams.com
$ cd gitforteams.com

The second step (Example 10-4) is to create an upstream, or “vendor branch”
that will be kept free from changes relevant only to your project. You will be
able to keep this branch up to date with any changes to the main project. For the
project I’'m working with, the default branch is master. You can choose whatever
name makes sense for you; sometimes I use the project name, sometimes I use
the generic nickname upstream. I don’t think there’s an advantage of one over
the other (although Shakespeare might have said something about my naming

whimsies). By moving the branch instead of creating a new one, I maintain the
relationship between my local branch and the remote repository. Optionally, if
you prefer to work on the master branch, you may recreate the branch master
branch.

HTTPS

)

You can clone with HTTPS, S5H,
or Subversion. &

[l Clone in Desktop

@Dawnlnad ZIP

Figure 10-14. The copy-to-clipboard icon is located immediately above the download button

Example 10-4. Create an upstream branch

$ git branch --move master upstream
$ git checkout -b master

The final step is to add a remote repository for your working copy of the project
(Example 10-5). This new remote repository will hold all of the changes that you
are making for your instance of the project. The Sculpin project shouldn’t keep a
record of all the changes I’'m implementing for the Git for Teams website, but I
need to keep track of them. In real life, I keep the Git for Teams repository on
Bitbucket as a private repository. I don’t use the issue tracker, I just toodle away
in the repository and upload it after commits, almost like a backup plan. It’s not
taking advantage of the features Bitbucket offers, but it does give me peace of
mind.

When the project was first cloned, the remote name origin was assigned to the
remote repository. We’re going to swap that nickname for upstream, because the
convention is to use origin for the repository that most closely mimics our own.

To prepare for adding the new remote, you will need to determine its URL. If
you don’t already have a remote repository set up, follow the steps for creating a
project earlier in this chapter and ensure the repository does not have any files
added during the initialization process. Once you’ve created the new project,
follow the on-screen instructions to add the remote information to your

repository and then upload the changes. For example, if your GitHub username
was gitforteams and your new repository was named superhero-freda, you would
add the remote repository as shown in Example 10-5.

Example 10-5. Add a remote repository for the working copy

$ git remote rename origin upstream
$ git remote add origin https://github.com/gitforteams/superhero-freda.git
$ git push -u origin master

You now have both a branch named upstream and a remote named upstreanm.

Check the upstream repository regularly for updates (Example 10-6). You do this
by checking out the branch you designated as the upstream for the project, and
pulling in changes.

Example 10-6. Check the upstream project for updates

$ git checkout upstream
$ git pull --rebase=preserve

Assuming there have been updates to the main project, you can read the changes
to see if you want to incorporate them into your own project (Example 10-7).

Example 10-7. Compare the changes in upstream to your local work

$ git diff master upstream

Or you can just look for a summary of the specific commits with these fancy
parameters added to the command log:

$ git log --cherry-mark --left-right --oneline master...upstream

We’ve seen variations on this command before; the only real new piece is - -
cherry-mark --left-right. These parameters add a symbol to the beginning
of the commit that indicates whether the change was introduced by the first
branch on the list (points left), or the second (points right).

Once you have an understanding of the changes, you can bring your own branch
up to date with the upstream changes (Example 10-8). This should be completed
as if the changes were already in place and your own work was starting fresh
today. In other words, you should bring your working branch up to date by
rebasing the changes from upstream repository onto your own branch. (As I've
mentioned previously, if you are working alone, you can also merge the changes

in if you find this easier than using rebase. I won’t judge you.)

Example 10-8. Incorporate upstream changes

$ git checkout master
$ git rebase upstream

If conflicts arise, take them one at a time. There are additional tips for dealing
with rebase conflicts in Chapter 6.

Contributing to Projects

You have decided to make the leap and submit a contribution to a project.
Huzzah! Congratulations! This is not significantly different than what you’ve
done previously. The main difference is that you will be submitting a pull
request, which will be reviewed by someone else before it is incorporated into
the main project.

Tracking Changes with Issues

On public projects, issues are generally opened by users who have uncovered a
bug. A much smaller set of contributors will create issues for new features they
are interested in contributing, or design changes they are interested in
developing.

ISSUES ARE DISABLED BY DEFAULT FOR FORKS

Issues are disabled by default for repository forks. If you want to track issues for your fork,
you can enable the feature from the Settings screen.

To create an issue, complete the following steps:
1. Navigate to the project page.

2. Locate and click the tab labeled Issues. It appears on the right sidebar
(Figure 10-15). You will be redirected to the issues page.

3. Locate and click the button New issue. It appears on the right side of the
screen (Figure 10-16). You will be redirected to an issue creation form.

4. Enter a title, a description of the problem that you want solved (Figure 10-
17), and the ticket number of the issue that this pull request is being
submitted to solve. The more descriptive you can be about the problem, the
more likely it is to be solved.

5. When you are satisfied with your issue description, locate and click the
button Submit new issue.

With the issue created, you can now go about creating the pull request that
solves the issue.

Forking a Project
If you want to contribute your changes back, complete the following steps:
1. Navigate to the project page.

2. Locate and click the button Fork. The repository will be forked, and you
will receive a copy of the repository set up under your own account.

¢{» Code
|ssues 0
Pull requests 0

Wik

Pulse
Graphs

Figure 10-15. Navigation icon for Issues

ﬂemmajane ++ O o [Tog

@ Watch ~ 1 * Star 0 YFork 0

~N

Figure 10-16. Navigation button to create new issue

You can now clone this copy of the project to your local computer, just as you
did in “Personal Repositories”. Once the repository is downloaded, you can
make changes to the project, commit them to your repository, and then push
them back up to your forked copy of the remote repository.

Once the changes you’d like to incorporate into the main project have been
pushed back to GitHub, you are now ready to initiate a pull request.

Diagrams are only available in English

Write Preview CD Markdown supported I Edit in fullscreen

The diagrams for "un-merging branches" and "undoing mistakes" are only available in English. These
diagrams should also be available in other languages.

selecting them

Figure 10-17. Creating a new issue

Initiating a Pull Request

When you make a fork of a project, GitHub maintains a connection to the

upstream project. This allows you to easily send your changes from your forked
repository back to the main project.

Complete the following steps to initiate a pull request:
1. Navigate to the project page for your forked repository.

2. Locate and click the button pull request (Figure 10-18). It is located near
the top left of the project description, below the title. You will be redirected
to a summary of branches that can be used for a pull request. If there are
not four drop-down menus displayed, click the link compare across forks
before proceeding.

3. From the list of branches, select the branch you want to submit to the
upstream project from the final drop-down menu (Figure 10-19). The
differences between your branch and the upstream branch will be
displayed.

i j# branch: master ~

Figure 10-18. The pull request button is located below the project title

Comparing changes &

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

[N] base fork: gitforteams/freezing-batman ~ base: master ~ head fork: gitforteams/fireezing-batman ~ compare: master ~

Figure 10-19. Choose the branch you want to submit to the upstream project in your pull request

4. Locate and click the button Create pull request (Figure 10-20). A new form
will open.

5. Enter a title, and a description for why you are submitting this change to
the project (Figure 10-21).

6. Locate and click the button Create pull request to complete your request to
have your changes included in the upstream project.

Once you have completed your pull request, the maintainers of the project will
be notified through their GitHub interface for the project, and also via email if
they have notifications enabled.

Comparing changes

Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks.

[N base: master = compare: gitforteams-patch-1 ~ | + Able to merge. These branches can be automatically merged.

?"I&-h LT Discuss and review the changes in this comparison with others. ®
1 commit 1 file changed 0 commit comments 1 contributor

B Commits on Apr 05, 2015

! gitforteams Update README.md

["unified | spit

Showing 1 changed file with 1 addition and 4 deletions.

5 EEEEE README.md [0 view @

@ =

@@ -1,10 +1,7 @@

Git for Teams of One or More

Bow oM

=Supporting files for workshops and sessions about creating a

Figure 10-20. To initiate the pull request process, locate and click button Create pull request

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

IN) base: master v | ... | compare: gitforteams-patch-1 ~ | + Able to merge. These branches can be automatically merged.
Update README.md
Write Preview Markdown supported I Edit in fullscreen

Leave a comment

Attach images by dragging & dropping, selecting them, or pasting from the clipboard.

'cmbpulnquul

Figure 10-21. Enter a title and summary that explain the reason for your proposed change

Running Your Own Project

The technical part of running a project on GitHub is very easy. GitHub provides
you with an issue queue, supplementary documentation pages (wiki), support for
incoming code changes via pull requests, and the ability to grant write access to
the repository. The difficult part, therefore, is the social part of creating a
community of consumers and contributors around your software project. You
should refer back to Chapter 2 to refresh your memory on how to run a good
project.

Creating a Project Repository

Most of my public GitHub projects are very tiny—slide decks for various
conference presentations and the like. I do not expect to have regular
contributors, although I happily accept contributions if people are interested in
submitting a new fix. If you are working on a software package, chances are
better that others will be interested in contributing to your project. If you are
creating a library or software package that you think will be of interest to a larger
group, you should not set it up under your personal account, but instead use an
organization. By not using your personal account, it will allow other developers
to feel a greater sense of ownership over the project, and be more committed to
contributing to it.

To create a new project, complete the following steps:
1. From the top menu, click the + symbol.
2. Click on New repository. You will be redirected to the new project form.

3. Beneath the label Owner, click your account and change it to your
organization.

4. Enter a repository name. Generally this is the same name as the
organization for single repository projects.

5. Enter a terse description for your project.
6. Click Create repository.

Your new repository has been created and you are now ready to begin using it as
if it were one of your personal GitHub repositories.

If the project already exists under your personal account, you can reassign it
using the following steps:

1. Navigate to the project page under your personal account.

2. Locate and click the link labeled Settings.

3. Locate and click the button labeled Transfer. A modal window will appear.
4

. Enter the name of the repository; and the organization, or account name,
for the new owner.

5. Click I understand, transfer this repo.
Your project will be reassigned to the new account holder.

Based on your rules of governance, you will now need to decide if you are going
to submit yourself to pull requests, or if you will continue to submit your work
directly to the project. Both have advantages, but they also follow different
leadership models (it is faster to commit directly; but more equal for all
contributors if you also submit pull requests, which undergo a review).

Granting Co-Maintainership

To share the burden of maintenance, you can grant write access for the
repository to others. This is a big responsibility. You should decide ahead of time
how you will deal with the thorny issues, such as disagreement on the direction
the code should take; and other types of bad behavior, such as being rude to
other contributors. Assuming you have worked through all of those difficult
decisions, you can add contributors to your project as follows:

1. Navigate to the project page.

2. From the utility links in the top right of the page, click the + and then
choose New collaborator (Figure 10-22).

3. You will be prompted to add your password. Do this and then click
Continue.

4. Enter the GitHub username of the person you would like to assign co-
maintainership to (Figure 10-23).

Hemmajane +~ Ei' o B T

"] Mew repositor
T B pository "

i MNew organization
This repository

(1) Mew issue
;

©
Figure 10-22. Navigating to the Collaborators page for your project

emmajane / gitforteams @Unwatch~ 11 4 Star 49 JFork 12

Options Collaborators Push access to the repository
Collaborators
Webhooks & Services This repository doesn't have any collaborators yet. Use the form below to add a collaborator.

Deploy keys in

X

| gitforteams| ‘ =

(& gitrorteams

gitforteamsdemo

Figure 10-23. Adding a collaborator to your project

The person you’ve designated as being a co-maintainer will now have all the
same authoring powers as yourself. You may wish to put together a maintenance
cheat sheet to ensure you make decisions consistently for all community
members.

To remove a collaborator, follow the instructions as outlined previously. Next to
the collaborator’s name, click the symbol x (Figure 10-24). The collaborator will
no longer have commit access to the repository.

Reviewing and Accepting Pull Requests

Congratulations! You’ve received your first pull request to a project. GitHub
provides you with an easy-to-use interface to review incoming pull requests.
From here you can add comments to the request, reject the pull request outright,

or accept the pull request.

Collaborators Push access to the repository

gitforteams ’

Figure 10-24. Remove contributors from your project

GitHub will notify you if accepting the pull request will result in a merge
conflict, and in this case will disable the button to accept the incoming request.

TEST IT OUT BY SUBMITTING YOURSELF A PULL
REQUEST

You can also test this out by making a fork of your own work and then submitting yourself pull
requests.

Pull Requests with Merge Conflicts

If the pull request cannot be accepted without a merge conflict, you will be
unable to accept the pull request through the Web interface. Instead, you will
need to download the branch, resolve the conflict locally, and then push the new
branch to the project repository.

The first step is to check out the branch where you want to receive the incoming
pull request. For example, you may want to land this into the main branch for
your project:

$ git checkout master

Currently your branch doesn’t know anything about the contributor’s repository.
You will need to add it as a remote repository before you can download the
proposed changes. Instead of using a generic nickname as we have in the past
(e.g., origin or upstream), be optimistic and use the contributor’s GitHub

username. This will ensure you are ready to accept more changes from them in
the future.

In the following example, replace <username> and <repository-name> with
the appropriate values for the incoming pull request branch:

$ git remote add username git://github.com/<username>/<repository_name>

With the remote repository added, you must now download the contributor’s
work:

$ git fetch username

The branch will now be downloaded and available for local review. You should
use the guidelines from Chapter 7 on how to conduct a peer review. You may
need to provide feedback to the reviewer and request he or she submit a new pull
request if the code isn’t quite right. Refer back to your governance model to see
if it’s appropriate for you to make the updates yourself, or if you are required to
reopen the issue for further development. A good rule of thumb is this: if the
contributors will learn something by doing the work, give them the opportunity
to learn. If it’s a silly mistake (a typo, or a coding standard violation), it might
make more sense to make the change yourself (still crediting the original author)
instead of rejecting a pull request for a trivial fix. Where possible, reduce round-
trips the code needs to make, and be respectful of the intentions of the
contributor.

When you are satisfied with the proposed change, you can merge it into the main
branch for your project:

$ git merge --no-ff username/branch_name

If, however, you would like to make a few cleanup changes for minor
whitespace issues, or to fix a typo, you can optionally add the parameter - -no-

commit. Using this option may not be appropriate for your project if you’ve
decided every change must go through the pull request process:

$ git merge --no-ff --no-commit username/branch_name

Regardless of which method you choose, once the branch is merged, you may
push the updated master branch up to the server:

$ git push origin master

The change will now appear in the main repository for the project.

If you find you are working with pull requests a lot for your project, and
frequently have to deal with merge conflicts, you may find Hub useful. It is a
command-line wrapper that allows you to perform more tasks from the comfort
of the command line instead of having to switch between GitHub’s web
interface, and Git.

Summary

Throughout this chapter, you learned how to use GitHub as a team of one, as a
consumer of other projects, as a contributor to projects, and finally, as a project
lead:

= As the owner of the repository, you can choose to contribute directly to it.

m As the leader of a project, you can choose to commit directly to the project, or
pass your own contributions through a personal repository to maintain the
illusion of fairness.

m [ssues to your project can be used to track new features, or bugs. Issues are
conversations and may result in a pull request being initiated.

= A pull request is a request to merge a branch from either an outside repository
or the nonmain branch. It can be completed by anyone with write access to
the repository.

m If a pull request will not result in a merge conflict, it can be completed
through the web-based user interface; otherwise, you will need to download
the relevant branch, merge the request locally, and push the resulting change
back to the main project repository.

Although this chapter focused on public repositories, you can also apply the
techniques you learned in this chapter to private repositories.

For even more information on using GitHub, you may enjoy the title Introducing

https://hub.github.com/
http://bit.ly/intro-github

GitHub by Peter Bell and Brent Beer (O’Reilly).

Chapter 11. Private Team Work on
Bitbucket

Bitbucket is a popular code hosting system by the same folks who built JIRA.
With approximately three million users, it may have a smaller user base than
GitHub, but for small teams it has two very big advantages: free private
repositories and per-branch access control. In addition to these features, I
generally find Bitbucket’s interface intuitive, and its documentation
comprehensive. This commitment to usability will go a long way to keep
internal teams running smoothly.

By the end of this chapter, you will be able to complete the following on
Bitbucket:

m Get set up as a solo developer
m Share your repository with other developers
m Limit access control per-branch for a given project

This chapter is not meant to be a comprehensive guide to Bitbucket. Rather, it is
an up and running overview of several important features that you may want to
use with your team.

Those who learn best by following along with video tutorials will benefit from
Collaborating with Git (O’Reilly), the companion video series for this book.

Project Governance for Nonpublic Projects

The default options for Bitbucket repositories have interesting implications when
compared to GitHub’s. Depending on your point of view, you may think of them
as “discreet” or “antisocial.” By default, Bitbucket assumes the repository you
are about to create is a private repository, and that forks of the repository should
also be private. This is the opposite to what GitHub chooses (public repository,
and public forks). Where GitHub coined the term “social coding,” Bitbucket
takes a very different approach, but it’s not just the opposite of social. That is to

http://bit.ly/collaborating-with-git

say, it does not mean that Bitbucket is anti-social. Instead, it is chooses
discretion by default.

While private and public projects may have similarities in the commands you
use to move code from one place to another, they often have a very different
political feeling to them when everyone who is involved on the project is there
by invitation. Open source projects tend to follow whole-repository access
controls. A very small number of maintainers may update any part of the code.
The conventions of how code is accepted into the project will vary, of course,
but generally there is a submission made, some kind of review period, and then
the code is adopted into the main repository for the project. Private projects, on
the other hand, tend to have very specific governance requirements. Sometimes
these requirements are outlined by a regulatory body, such as Payment Card
Industry (PCI) compliance for those handling financial transactions, or
regulations for those building biomedical devices. In some cases, these
regulations have strict requirements around auditing and accepting contributions
into a code base.

Currently, Bitbucket offers much finer-grained access control than GitHub. On
Bitbucket, you are able to prevent individuals, or groups of individuals, from
pushing to specific branches and whole repositories. If you are accustomed to
per-branch access in Subversion, your team will find this feature quite useful.
Some of these features are also available in GitLab, which is covered in
Chapter 12.

Getting Started

In this section, you will learn how to create an account on Bitbucket and your
own, private repository. All developers on your team should be able to complete
the steps included in this section before they begin collaborating on projects with
you.

Creating an Account
The signup process for Bitbucket is straightforward:

1. Navigate to https://bitbucket.org.

https://bitbucket.org

2. Locate and click the button labeled Get started (Figure 11-1). (There may
be more than one. Either is fine.)

Atlassian

- Features Pricing Log in Get started
9 Bitbucket —

Your team, your code,
connected

Figure 11-1. From the home page, locate and click one of the Get started buttons

You will be presented with the option to create a new account, or to sign up with
your Google account:

1. Enter your first name and last name. These two fields are optional.

2. Enter your preferred username. Bitbucket will let you know if the name has
already been selected.

3. Enter a secure password.
4. Enter a valid email address.

5. Select a plan. By default the free personal account plan is selected, which
is appropriate for solo developers and very small teams.

6. Enable the checkbox confirming you are not a robot. You may also be
presented with a CAPTCHA challenge if Bitbucket isn’t convinced you’re
human.

7. Enable the checkbox for the privacy policy and customer agreement.
Obviously, you should also click the links and read the agreements you’re
signing.

8. When you have completed all of the fields, click Sign up to proceed

(Figure 11-2).

9. You will be sent an email asking you to confirm your email address. Click
the button Confirm this email address.

Slgﬂ up Sign up with your Google account
First name &
Last name
Username” | gitforteams ®

Password 3 NSRS E RN RN NS NRN u@

s .
Email emma@gitforteams.com

Plan Personal account - Free

™
\/ I'm not a robot

Accept our privacy policy and customer agreement

Figure 11-2. Complete each of the fields in the registration form and click Sign up

Your account is now set up and ready to use; however, to save some time later
on, you should also add your SSH keys so that you can work with private
repositories without having to re-authenticate yourself each time:

Complete the following steps to add your SSH key to your account:

1. Using the instructions in Appendix D, locate and copy your SSH public
key.

2. Navigate to the dashboard for your Bitbucket account.

3. In the top-right corner of the Bitbucket website, locate and click the user

https://bitbucket.org/

icon.

. From the drop-down list, click Manage account.

4
5. From the sidebar navigation, locate and click SSH keys.
6. Click on Add key. A modal window will appear.

7

. Into the form field, Key, paste your public SSH key.
8. Click Add key.
Your SSH keys have been added to your Bitbucket account.

Creating a Private Project from the Welcome Screen

Immediately after creating your account, Bitbucket will redirect you to a
welcome screen (Figure 11-3). This screen is always available at
https://bitbucket.org/welcome.

Create your first repository Git started Push up code

Create your first repository

Repositories hold the code for your project. You need a repository to add, edit, and
share code with Bitbucket.

= =
G v Yy

Tutorial Import Empty

Enter the tutorial details

Name® | Tutorial

This is a private repository

https://bitbucket.org/welcome

Figure 11-3. After completing the registration form, you will be redirected to a Get started welcome
screen

Create a new repository by completing the following steps:
1. Click on the bucket icon with the dashed outline which is labeled Empty.
2. Enter a name for this repository. For example, johannes.
3. Leave the checkbox This is a private repository selected.
4. Click Create. Your new repository has been created.
5

. Click Done. You will be redirected to the repository setup configuration
screen.

Once you have completed these steps, proceed to Configuring Your New
Repository.

Creating a Private Project from the Dashboard

When you log into your Bitbucket account, you will be redirected to a dashboard
summarizing your projects (Figure 11-4). From this dashboard you can get an
overview of what is happening in each of your projects, and create a new
repository.

= UBitbucket Dashboard ~ Teams~ Repositories ~ Snippets ~ Create ~ Find a repository...
| Dashboard
Overview Pull requests Issues Snippets

Get started

Bitbucket 101 Git tutorials SourceTree
Al the information you need Guides o workflows and A free Git & Mercurial client
to get started. commands, with examples. for Windows or Mac.

Create or import a repository

Thanks for choosing Bitbucket. Start by creating or importing a repository.

— [MCECERCLLIGL or | Import an existing repository

Figure 11-4. The dashboard also gives a clear indication of how to create a new repository

If you are starting from the dashboard (this is also the home page when you are
authenticated), create a new repository by completing the following instructions:

1.

Locate and click the link to Create a repository. You will be redirected to
the form shown in Figure 11-5.

Enter a name for this repository. For example, junio.

3. Optionally, enter a description for the repository.

Leave the default settings in place for the following:

m Access level (checkbox should be enabled for this is a private
repository)

» Forking (drop-down menu should be set to Allow only private forks)
= Repository type (radio button should be set to Git)

Optionally turn on Issue tracking, or Wiki pages. For personal projects I
rarely turn these on because I’m typically just using Bitbucket as a remote
backup for my code, and not as a project management tool.

Finally, locate and click Create repository.

Create a new repository

Name" | G

Description

Access level This is a private repository
Forking = Allow only private forks v

Repository type @ Git

Mercurial
Project management [Issue tracking
| Wiki
Language | Select language... =

Repository integrations
HipChat (| Enable HipChat notifications

(W CEICRCT LG Cancel

Figure 11-5. The form to create a new repository also has some configuration options for sharing

Your new repository has been created, and you have been redirected to the
repository setup configuration screen. Proceed to Configuring Your New
Repository.

Configuring Your New Repository
You will be redirected to a setup page (Figure 11-6).

= ©Bitbucket Dashboard ~ Teams~ Repositories ~ Snippets ~ Create ~ Find a repository...

O Repository setup
Your repository is empty — let's put some bits in your bucket.

il

8 Get code into Bitbucket fast using Atlassian SourceTree or the command line
I’ SourceTree

~ Get started using the SourceTree client

4

=) Download Atlassian SourceTree, a free Git and Mercurial client. Then it's just one click to clone!

- Clone in SourceTree

e

Command line

> I'm starting from scratch

> | have an existing project

Need a complete walkthrough? Visit Bitbucket 101 for a complete tutorial

Figure 11-6. Setup instructions are available for GUI, and command-line (new projects, or existing
projects).

Assuming you have been following along in this book, you likely already have a
local repository, or you know how to create one! I find the final set of
instructions (Figure 11-7) most useful when setting up new repositories on
Bitbucket.

To connect your local repository to the new repository on Bitbucket, complete
the following steps:

1. Locate and click on the link I have an existing project. A set of additional
instructions will appear on-screen

2. At the command line, navigate to a local Git repository. It’s okay if it is
already connected to a different hosting system, you are allowed to have
multiple connections to remote repositories.

3. Copy and paste the commands beginning with git from the instructions
(Example 11-1).

Example 11-1. Sample instructions from Bitbucket to add newly created
repository as a remote to a local repository

If the repository is already connected to a remote, you may need to substitute

origin for bitbucket.

git remote add origin https://gitforteams@itbucket.org/gitforteams/junio.git
git push -u origin --all # pushes up the repo and its refs for the first time
git push -u origin --tags # pushes up any tags

USE YOUR INSTRUCTIONS, NOT MINE

Do not simply copy the instructions in the preceding snippet. Instead, copy the instructions
provided by Bitbucket on the summary page for the repository you just created.

~ | have an existing project
Already have a Git repository on your computer? Let's push it up to Bitbucket.
cd fpath/to/my/repo
git remote add origin https://gitforteams@bitbucket.org/gitforteams/junio.git

git push -u origin --all # pushes up the repo and its refs for the first time
git push -u origin --tags # pushes up any tags

Want to grab a repo from another site? Try our importer!

Figure 11-7. Setup instructions to connect existing projects to Bitbucket.

You are now set up to work as a solo developer with a private repository. You
can push your code changes to Bitbucket as frequently as you like. And, because
it’s a private repository, you never have to worry about corrupting public history!
If you do rebase a branch and Bitbucket stamps its feet and refuses to accept the
new version of the branch, add the parameter - -force to the command you were
attempting:

$ git push --force
Working with a team? A more polite version is as follows:
$ git push --force-with-lease

We will be exploring the web interface in subsequent sections. In the meantime,
you may find some value in looking at the options that are available to you. If
you have already been working within GitHub or GitLab from the previous

sections in the book, I think you will find a lot of the options are quite familiar.

Exploring Your Project
Once your repository has been pushed to Bitbucket, the project page will update

itself from a set of instructions to a project browser.

If your repository has a file named README, this file will be displayed on the
project home page. Figure 11-8 shows my project home page for the Git for
Teams website.

= ©Bitbucket Dashboard - Teams -~ Repositories ~ Snippets ~ Create ~
0 Overview &

Last updated 36 minutes ago 1 0
aul Languags — Branch Tags
=] Access level Admin

0 1

@ Forks Watcher
I
e # Edit README
o]
< gitforteams.com

e

»

A Sculpin-based site containing Emma’s current thinking on best practices for developer
workflows.

Content is output into the following directories:

+ | _lessons => lessons - contains the activities workshop participants need to
complete.

+ _resources => resources - contains arlicles, offsite resources, and downloadable
handouts.

+ |_posts => blog - contains updates about what's been added to the site

New content types are defined in: app/config/sculpin_kernel.yml

Generating the Site
Test the site locally using:

sculpin generate —-watch —-server

S5H~ git@bitbucket.org:emmajane/gitfortea

Find a repository...

[2Share © ~

Invite users to this repo

Recent activity)

1 commit
Pushed to emmajanefgitroneams‘com

68536a3 publish.sh: updating publish scrip...

emmajane - 37 minutes ago

1 commit
Pushed to emmajane/gitforteams.com

4c79e5¢ README.md: removed arbitrary |...

emmajane - 39 minutes ago

1 commit
Pushed to emmajane/gitforteams.com

4d64478 README.md edited online with ...
emmajane - an hour ago
1 commit
Pushed to emmajane/gitforteams.com
392b277 README.md edited online with ...

emmajane - 4 hours ago

Figure 11-8. The project home page displays a summary of the status of your site, as well as the contents

of the file README

The following summaries are available from the project home page:

m [ast updated date

m Language, if one is set

= Access level (will be set to Admin if the repository is yours)

http://gitforteams.com

m Branches (click on the number above Branch for a list of all branches)
m Tags (click on the number above Tags for a list of all tags)
m Forks (click on the number above Fork for a list of all public forks)

m Watchers (click on the number above Watcher for a summary of accounts
who are following this repository)

m Recent activity (visible in the right sidebar; includes recent commits, and
merged branches)

The left sidebar has the following icons (from top to bottom):

m Link to the project home page

m Quick actions (includes clone, create branch, create pull request)

m Overview (appears to be the same content as the project home page)
m Source (a list of all files in the repository)

» Commits (the logged history for this repository)

= Branches (only available if you have pushed more than one branch to the
project)

m Pull requests (irrelevant for personal projects)

» Downloads (provides a list of zipped packages of the current branch; you
may also add untracked binaries for your project here)

m Settings (includes access details, repository name, integrations)

At the bottom of the screen there is also the option to expand the icons to display
a text label for each of the icons. Once you’ve expanded the sidebar, you can
collapse it again by clicking the double arrows (Figure 11-9).

Editing Files in Your Repository

Bitbucket allows you to edit text-only files from within its web-based text editor:
1. Click on the sidebar link Source.
2. Navigate to the page you want to edit.

3. Locate and click the button Edit. A text editor will appear (Figure 11-10, or
Figure 11-11 for the project README file).

4. Across the bottom of the editor, confirm the Syntax mode, Indent mode,
and Number of spaces (not available for all file types) are correctly set.

5. Edit the file to make the necessary changes.
6. Locate and click the button View diff.

7. Confirm the changes made are complete, correct, and do not introduce
unwanted spaces.

8. Locate and click the button Commit. A modal window will appear
(Figure 11-12).

9. Enter a commit message. You will need to add your own formatting. The
first line should be a terse description not longer than 80 characters.
Subsequent lines should provide more detail.

10. Locate and click the button Commit.

Your changes have been saved to the repository on Bitbucket.

emmajane
& gitforteams.com

O

ACTIONS

4, Clone

I@ Create branch
Iﬁ' Create pull request
73 Compare

= Fork
NAVIGATION

all Overview

%] Source

¢ Commits

] Branches

cl3 Pull requests
<p Downloads
£+ Settings

—P <

Figure 11-9. Project sidebar expanded

Source

I» master - | 4, ~ gitforteams.com / source / _posts / 2014-06-15-peer-review.md Source Diff = History

Editing source/_posts/2014-06-15-peer-review.md on branch: master

1 _—
2 title: Peer Review Process
3 |—
4
5 While working on a resources page for commit best practices, I
6 ended up in [an interesting
7 conversation] (https://twitter.com/emmajanehw/5tatus/478280621018865664) with [Scott Murray] (https://twitter.com/alignedleft) and [Camille Four
8
9 What a great questien! How subjective! How arbitrary! How do we define "good"!
10
11 I took the time to combine a few of the resources I've worked
12 on in the last year into a single resource page,
13 [The Review Process](/resources/review-process.html). Right now
14 the document builds on the documentatien that I worked on with
15 Joe Shindelar last year when I was the Project Manager at
16 [Drupalize.Me](http://drupalize.me}. (New to PMing? You might
17 also be interested in reading [Things I Learned Frem Managing
18 My First
18 Project]{http://drupalize.me/blog/201312/things-i-learned-managing-my-first-project}.) It adds some resources on dealing with additional remot
20
21 The resource is far from done, especially considering it only
22 covers one of the four models for review outlined at the
23 beginning of the document; however, if you're looking for a
24 starting place to begin [incorporating peer reviews into your
25 own workflowl (/resources/review-process.html), I think there are
26 some valuable tips waiting for you in this new resource.
27
Syntax mode: | Markdown Indent mode: | Tabs View diff Cancel
Figure 11-10. In-repository text editor
HL 2 3 BT ¢ e () Preview

gitforteams.com

A Sculpin-based site containing Emma's current thinking on
best practices Tor developer workflows.

Content is output into the following directories:

® _lessons’ == " lessons’ - contains the activities workshop participants need to complete.
" _resources’ == ‘respurces’ - contains articles, offsite resources, and downloadable handouts.

- "_posts’ == 'blog’ - contains updates about what's been added to the site

New content types are defined in: “app/config/sculpin_kernel.yml’

Generating the Site

Test the site locally using:

LAY

crulnin nmonarata —-uateh ——coruar o

Save Cancel

Figure 11-11. Project home page editor

Commit changes

Commit message | README.md edited online with Bitbucket|

Create a pull request for this change

Commit | Cancel

Figure 11-12. Add a message that describes the changes you have made to the project home page

With your changes saved to Bitbucket, your local repository will now be out of
date. You will need to update your local repository. Because the respository is
entirely your own, it is appropriate to pull the changes into your local copy
without review (Example 11-2). Assuming you have followed the instructions
outlined in this section, the work has been completed in the main branch for the
project, which is most likely to be master.

Example 11-2. Pull changes made in Bitbucket into your local repository

$ git checkout master
$ git pull --rebase

The changes should apply cleanly. If, however, you end up with a conflict, refer
back to Chapter 6.

Your local repository is now up to date.

Project Setup

You’ve been reading this book for a while. Maybe you even started at the
beginning. So, you know I like to write about Git. I also know that a lot of
people find documentation tedious to write, and a complete pain to maintain, so I
know that when I say this next part, your inner Clay Davis is going to pipe up
and say, “well sheeeeeeeeeeeeit.” Ready for it? I think process documentation is
one of the most important things a team can do to ensure happy, healthy
relationships. Now you go ahead and give me your best Clay Davis and then
we’ll move on.

Documenting your process:
m Makes it easier for people to participate in your team.
= Sets the expectations for how the work should get done.

m Serves as a starting point for conversations about why certain methodologies
and commands are preferred.

Good documentation puts up guard rails on the bowling alley that is your
project. It makes it virtually impossible for developers to throw a gutter ball, and
it makes it more likely they’ll succeed in knocking down all the pins when it’s
their turn. While the most experienced people on your team might have the
loudest opinions about how something should be done, they may not write the
best instructions. Pair the team’s lead with a new developer and have them co-
create the documentation. Then, make sure the entire team can consistently
follow the documentation without outside support.

Getting people into consistent habits will make it easier during high-pressure
times to ensure no steps are missed. This documentation may also extend beyond
the commands a developer needs to run to clone a repository and submit a pull
request. Once you see how valuable documentation can be for the mundane
tasks, you may even start to look at other processes that could use some
proactive documentation (incident response plan, anyone?).

In addition to the amazing commit messages you’re already in the habit of
writing, Bitbucket offers two tools that will help you to document your work:
wiki pages and issues. In the remainder of this section, you will learn how to
enable each of these tools.

Project Documentation in Wiki Pages

To begin collaborating with others, it can be as simple as granting repository
access to another Bitbucket account. Hold up, though! Before you go jumping
into a new relationship with a new developer, you should invest some time into
stating how you would like to work. These steps should be documented, and
they should be steps you yourself are willing to use. Fortunately, wiki pages on
Bitbucket are much easier to edit than stone tablets, so you should consider your
documentation to be a starting point, not the final word.

To enable wiki pages for your project:

http://bit.ly/drupalizeme-irp

1
2.
3

4.

Locate and click the settings cog for your project.
Locate and click the link Wiki settings.
Change the settings from No wiki to Private wiki (Figure 11-13).

Locate and click Save.

Wiki pages are now enabled for your project. A new icon will appear in the
sidebar (Figure 11-14).

In Bitbucket, wiki pages are also repositories which you can download and edit
locally. Documentation is included on the welcome page for your wiki

(Figure 11-15). At the top of each wiki page is a breadcrumb trail. By clicking
on the name of the project, you will be redirected to a list of all wiki pages for
this project.

The editor for the wiki pages is a typical toolbar for Markdown files (Figure 11-

16).

0 Settings
S Wiki settings
aul Repository details ; - . s
Create and edit a wiki from a web browser. Bitbucket wikis are
%] Access management DVCS repositories. You can clone the pages and edit them on your
local system. For a private wiki, a user's access to the code
Branch management) : = Bt i
(:) repository also applies to the wiki. For a public wiki, anyone can
Username aliases view it even if the code repository is private.
I’ Deployment keys
I'I'l Transfer repository 7 No wiki
e Delete repository © Private wiki
Visible only to people with repository access
INTEGRATIONS Public wiki
HipChat integration Anyone can view, edit, and create pages
1 B Links
ISSUES

Issue tracker settings

WIKI

Wiki settings

Figure 11-13. Enable a private wiki for your project

At a minimum, you should document the following for your project:
= Branch conventions

m Step-by-step instructions for submitting new work to the project
m Step-by-step instructions for peer reviews

» Deployment instructions, including who to email, and copy/paste email
templates

NAVIGATION

Overview
Source
Commits
Branches
Pull requests

Wiki

PO omE

Downloads

Figure 11-14. The Wiki icon appears in the project sidebar

0 Wiki & Clone wiki + Create page

gitforteams.com / Home View History —Edit
aul
g Welcome
¢ Welcome to your wiki! This is the default page we've installed for your convenience. Go ahead and edit it.
1 Wiki features
1 This wiki uses the Markdown syntax.
ca
The wiki itself is actually a git repository, which means you can clone it, edit it locally/offline, add images or any other file type, and push it back to us.
D It will be live immediately.
< Go ahead and try:
% git clone hitps://emmajaneg@bitbucket.org/emmajane/gitforteams.com.git/wiki

Wiki pages are normal files, with the .md extension. You can edit them locally, as well as creating new ones.

Syntax highlighting

You can also highlight snippets of text (we use the excellent Pygments library).

Figure 11-15. The default page provided for a Bitbucket wiki

Whenever you think there is a possibility for people to have different opinions,
or where there’s a possibility a person could forget a step, you should have
documentation. It doesn’t need to be long, but it does need to be correct. Check
it regularly if your team likes process hacking. It’s possible the team has found
an even more efficient way to do something that is not recorded in the
documentation.

Wiki

gitforteams.com / Home View History =~ Edit
Titie"
Content” || m | m m| B I =/} & ad (@ Markdown~ Preview
Welcome

Welcome to your wiki! This is the default page we'we installed for your convenience. Go ahead and edit it.
Wiki features
This wiki uses the [Markdown](http://daringfireball.net/projects/markdown/) syntax.

The wiki itself is actually a git repository, which means you can clone it, edit it locally/offline, add
images or any other file type, and push it back to us. It will be live immediately.

Go ahead and try:
$ git clone https://emmajane@bitbucket.org/emmajane/gitforteams.com.git/wiki

Wiki pages are normal files, with the .md extension. You can edit them locally, as well as creating new ones.
Cuntav hinhliahtinn A

Commit message

Cancel

Figure 11-16. The Markdown editor for wiki pages

Tracking Your Changes with Issues

Issue tracking is another form of documentation. Although issues are much more
ephemeral than wiki pages, capturing the information in a ticket provides the
direct link from the business value, or rationale for building a feature, to the
development tasks that are happening in code.

To enable the issue tracker, complete the following steps:

Navigate to your project repository.

Locate and click on the Settings icon.

Locate and click on the link Issue tracker settings.

Change the form option from No issue tracker to Private issue tracker.

Optionally, enter a new issue message.

S L e o

Locate and click the button Save.

As you can see in Figure 11-17, I have added a default message for all new

issues in the field New issue message.

The message reminds people to follow the Agile convention of Card,
Conversation, Confirmation. This text will appear above the new issue form.
Your team may have a different format they prefer to follow. Another format
I’ve worked with and quite liked uses the headings: QA Test; Rationale; Details.

() Settings
et Issue tracker settings e
il Repository details g V
Track your project's feature requests, bug reports, and 2
%] Access management other project management tasks. For a private tracker, a
Branch management user's access to the code repository also applies to the JIRA s the project tracker for teams planning,
¢, tracker. For a public tracker, anyone can building and launching great products.
Username aliases view/create/comment on issues even if the code Leam moSeniERA
I) Deployment keys repository is private.
ch Transfer repository Issue tracker” () No issue tracker
D Delete repository © Private issue tracker —
Visible only to people with repository access
= INTEGRATIONS i
Public issue tracker
HipChat integration Anyone can view, create, and comment on issues
el Hooks ;
Newissue message |y w2 | B | I ||i= Feal~| (@ Preview
Links
Card
ISSUES
As a_(actor)_

Issue tracker settings | want to _(action)_

so | can _(business value for adding this feature)_
WIKI

Wiki settings # Conversation #

Confirmation

This Is displayed to users when creating an issue. Use this message to help guide Issue creation.
Save

Figure 11-17. Enabling the issue tracker, and adding a default message for new issues

CREATING GREAT ISSUES

Make sure the card clearly defines who benefits and how from this feature being built — in
other words: what is the business value? This will allow people who are working on the task to
ask questions with the stakeholder about the implementation detail. Understanding the context
of how this issue fits into the larger project will ensure the right scaffolding gets built and that
the entire project isn’t held together with duct tape.

Not all issues begin as new features. Occasionally bugs will sneak into your software.
Excellent bug reports include: the steps to repeat the problem; the desired outcome; the actual
outcome of the steps, including a screen shot, or movie of the result.

More information on creating great issues is available from Creating Tickets and Reporting
Issues.

http://gitforteams.com/resources/great-issues.html

Issue tracking will now be enabled for your project (Figure 11-18).
To create a new issue, complete the following steps:
1. In the project sidebar, locate and click the icon Issues.

2. If this is your first time accessing the issue tracker, you will be directed to a
welcome screen. Click Create your first issue to continue. If it is not your
first time, you will be redirected to the summary page for all issues. From
this screen, locate and click the button Create Issue. You will be redirected
to an issue creation form.

3. On the new issue creation form (Figure 11-19), add a title and a description
for your issue. The default values for Assignee, Kind, and Priority may be
appropriate.

4. When you have described your new issue as best as possible, click the
button Create issue.

NAVIGATION

Overview
Source
Commits
Branches
Pull requests
Issues

Wiki

OO0 SomE

Downloads

£+ Settings

Figure 11-18. The Issues icon now appears in the project sidebar

Your issue has been created (Figure 11-20), and is available from the Issues icon
in the sidebar of the project. You are now ready for someone to begin work on

this issue. First, though, you will need to grant access to the project so that you
don’t need to complete every ticket yourself.

0 Issues + Create issue

Create issue

al
Card
%] As a (actor) | want to (action) so | can (business value for adding this feature)
® :
1 Conversation
ch
D Confirmation
Title" B
o
Description | 'y 2w (B | 7 =] Al @ Preview
o
p
Assignee Select user i
Assign to me
Kind* | bug -
Priority’ | major -

Attachments | Select files

Figure 11-19. New issue creation form

- O Issues + Create issue

Issue #1 ([0 Workflow ~ More ~ Edit

Confirm instructions

al
X Assignee -
%] emmajane [REPO OWNER | created an issue 55 seconds ago + oL
ype (e bug
Card g
¢ Priority ™ major
As an author, | want to provide detailed instructions so that you can use Git more efficiently. Status new
I’ Votes (0 Vole for this issue
fac) Conversation Watchers @ Stop walching
EJ' « ltreally is important to test these instructions hard. Errors are easy to fix now, but
much more embarrassing to fix later.
D Need more out of your
issue tracker? -;-
C} Confirmation Learn more about JIRA .‘ l I RA
As a proof reader: confirm the instructions in the book are correct. Report back any mistakes
you find sa that the author can fix them.
Comments (0)
y

Figure 11-20. Issue summary page

Access Control

Although I don’t have statistics to say this is the most popular way to use
Bitbucket, the most common way I’ve seen teams use Bitbucket is to keep the
defaults: a private repository with private forks allowed. The workflow I have
most commonly seen for small teams then has developers creating their own
forks, and submitting their pull requests from their personal version of the
repository (Figure 11-21). Teams of only one or two people, however, will
generally omit the step of creating individual repositories for each person on the
team and, instead, essentially collaborate directly into the main repository
(Figure 11-22).

Bitbucket

S -
-
-
-

-
-
-

== fork via the web user interface ‘

Project Repository
Personal Repository

} pull request via the web interface .-

-

-r”
-
-
- -
........

clone

push
checkout
Local
Repository
commit

Figure 11-21. Multiperson teams often use an intermediate repository within Bitbucket

Having a separate repository for each developer does not prohibit people from
contributing to the main project repository. If you are conducting peer reviews,
this is, in fact, exactly what you will want: every developer is able to commit to
the main project repository, but the convention will dictate they do not commit
their own work without a review first. If, however, you are working with a
quality assurance team, you may want to restrict write-access to the main project
repository to only the QA team. In this case, each developer will need to create a

fork of the project to be able to submit their work.

Bitbucket

Project Repository

master feature

-
““““““

pull request via the web interface

clone push
checkout
Local
Repository
commit

Figure 11-22. Teams of one or two often work directly in a shared repository

Shared Access

If you are working with a team of very trusted developers, you may choose to
have them all commit into the same repository, and maintain a convention of
which branches should be used for what purpose.

To grant a developer access to your repository, complete the following steps:
1. Navigate to Settings — Access management.

2. In the field labeled Users add the Bitbucket username or email address for
the developer you want to add.

3. Change the access level from read to write.

4. Click Add.

Repeat these steps for each developer you would like to share this repository
with. Developers will be able to do everything except administer the project.
You’ve got your documentation in place, right? Because the only things holding
this project together right now are the social conventions you’ve documented
and have agreed to follow rigorously yourself.

Per-Developer Forks

As your team grows, you may want to prevent some parts of the team from
having direct write access to the repository. Perhaps you would prefer if only the
QA team were allowed to write to the main repository. In this case, developers
will need to create a fork of the project first, and submit their work through a
pull request.

Complete the following steps to create a fork of the project:

1. Locate and click the Actions icon in the project sidebar. These are the three
dots directly below the logo.

2. Click on the link labeled Fork.

3. You will be redirected to a repository creation screen that very closely
matches the one you saw when you were first creating your own Bitbucket
repository. On this form it is acceptable to leave all of the defaults in place.

4. Optionally disable the Wiki and Issues options. You should use the main
project repository to track this information.

5. To complete the process, click Fork repository.
You are now ready to create a local clone and begin your work:

1. Click the Actions icon in the project sidebar.

2. Select Clone. A modal window will appear.
3. From the pop-up window, select and copy the command line instructions.

4. At the command-line, navigate to the directory where you would like to
place your copy of the cloned repository.

5. Paste the command provided by Bitbucket. The repository will begin
downloading.

Once the repository has downloaded, you are ready to create a new branch and
begin working on your ticket.

Limiting Access with Protected Branches

If you have worked with Subversion, you may have been quite surprised when
you came to Git and found virtually no access controls. Instead of building in
this functionality, Git has built in the ability for you to build your own access
controls through hooks. These hooks allow you to script a response before or
after a commit takes place, or before or after a push to a remote repository takes
place. If you are hosting your own Git repository, you might think to take
advantage of these hooks, but if you have become accustomed to using code
hosting systems, you may not have known about this functionality. (And even if
you did, it’s not necessarily something that you would have thought to script if
you were just learning the basics of Git.)

Fortunately, Bitbucket has done the work for you. Through the web interface,
you are able to grant write access per-person or per-team. In Chapters 2 and 3,
you worked through your governance strategy with your team, and perhaps also
your branching strategy. I won’t cover that again here. You should go back and
review those chapters if you aren’t sure how you might want to take advantage
of these access control options.

Previously you learned how to grant access to an entire repository. In this
section, you will learn how to refine this access per-branch. Before proceeding
with this section, ensure you’ve given repository access to the developers you
want to work with.

To limit branch access, complete the following steps:

1. Navigate to Settings — Branch management.

2. In the first field under the heading limit pushes to specific users and
groups, enter the name of the branch you want to limit control to; in the
second field, enter the name of the person who should be allowed to update
files in this branch.

3. Click the button Add.

The ability to push code to this branch has now been limited from all people
except the person listed. Figure 11-23 shows that once you have added a person,
you are welcome to add more.

Limit pushes to specific users and groups

Start typing to search for a user or group

master B emmajane Edit ©

Remaining branches accept pushes from any user or group with write access.

Figure 11-23. Prevent others from pushing code to a branch

From the same configuration screen, Bitbucket also gives you the option to
prevent the deletion of any branch, or prevent history rewrites on any branch.
Although these two options are of less interest to you now that your team knows
how to safely work with Git, you might need them “for a friend.” (It’s okay, I
understand. And so does Atlassian, which is why it built you these two nifty
features.)

Once implemented, an error will be returned if someone tries to perform a
restricted action. Example 11-3 shows an example of what happens when I tried

to delete a protected branch named master.

Example 11-3. Error when deleting a locked branch

$ git push bitbucket master --delete
remote: permission denied to delete branch master
To git@bitbucket.org:emmajane/gitforteams.git
! [remote rejected] locked (pre-receive hook declined)
error: failed to push some refs to 'git@bitbucket.org:emmajane/gitforteams.git'

If you do decide to implement access controls, make sure you clearly
communicate these restrictions to your team. This will help to avoid absolute
frustration by developers who cannot figure out why they can’t push their code to

https://www.atlassian.com

the project repository. You don’t need to provide lengthy tomes no one will read,
but you do need to give people the rationale for why decisions were made, and
any gotchas that make your system a unique and special snowflake to work with.

More information about Branch management is available from Bitbucket. You
may also be interested to read Atlassian’s overview of working with Git’s hooks.

Pull Requests

For your developers to add their work back into the project, they need to have
access. If this access is not available (either through a social convention of
completing a peer review, or through an enforced access control), the developers
will need to create a pull request to have their work considered for inclusion in
the main project.

The official documentation from Atlassian on working with Bitbucket is
exceptional. Work with pull requests covers a few extra features, and will be up
to date if the instructions I’ve covered in this section ever go stale.

Submitting a Pull Request

After completing your issue-specific work in your ticket branch, and pushing
your code to the server, you are ready to issue a pull request to have your work
incorporated into the main project repository. The interface options will vary
slightly depending on which access control method you’ve chosen. The basic
process, however, is as follows:

1. Locate and click the sidebar icon Pull requests.

2. Locate and click the link Create pull request. A new form will appear for
your request (Figure 11-24).

3. Your current repository will be located on the left. From this option, select
the branch that has the change you would like to have incorporated into the
main project.

4. The destination branch is located on the right. If your repository is a fork,
you will be able to choose the destination repository as well as the
destination branch.

http://bit.ly/bitbucket-branch-mgmt
http://bit.ly/gits-hooks/
http://bit.ly/bitbucket-pull-requests

5. Add a title, and description for your pull request. Ideally, your description
should reference the issue you are aiming to close.

6. If you would like someone specific to review your work, you can enter his
or her name into the pull request.

7. You can optionally have Bitbucket do a little maintenance for you and
delete the ticket branch after the pull request has been accepted and the
ticket is closed.

8. Finally, when the form is complete, click the button Create pull request.

O Pull requests

Create a pull request

il

emmajane / gitforteams.com fork T S— -
@ Created 23 hours ago, updated 23 hours ago I g :
‘:) v master v v master v
ch Title" &
D Description |y w2 3| B T iz} i~ @ Preview
e

Reviewers | start typing to search for a user

Close branch

Figure 11-24. The pull request creation form

As a developer, you must now wait for your work to be reviewed and accepted
into the project, or kicked back with requested updates.

Accepting a Pull Request

Once a pull request has been submitted, it’s up to a reviewer to decide if the
proposed changes are worthy of inclusion in the main branch. Chapter 8 covered

the review process in detail. The pull request summary page allows reviewers to
comment on the work that is being proposed. The conversation may result in the
pull request being updated, or it may confirm the work is complete, correct, and
ready to be incorporated into the project.

Assuming there are no conflicts, you will be able to accept a pull request by
clicking the button Merge from the request itself.

If, however, there are going to be merge conflicts, the process is a bit more
complicated. Often the best person to resolve a conflict is the developer of the
new code that is being added. Typically what happens is that the code has
become stale while waiting for its review. Have the developer update her ticket
branch so that it includes the latest changes from its parent (or source) branch:

$ git pull --rebase=preserve

If the person who submitted the pull request is not available to resolve the merge
conflicts, you may need to complete this step yourself. Fortunately, Bitbucket
gives you some copy-paste commands for downloading the ticket branch and
resolving the conflict.

Extending Bitbucket with Atlassian Connect

In addition to all of the functions Bitbucket offers out of the box, there is also
Atlassian Connect, an API for add-ons that includes a marketplace of free and
paid add-ons.

To find relevant add-ons for your project, complete the following steps:

1. Navigate to your account management page by clicking your user icon in
the top-right corner of the page, then selecting Manage account.

2. From the left sidebar of your account, locate and click Find new add-ons. A
list of all add-ons will appear in the main content area (Figure 11-25).

You can filter this list further by category. For example: Code analytics, Code
quality, Collaboration, Deployment. This is a new service, so by the time you are
reading this book, there will be a lot more add-ons to explore. A few to
investigate include:

bitHound
Rates your Javascript projects based on code quality, maintainability, and
stability. Paid service for closed source projects; free for open source
projects.

Aerobatic Hosting
Allows you to deploy static websites, much like GitHub Pages, except from a
private Bitbucket repositories.

Pull Request Auto Reviewers

Allows you to automatically assign reviewers to specific types of pull
requests.

= UBitbucket Dashboard ~+ Teams~ Repositories ~ Snippets ~ Create ~ Findarepository... a @~ @ -

Manage B emmajane ~

GENERAL Find new add-ons

Account settings

Email addresses All categories ~

Notifications

Change username Aerabatic Hoating Install
By Aerobatic

Delete account DEPLOYMENT | [PREVIEW

e Host and manage your web app directly from your Bitbucket repo.

Plan details Awesome Graphs for Bitbucket \nstall

€,$ By StiltSoft
i

ACCESS MANAGEMENT CODE ANALYTICS || PREVIEW

User groups Awesome Graphs adds graphs which let you visualise information about your repository,
OAuth commits and committers.
SECURITY. Bitbucket for HipChat Install
By Atlassian
Change password oI ABCRAON
SoH keys Let your codebase join the conversation. Get notifications from your Bitbucket for commit
Connected accounts pushes, pull requests, pull request merges, and issues.
Sessions 1 bitHound ey
Audit log By bitHound
CODE QUALITY | [PREVIEW
ADD-ONS

Build resilient, remarkable software.

Find new add-ons‘—_
CloudCannon

Manage add-ons g Install
By CloudCannon
DEPLOYMENT | [PREVIEW

Figure 11-25. A list of available add-ons available through Atlassian Connect

In addition to the Connect add-ons, you can also install add-ons you’ve created
from a custom URL. You can learn more about developing for Connect on the
Atlassian Developers’ portal. Chances are good that if your extension is useful to

https://www.bithound.io/
http://bit.ly/aerobatic
http://bit.ly/atlassian-bb-add-on
http://bit.ly/atlassian-bb

your team, it will be useful to other teams as well. As you are building it,
consider making it abstract so that it can be shared with (or sold to) others in the
marketplace.

Summary

Throughout this chapter, you learned how to use Atlassian’s popular code
hosting system, Bitbucket. You learned how to set up a personal repository, and
share your repositories with others. To work successfully with a team on a
private project, there are several points you learned about in this chapter, and
which you should keep in mind:

= Get to know your tools by creating a personal, private repository first.

m Prepare for new people to be added to your team by creating excellent
onboarding documentation that is easily accessible from the project
repository.

m Use issue-based updates to your repository, describing all proposed changes
in issues before creating new branches in the repository.

m Make decisions around access control clear and transparent. If you are
limiting access, document the rationale for the decisions you’ve made.

Over the years I have been been repeatedly impressed by Atlassian as a
company. It consistently provides a positive experience with easy-to-understand,
organized documentation, and helpful staff. On the rare occassion when it has
slipped up, it has taken ownership of the problem in a mature and respectful way.
A++, Atlassian!

Chapter 12. Self-Hosted
Collaboration with GitLab

GitLab is an open source code hosting system for repository management. It
allows you to track issues for your Git repository, conduct code reviews, and
create supplementary project documentation on wiki pages—in other words, it’s
much the same as GitHub and Bitbucket. GitLab’s unique advantage is that as an
open source product, you are able to install the software wherever you’d like,
without paying licensing fees; and you are welcome to extend the software
directly, instead of being restricted to creating add-ons via APIs, and other
hooks.

By the end of this chapter, you will be able to:

m [ocate relevant install instructions for your setup
m Create new projects, users, and groups

m Configure access control for projects

m Establish cross-project milestones

This chapter focuses on some of the unique tasks you can perform as an
administrator of a GitLab instance, as opposed to just using the software as a
mere project lead.

Getting Started

If you have followed the activities in this book from the beginning, you will
have already created an account, and played around with a GitLab repository on
the publicly available instance of GitLab at GitLab.com. (If you need a refresher,
the instructions on using GitLab as a team of one are covered in Chapter 5.)

Installing GitLab

To take advantage of the administrative functions covered in the remainder of

this chapter, you should create a local instance of GitLab so that you can log in
as the Administrative account holder. This chapter covers the Community
Edition, not the Enterprise Edition of GitLab. The Enterprise Edition is available
for a fee and includes additional functionality, such as JIRA integration. You can
read about the differences at the feature comparison list.

The recommended way to install GitLab is through one of its Omnibus installer
packages. These packages can be downloaded directly and placed onto a Linux
server, or can be deployed via a one-click install on some provisioning services.

DigitalOcean offers a one-click install package for GitLab. This package uses
the Omnibus installer for GitLab, which means you will be able to upgrade
GitLab easily if there are new features or security releases. At the time this was
written, DigitalOcean was the only service offering a one-click installer for the
Omnibus package. Bitnami and the AWS marketplace only offered deployments
from source packages, which cannot be upgraded once deployed. Read the
descriptions carefully to ensure you are not getting trapped into installing only a
specific version.

To avoid the hosting fees while evaluating GitLab, you can also install it locally
using the power of virtual machines. (It’s not as scary as it sounds.) Virtualbox
and Vagrant are the easiest way that I have found to set up a Linux server on my
Windows and OS X computers. The written documentation for Vagrant is
phenomenal; however, if you prefer hands-on videos, I did put together a video
series for a slightly older version of Vagrant. The basics haven’t changed.

Loosely, the steps are as follows:
1. Install Virtalbox.
2. Install Vagrant.

If you are on OS X, there is already a brew recipe for Virtualbox and Vagrant; it
is appropriate to use it.

With those two packages installed, you now have the capacity to have an Ubuntu
server running on your local machine. The virtual machine will not have GitLab
installed, though. At this point, you could install GitLab using the Omnibus
package referenced previously, but I found the following GitLab Installer really
straightforward to use.

At the command line, complete the following steps:

http://bit.ly/gitlab-compare
https://about.gitlab.com/downloads/
http://bit.ly/digitalocean-gitlab
https://drupalize.me/videos/why-vagrant
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads
https://github.com/tuminoid/gitlab-installer

1. Clone the installer project from GitHub:
$ git clone https://github.com/tuminoid/gitlab-installer.git

2. Inside the project repository, change the name of the Ruby configuration
file from gitlab.rb.example to gitlab.rb.

3. Start the virtual machine:
$ vagrant up

The new virtual machine will be provisioned. The username and password will
be printed at the end of the startup message from Vagrant. If you can’t remember
it, or have closed the window, the information is also available at the end of the
install script.

INSTALLING FROM SOURCE

If you really prefer to install GitLab from source, there are instructions on how to proceed in
the installation guide. This is strongly discouraged because GitLab releases a new version of
its software every month on the 22nd. Using packages will make it a lot easier to keep your
instance of GitLab up to date.

Regardless of the installation method you choose, you will need to be able to log
in as an administrator on your new GitLab instance to take advantage of the
remainder of this chapter. Once you have logged in, you should be redirected to
the welcome screen shown in Figure 12-1.

http://bit.ly/gitlab-installer
https://about.gitlab.com/installation/

Dashboard Q e o n % + & @

Welcome to GitLab!

Self hosted Git management application.

You don't have access to any projects right now.
You can create up to 10000 projects.

+ New Project

You can create a group for several dependent projects.
Groups are the best way to manage projects and members.

Figure 12-1. The welcome screen for GitLab

If you aren’t able to complete the installation, I encourage you to skim through
the rest of the chapter to see what would have been available to you so that you
can verify if it’s worth the effort to get it figured out.

Configuring the Administrative Account

You may choose to keep the admin account generic, or use it as your own
account when developing software with your team. Out of habit, I tend to create
an account with fewer privileges for daily use and maintain the root account for
tasks such as installing new add-ons, upgrading the software, and other
administrative tasks.

To configure your account, complete the following steps:

1. From the top menu, locate and click the icon profile settings (head and
shoulders of a person).

2. From the left sidebar, review each of the profile settings pages:
Profile

Name, and public details about yourself, such as Skype or Twitter.

Account

Private token, Two Factor Authentication, Username, and the ability to

delete your account.

Applications
Manage applications that can use GitLab as an OAuth provider, and
applications that you’ve authorized to use your account.

Emails

Primary email (avatar, commit credits), notification email, public email
(displayed email). Any of these addresses can be used to connect a
commit to you.

Password

Reset your password.

Notifications

Your notification email as well as your notification level. By default,
you will only receive emails for related resources (your commits, your
assets, etc). You may also choose from Watch (all notifications for a
given project); Mention (only when you are @referenced on an issue or
comment); or Disabled (never receive a notification).

SSH Keys

Note: you will not be able to work with repositories over SSH unless
you are logged in to an account with SSH keys. A reminder will appear
until it is dismissed, or your SSH keys are uploaded.

Design
Color settings for the sidebar, and code syntax highlighting.

History

All events created by this account. Includes actions you’ve taken such
as commits, creating new projects, etc.

Once you’ve configured the administrative account, you are ready to proceed. If
you decide to set up a secondary account immediately, jump ahead to “User
Accounts”.

Administrative Dashboard

When logged in as the administrative user, you will have access to some
additional screens, and functions that are not available to nonadministrators on
the public GitLab.com site. Most of these are available from the Admin area.

From the top menu, click the gear icon labeled Admin area. You will be
redirected to the page shown in Figure 12-2.

=) - .
y GitLab Admin area Q @ 0o % + & &
Statistics Features Components
Forks 1] Sign up L] GitLab 7.11.4
Issues 0 LDAP GitLab Shell 2.6.3
Merge Reguests 0 Gravatar ® GitLab AP va
Notes 0 OmniAuth Ruby 2.1.6p336
Snippets 0 Rails 4.1.9
SSH Keys 0
Milestones 0
Active Users 1
Projects Users Groups
Latest projects Latest users Latest groups

Figure 12-2. The administrative dashboard includes a summary of site details, and a status report
showing which version of GitLab is installed

This screen gives a summary of the components installed for this instance of
GitLab, including the software version you have installed for GitLab, GitLab
shell, GitLab API, Ruby, and Rails. There is also a list of all available features,
with a status indicator showing which ones are enabled. In Figure 12-2, you can
see that Sign up and Gravatar are enabled; LDAP and OmniAuth are disabled.
Gloriously, they do not rely on color alone. The closed circle is green to indicate
“on”; the “off” symbol is the icon for standby. Unfortunately these symbols are
provided by CSS alone, and there does not currently appear to be a text
equivalent.

Each of the options down the left sidebar are fairly self-explanatory:

Overview
This is the screen you see in Figure 12-2. Provides a quick overview of stats
for the site, along with quick links to create new users, projects, and groups.
Projects
Search for projects within the site, including filters for per-user, in-active (no
activity in the last 6 months), and visibility level (private, internal, or public).
Users
Search for accounts within the site. Includes fitlers for administrators,
blocked accounts, and people without projects.
Groups
Search by name for groups or add a new group. There are no filters available
for this screen.
Deploy keys
A list of all keys that are being used for deployments; you can also add new
ones from this screen.
Logs
The last 2,000 lines for each of githost.log, application.log, production.log,
and sidekiq.log.
Messages
The ability to add a timed broadcast message to all system accounts. Useful
for scheduled maintenance, recent upgrades, and more.
System hooks
A list of all existing system hooks. From the list of hooks, you can test a
hook or remove it. You can also add new hooks (URLSs) at this screen.
Background jobs

A summary of background jobs running in sidekig.

System OAuth applications

A list of existing applications, and the ability to add new ones (fields for a

http://sidekiq.org/

title, and redirect URISs).

Service templates

Service templates allow you to set default values for project services.
Depending on the service, different configuration options are available. For
example, external services such as Asana and Buildkite have fields for API
keys. Some services, such as JIRA and Redmine also have configuration
fields (Project URL, Issues URL, New Issue URL). Some services, such as
Emails on push, also have toggles for the triggers (push events versus tag
push events). This is a good screen to skim through if you want to integrate
with third-party services.

Application settings

Includes settings for default project settings and site-wide configuration
options.

To lock down your instance of GitLab, you will need to use several of the
options on the Application settings screen. The settings on GitLab are fairly
liberal. By default, the application is open to new registrants, who are restricted
to 10 repositories, but the default setting for a new repository is private.

The Features section includes the following settings (all are enabled by default):
Signup
Allow people to create accounts.
Signin
Allow people to authenticate themselves. If you wanted a read-only public
repository, it would be appropriate to use this option.
Gravatar

Integration for user profile pictures—needs a connection to the Internet.

Twitter

Show users a button to share their newly created public or internal projects
on Twitter.

Version check enabled

Checks to see if a newer version of GitLab is available.
Visibility and access control includes the following settings:

Default branch protection
Options are:

m Not protected (developers and “masters” can push commits; delete
branches; and force push new commits to a branch)

m Partially protected (developers can only push new commits; masters can
make any changes)

m Fully protected (only “masters” can make changes to the repository).
By default, Fully Protected is selected.
Default project visibility
Options are:

m Private (project access must be granted explicitly for each user.)
m Internal (the project can be cloned by any logged-in user.)
m Public (the project can be cloned without any authentication).

Private is selected by default.

Default snippet visibility
Options are Private, Internal, or Public. Private is selected by default.

Restricted visibility levels
Selected levels cannot be used by nonadmin users for projects or snippets.

Restricted domains for signups
Only allow accounts to be created by those who hold email accounts for the
selected domain names. Wildcards are allowed.

There are limit settings:
Default projects limit

By default, each account is only permitted to have 10 repositories; this
includes the private forks a developer may need to submit a merge request to
a project. If developers are working on several internal projects at once, this
number might need to be increased.

Maximum attachment size (MB)

By default, this is set to 10MB. This should be sufficient for most
screenshots, but may not be high enough if you are also attaching design
assets to issues.

And finally, sign-in restrictions:
Home page URL

The URL people should be redirected to when they visit any page other than
the sign-in page as a nonauthenticated user. If left unset, people will be
redirected to the sign-in page.

Sign in text

This text appears on the sign-in page, below the description of GitLab. You
should begin with a heading to separate your text from the GitLab
description.

By configuring each of these settings, you can create an appropriate starting
point for your instance of GitLab. For example, if you wanted to make it for
official work only by approved individuals, you might adjust the settings as
follows:

= Disable the signup feature.

= Disable the Twitter feature (removes the button from the interface that
encourages tweeting about projects).

m Set the Restricted visibility levels so that public repositories and snippets are
disabled (sign-in will be required to view all repositories).

If you wanted to make your instance a bit more open, you might adjust the
settings as follows:

Enable the signup feature.

Disable the Twitter feature.

Disable public repositories for nonadmins.

Restrict domains for signups to your organization.

In addition to these settings, you can further customize the setup of each project
to suit your needs.

Projects

Your organization probably already has a number of code projects, which may or
may not be versioned using Git. To begin your setup process within GitLab, you
may wish to begin with people, or with projects. The advantage of starting with
projects is that there’s something in place for people to engage with when they
first log in. If you are working with experienced Git users, you may want to
grant access to a few early adopters first to set up the projects.

Creating a Project

A project is effectively a repository with the accompanying support tools such as
issue queues and wiki pages. When creating a new project in GitLab, you will
have the option to import from GitHub, Bitbucket, Gitorious, Google Code, or
any other repository that is available to your GitLab instance via a URL.

To create a new project, complete the following steps:

1. From the top menu, locate and click the icon New repository. This is a +.
You will be redirected to the project creation form.

2. Complete each of the fields for the new project as shown in Figure 12-3:
Project path

This will be the URL for your project page. Use lowercase letters and
hyphens only.

Namespace

The name of the account, or group, this project should belong to. By
default, your own account is selected.

Import project from

If the project already exists, you can import it from one of the listed
services. GitLab must have access to the service in order to complete
the import—in other words, you can’t be behind a firewall without
access to the Internet; and you will need to enable OAuth access to the
project. The instructions in the pop-up window (Figure 12-4) will take
you to the relevant documentation page for the service you want to
connect to.

Description

Information about your project to be used in listings. This is not a
complete README.

Visibility Level
Choose between Private (only visible to authorized users), Internal

(visible to all logged in users), or Public (visible to anyone visiting the
site).
3. Locate and click the button Create project.
Your new project will be created. If you have selected the option to import from

an external service, the repository, issues, and wiki pages will be imported if
supported. You will be redirected to the new project page.

With the project imported, you are now able to add administrators and
developers to the project.

User Accounts

GitLab allows you to create users with specific roles. These roles can be used to
adjust read/write access to projects. If you are accustomed to Subversion’s

branch locking, these access restrictions will feel familiar to you. In this section,
you will learn how to set up individual user accounts and add people to projects.

New Project Q @ O % + &

Project path -awesome-project git
Namespace Administrator
Import project 0 GitHub 9 Bitbucket W GitLab.com ‘B Gitorious.org 3 Google Code
from

git Any repo by URL

Description
(optional)

Visibility Level (?) © @ Private
Project access must be granted explicitly for each user.

0 Internal
The project can be cloned by any logged in user.

@ Public
The project can be cloned without any authentication.

Need a group for several dependent projects? | Create a grou,
Create project group P proj group

Figure 12-3. New project creation form

Import projects from GitHub

To enable importing projects from GitHub, you need to setup OAuth integration.

Figure 12-4. After clicking the button GitHub, this pop-up window appears letting you know GitLab does
not have access to import from GitHub

Creating User Accounts

To create a new user account, you can begin from a number of different places.
The easiest to access is via the Admin area overview:

1. From the top right, click the gear icon labeled Admin area. You will be
redirected to the admin area overview page.

2. Locate and click the button New user. You will be redirected to the new
user creation form.

The form, as shown in Figure 12-5, is divided into three sections: Account,
Access, and Profile.

The fields in the Account section are all required:
Name

Display name for this account.

Username

Login name for the account.

Email
The email address for this account.
The default values for the Access details fields are typically appropriate:
Project limit
The default quantity is whatever you have previously set site-wide. GitLab
ships with a default of 10.
Can create group

The ability to cluster projects. This functionality is referred to as a team or
organization in other systems. This is enabled by default.

Admin

Allow this person to administer the GitLab software. This is disabled by
default.

Finally, there is the Profile section, which includes a field to upload a photo and
social media links:

m Avatar—if Gravatar is enabled, it may not be necessary to include a separate
user profile picture

m Skype

= LinkedIn

m Twitter

= Website

Although you can take the time to fill in the Profile details, not all employees

will want to link their social media accounts to a work system. It may be more
appropriate to leave them blank.

To create a user account, complete the following steps:
1. Fill in the Account details as described previously.
2. Confirm the Access details are correct.

3. Review the Profile details to ensure they should be left blank. Fill in any
details that are appropriate to add now.

4. Locate and click the button Create user.

New user

Account
Name
* required
Username
* required
Email
* required
Password
password Reset link will be generated and sent to the user.
User will be forced to set the password on first sign in.
Access
Projects limit 10

Can create group

Admin

Profile

Avatar Cheose File No file chosen
Skype
Linkedin

Twitter

Website

Create user Cancel

Figure 12-5. The new user account creation form is divided into three sections: Account (required fields),
Access, and Profile

The new user account has been created; and a notification email has been sent to
the person with a one-time login link she can use to set up her password.

In addition to this manual account creation, GitLab also offers LDAP and
OmniAuth integration. Setting up this type of access is covered in the GitLab

http://bit.ly/gitlab-ldap
http://bit.ly/gitlab-omniauth

documentation. As of the time of this writing, supported OmniAuth providers
included GitHub, Twitter, and Google.

Adding People to Projects

To add people to a project, complete the following steps:

AR

7.

Navigate to the project page.

From the sidebar, locate and click Settings.

From the left sidebar, locate and click Members.

Locate and click Add members. A new form will open (Figure 12-6).

In the field labeled People, enter the username or email of the person you
want to add to this project.

Adjust the field labeled Project Access to one of the following:
Guest

Able to view the project, create issues, leave comments

Reporter

Able to clone the repository, create code snippets

Developer

Able to commit code to approved branches

Master

Project administrator

Owner
Able to remove the project

Locate and click Add users to project.

The accounts have been granted appropriate access to your new project. If the
email was not already registered in this instance of GitLab, an invitation will
have been sent, asking that person to register.

Groups

To collect projects, you can use groups. You may choose to think of a Group as a
Division, Team, Organization, or Software Project (with subprojects). By
default, Groups are private, and only members of that group may view projects
in the group.

ANYONE CAN CREATE GROUPS

By default, anyone with an account on GitLab is permitted to create a group. You can disable
this per-account when the account is created, or from the account’s settings screen.

New group
Group path https://127.0.0.1:8443/ open-source
Details
s
Group avatar % ChooseFile... | File name...

The maximum file size allowed is 200KB.

« A group Is a collection of several projects
« Groups are private by default
« Members of a group may only view projects they have permission to access

« Group project URLs are prefixed with the group namespace
« Existing projects may be moved into a group

Create group Cancel

Figure 12-6. Adding users to projects; search for a person, and set the appropriate access level

To create a new group, complete the following steps:
1. From the top menu bar, click the gear icon for Admin area.

2. Locate and click New group. You will be redirected to the Group creation
form (Figure 12-7).

3. Enter the details for each of the form fields:

Group path

The URL fragment used for this group. You are limited to lowercase
letters and hyphens. In URLSs, this will be used in the same way as the
usernames.

Details

A short description of your team, organization, software project—
essentially “about” or “bio” field.

Group avatar
The display logo for this group.

4. Locate and click Create group. You will be redirected to the administration
screen for the group.

New group
Group path https://127.0.0.1:8443/ open-source
Details
s
Group avatar % ChooseFile... | File name...

The maximum file size allowed is 200KB.

« A group Is a collection of several projects
« Groups are private by default
« Members of a group may only view projects they have permission to access

« Group project URLs are prefixed with the group namespace
« Existing projects may be moved into a group

Create group Cancel

Figure 12-7. Creating a new group

Your new group has been created. You can now add people and projects to your
group.

Adding People to Groups

Permissions are set primarily on the projects, not the groups. There are, however,
some additional actions that users can take if they are granted group-specific
roles:

= Everyone is able to browse the group.

= Only the Owner is allowed to edit the group, manage the group’s members,
and remove the group.

m Group Masters are also able to create projects within group.

To add a person to a group and assign a role to the person, complete the
following steps:

1. From the top menu, click the gear icon for the Admin area.

2. From the left sidebar, click the menu link Groups. You will be redirected to
the Group administrative page.

3. Locate the form to add a user to the group (Figure 12-8).
4. Enter the details for each user you want to add to the group:
Username

You can add multiple people with the same role (Figure 12-9).

Role
Choose one of Guest, Reporter, Developer, Master, or Owner.

5. Click Add users to group.

Group: neverending-story @ Edit

Group info: Add user(s) to the group:

Read more about project permissions here

Name: neverending-story Guest

Path: neverending-story
Description: Add users fo group
Created on: June 15, 2015

Members €

Projects @
Administrator Owner ﬂ

Figure 12-8. Add a user to a group

The group will not be visible until there is at least one project added to it.

Adding Projects to Groups

Adding a project to a group is a simple matter of adjusting the namespace to be a
group, instead of an individual account.

To create a new project within a group, complete the following steps:
1. From the top menu, click the icon + with the label New project.
2. Enter a Project path, using only lowercase letters and hyphens.

3. Next to the label Namespace, click the down arrow and select the
appropriate group (Figure 12-10).

4. Complete each of the fields as you did previously to create a new project.
5. Click Create project.

The new project has been created and is available for development.

Add user(s) to the group:

Read more about project permissions here

» Morla | | x Engywook | | x Atreyu | x Falkor

Developer -

Figure 12-9. You can add multiple people to a group at the same time as long as they have the same role

Project path sea-of-possibilities .git
Namespace Administrator
Groups
coffee-shops
Users

Administrator

———

Figure 12-10. The project Sea of Possibilities has been added to the group Neverending Story

If the project already existed, and you want to move it to a different namespace
(individual account, or group), complete the following steps:

1. In the top menu, click gear icon for the Admin area.
2. From the left sidebar, click Projects.

3. Locate the project you want to reassign and click its name. You will be
redirected to an admin summary for the project.

4. Locate the transfer form (Figure 12-11).

5. In the transfer form, click the down arrow on the dropdown box. A list of
groups and users will appear. Select the group you want to transfer this
project to.

6. Click Transfer.

Transfer project

Namespace

Figure 12-11. The project transfer form allowing you to move a project to a different namespace

The project has been transfered to the new group. Previous group members will
no longer have access to the project. Anyone with a local clone of the project
will need to update the URL to use the new namespace for the project. (See
Chapter 5 for details on working with remotes.)

Access Control

To limit access to projects, there are both project visibility settings and per-
account roles. With these two options, you have a fair degree of flexibility over
how a project is managed. In Chapter 2, you learned about a number of different
ways to chain together repositories so that people had the correct level of access.
With GitLab’s finer-grained controls, you can ensure everyone has only exactly
the access you would like them to have.

Project Visibility

Within a given project, you can control the level of access per-project and per-
role:

Private

Project access must be granted explicitly for each user.

Internal

The project can be cloned by any logged-in user.

Public

The project can be cloned without any authentication.
To adjust the project visibility settings, complete the following steps:
From the top menu, click the gear icon for Admin area.
From the left sidebar, click Projects.
Locate the project you wish to adjust and click its title.

From the project admin summary page, locate and click the button edit.

AR

Locate the section of the form Visibility Level (Figure 12-12) and adjust
the settings as appropriate for the access level you wish people to have
(Private, Internal, or Public).

6. Locate and click Save changes.

Visibility Level (?) & @@ Private
Project access must be granted explicitly for each user.

U Internal
The project can be cloned by any logged in user.

@ Public
The project can be cloned without any authentication.

Figure 12-12. Update the project visibility to one of Public, Internal, or Private

The visibility settings for your project have been adjusted.

Limiting Activities with Project Roles

Once users are able to see a project, you can further control the activities they
can perform within the repository by assigning each person a specific role. A
comprehensive checklist of all permissions is available from within your GitLab
installation from help/permissions/permissions.

A quick summary of the functionality available to each role is as follows:
Guest

Able to create new issues and leave comments, and that’s it! This role may
be appropriate for stakeholders who do not need access to the code, but
should be involved in the development of the project.

Reporter

In addition to the Guest permissions, a Reporter is able to clone the project
and create code snippets. You may want to grant CTOs this role because they
should not be working on code anymore. (I’m mostly joking. I do think it’s
great when managers are able to jump in and help out; I also think that
managers should be focusing on the outward-facing tasks only they can
accomplish.)

Developer

In addition to all of the previous permissions, Developers can also create
new branches, create merge requests, push to nonprotected branches, add
tags, write wiki pages, manage the issue tracker, and more! Most people on
the team will likely be assigned this role. You can still limit their access to
specific branches, so it’s okay to be generous with permissions at this point.

Master

In addition to the previous permissions, Masters are also able to create
milestones, add new team members, push to protected branches, add deploy
keys to the product, and edit the project itself. This role is appropriate for
team leaders, and possibly savvy project managers who might need to change
the team composition/access from time to time.

Owner

The final role is also able to change the project visibility, transfer the project
to another namespace, and remove the project altogether. It is appropriate for
nonteam administrators to have this role.

To update a person’s role within a group, complete the following steps:
1. From the top menu, click the gear icon for Admin area.
2. From the left sidebar, click Projects.

3. Locate the name of the project you want to update. Next to the name of the
project there is a button labeled edit. Click this button. You will be
redirected from the admin area to the project.

4. From the left sidebar, click Members.

5. Locate and click Edit group members. The list of members will be
converted into a configuration list.

6. Locate the person whose role you want to change, and click the pencil
icon. A new dropdown box will appear (Figure 12-13).

7. Update the dropdown box so that it contains the appropriate role for this
person.

8. Click Save.

neverending-story group members (6)

Bastian bastian Developer v [
| Master 4 |
E3
Engywook engywook Developer # =
¥ Falkor falkor Developer # n
Atreyu atreyu Developer # ﬂ
Morla morla Developer # [

Figure 12-13. Update the role for a given team member

The new role has been applied.

Limiting Access with Protected Branches

The final level of access that GitLab offers is a per-branch setting. By default,
the branch master is protected, and people with the role Developer cannot push
to this branch. Instead, they are required to use the Merge Request process to
have their work incorporated into the branch master for the repository. If you
prefer having a shared access model, you can remove this protection.

To update which branches are protected within a given project, the branch must
already exist. Once it exists within the repository, you can open or close the
access. (Remember that when you first created the project you selected the
default access setting for new branches.) To set up access control for a given
branch, complete the following steps:

1. From the top menu, click the gear icon for Admin area.

2. From the left sidebar, click Projects.

3. Locate the project you wish to adjust, and click the button labeled edit next
to its name. This will take you to the project page, instead of the admin

page.
4. From the left sidebar, click Settings, then Protected branches.

5. From the dropdown menu, select the branch you would like to protect
(Figure 12-14).

6. Locate and click the button Protect.

Branch fantasia

Developers can push
Allow developers to push to this branch

==

Figure 12-14. Lock a branch so that it can only receive updates from accounts with the Role “Master” or
“Owner” for this project or team

The branch can no longer be updated by the role Developer.

To remove this restriction, complete the following steps from the same screen:
1. Locate the section titled Already Protected (Figure 12-15).
2. Locate the branch you would like to update.
3. Click the button Unprotect.

Already Protected:

Branch Developers can push Last commit

master 13c7f5f1 - about an hour ago m

Figure 12-15. Branches that have already been protected can be unprotected

Now people with the role Developer will be able to push commits to the branch
you just updated.

Milestones

Within each project, you are able to create milestones. These can be used to
collect issues, participants, and deadlines. If you are working in a Scrum fashion,
you may find them useful for sprint loading. Milestones for projects that are
shared by a group can also be seen from a single report page. This can make it
easier to coordinate between projects; however, it is still per-repository so it is
not as flexible as a full-featured project management tool, which allows you to
collect all issues for different code bases into a single project for management
purposes. If you use the same names within a group across all of the projects,
you can cheat a little and collate related items.

To create a new milestone for your project, complete the following steps:
1. Navigate to the project page.
2. From the left sidebar, click Milestones.
3. Locate and click the button New milestone.
4. Complete the form fields for your new milestone (Figure 12-16):
m Title
m Description, with optional files attached
= Date

5. Locate and click the button Create milestone.

New Milestone

+« To milestones

Title Moon Child Due

Date

Description yyrite Preview £ Edit in fullscreen

Bastian must save Fantasia!

21

28

#
ith GitLab Flavored Markdown

selecting them

Mo

22

29

June 2015 [+]

Tu We Th Fr Sa

2

9

16

23

30

3

10

17

24

18 19 20

25 26 27

Cancel

Figure 12-16. You can create date-based milestones for your project

Your new milestone has been created.

To see a list of all milestones for one of your groups, complete the following

steps:
1.
2.

4.

In the top-right corner on the screen, click your user avatar.

From the left sidebar, click Groups.

From the list of groups, click the name of the group you want to see the

milestones for.

From the left sidebar, click Milestones.

You will be redirected to a list of all milestones for this group (Figure 12-17).

Milestones 2 milestones

Only milestones from neverending-story group are listed here.

© Open @ Closed @Al

Pass the Three Gates | iose mistone |
southemn-oracle

Moon Child | Close Milestone |
Clsies 0 Ve Recuests 100% comit e ——

sea-of-possibilities

Figure 12-17. A list of all milestones for a given group

Summary

GitLab is a robust, open source code hosting system that rivals the functionality
offered by GitHub and Bitbucket. It is available for you to install on your own
network free of charge.

= Access control can be customized per repository (visibility settings), per
account (with role settings), and per branch (with branch protection).

= You can collect both Projects (repositories) and Users (people) into Groups
for easier management.

m If you do not want the responsibility of maintaining your own software,
GitLab also offers a free cloud hosting service at GitLab.com.

Appendix A. Butter Tarts

In Git, branches can be used to maintain variations in code. These variations
might be a work in progress, or they may be a completely different direction.
These branches can feel similiar to variations of family recipes. This appendix
contains two variations of a recipe from my family of a classic Canadian dessert:
butter tarts. (For the non-Canadians reading this, the inclusions are what make
this dessert controversial. It’s like rebasing; but worse.)

Austin Butter Tarts

This is my mother’s recipe, passed down to her from her grandmother, Granny
Austin. It is always made with currants, and never anything else.

Pastry
m 2-15 cups flour
= 1 cup shortening
m Pinch salt
m [ce water (enough to bind)
1. Cut shortening into flour.
2. Add ice water (approximately ¥ cup).
3. Mix with fork.
4. Roll out.
5. Prick and bake in a muffin tin, unfilled, at 450° F for 12 minutes.
Filling
= 1 cup sugar
= 15 cup soft butter
m 3 eggs

m 1 cup currants

http://bit.ly/butter-tart

m 2 tablespoons sweet or sour cream
1. Mix together the filling ingredients.
2. Bake in the pastry-filled muffin tin at 400° F for about 25 minutes.

van der Heyden Butter Tarts

This is my aunt’s recipe, passed down to her from her mother, Pat van der
Heyden. It is usually without additions, but can have roasted nuts, chocolate
chips, or raisins.

Filling

m %5 cup softened butter
m 3 cups brown sugar

= 3 cups corn syrup

m 12 eggs

Cream together butter and sugar. Add corn syrup, then eggs. Mix well together.

Using your favorite pastry recipe, roll out and cut into suitable size for your tart,
like a muffin tin. Using a fork, prick holes into the bottom of each pastry. Ladle

in butter tart filling. Bake at 400° F for 21 minutes (or thereabouts).

Options:

= Roasted nuts

m Chocolate chips

= Raisins

Pastry

m 6 cups all-purpose flour

m 3 cups shortening (Karin uses Crisco; her mother used lard)
m 2 eggs

m Splash of vinegar plus 2 cups cold water

Mix flour with shortening, leave it somewhat lumpy. Whisk eggs, add vinegar
and water. Add wet to dry until you get a workable consistency. Freeze any
unused pastry in plastic for next time.

Appendix B. Installing the Latest
Version of Git

This book primarily covers the basics in Git, so there aren’t a lot of new features
that you’ll be missing out on if you don’t upgrade. In general, I find newer
versions of the software to be increasingly more friendly to use. The error
messages are clearer, and provide better “next action” suggestions. The syntax of
some tricky commands has improved, making the commands easier to
remember. (For example, the ability to delete a remote branch using the
parameter - -delete, and not some weird syntax involving a colon.)

So you think you have Git installed. Sweet!

But the version that ships with your operating system is 90% likely to be 100%
old. “It’s all Git to me!” I hear you saying. I know, I know. I used to think the
same thing: Git is old and complicated and hasn’t changed in a million Internet
years. And then I went to a Git developer conference. At the conference, I met
wonderful developers who were friendly and welcoming and patient and funny
and very much actively engaged in making Git better. At the time, the maintainer
of Git was Junio Hamano, and the Windows maintainer was Johannes
Schindelin. They were both at the conference and were genuinely interested in
making Git easier for you to use. You won’t see what the community has been
up to if you don’t install the latest version!

You should always try to use the latest stable version of software, and you
definitely owe it to yourself to ensure you are using at least version 2.5 of Git.
As of this version of Git, the command git help is much more useful. I’'m very
excited about this change as it was one of the things that bugged me about Git
from the very first time I used it. Then, at the Git developer conference, I made
passing comment, which turned into an unofficial bug report...and a few months
later Sébastien Guimmara and Eric Sunshine made my wish into the command
you use today. Incredible!

I’m often a few patches out of date (e.g. if the latest version is 2.5.2, I might be
on 2.5.0), but I do make a careful effort to stay relatively current. If you don’t

remember having installed Git in the last few months, you will almost definitely
want to upgrade. You may also need to install Git if it’s not already on your
system (it’s not hard! there are installers you can use!).

Installing Git and Upgrading

There are human-friendly Git installers available for Windows and OS X. The
installer will generally attempt to keep your settings in place when you upgrade
Git.

These installers are available from:

http://git-scm.com/downloads

If you are on Linux or Unix, you probably already have Git installed, but you
should upgrade to the latest version. Use your package manager to do this (tips
in “Upgrading on *nix Systems”). OS X users may also want to use a package
manager to install Git and keep it up to date.

Finding the Command Line

This book is focused on using Git from the command line. I make no apologies
about this. There are two critical reasons I think you should give it a try:

1. It’s easier to copy and paste documentation that works on all operating
systems when everyone is working from the command line.

2. You get better error messages when you’re working from the command
line. In a graphical interface it’s harder to copy and paste the sequence of
commands you ran right before getting into the pickle you’re now in. By
working from the command line, you will be able to get help faster from
others when things go wrong.

As you gain comfort with the concepts in this book, I encourage you to transfer
that knowledge to graphical interfaces if you prefer.

OS X

1. Open Spotlight. Spotlight is available from the magnifying glass in the top-
right corner of the menu bar, or by pressing Control + Space.

http://git-scm.com/downloads

2. Into the Spotlight search window, type terminal and press Return. A new
terminal window will appear.

Linux

The location of a terminal window will vary depending on which distribution of
Linux you are using, and the window manager you are using. If you don’t know
how to open a terminal window for your version of Linux, a quick search with
your favorite search engine should be able to help out.

Windows

The method you use will vary slightly depending on the version of Windows you
are running.

Windows 7:
1. Click the button labeled “Start.”

2. Select Program Files — Accessories -~ Command Prompt. A terminal
window will open.

Windows 8:

1. Navigate to the Apps screen (swipe up; or use a mouse and click the down
arrow at the bottom of the screen).

2. Locate the section heading Windows System by swiping or scrolling to the
right.

3. Under Windows System, press or click Command Prompt.

Upgrading on *nix Systems

Package managers are a great way to ensure you are using an up-to-date version
of Git on your system. On Linux and Unix-variants, you will upgrade Git using
the same package manager that you used to install Git previously (well, Git was
probably already installed, and you might have needed to upgrade).

HOMEBREW IS A PACKAGE MANAGER FOR OS X.

If you are using OS X, and already have Homebrew installed, you should use this package
manager to keep Git up to date.

When working with a package manager, you need to remember to keep your list
of packages up to date. Generally this is with the subcommand update for your
package manager. For example, on Ubuntu I would use apt-get update, on
Fedora I would use yum check-update, and on OS X, I would use brew
update.

Once the list of packages is up to date, you can install the latest packaged
version of the software for your system. This is typically done with the
subcommand install or upgrade.

oS X:

$ brew install git

Ubuntu, and Linux distributions using the package manager apt:
$ apt-get install git

Fedora, and Linux distributions using the package manager yum:
$ yum install git

To ensure your packages are kept up to date, you can upgrade them individually
or on demand (Example B-1). This is typically done with the subcommand
upgrade, although running the install command again will generally also
work to upgrade the software if a newer package is available.

Upgrade with Caution.

Careful! Package managers are only mostly awesome, and sometimes upgrading
everything isn’t the smartest thing when you’re running towards a deadline.

Example B-1. Update packages with Brew

OS X upgrade only Git:

http://brew.sh/

$ brew upgrade git

OS X upgrade all packages installed via Homebrew:
$ brew upgrade

OS X Gotchas

When I started getting more involved in the Git community, I began working
with custom builds instead of using installers so that I could test out neat new
features and upgraded documentation. When I tried to push code to remote
repositories, I sometimes ran into the following error:

git: 'credential-osxkeychain' is not a git command. See 'git --help'.

For some reason, my environment variable for $PATH wasn’t behaving quite the
way I anticipated. After getting tired of trying to sort it out, I downloaded
another copy of the keychain helper and put it in a known location on my hard
drive.

It is Unlikely You’ve Lost Your Keychain.

I very, very highly doubt you will ever need to take advantage of this section. It’s
mostly a love note to my future self on how I solved this problem previously.
(Yes, I use my own books as reference. I write down the important stuff so that I
don’t have to store it all in my own head.)

First, verify that you have the correct authentication tool set up in your global
Git configuration file. This file is located at ~/.gitconfig and should contain the
following settings:

[credential]
helper = osxkeychain
useHttpPath = true

If this is not visible in the configuration file, set it up now by running the
following command:

$ git config --global credential.helper osxkeychain

Check to see if this solved the problem by running the following command:
$ git credential-osxkeychain

You should not receive the error message you had been receiving previously.

If you do receive the error message again, proceed with the following
instructions. You will download and “install” a copy of the helper application

osxkeychain:

$ curl -s -0 http://github-media-downloads.s3.amazonaws.com/
osx/git-credential-osxkeychain

Adjust the permissions so that you are able to run the program:
$ chmod u+x git-credential-osxkeychain

Move the helper program to the application folder for Unix-y programs. This
program is run as root, so you will need to enter your OS X login password to
run the command:

$ sudo mv git-credential-osxkeychain usrlocal/git/bin

Now when you run the following command, you shouldn’t get the error you
received previously about a missing command:

$ git credential-osxkeychain

This documentation is adapted from the instructions at “Beginner’s Setup Guide
for Git & Github on Mac OS X”. Chris Chernoff, if you ever read this, thank
you! Your tips saved me from having to enter the 42-character random password
I’d set up each time I wanted to push updated branches for this book to the Atlas
build server while running custom builds of Git.

Accessing Git Help at the Command Line

Git includes built-in documentation from the command line. This information is

http://bit.ly/git-setup-osx

accessible by running the following command:
$ git help

You can read all of the available documentation for a given topic by specifying
the topic name:

$ git help topic

To navigate the help page, you can can use your keyboard’s arrow keys to scroll
up and down. When you are finished reading the documentation page, press q to
exit.

For a list of all topics, use the following command:
$ git help --all
A handy glossary of Git terms is also available:

$ git help glossary

Appendix C. Configuring Git

Over time, you will find little shortcuts that help you use Git at the command
line. Personally I've found those who are the most frustrated with it are the ones
with the least amount of customization. There are two types of configuration
settings you will be making when working with Git: global settings, which apply
to all repositories that you work on; and local settings, which only apply to the
current repository. An example of a global setting might be your name, whereas
your email might be customized based on personal projects and work projects.

Global settings are stored in the file ~/.gitconfig, and local settings are stored in
the file .git/config for the specific repository you are working in. You will always
be able to go back and edit your settings if you want to.

You can check to see what value is set. For example, Example C-1 shows you
how to check what your name is set to.

Example C-1. Display a configured value

$ git config --get user.name

You can also get list of all values currently set (Example C-2).

Example C-2. Display all configuration values currently set

$ git config --list

A list of all variables is available from the command page for config. This is also
available by running the command:

$ git help config

Identifying Yourself

In order to get credit for your work, you will need to tell Git who you are. We
will store your name (Example C-3) and email (Example C-4) globally. Because
it’s a global setting, you don’t need to be in a specific repository to make the
change.

http://bit.ly/git-config-options

Example C-3. Configure your name

$ git config --global user.name 'Your Name'

Example C-4. Configure your email address

$ git config --global user.email 'me@example.com'

It might be appropriate to use specific email addresses for some repositories (for
example, if you are working on a work versus personal project). You can specify
the changes should only be applied to a specific repository by completing the
following steps:

1. Navigate to the directory that holds the repository you want to configure.

2. Apply the configuration command, substituting - -global for - - local.

For example:

$ git config --local user.email 'me@work.com'

Changing the Commit Message Editor

By default, Git will use the system editor. On OS X and Linux, this is typically
Vim. I really like Vim, so that’s what I use. It is a bit hardcore though, so you
might want to change your editor to something else.

Check to see which editor Git will use by running the following command:

$ git config --get core.editor

YOU MUST QUIT TO COMMIT

The commit will only be stored in Git when you quit the editor, not just save the commit
message. This may affect your choice of text editors.

If you would like to use Textmate, use the following command:
$ git config --global core.editor mate -w

If you would prefer to use Sublime, use the following command:

$ git config --global core.editor subl -n -w

If you want to change the editor for Windows, you will need to include the full
path to the application file. As applications are typically installed in the folder
C:\Program Files, you will need to wrap the path in quotes. Additionally, when
you use Bash to call git config, you must quote the value, resulting in a
double quoted string:

$ git config --global core.editor '"C:\Program Files\Vim\gvim.exe" --nofork'

For additional editors, check the configuration instructions for your editor of
choice.

Adding Color

Reading huge walls of text can be difficult. Add some color helpers to your
command line to make it easier to see what Git is doing;:

$ git config --global color.ui true
$ git config --global diff.uil auto

Customize Your Command Prompt

If you are working from the command line, you get zero clues about what is
going on with your files, until you explicitly ask Git about them. This is tedious
to keep having to ask. It’s like when you were eight and sat in the back of the car
whining at the driver saying, “Are we almost there yet?”

Instead of having to explicitly ask, I’ve modified my command-line prompt to
tell me which branch I currently have checked out and whether or not I’ve made
changes to any of the files in my repository. This is a fairly common hack, but
every developer will have their own little quirks on how they implement it.
Searching the Web for “bash prompt git status” will yield lots of results. My own
prompt is fairly simple, but others have added a lot more details to their prompt.
For example: Show your git status and branch (in color) at the command prompt
or local file status. As with all things technical, the more you add initially, the
more you will need to debug if it does not work right away.

http://bit.ly/git-config-options
http://bit.ly/bash-git-prompt

I have found the fancy prompts to be quite fussy to set up, and ended up giving
up on the really detailed ones. I recommend starting with something really
simple and then adding to it if you really need more information. The simple
change in color, along with the name of the branch, actually suits me just fine
and is less distracting without all the extra information.

Ignoring System Files

We have all done it: accidentally added one of OS X’s .DS_Store system files, or
a temporary .swp text editor file. You can save yourself a little embarrassment by
setting up a global ignore file so that Git prevents these files from being
committed to any local repository you create or work on. A comprehensive list
of files to ignore is available. Pick and choose the most appropriate for your
system and your projects.

Once you have a list of the files you want to ignore, complete the following
steps:
1. Create a new text file named .gitignore_global and place it in your home
directory.

2. Notify Git of the configuration file to use by running the following
command:

$ git config --global core.excludesfile ~/.gitignore_global

You may also have project-specific files, or even output directories (such as
build directories), that you don’t want to commit to your repository. For each
repository, you can have a custom “ignore” file that will further limit which files
can be tracked by Git:

1. Create a new text file named .gitignore and place it in the root directory for
your repository.

2. To this file add the names of the files you want Git to never add to the
repository. Each filename should have its own line. You can use pattern

matching as well, such as *. swp for temporary editor files.

This change will need a new commit in your Git repository:

https://github.com/github/gitignore

$ git add .gitignore
$ git commit -m "Adding list of files to be ignored."

Line Endings

This section is especially important if you work on a cross-platform team with
developers on OS X, Linux, and Windows.

You should set the line endings globally, but adding the setting to each repository
as well will ensure greater success for those who may not have explicitly set line
endings:

$ git config --global core.autocrlf input

To explicitly have all contributors use the right line endings, you will need to add
a .gitattributes file to your repository that identifies the correct line ending, text
files that should be corrected, and binary files that should never be modified.

Create a new text file named .gitattributes in the root directory of your
repository (the same directory the .git folder is in). An example of a new file is
as follows:

Set the default behavior for all files.
* text=auto

List text files that should have system-specific line endings on checkout.
.php text

.html text

.css text

List files that should have CRLF line endings on checkout, and not
be converted to the local operating system.
.sln text eol=crlf

List all binary files which should not be modified.
.png binary
.jpg binary
.gif binary
.ico binary

Add the file to the staging index:

$ git add .gitattributes

Commit the file to the repository:

$ git commit -m "Require the right line endings for everyone, forever."

Fixing Line Endings

If you are in the unfortunate position of having to standardize line endings mid-
project, you will need to complete the following steps:

1.
2.

Decide on the “official” line ending for your repository with your team.

Edit each of the affected files to reset the line endings. When this happened
to my “friend,” she used Vim and the setting :set ff=unix. You may
prefer to reset the line endings by simply opening each of the files with
your text editor and re-saving each file; or use a command line utility such

as dos2unix.

3. Add and commit the updated files to the repository.

Add the file .gitattributes to your repository as described in the previous
section.

Push the changes to the code hosting server.

Ask everyone else on your team to update their work using the command
rebase so that the “bad” line endings are not reintroduced into the
repository accidentally.

Pour yourself a hot chocolate or whisky. You’ve earned it.

Appendix D. SSH Keys

SSH keys allow you to make a connection to a remote machine without having
to enter a password every time. The keys themselves come in pairs: a public-
facing key and a private key. The private key should be treated like a password,
and never shared with anyone. The public-facing key will be “installed”
elsewhere, such as a code hosting system.

Create Your Own SSH Keys

To create an SSH key, you will need to run a program, which will save a pair of
files. The necessary software is already installed on *nix-based systems, but
Windows users will need to download additional (free) software.

Linux, OS X, and Unix-variants

To generate a key pair, run the following command:
$ ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

You will be prompted for the following information:

File location

Accept the default location by pressing Return to continue.

Password

It’s optional, but you really should have one. Make it memorable or store it
in a very secure password keeper that you use regularly.

The fingerprint for your key will be printed to the screen, and the key pair will
be saved to the appropriate location in ~/.ssh/.

You will now need to register this key with your system so that you can begin
using it.

This is where things get a little secret agent. You need to register your keys with

the local “agent” (using OS X? think “keychain,” but different). Begin the ssh-
agent application and redirect it to use a Bourne shell:

$ eval "$(ssh-agent -s)"
Register your SSH key with the agent:
$ ssh-add ~/.ssh/id rsa

Your key has been registered.

If you need to use the key immediately, skip ahead to “Retrieving Your Public
SSH Key”.

Windows

To generate an SSH key-pair on Windows you will need to use the software,
PuTTYgen:

1. Locate the latest binary for PuTTY from the PuTTY Download Page. The
file is named puttygen.exe.

2. Right-click the link puttygen.exe and choose “Save link as.” The text may
vary slightly depending on your browser.

3. When prompted, select a folder that you can find easily (for example, your
desktop folder).

4. Locate the PuTTYgen application on your desktop. Double-click the icon
to run the program.

5. At the bottom of the window, below “Type of key to generate,” select SSH-
2 RSA.

6. Locate and click the button “Generate.”

7. Wiggle your mouse. Seriously. You’ll be making random data (noise),
which helps with the key-generation process. Continue doing so until the
progress bar is full.

8. You will be prompted for a passphrase. It’s optional, but you should add
one.

http://bitly.com/putty-dl-page

9. Locate and click the button “Save private key.”
10. Locate and click the button “Save public key.”
This should save the keys to the appropriate location in ~/.ssh/.

If you are ready to use the SSH key immediately, complete the following steps as
well:

1. Locate the heading “Public key for pasting into OpenSSH authorized_keys
file.”

2. Right-click the random string below the heading.
3. Choose “Select all,” and then “Copy.”
Your public key has been copied to the clipboard. You are ready to proceed.

Retrieving Your Public SSH Key

When your code hosting system asks for your “Public SSH Key,” it needs the
contents of the file id_rsa.pub. This file is usually stored in a hidden folder of
your home directory: .ssh. To locate this file, and copy its contents to your
clipboard, complete the commands outlined next as is relevant for your operating
system. By working from the command line, you can avoid trying to find an
editor that recognizes a .pub file. It’s just text, but the text editors you have
installed probably don’t know that.

OS X:

1. Open a terminal window.

2. Run the following command: cat ~/.ssh/id_rsa.pub | pbcopy
Linux:

1. Open a terminal window.

2. Run the following command: cat ~/.ssh/id_rsa.pub. You should have
a very long string of characters printed to the screen. It should stretch the
entire width of the terminal, and it should not include the words “PRIVATE
KEY.” If the file is not found, you will need to create an SSH key first.

3. Copy all of the text that was printed to the screen.

Windows:
1. Open a Git Bash window.

2. Run the following command: clip < ~/.ssh/id_rsa.pub. This will copy
your public SSH key to the clipboard.

Your public SSH key is now copied to the clipboard and you are ready to paste it
into the configuration screen for your code hosting system of choice.

Index

Symbols
*nix systems
SSH key creation on, Linux, OS X, and Unix-variants
upgrading Git on, Upgrading on *nix Systems
.NET, Copyright and Contributor Agreements
A
access control
Bitbucket, Access Control-Limiting Access with Protected Branches
GitLab, Access Control-Limiting Access with Protected Branches
per-developer forks, Per-Developer Forks
protected branches, Limiting Access with Protected Branches
access models, Access Models-Custom Access Models

collocated contributor repositories, Collocated Contributor Repositories
Model-Collocated Contributor Repositories Model

custom, Custom Access Models

dispersed contributor, Dispersed Contributor Model-Dispersed
Contributor Model

shared maintenance, Shared Maintenance Model
account creation

Bitbucket, Creating an Account-Creating an Account

GitHub, Creating an Account-SSH Keys
add command, Summary, Command Reference

--patch [filename], Summary

add files, Command Reference

Aerobatic Hosting, Extending Bitbucket with Atlassian Connect
Agile environment, The People on Your Team, Evolving Workflows
Android, Software for Code Reviews

Ansible, The People on Your Team

antisocial coding, Project Governance for Nonpublic Projects
Apache, Distribution Licenses, Leadership Models

Apache License, Distribution Licenses

Apache Software Foundation, Software for Code Reviews

Asana, Administrative Dashboard

Atlas, Collaborating on Nonsoftware Projects, Trusted Developers with No
Peer Review

Atlassian, Limiting Access with Protected Branches

Atlassian Connect, Extending Bitbucket with Atlassian Connect
automated gatekeepers, Types of Reviewers

automated self-check, Types of Reviews

B

backward compatibility (see semantic versioning)
ball-and-chain diagrams, Mainline Branch Development
Balsamiq, Documenting Your Process

Benevolent Dictator For Life (BDFL) governance model, Leadership
Models

benevolent dictators, Types of Reviewers
BFG Repo Cleaner, Really Removing History

bisect command, Historical Reenactment with bisect-Historical
Reenactment with bisect

bisect inefficiencies, Undoing Shared History

Bitbucket, Really Removing History
access control in, Access Control-Limiting Access with Protected
Branches
account creation for, Creating an Account-Creating an Account
and Atlassian Connect, Extending Bitbucket with Atlassian Connect

creating private project with, Creating a Private Project from the
Welcome Screen-Configuring Your New Repository

editing files in repository, Editing Files in Your Repository-Editing Files
in Your Repository

exploring your project on, Exploring Your Project-Exploring Your
Project

getting started with, Getting Started-Editing Files in Your Repository
per-developer forks, Per-Developer Forks
private team work on, Private Team Work on Bitbucket-Summary

project documentation in wiki pages, Project Documentation in Wiki
Pages-Project Documentation in Wiki Pages

project governance for nonpublic projects on, Project Governance for
Nonpublic Projects

project setup with, Project Setup-Tracking Your Changes with Issues
protected branches, Limiting Access with Protected Branches
pull requests, Pull Requests-Accepting a Pull Request
shared access, Shared Access
tracking changes with issues, Tracking Your Changes with Issues-
Tracking Your Changes with Issues
bitHound, Software for Code Reviews, Extending Bitbucket with Atlassian
Connect

blame command, Investigating File Ancestry with blame-Investigating File
Ancestry with blame

branch command, Teamwork in Terms of Git

--contains, Command Reference

delete branches, Command Reference
delete branches, -D, Command Reference
list all branches, Command Reference
list branches, Command Reference

list remote branches, Command Reference
branch deployment

advantages, Mainline Branch Development

disadvantages, Mainline Branch Development

branch types, Sprint-Based Workflow
branch, create (see checkout command)

branch-per-feature deployment, Branch-Per-Feature Deployment-Branch-
Per-Feature Deployment

advantages, Branch-Per-Feature Deployment

disadvantages, Branch-Per-Feature Deployment
branches

butter tart recipe example, Teamwork in Terms of Git, Butter Tarts-van
der Heyden Butter Tarts

creating new, Creating New Branches-Creating New Branches
defined, Branching Strategies

for experimental work, Using Branches for Experimental Work
for teams of one, Working with Branches-Creating New Branches

keeping up to date, Keeping Branches Up to Date-Keeping Branches Up
to Date

listing, Listing Branches

unmerging, Unmerging a Branch-Unmerging a Branch, Unmerging a

Shared Branch-Unmerging a Shared Branch
updating list of remote branches, Updating the List of Remote Branches
using different, Using a Different Branch

working with, Working with Branches-Creating New Branches
branching strategies, Branching Strategies-Summary

and review process, Completing the Review

branch-per-feature deployment, Branch-Per-Feature Deployment-
Branch-Per-Feature Deployment

conventions for, Choosing a Convention

mainline branch development, Mainline Branch Development-Mainline
Branch Development

scheduled deployment, Scheduled Deployment-Scheduled Deployment
state branching, State Branching-State Branching

updating branches, Updating Branches-Updating Branches

Brew, Resolving Merge and Rebase Conflicts

broken branches, Comparative Studies of Historical Records

Brown, Sunni, Meeting as a Team

browser-based text editor
for Bitbucket files, Editing Files in Your Repository-Editing Files in Your
Repository
for quick commits, Making Commits via the Web-Making Commits via
the Web

bugs, finding and fixing (see debugging)

Buildkite, Administrative Dashboard

butter tart recipes (forking/branching example), Teamwork in Terms of Git,
Butter Tarts-van der Heyden Butter Tarts

C

cached parameter, Combining Commits with Reset
Canonical, Copyright and Contributor Agreements
cd shell command, Command Reference
cd [directory name] shell command, Command Reference
Chacon, Scott, Branch-Per-Feature Deployment
changes, proposed
applying, Applying the Proposed Changes-Reviewing the Proposed
Changes
reviewing, Reviewing the Issue
checkout command, Command Reference
checkout branch, Command Reference
checkout [commit], Command Reference
create branch, -b, Summary, Command Reference
tracking branch, Command Reference
Chef, The People on Your Team, Copyright and Contributor Agreements
Chernoff, Chris, OS X Gotchas
cherry-pick command, An Overview of Locating Lost Work
cherry-pick [commit], Command Reference
clone command, Consumers, Maintainers
clone [URL], Command Reference, Command Reference
clones, zipped packages vs., Consumers
cloning (see git clone [URL] command)
cloning repositories, Teamwork in Terms of Git

co-maintainership, Granting Co-Maintainership-Granting Co-
Maintainership

Code of Conduct (CoC) document, Code of Conduct

code reviews, software for, Software for Code Reviews

Coder, Software for Code Reviews
codes of conduct, Code of Conduct
coding teams, The People on Your Team
collaboration, The People on Your Team

collocated contributor repositories access model, Access Models, Collocated
Contributor Repositories Model-Collocated Contributor Repositories
Model

color, adding to Git, Adding Color

command and control, Command and Control-Summary

access models, Access Models-Custom Access Models

project governance, Project Governance-Code of Conduct

command prompt customization, Customize Your Command Prompt
commands (see individual command names)

commit command, Command Reference

--amend, Summary

-m, Command Reference
commit messages

changing editor for, Changing the Commit Message Editor
detailed, Writing Extended Commit Messages

commit process, Teamwork in Terms of Git
commitment meetings, Tracking Progress

commits

altering with interactive rebasing, Altering Commits with Interactive
Rebasing-Altering Commits with Interactive Rebasing

amending, Amending Commits
and rollbacks, Working with Commits-Unmerging a Branch

combining with reset, Combining Commits with Reset-Combining

Commits with Reset

publishing perfect, Constructing the Perfect Commit-Constructing the
Perfect Commit

reverting, Reverting a Previous Commit
unmerging a branch, Unmerging a Branch-Unmerging a Branch
via Web, Making Commits via the Web-Making Commits via the Web
company-wide stand-up meetings, Tracking Progress
configuration, Git, Configuring Git-Line Endings
adding color, Adding Color
command prompt customization, Customize Your Command Prompt
ignoring system files, Ignoring System Files
line endings, Line Endings
user name/email configuration, Identifying Yourself
consensus shepherds, Types of Reviewers
consensus-driven development, The People on Your Team
consensus-driven, leader-approved governance model, Leadership Models
consumers
contributors vs., Setting Up the Developers-Maintainers
developers as, Consumers-Consumers
continuous delivery, Mainline Branch Development
Continuous Delivery (Humble and Farley), Mainline Branch Development
continuous deployment, Mainline Branch Development
continuous integration, Mainline Branch Development
contractors
copyright and, Copyright and Contributor Agreements

untrusted developers with independent quality assurance, Untrusted
Developers with Independent Quality Assurance

contributors

consumers vs., Setting Up the Developers-Maintainers

developers as, Contributors

conventions, branching strategy, Choosing a Convention
copyright agreements, Copyright and Contributor Agreements
creating clones, Teamwork in Terms of Git

Creative Commons license, Copyright and Contributor Agreements,
Distribution Licenses

creative thinking, Thinking Strategies

custom access models, Custom Access Models

CVS, Access Models

D

debugging, Finding and Fixing Bugs-Summary
comparative studies of historical records, Comparative Studies of
Historical Records-Comparative Studies of Historical Records

file ancestry with blame command, Investigating File Ancestry with
blame-Investigating File Ancestry with blame

historical reenactment with bisect command, Historical Reenactment
with bisect-Historical Reenactment with bisect

stash command for emergency fixes, Using stash to Work on an
Emergency Bug Fix-Using stash to Work on an Emergency Bug Fix

decision thinking, Thinking Strategies
default branches, Mainline Branch Development

deleted file, mid-rebase conflict from, Mid-Rebase Conflict from a Deleted
File-Mid-Rebase Conflict from a Deleted File

deployment, Mainline Branch Development

design critique, Types of Reviews

detached HEAD state, Updating Branches

developers

as consumers, Consumers-Consumers

as contributors, Contributors

as maintainers, Maintainers-Maintainers

setup for multi-person teams, Setting Up the Developers-Maintainers

trusted, with no peer review, Trusted Developers with No Peer Review-
Trusted Developers with No Peer Review

trusted, with peer review, Trusted Developers with Peer Review

untrusted, with independent quality assurance, Untrusted Developers
with Independent Quality Assurance

untrusted, with QA gatekeepers, Untrusted Developers with QA
Gatekeepers

development

by teams of more than one, Participating in Development-Publishing
Work

keeping branches up to date, Keeping Branches Up to Date-Keeping
Branches Up to Date

publishing perfect commits, Constructing the Perfect Commit-
Constructing the Perfect Commit

publishing work, Publishing Work

resolving merge conflicts, Resolving Merge and Rebase Conflicts-
Resolving Merge and Rebase Conflicts

reviewing work, Reviewing Work-Merging Completed Work
sprint-based workflow, Sprint-Based Workflow-Sprint-Based Workflow

untrusted developers with independent quality assurance, Untrusted
Developers with Independent Quality Assurance

with trusted developers with no peer review, Trusted Developers with No

Peer Review-Trusted Developers with No Peer Review

Dia, Documenting Your Process

diff command, Reviewing the Proposed Changes

diff program, Dispersed Contributor Model

DigitalOcean, Installing GitLab

dir shell command, Command Reference

directed acyclic graph (DAG), Mainline Branch Development
discreet repositories, Project Governance for Nonpublic Projects

dispersed contributor access model, Dispersed Contributor Model-
Dispersed Contributor Model

distributed version control, Command and Control
distribution licenses, Distribution Licenses
Docker, The People on Your Team

documentation

in Bitbucket wiki pages, Project Documentation in Wiki Pages-Project
Documentation in Wiki Pages

of encoded decisions, Documenting Encoded Decisions
of workflow process, Documenting Your Process
README file for, Document the Project in a README

Driessen, Vincent, Scheduled Deployment

Drupal, Leadership Models

Drupal Code of Conduct, Code of Conduct

Drupal Project module, Documenting Encoded Decisions
Dymitruk, Adam, Branch-Per-Feature Deployment

E

Eaton, Jeff, Using stash to Work on an Emergency Bug Fix
empathy, cultivating, Cultivating Empathy

encoded decisions, documentation of, Documenting Encoded Decisions
Etsy, Mainline Branch Development

experimental work, branches for, Using Branches for Experimental Work
F

Facebook, Mainline Branch Development

Farley, David, Mainline Branch Development

Fedora, upgrading Git on, Upgrading on *nix Systems

feedback (review process), Preparing Your Feedback

fetch command, Teamwork in Terms of Git, Collaborating on Nonsoftware
Projects, Uploading the Project Repository, Consumers, Reviewing Work,
Trusted Developers with No Peer Review

files, restoring, Restoring Files
filter-branch command, Really Removing History, Command Reference
Flickr, Code of Conduct, Mainline Branch Development

forks/forking, Teamwork in Terms of Git

butter tart recipe example, Teamwork in Terms of Git, Butter Tarts-van
der Heyden Butter Tarts

for public projects on GitHub, Forking a Project
Git vs. GitHub terminology, Collocated Contributor Repositories Model
issue tracking, Tracking Changes with Issues

per-developer (Bitbucket), Per-Developer Forks

Free Libre Open Source Software (FLOSS), Copyright and Contributor
Agreements

freelancers, copyright and, Copyright and Contributor Agreements
G
Gamestorming (Gray, Brown, Macanufo), Meeting as a Team

gc command

--prune, Command Reference

Gerrit, Software for Code Reviews

Git
adding color to, Adding Color
command prompt customization, Customize Your Command Prompt
commit message editor changes, Changing the Commit Message Editor
configuring, Configuring Git-Line Endings
configuring to ignore system files, Ignoring System Files

converting an existing project to, Converting an Existing Project to Git-
Converting an Existing Project to Git

finding command line for, Finding the Command Line
GitHub terminology vs., Collocated Contributor Repositories Model
installers for, Installing Git and Upgrading

installing latest version of, Installing the Latest Version of Git-OS X
Gotchas

line ending configuration, Line Endings
OS X installation issues, OS X Gotchas
teamwork in terms of, Teamwork in Terms of Git-Summary
upgrading on *nix systems, Upgrading on *nix Systems
user name/email configuration, Identifying Yourself
git command (see individual command names)
git commands, summary, Command Reference, Command Reference
Git for Knitters, Teamwork in Terms of Git
Git for Teams, Working Locally
Git Fundamentals for Web Developers (Mitchell), Publishing Work
Git hosting

open source projects on GitHub, Open Source Projects on GitHub-

Summary

private team work with Bitbucket, Private Team Work on Bitbucket-
Summary

self-hosted collaboration with GitLab, Self-Hosted Collaboration with
GitLab-Summary
git-imerge, Resolving Merge and Rebase Conflicts

GitFlow

and sprint-based workflow, Sprint-Based Workflow
for release schedule workflow, Releasing Software According to Schedule

scheduled deployment branching with, Scheduled Deployment-Scheduled
Deployment

GitHub

account creation on, Creating an Account-SSH Keys

contributing to projects, Contributing to Projects-Initiating a Pull
Request

downloading repository snapshots, Downloading Repository Snapshots
forking, Forking a Project

getting started on, Getting Started on GitHub-Updating Your Local
Repository

Git terminology vs., Collocated Contributor Repositories Model

granting co-maintainership, Granting Co-Maintainership-Granting Co-
Maintainership

open source projects on, Open Source Projects on GitHub-Summary
organization creating on, Creating an Organization

personal repositories on, Personal Repositories-Updating Your Local
Repository

public projects on, Using Public Projects on GitHub-Working Locally

pull request initiation, Initiating a Pull Request-Initiating a Pull Request

pull requests with merge conflicts, Pull Requests with Merge Conflicts
repository creation for, Creating a Project Repository

reviewing/accepting pull requests, Reviewing and Accepting Pull
Requests

running your own project, Running Your Own Project-Pull Requests with
Merge Conflicts

SSH keys for, SSH Keys

tracking changes with issues, Tracking Changes with Issues-Tracking
Changes with Issues

working locally, Working Locally-Working Locally

GitHub Flow, Branch-Per-Feature Deployment
gitk command, Reviewing the Proposed Changes

GitLab, Issue-Based Version Control

access control, Access Control-Limiting Access with Protected Branches

adding people to groups, Adding People to Groups-Adding People to
Groups

adding people to projects, Adding People to Projects-Adding People to
Projects

adding projects to groups, Adding Projects to Groups-Adding Projects to
Groups

administrative account configuration, Configuring the Administrative
Account

administrative dashboard, Administrative Dashboard-Administrative
Dashboard

creating a project with, Creating a Project

creating user accounts, Creating User Accounts-Creating User Accounts
getting started with, Getting Started-Administrative Dashboard

groups, Groups-Adding Projects to Groups

installing, Installing GitLab-Installing GitLab

limiting access with protected branches, Limiting Access with Protected
Branches

limiting activities with project roles, Limiting Activities with Project
Roles

milestones, Milestones

project visibility, Project Visibility

projects, Projects

self-hosted collaboration with, Self-Hosted Collaboration with GitLab-
Summary

user accounts for, User Accounts-Adding People to Projects

GitLab Flow, State Branching
Gitorious, Creating a Project
Google, Creating a New Project, Creating User Accounts

Google Calendar, Tracking Progress, Copyright and Contributor
Agreements

Google Code, Creating a Project
Google Docs, Sprint-Based Workflow
Google Hangouts, Tracking Progress
GoToMeeting, Tracking Progress
governance (see project governance)
governance models, L.eadership Models
GPL, Distribution Licenses

Gravatar, Administrative Dashboard
Gray, Dave, Meeting as a Team

H

Hamano, Junio, Installing the Latest Version of Git

Harmony Agreements, Copyright and Contributor Agreements

history

comparative studies of historical records, Comparative Studies of

Historical Records-Comparative Studies of Historical Records

file ancestry with blame command, Investigating File Ancestry with

blame-Investigating File Ancestry with blame

reenactment with bisect command, Historical Reenactment with bisect-

Historical Reenactment with bisect

removing completely, Really Removing History-Really Removing History

reviewing, Reviewing History-Reviewing History

rewriting, Constructing the Perfect Commit
history undoing shared (see shared history, undoing)
Homebrew, Upgrading on *nix Systems

hotfixes

branch creation for, Sprint-Based Workflow
post-launch, Post-Launch Hotfix
prioritizing, Scheduled Deployment, Sprint-Based Workflow

Humanitarian ID Code of Conduct, Code of Conduct
Humble, Jez, Mainline Branch Development

|

ideation meetings, Meeting as a Team

init command, Command Reference

Inkscape, Documenting Your Process

integration branches, State Branching

interactive rebasing, Altering Commits with Interactive Rebasing-Altering

Commits with Interactive Rebasing

issue tracking

Bitbucket, Tracking Your Changes with Issues-Tracking Your Changes
with Issues

GitHub, Tracking Changes with Issues-Tracking Changes with Issues

issue-based version control, Issue-Based Version Control-Issue-Based
Version Control

J
Jenkins instance, Trusted Developers with Peer Review

JIRA, Documenting Encoded Decisions, Private Team Work on Bitbucket,
Administrative Dashboard

jQuery, Distribution Licenses

junior developers, benefits to, Types of Reviewers
junior reviewers, benefits to, Types of Reviewers
K

Kaizens, Evolving Workflows

Kaleidoscope, Reviewing the Proposed Changes
kickoff meetings, Kickoff

L

LDAP, Creating User Accounts

Lead and Succeed in 4 Different Dimensions (program), Thinking Strategies
leadership models, Leadership Models

leadership training programs, Thinking Strategies
licensing, Document the Project in a README
line endings, Git configuration for, Line Endings
LinkedIn, Software for Code Reviews

Linux, Distribution Licenses

finding Git command line with, Linux

SSH key creation on, Linux, OS X, and Unix-variants

SSH key retrieval on, Retrieving Your Public SSH Key
upgrading Git on, Upgrading on *nix Systems
list parameter, Listing Branches

local repositories

connecting to personal GitHub repository, Connecting a local repository

converting an existing project to Git, Converting an Existing Project to
Git-Converting an Existing Project to Git

creating, for teams of one, Creating Local Repositories-Reviewing History
downloading an existing project to, Cloning an Existing Project
initializing an empty project on, Initializing an Empty Project
reviewing project history, Reviewing History-Reviewing History

log command, Command Reference, Command Reference

--graph, Command Reference
--oneline, Command Reference, Command Reference
Is -a shell command, Command Reference
Lullabet, Tracking Progress
M
Macanufo

James, Meeting as a Team

mainline branch method, Mainline Branch Development-Mainline Branch
Development

maint (maintenance) integration branch, State Branching
maintainers
developers as, Maintainers-Maintainers

granting co-maintainership, Granting Co-Maintainership-Granting Co-
Maintainership

Managing Chaos (Welchman), Leadership Models

master integration branch, State Branching
meetings
and empathy, Cultivating Empathy
for teams, Meeting as a Team-Wrap-Up and Retrospectives
for tracking progress, Tracking Progress
kickoff, Kickoff

wrap-up/retrospective, Wrap-Up and Retrospectives

mentoring, The People on Your Team

merge command, Teamwork in Terms of Git, Summary, Command
Reference

merge conflicts

mid-rebase conflict, Mid-Rebase Conflict from a Single File Merge
Conflict-Mid-Rebase Conflict from a Single File Merge Conflict

pull requests with, Pull Requests with Merge Conflicts

resolving, Resolving Merge and Rebase Conflicts-Resolving Merge and
Rebase Conflicts

merge requests, Collocated Contributor Repositories Model, Collocated
Contributor Repositories Model

merge, rebase vs., Keeping Branches Up to Date
Microsoft, Project Governance

mistakes, undoing (see rollbacks)

MIT License, Distribution Licenses

Mitchell, Lorna, Publishing Work

mkdir shell command, Command Reference

N

next integration branch, State Branching

nonpublic projects (Bitbucket), Project Governance for Nonpublic Projects

NuGet, Distribution Licenses

0]

OmniAuth, Creating User Accounts
Omnibus, Installing GitLab
OmniGraffle, Documenting Your Process
one-on-one meetings, Tracking Progress

open source projects, GitHub, Open Source Projects on GitHub-Summary

account creation on, Creating an Account-SSH Keys

and personal repositories, Personal Repositories-Updating Your Local
Repository

contributing to projects, Contributing to Projects-Initiating a Pull
Request

downloading repository snapshots, Downloading Repository Snapshots
forking, Forking a Project

getting started on, Getting Started on GitHub-Updating Your Local
Repository

granting co-maintainership, Granting Co-Maintainership-Granting Co-
Maintainership

organization creating on, Creating an Organization

public projects on, Using Public Projects on GitHub-Working Locally
pull request initiation, Initiating a Pull Request-Initiating a Pull Request
pull requests with merge conflicts, Pull Requests with Merge Conflicts
repository creation for, Creating a Project Repository

reviewing/accepting pull requests, Reviewing and Accepting Pull
Requests

running your own project, Running Your Own Project-Pull Requests with
Merge Conflicts

SSH keys for, SSH Keys

tracking changes with issues, Tracking Changes with Issues-Tracking
Changes with Issues

working locally, Working Locally-Working Locally

OpenStack, Software for Code Reviews
operations teams, The People on Your Team
organizations (GitHub), Creating an Organization
origin command, Uploading the Project Repository
OsS X
finding Git command line with, OS X
SSH key creation on, Linux, OS X, and Unix-variants
SSH key retrieval on, Retrieving Your Public SSH Key
upgrading Git on, Upgrading on *nix Systems
overcategorization, avoiding, Ticket Progression
P
patch files, Dispersed Contributor Model
patch parameter, Adding Partial File Changes to a Repository
Payment Card Industry (PCI), Project Governance for Nonpublic Projects

peer reviews, The People on Your Team

defined, Types of Reviewers

trusted developers, Trusted Developers with Peer Review

Pencil, Documenting Your Process
permissions, establishing, Establishing Permissions
personal repositories, GitHub, Personal Repositories-Updating Your Local
Repository
connecting a local repository, Connecting a local repository
creating project on, Creating a project-Creating a project

importing a repository, Importing a repository

making quick commits via the Web, Making Commits via the Web-
Making Commits via the Web

publishing changes to, Publishing changes to your GitHub repository
updating local repository, Updating Your Local Repository

Pivotal Tracker, Documenting Encoded Decisions

private projects (see nonpublic projects)

private teams (Bitbucket), Private Team Work on Bitbucket-Summary

product backlog, Ticket Progression

Product Owner (see team composition)

progress, tracking, Tracking Progress

project deep dive meetings, Tracking Progress

project governance, Project Governance-Code of Conduct

codes of conduct, Code of Conduct

copyright and contributor agreements, Copyright and Contributor
Agreements

distribution licenses, Distribution Licenses

for nonpublic projects on Bitbucket, Project Governance for Nonpublic
Projects

leadership models, Leadership Models

Project Management Committee
PMC, Leadership Models

project setup
creating new project, Creating a New Project
developer setup, Setting Up the Developers-Maintainers
documentation in README, Document the Project in a README
establishing permissions, Establishing Permissions

for teams of more than one, Setting Up the Project-Document the Project

in a README

uploading project repository, Uploading the Project Repository-
Uploading the Project Repository

with Bitbucket, Project Setup-Tracking Your Changes with Issues

protected branches, Limiting Access with Protected Branches

pu integration branch, State Branching

public projects, GitHub, Using Public Projects on GitHub-Working Locally
contributing to projects, Contributing to Projects-Initiating a Pull
Request
downloading repository snapshots, Downloading Repository Snapshots
forking, Forking a Project

granting co-maintainership, Granting Co-Maintainership-Granting Co-
Maintainership

pull request initiation, Initiating a Pull Request-Initiating a Pull Request
pull requests with merge conflicts, Pull Requests with Merge Conflicts
repository creation for, Creating a Project Repository

reviewing/accepting pull requests, Reviewing and Accepting Pull
Requests

running your own project, Running Your Own Project-Pull Requests with
Merge Conflicts

tracking changes with issues, Tracking Changes with Issues-Tracking
Changes with Issues

working locally, Working Locally-Working Locally
public SSH key, retrieving, Retrieving Your Public SSH Key
pull command, Teamwork in Terms of Git, Keeping Branches Up to Date
pull request auto reviewers, Extending Bitbucket with Atlassian Connect

pull requests

accepting (Bitbucket), Accepting a Pull Request

Bitbucket, Pull Requests-Accepting a Pull Request, Submitting a Pull
Request

for public projects on GitHub, Initiating a Pull Request-Initiating a Pull
Request

GitHub and, Consumers
reviewing and accepting, Reviewing and Accepting Pull Requests

with collocated contributor repositories model, Collocated Contributor
Repositories Model, Collocated Contributor Repositories Model

with merge conflicts, Pull Requests with Merge Conflicts

PullReview, Software for Code Reviews
Puppet, The People on Your Team, Copyright and Contributor Agreements
push

delete branch, --delete, Summary

push command, Teamwork in Terms of Git, Summary, Uploading the
Project Repository

--set-upstream, Summary
Q
quality assurance (QA) teams, The People on Your Team
quality assurance testing, Types of Reviews
R
Rails, Distribution Licenses
README files, Document the Project in a README
reasonable restraint, Copyright and Contributor Agreements

rebase command, Begin Rebasing, Working with Commits, Keeping
Branches Up to Date

--abort, Mid-Rebase Conflict from a Single File Merge Conflict

--continue, Mid-Rebase Conflict from a Deleted File, Command
Reference

--interactive, Altering Commits with Interactive Rebasing, Command
Reference

rebasing, Updating Branches, Rebasing Step by Step-Mid-Rebase Conflict
from a Single File Merge Conflict

altering commits with interactive rebasing, Altering Commits with
Interactive Rebasing-Altering Commits with Interactive Rebasing

beginning, Begin Rebasing
mid-rebase conflict from deleted file, Mid-Rebase Conflict from a Deleted

File-Mid-Rebase Conflict from a Deleted File

mid-rebase conflict from single file merge conflict, Mid-Rebase Conflict
from a Single File Merge Conflict-Mid-Rebase Conflict from a Single File
Merge Conflict

Redmine, Documenting Encoded Decisions, Administrative Dashboard
reflog command, Command Reference

expire, Command Reference
release schedules

and ongoing development, Ongoing Development

and post-launch hotfix, Post-Launch Hotfix

stable release publication, Publishing a Stable Release

workflow for, Releasing Software According to Schedule-Post-Launch
Hotfix

remote branches, updating list of, Updating the List of Remote Branches
remote command
--verbose, Summary

add, Summary

remote repositories
branch maintenance, Branch Maintenance
connecting to, Connecting to Remote Repositories-Branch Maintenance
creating new projects, Creating a New Project
pushing changes to, Pushing Your Changes

second remote connection for, Adding a Second Remote Connection
repositories, Teamwork in Terms of Git-Teamwork in Terms of Git

adding changes to, Adding Changes to a Repository-Ignoring Files

adding partial file changes to, Adding Partial File Changes to a
Repository

branch maintenance, Branch Maintenance
cloning, Teamwork in Terms of Git

collocated contributor model, Collocated Contributor Repositories
Model-Collocated Contributor Repositories Model

committing partial changes to, Committing Partial Changes

connecting to remote, Connecting to Remote Repositories-Branch
Maintenance

creating, Creating a Project Repository

creating new projects, Creating a New Project

detailed commit messages, Writing Extended Commit Messages
downloading snapshots of, Downloading Repository Snapshots
ignoring files, Ignoring Files

local, for teams of one, Creating L.ocal Repositories-Reviewing History
personal, Personal Repositories-Updating Your Local Repository
pushing changes to, Pushing Your Changes

removing file from stage, Removing a File from the Stage

removing history of, Really Removing History-Really Removing History

second remote connection for, Adding a Second Remote Connection

reset command, Restoring Files, Combining Commits with Reset-
Combining Commits with Reset, Command Reference

--hard HEAD, Command Reference
--merge, Command Reference

HEAD, Summary, Command Reference

restoring files, Restoring Files

restraint of trade clause, Copyright and Contributor Agreements
retrospective meetings, Wrap-Up and Retrospectives

reverse engineering, Copyright and Contributor Agreements

revert command, Working with Commits, Reverting a Previous Commit,
Command Reference

--mainline, Command Reference

--no-commit, Command Reference

Review Board (software), Software for Code Reviews
review process, Ready for Review-Summary
applying proposed changes, Applying the Proposed Changes-Reviewing
the Proposed Changes
completion of, Completing the Review
evaluation submission, Submitting Your Evaluation
feedback preparation, Preparing Your Feedback
reviews of proposed changes, Reviewing the Issue
software for code reviews, Software for Code Reviews
types of reviewers, Types of Reviewers

types of reviews, Types of Reviews
rollbacks, Rollbacks, Reverts, Resets, and Rebasing-Summary

altering commits with interactive rebasing, Altering Commits with

Interactive Rebasing-Altering Commits with Interactive Rebasing
amending commits, Amending Commits
best practices for, Best Practices-Using Branches for Experimental Work

combining commits with reset, Combining Commits with Reset-
Combining Commits with Reset

command reference for, Command Reference-Command Reference
commits and, Working with Commits-Unmerging a Branch

describing your problem, Describing Your Problem-Describing Your
Problem

locating lost work, An Overview of Locating Lost Work-An Overview of
Locating Lost Work

removing history completely, Really Removing History-Really Removing
History

restoring files, Restoring Files

undoing shared history, Undoing Shared History-Unmerging a Shared
Branch

unmerging a branch, Unmerging a Branch-Unmerging a Branch

unmerging a shared branch, Unmerging a Shared Branch-Unmerging a
Shared Branch

using branches for experimental work, Using Branches for Experimental
Work

S

scheduled deployment branching, Scheduled Deployment-Scheduled
Deployment

advantages, Scheduled Deployment
disadvantages, Scheduled Deployment
Schindelin, Johannes, Installing the Latest Version of Git

Scrum, Ticket Progression

ScrumMaster (see team composition)

Sculpin, Teamwork in Terms of Git, Working Locally
security reviews, The People on Your Team
self-managing teams, The People on Your Team
semantic versioning, State Branching

senior developers, benefits to, Types of Reviewers
senior reviewers, benefits to, Types of Reviewers

shared branches, unmerging, Unmerging a Shared Branch-Unmerging a
Shared Branch

shared history, undoing, Undoing Shared History-Unmerging a Shared
Branch

reverting a previous commit, Reverting a Previous Commit

unmerging a shared branch, Unmerging a Shared Branch-Unmerging a
Shared Branch

shared maintenance access model, Access Models, Shared Maintenance
Model

shell commands, Command Reference

show command

[commit], Summary

[tag], Summary
sidekiq, Administrative Dashboard
single repository, shared access model, Access Models
Skype, Configuring the Administrative Account
social coding, Project Governance for Nonpublic Projects
solo developers (see teams (one member))
sprint demo meetings, Tracking Progress

sprint planning meetings, Tracking Progress

sprint-based workflow, Sprint-Based Workflow-Sprint-Based Workflow
sprints, Mainline Branch Development

SSH keys, SSH Keys, SSH Keys-Retrieving Your Public SSH Key

creating your own, Create Your Own SSH Keys-Windows

retrieving your public key, Retrieving Your Public SSH Key

staged parameter, Combining Commits with Reset
staging changes, Combining Commits with Reset
stand-ups (see commitment meetings)
stash

about, Teamwork in Terms of Git

crafter analogy for, Teamwork in Terms of Git

for emergency bug fixes, Using stash to Work on an Emergency Bug Fix-
Using stash to Work on an Emergency Bug Fix

for side projects, Mainline Branch Development
state branching, State Branching-State Branching

advantages, State Branching

disadvantages, State Branching

status command, Command Reference

Subversion, Distribution Licenses, Access Models, Limiting Access with
Protected Branches

system files, ignoring, Ignoring System Files
T
tab completion, Adding Changes to a Repository
tag command, Summary
tags
for teams of more than one, Working with Tags

for teams of one, Working with Tags-Working with Tags

working with, Working with Tags-Working with Tags
team composition

architects, The People on Your Team

backend developers, The People on Your Team

business analysts, The People on Your Team

designers, The People on Your Team

frontend developers, The People on Your Team

Product Owner, The People on Your Team

project managers, The People on Your Team

ScrumMaster, The People on Your Team
teams (multiple-member), Teams of More than One-Summary

and empathy, Cultivating Empathy

creating new project, Creating a New Project

developer setup for, Setting Up the Developers-Maintainers
establishing permissions, Establishing Permissions

for nonsoftware projects, Collaborating on Nonsoftware Projects
kickoff meetings, Kickoff

meetings for, Meeting as a Team-Wrap-Up and Retrospectives
members of, The People on Your Team

participating in development, Participating in Development-Publishing
Work

progress-tracking meetings, Tracking Progress

project setup, Setting Up the Project-Document the Project in a
README

sample workflows for, Sample Workflows-Untrusted Developers with
Independent Quality Assurance

teamwork in terms of Git, Teamwork in Terms of Git-Summary

thinking strategies for, Thinking Strategies-Thinking Strategies

trusted developers with no peer review, Trusted Developers with No Peer
Review-Trusted Developers with No Peer Review

uploading project repository, Uploading the Project Repository-
Uploading the Project Repository

working in, Working in Teams-Summary

wrap-up/retrospective meetings, Wrap-Up and Retrospectives
teams (one-member), Teams of One-Summary

adding changes to a repository, Adding Changes to a Repository-Ignoring
Files

commands for, Command Reference-Command Reference

connecting to remote repositories, Connecting to Remote Repositories-
Branch Maintenance

creating local repositories for, Creating Local Repositories-Reviewing
History

issue-based version control, Issue-Based Version Control-Issue-Based
Version Control

tags for, Working with Tags-Working with Tags
technical architecture review, Types of Reviews
technical review board governance model, Leadership Models
testing process, The People on Your Team
testing teams, The People on Your Team

text editor, browser-based

for Bitbucket files, Editing Files in Your Repository-Editing Files in Your
Repository

for quick commits, Making Commits via the Web-Making Commits via
the Web

thinking strategies, Thinking Strategies-Thinking Strategies

ticket progression, Documenting Encoded Decisions
ticket-based peer code review, Types of Reviews
ticketing systems, Documenting Encoded Decisions
touch shell command, Command Reference

track command, Teamwork in Terms of Git
tracking progress, meetings for, Tracking Progress
true merges, Branch Maintenance

trusted developers

with no peer review, Trusted Developers with No Peer Review-Trusted
Developers with No Peer Review

with peer review, Trusted Developers with Peer Review

Twitter, Creating a New Project, Configuring the Administrative Account,
Administrative Dashboard

Typo3, Software for Code Reviews
U
Ubuntu

Git upgrades with, Upgrading on *nix Systems
GitLab and, Installing GitLab

Ubuntu Code of Conduct, Code of Conduct

understanding thinking, Thinking Strategies

undo methods, Describing Your Problem

undoing (see rollbacks)

Unfuddle, Documenting Encoded Decisions

Unix
SSH key creation on, Linux, OS X, and Unix-variants
upgrading Git on, Upgrading on *nix Systems

unmerging a branch, Unmerging a Branch-Unmerging a Branch

untracked changes, Combining Commits with Reset

untrusted developers

with independent quality assurance, Untrusted Developers with
Independent Quality Assurance

with QA gatekeepers, Untrusted Developers with QA Gatekeepers

updating branches, Updating Branches-Updating Branches
upstream branch, Working Locally
upstream project, Collocated Contributor Repositories Model
urgent (term), Scheduled Deployment
user acceptance testing, Types of Reviews
\'
Vagrant, The People on Your Team, Installing GitLab
vendor branch, Working Locally
Vim
alternatives to, Changing the Commit Message Editor
key commands for, Writing Extended Commit Messages
Virtalbox, Installing GitLab
w

web editor

for Bitbucket files, Editing Files in Your Repository-Editing Files in Your
Repository

for quick commits, Making Commits via the Web-Making Commits via
the Web

Welchman, Lisa, Leadership Models
Wiele, Bob, Thinking Strategies

wiki pages, Bitbucket, Project Documentation in Wiki Pages-Project
Documentation in Wiki Pages

Windows

finding Git command line with, Windows

SSH key creation on, Windows

SSH key retrieval on, Retrieving Your Public SSH Key
WordPress, Distribution Licenses, Collocated Contributor Repositories
Model

work for hire copyright arrangements, Copyright and Contributor
Agreements

work, reviewing, Reviewing Work-Merging Completed Work

workflow

and teamwork in terms of Git, Teamwork in Terms of Git-Summary

basic example, A Basic Workflow-Untrusted Developers with QA
Gatekeepers

branching strategies, Branching Strategies-Summary

command and control, Command and Control-Summary
debugging, Finding and Fixing Bugs-Summary

effective styles, Workflows That Work-Summary

encoded decision documentation, Documenting Encoded Decisions
evolving, Evolving Workflows-Documenting Encoded Decisions
for ongoing development, Ongoing Development

for releasing software according to schedule, Releasing Software
According to Schedule-Post-Launch Hotfix

for teams of more than one, Working in Teams-Summary, Teams of More
than One-Summary

for teams of one, Teams of One-Summary
nonsoftware projects, Collaborating on Nonsoftware Projects

ongoing development, Ongoing Development

post-launch hotfix, Post-Launch Hotfix

process documentation, Documenting Your Process

review process, Ready for Review-Summary

rollbacks, Rollbacks, Reverts, Resets, and Rebasing-Summary
sprint-based, Sprint-Based Workflow-Sprint-Based Workflow
stable release publication, Publishing a Stable Release

ticket progression, Documenting Encoded Decisions

trusted developers with peer review, Trusted Developers with Peer
Review

untrusted developers with QA gatekeepers, Untrusted Developers with
QA Gatekeepers

working branches, Comparative Studies of Historical Records
wrap-up meetings, Wrap-Up and Retrospectives

write access, Collocated Contributor Repositories Model

Y

Yelp, Software for Code Reviews

y4

zipped packages, clones vs., Consumers

About the Author

Emma Jane Hogbin Westby has been developing websites since 1996—
initially as a developer, and now as a team leader. She has been teaching web-
related technologies since 2002 and has delivered over 100 conference
presentations, courses, and workshops around the world on frontend web
development, accessibility standards, distributed version control, virtualization,
and change management. She has previously authored two books on web
development.

Emma encourages nontraditional participation in technology through craft, and
is an amateur beekeeper. You can follow her on Twitter at @emmajanehw.

https://twitter.com/emmajanehw

Colophon

The animals on the cover of Git for Teams are the pied wagtail (Motacilla alba),
the grey wagtail (Motacilla cinerea), and the yellow wagtail (Motacilla flava).

The genus name Motacilla means “moving tail,” and as their common name
suggests, these small, energetic birds are known for fanning their long tails up
and down, though the reasons for this behavior are not certain. On average, these
birds measure 6 inches long and weigh up to .8 ounces.

The wagtail feeds on small insects and occasionally forages near groups of cattle
in order to capture the insects they disturb. It also nests on the ground, laying 4—
7 eggs at a time.

Wagtails are widely distributed, breeding throughout Europe and Asia and
sometimes migrating to tropical areas of Africa. They favor open country, such
as farmlands and grasslands. However, all three species have suffered severe
declines in recent years, possibly due to changes in agriculture.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. To learn more about how you can help, go to
animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the
heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

http://animals.oreilly.com

	Foreword
	Foreword
	Preface
	Acknowledgments

	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	I. Defining Your Workflow
	1. Working in Teams
	The People on Your Team
	Thinking Strategies
	Meeting as a Team
	Kickoff
	Tracking Progress
	Cultivating Empathy
	Wrap-Up and Retrospectives

	Teamwork in Terms of Git
	Summary

	2. Command and Control
	Project Governance
	Copyright and Contributor Agreements
	Distribution Licenses
	Leadership Models
	Code of Conduct

	Access Models
	Dispersed Contributor Model
	Collocated Contributor Repositories Model
	Shared Maintenance Model
	Custom Access Models

	Summary

	3. Branching Strategies
	Understanding Branches
	Choosing a Convention
	Conventions
	Mainline Branch Development
	Branch-Per-Feature Deployment
	State Branching
	Scheduled Deployment

	Updating Branches
	Summary

	4. Workflows That Work
	Evolving Workflows
	Documenting Your Process
	Documenting Encoded Decisions

	Ticket Progression
	A Basic Workflow
	Trusted Developers with Peer Review
	Untrusted Developers with QA Gatekeepers

	Releasing Software According to Schedule
	Publishing a Stable Release
	Ongoing Development
	Post-Launch Hotfix

	Collaborating on Nonsoftware Projects
	Summary

	II. Applying the Commands to Your Workflow
	5. Teams of One
	Issue-Based Version Control
	Creating Local Repositories
	Cloning an Existing Project
	Converting an Existing Project to Git
	Initializing an Empty Project
	Reviewing History

	Working with Branches
	Listing Branches
	Updating the List of Remote Branches
	Using a Different Branch
	Creating New Branches

	Adding Changes to a Repository
	Adding Partial File Changes to a Repository
	Committing Partial Changes
	Removing a File from the Stage
	Writing Extended Commit Messages
	Ignoring Files

	Working with Tags
	Connecting to Remote Repositories
	Creating a New Project
	Adding a Second Remote Connection
	Pushing Your Changes
	Branch Maintenance

	Command Reference
	Summary

	6. Rollbacks, Reverts, Resets, and Rebasing
	Best Practices
	Describing Your Problem
	Using Branches for Experimental Work

	Rebasing Step by Step
	Begin Rebasing
	Mid-Rebase Conflict from a Deleted File
	Mid-Rebase Conflict from a Single File Merge Conflict

	An Overview of Locating Lost Work
	Restoring Files
	Working with Commits
	Amending Commits
	Combining Commits with Reset
	Altering Commits with Interactive Rebasing
	Unmerging a Branch

	Undoing Shared History
	Reverting a Previous Commit
	Unmerging a Shared Branch

	Really Removing History
	Command Reference
	Summary

	7. Teams of More than One
	Setting Up the Project
	Creating a New Project
	Establishing Permissions
	Uploading the Project Repository
	Document the Project in a README

	Setting Up the Developers
	Consumers
	Contributors
	Maintainers

	Participating in Development
	Constructing the Perfect Commit
	Keeping Branches Up to Date
	Reviewing Work
	Merging Completed Work
	Resolving Merge and Rebase Conflicts
	Publishing Work

	Sample Workflows
	Sprint-Based Workflow
	Trusted Developers with No Peer Review
	Untrusted Developers with Independent Quality Assurance

	Summary

	8. Ready for Review
	Types of Reviews
	Types of Reviewers
	Software for Code Reviews
	Reviewing the Issue
	Applying the Proposed Changes
	Shared Repository Setup
	Forked Repository Setup
	Checking Out the Proposed Branch

	Reviewing the Proposed Changes
	Preparing Your Feedback
	Submitting Your Evaluation
	Completing the Review
	Summary

	9. Finding and Fixing Bugs
	Using stash to Work on an Emergency Bug Fix
	Comparative Studies of Historical Records
	Investigating File Ancestry with blame
	Historical Reenactment with bisect
	Summary

	III. Git Hosting
	10. Open Source Projects on GitHub
	Getting Started on GitHub
	Creating an Account
	Creating an Organization
	Personal Repositories

	Using Public Projects on GitHub
	Downloading Repository Snapshots
	Working Locally

	Contributing to Projects
	Tracking Changes with Issues
	Forking a Project
	Initiating a Pull Request

	Running Your Own Project
	Creating a Project Repository
	Granting Co-Maintainership
	Reviewing and Accepting Pull Requests
	Pull Requests with Merge Conflicts

	Summary

	11. Private Team Work on Bitbucket
	Project Governance for Nonpublic Projects
	Getting Started
	Creating an Account
	Creating a Private Project from the Welcome Screen
	Creating a Private Project from the Dashboard
	Configuring Your New Repository
	Exploring Your Project
	Editing Files in Your Repository

	Project Setup
	Project Documentation in Wiki Pages
	Tracking Your Changes with Issues

	Access Control
	Shared Access
	Per-Developer Forks
	Limiting Access with Protected Branches

	Pull Requests
	Submitting a Pull Request
	Accepting a Pull Request

	Extending Bitbucket with Atlassian Connect
	Summary

	12. Self-Hosted Collaboration with GitLab
	Getting Started
	Installing GitLab
	Configuring the Administrative Account
	Administrative Dashboard

	Projects
	Creating a Project

	User Accounts
	Creating User Accounts
	Adding People to Projects

	Groups
	Adding People to Groups
	Adding Projects to Groups

	Access Control
	Project Visibility
	Limiting Activities with Project Roles
	Limiting Access with Protected Branches

	Milestones
	Summary

	A. Butter Tarts
	Austin Butter Tarts
	van der Heyden Butter Tarts

	B. Installing the Latest Version of Git
	Installing Git and Upgrading
	Finding the Command Line
	OS X
	Linux
	Windows

	Upgrading on *nix Systems
	OS X Gotchas
	Accessing Git Help at the Command Line

	C. Configuring Git
	Identifying Yourself
	Changing the Commit Message Editor
	Adding Color
	Customize Your Command Prompt
	Ignoring System Files
	Line Endings
	Fixing Line Endings

	D. SSH Keys
	Create Your Own SSH Keys
	Linux, OS X, and Unix-variants
	Windows

	Retrieving Your Public SSH Key

	Index

