“A remarkable collection of characters...courageously exploring mindspace,
an innerworld where nobody had ever been before.” —The New York Times

hackers

heroes of the computer revolution

steven levy

O REILLY

Hackers

Steven Levy

Editor
Mike Hendrickson

Copyright © 2010 Steven Levy

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hackers and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

O’REILLY

O'Reilly Media

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

SPECIAL OFFER: Upgrade this ebook with
O'Reilly
Click here for more information on this offer!

Please note that upgrade offers are not available from sample content.

Preface

I was first drawn to writing about hackers—those computer programmers
and designers who regard computing as the most important thing in the
world—because they were such fascinating people. Though some in the
field used the term “hacker” as a form of derision, implying that hackers
were either nerdy social outcasts or “unprofessional” programmers who
wrote dirty, “nonstandard” computer code, I found them quite different.
Beneath their often unimposing exteriors, they were adventurers,
visionaries, risk-takers, artists . . . and the ones who most clearly saw why
the computer was a truly revolutionary tool. Among themselves, they knew
how far one could go by immersion into the deep concentration of the
hacking mind-set: one could go infinitely far. I came to understand why true
hackers consider the term an appellation of honor rather than a pejorative.

As I talked to these digital explorers, ranging from those who tamed
multimillion-dollar machines in the 1950s to contemporary young wizards
who mastered computers in their suburban bedrooms, I found a common
element, a common philosophy that seemed tied to the elegantly flowing
logic of the computer itself. It was a philosophy of sharing, openness,
decentralization, and getting your hands on machines at any cost to improve
the machines and to improve the world. This Hacker Ethic is their gift to us:
something with value even to those of us with no interest at all in
computers.

It is an ethic seldom codified but embodied instead in the behavior of
hackers themselves. I would like to introduce you to these people who not
only saw, but /ived the magic in the computer and worked to liberate the
magic so it could benefit us all. These people include the true hackers of the
MIT artificial intelligence lab in the fifties and sixties; the populist, less
sequestered hardware hackers in California in the seventies; and the young
game hackers who made their mark in the personal computer of the
eighties.

This is in no way a formal history of the computer era, or of the particular
arenas I focus upon. Indeed, many of the people you will meet here are not
the most famous names (certainly not the most wealthy) in the annals of
computing. Instead, these are the backroom geniuses who understood the

machine at its most profound levels and presented us with a new kind of
lifestyle and a new kind of hero.

Hackers like Richard Greenblatt, Bill Gosper, Lee Felsenstein, and John
Harris are the spirit and soul of computing itself. I believe their story—their
vision, their intimacy with the machine itself, their experiences inside their
peculiar world, and their sometimes dramatic, sometimes absurd
“interfaces” with the outside world—is the real story of the computer
revolution.

Who’s Who: The Wizards and Their Machines

Bob Albrecht. Founder of People’s Computer Company who took visceral
pleasure in exposing youngsters to computers.

Altair 8800. The pioneering microcomputer that galvanized hardware
hackers. Building this kit made you learn hacking. Then you tried to figure
out what to do with it.

Apple I1. Steve Wozniak’s friendly, flaky, good-looking computer, wildly
successful and the spark and soul of a thriving industry.

Atari 800. This home computer gave great graphics to game hackers like
John Harris, though the company that made it was loath to tell you how it
worked.

Bob and Carolyn Box. World-record-holding gold prospectors turned
software stars, working for Sierra On-Line.

Doug Carlston. Corporate lawyer who chucked it all to form the
Brgderbund software company.

Bob Davis. Left a job in a liquor store to become the bestselling author of
the Sierra On-Line computer game Ulysses and the Golden Fleece. Success
was his downfall.

Peter Deutsch. Bad in sports, brilliant at math, Peter was still in short pants
when he stumbled on the TX-0 at MIT—and hacked it along with the
masters.

Steve Dompier. Homebrew member who first made Altair sing, and later
wrote the Target game on the Sol, which entranced Tom Snyder.

John Draper. The notorious “Captain Crunch” who fearlessly explored
phone systems, was jailed, and later hacked microcomputers. Cigarettes
made him violent.

Mark Duchaineau. The young Dungeonmaster who copy-protected On-
Line’s disks at his whim.

Chris Espinosa. Fourteen-year-old follower of Steve Wozniak and early
Apple employee.

http://bit.ly/dya6J3
http://bit.ly/bCTcKF
http://bit.ly/9meBdq
http://bit.ly/aghwDD
http://bit.ly/dAmXZc
http://bit.ly/atslwX
http://bit.ly/9dsN0V
http://bit.ly/cHcCak
http://bit.ly/bOkOjo
http://bit.ly/97lt2R

Lee Felsenstein. Former “military editor” of the Berkeley Barb and hero of
an imaginary science-fiction novel, he designed computers with a
“junkyard” approach and was a central figure in Bay Area hardware
hacking in the seventies.

Ed Fredkin. Gentle founder of Information International, he thought
himself the world’s greatest programmer until he met Stew Nelson. Father
figure to hackers.

Gordon French. Silver-haired hardware hacker whose garage held not cars
but his homebrewed Chicken Hawk computer, then held the first Homebrew
Computer Club meeting.

Richard Garriott. Astronaut’s son who, as Lord British, created the Ultima
world on computer disks.

Bill Gates. Cocky wizard and Harvard dropout who wrote Altair BASIC,
and complained when hackers copied it.

Bill Gosper. Horowitz of computer keyboards, master math and LIFE
hacker at MIT Al lab, guru of the Hacker Ethic, and student of Chinese
restaurant menus.

Richard Greenblatt. Single-minded, unkempt, prolific, and canonical MIT
hacker who went into night phase so often that he zorched his academic
career. The hacker’s hacker.

John Harris. The young Atari 800 game hacker who became Sierra On-
Line’s star programmer, but yearned for female companionship.

IBM PC. IBM’s entry into the personal computer market, which amazingly
included a bit of the Hacker Ethic and took over.

IBM 704. IBM was The Enemy and this was its machine, the Hulking
Giant computer in MIT’s Building 26. Later modified into the IBM 709,
then the IBM 7090. Batch-processed and intolerable.

Jerry Jewell. Vietnam vet turned programmer who founded Sirius
Software.

Steven Jobs. Visionary, beaded, nonhacking youngster who took Wozniak’s
Apple II, made lots of deals, and formed a company that would make a
billion dollars.

http://bit.ly/bFesDn
http://bit.ly/cdvlom
http://bit.ly/9qnGir
http://bit.ly/dsXguh
http://bit.ly/doI1Aq
http://bit.ly/dkhuEz
http://bit.ly/9qW2Cu
http://bit.ly/9WYEmQ
http://bit.ly/dtFm2y
http://bit.ly/91HGEd
http://bit.ly/amRZhZ
http://bit.ly/cIHZt5

Tom Knight. At sixteen, an MIT hacker who would name the Incompatible
Time-sharing System. Later, a Greenblatt nemesis over the LISP machine
schism.

Alan Kotok. The chubby MIT student from Jersey who worked under the
rail layout at TMRC, learned the phone system at Western Electric, and
became a legendary TX-0 and PDP-1 hacker.

Efrem Lipkin. Hacker-activist from New York who loved machines but
hated their uses. Cofounded Community Memory; friend of Felsenstein.

LISP Machine. The ultimate hacker computer, invented mostly by
Greenblatt and subject of a bitter dispute at MIT.

“Uncle” John McCarthy. Absentminded but brilliant MIT (later Stanford)
professor who helped pioneer computer chess, artificial intelligence, LISP.

Bob Marsh. Berkeley-ite and Homebrewer who shared garage with
Felsenstein and founded Processor Technology, which made the Sol
computer.

Roger Melen. Homebrewer who cofounded Cromemco company to make
circuit boards for Altair. His “Dazzler” played LIFE program on his kitchen
table.

Louis Merton. Pseudonym for the Al chess hacker whose tendency to go
catatonic brought the hacker community together.

Jude Milhon. Met Lee Felsenstein through a classified ad in the Berkeley
Barb and became more than a friend—a member of the Community
Memory collective.

Marvin Minsky. Playful and brilliant MIT professor who headed Al lab
and allowed the hackers to run free.

Fred Moore. Vagabond pacifist who hated money, loved technology, and
cofounded Homebrew Club.

Stewart Nelson. Buck-toothed, diminutive, but fiery Al lab hacker who
connected the PDP-1 computer to hack the phone system. Later cofounded
Systems Concepts company.

Ted Nelson. Self-described “innovator” and noted curmudgeon who self-
published the influential Computer Lib book.

http://bit.ly/bV711E
http://bit.ly/axcWcc
http://bit.ly/czhdQa
http://bit.ly/bSE9BT
http://bit.ly/bSiRnB
http://bit.ly/9v4N3z
http://bit.ly/bhJw0R
http://bit.ly/9sZS4v
http://bit.ly/aohSQf
http://bit.ly/dwaxuY
http://bit.ly/c5r716
http://bit.ly/bVKkCk

Russell Noftsker. Harried administrator of MIT Al lab in late sixties; later
president of Symbolics company.

Adam Osborne. Bangkok-born publisher-turned-computer-manufacturer
who considered himself a philosopher. Founded Osborne Computer
Company to make “adequate” machines.

PDP-1. Digital Equipment’s first minicomputer and in 1961 an interactive
godsend to the MIT hackers and a slap in the face to IBM fascism.

PDP-6. Designed in part by Kotok, this mainframe computer was the
cornerstone of the Al lab, with its gorgeous instruction set and sixteen sexy
registers.

Tom Pittman. The religious Homebrew hacker who lost his wife but kept
the faith with his Tiny BASIC.

Ed Roberts. Enigmatic founder of MITS company who shook the world
with his Altair computer. He wanted to help people build mental pyramids.

Steve (Slug) Russell. McCarthy’s “coolie” who hacked the Spacewar
program, first videogame, on the PDP-1. Never made a dime from it.

Peter Samson. MIT hacker (one of the first), who loved systems, trains,
TX-0, music, parliamentary procedure, pranks, and hacking.

Bob Saunders. Jolly, balding TMRC hacker who married early, hacked til
late at night eating “lemon gunkies,” and mastered the “CBS strategy” on
Spacewar.

Warren Schwader. Big blond hacker from rural Wisconsin who went from
the assembly line to software stardom, but couldn’t reconcile the shift with
his devotion to Jehovah’s Witnesses.

David Silver. Left school at fourteen to be mascot of Al lab; maker of illicit
keys and builder of a tiny robot that did the impossible.

Dan Sokol. Long-haired prankster who reveled in revealing technological
secrets at Homebrew Club. Helped “liberate” Altair BASIC program on
paper tape.

Sol Computer. Lee Felsenstein’s terminal-and-computer, built in two
frantic months, almost the computer that turned things around. Almost
wasn’t enough.

http://bit.ly/9wzG41
http://bit.ly/d3AvnV
http://bit.ly/de6l2o
http://bit.ly/aUX5ZM
http://bit.ly/dAx44v
http://bit.ly/cxfj9I
http://bit.ly/cz1WLq
http://bit.ly/aSo8FF
http://bit.ly/bNHxij
http://bit.ly/cbOUXY
http://bit.ly/cjkF7B
http://bit.ly/aI6AB1
http://bit.ly/dfxq4t

Les Solomon. Editor of Popular Electronics, the puller of strings who set
the computer revolution into motion.

Marty Spergel. The Junk Man, the Homebrew member who supplied
circuits and cables and could make you a deal for anything.

Richard Stallman. The Last of the Hackers, he vowed to defend the
principles of hackerism to the bitter end. Remained at MIT until there was
no one to eat Chinese food with.

Jeff Stephenson. Thirty-year-old martial arts veteran and hacker who was
astounded that joining Sierra On-Line meant enrolling in Summer Camp.

Jay Sullivan. Maddeningly calm wizard-level programmer at Informatics
who impressed Ken Williams by knowing the meaning of the word “any.”

Dick Sunderland. Chalk-complexioned MBA who believed that firm
managerial bureaucracy was a worthy goal, but as president of Sierra On-
Line found that hackers didn’t think that way.

Gerry Sussman. Young MIT hacker branded “loser” because he smoked a
pipe and “munged” his programs; later became “winner” by algorithmic
magic.

Margot Tommervik. With her husband Al, long-haired Margot parlayed
her gameshow winnings into a magazine that deified the Apple Computer.

Tom Swift Terminal. Lee Felsenstein’s legendary, never-to-be-built
computer terminal, which would give the user ultimate leave to get his
hands on the world.

TX-0. Filled a small room, but in the late fifties, this $3 million machine
was world’s first personal computer—for the community of MIT hackers
that formed around it.

Jim Warren. Portly purveyor of “techno-gossip” at Homebrew, he was first
editor of hippie-styled Dr. Dobbs Journal, later started the lucrative
Computer Faire.

Randy Wigginton. Fifteen-year-old member of Steve Wozniak’s kiddie
corps, he helped Woz trundle the Apple II to Homebrew. Still in high school
when he became Apple’s first software employee.

Ken Williams. Arrogant and brilliant young programmer who saw the
writing on the CRT and started Sierra On-Line to make a killing and

http://bit.ly/9LnvWF
http://bit.ly/9JK9UT
http://bit.ly/bSZFTa
http://bit.ly/cDGWhl
http://bit.ly/aTU7aP
http://bit.ly/dfn53Z
http://bit.ly/beGTWE
http://bit.ly/d64jFV
http://bit.ly/b8wxZf
http://bit.ly/aXCdrj
http://bit.ly/burInH

improve society by selling games for the Apple computer.

Roberta Williams. Ken Williams’ timid wife who rediscovered her own
creativity by writing Mystery House, the first of her many bestselling
computer games.

Stephen “Woz” Wozniak. Openhearted, technologically daring hardware
hacker from San Jose suburbs, Woz built the Apple Computer for the
pleasure of himself and friends.

http://bit.ly/9gTRDC

Part I. True Hackers: Cambridge: The Fifties
and Sixties

Chapter 1. The Tech Model Railroad Club

Just why Peter Samson was wandering around in Building 26 in the middle
of the night is a matter that he would find difficult to explain. Some things
are not spoken. If you were like the people whom Peter Samson was
coming to know and befriend in this, his freshman year at the
Massachusetts Institute of Technology in the winter of 1958-59, no
explanation would be required. Wandering around the labyrinth of
laboratories and storerooms, searching for the secrets of telephone
switching in machine rooms, tracing paths of wires or relays in
subterranean steam tunnels—for some, it was common behavior, and there
was no need to justify the impulse, when confronted with a closed door
with an unbearably intriguing noise behind it, to open the door uninvited.
And then, if there was no one to physically bar access to whatever was
making that intriguing noise, to touch the machine, start flicking switches
and noting responses, and eventually to loosen a screw, unhook a template,
jiggle some diodes, and tweak a few connections. Peter Samson and his
friends had grown up with a specific relationship to the world, wherein
things had meaning only if you found out how they worked. And how
would you go about that if not by getting your hands on them?

It was in the basement of Building 26 that Samson and his friends
discovered the EAM room. Building 26 was a long glass-and-steel
structure, one of MIT’s newer buildings, contrasting with the venerable
pillared structures that fronted the Institute on Massachusetts Avenue. In the
basement of this building void of personality, the EAM room. Electronic
Accounting Machinery. A room that housed machines that ran like
computers.

Not many people in 1959 had even seen a computer, let alone touched one.
Samson, a wiry, curly-haired redhead with a way of extending his vowels so
that it would seem he was racing through lists of possible meanings of
statements in mid-word, had viewed computers on his visits to MIT from
his hometown of Lowell, Massachusetts, less than thirty miles from
campus. This made him a “Cambridge urchin,” one of dozens of science-
crazy high schoolers in the region who were drawn, as if by gravitational
pull, to the Cambridge campus. He had even tried to rig up his own

http://bit.ly/ctN4gt
http://bit.ly/9oCYvo
http://bit.ly/cUt4L4

computer with discarded parts of old pinball machines: they were the best
source of logic elements he could find.

Logic elements: the term seems to encapsulate what drew Peter Samson,
son of a mill machinery repairman, to electronics. The subject made sense.
When you grow up with an insatiable curiosity as to how things work, the
delight you find upon discovering something as elegant as circuit logic,
where all connections have to complete their loops, is profoundly thrilling.
Peter Samson, who early on appreciated the mathematical simplicity of
these things, could recall seeing a television show on Boston’s public TV
channel, WGBH, which gave a rudimentary introduction to programming a
computer in its own language. It fired his imagination; to Peter Samson, a
computer was surely like Aladdin’s lamp—rub it, and it would do your
bidding. So he tried to learn more about the field, built machines of his
own, entered science project competitions and contests, and went to the
place that people of his ilk aspired to: MIT. The repository of the very
brightest of those weird high school kids with owl-like glasses and
underdeveloped pectorals who dazzled math teachers and flunked PE, who
dreamed not of scoring on prom night, but of getting to the finals of the
General Electric Science Fair competition. MIT, where he would wander
the hallways at two o’clock in the morning, looking for something
interesting, and where he would indeed discover something that would help
draw him deeply into a new form of creative process and a new lifestyle,
and would put him into the forefront of a society envisioned only by a few
sciencefiction writers of mild disrepute. He would discover a computer that
he could play with.

The EAM room that Samson had chanced upon was loaded with large
keypunch machines the size of squat file cabinets. No one was protecting
them: the room was staffed only by day, when a select group who had
attained official clearance were privileged enough to submit long manila
cards to operators who would then use these machines to punch holes in
them according to what data the privileged ones wanted entered on the
cards. A hole in the card would represent some instruction to the computer,
telling it to put a piece of data somewhere, or perform a function on a piece
of data, or move a piece of data from one place to another. An entire stack
of these cards made one computer program, a program being a series of
instructions which yielded some expected result, just as the instructions in a

http://bit.ly/aiQTzq

recipe, when precisely followed, lead to a cake. Those cards would be taken
to yet another operator upstairs who would feed the cards into a “reader”
that would note where the holes were and dispatch this information to the
IBM 704 computer on the first floor of Building 26: the Hulking Giant.

The IBM 704 cost several million dollars, took up an entire room, needed
constant attention from a cadre of professional machine operators, and
required special air conditioning so that the glowing vacuum tubes inside it
would not heat up to data-destroying temperatures. When the air
conditioning broke down—a fairly common occurrence—a loud gong
would sound, and three engineers would spring from a nearby office to
frantically take covers off the machine so its innards wouldn’t melt. All
these people in charge of punching cards, feeding them into readers, and
pressing buttons and switches on the machine were what was commonly
called a Priesthood, and those privileged enough to submit data to those
most holy priests were the official acolytes. It was an almost ritualistic
exchange.

Acolyte: Oh machine, would you accept my offer of information so you may run my program and

perhaps give me a computation?

Priest (on behalf of the machine): We will try. We promise nothing.

As a general rule, even these most privileged of acolytes were not allowed
direct access to the machine itself, and they would not be able to see for
hours, sometimes for days, the results of the machine’s ingestion of their
“batch” of cards.

This was something Samson knew, and of course it frustrated the hell out of
Samson, who wanted to get at the damn machine. For this was what life
was all about.

What Samson did not know, and was delighted to discover, was that the
EAM room also had a particular keypunch machine called the 407. Not
only could it punch cards, but it could also read cards, sort them, and print
them on listings. No one seemed to be guarding these machines, which
were computers, sort of. Of course, using them would be no picnic: one
needed to actually wire up what was called a plug board, a two-inch-by-
two-inch plastic square with a mass of holes in it. If you put hundreds of
wires through the holes in a certain order, you would get something that
looked like a rat’s nest but would fit into this electromechanical machine
and alter its personality. It could do what you wanted it to do.

So, without any authorization whatsoever, that is what Peter Samson set out
to do, along with a few friends of his from an MIT organization with a
special interest in model railroading. It was a casual, unthinking step into a
science-fiction future, but that was typical of the way that an odd subculture
was pulling itself up by its bootstraps and growing to underground
prominence—to become a culture that would be the impolite, unsanctioned
soul of computerdom. It was among the first computer hacker escapades of
the Tech Model Railroad Club, or TMRC.

Peter Samson had been a member of the Tech Model Railroad Club since
his first week at MIT in the fall of 1958. The first event that entering MIT
freshmen attended was a traditional welcoming lecture, the same one that
had been given for as long as anyone at MIT could remember. Look at the
person to your left . . . look at the person to your right . . . one of you three
will not graduate from the Institute. The intended effect of the speech was
to create that horrid feeling in the back of the collective freshman throat that
signaled unprecedented dread. All their lives, these freshmen had been
almost exempt from academic pressure. The exemption had been earned by
virtue of brilliance. Now each of them had a person to the right and a
person to the left who was just as smart. Maybe even smarter.

But to certain students this was no challenge at all. To these youngsters,
classmates were perceived in a sort of friendly haze: maybe they would be
of assistance in the consuming quest to find out how things worked and
then to master them. There were enough obstacles to learning already—why
bother with stupid things like brown-nosing teachers and striving for
grades? To students like Peter Samson, the quest meant more than the
degree.

Sometime after the lecture came Freshman Midway. All the campus
organizations—special-interest groups, fraternities, and such—put up
booths in a large gymnasium to try to recruit new members. The group that
snagged Peter was the Tech Model Railroad Club. Its members, bright-eyed
and crew-cut upperclassmen who spoke with the spasmodic cadences of
people who want words out of the way in a hurry, boasted a spectacular
display of HO gauge trains they had in a permanent clubroom in Building
20. Peter Samson had long been fascinated by trains, especially subways.
So he went along on the walking tour to the building, a shingle-clad

temporary structure built during World War II. The hallways were
cavernous, and even though the clubroom was on the second floor, it had
the dank, dimly lit feel of a basement.

The clubroom was dominated by the huge train layout. It just about filled
the room, and if you stood in the little control area called “the notch” you
could see a little town, a little industrial area, a tiny working trolley line, a
papier-maché mountain, and of course a lot of trains and tracks. The trains
were meticulously crafted to resemble their full-scale counterparts, and they
chugged along the twists and turns of the track with picture-book
perfection.

And then Peter Samson looked underneath the chest-high boards that held
the layout. It took his breath away. Underneath this layout was a more
massive matrix of wires and relays and crossbar switches than Peter
Samson had ever dreamed existed. There were neat regimental lines of
switches, achingly regular rows of dull bronze relays, and a long, rambling
tangle of red, blue, and yellow wires—twisting and twirling like a rainbow-
colored explosion of Einstein’s hair. It was an incredibly complicated
system, and Peter Samson vowed to find out how it worked.

The Tech Model Railroad Club awarded its members a key to the clubroom
after they logged forty hours of work on the layout. Freshman Midway had
been on a Friday. By Monday, Peter Samson had his key.

There were two factions of TMRC. Some members loved the idea of
spending their time building and painting replicas of certain trains with
historical and emotional value, or creating realistic scenery for the layout.
This was the knife-and-paintbrush contingent, and it subscribed to railroad
magazines and booked the club for trips on aging train lines. The other
faction centered on the Signals and Power Subcommittee of the club, and it
cared far more about what went on under the layout. This was The System,
which worked something like a collaboration between Rube Goldberg and
Wernher von Braun, and it was constantly being improved, revamped,
perfected, and sometimes “gronked”—in club jargon, screwed up. S&P
people were obsessed with the way The System worked, its increasing
complexities, how any change you made would affect other parts, and how
you could put those relationships between the parts to optimal use.

Many of the parts for The System had been donated by the Western Electric
College Gift Plan, directly from the phone company. The club’s faculty
advisor was also in charge of the campus phone system, and had seen to it
that sophisticated phone equipment was available for the model railroaders.
Using that equipment as a starting point, the railroaders had devised a
scheme that enabled several people to control trains at once, even if the
trains were at different parts of the same track. Using dials appropriated
from telephones, the TMRC “engineers” could specify which block of track
they wanted control of, and run a train from there. This was done by using
several types of phone company relays, including crossbar executors and
step switches that let you actually hear the power being transferred from
one block to another by an otherworldly chunka-chunka-chunka sound.

It was the S&P group that devised this fiendishly ingenious scheme, and it
was the S&P group that harbored the kind of restless curiosity that led them
to root around campus buildings in search of ways to get their hands on
computers. They were lifelong disciples of a Hands-On Imperative. Head of
S&P was an upperclassman named Bob Saunders, with ruddy, bulbous
features, an infectious laugh, and a talent for switch gear. As a child in
Chicago, he had built a high-frequency transformer for a high school
project; it was his six-foot-high version of a Tesla coil, something devised
by an engineer in the 1800s that was supposed to send out furious waves of
electrical power. Saunders said his coil project managed to blow out
television reception for blocks around. Another person who gravitated to
S&P was Alan Kotok, a plump, chinless, thick-spectacled New Jerseyite in
Samson’s class. Kotok’s family could recall him, at age three, prying a plug
out of a wall with a screwdriver and causing a hissing shower of sparks to
erupt. When he was six, he was building and wiring lamps. In high school
he had once gone on a tour of the Mobil Research Lab in nearby
Haddonfield and saw his first computer—the exhilaration of that experience
helped him decide to enter MIT. In his freshman year, he earned a
reputation as one of TMRC’s most capable S&P people.

The S&P people were the ones who spent Saturdays going to Eli Heffron’s
junkyard in Somerville scrounging for parts, who would spend hours on
their backs resting on little rolling chairs they called “bunkies” to get
underneath tight spots in the switching system, who would work through

the night making the wholly unauthorized connection between the TMRC
phone and the East Campus. Technology was their playground.

The core members hung out at the club for hours, constantly improving The
System, arguing about what could be done next, and developing a jargon of
their own that seemed incomprehensible to outsiders who might chance on
these teen-aged fanatics, with their checked short-sleeve shirts, pencils in
their pockets, chino pants, and, always, a bottle of Coca-Cola by their side.
(TMRC purchased its own Coke machine for the then forbidding sum of
$165; at a tariff of five cents a bottle, the outlay was replaced in three
months; to facilitate sales, Saunders built a change machine for Coke
buyers that was still in use a decade later.) When a piece of equipment
wasn’t working, it was “losing”; when a piece of equipment was ruined, it
was “munged” (mashed until no good); the two desks in the corner of the
room were not called the office, but the “orifice”; one who insisted on
studying for courses was a “tool”; garbage was called “cruft”; and a project
undertaken or a product built not solely to fulfill some constructive goal,
but with some wild pleasure taken in mere involvement, was called a
“hack.”

This latter term may have been suggested by ancient MIT lingo—the word
“hack” had long been used to describe the elaborate college pranks that
MIT students would regularly devise, such as covering the dome that
overlooked the campus with reflecting foil. But as the TMRC people used
the word, there was serious respect implied. While someone might call a
clever connection between relays a “mere hack,” it would be understood
that, to qualify as a hack, the feat must be imbued with innovation, style,
and technical virtuosity. Even though one might self-deprecatingly say he
was “hacking away at The System” (much as an axe-wielder hacks at logs),
the artistry with which one hacked was recognized to be considerable.

The most productive people working on S&P called themselves “hackers”
with great pride. Within the confines of the clubroom in Building 20, and of
the “Tool Room” (where some study and many techno bull sessions took
place), they had unilaterally endowed themselves with the heroic attributes
of Icelandic legend. This is how Peter Samson saw himself and his friends
in a Sandburgesque poem in the club newsletter:

Switch Thrower for the World,

Fuze Tester, Maker of Rouites,

Player with the Railroads and the System’s Advance Chopper;
Grungy, hairy, sprawling,

Machine of the Point-Function Line-o-lite:

They tell me you are wicked and I believe them; for I have seen your painted light bulbs under the
lucite luring the system coolies . . .

Under the tower, dust all over the place, hacking with bifurcated springs
Hacking even as an ignorant freshman acts who has never lost occupancy and has dropped out

Hacking the M-Boards, for under its locks are the switches, and under its control the advance
around the layout,

Hacking!
Hacking the grungy, hairy, sprawling hacks of youth; uncabled, frying diodes, proud to be

Switchthrower, Fuze-tester, Maker of Routes, Player with Railroads, and Advance Chopper to the
System.

Whenever they could, Samson and the others would slip off to the EAM
room with their plug boards, trying to use the machine to keep track of the
switches underneath the layout. Just as important, they were seeing what the
electromechanical counter could do, taking it to its limit.

That spring of 1959, a new course was offered at MIT. It was the first
course in programming a computer that freshmen could take. The teacher
was a distant man with a wild shock of hair and an equally unruly beard—
John McCarthy. A master mathematician, McCarthy was a classically
absent-minded professor; stories abounded about his habit of suddenly
answering a question hours, sometimes even days after it was first posed to
him. He would approach you in the hallway and with no salutation would
begin speaking in his robotically precise diction, as if the pause in
conversation had been only a fraction of a second, and not a week. Most
likely, his belated response would be brilliant.

McCarthy was one of a very few people working in an entirely new form of
scientific inquiry with computers. The volatile and controversial nature of
his field of study was obvious from the very arrogance of the name that
McCarthy had bestowed upon it: Artificial Intelligence. This man actually
thought that computers could be smart. Even at such a science-intensive
place as MIT, most people considered the thought ridiculous: they
considered computers to be useful, if somewhat absurdly expensive, tools

for number-crunching huge calculations and for devising missile defense
systems (as MIT’s largest computer, the Whirlwind, had done for the early-
warning SAGE system), but scoffed at the thought that computers
themselves could actually be a scientific field of study. Computer Science
did not officially exist at MIT in the late fifties, and McCarthy and his
fellow computer specialists worked in the Electrical Engineering
Department, which offered the course, No. 641, that Kotok, Samson, and a
few other TRMC members took that spring.

McCarthy had started a mammoth program on the IBM 704—the Hulking
Giant—that would give it the extraordinary ability to play chess. To critics
of the budding field of Artificial Intelligence, this was just one example of
the boneheaded optimism of people like John McCarthy. But McCarthy had
a certain vision of what computers could do, and playing chess was only the
beginning.

All fascinating stuff, but not the vision that was driving Kotok and Samson
and the others. They wanted to learn how to work the damn machines, and
while this new programming language called LISP that McCarthy was
talking about in 641 was interesting, it was not nearly as interesting as the
act of programming, or that fantastic moment when you got your printout
back from the Priesthood—word from the source itself!—and could then
spend hours poring over the results of the program, what had gone wrong
with it, how it could be improved. The TMRC hackers were devising ways
to get into closer contact with the IBM 704, which soon was upgraded to a
newer model called the 709. By hanging out at the Computation Center in
the wee hours of the morning, and by getting to know the Priesthood, and
by bowing and scraping the requisite number of times, people like Kotok
were eventually allowed to push a few buttons on the machine and watch
the lights as it worked.

There were secrets to those IBM machines that had been painstakingly
learned by some of the older people at MIT with access to the 704 and
friends among the Priesthood. Amazingly, a few of these programmers,
grad students working with McCarthy, had even written a program that
utilized one of the rows of tiny lights: the lights would be lit in such an
order that it looked like a little ball was being passed from right to left: if an
operator hit a switch at just the right time, the motion of the lights could be
reversed—computer Ping-Pong! This obviously was the kind of thing that

http://bit.ly/cYmrQd
http://bit.ly/91HGEd
http://bit.ly/d2ZFN2

you’d show off to impress your peers, who would then take a look at the
actual program you had written to see how it was done.

To top the program, someone else might try to do the same thing with fewer
instructions—a worthy endeavor, since there was so little room in the small
“memory” of the computers of those days that not many instructions could
fit into them. John McCarthy had once noticed that his graduate students
who loitered around the 704 would work over their computer programs to
get the most out of the fewest instructions, and get the program compressed
so that fewer cards would need to be fed to the machine. Shaving off an
instruction or two was almost an obsession with them. McCarthy compared
these students to ski bums. They got the same kind of primal thrill from
“maximizing code” as fanatic skiers got from swooshing frantically down a
hill. So the practice of taking a computer program and trying to cut off
instructions without affecting the outcome came to be called “program
bumming,” and you would often hear people mumbling things like, “Maybe
I can bum a few instructions out and get the octal correction card loader
down to three cards instead of four.”

In 1959, McCarthy was turning his interest from chess to a new way of
talking to the computer, the whole new “language” called LISP. Alan Kotok
and his friends were more than eager to take over the chess project.
Working on the batch-processed IBM, they embarked on the gargantuan
project of teaching the 704, and later the 709, and even after that its
replacement the 7090, how to play the game of kings. Eventually Kotok’s
group became the largest users of computer time in the entire MIT
Computation Center.

Still, working with the IBM machine was frustrating. There was nothing
worse than the long wait between the time you handed in your cards and the
time your results were handed back to you. If you had misplaced as much as
one letter in one instruction, the program would crash, and you would have
to start the whole process over again. It went hand in hand with the stifling
proliferation of goddamn rules that permeated the atmosphere of the
Computation Center. Most of the rules were designed to keep crazy young
computer fans like Samson and Kotok and Saunders physically distant from
the machine itself. The most rigid rule of all was that no one should be able
to actually touch or tamper with the machine itself. This, of course, was

http://bit.ly/9vLjae

what those S&P people were dying to do more than anything else in the
world, and the restrictions drove them mad.

One priest—a low-level sub-priest, really—on the late-night shift was
particularly nasty in enforcing this rule, so Samson devised a suitable
revenge. While poking around at Eli’s electronic junk shop one day, he
chanced upon an electrical board precisely like the kind of board holding
the clunky vacuum tubes that resided inside the IBM. One night, sometime
before 4 A.M., this particular sub-priest stepped out for a minute; when he
returned, Samson told him that the machine wasn’t working, but they’d
found the trouble—and held up the totally smashed module from the old
704 he’d gotten at Eli’s.

The sub-priest could hardly get the words out. “W-where did you get that?”

Samson, who had wide green eyes that could easily look maniacal, slowly
pointed to an open place on the machine rack where, of course, no board
had ever been, but the space still looked sadly bare.

The sub-priest gasped. He made faces that indicated his bowels were about
to give out. He whimpered exhortations to the deity. Visions, no doubt, of a
million-dollar deduction from his paycheck began flashing before him.
Only after his supervisor, a high priest with some understanding of the
mentality of these young wiseguys from the Model Railroad Club, came
and explained the situation did he calm down.

He was not the last administrator to feel the wrath of a hacker thwarted in
the quest for access.

One day a former TMRC member who was now on the MIT faculty paid a
visit to the clubroom. His name was Jack Dennis. When he had been an
undergraduate in the early 1950s, he had worked furiously underneath the
layout. Dennis lately had been working a computer that MIT had just
received from Lincoln Lab, a military development laboratory affiliated
with the Institute. The computer was called the TX-0, and it was one of the
first transistor-run computers in the world. Lincoln Lab had used it
specifically to test a giant computer called the TX-2, which had a memory
so complex that only with this specially built little brother could its ills be
capably diagnosed. Now that its original job was over, the three-million-
dollar TX-0 had been shipped over to the Institute on “long-term loan,” and

apparently no one at Lincoln Lab had marked a calendar with a return date.
Dennis asked the S&P people at TMRC whether they would like to see it.

Hey you nuns! Would you like to meet the Pope?

The TX-0 was in Building 26, in the second-floor Research Laboratory of
Electronics (RLE), directly above the first-floor Computation Center, which
housed the hulking IBM 704. The RLE lab resembled the control room of
an antique spaceship. The TX-0, or Tixo, as it was sometimes called, was
for its time a midget machine, since it was one of the first computers to use
finger-size transistors instead of hand-size vacuum tubes. Still, it took up
much of the room, along with its fifteen tons of supporting air-conditioning
equipment. The TX-0 workings were mounted on several tall, thin chassis,
like rugged metal bookshelves, with tangled wires and neat little rows of
tiny, bottle-like containers in which the transistors were inserted. Another
rack had a solid metal front speckled with grim-looking gauges. Facing the
racks was an L-shaped console, the control panel of this H.G. Wells
spaceship, with a blue countertop for your elbows and papers. On the short
arm of the L stood a Flexowriter, which resembled a typewriter converted
for tank warfare, its bottom anchored in a military gray housing. Above the
top were the control panels, box-like protrusions painted an institutional
yellow. On the sides of the boxes that faced the user were a few gauges,
several lines of quarter-inch blinking lights, a matrix of steel toggle
switches the size of large grains of rice, and, best of all, an actual cathode
ray tube display, round and smoke-gray.

The TMRC people were awed. This machine did not use cards. The user
would first punch in a program onto a long, thin paper tape with a
Flexowriter (there were a few extra Flexowriters in an adjoining room),
then sit at the console, feed in the program by running the tape through a
reader, and be able to sit there while the program ran. If something went
wrong with the program, you knew immediately, and you could diagnose
the problem by using some of the switches or checking out which of the
lights were blinking or lit. The computer even had an audio output: while
the program ran, a speaker underneath the console would make a sort of
music, like a poorly tuned electric organ whose notes would vibrate with a
fuzzy, ethereal din. The chords on this “organ” would change, depending on
what data the machine was reading at any given microsecond; after you
were familiar with the tones, you could actually hear which part of your

http://bit.ly/cF1SIw

program the computer was working on. You would have to discern this,
though, over the clacking of the Flexowriter, which could make you think
you were in the middle of a machine-gun battle.

Even more amazing was that, because of these “interactive” capabilities,
and also because users seemed to be allowed blocks of time to use the TX-0
all by themselves, you could even modify a program while sitting at the
computer. A miracle!

There was no way in hell that Kotok, Saunders, Samson, and the others
were going to be kept away from that machine. Fortunately, there didn’t
seem to be the kind of bureaucracy surrounding the TX-0 that there was
around the IBM 704. No cadre of officious priests. The technician in charge
was a canny, white-haired Scotsman named John McKenzie. While he made
sure that graduate students and those working on funded projects—
Officially Sanctioned Users—maintained access to the machine, McKenzie
tolerated the crew of TMRC madmen who began to hang out in the RLE
lab, where the TX-0 stood.

Samson, Kotok, Saunders, and a freshman named Bob Wagner soon figured
out that the best time of all to hang out in Building 26 was at night, when no
person in his right mind would have signed up for an hour-long session on
the piece of paper posted every Friday beside the air conditioner in the RLE
lab. The TX-0 as a rule was kept running twenty-four hours a day—
computers back then were too expensive for their time to be wasted by
leaving them idle through the night, and besides, it was a hairy procedure to
get the thing up and running once it was turned off. So the TMRC hackers,
who soon were referring to themselves as TX-0 hackers, changed their
lifestyles to accommodate the computer. They laid claim to what blocks of
time they could, and would “vulture time” with nocturnal visits to the lab
on the off chance that someone who was scheduled for a 3 A.M. session
might not show up.

“Oh!” Samson would say delightedly, a minute or so after someone failed to
show up at the time designated in the logbook. “Make sure it doesn’t go to
waste!”

It never seemed to, because the hackers were there almost all the time. If
they weren’t in the RLE lab waiting for an opening to occur, they were in
the classroom next to the TMRC clubroom, the Tool Room, playing a

Hangman-style word game that Samson had devised called Come Next
Door, waiting for a call from someone who was near the TX-0, monitoring
it to see if someone had not shown up for a session. The hackers recruited a
network of informers to give advance notice of potential openings at the
computer—if a research project was not ready with its program in time, or a
professor was sick, the word would be passed to TMRC and the hackers
would appear at the TX-0, breathless and ready to jam into the space behind
the console.

Though Jack Dennis was theoretically in charge of the operation, Dennis
was teaching courses at the time and preferred to spend the rest of his time
actually writing code for the machine. Dennis played the role of benevolent
godfather to the hackers: he would give them a brief hands-on introduction
to the machine, point them in certain directions, and be amused at their wild
programming ventures. He had little taste for administration, though, and
was just as happy to let John McKenzie run things. McKenzie recognized
early on that the interactive nature of the TX-0 was inspiring a new form of
computer programming, and the hackers were its pioneers. So he did not lay
down too many edicts.

The atmosphere was loose enough in 1959 to accommodate the strays—
science-mad people whose curiosity burned like a hunger, who like Peter
Samson would be exploring the uncharted maze of laboratories at MIT. The
noise of the air conditioning, the audio output, and the drill-hammer
Flexowriter would lure these wanderers, who would poke their heads into
the lab like kittens peering into baskets of yarn.

One of those wanderers was an outsider named Peter Deutsch. Even before
discovering the TX-0, Deutsch had developed a fascination for computers.
It began one day when he picked up a manual that someone had discarded
—a manual for an obscure form of computer language for doing
calculations. Something about the orderliness of the computer instructions
appealed to him: he would later describe the feeling as the same kind of
eerily transcendent recognition that an artist experiences when he discovers
the medium that is absolutely right for him. This is where I belong. Deutsch
tried writing a small program, and, signing up for time under the name of
one of the priests, ran it on a computer. Within weeks, he had attained a
striking proficiency in programming. He was only twelve years old.

He was a shy kid, strong in math and unsure of most everything else. He
was uncomfortably overweight, deficient in sports, but an intellectual star
performer. His father was a professor at MIT, and Peter used that as his
entree to explore the labs.

It was inevitable that he would be drawn to the TX-0. He first wandered
into the small “Kluge Room” (a “kluge” is a piece of inelegantly
constructed equipment that seems to defy logic by working properly),
where three offline Flexowriters were available for punching programs onto
paper tape that would later be fed into the TX-0. Someone was busy
punching in a tape. Peter watched for a while, then began bombarding the
poor soul with questions about that weird-looking little computer in the next
room. Then Peter went up to the TX-0 itself and examined it closely, noting
how it differed from other computers: it was smaller and had a CRT display
and other neat toys. He decided right then to act as if he had a perfect right
to be there. He got hold of a manual and soon was startling people by
spouting actual make-sense computer talk, and eventually was allowed to
sign up for night and weekend sessions, and to write his own programs.

McKenzie worried that someone might accuse him of running some sort of
summer camp, with this short-pants little kid, barely tall enough to stick his
head over the TX-0 console, staring at the code that an Officially
Sanctioned User, perhaps some self-important graduate student, would be
hammering into the Flexowriter, and saying in his squeaky, preadolescent
voice something like, “Your problem is that this credit is wrong over here . .
. you need this other instruction over there,” and the self-important grad
student would go crazy—who is this little worm?—and start screaming at
him to go out and play somewhere. Invariably, though, Peter Deutsch’s
comments would turn out to be correct. Deutsch would also brazenly
announce that he was going to write better programs than the ones currently
available, and he would go and do it.

Samson, Kotok, and the other hackers accepted Peter Deutsch: by virtue of
his computer knowledge he was worthy of equal treatment. Deutsch was
not such a favorite with the Officially Sanctioned Users, especially when he
sat behind them ready to spring into action when they made a mistake on
the Flexowriter.

These Officially Sanctioned Users appeared at the TX-0 with the regularity
of commuters. The programs they ran were statistical analyses, cross

correlations, simulations of an interior of the nucleus of a cell. Applications.
That was fine for Users, but it was sort of a waste in the minds of the
hackers. What hackers had in mind was getting behind the console of the
TX-0 much in the same way as getting in behind the throttle of a plane. Or,
as Peter Samson, a classical music fan, put it, computing with the TX-0 was
like playing a musical instrument: an absurdly expensive musical
instrument upon which you could improvise, compose, and, like the
beatniks in Harvard Square a mile away, wail like a banshee with total
creative abandon.

One thing that enabled them to do this was the programming system
devised by Jack Dennis and another professor, Tom Stockman. When the
TX-0 arrived at MIT, it had been stripped down since its days at Lincoln
Lab: the memory had been reduced considerably, to 4,096 “words” of
eighteen bits each. (A “bit” is a binary digit, either a 1 or 0. These binary
numbers are the only things computers understand. A series of binary
numbers is called a “word.”) And the TX-0 had almost no software. So Jack
Dennis, even before he introduced the TMRC people to the TX-0, had been
writing “systems programs”—the software to help users utilize the
machine.

The first thing Dennis worked on was an assembler. This was something
that translated assembly language—which used three-letter symbolic
abbreviations that represented instructions to the machine—into machine
language, which consisted of the binary numbers 0 and 1. The TX-0 had a
rather limited assembly language: since its design allowed only 2 bits of
each 18-bit word to be used for instructions to the computer, only four
instructions could be used (each possible 2-bit variation—00, 01, 10, and 11
—represented an instruction). Everything the computer did could be broken
down to the execution of one of those four instructions: it took one
instruction to add two numbers, but a series of perhaps twenty instructions
to multiply two numbers. Staring at a long list of computer commands
written as binary numbers—for example, 10011001100001—could make
you into a babbling mental case in a matter of minutes. But the same
command in assembly language might look like this: ADD Y. After loading
the computer with the assembler that Dennis wrote, you could write
programs in this simpler symbolic form, and wait smugly while the
computer did the translation into binary for you. Then you’d feed that

http://bit.ly/bjpN70

binary “object” code back into the computer. The value of this was
incalculable: it enabled programmers to write in something that looked like
code, rather than an endless, dizzying series of 1s and Os.

The other program that Dennis worked on with Stockman was something
even newer—a debugger. The TX-0 came with a debugging program called
UT-3, which enabled you to talk to the computer while it was running by
typing commands directly into the Flexowriter. But it had terrible problems
—for one thing, it only accepted typed-in code that used the octal numeric
system. “Octal” is a base-8 number system (as opposed to binary, which is
base 2, and Arabic—ours—which is base 10), and it is a difficult system to
use. So Dennis and Stockman decided to write something better than UT-3
that would enable users to use the symbolic, easier-to-work-with assembly
language. This came to be called FLIT, and it allowed users to actually find
program bugs during a session, fix them, and keep the program running.
(Dennis would explain that “FLIT” stood for Flexowriter Interrogation
Tape, but clearly the name’s real origin was the insect spray with that brand
name.) FLIT was a quantum leap forward, since it liberated programmers to
actually do original composing on the machine—just like musicians
composing on their musical instruments. With the use of the debugger,
which took up one third of the 4,096 words of the TX-0 memory, hackers
were free to create a new, more daring style of programming.

And what did these hacker programs do? Well, sometimes, it didn’t matter
much at all what they did. Peter Samson hacked the night away on a
program that would instantly convert Arabic numbers to Roman numerals,
and Jack Dennis, after admiring the skill with which Samson had
accomplished this feat, said, “My God, why would anyone want to do such
a thing?” But Dennis knew why. There was ample justification in the
feeling of power and accomplishment Samson got when he fed in the paper
tape, monitored the lights and switches, and saw what were once plain old

blackboard Arabic numbers coming back as the numerals the Romans had
hacked with.

In fact, it was Jack Dennis who suggested to Samson that there were
considerable uses for the capability of the TX-0 to send noise to the audio
speaker. While there were no built-in controls for pitch, amplitude, or tone
character, there was a way to control the speaker—sounds would be emitted
depending on the state of the 14th bit in the 18-bit words the TX-0 had in its

accumulator in a given microsecond. The sound was on or off depending on
whether bit 14 was a 1 or 0. So Samson set about writing programs that
varied the binary numbers in that slot in different ways to produce different
pitches.

At that time, only a few people in the country had been experimenting with
using a computer to output any kind of music, and the methods they had
been using required massive computations before the machine would so
much as utter a note. Samson, who reacted with impatience to those who
warned he was attempting the impossible, wanted a computer playing music
right away. So he learned to control that one bit in the accumulator so
adeptly that he could command it with the authority of Charlie Parker on
the saxophone. In a later version of this music compiler, Samson rigged it
so that if you made an error in your programming syntax, the Flexowriter
would switch to a red ribbon and print, “To err is human to forgive divine.”

When outsiders heard the melodies of Johann Sebastian Bach in a single-
voice, monophonic square wave, no harmony, they were universally
unfazed. Big deal! Three million dollars for this giant hunk of machinery,
and why shouldn’t it do at least as much as a five-dollar toy piano? It was
no use to explain to these outsiders that Peter Samson had virtually
bypassed the process by which music had been made for eons. Music had
always been made by directly creating vibrations that were sound. What
happened in Samson’s program was that a load of numbers, bits of
information fed into a computer, comprised a code in which the music
resided. You could spend hours staring at the code, and not be able to divine
where the music was. It only became music while millions of blindingly
brief exchanges of data were taking place in the accumulator sitting in one
of the metal, wire, and silicon racks that comprised the TX-0. Samson had
asked the computer, which had no apparent knowledge of how to use a
voice, to lift itself in song, and the TX-0 had complied.

So it was that a computer program was not only metaphorically a musical
composition—it was literally a musical composition! It looked like—and
was—the same kind of program that yielded complex arithmetical
computations and statistical analyses. These digits that Samson had jammed
into the computer were a universal language that could produce anything—
a Bach fugue or an antiaircraft system.

http://bit.ly/bY89Gx

Samson did not say any of this to the outsiders who were unimpressed by
his feat. Nor did the hackers themselves discuss this—it is not even clear
that they analyzed the phenomenon in such cosmic terms. Peter Samson did
it, and his colleagues appreciated it, because it was obviously a neat hack.
That was justification enough.

To hackers like Bob Saunders—balding, plump, and merry disciple of the
TX-0, president of TMRC’s S&P group, student of systems—it was a
perfect existence. Saunders had grown up in the suburbs of Chicago, and
for as long as he could remember, the workings of electricity and telephone
circuitry had fascinated him. Before beginning MIT, Saunders had landed a
dream summer job, working for the phone company installing central office
equipment. He would spend eight blissful hours with soldering iron and
pliers in hand, working in the bowels of various systems, an idyll broken by
lunch hours spent in deep study of phone company manuals. It was the
phone company equipment underneath the TMRC layout that had
convinced Saunders to become active in the Model Railroad Club.

Saunders, being an upperclassman, had come to the TX-0 later in his
college career than Kotok and Samson: he had used the breathing space to
actually lay the foundation for a social life, which included courtship of and
eventual marriage to Marge French, who had done some nonhacking
computer work for a research project. Still, the TX-0 was the center of his
college career, and he shared the common hacker experience of seeing his
grades suffer from missed classes. It didn’t bother him much, because he
knew that his real education was occurring in Room 240 of Building 26,
behind the Tixo console. Years later he would describe himself and the
others as “an elite group. Other people were off studying, spending their
days up on four-floor buildings making obnoxious vapors or off in the
physics lab throwing particles at things or whatever it is they do. And we
were simply not paying attention to what other folks were doing because we
had no interest in it. They were studying what they were studying and we
were studying what we were studying. And the fact that much of it was not
on the officially approved curriculum was by and large immaterial.”

The hackers came out at night. It was the only way to take full advantage of
the crucial “off-hours” of the TX-0. During the day, Saunders would usually
manage to make an appearance in a class or two. Then some time spent

performing “basic maintenance” things like eating and going to the
bathroom. He might see Marge for a while. But eventually he would filter
over to Building 26. He would go over some of the programs of the night
before, printed on the nine-and-a-half-inch-wide paper that the Flexowriter
used. He would annotate and modify the listing to update the code to
whatever he considered the next stage of operation. Maybe then he would
move over to the Model Railroad Club, and he’d swap his program with
someone, checking simultaneously for good ideas and potential bugs. Then
back to Building 26, to the Kluge Room next to the TX-0, to find an offline
Flexowriter on which to update his code. All the while, he’d be checking to
see if someone had canceled a one-hour session on the machine; his own
session was scheduled at something like two or three in the morning. He’d
wait in the Kluge Room, or play some bridge back at the Railroad Club,
until the time came.

Sitting at the console, facing the metal racks that held the computer’s
transistors, each transistor representing a location that either held or did not
hold a bit of memory, Saunders would set up the Flexowriter, which would
greet him with the word “WALRUS.” This was something Samson had
hacked, in honor of Lewis Carroll’s poem with the line “The time has come,
the Walrus said . . .” Saunders might chuckle at that as he went into the
drawer for the paper tape that held the assembler program and fed that into
the tape reader. Now the computer would be ready to assemble his program,
so he’d take the Flexowriter tape he’d been working on and send that into
the computer. He’d watch the lights go on as the computer switched his
code from “source” (the symbolic assembly language) to “object” code
(binary), which the computer would punch out into another paper tape.
Since that tape was in the object code that the TX-0 understood, he’d feed it
in, hoping that the program would run magnificently.

There would most probably be a few fellow hackers kibitzing behind him,
laughing and joking and drinking Cokes and eating some junk food they’d
extracted from the machine downstairs. Saunders preferred the lemon jelly
wedges that the others called “lemon gunkies.” But at four in the morning,
anything tasted good. They would all watch as the program began to run,
the lights going on, the whine from the speaker humming in high or low
register depending on what was in Bit 14 in the accumulator, and the first
thing he’d see on the CRT display after the program had been assembled

http://bit.ly/d3fZfh

and run was that the program had crashed. So he’d reach into the drawer for
the tape with the FLIT debugger and feed that into the computer. The
computer would then be a debugging machine, and he’d send the program
back in. Now he could start trying to find out where things had gone wrong,
and maybe if he was lucky he’d find out and change things by putting in
some commands by flicking some of the switches on the console in precise
order, or hammering in some code on the Flexowriter. Once things got
running—and it was always incredibly satisfying when something worked,
when he’d made that roomful of transistors and wires and metal and
electricity all meld together to create a precise output that he’d devised—
he’d try to add the next advance to it. When the hour was over—someone
already itching to get on the machine after him—Saunders would be ready
to spend the next few hours figuring out what the heck had made the
program go belly-up.

The peak hour itself was tremendously intense, but during the hours before,
and even during the hours afterward, a hacker attained a state of pure
concentration. When you programmed a computer, you had to be aware of
where all the thousands of bits of information were going from one
instruction to the next, and be able to predict—and exploit—the effect of all
that movement. When you had all that information glued to your cerebral
being, it was almost as if your own mind had merged into the environment
or the computer. Sometimes it took hours to build up to the point where
your thoughts could contain that total picture, and when you did get to that
point, it was such a shame to waste it that you tried to sustain it by
marathon bursts, alternately working on the computer or poring over the
code that you wrote on one of the offline Flexowriters in the Kluge Room.
You would sustain that concentration by “wrapping around” to the next day.

Inevitably, that frame of mind spilled over to what random shards of
existence the hackers had outside of computing. The knife-and-paintbrush
contingent at TMRC was not pleased at all by the infiltration of Tixo-mania
into the club: they saw it as a sort of Trojan horse for a switch in the club
focus, from railroading to computing. And if you attended one of the club
meetings held every Tuesday at 5:15 P.M., you could see the concern: the
hackers would exploit every possible thread of parliamentary procedure to
create a meeting as convoluted as the programs they were hacking on the
TX-0. Motions were made to make motions to make motions, and

objections ruled out of order as if they were so many computer errors. A
note in the minutes of the meeting on November 24, 1959, suggests that
“we frown on certain members who would do the club a lot more good by
doing more S&P-ing and less reading Robert’s Rules of Order.” Samson
was one of the worst offenders, and at one point an exasperated TMRC
member made a motion “to purchase a cork for Samson’s oral diarrhea.”

Hacking parliamentary procedure was one thing, but the logical mind-frame
required for programming spilled over into more commonplace activities.
You could ask a hacker a question and sense his mental accumulator
processing bits until he came up with a precise answer to the question you
asked. Marge Saunders would drive to the Safeway every Saturday morning
in the Volkswagen and upon her return ask her husband, “Would you like to
help me bring in the groceries?” Bob Saunders would reply, “No.” Stunned,
Marge would drag in the groceries herself. After the same thing occurred a
few times, she exploded, hurling curses at him and demanding to know why
he said no to her question.

“That’s a stupid question to ask,” he said. “Of course I won’t like to help
you bring in the groceries. If you ask me if I’ll help you bring them in,
that’s another matter.”

It was as if Marge had submitted a program into the TX-0, and the program,
as programs do when the syntax is improper, had crashed. It was not until
she debugged her question that Bob Saunders would allow it to run
successfully on his own mental computer.

http://bit.ly/bluRCD

Chapter 2. The Hacker Ethic

Something new was coalescing around the TX-0: a new way of life with a
philosophy, an ethic, and a dream.

There was no one moment when it started to dawn on the TX-0 hackers that
by devoting their technical abilities to computing with a devotion rarely
seen outside of monasteries, they were the vanguard of a daring symbiosis
between man and machine. With a fervor like that of young hot-rodders
fixated on souping up engines, they came to take their almost unique
surroundings for granted. Even as the elements of a culture were forming,
as legends began to accrue, as their mastery of programming started to
surpass any previous recorded levels of skill, the dozen or so hackers were
reluctant to acknowledge that their tiny society, on intimate terms with the
TX-0, had been slowly and implicitly piecing together a body of concepts,
beliefs, and mores.

The precepts of this revolutionary Hacker Ethic were not so much debated
and discussed as silently agreed upon. No manifestos were issued. No
missionaries tried to gather converts. The computer did the converting, and
those who seemed to follow the Hacker Ethic most faithfully were people
like Samson, Saunders, and Kotok, whose lives before MIT seemed to be
mere preludes to that moment when they fulfilled themselves behind the
console of the TX-0. Later there would come hackers who took the implicit
Ethic even more seriously than the TX-0 hackers did, hackers like the
legendary Greenblatt or Gosper, though it would be some years yet before
the tenets of hackerism would be explicitly delineated.

Still, even in the days of the TX-0, the planks of the platform were in place.
The Hacker Ethic:

Access to computers—and anything that might teach you something about the way the world
works—should be unlimited and total. Always yield to the Hands-On Imperative!

Hackers believe that essential lessons can be learned about the systems—
about the world—from taking things apart, seeing how they work, and
using this knowledge to create new and even more interesting things. They
resent any person, physical barrier, or law that tries to keep them from
doing this.

This is especially true when a hacker wants to fix something that (from his
point of view) is broken or needs improvement. Imperfect systems infuriate
hackers, whose primal instinct is to debug them. This is one reason why
hackers generally hate driving cars—the system of randomly programmed
red lights and oddly laid out one-way streets cause delays that are so
goddamned unnecessary that the impulse is to rearrange signs, open up
traffic-light control boxes . . . redesign the entire system.

In a perfect hacker world, anyone pissed off enough to open up a control
box near a traffic light and take it apart to make it work better should be
perfectly welcome to make the attempt. Rules that prevent you from taking
matters like that into your own hands are too ridiculous to even consider
abiding by. This attitude helped the Model Railroad Club start, on an
extremely informal basis, something called the Midnight Requisitioning
Committee. When TMRC needed a set of diodes or some extra relays to
build some new feature into The System, a few S&P people would wait
until dark and find their way into the places where those things were kept.
None of the hackers, who were as a rule scrupulously honest in other
matters, seemed to equate this with “stealing.” A willful blindness.

All information should be free.

If you don’t have access to the information you need to improve things,
how can you fix them? A free exchange of information, particularly when
the information was in the form of a computer program, allowed for greater
overall creativity. When you were working on a machine like the TX-0,
which came with almost no software, everyone would furiously write
systems programs to make programming easier—Tools to Make Tools, kept
in the drawer by the console for easy access by anyone using the machine.
This prevented the dreaded, time-wasting ritual of reinventing the wheel:
instead of everybody writing his own version of the same program, the best
version would be available to everyone, and everyone would be free to
delve into the code and improve on that. A world studded with feature-full
programs, bummed to the minimum, debugged to perfection.

The belief, sometimes taken unconditionally, that information should be
free was a direct tribute to the way a splendid computer, or computer
program, works—the binary bits moving in the most straightforward,
logical path necessary to do their complex job. What was a computer but
something that benefited from a free flow of information? If, say, the

accumulator found itself unable to get information from the input/output
(I/0) devices like the tape reader or the switches, the whole system would
collapse. In the hacker viewpoint, any system could benefit from that easy
flow of information.

Mistrust Authority—Promote Decentralization.

The best way to promote this free exchange of information is to have an
open system, something that presents no boundaries between a hacker and a
piece of information or an item of equipment that he needs in his quest for
knowledge, improvement, and time online. The last thing you need is a
bureaucracy. Bureaucracies, whether corporate, government, or university,
are flawed systems, dangerous in that they cannot accommodate the
exploratory impulse of true hackers. Bureaucrats hide behind arbitrary rules
(as opposed to the logical algorithms by which machines and computer
programs operate): they invoke those rules to consolidate power, and
perceive the constructive impulse of hackers as a threat.

The epitome of the bureaucratic world was to be found at a very large
company called International Business Machines—IBM. The reason its
computers were batch-processed Hulking Giants was only partially because
of vacuum tube technology. The real reason was that IBM was a clumsy,
hulking company that did not understand the hacking impulse. If IBM had
its way (so the TMRC hackers thought), the world would be batch
processed, laid out on those annoying little punch cards, and only the most
privileged of priests would be permitted to actually interact with the
computer.

All you had to do was look at someone in the IBM world and note the
button-down white shirt, the neatly pinned black tie, the hair carefully held
in place, and the tray of punch cards in hand. You could wander into the
Computation Center, where the 704, the 709, and later the 7090 were stored
—the best IBM had to offer—and see the stifling orderliness, down to the
roped-off areas beyond which unauthorized people could not venture. And
you could compare that to the extremely informal atmosphere around the
TX-0, where grungy clothes were the norm and almost anyone could
wander in.

Now, IBM had done and would continue to do many things to advance
computing. By its sheer size and mighty influence, it had made computers a

permanent part of life in America. To many people, the words “IBM™ and
“computer” were virtually synonymous. IBM’s machines were reliable
workhorses, worthy of the trust that businessmen and scientists invested in
them. This was due in part to IBM’s conservative approach: it would not
make the most technologically advanced machines, but would rely on
proven concepts and careful, aggressive marketing. As IBM’s dominance of
the computer field was established, the company became an empire unto
itself, secretive and smug.

What really drove the hackers crazy was the attitude of the IBM priests and
sub-priests, who seemed to think that IBM had the only “real” computers,
and the rest were all trash. You couldn’t talk to those people—they were
beyond convincing. They were batch-processed people, and it showed not
only in their preference of machines, but in their ideas about the way a
computation center, and a world, should be run. Those people could never
understand the obvious superiority of a decentralized system, with no one
giving orders—a system where people could follow their interests, and if
along the way they discovered a flaw in the system, they could embark on
ambitious surgery. No need to get a requisition form. Just a need to get
something done.

This antibureaucratic bent coincided neatly with the personalities of many
of the hackers, who since childhood had grown accustomed to building
science projects while the rest of their classmates were banging their heads
together and learning social skills on the field of sport. These young adults
who were once outcasts found the computer a fantastic equalizer,
experiencing a feeling, according to Peter Samson, “like you opened the
door and walked through this grand new universe . . .” Once they passed
through that door and sat behind the console of a million-dollar computer,
hackers had power. So it was natural to distrust any force that might try to
limit the extent of that power.

Hackers should be judged by their hacking, not bogus criteria such as degrees, age, race, or

position.
The ready acceptance of twelve-year-old Peter Deutsch in the TX-0
community (though not by nonhacker graduate students) was a good
example. Likewise, people who trotted in with seemingly impressive
credentials were not taken seriously until they proved themselves at the
console of a computer. This meritocratic trait was not necessarily rooted in

the inherent goodness of hacker hearts—it was mainly that hackers cared
less about someone’s superficial characteristics than they did about his
potential to advance the general state of hacking, to create new programs to
admire, to talk about that new feature in the system.

You can create art and beauty on a computer.

Samson’s music program was an example. But to hackers, the art of the
program did not reside in the pleasing sounds emanating from the online
speaker. The code of the program held a beauty of its own. (Samson,
though, was particularly obscure in refusing to add comments to his source
code explaining what he was doing at a given time. One well-distributed
program Samson wrote went on for hundreds of assembly-language
instructions, with only one comment beside an instruction that contained the
number 1750. The comment was RIPJSB, and people racked their brains
about its meaning until someone figured out that 1750 was the year Bach
died, and that Samson had written an abbreviation for Rest In Peace Johann
Sebastian Bach.)

A certain esthetic of programming style had emerged. Because of the
limited memory space of the TX-0 (a handicap that extended to all
computers of that era), hackers came to deeply appreciate innovative
techniques that allowed programs to do complicated tasks with very few
instructions. The shorter a program was, the more space you had left for
other programs, and the faster a program ran. Sometimes when you didn’t
need much speed or space, and you weren’t thinking about art and beauty,
you’d hack together an ugly program, attacking the problem with “brute
force” methods. “Well, we can do this by adding twenty numbers,” Samson
might say to himself, “and it’s quicker to write instructions to do that than
to think out a loop in the beginning and the end to do the same job in seven
or eight instructions.” But the latter program might be admired by fellow
hackers, and some programs were bummed to the fewest lines so artfully
that the author’s peers would look at it and almost melt with awe.

Sometimes program bumming became competitive, a macho contest to
prove oneself so much in command of the system that one could recognize
elegant shortcuts to shave off an instruction or two, or, better yet, rethink
the whole problem and devise a new algorithm that would save a whole
block of instructions. (An algorithm is a specific procedure which one can
apply to solve a complex computer problem; it is sort of a mathematical

skeleton key.) This could most emphatically be done by approaching the
problem from an offbeat angle that no one had ever thought of before, but
that in retrospect made total sense. There was definitely an artistic impulse
residing in those who could utilize this genius-from-Mars technique—a
black-magic, visionary quality that enabled them to discard the stale
outlook of the best minds on earth and come up with a totally unexpected
new algorithm.

This happened with the decimal print routine program. This was a
subroutine—a program within a program that you could sometimes
integrate into many different programs—to translate binary numbers that
the computer gave you into regular decimal numbers. In Saunders’ words,
this problem became the “pawn’s ass of programming—if you could write a
decimal print routine which worked, you knew enough about the computer
to call yourself a programmer of sorts.” And if you wrote a great decimal
print routine, you might be able to call yourself a hacker. More than a
competition, the ultimate bumming of the decimal print routine became a
sort of hacker Holy Grail.

Various versions of decimal print routines had been around for some
months. If you were being deliberately stupid about it, or if you were a
genuine moron—an out-and-out “loser”—it might take you a hundred
instructions to get the computer to convert machine language to decimal.
But any hacker worth his salt could do it in less, and finally, by taking the
best of the programs, bumming an instruction here and there, the routine
was diminished to about fifty instructions.

After that, things got serious. People would work for hours, seeking a way
to do the same thing in fewer lines of code. It became more than a
competition; it was a quest. For all the effort expended, no one seemed to be
able to crack the fifty-line barrier. The question arose whether it was even
possible to do it in less. Was there a point beyond which a program could
not be bummed?

Among the people puzzling with this dilemma was a fellow named Jensen,
a tall, silent hacker from Maine who would sit quietly in the Kluge Room
and scribble on printouts with the calm demeanor of a backwoodsman
whittling. Jensen was always looking for ways to compress his programs in
time and space—his code was a completely bizarre sequence of
intermingled Boolean and arithmetic functions, often causing several

different computations to occur in different sections of the same eighteen-
bit “word.” Amazing things, magical stunts.

Before Jensen, there had been general agreement that the only logical
algorithm for a decimal print routine would have the machine repeatedly
subtracting, using a table of the powers of ten to keep the numbers in proper
digital columns. Jensen somehow figured that a powers-of-ten table wasn’t
necessary; he came up with an algorithm that was capable of converting the
digits in a reverse order, but, by some digital sleight of hand, print them out
in the proper order. There was a complex mathematical justification to it
that was clear to the other hackers only when they saw Jensen’s program
posted on a bulletin board, his way of telling them that he had taken the
decimal print routine to its limit. Forty-six instructions. People would stare
at the code and their jaws would drop. Marge Saunders remembers the
hackers being unusually quiet for days afterward.

“We knew that was the end of it,” Bob Saunders later said. “That was
Nirvana.”

Computers can change your life for the better.

This belief was subtly manifest. Rarely would a hacker try to impose a view
of the myriad advantages of the computer way of knowledge to an outsider.
Yet, this premise dominated the everyday behavior of the TX-0 hackers, as
well as the generations of hackers that came after them.

Surely the computer had changed theirlives, enriched their lives, given
their lives focus, made their lives adventurous. It had made them masters of
a certain slice of fate. Peter Samson later said, “We did it twenty-five to
thirty percent for the sake of doing it because it was something we could do
and do well, and sixty percent for the sake of having something which was
in its metaphorical way alive, our offspring, which would do things on its
own when we were finished. That’s the great thing about programming, the
magical appeal it has . . . Once you fix a behavioral problem [a computer or
program] has, it’s fixed forever, and it is exactly an image of what you
meant.”

Like Aladdin’s lamp, you could get it to do your bidding.

Surely everyone could benefit from experiencing this power. Surely
everyone could benefit from a world based on the Hacker Ethic. This was
the implicit belief of the hackers, and the hackers irreverently extended the

http://bit.ly/bQlea6

conventional point of view of what computers could and should do—
leading the world to a new way of looking and interacting with computers.

This was not easily done. Even at such an advanced institution as MIT,
some professors considered a manic affinity for computers as frivolous,
even demented. TMRC hacker Bob Wagner once had to explain to an
engineering professor what a computer was. Wagner experienced this clash
of computer versus anticomputer even more vividly when he took a
Numerical Analysis class in which the professor required each student to do
homework using rattling, clunky electromechanical calculators. Kotok was
in the same class, and both of them were appalled at the prospect of
working with those low-tech machines. “Why should we,” they asked,
“when we’ve got this computer?”

So Wagner began working on a computer program that would emulate the
behavior of a calculator. The idea was outrageous. To some, it was a
misappropriation of valuable machine time. According to the standard
thinking on computers, their time was so precious that one should only
attempt things that took maximum advantage of the computer, things that
otherwise would take roomfuls of mathematicians days of mindless
calculating. Hackers felt otherwise: anything that seemed interesting or fun
was fodder for computing—and using interactive computers, with no one
looking over your shoulder and demanding clearance for your specific
project, you could act on that belief. After two or three months of tangling
with intricacies of floating-point arithmetic (necessary to allow the program
to know where to place the decimal point) on a machine that had no simple
method to perform elementary multiplication, Wagner had written three
thousand lines of code that did the job. He had made a ridiculously
expensive computer perform the function of a calculator that was one
thousandth the price. To honor this irony, he called the program "Expensive
Desk Calculator,” and proudly did the homework for his class on it.

His grade—zero. “You used a computer!” the professor told him. “This
can’t be right.”

Wagner didn’t even bother to explain. How could he convey to his teacher
that the computer was making realities out of what were once incredible
possibilities? Or that another hacker had even written a program called
“Expensive Typewriter” that converted the TX-0 to something you could
write text on, could process your writing in strings of characters and print it

http://bit.ly/bDc4UZ

out on the Flexowriter—could you imagine a professor accepting a
classwork report written by the computer? How could that professor—how
could, in fact, anyone who hadn’t been immersed in this uncharted man-
machine universe—understand how Wagner and his fellow hackers were
routinely using the computer to simulate, according to Wagner, “strange
situations which one could scarcely envision otherwise”? The professor
would learn in time, as would everyone, that the world opened up by the
computer was a limitless one.

If anyone needed further proof, you could cite the project that Kotok was
working on in the Computation Center, the chess program that bearded Al
professor “Uncle” John McCarthy, as he was becoming known to his hacker
students, had begun on the IBM 704. Even though Kotok and the several
other hackers helping him on the program had only contempt for the IBM
batch-processing mentality that pervaded the machine and the people
around it, they had managed to scrounge some late-night time to use it
interactively, and had been engaging in an informal battle with the systems
programmers on the 704 to see which group would be known as the biggest
consumer of computer time. The lead would bounce back and forth, and the
white-shirt-and-black-tie 704 people were impressed enough to actually let
Kotok and his group touch the buttons and switches on the 704: rare sensual
contact with a vaunted IBM beast.

Kotok’s role in bringing the chess program to life was indicative of what
was to become the hacker role in Artificial Intelligence: a Heavy Head like
McCarthy or his colleague Marvin Minsky would begin a project or wonder
aloud whether something might be possible, and the hackers, if it interested
them, would set about doing it.

The chess program had been started using FORTRAN, one of the early
computer languages. Computer languages look more like English than
assembly language, are easier to write with, and do more things with fewer
instructions; however, each time an instruction is given in a computer
language like FORTRAN, the computer must first translate that command
into its own binary language. A program called a “compiler” does this, and
the compiler takes up time to do its job, as well as occupying valuable space
within the computer. In effect, using a computer language puts you an extra
step away from direct contact with the computer, and hackers generally

http://bit.ly/aUb3YE

preferred assembly or, as they called it, “machine” language to less elegant,
“higher-level” languages like FORTRAN.

Kotok, though, recognized that because of the huge amounts of numbers
that would have to be crunched in a chess program, part of the program
would have to be done in FORTRAN, and part in assembly. They hacked it
part by part, with “move generators,” basic data structures, and all kinds of
innovative algorithms for strategy. After feeding the machine the rules for
moving each piece, they gave it some parameters by which to evaluate its
position, consider various moves, and make the move that would advance it
to the most advantageous situation. Kotok kept at it for years, the program
growing as MIT kept upgrading its IBM computers, and one memorable
night a few hackers gathered to see the program make some of its first
moves in a real game. Its opener was quite respectable, but after eight or so
exchanges there was real trouble, with the computer about to be
checkmated. Everybody wondered how the computer would react. It took a
while (everyone knew that during those pauses the computer was actually
“thinking,” if your idea of thinking included mechanically considering
various moves, evaluating them, rejecting most, and using a predefined set
of parameters to ultimately make a choice). Finally, the computer moved a
pawn two squares forward, illegally jumping over another piece. A bug!
But a clever one—it got the computer out of check. Maybe the program was
figuring out some new algorithm with which to conquer chess.

At other universities, professors were making public proclamations that
computers would never be able to beat a human being in chess. Hackers
knew better. They would be the ones who would guide computers to greater
heights than anyone expected. And the hackers, by fruitful, meaningful
association with the computer, would be foremost among the beneficiaries.

But they would not be the only beneficiaries. Everyone could gain
something by the use of thinking computers in an intellectually automated
world. And wouldn’t everyone benefit even more by approaching the world
with the same inquisitive intensity, skepticism toward bureaucracy,
openness to creativity, unselfishness in sharing accomplishments, urge to
make improvements, and desire to build as those who followed the Hacker
Ethic? By accepting others on the same unprejudiced basis by which
computers accepted anyone who entered code into a Flexowriter? Wouldn’t
we benefit if we learned from computers the means of creating a perfect

system, and set about emulating that perfection in a human system? If
everyone could interact with computers with the same innocent, productive,
creative impulse that hackers did, the Hacker Ethic might spread through
society like a benevolent ripple, and computers would indeed change the
world for the better.

In the monastic confines of the Massachusetts Institute of Technology,
people had the freedom to live out this dream—the hacker dream. No one
dared suggest that the dream might spread. Instead, people set about
building, right there at MIT, a hacker Xanadu, the likes of which might
never be duplicated.

http://bit.ly/96EvaL

Chapter 3. Spacewar

In the summer of 1961, Alan Kotok and the other TMRC hackers learned
that a new company was soon to deliver to MIT, absolutely free, the next
step in computing, a machine that took the interactive principles of the TX-
0 several steps further. A machine that might be even better for hackers than
the TX-0 was.

The PDP-1. It would change computing forever. It would make the still
hazy hacker dream come a little closer to reality.

Alan Kotok had distinguished himself as a true wizard on the TX-0, so
much so that he, along with Saunders, Samson, Wagner, and a few others,
had been hired by Jack Dennis to be the Systems Programming Group of
the TX-0. The pay would be a munificent $1.60 an hour. For a few of the
hackers, the job was one more excuse not to go to classes—some hackers,
like Samson, would never graduate, and be too busy hacking to really regret
the loss. Kotok, though, was able not only to manage his classes, but to
establish himself as a “canonical” hacker. Around the TX-0 and TMRC, he
was acquiring legendary status. One hacker who was just arriving at MIT
that year remembers Kotok giving newcomers a demonstration of how the
TX-0 worked: “I got the impression he was hyperthyroid or something,”
recalled Bill Gosper, who would become a canonical hacker himself,
“because he spoke very slowly and he was chubby and his eyes were half-
closed. That was completely and utterly the wrong impression. [Around the
TX-0] Kotok had infinite moral authority. He had written the chess
program. He understood hardware.” (This last was not an inconsiderable
compliment—*“understanding hardware” was akin to fathoming the Tao of
physical nature.)

The summer that the word came out about the PDP-1, Kotok was working
for Western Electric, kind of a dream job, since of all possible systems the
phone system was admired most of all. The Model Railroad Club would
often go on tours of phone company exchanges, much in the way that
people with an interest in painting might tour a museum. Kotok found it
interesting that at the phone company, which had gotten so big in its
decades of development, only a few of the engineers had a broad
knowledge of the interrelations within that system. Nevertheless, the

http://bit.ly/9wg9Np

engineers could readily provide detail on specific functions of the system,
like crossbar switching and step-relays; Kotok and the others would hound
these experts for information, and the flattered engineers, probably having
no idea that these ultra-polite college kids would actually use the
information, would readily comply.

Kotok made it a point to attend those tours, to read all the technical material
he could get his hands on, and to see what he could get by dialing different
numbers on the complex and little-understood MIT phone system. It was
basic exploration, just like exploring the digital back alleys of the TX-O0.
During that previous winter of 1960—61, the TMRC hackers had engaged in
an elaborate “telephone network fingerprinting,” charting all the places you
could reach by MIT’s system of tie lines. Though not connected to general
telephone lines, the system could take you to Lincoln Lab, and from there to
defense contractors all over the country. It was a matter of mapping and
testing. You would start with one access code, add different digits to it, see
who might answer, ask whoever answered where they were, then add digits
to that number to piggyback to the next place. Sometimes you could even
reach outside lines in the suburbs, courtesy of the unsuspecting phone
company. And, as Kotok would later admit, “If there was some design flaw
in the phone system such that one could get calls that weren’t intended to
get through, I wasn’t above doing that, but that was their problem, not
mine.”

Still, the motive was exploration, not fraud, and it was considered bad form
to profit illegally from these weird connections. Sometimes outsiders could
not comprehend this. Samson’s roommates in the Burton Hall dorm, for
instance, were nonhackers who thought it was all right to exploit system
bugs without the holy justification of system exploration. After they
pressured Samson for days, he finally gave in and handed them a 20-digit
number that he said would access an exotic location. “You can dial this
from the hall phone,” he told them, “but I don’t want to be around.” As they
anxiously began dialing, Samson went to a downstairs phone, which rang
just as he reached it. “This is the Pentagon,” he boomed in his most official
voice. “What is your security clearance, please?” From the phone upstairs,
Samson heard terrified gasps, and the click of a phone being hung up.

Network fingerprinting was obviously a pursuit limited to hackers, whose
desire to know the system overruled any fear of getting nailed.

But as much as phone company esoterica fascinated Kotok, the prospect of
the PDP-1 took precedence. Perhaps he sensed that nothing, even phone
hacking, would be the same afterward. The people who designed and
marketed this new machine were not your ordinary computer company
button-downs. The company was a brand-new firm called Digital
Equipment Corporation (DEC), and some of the TX-0 users knew that
DEC’s first products were special interfaces made specifically for that TX-
0. It was exciting enough that some of DEC’s founders had a view of
computing that differed from the gray-flannel, batch-processed IBM
mentality; it was positively breathtaking that the DEC people seemed to
have looked at the freewheeling, interactive, improvisational, hands-on-
iber-alles style of the TX-0 community, and designed a computer that
would reinforce that kind of behavior. The PDP-1 (the initials were short for
Programmed Data Processor, a term considered less threatening than
“computer,” which had all kinds of hulking-giant connotations) would
become known as the first minicomputer, designed not for huge number-
crunching tasks, but for scientific inquiry, mathematical formulation . . . and
hacking. It would be so compact that the whole setup was no larger than
three refrigerators—it wouldn’t require as much air conditioning, and you
could even turn it on without a whole crew of sub-priests being needed to
sequence several power supplies in the right order or start the time-base
generator, among other exacting tasks. The retail price of the computer was
an astoundingly low $120,000—cheap enough so people might stop
complaining about how precious every second of computer time was. But
the machine, which was the second PDP-1 manufactured (the first one was
sold to the nearby scientific firm of Bolt Beranek and Newman, or BBN),
cost MIT nothing: it was donated by DEC to the RLE lab.

So it was clear that hackers would have even more time on it than they did
on the TX-0.

The PDP-1 would be delivered with a simple collection of systems
software, which the hackers considered completely inadequate. The TX-0
hackers had become accustomed to the most advanced interactive software
anywhere, a dazzling set of systems programs, written by hackers
themselves and implicitly tailored to their relentless demands for control of
the machine. Young Peter Deutsch, the twelve-year-old who had discovered
the TX-0, had made good on his promise to write a spiffier assembler, and

http://bit.ly/bWa7k2
http://bit.ly/bajG3q
http://bit.ly/a2Okz9

Bob Saunders had worked up a smaller, faster version of the FLIT debugger
called Micro-FLIT. These programs had benefited from an expanded
instruction set. One day, after considerable planning and designing by
Saunders and Jack Dennis, the TX-0 had been turned off, and a covey of
engineers exposed its innards and began hardwiring new instructions into
the machine. This formidable task expanded the assembly language by
several instructions. When the pliers and screwdrivers were put away and
the computer carefully turned on, everyone madly set about revamping
programs and bumming old programs using the new instructions.

The PDP-1 instruction set, Kotok learned, was not too different from that of
the expanded TX-0, so Kotok naturally began writing systems software for
the PDP-1 that very summer, using all the spare time he could manage.
Figuring that everyone would jump in and begin writing as soon as the
machine got there, he worked on a translation of the Micro-FLIT debugger
so that writing the software for the “One” would be easier. Samson
promptly named Kotok’s debugger “DDT,” and the name would stick,
though the program itself would be modified countless times by hackers
who wanted to add features or bum instructions out of it.

Kotok was not the only one preparing for the arrival of the PDP-1. Like a

motley collection of expectant parents, other hackers were busily weaving
software booties and blankets for the new baby coming into the family, so
this heralded heir to the computing throne would be welcome as soon as it
was delivered in late September.

The hackers helped bring the PDP-1 into its new home, the Kluge Room
next door to the TX-0. It was a beauty: sitting behind a console half as long
as the Tixo’s, you’d look at one compact panel of toggle switches and
lights; next to that was the display screen, encased in a bright blue, six-
sided, quasideco housing; behind it were the tall cabinets, the size of a
refrigerator and three times as deep, with the wires, boards, switches, and
transistors—entry to that, of course, was forbidden. There was a
Flexowriter connected for online input (people complained about the noise
so much that the Flexowriter was eventually replaced by a modified IBM
typewriter, which didn’t work nearly so well) and a high-speed paper-tape
reader, also for input. All in all, a downright heavenly toy.

Jack Dennis liked some of the software written by BBN for the prototype
PDP-1, particularly the assembler. Kotok, though, felt like retching when he

http://bit.ly/c6ttpS

saw that assembler run—the mode of operation didn’t seem to fit the on-
the-fly style he liked—so he and a few others told Dennis that they wanted
to write their own. “That’s a bad idea,” said Dennis, who wanted an
assembler up and running right away, and figured that it would take weeks
for the hackers to do it.

Kotok and the others were adamant. This was a program that they’d be
living with. It had to be just perfect. (Of course no program ever is, but that
never stopped a hacker.)

“I’1l tell you what,” said Kotok, this twenty-year-old Buddha-shaped
wizard, to the skeptical yet sympathetic Jack Dennis, “If we write this
program over the weekend and have it working, would you pay us for the
time?”

The pay scale at that time was such that the total would be something under
five hundred dollars. “That sounds like a fair deal,” said Dennis,

Kotok, Samson, Saunders, Wagner, and a couple of others began on a
Friday night late in September. They figured they would work from the TX-
0 assembler that Dennis had written the original of and that twelve-year-old
Peter Deutsch, among others, had revamped. They wouldn’t change inputs
or outputs, and they wouldn’t redesign algorithms; each hacker would take
a section of the TX-0 program and convert it to PDP-1 code. And they
wouldn’t sleep. Six hackers worked around two hundred fifty man-hours
that weekend, writing code, debugging, and washing down take-out
Chinese food with massive quantities of Coca-Cola shipped over from the
TMRC clubroom. It was a programming orgy, and when Jack Dennis came
in that Monday, he was astonished to find an assembler loaded into the
PDP-1, which, as a demonstration, was assembling its own code into binary.

By sheer dint of hacking, the TX-0—mno, the PDP-1—hackers had turned
out a program in a weekend that it would have taken the computer industry
weeks, maybe even months to pull off. It was a project that would probably
not be undertaken by the computer industry without a long and tedious
process of requisitions, studies, meetings, and executive vacillating, most
likely with considerable compromise along the way. It might never have
been done at all. The project was a triumph for the Hacker Ethic.

The hackers were given even more access to this new machine than they
had managed to get on the TX-0, and almost all of them switched their

operations to the Kluge Room. A few stubbornly stuck to the Tixo, and to
the PDP-1 hackers, this was grounds for some mild ridicule. To rub it in, the
PDP-1 hackers developed a little demonstration based on the mnemonics of
the instruction set of this bold new machine, which included such exotic
instructions as DAC (Deposit Accumulator), LIO (Load Input-Output),
DPY (Deplay), and JMP. The PDP-1 group would stand in a line and shout
in unison:

LAC,

DAC,
DIPPY DAP,
LIO,

DIO

JUMP!

When they chanted that last word—*“Jump!”—they would all jump to the
right. What was lacking in choreography was more than compensated for
by enthusiasm: they were supercharged by the beauty of the machine, by
the beauty of computers.

The same kind of enthusiasm was obvious in the even more spontaneous
programming occurring on the PDP-1, ranging from serious systems
programs, to programs to control a primitive robot arm, to whimsical hacks.
One of the latter took advantage of a hacked-up connection between the
PDP-1 and the TX-0—a wire through which information could pass, one bit
at a time, between the two machines. According to Samson, the hackers
called in the venerable Al pioneer John McCarthy to sit by the PDP-1.
“Professor McCarthy, look at our new chess program!” And then they
called another professor to sit by the TX-0. “Here’s the chess program!
Type in your move!” After McCarthy typed his first move, and it appeared
on the Flexowriter on the TX-0, the hackers told the other professor that he
had just witnessed the TX-0’s opening move. “Now make yours!” After a
few moves, McCarthy noticed that the computer was outputting the moves
one letter at a time, sometimes with a suspicious pause between them. So
McCarthy followed the wire to his flesh-and-blood opponent. The hackers
rocked with mirth. But it would not be long before they would come up
with programs for computers—no joke—to actually play tournament chess.

The PDP-1 beckoned the hackers to program without limit. Samson was
casually hacking things like the Mayan calendar (which worked on a base-
20 number system) and working overtime on a version of his TX-0 music
program that took advantage of the PDP-1’s extended audio capabilities to
create music in three voices—three-part Bach fugues, melodies interacting .
. . computer music erupting from the old Kluge Room! The people at DEC
had heard about Samson’s program and asked him to complete it on the
PDP-1, so Samson eventually worked it so that someone could type a
musical score into the machine by a simple translation of notes into letters
and digits, and the computer would respond with a three-voice organ
sonata. Another group coded up Gilbert and Sullivan operettas.

Samson proudly presented the music compiler to DEC to distribute to
anyone who wanted it. He was proud that other people would be using his
program. The team that worked on the new assembler felt likewise. For
instance, they were pleased to have paper tape bearing the program in the
drawer so anyone using the machine could access it, try to improve it, bum
a few instructions from it, or add a feature to it. They felt honored when
DEC asked for the program so it could offer it to other PDP-1 owners. The
question of royalties never came up. To Samson and the others, using the
computer was such a joy that they would have paid to do it. The fact that
they were getting paid the princely sum of $1.60 an hour to work on the
computer was a bonus. As for royalties, wasn’t software more like a gift to
the world, something that was reward in itself? The idea was to make a
computer more usable, to make it more exciting to users, to make
computers so interesting that people would be tempted to play with them,
explore them, and eventually hack on them. When you wrote a fine
program you were building a community, not churning out a product.

Anyway, people shouldn’t have to pay for software—information should be
free!

The TMRC hackers were not the only ones who had been devising plans for
the new PDP-1. During that summer of 1961, a plan for the most elaborate
hack yet—a virtual showcase of what could come out of a rigorous
application of the Hacker Ethic—was being devised. The scene of these
discussions was a tenement building on Higham Street in Cambridge, and
the original perpetrators were three itinerant programmers in their mid-

twenties who’d been hanging around various computation centers for years.
Two of the three lived in the tenement, so in honor of the pompous
proclamations emanating from nearby Harvard University the trio
mockingly referred to the building as the Higham Institute.

One of the Fellows of this bogus institution was Steve Russell, nicknamed,
for unknown reasons, Slug. He had that breathless chipmunk speech pattern
so common among hackers, along with thick glasses, modest height, and a
fanatic taste for computers, bad movies, and pulp science fiction. All three
interests were shared by the resident attendees at those bull sessions on
Higham Street.

Russell had long been a “coolie” (to use a TMRC term) of Uncle John
McCarthy. McCarthy had been trying to design and implement a higher-
level language that might be sufficient for artificial intelligence work. He
thought he had found it in LISP. The language was named for its method of
List Processing; by simple yet powerful commands, LISP could do many
things with few lines of code; it could also perform powerful recursions—
references to things within itself—which would allow programs written in
that language to actually “learn” from what happened as the program ran.
The problem with LISP at that time was that it took up an awful amount of
space on a computer, ran very slowly, and generated voluminous amounts
of extra code as the programs ran, so much so that it needed its own
"garbage collection" program to periodically clean out the computer
memory.

Russell was helping Uncle John write a LISP interpreter for the Hulking
Giant IBM 704. It was, in his words, “a horrible engineering job,” mostly
due to the batch-processing tedium of the 704.

Compared to that machine, the PDP-1 looked like the Promised Land to
Slug Russell. More accessible than the TX-0, and no batch processing!
Although it didn’t seem big enough to do LISP, it had other marvelous
capabilities, some of which were objects of discussion of the Higham
Institute. What particularly intrigued Russell and his friends was the
prospect of making up some kind of elaborate “display hack” on the PDP-1,
using the CRT screen. After considerable midnight discourse, the three-man
Higham Institute put itself on record as insisting that the most effective
demonstration of the computer’s magic would be a visually striking game.

http://bit.ly/adu1gW
http://bit.ly/aCLZf1

There had been several attempts to do this kind of thing on the TX-0. One
of them was a hack called Mouse in the Maze—the user first constructed a
maze with the light pen, and a blip on the screen representing a mouse
would tentatively poke its way through the maze in search of another set of
blips in the shape of cheese wedges. There was also a “VIP version” of the
game, in which the mouse would seek martini glasses. After it got to the
glass, it would seek another, until it ran out of energy, too drunk to
continue. When you flicked the switches to run the mouse through the maze
a second time, though, the mouse would “remember” the path to the
glasses, and like an experienced barfly would unhesitatingly scurry toward
the booze. That was as far as display hacks would go on the TX-O0.

But already on the PDP-1, which had a screen that was easier to program
than the TX-0’s, there had been some significant display hacks. The most
admired effort was created by one of the twin gurus of artificial intelligence
at MIT, Marvin Minsky (the other one was, of course, McCarthy). Minsky
was more outgoing than his fellow Al guru, and more willing to get into the
hacker mode of activity. He was a man with very big ideas about the future
of computing—he really believed that one day machines would be able to
think, and he would often create a big stir by publicly calling human brains
“meat machines,” implying that machines not made of meat would do as
well some day. An elfish man with twinkling eyes behind thick glasses, a
starkly bald head, and an omnipresent turtleneck sweater, Minsky would
say this with his usual dry style, geared simultaneously to maximize
provocation and to leave just a hint that it was all some cosmic goof—of
course machines can’t think, heh-heh. Marvin was the real thing; the PDP-1
hackers would often sit in on his course, Intro to Al 6.544, because not only
was Minsky a good theoretician, but he knew his stuff. By the early 1960s,
Minsky was beginning to organize what would come to be the world’s first
laboratory in artificial intelligence; and he knew that to do what he wanted,
he would need programming geniuses as his foot soldiers—so he
encouraged hackerism in any way he could.

One of Minsky’s contributions to the growing canon of interesting hacks
was a display program on the PDP-1 called the Circle Algorithm. It was
discovered by mistake, actually—while trying to bum an instruction out of
a short program to make straight lines into curves or spirals, Minsky
inadvertently mistook a “Y” character for a “Y prime,” and instead of the

http://bit.ly/aeFUSg

display squiggling into inchoate spirals as expected, it drew a circle: an
incredible discovery, which was later found to have profound mathematical
implications. Hacking further, Minsky used the Circle Algorithm as a
stepping-off point for a more elaborate display in which three particles
influenced each other and made fascinating, swirling patterns on the screen,
self-generating roses with varying numbers of leaves. “The forces particles
exerted on others were totally outlandish,” Bob Wagner later recalled. “You
were simulating a violation of natural law!” Minsky called the hack a "Tri-
Pos: Three-Position Display" program, but the hackers affectionately
renamed it the Minskytron.

Slug Russell was inspired by this. At the Higham Institute sessions some
months back, he and his friends had discussed the criteria for the ultimate
display hack. Since they had been fans of trashy science fiction, particularly
the space opera novels of E.E. “Doc” Smith, they somehow decided that the
PDP-1 would be a perfect machine to make a combination grade-B movie
and $120,000 toy. A game in which two people could face each other in an
outer-space showdown. A Higham Institute Study Group on Space Warfare
was duly organized, and its conclusion strongly implied that Slug Russell
should be the author of this historic hack.

But months later, Russell hadn’t even started. He would watch the
Minskytron make patterns, he’d flip switches to see new patterns develop,
and every so often he’d flip more switches when the program got wedged
into inactivity. He was fascinated, but thought the hack too abstract and
mathematical. “This demo is a crock,” he finally decided—only thirty-two
or so instructions, and it didn’t really do anything.

Slug Russell knew that his war-in-outer-space game would do something.
In its own kitschy, sci-fi terms, it would be absorbing in a way no previous
hack had ever been. The thing that got Slug into computers in the first place
was the feeling of power you got from running the damn things. You can
tell the computer what to do, and it fights with you, but it finally does what
you tell it to. Of course it will reflect your own stupidity, and often what
you tell it to do will result in something distasteful. But eventually, after
tortures and tribulations, it will do exactly what you want. The feeling you
get then is unlike any other feeling in the world. It can make you a junkie. It
made Slug Russell a junkie, and he could see that it had done the same

http://bit.ly/bPmwrK

thing to the hackers who haunted the Kluge Room until dawn. It was that
feeling that did it, and Slug Russell guessed the feeling was power.

Slug got sort of a similar, though less intense, feeling from Doc Smith’s
novels. He let his imagination construct the thrill of roaring across space in
a white rocket ship . . . and wondered if that same excitement could be
captured while sitting behind the console of the PDP-1. That would be the
Spacewar he dreamed about. Once again he vowed to do it.

Later.

Slug was not as driven as some of the other hackers. Sometimes he needed
a push. After he made the mistake of opening up his big mouth about this
program he was going to write, the PDP-1 hackers, always eager to see
another hack added to the growing pile of paper tapes in the drawer, urged
him to do it. After mumbling excuses for a while, he said he would, but
he’d first have to figure out how to write the elaborate sine-cosine routines
necessary to plot the ships’ motion.

Kotok knew that hurdle could be easily solved. Kotok at that point had been
getting fairly cozy with the people at DEC, several miles away at Maynard.
DEC was informal, as computer manufacturers went, and did not regard
MIT hackers as the grungy, frivolous computer-joyriders that IBM might
have taken them for. For instance, one day when a piece of equipment was
broken, Kotok called up Maynard and told DEC about it; they said, “Come
up and get a replacement.” By the time Kotok got up there, it was well after
5 P.M. and the place was closed. But the night watchman let him go in, find
the desk of the engineer he’d been talking to, and root through the desk
until he found the part. Informal, the way hackers like it. So it was no
problem for Kotok to go up to Maynard one day, where he was positive
someone would have a routine for sine and cosine that would run on the
PDP-1. Sure enough, someone had it, and since information was free,
Kotok took it back to Building 26.

“Here you are, Russell,” Kotok said, paper tapes in hand. “Now what’s your
excuse?”

At that point, Russell had no excuse. So he spent his off-hours writing this
fantasy PDP-1 game, the likes of which no one had seen before. Soon he
was spending his “on” hours working on the game. He began in early
December, and when Christmas came, he was still hacking. When the

http://bit.ly/9Wia5U

calendar wrapped around to 1962, he was still hacking. By that time,
Russell could produce a dot on the screen that you could manipulate: by
flicking some of the tiny toggle switches on the control panel, you could
make the dots accelerate and change direction.

He then set about making the shapes of the two rocket ships: both were
classic cartoon rockets, pointed at the top and blessed with a set of fins at
the bottom. To distinguish them from each other, he made one chubby and
cigar-shaped, with a bulge in the middle, while the second he shaped like a
thin tube. Russell used the sine and cosine routines to figure out how to
move those shapes in different directions. Then he wrote a subroutine to
shoot a “torpedo” (a dot) from the rocket nose with a switch on the
computer. The computer would scan the position of the torpedo and the
enemy ship; if both occupied the same area, the program would call up a
subroutine that replaced the unhappy ship with a random splatter of dots
representing an explosion. (That process was called “collision detection.”)

All of this was actually a significant conceptual step toward more
sophisticated “real-time” programming, where what happens on a computer
matches the frame of reference in which human beings are actually
working. In another sense, Russell was emulating the online, interactive
debugging style that the hackers were championing—the freedom to see
what instruction your program stopped dead on, and to use switches or the
Flexowriter to jimmy in a different instruction, all while the program was
running along with the DDT debugger. The game Spacewar, a computer
program itself, helped show how all games—and maybe everything else—
worked like computer programs. When you went a bit astray, you modified
your parameters and fixed it. You put in new instructions. The same
principle applied to target shooting, chess strategy, and MIT course work.
Computer programming was not merely a technical pursuit, but an approach
to the problems of living.

In the later stages of programming, Saunders helped Slug Russell out, and
they hacked a few intense six-to-eight-hour sessions. Sometime in February,
Russell unveiled the basic game. There were the two ships, each with thirty-
one torpedoes. There were a few random dots on the screen representing
stars in this celestial battlefield. You could maneuver the ships by flicking
four switches on the console of the PDP-1, representing clockwise turn,
counterclockwise turn, accelerate, and fire torpedo.

Slug Russell knew that by showing a rough version of the game, and
dropping a paper tape with the program into the box with the PDP-1 system
programs, he was welcoming unsolicited improvements. Spacewar was no
ordinary computer simulation—you could actually be a rocket-ship pilot. It
was Doc Smith come to life. But the same power that Russell had drawn on
to make his program—the power that the PDP-1 lent a programmer to
create his own little universe—was also available to other hackers, who
naturally felt free to improve Slug Russell’s universe. They did so instantly.

The nature of the improvements might be summed up by the general hacker
reaction to the original routine Slug Russell used for his torpedoes.
Knowing that military weapons in real life aren’t always perfect, Russell
figured that he’d make the torpedoes realistic. Instead of having them go in
a straight line until they ran out of steam and exploded, he put in some
random variations in the direction and velocity. Instead of appreciating this
verisimilitude, the hackers denounced it. They loved smooth-running
systems and reliable tools, so the fact that they would be stuck with
something that didn’t work right drove them crazy. Russell later figured out
that “weapons or tools that aren’t very trustworthy are held in very low
esteem—people really like to be able to trust their tools and weapons. That
was very clear in that case.”

But of course that could be easily fixed. The advantage that a world created
by a computer program had over the real world was that you could fix a dire
problem like faulty torpedoes just by changing a few instructions. That was
why so many people found it easy to lose themselves in hackerism in the
first place! So the torpedoes were fixed, and people spent hours in outer-
space dueling. And even more hours trying to make the Spacewar world a
better one.

Peter Samson, for instance, loved the idea of Spacewar, but could not abide
the randomly generated dots that passed themselves off as the sky. Real
space had stars in specific places. “We’ll have the real thing,” Samson
vowed. He obtained a thick atlas of the universe, and set about entering data
into a routine he wrote that would generate the actual constellations visible
to someone standing on the equator on a clear night. All stars down to the
fifth magnitude were represented; Samson duplicated their relative
brightness by controlling how often the computer lit the dot on the screen
which represented the star. He also rigged the program so that, as the game

progressed, the sky would majestically scroll—at any one time the screen
exposed forty-five percent of the sky. Besides adding verisimilitude, this
“Expensive Planetarium” program also gave rocket fighters a mappable
background from which to gauge position. The game could truly be called,
as Samson said, Shootout-at-El-Cassiopeia.

Another programmer, named Dan Edwards, was dissatisfied with the
unanchored movement of the two dueling ships. It made the game merely a
test of motor skills. He figured that adding a gravity factor would give the
game a strategic component. So he programmed a central star—a sun—in
the middle of the screen; you could use the sun’s gravitational pull to give
you speed as you circled it, but if you weren’t careful and got too close,
you’d be drawn into the sun, which was certain death.

Before all the strategic implications of this variation could be employed,
Shag Garetz, one of the Higham Institute trio, contributed a wild-card type
of feature. He had read in Doc Smith’s novels how space hot-rodders could
suck themselves out of one galaxy and into another by virtue of a "hyper-
spatial tube,” which would throw you into “that highly enigmatic Nth
space.” So he added a “hyperspace” capability to the game, allowing a
player to avoid a dire situation by pushing a panic button that would zip
him to this hyperspace. You were allowed to go into hyperspace three times
in the course of a game; the drawback was that you never knew where you
might come out. Sometimes you’d reappear right next to the sun, just in
time to see your ship hopelessly pulled to an untimely demise on the sun’s
surface. In tribute to Marvin Minsky’s original hack, Garetz programmed
the hyperspace feature so that a ship entering hyperspace would leave a
“warp-induced photonic stress emission signature”—a leftover smear of
light in a shape that often formed in the aftermath of a Minskytron display.

The variations were endless. By switching a few parameters you could turn
the game into “hydraulic spacewar,” in which torpedoes flow out in
ejaculatory streams instead of one by one. Or, as the night grew later and
people became locked into interstellar mode, someone might shout, “Let’s
turn on the Winds of Space!” and someone would hack up a warping factor,
which would force players to make adjustments every time they moved.
Though any improvement a hacker wished to make would be welcome, it
was extremely bad form to make some weird change in the game
unannounced. The effective social pressures that enforced the Hacker Ethic

http://bit.ly/aFJAdn
http://bit.ly/aXO01R

—which urged hands-on for improvement, not damage—prevented any
instance of that kind of mischief. Anyway, the hackers were already
engaged in a mind-boggling tweak of the system—they were using an
expensive computer to play the world’s most glorified game!

Spacewar was played a hell of a lot. For some, it was addictive. Though no
one could officially sign up the PDP-1 for a Spacewar session, the
machine’s every free moment that spring seemed to have some version of
the game running. Bottles of Coke in hand (and sometimes with money on
the line), the hackers would run marathon tournaments. Russell eventually
wrote a subroutine that would keep score, displaying in octal (everyone
could sight-read that base-eight number system by then) the total of games
won. For a while, the main drawback seemed to be that working the
switches on the console of the PDP-1 was uncomfortable—everybody was
getting sore elbows from keeping their arms at that particular angle. So one
day Kotok and Saunders went over to the TMRC clubroom and found parts
for what would become the first computer joysticks. Constructed totally
with parts lying around the clubroom and thrown together in an hour of
inspired construction, the control boxes were made of wood, with Masonite
tops. They had switches for rotation and thrust, as well as a button for
hyperspace. All controls were, of course, silent, so that you could
surreptitiously circle around your opponent or duck into Nth space, should
you care to.

While some hackers lost interest in Spacewar once the fury of the
programming phase had died down, others developed a killer instinct for
devising strategies to mow down opponents. Most games were won and lost
in the first few seconds. Wagner became adept at the “lie in wait” strategy,
in which you stayed silent while gravity whipped you around the sun, then
straightened out and began blasting torps at your opponent. Then there was
a variation called the "CBS Opening,” where you angled to shoot and then
whipped around the star: the strategy got its name because when both
Spacewar gladiators tried it, they would leave a pattern on the screen that
bore a remarkable resemblance to the CBS eye. Saunders, who took his
Spacewar seriously, used a modified CBS strategy to maintain dominance
through the tournaments—there was a time when he couldn’t be beaten.
However, after twenty minutes of protecting your place in the king-of-the-
hill-structured contest, even a master Spacewarrior would get a bit blurry-

http://bit.ly/byEdqW
http://scr.bi/96ODGt

eyed and slower on the draw, and most everybody got a chance to play
Spacewar more than was probably sensible. Peter Samson, second only to
Saunders in Spacewarring, realized this one night when he went home to
Lowell. As he stepped out of the train, he stared upward into the crisp, clear
sky. A meteor flew overhead. Where’s the spaceship? Samson thought as he
instantly swiveled back and grabbed the air for a control box that wasn’t
there.

In May 1962, at the annual MIT Open House, the hackers fed the paper tape
with twenty-seven pages worth of PDP-1 assembly-language code into the
machine, set up an extra display screen—actually a giant oscilloscope—and
ran Spacewar all day to a public that drifted in and could not believe what
they saw. The sight of it—a science-fiction game written by students and
controlled by a computer—was so much on the verge of fantasy that no one
dared predict that an entire genre of entertainment would eventually be
spawned from it.

It wasn’t until years later, when Slug Russell was at Stanford University,
that he realized that the game was anything but a hacker aberration. After
working late one night, Russell and some friends went to a local bar that
had some pinball machines. They played until closing time; then, instead of
going home, Russell and his coworkers went back to their computer, and
the first thing his friends did was run Spacewar. Suddenly it struck Russell:
“These people just stopped playing a pinball machine and went to play
Spacewar—by gosh, it is a pinball machine.” The most advanced,
imaginative, expensive pinball machine the world had seen.

Like the hackers’ assemblers and the music program, Spacewar was not
sold. Like any other program, it was placed in the drawer for anyone to
access, look at, and rewrite as they saw fit. The group effort that stage by
stage had improved the program could have stood for an argument for the
Hacker Ethic: an urge to get inside the workings of the thing and make it
better had led to measurable improvement. And of course it was all a huge
amount of fun. It was no wonder that other PDP-1 owners began to hear
about it, and the paper tapes holding Spacewar were freely distributed. At
one point the thought crossed Slug Russell’s mind that maybe someone
should be making money from this, but by then there were already dozens
of copies circulating. DEC was delighted to get a copy, and the engineers
there used it as a final diagnostic program on PDP-1s before they rolled

them out the door. Then, without wiping the computer memory clean,
they’d shut the machine off. The DEC sales force knew this, and often,
when machines were delivered to new customers, the salesman would turn
on the power, check to make sure no smoke was pouring out the back, and
hit the “VY” location where Spacewar resided. And if the machine had
been carefully packed and shipped, the heavy star would be in the center,
and the cigar-shaped rocket and the tube-shaped rocket would be ready for
cosmic battle. A maiden flight for a magic machine.

Spacewar, as it turned out, was the lasting legacy of the pioneers of MIT
hacking. In the next couple of years many of the TX-0 and PDP-1 joyriders
departed the Institute. Saunders would take a job in industry at Santa
Monica (where he would later write a Spacewar for the PDP-7 he used at
work). Bob Wagner went off to the Rand Corporation. Peter Deutsch went
to Berkeley, to begin his freshman year of college. Kotok took a part-time
job that developed into an important designing position at DEC (though he
managed to hang around TMRC and the PDP-1 for years afterward). In a
development that was to have considerable impact on spreading MIT-style
hackerism outside of Cambridge, John McCarthy left the Institute to begin a
new artificial intelligence lab on the West Coast, at Stanford University.
Slug Russell, ever McCarthy’s LISP-writing coolie, tagged along.

But new faces and some heightened activity in the field of computing were
to insure that the hacker culture at MIT would not only continue, but thrive
and develop more than ever. The new faces belonged to breathtakingly
daring hackers destined for word-of-mouth, living-legend fame. But the
developments that would allow these people to take their place in living the
hacker dream were already under way, initiated by people whose names
would become known by more conventional means: scholarly papers,
academic awards, and, in some cases, notoriety in the scientific community.

These people were the planners. Among them were scientists who
occasionally engaged in hacking—Jack Dennis, McCarthy, Minsky—but
who were ultimately more absorbed by the goals of computing than
addicted to the computing process. They saw computers as a means to a
better life for the human race, but did not necessarily think that working on
a computer would be the key element in making that life better.

http://bit.ly/a5iidn

Some of the planners envisioned a day when artificially intelligent
computers would relieve man’s mental burdens, much as industrial
machinery had already partially lifted his physical yoke. McCarthy and
Minsky were the vanguard of this school of thought, and both had
participated in a 1956 Dartmouth conference that established a foundation
for research in this field. McCarthy’s work in the higher-level language
LISP was directed toward this end, and was sufficiently intriguing to rouse
hackers like Slug Russell, Peter Deutsch, Peter Samson, and others into
working with LISP. Minsky seemed interested in artificial intelligence with
a more theoretical basis: a gleeful, bald-headed Johnny Appleseed in the
field, he would spread his seeds, each one a thought capable of blooming
into a veritable apple tree of useful Al techniques and projects.

The planners were also extremely concerned about getting the power of
computers into the hands of more researchers, scientists, statisticians, and
students. Some planners worked on making computers easier to use; John
Kemeny of Dartmouth showed how this could be done by writing an easier-
to-use computer language called BASIC. Programs written in BASIC ran
much slower than assembly language and took up more memory space, but
did not require the almost monastic commitment that machine language
demanded. MIT planners concentrated on extending actual computer access
to more people. There were all sorts of justifications for this, not the least
being the projected scale of economy—one that was glaringly preferable to
the then current system, in which even seconds of computer time were
valuable commodities (though you would not know it around the Spacewar-
playing PDP-1. If more people used computers, more expert programmers
and theoreticians would emerge, and the science of computing—yes, these
aggressive planners were calling it a science—could only benefit by that
new talent. But there was something else involved in this. It was something
any hacker could understand—the belief that computing, in and of itself,
was positive. John McCarthy illustrated that belief when he said that the
natural state of man was to be online to a computer all the time. “What the
user wants is a computer that he can have continuously at his beck and call
for long periods of time.”

The man of the future. Hands on a keyboard, eyes on a CRT, in touch with
the body of information and thought that the world had been storing since
history began. It would all be accessible to Computational Man.

None of this would occur with the batch-processed IBM 704. Nor would it
occur with the TX-0 and PDP-1, with their weekly log sheets completely
filled in within hours of being posted on the wall. No, in order to do this,
you’d have to have several people use the computer at once. (The thought
of each person having his or her own computer was something only a
hacker would think worthwhile.) This multiuser concept was called time
sharing, and in 1960 the heaviest of the MIT planners began the Long-
Range Computer Study Group. Among the members were people who had
watched the rise of the MIT hacker with amusement and assent, people like
Jack Dennis, Marvin Minsky, and Uncle John McCarthy. They knew how
important it was for people to actually get their hands on those things. To
them, it was not a question of whether to time-share or not, it was a
question of how to do it.

Computer manufacturers, particularly IBM, were not enthusiastic. It was
clear that MIT would have to go about it pretty much on its own. (The
research firm of Bolt Beranek and Newman was also working on time
sharing.) Eventually two projects began at MIT: one was Jack Dennis’
largely solo effort to write a time-sharing system for the PDP-1. The other
was undertaken by a professor named F.J. Corbatd, who would seek some
help from the reluctant goliath, IBM, to write a system for the 7090.

The Department of Defense, especially through its Advanced Research
Projects Agency (ARPA), had been supporting computers since the war,
mindful of their eventual applications toward military use. So by the early
sixties, MIT had obtained a long-range grant for its time-sharing project,
which would be named Project MAC (the initials stood for two things:
Multiple Access Computing, and Machine Aided Cognition). Uncle Sam
would cough up three million dollars a year. Dennis would be in charge.
Marvin Minsky would also be a large presence, particularly in using the
one-third share of the money that would go not for time-sharing
development, but for the still ephemeral field of artificial intelligence.
Minsky was delighted, since the million dollars was ten times his previous
budget for Al, and he realized that a good part of the remaining two thirds
would see its way into Al activities as well. It was a chance to set up an
ideal facility, where people could plan for the realization of the hacker
dream with sophisticated machines, shielded from the bureaucratic lunacy

http://bit.ly/dggIAT
http://bit.ly/b1OYQm
http://bit.ly/c17hzZ
http://bit.ly/cnhxGD

of the outside world. Meanwhile, the hacker dream would be lived day-by-
day by devoted students of the machine.

The planners knew that they’d need special people to staff this lab. Marvin
Minsky and Jack Dennis knew that the enthusiasm of brilliant hackers was
essential to bring about their Big Ideas. As Minsky later said of his lab: “In
this environment there were several things going on. There were the most
abstract theories of artificial intelligence that people were working on and
some of [the hackers] were concerned with those, most weren’t. But there
was the question of how do you make the programs that do these things and
how do you get them to work.”

Minsky was quite happy to resolve that question by leaving it to the
hackers, the people to whom “computers were the most interesting thing in
the world.” The kind of people who, for a lark, would hack up something
even wilder than Spacewar and then, instead of playing it all night (as
sometimes was happening in the Kluge Room), would hack some more.
Instead of space simulations, the hackers who did the scut work at Project
MAC would be tackling larger systems—robotic arms, vision projects,
mathematical conundrums, and labyrinthine time-sharing systems that
boggled the imagination. Fortunately, the classes that entered MIT in the
early sixties were to provide some of the most devoted and brilliant hackers
who ever sat at a console. And none of them so fully fit the title “hacker” as
Richard Greenblatt.

http://bit.ly/aX4Prb

Chapter 4. Greenblatt and Gosper

Ricky Greenblatt was a hacker waiting to happen. Years later, when he was
known throughout the nation’s computer centers as the archetypal hacker,
when the tales of his single-minded concentration were almost as prolific as
the millions of lines of assembly-language code he’d hacked, someone
would ask him how it all started. He’d twist back in his chair, looking not as
rumpled as he did back as an undergraduate, when he was cherub-faced and
dark-haired and painfully awkward of speech; the question, he figured,
came down to whether hackers were born or made, and out came one of the
notorious non sequiturs which came to be known as Blatt-isms: “If hackers
are born, then they’re going to get made, and if they’re made into it, they
were born.”

But Greenblatt would admit that he was a born hacker.

Not that his first encounter with the PDP-1 had changed his life. He was
interested, all right. It had been freshman rush week at MIT, and Ricky
Greenblatt had some time on his hands before tackling his courses, ready
for academic glory. He visited the places that interested him most: the
campus radio station WITBS (MIT’s was perhaps the only college radio
station in the country with a surfeit of student audio engineers and a
shortage of disc jockeys), the Tech Model Railroad Club, and the Kluge
Room in Building 26, which held the PDP-1.

Some hackers were playing Spacewar.

It was the general rule to play the game with all the room lights turned off,
so the people crowded around the console would have their faces eerily
illuminated by this display of spaceships and heavy stars. Rapt faces lit by
the glow of the computer. Ricky Greenblatt was impressed. He watched the
cosmic clashes for a while, then went next door to look over the TX-0, with
its racks of tubes and transistors, its fancy power supplies, its lights and
switches. His high school math club back in Columbia, Missouri, had
visited the state university’s batch-processed computer, and he’d seen a
giant card-sorting machine at a local insurance company. But nothing like
this. Still, despite being impressed with the radio station, the Model
Railroad Club, and especially the computers, he set about making dean’s
list.

This scholastic virtue could not last. Greenblatt, even more than your
normal MIT student, was a willing conscript of the Hands-On Imperative.
His life had been changed irrevocably the day in 1954 that his father,
visiting the son he hadn’t lived with since an early divorce, took him to the
Memorial Student Union at the University of Missouri, not far from Ricky’s
house in Columbia. Ricky Greenblatt took to the place immediately. It
wasn’t merely because of the comfortable lounge, the television set, the
soft-drink bar . . . It was because of the students, who were more of an
intellectual match for nine-year-old Ricky Greenblatt than were his
classmates. He would go there to play chess, and he usually had no problem
beating the college students. He was a very good chess player.

One of his chess victims was a UM engineering student on the GI bill. His
name was Lester, and Lester’s gift to this nine-year-old prodigy was a
hands-on introduction to the world of electronics. A world where there were
no ambiguities. Logic prevailed. You had a degree of control over things.
You could build things according to your own plan. To a nine-year-old
whose intelligence might have made him uncomfortable with his
chronological peers, a child affected by a marital split which was typical of
a world of human relations beyond his control, electronics was the perfect
escape.

Lester and Ricky worked on ham radio projects. They tore apart old
television sets. Before finishing college, Lester introduced Ricky to a Mr.
Houghton, who ran a local radio shop, and that became a second home to
the youngster through high school. With a high school friend, Greenblatt
built a gamut of hairy projects. Amplifiers, modulators, all sorts of evil
looking vacuum tube contraptions. An oscilloscope. Ham radios. A
television camera. A television camera! It seemed like a good idea, so they
built it. And of course when it came time to choose a college, Richard
Greenblatt picked MIT. He entered in the fall of 1962.

The course work was rigid during his first term, but Greenblatt was
handling it without much problem. He had developed a relationship with a
few campus computers. He had gotten lucky, landing the elective course
called EE 641—Introduction to Computer Programming—and he would
often go down to the punch-card machines at EAM to make programs for
the Hulking Giant 7090. Also, his roommate, Mike Beeler, had been taking
a course in something called Nomography. The students taking the class

http://bit.ly/c3eZq7

had hands-on access to an IBM 1620—set in yet another enclave of those
misguided priests whose minds had been clouded with the ignorant fog that
came from the IBM sales force. Greenblatt would often accompany Beeler
to the 1620, where you would punch up your card deck, and stand in line.
When your turn came, you’d dump your cards in the reader and get an
instant printout from a plotter-printer. “It was sort of a fun, evening thing to
do,” Beeler would later recall. “We’d do it the way others might watch a
sports game, or go out and have a beer.” It was limited but gratifying. It
made Greenblatt want more.

Around Christmas time, he finally felt comfortable enough to hang out at
the Model Railroad Club. There, around such people as Peter Samson, it
was natural to fall into hacker mode. (Computers had various states called
“modes,” and hackers often used that phrase to describe conditions in real
life.) Samson had been working on a big timetable program for the TMRC
operating sessions on the giant layout; because of the number crunching
required, Samson had done it in FORTRAN on the 7090. Greenblatt
decided to write the first FORTRAN for the PDP-1. Just why he decided to
do this is something he could never explain, and chances are no one asked.
It was common, if you wanted to do a task on a machine and the machine
didn’t have the software to do it, to write the proper software so you could
do it. This was an impulse that Greenblatt would later elevate to an art
form.

He did it, too. Wrote a program that would enable you to write in
FORTRAN, taking what you wrote and compiling the code into machine
language, as well as transforming the computer’s machine language
responses back into FORTRAN. Greenblatt did his FORTRAN compiler
largely in his room, since he had trouble getting enough access to the PDP-1
to work online. Besides that, he got involved in working on a new system of
relays underneath the layout at TMRC. It seems that the plaster in the room
(which was always pretty grungy anyway, because custodial people were
officially barred entry) kept falling, and some of it would get on the
contacts of the system that Jack Dennis had masterminded in the mid-
fifties. Also, there was something new called a wire-spring relay which
looked better than the old kind. So Greenblatt spent a good deal of time that
spring doing that. Along with PDP-1 hacking.

It is funny how things happen. You begin working conscientiously as a
student, you make the dean’s list, and then you discover something that puts
classes into their proper perspective: they are totally irrelevant to the matter
at hand. The matter at hand was hacking, and it seemed obvious—at least,
so obvious that no one around TMRC or the PDP-1 seemed to think it even
a useful topic of discourse—that hacking was a pursuit so satisfying that
you could make a life of it. While a computer is very complex, it is not
nearly as complex as the various comings and goings and interrelationships
of the human zoo; but, unlike formal or informal study of the social
sciences, hacking gave you not only an understanding of the system, but an
addictive control as well, along with the illusion that total control was just a
few features away. Naturally, you go about building those aspects of the
system that seem most necessary to work within the system in the proper
way. Just as naturally, working in this improved system lets you know of
more things that need to be done. Then someone like Marvin Minsky might
happen along and say, “Here is a robot arm. I am leaving this robot arm by
the machine.” Immediately, nothing in the world is as essential as making
the proper interface between the machine and the robot arm, and putting the
robot arm under your control, and figuring a way to create a system where
the robot arm knows what the hell it is doing. Then you can see your
offspring come to life. How can something as contrived as an engineering
class compare to that? Chances are that your engineering professor has
never done anything half as interesting as the problems you are solving
every day on the PDP-1. Who’s right?

By Greenblatt’s sophomore year, the computer scene around the PDP-1 was
changing considerably. Though a few more of the original TX-0 hackers
had departed, there was new talent arriving, and the new, ambitious setup,
funded by the benevolent Department of Defense, nicely accommodated
their hacking. A second PDP-1 had arrived; its home was the new, nine-
story rectangular building on Main Street—a building of mind-numbing
dullness, with no protuberances, and sill-less windows that looked painted
onto its off-white surface. The building was called Tech Square, and among
the MIT and corporate clients moving in was Project MAC. The ninth floor
of this building, where the computers were, would be home to a generation
of hackers, and none would spend as much time there as Greenblatt.

http://bit.ly/cHQuQG

Greenblatt was getting paid (sub-minimum wages) for hacking as a student
employee, as were several hackers who worked on the system or were
starting to develop some of the large programs that would do artificial
intelligence. They started to notice that this awkwardly polite sophomore
was a potential PDP-1 superstar.

He was turning out an incredible amount of code, hacking as much as he
could, or sitting with a stack of printouts, marking them up. He’d shuttle
between the PDP-1 and TMRC, with his head fantastically wired with the
structures of the program he was working on, or the system of relays he’d
hacked under the TMRC layout. To hold that concentration for a long
period of time, he lived, as did several of his peers, the thirty-hour day. It
was conducive to intense hacking, since you had an extended block of
waking hours to get going on a program, and, once you were really rolling,
little annoyances like sleep need not bother you. The idea was to burn away
for thirty hours, reach total exhaustion, then go home and collapse for
twelve hours. An alternative would be to collapse right there in the lab. A
minor drawback of this sort of schedule was that it put you at odds with the
routines which everyone else in the world used to do things like keep
appointments, eat, and go to classes. Hackers could accommodate this—one
would commonly ask questions like, “What phase is Greenblatt in?” and
someone who had seen him recently would say, “I think he’s in a night
phase now, and should be in around nine or so.” Professors did not adjust to
those phases so easily, and Greenblatt “zorched” his classes.

He was placed on academic probation, and his mother came to
Massachusetts to confer with the dean. There was some explaining to do.
“His mom was concerned,” his roommate Beeler would later say. “Her idea
was that he was here to get a degree. But the things he was doing on the
computer were completely state-of-the-art—no one was doing them yet. He
saw additional things to be done. It was very difficult to get excited about
classes.” To Greenblatt, it wasn’t really important that he was in danger of
flunking out of college. Hacking was paramount: it was what he did best
and what made him happiest.

His worst moment came when he was so “out of phase” that he slept past a
final exam. It only hastened his exit from the student body of MIT.
Flunking out probably wouldn’t have made any difference at all in his life
had it not been for a rule that you couldn’t be a student employee when you

were an exiled student. So Greenblatt went looking for work, fully
intending to get a daytime programming job that would allow him to spend
his nights at the place he wanted to spend his time—the ninth floor at Tech
Square. Hacking. And that is exactly what he did.

There was an equally impressive hacker who had mastered the PDP-1 in a
different manner. More verbal than Greenblatt, he was better able to
articulate his vision of how the computer had changed his life, and how it
might change all our lives. This student was named Bill Gosper. He had
begun MIT a year before Greenblatt, but had been somewhat slower at
becoming a habitué of the PDP-1. Gosper was thin, with bird-like features
covered by thick spectacles and an unruly head of kinky brown hair. But
even a brief meeting with Gosper was enough to convince you that here was
someone whose brilliance put things like physical appearance into their
properly trivial perspective. He was a math genius. It was actually the idea
of hacking the world of mathematics, rather than hacking systems, that
attracted Gosper to the computer, and he was to serve as a long-time foil to
Greenblatt and the other systems-oriented people in the society of brilliant
foot soldiers now forming around brand-new Project MAC.

Gosper was from Pennsauken, New Jersey, across the river from
Philadelphia, and his pre-MIT experience with computers, like Greenblatt’s,
was limited to watching Hulking Giants operate from behind a pane of
glass. He could vividly recall seeing the Univac at Philadelphia’s Franklin
Institute churn out pictures of Benjamin Franklin on its line printer. Gosper
had no idea what was going on, but it looked like great fun.

He tasted that fun himself for the first time in his second MIT semester.
He’d taken a course from Uncle John McCarthy—open only to freshmen
who’d gotten disgustingly high grade point averages the previous term. The
course began with FORTRAN, went on to IBM machine language, and
wound up on the PDP-1. The problems were nontrivial, things like tracing
rays through optical systems with the 709, or working routines with a new
floating-point interpreter for the PDP-1.

The challenge of programming appealed to Gosper. Especially on the PDP-
1, which, after the torture of IBM batch processing could work on you like
an intoxicating elixir. Or having sex for the first time. Years later, Gosper

still spoke with excitement of “the rush of having this live keyboard under
you and having this machine respond in milliseconds to what you were
doing . ..”

Still, Gosper was timid about continuing on the PDP-1 after the course was
over. He was involved with the math department, where people kept telling
him that he would be wise to stay away from computers—they would turn
him into a clerk. The unofficial slogan of the math department, Gosper
found, was “There’s no such thing as Computer Science—it’s witchcraft!”
Well then, Gosper would be a witch! He signed up for Minsky’s course in
artificial intelligence. The work was again on the PDP-1, and this time
Gosper got drawn into hacking itself. Somewhere in that term, he wrote a
program to plot functions on the screen, his first real project, and one of the
subroutines contained a program bum so elegant that he dared show it to
Alan Kotok. Kotok by then had attained, thought Gosper, “godlike status,”
not only from his exploits on the PDP-1 and TMRC, but from the well-
known fact that his work at DEC included a prime role in the design of a
new computer, a much-enhanced version of the PDP-1. Gosper was
rapturous when Kotok not only looked over his hack, but thought it clever
enough to show to someone else. Kotok actually thought I’d done
something neat! Gosper hunkered down for more hacking.

His big project in that course was an attempt to “solve” the game Peg
Solitaire (or HI-QQ), where you have a board in the shape of a plus sign with
thirty-three holes in it. Every hole but one is filled by a peg: you jump pegs
over each other, removing the ones you jump over. The idea is to finish with
one peg in the center. When Gosper and two classmates proposed to Minsky
that they solve the problem on the PDP-1, Minsky doubted they could do it,
but welcomed the try. Gosper and his friends not only solved it—“We
demolished it,” he’d later say. They hacked a program that would enable the
PDP-1 to solve the game in an hour and a half.

Gosper admired the way the computer solved HI-Q because its approach
was “counterintuitive.” He had a profound respect for programs which used
techniques that on the surface seemed improbable, but in fact took
advantage of the situation’s deep mathematical truth. The counterintuitive
solution sprang from understanding the magical connections between things
in the vast mandala of numerical relationships on which hacking ultimately
was based. Discovering those relationships—making new mathematics on

http://bit.ly/d7sjbT

the computer—was to be Gosper’s quest; and as he began hanging out more
around the PDP-1 and TMRC, he made himself indispensable as the chief
“math hacker”—not so much interested in systems programs, but able to
come up with astoundingly clear (nonintuitive!) algorithms which might
help a systems hacker knock a few instructions off a subroutine, or crack a
mental logjam on getting a program running.

Gosper and Greenblatt represented two kinds of hacking around TMRC and
the PDP-1: Greenblatt focused on pragmatic systems building, and Gosper
on mathematical exploration. Each respected the other’s forte, and both
would participate in projects, often collaborative ones, that exploited their
best abilities. More than that, both were major contributors to the still
nascent culture that was beginning to flower in its fullest form on the ninth
floor of Tech Square. For various reasons, it would be in this technological
hothouse that the culture would grow most lushly, taking the Hacker Ethic
to its extreme.

The action would shift among several scenes. The Kluge Room, with the
PDP-1 now operating with the time-sharing system, which Jack Dennis had
worked for a year to write, was still an option for some late-night hacking,
and especially Spacewarring. But more and more, the true hackers would
prefer the Project MAC computer. It stood among other machines on the
harshly lit, sterilely furnished ninth floor of Tech Square, where one could
escape from the hum of the air conditioners running the various computers
only by ducking into one of several tiny offices. Finally, there was TMRC,
with its never-empty Coke machine and Saunders’ change box and the Tool
Room next door, where people would sit at all hours of the night and argue
what to an outsider would be bafflingly arcane points.

These arguments were the lifeblood of the hacker community. Sometimes
people would literally scream at each other, insisting on a certain kind of
coding scheme for an assembler, or a specific type of interface, or a
particular feature in a computer language. These differences would have
hackers banging on the blackboard or throwing chalk across the room. It
wasn’t so much a battle of egos as it was an attempt to figure out what “The
Right Thing” was. The term had special meaning to the hackers. The Right
Thing implied that to any problem, whether a programming dilemma, a
hardware interface mismatch, or a question of software architecture, a

solution existed that was just . . . it. The perfect algorithm. You’d have
hacked right into the sweet spot, and anyone with half a brain would see
that the straight line between two points had been drawn, and there was no
sense trying to top it. “The Right Thing,” Gosper would later explain, “very
specifically meant the unique, correct, elegant solution . . . the thing that
satisfied all the constraints at the same time, which everyone seemed to
believe existed for most problems.”

Gosper and Greenblatt both had strong opinions, but usually Greenblatt
would tire of corrosive human interfacing, and wander away to actually
implement something. Elegant or not. In his thinking, things had to be done.
And if no one else would be hacking them, he would. He would sit down
with paper and pencil, or maybe at the console of the PDP-1, and scream
out his code. Greenblatt’s programs were robust, meaning that their
foundation was firm, with built-in error checks to prevent the whole thing
from bombing as a result of a single mistake. By the time Greenblatt was
through with a program, it was thoroughly debugged. Gosper thought that
Greenblatt loved finding and fixing bugs more than anybody he’d ever met,
and suspected he sometimes wrote buggy code just so he could fix it.

Gosper had a more public style of hacking. He liked to work with an
audience, and often novice hackers would pull up a chair behind him at the
console to watch him write his clever hacks, which were often loaded with
terse little mathematical points of interest. He was at his best at display
hacks, where an unusual algorithm would evoke a steadily unpredictable
series of CRT pyrotechnics. Gosper would act as tour guide as he
progressed, sometimes emphasizing that even typing mistakes could present
an interesting numerical phenomenon. He maintained a continual
fascination with the way a computer could spit back something unexpected,
and he would treat the utterances of the machine with infinite respect.
Sometimes the most seemingly random event could lure him off into a
fascinating tangent on the implications of this quadratic surd or that
transcendental function. Certain subroutine wizardry in a Gosper program
would occasionally evolve into a scholarly memo, like the one that begins:
On the theory that continued fractions are underused, probably because of their unfamiliarity, I

offer the following propaganda session on the relative merits of continued fractions versus other
numerical representations.

The arguments in the Tool Room were no mere college bull sessions. Kotok
would often be there, and it was at those sessions that significant decisions
were made concerning the computer he was designing for DEC, the PDP-6.
Even in its design stage, this PDP-6 was considered the absolute Right
Thing around TMRC. Kotok would sometimes drive Gosper back to South
Jersey for holiday breaks, talking as he drove about how this new computer
would have sixteen independent registers. (A register, or accumulator, is a
place within a computer where actual computation occurs. Sixteen of them
would give a machine a heretofore unheard-of versatility.) Gosper would
gasp. That’ll be, he thought, the greatest computer in the history of the
world!

When DEC actually built the PDP-6 and gave the first prototype to Project
MAC, everyone could see that while the computer had all the necessary
sops for commercial users, it was at heart a hacker’s machine. Both Kotok
and his boss, Gordon Bell, recalling their TX-0 days, used the PDP-6 to
demolish the limitations that had bothered them on that machine. Also,
Kotok had listened closely to the suggestions of TMRC people, notably
Peter Samson, who took credit for the sixteen registers. The instruction set
had everything you needed, and the overall architecture was symmetrically
sound. The sixteen registers could be accessed three different ways each,
and you could do it in combinations, to get a lot done by using a single
instruction. The PDP-6 also used a “stack,” which allowed you to mix and
match your subroutines, programs, and activities with ease. To hackers, the
introduction of the PDP-6 and its achingly beautiful instruction set meant
they had a powerful new vocabulary with which to express sentiments that
previously could be conveyed only in the most awkward terms.

Minsky set the hackers to work writing new systems software for the PDP-
6, a beautiful sea-blue machine with three large cabinets, a more
streamlined control panel than the One, rows of shiny cantilevered
switches, and a winking matrix of lights. Soon they were into the
psychology of this new machine as deeply as they had been on the PDP-1.
But you could go further on the Six. One day in the Tool Room at TMRC
the hackers were playing around with different ways to do decimal print
routines, little programs to get the computer to print out in Arabic numbers.
Someone got the idea of trying some of the flashy new instructions on the
PDP-6, the ones that utilized the stack. Hardly anyone had integrated these

http://bit.ly/aXrr3k
http://bit.ly/a8HaU1

new instructions into his code; but as the program got put on the blackboard
using one instruction called Push-J, to everyone’s amazement the entire
decimal print routine, which normally would be a page worth of code, came
out only six instructions long. After that, everyone around TMRC agreed
that Push-J had certainly been The Right Thing to put into the PDP-6.

The Tool Room discussions and arguments would often be carried over to
dinner, and the cuisine of choice was almost always Chinese food. It was
cheap, plentiful, and—best of all—available late at night. (A poor second
choice was the nearby greasy spoon on Cambridge’s Main Street, a maroon-
paneled former railroad car named the F&T Diner, but called by hackers
“The Red Death.”) On most Saturday evenings, or spontaneously on
weeknights after 10 P.M., a group of hackers would head out, sometimes in
Greenblatt’s blue 1954 Chevy convertible, to Boston’s Chinatown.

Chinese food was a system, too, and the hacker curiosity was applied to that
system as assiduously as to a new LISP compiler. Samson had been an
aficionado from his first experience on a TMRC outing to Joy Fong’s on
Central Square, and by the early sixties he had actually learned enough
Chinese characters to read menus and order obscure dishes. Gosper took to
the cuisine with even greater vigor; he would prowl Chinatown looking for
restaurants open after midnight, and one night he found a tiny little cellar
place run by a small family. It was fairly dull food, but he noticed some
Chinese people eating fantastic-looking dishes. So he figured he’d take
Samson back there.

They went back loaded with Chinese dictionaries, and demanded a Chinese
menu. The chef, a Mr. Wong, reluctantly complied, and Gosper, Samson,
and the others pored over the menu as if it were an instruction set for a new
machine. Samson supplied the translations, which were positively
revelatory. What was called “Beef with Tomato” on the English menu had a
literal meaning of Barbarian Eggplant Cowpork. “Wonton” had a Chinese
equivalent of Cloud Gulp. There were unbelievable things to discover in
this system! So after deciding the most interesting things to order
(“Hibiscus Wing? Better order that, find out what that’s about”), they called
over Mr. Wong, and he jabbered frantically in Chinese disapproval of their
selections. It turned out he was reluctant to serve them the food Chinese-
style, thinking that Americans couldn’t take it. Mr. Wong had mistaken
them for typically timid Americans—but these were explorers! They had

http://bit.ly/9APrzR
http://bit.ly/c9xrxl
http://bit.ly/9jWvWn

been inside the machine, and lived to tell the tale (they would tell it in
assembly language). Mr. Wong gave in. Out came the best Chinese meal
that any of the hackers had eaten to date.

So expert were the TMRC people at hacking Chinese food that they could
eventually go the restauranteurs one better. On a hacker excursion one April
Fools’ Day, Gosper had a craving for a little-known dish called Bitter
Melon. It was a wart-dotted form of green pepper, with an intense quinine
taste that evoked nausea in all but those who’d painfully acquired the taste.
For reasons best known to himself, Gosper decided to have it with sweet-
and-sour sauce, and he wrote down the order in Chinese. The owner’s
daughter came out giggling. “I’m afraid you made a mistake—my father
says that this says ‘Sweet-and-Sour Bitter Melon.”” Gosper took this as a
challenge. Besides, he was offended that the daughter couldn’t even read
Chinese—that went against the logic of an efficient Chinese Restaurant
System, a logic Gosper had come to respect. So, even though he knew his
order was a preposterous request, he acted indignant, telling the daughter,
“Of course it says Sweet-and-Sour Bitter Melon—we Americans always
order Sweet-and-Sour Bitter Melon the first of April.” Finally, the owner
himself came out. “You can’t eat!” he shouted. “No taste! No taste!” The
hackers stuck to the request, and the owner slunk back to the kitchen.

Sweet-and-Sour Bitter Melon turned out to be every bit as hideous as the
owner promised. The sauce at that place was wickedly potent, so much so
that if you inhaled while you put some in your mouth you’d choke.
Combined with the ordinarily vile bitter melon, it created a chemical that
seemed to squeak on your teeth, and no amount of tea or Coca-Cola could
dilute that taste. To almost any other group of people, the experience would
have been a nightmare. But to the hackers it was all part of the system. It
made no human sense, but had its logic. It was The Right Thing; therefore
every year on April Fools’ Day they returned to the restaurant and insisted
that their appetizer be Sweet-and-Sour Bitter Melon.

It was during those meals that the hackers were most social. Chinese
restaurants offered hackers a fascinating culinary system and a physically
predictable environment. To make it even more comfortable, Gosper, one of
several hackers who despised smoke in the air and disdained those who
smoked, brought along a tiny, battery-powered fan. The fan was something
kluged up by a teenage hacker who hung around the AI lab—it looked like

http://bit.ly/aw7H4k

a mean little bomb, and had been built using a cooling fan from a junked
computer. Gosper would put it on the table to gently blow smoke back into
offenders’ faces. On one occasion at the Lucky Garden in Cambridge, a
brutish jock at a nearby table became outraged when the little fan redirected
the smoke from his date’s cigarette back to their table. He looked at these
grungy MIT types with their little fan and demanded the hackers turn the
thing off. “OK, if she stops smoking,” they said, and at that point the jock
charged the table, knocking dishes around, spilling tea all over, and even
sticking his chopsticks into the blades of the fan. The hackers, who
considered physical combat one of the more idiotic human interfaces,
watched in astonishment. The incident ended as soon as the jock noticed a
policeman sitting across the restaurant.

That was an exception to what were usually convivial gatherings. The talk
revolved around various hacking issues. Often, people would have their
printouts with them and during lulls in conversation would bury their noses
in the reams of assembly code. On occasion, the hackers would even
discuss some events in the “real world,” but the Hacker Ethic would be
identifiable in the terms of the discussion. It would come down to some
flaw in a system. Or an interesting event would be considered in light of a
hacker’s natural curiosity about the way things work.

A common subject was the hideous reign of IBM, the disgustingly naked
emperor of the computer kingdom. Greenblatt might go on a “flame”—an
extended and agitated riff—about the zillions of dollars being wasted on
IBM computers. Greenblatt would go home on vacation and see that the
science department at the University of Missouri, which allegedly didn’t
have any money, was spending four million dollars a year on the care and
feeding of an IBM Hulking Giant that wasn’t nearly as nifty as the PDP-6.
And speaking of grossly overrated stuff, what about that IBM time-sharing
system at MIT, with that IBM 7094 right there on the ninth floor? Talk
about waste!

This could go on for a whole meal. It is telling, though, to note the things
that the hackers did not talk about. They did not spend much time
discussing the social and political implications of computers in society
(except maybe to mention how utterly wrong and naive the popular
conception of computers was). They did not talk sports. They generally kept
their own emotional and personal lives—as far as they had any—to

http://bit.ly/bDRJRb

themselves. And for a group of healthy college-age males, there was
remarkably little discussion of a topic, which commonly obsesses groups of
that composition: females.

Though some hackers led somewhat active social lives, the key figures in
TMRC-PDP hacking had locked themselves into what would be called
“bachelor mode.” It was easy to fall into—for one thing, many of the
hackers were loners to begin with, socially uncomfortable. It was the
predictability and controllability of a computer system—as opposed to the
hopelessly random problems in a human relationship—which made hacking
particularly attractive. But an even weightier factor was the hackers’
impression that computing was much more important than getting involved
in a romantic relationship. It was a question of priorities.

Hacking had replaced sex in their lives.

“The people were just so interested in computers and that kind of stuff that
they just really didn’t have time [for women],” Kotok would later reflect.
“And as they got older, everyone sort of had the view that one day some
woman would come along and sort of plunk you over the head and say,
you!" That was more or less what happened to Kotok, though not until his
late thirties. Meanwhile, hackers acted as if sex didn’t exist. They wouldn’t
notice some gorgeous woman at the table next to them in the Chinese
restaurant, because “the concept of gorgeous woman wasn’t in the
vocabulary,” hacker David Silver later explained. When a woman did come
into the life of a serious hacker, there might be some discussion—“What’s
happened to so-and-so . . . the guy’s just completely falling apart . . .” But
generally that kind of thing was not so much disdained as it was shrugged
off. You couldn’t dwell on those who might have fallen by the wayside,
because you were involved in the most important thing in the world—
hacking. Not only an obsession and a lusty pleasure, hacking was a mission.
You would hack, and you would live by the Hacker Ethic, and you knew
that horribly inefficient and wasteful things like women burned too many
cycles, occupied too much memory space. “Women, even today, are
considered grossly unpredictable,” one PDP-6 hacker noted, almost two
decades later. “How can a hacker tolerate such an imperfect being?”

Maybe it would have been different if there had been more women around
TMRC and the ninth floor—the few that did hang around paired off with
hackers. (” They found us,” one hacker would later note.) There were not

too many of these women, since outsiders, male or female, were often put
off by the group: the hackers talked strangely, they had bizarre hours, they
ate weird food, and they spent all their time thinking about computers.

And they formed an exclusively male culture. The sad fact was that there
never was a star-quality female hacker. No one knows why. There were
women programmers and some of them were good, but none seemed to take
hacking as a holy calling the way Greenblatt, Gosper, and the others did.
Even the substantial cultural bias against women getting into serious
computing does not explain the utter lack of female hackers. “Cultural
things are strong, but not that strong,” Gosper would later conclude,
attributing the phenomenon to genetic, or “hardware,” differences.

In any case, only rarely were women in attendance at the Chinese restaurant
excursions or the sessions at the Tool Room next door to TMRC. So
naturally, one did not have to look one’s best. Greenblatt, perhaps, took this
to an extreme. He worked on several mammoth projects in the mid-sixties,
and would often get so wrapped up in them that his personal habits became
a matter of some concern to his fellow hackers.

After he dropped out of school, Greenblatt had taken a job at a firm called
Charles Adams Associates, which was in the process of buying and setting
up a PDP-1. Greenblatt would work at their offices near Boston’s
“Technology Highway” outside the city during the day and drive thirty
miles back to MIT after work for some all-night hacking. Originally he
moved from the dorms to the Cambridge YMCA, but they booted him out
because he wouldn’t keep his room clean. After his stint at Adams, he got
rehired at the Al Lab, and though he had a stable living situation—as a
boarder in a Belmont house owned by a retired dentist and his wife—he
would often sleep on a cot on the ninth floor. Cleanliness was apparently a
low priority, since tales abounded of his noticeable grunginess. (Later
Greenblatt would insist that he was no worse than some of the others.)
Some hackers recall that one of the things Greenblatt’s hacking precluded
was regular bathing, and the result was a powerful odor. The joke around
the Al lab was that there was a new scientific olfactory measure called a
milliblatt. One or two milliblatts was extremely powerful, and one full blatt
was just about inconceivable. To decrease the milliblatts, the story goes,
hackers maneuvered Greenblatt to a place in the hallway of Building 20

http://bit.ly/c5rNa7

where there was an emergency shower for cases of accidental exposure to
chemicals, and let it rip.

Gosper would sometimes tweak Greenblatt for his personal habits, and was
particularly bothered at Greenblatt’s habit of rubbing his hands together,
which resulted in little pieces of dirt falling out. Gosper called these
blattlies. When Greenblatt worked on Gosper’s desk and left blattlies
behind, Gosper would make a point of washing the area with ammonia.
Gosper would also sometimes kid Greenblatt about his awkward speech
patterns, his frequent coughing, his poor spelling, his mumbling—even
though many of Greenblatt’s expressions became integrated into the
specific vernacular which all the hackers used to some degree. For instance,
it was probably Greenblatt who popularized the practice of doubling words
for emphasis—Iike the times he’d get revved up explaining something to
Gosper, Kotok, and Samson, and the words would get tangled up, and he’d
sigh, saying, “Oh, lose-y lose-y” and begin over. Gosper and the others
would laugh—but, like the way a family will take on a baby’s speech
patterns and cute malapropisms, the community adopted many
Greenblattisms.

Despite these odd personal traits, the hackers held Greenblatt in awe. He
was the way he was because of conscious priorities: he was a hacker, not a
socialite, and there was nothing more useful than hacking. It so consumed
him that he sometimes would go six months without finding time to pick up
his MIT paycheck. “If he randomly sat around and tried to articulate what
he was thinking and doing all the time, he wouldn’t have gotten anything
done,” Gosper would later say. “If he worried how to spell things, he
wouldn’t have gotten anything written. He did what he was good at. He was
a complete pragmatist. What people thought, be damned. If anyone thought
he was stupid or nerdly, that was their problem. Some people did, and they
were wrong.”

Gosper could appreciate Greenblatt’s single-mindedness because his own
insistence on graduating (which he did in 1965) had led him to trouble. It
was not that his final year at MIT was an academic disaster, because he
managed to fulfill the graduation requirements by a slim margin. The
problem was a pact he had made with the United States Navy. Before he
entered MIT, he’d taken a civil service exam and placed high enough to be
included in an exclusive student engineering development program. He

worked summers for the Navy, which paid half his tuition and required him
to work there for three years after graduation. When Gosper signed up,
there had been an escape clause that allowed you to postpone your
commitment if you went to graduate school; and if you could get a
corporation to pay off the Navy’s three-thousand dollar investment after
that, you’d no longer be obligated. But during Gosper’s senior year the
graduate school loophole closed. Only a buyout would save him, and he
didn’t have the money.

The prospect of going into the Navy was hideous. During his summer
employment stints he had been exposed to a pathetic system that was
antithetical to the Hacker Ethic. Programmers were kept in a room totally
separated from the machine; sometimes, as a reward for years of service,
they would let a particularly obedient worker venture into the computer
room and actually see his program run. (One woman, the story goes, was
allowed this privilege, and the sight of the lights flashing and disks whirring
caused her to faint.) In addition, Gosper’s Navy boss was a man who could
not understand why the logarithm of the sums in a given equation was not
the sum of the logarithms. There was no way in hell Bill Gosper was going
to work under a man who did not know why the logarithm of the sum was
not the sum of the logarithms.

Then there was Gosper’s perception that the Navy was in bed with Univac.
He considered the Univac machine a grotesque parody of a computer, a
Hulking Giant. The Navy had to know it was a basically phony computer,
he figured, but used it anyway—it was a classic example of the inevitably
warped outcome of Outside World bureaucracy. Living with that machine
would be immersion in hell. Gosper used computers to seek things that no
one had ever found before, and it was essential that the computer he used be
optimal in every way. The PDP-6 was the best thing he had found so far,
and he was determined not to leave it, especially for a dog like the Univac.
“If I see a machine has some incredibly stupid thing wrong with it, some
error in its design or whatever, it just irritates the hell out of me,” Gosper
would later explain. “Whereas the PDP-6 always seemed like an infinitely
perfectible machine. If there was something wrong, you would change it. In
some sense, we lived inside the damn machine. It was part of our
environment. There was almost a society in there . . . I couldn’t imagine
being without a PDP-6.”

http://bit.ly/dkwagK

Gosper was determined to find the money to pay back the Navy, and to earn
it while working for a company with a PDP-6. He fulfilled these rigid
criteria by landing a job with the firm that Greenblatt had worked for that
past year, Charles Adams. The fact that the Adams company never quite got
their PDP-6 working right (Greenblatt insists that he did his part of the
preparation adequately) did not seem to upset Gosper: what freaked him
was the fact that Charles Adams scrapped the project and bought a carbon
copy of the same Hulking Giant Univac that the Navy had.

But by that time more funding for Project MAC had come through, and Bill
Gosper found his way onto the payroll. He hardly had to change his habits,
since during his whole stint at Adams he had been working on the PDP-6
on the ninth floor every night.

By then, Greenblatt was in full hacking swing. One of the first projects he
worked with on the PDP-6 was a LISP compiler, to allow the machine to
run the latest and most nifty version of Jobn McCarthy’s artificial
intelligence language. Young Peter Deutsch had written a LISP for the
PDP-1, but it was not too effective, since the One had less memory; and
LISP, which works with symbols and not numbers easily translated to
binary, consumes an incredible amount of memory.

Some people, notably Gosper, thought that LISP would be a waste of time
on the PDP-6 as well. Gosper was always concerned with what he
considered the atrocious lack of computer power in those days, and later
would marvel at how ignorant they all were in the Al lab, trying impossible
tasks and blaming their failures not on the piddling machines they had, but
on themselves. In his senior year, Gosper had been put to work by Minsky
on a display that would test whether a certain visual phenomenon was
binocular or monocular. Gosper did manage to come close with a clever,
clover-leaf shape, which at least displayed the phenomenon, but generally
was banging his head against the wall trying to make the machine do more
than it could do. One of the tasks that Gosper considered impossible was a
useful LISP on a PDP-6—it might be nice as a symbol evaluator, but not to
do anything. He considered it one of Minsky’s follies that Greenblatt and
the others had been tricked into implementing.

http://bit.ly/db68KZ

But Greenblatt saw more. Though he realized that LISP on the PDP-6
would be to some extent a hack, not fully pragmatic, he did see the need to
move toward it. It was a powerful language that would help the field of
artificial intelligence move forward: it was the language by which
computers would do extremely difficult tasks, by which they could actually
learn. Greenblatt was just starting then to have a certain vision of the future,
an inkling of a technical implementation of the hacker dream. So he and
some others—even Kotok came down from DEC—began implementing
LISP on the PDP-6. They filled the blackboards of TMRC with layers and
layers of code, and finally got it going on the machine.

The crucial sections were written by Greenblatt and another hacker. Two or
three people on a project were considered The Right Thing—far fewer than
IBM’s so-called “human wave” style of throwing dozens of programmers at
a problem and winding up with junk. And it was better to rely on two or
three people than on a single crusader—so that when one person was at the
end of his thirty-hour phase, someone else could come in and keep hacking.
Kind of a tag team project.

With PDP-6 MacLISP (named for Project MAC), the hackers began
integrating that computer language into their programs, and even into their
conversation. The LISP convention of using the letter “p” as a predicate, for
instance, was the inspiration for a common hacker style of asking a
question. When someone said “Food-P?” any hacker knew he was being
asked if he wanted to get something to eat. The LISP terms “T” and “nil”
came to stand, respectively, for “yes” and “no.” LISP’s acceptance did not
diminish the hacker love for assembly language, particularly the elegant
PDP-6 instruction set. But as Greenblatt and even Gosper later realized,
LISP was a powerful system builder that fit neatly into the hands-on Hacker

Ethic.

DEC had shown an interest in MacLISP, and Kotok arranged for Greenblatt
and the others to go to Maynard late at night to work on the program, type
in their code, and debug it. It was all part of the easy arrangement between
MIT and DEC, and no one questioned it. The Right Thing to do was to
make sure that any good program got the fullest exposure possible, because
information was free and the world would only be improved by its
accelerated flow.

http://bit.ly/cSumGs

After working on MacLISP, Greenblatt was perhaps the most authoritative
of the systems hackers on the PDP-6. The new administrator of the Al lab, a
young man from the Southwest named Russell Noftsker, had hired
Greenblatt mainly to maintain and improve the organic creation that is a
computer operating system. But Greenblatt’s vision did not stop at systems;
he was intensely drawn by the concepts of artificial intelligence. He decided
to use the system to actually do something in that realm, and, since he had
been a chess player all his life, it was only logical that he work on a chess
program that would go far beyond Kotok’s effort and beyond the other Al
chess projects that had been attempted at various labs around the country.

Like any good hacker, no sooner did he decide to do something than he
began work on it. No one asked him for a proposal. He didn’t bother to
notify his superiors. Minsky did not have to ponder the relative virtues of
the project. There were no channels to go through because in the mid-
sixties, in those early days of the Al lab, the hackers themselves were the
channels. It was the Hacker Ethic put to work, and Greenblatt made the
most of it.

He’d seen a game played by the Kotok program and thought it was crap.
Basically, those guys did not know how to play chess: swayed by the
romance of a computer making moves, they had somehow forgotten the
idea that the name of the game was to take the other guy’s pieces.
Greenblatt’s program used sophisticated artificial intelligence techniques to
try and figure out moves in accordance with certain criteria that he
considered good chess. Working with a couple of other hackers, Greenblatt
went on a coding blitz. He’d manage to get four hours of PDP-6 time a day,
and he’d keep writing offline when he wasn’t on the machine. He got the
program actually playing chess in one week. The program was debugged,
given features, and generally juiced up over the next few months.
(Greenblatt was eventually offered an MIT degree if he would write a thesis
about his chess program; he never got around to it.)

Circulating around MIT around 1965 was a notorious Rand Corporation
memo called "Alchemy and Artificial Intelligence.” Its author, an academic
named Herbert Dreyfus, lambasted the field and its practitioners. To
hackers, his criticism was particularly noxious, since the computer was their
implicit model of behavior, at least in their theories of information, fairness,
and action. Dreyfus focused on the computer’s ridiculously limited structure

http://bit.ly/c5ykP5
http://bit.ly/cmavOp
http://bit.ly/bkIfHp

(compared to the structure of the human brain). His coup de grace was the
blunt assertion that no computer program would be able to play a good
enough game of chess to beat a ten-year-old.

After Greenblatt finished his chess program, called MacHack, MIT invited
Dreyfus to play the PDP-6. The hackers gathered round to watch the
computer surrogate of Richard Greenblatt play this cocky, thin, red-headed,
bespectacled anticomputer opponent. Artificial intelligence pioneer Herbert
Simon, who watched the match, later was quoted as saying that it was
... areal cliffhanger. It’s two woodpushers . . . fighting each other . . . Dreyfus was being beaten
fairly badly and then he found a move which could’ve captured the opponent’s queen. And the only
way the opponent could get out of this was to keep Dreyfus in check with his own queen until he
could fork the queen and king and exchange them. And the program proceeded to do exactly that.

As soon as it had done that, Dreyfus’ game fell to pieces, and then it checkmated him right in the
middle of the board.

Peter Samson later recalled the scene immediately following Dreyfus’ loss:
the defeated critic looked around at the assembled MIT professors and
hackers, including a victorious Greenblatt, with a look of puzzlement. Why
weren’t they cheering, applauding, rubbing it in? Because they knew.
Dreyfus was part of that “real world” that couldn’t possibly comprehend the
amazing nature of computers, or what it was like working with computers
so closely that a PDP-6 could actually become your environment. This was
something which Dreyfus would never know. Even Minsky, who never
really immersed himself in the thirty-hour-day, seven-day-week assembly-
language baptistery, had not experienced what the hackers had. The
hackers, the Greenblatts and the Gospers, were secure in having been there,
knowing what it was like, and going back there—producing, finding things
out, making their world different and better. As for convincing skeptics,
bringing the outside world into the secret, proselytizing for the Hacker
Ethic—all that was not nearly as interesting as living it.

http://bit.ly/a7Qt9X
http://bit.ly/a8IEKs

Chapter 5. The Midnight Computer Wiring
Society

Greenblatt was hacker of systems and visionary of application; Gosper was
metaphysical explorer and handyman of the esoteric. Together they were
two legs of a techno-cultural triangle which would serve as the Hacker
Ethic’s foundation in its rise to cultural supremacy at MIT in the coming
years. The third leg of the triangle arrived in the fall of 1963, and his name
was Stewart Nelson.

Not long after his arrival, Stew Nelson displayed his curiosity and ability to
get into uncharted electronic realms, traits which indicated his potential to
become a master magician in service to the Hacker Ethic. As was the
custom, Nelson had come a week early for Freshman Rush. He was a short
kid, generally taciturn, with curly hair, darting brown eyes, and a large
overbite, which gave him the restlessly curious look of a small rodent.
Indeed, Stewart Nelson was sniffing out sophisticated electronics
equipment that he could play on, and it did not take him long to find what
he wanted at MIT.

It began at WTBS, the campus radio station. Bob Clements, a student
worker at the station who would later do some PDP-6 hacking, was
showing a group of freshmen the control rooms when he opened a door that
opened to the complex machinery—and found Stew Nelson, “a weaselly
little kid.” he later remembered, “who had his fingers on the guts of our
phone lines and our East Campus radio transmitter.”

Eventually, he found his way to the PDP-1 in the Kluge Room. The
machine got Stewart Nelson very excited. He saw this friendly computer
which you could put your hands on, and with a confidence that came from
what Greenblatt might call born hackerism he got to work. He noticed
immediately how the One’s outside speaker was hooked to the computer,
and how Peter Samson’s music program could control that speaker. So one
night, very late, when John McKenzie and the people tending the TX-0 next
door were asleep in their homes, Stewart Nelson set about learning to
program the PDP-1, and it did not take him long to teach the PDP-1 some
new tricks. He had programmed some appropriate tones to come out of the
speaker and into the open receiver of the campus phone that sat in the

Kluge Room. These tones made the phone system come to attention, so to
speak, and dance. Dance, phone lines, dance!

And the signals did dance. They danced from one place on the MIT tie-line
system to the next and then to the Haystack Observatory (connected to
MIT’s system), where they danced to an open line—and, thus liberated,
danced out into the world. There was no stopping them, because the
particular tones which Stew Nelson had generated on the PDP-1 were the
exact tones which the phone company used to send its internal calls around
the world, and Stew Nelson knew that they would enable him to go all
around the marvelous system which was the phone company—without
paying a penny.

This analog alchemist, the new hacker king, was showing a deeply
impressed group of PDP-1 programmers how a solitary college freshman
could wrest control of the nearly one hundred-year-old phone system, using
it not for profit but for sheer joyriding exploration. Word spread of these
exploits, and Nelson began to achieve heroic status around TMRC and the
Kluge Room; soon some of the more squeamish PDP-1 people were doing
some hand-wringing about whether he had gone too far. Greenblatt did not
think so, nor did any true hacker: people had done that sort of thing around
TMRC for years; and if Nelson took things a step beyond, that was a
positive outgrowth of the Hacker Ethic. But when John McKenzie heard of
it he ordered Nelson to stop, probably realizing that there was not much he
could do to slow Stew Nelson’s eternal quest for systems knowledge. “How
can you stop talent like that?” he later reflected. As it turned out, things
were going to go much further before Stewart Nelson was through. In some
ways, they would never stop.

Nelson’s freshman pyrotechnics were not so startling in light of his life
before MIT. Born in the Bronx, Nelson was the son of a physicist-turned-
engineer who had done some pioneering work on color TV design.
Stewart’s own interest in electronics, though, needed no parental urging. It
was as natural as walking, and by the time he was five he was building
crystal radios. At eight, he was working on dual-relay burglar alarms. He
had little interest, socially or educationally, in school, but gravitated to the
electronics shop, where he’d engage in relentless experimentation. It wasn’t
long before the other kids’ mothers would ban their children from playing
with Stewart—they were afraid that their progeny would be fried by a dose

http://bit.ly/a5fimm

of electricity. These were inevitable dangers of fooling around with
powerful vacuum tube circuits and state-of-the-art transistors powered by
110 V electrical lines. Stew on occasion would get shocks so severe that
he’d be painfully jolted. He would later tell stories of his equipment flying
halfway across the room and exploding into smithereens. After one
particularly searing shock, he swore off playing with electricity. But after
about two days he was back at it, a young loner working on fantastic
projects.

Stew loved the telephone. His family had moved to Haddonfield, New
Jersey, and he soon found out that by clicking the switches on which the
receiver rests, you could actually dial a number. Someone on the other end
will be saying, “Hello . . . yes? Hello?" and you realize that this is not just a
random piece of equipment, but something hooked to a system that you can
endlessly explore. Stewart Nelson was soon building things that few of his
neighbors in the mid-1950s had seen, like automatic dialers and gadgets
that could connect to several phone lines, receiving a call on one line and
automatically calling out on the other. He learned to handle telephone
equipment with the deftness with which an artist wields his tools; witnesses
would later report how Nelson, when confronted with a phone, would
immediately dismantle it, first removing the filter which prevents the caller
from hearing the dialing signals, and then making a few adjustments so that
the phone would dial significantly faster. Essentially, he was
reprogramming the telephone, unilaterally debugging Western Electric
equipment.

Stew’s father died when he was fourteen, and his mother moved them up to
Poughkeepsie, New York. He struck a deal with his high school teachers
wherein he would fix their radios and televisions in exchange for not having
to go to class. Instead, he spent time at a small radio station starting up
nearby—Nelson “pretty much put it together,” he later explained,
connecting the elements, tuning the transmitter, finding sources of noise and
hums in the system. When the radio station was running, he was the main
engineer, and sometimes he would even be the disc jockey. Every glitch in
the system was a new adventure, a new invitation to explore, to try
something new, to see what might happen. To Stewart Nelson, wanting to
find out what might happen was the ultimate justification, stronger than
self-defense or temporary insanity.

With that attitude, he fit in comfortably at the Tech Model Railroad Club
and the PDP-1. There had already been avid interest in “phone hacking”
around the club; with Nelson around, that interest could really flower.
Besides being a technical genius, Nelson would attack problems with bird-
dog perseverance. “He approached problems by taking action,” Donald
Eastlake, a hacker in Nelson’s class, later recalled. “He was very persistent.
If you try a few times and give up, you’ll never get there. But if you keep at
it. .. There’s a lot of problems in the world which can really be solved by
applying two or three times the persistence that other people will.”

Nelson was displaying an extension of the Hacker Ethic—if we all acted on
our drive to discover, we’d discover more, produce more, be in control of
more. Naturally, the phone system was his initial object of exploration at
MIT. First the PDP-1 and later the PDP-6 were ideal tools to use in these
excursions. But even as Nelson set off on these electronic journeys, he
adhered to the unofficial hacker morality. You could call anywhere, try
anything, experiment endlessly, but you should not do it for financial gain.
Nelson disapproved of those MIT students who built “blue boxes”—
hardware devices to make illegal calls—for the purpose of ripping off the
phone company. Nelson and the hackers believed that they were helping the
phone company. They would get hold of priority phone company lines to
various locations around the country and test them. If they didn’t work, they
would report it to the appropriate repair service.

To do this, of course, you had to successfully impersonate technical
employees of the Bell Telephone System, but the hackers became quite
accomplished at that, especially after reading such contraband books as the
classic Principles of Electricity and Electronics Applied to Telephone and
Telegraph Work, or Notes on Distant Dialing, or recent issues of the Bell
System Technical Journal.

Armed with this information, you could travel around the world, saying to
an operator, “I’m calling from the test board in Hackensack and I’d like you
to switch me through to Rome. We’re trying to test the circuit.” She would
“write up the number,” which would lead you to another number, and soon
you would be asking a phone operator in Italy what the weather was like
there. Or you’d use the PDP-1 in Blue Box Mode, letting it route and
reroute your calls until you were connected to a certain phone number in

http://bit.ly/9OMGJ9
http://bit.ly/anttZP
http://bit.ly/dnzRKf

England where callers would hear a children’s bedtime story, a number
inaccessible from this country except by the blue box.

In the mid-sixties, the phone company was establishing its system of toll-
free area-code-800 numbers. Naturally, the hackers knew about this. With
scientific precision, they would attempt to chart these undocumented
realms: excursions to 800-land could send you to bizarre places, from the
Virgin Islands to New York. Eventually someone from the phone company
gave a call to the line near the computer, asking what were these four
hundred or so calls to places that, as far as the phone company was
concerned, did not exist. The unlucky Cambridge branch of the phone
company had coped with MIT before, and would again—at one point, they
burst into the ninth floor at Tech Square, and demanded that the hackers
show them the blue box. When the hackers pointed to the PDP-6, the
frustrated officials threatened to take the whole machine, until the hackers
unhooked the phone interface and handed it over.

Though Nelson’s initial interest in the PDP-1 was its phone hacking
potential, he became more versatile with it, and was eventually
programming all sorts of things. The more he programmed, the better he
got, and the better he got, the more he wanted to program. He would sit by
the console of the machine while some graduate student would fumble with
a program, and he’d sort of peck around the grad student’s back, which
would only make the graduate student fumble more, and finally he would
burst out, “If I solve that problem for you, will you let me have the
computer?” The grad student, who probably had been trying to crack the
problem for weeks, would agree, not really believing this quirky fellow
could solve it, but Nelson would already be pushing him away, sitting down
at the console, bringing up the “TECO” editing program, and pounding in
code at a blinding rate. In five minutes, he’d be done, leaping up to print it
on the Model 33 teletype near the machine, and in a rush of motion he’d rip
the paper off the line printer, run back to the machine, pull off the tape with
the grad student’s program, and send him off. Then he’d do his own
hacking.

He knew no bounds. He used both the PDP-1 in the Kluge Room and the
newer machine at Project MAC. When others used the PDP-1 and its
limited instruction set, they might have grumbled at having to use several
instructions for a simple operation, and then figured out the subroutines to

http://bit.ly/bnVJlA

do the programs. Nelson could bum code with the best of them, but he
wanted more instructions actually on the machine. Putting an instruction on
the computer itself—in hardware—is a rather tricky operation. When the
TX-0 was given its new instructions, it had to be shut down for a while until
official priests, trained to the level of Pope, almost, performed the necessary
brain surgery. This seemed only logical—who would expect a university to
allow underclassmen to tamper with the delicate parts of a fantastically
expensive computer?

No one. In fact, Dan Edwards, one of Minsky’s graduate students who had
done some hacking on Spacewar, had set himself up as protector of the
hardware. According to Gosper, Edwards had declared that “Anyone who
does as much as change a ribbon in the typewriter is going to get
permanently barred from this place!” But hackers did not care what the
university allowed or didn’t allow. What Dan Edwards thought was of even
less concern: his position of authority, like that of most bureaucrats, was
deemed an accident.

Nelson thought that adding an “add to memory” instruction would improve
the machine. It would take months, perhaps, to go through channels to do it,
and if he did it himself he would learn something about the way the world
worked. So one night Stewart Nelson spontaneously convened the Midnight
Computer Wiring Society. This was an entirely ad hoc organization which
would, when the flow of history required it, circumvent the regulations of
the Massachusetts Institute of Technology against unauthorized tampering
with expensive computers. The MCWS, which that night consisted of
Nelson, a student worker, and several interested bystanders, opened up the
cabinet and proceeded to rewire the PDP-1. Nelson fused a couple of diodes
between the “add” line and the “store” line outputs of the instruction
decoder, and had himself a new op-code, which presumably supported all
the previous instructions. He then proceeded to reassemble the machine to
an apparent pristine state.

The machine was taken through its paces by the hackers that night, and
worked fine. But the next day an Officially Sanctioned User named
Margaret Hamilton showed up on the ninth floor to work on something
called a Vortex Model for a weather-simulation project she was working on.
Margaret Hamilton was just beginning a programming career, which would
see her eventually in charge of onboard computers on the Apollo moon

shot, and the Vortex program at that time was a very big program for her.
She was well aware of the hackers’ playfulness around the ninth floor, and
she was moderately friendly with some of them, even though they would
eventually blend into one collective personality in her memory: one
unkempt, though polite, young male whose love for the computer had made
him lose all reason.

The assembler that Margaret Hamilton used with her Vortex program was
not the hacker-written MIDAS assembler, but the DEC-supplied DECAL
system that the hackers considered absolutely horrid. So of course Nelson
and the MCWS, when testing the machine the previous night, had not used
the DECAL assembler. They had never even considered the possibility that
the DECAL assembler accessed the instruction code in a different manner
than MIDAS, a manner that was affected to a greater degree by the slight
forward voltage drop created by the addition of two diodes between the add
line and the store line. Margaret Hamilton, of course, was unaware that the
PDP-1 had undergone surgery the previous night. So she did not
immediately know the reason why her Vortex program, after she fed it in
with the DECAL assembler . . . broke. Stopped working. Died.
Mysteriously, a perfectly good program had bombed. Though programs
often did that for various reasons, this time Margaret Hamilton complained
about it, and someone looked into why, and someone else fingered the
Midnight Computer Wiring Society. So there were repercussions.
Reprimands.

That was not the end of the Midnight Computer Wiring Society. Edwards
and his ilk could not stay up all night to watch the machines. Besides,
Minsky and the others in charge of Project MAC knew that the hackers’
nocturnal activities were turning into a hands-on postgraduate course on
logic design and hardware skills. Partially because Nelson and the others
got good enough so disasters like the Great Margaret Hamilton Program
Clobber were less likely to occur, the official Al lab ban against hardware
tampering gradually faded away to the status of one of those antiquated
laws that nobody bothers to take off the books, like a statute forbidding you
from publicly beating a horse on Sunday. Eventually the Midnight
Computer Wiring Society felt free enough to change instructions, make new
hardware connections, and even rig the computer to the room lights on the
ninth floor, so that when you fired up the TECO text-editing program, the

http://bit.ly/91VVGv
http://bit.ly/dxW3Br

lights automatically dimmed so that you could read the CRT display more
easily.

This last hack had an unexpected consequence. The TECO editor rang a
bell on the teletype to signal when the user made an error. This normally
was no problem, but on certain days the machine got flaky, and was
extremely sensitive to power line variations—Ilike those generated by the
bell on the teletype. Those times, when someone made a mistake with
TECO, the bell would ring, and the machine would be thrown into
randomness. The computer would be out of control; it would type
spastically, ringing the bell, and most unsettling, turning the room lights on
and off. The computer had run amok! Science-fiction Armageddon!

The hackers considered this extremely humorous.

The people in charge of the lab, particularly Marvin Minsky, were very
understanding about these things. Marvin, as the hackers called him (they
invariably called each other by last name), knew that the Hacker Ethic was
what kept the lab productive, and he was not going to tamper with one of
the crucial components of hackerism. On the other hand, there was Stew
Nelson, constantly at odds with the rules, a hot potato who got hotter when
he was eventually caught red-handed at phone hacking. Something had to
be done. So Minsky called up his good friend Ed Fredkin, and told him he
had this problem with an incredibly brilliant nineteen-year-old who had a
penchant for getting into sophisticated mischief. Could Fredkin hire him?

Besides being a close friend of Marvin Minsky and the founder of
Information International Incorporated (Triple-I), Ed Fredkin considered
himself the greatest programmer in the world.

A dark-haired man with warm brown eyes behind glasses that rested on a
nose with a slight intellectual hook, Fredkin had never finished college.
He’d learned computers in the Air Force in 1956, as one of the first men
working on the SAGE computer air defense system, then reputed to be the
most complicated system known to man. Fredkin and nineteen others began
an intensive course in the budding field of computation—memory drums,
logic, communications, and programming. Fredkin later recalled, in his
soothing, story-teller voice, “After a week, everyone dropped out but me.”

Ed Fredkin did not fall into computers head-over-heels as had Kotok,
Samson, Greenblatt, or Gosper—in some ways he was a very measured
man, too much an intellectual polyglot to fixate solely on computers. But he
was intensely curious about them, so after leaving the service he took a job
at MIT-affiliated Lincoln Lab, where he soon earned the reputation of top
program bummer around. He could consistently come up with original
algorithms, some of which became well known as standard programming
protocols. He also was one of the first to see the significance of the PDP-1
—he knew about it before the prototype was built, and ordered the very first
one. He was talked out of the purchase by Bolt Beranek and Newman, who
instead hired him to program the machine and write an assembler. Fredkin
did so and modestly considered it a masterpiece of programming. Besides
systems work, Fredkin engaged in the kind of math hacking that would later
be Bill Gosper’s forte, and he did some early theorizing on automatons. But
not being a pure hacker—he had business instincts and a family to support
—he left BBN to start his own company, Information International, which
would perform all sorts of digital troubleshooting and special computer
consultations. The company was eventually based in Los Angeles, but for a
long time it had facilities in Tech Square, two floors below the PDP-6.

Fredkin was delighted with the hacker community at Tech Square; they had
taken hackerism beyond its previous state, found only part-time in the few
places in the world (such as MIT, DEC, the Army, BBN) where computers
were accessible to people for whom computing was an end in itself. Around
MIT, hackerism was full-time. Fredkin Came to love the hackers—he could
speak their language and admire their work. Sometimes he would
accompany them on their Chinatown excursions, and on those occasions the
discussions could get quite freewheeling. Many of the hackers were avid
science-fiction fans (note the origins of Spacewar), but Fredkin was able to
link the wonders of Heinlein and Asimov to the work that the hackers were
doing—making computers into powerful systems and building a software
groundwork for artificial intelligence. Fredkin had a talent for sparking their
imaginations, as he did when he mused that one day people would have tiny
robots on their heads which would snip off hair when it reached the precise
length for the desired coiffure. (Fredkin would cause a national ruckus
when he repeated this prediction on a television talk show.)

http://bit.ly/c5YoR8
http://bit.ly/aIuuD7

As much as Fredkin admired the hackers, though, he still thought he was
the best programmer. While the Hacker Ethic encouraged group effort for
general improvement, every hacker wanted to be recognized as a wizard,
and fast programs and blazing code-crafting efforts would be eagerly
displayed and discussed. It was a heady ego boost to be at the top of the
hacking hill, where Fredkin considered himself. Hacking, to Fredkin, was
above all a pride in craftsmanship.

“I had never run into anyone who could outcode me, in any sense,” Fredkin
later recalled. “But it was really clear that Nelson could.” Nelson was
genius-level in his computer knowledge, innovative in approach,
fantastically intense in attacking problems, and capable of superhuman
concentration. Fredkin did hire the young hacker on Minsky’s
recommendation, and it did not take Fredkin long to realize that even in a
place where exceptional programming was commonplace, Nelson was
something special, a one-man human wave of programmers. Of course,
since Triple-I was in Tech Square, Nelson was also able to hang out around
the Al lab on the ninth floor and do the work of several programmers up
there as well. But that was no cause for complaint; when Fredkin needed
him, Nelson could almost always come up with magic.

There was a programming project in particular, a task on the DEC PDP-7,
that Fredkin wanted Nelson to work on, but for some reason Nelson
couldn’t get motivated. Fredkin’s company also needed at the same time a
design for an interface between a certain computer and a disk drive for data
storage. Fredkin considered the latter a six man-month project, and wanted
the other task done first. Nelson promised him that he’d get some results
during the weekend. That next Monday, Nelson came in with a giant piece
of paper almost completely covered with tiny scrawlings, long lines
connecting one block of scribblings to another, and evidence of frantic
erasing and write-overs. It was not the PDP-7 program Fredkin had asked
for, but the entire disk-drive interface. Nelson had tried it as a constructive
escape from the assigned task. Fredkin’s company built the piece of
equipment straight from that piece of paper, and it worked.

Fredkin was delighted, but he still wanted the PDP-7 problem done, too. So
he said, “Nelson, you and I are going to sit down and program this together.
You write this routine, and I’ll write that.” Since they did not have a PDP-7
around, they sat down at tables to write their predebugged assembly code.

They began hacking away. Maybe it was about then that Ed Fredkin
realized, once and for all, that he was not the best programmer in the world.
Nelson was racing along as if it were just a matter of how fast he could get
his scribbles on paper. Fredkin was finally overcome with curiosity and
looked at Nelson’s program. He couldn’t believe it. It was bizarre. Totally
nonobvious, a crazy quilt of interlacing subroutines. And it was clear that it
would work. “Stew,” Fredkin burst out, “why on earth are you writing it
this way?” Nelson explained that he had once written something similar on
the PDP-6, and instead of thinking about it he was merely transliterating the
previous routines, from memory, into PDP-7 code. A perfect example of the
way Nelson’s mind worked. He had his own behavior down to the point
where he could bum mental instructions, and minimize the work he did.

It was clearly an approach that was better suited to working with machines
than it was to human interaction. Nelson was extremely shy, and Fredkin
probably acted like a father figure to the young hacker. He would later
recall being startled one day when Nelson marched into his office and said,
“Guess what? I’m getting married!”

Fredkin would have judged that Nelson did not know how to go about
asking a female for a date, let alone tender a proposal of marriage.
“Fantastic!” he said. “Who’s the lucky girl?”

“Oh, I don’t know,” said Nelson. “I just decided it would be a good thing to
do.”

Fifteen years later, Nelson was still in Bachelor Mode.

While women might not have been much of a presence in his life, Nelson
did have the companionship of fellow hackers. He moved into a house with
Gosper and two others. Although this “Hacker House” was in nearby
Belmont, then shifted to Brighton, Nelson resisted buying a car. He couldn’t
stand driving. “It takes too much processing to deal with the road,” he
would later explain. He would take public transportation, or get a ride from
another hacker, or even take a cab. Once he got to Tech Square, he was
good for hours: Nelson was among those hackers who had settled on the
twenty-eight-hour-day, six-day-week routine. He didn’t worry about classes
—he figured that he could get whatever job he wanted whether he had a
degree or not, so he never did rematriculate.

Nelson was completely a creature of the Hacker Ethic, and the influence of
his behavior was a contributing factor to the cultural and scientific growth
of the AT lab. If Minsky needed someone to point out why a certain
subroutine was not working, he would go to Nelson. Meanwhile, Nelson
would be all over the place. Working for Fredkin, doing systems work with
Greenblatt, display hacking with Gosper, and creating all sorts of strange
things. He hacked a weird connection between the Triple-I computer on the
seventh floor and the PDP-6 on the ninth, which sent signals between an
oscilloscope on one line and a TV camera on another. He pulled off all sorts
of new phone hacks. And, again more by example than by organizing, he
was a leader in the hallowed black art of lock hacking.

“Lock hacking” was the skillful solution of physical locks, whether on
doors, file cabinets, or safes. To some extent, the practice was an MIT
tradition, especially around TMRC. But once it was combined with the
Hacker Ethic, lock hacking became more of a crusade than an idle game,
though the playful challenge of overcoming artificial obstacles contributed
to lock hacking’s popularity.

To a hacker, a closed door is an insult, and a locked door is an outrage. Just
as information should be clearly and elegantly transported within a
computer, and just as software should be freely disseminated, hackers
believed people should be allowed access to files or tools which might
promote the hacker quest to find out and improve the way the world works.
When a hacker needed something to help him create, explore, or fix, he did
not bother with such ridiculous concepts as property rights.

Say you are working on the PDP-6 one night, and it goes down. You check
its innards and discover that it needs a part. Or you may need a tool to
install a part. Then you discover that what you need—a disk, a tape, a
screwdriver, a soldering iron, a spare IC (integrated circuit)—is locked up
somewhere. A million dollars’ worth of hardware wasted and idle, because
the hardware wizard who knows how to fix it can’t get at the seventy-five-
cent IC, or the oscilloscope kept in a safe. So the hackers would manage to
get the keys to these lockers and these safes. So they could get hold of the
parts, keep the computers working, carefully replace what they’d taken, and
go back to work.

http://bit.ly/bgbCyP

As a hacker named David Silver later put it, it was “ultra-highly clever
warfare . . . there were administrators who would have high-security locks
and have vaults where they would store the keys, and have sign-out cards to
issue keys. And they felt secure, like they were locking everything up and
controlling things and preventing information from flowing the wrong way
and things from being stolen. Then there was another side of the world
where people felt everything should be available to everybody, and these
hackers had pounds and pounds and pounds of keys that would get them
into every conceivable place. The people who did this were very ethical and
honest and they weren’t using this power to steal or injure. It was kind of a
game, partly out of necessity, and partly out of ego and fun . . . At the
absolute height of it, if you were in the right inside circle, you could get the
combination to any safe and you’d get access to anything.”

The basic acquisition of every lock hacker was a master key. The proper
master key would unlock the doors of a building, or a floor of a building.
Even better than a master key was a grandmaster key, sort of a master
master-key; one of those babies could open perhaps two thirds of the doors
on campus. Just like phone hacking, lock hacking required persistence and
patience. So the hackers would go on late-night excursions, unscrewing and
removing locks on doors. Then they would carefully dismantle the locks.
Most locks could be opened by several different key combinations; so the
hackers would take apart several locks in the same hallway to ascertain
which combination they accepted in common. Then they would go about
trying to make a key shaped in that particular combination.

It might be that the master key had to be made from special “blanks”—
unavailable to the general public. (This is often the case with high-security
master keys, such as those used in defense work). This did not stop the
hackers, because several of them had taken correspondence courses to
qualify for locksmith certification; they were officially allowed to buy those
restricted blank keys. Some keys were so high security that even licensed
locksmiths could not buy blanks for them; to duplicate those, the hackers
would make midnight calls to the machine shop—a corner work space on
the ninth floor where a skilled metal craftsman named Bill Bennett worked
by day on such material as robot arms. Working from scratch, several
hackers made their own blanks in the machine shop.

The master key was more than a means to an end; it was a symbol of the
hacker love of free access. At one point, the TMRC hackers even
considered sending an MIT master key to every incoming freshman as a
recruitment enticement. The master key was a magic sword to wave away
evil. Evil, of course, was a locked door. Even if no tools were behind locked
doors, the locks symbolized the power of bureaucracy, a power that would
eventually be used to prevent full implementation of the Hacker Ethic.
Bureaucracies were always threatened by people who wanted to know how
things worked. Bureaucrats knew their survival depended on keeping
people in ignorance, by using artificial means—Iike locks—to keep people
under control. So when an administrator upped the ante in this war by
installing a new lock, or purchasing a Class Two safe (government certified
for classified material), the hackers would immediately work to crack the
lock and open the safe. In the latter case, they went to a super-ultra-techno
surplus yard in Taunton, found a similar Class Two safe, took it back to the
ninth floor, and opened it up with acetylene torches to find out how the
locks and tumblers worked.

With all this lock hacking, the AI lab was an administrator’s nightmare.
Russ Noftsker knew; he was the administrator. He had arrived at Tech
Square in 1965 with an engineering degree from the University of Mexico,
an interest in artificial intelligence, and a friend who worked at Project
MAC. He met Minsky, whose prime grad student-administrator, Dan
Edwards, had just left the lab. Minsky, notoriously uninterested in
administration, needed someone to handle the paperwork of the Al lab,
which was eventually to split from Project MAC into a separate entity with
its own government funding. So Marvin hired Noftsker, who in turn
officially hired Greenblatt, Nelson, and Gosper as full-time hackers.
Somehow, Noftsker had to keep this electronic circus in line with the values
and policy of the Institute.

Noftsker, a compactly-built blond with pursed features and blue eyes which
could alternatively look dreamy or troubled, was no stranger to weird
technological exploits: when he was in school, he had hacked explosives
with a friend. They worked for a high-tech company and took their salaries
in primacord (a highly combustible material) or dynamite, and set off
explosions in caves to see how many spiders they could blow out, or see
how much primacord it took to split a sixty-five-gallon drum in half.

Noftsker’s friend once was melting thirty pounds of TNT late one night in
his mother’s oven when it caught fire—the oven and refrigerator actually
melted, and the boy was in the awkward position of having to go the next-
door neighbors’ and say, “Excuse me, uh, I think it would be a good idea if
you kind of, uh, moved down the street a little ways . . .” Noftsker knew
he’d been lucky to survive those days; yet, according to Gosper, Noftsker
later would cook up a plan for clearing snow from his sidewalk with
primacord, until his wife put a stop to the idea. Noftsker also shared the
hacker aversion to cigarette smoke, and would sometimes express his
displeasure by shooting a jet of pure oxygen from a canister he kept for that
purpose; the astonished smoker would find his or her cigarette bursting into
a fierce orange blur. Obviously, Noftsker understood the concept of
technological extremism to maintain a convivial environment.

On the other hand, Noftsker was in charge, dammit, and part of his job was
keeping people out of locked areas and keeping confidential information
private. He would bluster, he would threaten, he would upgrade locks and
order safes, but he knew that ultimately he could not prevail by force. Naive
as the thought was in the real world, hackers believed that property rights
were nonexistent. As far as the ninth floor was concerned, that was indeed
the case. The hackers could get into anything, as Noftsker graphically saw
one day when a new safe with a twenty-four-hour pick-proof lock arrived
and someone inadvertently closed the safe and spun the dial before Noftsker
got the combination from the manufacturer. One of the hackers who was a
registered locksmith volunteered to help out, and had the safe open in
twenty minutes.

So what was Noftsker to do?

“Erecting barriers [would raise] the level of the challenge,” Noftsker would
later explain. “So the trick was to sort of have an unspoken agreement—that
“This line, imaginary as it may be, is off limits’—to give the people who
felt they had to have some privacy and security the sense that they really
had some privacy and security. And if someone violated those limits, the
violation would be tolerated as long as no one knew about it. Therefore, if
you gained something by crawling over the wall to get into my office, you
had to never say anything about it.”

Unilateral disarmament. Give the hackers free rein to go where they wanted
in their explorations, take what they wanted to aid them in their electronic

meanderings and computer-science jam sessions . . . as long as they didn’t
go around boasting how the bureaucratic emperor had no clothes. That way,
Noftsker and the administration he represented could maintain some dignity
while the hackers could pretend the administration did not exist. They went
wherever they wanted, entering offices by traveling in the crawl space
created by the low-hanging artificial ceiling, removing a ceiling tile, and
dropping into their destinations—commandos with pencil-pals in their shirt
pockets. One hacker hurt his back one night when the ceiling collapsed and
he fell into Minsky’s office. But more often, the only evidence Noftsker
would find was the occasional footprint on his wall. And, of course,
sometimes he would enter his locked office and discover a hacker dozing on
the sofa.

Some people, though, never could tolerate the Hacker Ethic. Apparently,
one of these was the machine shop craftsman Bill Bennett. Though he was a
TMRC member, he was by no means a hacker: his allegiance was not to the
Signals & Power faction, but to what Gosper called the “Let’s-Build-
Precise-Little-Miniature-Physical-Devices Subculture.” He was a good old
boy from Marietta, Georgia, and had a near-religious respect for his tools.
His homeland tradition thought of tools as sanctified objects; things you
nurture and preserve and ultimately hand over to your grandchildren. “I’m a
fanatic,” he would later explain. “A tool should be in its right place, cleaned
and ready to use.” So he not only locked up all his tools but would forbid
the hackers to even enter his work space, which he cordoned off by setting
up a rope fence and painting stripes on the floor.

Bennett could not prevent the inevitable result of drawing a line and telling
hackers they could not cross. He would come in and see his tools had been
used, and would complain to Minsky. He would threaten to quit; Noftsker
recalls him threatening to booby-trap his area. He would especially demand
that Minsky take vengeance on Nelson, whom he apparently saw as the
worst offender. Minsky or Noftsker might go through the motions of
reprimanding Nelson, but privately they considered the drama rather
amusing. Eventually Noftsker would come up with the idea of giving each
hacker his own toolbox, with responsibility for his own tools, but that didn’t
work out particularly well. When a hacker wants something on a machine
adjusted, or wants to create a quick hardware hack, he’ll use anything
available, whether it belongs to a friend or whether it is one of Bill

Bennett’s pampered possessions. One time Nelson used the latter, a
screwdriver, and in the course of his work marked it up somewhat. When
Bennett came in the next day and found a damaged screwdriver, he went
straight for Nelson.

Nelson was normally very quiet, but at times he would explode. Gosper
later described it: “Nelson was an incredible arguer. If you cornered Nelson,
he would turn from this mousy little guy to a complete savage.” So, Gosper
later recalled, Nelson and Bennett got into a shouting match, and during the
course of it Nelson said that the screwdriver was just about “used up,”
anyway.

Used up? It was an incredibly offensive philosophy to Bennett, “This
caused smoke to come out of Bennett’s ears,” Gosper later recounted. “He
just blew up.” To people like Bennett, things are not passed along from
person to person until they are no longer useful. They are not like a
computer program which you write and polish, then leave around so others
—without asking your permission—can work on it, add new features, recast
it in their own image, and then leave it for the next person to improve, the
cycle repeating itself all over when someone builds from scratch a gorgeous
new program to do the same thing. That might be what hackers believed,
but Bill Bennett thought that tools were something you owned, something
private. These hackers actually thought that a person was entitled to use a
tool just because he thought he could do something useful with it. And
when they were finished, they would just toss it away, saying it was . . .
used up!

Considering these diametrically opposed philosophies, it was no surprise
that Bennett blew up at Nelson. Bennett would later say that his outbursts
were always quick, and followed by the usual good will that existed
between himself and the hackers. But Nelson would later say that at the
time he had been afraid the machinist might do him physical harm.

A few nights later Nelson wanted to perform some completely unauthorized
adjustments to the power supply on a computer on the seventh floor of Tech
Square and needed a large screwdriver to do it. Naturally, he went into
Bennett’s locked cabinet for the tool. Somehow the breakers on the power
supply were in a precarious state, and Nelson got a huge electrical jolt.
Nelson survived nicely, but the shock melted the end off the screwdriver.

The next day Bill Bennett came back to his office and found his mangled
screwdriver with a sign on it. The sign read USED UP.

Chapter 6. Winners and Losers

By 1966, when David Silver took his first elevator ride to the ninth floor of
Tech Square, the Al lab was a showcase community, working under the
hallowed precepts of the Hacker Ethic. After a big Chinese dinner, the
hackers would go at it until dawn, congregating around the PDP-6 to do
what was most important in the world to them. They would waddle back
and forth with their printouts and their manuals, kibitzing around whoever
was using the terminal at that time, appreciating the flair with which the
programmer wrote his code. Obviously, the key to the lab was cooperation
and a joint belief in the mission of hacking. These people were passionately
involved in technology, and as soon as he saw them, David Silver wanted to
spend all his time there.

David Silver was fourteen years old. He was in the sixth grade, having been
left back twice. He could hardly read. His classmates often taunted him.
Later, people would reflect that his problem had been dyslexia; Silver
would simply say that he “wasn’t interested” in the teachers, the students, or
anything that went on in school. He was interested in building systems.

From the time he was six or so, he had been going regularly to Eli Heffron’s
junkyard in Cambridge (where TMRC hackers also scavenged) and
recovering all sorts of fascinating things. Once, when he was around ten, he
came back with a radar dish, tore it apart, and rebuilt it so that it could pick
up sounds—he rigged it as a parabolic reflector, stuck in a microphone, and
was able to pick up conversations thousands of feet away. Mostly he used to
listen to faraway cars, or birds, or insects. He also built a lot of audio
equipment and dabbled in time-lapse photography. Then he got interested in
computers.

His father was a scientist, a friend of Minsky’s, and a teacher at MIT. He
had a terminal in his office connected to the Compatible Time-sharing
System on the IBM 7094. David began working with it—his first program
was written in LISP and translated English phrases into pig Latin. Then he
began working on a program that would control a tiny robot—he called it a
“bug”—which he built at home out of old telephone relays that he got at
Eli’s. He hooked the bug to the terminal, and working in machine language,
he wrote a program that made the two-wheeled bug actually crawl. David

http://bit.ly/aOK7eC

decided that robotics was the best of all pursuits—what could be more
interesting than making machines that could move on their own, see on
their own . . . think on their own?

So his visit to the Al lab, arranged by Minsky, was a revelation. Not only
were these people as excited about computers as David Silver was, but one
of the major activities at the lab was robotics. Minsky was extremely
interested in that field. Robotics was crucial to the progress of artificial
intelligence; it let us see how far man could go in making smart machines
do his work. Many of Minsky’s graduate students concerned themselves
with the theory of robotics, crafting theses about the relative difficulty of
getting a robot to do this or that. The hackers were also heavily involved in
the field—not so much in theorizing as in building and experimenting.
Hackers loved robots for much the same reasons that David Silver did.
Controlling a robot was a step beyond computer programming in
controlling the system that was the real world. As Gosper used to say, “Why
should we limit computers to the lies people tell them through keyboards?”
Robots could go off and find out for themselves what the world was like.

When you program a robot to do something, Gosper would later explain,
you get “a kind of gratification, an emotional impact, that is completely
indescribable. And it far surpasses the kind of gratification you get from a
working program. You’re getting a physical confirmation of the correctness
of your construction. Maybe it’s sort of like having a kid.”

One big project that the hackers completed was a robot that could catch a
ball. Using a mechanical arm controlled by the PDP-6, as well as a
television camera, Nelson, Greenblatt, and Gosper worked for months until
the arm could finally catch a Ping-Pong ball lobbed toward it. The arm was
able to determine the location of the ball in time to move itself in position to
catch it. It was something the hackers were tremendously proud of, and
Gosper especially wanted to go further and begin work on a more mobile
robot which could actually play Ping-Pong.

“Ping-Pong by Christmas?” Minsky asked Gosper as they watched the
robot catch balls.

Ping-Pong, like Chinese restaurants, was a system Gosper respected. He’d
played the game in his basement as a kid, and his Ping-Pong style had much
in common with his hacking style: both were based on his love of the

physically improbable. When Gosper hit a Ping-Pong ball, the result was
something as loony as a PDP-6 display hack—he put so much English on
the ball that complex and counterintuitive forces were summoned, and there
was no telling where the ball might go. Gosper loved the spin, the denial of
gravity that allowed you to violently slam a ball so that instead of sailing
past the end of a table it suddenly curved down, and when the opponent
tried to hit it, the ball would be spinning so furiously that it would fly off
toward the ceiling. Or he would chop at a ball to increase the spin so much
that it almost flattened out, nearly exploding in mid-air from the centrifugal
force. “There were times when in games I was having,” Gosper would later
say, “a ball would do something in mid-air, something unphysical, that
would cause spectators to gasp. I have seen inexplicable things happen in
mid-air. Those were interesting moments.”

Gosper was obsessed for a while with the idea of a robot playing the game.
The hackers actually did get the robot to hold a paddle and take a good swat
at a ball lobbed in its direction. Bill Bennett would later recall a time when
Minsky stepped into the robot arm’s area, floodlit by the bright lights
required by the vidicon camera; the robot, seeing the glare reflecting from
Minsky’s bald dome, mistook the professor for a large Ping-Pong ball and
nearly decapitated him.

Gosper wanted to go all the way; have the robot geared to move around and
make clever shots, perhaps with the otherworldly spin of a good Gosper
volley. But Minsky, who had actually done some of the hardware design for
the ball-catching machine, did not think it an interesting problem. He
considered it no different from the problem of shooting missiles out of the
sky with other missiles, a task that the Defense Department seemed to have
under control. Minsky dissuaded Gosper from going ahead on the Ping-
Pong project, and Gosper would later insist that that robot could have
changed history.

Of course, the idea that a project like that was even considered was thrilling
to David Silver. Minsky had allowed Silver to hang out on the ninth floor,
and soon Silver had dropped out of school totally so he could spend his
time more constructively at Tech Square. Since hackers care less about
people’s age than about someone’s potential contribution to hacking,
fourteen-year-old David Silver was accepted, at first as sort of a mascot.

He immediately proved himself of some value by volunteering to do some
tedious lock-hacking tasks. It was a time when the administration had
installed a tough new system of high-security locks. Sometimes the slightly
built teenager would spend a whole night crawling over false ceilings, to
take apart a hallway’s worth of locks, study them to see how the mastering
system worked, and painstakingly reconstruct them before the
administrators returned in the morning. Silver was very good at working
with machinist’s tools, and he machined a certain blank which could be
fashioned into a key to open a particularly tough new lock. The lock was on
a door protecting a room with a high-security safe which held . . . keys.
Once the hackers got to that, the system “unraveled,” in Silver’s term.

Silver saw the hackers as his teachers—he could ask them anything about
computers or machines, and they would toss him enormous chunks of
knowledge. This would be transmitted in the colorful hacker jargon, loaded
with odd, teddy-bearish variations on the English language. Words like
winnitude, Greenblattful, gronk, and foo were staples of the hacker
vocabulary, shorthand for relatively nonverbal people to communicate
exactly what was on their minds.

Silver had all sorts of questions. Some of them were very basic: What are
the various pieces computers are made of? What are control systems made
of? But as he got more deeply into robotics he found that the questions you
had to ask were double-edged. You had to consider things in almost cosmic
terms before you could create reality for a robot. What is a point? What is
velocity? What is acceleration? Questions about physics, questions about
numbers, questions about information, questions about the representation of
things . . . it got to the point, Silver realized later, where he was “asking
basic philosophical questions like what am I, what is the universe, what are
computers, what can you use them for, and how does that relate? At that
time all those questions were interesting because it was the first time I had
started to contemplate, and started to know enough about computers, and
was relating biological-, human-, and animal-type functions, and starting to
relate them to science and technology and computers. I began to realize that
there was this idea that you could do things with computers that are similar
to the things intelligent beings do.”

Silver’s guru was Bill Gosper. They would often go off to one of the dorms
for Ping-Pong, go out for Chinese food, or talk about computers and math.

All the while, Silver was soaking up knowledge in this Xanadu above
Cambridge. It was a school no one else knew about, and for the first time in
his life he was happy.

The computer and the community around it had freed him, and soon David
Silver felt ready to do serious work on the PDP-6. He wanted to write a big,
complicated program: he wanted to modify his little robot “bug” so that it
would use the television camera to actually “fetch” things that people would
toss on the floor. The hackers were not fazed at the fact that no one, even
experienced people with access to all sorts of sophisticated equipment, had
really done anything similar. Silver went about it in his usual inquisitive
style, going to ten or twenty hackers and asking each about a specific
section of the vision part of the program. High-tech Tom Sawyer, painting a
fence with assembly code. Hardware problems, he’d ask Nelson. Systems
problems, Greenblatt. For math formulas, Gosper. And then he’d ask people
to help him with a subroutine on that problem. When he got all the
subroutines, he worked to put the program together, and he had his vision
program.

The bug itself was a foot long and seven inches wide, made of two small
motors strapped together with a plastic harness. It had erector-set wheels on
either end, an erector-set bar going across the top, and copper welding bars
sticking out in front, like a pair of antlers. It looked, frankly, like a piece of
junk. Silver used a technique called “image subtraction” to let the computer
know where the bug was at any time—the camera would always be
scanning the scene to see what had moved, and would notice any change in
its picture. Meanwhile the bug would be moving randomly until the camera
picked it up and the computer directed it to the target, which would be a
wallet that someone tossed nearby.

Meanwhile, something was happening that was indicative of a continuing
struggle in this hacker haven. David Silver was getting a lot of criticism.
The criticism came from nemeses of the Hacker Ethic: the Al theorists and
grad students on the eighth floor. These were people who did not
necessarily see the process of computing as a joyful end in itself: they were
more concerned with getting degrees, winning professional recognition, and
the, ahem, advancement of computer science. They considered hackerism
unscientific. They were always demanding that hackers get off the machine
so they could work on their “Officially Sanctioned Programs,” and they

were appalled at the seemingly frivolous uses to which the hackers put the
computer. The grad students were all in the midst of scholarly and scientific
theses and dissertations which pontificated on the difficulty of doing the
kind of thing that David Silver was attempting. They would not consider
any sort of computer-vision experiment without much more planning,
complete review of previous experiments, careful architecture, and a setup
which included pure white cubes on black velvet in a pristine, dustless
room. They were furious that the valuable time of the PDP-6 was being
taken up for this . . . toy! By a callow teenager, playing with the PDP-6 as if
it were his personal go-cart.

While the grad students were complaining about how David Silver was
never going to amount to anything, how David Silver wasn’t doing proper
Al, and how David Silver was never going to understand things like
recursive function theory, David Silver was going ahead with his bug and
PDP-6. Someone tossed a wallet on the grimy, crufty floor, and the bug
scooted forward, six inches a second, moved right, stopped, moved forward.
And the stupid little bug kept darting forward, right, or left until it reached
the wallet, then rammed forward until the wallet was solidly between its
“antlers” (which looked for all the world like bent shirt-hangers). And then
the bug pushed the wallet to its designated “pen.” Mission accomplished.

The graduate students went absolutely nuts. They tried to get Silver booted.
They claimed there were insurance considerations springing from the
presence of a fourteen-year-old in the lab late at night. Minsky had to stand
up for the kid. “It sort of drove them crazy,” Silver later reflected, “because
this kid would just sort of screw around for a few weeks and the computer
would start doing the thing they were working on that was really hard, and
they were having difficulties and they knew they would never really fully
solve [the problem] and couldn’t implement it in the real world. And it was
all of a sudden happening and I pissed them off. They’re theorizing all these
things and I’m rolling up my sleeves and doing it . . . you find a lot of that
in hacking in general. I wasn’t approaching it from either a theoretical point
of view or an engineering point of view, but from sort of a fun-ness point of
view. Let’s make this robot wiggle around in a fun, interesting way. And so
the things I built and the programs I wrote actually did something. And in
many cases they actually did the very things that these graduate students
were trying to do.”

Eventually the grad students calmed down about Silver. But the schism was
constant. The grad students viewed the hackers as necessary but juvenile
technicians. The hackers thought that grad students were ignoramuses with
their thumbs up their asses who sat around the eighth floor blindly
theorizing about what the machine was like. They wouldn’t know what The
Right Thing was if it fell on them. It was an offensive sight, these
incompetents working on Officially Sanctioned Programs which would be
the subjects of theses and then tossed out (as opposed to hacker programs,
which were used and improved upon). Some of them had won their
sanctions by snow-jobbing professors who themselves knew next to nothing
about the machines. The hackers would watch these people “spaz out” on
the PDP-6 and rue the waste of perfectly good machine time.

One of these grad students, in particular, drove the hackers wild—he would
make certain mistakes in his programs that would invariably cause the
machine to try to execute faulty instructions, so-called “unused op-codes.”
He would do this for hours and days on end. The machine had a way of
dealing with an unused op-code—it would store it in a certain place and,
assuming you meant to define a new op-code, get ready to go back to it
later. If you didn’t mean to redefine this illegal instruction, and proceeded
without knowing what you’d done, the program would go into a loop, at
which point you’d stop it, look over your code, and realize what you’d done
wrong. But this student, whom we will call Fubar in lieu of his long-
forgotten name, could never understand this, and kept putting in the illegal
instructions. Which caused the machine to loop wildly, constantly executing
instructions that didn’t exist, waiting for Fubar to stop it. Fubar would sit
there and stare. When he got a printout of his program, he would stare at
that. Later on, perhaps, after he got the printout home, he would realize his
mistake, and come back to run the program again. Then he’d make the same
error. And the hackers were infuriated because by taking his printout home
and fixing it there all the time, he was wasting the PDP-6—doing thumb-
sucker, IBM-style batch processing instead of interactive programming. It
was the equivalent of cardinal sin.

So one day Nelson got into the computer and made a hack that would
respond to that particular mistake in a different way. People made sure to
hang around the next time Fubar was signed up for the machine. He sat
down at the console, taking his usual, interminably long time to get going,

http://bit.ly/aMU7Ha
http://bit.ly/aj3Tcr

and sure enough, within a half hour, he made the same stupid mistake. Only
this time, on the display screen, he saw that the program was not looping,
but displaying the part of his code which had gone wrong. Right in the
middle of it, pointing to the illegal instruction he’d put in, was a huge,
gleaming, phosphorescent arrow. And flashing on the screen was the
legend, “Fubar, you lose again!”

Fubar did not respond graciously. He wailed about his program being
vandalized. He was so incensed that he completely ignored the information
that Nelson’s hack had given him about what he was doing wrong and what
he might do to fix it. He was not, as the hackers had somehow hoped,
thankful that this wonderful feature had been installed to help him find the
error of his ways. The brilliance of the hack had been wasted on him.

The hackers had a word to describe those graduate students. It was the same
word they used to describe almost anyone who pretended to know
something about computers and could not back it up with hacker-level
expertise. The word was “loser.” The hackers were “winners.” It was a
binary distinction: people around the Al lab were one or the other. The sole
criterion was hacking ability. So intense was the quest to improve the world
by understanding and building systems that almost all other human traits
were disregarded. You could be fourteen years old and dyslexic, and be a
winner. Or you could be bright, sensitive, and willing to learn, and still be
considered a loser.

To a newcomer, the ninth floor was an intimidating, seemingly
impenetrable passion palace of science. Just standing around the likes of
Greenblatt or Gosper or Nelson could give you goose bumps. They would
seem the smartest people in the world. And since only one person at a time
could use the PDP-6, it took a lot of guts to sit down and learn things
interactively. Still, anybody who had the hacker spirit in him would be so
driven to compute that he would set self-doubt aside and begin writing
programs.

Tom Knight, who drifted up to the ninth floor as a startlingly tall and skinny
seventeen-year-old freshman in 1965, went through that process, eventually
earning winner status. To do that, he later recalled, “You have to pretty

much bury yourself in that culture. Long nights looking over the shoulder of

people who were doing interesting things that you didn’t understand.” What
kept him going was his fascination with the machine; how it let you build
complicated systems completely under your control. In that sense, Knight
later reflected, you had the same kind of control that a dictator had over a
political system. But Knight also felt that computers were an infinitely
flexible artistic medium, one in which you could express yourself by
creating your own little universe. Knight later explained: “Here is this
object you can tell what to do, and with no questions asked, it’s doing what
you tell it to. There are very few institutions where an eighteen-year-old
person can get that to happen for him.”

People like Knight and Silver hacked so intensely and so well that they
became winners. Others faced a long uphill climb, because once hackers
felt that you were an obstacle to the general improvement of the overall
system, you were a loser in the worst sense and should be either cold-
shouldered or told to leave outright.

To some, that seemed cruel. A sensitive hacker named Brian Harvey was
particularly upset at the drastically enforced standard. Harvey successfully
passed muster himself. While working on the computer he discovered some
bugs in the TECO editor, and when he pointed them out, people said, fine—
now go fix them. He did, realized that the process of debugging was more
fun than using a program you’d debugged, and set about looking for more
bugs to fix. One day while he was hacking TECO, Greenblatt stood behind
him, stroking his chin as Harvey hammered in some code, and said, “I
guess we ought to start paying you.” That was the way you were hired in
the lab. Only winners were hired.

But Harvey did not like it when other people were fingered as losers,
treated like pariahs simply because they were not brilliant. Harvey thought
that Marvin Minsky had a lot to do with promulgating that attitude. (Minsky
later insisted that all he did was allow the hackers to run things themselves
—*“the system was open and literally encouraged people to try it out, and if
they were harmful or incompetent, they’d be encouraged to go away.”)
Harvey recognized that, while on the one hand the Al lab, fueled by the
Hacker Ethic, was “a great intellectual garden,” on the other hand it was
flawed by the fact that who you were didn’t matter as much as what kind of
hacker you were.

Some people fell right into a trap of trying so hard to be a winner on the
machine that they were judged instantly as losers: for instance, Gerry
Sussman, who arrived at MIT as a cocky seventeen-year-old. Having been
an adolescent electronics junkie and high school computer fan, the first
thing he did when he arrived at MIT was to seek a computer. Someone
pointed him to Tech Square. He asked a person who seemed to belong there
if he could play with the computer. Richard Greenblatt said, go ahead, play
with it.

So Sussman began working on a program. Not long after, this odd-looking
bald guy came over. Sussman figured the guy was going to boot him out,
but instead the man sat down, asking, “Hey, what are you doing?” Sussman
talked over his program with the man, Marvin Minsky. At one point in the
discussion, Sussman told Minsky that he was using a certain randomizing
technique in his program because he didn’t want the machine to have any
preconceived notions. Minsky said, “Well, it has them, it’s just that you
don’t know what they are.” It was the most profound thing Gerry Sussman
had ever heard. And Minsky continued, telling him that the world is built a
certain way, and the most important thing we can do with the world is avoid
randomness, and figure out ways by which things can be planned. Wisdom
like this has its effect on seventeen-year-old freshmen, and from then on
Sussman was hooked.

But he got off on the wrong foot with the hackers. He tried to compensate
for his insecurity by excessive bravado, and everyone saw right through it.
He was also, by many accounts, terrifically clumsy, almost getting himself
flattened in a bout with the robot arm—which he had infinite trouble
controlling—and once he accidentally crushed a special brand of imported
Ping-Pong ball that Gosper had brought into the lab. Another time, while on
a venture of the Midnight Computer Wiring Society, Sussman got a glob of
solder in his eye. He was losing left and right.

Perhaps to cultivate a suave image, Sussman smoked a pipe, the utterly
wrong thing to do on the smokeaphobic ninth floor, and one day the hackers
managed to replace some of his tobacco with cut-up rubber bands of the
same approximate color.

He unilaterally apprenticed himself to Gosper, the most verbally profound
of the hackers. Gosper might not have thought that Sussman was much of a
winner at that point, but he loved an audience, and tolerated Sussman’s

misguided cockiness. Sometimes the wry guru’s remarks would set
Sussman’s head spinning, like the time Gosper offhandedly remarked that
“Well, data is just a dumb kind of programming.” To Sussman, that
answered the eternal existence question, “What are you?” We are data,
pieces of a cosmic computer program that is the universe. Looking at
Gosper’s programs, Sussman divined that this philosophy was embedded in
the code. Sussman later explained that “Gosper sort of imagined the world
as being made out of all these little pieces, each of which is a little machine
which is a little independent local state. And [each state] would talk to its
neighbors.”

Looking at Gosper’s programs, Sussman realized an important assumption
of hackerism: all serious computer programs are expressions of an
individual. “It’s only incidental that computers execute programs,” Sussman
would later explain. “The important thing about a program is that it’s
something you can show to people, and they can read it and they can learn
something from it. It carries information. It’s a piece of your mind that you
can write down and give to someone else just like a book.” Sussman
learned to read programs with the same sensitivity that a literature buff
would read a poem. There are fun programs with jokes in them, there are
exciting programs which do The Right Thing, and there are sad programs
which make valiant tries but don’t quite fly.

These are important things to know, but they did not necessarily make you a
winner. It was hacking that did it for Sussman. He stuck at it, hung around
Gosper a lot, toned down his know-it-all attitude, and, above all, became an
impressive programmer. He was the rare loser who eventually turned things
around and became a winner. He later wrote a very complicated and much-
heralded program in which the computer would move blocks with a robot
arm; and by a process much like debugging, the program would figure out
for itself which blocks it would have to move to get to the one requested. It
was a significant step forward for artificial intelligence, and Sussman
became known thereafter as more of a scientist, a planner. He named his
famous program HACKER.

One thing that helped Sussman in his turnaround from loser to winner was a
sense of what The Right Thing was. The biggest losers of all, in the eyes of
the hackers, were those who so lacked that ability that they were incapable
of realizing what the true best machine was, or the true best computer

language, or the true best way to use a computer. And no system of using a
computer earned the hackers’ contempt as much as the time-sharing
systems which, since they were a major part of Project MAC, were also
based on the ninth floor of Tech Square. The first one, which was operating
since the mid-sixties, was the Compatible Time-sharing System (CTSS).
The other, long in preparation and high in expense, was called Multics and
was so offensive that its mere existence was an outrage.

Unlike the quiltwork of constantly improving systems programs operating
on the PDP-6, CTSS had been written by one man, MIT Professor F.J.
Corbaté. It had been a virtuoso job in many respects, all carefully coded and
ready to run on the IBM 7094, which would support a series of terminals to
be used simultaneously. But to the hackers, CTSS represented bureaucracy
and IBM-ism. “One of the really fun things about computers is that you
have control over them,” CTSS foe Tom Knight would later explain. “When
you have a bureaucracy around a computer you no longer have control over
it. The CTSS was a ‘serious’ system. People had to go get accounts and had
to pay attention to security. It was a benign bureaucracy, but nevertheless a
bureaucracy, full of people who were here from nine to five. If there was
some reason you wanted to change the behavior of the system, the way it
worked, or develop a program that might have only sometimes worked, or
might have some danger of crashing the system, that was not encouraged
[on CTSS]. You want an environment where making those mistakes is not
something for which you’re castigated, but an environment where people
say, ‘Oops, you made a mistake.’”

In other words, CTSS discouraged hacking. Add to this the fact that it was
run on a two-million-dollar IBM machine that the hackers thought was
much inferior to their PDP-6, and you had one loser system. No one was
asking the hackers to use CTSS, but it was there, and sometimes you just
have to do some hacking on what’s available. When a hacker would try to
use it, and a message would come on screen saying that you couldn’t log on
without the proper password, he would be compelled to retaliate. Because
to hackers, passwords were even more odious than locked doors. What
could be worse than someone telling you that you weren’t authorized to use
his computer?

As it turned out, the hackers learned the CTSS system so well that they
could circumvent the password requirements. Once they were on the

http://bit.ly/aeqRBX

system, they would rub it in a bit by leaving messages to the administrators
—high-tech equivalents of “Kilroy Was Here.” Sometimes they would even
get the computer to print out a list of all current passwords, and leave the
printout under an administrator’s door. Greenblatt recalls that the Project
MAC-CTSS people took a dim view of that, and inserted an official MAC
memo, which would flash when you logged in, basically saying, a password
is your sanctity, and only the lowest form of human would violate a
password. Tom Knight got inside the system and changed the heading of
that memo from MAC to HAC.

But as bad as CTSS was, the hackers thought Multics was worse. Multics
was the name of the hugely expensive time-sharing system for the masses
being built and debugged on the ninth floor. Though it was designed for
general users, the hackers evaluated the structure of any system in a very
personal light, especially a system created on the very floor of the building
in which they hacked. So MULTICS was a big topic of hacker conversation.

Originally, Multics was done in conjunction with General Electric; then
Honeywell stepped in. There were all sorts of problems with it. As soon as
the hackers heard that the system would run on teletype Model 33 terminals
instead of fast, interactive CRT displays, they knew the system was a total
loser. The fact that the system was written in an IBM-created computer
language called PL/I instead of sleek machine language was appalling.
When the system first ran, it was incredibly sluggish. It was so slow that the
hackers concluded the whole system must be brain-damaged, a term used so
often to describe Multics that “brain-damaged” became a standard
hackerese pejorative.

But the worst thing about Multics was the heavy security and the system of
charging the user for the time. Multics took the attitude that the user paid
down to the last nickel; it charged some for the memory you used, some
more for the disk space, more for the time. Meanwhile the Multics planners,
in the hacker view, were making proclamations about how this was the only
way that utilities could work. The system totally turned the Hacker Ethic
around—instead of encouraging more time on the computer (the only good
thing about time sharing as far as most hackers were concerned), it urged
you to spend less time—and to use less of the computer’s facilities once
you were on! The Multics philosophy was a disaster.

http://bit.ly/9y369p
http://bit.ly/deMKP3

The hackers plagued the Multics system with tricks and crashes. It was
almost a duty to do it. As Minsky would later say, “There were people
doing projects that some other people didn’t like and they would play all
sorts of jokes on them so that it was impossible to work with them . . . I
think [the hackers] helped progress by undermining professors with stupid
plans.”

In light of the guerrilla tendencies of hackers, the planners in charge of the
Al lab had to tread very lightly with suggestions that would impact the
hacker environment. And around 1967, the planners wanted a whopper of a
change. They wanted to convert the hackers’ beloved PDP-6 into a time-
sharing machine.

By that time, Minsky had turned many of his Al lab leadership duties over
to his friend Ed Fredkin, Nelson’s boss at Triple-I who himself was easing
out of full-time business and into a professorship at MIT. (Fredkin would be
one of the youngest full professors on the faculty, and the only full
professor without a degree.) A master programmer himself, Fredkin was
already close to the hackers. He appreciated the way the laissez-faire
attitude allowed hackers to be dazzlingly productive. But he thought that
sometimes the hackers could benefit from top-down direction. One of his
early attempts to organize a “human wave” approach toward a robotics
problem, assigning the hackers specific parts of the problem himself, had
failed ignominiously. “Everyone thought I was crazy,” Fredkin later
recalled. He ultimately accepted the fact that the best way to get hackers to
do things was to suggest them, and hope that the hackers would be
interested enough. Then you would get production unheard of in industry or
academia.

Time sharing was something that Minsky and Fredkin considered essential.
Between hackers and Officially Sanctioned Users, the PDP-6 was in
constant demand; people were frustrated by long waits for access. But the
hackers did not consider time sharing acceptable. They pointed at CTSS,
Multics, even at Jack Dennis’ more amiable system on the PDP-1, as
examples of the slower, less powerful access one would be stuck with when
one shared the computer with others using it at the same time.

They noted that certain large programs could not be run at all with time
sharing. One of these was a monster program that Peter Samson had been
working on. It was sort of an outgrowth of one of his first hacks on the TX-

0, a program which, if you typed in the names of two subway stations on
the MTA, would tell you the proper subway lines to take, and where to
make the changes from one to another. Now, Samson was tackling the
entire New York subway system . . . he intended to put the entire system in
the computer’s memory and the full timetable of its trains on a data disk
accessible by the computer. One day he ran the program to figure out a
route by which a person could ride the entire subway system with one
token. It got some media attention, and then someone suggested that they
see if they could use the computer to actually do it, break a record
previously set by a Harvard student for actually traveling to every stop on
the New York subway system.

After months of hacking, Samson came up with a scheme, and one day two
hackers made the run. A teletype was installed at the MIT Alumni Club in
Manhattan, connected to the PDP-6. Two dozen or so messengers were
stationed along the route, and they periodically ducked into pay phones,
constantly updating schedule information, calling in late trains, reporting
delays, and noting missed connections. The hackers at the teletype pounded
in the information, and back in Cambridge the PDP-6 calculated changes in
the route. As the travelers passed each station, Samson marked it off on a
war-room map. The idea of these crew-cut madmen—stark contrast to the
long-haired protesters making news in other sorts of activities—captured
the imagination of the media for a day, and The Great Subway Hack was
noted as one of the memorable uses of the PDP-6.

It underlined something that Greenblatt, Gosper, and the rest considered
essential—the magic that could come only from programs using all of the
computer. The hackers worked on the PDP-6, one by one, as if it were their
own personal computer. They would often run display programs which ran
in “real time” and required the computer to constantly refresh the screen;
time sharing would make the display hacks run slower. And the hackers had
gotten used to little frills that came from complete control of the PDP-6,
like being able to track a program by the flashing lights (indicating which
registers in the machine were firing). Those perks would be gone with time
sharing.

At heart, though, the time-sharing issue was an esthetic question. The very
idea that you could not control the entire machine was disturbing. Even if
the time-sharing system allowed the machine to respond to you in exactly

the same way as it did in single user mode, you would just know that it
wasn’t all yours. It would be like trying to make love to your wife, knowing
she was simultaneously making love to six other people!

The hackers’ stubbornness on this issue illustrated their commitment to the
quality of computing; they were not prepared to compromise by using an
inferior system that would serve more people and perhaps spread the gospel
of hacking. In their view, hacking would be better served by using the best
system possible. Not a time-shared system.

Fredkin was faced with an uphill political struggle. His strategy was to turn
around the most vehement of the anti-time-sharing camp-Greenblatt. There
was a certain affection between them. Fredkin was the only person on the
ninth floor who called Greenblatt “Ricky.” So he courted. He cajoled. He
told Greenblatt how the power of the PDP-6 would be improved by a new
piece of hardware, which would expand its memory to a size bigger than
any computer in the world. He promised that the time-sharing system would
be better than any to date—and the hackers would control it. He worked on
Greenblatt for weeks, and finally Ricky Greenblatt agreed that time sharing
should be implemented on the PDP-6.

Soon after that, Fredkin was in his office when Bill Gosper marched in,
leading several hackers. They lined up before Fredkin’s desk and gave him
a collective icy stare.

“What’s up?” Fredkin asked.
They kept staring at him for a while longer. Finally they spoke.

“We’d like to know what you’ve done to Greenblatt,” they said. “We have
reason to believe you’ve hypnotized him.”

Gosper in particular had difficulty accepting joint control of the PDP-6. His
behavior reminded Fredkin of Rourke, the architect in Ayn Rand’s The
Fountainhead, who designed a beautiful building; when Rourke’s superiors
took control of the design and compromised its beauty, Rourke blew up the
building. Fredkin later recalled Gosper telling him that if time sharing were
implemented on the PDP-6, Gosper would be compelled to physically
demolish the machine. “Just like Rourke,” Fredkin later recalled. “He felt if
this terrible thing was to be done, you would have to destroy it. And I
understood this feeling. So I worked out a compromise.” The compromise
allowed the machine to be run late at night in single-user mode so the

http://bit.ly/auVXqw

hackers could run giant display programs and have the PDP-6 at their total
command.

The entire experiment in time sharing did not work out badly at all. The
reason was that a special, new time-sharing system was created, a system
that had the Hacker Ethic in its very soul.

The core of the system was written by Greenblatt and Nelson, in weeks of
hard-core hacking. After some of the software was done, Tom Knight and
others began the necessary adjustments to the PDP-6 and the brand-new
memory addition—a large cabinet with the girth of two laundromat-size
washing machines, nicknamed Moby Memory. Although the administration
approved of the hackers’ working on the system, Greenblatt and the rest
exercised full authority on how the system would turn out. An indication of
how this system differed from the others (like the Compatible Time-sharing
System) was the name that Tom Knight gave the hacker program: the
Incompatible Time-sharing System (ITS).

The title was particularly ironic because, in terms of friendliness to other
systems and programs, I'TS was much more compatible than CTSS. True to
the Hacker Ethic, ITS could easily be linked to other things—that way it
could be infinitely extended so users could probe the world more
effectively. As in any time-sharing system, several users would be able to
run programs on ITS at the same time. But on ITS, one user could also run
several programs at once. ITS also allowed considerable use of the displays,
and had what was for the time a very advanced system of editing that used
the full screen (“years before the rest of the world,” Greenblatt later
boasted). Because the hackers wanted the machine to run as swiftly as it
would have done had it not been time-shared, Greenblatt and Nelson wrote
machine language code which allowed for unprecedented control in a time-
sharing system.

There was an even more striking embodiment of the Hacker Ethic within
ITS. Unlike almost any other time-sharing system, ITS did not use
passwords. It was designed, in fact, to allow hackers maximum access to
any user’s file. The old practice of having paper tapes in a drawer, a
collective program library where you’d have people use and improve your
programs, was embedded in ITS; each user could open a set of personal

http://bit.ly/dcOrz1
http://bit.ly/dcOrz1

files, stored on a disk. The open architecture of ITS encouraged users to
look through these files, see what neat hacks other people were working on,
look for bugs in the programs, and fix them. If you wanted a routine to
calculate sine functions, for instance, you might look in Gosper’s files and
find his ten-instruction sine hack. You could go through the programs of the
master hackers, looking for ideas, admiring the code. The idea was that
computer programs belonged not to individuals but to the world of users.

ITS also preserved the feeling of community that the hackers had when
there was only one user on the machine, and people could crowd around
him to watch him code. Through clever crossbar switching, not only could
any user on ITS type a command to find out who else was on the system,
but he could actually switch himself to the terminal of any user he wanted
to monitor. You could even hack in conjunction with another user—for
instance, Knight could log in, find out that Gosper was on one of the other
ports, and call up his program—then he could write lines of code in the
program Gosper was hacking.

This feature could be used in all sorts of ways. Later on, after Knight had
built some sophisticated graphics terminals, a user might be wailing away
on a program and suddenly on screen there would appear this six-legged . . .
bug. Tt would crawl up your screen and maybe start munching on your code,
spreading little phosphorous crumbs all over. On another terminal,
hysterical with high-pitched laughter, would be the hacker who was telling
you, in this inscrutable way, that your program was buggy. But even though
any user had the power not only to do that sort of thing, but to go in your
files and delete (“reap,” as they called it) your hard-hacked programs and
valuable notes, that sort of thing wasn’t done. There was honor among
hackers on ITS.

The faith that the ITS had in users was best shown in its handling of the
problem of intentional system crashes. Formerly, a hacker rite of passage
would be breaking into a time-sharing system and causing such digital
mayhem—maybe by overwhelming the registers with looping calculations
—that the system would “crash.” Go completely dead. After a while a
hacker would grow out of that destructive mode, but it happened often
enough to be a considerable problem for people who had to work on the
system. The more safeguards the system had against this, the bigger the
challenge would be for some random hacker to bring the thing to its knees.

Multics, for instance, required a truly nontrivial hack before it bombed. So
there’d always be macho programmers proving themselves by crashing
Multics.

ITS, in contrast, had a command whose specific function was crashing the
system. All you had to do was type KILL SYSTEM, and the PDP-6 would
grind to a halt. The idea was to take all the fun away from crashing the
system by making it trivial to do that. On rare occasions, some loser would
look at the available commands and say, “Wonder what KILL does?” and
bring the system down, but by and large I'TS proved that the best security
was no security at all.

Of course, as soon as ITS was put up on the PDP-6 there was a flurry of
debugging, which, in a sense, was to go on for well over a decade.
Greenblatt was the most prominent of those who spent full days “hacking
ITS”—seeking bugs, adding new features, making sections of it run faster .
.. working on it so much that the ITS environment became, in effect, a
home for systems hackers.

In the world that was the Al lab, the role of the systems hacker was central.
The Hacker Ethic allowed anyone to work on ITS, but the public
consequences of systems hacking threw a harsh spotlight on the quality of
your work—if you were trying to improve the MIDAS assembler or the
ITS-DDT debugger, and you made a hideous error, everyone’s programs
were going to crash, and people were going to find out what loser was
responsible. On the other hand, there was no higher calling in hackerism
than quality systems hacking.

The planners did not regard systems hacking with similar esteem. The
planners were concerned with applications—using computers to go beyond
computing, to create useful concepts and tools to benefit humanity. To the
hackers, the system was an end in itself. Most hackers, after all, had been
fascinated by systems since early childhood. They had set aside almost
everything else in life once they recognized that the ultimate tool in creating
systems was the computer: not only could you use it to set up a fantastically
complicated system, at once byzantine and elegantly efficient, but then,
with a “Moby” operating system like ITS, that same computer could
actually be the system. And the beauty of ITS was that it opened itself up,
made it easy for you to write programs to fit within it, begged for new
features and bells and whistles. ITS was the hacker living room, and

everyone was welcome to do what he could to make himself comfortable;
to find and decorate his own little niche. ITS was the perfect system for
building . . . systems!

It was an endlessly spiraling logical loop. As people used ITS, they might
admire this feature or that, but most likely they would think of ways to
improve it. This was only natural, because an important corollary of
hackerism states that no system or program is ever completed. You can
a/ways make it better. Systems are organic, living creations: if people stop
working on them and improving them, they die.

When you completed a systems program, be it a major effort like an
assembler or debugger or something quick and (you hoped) elegant, like an
interface output multiplexer, you were simultaneously creating a tool,
unveiling a creation, and fashioning something to advance the level of your
own future hacking. It was a particularly circular process, almost a spiritual
one, in which the systems programmer was a habitual user of the system he
was improving. Many virtuoso systems programs came out of remedies to
annoying obstacles which hackers felt prevented them from optimum
programming. (Real optimum programming, of course, could only be
accomplished when every obstacle between you and the pure computer was
eliminated—an ideal that probably won’t be fulfilled until hackers are
somehow biologically merged with computers.) The programs ITS hackers
wrote helped them to program more easily, made programs run faster, and
allowed programs to gain from the power that comes from using more of
the machine. So not only would a hacker get huge satisfaction from writing
a brilliant systems program—a tool which everyone would use and admire
—but from then on he would be that much further along in making the next
systems program.

To quote a progress report written by hacker Don Eastlake five years after
ITS was first running;:

The ITS system is not the result of a human wave or crash effort. The system has been
incrementally developed almost continuously since its inception. It is indeed true that large systems
are never “finished.” . . . In general, the ITS system can be said to have been designer implemented
and user designed. The problem of unrealistic software design is greatly diminished when the
designer is the implementor. The implementor’s ease in programming and pride in the result is
increased when he, in an essential sense, is the designer. Features are less likely to turn out to be of
low utility if users are their designers and they are less likely to be difficult to use if their designers
are their users.

The prose was dense, but the point was clear—ITS was the strongest
expression yet of the Hacker Ethic. Many thought that it should be a
national standard for time-sharing systems everywhere. Let every computer
system in the land spread the gospel, eliminating the odious concept of
passwords, urging the unrestricted hands-on practice of system debugging,
and demonstrating the synergistic power that comes from shared software,
where programs belong not to the author but to all users of the machine.

In 1968, major computer institutions held a meeting at the University of
Utah to come up with a standard time-sharing system to be used on DEC’s
latest machine, the PDP-10. The Ten would be very similar to the PDP-6,
and one of the two operating systems under consideration was the hackers’
Incompatible Time-sharing System. The other was TENEX, a system
written by Bolt Beranek and Newman that had not yet been implemented.
Greenblatt and Knight represented MIT at the conference, and they
presented an odd picture—two hackers trying to persuade the assembled
bureaucracies of a dozen large institutions to commit millions of dollars of
their equipment to a system that, for starters, had no built-in security.

They failed.

Knight would later say that it was political naiveté that lost it for the MIT
hackers. He guessed that the fix was in even before the conference was
called to order—a system based on the Hacker Ethic was too drastic a step
for those institutions to take. But Greenblatt later insisted that “we could
have carried the day if [we’d] really wanted to.” But “charging forward,” as
he put it, was more important. It was simply not a priority for Greenblatt to
spread the Hacker Ethic much beyond the boundaries of Cambridge. He
considered it much more important to focus on the society at Tech Square,
the hacker Utopia which would stun the world by applying the Hacker Ethic
to create ever more perfect systems.

http://bit.ly/9HHD36
http://bit.ly/a5epWC
http://bit.ly/aqnZb1

Chapter 7. Life

They would later call it a Golden Age of hacking, this marvelous existence
on the ninth floor of Tech Square. Spending their time in the drab machine
room and the cluttered offices nearby, gathered closely around terminals
where rows and rows of green characters of code would scroll past them,
marking up printouts with pencils retrieved from shirt pockets, and chatting
in their peculiar jargon over this infinite loop or that losing subroutine, the
cluster of technological monks who populated the lab was as close to
paradise as they would ever be. A benevolently anarchistic lifestyle
dedicated to productivity and PDP-6 passion. Art, science, and play had
merged into the magical activity of programming, with every hacker an
omnipotent master of the flow of information within the machine. The
debugged life in all its glory.

But as much as the hackers attempted to live the hacker dream without
interference from the pathetically warped systems of the “real world,” it
could not be done. Greenblatt and Knight’s failure to convince outsiders of
the natural superiority of the Incompatible Time-sharing System was only
one indication that the total immersion of a small group of people into
hackerism might not bring about change on the massive scale that all the
hackers assumed was inevitable. It was true that, in the decade since the
TX-0 was first delivered to MIT, the general public and certainly the other
students on campus had become more aware of computers in general. But
they did not regard computers with the same respect and fascination as did
the hackers. And they did not necessarily regard the hackers’ intentions as
benign and idealistic.

On the contrary, many young people in the late 1960s saw computers as
something evil, part of a technological conspiracy where the rich and
powerful used the computer’s might against the poor and powerless. This
attitude was not limited to students protesting, among other things, the now
exploding Vietnam War (a conflict fought in part by American computers).
The machines which stood at the soul of hackerism were also loathed by
millions of common, patriotic citizens who saw computers as a
dehumanizing factor in society. Every time an inaccurate bill arrived at a
home, and the recipient’s attempts to set it right wound up in a frustrating
round of calls—usually leading to an explanation that “the computer did it,”

and only herculean human effort could erase the digital blot—the popular
contempt toward computers grew. Hackers, of course, attributed those
slipups to the brain-damaged, bureaucratic, batch-processed mentality of
IBM. Didn’t people understand that the Hacker Ethic would eliminate those
abuses by encouraging people to fix bugs like thousand-dollar electric bills?
But in the public mind there was no distinction between the programmers of
Hulking Giants and the Al lab denizens of the sleek, interactive PDP-6.
And in that public mind all computer programmers, hackers or not, were
seen either as wild-haired mad scientists plotting the destruction of the
world or as pasty-skinned, glassy-eyed automatons, repeating wooden
phrases in dull monotones while planning the next foray into technological
big-brotherism.

Most hackers chose not to dwell on those impressions. But in 1968 and
1969, the hackers had to face their sad public images, like it or not.

A protest march that climaxed at Tech Square dramatically indicated how
distant the hackers were from their peers. Many of the hackers were
sympathetic to the antiwar cause. Greenblatt, for instance, had gone to a
march in New Haven, and had done some phone line hookups for antiwar
radicals at the National Strike Information Center at Brandeis. And hacker
Brian Harvey was very active in organizing demonstrations; he would come
back and tell in what low esteem the Al lab was held by the protesters.

There was even some talk at antiwar meetings that some of the computers at
Tech Square were used to help run the war. Harvey would try to tell them it
wasn’t so, but the radicals would not only disbelieve him but get angry that
he’d try to feed them bullshit.

The hackers shook their heads when they heard of that unfortunate
misunderstanding. One more example of how people didn’t understand! But
one charge leveled at the Al lab by the antiwar movement was entirely
accurate: all the lab’s activities, even the most zany or anarchistic
manifestations of the Hacker Ethic, had been funded by the Department of
Defense. Everything, from the Incompatible Time-sharing System to Peter
Samson’s subway hack, was paid for by the same Department of Defense
that was killing Vietnamese and drafting American boys to die overseas.

The general Al lab response to that charge was that the Defense
Department’s Advanced Research Projects Agency (ARPA), which funded

http://bit.ly/cRq4IV

the lab, never asked anyone to come up with specific military applications
for the computer research engaged in by hackers and planners. ARPA had
been run by computer scientists; its goal had been the advancement of pure
research. During the late 1960s a planner named Robert Taylor was in
charge of ARPA funding, and he later admitted to diverting funds from
military, “mission-oriented” projects to projects that would advance pure
computer science. It was only the rarest hacker who called the ARPA
funding “dirty money.”

Almost everyone else, even people who opposed the war, recognized that
ARPA money was the lifeblood of the hacking way of life. When someone
pointed out the obvious—that the Defense Department might not have
asked for specific military applications for the Artificial Intelligence and
systems work being done, but still expected a bonanza of military
applications to come from the work (who was to say that all that
“interesting” work in vision and robotics would not result in more efficient
bombing raids?)—the hackers would either deny the obvious (Greenblatt:
“Though our money was coming from the Department of Defense, it was
not military”) or talk like Marvin Minsky: “There’s nothing illegal about a
Defense Department funding research. It’s certainly better than a
Commerce Department or Education Department funding research . . .
because that would lead to thought control. I would much rather have the
military in charge of that . . . the military people make no bones about what
they want, so we’re not under any subtle pressures. It’s clear what’s going
on. The case of ARPA was unique, because they felt that what this country
needed was people good in defense technology. In case we ever needed it,
we’d have it.”

Planners thought they were advancing true science. Hackers were blithely
formulating their tidy, new-age philosophy based on free flow of
information, decentralization, and computer democracy. But the antimilitary
protesters thought it was a sham, since all that so-called idealism would
ultimately benefit the War Machine that was the Defense Department. The
antiwar people wanted to show their displeasure, and the word filtered up to
the Artificial Intelligence lab one day that the protesters were planning a
march ending with a rally right there on the ninth floor. There, protesters
would gather to vividly demonstrate that all of them—hackers, planners,
and users—were puppets of the Defense Department.

Russ Noftsker, the nuts-and-bolts administrator of the Al lab, took the
threat of protesters very seriously. These were the days of the Weather
Underground, and he feared that wild-eyed radicals were planning to
actually blow up the computer. He felt compelled to take certain measures
to protect the lab.

Some of the measures were so secretive—perhaps involving government
agencies like the CIA, which had an office in Tech Square—that Noftsker
would not reveal them, even a decade after the war had ended. But other
measures were uncomfortably obvious. He removed the glass on the doors
leading from the elevator foyer on the ninth floor to the area where the
hackers played with computers. In place of the glass, Noftsker installed
steel plates, covering the plates with wood so it would not look as if the
area were as barricaded as it actually was. The glass panels beside the door
were replaced with half-inch-thick bulletproof Plexiglas so you could see
who was petitioning for entry before you unlocked the locks and removed
the bolts. Noftsker also made sure the doors had heavy-duty hinges bolted
to the walls, so that the protesters would not try to remove the entire door,
rush in, and storm the computers.

During the days preceding the demonstration, only people whose names
were on an approved list were officially allowed entry to this locked
fortress. On the day of the demonstration, he even went so far as to
distribute around forty Instamatic cameras to various people, asking them to
take pictures of the demonstrators when they ventured outside the protected
area. If the demonstrators chose to become violent, at least there would be
documentation of the wrongdoers.

The barricades worked insofar as the protesters—around twenty or thirty of
them, in Noftsker’s estimate—walked to Tech Square, stayed outside the
lab a bit, and left without leveling the PDP-6 with sledgehammers. But the
collective sigh of relief on the part of the hackers must have been mixed
with much regret. While they had created a lock-less, democratic system
within the lab, the hackers were so alienated from the outside world that
they had to use those same hated locks, barricades, and bureaucrat-
compiled lists to control access to this idealistic environment. While some
might have groused at the presence of the locks, the usual free access
guerrilla fervor did not seem to be applied in this case. Some of the hackers,
shaken at the possibility of a rout, even rigged the elevator system so that

the elevators could not go directly to the ninth floor. Though previously
some of the hackers had declared, “I will not work in a place that has
locks,” after the demonstrations were over, and after the restricted lists were
long gone, the locks remained. Generally, the hackers chose not to view the
locks as symbols of how far removed they were from the mainstream.

A very determined solipsism reigned on the ninth floor, a solipsism that
stood its ground even when hackerism suffered some direct, though
certainly less physically threatening, attacks in publications and journals. It
was tough to ignore, however, the most vicious of these, since it came from
within MIT, from a professor of Computer Science (yes, MIT had come
around and started a department) named Joseph Weizenbaum. A former
programmer himself, a thin, mustachioed man who spoke with a rolling
Eastern European accent, Weizenbaum had been at MIT since 1963, but had
rarely interacted with the hackers. His biggest programming contribution to
AT had been a program called ELIZA, which carried on a conversation with
the user; the computer would take the role of a therapist. Weizenbaum
recognized the computer’s power, and was disturbed to note how seriously
users would interact with ELIZA. Even though people knew it was “only” a
computer program, they would tell it their most personal secrets. To
Weizenbaum, it was a demonstration of how the computer’s power could
lead to irrational, almost addictive behavior, with dehumanizing
consequences. And Weizenbaum thought that hackers—or “compulsive
programmers”—were the ultimate in computer dehumanization. In what
was to become a notorious passage, he wrote, in Computer Power and
Human Reason:
.. . bright young men of disheveled appearance, often with sunken glowing eyes, can be seen sitting
at computer consoles, their arms tensed and waiting to fire their fingers, already poised to strike, at
the buttons and keys on which their attention seems to be riveted as a gambler’s on the rolling dice.
When not so transtixed, they often sit at tables strewn with computer printouts over which they
pore like possessed students of a cabbalistic text. They work until they nearly drop, twenty, thirty
hours at a time. Their food, if they arrange it, is brought to them: coffee, Cokes, sandwiches. If
possible, they sleep on cots near the printouts. Their rumpled clothes, their unwashed and unshaven

faces, and their uncombed hair all testify that they are oblivious to their bodies and to the world in
which they move. These are computer bums, compulsive programmers . . .

Weizenbaum would later say that the vividness of this description came
from his own experience as a hacker of sorts, and was not directly based on
observations of the ninth-floor culture. But many hackers felt otherwise.
Several thought that Weizenbaum had identified them personally, even

http://bit.ly/c0qypL
http://bit.ly/aT5EeD

invaded their privacy in his description. Some others guessed that
Greenblatt had been unfairly singled out; indeed, Greenblatt did send
Weizenbaum some messages objecting to the screed.

Still, there was no general introspection resulting from this or any other
attack on the hacker life-style. That was not the way of the lab. Hackers
would not generally delve into each other’s psychological makeups. “There
was a set of shared goals”—Tom Knight would later explain—*“a set of
shared intellectual excitement, even to a large degree a set of shared social
life, but there was also a boundary which people were nervous to go
beyond.”

It was this unspoken boundary that came to bother hacker David Silver. He
joined the lab as an adolescent and literally came to maturity there, and
besides his productive hacking he spent time thinking about the relationship
between hackers and computers. He came to be fascinated at how all of
them got so attached to, so intimately connected with something as simple
as the PDP-6. It was almost terrifying: thinking about this made David
Silver wonder what it was that connected people together, how people
found each other, why people got along . . . when something relatively
simple like the PDP-6 drew the hackers so close. The whole subject made
him wonder on the one hand whether people were just fancy kinds of
computers or on the other hand whether they were images of God as a
spirit.

These introspections were not things he necessarily shared with his
mentors, like Greenblatt or Gosper. “I don’t think people had sort of warm
conversations with each other,” he would later say. “That wasn’t the focus.
The focus was on sheer brainpower.” This was the case even with Gosper:
Silver’s apprenticeship with him was not so much a warm human
relationship, he’d later reflect, as “a hacker relationship,” very close in
terms of what they shared in terms of the computer, but not imbued with the
richness of a real-world friendship.

“There were many, many, many years that went by when all I did was hack
computers, and I didn’t feel lonely, like I was missing anything,” Silver
would say. “But I guess as I started to grow up more, round out more,
change more, become less eccentric in certain ways, I started needing more
input from people. [By not going to high school] I bypassed all that social

stuff and went right into this blue-sky think tank . . . I spent my lifetime
walking around talking like a robot, talking to a bunch of other robots.”

Sometimes the hacker failure to be deeply personal had grim consequences.
The lab might have been the ideal location for guru-level hackers, but for
some the pressure was too much. Even the physical layout of the place
promoted a certain high-tension feeling, with the open terminals, the
constant intimidating presence of the greatest computer programmers in the
world, the cold air and the endless hum of the air conditioners. At one point
a research firm was called in to do a study of the excessive, inescapable
noise, and they concluded that the hum of the air conditioner was so
bothersome because there weren’t enough competing noises—so they fixed
the machines to make them give off a loud, continual hiss. In Greenblatt’s
words, this change “was not a win,” and the constant hiss made the long
hours on the ninth floor rather nerve-racking for some. Add that to other
factors—Ilack of sleep, missed meals to the point of malnutrition, and a
driving passion to finish that hack—and it was clear why some hackers
went straight over the edge.

Greenblatt was best at spotting “the classical syndrome of various kinds of
losses,” as he called it. “In a certain way, I was concerned about the fact that
we couldn’t have people dropping dead all over the place.” Greenblatt
would sometimes tell people to go home for a while, take it easy. Other
things were beyond him. For instance, drugs. One night, while driving back
from a Chinese meal, a young hacker turned to him and asked, not kidding,
if he wanted to “shoot up.” Greenblatt was flabbergasted. The real world
was penetrating again, and there was little Greenblatt could do. One night
not long afterward, that particular hacker leapt off the Harvard bridge into
the ice-covered Charles river and was severely injured. It was not the only
suicide attempt by an Al lab hacker.

From that evidence alone, it would seem that Weizenbaum’s point was well
taken. But there was much more to it than that. Weizenbaum did not
acknowledge the beauty of the hacker devotion itself . . . or the very
idealism of the Hacker Ethic. He had not seen, as Ed Fredkin had, Stew
Nelson composing code on the TECO editor while Greenblatt and Gosper
watched: without any of the three saying a word, Nelson was entertaining
the others, encoding assembly-language tricks which to them, with their
absolute mastery of that PDP-6 “language,” had the same effect as

hilariously incisive jokes. And after every few instructions there would be
another punch line in this sublime form of communication . . . The scene
was a demonstration of sharing which Fredkin never forgot.

While conceding that hacker relationships were unusual, especially in that
most hackers lived asexual lives, Fredkin would later say that “they were
living the future of computers . . . They just had fun. They knew they were
elite, something special. And I think they appreciated each other. They were
all different, but each knew something great about the other. They all
respected each other. I don’t know if anything like [that hacker culture] has
happened in the world. I would say they kind of loved each other.”

The hackers focused on the magic of computers instead of human emotions,
but they also could be touched by other people. A prime example would be
the case of Louis Merton (a pseudonym). Merton was an MIT student,
somewhat reserved, and an exceptional chess player. Save for the last trait,
Greenblatt at first thought him well within the spectrum of random people
who might wander into the lab.

The fact that Merton was such a good chess player pleased Greenblatt, who
was then working to build an actual computer which would run a souped-up
version of his chess program. Merton learned some programming, and
joined Greenblatt on the project. He later did his own chess program on a
little-used PDP-7 on the ninth floor. Merton was enthusiastic about chess
and computers, and there was little to foreshadow what happened during the
Thanksgiving break in late 1966, when, in the little theater-like Al
“playroom” on Tech Square’s eighth floor (where Professor Seymour Papert
and a group were working on the educational LOGO computer language),
Merton temporarily turned into a vegetable. He assumed a classic position
of catatonia, rigidly sitting upright, hands clenched into fists at his side. He
would not respond to questions, would not even acknowledge the existence
of anything outside himself. People didn’t know what to do. They called up
the MIT infirmary and were told to call the Cambridge police, who carted
poor Merton away. The incident severely shook the hackers, including
Greenblatt, who found out about it when he returned from a holiday visit
home.

Merton was not one of the premier hackers. Greenblatt was not an intimate
friend. Nonetheless, Greenblatt immediately drove out to Westboro State
Hospital to recover Merton. It was a long drive, and the destination

reminded Greenblatt of something out of the Middle Ages. Less a hospital
than a prison. Greenblatt became determined not to leave until he got
Merton out. The last step in this tortuous process was getting the signature
of an elderly, apparently senile doctor. “Exactly [like something] out of a
horror film,” Greenblatt later recalled. “He was unable to read. This random
attendant type would say, ‘Sign here. Sign here.’”

It turned out that Merton had a history of these problems. Unlike most
catatonics, Merton would improve after a few days, especially when he was
given medicine. Often, when he went catatonic somewhere, whoever found
him would call someone to take him away, and the doctors would give a
diagnosis of permanent catatonia even as Merton was coming to life again.
He would call up the Al lab and say. “Help,” and someone, often
Greenblatt, would come and get him.

Later, someone discovered in MIT records a letter from Merton’s late
mother. The letter explained that Louis was a strange boy, and he
sometimes would go stiff. In that case, all you needed to do was to ask,
“Louis, would you like to play a game of chess?” Fredkin, who had also
taken all interest in Merton, tried this. Merton one day stiffened on the edge
of his chair, totally in sculpture mode. Fredkin asked him if he’d like to play
chess, and Merton stiffly marched over to the chess board. The game got
under way with Fredkin chatting away in a rather one-sided conversation,
but suddenly Merton just stopped. Fredkin asked, “Louis; why don’t you
move?” After a very long pause, Merton responded in a guttural, slow
voice, “Your . .. king’s. .. in... check.” Fredkin had inadvertently
uncovered the check from his last move.

Merton’s condition could be mitigated by a certain medicine, but for
reasons of his own he almost never took it. Greenblatt would plead with
him, but he’d refuse. Once Greenblatt went to Fredkin to ask him to help
out; Fredkin went back with Greenblatt to find Merton stiff and
unresponsive.

“Louis, how come you’re not taking your medicine?” he asked. Merton just
sat there, a weak smile frozen on his face. “Why won’t you take it?”
Fredkin repeated.

Suddenly, Merton reared back and walloped Fredkin on the chin. That kind
of behavior was one of Merton’s unfortunate features. But the hackers

showed remarkable tolerance. They did not dismiss him as a loser. Fredkin
considered Merton’s case a good example of the essential humanity of the
group which Weizenbaum had, in effect, dismissed as emotionless androids.
“He’s just crazy,” Minsky would later say of Weizenbaum. “These [hackers]
are the most sensitive, honorable people that have ever lived.” Hyperbole,
perhaps, but it was true that behind their single-mindedness there was
warmth, in the collective realization of the Hacker Ethic. As much as any
devout religious order, the hackers had sacrificed what outsiders would
consider basic emotional behavior—for the love of hacking.

David Silver, who would eventually leave the order, was still in awe of that
beautiful sacrifice years later: “It was sort of necessary for these people to
be extremely brilliant and in some sense, handicapped socially so that they
would just kind of concentrate on this one thing.” Hacking. The most
important thing in the world to them.

The computer world outside Cambridge did not stand still while the Hacker
Ethic flourished on the ninth floor of Tech Square. By the late 1960s,
hackerism was spreading, partly because of the proliferation of interactive
machines like the PDP-10 or the XDS-940, partly because of friendly
programming environments (such as the one hackers had created at MIT),
and partly because MIT veterans would leave the lab and carry their culture
to new places. But the heart of the movement was this: people who wanted
to hack were finding computers to hack on.

These computers were not necessarily at MIT. Centers of hacker culture
were growing at various institutions around the country, from Stanford to
Carnegie-Mellon. And as these other centers reached critical mass—enough
dedicated people to hack a large system and go on nightly pilgrimages to
local Chinese restaurants—they became tempting enough to lure some of
the Al lab hackers away from Tech Square. The intense MIT style of
hackerism would be exported through these emissaries.

Sometimes it would not be an institution that hackers moved to, but a
business. A programmer named Mike Levitt began a leading-edge
technology firm called Systems Concepts in San Francisco. He was smart
enough to recruit phone-and-PDP-1 hacker Stew Nelson as a partner; TX-0
music master Peter Samson also joined this high-tech hardware design-and-

http://bit.ly/b2mVP6
http://bit.ly/9NT8ZQ
http://bit.ly/dxG3SB

manufacture business. All in all, the small company managed to get a lot of
the concentrated talent around Tech Square out to San Francisco. This was
no small feat, since hackers were generally opposed to the requirements of
California life, particularly driving and recreational exposure to the sun. But
Nelson had learned his lesson earlier—despite Fredkin’s repeated urgings in
the mid-sixties, he’d refused to go to Triple-I’s new Los Angeles
headquarters until, one day, after emphatically reiterating his vow, he
stormed out of Tech Square without a coat. It happened to be the coldest
day of the Cambridge winter that year, and as soon as he walked outside his
glasses cracked from the sudden change of temperature. He walked straight
back to Fredkin’s office, his eyebrows covered with icicles, and said, “I’m
going to Los Angeles.”

In some cases, a hacker’s departure would be hastened by what Minsky and
Ed Fredkin called “social engineering.” Sometimes the planners would find
a hacker getting into a rut, perhaps stuck on some systems problem, or
maybe becoming so fixated on extracurricular activities, like lock hacking
or phone hacking, that planners deemed his work no longer “interesting.”
Fredkin would later recall that hackers could get into a certain state where
they were “like anchors dragging the thing down. Time had gone by them,
in some sense. They needed to get out of the lab and the lab needed them
out. So some surprising offer would come to those persons, or some visit
arranged, usually someplace far, far away. These people started filtering out
in the world to companies or other labs. It wasn’t fate—I would arrange it.”

Minsky would say, “Brave Fredkin,” acknowledging the clandestine nature
of Fredkin’s activity, which would have to be done without the knowledge
of the hacker community; they would not tolerate an organizational
structure that actually dictated where people should go.

While the destination could be industry—besides Systems Concepts,
Fredkin’s Information International company hired many of the MIT
hackers—it was often another computer center. The most desirable of these
was the Stanford AI Lab (SAIL), which Uncle John McCarthy had founded
when he left MIT in 1962.

In many respects SAIL was a mirror image of MIT’s operation, distorted
only by the California haze that would sometimes drift from the Pacific
Ocean to the peninsula. But the California distortion was a significant one,
demonstrating how even the closest thing to the MIT hacker community

was only an approximation of the ideal; the hothouse MIT style of
hackerism was destined to travel, but when exposed to things like
California sunlight it faded a bit in intensity.

The difference began with the setting, a semicircular concrete-glass-and-
redwood former conference center in the hills overlooking the Stanford
campus. Inside the building, hackers would work at any of sixty-four
terminals scattered around the various offices. None of the claustrophobia
of Tech Square. No elevators, no deafening air conditioning hiss. The laid-
back style meant that much of MIT’s sometimes constructive acrimony—
the shouting sessions at the TMRC classroom, the religious wars between
grad students and hackers—did not carry over. Instead of the battle-strewn
imagery of shoot-’em-up space science fiction that pervaded Tech Square,
the Stanford imagery was the gentle lore of elves, hobbits, and wizards
described in J.R.R. Tolkien’s Middle Earth trilogy. Rooms in the Al lab
were named after Middle Earth locations, and the SAIL printer was rigged
so it could handle three different Elven type fonts.

The California difference was reflected in the famous genre of computer
games that the Stanford lab eventually developed after the heyday of MIT’s
Spacewar. A Stanford hacker named Donald Woods discovered a kind of
game on a Xerox research computer one day that involved a spelunker-
explorer seeking treasure in a dungeon. Woods contacted the programmer,
Will Crowther, talked to him about it, and decided to expand Crowther’s
game into a full-scale Adventure, where a person could use the computer to
assume the role of a traveler in a Tolkienesque setting, fight off enemies,
overcome obstacles through clever tricks, and eventually recover treasure.
The player would give two-word, verb-noun commands to the program,
which would respond depending on how the command changed the
universe that had been created inside the computer by Don Woods’
imagination. For instance, the game began with the computer describing
your opening location:

YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK BUILDING.

AROUND YOU IS A FOREST. A SMALL STREAM FLOWS OUT OF THE BUILDING AND
DOWN A GULLY.

If you wrote GO SOUTH, the computer would say:

YOUARE INA VALLEY IN THE FOREST BESIDE A STREAM TUMBLING ALONG A
ROCKY BED.

http://bit.ly/9vNyho
http://bit.ly/bPS1PV
http://bit.ly/bQkvqQ

Later on, you would have to figure all sorts of tricks to survive. The snake
you encountered, for instance, could only be dealt with by releasing a bird
you’d picked up along the way. The bird would attack the snake, and you’d
be free to pass. Each “room” of the adventure was like a computer
subroutine, presenting a logical problem you’d have to solve.

In a sense, Adventure was a metaphor for computer programming itself—
the deep recesses you explored in the Adventure world were akin to the
basic, most obscure levels of the machine that you’d be traveling in when
you hacked in assembly code. You could get dizzy trying to remember
where you were in both activities. Indeed, Adventure proved as addicting as
programming—Woods put the program on the SAIL PDP-10 on a Friday,
and some hackers (and real-world “tourists”) spent the entire weekend
trying to solve it. Like any good system or program, of course, Adventure
was never finished—Woods and his friends were always improving it,
debugging it, adding more puzzles and features. And like every significant
program, Adventure was expressive of the personality and environment of
the authors. For instance, Woods’ vision of a mist-covered toll bridge
protected by a stubborn troll came during a break in hacking one night,
when Woods and some other hackers decided to watch the sun rise at a
mist-shrouded Mount Diablo, a substantial drive away. They didn’t make it
in time, and Woods remembered what that misty dawn looked like and
wrote it into the description of that scene in the game, which he conceived
of over breakfast that morning.

It was at Stanford that gurus were as likely to be faculty people as systems
hackers (among Stanford professors was the noted computer scientist
Donald Knuth, author of the multivolume classic The Art of Computer
Programming). It was at Stanford that, before the Adventure craze, the
casual pleasures of Spacewar were honed to a high art (Slug Russell had
come out with McCarthy, but it was younger hackers who developed five-
player versions and options for reincarnation, and ran extensive all-night
tournaments). It was at Stanford that hackers would actually leave their
terminals for a daily game of volleyball. It was at Stanford that a fund-
raising drive was successfully undertaken for an addition to the lab, which
would have been inconceivable at MIT: a sauna. It was at Stanford that the
computer could support video images, allowing users to switch from a
computer program to a television program. The most famous use of this,

http://bit.ly/apzCy2
http://bit.ly/9w5472

according to some SAIL regulars, came when SAIL hackers placed an ad in
the campus newspaper for a couple of willing young coeds. The women
answering the ad became stars of a sex orgy at the Al lab, captured by a
video camera and watched over the terminals by appreciative hackers.
Something else that never would have occurred at MIT.

It was not as if the SAIL hackers were any less devoted to their hacking
than the MIT people. In a paper summarizing the history of the Stanford
lab, Professor Bruce Buchanan refers to the “strange social environment
created by intense young people whose first love was hacking,” and it was
true that the lengths that hackers went to in California were no less extreme
than those at Tech Square. For instance, it did not take long for SAIL
hackers to notice that the crawl space between the low-hanging artificial
ceiling and the roof could be a comfortable sleeping hutch, and several of
them actually lived there for years. One systems hacker spent the early
1970s living in his dysfunctional car parked in the lot outside the building
—once a week he’d bicycle down to Palo Alto for provisions. The other
alternative for food was the Prancing Pony; named after a tavern in Middle
Earth, this was the SAIL food-vending machine, loaded with health-food
goodies and potstickers from a local Chinese restaurant. Each hacker kept
an account on the Prancing Pony, maintained by the computer. After you
made your food purchase, you were given the option to double-or-nothing
the cost of your food, the outcome depending on whether it was an odd-or
even-numbered millisecond when you made the gamble. With those kinds
of provisions, SAIL was even more amenable than MIT for round-the-clock
hacking. It had its applications people and its systems people. It was open to
outsiders, who would sit down and begin hacking; and if they showed
promise, Uncle John McCarthy might hire them.

SAIL hackers also lived by the Hacker Ethic. The time-sharing system on
the SAIL machine, like ITS, did not require passwords, but, at John
McCarthy’s insistence, a user had the option to keep his files private. The
SAIL hackers wrote a program to identify these people, and proceeded to
unlock the files, which they would read with special interest. “Anybody
that’s asking for privacy must be doing something interesting,” SAIL
hacker Don Woods would later explain.

Likewise, SAIL was in no way inferior to MIT in doing important computer
work. Just like their counterparts at MIT’s Al lab, SAIL hackers were

http://bit.ly/bOCE7X

robotics fans, as implied by the sign outside SAIL: CAUTION, ROBOT
VEHICLE. It was John McCarthy’s dream to have a robot leave the funky
Al lab and travel the three miles to campus under its own physical and
mental power. At one point, presumably by mistake, a robot got loose and
was careening down the hill when, fortunately, a worker driving to the lab
spotted it and rescued it. Various hackers and academics worked at SAIL in
important planner fields like speech understanding and natural language
studies. Some of the hackers got heavily involved in a computer music
project that would break ground in that field.

Stanford and other labs, whether in universities like Carnegie-Mellon or
research centers like Stanford Research Institute, became closer to each
other when ARPA linked their computer systems through a communications
network. This "ARPAnet" was very much influenced by the Hacker Ethic,
in that among its values was the belief that systems should be decentralized,
encourage exploration, and urge a free flow of information. From a
computer at any “node” on the ARPAnet, you could work as if you were
sitting at a terminal of a distant computer system. Hackers from all over the
country could work on the ITS system at Tech Square, and the hacker
values implicit in that were spreading. People sent a tremendous volume of
electronic mail to each other, swapped technical esoterica, collaborated on
projects, played Adventure, formed close hacker friendships with people
they hadn’t met in person, and kept in contact with friends at places they’d
previously hacked. The contact helped to normalize hackerism, so you
could find hackers in Utah speaking in the peculiar jargon developed in the
Tool Room next to the Tech Model Railroad Club.

Yet even as the Hacker Ethic grew in the actual number of its adherents, the
MIT hackers noted that outside of Cambridge things were not the same. The
hackerism of Greenblatt, Gosper, and Nelson had been directed too much
toward creating one Utopia, and even the very similar offshoots were, by
comparison, losing in various ways.

“How could you go to California, away from the action?” people would ask
those who went to Stanford. Some left because they tired of the winner-
loser dichotomy on the ninth floor, though they would admit that the MIT
intensity was not in California. Tom Knight, who hacked at Stanford for a
while, used to say that you couldn’t really do good work at Stanford.

http://bit.ly/cLm8dR

David Silver went out there, too, and concluded that “the people at Stanford
were kind of losers in their thinking. They weren’t as rigorous in certain
ways and they sort of were more fun-loving. One guy was building a race
car and another was building an airplane in the basement . . .” Silver
himself got into hardware at Stanford when he built an audio switch to
allow people working at their terminals to listen to any of sixteen channels,
from radio stations to a SAIL public-address system. All the choices, of
course, were stored within the SAIL PDP-6. And Silver thinks that
exposure to the California style of hacking helped loosen him up, preparing
him to make the break from the closed society of the ninth floor.

The defection of Silver and the other MIT hackers did not cripple the lab.
New hackers came to replace them. Greenblatt and Gosper remained, as did
Knight and some other canonical hackers. But the terrifically optimistic
energy that came with the opening explosion of Al research, of setting up
new software systems, seemed to have dissipated. Some scientists were
complaining that the boasts of early Al planners were not fulfilled. Within
the hacker community itself, the fervid habits and weird patterns established
in the past decade seemed to have solidified. Were they ossified as well?
Could you grow old as a hacker, keep wrapping around to those thirty-hour
days? “I was really proud,” Gosper would say later, “of being able to hack
around the clock and not really care what phase of the sun or moon it was.
Wakeup and find it twilight, have no idea whether it was dawn or sunset.”
He knew, though, that it could not go on forever. And when it could not,
when there was no Gosper or Greenblatt wailing away for thirty hours, how
far would the hacker dream go? Would the Golden Age, now drawing to its
close, really have meant anything?

It was in 1970 that Bill Gosper began hacking LIFE. It was yet another
system that was a world in itself, a world where behavior was “exceedingly
rich, but not so rich as to be incomprehensible.” It would obsess Bill Gosper
for years.

LIFE was a game, a computer simulation developed by John Conway, a
distinguished British mathematician. It was first described by Martin
Gardner, in his "Mathematical Games" column in the October 1970 issue of
Scientific American. The game consists of markers on a checkerboard-like
field, each marker representing a “cell.” The pattern of cells changes with

http://bit.ly/cFMMEA
http://bit.ly/bAFb05
http://bit.ly/bAFb05
http://bit.ly/c7VMKe

each move in the game (called a “generation”), depending on a few simple
rules—cells die, are born, or survive to the next generation according to
how many neighboring cells are in the vicinity. The principle is that isolated
cells die of loneliness, and crowded cells die from overpopulation;
favorable conditions will generate new cells and keep old ones alive.
Gardner’s column talked of the complexities made possible by this simple
game and postulated some odd results that had not yet been achieved by
Conway or his collaborators.

Gosper first saw the game when he came into the lab one day and found
two hackers fooling around with it on the PDP-6. He watched for a while.
His first reaction was to dismiss the exercise as not interesting. Then he
watched the patterns take shape a while longer. Gosper had always
appreciated how the specific bandwidth of the human eyeball could
interpret patterns; he would often use weird algorithms to generate a display
based on mathematical computations. What would appear to be random
numbers on paper could be brought to life on a computer screen. A certain
order could be discerned, an order that would change in an interesting way
if you took the algorithm a few iterations further, or alternated the x and y
patterns. It was soon clear to Gosper that LIFE presented these possibilities
and more. He began working with a few Al workers to hack LIFFE in an
extremely serious way. He was to do almost nothing else for the next
eighteen months.

The group’s first effort was to try to find a configuration in the LIFE
universe, which was possible in theory but had not been discovered.
Usually, no matter what pattern you began with, after a few generations it
would peter out to nothing or revert to one of a number of standard patterns
named after the shape that the collection of cells formed. The patterns
included the beehive, honey farm (four beehives), spaceship, powder keg,
beacon, Latin cross, toad, pinwheel, and swastika. Sometimes, after a
number of generations, patterns would alternate, flashing between one and
the other: these were called oscillators, traffic lights, or pulsars. What
Gosper and the hackers were seeking was called a glider gun. A glider was
a pattern which would move across the screen, periodically reverting to the
same pointed shape. If you ever created a LIFE pattern, which actually
spewed out gliders as it changed shape, you’d have a glider gun, and LIFE’s

inventor, John Conway, offered fifty dollars to the first person who was able
to create one.

The hackers would spend all night sitting at the PDP-6’s high-quality “340”
display (a special, high-speed monitor made by DEC), trying different
patterns to see what they’d yield. They would log each “discovery” they
made in this artificial universe in a large black sketchbook, which Gosper
dubbed the LIFE scrapbook. They would stare at the screen as, generation
by generation, the pattern would shift. Sometimes it looked like a worm
snapping its tail between sudden reverses, as if it were alternating between
itself and a mirror reflection. Other times, the screen would eventually
darken as the cells died from aggregate overpopulation, then isolation. A
pattern might end with the screen going blank. Other times things would
stop with a stable “still life” pattern of one of the standards. Or things
would look like they were winding down, and one little cell thrown off by a
dying “colony” could reach another pattern and this newcomer could make
it explode with activity. “Things could run off and do something incredibly
random,” Gosper would later recall of those fantastic first few weeks, “and
we couldn’t stop watching it. We’d just sit there, wondering if it was going
to go on forever.”

As they played, the world around them seemed connected in patterns of a
LIFE simulation. They would often type in an arbitrary pattern such as the
weaving in a piece of clothing, or a pattern one of them discerned in a
picture or a book. Usually what it would do was not interesting. But
sometimes they would detect unusual behavior in a small part of a large
LIFFE pattern. In that case they would try to isolate that part, as they did
when they noticed a pattern that would be called “the shuttle,” which would
move a distance on the screen, then reverse itself. The shuttle left behind
some cells in its path, which the hackers called “dribbles.” The dribbles
were “poison” because their presence would wreak havoc on otherwise
stable LIFE populations.

Gosper wondered what might happen if two shuttles bounced off each
other, and figured that there were between two and three hundred
possibilities. He tried out each one, and eventually came across a pattern
that actually threw off gliders. It would move across the screen like a
jitterbugging whip, spewing off limp boomerangs of phosphor. It was a
gorgeous sight. No wonder this was called LIFE—the program created life

itself. To Gosper, Conway’s simulation was a form of genetic creation,
without the vile secretions and emotional complications associated with the
real world’s version of making new life. Congratulations—you’ve given
birth to a glider gun!

Early the next morning Gosper made a point of printing out the coordinates
of the pattern that resulted in the glider gun, and rushed down to the
Western Union office to send a wire to Martin Gardner with the news. The
hackers got the fifty dollars.

This by no means ended the LIFE craze on the ninth floor. Each night,
Gosper and his friends would monopolize the 340 display running various
LIFFE patterns, a continual entertainment, exploration, and journey into
alternate existence. Some did not share their fascination, notably
Greenblatt. By the early seventies, Greenblatt had taken more of a
leadership role in the lab. He seemed to care most about the things that had
to be done, and after being the de facto caretaker of the ITS system he was
actively trying to transform his vision of the hacker dream into a machine
that would embody it. He had taken the first steps in his “chess machine,”
which responded with a quickness unheard of in most computers. He was
also trying to make sure that the lab itself ran smoothly so that hacking
would progress and be continually interesting.

He was not charmed by LIFE. Specifically, he was unhappy that Gosper
and the others were spending “unbelievable numbers of hours at the
console, staring at those soupy LIFFE things” and monopolizing the single
340 terminal. Worst of all, he considered the program they were using as
“clearly nonoptimal.” This was something the LIFFE hackers readily
admitted, but the LIFE case was the rare instance of hackers tolerating some
inefficiency. They were so thrilled at the unfolding display of LIFE that
they did not want to pause even for the few days it might take to hack up a
better program. Greenblatt howled in protest—*“the heat level got to be
moderately high,” he later admitted—and did not shut up until one of the
LIFE hackers wrote a faster program, loaded with utilities that enabled you
to go backward and forward for a specified number of generations, focus in
on various parts of the screen, and do all sorts of other things to enhance
exploration.

Greenblatt never got the idea. But to Gosper, LIFE was much more than
your normal hack. He saw it as a way to “basically do science in a new

universe where all the smart guys haven’t already nixed you out two or
three hundred years ago. It’s your life story if you’re a mathematician:
every time you discover something neat, you discover that Gauss or
Newton knew it in his crib. With LIFE you’re the first guy there, and there’s
always fun stuff going on. You can do everything from recursive function
theory to animal husbandry. There’s a community of people who are
sharing these experiences with you. And there’s the sense of connection
between you and the environment. The idea of where’s the boundary of a
computer. Where does the computer leave off and the environment begin?”

Obviously, Gosper was hacking LIFE with near-religious intensity. The
metaphors implicit in the simulation—of populations, generations, birth,
death, survival—were becoming real to him. He began to wonder what the
consequences would be if a giant supercomputer were dedicated to LIFE . .
. and imagined that eventually some improbable objects might be created
from the pattern. The most persistent among them would survive against
odds which Gosper, as a mathematician, knew were almost impossible. It
would not be randomness which determined survival, but some sort of
computer Darwinism. In this game that is a struggle against decay and
oblivion, the survivors would be the “maximally persistent states of matter.”
Gosper thought that these LIFFE forms would have contrived to exist—they
would actually have evolved into intelligent entities.

“Just as rocks wear down in a few billion years, but DNA hangs in there,”
he’d later explain. “This intelligent behavior would be just another one of
those organizational phenomena like DNA which contrived to increase the
probability of survival of some entity. So one tends to suspect, if one’s not a
creationist, that very very large LIFE configurations would eventually
exhibit intelligent [characteristics]. Speculating what these things could
know or could find out is very intriguing . . . and perhaps has implications
for our own existence.”

Gosper was further stimulated by Ed Fredkin’s theory that it is impossible
to tell if the universe isn’t a computer simulation, perhaps being run by
some hacker in another dimension. Gosper came to speculate that in his
imaginary ultimate LIFE machine, the intelligent entities which would form
over billions of generations might also engage in those very same
speculations. According to the way we understand our own physics, it is
impossible to make a perfectly reliable computer. So when an inevitable

bug occurred in that super-duper LIFE machine, the intelligent entities in
the simulation would have suddenly been presented with a window to the
metaphysics which determined their own existence. They would have a clue
to how they were really implemented. In that case, Fredkin conjectured, the
entities might accurately conclude that they were part of a giant simulation
and might want to pray to their implementors by arranging themselves in
recognizable patterns, asking in readable code for the implementors to give
clues as to what they’re like. Gosper recalls “being offended by that notion,
completely unable to wrap my head around it for days, before I accepted it.”

He accepted it.

Maybe it is not so surprising. In one sense, that far-flung conjecture was
already reality. What were the hackers but gods of information, moving bits
of knowledge around in cosmically complex patterns within the PDP-6?
What satisfied them more than this power? If one concedes that power
corrupts, then one might identify corruption in the hackers’ failure to
distribute this power—and the hacker dream itself—beyond the boundaries
of the lab. That power was reserved for the winners, an inner circle that
might live by the Hacker Ethic but made little attempt to widen the circle
beyond those like themselves, driven by curiosity, genius, and the Hands-
On Imperative.

Not long after his immersion in LIFE, Gosper himself got a glimpse of the
limits of the tight circle the hackers had drawn. It happened in the man-
made daylight of the 1972 Apollo 17 moon shot. He was a passenger on a
special cruise to the Caribbean, a “science cruise” timed for the launch, and
the boat was loaded with sci-fi writers, futurists, scientists of varying
stripes, cultural commentators, and, according to Gosper, “an unbelievable
quantity of just completely empty-headed cruise-niks.”

Gosper was there as part of Marvin Minsky’s party. He got to engage in
discussion with the likes of Norman Mailer, Katherine Anne Porter, Isaac
Asimov, and Carl Sagan, who impressed Gosper with his Ping-Pong
playing. For real competition, Gosper snuck in some forbidden matches
with the Indonesian crewmen, who were by far the best players on the boat.

Apollo 17 was to be the first manned space shot initiated at night, and the
cruise boat was sitting three miles off Cape Kennedy for an advantageous
view of the launch. Gosper had heard all the arguments against going to the

http://bit.ly/aSrZLR

trouble of seeing a liftoff—why not watch it on television, since you’ll be
miles away from the actual launching pad? But when he saw the damn thing
actually lift off, he appreciated the distance. The night had been set ablaze,
and the energy peak got to his very insides. The shirt slapped on his chest,
the change in his pocket jingled, and the PA system speakers broke from
their brackets on the viewing stand and dangled by their power cords. The
rocket, which of course never could have held to so true a course without
computers, leapt into the sky, hell-bent for the cosmos like some flaming
avenger, a Spacewar nightmare; the cruise-niks were stunned into trances
by the power and glory of the sight. The Indonesian crewmen went berserk.
Gosper later recalled them running around in a panic and throwing their
Ping-Pong equipment overboard, “like some kind of sacrifice.”

The sight affected Gosper profoundly. Before that night, Gosper had
disdained NASA’s human-wave approach toward things. He had been
adamant in defending the Al lab’s more individualistic form of hacker
elegance in programming, and in computing style in general. But now he
saw how the real world, when it got its mind made up, could have an
astounding effect. NASA had not applied the Hacker Ethic, yet it had done
something the lab, for all its pioneering, never could have done. Gosper
realized that the ninth-floor hackers were in some sense deluding
themselves, working on machines of relatively little power compared to the
computers of the future—yet still trying to do it all, change the world right
there in the lab. And since the state of computing had not yet developed
machines with the power to change the world at large—certainly nothing to
make your chest rumble as did the NASA operation—all that the hackers
wound up doing was making Tools to Make Tools. It was embarrassing.

Gosper’s revelation led him to believe that the hackers could change things
—just make the computers bigger, more powerful, without skimping on
expense. But the problem went even deeper than that. While the mastery of
the hackers had indeed made computer programming a spiritual pursuit, a
magical art, and while the culture of the lab was developed to the point of a
technological Walden Pond, something was essentially lacking.

The world.

As much as the hackers tried to make their own world on the ninth floor, it
could not be done. The movement of key people was inevitable. And the
harsh realities of funding hit Tech Square in the seventies: ARPA, adhering

to the strict new Mansfield Amendment passed by Congress, had to ask for
specific justification for many computer projects. The unlimited funds for
basic research were drying up; ARPA was pushing some pet projects like
speech recognition (which would have directly increased the government’s
ability to mass-monitor phone conversations abroad and at home). Minsky
thought the policy was a “losing” one, and distanced the Al lab from it. But
there was no longer enough money to hire anyone who showed exceptional
talent for hacking. And slowly, as MIT itself became more ensconced in
training students for conventional computer studies, the Institute’s attitude
to computer studies shifted focus somewhat. The Al lab began to look for
teachers as well as researchers, and the hackers were seldom interested in
the bureaucratic hassles, social demands, and lack of hands-on machine
time that came with teaching courses.

Greenblatt was still hacking away, as was Knight, and a few newer hackers
were proving themselves masters at systems work . . . but others were
leaving, or gone. Now, Bill Gosper headed West. He arranged to stay on the
Al lab payroll, hacking on the ninth-floor PDP-6 via the ARPAnet, but he
moved to California to study the art of computer programming with
Professor Donald Knuth at Stanford. He became a fixture at Louie’s, the
best Chinese restaurant in Palo Alto, but was missing in action at Tech
Square. He was a mercurial presence on computer terminals there but no
longer a physical center of attention, draped over a chair, whispering, “Look
at that,” while the 340 terminal pulsed insanely with new forms of LIFE. He
was in California, and he had bought a car.

With all these changes, some of the hackers sensed that an era was ending.
“Before (in the sixties], the attitude was, ‘Here’s these new machines, let’s
see what they can do.’” hacker Mike Beeler later recalled. “So we did robot
arms, we parsed language, we did Spacewar . . . now we had to justify
according to national goals. And (people pointed out that] some things we
did were curious, but not relevant . . . we realized we’d had a Utopian
situation; all this fascinating culture. There was a certain amount of
isolation and lack of dissemination, spreading the word. I worried that it
was all going to be lost.”

It would not be lost. Because there was a second wave of hackers, a type of
hacker who not only lived by the Hacker Ethic but saw a need to spread that
gospel as widely as possible. The natural way to do this was through the

power of the computer, and the time to do it was now. The computers to do
it would have to be small and cheap—making the DEC minicomputers look
like IBM Hulking Giants by comparison. But small and powerful computers
in great numbers could truly change the world. There were people who had
these visions, and they were not the likes of Gosper or Greenblatt: they
were a different type of hacker, a second generation, more interested in the
proliferation of computers than in hacking mystical Al applications. This
second generation was hardware hackers, and the magic they would make
in California would build on the cultural foundation set by the MIT hackers
to spread the hacker dream throughout the land.

Part Il. Hardware Hackers: Northern
California: The Seventies

Chapter 8. Revolt in 2100

The first public terminal of the Community Memory project was an ugly
machine in a cluttered foyer on the second floor of a beat-up building in the
spaciest town in the United States of America: Berkeley, California. It was
inevitable that computers would come to “the people” in Berkeley.
Everything else did, from gourmet food to local government. And if, in
August 1973, computers were generally regarded as inhuman, unyielding,
warmongering, and nonorganic, the imposition of a terminal connected to
one of those Orwellian monsters in a normally good-vibes zone like the
foyer outside Leopold’s Records on Durant Avenue was not necessarily a
threat to anyone’s well-being. It was yet another kind of flow to go with.

Outrageous, in a sense. Sort of a squashed piano, the height of a Fender
Rhodes, with a typewriter keyboard instead of a musical one. The keyboard
was protected by a cardboard box casing with a plate of glass set in its
front. To touch the keys, you had to stick your hands through little holes, as
if you were offering yourself for imprisonment in an electronic stockade.
But the people standing by the terminal were familiar Berkeley types, with
long stringy hair, jeans, T-shirts, and a demented gleam in their eyes that
you would mistake for a drug reaction if you did not know them well.
Those who did know them well realized that the group was high on
technology. They were getting off like they had never gotten off before,
dealing the hacker dream as if it were the most potent strain of sinsemilla in
the Bay Area.

The name of the group was Community Memory, and according to a
handout they distributed, the terminal was “a communication system which
allows people to make contact with each other on the basis of mutually
expressed interests, without having to cede judgment to third parties.” The
idea was to speed the flow of information in a decentralized,
nonbureaucratic system. An idea born from computers, an idea executable
only by computers, in this case a time-shared XDS-940 mainframe machine
in the basement of a warehouse in San Francisco. By opening a hands-on
computer facility to let people reach each other, a living metaphor would be
created, a testament to the way computer technology could be used as
guerrilla warfare for people against bureaucracies.

http://bit.ly/bAHhQh
http://bit.ly/bLNaGJ

Ironically, the second-floor public area outside Leopold’s, the hippest
record store in the East Bay, was also the home of the musicians’ bulletin
board, a wall completely plastered with notices of vegetarian singers
looking for gigs, jug bands seeking Dobro players, flutists into Jethro Tull
seeking songwriters with similar fixations. The old style of matchmaking.
Community Memory encouraged the new. You could place your notice in
the computer and wait to be instantly and precisely accessed by the person
who needed it most. But it did not take Berkeley-ites long to find other uses
for the terminal:

FIND 1984, YOU SAY
HEH, HEH, HEH . . . JUST STICK AROUND ANOTHER
TEN YEARS
LISTEN TO ALVIN LEE
PART YOUR HAIR DIFFERENT
DROP ASPIRIN
MAKE A JOINT EFFORT
DRIFT AWAY
KEEP A CLEAN NOSE
HOME {ON THE RANGE)}
QUIT KICKING YORE HEARTS SEE ME FEEL ME
U.S. GET OUT OF WASHINGTON
FREE THE INDIANAPOLIS 500
GET UP AND GET AWAY
FALL BY THE WAYSIDE
FLIP OUT
STRAIGHTEN UP
LET A SMILE BE YOUR UMBRELLA
..AND. ..
BEFORE YOU KNOWIT { HHHHHHHHH}
1984
WILL
FIND
YOoU!
AND ITS GO’ BE RIGHTEOUS.. . .
KEYWORDS: 1894 BENWAY TLALCLATLAN INTERZONE
2-20-74

It was an explosion, a revolution, a body blow against the establishment,
spearheaded by one demented User—userism, come to the people—who
called himself Doctor Benway in tribute to a sadistically perverted character
in Burroughs’ Naked Lunch. This cat Benway was taking things further
than even the computer radicals at Community Memory had suspected they
would go, and the computer radicals were delighted.

http://bit.ly/dyqnl7

None was happier than Lee Felsenstein. He was one of the founders of
Community Memory and though he was not necessarily its most influential
member, he was symbolic of the movement which was taking the Hacker
Ethic to the streets. In the next decade, Lee Felsenstein was to promote a
version of the hacker dream that would, had they known, appall Greenblatt
and the Tech Square AI workers with its technological naiveté, political
foundation, and willingness to spread the computer gospel through, of all
things, the marketplace. But Lee Felsenstein felt he owed nothing to that
first generation of hackers. He was a new breed, a scrappy, populist
hardware hacker. His goal was to break computers out of the protected Al
towers, up from the depths of the dungeons of corporate accounting
departments, and let people discover themselves by the Hands-On
Imperative. He would be joined in this struggle by others who simply
hacked hardware, not for any political purpose but out of sheer delight in
the activity for its own sake; these people would develop the machines and
accessories through which the practice of computing would become so
widespread that the very concept of it would change—it would be easier for
everyone to feel the magic. Lee Felsenstein would come as close as anyone
to being a field general to these rabidly anarchistic troops; but now, as a
member of Community Memory, he was part of a collective effort to take
the first few steps in a momentous battle that the MIT hackers had never
considered worth fighting: to spread the Hacker Ethic by bringing
computers to the people.

It was Lee Felsenstein’s vision of the hacker dream, and he felt he had paid
his dues in acquiring it.

Lee Felsenstein’s boyhood might well have qualified him for a position
among the hacker elite on the ninth floor of Tech Square. It was the same
fixation with electronics, something that took hold so eerily that it defied
rational explanation. Lee Felsenstein, though, would later try to give his
love for electronics a rational explanation. In his reconstructions of his early
years (reconstructions shaped by years of therapy), he would attribute his
fascination with technology to a complex amalgam of psychological,
emotional, and survival impulses—as well as the plain old Hands-On
Imperative. And his peculiar circumstances guaranteed that he would

http://bit.ly/cBiaQs

become a different stripe of hacker than Kotok, Silver, Gosper, or
Greenblatt.

Born in 1945, Lee grew up in the Strawberry Mansion section of
Philadelphia, a neighborhood of row homes populated by first-and second-
generation Jewish immigrants. His mother was the daughter of an engineer
who had invented an important diesel fuel injector, and his father, a
commercial artist, had worked in a locomotive plant. Later, in an
unpublished autobiographical sketch, Lee would write that his father Jake
“was a modernist who believed in the ‘perfectability’ of man and the
machine as the model for human society. In play with his children he would
often imitate a steam locomotive as other men would imitate animals.”

Lee’s home life was not happy. Family tension ran high; there was sibling
warfare between Lee, his brother Joe (three years older), and a cousin Lee’s
age who was adopted as the boys’ sister. His father Jake’s political
adventures as a member of the Communist Party had ended in the mid-
fifties when infighting led to Jake’s losing his post as district organizer, but
politics were central to the family. Lee participated in marches on
Washington, D.C. at the age of twelve and thirteen, and once picketed
Woolworth’s in an early civil rights demonstration. But when things at
home got too intense for him, he would retreat to a basement workshop
loaded with electronic parts from abandoned televisions and radios. He
would later call the workshop his Monastery, a refuge where he took a vow
to technology.

It was a place where his brother’s inescapable physical and academic
superiority did not extend. Lee Felsenstein had a skill with electronics
which allowed him to best his brother for the first time. It was a power he
was almost afraid to extend—he would build things but never dare to turn
them on, fearing a failure that would uphold his brother’s contention that
“those things are never going to work.” So he’d build something else
instead.

He loved the idea of electronics. He filled the cover of his sixth-grade
notebook with electrical diagrams. He would go to his neighborhood branch
of the Free Library of Philadelphia and thumb through the pages of the
Radio Amateur’s Handbook. He got the biggest thrill from a Heath
Company instruction manual for building a shortwave receiver. The Heath
Company specialized in do-it-yourself electronics projects, and this

http://bit.ly/9vlCWR
http://bit.ly/cLy06Y

particular manual had very detailed diagrams of wires and connections.
Comparing the actual parts for that five-tube project with the perfect
diagram, with its octagons linked to other octagons, Lee saw the connection
.. . this line of the schematic represented that pin on the tube socket. It gave
him an almost sensual thrill, this linking of his fantasy electronics world to
reality. He carried around the manual everywhere; a pilgrim toting a
prayerbook. Soon he was completing projects and was vindicated when at
age thirteen he won a prize for his model space satellite—its name a bow to
Mother Russia, the Felsnik.

But even though he was realizing himself in a way he never had before,
each of Lee’s new products was a venture in paranoia, as he feared that he
might not be able to get the part to make it work. “I was always seeing these
[Popular Mechanics] articles saying, ‘Gee, if you have this transistor you
could make a regular radio you always wanted, and talk to your friends and
make new friends’ . . . but I never could get that part and I didn’t really
know how to go about getting it, or I couldn’t get the money to get it.” He
imagined the mocking voice of his brother, labeling him a failure.

When Lee was a freshman at Central High, Philadelphia’s special academic
high school for boys, brother Joe, a senior, drafted him to become chief
engineer at the school’s budding Computer Club, showing Lee a diagram of
some obsolete flip-flops and challenging his younger brother to build them.
Lee was too terrified to say no, and tried unsuccessfully to complete the
project. The effort made him wary of computers for a decade afterward.

But high school uplifted Lee—he was involved in political groups, did
some work on the school’s cyclotron, and did some significant reading—
particularly some novels by Robert Heinlein.

The slightly built, spectacled Jewish teenager somehow identified with the
futuristic protagonists, particularly the virginal young soldier in Revolt in
2100. The novel’s setting is a twenty-first-century dictatorship, where a
devoted, idealistic underground is plotting to fight the forces of the Prophet,
an omnipotent Orwellian thug supported by unthinking masses who
worship him. The protagonist stumbles upon evidence of the Prophet’s
hypocrisy, and, forced to choose between good and evil, he takes the drastic
step of joining the revolutionary Cabal, which provides him with the
teachings to stir his imagination.

http://bit.ly/awjQsr
http://bit.ly/abS9hj
http://bit.ly/an1U1p

For the first time in my life I was reading things which had not been approved by the Prophet’s
censors, and the impact on my mind was devastating. Sometimes I would glance over my shoulder
to see who was watching me, frightened in spite of myself. I began to sense faintly that secrecy is
the keystone of all tyranny.

(from Revolt in 2100)

Reading that novel, and later reading Stranger in a Strange Land, in which
Heinlein’s extraterrestrial protagonist becomes a leader of a spiritual group
which has a profound effect on society, Lee Felsenstein began to see his
own life as something akin to a science-fiction novel. The books, he later
said, gave him courage to dream big, to try out risky projects, and to rise
above his own emotional conflicts. The great fight was not so much internal
as broad—it was the choice between good and evil. Taking that romantic
notion to heart, Lee saw himself as the ordinary person with potential who
is seized by circumstances, chooses the difficult path of siding with the
good, and embarks on a long odyssey to overthrow evil.

It was not long before Lee was able to apply this metaphor in reality. After
graduation, he went to the University of California at Berkeley to
matriculate in Electrical Engineering. He was unable to get a scholarship.
His freshman year did not parallel that of a typical MIT hacker: he more or
less toed the line, failing to quality for a scholarship by a fraction of a grade
point. But he got what seemed as good—a work-study job at NASA’s Flight
Research Center at Edwards Air Force Base, at the edge of the Mohave
Desert. To Lee, it was admission to Paradise—the language people spoke
there was electronics, rocket electronics, and the schematics he had studied
would now be transmogrified into the stuff of science fiction come alive.
He reveled in it, the brotherhood of engineers, loved wearing a tie, walking
out of an office and seeing neat rows of other offices, and water coolers.
Heinlein was forgotten—Lee was conforming, an engineer out of a cookie
cutter. Deliriously happy in the service of the Prophet. Then, after two
months of that “seventh heaven,” as he later called it, he was summoned to
a meeting with a security officer.

The officer seemed ill at ease. He was accompanied by a witness to the
proceedings. The officer kept notes and had Lee sign each page as he
finished it. He also had the form Lee had filled out upon entering Edwards,
Security Form 398. The officer kept asking Lee if he knew anyone who was
a member of the Communist Party. And Lee kept saying no. Finally he

http://bit.ly/b1g27h
http://bit.ly/9BQWXC

asked, in a gentle voice, “Don’t you understand that your parents were
Communists?”

Lee had never been told. He had assumed that “Communist” was just a term
—red-baiting—that people flung at activist liberals like his parents. His
brother had known—nhis brother had been named after Stalin!—but Lee had
not been told. He had been perfectly honest when he had filled out Form
398 with a clear “no” on the line that asked if you knew any known
Communists.

“So there I was, ejected from Paradise,” Lee would later say, “and the
security chief said, ‘You keep your nose clean for a couple years more, you
won’t have any problem getting back in.” Now I’d always been setting
myself up to be abandoned, always expected to be abandoned. Suddenly I
was. Literally thrown out in the wilderness. There’s the Mohave Desert out
there, for God’s sake!”

On the night of October 14, 1964, Lee Felsenstein, failed engineer, took a
train back to Berkeley. Lee had heard radio reports of student
demonstrations there beginning two weeks before; he had dismissed them
as a modem version of the legendary panty raids that had occurred in 1952.
But upon his return he found the whole community alive with the Free
Speech Movement. “Secrecy is the keystone of all tyranny,” said Heinlein’s
Revolt in 2100 protagonist, voicing not only the cry of Berkeley revolution,
but the Hacker Ethic. Lee Felsenstein made the leap—he joined the Cabal.
But he would merge his fervor with his own particular talent. He would use
technology to fuel the revolt.

Since he owned a tape recorder, he went to Press Central, the media center
of the movement, and offered his talents as an audio technician. He did a
little of everything: mimeographed, did shit work. He was inspired by the
decentralized structure of the Free Speech Movement. On December 2,
when over eight hundred students occupied Sproul Hall, L.ee was there with
his tape recorder. He was arrested, of course, but the administration backed
down on the issues. The battle had been won. But the war was just
beginning.

For the next few years, Lee balanced the seemingly incompatible existences
of a political activist and a socially reclusive engineer. Not many in the
movement were so technically inclined, technology and especially

computers being perceived as evil forces. Lee worked furiously to organize
the people in his co-op dorm, Oxford Hall—the most political on campus.
He edited the activist dorm newspaper. But he was also learning more about
electronics, playing with electronics, immersing himself in the logical
environment of circuits and diodes. As much as he could, he merged the
two pursuits—he designed, for instance, a tool which was a combination
bullhorn and club to fend off cops. But unlike many in the movement who
were also deeply into Berkeley’s wild, freewheeling social activity, Lee
shied away from close human contact, especially with women. An
unwashed figure in work clothes, Lee self-consciously lived up to the nerdy
engineer stereotype. He did not bathe regularly, and washed his
unfashionably short hair perhaps once a month. He did not take drugs. He
did not engage in any sex, let alone all the free sex that came with free
speech. “I was afraid of women and had no way of dealing with them,” he
later explained. “I had some proscription in my personality against having
fun. I was not allowed to have fun. The fun was in my work . . . It was as if
my way of asserting my potency was to be able to build things that worked,
and other people liked.”

Lee dropped out of Berkeley in 1967, and began alternating between
electronics jobs and work in the movement. In 1968, he joined the
underground Berkeley Barb as the newspaper’s “military editor.” Joining
the company of such other writers as Sergeant Pepper and Jefferson Fuck
Poland, Lee wrote a series of articles evaluating demonstrations—not on the
basis of issues, but on organization, structure, conformation to an elegant
system. In one of his first articles, in March 1968, Lee talked of an
upcoming demonstration for Stop-the-Draft Week, noting the probable
result of insufficient planning and bickering among organizers: “The
activity will be half-baked, chaotic, and just like all the other
demonstrations. The movement politicians seem not to realize that in the
real-world action is carried on not by virtue of ideological hairsplitting, but
with time and physical resources . . . it is my responsibility as a technician
not to simply criticize but to make suggestions . . .”

And he did make suggestions. He insisted that demonstrations should be
executed as cleanly as logic circuits defined by the precise schematics he
still revered. He praised demonstrators when they smashed “the right
windows” (banks, not small businesses). He advocated attack only to draw

the enemy out. He called the bombing of a draft board “refreshing.” His
column called “Military Editor’s Household Hints” advised: “Remember to
turn your stored dynamite every two weeks in hot weather. This will
prevent the nitroglycerin from sticking.”

Heinlein’s protagonist in Revolt in 2100 said: “Revolution is not
accompanied by a handful of conspirators whispering around a guttering
candle in a deserted ruin. It requires countless supplies, modern machinery,
and modern weapons . . . and there must be loyalty . . . and superlative staff
organization.” In 1968, Lee Felsenstein wrote: “Revolution is a lot more
than a random street brawl. It takes organization, money, dogged
determination, and willingness to accept and build on past disasters.”

Felsenstein had his effect. During the trial of the Oakland Seven, the
defense attorney Malcolm Burnstein said, “We shouldn’t have these
defendants here . . . it should have been Lee Felsenstein.”

In the summer of 1968, Lee Felsenstein placed an ad in the Barb. The ad
itself was less than explicit: Renaissance Man, Engineer, and Revolutionist,
seeking conversation. Not long after, a woman named Jude Milhon found
the ad. Compared to the other sleazy come-ons in the back pages of the
Barb (“GIRLS ONLY'! I crave your feet”), it looked as though it came from
a decent man, she thought. It was what Jude needed in that tumultuous year
—a veteran of the civil rights movement and a long-time activist, she had
been dazed by 1968’s political and social events. The very world seemed to
be coming apart.

Jude was not only an activist, but a computer programmer. She had been
close to a man named Efrem Lipkin who was also in the movement, and he
was a computer wizard who sent her puzzles for entertainment—she would
not sleep until she solved them. She learned programming and found it
delightful, though she never did see why hackers found it obsessively
consuming. Efrem was coming from the East to join her on the Coast in
several months, but she was lonely enough meanwhile to contact the man
who wrote the ad in the Barb.

Jude, a thin, plucky blond woman with steady blue eyes, immediately
pegged Lee as a “quintessential technocreep,” but solely of his own making.
Almost unwittingly, by her company, and particularly by her consistent

http://bit.ly/cORtnx

straightforwardness, honed in countless self-evaluation sessions in various
collectives, Jude began the long process of drawing out Lee Felsenstein’s
personality. Their friendship was deeper than a dating relationship, and
continued well after her friend Efrem arrived from the East Coast. Lee
made friends with Efrem, who was not only an activist but a computer
hacker as well. Efrem did not share Lee’s belief that technology could help
the world; nevertheless, Lee’s decade-long wariness about computers was
coming to an end. Because, in 1971, Lee had a new roommate—an XDS-
940 computer.

It belonged to a group called Resource One, part of the Project One
umbrella of Bay Area groups fostering community activism and humanistic
programs. “One” had been started by an architect-engineer who wanted to
give unemployed professionals something useful to do with their skills, help
the community, and begin to dissipate the “aura of elitism, and even
mysticism, that surrounds the world of technology.” Among the projects in
One’s five-story, mustard-yellow warehouse in an industrial section of San
Francisco, was the Resource One collective, formed of people “who believe
that technological tools can be tools of social change when controlled by
the people.” Resource One people had cajoled the Transamerica
Corporation into lending an unused XDS-940 time-sharing computer to the
group, so One could start gathering alternative mailing lists and setting up
its program of computer education, economic research projects, and
“demystification for the general public.”

The computer was a Hulking Giant, an $800,000 machine that was already
obsolete. It filled a room, and required twenty-three tons of air
conditioning. It needed a full-time systems person to get it going. Resource
One needed a hacker, and Lee Felsenstein seemed a logical choice.

The systems software was set up by a Xerox PARC (Palo Alto Research
Center) hacker who had written the original time-sharing system for the 940
at Berkeley. He was a long-haired, bearded Peter Deutsch, the same Peter
Deutsch who at age twelve had peered over the console of the TX-0 twelve
years before. A Berkeley graduate, he had managed to blend the whole-
earth California lifestyle with intense hacking at PARC.

But it was Lee who was the machine’s caretaker. In his continual
mythologizing of his life as a science-fiction novel, he saw this period as a
reimmersion into the asocial role of a person whose best friend was a

http://bit.ly/aNJIUu

machine, a technological esthete sacrificing himself in the service of the
Cabal. The monastery this time was in the basement of the Resource One
warehouse; for thirty dollars a month he rented a room. It was below sewer
level, had no running water, was filthy. For Lee it was perfect—*“I was
going to be an invisible servant. Part of this machine.”

But Resource One failed Lee, who was far ahead of the group in realizing
that the social uses of technology would depend on exercising something
akin to the Hacker Ethic. The others in the group did not grow up yearning
for hands-on technology . . . their connection to it was not visceral but
intellectual. As a result, they would argue about how the machine should be
used instead of throwing back the sheets and using it. It drove Lee crazy.

Lee later explained: “We were prigs, we were intolerable esthetes. Anybody
who wanted to use the machine had to come argue their case before our
meeting. They had to plead to use it.” Lee wanted to change the group’s
outlook to a more hacker-like, hands-on openness but did not have the
pluck to make the social effort—his self-esteem had hit a low point. He
rarely even had the courage to venture out of the building to face the world
—when he did, he’d glumly note that the tenderloin district bums looked
cleaner, more prosperous than he did. Other people in the collective tried to
open him up; once during a meeting they borrowed a television camera
from a video collective upstairs, and every time there was laughter in the
group they would zoom in on Lee, invariably poker-faced. Looking at the
tape afterward, he could see what he was becoming—heartless. “I felt like I
couldn’t afford to have a heart,” he later said. “I could see this happening,
but I was pushing them away.”

After that experience, he tried to become more active in influencing the
group. He confronted one goldbricker who spent most of the day slowly
sipping coffee. “What have you been doing?” Felsenstein demanded. The
guy began talking about vague ideas, and Lee said, “I’m not asking you
what you want to do, I’m asking what have you done?” But he soon
realized that calling people down for their bullshit was futile: like an
inefficient machine, the group’s architecture itself was flawed. It was a
bureaucracy. And the hacker in Lee could not abide that. Fortunately around
that time, the spring of 1973, Efrem Lipkin came to Resource One, to
rescue Lee Felsenstein and get Community Memory off the ground.

Efrem Lipkin was the kind of person who could look at you with hooded
eyes in a long, Semitic face, and without saying a word let you know that
the world was sadly flawed and you were no exception. It was the air of a
purist who could never meet his own exacting standards. Efrem had just
gotten back from Boston, where he had been on the payroll of a computer
consulting company. The company had been doing military-related
contracting, and Efrem had stopped going to work. The idealistic
programmer did not inform his employer—he just stopped, hoping that the
project would grind to a halt because of his nonparticipation. After nine
months, during which the company assumed he was hacking away, it
became clear that there was no program, and the president of the company
came to his cockroach-infested Cambridge crash pad and asked him, “Why
did you do this?” He told Efrem that he had started the company after
Martin Luther King had died—to do good. He insisted the projects he took
on would keep the country strong against the Japanese technological threat.
Efrem saw only that the company they were under contract to had been
involved in antipersonnel weapons during the war. How could he do work
for that company? How could he be expected to do any computer work,
considering its all too often harmful uses?

It was a question that had plagued Efrem Lipkin for years.

Efrem Lipkin had been a hacker since high school. His affinity for the
machine was instant, and he found programming “the ultimate disembodied
activity—I would forget to speak English. My mind works in computer
forms.” But unlike some of his companions in a special city-wide program
for high school computerists in New York, Efrem also considered his
uncanny talent for the computer a curse. Like Lee, he came from a
virulently left-wing political family, and besides dazzling his math teachers,
he’d been thrown out of class for not saluting the flag, and booted out of
History for calling the teacher a liar. Unlike Lee, who sought to combine
technology and politics, Efrem saw them in opposition—an attitude which
kept him in constant turmoil.

“I love computers and hate what computers can do,” he would say later.
When he went to high school, he considered the commercial applications of
big computers—sending bills and such—as merely uninteresting. But when
the Vietnam War started, he began seeing his favorite toys as instruments of
destruction. He lived in Cambridge for a while, and one day ventured up to

the ninth floor at Tech Square. He saw the PDP-6, saw the perfect little
beachhead of the Hacker Ethic that had been established there, saw the
concentrated virtuosity and passion—but could think only of the source of
the funding and the eventual applications of this unchecked wizardry. “I got
so upset I started crying,” he later said. “Because these people had stolen
my profession. They made it impossible to be a computer person. They sold
out. They sold out to the military uses, the evil uses, of the technology.
They were a wholly-owned subsidiary of the Department of Defense.”

So Efrem drifted to California, then back East again, then back to
California. It took a while for him to see how computers could be used for
social good, and each time he glimpsed the possibilities he suspected
betrayal. One interesting project he’d been involved with was the World
game. A group of California programmers, philosophers, and engineers
constructed a simulation of the world. It was based on an idea by
Buckminster Fuller, where you could try out all sorts of changes and see
their effect on the world. For days, people ran around suggesting things and
running the game on the computer. Not much came of it in terms of
suggestions on how to run the world, but a lot of people met others with
similar views.

Not long afterward, Efrem stumbled upon Resource One, with Lee mired in
its bowels. He thought it was a crock. There was this great setup with a
computer and some software for community databases and switchboard, but
the group wasn’t doing all it could. Why not take that great setup to the
streets? Efrem began to get excited about the idea, and for perhaps the first
time in his life he saw how computers might really be used for some social
good. He got Lee thinking about it, and brought in some other people he’d
met in the World game.

The idea was to form an offshoot of Resource One called Community
Memory. Computers out on the streets, liberating the people to make their
own connections. Felsenstein lobbied the Resource One people into paying
for an office in Berkeley which would double as an apartment for him. So
the Community Memory faction moved across the bay to Berkeley to get
the system going. And Lee felt freed from his self-imposed
institutionalization. He was part of a group imbued with the hacker spirit,
ready to do something with computers, all charged up with the idea that

http://bit.ly/bo3yDH

access to terminals was going to link people together with unheard-of
efficiency and ultimately change the world.

Community Memory was not the only ongoing attempt to bring computers
to the people. All over the Bay Area, the engineers and programmers who
loved computers and had become politicized during the antiwar movement
were thinking of combining their two activities. One place in particular
seemed to combine an easygoing, counterculture irreverence with an
evangelical drive to expose people, especially kids, to computers. This was
the People’s Computer Company. True to the whimsical style of its founder,
the People’s Computer Company was not really a company. The
organization, a misnomer if one ever existed, did publish a periodical by
that name, but the only thing actually manufactured was an intense feeling
for computing for its own sake. Lee Felsenstein often attended PCC'’s
Wednesday night potluck dinners, which provided a common meeting
ground for Bay Area computer counterculturists, as well as a chance to see
Bob Albrecht try, for the umpteenth time, to teach everybody Greek folk
dancing.

Bob Albrecht was the visionary behind the People’s Computer Company.
He was a man, Lee Felsenstein would later say, to whom “bringing a kid up
to a computer was like child molesting.” Like child molesting, that is, to an
obsessive pederast.

In the spring of 1962, Bob Albrecht had walked into a classroom and had an
experience which was to change his life. Albrecht, then working for the
Control Data Company as a senior applications analyst, had been asked to
speak to the high school math club at Denver’s George Washington High
School, a bunch of everyday, though well-mannered, Jewish achiever types.
Albrecht, a large man with a clip-on tie, a beefy nose, and sea-blue eyes
which could gleam with creative force or sag basset-like behind his square-
rimmed lenses, gave his little talk on computers and casually asked if any of
the thirty-two students might want to learn how to program a computer.
Thirty-two hands waved in the air.

Albrecht had never seen any kind of response like that when he was
teaching Remedial FORTRAN, his “one-day course for people who had
been to IBM school and hadn’t learned anything,” as he later put it.

http://bit.ly/aGk7At
http://bit.ly/btXwHs

Albrecht couldn’t understand how IBM could have given those people
classes and not let them do anything. He knew even then that the name of
the game was Hands On, as it had always been since he had started with
computers in 1955 at Honeywell’s aeronautical division. Through a
succession of jobs, he had been constantly frustrated with bureaucracies.
Bob Albrecht preferred a flexible environment; he was a student of
serendipity in life-style and outlook. His hair was short, his shirt button-
down, and his family profile—wife, three kids, dog—was unexceptional.
Underneath it all, though, Bob Albrecht was a Greek dancer, eager to break
out the ouzo and the bouzouki. Greek dancing, liquor, and computers—
those were the elements for Bob Albrecht. And he was startled to find how
eager the high school students were to indulge in the latter pleasure, the
most seductive of the three.

He began teaching evening classes for the students at Control Data’s office.
Albrecht discovered that the youngsters’ delight in learning to take control
of the Control Data 160A computer was intense, addictive, visceral. He was
showing a new way of life to kids. He was bestowing power.

Albrecht didn’t realize it then, but he was spreading the gospel of the
Hacker Ethic, as the students were swapping programs and sharing
techniques. He began to envision a world where computers would lead the
way to a new, liberating lifestyle. If only they were available . . . Slowly, he
began to see his life’s mission—he would spread this magic throughout the
land.

Albrecht hired four of his top students to do programming for around a
buck an hour. They would sit there at desks, happily typing in programs to
solve quadratic functions. The machine would accept their cards and crunch
away while they watched blissfully. Then Albrecht asked these ace students
to teach their peers. “His idea was to make us multiply as fast as possible,”
one of the group, a redheaded kid named Bob Kahn, said later.

Albrecht used the four as “barkers” for a “medicine show” at their high
school. The students were entirely in charge. Twenty math classes were
involved in the program, for which Albrecht had convinced his employers
to part with the 160A and a Flexowriter for a week. After showing the
classes some math tricks, Kahn was asked if the computer could do the
exercises in the back of a math text—and he proceeded to do that day’s
homework assignment, using the Flexowriter to cut a mimeograph form so

http://bit.ly/ahJ1c8

that each student would have a copy. Sixty students were motivated by the
medicine show to sign up for computer classes; and when Albrecht took the
medicine show to other high schools, the response was just as enthusiastic.
Soon Albrecht triumphantly presented his medicine show to the National
Computer Conference, where his whiz kids astounded the industry’s high
priests. We don’t do that, they told Albrecht. He rocked with glee. He would
do it.

He convinced Control Data to allow him to take the medicine show across
the country, and he moved his base to CD’s Minnesota headquarters. It was
there that someone showed him BASIC, the computer language developed
by John Kemeny of Dartmouth to accommodate, Kemeny wrote, “the
possibility of millions of people writing their own computer programs . . .
Profiting from years of experience with FORTRAN, we designed a new
language that was particularly easy for the layman to learn [and] that
facilitated communication between man and machine.” Albrecht
immediately decided that BASIC was it, and FORTRAN was dead. BASIC
was interactive, so that people hungry for computer use would get instant
response from the machine (FORTRAN was geared for batch processing). It
used English-like words like INPUT, and THEN, and GOTO, so it was
easier to learn. And it had a built-in random number generator, so kids
could use it to write games quickly. Albrecht knew even then that games
would provide the seductive scent that would lure kids to programming—
and hackerism. Albrecht became a prophet of BASIC and eventually
cofounded a group called SHAFT—Society to Help Abolish FORTRAN
Teaching.

As he became more involved in the missionary aspects of his work, the Bob
Albrecht simmering under the buttoned-down exterior finally surfaced. As
the sixties hit full swing, Albrecht swung into California—divorced, with
long hair, blazing eyes, and a head full of radical ideas about exposing kids
to computers. He lived at the top of Lombard Street (San Francisco’s tallest,
crookedest hill), and begged or borrowed computers for his evangelistic
practice. On Tuesday nights he opened his apartment up for sessions that
combined wine tasting, Greek dancing, and computer programming. He
was involved with the influential Midpeninsula Free University, an
embodiment of the area’s do-your-own-thing attitude, which drew people
like Baba Ram Dass, Timothy Leary, and the former Al sage of MIT, Uncle

http://bit.ly/9rtNnq
http://bit.ly/docSVg

John McCarthy. Albrecht was involved in starting the loosely run
“computer education division” of the nonprofit foundation called the
Portola Institute, which later spawned the Whole Earth Catalog. He met a
teacher from Woodside High School on the peninsula, named LeRoy
Finkel, who shared his enthusiasm about teaching kids computers; with
Finkel he began a computer-book publishing company named Dymax, in
honor of Buckminster Fuller’s trademarked word “dymaxion,” combining
dynamism and maximum. The for-profit company was funded by
Albrecht’s substantial stock holdings (he had been lucky enough to get into
DEC'’s first stock offering), and soon the company had a contract to write a
series of instructional books on BASIC.

Albrecht and the Dymax crowd got hold of a DEC PDP-8 minicomputer. To
house this marvelous machine, they moved the company to new
headquarters in Menlo Park. According to his deal with DEC, Bob would
get a computer and a couple of terminals in exchange for writing a book for
DEC called My Computer Likes Me, shrewdly keeping the copyright (it
would sell over a quarter of a million copies). The equipment was packed
into a VW bus, and Bob revived the medicine show days, taking his PDP-8
road show to schools. More equipment came, and in 1971 Dymax became a
popular hangout for young computerists, budding hackers, would-be gurus
of computer education, and techno-social malcontents. Bob, meanwhile,
had moved to a forty-foot ketch docked off Beach Harbor, about thirty
miles south of the city. “I had never done sailing in my life. I just had
decided it was time to live on a boat,” he later said.

Albrecht was often criticized by the hip, technology-is-evil Palo Alto crowd
for pushing computers. So his method of indoctrinating people into the
computer world became subtle, a sly dope-dealer approach: “Just take a hit
of this game . . . feels good, doesn’t it? . .. You can program this thing, you
know . . .” He later explained: “We were covert. Unintentionally, we were
taking the long-term view, encouraging anyone who wanted to use
computers, writing books that people could learn to program from, setting
up places where people could play with computers and have fun.”

But there was plenty of counterculture at Dymax. The place was full of

long-haired, populist computer freaks, many of them of high school age.
Bob Albrecht acted the role of bearded guru, spewing ideas and concepts
faster than anyone could possibly carry them out. Some of his ideas were

http://bit.ly/cVc43j
http://bit.ly/bhMvel
http://bit.ly/clL7vi

brilliant, others garbage, but all of them were infused with the charisma of
his personality, which was often charming but could also be overbearing.
Albrecht would take the crew on excursions to local piano bars where he
would wind up with the microphone in hand, leading the group in songfests.
He set up part of Dymax’s offices as a Greek taverna, with blinking
Christmas lights, for his Friday night dancing classes. His most demonic
ideas, though, involved popularizing computers.

Albrecht thought that some sort of publication should chronicle this
movement, be a lightning rod for new developments. So the group started a
tabloid publication called People’s Computer Company, in honor of Janis
Joplin’s rock group Big Brother and the Holding Company. On the cover of
the first issue, dated October 1972, was a wavy drawing of a square-rigged
boat sailing into the sunset—somehow symbolizing the golden age into
which people were entering—and the following handwritten legend:

COMPUTERS ARE MOSTLY

USED AGAINST PEOPLE INSTEAD OF FOR PEOPLE
USED TO CONTROL PEOPLE INSTEAD OF TO
FREE THEM

TIME TO CHANGE ALL THAT—

WE NEEDA . ..

PEOPLE’S COMPUTER COMPANY

The paper was laid out in similar style to the Whole Earth Catalog, only
more impromptu, and sloppier. There could be four or five different type
fonts on a page, and often messages were scribbled directly onto the boards,
too urgent to wait for the typesetter. It was a perfect expression of
Albrecht’s all-embracing, hurried style. Readers got the impression that
there was hardly any time to waste in the mission of spreading computing to
the people—and certainly no time to waste doing random tasks like
straightening margins, or laying out stories neatly, or planning too far
ahead. Each issue was loaded with news of people infused with the
computer religion, some of them starting similar operations in different
parts of the country. This information would be rendered in whimsical
missives, high-on-computer dispatches from the front lines of the people’s
computer revolution. There was little response from the ivory towers of
academia or the blue-sky institutions of research. Hackers like those at MIT
would not even blink at PCC, which, after all, printed program listings in

http://bit.ly/cVc43j

BASIC, for God’s sake, not their beloved assembly language. But the new
breed of hardware hackers, the Lee Felsenstein types who were trying to
figure out ways for more computer access for themselves and perhaps
others, discovered the tabloid and would write in, offering program listings,
suggestions on buying computer parts, or just plain encouragement.
Felsenstein, in fact, wrote a hardware column for PCC.

The success of the newspaper led Dymax to spin off the operation into a
nonprofit company called PCC, which would include not only the
publication, but the operation of the burgeoning computer center itself,
which ran classes and offered off-the-street computing for fifty cents an
hour to anyone who cared to use it.

PCC and Dymax were located in a small shopping center on Menalto
Avenue, in the space previously occupied by a corner drugstore. The space
was furnished with diner-style booths. “Whenever someone wanted to talk
to us, we’d go out and get a six-pack and talk in our booths,” Albrecht later
recalled. In the computer area next door was the PDP-8, which looked like a
giant stereo receiver with flashing lights instead of an FM dial and a row of
switches in front. Most of the furniture, save for some chairs in front of the
gray teletype-style terminals, consisted of large pillows that people
variously used as seat cushions, beds, or playful weapons. A faded green
rug covered the area, and against a wall was a battered bookshelf loaded
with one of the best and most active paperback science-fiction collections in
the area.

The air was usually filled with the clatter of the terminals, one hooked to
the PDP-8, another connected to the telephone lines, through which it could
access a computer at Hewlett-Packard, which had donated free time to PCC.
More likely than not, someone would be playing one of the games that the
growing group of PCC hackers had written. Sometimes housewives would
bring their kids in, try the computers themselves, and get hooked,
programming so much that husbands worried that the loyal matriarchs were
abandoning children and kitchen for the joys of BASIC. Some businessmen
tried to program the computer to predict stock prices, and spent infinite
amounts of time on that chimera. When you had a computer center with the
door wide open, anything could happen. Albrecht was quoted in the
Saturday Review as saying, “We want to start friendly neighborhood

http://bit.ly/bwct8z

computer centers, where people can walk in like they do in a bowling alley
or penny arcade and find out how to have fun with computers.”

It seemed to be working. As an indication of how captivating the machines
could be, one reporter doing a story on PCC came in around five-thirty one
day, and the workers sat him down at a teletype terminal running a game
called Star Trek. “The next thing I remember,” the reporter wrote in a letter
to PCC, “is that somebody tapped me on the shoulder at 12:30 A.M. the
next morning and told me it was time to go home.” After a couple of days
of hanging out at PCC, the reporter concluded, “I still have nothing to tell
an editor beyond that I spent a total of twenty-eight hours so far just playing
games on these seductive machines.”

Every Wednesday night PCC had its potluck dinners. After a typically
disorganized PCC staff meeting—Bob, with ideas zipping into his head like
Spacewar torpedoes, could not easily follow an agenda—TIong tables would
be covered with cloths, and gradually the room would fill up with a virtual
who’s who of alternative computing in Northern California.

Of the distinguished visitors dropping in, none was so welcome as Ted
Nelson. Nelson was the self-published author of Computer Lib, the epic of
the computer revolution, the bible of the hacker dream. He was stubborn
enough to publish it when no one else seemed to think it was a good idea.

Ted Nelson had a self-diagnosed ailment of being years ahead of his time.
Son of actress Celeste Holm and director Ralph Nelson (”Lilies of the
Field“), product of private schools, student at fancy liberal arts colleges,
Nelson was an admittedly irascible perfectionist, his main talent that of an
“innovator.” He wrote a rock musical—in 1957. He worked for John Lilly
on the Dolphin project, and did some film work. But his head was, he later
explained, helplessly “swimming in ideas” until he came in contact with a
computer and learned some programming.

That was in 1960. For the next fourteen years he would bounce from one
job to another. He would walk out of his office in a job at a high-tech
corporation and see “the incredible bleakness of the place in these
corridors.” He began to see how the IBM batch-process mentality had
blinded people to the magnificent possibilities of computers. His
observations about this went universally unheeded. Would no one listen?

http://bit.ly/bVKkCk
http://bit.ly/c1BLul
http://imdb.to/acVDyt
http://bit.ly/cR8Yvd
http://bit.ly/92ur1b

Finally, out of anger and desperation, he decided to write a “counterculture
computer book.” No publisher was interested, certainly not with his
demands on the format—a layout similar to the Whole Earth Catalog or the
PCC, but even looser, with oversized pages loaded with print so small you
could hardly read it, along with scribbled notations, and manically
amateurish drawings. The book was in two parts: one was called “Computer
Lib,” the computer world according to Ted Nelson; and the other, “Dream
Machines,” the computer future according to Ted Nelson. Shelling out two
thousand dollars out of pocket—*“a lot to me,” he would say later—he
printed a few hundred copies of what was a virtual handbook to the Hacker
Ethic. The opening pages shouted with urgency, as he bemoaned the
generally bad image of computers (he blamed this on the lies that the
powerful told about computers, lies he called "Cybercrud“) and proclaimed
in capital letters that THE PUBLIC DOES NOT HAVE TO TAKE WHAT
IS DISHED OUT. He brazenly declared himself a computer fan, and said:

I have an axe to grind. I want to see computers useful to individuals, and the sooner the better,
without necessary complication or human servility being required. Anyone who agrees with these
principles is on my side. And anyone who does not, is not.

THIS BOOK IS FOR PERSONAL FREEDOM.

AND AGAINST RESTRICTION AND COERCION . . .
A chant you can take to the streets:

COMPUTER POWER TO THE PEOPLE!

DOWN WITH CYBERCRUD!

“Computers are where it’s at,” Nelson’s book said, and though it sold
slowly, it sold, eventually going through several printings. More important,
it had its cult following. At PCC, Computer Lib was one more reason to
believe it would soon be no secret that computers were magic. And Ted
Nelson was treated like royalty at potluck dinners.

But people were not coming to potluck dinners to see the wizards of the
computer revolution: they were there because they were interested in
computers. Some were middle-aged, hard-core hardware hackers, some
were grammar-school kids who had been lured by the computers, some
were long-haired teen-age boys who liked to hack the PCC PDP-8, some
were educators, some were just plain hackers. As always, planners like Bob
Albrecht would talk about the issuies of computing, while the hackers
concentrated on swapping technical data or complained about Albrecht’s

http://bit.ly/cMvfFW

predilection for BASIC, which hackers considered a “fascist” language
because its limited structure did not encourage maximum access to the
machine and decreased a programmer’s power. It would not take many
hours before the hackers slipped away to the clattering terminals, leaving
the activists engaged in heated conversation about this development or that.
And always, there would be Bob Albrecht. Glowing in the rapid progress of
the great computer dream, he would be at the back of the room, moving
with the climactic iterations of Greek folk dance, whether there was music
or whether there was not.

In that charged atmosphere of messianic purpose, the Community Memory
people unreservedly threw themselves into bringing their project online.
Efrem Lipkin revised a large program that would be the basic interface with
the users, and Lee set about fixing a Model 33 teletype donated by the
Tymshare Company. It had seen thousands of hours of use and been given
to CM as junk. Because of its fragility, someone would have to tend to it
constantly; it would often jam up, or the damper would get gummy, or it
wouldn’t hit a carriage return before printing the next line. Later in the
experiment, CM would get a Hazeltine 1500 terminal with a CRT which
was a little more reliable, but someone from the collective still had to be
there in case of a problem. The idea was for Lee to eventually develop a
new kind of terminal to keep the project going, and he was already
beginning to hatch ideas for that hardware project.

But that was for later. First they had to get CM on the streets. After weeks
of activity, Efrem and Lee and the others set up the Model 33 and its
cardboard box shell—protecting against coffee spills and marijuana ashes—
at Leopold’s Records. They’d drawn up posters instructing people how to
use the system, bright-colored posters with psychedelic rabbits and wavy
lines. They envisioned people making hard connections for things like jobs,
places to live, rides, and barter. It was simple enough so that anyone could
use it—just use the commands ADD or FIND. The system was an
affectionate variation of the hacker dream, and they found compatible
sentiment in a poem which inspired them to bestow a special name on
Community Memory’s parent company: “Loving Grace Cybernetics.” The
poem was by Richard Brautigan:

http://bit.ly/c1DnT6
http://bit.ly/cfM7Fa
http://bit.ly/aqrK7E

1 like to think (and

the sooner the better!)

of a cybernetic meadow

where mammals and computers
live together in mutually
programming harmony

like pure water

touching clear sky

I like to think

(right now; please!)

of a cybernetic forest

filled with pines and electronics
where deer stroll peacefully
past computers

as if they were flowers

with spinning blossoms.

1 Iike to think

(it has to be!)

of a cybernetic ecology

where we are free of our labors
and joined back to nature,
returned to our mammal
brothers and sisters,

and all watched over

by machines of loving grace.

—ALL WATCHED OVER BY MACHINES OF LOVING GRACE

That was no mere terminal in Leopold’s—it was an instrument of Loving
Grace! It was to shepherd the ignorant flock into a grazing meadow
fertilized by the benevolent Hacker Ethic, shielded from the stifling
influence of bureaucracy. But some within Community Memory had
doubts. Even greater than Lee’s nagging doubts of the terminal’s durability
was his fear that people would react with hostility to the idea of a computer
invading the sacred space of a Berkeley record store; his worst fears saw the
Community Memory “barkers” who tended the terminal forced to protect
the hardware bodily against a vicious mob of hippie Luddites.

Unfounded fears. From the first day of the experiment, people reacted
warmly to the terminal. They were curious to try it out, and racked their
brains to think of something to put on the system. In the Berkeley Barb a
week after the experiment began, L.ee wrote that during the Model 33
teletype terminal’s first five days at Leopold’s, it was in use 1,434 minutes,
accepting 151 new items, and printing out 188 sessions, thirty-two percent

of which represented successful searches. And the violence level was
nonexistent: Lee reported “one hundred percent smiles.”

Word spread, and soon people came seeking important connections. If you
typed in FIND HEALTH CLINICS, for instance, you would get information
on any of eight, from the Haight-Ashbury Medical Research Clinic to the
George Jackson People’s Free Clinic. A request for BAGELS—someone
asking where in the Bay Area one could find good New York-style bagels—
got four responses: three of them naming retail outlets, another one from a
person named Michael who gave his phone number and offered to show the
inquirer how to make his or her own bagels. People found chess partners,
study partners, and sex partners for boa constrictors. Passed tips on
restaurants and record albums. Offered services like babysitting, hauling,
typing, tarot reading, plumbing, pantomime, and photography (“MELLOW
DUDE SEEKS FOLKS INTO NON-EXPLOITABLE
PHOTOGRAPHY/MODELING/BOTH . .. OM SHANTTI”).

A strange phenomenon occurred. As the project progressed, users began
venturing into uncharted applications. As the Community Memory people
looked over the days’ new additions they found some items which could fit
into no category at all . . . even the keywords entered at the bottom of the
item were puzzling. There were messages like, “YOU ARE YOUR OWN
BEST FRIEND,” followed by keywords FRIEND, LOVER, DOG, YOU,
WE, US, THANK YOU. There were messages like, “ALIEN FROM
ANOTHER PLANET NEEDS COMPETENT PHYSICIST TO
COMPLETE REPAIRS ON SPACECRAFT. THOSE WITHOUT
KNOWLEDGE OF GEOMAGNETIC INDUCTION NEED NOT APPLY.”
There were messages like, “MY GOD WHY HAVE YOU FORSAKEN
ME.” There were messages that gave cryptic quotes from Ginsberg, The
Grateful Dead, Arlo Guthrie, and Shakespeare. And there were messages
from Doctor Benway and the mysterious Interzone.

Doctor Benway, the Naked Lunch character, was “a manipulator and
coordinator of symbol systems, an expert on all phases of interrogation,
brainwashing, and control.” No matter. Whoever this demented user was, he
began arranging the storage bits inside the XDS-940 into frazzled screeds,
flip commentaries of the times spiked with unspeakable visions, calls to
armed revolution, and dire predictions of big-brotherism—predictions
rendered ironically by the use of 1984-style computer technology in a

radical and creative fashion. “Benway here,” he’d announce himself in a
typical entry, “just a daytripper in the sands of this fecund database.”
Benway was not the only one who took on weird personas—as hackers had
already discovered, the computer was a limitless extension of one’s own
imagination, a nonjudgmental mirror in which you could frame any kind of
self-portraiture you desired. No matter what you wrote, the only
fingerprints your message bore were those of your imagination. The fact
that nonhackers were getting off on these ideas indicated that the very
presence of computers in accessible places might be a spur for social
change, a chance to see the possibilities offered by new technology.

Lee would later call it “an epiphany, an eye-opener. It was like my
experience with the Free Speech Movement and People’s Park. My God! I
didn’t know people could do this!”

Jude Milhon developed online personalities, wrote poems. “It was great
fun,” she’d later recall. “Your dreams incarnate.” One CM regular swapped
electronic missives with Benway, elaborating on the Naked Lunch theme to
create a computer “Interzone,” in honor of the decadent flesh market of the
soul created by Burroughs. At first Benway’s messages indicated surprise at
this variation; then, almost as if realizing the democratic possibilities of the
medium, he gave his blessing. “Certain nefarious pirates have spoken of
cloning the Benway Logo . . . go right ahead . . . it’s public domain,” he
wrote.

Jude Milhon met Benway. He was, as she described him, “very shy—but
capable of functioning in the world of Community Memory.”

The group flourished for a year and a half, moving the terminal at one point
from Leopold’s to the Whole Earth Access Store, and placing a second
terminal at a public library in San Francisco’s Mission District. But the
terminals kept breaking down, and it became clear that more reliable
equipment was essential. A whole new system was needed, since CM could
only go so far with the Hulking Giant XDS-940, and in any case the
relationship between CM and Resource One (its funding source) was
breaking down. But there was no system waiting in the wings, and
Community Memory, low in funds and technology, and quickly burning up
the store of personal energy of its people, needed something soon.

http://bit.ly/9iUYhh

Finally, in 1975, a burned-out group of Community Memory idealists sat
down to decide whether to continue the project. It had been an exhilarating
and exhausting year. The project “showed what could be done. It showed
the way,” Lee would later claim. But Lee and the others considered it “too
risky” to continue the project in its present state. They had too much
invested, technically and emotionally, to see the project peter out through a
series of frustrated defections and random system crashes. The consensus
was to submerge the experiment into a state of temporary remission. Still, it
was a traumatic decision. “We were just developing when it got cut off,”
Jude Milhon later said, “[Our relationship to] Community Memory was like
Romeo to Juliet—our other halfsoul. Then all of a sudden—CHOP—it’s
gone. Nipped in early flower.”

Efrem Lipkin went off and tried once more to think of a way he could get
out of computers. Others got involved in various other projects, some
technical, some social. But nobody, least of all Lee Felsenstein, gave up the
dream.

Chapter 9. Every Man a God

In June 1974, Lee Felsenstein moved into a one-room apartment over a
garage in Berkeley. It didn’t have much in the way of amenities—not even a
thermostat—but it only cost $185 a month, and Lee could fit a workbench
in the corner and call it home. He preferred low overhead, portability, utility
in a place.

Felsenstein had a specific design project in mind. A computer terminal built
on the Community Memory concept. Lee abhorred terminals built to be
utterly secure in the face of careless users, black boxes that belch
information and are otherwise opaque in their construction. He believed that
the people should have a glimpse of what makes the machine go, and the
user should be urged to interact in the process. Anything as flexible as
computers should inspire people to engage in equally flexible activity. Lee
considered the computer itself a model for activism and hoped the
proliferation of computers to people would, in effect, spread the Hacker
Ethic throughout society, giving the people power not only over machines
but over political oppressors.

Lee Felsenstein’s father had sent him a book by Ivan Illich titled Tools for
Conviviality, and Illich’s contentions bore out Lee’s views (“To me, the best
teachers tell me what I know is already right,” Lee would later explain).
Illich professed that hardware should be designed not only for the people’s
ease, but with the long-term view of the eventual symbiosis between the
user and the tool. This inspired Felsenstein to conceive of a tool that would
embody the thoughts of Illich, Bucky Fuller, Karl Marx, and Robert
Heinlein. It would be a terminal for the people. Lee dubbed it the Tom Swift
Terminal, “in honor of the American folk hero most likely to be found
tampering with the equipment.” It would be Lee Felsenstein bringing the
hacker dream to life.

Meanwhile, he would live off income from freelance engineering contracts.
One place he sought work was Systems Concepts, the small company
which employed MIT veterans Stew Nelson (the phone wizard and coding
genius) and TMRC and TX-0 alumnus Peter Samson. Felsenstein was leery
of anything to do with MIT; typical of hardware hackers, he was offended at
what he considered the excessive purity of those hackers, particularly their

http://bit.ly/b3vBI5
http://bit.ly/b3vBI5

insouciance when it came to spreading the technology among the “losers.”
“Anyone who’s been around artificial intelligence is likely to be a hopeless
case,” he’d later explain. “They’re so far removed from reality that they
cannot deal with the real world. When they start saying, ‘Well, essentially
all you need to do is dot dot dot,’ I just glaze over and say, ‘OK, buddy, but
that’s the easy part. Where we do our work is the rest of that.””

His suspicions were confirmed when he met diminutive but strong-willed
Stew Nelson. Almost instantly, they were involved in a disagreement, an
arcane technical dispute which Lee later termed an “I’m-smarter-than-you-
are, typical hacker dispute.” Stew was insisting that you could pull off a
certain hardware trick, while Lee, whose engineering style was shaped by
his early childhood paranoia that things might not work, said he wouldn’t
risk it. Sitting in the big, wooden, warehouse-like structure that housed
Systems Concepts, Lee felt that these guys were not as interested in getting
computer technology out to the people as they were in elegant, mind-
blowing computer pyrotechnics. To Lee, they were technological Jesuits.
He was unconcerned about the high magic they could produce and the
exalted pantheon of canonical wizards they revered. What about the people?

So when Stew Nelson, the archetypal MIT hacker type, gave Felsenstein the
equivalent of an audition, a quick design test for a hardware product, Lee
did not play the game. He couldn’t care less about producing the
technological bon mot that Stew was looking for. Lee walked out.

He’d look for work elsewhere. He figured he could make it if he brought in
eight thousand dollars a year. Because of the recession, work had been hard
to find, but things were picking up. Fifty miles south of Berkeley, Silicon
Valley was beginning to come alive.

The twenty miles or so between Palo Alto on the peninsula and San Jose at
the lower end of San Francisco Bay had earned the title “Silicon Valley”
from the material, made of refined sand, used to make semiconductors. Two
decades before, Palo Alto had been the spawning ground of the transistor;
this advance had been parlayed into the magic of integrated circuits (ICs)—
tiny networks of transistors which were compressed onto chips, little
plastic-covered squares with thin metallic connectors on the bottom. They
looked like headless robot insects. And now, in the early 1970s, three daring
engineers working for a Santa Clara company called Intel had invented a
chip called a microprocessor: a dazzlingly intricate layout of connections

which duplicated the complex grid of circuitry one would find in the central
processing unit (CPU) of a computer.

The bosses of these engineers were still pondering the potential uses of the
MiCroprocessor.

Lee Felsenstein, in any case, was reluctant to take a chance on brand-new
technology. His “junk-box” style of engineering precluded using anything
but products which he knew would be around for a while. The success of
the microchip and the rapid price-cutting process that occurred after the
chips were manufactured in volume (it cost a fortune to design a chip and
make a prototype; it cost very little to produce one chip after an assembly
line existed to churn them out), resulted in a chip shortage in 1974, and
Felsenstein had little confidence that the industry would keep these new
microprocessors in sufficient supply for his design. He pictured the users of
his terminal treating it the way hackers treat a computer operating system,
changing parts and making improvements . . . “a living system rather than a
mechanical system,” he’d later explain. “The tools are part of the
regenerative process.” These users would need steady access to parts. So
while waiting for clear winners in the microchip race to develop, he took
his time, pondering the lessons of Ivan Illich, who favored the design of a
tool “that enhances the ability of people to pursue their own goals in their
unique way.” On sunny days in laid-back Berkeley, Lee would take his
drawing board down to People’s Park, the strip of greenery which he had
helped liberate in the not-too-distant sixties, and make sketches of
schematics, getting a sunburn from the reflection off the white drafting
paper.

Felsenstein was only one of hundreds of engineers in the Bay Area who
somewhere along the line had shed all pretenses that their interest was
solely professional. They loved the hands-on aspects of circuitry and
electronics, and even if many of them worked by day in firms with exotic
names like Zilog, and Itel, and National Semiconductor, they would come
home at night and build, build fantastic projects on epoxy-based silk-
screened boards loaded with etched lines and lumpy rows of ICs. Soldered
into metal boxes, the boards would do strange functions: radio functions,
video functions, logic functions. Less important than making these boards
perform tasks was the act of making the boards, of creating a system that
got something done. It was hacking. If there was a goal at all, it was

constructing a computer in one’s very own home. Not to serve a specific
function, but to play with, to explore. The ultimate system. But these
hackers of hardware would not often confide their objective to outsiders
because in 1974 the idea of a regular person having a computer in his home
was patently absurd.

Still, that’s where things were going. You could sense an excitement
everywhere these hardware hackers congregated. Lee would get involved in
technical discussions at the PCC potlucks. He also attended the Saturday
morning bullshit sessions at Mike Quinn’s junk shop.

Quinn’s was the Bay Area counterpart of Eli Heffron’s at Cambridge, where
the Tech Model Railroad hackers scrounged for crossbar switches and step
relays. Holding court at the shop, a giant, battleship gray, World War II
vintage, hangar-like structure on the grounds of the Oakland Airport, was
Vinnie “the Bear” Golden. At a counter cluttered with boxes of resistors and
switches marked down to pennies, Vinnie the Bear would bargain with the
hardware hackers he lovingly referred to as “reclusive cheapskates.” They’d
haggle over prices on used circuit boards, government surplus
oscilloscopes, and lots of digital clock LEDs (light emitting diodes).
Moving around the mammoth structure’s well-worn wooden floor, the
hacker-scavengers would pick through the rows of boxes holding thousands
of ICs, capacitors, diodes, transistors, blank circuit boards, potentiometers,
switches, sockets, clips, and cables. A sign in Gothic letters read IF YOU
CAN NOT FIND IT DIG FOR IT and it was advice well taken. A hundred
failed companies used Quinn’s to dump excess, and you might stumble on a
giant gas control unit, a stack of used computer tapes, or even a used
computer tape drive the size of a file cabinet. Vinnie the Bear, a bearded,
big-bellied giant, would pick up the parts you offered for his observations,
guess at the possible limits of their uses, wonder if you could pull off a
connection with this part or that, and adhere to the legend on the sign above
him: “Price Varies as to Attitude of Purchaser.” All sorts of technical
discussions would rage on, ultimately ending with Vinnie the Bear
mumbling vague insults about the intelligence of the participants, all of
whom would come back the next week for more junk and more talk.

Next door to Mike Quinn’s was the operation of Bill Godbout, who bought
junk on a more massive scale—usually government surplus chips and parts
which were rejected as not meeting the exacting standards required for a

specific function, but perfectly acceptable for other uses. Godbout, a gruff,
beefy, still-active pilot who hinted at a past loaded with international
espionage and intrigues for government agencies whose names he could not
legally utter, would take these parts, throw his own brand name on them,
and sell them, often in logic circuitry kits that you could buy by mail order.
From his encyclopedic knowledge about what companies were ordering and
what they were throwing out, Godbout seemed to know everything going
on in the Valley, and as his operation got bigger he supplied more and more
parts and kits to eager hardware hackers.

Lee got to know Vinnie and Godbout and dozens of others. But he
developed a particularly close relationship with a hardware hacker who had
contacted him via the Community Memory terminal before the experiment
went into indefinite remission. It was someone Lee had known vaguely
from his Oxford Hall days at Berkeley. His name was Bob Marsh.

Marsh, a small, Pancho Villa-mustached man with long dark hair, pale skin,
and a tense, ironic way of talking, had left a message for Lee on the
terminal asking him if he wanted to get involved in building a project
Marsh had read about in a recent issue of Radio Electronics. An article by a
hardware hacker named Don Lancaster described how readers could build
what he called a “TV Typewriter”—something that would allow you to put
characters from a typewriter-style keyboard onto a television screen, just
like on a fancy computer terminal.

Marsh had been a hardware freak since childhood; his father had been a
radio operator, and he worked on ham sets through school. He majored in
engineering at Berkeley but got diverted, spending most of his time playing
pool. He dropped out, went to Europe, fell in love, and came back to school,
but not in engineering—it was the sixties, and engineering was extremely
uncool, almost right-wing. But he did work in a hi-fi store, selling, fixing,
and installing stereos, and he kept working at the store after graduating with
a biology degree. Infused with idealism, he wanted to be a teacher of poor
kids, but this did not last when he realized that no matter how you cut it,
school was regimented—students sitting in precise rows, not able to talk.
Years of working in the free-flow world of electronics had infused Marsh
with the Hacker Ethic, and he saw school as an inefficient, repressive
system. Even when he worked at a radical school with an open classroom,
he thought it was a sham, still a jail.

So, after an unsuccessful try at running a stereo shop—he wasn’t a very
good businessman—he went back to engineering. A friend named Gary
Ingram who worked at a company called Dictran got him a job working on
the first digital voltmeter. After a couple of years at that, he got into the idea
of computers, and was amazed to see Lancaster’s article. He figured he
might use the TV Typewriter as a terminal to hook up to a computer.

Buying parts from Mike Quinn’s to enhance the equipment in the kit offered
in the magazine, he worked for weeks on the project, trying to improve on
the design here and there. He never did get it working one hundred percent,
but the point was doing it, learning about it. He later explained: “It was the
same as ham radio. I didn’t want to spend my money to get on the air
bragging about my equipment. I wanted to build things.”

Lee responded to Marsh’s message on CM, and they met at the storefront
headquarters of the group. Lee told him of the Tom Swift Terminal, a
terminal which would use a home TV set as a character display, a
“cybernetic building block” which could expand into almost anything.
Marsh was impressed. He was also unemployed at the time, spending most
of his time hacking the TV Typewriter in a rented garage on Fourth Street,
near the bay. Marsh was married and had a kid—money was running low.
He asked Lee to split the $175 garage rent with him, and Lee moved his
workbench down there.

So Marsh worked on his project, while also cooking up a scheme to buy
digital clock parts from Bill Godbout and mount them in fancy wooden
cases. He had a friend who was a great woodworker. Meanwhile, Lee,
president of the one-man LGC Engineering Company (named after Loving
Grace Cybernetics), was working on his terminal, which was as much a
philosophic venture as a design project.

Unlike your usual design in which all the parts would be controlled by one
central chip, Lee’s project had a complex multi-backup way of operating. It
would have a “memory”—a place where characters could be stored—and
that memory would be on a circuit “card,” or board. Other cards would get
the characters from the keyboard and put characters on the screen. Instead
of a processor directing the flow, the cards would constantly be sending or
receiving—“Gimme, gimme, gimme,” they’d say, in effect, to the inputs
such as the keyboard. The memory would be the terminal’s crossroads.
Even if you put a microprocessor on the terminal later on to do computer-

like functions, that powerful chip would be connected to the memory, not
running the whole show—the task to which microprocessors are
accustomed. It was a design that enshrined the concept of decentralization.
It was also Felsenstein’s paranoia coming to the fore. He wasn’t ready to
cede all the power to one lousy chip. What if this part fails? What if that
one does? He was designing as if his brother were still looking over his
shoulder, ready to deliver withering sarcasm when the system crashed.

But Lee had figured out how the Tom Swift Terminal could extend itself
unto eternity. He envisioned it as a system for people to form clubs around,
the center of little Tom Swift Terminal karasses of knowledge. It would
revive Community Memory, it would galvanize the world, it would be the
prime topic of conversation at Mike Quinn’s and PCC potlucks, and it
would even lay a foundation for the people’s entry into computers—which
would ultimately topple the evil IBM regime, thriving on Cybercrud and
monopolistic manipulation of the marketplace.

But even as Lee’s nose was reddening from the reflection of the sun on the
schematics of his remarkable terminal, the January 1975 issue of Popular
Electronics was on its way to almost half a million hobbyist-subscribers. It
carried on its cover a picture of a machine that would have as big an impact
on these people as Lee imagined the Tom Swift Terminal would. The
machine was a computer. And its price was $397.

It was the brainchild of a strange Floridian running a company in
Albuquerque, New Mexico. The man was Ed Roberts and his company was
named MITS, short for Micro Instrumentation Telemetry Systems, though
some would come to believe it an acronym for “Man In The Street.” Ed
Roberts, an enigma even to his closest friends, inspired that kind of
speculation. He was a giant, six feet four and over two hundred and fifty
pounds, and his energy and curiosity were awesome. He would become
interested in a subject and devour it wholesale. “I tend to consume shelves
in libraries,” he’d later explain. If one day his curiosity was aroused about
photography, within a week he would not only own a complete color
developing darkroom but be able to talk shop with experts. Then he would
be off studying beekeeping, or American history. The subject that enthralled
him most was technology and its uses. His curiosity made him, as an early
employee of MITS named David Bunnell would say, “the world’s ultimate

http://bit.ly/dpV9yz

hobbyist.” And those days, being a hobbyist in digital electronics meant you
were probably a hardware hacker.

It was model rocketry that led him to start MITS, which initially produced
light flashers for hobbyist rocket ships, so backyard von Brauns could
photograph the trajectories of their attempts to poke holes in the sky. From
there, Roberts took MITS into test equipment—temperature sensors, audio
sweep generators, and the like. Then Roberts became interested in things
using LEDs, so MITS made digital clocks, both assembled and in kits, and
his company was perfectly placed to take advantage of advances in
microchip technology that made small digital calculators possible. He sold
those in Kkits, too, and the company took off, expanding to nearly one
hundred employees. But then the “Big Boys” came in, giant companies like
Texas Instruments making their own microchips, and smaller companies
reacted by cutting calculator prices so low that MITS could not compete.
“We went through a period where our cost to ship a calculator was thirty-
nine dollars and you could buy one in a drugstore for twenty-nine dollars.”
Roberts later recalled. It was devastating. By mid-1974, Ed Roberts’
company was three hundred sixty-five thousand dollars in debt.

But Ed Roberts had something up his sleeve. He knew about Intel’s new
microprocessor chips and knew it was possible to take one and build a
computer around it. A computer. Ever since he’d first had contact with
them, during his time in the Air Force, he had been in awe of their power
and disgusted with the convoluted steps one had to take to get access to
them. Around 1974, Ed Roberts would talk often to his boyhood friend
from Florida, Eddie Currie, so much so that to keep phone bills down they
had taken to exchanging cassette tapes. The tapes became productions in
and of themselves, with sound effects, music in the background, and
dramatic readings. One day Eddie Currie got this tape from Ed Roberts
which was unlike any previous one. Currie later remembered Ed, in the
most excited cadences he could muster, speaking of building a computer for
the masses. Something that would eliminate the Computer Priesthood once
and for all. He would use this new microprocessor technology to offer a
computer to the world, and it would be so cheap that no one could afford
not to buy it.

He followed up the tape with calls to Currie. Would you buy it if it were
five hundred dollars? Four hundred? He talked it over with what staff was

left in his failing company (the staff had shrunk to a relative handful) and,
MITS employee David Bunnell would later recall, “We thought he was off
the deep end.”

But when Ed Roberts had his mind made up, no force could compel him to
reconsider. He would build a computer, and that was it. He knew that Intel’s
current chip, the 8008, was not powerful enough, but when Intel came out
with a new one, the 8080, which could support a good deal of memory as
well as other hardware, Roberts called up the company for some horse-
trading. Bought in small lots, the chips would cost $350 each. But Roberts
was not thinking in small lots, so he “beat Intel over the head” to get the
chips for $75 a piece.

With that obstacle cleared, he had his staff engineer Bill Yates design a
hardware “bus,” a setup of connections where points on the chip would be
wired to outputs (“pins”) which ultimately would support things like a
computer memory, and all sorts of peripheral devices. The bus design was
not particularly elegant—in fact, later on hackers would universally bitch
about how randomly the designer had chosen which point on the chip
would connect to which point on the bus—but it reflected Ed Roberts’
dogged determination to get this job done now. It was an open secret that
you could build a computer from one of those chips, but no one had
previously dared to do it. The Big Boys of computerdom, particularly IBM,
considered the whole concept absurd. What kind of nut would want a little
computer? Even Intel, which made the chips, thought they were better
suited for duty as pieces of traffic-light controllers than as minicomputers.
Still, Roberts and Yates worked on the design for the machine, which
Bunnell urged Roberts to call “Little Brother” in an Orwellian swipe at the
Big Boys. Roberts was confident that people would buy the computer once
he offered it in kit form. Maybe even a few hundred buyers in the first year.

While Ed Roberts was working on his prototype, a short, balding magazine
editor in New York City was thinking along the same lines as Roberts was.
Les Solomon was a vagrant from a Bernard Malamud story, a droll,
Brooklyn-born former engineer with a gallows sense of humor. This
unremarkable-looking fellow boasted a past as a Zionist mercenary fighting
alongside Menachem Begin in Palestine. He would also talk of strange
journeys which led him to the feet of South American Indian brujos, or
witch doctors, with whom he would partake of ritual drugs and ingest

previously sheltered data on the meaning of existence. In 1974, he was
looking for someone who’d designed a computer kit so that the electronics-
crazy readers of the magazine he worked for, Popular Electronics, would be
in the vanguard of technology and have plenty of weird projects to build.
Later on, Solomon would attempt to shrug off any cosmic motives. “There
are only two kinds of gratification that a human being can possess,” he
would say, “ego and wallet. That’s it, baby. If you got those you’re in
business. It was my job to get articles. There was another magazine [Radio
Electronics], which was also doing digital things. They came out with a
computer kit based on the Intel 8008. I knew the 8080 could run rings
around it. I talked to Ed Roberts, who had published things about his
calculators in our magazine, about his computer, and I realized it would be a
great project in the magazine. Hopefully, I would get a raise.”

But Solomon knew that this was not just another project, and in fact there
were many factors here beyond ego and wallet. This was a computer. Later
on, when coaxed, Les Solomon would speak in hushed terms of the project
he was about to introduce to his readers: “The computer is a magic box. It’s
a tool. It’s an art form. It’s the ultimate martial art . . . There’s no bullshit in
there. Without truth, the computer won’t work. You can’t bullshit a
computer, God damn it, the bit is there or the bit ain’t there.” He knew of
the act of creation that is a natural outgrowth of working with the computer
with a hacker’s obsessive passion. “It’s where every man can be a god,” Les
Solomon would say.

So he was eager to see Ed Roberts’ machine. Ed Roberts sent him the only
prototype via air freight, and it got lost in transit. The only prototype. So
Solomon had to look at the schematics, taking Roberts’ word that the thing
worked. He believed. One night, he flippantly asked his daughter what
might be a good name for this machine, and she mentioned that on the TV
show Star Trek that evening, the good ship Enterprise was rocketing off to
the star called Altair. So it was that Ed Roberts’ computer was named
Altair.

Roberts and his design helper Bill Yates wrote an article describing it. In
January 1975, Solomon published the article, with the address of MITS, and
the offer to sell a basic kit for $397. On the cover of that issue was a
phonied-up picture of the Altair 8800, which was a blue box half the size of
an air conditioner, with an enticing front panel loaded with tiny switches

http://bit.ly/dusA79
http://bit.ly/b6S9yK
http://bit.ly/bU9dhe
http://bit.ly/91wg9B

and two rows of red LEDs. (This front panel would be changed to an even
spiffier variation, anchored by a chrome strip with the MITS logo and the
legend “Altair 8800” in the variegated type font identified with computer
readouts.)

Those who read the article would discover that there were only 256 bytes (a
“byte” is a unit of eight bits) of memory inside the machine, which came
with no input or output devices; in other words, it was a computer with no
built-in way of getting information to or from the world besides those
switches in front, by which you could painstakingly feed information
directly to the memory locations. The only way it could talk to you was by
the flashing lights on the front. For all practical purposes, it was deaf,
dumb, and blind. But, like a totally paralyzed person whose brain was alive,
its noncommunicative shell obscured the fact that a computer brain was
alive and ticking inside. It was a computer, and what hackers could do with
it would be limited only by their own imaginations.

Roberts hoped that perhaps four hundred orders would trickle in while
MITS perfected its assembly line to the point where it was ready to process
reliable kits to the dedicated hobbyists. He knew he was gambling his
company on the Altair. In his original brainstorm he had talked about
spreading computing to the masses, letting people interact directly with
computers, an act that would spread the Hacker Ethic across the land. That
kind of talk, he later admitted, had an element of promotion in it. He wanted
to save his company. Before the article came out he would rarely sleep,
worrying about possible bankruptcy, forced retirement.

The day the magazine reached the subscribers it was clear that there would
be no disaster. The phones started ringing, and did not stop ringing. And the
mail bore orders, each one including checks or money orders for hundreds
of dollars’ worth of MITS equipment—not just computers, but the add-on
boards that would make the computers more useful. Boards that hadn’t even
been designed yet. In one afternoon, MITS took orders for four hundred
machines, the total response that Ed Roberts had dared hope for. And there
would be hundreds more, hundreds of people across America who had
burning desires to build their own computers. In three weeks, MITS’ status
with its bank went from a negative value to plus $250,000.

How did Les Solomon describe the phenomenon? “The only word which
could come into mind was ‘magic.” You buy the Altair, you have to build it,

then you have to build other things to plug into it to make it work. You are a
weird-type person. Because only weird-type people sit in kitchens and
basements and places all hours of the night, soldering things to boards to
make machines go flickety-flock. The worst horror, the horrifying thing is,
here’s a company in Albuquerque, New Mexico, that nobody ever heard of.
And they put together a machine which is a computer. And a magazine who
publishes this article and puts it on the cover says. ‘Now you can build your
own computer for four hundred bucks. All you gotta do is send a check to
MITS in Albuquerque and they will send you a box of parts.” Most people
wouldn’t send fifteen cents to a company for a flashlight dial, right? About
two thousand people, sight unseen, sent checks, money orders, three, four,
five hundred dollars apiece, to an unknown company in a relatively
unknown city, in a technically unknown state. These people were different.
They were adventurers in a new land. They were the same people who went
West in the early days of America. The weirdos who decided they were
going to California, or Oregon, or Christ knows where.”

They were hackers. They were as curious about systems as the MIT hackers
were, but, lacking daily access to PDP-6s, they had to build their own
systems. What would come out of these systems was not as important as the
act of understanding, exploring, and changing the systems themselves—the
act of creation, the benevolent exercise of power in the logical,
unambiguous world of computers, where truth, openness, and democracy
existed in a form purer than one could find anywhere else.

Ed Roberts later spoke of the power: “When you talk about wealth, what
you’re really saying is, ‘How many people do you control?’ If I were to
give you an army of ten thousand people, could you build a pyramid? A
computer gives the average person, a high school freshman, the power to do
things in a week that all the mathematicians who ever lived until thirty
years ago couldn’t do.”

Typical of the people who were galvanized by the Altair article was a thirty-
year-old Berkeley building contractor with long blond hair and gleaming
green eyes named Steve Dompier. A year before the Popular Electronics
article had come out he had driven up the steep, winding road above
Berkeley which leads to the Lawrence Hall of Science, a huge, ominous,
bunker-like concrete structure which was the setting for the movie The
Forbin Project, about two intelligent computers who collaborate to take

http://bit.ly/cx6oox
http://bit.ly/by9XyK

over the world. This museum and educational center was funded by a grant
to support literacy in the sciences, and in the early 1970s its computer
education program was run by one of Bob Albrecht’s original medicine-
show barkers, Bob Kahn. It had a large HP time-sharing computer
connected to dozens of gunmetal-gray teletype terminals, and when Steve
Dompier first visited the hall he stood in line to buy a fifty-cent ticket for an
hour of computer time, as if he were buying a ride on a roller coaster. He
looked around the exhibits while waiting for his turn on a terminal, and
when it was time he stepped into a room with thirty clattering teletypes. It
felt like being inside a cement mixer. He flicked on the terminal, and with
violent confidence the line printer hammered out the words, HELLO.
WHAT’S YOUR NAME. He typed in STEVE. The line printer hammered
out HI STEVE WHAT DO YOU WANT TO DO, and Steve Dompier was
blown away.

He later described it: “It was the magic machine that had intelligence. Of
course I didn’t understand how it worked. But on everybody’s face you
could see the same thing for the first four or five months until they
understood it really wasn’t intelligent. That’s the addictive part, that first
magic where this machine talks back to you and does mathematics
incredibly fast.” For Steve Dompier, the addiction continued. He played
games on the system, like Star Trek, or carried on a dialogue with a version
of Joseph Weizenbaum’s ELIZA program. He got a book of BASIC
programming and worked on making little routines. He read Computer Lib
and got technologically politicized. He bought a teletype for his home so he
could access Lawrence Hall’s computer by phone, where he’d play the new
space game Trek °73 for hours on end. And then he heard about the Altair.

He was instantly on the phone to Albuquerque, asking for their catalog, and
when he got it, everything looked great—the computer kit, the optional disk
drives, memory modules, clock modules. So he sent for everything. Four
thousand dollars’ worth. His excuse to himself was that he would use his
new computer system to catalog all his Popular Science magazines; if he
wondered where that article about, say, heat pipes was, he’d type HEAT
PIPES on the computer and it would say, ISSUE 4, PAGE 76, STEVE! Ten
years and many computers later, he still wouldn’t have gotten around to that
task. Because he really wanted a computer to hack on, not to make any
stupid index.

http://bit.ly/cLh6O5
http://bit.ly/bM7lYD

MITS wrote back to him saying he sent too much money; half the
equipment he ordered was only in vague planning stages. The other half of
the equipment he ordered didn’t exist either, but MITS was working on
those products. So Steve Dompier waited.

He waited that January, he waited that February, and in early March the
wait had become so excruciating that he drove down to the airport, got into
a plane, flew to Albuquerque, rented a car, and armed only with the street
name, began driving around Albuquerque looking for this computer
company. He had been to various firms in Silicon Valley, so he figured he
knew what to look for . . . a long, modernistic one-story building on a big
green lawn, sprinklers whirring, with a sign out front with “MITS” chiseled
in rustic wood. But the neighborhood where the address seemed to be was
nothing like that. It was a shabby industrial area. After he drove back and
forth a few times he saw a little sign. “MITS,” in the corner of a window in
a tiny shopping center, between a massage parlor and a laundromat. If he’d
looked in the parking lot nearby, he would have seen a trailer that some
hacker had been living in for the past three weeks while waiting for his
machine to be ready for delivery.

Dompier went in and saw that MITS headquarters was two tiny offices with
one secretary trying to cope with a phone that would ring as soon as the
receiver was hung up. She was assuring one phone caller after another that
yes, one day the computer would come. Dompier met Ed Roberts, who was
taking all this with good cheer. Roberts spun a golden tale of the computer
future, how MITS was going to be bigger than IBM, and then they went
into the back room, piled to the ceiling with parts, where an engineer held
up a front panel in one hand and a handful of LEDs in the other. And that
was all there was of the Altair so far.

The MITS system of kit delivery did not quite conform to United States
postal regulations, which frowned upon accepting money through the mail
for items that did not exist except in pictures on magazine covers. But the
post office did not receive many complaints. When Ed Roberts’ friend
Eddie Currie joined the company to help out in the crunch, he found that his
experience with some MITS customers in Chicago was typical: one guy in
particular complained about sending over a thousand dollars more than a
year before, with no response. “You guys are ripping me off, not even
offering me my money back!” he shouted. Currie said. “Fine, give me your

name, I’ll have the accounting department issue you a check immediately,
with interest.” The man quickly turned humble. “Oh, no. I don’t want that.”
He wanted his equipment. “That was the mentality,” Currie later recalled.
“It was incredible how badly people wanted this.”

Ed Roberts was on a high, too busy trying to get things done to worry about
how far behind in orders his company was. He had over a million dollars in
orders, and plans which were much bigger than that. Every day, it seemed,
new things appeared to make it even clearer that the computer revolution
had occurred right there. Even Ted Nelson, author of Computer Lib, called
with his blessing. Bob Albrecht also called, and said he’d write a book
about games on the Altair, if Roberts would send him a working model to
review for PCC.

Eventually, MITS managed to get some kits out the door. Steve Dompier
had left the office only after Roberts had given him a plastic bag of parts he
could begin working with, and over the next couple of months more parts
would arrive by UPS, and finally Dompier had enough parts to put together
an Altair with a serial number of four. Number three went to the guy in the
parking lot who would work with a battery-powered soldering system.
Every time he had a problem he would leap out of the trailer and bug a
MITS engineer until he understood the problem. An even earlier assembled
prototype went to PCC, which had the fantastic advantage of getting an
already constructed model.

It was not easy to put an Altair together. Eddie Currie later acknowledged
this when he said, “One of the nice things about the kit [from MITS’ point
of view] was you didn’t have to test the parts you sent, you didn’t have to
test the subunits, you didn’t have to test the finished units. You just put all
the stuff in envelopes and shipped them. It was left to the poor customer to
figure out how to put all those bags of junk together.” (Actually, Ed Roberts
would explain, it would have been cheaper to assemble the things at the
factory, since frustrated hobbyists would often send back their semi-
completed machines to MITS, which would finish the task at a loss.)

It was an education in itself, a course of digital logic and soldering skills
and innovation. But it could be done. The problem was that when you were
finished, what you had was a box of blinking lights with only 256 bytes of
memory. You could put in a program only by flicking octal numbers into
the computer by those tiny, finger-shredding switches, and you could see

the answer to your problem only by interpreting the flickety-flock of the
LED lights, which were also laid out in octal. Hell, what did it matter? It
was a start. It was a computer.

Around the People’s Computer Company, the announcement of the Altair
8800 was cause for celebration. Everybody had known about the attempts
to get a system going around the less powerful Intel 8008 chip; the
unofficial sister publication of PCC was the Micro-8 Newsletter, a
byzantinely arranged document with microscopic type published by a
teacher and 8008 freak in Lompoc, California. But the Altair, with its
incredibly low price and its 8080 chip, was spoken about as if it were the
Second Coming.

The first issue of PCC in 1975 devoted a page to the new machine, urging
readers to get hold of the Popular Electronics article, and including a
handwritten addendum by Bob Albrecht: “We will put our chips on the
chip. If you are assembling a home computer, school computer, community
memory computer . . . game-playing-fun-loving computer . . . using an Intel
8008 or Intel 8080, please write a letter to the PCC Dragon!”

Lee Felsenstein, who was doing hardware reviews for PCC was eager to see
the machine. The biggest thing before that had been the TV Typewriter that
his garage-mate Bob Marsh had been working on, and Lee had been
corresponding with its designer, Don Lancaster. The design seemed to have
the fatal flaw of blanking out at the end of each page of text—a “whirling
dervish” scheme of erasing what went before when the screen was refreshed
with a new output—and Lee had been thinking of designing a board to fix
that. But when the Altair came out, all bets were off. Felsenstein and Marsh
read the Popular Electronics article, and they instantly realized that the
model pictured in the magazine was a dummy, and that even when the real
Altair was ready, it would be a box with flashing lights. There was nothing
in it! It was just a logical extension of what everyone knew and no one had
dared to take advantage of.

This did not upset Lee in the least; he knew that the significance of the
Altair was not as a technological advance, or even as a useful product. The
value would be in the price and the promise—both of which would entice
people to order kits and build their own computers. Lee, who had no respect
for the elitist ivory-tower universities like MIT, was exultant at the opening
of the first college with a major in hardware hacking: University of Altair.

Your degree would come after completing courses in Soldering, Digital
Logic, Technical Improvisation, Debugging, and Knowing Whom to Ask
for Help. Then you would be ready for a lifelong matriculation toward a
Ph.D. in Getting the Thing to Do Something.

When Altair sent one of the first assembled computers to PCC, Bob
Albrecht lent it to Lee for a week. He took it to Efrem Lipkin’s place and
they set it down, treating it as a curiosity, a piece of sculpture. Lee got the
thing apart and began dreaming of things to put in it to make a system out
of the machine. In his review of the machine in PCC, which ran with a
picture of lightning striking a small town, he wrote: “The Altair 8800 has
two things (at least) going for it: it’s here and it works. These facts alone
will guarantee that it is THE amateur computer for at least the next year . .

»

PCC devoted pages to the machine, which was the center of the now
imminent revolution. But as enthusiastic as Bob Albrecht was about the
Altair, he still felt that the key thing his operation had to offer was the initial
magic of computing itself, not the hard-wired craziness experienced by the
hardware hackers rushing to order Altairs. There were plenty of hardware
people hanging out at PCC, but when one of them, Fred Moore, an idealist
with some very political ideas about computers, asked Albrecht if he could
teach a PCC class in computer hardware, Albrecht demurred.

It was a classic hacker-planner conflict. Albrecht the planner wanted magic
spread far and wide, and considered the intense fanaticism of high-level
hacking as secondary. Hardware hackers wanted to go all the way into the
machines, so deep that they reached the point where the world was in its
purest form, where “the bit is there or it ain’t there,” as Lee Solomon put it.
A world where politics and social causes were irrelevant.

It was ironic that it was Fred Moore who wanted to lead that descent into
hardware mysteries, because in his own way Moore was much more a
planner than a hacker.

Fred Moore’s interest in computers was not only for the pleasure they gave
to devoted programmers, but also for their ability to bring people together.
Fred was a vagabond activist, a student of nonviolence who believed that
most problems could be solved if only people could get together,

communicate, and share solutions. Sometimes, in the service of these
beliefs, Feed Moore would do very strange things.

One of his more notable moments had come four years earlier, in 1971,
during the demise party of the Whole Earth Catalog. Editor Stewart Brand
had thrown this farewell-to-the-Catalog bash into turmoil by announcing
that he was going to give away twenty thousand dollars: it was up to the
fifteen hundred party-goers to decide whom he should give it to. The
announcement was made at 10:30P.M., and for the next ten hours the party
turned, variously, from town meeting to parliamentary conference, to
debate, to brawl, to circus, and to bitching session. The crowd was
dwindling: around 3:00A.M. the I Ching was thrown, with inconclusive
results. It was then that Fred Moore spoke. Described later by a reporter as
“a young man with wavy hair and a beard and an intense, earnest
expression,” Moore was upset that money was being labeled a savior and
people were being bought. He thought the whole thing was getting to be a
downer. He announced to the crowd that more important than the money
was the event occurring right then. He noted that a poet had asked for
money to publish a book of poems and someone had said, “We know where
you can get paper,” and someone else had suggested a cheap printer . . . and
Fred thought that maybe people didn’t need money to get what they wanted,
just themselves. To illustrate the point, Fred began setting fire to dollar
bills. Then people decided to take a vote whether to bother to spend the
money; Moore opposed the vote, since voting in his view was a way of
dividing people against each other. His opposition to the concept of voting
so confused the issue that polling the audience didn’t work. Then, after
much more talk, Moore began circulating a petition which said, in part, “We
feel the union of people here tonight is more important than money, a
greater resource,” and he urged people to sign their names to a piece of
paper to keep in contact through a pragmatic networking. Finally, well after
dawn, when there were around twenty people left, they said to hell with it,
and gave the money to Fred Moore. To quote a Rolling Stone reporter’s
account, “Moore seemed to get the money by default, by persistence . . .
Moore wandered around for a while, bewildered and awed, trying to get
riders to accompany him back to Palo Alto and wondering aloud whether he
should deposit the money in a bank account . . . then realized he had no
bank account.”

http://bit.ly/bCyM5k

Fred Moore never did put the money in a bank (“They make war,” he said),
but eventually distributed thousands of dollars to worthy groups. But the
experience showed him two things. One, he knew: money was evil. The
other was the power of people getting together, how they could do things
without money, just by banding together and using their natural resources.
That was why Fred Moore got so excited about computers.

Moore had been involved with computers for a few years, ever since
wandering into the computer center at the Stanford Medical Center in 1970.
He was traveling around then in a Volkswagen bus with his young daughter,
and he would sometimes leave her in the bus while he played with the
computer. Once he got so wrapped up in the machine that a policeman came
to the computer center asking if anyone knew anything about the little girl
left out in the parking lot . . .

He saw the computer as an incredible facilitator, a way for people to get
control of their environment. He could see it in the kids he taught games to,
in classes at PCC. The kids would just play and have a good time. Fred was
teaching about thirteen of these classes a week, and thinking a lot about
how computers might keep alternative people together in big databases.
And then the Altair was announced, and he thought that people should get
together and teach each other how to use it. He didn’t know much about
hardware, had little idea how to build the thing, but he figured that people
in the class would help each other, and they’d get things done.

Bob Albrecht did not like the idea, so there was no hardware class.

Fred Moore got to talking about this with another frustrated hanger-on in
the PCC orbit, Gordon French, the consulting engineer who’d built
—*“homebrewed,” as the hardware hackers called it—a computer that more
or less worked, centered on the Intel 8008 chip. He named his system
Chicken Hawk. Gordon French liked to build computers the way people
like to take engines out of automobiles and rebuild them. He was a gangly
fellow with a wide, crooked smile and long, prematurely gray hair. He
loved to talk computers, and it sometimes seemed, when Gordon French got
going on the subject, a faucet opened up that would not stop until a squad of
plumbers with big wrenches and rubber coats came to turn off the flow. A
yearning to meet people with similar likes led him to PCC, but French was
unsuccessful in his application to be on the PCC board of directors. He was
also unhappy that the Wednesday potlucks seemed to be phasing out. The

Altair was for sale, people were going crazy, it was time to get together, and
there was no way to do it. So French and Moore decided to start up a group
of people interested in building computers. Their own hardware group, and
it would be full of good computer talk, shared electronic technique, and
maybe a demonstration or two of the latest stuff you could buy. Just a bunch
of hardware hackers seeing what might come of a somewhat more than
random meeting.

So on crucial billboards in the area—at PCC, at Lawrence Hall, at a few
schools and high-tech corporations—Fred Moore tacked up a sign that read:
AMATEUR COMPUTER USERS GROUP HOMEBREW COMPUTER CLUB. . . you name it

Are you building your own computer? Terminal? TV Typewriter? 1/0 device? or some other digital
black magic box?

Or are you buying time on a time-sharing service?

If so, you might like to come to a gathering of people with likeminded interests. Exchange

information, swap ideas, help work on a project, whatever . . .
The meeting was called for March 5, 1975, at Gordon’s Menlo Park
address. Fred Moore and Gordon French had just set the stage for the latest
flowering of the hacker dream.

Chapter 10. The Homebrew Computer Club

The fifth of March was a rainy night in Silicon Valley. All thirty-two
participants in the first meeting of the yet unnamed group could hear the
rain while sitting on the hard cement floor of Gordon French’s two-car
garage.

Some of the people at the meeting knew each other; others had come into
random contact through the flier that Fred Moore had posted. Lee
Felsenstein and Bob Marsh had driven down from Berkeley in Lee’s
battered pickup truck. Bob Albrecht had come over to give the group his
blessing, and to show off the Altair 8800 that MITS had loaned PCC. Tom
Pittman, a free-lance engineer who’d built an improbable homebrew
computer around the early Intel 4004 chip, had met Fred Moore at a
computer conference the previous month and had been looking forward to
meeting others with similar interests. Steve Dompier, still waiting for the
rest of his Altair parts, had seen the notice posted at Lawrence Hall. Marty
Spergel had a small business selling electronic parts and figured it would be
a good idea to rap to some engineers about chips. An engineer at Hewlett-
Packard named Alan Baum had heard about the meeting and wondered if
the talk would be of the new, low-cost computers; he dragged along a friend
he’d known since high school, a fellow HP employee named Stephen
Wozniak.

Almost every person in the garage was passionate about hardware, with the
possible exception of Fred Moore, who envisioned sort of a social group in
which people would “bootstrap” themselves into learning about hardware.
He didn’t quite realize this was, as Gordon French would later put it, “the
damned finest collection of engineers and technicians that you could
possibly get under one roof.” These were people intensely interested in
getting computers into their homes to study, to play with, to create with . . .
and the fact that they would have to build the computers was no deterrent.
The introduction of the Altair had told them that their dream was possible,
and looking at others with the same goal was a thrill in itself. And in the
front of Gordon French’s cluttered garage workshop—you could never have
fit a car in there, let alone two—there it was, an Altair. Bob Albrecht turned
it on and the lights flashed and everyone knew that inside that implacable

front panel there were seething little binary bits. LDA-ing and JMP-ing and
ADD-ing.

Fred Moore had set up a table in the front and took notes, while Gordon
French, who was unspeakably proud of his own homebrew 8008 setup,
moderated. Everybody introduced himself, and it turned out that six of the
thirty-two had built their own computer system of some sort, while several
others had ordered Altairs. Right away, there was some debate about the
relative merits of chips, particularly the 8008. In fact, there were endless
topics for debate: hex (base-16 numbers) versus octal (base-8); operating
codes for the 8080; paper tape storage versus cassette versus paper and
pencil listings . . . They discussed what they wanted in a club, and the
words people used most were “cooperation” and “sharing.” There was some
talk about what people might do with computers in the home, and some
suggested games, control of home utilities, text editing, education. Lee
mentioned Community Memory. Albrecht distributed the latest issue of
PCC. And Steve Dompier told about his pilgrimage to Albuquerque, how
MITS was trying to fill four thousand orders, and how they were so busy
trying to get basic kits out the door that they were unable to even think of
shipping the extra stuff that would enable the machine to do more than flash
its lights.

Fred Moore was very excited about the energy the gathering generated. It
seemed to him that he had put something in motion. He did not realize at
the time that the source of the intellectual heat was not a planner-like
contemplation of the social changes possible by mass computing, but the
white-hot hacker fascination with technology. Buoyed by the willingness
everyone seemed to have to work together, Moore suggested the group meet
every fortnight. As if to symbolize the concept of free exchange that the
group would embody, Marty Spergel, the electric parts supplier who would
be known as “the Junk Man” within the group, held up an Intel 8008 chip,
just as everyone was leaving. “Who wants this?” he asked, and when the
first hand went up, he tossed the chip, the fingernail-sized chunk of
technology that could provide a good percentage of the multimillion-dollar
power of the TX-0.

Over forty people came to the second meeting, which was held at the
Stanford Al lab in the foothills, home of Uncle John McCarthy’s Tolkien-
esque hackers. Much of the meeting was taken up by a discussion of what

the group should be called. Suggestions included Infinitesimal Computer
Club, Midget Brains, Steam Beer Computer Club, People’s Computer Club,
Eight-Bit Byte Bangers, Bay Area Computer Experimenters’ Group, and
Amateur Computer Club of America. Eventually people decided on Bay
Area Amateur Computer Users Group—Homebrew Computer Club. The
last three words became the de facto designation. In true hacker spirit the
club had no membership requirement, asked no minimum dues (though
French’s suggestion that anyone who wanted to should give a dollar to
cover meeting notice and newsletter expenses had netted $52.63 by the
third meeting), and had no elections of officers.

By the fourth meeting, it was clear that the Homebrew Computer Club was
going to be a hacker haven. Well over a hundred people received the
mailing, which announced the meeting would be held that week at the
Peninsula School, an isolated private school nestled in a wooded area of
Menlo Park.

Steve Dompier had built his Altair by then: he had received the final
shipment of parts at 10 one morning, and spent the next thirty hours putting
it together, only to find that the 256-byte memory wasn’t working. Six
hours later he figured out the bug was caused by a scratch on a printed
circuit. He patched that up, and then tried to figure out what to do with it.

It seems that the only option supplied by MITS for those who actually
finished building the machine was a machine language program that you
could key into the machine only by the row of tiny switches on the front
panel. It was a program which used the 8080 chip instructions LDA, MOV,
ADD, STA, and JMP. If everything was right, the program would add two
numbers together. You would be able to tell by mentally translating the code
of the flashing LEDs out of their octal form and into a regular decimal
number. You would feel like the first man stepping on the moon, a figure in
history—you would have the answer to the question stumping mankind for
centuries: What happens when you add six and two? Eight! “For an
engineer who appreciates computers, that was an exciting event,” early
Altair owner and Homebrew Club member Harry Garland would later say,
admitting that “you might have a hard time explaining to an outsider why it
was exciting.” To Steve Dompier it was thrilling.

He did not stop there. He made little machine language programs to test all
the functions of the chips. (They had to be little programs, since the Altair’s

http://bit.ly/9qnGir

memory was so minuscule.) He did this until his own ten “input devices”—
his fingers—had thick calluses. The 8080 chip had a 72-function instruction
set, so there was plenty to do. An amateur pilot, Dompier listened to a low-
frequency radio broadcasting the weather while he worked, and after he
tested a program to sort some numbers, a very strange thing happened when
he hit the switch to “run” the program: the radio started making ZIPPPP!
ZIITP! ZIIIIIIIPPPP! noises. It was apparently reacting to the radio
frequency interference caused by the switching of bits from location to
location inside the Altair. He brought the radio closer, and ran the program
again. This time the ZIPs were louder. Dompier was exultant: he had
discovered the first input/output device for the Altair 8800 computer.

Now the idea was to control the device. Dompier brought his guitar over
and figured out that one of the noises the computer made (at memory
address 075) was equivalent to an F-sharp on the guitar. So he hacked away
at programming until he figured the memory locations of other notes. After
eight hours or so, he had charted the musical scale and written a program
for writing music. Although it was a simple program, nothing like Peter
Samson’s elegant music program on the PDP-1, it took Dompier a hell of a
long (and painful) time to enter it by those maddening switches. But he was
ready with his rendition of the Beatles’ "Fool on the Hill" (the first piece of
sheet music he came across) for the meeting of Homebrew at the Peninsula
School.

The meeting was held in a room on the second floor of the school, a huge,
ancient wooden building straight out of The Addams Family. Dompier’s
Altair was, of course, the object of much adoration, and he was dying to
show them the first documented application. But when Dompier tried to
turn on the Altair, it wouldn’t work. The electrical outlet was dead. The
nearest working outlet was on the first floor of the building, and after
locating an extension cord long enough to stretch from there to the second
floor, Dompier finally had his Altair plugged in, though the cord was not
quite long enough, and the machine had to stand a bit outside the doorway.
Dompier began the long process of hitting the right switches to enter the
song in octal code, and was just about finished when two kids who had been
playing in the hallway accidentally tripped over the cord, pulling it out of
the wall. This erased the contents of the computer memory, which Dompier
had been entering bit by bit. He started over, and finally shushed everyone

http://bit.ly/d5vlO2
http://bit.ly/9UADBQ
http://bit.ly/dgBooI

up in preparation for the first public demonstration of a working Altair
application.

He hit the RUN switch.

The little radio on top of the big, menacing computer box began to make
raspy, buzzy noises. It was music of a sort, and by the time the first few
plaintive bars of Paul McCartney’s ballad were through, the room of
hackers—normally abuzz with gossip about the latest chip—fell into an
awed silence. Steve Dompier’s computer, with the pure, knee-shaking
innocence of a first-grader’s first recital, was playing a song. As soon as the
last note played, there was total, stunned silence. They had just heard
evidence that the dream they’d been sharing was real. A dream that only a
few weeks before had seemed vague and distant.

Well before they had a chance to recover . . . the Altair started to play again.
No one (except Dompier) was prepared for this reprise, a rendition of
Daisy, which some of them knew was the first song ever played on a
computer, in Bell Labs in 1957; that momentous event in computer history
was being matched right before their ears. It was an encore so unexpected
that it seemed to come from the machine’s genetic connection to its Hulking
Giant ancestors (a notion apparently implicit in Kubrick’s 2001 when the
HAL computer, being dismantled, regressed to a childlike rendition of that
very song).

When the Altair finished, the silence did not last for long. The room burst
into wild applause and cheers, the hackers leaping to their feet as they
slammed hands together. The people in Homebrew were a mélange of
professionals too passionate to leave computing at their jobs, amateurs
transfixed by the possibilities of technology, and techno-cultural guerrillas
devoted to overthrowing an oppressive society in which government,
business, and especially IBM had relegated computers to a despised
Priesthood. Lee Felsenstein would call them “a bunch of escapees, at least
temporary escapees from industry, and somehow the bosses weren’t
watching. And we got together and started doing things that didn’t matter
because that wasn’t what the big guys were doing. But we knew this was
our chance to do something the way we thought it should be done.” This
involved no less than a major rewriting of computer history, and somehow
this simple little music recital by Steve Dompier’s Altair seemed the first
step. “It was a major achievement in computer history, in my estimation,”

http://bit.ly/ctOyKF
http://bit.ly/cbRBbt

Bob Marsh later said. Dompier wrote up the experience, along with the
machine language code for the program, in the next issue of PCC under the
title “Music, of a Sort,” and for months afterward Altair owners would call
him in the middle of the night, sometimes three at once on conference calls,
playing him Bach fugues.

Dompier got over four hundred calls like that. There were a lot more
hackers out there than anyone imagined.

Bob Marsh, Lee Felsenstein’s unemployed garage-mate, left the first
meeting of Homebrew almost dazed with excitement from what he’d been a
part of in that little garage. He knew that until now only a tiny number of
people had dared to conceive of the act of personal computing. Now here
was long-haired Steve Dompier saying that this random company, MITS,
had thousands of orders. Bob Marsh realized right then and there that the
hacker brotherhood was going to grow exponentially in the next few years.
But like a raging fire, it needed fuel. The flashing LEDs on the Altair were
exciting, but he knew that—hackers being hackers—there would be a
demand for all sorts of peripheral devices, devices this MITS company
obviously could not provide.

But someone would have to, because the Altair was the basis for a fantastic
system to build new systems, new worlds. Just as the PDP-1, or the PDP-6,
had arrived at MIT as a magic box without a satisfactory operating system,
and just as the MIT hackers had supplied it with assemblers, debuggers, and
all sorts of hardware and software tools to make it useful in creating new
systems and even some applications, it was up to these as yet unorganized
hardware hackers to make their own mark on the Altair 8800.

Bob Marsh understood that this was the beginning of a new era, and a
terrific opportunity. Sitting on the cold floor in Gordon French’s garage, he
decided that he would design and build some circuit boards that would plug
into one of the blank slots on the Altair bus.

Bob Marsh wasn’t the only one with that idea. In fact, right there in Palo
Alto (the town next to Menlo Park, where the meeting was being held), two
Stanford professors named Harry Garland and Roger Melen were already
working on add-on boards to the Altair. They hadn’t heard about the

meeting, but would come to the second meeting of hardware enthusiasts,
and be regulars thereafter.

The two Ph.D.s had first heard about the Altair when Melen, a tall, heavy
man whose wittiness was only slightly impeded by a recurrent stutter, was
visiting Les Solomon in late 1974 at the New York office of Popular
Electronics. Melen and Garland had done articles outlining hobbyist
projects for the magazine in their spare time, and were just putting to bed an
article telling how to build a TV camera control device.

Melen noticed a strange box on Solomon’s desk and asked what it was.
Solomon informed him that the box, the prototype Altair that Ed Roberts
had sent to replace the one lost in air freight, was an 8080 microcomputer
that sold for under four hundred dollars. Roger Melen did not think that
such a thing was possible, and Les Solomon told him that if he doubted it,
he should call Ed Roberts in Albuquerque. Melen did this without
hesitation, and arranged to make a stopover on his way back West. He
wanted to buy two of those computers. Also, Ed Roberts had previously
licensed a project that Melen and Garland had written about in Popular
Electronics and had never gotten around to paying them royalties. So there
were two things that Melen wanted to talk to Roberts about.

The Altair computer was the more important by far—the right toy at the
right time, Melen thought—and he was so excited about the prospect of
owning one that he couldn’t sleep that night. When he finally got to MITS’
modest headquarters, he was disappointed to find that there was no Altair
ready to take home. But Ed Roberts was a fascinating fellow, a dyed-in-the-
wool engineer with a blazing vision. They talked until five in the morning
about the technical aspects of this vision. This was before the Popular
Electronics article was out, though, and Roberts was concerned at what the
response might be. He figured it would not hurt to have some people
manufacturing boards to put into the Altair to make it useful, and he agreed
to send Melen and Garland an early prototype, so they could make
something to connect a TV camera to the machine, and then a board to
output a video image as well.

So Garland and Melen were in business, naming their company Cromemco,
in honor of the Stanford dorm they’d once lived in, Crowthers Memorial.
They were delighted to find similar spirits at the Homebrew Club, among

http://bit.ly/9UE3Ek

them Marsh, who had talked his friend Gary Ingram into helping start a
company called Processor Technology.

Marsh knew that the biggest immediate need of an Altair owner was a
memory bigger than the lousy 256 bytes that came with the machine, so he
figured he’d make a board which would give 2K of memory. (Each “K”
equals 1,024 bytes.) MITS had announced its own memory boards, and had
delivered some to customers. They were nice memory boards, but they
didn’t work. Marsh borrowed the PCC’s Altair and looked it over carefully,
read the manual backward and forward. This was a necessity because he
couldn’t initially afford to spend the money to make a Xerox copy. He
figured that he would run the company the way Roberts was apparently
running MITS—announce his product first, then collect the money required
to design and manufacture the product.

So on April Fools’ Day, Marsh and Ingram, a reclusive engineer who didn’t
go to Homebrew meetings (“It’s not the kind of thing he did,” Marsh later
explained), officially inaugurated the company. Marsh was able to scrape up
enough money to Xerox fifty fliers explaining the line of proposed
products. On April 2, Marsh stood up at the third Homebrew meeting,
handed out the fliers, and announced a twenty percent discount to anyone
who ordered in advance. After a week, he hadn’t heard anything. As Marsh
later said, “Despair had set in. We felt, we’ve blown it, it’s not going to
work. Then our first order came in, for a ROM [memory] board costing
only forty-five dollars. A purchase order asking ‘Net 30 terms,’ from this
company called Cromemco. We thought, “Who is this Cromemco? And
why don’t they pay cash?’ Despair set in once more. I'T’S NOT GOING TO
FLY! The next day three orders came in, and within a week after that we
had twenty-five hundred dollars cash. We took a thousand, ponied up for a
sixth-page ad in Popular Electronics, and all hell broke loose after that. It
took us only two months to get a hundred thousand dollars in orders.”

The irony was that Marsh and the other hacker-run operations were not
setting up to be huge businesses. They were looking for a way to finance
their avocation of playing with electronics, of exploring this new realm of
little bitty computers. For Marsh and the others who left the first few
Homebrew meetings with board-building fervor, the fun was beginning:
designing and building stuff, expressing themselves by the twists and

http://bit.ly/b0Qgdu

tangles of a digital logic integrated circuit board to be attached to Ed
Roberts’ byzantine bus.

As Marsh found out, building a board for the Altair was the Homebrew
hacker’s equivalent of attempting a great novel. It would be something that
harsh Homebrew reviewers would examine carefully, and they would not
only note whether it worked or not but judge the relative beauty and
stability of its architecture. The layout of circuits on the board was a
window into the designer’s personality, and even superficial details like the
quality of the holes by which one mounted the board would betray the
designer’s motives, philosophy, and commitment to elegance. Digital
designs, like computer programs, “are the best pictures of minds you can
get,” Lee Felsenstein once said. “There are things I can tell about people
from hardware designs I see. You can look at something and say, ‘Jesus
Christ, this guy designs like an earthworm—goes from one place through to
the end and doesn’t even know what it was he did in the middle.””

Bob Marsh wanted Processor Technology to be known for quality products,
and he spent the next few months in a frazzled state, trying not only to
finish his projects, but to do them right. It was important for the company
and for his pride as well.

The process was not a terribly simple one. After figuring out what your
board would do, you would spend long nights designing the layout.
Looking in the manual that described the workings of the 8080 chip, you
would jot down the numbers for the various sections you wanted—
designating this section for an input, that one for memory—and the
labyrinthine grid inside that piece of black plastic would begin to reshape
inside your head. The effectiveness of your choice of which sections to
access would depend on how well and how accurately you kept that vision
up there. You would make a pencil drawing of those connections, with the
stuff destined to go on one side of the board written in blue, stuff for the
other side in red. Then you would get sheets of Mylar, lay them on a grid on
a light table, and begin laying out the outline of the connections, using
crepe paper tape. You might find out that your scheme had some problems
—too much traffic in one part, the interconnections too tight—and have to
realign some things. One mistake could blow everything. So you’d be sure
to do an overlay of the schematic: placing that on top of your taped-up

design, you could see if you made some grievous error, like hooking three
things together. If the schematic itself was in error, forget it.

You would design it so that the board would have several layers; a different
set of connections on the top and the bottom. You would flip the layout
back and forth as you worked, and sometimes the tape would peel off, or
you would have little pieces of tape left over, or a hair would get stuck
somewhere: any of these uncalled-for phenomena would be faithfully
duplicated in the sepia reproductions made for you at a blueline house (if
you didn’t have money for that, you’d do a careful Xerox), and result in a
disastrous short circuit. Then you’d mark up the layout for the board
company, telling where to drill and what needed gold-plating, and so on.

Finally, you’d go to a local board house with drawings in hand. You’d give
it to them. Since it was still a recession, they would be happy for the
business, even business coming from a scruffy, small-time, glassy-eyed
hardware hacker. They would put the thing on a digitizer, drill the holes,
and produce on greenish epoxy material a mess of silvery interconnections.
That was the deluxe method—Bob Marsh at first could not afford that, so
he hand-etched the board over the kitchen stove, using printed circuit
laminate material, making barely discernible lines that the material would
melt into. That method was a tortuous courting of the bitch goddess
Disaster, but Marsh was a compulsively careful worker. He later explained,
“I really get into it. I become one with my schematic design.”

For this first memory board, Marsh was under particular pressure. Every
other week at the Homebrew meeting, every day on the phone, frantic
people were gasping for static memory boards like divers gasping for air.
Marsh later recalled their cries: “Where’s my board? I need it. I GOTTA
HAVE IT.”

Finally Marsh was done. There wasn’t time for a prototype. He had his
board, which was the green epoxy rectangle with a little protrusion of
etched gold connectors underneath, sized to fit into a slot in the Altair bus.
He had the chips and wires which the kit builders would solder onto it.
(Processor Tech would only sell unassembled boards at first.) Marsh had it
all ready—and no Altair to test it out on. So despite the fact that it was three
in the morning he called that guy Dompier he knew from Homebrew and
told him to bring the machine over. Dompier’s Altair was at least as
valuable to him as a human infant offspring would be if he weren’t in

Bachelor Mode, so he carefully wrapped it up in a little red blanket to bring
it over. Dompier had gone by the book in assembling the machine, even
wearing a copper bracelet around his wrist when he soldered (to keep static
down), and taking care not to touch the fragile 8080 heart of the machine.
So he was stunned, after lovingly setting the machine down in Marsh’s
workshop, when the hardware veterans Marsh and Ingram began handling
chips like a couple of garage mechanics installing a muffler. They’d grab
chips with their grubby fingers and throw chips around and pull chips out
and stuff them back in. Dompier watched in horror. Finally they had the
board all ready, and Ingram flicked the switch on, and Steve Dompier’s
precious computer fizzled into unconsciousness. They’d put the board in
backward.

It took a day to fix Dompier’s Altair, but Steve Dompier harbored no anger:
in fact, he loaned his machine to Processor Technology for future testing. It
was indicative of Homebrew behavior. These were a different breed of
hacker than the unapproachable wizards of MIT, but they still held to the
Hacker Ethic that sublimated possession and selfishness in favor of the
common good, which meant anything that could help people hack more
efficiently. Steve Dompier was nervous about his Altair, but he wanted little
in the world more than a memory board so he could run some real programs
on the machine. And then he wanted I/O devices, display devices . . . so that
he could write utilities to make the machine more powerful. Tools to Make
Tools, to go deep into the world that centered on the mysterious 8080
microprocessor inside his machine. Bob Marsh and the others in
Homebrew, whether they were offering products for sale or were simply
curious hackers like himself, were all in this together, and together they
formed a community that may not have been as geographically centered as
MIT’s PDP-6 community was—it stretched from Sacramento to San Jose—
but was strongly bonded nonetheless.

When Bob Marsh showed up at a Homebrew meeting in early June with the
first shipment of boards, the people who ordered them were so thankful you
might think that he’d been giving them away. He handed over the little
plastic blister-wrapped packets of board and ICs, along with the instruction
manual Lee Felsenstein had written. “Unless you are an experienced kit
builder,” Lee warned, “don’t build this kit.”

There was very little experience in the world at building those kinds of
things, but much of the experience that did exist in the world was centered
in that meeting room, which was now the auditorium at the Stanford Linear
Accelerator (SLAC). It was four months after the first casual meeting of the
club, and its membership had grown almost tenfold.

The little club formed by Fred Moore and Gordon French had grown to
something neither could have imagined. It was the vanguard of a breed of
hardware hackers who were “bootstrapping” themselves into a new industry
—which, they were sure, would be different from any previous industry.
The microcomputer industry would be ruled by the Hacker Ethic. (The term
“bootstrap” was indicative of the new jargon spoken by these hackers: the
term literally describes the process by which a computer program feeds
itself into a machine when the machine is first turned on, or “booted.” Part
of the program will feed the code into the computer; this code will program
the machine to tell itself to feed the rest of the code in. Just like pulling
yourself up by your bootstraps. It is symbolic of what the Homebrew people
were doing—creating a niche in the world of small computer systems, then
digging deeper to make the niche a cavern, a permanent settlement.)

But the club’s founders were both soon outdistanced by the technical
brilliance around them. In French’s case, he suffered from what seemed to
be a latent bureaucratic attitude. In some respects, his mania to keep the
club progressing in an orderly, controlled manner was helpful. He acted as
secretary and librarian, keeping a list of everyone’s phone number and what
equipment everyone owned. As he later recalled, “My phone rang off the
hook. It was incredible. Everybody needed information, and they needed
each other in order to get going because there was an absolute paucity of
equipment. For example: ‘If you have a terminal could I borrow it for a
couple days while I get my program in it so it’ll read my punch paper tape
reader?’ That sort of thing.”

But in other respects, particularly in the way he moderated the meetings,
French’s style was not consistent with the hacker spirit brewing in
Homebrew. “Gordon was a didactic sort,” Lee Felsenstein would later
recall. “He would try to push the discussion to where he wanted it to go. He
wanted it to be an educational event, holding lectures, teaching people
about certain things, especially stuff he was expert on. He was very upset if

http://bit.ly/cOKlKA

the discussion strayed from people literally teaching other people in a
schoolish sense. He would jump into whatever people were saying and get
involved in the content, injecting his opinions and telling them ‘There’s an
important point that shouldn’t be missed, and I know more about this kind
of stuff.”” After the first part of the meeting, in which people would
introduce themselves and say what they were working on, Gordon would
stand up in front of the room and give what amounted to a tutorial,
explaining the way the machine uses the code you feed into it, and
informing the restless members how learning good coding habits will save
you headaches in the future . . . and sooner or later people would get so
impatient they’d slip out of the meetings and start exchanging information
in the hall. It was a touchy situation, the kind of complex human dilemma
that hackers don’t generally like to confront. But the feeling emerged that a
new moderator should take over.

The logical choice might have been Fred Moore, who sat in the front of the
room for the first few months of Homebrew with his tape recorder and
notebook, capturing the meeting so he could summarize highlights in the
newsletter he put out every month. He was putting a lot of his time into the
group, because he saw that the hackers and their Altairs were on the verge
of what might be a significant social force. “By sharing our experience and
exchanging tips we advance the state-of-the-art and make low-cost
computing possible for more folks,” he wrote in the newsletter, adding his
social commentary: “The evidence is overwhelming that people want
computers, probably for self-entertainment and education usage. Why did
the big companies miss this market? They were busy selling overpriced
machines to each other (and the government and the military). They don’t
want to sell directly to the public. I’m all in favor of the splash MITS is
having with the Altair because it will do three things: (1) force the
awakening of other companies to the demand for low-cost computers in the
home . . . (2) cause local computer clubs and hobby groups to form to fill
the technical knowledge vacuum, (3) help demystify computers . . .”

Moore explicitly identified the purpose of the club as an information
exchange. Like the unfettered flow of bits in an elegantly designed
computer, information should pass freely among the participants in
Homebrew. “More than any other individual, Fred Moore knew what

sharing was all about,” Gordon French later recalled. “That was one of the
expressions he was always using—sharing, sharing, sharing.”

But the majority of the club preferred a path that diverged from Fred
Moore’s. Fred was always harping on applications. Every so often in the
early meetings he would urge the members of this basically anarchistic
group to get together and do something, though he was usually vague on
what that something might be.

Maybe using computers to aid handicapped people, maybe compiling
mailing lists for draft resistance. Moore might have been correct in
perceiving that the thrust of the club was in some way political, but his view
seemed at odds with the reality that hackers do not generally set about to
create social change—hackers act like hackers. Moore was less fascinated
with the workings of computer systems than with the idea of bringing about
a sharing, benevolent social system; he seemed to regard Homebrew not as
a technical stronghold of people hungry for the pyramid-building power of
in-home computers, but as a cadre devoted to social change, like the draft
resistance or antinuke groups he’d been involved in. He would suggest cake
sales to raise funds for the group, or publish cute little poems in the
newsletter like “Don’t complain or fuss / It is up to each of us / To make the
Club do / What we want it to.” Meanwhile, most of the club members
would be turning to the back of the newsletter to study the schematics in the
contribution called “Arbitrary Logic Function Generation Via Digital
Multiplexers.” That was the way to change the world, and a lot more fun
than a cake sale.

Lee Felsenstein later reflected that he didn’t think Moore “got his politics
straight. At the surface level he remained at the point of the protest or the
gesture of protest. But we were much more interested in what you might
call the Propaganda of the Deed.”

So when an opening fortuitously appeared to make the meetings more
compatible with the free-flowing hacker spirit—Gordon French, doing
consulting work for the Social Security Administration, was temporarily
called to Baltimore—it was not Moore that some club members asked to
moderate, but Lee Felsenstein. He turned out to be an ideal choice, since he
was as much a hardware hacker as any, but also a political computerist. He
looked upon the call to moderate these meetings as a significant elevation.
He could now be the point man of the revolution on the hardware front,

allowing the meetings to progress with just the right blend of anarchism and
direction, continuing his own guerrilla hardware design schemes which
would lead to the triumph of the Tom Swift Terminal, and participating in
the resurrection of the dormant Community Memory concept—a process
that was beginning that summer with the publication of a mimeographed
periodical called Journal of Community Communications, which would
spread the concept of microcomputer devices “created and used by people
in their daily lives as members of communities.”

When he first stood in front of the room at a June 1975 meeting of
Homebrew, though, he was terrified. As he recalls it, someone asked who
the new moderator would be, and Marty Spergel, the “Junk Man” who
owned the M&R Electronics supply house, suggested Lee, and “the cry
went up.” It was as if he’d been crowned. Nervous as he was, it was a
chance he could not pass up. As usual for Lee, the risks of failing were less
intimidating than the risks that came from not trying at all.

He knew a bit about running a forum. During his student radical days in
1968, he’d been listening to a Berkeley radio call-in show which was so
badly engineered, with inaudible callers and fuzz and things, that he ran
over to the studio waving his portable radio and saying, “Listen to this, you
idiots!” He wound up helping run the show, and part of his role was to
prime the guests before they went on the air. He thought that his role in
Homebrew could draw from that; he urged people not familiar with
addressing any audience larger than a tableful of electronic parts to talk to
other humans about their interests. As Fred Moore sensed, this was to be the
heart of the meeting, the exchange of information. So Lee, creating an
architecture for the meeting as if he were tackling an electronic design
problem, flowcharted the session. There would be a time to go around the
room and let people say what they were doing or what they wanted to know
—that would be the “mapping” section, akin to drawing a schematic. Then
there would be a “random access” section, where you would drift over to
the people who suggested things that interested you, or could answer your
questions, or seemed to have information you wanted, or just seemed
interesting to talk to. After that, there would be perhaps a brief talk, or
someone would demonstrate a system or show a new product, and then
there would be more mapping, and more random access. When Lee saw
that people were reluctant to return from the first random access section—

sometimes you could get lost in some technical point, or some religious
issue like a technique for wire-wrapping a board or something—he changed
the structure to include only one random access section, at the end of the
meeting. Thus debugged, the structure worked fine.

Lee found that standing in front of a group of people who accepted him and
were appreciative of his role as a “stack pointer”—the computer function
which determines the order by which computational tasks get done—helped
his conscious effort to bring himself out of his mole-like shell. Soon into his
tenure as moderator, he felt confident enough to give the group a talk on his
Tom Swift Terminal; scrawling on the blackboard at the front of the small
auditorium at SLAC, he talked of video displays, hardware reliability, Ivan
Illich, and the idea of incorporating the user in the design. It was a good
blend of social commentary and technical esoterica, and the Homebrewers
appreciated it. Lee found himself talented in the ready quip, and eventually
hacked a little routine that he’d deliver at the beginning of each meeting. He
came to take a fierce pride in his job as club master of ceremonies: in his
thinking he was now the ringmaster of a hacker movement, a group that
was central in shaping a microprocessor way of life.

Not long after Lee took over, a troubled Fred Moore resigned his roles as
treasurer, secretary, and editor of the newsletter. He was having some
personal problems; the woman he’d been seeing had left him. It was a
rough time for him to leave: he felt that the club had been his legacy, in a
sense, but it was probably clear by then that his hopes of it being devoted to
public service work were futile. Instead there was the Propaganda of the
Deed, and, more disturbing, some people who came to meetings, Fred later
recalled, “with dollar bill signs in their eyes, saying, ‘Wow, here’s a new
industry, I’ll build this company and make these boards, and make a million
...”” There were other computer-related social issues Moore wanted to
pursue, but he had come to realize, he later explained, that “the people in
the club were way ahead [of him] as far as their knowledge of electronics or
computing, [and because of this] the people were enamored with those very
devices, devices which were very seductive.” So Fred was unhappy at how
blindly people accepted technology. Someone had told Fred about the cheap
female labor in Malaysia and other Asian countries who physically
assembled those magical chips. He heard how the Asian women were paid
pitiful wages, worked in unsafe factories, and were unable to return to their

villages, since they never had a chance to learn the traditional modes of
cooking or raising a family. He felt he should tell the club about it, force the
issue, but by then he realized that it was not the kind of issue that the
Homebrew Club was meant to address.

Still, he loved the club, and when his personal problems forced him to bow
out and go back East, he would later say it was “one of the saddest days of
my life.” A small, wistful figure, he stood at the blackboard at a mid-
August meeting and wrote down his duties, asking who would do the
newsletter, who would do the treasury, the notes . . . And someone came up
and began writing “Fred Moore” beside each item. It broke his heart, yet he
felt for him it was over, and while he couldn’t share all his reasons he had to
let his brothers know he couldn’t be there any more.

“I saw myself as a person who had helped those people get together and
share their skills and energy,” Moore said later. And those goals had been
reached. Indeed, each meeting seemed to crackle with spirit and excitement
as people swapped gossip and chips, bootstrapping themselves into this new
world. At the mapping period, people would stand up and say that they had
a problem in setting up this or that part of the Altair, and Lee would ask,
“Who can help this guy?” and three or four hands would go up. Fine. Next?
And someone would say that he needed a 1702 chip. Someone else might
have an extra 6500 chip, and there’d be a trade.

Then there would be people standing up to announce the latest rumors in
Silicon Valley. Jim Warren, a chunky former Stanford computer science
grad student, was a particularly well-connected gossipmonger who would
pop up in the random access period and go on for ten minutes about this
company and the next, often slipping in some of his personal views on the
future of computer communications by digital broadcasts.

Another notorious purveyor of this weird form of gossip was a novice
engineer named Dan Sokol, who worked as a systems tester at one of the
big Valley firms. His tidbits were often startlingly prescient (to keep them
guessing, Sokol later admitted, he’d fabricate about half his rumors). Sokol,
a long-haired, bearded digital disciple who threw himself into Homebrew
with the energy of the newly converted, quickly adhered to the Hacker
Ethic. He considered no rumor too classified to share, and the more
important the secret the greater his delight in its disclosure. “Is anybody
here from Intel?” he might ask—and, if there wasn’t, he would divulge the

http://bit.ly/a7HLBd

news of the chip that Intel had previously been successful in shielding from
every company in the Valley (and perhaps from a cadre of Russian spies).

Sometimes Sokol, an inveterate barterer, would actually reach into his
pocket and produce the prototype of a chip. For instance, one day at work,
he recalled, some men from a new company called Atari came in to test
some chips. They were extremely secretive, and didn’t say what the chips
were. Sokol examined them: some were marked Syntech, some AMI. Sokol
knew guys at both companies, and they told him the chips were custom
parts, laid out and designed by the Atari people. So he took one home, put it
on a board, and tested it out. The chip turned out to contain a program to
play the new video game Pong—the new Atari firm was just beginning to
put together a home setup to play that game, in which two people control
“paddles” of light on a TV screen and try to keep a blip-like “ball” in play.
Sokol laid out the design on a circuit board, took it to Homebrew and
displayed it. He took a few extra chips along with him, and traded the chips
with others, eventually winding up with a keyboard and a few RAM chips.
“We’re talking outright thievery,” he later explained; but in Homebrew
terms, Sokol was liberating a neat hack from the proprietary oppressors.
Pong was neat, and should belong to the world. And in Homebrew,
exchanges like that were free and easy.

Years earlier, Buckminster Fuller had developed the concept of synergy—
the collective power, more than the sum of the parts, that comes of people
and/or phenomena working together in a system—and Homebrew was a
textbook example of the concept at work. One person’s idea would spark
another person into embarking on a large project, and perhaps beginning a
company to make a product based on that idea. Or, if someone came up
with a clever hack to produce a random number generator on the Altair, he
would give out the code so everyone could do it, and by the next meeting
someone else would have devised a game that utilized the routine.

The synergy would continue even after the meeting, as some of the
Homebrew people would carry on their conversations till midnight at The
Oasis, a raucous watering hole near the campus. (The location had been
suggested by Roger Melen; Jim Warren, a virulent antismoker, once tried to
lure people over to the no-smoking section at The Village Host, but that
never caught on.) Piling into wooden booths with tables deeply etched with
the initials of generations of Stanford students, Garland and Melen and

http://bit.ly/bhdkTW

Marsh and Felsenstein and Dompier and French and whoever else felt like
showing up would get emboldened by the meeting’s energy and the pitchers
of beer. They would envision developments so fantastic that no one ever
believed they could be more than fantasies, far-flung fancies like the day
when home computers with TV displays would engender pornographic
programs—SMUT-ROMs, they called them—which would not be illegal
because they’d only be pornographic if you scanned them the way the
computer did. How could the raw computer code be pornographic? It was
just one of dozens of perversely improbable musings that would be not only
realized but surpassed within a few years.

Synergy. Marty Spergel, the Junk Man, knew exactly how that worked. A
tanned, middle-aged haggler with a disarmingly wide smile, he thought that
Homebrew was like “having your own little Boy Scout troop, everybody
helping everybody else. I remember I had trouble with a teletype machine at
my office and one guy [at Homebrew] said he’d check it out. Not only did
he check it out but he came out with a little kit and he put in four or five
different parts, oiled it, lubed it, adjusted all the gears. I said, ‘How much
do I owe you?’ He said, ‘Nothing.””’ To the Junk Man, that was the essence
of Homebrew.

Spergel always kept track of what parts people needed; he’d sometimes
bring a box of them to a meeting. After the Tom Swift Terminal talk, he
asked Lee if he cared to build one for Spergel’s company, M&R
Electronics. Well, the Swift terminal wasn’t ready, Lee told him, but how
about this design for a modem—a device that enables computers to
communicate by the phone lines—that Lee had done a couple of years
back? “He probably even knew what a modem was, though that was not
clear from the way he reacted,” Lee said later. Modems sold then for four to
six hundred dollars, but Marty was able to construct Lee’s cleanly designed
"Pennywhistle" modem to sell for $109. They sent a copy of the schematics
to Lee Solomon at Popular Electronics and he put a picture of Lee’s modem
on the cover.

Synergy. The increasing number of Homebrew members who were
designing or giving away new products, from game joysticks to I/O boards
for the Altair, used the club as a source of ideas and early orders, and for
beta-testing of the prototypes. Whenever a product was done you would
bring it to the club and get the most expert criticism available. Then you’d

http://bit.ly/9qusEi
http://bit.ly/amg9in

distribute the technical specifications and the schematics—if it involved
software, you would distribute the source code. Everybody could learn from
it, and improve on it if they cared to and were good enough.

It was a sizzling atmosphere that worked so well because, in keeping with
the Hacker Ethic, no artificial boundaries were maintained. In fact, every
principle of that Ethic, as formed by the MIT hackers, was exercised to
some degree within Homebrew. Exploration and hands-on activities were
recognized as cardinal values; the information gathered in these
explorations and ventures in design were freely distributed even to nominal
competitors (the idea of competition came slowly to these new companies,
since the struggle was to create a hacker version of an industry—a task
which took all hands working together); authoritarian rules were disdained,
and people believed that personal computers were the ultimate ambassadors
of decentralization; the membership ranks were open to anyone wandering
in, with respect earned by expertise or good ideas, and it was not unusual to
see a seventeen-year-old conversing as an equal with a prosperous, middle-
aged veteran engineer; there was a keen level of appreciation of technical
elegance and digital artistry; and, above all, these hardware hackers were
seeing in a vibrantly different and populist way how computers could
change lives. These were cheap machines that they knew were only a few
years away from becoming actually useful.

This, of course, did not prevent them from becoming totally immersed in
hacking these machines for the sake of hacking itself, for the control, the
quest, and the dream. Their lives were directed to that moment when the
board they designed, or the bus they wired, or the program they keyed in
would take its first run . . . One person later referred to that moment as akin
to backing up a locomotive over a section of track you’d just fixed, and
running it over that track at ninety miles an hour. If your track wasn’t
strong, the train would derail calamitously . . . smoke . . . fire . . . twisted
metal . . . But if you hacked well, it would rush through in an exhilarating
rush. You would be jolted with the realization that thousands of
computations a second would be flashed through that piece of equipment
with your personal stamp on it. You, the master of information and lawgiver
to a new world.

Some planners would visit Homebrew and be turned off by the technical
ferocity of the discussions, the intense flame that burned brightest when

people directed themselves to the hacker pursuit of building. Ted Nelson,
author of Computer Lib, came to a meeting and was confused by all of it,
later calling the scruffily dressed and largely uncombed Homebrew people
“chip-monks, people obsessed with chips. It was like going to a meeting of
people who love hammers.” Bob Albrecht rarely attended, later explaining
that “I could understand only about every fourth word those guys were
saying . . . they were hackers.” Jude Milhon, the woman with whom Lee
remained friends after their meeting through the Barb and their involvement
in Community Memory, dropped in once and was repelled by the
concentration on sheer technology, exploration, and control for the sake of
control. She noted the lack of female hardware hackers, and was enraged at
the male hacker obsession with technological play and power. She summed
up her feelings with the epithet “the boys and their toys,” and like Fred
Moore worried that the love affair with technology might blindly lead to
abuse of that technology.

None of these concerns slowed down the momentum of Homebrew, which
was growing to several hundred members, filling the auditorium of SLAC,
becoming the fortnightly highlight in the lives of well over a hundred hard-
core Brewers. What they had started was almost a crusade now, something
that Ted Nelson, whose book was filled with anti-IBM screeds, should have
appreciated. While IBM and the Big Guys never gave a thought to these
random hackers in computer clubs with their ideas of owning computers,
the Homebrew people and others like them were hacking away not only at
8080 chips, but at the now crumbling foundations of the Batch-processed
Tower of Bit-Babble. “We reinforced each other,” Lee Felsenstein later
explained. We provided a support structure for each other. We bought each
other’s products. We covered each other’s asses, in effect. There we were—
the industrial structure was paying no attention to us. Yet we had people
who knew as much as anyone else knew about this aspect of technology,
because it was so new. We could run wild, and we did.”

By the time Les Solomon, the New York guru of this movement, arrived for
a visit to the West Coast, the golden age of the Homebrew Computer Club
was gleaming its brightest. Solomon first checked on Roger Melen and
Harry Garland, who had just finished the prototype of the Cromemco
product that would be on the cover of Popular Electronics in November

1975—an add-on board for the Altair which would allow the machine to be
connected to a color television set, yielding dazzling graphic results. In fact,
Melen and Garland were calling the board “the Dazzler.” Les went over to
Roger’s apartment to see it, but before they put the board into Roger’s
Altair the three of them got to drinking, and they were pretty well lubricated
by the time the board was in and the color TV was on.

There were two Altair programs that could take advantage of the Dazzler
then. One was called Kaleidoscope, and it shimmered and changed shape. It
was a great moment for Solomon, seeing the computer he had helped bring
to the world making a color television set run beautiful patterns.

Then they tried another program: LIFE. The game-that-is-more-than-a-
game, created by mathematician John Conway. The game that MIT wizard
Bill Gosper had hacked so intently, to the point where he saw it as
potentially generating life itself. The Altair version ran much more slowly
than the PDP-6 program, of course, and with none of those elegantly
hacked utilities, but it followed the same rules. And it did it while sitting on
the kitchen table. Garland put in a few patterns, and Les Solomon, not fully
knowing the rules of the game and certainly not aware of the deep
philosophical and mathematical implications, watched the little blue, red, or
green stars (that was the way the Dazzler made the cells look) eat the other
little stars, or make more stars. What a waste of time, he thought. Who
cares?

Then he began idly playing with the machine, sketching out a pattern to run.
He happened, in his inebriation, to put up something resembling the Star of
David. He later recalled: “I ran the program and watched the way it ate
itself up. It took about ten minutes and finally it died. I thought, ‘Gee that’s
interesting—does that mean the Jewish religion is about to go after two
hundred forty-seven generations?’ So I drew a crucifix. That went for one
hundred twenty-one generations. Does this somehow mean that Judaism
will outlast Christianity?” Soon he was putting up crescents and stars and
symbols of different meanings, and the three of them—four of them,
including the Altair—were exploring the mysteries of the world’s religions
and nationalities. “Who the hell needs philosophy at three o’clock in the
morning, drinking?” Solomon later said. "It was a computer. It was there.”

But Les Solomon had more magic to transmit. One of the stories he would
tell, stories so outrageous that only a penny-pincher of the imagination

would complain of their improbability, was of the time he was exploring in
pursuit of one of his “hobbies,” pre-Colombian archeology. This required
much time in jungles, “running around with Indians, digging, pitching
around in the dirt . . . you know, finding things.” It was from those Indians,
Les Solomon insisted, that he learned the vital principle of vril, a power that
allows you to move huge objects with very little force. Solomon believed
that it was the power of vril which enabled the Egyptians to build the
pyramids. (Perhaps vril was the power that Ed Roberts was talking about
when he realized that his Altair would give people the power of ten
thousand pyramid-building Egyptians.) According to his story, Solomon
met a venerable Indian brujo and asked if he might learn this power. Could
the brujo teach him? And the brujo complied. Now, after the drunken
evening with the LIFE program, Solomon attended a Homebrew meeting at
SLAC where he was accorded the respect of an honored guest—the
midwife of Ed Roberts’ Altair. And after the meeting, Solomon was telling
the hardware hackers about vril. There was some skepticism.

Outside of SLAC were huge orange picnic tables with concrete bases.
Solomon had the Homebrew people touch their hands on one of the tables,
and he touched it, too. They simply had to think it would rise.

Lee Felsenstein later described the scene: “He’d said, ‘Hey, let me show
you ... We were hanging on his every word, we’d do anything. So about
six people surrounded the table, put their hands on. He put his hand on top,
squinted his eyes and said, ‘Let’s go.” And the table raised about a foot. It
rose like a harmonic motion, [as elegantly as] a sine wave. It didn’t feel
heavy. It just happened.”

Afterward, even the participants, save Solomon, were not sure that it had
really happened. But Lee Felsenstein, seeing another chapter close in that
earth-shattering science-fiction novel that was his life, understood the
mythic impact of this event. They, the soldiers of the Homebrew Computer
Club, had taken their talents and applied the Hacker Ethic to work for the
common good. It was the act of working together in unison, hands-on,
without the doubts caused by holding back, which made extraordinary
things occur. Even impossible things occur. The MIT hackers had
discovered that when their desire to hack led them to persist so single-
mindedly that the barriers of security, exhaustion, and mental limits seemed
to shrink away. Now, in the movement to wipe away generations of

centralized, antihacker control of the computer industry, to change the
world’s disapproving view of computers and computer people, the
combined energy of hardware hackers working together could do anything.
If they did not hold back, not retreat within themselves, not yield to the
force of greed, they could make the ideals of hackerism ripple through
society as if a pearl were dropped in a silver basin.

Homebrew Club was sitting atop the power of vril.

http://bit.ly/9sbbg7

Chapter 11. Tiny BASIC

While the hunger to build and expand the Altair was as insatiable in the
hardware hackers of the seventies as the desire to hack PDP-1s and 6s was
to the MIT hackers of the sixties, a conflict was developing around the
Homebrew Computer Club which had the potential to slow the idealistic,
bootstrapping process and stem the rising tide lifting them all. At the heart
of the problem was one of the central tenets of the Hacker Ethic: the free
flow of information, particularly information that helped fellow hackers
understand, explore, and build systems. Previously, there had not been
much of a problem in getting that information from others. The “mapping
section” time at Homebrew was a good example of that—secrets that big
institutional companies considered proprietary were often revealed. And by
1976 there were more publications plugging into what was becoming a
national pipeline of hardware hackers—besides PCC and the Homebrew
newsletter there was now Byte magazine in New Hampshire—you could
always find interesting assembly-language programs, hardware hints, and
technical gossip. New hacker-formed companies would give out schematics
of their products at Homebrew, not worrying about whether competitors
might see them; and after the meetings at The Oasis, the young, blue-jeaned
officers of the different companies would freely discuss how many boards
they shipped, and what new products they were considering.

Then came the outcry over Altair BASIC. It would give the hardware
hackers a hint of the new fragility of the Hacker Ethic. And indicate that—
as computer power did come to the people—other, less altruistic
philosophies might prevail.

It all started out as a typical hacker caper. Among the products that MITS
had announced, but not yet sent out to those who had ordered it, was a
version of the BASIC computer language. Among the tools an Altair owner
could have, this was to be one of the most highly coveted: because, once
you had a BASIC on your Altair, the machine’s power to implement
systems, to move mental pyramids, would improve “by orders of
magnitude,” as the expression went. Instead of having to laboriously type in
machine language programs onto paper tape and then have to retranslate the
signals back (by then many Altair owners had installed I/O cards which
would enable them to link the machines to teletypes and paper-tape

http://bit.ly/9DE7gE
http://bit.ly/aC9Tu1

readers), you would have a way to write quick, useful programs. While
software hackers (and certainly such ancient assembly-language zealots as
Gosper and Greenblatt) disdained BASIC as a fascist language, to hardware
hackers trying to extend their systems it was an incredibly valuable tool.

The problem was that at first you couldn’t get a BASIC. It was particularly
maddening because MITS supposedly had one, though no one at Homebrew
had seen it run.

Indeed, MITS did have a BASIC. It had had the language running since
early spring 1975. Not long before MITS began shipping Altairs to
computer-starved Popular Electronics readers, Ed Roberts had gotten a
phone call from two college students named Paul Allen and Bill Gates.

The two teenagers hailed from Seattle. Since high school the two of them
had been hacking computers; large firms paid them to do lucrative contract
programming. By the time Gates, a slim, blond genius who looked even
younger than his tender years, had gone off to Harvard, the two had
discovered there was some money to be made in making interpreters for
computer languages like BASIC for new computers.

The Altair article, while not impressing them technically, was exciting to
them: it was clear microcomputers were the next big thing, and they could
get involved in all the action by writing BASIC for this thing. They had a
manual explaining the instruction set for the 8080 chip, and they had the
Popular Electronics article with the Altair schematics, so they got to work
writing something that would fit in 4K of memory. Actually, they had to
write the interpreter in less than that amount of code, since the memory
would not only be holding their program to interpret BASIC into machine
language, but would need space for the program that the user would be
writing. It was not easy, but Gates in particular was a master at bumming
code, and with a lot of squeezing and some innovative use of the elaborate
8080 instruction set, they thought they’d done it. When they called Roberts,
they did not mention they were placing the call from Bill Gates’ college
dorm room. Roberts was cordial, but warned them that others were thinking
of an Altair BASIC; they were welcome to try, though. “We’ll buy from the
first guy who shows up with one,” Roberts told them.

Not long afterward, Paul Allen was on a plane to Albuquerque with a paper
tape containing what he and his friend hoped would run BASIC on the

http://bit.ly/9j9W0g

machine. He found MITS a madhouse. “People would work all day long,
rush home, eat their dinner and come back,” MITS executive Eddie Currie
later recalled. “You could go in there any hour of the day or night and there
would be twenty or thirty people, a third to half the staff [excluding
manufacturing]. And this went on seven days a week. People were really
caught up in this because they were giving computers to people who were
so appreciative, and who wanted them so badly. It was a grand and glorious
crusade.”

Only one machine at MITS then had 4K of memory, and that barely
worked. When Paul Allen stuck the tape in the teletype reader and read the
tape in, no one was sure what would happen. What happened was that the
teletype it was connected to said, READY. Ready to program! “They got
very excited,” Bill Gates later said. “Nobody had ever seen the machine do
anything.”

The BASIC was far from a working version, but it was close enough to
completion and its routines were sufficiently clever to impress Ed Roberts.
He hired Allen and arranged to have Gates work from Harvard to help get
the thing working. When, not long afterward, Gates finally took off from
school (he would never return) to go to Albuquerque, he felt like Picasso
stumbling upon a sea of blank canvases—here was a neat computer without
utilities. “They had nothing!” he said later, awed years after the fact. “I
mean, the place was not sophisticated, as far as software went. We rewrote
the assembler, we rewrote the loader . . . we put together a software library.
It was pretty trashy stuff, but people could have fun using the thing.”

The difference between the Gates-Allen software library and the software
library in the drawer by the PDP-6 or the Homebrew Club library was that
the former was for sale only. Neither Bill Gates nor Ed Roberts believed
that software was any kind of sanctified material, meant to be passed
around as if it were too holy to pay for. It represented work, just as
hardware did, and Altair BASIC was listed in the MITS catalog like
anything else it sold.

Meanwhile, the hunger at Homebrew for an Altair BASIC was getting
unbearable. As it turned out, Homebrew members were perfectly capable of
writing BASIC interpreters, and some of them would do just that. Others,
though, had ordered Altair BASIC and were impatiently awaiting delivery,
just as they had impatiently awaited delivery of other MITS products.

Patience with MITS was getting thin, especially since the debacle with the
dynamic memory boards which Ed Roberts insisted should work and never
did. People who had been burned by buying memory boards began to snort
and pout when they spoke of Ed Roberts’ company, especially since
Roberts himself, who had attained legendary status as a reclusive genius
who never left Albuquerque, was spoken of as a greedy, power-mad foe of
the Hacker Ethic. It was even rumored that he wished ill on his competitors.
The proper hacker response to competitors was to give them your business
plan and technical information, so they might make better products and the
world in general might improve. Not to act as Ed Roberts did at the First
World Altair Convention, held at Albuquerque a year after the machines
were introduced, when the strong-willed MITS president refused to rent
display booths to competitors, and, according to some, raged with fury
when he heard that companies like Bob Marsh’s Processor Technology had
rented suites at the convention hotel and were entertaining prospective
customers.

So when the MITS Caravan came to the Rickeys Hyatt House in Palo Alto
in June of 1975, the stage was set for what some would call a crime and
others would call liberation. The “Caravan” was a MITS marketing
innovation. Some of the MITS engineers would travel in a motor home,
dubbed the MITS-mobile, from city to city, setting up Altairs in motel
seminar rooms and inviting people to see the amazing low-cost computers
at work. The turnout would largely be people who ordered Altairs and had
questions on when they could expect delivery. People who owned them
would want to know where they went wrong in assembling the monster.
People who owned MITS memory boards would want to know why they
didn’t work. And people who’d ordered Altair BASIC would complain that
they hadn’t gotten it.

The Homebrew Computer Club crowd was out in force when the Caravan
met at the Rickeys Hyatt on El Camino Real in Palo Alto in early June, and
were amazed when they found that the Altair on display was running
BASIC. It was connected to a teletype which had a paper-tape reader, and
once it was loaded anyone could type in commands and get responses
instantly. It looked like a godsend to those hackers who had already sent in
several hundred dollars to MITS and were impatiently waiting for BASIC.
There is nothing more frustrating to a hacker than to see an extension to a

http://bit.ly/9sgs2Q

system and not be able to keep hands-on. The thought of going home to an
Altair without the capability of that machine running in the pseudo-plush
confines of the Rickeys Hyatt must have been like a prison sentence to
those hackers. But hands-on prevailed. Years later, Steve Dompier tactfully
described what happened next: “Somebody, I don’t think anyone figured
out who, borrowed one of their paper tapes lying on the floor.” The paper
tape in question held the current version of Altair BASIC written by Bill
Gates and Paul Allen.

Dan Sokol later recalled that vague “someone” coming up to him and,
noting that Sokol worked for one of the semiconductor firms, asking if he
had any way of duplicating paper tapes. Sokol said yes, there was a tape-
copying machine available to him. He was handed the tape.

Sokol had all sorts of reasons for accepting the assignment to copy the
tapes. He felt that MITS’ price for the BASIC was excessive. He thought
that MITS was greedy. He had heard a rumor that Gates and Allen had
written the interpreter on a big computer system belonging to an institution
funded in part by the government, and therefore felt the program belonged
to all taxpayers.

He knew that many people had paid MITS for the product already, and their
getting an early copy wouldn’t hurt MITS financially. But most of all, it
seemed right to copy it. Why should there be a barrier of ownership
standing between a hacker and a tool to explore, improve, and build
systems?

Armed with this philosophical rationale, Sokol took the tape to his
employer’s, sat down at a PDP-11, and threaded in the tape. He ran it all
night, churning out tapes, and at the next Homebrew Computer Club
meeting he came with a box of tapes. Sokol charged what in hacker terms
was the proper price for software: nothing. The only stipulation was that if
you took a tape, you should make copies and come to the next meeting with
two tapes. And give them away. People snapped up the tapes, and not only
brought copies to the next meeting but sent them to other computer clubs as
well. So that first version of Altair BASIC was in free-flowing circulation
even before its official release.

There were two hackers, however, who were far from delighted at this
demonstration of sharing and cooperation—Paul Allen and Bill Gates. They

had sold their BASIC to MITS on a basis that earned them royalties for
every copy sold, and the idea of the hacker community blithely churning
out copies of their program and giving them away did not seem particularly
Utopian. It seemed like stealing. Bill Gates was also upset because the
version that people were exchanging was loaded with bugs that he was in
the process of fixing. At first he figured that people would just buy the
debugged version. But even after MITS did release the debugged BASIC, it
became clear that Altair users were not buying as many copies as they
would if they hadn’t had a “pirated” BASIC already running. Apparently,
they were either putting up with the bugs or, more likely, having a grand old
hacker time debugging it themselves. Gates was becoming very upset, and
when David Bunnell (who was then editing the newly begun Altair Users’
Newsletter for MITS) asked him what he wanted to do about it, Gates, then
nineteen and imbued with a cockiness that comes from technical virtuosity
and not necessarily social tact, said maybe he should write a letter. Bunnell
promised him he could get the letter out to the troublemakers.

So Gates wrote his letter, and Bunnell not only printed it in the Altair
newsletter but sent it to other publications, including the Homebrew
Computer Club newsletter. Entitled an "Open Letter to Hobbyists,” it
explained that while he and Allen had received lots of good feedback about
the interpreter, most of the people praising it hadn’t bought it. The letter got
to the heart of the matter quickly:

Why is this? As the majority of hobbyists must be aware, most of you steal your software.

Hardware must be paid for, but software is something to share. Who cares if the people who
worked on it get paid?

Gates went on to explain that this “theft” of software was holding back
talented programmers from writing for machines like the Altair. “Who can
afford to do professional work for nothing? What hobbyist can put three
man-years into programming, finding all the bugs, documenting his product
and distributing for free?”

Though fairly impassioned, the letter, carefully edited by Bunnell, was far
from a screed. But all hell broke loose in the hacker community. Ed
Roberts, though agreeing philosophically with Gates, couldn’t help but
notice the bad feelings, and was upset that Gates hadn’t consulted him
before publishing the letter. The Southern California Computer Society
threatened to sue Gates for calling hobbyists “thieves.” Gates received

http://bit.ly/9qnEby
http://bit.ly/9PYt0d

between three and four hundred letters, only five or six containing the
voluntary payment he suggested that owners of pirated BASIC send him.
Many of the letters were intensely negative. Hal Singer, editor of the Micro-
8 Newsletter, which received Gates’ letter via special delivery, wrote that
“the most logical action was to tear the letter up and forget about it.”

But the “software flap,” as it came to be known, could not easily be
forgotten. When MIT hackers were writing software and leaving it in the
drawer for others to work on, they did not have the temptation of royalties.
Slug Russell’s Spacewar, for instance, had no market (there were only fifty
PDP-1s made, and the institutions that owned them would hardly spend
money to buy a space game). With the growing number of computers in use
(not only Altairs but others as well), a good piece of software became
something that could make a lot of money—if hackers did not consider it
well within their province to pirate the software. No one seemed to object to
a software author getting something for his work—but neither did the
hackers want to let go of the idea that computer programs belonged to
everybody. It was too much a part of the hacker dream to abandon.

Steve Dompier thought that Bill Gates was merely whining. “Ironically, Bill
complaining about piracy didn’t stop anything. People still believed, ‘If you
got it, you could run it.” It was like taping music off the air. BASIC had
spread all over the country, all over the world. And it helped Gates—the
fact that everybody had Altair BASIC and knew how it worked and how to
fix it meant that when other computer companies came on line and needed a
BASIC, they went to Gates’ company. It became a de facto standard.”

People around the Homebrew Computer Club tried to ease into this new
era, in which software had commercial value, without losing the hacker
ideals. One way to do that was by writing programs with the specific idea of
distributing them in the informal, though quasi-legal, manner by which
Altair BASIC was distributed—through a branching, give-it-to-your-friends
scheme. So software could continue being an organic process, with the
original author launching the program code on a journey that would see an
endless round of improvements.

The best example of that organic process came in the proliferation of "Tiny
BASIC" interpreters. When PCC’s Bob Albrecht first looked over his

http://bit.ly/9Y2ryp
http://bit.ly/cqf265

Altair, he immediately realized that the only way to program it then was
with the ponderous machine language of the 8080 chip. He also saw how
limited the memory was. So he went to Dennis Allison, a PCC board
member who taught computer science at Stanford, and asked him to make
some design notes for a stripped-down BASIC that would be easy to use
and wouldn’t take up much memory. Allison wrote up a framework for a
possible interpreter, labeling his article a “participatory project,” soliciting
help from anyone else interested in writing “a minimal BASIC-like
language for writing simple programs.” Allison later recalled the reaction to
the PCC article: “Three weeks later we got responses, including one sent
from two guys from Texas who had written an entirely corrected and
debugged Tiny BASIC, with a complete code listing in octal.” The Texas
duo had put a BASIC in 2K of memory and had sent it off, just like that, to
be printed in PCC. Albrecht complied, running the entire source code, and
in a few weeks Altair owners began sending in “bug reports” and
suggestions for improvement. This was before any I/O boards for the Altair
existed; PCC readers had been switching in the two thousand numbers by
hand, repeating the process each time they turned the machine on.

Various hackers deluged PCC with new dialects of Tiny BASIC and
interesting programs written in the language. Albrecht, always more planner
than hacker, was worried that running all that code would make PCC too
much a technical journal, so he devised a plan to publish a temporary
offshoot of PCC called Tiny BASIC Journal. But the response was so heavy
that he realized an entire new magazine was called for, devoted to software.
He called on Jim Warren to edit it.

Warren was the portly, mercurial computer science student who refused to
go to The Oasis after Homebrew because he couldn’t stand the smoke. He
was a veteran of the Midpeninsula Free University. In addition to several
academic degrees, he had about eight years of consulting experience in
computers, and was chairman of several special interest groups of the
Association for Computer Machinery. PCC offered him $350 a month for
the job, and he took it right away. “It looked like fun,” he later explained.
Knowing some people were militantly opposed to BASIC, he insisted that
the journal not be limited to BASIC but publish software in general, to help
all those hardware hackers who had set up their machines and wanted the
incantations to move the bits around inside them.

http://bit.ly/9vOGaD

The journal’s very name was indicative of the atmosphere around PCC and
Homebrew around then: because Tiny BASIC saves bytes of memory, it
was dubbed “The Dr. Dobbs Journal of Computer Calisthenics and
Orthodontia . . . Running Light Without Overbyte.” Why not?

Dr. Dobbs Journal (DDJ) would be, Warren editorialized in the premier
issue, about “free and very inexpensive software.” In a letter sent out to
explain the magazine, he elaborated: “There is a viable alternative to the
problems raised by Bill Gates in his irate letter to computer hobbyists
concerning ‘ripping off’ software. When software is free, or so inexpensive
that it’s easier to pay for it than duplicate it, then it won’t be ‘stolen.’”

Warren saw DDJ as a flagship of the hacker dream. He wanted it to be a
clearinghouse for assemblers, debuggers, graphics, and music software.
Also, he saw it as a “communication medium and intellectual rabble-
rouser.” But things were happening so fast by 1976 that more often than not
the hardware news he heard or the software solution to a problem couldn’t
wait for publication, and he would rush to the next meeting of Homebrew—
where he became a familiar figure, standing up and spouting all the news
that had come over his desk that week.

Warren’s vocal lobbying for a public-domain approach to software was not
the only course of action. Perhaps the most characteristic hacker response to
the threat that commercialization might change the spirit of hacking came
from an adamantly independent software wizard named Tom Pittman.
Pittman was not involved in any of the major projects then in progress
around Homebrew. He was representative of the middle-aged hardware
hackers who gravitated toward Homebrew and took pride in associating
with the microcomputer revolution, but derived so much satisfaction from
the personal joys of hacking that they kept their profiles low. Pittman was
Lee Felsenstein’s age, and had even been at Berkeley at the same time, but
did not live the swashbuckling internal life of Felsenstein.

Pittman had been going faithfully to Homebrew since the first meeting, and
without making much effort to communicate he became known as one of
the purest and most accomplished engineers in the club. He was a slightly
built fellow with thick glasses and a wide, flickering smile which signaled,
despite an obvious shyness, that he’d always be willing to indulge in
conversation about hardware. He had built an improbably useful computer
system based on the relatively low-power Intel 4004 chip, and for a time

http://bit.ly/boELAJ
http://bit.ly/dvp9tY

maintained the Homebrew mailing list on it. He took a perverse pleasure in
evoking astonishment from people when he told them what he had done
with the system, making it perform tasks far beyond its theoretical limits.

Pittman had dreamed of having his own computer since his high school
days in the early sixties. All his life he had been a self-described “doer, not
a watcher,” but he worked alone, in a private world dominated by the
reassuring logic of electronics. “I’m not very sensitive to other people’s
thought patterns,” he said later. He would go to the library to take out books
on the subject, go through them, then take out more. “I couldn’t read long
before I’d set the book down and do things—in my head if nowhere else.”

By the time he had arrived at Berkeley, he had already taken college-level
courses on all sorts of math and engineering subjects. His favorite course
during his freshman year was Numerical Analysis. While the Free Speech
Movement was raging around him, Pittman was blithely tangling with the
problems in the lab section of the course, systematically wrestling each
mathematical conundrum to the ground till it howled for mercy. But he was
bored by the lecture part of the course; it didn’t seem “interesting,” and his
mark in Numerical Analysis was split between an A in lab and an F in
lecture. He had identical results upon repeating the course. Perhaps he was
not destined to fit into the organized structure of a university.

Then he found his escape. A sympathetic professor helped him get a job at a
Department of Defense laboratory in San Francisco. He worked on
computers there, helping on game simulations that gauged the radiation
effect from hypothetical nuclear explosions. He had no ethical problem with
the job. “Being basically insensitive to political issues, I never even
noticed,” he later said. His beliefs as a devout Christian led him to declare
himself a “semi-objector.” He later explained: “It means I was willing [to
serve] but not willing to shoot people. I worked there at the laboratory to
serve my country. I had a lot of fun.”

He welcomed the chance to finally become addicted to computers; though
his work hours officially ended at six, he would often work much later,
enjoying the peace of being the only one there. He would work until he was
too tired to go on; one night driving home to the East Bay he fell asleep and
woke up in a rosebush on the side of the road. He learned the computer
system at the lab so well that he became the unofficial systems hacker;
whenever people had a problem with the machine they came to Tom. He

was crushed when, after the war ended and defense funds withered, the lab
closed.

But by then the possibility of making his own computer had materialized.
He went down to Intel, maker of the first microprocessor, the 4004 chip,
and offered to write an assembler for it. He would take the parts to build a
computer in exchange for the job. Scrunching code like a master, he did a
compact assembler, then wrote a debugger in exchange for more parts. The
people at Intel began to send any 4004 buyers who needed programming
down to Tom. By the time he began going to Homebrew meetings, he had
moved to San Jose, having built a considerable consulting business to
support himself and his wife, who accepted his computer fanaticism only
grudgingly.

While he was fascinated by the technological brotherhood of Homebrew,
Tom Pittman was among those who never considered going into business as
Bob Marsh did with Processor Technology. Nor did he think of working at
any of those energetic start-up firms. “I never hit it off with anyone there.
The people didn’t know me—I’m a loner,” he later said. “Besides, I don’t
have managerial skills. I'm more a software person than an electronic
engineer.”

But after the “software flap” caused by Bill Gates’ letter, Pittman decided to
take public action. “Gates was moaning about the ripoffs, and people were
saying, ‘If you didn’t charge $150, we’d buy it.” I decided to prove it.” He
had been following the Tiny BASIC news in Dr. Dobbs Journal, and
understood the guidelines of writing a BASIC. And he noted that there were
some new computers, competitors to MITS, coming out that used the
Motorola 6800 chip instead of the Intel 8080, and there was no BASIC
interpreter written to work on them. So he decided to write a 6800 Tiny
BASIC interpreter and sell it for the sum of five dollars, a fraction of the
MITS price, to see if people would buy instead of stealing.

Being a true hacker, Pittman was not satisfied with running just any kind of
Tiny BASIC: he was a captive of the beast he called “the creepy feature
creature,” which stands behind the shoulder of every hacker, poking him in
the back and urging, “More features! Make it better!” He put in things that
some people thought impossible in a “tiny” language—Ilike room to insert
helpful remarks, and utilization of a full command set. Inside of two months
he had his interpreter running, and he got lucky when he sold it to the AMI

company for $3,500, on the condition that the sale be nonexclusive. He still
wanted to sell it to hobbyists for five dollars a shot.

He sent an ad to Byte magazine, and within days of its appearance he had
fifty dollars in his mailbox. Some people sent in ten dollars or more, saying
the five was too little. Some sent in five dollars with a note saying not to
ship anything to them—they’d already copied it from a friend. Pittman kept
sending them out. His costs included twelve cents for the paper tape, and
fifty cents for printing the manual he’d written. He would sit on the couch
of his modest home at night, listening to the Christian radio station in San
Jose or tape cassettes of speakers at Christian conferences, and fold paper
tapes, having mastered the skill of folding every eight inches. Then he’d go
to the post office, and send the packages off. It was all done by hand, with
the help of his wife, who had been skeptical about the whole enterprise.

It was a triumph for hackerism, but Tom Pittman did not stop there. He
wanted to tell people about it, show them the example by which they could
grow. He later gave a presentation at a Homebrew meeting, and when he
loped to the front of the auditorium, Lee saw that his body was knotted with
tension. Lee tried to loosen him up—*“They call you Tiny Tom Pittman, but
you’re really not so small,” he said. “Why is that?” Tom, not used to public
repartee, did not respond with more than a laugh. But when he began
speaking he gained strength, coiling and uncoiling his body, chopping his
arm in the air to make points about free software. It had a certain drama to
it, this normally taciturn technician speaking with heartfelt openness about
an issue that obviously mattered to him: the free flow of information.

Not long after Tiny BASIC he went a step further, announcing his intention
to write a FORTRAN for microcomputers and sell it for twenty-five dollars.
This was to be another gung-ho full-time enterprise, and he was still
hacking away when, as he later put it, “my computer widow left me. She
decided she didn’t want to be married to an addict.”

It was a jolt that many Homebrew members—those who had convinced a
woman to marry a computer addict in the first place—would experience. “I
would say the divorce rate among computerists is almost one hundred
percent—certainly in my case,” Gordon French later said. That did not
make things easier for Tom Pittman. He had no heart to finish the
FORTRAN. He did a lot of thinking about the devotion he’d given to the

machine, and where it came from, and sat down to write something, not in
machine language, but in English.

He called the essay “Deus Ex Machina, or The True Computerist” (one
might use the last word interchangeably with “hacker”), and it was a telling
explanation of what bound together the hardware hackers of Silicon Valley
and the artificial intelligence hackers of Cambridge. He wrote about the
certain feeling one gets after hacking something. “In that instant,” he wrote,
“I as a Christian thought I could feel something of the satisfaction that God
must have felt when He created the world.” He went on to compile the
creed of the computerist—the hardware hacker—which included such
familiar “articles of faith” (to Homebrew people) as:

The computer is more interesting than most people. I love to spend time with my computer. It is fun

to write programs for it, play games on it, and to build new parts for it. It is fascinating to try to

figure out what part of the program it is in by the way the lights flicker or the radio buzzes. It beats
dull conversation any day.

The computer needs just a little more (memory) (speed) (peripherals) (better BASIC) (newer CPU)
(noise suppression on the bus) (debugging on this program) (powertul editor) (bigger power
supply) before it can do this or that.

There is no need to buy this software package or that circuit board; I can design one better.

Never miss a club meeting. This is where it’s at. The juicy little news bits, the how-to-fixits for the
problem that has been bugging me the last two weeks . . . that is the real thing! Besides, they might
have some free software.

Pittman’s tone shifted at that point. He forced himself to take exception to
those articles of faith, testifying that he had “been there” and seen the
problems with them. Point by point he demonstrated the folly of hacking,
and concluded by writing: “By now the computer has moved out of the den
and into the rest of your life. It will consume all of your spare time, and
even your vacation, if you let it. It will empty your wallet and tie up your
thoughts. It will drive away your family. Your friends will start to think of
you as a bore. And what for?” Shaken by the breakup of his marriage, Tom
Pittman decided to change his habits. And he did. He later described the
transformation: “I take a day of rest now. I won’t turn on the computer on
Sunday.”

“The other six days, I’'ll work like a dog.”

Lee Felsenstein was gaining confidence and purpose through his role as
toastmaster of the Homebrew Computer Club. His express desire was to

allow the club to develop as an anarchist community, a society of
nonjoiners wed, whether they knew it or not, by the Propaganda of the
Deed. He saw what Moore and French didn’t: for maximum political effect
in the war of the hardware hackers against the evil forces of IBM and such,
the strategy should reflect the style of hackerism itself. This meant that the
club would never be run like a formal bureaucracy.

If he desired a blueprint for failure, he need only look to the south, at the
Southern California Computer Society. Starting up a few months after
Homebrew’s first meeting, SCCS took advantage of the hobbyists in the
electronics-intensive area (almost all the high-tech defense contractors are
in Southern California) to quickly boost its membership to eight thousand.
Its leaders were not happy with the mere exchange of information: they
envisioned group buying plans, a national magazine, and an influence
which would allow hobbyists to dictate terms to the growing
microcomputer industry. Homebrew had no steering committee to confer on
goals and directions; it only incorporated as an afterthought, almost a year
after inception; it had no real dues requirements—only a suggested
contribution of ten dollars a year to get its modest newsletter. But SCCS
had a formal board of directors, whose regular meetings were often sparked
by acrimonious debates on What the Club Should Be. It wasn’t long before
SCCS was publishing a slick magazine, had a growing group buying
program (as much as forty thousand dollars a month), and was considering
changing its name to the National Computer Society.

Bob Marsh, hawking Processor Technology boards, often flew down to the
packed SCCS meetings, and even sat on the SCCS board for a few months.
He later described the difference between the two groups: “Homebrew was
a place where people came together mysteriously, twice a month. It never
was an organization. But SCCS was more organized. Those guys had
megalomania. The politics were terrible, and ruined it.” Somehow, the
particulars never became clear, a lot of money was misplaced in the buying
scheme. The editor they hired to run the slick magazine felt justified in
dropping the publication’s relationship with the club and going off on his
own with the magazine (still publishing as Interface Age); a lawsuit
resulted. The board meetings became incredibly tempestuous, and the bad
feelings spread to the general membership meetings. Eventually the club
faded away.

Though Lee’s plans were no less ambitious than those of the leaders of
SCCS, he realized that this war must not be waged in a bureaucratic,
follow-the-leader fashion. He was perfectly happy dealing with an army of
Bob Marshes and Tom Pittmans, some changing the world by dint of useful
products manufactured in the spirit of hackerism and others just going their
way, being hackers. The eventual goal would be a mass distribution of the
wonderment that Lee Felsenstein had experienced in his basement
monastery. An environment conducive to the Hands-On Imperative. As Lee
told a conference of the Institute of Electrical and Electronic Engineers in
1975, “The industrial approach is grim and doesn’t work: the design motto
is ‘Design by Geniuses for Use by Idiots,” and the watchword for dealing
with the untrained and unwashed public is KEEP THEIR HANDS OFF! . ..
The convivial approach I suggest would rely on the user’s ability to learn
about and gain some control over the tool. The user will have to spend some
amount of time probing around inside the equipment, and we will have to
make this possible and not fatal to either the equipment or the person.”

The piece of equipment to which Felsenstein referred was his Tom Swift
Terminal, which still had not been built in 1975. But it was getting close.
Bob Marsh, eager to expand the scope of his booming Processor
Technology company, offered Lee a deal he couldn’t refuse. “I’ll pay you to
design the video portion of the Tom Swift Terminal,” he told him. That
sounded all right to Lee, who had been doing work in documentation and
schematics for Processor Technology all along. Bob Marsh, in the
company’s first year of business, was adhering to the Hacker Ethic. The
company distributed schematics and source code for software, free or at
nominal cost. (In partial reaction to MIT’s high-priced BASIC, Processor
Technology would develop its own and sell it, along with source code, for
five dollars.) For a time, the company had a socialistic salary structure of
$800 a month for all employees. “We didn’t pay attention to profits or
management of almost any kind.”

Lee was not an employee, choosing to work on a contract basis. “I’d quote
them a price,” Lee later recalled, and “they had to get the price up by a
factor of ten, since I was such a small-time thinker. In terms of money.”

In less than three months, Lee had done a working prototype. Lee’s “video
display module” (VDM) embodied a different philosophy than the other
video board for Altair, Cromemco’s Dazzler. The Dazzler used color, and

http://bit.ly/bUIRJX
http://bit.ly/cgfIX2
http://bit.ly/9QJb0y

produced its flashy effects by constantly going back to the memory in the
main chip of the Altair (or any of the other new computers that used a
similar hardware bus). Steve Dompier liked to use his Dazzler while
running BASIC: it threw up patterns on the screen that gave a Rorschach-
like visual impression of the computer memory at a given time—a cryptic
output which gave clues to program operation, much like the aural
impression given of the TX-0’s memory by the speaker under the console.

Lee’s video display module, though, was a more stridently focused piece of
equipment, designed with the eventual re-formation of Community Memory
in mind. Its output was black and white, and instead of using dots it actually
formed alphanumeric characters. (Lee considered adding another alternative
—hexagrams, as found in the I Ching—but that idea got shelved somehow.)
The cleverest thing about Lee’s VDM, though, was the way it used the
speed of new microprocessor chips to allow the machine’s memory to be
shared between computational duties and display duties. It worked like a
mini-time-sharing system, where the two users were the video display and
the computer itself. The VDM, along with an Altair and other expansion
cards, made the promise of the TV Typewriter a reality, and was an instant
success, even though it was, like almost every Processor Technology
product, not ready till somewhat after the promised delivery date, in late
1975.

One person particularly impressed by the VDM was Les Solomon in New
York. He was not content to bask in the reflected glory of launching Ed
Roberts’ seminal machine. His magazine had followed up on the coup, he
had delivered more computer-related cover stories, and now he was hoping
to present a complete computer video display terminal—a self-contained
item which would have the power of the computer as well as a display
capability. It would be the next step beyond the Altair, a combination
computer-teletype with video. No more goddamn bloody fingers from the
flicking switches on the Altair front panel. In pursuit of the product,
Solomon went to Phoenix to visit Don Lancaster, inventor of the TV
Typewriter (the one Bob Marsh had tried to build in Berkeley), and
convinced him to drive down to Albuquerque to meet Ed Roberts, maybe
the two giants might combine on a terminal project. As Solomon later
described it, the meeting was “bang, clash. A clash of egos. Don refused to
change his design to match Ed’s computer because he said Ed’s was

inefficient. Ed said, ‘No way, I can’t redesign it.” They immediately decided
to kill each other on the spot, and I separated them.”

So Solomon went to Bob Marsh, whose Processor Technology company
already offered the VDM and memory boards and even a “motherboard”
which could replace the basic circuitry of the Altair, and asked, “Why don’t
you put them all together? Let’s make something we can look at.” If Marsh
could deliver an “intelligent terminal” in thirty days, Solomon would put it
on the cover.

Bob talked to Lee, who agreed to do most of the design, and as they
discussed it they realized that what Les Solomon wanted was not merely a
terminal, but a complete computer. In the year since the Altair had been
announced, “hobbyist” computers, sold either in kits or assembled, had
appeared, most notably one called the IMSALI, put out by a company whose
employees had taken Werner Erhard’s est training. Almost all of these
computers used the 100-pin Altair bus as their base. Almost all looked like
the Altair, an oversized stereo receiver with lights and switches instead of
an FM dial. All required some sort of terminal, usually a klunky teletype,
for the user to do anything with it.

For that month, December of 1975, Lee and Bob worked on the design.
Marsh wanted to use an 8080 chip, an idea which Lee at first still opposed
for political reasons (why one centralized silicon dictator?) but came to
accept as he realized that a truly “intelligent” terminal—one which gave
you all the power of a computer—would need a brain. Lee figured he would
use his junkyard-paranoid style to balance out the rest of the design, so that
the brain would not be tempted to run amok. Marsh would often interrupt
Lee’s design-in-progress to reveal his latest inspiration from the “feature
creature.”

Lee later recounted this process in a magazine article: “When [Marsh] had
little else with which to concern himself, he was continually turning up with
new features and economies that he suddenly wanted incorporated in the
design. He would explain the problem or opportunity and then preface his
technical solution with an inevitable, ‘All’s ya gotta do is . . .” Were the
designer a prima donna, the relationship would terminate after the second
such incident, with the designer fuming about ‘professionalism’ and
‘interference.’ Of course since my workshop was in the same room as his, I
could not have gotten very far if I had wanted to stamp out in a rage.”

http://bit.ly/dmHtBO
http://bit.ly/9UwTaK

Marsh, like Lee, was thinking of the machine as a political tool as well as a
good, fun product to design. “We wanted to make the microcomputer
accessible to human beings,” he later said. “The public didn’t know it yet,
but the computer was the coming thing and every home would have one and
people could use computers for useful things. We really weren’t sure what
they were [but] we felt we were participating in a movement, in away.”

Lee suggested that since they were putting the wisdom of Solomon into the
machine, it should be called the Sol. (Les Solomon later commented: “If it
works, they’ll say Sol means ‘sun’ in Spanish. If it don’t work, they’re
gonna blame it on the Jewish guys.”)

Completing the Sol was a process that took six weeks of fourteen to
seventeen-hour days, seven days a week. Lee, just about living on orange
juice, spent endless hours staring at the Mylar spaghetti of the layout on the
fluorescent light table. Meanwhile, one of Bob Marsh’s woodworker friends
had managed to get a bargain on center-cut pieces of walnut, and it was
determined that the sides of the Sol would be made of that classy material.
The prototype boards were finally finished, only fifteen days after Les
Solomon’s original deadline. Two weeks later, a day before the newly
scheduled delivery date in late February 1976 in New York, they were
racing to get all the workings to fit on an Altair-style bus, along with a
kluged-up power supply, a keyboard, and even some preliminary software.
The operating system was written by Processor Tech’s head of software
development, Homebrewer Steve Dompier.

Ever frugal, Marsh had booked himself and Lee on a night flight. Finishing
just in time, they had to race to a heliport in order to make the plane. They
arrived at Kennedy around 6 A.M., frazzled, with the Computer of the
Common Man distributed between two paper bags. Nothing was open at the
airport, even for coffee, so Solomon invited them over to his home in
Flushing for breakfast. By then Les Solomon’s home, particularly his
basement workshop, was achieving legendary status as a proving ground for
thrilling new breakthroughs. He would often entertain the young hardware
hackers who designed these products, and his wife would always recognize
them at a glance. “Because they all had the same thing,” Solomon would
later explain. “That little burning inside the eyeball. She used to say there
was an inside personality, and though they looked like disreputable bums,
you looked them in the face, you looked in those eyes and you knew who

they were. She’d look at them and what would come out was the brightness,
the intenseness.”

The brightness dimmed on that cold February morning: Marsh and
Felsenstein’s terminal didn’t work. After a quick day-trip to New
Hampshire to meet the folks at the new hobbyist magazine Byte, Lee was
able to get to a workbench and find the problem—a small wire had come
loose. They went back to the offices of Popular Electronics and turned it on.
“It looked like a house on fire,” Solomon later said. He had immediately
grasped that he was looking at a complete computer.

The resulting Popular Electronics article spoke of an intelligent computer
terminal. But it was clearly a computer, a computer that, when Processor
Technology packaged it in its pretty blue case with walnut sides, looked
more like a fancy typewriter without a platen. There were new schematics
for the revised kit (under one thousand dollars), which of course were
provided to anyone who wanted to see how the thing worked. Marsh later
estimated that they got thirty to forty thousand requests for schematics.
Orders for the kit kept pouring in. It looked like the Sol would be the
machine that broke the computer out of the hobbyist market and brought
hacking into the home.

The first public display of the Sol was at a show in Atlantic City called PC
’76. It was an odd affair, the first time the tradesmen of this hobbyist-
computer business all got together to show their collective wares. The site
was the Shelbourne Hotel, and in those pre-gambling days the hotel’s glory
was visibly faded. There were holes in the walls, some of the doors to the
rooms had no knobs, the air conditioning didn’t work. Some indignant
elderly retirees living at the hotel almost attacked Steve Dompier in the
elevator when they saw his long hair. Still, it was an exhilarating
experience. Almost five thousand people attended, many of them traveling
from other parts of the country (SCCS ran a large group excursion which
many Bay Area people took advantage of). Homebrew-inspired companies
like Processor Tech and Cromemco finally met similar souls from other
parts of the country, and everybody stayed up far into the night, swapping
technical hints and plotting the future.

The Sol got lots of notice. The hackers all seemed to agree that with its low
profile, its typewriter-style built-in keyboard, and its video display, the Sol
was the next step. Not long afterward, Processor Tech managed to get a Sol

http://bit.ly/bgtkTn
http://bit.ly/aFU8E7

on television—on Tom Snyder’s “Tomorrow” show. The normally abrasive
television personality came face to face with the newest manifestation of
the hacker dream—a Sol computer running a game program written by
Steve Dompier. The game was called Target, and it consisted of a little
cannon on the bottom of the screen by which the user could shoot down a
series of alien spaceships, made of alphanumeric characters, sailing across
the top of the screen. It was a clever little hack, and Steve Dompier, as he
later said, “basically gave it away.” After all, the point of writing those
games was to see people have fun with the machine.

Target was perfect for showing Tom Snyder and a television audience a new
way to look at those monsters shrouded in evil, computers. Imagine these
grungy post-hippies being able to bring a computer over to a television
studio, set it up, and have a total technical illiterate like Tom Snyder do
something with it. Tom went along, and before you could say “commercial
break” he was deeply involved—not in the least kidding—in shooting down
aliens, which would zip across the screen in greater numbers as the game
progressed, and even dispatch little parachutists loaded with grenades. It
gave you a challenge you felt compelled to rise to. As you shot down the
aliens, Tom Snyder was noticing, there was this feeling of . . . power. A
feeling that gave you a small taste of what it must be like to use this
machine to actually create. What mysteries lay within this typewriter-
shaped machine? Even something as simple as Target could get someone
thinking about that. “No one’s given it a definition yet,” Steve Dompier
later said, “but I think there’s a piece of magic there.” In any case, as
Dompier later recalled, “they had to drag Tom Snyder off the computer to
have him finish the show.”

Chapter 12. Woz

Steve Wozniak did not sit near the front of the SLAC auditorium along with
Lee Felsenstein during Homebrew meetings. His participation in the
mapping sessions were infrequent. He had no great social scheme, did not
incubate plans for a Community Memory-style assault on the foundations
of the batch-processed society. Meeting after meeting, Steve Wozniak
would be at the back of the room, along with a loose contingent of
followers of his digital exploits—mostly high school-age computer nuts
drawn by the sheer charisma of his hacking. He looked like a bum. His hair
fell haphazardly on his shoulders, he had the kind of beard grown more to
obviate the time-consuming act of shaving than to enhance appearance, and
his clothes—jeans and sports shirts, with little variation—never seemed to
fit quite right.

Still, it was Steve Wozniak, known to his friends as “Woz,” who would best
exemplify the spirit and the synergy of the Homebrew Computer Club. It
was Wozniak and the computer he’d design that would take the Hacker
Ethic, at least in terms of hardware hacking, to its apogee. It would be the
legacy of the Homebrew.

Stephen Wozniak did not reach his views of hackerism through personal
struggle and political rumination as Lee Felsenstein did. He was more like
Richard Greenblatt and Stew Nelson: a born hacker. He grew up in
Cupertino, California, amidst the curving streets lined with small single-
family homes and the one-story, sparsely windowed buildings that sowed
the crop of silicon which would be so central to his existence. Even in
grammar school, Wozniak could get so engrossed in mathematical
ponderings that his mother had to rap on his head to bring him back to the
real world. He won a science contest at thirteen for building a computer-like
machine which could add and subtract. His friend Alan Baum later
remembered him at Homestead High School: “I saw a guy scribbling these
neat diagrams on a piece of paper. I said, “What’s that?’ He said, ‘I’'m
designing a computer.” He had taught himself how to do it.”

Baum was impressed enough to join this unusual classmate in a quest for
computer access, and through contacts in the engineering-rich Silicon
Valley they managed to get on various time-sharing computers. Every

Wednesday they would leave school and have a friend sneak them into a
computer room at the Sylvania company. They’d program the machine to
do things like printing out all the powers of two and finding the primes. The
two followed the computer industry with the serious passion with which
fanatic sports fans might follow favorite teams. Every time they heard of a
new minicomputer being released, they would write to the manufacturer, be
it Digital or Control Data or whoever, and request the manual, a request
often routinely fulfilled. When the manual came, they would devour it.
They would instantly turn to the part which described the computer’s
instruction set. They would note how many registers the machine had, how
it added, how it did multiplication, division. They could discern from the
instruction set the character of the machine, how easy it would be to use.
Was this a machine to fantasize about? If it was, Woz later recalled, he
would “spend hours in class writing code without ever being able to test it.”
Once, after receiving a manual for a Data General Nova computer, he and
Baum took it upon themselves to redesign it, even sending their new design
to the company, in case Data General wanted to implement the suggestions
of two high school kids.

“It just seemed neat [to design computers],” Baum later recalled. “It seemed
like an important thing to do. The glamour appealed to us. It was fun.” As
high school progressed, and Wozniak scrounged more time on computers to
perfect his skills, Baum would often be astounded at the programming
tricks Woz would come up with. “He seems to have invented all the tricks
on his own,” Baum later said. “Steve looks at things a different way.

He says, ‘Why don’t I try this?’ He’s driven to use all the problem-solving
techniques he can because ordinary design isn’t good enough. He has to be
the best. He’ll do things no one’s thought of, use every trick. Sometimes,
using every trick, you find better ways to do things.”

Woz graduated from high school before Baum did, and went off to college.
But a few years later, both wound up working at the same company, the
Hewlett-Packard computer firm. An extremely high-tech operation, devoted
to high-performance computers which were like Mercedes cars compared to
IBM’s clunky Caddies, this was truly the big leagues, and Woz was very
happy there. He was married, but computers still were his number one
priority. Besides his work at HP designing arithmetic logic for calculator
chips, he also did some extra design work for the Atari game company,

http://bit.ly/dbBgf3

where another high school friend, Steve Jobs, worked. This provided side
benefits, like the time he went into a bowling alley and encountered a coin-
operated videogame with a sign promising a pizza to anyone who scored
over a certain level. After a number of pizzas, his amazed companion asked
him how he had beaten the game so easily. “I designed it,” said Wozniak
between spasms of laughter.

A prankster with an unsettling, sometimes sophomoric sense of humor, Woz
ran a free “dial-a-joke” service from his home, dispensing a seemingly
endless supply of Polish jokes. That was not the only amusement he derived
from the phone. He and Jobs became inspired after reading a 1971 article in
Esquire about a legendary fellow known as Captain Crunch who was a
devoted builder of blue boxes—these were devices which allowed one to
make long-distance calls for free. Jobs and Woz built their own, and not
only used them to make free calls but at one point sold them door-to-door at
the Berkeley dorms. Woz once used his box to see if he could phone the
Pope; he pretended he was Henry Kissinger, and almost reached His
Eminence before someone at the Vatican caught on.

It was a freewheeling life Woz lived, centered on hacking for HP, hacking
on his own, and playing games. He loved to play games, especially
electronic ones like Pong. He also played tennis; like Bill Gosper playing
Ping-Pong, Wozniak got a kick out of putting spin on the ball. As he later
told an interviewer, “The winning isn’t as important as the running after the
ball.” A sentiment that applied to hacking computers as well as tennis.

He dreamed, always, of that computer he might design for himself. He had
already homebrewed his own TV Typewriter, a good first step. His goal
was, of course, a computer built to encourage more hacking—a Tool to
Make Tools, a system to create systems. It would be cleverer than any
preceding it.

It was 1975, and most people, had they heard his dream, would have
thought he was nuts.

Then Alan Baum saw the notice for the Homebrew meeting on a bulletin
board and told Woz about it. They both went. Baum, admittedly too lazy to
build a computer when he was surrounded with state-of-the-art machines at
HP, wasn’t terribly excited. But Woz was thrilled. Here were thirty people
like him—people quixotically fixated on building their own computers.

When Marty Spergel passed out data sheets on the 8008 chip, Woz took one
home and examined it until he realized that those minicomputers he was
thinking of designing—big machines like the ones Digital Equipment made
—were unnecessary. You could do it with microchips, like that Altair he
had seen that night. He got hold of all the literature he could on
microprocessors and wrote for more information, started files on all sorts of
I/0O devices and chips, and began designing circuits for this eventual
computer. The second Homebrew Computer Club newsletter printed his
report on current activities:

Have TVT my own design . . . have my own version of Pong, a videogame called breakthrough, a

NRZI reader for cassettes very simple! Working on a 17-chip TV chess display (includes 3 stored

boards); a 30-chip TV display. Skills: digital design, interfacing, I/O devices, short on time, have
schematics.

The Homebrew atmosphere was perfect for Steve Wozniak; there was
activity and energy focusing on the experimentation and electronic
creativity which were as essential to him as the air he breathed or the junk
food he ate. And even a person not normally taken to socializing could find
himself making friends. Woz often used his home terminal to access the
account that had been set up for Homebrew members on the Call Computer
service. (Call Computer was a service that allowed people with home
terminals to access a mainframe computer by phone.) There was a program
on the computer much like the function on the MIT ITS system, where two
people could “chat” to each other while on the computer, sharing
information. Woz not only used this to communicate electronically with
people, but he hacked into the depths of the system and discovered a way to
break in on other people’s electronic conversations. So when Gordon
French, for instance, was flaming about his new trick with the 8008
Chicken Hawk, his home terminal would inexplicably begin printing out
these semi-obscene Polish jokes, and he never did figure out that
somewhere miles away Steve Wozniak was doubled up in laughter.

Woz also met Randy Wigginton, an athletic, blond-haired fourteen-year-old
computer kid who had managed to get a job at Call Computer. Wigginton
lived just down the street from the cluttered garden apartment Wozniak
shared with his wife, and Woz would drive the youngster to Homebrew
meetings. Since before high school, Wigginton had been in love with
computers. He came to almost idolize Woz for his profound understanding
of computers, and deeply appreciated the fact that the twenty-five-year-old

http://bit.ly/97sI9U

Woz “would talk to anybody about any technical thing,” even to a fourteen-
year-old like Wigginton. Though Randy’s parents worried at the fact that
computers were taking over their son’s life, his obsession deepened, fueled
by Woz’s informal tutorials at Denny’s restaurant on Foothill Drive on the
way back from meetings. They would be driving in Woz’s beat-up Malibu
with its mounds of trash on the back seat—dozens of McDonald’s bags and
technical journals, all soggy from Woz’s strange reluctance to roll up the
windows when it rained—and stop for Cokes, fries, and onion rings. “I
would ask Woz any dumb question just to get him talking—‘How does a
BASIC interpreter work?’—and just listen to him as long as he talked,”
Wigginton later recalled.

Wozniak soon got to know another Homebrew member who worked at Call
Computer—John Draper. A semi-employed engineer, John Draper was
better known as “Captain Crunch,” the “phone phreak” hero of that Esquire
article that excited Woz in 1971. Draper, whose unmodulated voice could
drone like the last whines of a fire alarm, a scraggly dresser who never
seemed to put a comb to his long dark hair, got that moniker after he
discovered that when one blew the whistle that came in the breakfast cereal
by that name, the result would be the precise 2,600-cycle tone that the
phone company used to shuttle long-distance traffic over the phone lines.
John Draper, then an airman stationed overseas, used this knowledge to call
friends at home.

But Draper’s interest went beyond free calls—as an engineer with a latent
hacker tendency toward exploration which would soon prove
overwhelming, he became fascinated with the phone company system. “I do
[phreaking] for one reason and one reason only,” he told the Esquire
reporter who made him famous in 1971. “I’m learning about a system. The
phone company is a System. A computer is a System. Do you understand?
If I do what I do, it is only to explore a System. That’s my bag. The phone
company is nothing but a computer.” It was the same fascination shared by
the Tech Model Railroad Club hackers, particularly Stew Nelson (the MIT
hacker who had hacked phones since childhood); but, not having Nelson’s
access to sophisticated tools to explore it, Draper had to devise his own
jerry-rigged means of access. (The one time Nelson did meet Draper, the
MIT hacker was unimpressed by Draper’s technical ability.) Draper was
helped by discovering a network of phone phreaks with similar interests,

http://bit.ly/bJNmQs

many of them blind men who could easily identify the tones which could
whizz one through the system. Draper was astonished that there were
alternate phone systems from which you could get into test boards,
verification trunks for breaking into people’s conversations (he once startled
a woman he fancied by angrily interrupting her phone chat with another
man), and overseas switching units. He soon figured out how to jump from
one circuit to another, and mastered the secrets of “blue boxes,” which like
Stew Nelson’s adjustment to the PDP-1 a decade earlier, could send tones
over phone lines to get unlimited, free long-distance calls.

But John Draper, who sometimes acted so impulsively that he would seem
an overgrown infant, wailing for his mother’s milk of systems knowledge,
did not have the focused resolve of the MIT hackers—he could easily be
cajoled into yielding the information about blue boxes to people who
wanted to sell the boxes to people who wanted free calls—as Wozniak and
Jobs had done door-to-door in the Berkeley dorms.

Draper’s own phone excursions were more benign. A typical caper would
be to seek out and “map” various access codes for foreign countries, and he
would use those codes to leapfrog from one trunk line to another, listening
to a series of edifying clicks as his signal bounced from one
communications satellite to the next. After the Esquire article, though,
authorities targeted him, and in 1972 he was caught in the act of illegally
calling a Sydney, Australia number that gave callers the names of the top
tunes Down Under. For this first offense, he was given a suspended
sentence.

He turned to computer programming, and soon was a regular hacker. People
would later recall him at People’s Computer Company potlucks, filling his
plate sky-high and stuffing himself. A virulent antismoker, he would also
scream almost painfully when someone lit a cigarette. He was still
interested in phone hacking, and among the subjects he’d talk about at the
potlucks were things like getting ARPAnet access, something he considered
eminently justifiable—“I had some integrations I had to do analytically. The
MIT computer [had a program to help me do it]. So I used it,” he would
later explain.

When the potlucks ended, he gravitated to Homebrew. He was a consultant
to Call Computer, and had arranged for the Homebrew Club to get its
account. He became a huge fan of Wozniak’s hacking, and Wozniak was

thrilled to meet the famous phone phreak who had inspired his own blue
box escapades. It was not unusual to see them together at the back of the
room, as they were one night in late 1975 when Dan Sokol approached
them. Sokol was the long-haired, blond guy who would stand up at
Homebrew, check that no one from Intel was around, and barter off 8080
chips to anyone with good equipment to trade.

Sokol at that time was going broke from using his home terminal to access
the Call Computer account. Since Sokol lived in Santa Cruz, and Call
Computer was in Palo Alto, his phone bill was outrageous; he was
accessing the computer for forty to fifty hours a week. The solution came
one day at the back of the SLAC auditorium when Sokol was introduced to
Wozniak and John Draper.

Not Captain Crunch?

“Yeah, that’s me!” Draper volunteered, and Sokol immediately peppered
him with questions on building a blue box, which would enable him to
make the Santa Cruz—Palo Alto phone calls for free. Though Draper’s
probation specified that he refuse to divulge his phone-hacking secrets, he
was unable to resist when people asked; the hacker in his blood just let the
information flow. “In the next fifteen minutes, he proceeded to tell me
everything I needed to know [to build a blue box],” Sokol later said. But
when Sokol put the blue box together it didn’t work; he let Draper know
and that next Saturday, Draper, accompanied by Steve Wozniak, came over.
They looked over Sokol’s box. “Looks OK,” said Draper, and began
adjusting the tones by ear. This time, when Sokol tried the blue box, it
worked. Sokol would use the box only for connecting to the computer—a
practice which in the hacker mind justifies lawbreaking—and not for
personal gain in trivial matters like calling distant relatives.

Wozniak took a look at Sokol’s “kluge,” the computer he’d gotten from
bartering liberated parts, and they both lamented the high cost of hardware
hacking. Woz complained that even though he worked for Hewlett-Packard
the sales people wouldn’t part with any chips for him. At the next
Homebrew meeting, Dan Sokol presented Wozniak with a box full of parts
that would work with a Motorola 6800 microprocessor. Woz got a 6800
manual and began designs for a computer that would interface with the TV
Typewriter he’d built. When someone brought a computer to a Homebrew
meeting that had video included, he knew that his computer would have to

have video built in, too. He liked the idea of a computer you could play a
videogame on. Around that time the Wescon computer show was being
held, and Wozniak went by the MOS Technology booth and found that they
were selling early models of their new microprocessor chip, the 6502, for
only twenty dollars. Since the chip wasn’t much different from the
Motorola 6800, he bought a handful, and decided that the 6502 would be
the heart of his new machine.

Wozniak was not thinking of building a computer to sell. He was building a
computer to have fun with, to show to his friends. He would mention what
he was doing to his friend Steve Jobs at Atari, who was interested in
terminals and thinking about setting up a company that made them. Every
two weeks Woz would go to Homebrew and see or hear what was new,
never having any problem in following up on technical details because
everyone was free with information. Some things he would incorporate into
the computer; for instance, when he saw the Dazzler board, he knew he
wanted color graphics. He knew, of course, that he wanted a BASIC, and
since the only BASIC that ran on the 6502 then was Tom Pittman’s Tiny
BASIC, and Woz wanted a “big” BASIC, he wrote his own. He gave out
the code to anyone who wanted it, and would even print some of his
subroutines in Dr. Dobbs Journal.

By the time he was finished, he had a computer which was not really a kit
or an assembled computer, but one board loaded with chips and circuitry.
With just that board, you could do nothing, but when you attached a power
supply and a keyboard and a video monitor and a cassette tape player to the
board, you would have a working computer with video display, mass
storage, and input/output. You could then load in Steve Wozniak’s “Integer
BASIC” and write programs. There were several amazing things about his
computer, not the least of which was that he had delivered the power and
capabilities of an Altair and several boards on one much smaller board.
What it took other people two chips to do, Woz did in one. This was not
only fiscally prudent, but a sort of technical machismo reminiscent of the
code-bumming of TMRC days, when Samson, Saunders, and Kotok would
attempt to whittle a subroutine down to the fewest instructions.

Wozniak later explained why the board used so few chips: “I’m into it for
esthetic purposes and I like to consider myself clever. That’s my puzzle, and
I do designs that use one less chip than the last guy. I would think how

http://bit.ly/cdrIw5
http://bit.ly/aymKZ9
http://bit.ly/dh3Zb5

could I do this faster or smaller or more cleverly. If [I work on something]
considered a good job using six instructions, I try it in five or three, or two
if I want to win [big]. I do tricky things that aren’t normal. Every problem
has a better solution when you start thinking about it differently than the
normal way. And I see them—every single day I see several problems, I ask
if it’s a hardware problem, I start looking at a lot of techniques I’ve done
before, counters and feedback or chip registers . . . a bottom-line approach,
looking for little specific end points from a hierarchy . . . it creates basically
a sort of different mathematics. The discoveries did increase my motivation
because I would have something to show off and I hoped that other people
would see them and say, ‘Thank God, that’s how I want to do it,” and that’s
what I got from the Homebrew Club.”

Wozniak brought the board, along with the hardware to make it work, to
Homebrew. He didn’t have a cassette recorder, and while the meeting went
on he sat outside, frantically typing in the hexadecimal code—3,000 bytes’
worth—of the 3K BASIC interpreter into the machine. He would run a test
on part of the program, and the test might clobber it and he’d start over
again. Finally it was running, though it was only a preliminary version
which didn’t have the full command set, and when people drifted over
Wozniak would explain, in his breathless, high-speed drone, what the thing
could do.

It was not long before Wozniak addressed the entire Homebrew Computer
Club, holding his board in the air and fielding questions from the members,
most of them asking how he did this or if he was going to put this feature or
that into it. They were good ideas, and Wozniak brought his setup every two
weeks, sitting in the back of the auditorium where the electrical outlet was,
getting suggestions for improvements and incorporating those
improvements.

Woz’s friend Steve Jobs was very excited about the board; he thought that,
like Processor Technology and Cromemco, they should make the boards in
quantity and sell them. Jobs, at twenty-two, was a couple of years younger
than Wozniak, and not much cleaner. He had what was described as a “Fidel
Castro beard,” often went shoeless, and had a Californian interest in
Oriental philosophies and vegetarianism. He was a tireless promoter, silver-
tongued, a deft persuader. Soon the pair was known as “the two Steves,”
and Wozniak’s computer was known as the Apple, a name conceived by

Jobs, who once worked in an orchard. Though the official address of the as
yet unincorporated Apple company was a mail drop, Jobs and Wozniak
really worked out of a garage. For capital, Jobs sold his Volkswagen bus
and Woz sold his HP programmable calculator. Jobs placed ads in hobbyist
publications and they began selling Apples for the price of $666.66.
Anyone in Homebrew could take a look at the schematics for the design,
Woz’s BASIC was given away free with purchase of a piece of equipment
that connected the computer to a cassette recorder, and Woz published the
routines for his 6502 “monitor,” which enabled you to look into memory
and see what instructions were stored, in magazines like Dr. Dobbs. The
Apple ad even said, “our philosophy is to provide software for our
machines free or at minimal cost.”

While the selling was going on, Steve Wozniak began working on an
expanded design of the board, something that would impress his Homebrew
peers even more. Steve Jobs had plans to sell many computers based on this
new design, and he started getting financing, support, and professional help
for the day the product would be ready. The new version of Steve
Wozniak’s computer would be called the Apple II, and at the time no one
suspected that it would become the most important computer in history.

It was the fertile atmosphere of Homebrew that guided Steve Wozniak
through the incubation of the Apple II. The exchange of information, the
access to esoteric technical hints, the swirling creative energy, and the
chance to blow everybody’s mind with a well-hacked design or program . . .
these were the incentives which only increased the intense desire Steve
Wozniak already had: to build the kind of computer he wanted to play with.
Computing was the boundary of his desires; he was not haunted by visions
of riches and fame, nor was he obsessed by dreams of a world of end users
exposed to computers. He liked his work at HP, and loved the heady
atmosphere of being around the gentleman engineers atop the computer
industry. At one point Wozniak asked his bosses at HP if they wanted him
to design the Apple computer for them—they thought it was unmarketable,
and gave him a release to sell it on his own. When it looked like HP would
be setting up a small computer division, Wozniak applied for a transfer; but,
according to Alan Baum, “the head of the lab wasn’t impressed. He had no
degree.” (Woz had left Berkeley before graduation.)

http://bit.ly/b5V2mP

So he worked on the Apple II, often until 4 A.M.—he would soon be one
more Homebrew member divorced by a computer widow. Designing the
Apple II was no picnic. There were hundreds of problems in making a
ready-to-program, self-contained computer-and-terminal combination;
Wozniak did not have even the moderate resources and cash flow that Bob
Marsh and Lee Felsenstein had when they designed the Sol, the first
computer terminal combination and one of many inspirations for the Apple
I1. But he had a vision of what he wanted his computer to be, and could
draw on help from Homebrew and other experts in the Valley. Finally he
had a prototype working. He and Randy Wigginton carried it—a loose but
fully connected jumble of parts and boards—over to a December 1976
Homebrew meeting in a couple of boxes, along with a clunky Sears color
TV.

Years later, the people attending that Homebrew meeting would recall
different versions of the reaction to Stephen Wozniak’s presentation of the
Apple II. Wozniak, and the other fans of the 6502 chip, came out with the
impression that the computer had thrilled everyone. Others thought it was
simply one more advance in the frantic climb toward an ultimate
homebrewed computer. As Lee Felsenstein put it, “The people in
Homebrew were not sitting around waiting for the Apple to happen: people
were making stuff, talking about stuff, showing stuff off.”

One thing that did not excite the members was the fact that the production
models of the Apple would come only in fully assembled form—why buy a
computer, hardware hackers thought, if you could not build it yourself? The
hard-core old-liners, who respected the solidity and predictability of the
Processor Technology and Cromemco products, thought the Apple
interesting, especially in its economical circuitry and its color capabilities,
but not as good a machine as the Sol, which was based on the familiar
Altair bus (newly named the S-100 bus by a consensus of manufacturers,
notably Marsh and Garland, who were sick of referring to a part of their
computers with the name of a competitor who in most unhackerish spirit
seemed to resent their existence). The Apple had an entirely new bus and a
brand-new operating system, both designed by Woz; plus, there was the
unfamiliar 6502 chip as its brain. Also, a proven company like Processor
Technology seemed more likely to be able to support a machine in the field
than did Apple, which apparently consisted only of two kids in a garage.

Basically, though, the disagreement came down to religious issues of
design. The Sol reflected Lee Felsenstein’s apocalyptic fears, shaped by
post-holocaust science fiction, that the industrial infrastructure might be
snatched away at any time, and people should be able to scrounge parts to
keep his machine going in the rubble of this devastated society; ideally, the
machine’s design would be clear enough to allow users to figure out where
to put those parts.

“I’ve got to design so you can put it together out of garbage cans,”
Felsenstein once said. “In part because that’s what I started from, but
mostly because I don’t trust the industrial structure—they might decide to
suppress us weirdos and try to deny us the parts we need.” This philosophy
was expressed in the VDM and the Sol itself, both of which were products
which did their job cleanly, in a not overly flashy manner, and with a
proletarian lack of sentimentality.

Steve Wozniak’s Apple was another story. Growing up in a conventional
family in the sheltered, suburban California world of single homes, science
fairs, and McDonald’s burgers, Wozniak had inbred security. He felt
comfortable taking chances, letting the design go as far as his imagination
could take him. He created an esthetic wonder by optimizing a limited
number of off-the-shelf electronic parts so that, very ingeniously laid out
and wired, they delivered not only the power of a PDP-1, but color, motion,
and sound.

If Woz had his way, he would add features forever. Just two days before the
meeting, he had jimmied up the machine so that it could display special,
high-resolution color graphics. He did this not by the usual way of adding
special chips to do it, but by figuring out a way to wire the machine so that
the central processing unit, the 6502, could do double duty.

Woz’s genius for optimization sometimes had odd effects. For example, the
way the Apple filled the screen with an image was much different than the
Sol’s method, which filled things in by a proper order; the Apple drew its
screen in a seemingly haphazard, crazy-quilt manner. It did this not by
chance, but because Woz figured out that doing it that way would save an
instruction for each line put on the screen. A clever trick, disdained by some
who thought it indicative of the Apple’s unpredictability and “flakiness,”
but much admired by those who could appreciate the beauty of a
maximized design. All in all, the design reflected a tour de force of hacking,

and a very savvy engineer could see the clever twists of plot, the optimistic
flights of fancy, and the eccentrically cosmic jokes embodied in the
machine.

One person who thought that the Apple II was just super was Chris
Espinosa, a young acquaintance of Randy Wigginton. Espinosa was a
skinny, pale fourteen-year-old high school kid who loved computers and
flunked math classes because he felt that doing homework was a
nonoptimal use of time. He was enthralled by this computer of Steve
Wozniak’s. From the explanation of the syntax of Woz’s special BASIC
commands which came out in the talk, and the explanation of sketches of
the machine’s innards distributed all around, Espinosa jotted down some
BASIC programs, and during the random access period of the meeting,
when people crowded around this new machine, he took over the keyboard
and frantically hammered in some programs that created flashy color
displays on the big old Sears television set Wozniak had dragged along.
Wozniak was thrilled: “I didn’t think somebody else could come up and
show me—‘Look!’—and get excited and show other people and say, ‘Look,
this is easy, you just put this command in and you do this.”” Here was this
high school kid, running programs on this little computer Wozniak had
built. Steve Jobs’ reaction was more pragmatic—he hired Chris Espinosa as
one of the company’s first employees. Like the other teen-age software
specialist, Randy Wigginton, he would earn three dollars an hour.

Steve Jobs was concentrating full-time on building up the Apple company
to get ready to deliver the Apple II the following year and make a big splash
in the marketplace. Jobs was a brilliant talker who, according to Alan
Baum, “worked his tail off . . . he told me about the prices he was getting
for parts, and they were favorable to the prices HP was paying.” As an
engineer, Jobs was mediocre; his strength was as a planner, someone with
vision to see how computers could extend to a point of usefulness beyond
that dreamed of by pure hackers like Steve Wozniak. He was also wise
enough to realize that as a long-haired twenty-two-year-old whose
customary garb was jeans and bare feet, he was not the person to head a
major computer corporation; most of all, he lacked management and
marketing experience. He decided that he would hire top-notch, high-priced
management talent to run Apple Computer.

This was no easy conclusion in those days, when engineers like Ed Roberts
and Bob Marsh thought that building a quality machine was the main
ingredient for success, and management might take care of itself. Ed
Roberts learned the folly of this, the hard way. By mid-1976, Roberts had
tired of the “soap opera” (in his words) that MITS had become, with
frustrated customers, a confusing line of several new and improved versions
of the Altair, hundreds of employees, vicious internal politics, perpetually
panicked dealers, hopelessly muddled finances, and not a decent night’s
sleep in over a year. He had been designing an exciting new Altair 2
computer—a high-powered, compact machine that could fit in a briefcase—
but most of his energies were spent in management squabbles. So he
decided to call it, he later said, “a page in my life—it was time to move on
to the next page,” and he stunned the world of hardware hackers by selling
the company to a big firm called Pertec, By the end of the year, Roberts,
with his million-dollar-plus buyout, left the business and became a farmer
in southern Georgia.

The moral of the story was that engineers can’t necessarily run companies.
But finding people who can isn’t easy, especially when your company, on
the surface at least, looks like a small coven of hippies and high school
kids. Chris Espinosa later noted that, in early 1977, Jobs looked so slovenly
that “they wouldn’t let him on minibuses and airplanes, much less into the
corridors of power of the semiconductor industry,” yet he pulled off a major
coup by getting Mike Markkula on the Apple team. Markkula was a former
marketing whiz, now in his mid-thirties, who’d retired from Intel a few
years back; he had been spending his time since then in various pursuits,
some business-oriented, some as odd as inventing a wheel chart to show
different fingering positions for guitar chords. Jobs asked him to help draw
a business plan for the Apple, and Markkula wound up helping to get
venture capital for the company and signing up as its first chairman of the
board. It was through Markkula that Jobs also got a nuts-and-bolts manager
from Fairchild Semiconductor named Mike Scott to become president of
the firm. So, while the most prominent company with a terminal-computer
on the market, Processor Technology, was struggling with the inexperienced
management of hardware hackers Bob Marsh and Gary Ingram, Apple was
set for growth.

This real-world activity hadn’t really sunk in as far as Steve Wozniak was
concerned. Chris Espinosa and Randy Wigginton would come over to his
house from playing with Wigginton’s half-built version of the Apple II, and
there, on the living room floor of Woz’s small place, they would debug
programs and hardware, write tone generation programs, solder boards. It
was fun. Meanwhile, in his own garage, Jobs was running the day-to-day
operations. “He would come by every once in a while and see what we were
doing, make recommendations, but he didn’t do any designing,” Espinosa
later said. “He would pass judgment, which is his major talent: over the
keyboards, the case design, the logo, what parts to buy, how to layout the
PC board to look nice, the arrangement of parts, the dealers we chose . . .
the method of assembly, the distribution method, everything.”

He was guided in this by the experienced hand of Mike Markkula, who was
taking the Apple venture very seriously. One thing he apparently recognized
was that Steve Wozniak’s commitment was to the computer rather than to
the company. To Woz, the Apple was a brilliant hack, not an investment. It
was his art, not his business. He got his payment by solving puzzles, saving
chips, impressing people at Homebrew. This was fine for hacking, but
Markkula wanted, at the least, Wozniak’s full-time participation in the
company. He told Jobs to tell his partner that if Woz wanted there to be an
Apple Computer company, he must quit HP for all-out work on pre-
production of the Apple II.

It was a tough decision for Wozniak. “This was different than the year we
spent throwing the Apple I together in the garage,” Wozniak later recalled.
“This was a real company. 1 designed a computer because I like to design,
to show off at the club. My motivation was not to have a company and
make money. Mike was giving me three days to say yes or no, was I going
to leave HP. I liked HP. They were a good company and I was secure and
there was a lot of good work. I didn’t want to leave, and I said no.”

Steve Jobs heard the decision, and called Wozniak’s friends and relatives,
begging them to persuade Woz to quit HP and work for Apple full-time.
Some of them did, and as Woz heard the arguments he reconsidered. Why
not work to let the Apple II go out into the world? But even as he agreed to
quit HP and work with Jobs full-time, he told himself that what he was
doing was no longer pure hacking. The truth was that starting a company
had nothing to do with hacking or creative design. It was about making

money. It was “stepping over the boundary,” as Wozniak later put it. Not in
any kind of rip-off—Wozniak believed in his computer and had confidence
in the team that would produce and sell it—but “there’s no way I would
associate Apple with doing good computer design in my head. It wasn’t the
reason for starting Apple. The reason for starting Apple after the computer
design is there’s something else—that’s to make money.”

It was a crucial decision that would symbolize the shift taking place in
small computers. Now that hackers like Wozniak were building machines
with terminals and keyboards, machines that might presumably be useful to
people other than hobbyists, the direction of the budding industry was no
longer in the hands of those hackers. It was almost twenty years after the
TMRC hackers had been introduced to the TX-0. Now, going into business
was The Right Thing.

In January of 1977, the half-dozen or so employees of this new firm, which
would not incorporate until that March, moved into a cramped space on
Stevens Creek Boulevard in Cupertino, within stone-throwing distance of a
7-Eleven and a Good Earth health food restaurant. Wozniak preferred to
walk down the street to go to Bob’s Big Boy. First thing in the morning, he
and Wigginton would go there, order a cup of coffee, take a sip out of it,
and talk about how bad the coffee was, leaving the almost full cup on the
table. It was sort of a ritual. Woz had a fondness for taking packets of
Fizine, a bubbling antacid, and emptying them into the sugar containers at
Bob’s, where he would wait until some unsuspecting customer put what he
thought was sugar in his coffee. It would erupt like a small volcano, and
Woz would get a big kick out of it. But often Woz would just talk, mostly
technical stuff, and sometimes about Apple. Wigginton and Espinosa, both
still in high school, had taken some of Jobs’ planner-like hyperbole to heart
—they all had to some degree—and believed that the Homebrew crusade
was focused right there on Stevens Creek Boulevard. “Everybody was so
much into it.” Wigginton later said. “We were motivated more by a dream
of what was going to happen than by what was actually happening. That we
would be a successful company and were going to come out with the
neatest product that had ever been produced.”

They would often work around the clock, soldering, designing, and
programming. One of Woz’s friends hired as a hardware specialist would
make bird calls as he worked. Woz would pull pranks, play games, and then

do an incredible amount of work in a brief burst. Woz and his friends were
preparing a different kind of computer than the previous bestsellers, the
Altair, Sol, and IMSAL. Steve Jobs and Mike Markkula felt that the Apple’s
market went well beyond hobbyists, and to make the machine look
friendlier. Jobs hired an industrial designer to construct a sleek, low-profile
plastic case in a warm beige earth color. He made sure that Woz’s layout
would be appealing once the lid of the case was lifted. The Apple bus, like
the S-100 bus, was capable of accepting extra circuit boards to make it do
interesting things, but Woz had taken some advice from his friend Alan
Baum and made it so that the eight “expansion slots” inside the Apple were
especially easy for manufacturers to make compatible circuit boards for.
They would be helped, of course, by the “open” architecture of the
machine; true to the Hacker Ethic, Woz made sure the Apple had no secrets
to prevent people from creating on it. Every twist and turn of his design,
every coding trick in his BASIC interpreter (which would be included
inside this machine, hard-wired into a custom circuit chip) would be
documented and distributed to anyone who wanted to see.

At certain points, Woz and Jobs relied on their Homebrew connections for
help. A good example was what happened with a potential problem in
getting FCC approval of the computer. Rod Holt, an engineer from Atari
who had been helping design the power supply, sadly declared that the
machine’s connector to a television set—called the Radio Frequency (RF)
Modulator—gave off too much interference, and would never pass muster
with the FCC. So Steve Jobs went to Marty Spergel, the Junk Man.

Spergel would often show up at Homebrew meetings, holding some esoteric
part and giving it away. “I’d look through my junk box and say, ‘Here’s a
box full of A through Z,” and people would run over at six hundred miles an
hour and before I could even let go of the box it was gone.” He had a nose
for niches in the electronics market, and had recently made a killing by
importing joystick controllers from Hong Kong so that people could play
games like Steve Dompier’s Target on Altairs and Sols. At one point, his
company, M&R Electronics, even introduced a computer kit, but that
product never really caught on. One day Marty visited the one-room Apple
headquarters in Cupertino and talked to Woz, Jobs, and Rod Holt about the
modulator situation. It was clear that Apple could not ship the computers
with the current modulators, so it was decided that Holt would give Marty

Spergel the specifications for the modulator, and he would build them. “My
part was keeping the FCC away from Apple Computer,” Spergel later said.
“So what I did was ship modulators out of my door, Apple shipping Apples
out of their door. But when they got to the dealers, the dealers would sell a
modulator to the end user, and when the end user [went] home he could
plug in the modulator. Consequently, it’s now the end user’s responsibility
[to prevent RF interference].”

It was a classic case of Homebrew sharing, with everybody benefiting, to
get around a bureaucratic obstacle. Spergel asked Jobs about how many
modulators, which M&R would sell under the name “Sup’r Mod” for about
thirty dollars each, would be required. Jobs promised it would be high
volume. Perhaps even fifty units a month.

Several years later, Spergel estimated he had sold four hundred thousand
Sup’r Mods.

In early 1977, Homebrew Computer Club member and editor of Dr. Dobbs
Journal Jim Warren was hatching a rather large scheme himself. Warren was
the short-haired, wide-faced, bearded fellow who collected “technogossip”
as a hobby, and saw Homebrew as an outlet to spew all sorts of rumors
about firms in the “Silicon Gulch,” as he called it. Often, his rumors were
accurate. In addition to his editorial duties and his activities as a silicon
yenta; Warren was in a self-described “dissertation mode” at Stanford. But
the quantum growth rate of the personal computer interested him more than
a doctorate. He was a fan, regarding the homebrew computer movement as
a sort of post-Free University, take-your-clothes-off-and-get-dirty,
humanistic lovefest.

His attendance at the PC 76 computer show in Atlantic City had reinforced
that belief. He hadn’t wanted to go at first, considering that faded resort as
“the crotch of the nation,” but the show’s promoter had called him up and
told him about all the exciting people who’d be there, adding how great it
would be for the editor of Dr. Dobbs to be in attendance, and Jim Warren
felt somewhat frustrated because, with Bob Albrecht paying him only $350
a month to edit the magazine, he had to beg for the money for the trip. He
figured that the big show should be right there, in California. One night he
was talking to Bob Reiling, an engineer at Philco who had quietly taken

http://bit.ly/aSqA8k

over Fred Moore’s duties as editor of the Homebrew newsletter. Warren
asked why the hell all that stuff was happening on the wrong coast when the
undisputed center of the microcomputer world was right here. Reiling
agreed, and Warren decided that they should do it, put on a show which
would also, in hacker spirit, be an exchange of information, equipment,
technical knowledge, and good vibrations. It could have the idyllic
atmosphere of the annual “Renaissance Faire” in Marin County—a genuine
"Computer Faire.”

He was thinking about this show when he got to Atlantic City, which
despite the horrid humidity and the dilapidated facilities was, he later said,
“a complete turn-on. [You met] all the people you’d talked to on the phone
or gotten a letter from who were doing things . . . [you had] tremendous
excitement over meeting the people who were doing the deeds.” They were
a powerful new interfacing feature, these face-to-face meetings, which
provided much fresher information than you got in publications. " Dr. Dobbs
had a six-week lead time and it was driving me crazy. Hell, six months was
half a generation of machines. The opportunity to talk to people about what
they were doing that week was a radical improvement. So it was in that
kind of environment that I announced that we were going to do a Computer
Faire on the West Coast.”

With Reiling as his partner, Warren set out to organize the event. He was
soon daunted by the fact that the ideal location, the Civic Auditorium in San
Francisco, charged a considerable rental fee. Thousands of dollars a day!
After hearing this, Warren and Reiling drove down to the peninsula,
stopping at Pete’s Harbor, an open-air cafe by the bayside marina, a favorite
haunt of Albrecht and the PCC crowd. Warren recalls: “I remember saying,
‘Boy, we’re really getting in deep. Can we afford this?’ And I pulled a
napkin out of a big napkin holder and began scribbling. How many exhibits
to expect. How many attendees. If they drew thirty-five hundred in Atlantic
City, we should double that . . . maybe draw as many as seven thousand.
How much to charge for exhibitors and attendees? Multiply it out. Add it up
...” And Jim Warren was astonished to find out that not only could they
afford it, but they could make a profit out of it. And certainly there was
nothing wrong with that.

Jim Warren got on the phone and began calling the presidents of the biggest
companies in the industry, most of whom he knew personally from

http://bit.ly/aBjIlT

Homebrew or his magazine work. “I phoned up Bob Marsh and said, ‘Hey,
we’re going to do a Computer Faire, are you interested?’ and he said, ‘Hell
yeah: ‘Okay, send some money and we’ll get you exhibit space. Far out.’

We phoned up Harry Garland from Cromemco. ‘This is Jim Warren, we’re
doing a Computer Faire. Want in on it?’ ‘Sure, fine.” ‘Yeah, well, we’ll get
a booth plan to you as soon as we get a chance. Send us the money because
we need some.’ I think it took us four days before we were in the black.”

Warren turned out to have considerable talents as a promoter. He began a
tabloid newspaper specifically to pump up excitement about the Faire, and,
incidentally, to spread his brand of technogossip. It was called Silicon
Gulch Gazette, and there were stories about what the Faire would be like
and little profiles of some of the speakers, and also a profile of
“chaircreature” Jim Warren. The paper boasted of the Faire’s “co-
sponsorship” arrangements with nonprofit groups like the Homebrew
Computer Club, SCCS, PCC and its offshoot, Community Computer Center
(CCCQ), and others. (Joanne Koltnow, who helped out the Faire from her job
at CCC, later said that “everyone was shocked” when they later discovered
that the Faire was a for-profit organization.) With a staff of two secretaries,
Warren and his partners worked almost around the clock as the Faire

progressed.

Also working frantically before the Faire were the eight employees of
Apple Computer. Apple had taken space for two of the $350 ten-foot-square
booths and somehow managed to wangle the prime space near the entrance
to the exhibit hall. The idea was to take advantage of that break to officially
introduce the Apple II at the Faire. Though many around the Homebrew
Club did not take Apple as a serious entry in the market (Gordon French
came by one day and went away scoffing that the company was still
basically two guys in a garage), there was now serious money behind
Apple. One day the new president, Mike Scott, had told Chris Espinosa to
copy the demo software that ran a Breakout game. It was a game Jobs had
done for Atari and Woz had rewritten for Apple BASIC, and at the end of
the game, the program rated your score with a comment. Scott said, by the
way, could Chris also change the comments, making the screen say “Not
Good” instead of “Pure Shit”? The reason was, some Bank of America
people were coming to talk about a line of credit.

http://scr.bi/aU56QR

So the Apple people were prepared to spend for the show. They hired a
decorator to design the booth, and they prepared professional-looking signs
with their spiffy new logo, a rainbow-colored apple with a bite out of it.
They worked frantically down to the last minute before they had to drive
the machines up to San Francisco; they had planned to have four Apple IlIs
running, and those would be the only existing prototypes. On the night of
April 15, the cases arrived, fresh from being made out of injection molds,
As everyone worked to put the innards of the computers into those cases, it
was clear how different the Apple II was from the competition (with the
possible exception of the Sol). Everyone else’s computer looked like the
kind of thing that a combat radio operator might have strapped to his back.
The Apple had no visible screws or bolts (the ten screws mainly hooked
from underneath): just a sleek, warm, friendly variation of a typewriter,
futuristic in its low slope, but not so harshly angled that it looked menacing.
Inside the machine was the evidence of Woz’s hackerish tinkering. He had
gotten the number of chips down to an astonishing sixty-two, including the
powerful 6502 central processing unit. In fact, when you opened the snap-
on lid of the machine, what you saw was Woz’s “motherboard”—the chip-
loaded green circuit card that was the Apple I, souped up—a silvery power
supply the size of a stack of Ritz crackers, and the eight expansion slots
which indicated the infinite uses to which you might apply the machine. By
the time the screws and rivet holes were inserted in the case, and the
motherboards attached, and the base plates bolted, and everything was
tested and the lids were snapped on, it was one in the morning of the
Apple’s official world debut.

On time that morning, the Apples were in the booth, near the entrance.
Most every other company relied on the tried and true yellow-curtained
backdrop with pasted-on cardboard signs spelling out the company name in
block letters. But Apple’s booth gleamed with its six-color Plexiglass logo.

Jim Warren was at the site very early that morning, of course, riding on
adrenaline after his nonstop sixteen-hour days of preparation. Just two days
before, he and Reiling had incorporated the Faire as a for-profit
organization. Though he considered it a “load of bureaucratic bullshit
legalistic crap,” Reiling had pointed out that as a partnership they were
individually liable for any damages, and Warren had gone along. There was
really no doubt as to where Jim Warren was headed by then—as a person

who knew the Hacker Ethic well, he also could see what was happening in
his own Silicon Gulch backyard. The real world had arrived, and it was
time for a merger between the two cultures, hacker and industrial, because
if there was a clash there would be no question who would lose. The
hardware hackers had let the microcomputer cat out of the bag, and the
multimillion-dollar yearly grosses at MITS, Processor Technology, and
IMSAI in 1976 were irrefutable proof that this was a growth industry,
worthy of heavy money and the changes that implied. Jim Warren loved the
hacker spirit, but he was a survivor, too. If he lost money, or suffered some
sort of disaster by sticking to his post-hippie, idealistic, antbureaucratic
phobias, it would not help hackerism one bit. Whereas his making money
would perhaps not be harmful at all to the Hacker Ethic. So even though, as
he later put it, he “didn’t care diddly shit about booths and power and
contracts and all that stuff,” he went with it. The micro world was changing.
He needed no further evidence of this than the scene at the ticket booths
outside of the grand, Greek-columned edifice that was the San Francisco
Civic Center.

On that sunny, bright April day in 1977, there were thousands of people
standing in five long lines, snaking around both sides of the block-long
auditorium and meeting in the back. A block-long beaded necklace of
hackers, would-be hackers, people curious about hackers, or people wanting
to know what was going on in this freaky new world where computers
meant something different than a guy in a white shirt and black tie and fat
billfold and dulled-out expression which all added up to IBM. True, the
lines were there in large part because Jim Warren’s inexperience had
resulted in a total screw-up in preregistration and ticket sales. For instance,
instead of one fixed price for day-of-sale entry, there were different rates—
eight dollars for general public, four dollars for students, five dollars for
Homebrew Computer Club members, and so on. And because it cost ten
dollars an hour for cashiers, Warren had decided not to hire too many
extras. Now, with almost twice as many people arriving as anticipated, and
everyone seeming to have arrived early, it was the kind of situation which
could get out of hand.

But it did not get out of hand. Everyone was looking around in disbelief that
all these people were into computers, that the secret hacker lust they’d had
for machines, often as solipsistic little kids, tiny Greenblatts or Wozniaks,

was not so aberrant after all. Loving computers was no longer a forbidden
public practice. So it was no ordeal at all, standing with these people
waiting to get into the First Annual West Coast Computer Faire. As Jim
Warren later recalled: “We had these lines running all around the fucking
building and nobody was irritated. Nobody was pushy. We didn’t know
what we were doing and the exhibitors didn’t know what they were doing
and the attendees didn’t know what was going on, but everybody was
excited and congenial and undemanding and it was a tremendous turn-on.
People just stood and talked—*‘Oh, you’ve got an Altair? Far out!” “You
solved this problem?’ And nobody was irritated.”

When people got inside the hall, it was wall-to-wall technofreak, the sounds
of voices mingling with the clatter of printers and the tinny tones of three or
four different strains of computer-generated music. If you wanted to move
from one place to another, you would have to gauge which part of the
constant flow of people was moving in which direction, and you would
shoulder your way into the proper stream and go with it until you reached
your destination. Almost every one of the nearly two hundred exhibitors
had packed booths. Particularly Processor Technology, which was running
Steve Dompier’s Target game on Sol computers. People were also pushing
into IMSAI’s booth to get biorhythms charted. And right there at the
entrance, the wave of the future, was Apple, running a kaleidoscopic video
graphics program on a huge Advent display monitor. “It was crazy,” Randy
Wigginton, who was working in the booth with Woz and Chris Espinosa
and the others, later recalled. “Everybody was coming by and asking for
demonstrations, and it was fun because people were excited about it.”

It wasn’t only the Apple that people were excited about. It was the triumph
of the hardware hackers in making their passion into an industry. You could
see the excitement as people looked around disbelievingly at their sheer
numbers—all these people?—and there was a huge roar when Jim Warren
got on the public-address system and announced the attendance—the
weekend’s total was almost thirteen thousand. He was immediately
followed by Computer Lib author Ted Nelson, feeling no doubt like a once
lonesome guru who in one fell swoop was united with a sea of disciples.
“This is Captain Kirk,” Nelson said. “Prepare for blastoff!”

Warren himself was long past lift-off. He shot around the Faire on a pair of
roller skates, marveling at how far the movement had come. For him, as for

the people at Apple, Processor Technology, and dozens of other places, this
success had very welcome financial implications; soon after the Faire was
over, after recovering from a period of what he would later call “ecstatic
collapse,” Warren would be considering whether to sink his profits into a
Mercedes SL. He would finally decide to buy forty acres of land he was
coveting in the hills overlooking Woodside, and within a few years he
would have built a huge wooden structure with a redwood deck and hot tub
overlooking the Pacific; it would be his home and computerized work
quarters, from which a staff of over a dozen would prepare a small empire
of publications and computer shows. Jim Warren understood the future.

The first Computer Faire was to the hardware hackers an event comparable
to Woodstock in the movement of the sixties. Like the concert at Max
Yasgur’s farm, this was both a cultural vindication and a signal that the
movement had gotten so big that it no longer belonged to its progenitors.
The latter revelation was slow to sink in. Everyone was flying, moving
from booth to booth, seeing all sorts of ground-breaking hardware and
mind-blowing software, meeting people you could swap subroutines and
wire-wrapping schemes with, and attending some of the nearly one hundred
workshops, which included Lee Felsenstein on the Community Memory
movement, Tom Pittman on computer languages, Bob Kahn on the
Lawrence Hall of Science computing program, Marc LeBrun on computer
music, and Ted Nelson on the triumphant future.

Nelson was one of the keynote speakers at a banquet held at the nearby St.
Francis Hotel. The name of his talk was “Those Unforgettable Next Two
Years,” and looking over that mass of people drawn by micros, he opened
by saying, “Here we are at the brink of a new world. Small computers are
about to remake our society, and you know it.” As far as Nelson was
concerned, the battle was won—the hackers had overthrown the evil
Prophet. “IBM will be in disarray,” Nelson crowed. It was truly a wonderful
world about to unfold:

http://bit.ly/9KXDIS
http://bit.ly/a2cCaJ

For now, though, the dinky computers are working magic enough. They will bring about changes in
society as radical as those brought about by the telephone or the automobile. The little computers
are here, you can buy them on your plastic charge card, and the available accessories include disc
storage, graphic displays, interactive games, programmable turtles that draw pictures on butcher
paper, and goodness knows what else. Here we have all the makings of a fad, it is fast blossoming
into a cult, and soon it will mature into a full-blown consumer market.

FAD! CULT! CONSUMER MARKET! The rush will be on. The American manufacturing
publicity machine will go ape. American society will go out of its gourd. And the next two years
will be unforgettable.

Chapter 13. Secrets

Ted Nelson’s speech was not the crazed outburst of a planner overdosing on
large-scale integration. The unforgettable next two years were indeed
marked by unprecedented growth in the industry that was almost
unwittingly started by the hardware hackers. The hackers in Homebrew
either went into business, trotted off to one of the new companies forming
in the opening stages of this microcomputer boom, or kept doing what they
had always been doing: hacking. The planners, those who had seen the
advent of the small computer as a means of spreading hacker spirit,
generally did not pause to evaluate the situation: things were moving too
fast for contemplation. Left by the wayside were purists like Fred Moore,
who once wrote in a treatise entitled “Put Your Trust in People, Not
Money” that money was “obsolete, valueless, antilife.” Money was the
means by which computer power was beginning to spread, and the hackers
who ignored that fact were destined to work in (perhaps blissful) solipsism,
either in tight, ARPA-funded communities or in meager collectives where
the term “hand-to-mouth” was a neat analogy for a “chip-to-machine”
existence.

The West Coast Computer Faire had been the resounding first step of
hardware hackers making their move from Silicon Valley garages into the
bedrooms and dens of America. Before the end of 1977, the other shoe
dropped. Megamillion-dollar companies introduced computer-terminal
combinations requiring no assembly, computers to be sold like appliances.
One of those machines was the Commodore PET, designed by the man who
devised the same 6502 chip that was the core of the Apple. Another was the
Radio Shack TRS-80 computer, a computer stamped in plastic, assembly-
lined, and sold en masse in hundreds of Radio Shack stores across the
country.

No longer was it a struggle, a learning process, to make computers. So the
pioneers of Homebrew, many of whom had switched from building
computers to manufacturing computers, had not a common bond, but
competition to maintain market share. It retarded Homebrew’s time-
honored practice of sharing all techniques, of refusing to recognize secrets,
and of keeping information going in an unencumbered flow. When it was
Bill Gates’ Altair BASIC that was under consideration, it was easy to

http://bit.ly/cMuSuS
http://bit.ly/cI8DVi
http://bit.ly/bXRppa

maintain the Hacker Ethic. Now, as major shareholders of companies
supporting hundreds of employees, the hackers found things not so simple.
All of a sudden, they had secrets to keep.

“It was amazing to watch the anarchists put on a different shirt,” Dan Sokol
later recalled. “People stopped coming. Homebrew [still moderated by Lee
Felsenstein, who kept the hacker fire burning] was still anarchistic: people
would ask you about the company, and you’d have to say, ‘I can’t tell you
that.” I solved that the way other people did—I didn’t go. I didn’t want to
go and not tell people things. There would be no easy way out where you
would feel good about that.”

Homebrew still drew hundreds to its meetings, and its mailing list was over
fifteen hundred—but there were many novices there, with problems that
weren’t challenging to old hands who’d built machines when machines
were nearly impossible to build. It no longer was essential to go to
meetings. Many of the people involved in companies like Apple, Processor
Tech, and Cromemco were too damned busy. And the companies
themselves provided the communities around which to share information.

Apple was a good example. Steve Wozniak and his two young friends,
Espinosa and Wigginton, were too busy with the young firm to keep going
to Homebrew. Chris Espinosa later explained: “[After the Computer Faire]
our attendance at Homebrew started dropping off and ended completely by
the end of the summer of 1977. We, in effect, created our own computer
club [at Apple] that was more focused, more dedicated to producing things.
When we started getting involved with Apple, we found what we wanted to
work on and we wanted to spend all our time perfecting it, expanding it,
doing more for it, and we wanted to go into one subject deeper rather than
covering the field and finding out what everybody was doing. And that’s
how you make a company.”

In some senses, the “computer club” at Apple’s Cupertino headquarters
reflected the same community feeling and sharing of Homebrew. The
company’s formal goals were traditional—making money, growing, gaining
market share—and some secretiveness was required even of Steve
Wozniak, who considered openness the central principle of the Hacker
Ethic he fervently subscribed to. But this meant that the people within the
company could be even closer. They had to depend on each other to swap
suggestions for floating-point BASIC or parallel printer cards. And

sometimes, the community was loose enough to accept some old
Homebrew friends. For instance, in mid-1977, John Draper appeared.

The former “Captain Crunch” was in a bad way. Apparently certain
authorities had objected to his willingness to share phone company secrets
with anyone who bothered to ask; FBI agents trailed him and, according to
his accounts of the incident, planted an informer who talked him into a
blue-box escapade while agents waited to bust him. For this second
conviction, he was sentenced to a brief jail term, and incarceration did not
agree with the normally contentious Captain, a person taken to screaming
like a six-foot-tall hyena if someone lit a cigarette twenty feet away from
him. After his release, he needed legitimate work badly, and Woz got him
hired as a consultant, designing a telephone interface board, something that
would plug into one of the Apple’s expansion slots to allow you to connect
the phone to your computer.

Draper happily worked on the board. The people at Apple were amused by
his programming style, which alternated bursts of brilliance with bizarre
pedantic detours. Draper was a “defensive” programmer. Chris Espinosa,
who had the unenviable task of trying to keep an eye on the unpredictable
Captain, would later explain: “Say you’re writing a program and you
discover you’ve done something wrong, like every time you try to use the
program, a button pops up. Most programmers go in, analyze their program,
find out what causes the button to pop up and cure it so it doesn’t do that.
Draper would go in and code around the button so when the bug occurs, the
program knows it’s made an error and fixes it, rather than avoiding the error
in the first place. The joke is, if Draper were writing math routines for
addition and he came up with the answer 2 + 2 = 5, he would put a clause in
the program, if 2 + 2 = 5, then that answer is 4. That’s generally the way he
writes programs.”

But while the hackers at Apple were amused that the strange style of John
Draper was turning out a featureful product, the people in charge of the
business end of Apple got wind of the capabilities of Draper’s design. They
did not like it. Apple was not a showcase for tricks; this was not Homebrew.
And John Draper’s board could do some considerably neat tricks; not only
did it interface with the phone, but it generated official phone company
tones—it was a computer-driven blue box. What Stew Nelson had done
with the PDP-1 over a decade ago could now be done in the home. The

hacker instinct would have been to explore the capabilities of this hardware,
which would enable you to explore systems all over the world. But though
Apple felt it could benefit by the Hacker Ethic in distributing information
about the innards of the machine and distributing its computers as complete
systems to explore, it was not in the business of promoting pure hackerism.
It was, after all, a business, with a line of credit and a truckload of venture
capital provided by men in three-piece suits who did not relate to concepts
like phone hacking. “When Mike Scott discovered what [Draper’s board]
could do,” Espinosa later said, “he axed the project instantly. It was much
too dangerous to put out in the world for anybody to have.”

Killing that project was well in keeping with the propriety of the booming
Apple Computer Company, which was selling computers like mad, and
becoming respectable at a pace which had the Homebrew alumni dazzled.
Randy Wigginton, for instance, realized by late summer in 1977 that this
company had far eclipsed your normal growth story. That was when
everyone went to Mike Markkula’s for a party to celebrate shipping a
quarter-million dollars’ worth of equipment that month. It was only the
beginning of a climb that turned Apple into a billion-dollar company within
five years.

During this period when everybody at Apple was celebrating the increasing
revenues—opiles of money that would make many of them so rich that they
would be beyond millionaires, in the ozone of Croesus Mode, where wealth
is counted in units of tens of millions—John Draper was at home, playing
with his Apple. He set the completed board into his Apple II. He connected
it to the telephone line. And he set it up so that it would “scan” entire
telephone exchanges, looking for telltale tones which would inform him
that a computer was on the other side of the line. A virgin computer that a
hacker could enter and explore. He had hacked a program by which the
computer could dial on its own. “It seemed like an innocent thing to do,” he
later said. On its own, the computer began making a hundred and fifty calls
an hour. Every time it discovered a computer at the other end of the line, the
teletype printer attached to the machine would grind out the telephone
number. After nine hours, John Draper would have a printout of every
computer number in an entire three-digit exchange. “I just collected them,”
he would later explain. The setup could also detect WATS Extenders service
numbers, with which one could make free long-distance calls. (It was John

http://bit.ly/cQRqWJ

Draper’s system which later would be the model for a young hacker’s
computer break-in in the movie WarGames.)

Unfortunately, the ever vigilant system that was the phone company had
developed some new phone-hacking detection equipment. John Draper’s
unprecedented output of over twenty thousand phone calls in under a week
not only signaled that something was awry, but also exhausted the paper
supply in the phone company printer which logged such irregularities. John
Draper was confronted with another visit from the authorities. It was his
third conviction, his first using a home computer. An inauspicious
beginning for a new era of phone hacking with personal computers.

Some thought that the establishment of an industry of low-cost personal
computers meant the war was won. They believed the widespread
proliferation of computers and their innate lessons of openness and creative
innovation would, in and of itself, spur the Hacker Ethic. But for Lee
Felsenstein, the war was just beginning.

His consuming passion was the resurrection of Community Memory. He
still stuck to the dream whose glory he had glimpsed in the experiment at
Leopold’s Records. It was perhaps exquisite irony that the development of
the small computer industry had been aided in part by the introduction of
the Pennywhistle modem, the VDM video board, and the Sol computer, all
pieces of the mythic Tom Swift Terminal, a machine which could reach
fruition only in the publicly accessed terminals of Community Memory
branches. Irony, because a growing consensus among Lee’s peers held that
the once bold Community Memory concept—and the Tom Swift Terminal
itself—had been supplanted by the rapid acceptance of home computers. It
was fine to desire a public terminal to be the heart of an information center
that would be an “amalgam of branch libraries, game arcades, coffee
houses, city parks, and post offices.” But why would people leave the house
to go to a CM terminal when they could use an Apple Computer, along with
a telephone interface right there at home, to communicate with any database
in the world?

The Tom Swift Terminal itself might have been shelved, but Lee still held
to his goals. The science-fiction novel in which he was protagonist was
taking bolder plot twists, confirming that it was a major work indeed. In the

two “unforgettable years” since the triumphant Computer Faire, he had seen
a company crumble. Processor Technology had suffered too much growth
and too little sound management to survive. Through the whole year of
1977, orders for the Sol came in at a rate beyond the capacity of the
company to fulfill them. In that fiscal year, Bob Marsh later estimated, the
company did five and a half million dollars’ worth of sales, selling perhaps
eight thousand machines. It moved into a clean, thirty-six-thousand-square-
foot headquarters east of the Bay Area.

But even as the future looked bright, with Bob Marsh and Gary Ingram
figuring that if sales got up to fifteen or twenty million they’d sell out and
get rich, the company was doomed by lack of planning and failure to
address the competition of the new, cheaper, sleeker machines like the
Apple, the PET, the TRS-80. Marsh later said that the company was
thinking of going into that lower end of the market, but was intimidated by
the power of the competing firms that had announced complete computers
in the $1,000-and-under range. He figured that PT could sell the Sol as a
more expensive, quality item, like MacIntosh amplifiers in the audio
business. But the company missed the chance to extend its equipment
effectively when its disk drive storage system proved to be unreliable. And
it was unable to deliver software for its machines on time. There would be
announcements of upcoming products in the PT newsletter, a spirited
publication which mixed bug reports with cryptic quotations (““There are
no Jewish midgets’—Lenny Bruce”). Months late, the products, either
software programs or hardware peripherals, would still be unavailable.
When PT had an offer to sell Sol computers through a new chain of
computer stores called Computerland, Marsh and Ingram refused,
suspicious because the owners of the chain were the same people who ran
the company (also struggling, soon to be bankrupt) which made the IMSAI
computer. Instead of Sols being sold as computer-terminals at
Computerland, Apples were.

“It’s embarrassing to think how Mickey Mouse we were sometimes,” Marsh
admitted later. There was no business plan. Things would not get delivered
on time, credit would not be extended to priority customers, and the
constant PT errors in delivery and unprofessionalism with suppliers gave
the company a reputation for arrogance and greediness.

“We were just violating some of the basic laws of nature,” Marsh later said.
When sales flattened, the money to run the company wasn’t there. For the
first time they looked for investors. Adam Osborne, an already established
gadfly of the young industry, introduced them to people who were willing
to invest, but Marsh and Gary Ingram did not want to give up a substantial
percentage of the company. “Greedy,” Osborne later said. Some months
later, when the company was almost bankrupt, Marsh came back to accept
the offer. It was no longer open.

“We could have been Apple,” Bob Marsh said, years later. “A lot of people
say that 1975 was the year of the Altair, 76 was the IMSAI, and 1977 was
the Sol. The dominant machines.” But by the end of those “unforgettable
two years,” the engineer-managed companies that made those machines,
machines available in kit form as well as assembled, machines which
hardware hackers loved to play with . . . were gone. The dominant small
computers in the market were Apples, PETs, TRS-80s, in which the act of
hardware creation was essentially done for you. People bought these
machines to hack software.

Lee Felsenstein was perhaps the biggest financial beneficiary in Processor
Technology’s short history. He had never been an official employee, and his
royalties on the Sol eventually totaled over one hundred thousand dollars.
He was never paid the last twelve thousand in royalties. Most of the money
went toward the new incarnation of Community Memory, which had set up
a headquarters in a large, two-level, barn-like loft structure in a West
Berkeley industrial area. Efrem Lipkin and Jude Milhon of the original
group were among the dedicated members of the new CM Collective, all of
whom vowed to work for long hours and subsistence wages to establish
permanently the thrilling experiment they’d worked on earlier in the
decade. It required extensive work in developing a new system; the
collective decided that funding could come, in part, by writing software
products for these small computers.

Meanwhile, Lee was broke. “The rational thing for me to do would have
been to shut down [my engineering] business and get a job. But I didn’t,” he
later said. Instead, he worked for almost nothing, designing a Swedish
version of the Sol. His energies were divided between that, the hopelessly
earnest Community Memory meetings, and monthly Homebrew meetings,
which he still proudly moderated. The club was famous now that

microcomputers were being acclaimed as the chief growth industry of the
country. And the prime example of this was Apple Computer, which would
gross $139 million in 1980, the year it went public, making Jobs and
Wozniak worth a combined sum of well over $300 million. Croesus Mode.

That was the year that Lee Felsenstein ran into Adam Osborne at the
Computer Faire. Jim Warren’s show was now an annual event pulling in
fifty thousand people in a weekend. Osborne was a trim, Bangkok-born
Englishman in his forties with a thin brown mustache and an imperious
vanity which propelled his column in trade magazines (entitled “From the
Fountainhead”) to notoriety. A former engineer, he made a fortune
publishing books on microcomputers when no one else was. He would
sometimes bring boxes of them to Homebrew meetings and go home with
empty boxes and wads of cash. His books eventually sold hundreds of
thousands, McGraw-Hill bought his publishing house, and now, “with the
money burning a hole in my pocket,” as he said, he was looking to go into
the manufacture of computers.

Osborne’s theory was that all the current products were too much oriented
toward hackers. He did not believe that people cared to know about the
magic that hackers found within computers. He had no sympathy for people
who wanted to know how things worked, people who wanted to explore
things, people who wanted to improve the systems they studied and
dreamed about. In Adam Osborne’s view, there was nothing to be gained by
spreading the Hacker Ethic; computers were for simple applications, like
word processing or financial calculation. His idea was to provide a no-frills
computer which would come with all you needed to get going—QOsborne
thought people were happiest when relieved of anxiety-producing choices,
like which word-processing program to buy. It would be cheap, and small
enough to carry on a plane. A portable Volkscomputer. He asked Lee
Felsenstein to design it. Because the machine he wanted need only be
“adequate,” designing it should not be too hard a task. “Five thousand
people on the peninsula could have done it,” Osborne later said. “I
happened to know Lee.”

So for twenty-five percent of this as yet unformed company, Lee
Felsenstein designed the machine. He chose to interpret Osborne’s
requirement that the machine be “adequate” to mean he could do his usual
job of junkyard engineering, making sure that the design was solid enough

to support well-tested components in an architecture that eschewed tricks
and detours. “To be able to make a design that is good and adequate, works
well, and is buildable and cheap and contains nothing fancy is an artistic
problem,” he later said. “I had to be crazy enough and broke enough [to try
it].” But Lee knew that he could fulfill the requirements. As usual, there
was fear in the equation: Lee had an admittedly irrational fear of Adam
Osborne; he guessed he identified Adam with the authority figures of his
childhood. There was no way that these two could communicate deeply.
Once Lee tried to explain Community Memory to him—his real career—
and Osborne “didn’t get it,” lamented Lee. “He may be one of the last
people to get what Community Memory is about when he sees it, uses it.”
Yet Lee worked hard for Adam Osborne, working in a space in the
Community Memory headquarters, and in six months he was done.

He had fulfilled, he thought, the technical requirements as well as the
artistic ones in building the machine which was known as the Osborne 1.
Critics would later say that the plastic-cased machine had an uncomfortably
small five-inch screen, and note other small problems, but when the
computer first came out praise was plentiful and the Osborne Computer was
soon a multimillion-dollar company. And, out of nowhere, Lee Felsenstein
was worth over twenty million dollars. On paper.

He did not radically change his lifestyle. He still lived in the spartan
second-floor apartment renting for under two hundred a month. He still
washed his clothes in dimly lit laundromats near Osborne’s offices in
Hayward. The only concession was his driving a company car, a new
BMW. But perhaps due to age, some therapy sessions, and maturity, as well
as his tangible success, he had grown in other ways. In his late thirties, he
described himself as “still catching up, undergoing experiences you
typically undergo in your early twenties.” He had a steady girlfriend, a
woman who worked at Osborne.

Of the Osborne stock that Lee sold, almost all went to Community Memory.
Which, in the middle of the microcomputer boom, was going through some
rough times.

Much of the collective’s energies were going toward developing software to
sell to make money for the establishment of the nonprofit Community
Memory system. But a debate was raging within the group as to the
propriety of selling the software to anyone who cared to use it, or restricting

http://bit.ly/ayo85V

it so that it would not benefit any military efforts. It was not clear that the
military were clamoring to buy this software, which included a database
and communications applications more useful for small businesses than
weapon-bearers. But these were hardened Berkeley radicals, and
discussions like these were to be expected. The person worrying most about
the military was Efrem Lipkin, the hacker blessed with computing wizardry
and cursed with a loathing for the uses to which computers were put.

Lee and Efrem were not getting along. Efrem was not charmed with the
personal computer industry, which he considered “luxury toys for the
middle class.” He considered the Osborne computer “disgusting.” He
resented Lee’s working for Osborne while he and the others were working
for slave stipends at CM. The fact that much of the money for CM came
from Lee’s work on that machine bothered Lipkin like a bug in a program, a
fatal error which could not be coded away. Lipkin was a hacker purist;
while he and Lee agreed on the spirit of Community Memory—using
computers to bring people together—he could not accept certain things.
Efrem Lipkin told the group that one thing he could not accept was any
sales of the software he’d written to the military.

The problem ran deeper than that. Personal computers like the Apple and
the Osborne, along with modems in the style of Lee’s Pennywhistle, had
engendered other examples of the kind of thing Community Memory was
attempting. People were using computers for communication. And the
original mythos of Community Memory, the ideal of machines of loving
grace in a field watching over us, had been largely fulfilled—in less than
ten years, computers had been demystified. They were no longer evil black
boxes to be feared. They were even hip—in due time, computer technology
would not only be commonplace around Leopold’s Records, but would
probably be sold there, in software that replaced records in some of the
racks. Jude Milhon, close friend to both Lee and Efrem, a person who’d
given a substantial portion of her life to Community Memory, could hardly
get the words out when she discussed it, but she knew: they’d blown it. The
Revolt in 2100 was over, and it wasn’t even 1984 yet. Computers were
accepted as convivial tools, and the power of computers was accessible at
thousands of retail stores, for those who could pay.

Racked with frustration, Efrem Lipkin blew up during a meeting. He laid
down what he considered the failure of the group. “Basically I thought the

thing was falling apart,” he later said. He was particularly hard on the topic
of Lee’s money financing the group.

Lee told him that this tainted money was paying Efrem’s salary.
“Not anymore,” said Efrem. And the hacker was gone.

Less than a year later, there was no more Osborne Computer. Management
bungling worse than at Processor Technology had made the firm the first of
many major financial disasters in what would be called “The Great
Computer Shakeout.” Lee’s paper millions would be gone.

But he would still have his dreams. One great battle had been won. Now,
perhaps two thirds into the epic science-fiction novel, it was time to gather
forces for a final spin into greatness. Sometime before Osborne Computer
went bankrupt, Lee had been lamenting the opaque nature of the most
recent computers, the lack of necessity that would lead people to actually go
inside the chips and circuit boards and wire them. Hardware construction,
he was saying, is an objectified way of thinking. It would be a shame if that
went by the wayside, were limited only to the few. He did not think it would
be gone. “[The magic] will always be in there to a certain extent. You talk
about deus ex machina, well, we’re talking about deus in machina. You start
by thinking there’s a god in the box. And then you find there isn’t anything
in the box. You put the god in the box.”

Lee Felsenstein and the hardware hackers had helped make the transition
from the world of the MIT hacker, where the Hacker Ethic could flourish
only within the limited, monastic communities around the machine, to a
world where the machines were everywhere. Now, millions of computers
were being made, each one an invitation to program, to explore, to
mythologize in machine language, to change the world. Computers were
rolling off assembly lines as blank slates; a new generation of hackers
would be seduced by the power to fill the slates; and the software they
created would be presented to a world which saw computers in quite a
different way than it had a decade before.

Part lll. Game Hackers: The Sierras: The
Eighties

Chapter 14. The Wizard and the Princess

Driving northeast out of Fresno on Route 41 toward the South Gate of
Yosemite, you climbed slowly at first, through low fields dotted with huge,
pitted boulders. About forty miles out was the town of Coarsegold; soon
after, the road rose steeply, topping a mountain called Deadwood. Only
after beginning the descent from Deadwood did one see how Route 41
formed the center strip of Oakhurst. Population under six thousand. A
modern poly-mart named Raley’s (everything from health foods to electric
blankets). A few fast-food joints, several clusters of specialty stores, two
motels, and a real-estate office with a faded brown fiberglass statue of a
bear outside it. After a mile or so of Oakhurst, the road continued its climb
to Yosemite, thirty miles away.

The bear could talk. Push a button on its base, and you got a low, growling
welcome to Oakhurst, a pitch on the price of land. The bear did not mention
the transformation of the town by the personal computer. Oakhurst had seen
hard times, but in 1982 it boasted one major success story. A company
built, in a sense, by the hacker dream, and made possible only by the
wizardry of Steve Wozniak and his Apple Computer. A company that
symbolized how the products of hacking—computer programs which are
works of art—had been recognized as such in significant sectors of the real
world. The hackers who played Spacewar at MIT did not envision it, but the
offspring of that PDP-1 program, now that the hardware hackers had
liberated the computer and made it personal, had spawned a new industry.

Not far from Talking Bear was an inconspicuous two-story building
constructed for offices and shops. Except for a small beauty parlor, a
lawyer’s office, and the tiny local office of Pacific Gas and Electric, the
entire building was occupied by the Sierra On-Line company. Its main
product was code, lines of assembly-language computer code written on
floppy disks which, when inserted into personal computers like the Apple,
magically turned into fantastic games. A specialty of the company was
“Adventure” games, like that perfected by Don Woods at the Stanford Al
lab; this company had figured out how to add pictures to the game. It sold
tens of thousands of these disks.

http://bit.ly/a0Te1A
http://bit.ly/bQayuZ
http://bit.ly/cPu1tE
http://bit.ly/9taXRV

As of this August day in 1982, On-Line had around seventy employees.
Things changed so quickly that on any given day it was difficult to give an
exact figure, but this was over triple the employees it had a year ago. A year
before that, there were only the two founders, Ken and Roberta Williams,
who were, respectively, twenty-five and twenty-six when they started the
company in 1980.

Ken Williams was sitting in his office. Outside was his red Porsche 928. It
was another day to make some history and have some fun. Ken’s office
today was relatively neat; the piles of papers on the desk were only several
inches high, the sofa and chairs facing the desk were clear of floppy disks
and magazines. On the wall was a lithograph, homage to Rodin’s Thinker:
instead of that noble human frozen in cerebration was a depiction of a robot
contemplating a rainbow-colored Apple.

Ken Williams, meanwhile, was characteristically sloppy. He was a burly,
big-gutted man, with swollen features that overwhelmed his friendly blue
eyes. There was a hole in his red T-shirt and a hole in his jeans. His
shoulder-length, dark-blond hair covered his head in an uncombed matting.
He sat draped over his tall, brown executive armchair like some post-
counterculture King Cole. In a pleasant California cadence punctuated by
self-effacing comments that wistfully tripped off his tongue, he was
explaining his life to a reporter. He had covered the tremendous growth of
his company, his pleasure in spreading the gospel of computers to the world
through the software his company sold, and now was discussing the
changes that had come when the company became big, something much
more than an operation of hackers in the hills. He was in touch with real
world power now.

“The things I do on a daily basis blow my mind,” he said.

He talked about eventually going public. In 1982, a lot of people who
owned companies spawned by the revolution that the hardware hackers had
started were talking about this. Computers had become the jewel of the
economy, the only area of real growth in a recessionary period. More and
more people were seeing the magic first glimpsed in batch-processed
monasteries by the hands-on visionaries; in the power harnessed by the
PDP-1 artists; in the accessible mastery of information provided by Ed
Roberts and proselytized by Lee Felsenstein. As a result, companies like
Sierra On-Line, started on shoestrings, were now big enough to contemplate

http://bit.ly/a60saf
http://bit.ly/9bJgUM
http://bit.ly/de1j1L

public share offerings. Ken Williams’ talk was reminiscent of that heard
several years before, when, using the same self-consciously nonchalant
cadences, people would speak of one day getting rolfed: in both
circumstances, an act once approached with evangelistic gravity was now
regarded as somewhat of a delicious inevitability. Going public was
something you naturally considered, at least when you had gone from being
an ambitious computer programmer to an owner of a $10-million-a-year
computer game company in a little over two years.

It was a crucial time for Ken Williams’ company. It was also a crucial time
for the computer games industry, a crucial time for the computer industry as
a whole, and a crucial time for America. The elements had conspired to put
Ken Williams, a self-described former hacker, into the driver’s seat of more
than a Porsche 928.

Ken Williams left his office and went to a large room two doors down in the
same building. There were two rows of cubicles in this plaster-walled,
industrially carpeted room. In each cubicle were a small computer and a
monitor. This was the programming office, and this was where a young
hacker had come to show his game off to Ken Williams. The hacker was a
cocky-looking kid; he was short, had a smile of bravado on a pug-nosed
face, and his chest jutted out, bantam-like, under a faded blue T-shirt. He
had driven up from L.A. this morning, so high that he could have filled up
the tank with his excess adrenaline.

On the monitor was a prototype of a game called Wall Wars, written in the
past few months in intense bursts between midnight and eight in the
morning. While the hacker had worked in a small apartment, his stereo had
blared out music by Haircut 100. Wall Wars involved a stream of colorful,
brick-like pieces forming a kinetic wall in the middle of the screen. On the
top and the bottom of the screen were equally dazzling robot-like creatures.
A player would control one of the robots, shoot through the wall by
knocking out enough bricks to form a moving gap, and destroy the other
robot, who of course would be trying to accomplish the same task, with the
player as the victim.

The hacker had promised himself that if Ken Williams bought his game
concept, he’d quit his job as a programmer for Mattel and go independent,
joining the ranks of an elite group who were already being referred to as
Software Superstars. They were the apogee of a Third Generation of

hackers who had learned their programming artistry on small computers,
who had never bootstrapped themselves up by way of a community. Who
dreamed not only of the ultimate hack, but of fame, and big royalty checks.

Ken Williams ambled into the room and leaned an elbow on the edge of the
cubicle. The young hacker, masking his nervousness, began to explain
something about the game, but Ken didn’t seem to be listening.

“This is all so far?” Ken said.

The hacker nodded and started to explain how the game would eventually
play. Ken interrupted him.

“How long will it take you to finish?”
“I’m going to quit my job,” said the hacker. “I can do it in a month.”

“We’ll figure two months,” said Ken. “Programmers always lie.” He spun
around and started walking away. “Drop into my office and we’ll have you
sign a contract.”

It was reminiscent of an old-time entertainment mogul giving the nod to an
auditioning starlet. It was indicative of the massive change in the way
people thought of computers, used computers, and interacted with
computers. The story of the MIT hackers and the Homebrew Club had led
to this: Sierra On-Line and aspiring software stars.

The Hacker Ethic had met the marketplace.

Ken Williams was never a pure hacker. He certainly did not take the
appellation as a badge of pride; the idea of an aristocracy of computer
excellence never occurred to him. He’d stumbled into computing. Only
incidentally did he develop a relationship with the machine, and it was not
until he thought himself its master that he even began to appreciate what
kinds of changes the computer could make in the world.

At first, the computer had him totally stymied. It was at California
Polytechnic, Pomona Campus, which Ken Williams was attending because
(a) it cost only twenty-four dollars a quarter plus books and (b) he was only
sixteen, and it was close to home. His major was physics; he had trouble
with classes. Though Ken had always slid by academically on high aptitude,
things like trigonometry and calculus weren’t as easily mastered as the

http://bit.ly/bMDxeS

subjects in high school were. Now there was this computer course, geared
to programming in FORTRAN.

Ken Williams was intimidated by computers, and that intimidation triggered
an odd reaction in him. He had always resisted preset curricula—while
refusing to do his homework in junior high, he would almost compulsively
read, everything from the Hardy Boys to what became his favorite genre,
the rags-to-riches stories of Harold Robbins. He identified with the
underdog. Williams’ father was a television repairman for Sears, a rugged
man who had moved to California from Cumberland County, Kentucky; his
coworkers nicknamed him “Country.” Ken grew up in a fairly tough
neighborhood in Pomona, at times sharing a bedroom with his two brothers.
He avoided fights assiduously, later cheerfully admitting he was “a
coward.” “I wouldn’t hit back” he once explained, as if the rites of
dominance and macho posturing were alien to him.

But when he read about those struggles in big, melodramatic novels, he was
enraptured. He loved the idea of some poor kid making a bundle and getting
all the girls. He was susceptible to the hyperbolic charms of a life like that
of Jonas Cord, the young, ruthless, Howard Hughes-like figure in The
Carpetbaggers who built his inheritance into an aviation and filmmaking
empire. “That’s where I got my role model,” Williams later explained.
Maybe it was some of Jonas Cord’s kind of ambition that led Ken Williams
to become more active in high school, where he joined the band, had a
girlfriend, learned how to play the game of good grades, and worked up
schemes to make money. (He would later boast that he won so many sales
contests on his paper route that he was on a first-name basis with the ticket-
takers at Disneyland.) Ken’s inclination toward self-deprecation and his
seemingly casual independence masked a fierce determination that showed
up even as he was backed into a corner by an ornery Control Data computer
in FORTRAN class.

For weeks he struggled, lagging behind his classmates. He had set a
problem for himself: to simulate a little mouse running through a maze,
following a wall, and getting out of the maze. (It called for a program
similar to the old Mouse in the Maze program on the TX-0, where the little
mouse tries to find the martini glasses.) With six weeks gone in the nine-
week course, Ken was headed toward an F. And there was nothing that Ken
Williams, even then, liked about failure. So he kept at it until one day he

http://bit.ly/9Y0tj6
http://bit.ly/bDVSUj
http://bit.ly/b2b3uW
http://bit.ly/d1I5tI
http://bit.ly/cU9ll6
http://bit.ly/96YDcJ

came to a sudden realization. The computer really wasn’t so smart at all. It
was just some dumb beast, following orders, doing what you told it to in
exactly the order you determined. You could control it. You could be God.

Power, power, power! Up here where the world was like a
toy beneath me. Where I held the stick like my cock in my
hands and there was no one . . . to say me no!

--Jonas Cord, in Harold Robbins’ The Carpetbaggers

The mouse got through the maze. Ken Williams got through the course. It
was as if a light had gone on in his head, and everyone in the class could
see it from the ease with which he turned out code. Ken Williams had
something going with the Dumb Beast.

A more important relationship to Ken at the time was his romance with a
girl named Roberta Heuer. He had met her in high school, when she was
dating a friend of his. Out of the blue, two months after a double date, Ken
called her, nervously reminded her who he was and asked her out. Roberta,
a demure, passive girl, later said that she hadn’t been that impressed with
Ken at first. “He was cute, but I thought he acted kind of dumb. He was shy
but [to compensate for it] he would go overboard, acting too aggressive. He
carried cigarettes in his pocket, but didn’t smoke. He asked me to go steady
the first week [we went out].”

Roberta had been seeing a boy who lived upstate. Ken tried to force her into
choosing between them. Roberta might well have decided against this
insecure, pushy boy, but one day Ken opened up to her. “He was talking
about physics,” Roberta later recalled. “I figured he really was a bright guy.
All the boyfriends I’d had before were rather dumb. Ken was talking about
real things, responsibility.” She stopped seeing the other boy, and almost
instantly Ken pushed for a permanent commitment. “I didn’t want to be
alone,” he later reflected.

Roberta talked to her mother about it: “He’s going to go someplace,” she
said. “To really make it. Be something.”

Finally Ken told her, “We’re getting married, and that’s it.” She didn’t fight
it. She was nineteen; he was a year younger.

Within a year, Roberta was pregnant, and Ken was pulling Ds and worrying
about supporting a family. He knew from reading the want ads that there
were a lot more jobs in computer programming than there were in physics,
so he figured, just like it said on the matchbook covers, that he would find a
career for himself in electronic data processing. Roberta’s dad cosigned a
student loan for $1,500, tuition for a trade school called Control Data
Institute.

The world Ken Williams was entering was nothing like the holy preserve of
the MIT Al lab. His would-be colleagues in the business computing field
had little of the hands-on hunger that drove the class of Altair graduates
who hacked hardware. In the early 1970s the business computer field that
Ken was entering was considered the creepiest in America. It was a joke, an
occupation where meek little moles did things—who knows what those
things were?—to the punch cards and whirring wheels of Hulking Giant
computers. As far as the public was concerned, there wasn’t even much
difference between the drones who mechanically punched the cards and
hammered at the keyboards, and the skilled technicians who programmed
the machines to put the cards in their places. They were all seen as the
white-shirted, Coke-bottle-glasses moles in the computer room. Creatures
of the disembodied age.

If Ken and Roberta had been part of a wide circle of friends, they might
have had to confront that stereotype, which Ken did not resemble in the
least. But Ken and Roberta did not bother to put down roots or establish
close friendships. As a computer programmer, Ken was less a Richard
Greenblatt or a Lee Felsenstein than he was Jonas Cord. Later, he would
jauntily say, “I guess greed would summarize me better than anything. I
always want more.”

Ken Williams was far from a dazzling programmer when he finished
Control Data Institute, but he was certainly prepared to do anything
required of him. And more. As much work as possible, to help him go as
high as he could. Then take on another, more demanding job, whether or
not he was qualified. Instead of cleanly breaking with the previous
employer, Ken tried to keep on the payroll, in consultant mode.

He would claim to know computer languages and operating systems he
knew nothing about, reading a book about the subject hours before a job
interview and bullshitting his way into the position. “Well, we’re looking

for a programmer in BAL,” they would tell him, referring to an esoteric
computer language, and he would laugh almost derisively.

“BAL? I’ve been programming in BAL for three years!”

Then he would immediately rush out to get hold of some books, since he
had never even heard of BAL. But by the time the job started he would
have procured documentation, uniformly buried in dense, cheaply printed
loose-leaf manuals, to fake expertise in the “BAL environment,” or at least
buy time until he could get into the machine and divine the secrets of BAL.

No matter where he worked, in any number of nameless service companies
in the yawning valley above Los Angeles, Ken Williams did not meet one
person who deserved an iota of his respect. He would observe people who’d
been programming computers for years and he would say to himself, “Give
me a book and in two hours I’ll be doing what they’re doing.” And sure
enough, stackloads of manuals and a few fourteen-hour days later, he would
at least appear to be one hotshot programmer.

He’d come into the heavily air-conditioned computer sanctums at weird
hours of the night to fix a bug, or get the computer back up when one of his
programs accidentally fed on itself and tripped the millions of calculations
up in such a fury of misunderstanding that nothing the regular crew could
think of could revive the machine. But Ken, confident that the stupidity of
his colleagues was dwarfed only by the astounding compliance of the Dumb
Beast whom he could feed and befriend with his programming skills, would
work three days straight, forgetting to even stop for a meal, until the Dumb
Beast was back on the job. Ken Williams, hero of the day, tamer of the
Dumb Beast, would go home, sleep for a day and a half, then return to
work, ready for another marathon. Employers noticed, and rewarded him.

Ken was rising at quantum speed—Roberta figured they moved to various
locations in the L.A. area about twelve times in that go-go decade, always
making sure that they turned a profit on the house. They had no time for
making friends. They felt like loners and misfits, usually the only white-
collar family in a blue-collar neighborhood. The consolation was money.
“Wouldn’t it be nice to make another two hundred dollars a week?” Roberta
would ask, and Ken would get a new job or take on more consulting work .
.. but even before Ken had settled into this new job, he and Roberta would
be sitting in the tiny living room of whatever house they happened to be

living in, and saying, “Wouldn’t it be nice to earn two hundred dollars
more?” The pressure never stopped, especially since Ken Williams had idle
dreams of fantastic sums of money, money enough to goof off with for the
rest of his life—not only all the cash that he and Roberta could spend, but
all that his kids could spend, too (Roberta was pregnant by then with the
second Williams son, Chris). Wouldn't it be nice, he thought, to retire at
thirty?

By then something else was changing: his relationship with the Dumb
Beast. When Ken had time, he would often pull out some of those dense,
cheaply printed looseleaf manuals, trying to figure out what made the big
Burroughs or IBM or Control Data machine really tick. As he gained
proficiency in his profession, he began to respect it more; see how it could
approach art. There were layers of expertise that were way beyond what
Williams had previously come to assume. A programming pantheon did
exist, almost like some sort of old-time philosophical brotherhood.

Ken had gotten a taste of this more exotic realm when he fast-talked his
way into a job as systems programmer for Bekins Moving and Storage.
Bekins was switching then from a Burroughs computer to a bigger and
slightly more interactive IBM machine. Ken baldly fabricated a career
history of IBM wizardry for himself, and landed the job.

At Bekins, Ken Williams became hooked on pure programming. His task
was installing a heavy-duty telecommunications system on the IBM that
would allow one computer to support eight or nine hundred users in the
field across the country, and the problems and complications were beyond
anything he’d confronted so far. He would experiment with three or four
languages that had nothing to do with his job, fascinated with the
techniques and mind-frames required with each language. There was a
whole world inside this computer . . . a way of thinking. And maybe for the
first time Ken Williams was being drawn to the process of computing more
than to the goal of completing a task. In other words, hacking.

As a consequence of his sustained interest, Ken remained at Bekins longer
than at most of his other employers: a year and a half. It was time well
spent, since his next job presented him with an even greater challenge, as
well as contacts and ideas which would soon enable him to act out his
wildest fantasies.

http://bit.ly/byAVq5

The company was called Informatics. It was one of a number of firms that
sprang up in the mid-sixties to take advantage of a gap in the mainframe
computer software field. More and more big companies and government
agencies were getting computers, and almost none of the software that the
behemoth computer companies supplied could artfully execute the tasks the
computers were supposed to perform. So each company had to hire its own
programming staff, or rely on highly paid consultants who invariably would
disappear just when the system crashed and valuable data came out looking
like Russian. A new team of programmers or consultants would then come
out to untangle the mess, and the process would repeat itself: starting from
scratch, the new team would have to reinvent the wheel.

Informatics and companies like it were set up to sell software that made the
Hulking Giants a little more comprehensible. The idea was to invent the
wheel once and for all, slam a patent on it, and sell it like crazy. Their
programmers would toil away at the assembly level and finally come up
with a system that would allow low-level programmers, or even in some
cases nonprogrammers, to perform simple computer tasks. After all, these
commercial systems all did pretty much the same thing—you had
something coming in from a clerk or a branch office on paper which got
keypunched and entered into a system which modified some preexisting
file. Informatics came up with a pre-programmed system called Mark 4.
Sometime in the seventies it became the largest selling mainframe computer
software product of all time, approaching at one point $100 million in
yearly revenue.

In the late seventies, one of the managers in charge of Informatics’ new
products was Dick Sunderland, a former FORTRAN programmer who was
climbing the corporate ladder after reluctantly foregoing a late-in-life stab
at law school. In place of the law, Sunderland had determined to pursue a
romance with a bright and holy concept of management. To be a leader of
men, a deft builder of competent, well-meshed employee teams, a
persuasive promoter, and a constructive manipulator . . . this was what Dick
Sunderland aspired toward.

A small, chalk-complexioned man with hooded eyes and a contemplative
drawl, Sunderland considered himself a natural manager. He had always
been interested in the advertising, selling, promoting of things. Psychology

http://bit.ly/aBIoG0

fascinated him. And he was especially enamored of the idea of choosing the
right people to work together so that their joint output dwarfed the measly
sum of their individual inputs.

Dick was trying to do that at Informatics with his new product team. He
already had one genuine wizard on the staff, a lean, quiet man in his forties
named Jay Sullivan. Jay was a former jazz pianist who had come to
Informatics from a more mundane job in his native Chicago. He later
explained why: “Systems software [at Informatics] was much more
interesting. You didn’t have to worry about mundane things like
applications or payrolls. It was much more real programming to me; you
dealt more in the essence of what programming was about. The actual
techniques of programming are more important than the specifics of the job
at a specific time.” In other words, he could hack there.

In his programming, Sullivan worked like a vacationer who, having planned
his trip carefully, educating himself on the subtle characteristics of the local
scenery, followed the itinerary with enhanced consciousness. Yet he still
retained the curiosity to stray from the plan if circumstances seemed to call
for it, and derived pleasure from the careful exploration that such a fork in
his path would involve, not to mention the sense of accomplishment when
the detour proved successful.

As with many hackers, Sullivan’s immersion in programming had taken its
social toll. Sullivan later explained that with computers “you can create
your own universe, and you can do whatever you want within that. You
don’t have to deal with people.” So while he was a master in his work,
Sullivan had the infuriating kind of programmer personality that led him to
get on splendidly with computers but not pay much attention to the niceties
of human interaction. He would casually insult Dick, and nonchalantly go
about his business, doing brilliant things with the operating system, but
often would see his innovations die because he was not adept at politicking,
a process necessary at the large company. Dick Sunderland had forced
himself to be patient with Sullivan, and eventually they had arrived at a
seller-inventor relationship which produced two lucrative improvements to
the Mark 4 line.

Dick was looking for more master programmers, calling recruiters and
making it quite clear that he was looking for cream-of-the-crop people,

nothing less. One recruiter mentioned Ken Williams to him. “This kid’s a
genius type,” the recruiter said.

Sunderland called in Ken for an interview and made sure that his true
genius, Jay Sullivan, would be there to test the mettle of this Williams
person. Dick never before had seen anyone stand toe-to-toe with Jay
Sullivan, and was curious to see what might come of the interview.

Dick and Jay were talking about a problem in implementing a new, user-
friendly language that Informatics was working on when Ken showed up,
wearing slacks and a sport shirt which fit so badly that it was obvious T-
shirts were his norm. The discussion had been fairly technical, focusing on
the problem that to make a language a nonprogrammer would understand—
a language like English—one would have to avoid any kind of ambiguous
words or acronymes.

Suddenly Jay Sullivan turned to Ken and said, “What do you think of the
word ‘any’?”

Without hesitation, Ken correctly asserted that it was a very valuable word,
but an ambiguous word nonetheless . . . and then extemporaneously tossed
off ideas about how that word might be handled.

It seemed to Dick that he was witnessing a classic battle—the cheeky
Pomona Kid versus venerable Chicago Slim. While Ken had a charismatic
quality to him, and obviously knew computers, Dick still had his money on
Jay. Jay did not let him down. After Ken stopped, Jay, speaking quietly and
methodically, “sliced Ken up with a razor blade,” Dick later recalled,
enumerating the errors and incompleteness of Ken’s thoughts. Yet it was
impressive to Dick—and even to Jay—that this college dropout could even
think such thoughts. What’s more, rather than being dissuaded by Jay’s
broadside, Ken came right back. Dick watched the two pick up threads of
each other’s ideas and weave them into more refined concepts. This was
synergy, the manager’s holy grail, Dick decided to hire Ken Williams.

Dick put Ken under Jay’s supervision, and the two of them would chatter
about programming arcana for hours. For Ken it was an education: he was
learning the psychology of computerdom in a way he never had. Of course,
one part of the job that Ken Williams did not like was having a boss; Ken in
this regard was a typical antibureaucratic hacker. So he came to dislike

Dick, with all his schedules and fixation on managerial details—obstacles
to the free flow of information.

Ken and Jay would be talking about the intricacies of some aspect of
programming language—Ilike trying to figure out, when somebody says
“List by customer,” what that really means. Does it mean “SORT by
customer,” or perhaps “List ALL customers”? Or maybe “List ANY
customers”? (That word again.) The computer had to be programmed so it
wouldn’t screw up on any of those interpretations. At the very least it
should know when to ask users to clarify their meaning. This took a
language of considerable flexibility and elegance, and though Ken and his
new guru Jay might not have said it out loud, a task of that sort goes a bit
beyond technology and into primal linguistics. After all, once you get waist-
deep into a discussion about the meaning of the word “any,” it’s only a short
step to thinking philosophically about existence itself.

Somewhere in the midst of one of these conversations Dick would come in,
eager to witness some synergy among his troops. “We’d try to supersubset it
so that a two-year-old would understand, ask Dick’s opinion, he’d give it,
and we’d chase him out of the room,” Ken later recalled. “Dick never
understood what we were putting up. He was obviously out of his league.”

At those times Ken might have felt superior to Dick, but in retrospect he
had to admit that Dick was smart enough to recognize talent. Ken realized
that he was one of the weaker members of a superteam of programmers
who were doing great stuff for Informatics. Sometimes Ken figured that
Dick must have gotten lucky, accidentally corralling five of the most
creative people around for his new products team. Either that or he was the
best manager in the world, or at least the best talent evaluator.

Ken, always needing more money, began moonlighting. Sunderland was
refusing his constant requests for raises, and when Ken suggested that he
might like to head a programming group, Dick, a little astounded perhaps at
the chutzpah of this brilliant but scattershot kid, flatly denied the request.
“You have no talent for management,” said Dick, and Ken Williams never
forgot that. Ken was regularly going home to Roberta and complaining
about Dick—how mean he was, how strict, how he had no understanding of
people and their problems—but it was less a dissatisfaction with his boss
than his desire for more money, money for a bigger house, a faster car, a CB
radio, a motorcycle, a hot tub, more electronic gadgets, that led him to

double and even triple up on work, often phasing into a no-sleep mode.
Eventually the outside work got to be more than the inside work, and he left
Informatics in 1979, becoming an independent consultant.

First there was a guy with a scheme to do tax returns for big companies like
General Motors and Shell, and then there was some work with Warner
Brothers, programming a system for the record company to keep artists’
royalties straight. There was a bookkeeping system he constructed for
Security Pacific Banks, something about foreign tax plans. Ken was
becoming a finance guru; the thirty thousand a year he was pulling down
looked to be only the beginning, if Ken kept hustling.

He and Roberta began weaving a little fantasy. At night—the nights Ken
wasn’t out consulting for someone—they would sit in the hot tub and talk
about splitting the Simi Valley suburban trap and moving to the woods.
Where they would go water skiing, snow skiing . . . just goof off. Of course
there weren’t nearly as many hours in a day to make money to turn that
kind of trick, no matter how many companies Ken set up tax programs for.
So the fantasy was just that, a fantasy.

Until Ken'’s little brother Larry got an Apple Computer.

Larry brought it over to Ken’s office one day. To Ken, who had been
dealing with telecommunications networks that handled two thousand
people all at once, who had invented entire computer languages with
mainframe wizards the likes of Jay Sullivan, the idea of this sleek, beige
machine being a computer seemed in one sense ludicrous. “It was a toy
compared to the computers I’d been using,” he later explained. “A piece of
junk, a primeval machine.”

On the other hand, there were plenty of things that the Apple offered that
Ken’s Hulking Giants did not provide. Up till the time he worked at
Informatics, his computers had been batch processed, loading dread punch
cards. The Apple at least was interactive. And when you got down to it, it
was fairly powerful, especially compared to the big machines of less than a
decade ago. (MIT’s Marvin Minsky once estimated that an Apple II had the
virtual power of the PDP-1.) And it ran pretty fast, almost comparable to a
big machine, because on a time-sharing mainframe you’re fighting for CPU
time with eight hundred people all trying to grind their code through at
once, with the Dumb Beast sweating silicon trying to parcel out

nanoseconds to each user. You shared your Apple with no one. In the
middle of the night, it was just sitting there in the house, waiting for you
and you alone. Ken Williams decided he had to have one.

So in January 1980 he scraped together “every cent I had,” as he later told
it, and bought an Apple II. But it took a while to understand how significant
a machine it was. Ken figured that everybody with an Apple was like him, a
technician or engineer. It seemed logical that what these people really
wanted was a powerful language to run on their computer. No one had yet
done FORTRAN for the Apple. Hardly anyone had done anything on the
Apple at that point, but Ken was thinking like a hacker, unable to envision
anything neater than something to use the computer with. The Tools-to-
Make-Tools syndrome. (Richard Greenblatt’s first big project on the PDP-1
was a FORTRAN implementation, for much the same reason.) At that point
Ken was unable to conceive that the Apple and small machines like it had
opened the field of recreational computing to others besides hackers.

The irony of it was that, even as Ken planned to write a FORTRAN for the
Apple, this more significant revolution in computing was happening right
there in his own house.

For most of her life Roberta Williams had been timid. There was a dreamy
quality about her, and her doll-like brown eyes, long brown hair, and frilly,
feminine wardrobe—bell sleeves, suede boots, Peter Pan collars—indicated
that this was a woman who’d had a childhood rich in fantasy. In fact,
Roberta Williams’ early daydreaming had taken on almost supernatural
proportions. She had always pictured herself in strange situations. At night
she would lie in bed and construct what she referred to as “my movies.”
One night pirates would kidnap her and she would devise elaborate escape
plans, often involving some dashing savior. Another night she would be in
ancient Greece. Always dreaming of things happening to her.

Daughter of a frugal agricultural inspector in Southern California, she was
painfully shy, and the relative isolation of her rural home reinforced that. “I
never really liked myself,” she would later reflect. “I always wanted to be
someone else.” She felt her parents doted on her younger brother, who
suffered from epilepsy. Her form of entertainment was telling stories that
would enthrall her elders, and enrapture her brother, who took the stories

literally. But as she got older, and coped with dating and the grown-up
world, “all that got thrown out the window,” as she says now. When she and
Ken married, she passively expected him to make a living; as for herself,
she was so shy she, “could hardly make a phone call.” The storytelling
remained buried.

Then one night Ken, who had brought a computer terminal home, called
Roberta over to show her this program that someone had put on the IBM
mainframe computer he was connected to. “Come on over here, Roberta,”
he urged, sitting on the green-carpeted floor of the spare bedroom where
he’d put the terminal. “See this—it’s a really fun game.”

Roberta didn’t want anything to do with it. First of all, she didn’t like games
too much. Second, it was on a computer. Though much of Ken’s life was
spent communicating with computers, they were still unfriendly ciphers to
Roberta. But Ken was persistent, and finally cajoled her to sit at the
terminal to see what this thing was about. This is what she saw:

YOU ARE STANDING AT THE END OF A ROAD BEFORE A SMALL BRICK BUILDING.

AROUND YOU IS A FOREST. A SMALL STREAM FLOWS OUT OF THE BUILDING AND
DOWN A GULLY.

It was Adventure, the game written at the Stanford Al lab by hacker Don
Woods, the Tolkienesque game which lured hackers and users into
immersing themselves in a magical dungeon world. And from the moment
Roberta Williams tentatively poked GO EAST she was totally and
irrevocably hooked. “I just couldn’t stop. It was compulsive. I started
playing it and kept playing it. I had a baby at the time, Chris was eight
months old; I totally ignored him. I didn’t want to be bothered. I didn’t want
to stop and make dinner.” She didn’t want to do anything except figure out
how to get to Witt’s End or get around the snake. She would be up until
four in the morning, trying to figure out how to get around the damn snake
to get to the giant clams. And then she would sit up in bed thinking, What
didn’t I do? What else could I have done? Why couldn’t I open that stupid
clam? What’s in it?

At first Ken participated, but he soon lost interest. Roberta thought this was
because Ken never liked it when Adventure got sarcastic. You would say
KILL DRAGON and it would come back and say WHAT, WITH YOUR
BARE HANDS? You couldn’t get mad, you had to ignore it. And you
certainly couldn’t be sarcastic back, just say, “Yes,” And it said WITH

YOUR BARE HANDS YOU KILL THE DRAGON AND HE’S LYING
DEAD AT YOUR FEET. You killed the dragon! You could go on. Roberta
approached the game with methodical intensity, drawing elaborate maps
and anticipating what was around every turn. Ken thought it was amazing
that one day Roberta couldn’t stand computers and the next day he couldn’t
get her away from the terminal. Finally, after a month of ratiocination about
trolls, axes, misty caverns, and vast halls, Roberta solved Adventure. She
was desperate to find more games like it.

By then, Ken had bought the Apple. Despite her newfound interest in
computers, Roberta was less than thrilled at the two-thousand-dollar
purchase. If Ken wanted it so badly, she told him, he should try to make
money from it. This coincided perfectly with Ken’s desires at the time,
which were to write a FORTRAN compiler for the Apple and sell it for
bundles of money to the engineers and technicians who wanted Tools to
Make Tools. He hired five part-time programmers to help him implement
the compiler. Ken’s house, a typical Simi Valley four-bedroom, two-
thousand-square-foot tract home, became headquarters for the FORTRAN
project.

Meanwhile Roberta had heard that there were some Adventure-style games
available for the Apple. Roberta bought some at a computer store in nearby
Northridge in the San Fernando Valley, but she found them too easy. She
wanted her newly awakened imagination to be as taxed and teased as it was
before. She began sketching out an adventure game of her own.

She started by writing out a story about a “mystery house,” and things that
happened in it. The story had much to do with Agatha Christie’s Ten Little
Indians; another inspiration was the board game Clue. Instead of just
finding treasures as in Adventure, this game would have you do some
detective work. Roberta mapped out the story just as she mapped out an
adventure game when she played it. Along the way, she devised puzzles,
character traits, events, and landmarks. After a couple of weeks she had a
stack of papers with maps and dilemmas and plot turns and twists, and she
flopped it down in front of Ken and said, “Look what I did!”

Ken told Roberta that her little stack of papers was very nice and she should
run along and finish it. No one really wanted to use a personal computer as
a game machine—they were for engineers who wanted to figure out how to
design circuits or solve triple-x exponential equations.

http://bit.ly/bCozib
http://bit.ly/dyIWqf
http://bit.ly/9sjuMI

Not long after, Ken and Roberta were at the Plank House in the Valley, a
redwood-walled steak house where they often dined, and there he finally
listened to his delicate wife describing how her game put you in an old
Victorian house in which your friends were being killed off one by one. She
described a few of the dilemmas, and told of a secret passageway. It began
to sound good to Ken. Ken Williams could usually smell some money to be
made, and he thought that there might be enough bread in this for a trip to
Tahiti or some new furniture.

“This sounds great,” he told her, “but to really sell you need more. An
angle. Something different.”

As it happened, Roberta had been thinking lately how great it would be if
an adventure game were accompanied by pictures on the computer screen.
You could see where you were instead of just reading it. She had no idea if
this was possible on an Apple or any kind of computer. How would you
even get a picture info a computer?

Ken guessed they could try.

As it happened, a device called a VersaWriter had just been released. It was
a tablet that you drew on and it registered the shapes into an Apple
computer. But it didn’t draw very accurately, and it was hard to control the
writing mechanism, which was like the clunky base of a desk lamp. Worst
of all, it cost two hundred dollars. Ken and Roberta decided to shoot the
dice and spring for it. Ken then reprogrammed the whole thing so Roberta
could do something with it. Eventually she made a few dozen black-and-
white pictures of rooms inside the Mystery House, with people drawn only
slightly better than stick figures. Then Ken coded the game logic, after
figuring out how to pack seventy pictures onto one floppy disk—a task
which any programmer in the least familiar with the Apple would have
guessed was impossible. The secret was not storing data for entire pictures,
but using assembly-language commands which stored coordinates of the
individual lines in each picture; as each new picture was due to appear, the
computer would follow the commands to draw the picture. It was a dazzling
program bum that characterized Ken’s facility for top-level hacking.

The whole thing took a month.

http://bit.ly/cxnqmf
http://bit.ly/bTYtNA

Ken scrapped the FORTRAN project and took the game to a software
distributing company called Programma. It was the biggest distributor of
Apple software in the world. In early 1980, that was not saying too much. It
sold a range of programs with names like Biorhythm, Nude Lady, Vegas
Style Keno, State Capitals, and Apple Flyswatter. Most of the games were
written in BASIC (as opposed to the much faster-running assembly
language) and could entertain only a toddler or a person in love with the
idea of playing with a computer. There were enough of the latter to jack
Programma’s gross up to $150,000 a month.

The Programma people loved Mystery House. Here was an assembly-
language adventure game that was well planned, challenging—and had
pictures. The fact that the pictures were in black and white and looked like
something young D.J. Williams (age six) might have drawn was irrelevant.
No one else had done anything like it. They offered Ken a twenty-five
percent royalty on the $12 wholesale price, and assured him they could sell
five hundred copies a month for six months, which at $3 a copy would be
$9,000. This was almost twice the amount that Ken had been promised for
the FORTRAN compiler—before splitting it with his five programmers. All
for Roberta’s silly game.

Ken Williams also considered selling the game directly to Apple Computer.
He sent a sample, but waited over a month and got no reply. (A year later,
Apple—now a large company with a slow-moving bureaucracy, wrote back
and said, yes, maybe we might like to consider buying this. This said a lot
more about what Apple Computer had become than it did about Mystery
House.) Ken and Roberta did not take Programma’s offer. Ken and Roberta
wanted all the money. Why not try to sell it independently? If it doesn’t
work, then take it to Programma.

So the Williamses started taking Mystery Houise around to the few
computer stores in the area. The people at the stores would be skeptical at
first—after all, excited new computer fanatics, intoxicated with the power
lent them by their new Apples and Radio Shack TRS-80s and PET
computers, were always trying to sell strange programs. But then Roberta’s
game would boot with a picture of an old house drawn on the computer’s
high-resolution (hi-res) screen rather than the computer’s clunky, block-
oriented lo-res one. The people at the stores would ask how Ken did that.
After a few experiences like that, Ken and Roberta figured they might be

http://bit.ly/bxATpI

able to make as much as one or two thousand dollars a month from this
software-selling thing.

The next step was advertising the product in a magazine. But as long as
they were doing that, they figured, why not offer a couple more games, and
look like a real company? They already had a name: On-Line Systems—a
holdover from Ken’s vision of selling the respectable kind of business
software for the Apple that he did in his consulting for online computer
firms. Ken went to a friend and asked him to be On-Line’s first outside
programmer. In return for eventual royalties, the friend did a simple black-
and-white shoot-one-dot-with-another-dot game called Skeet Shoot. They
printed up some advertising fliers and documentation sheets—unwilling to
pay the one-hundred-dollar typesetting fee, Roberta cut the individual
letters out of magazines and got that “master” printed by a local copy shop.
It came back with little lines that betrayed its cut-and-paste origin, but they
had already spent five hundred dollars. Anyway, that form of packaging
was state of the art at that time. This was the computer world, where the
packaging didn’t matter. What mattered was the magic that happened when
all those binary connections were made. Marketing was second to
substance.

Mystery House, or “Hi-Res Adventure #1,” was priced at $24.95. Ken and
Roberta, in a fit of optimism, had bought a box of one hundred blank disks
at the nearby Rainbow Computing store, and once the fliers were sent to
computer stores and the ad placed for a reluctantly paid two-hundred-dollar
fee in the May 1980 issue of a small magazine called MICRO, they waited.
The phone rang on that first day in May, and then there was a break and
then it rang again. And from then on, it would be a long time before Ken
and Roberta could count on their phone not ringing.

Ken and Roberta made eleven thousand dollars that May. In June, they
made twenty thousand dollars. July was thirty thousand. Their Simi Valley
house was becoming a money machine. Ken would go off to work at
Financial Decisions, where he was now programming for around forty-two
thousand a year, and Roberta would copy disks and put the disks, along
with the fliers and inserts, into a Ziploc bag. She would also take care of the
kids and put the programs in boxes and keep the house clean and send
programs out by UPS. At night Roberta was designing a longer and better
adventure game based on the world of fairy tales.

http://bit.ly/bwuP6f

Every few minutes the phone would ring and it would most likely be
someone ready to absolutely die unless they got a hint to unstick them from
a seemingly hopeless situation in Mystery House. People who called the
number shown on the flier included in the Ziploc bag with the floppy disk
were under the impression that On-Line was some big conglomerate, and
they couldn’t believe their luck in somehow connecting with the actual
author of the program. “I’m talking to the person who wrote the game?”
Yeabh, in her kitchen. Roberta would give them a hint—never a straight
answer: part of the fun was working it out for yourself—and chat with them
a while. The energy level was contagious. People were going loony over
playing with computers.

Ken Williams was carrying a full work load at Financial Decisions,
developing a complicated finance system and heading the data processing
department. At night, he would work on the Apple, hacking a new machine-
language system for Roberta’s new adventure game. On weekends, Ken
would make the rounds of the computer stores. It was clear that the
software business required his full time.

Roberta thought that as long as Ken was thinking of quitting, they might as
well live out their longtime dream of moving to the woods. Her parents
lived near Yosemite, above the town of Oakhurst, and it was even more
rural and quiet than the place Roberta grew up in and still remembered
fondly. It would be perfect for the kids. So they did it. “I’m going to move
to the mountains,” he told an astounded Dick Sunderland at a party in mid
1980. Dick and Ken were in a room a bit away from the party noise, and
Ken said, “Here I am, twenty-five years old, and the Apple Computer has
enabled me to fulfill my dream: living in the woods and living in a log
cabin and writing software.”

Ken and Roberta bought the first country house they looked at, a three-
bedroom, rustic, wooden A-frame cabin on Mudge Ranch Road just outside
Coarsegold, California.

By then, they had finished Roberta’s fairy-tale game, Wizard and the
Princess. It was twice as long as Mystery House, and ran faster thanks to
Ken’s improvements on the program logic. Ken had developed a whole new
assembly-language interpreter for writing adventure games; he called it
ADL, or Adventure Development Language. Also, this “Hi-Res Adventure
#2” had over one hundred and fifty pictures. Ken had devised subroutines

http://bit.ly/ayonRc

that allowed Roberta to enter the pictures into the computer as easily as if
she were drawing on a regular tablet. This time the pictures were in color;
Ken used a technique called "dithering" to blend the six colors of the Apple,
mixing dot by dot, to get twenty-one colors. He was performing stunts on
the Apple that Steve Wozniak never dreamed of. Magic stuff.

The game’s only problem was the first puzzle, where the adventurer, on his
way to rescue Princess Priscilla of Serenia from Wizard Harlin, had to get
past a snake. The answer was rather obscure: you had to pick up a rock and
use it to kill the snake, but unless you chose a rock in one specific location
(they all looked alike) you got bit by a scorpion and died. Most people
started banging their heads against the wall at the third or fourth scorpion
bite. Eventually, after countless frustrated adventurers made calls to
Roberta’s kitchen in Coarsegold (East Coast people sometimes would call
at 6 A.M. California time), On-Line began supplying a hint to that dilemma
in every package.

Snake or not, Wizard and the Princess eventually sold over sixty thousand
copies at $32.95. Ken and Roberta would sit in the hot tub they’d installed
and shake their heads, saying, “Do you believe this?”

On December 1 of that first year, after the business had already changed
their lives, got them a new house, and made them the rising stars of the
Apple world, they finally moved the business out of the house to a space on
the second floor of a two-story building in Oakhurst, seven miles up Route
41. Their neighbor was a religious promoter who was unsuccessfully trying
to book Little Richard on a national preaching tour. You could hear him
shouting through the thin walls.

Early in 1981, less than a year after the company began with a few floppy
disks and a $150 ad in a little magazine, Roberta described the situation in a
letter to another small magazine: “We opened an office December 1, 1980,
and hired our first employee to help us with the shipping and the phones.
Two weeks later, we hired somebody to help her, one week after that we
hired somebody to help them. We just hired a full-time programmer this
week, and we need at least another programmer. Our business is growing by
leaps and bounds, and there’s no end in sight.”

http://bit.ly/aSlDta

Chapter 15. The Brotherhood

The Hacker Ethic was changing, even as it spread throughout the country.
Its emissaries were the small, low-cost computers sold by Apple, Radio
Shack, Commodore (the PET), and Atari. Each was a real computer; the
sheer proliferation created a demand for more innovative programs that
previous distribution methods could not address. A hacker could no longer
distribute clever programs by leaving them in a drawer, as he had at MIT,
nor could he rely on a Homebrew Computer Club system of swapping
programs at club meetings. Many people who bought these new computers
never bothered to join clubs. Instead they relied on computer stores, where
they happily paid for programs. When you were desperate for something to
fulfill the promise of this thrilling new machine, spending twenty-five
dollars for Mystery House seemed almost a privilege. These pioneering
computer owners in the early eighties might learn enough about their
machines to appreciate the beauty of an unencumbered flow of information,
but the Hacker Ethic, microcomputer-style, no longer necessarily implied
that information was free.

As companies like On-Line wrote and sold more programs, people who had
no desire to become programmers, let alone hackers, began to buy
computers, intending only to run packaged software on them. In a way, this
represented a fulfillment of the hacker dream—computers for the masses,
computers like record players: you’d go to the software store, choose the
latest releases, and spin away. But did you really benefit from your
computer if you did not program it?

Still, in the early eighties, everyone with a computer had to delve into the
hacker mentality to some degree. Doing the simplest things on your
machine required a learning process, a search for gurus who could tell you
how to copy a disk or find the proper connecting cables to hook up the
printer. Even the process of buying ready-to-run software had a funky,
hacker feel to it. The programs were packaged in Ziploc bags, the graphics
on the so-called documentation were mostly on the level of Roberta
Williams’ stick-figure primitives, and more often than not the labels on the
disk would be typewritten and stuck on by hand . . . there was an aura of the
illegitimate about the product, only slightly more respectable than hard-core
porno books.

An excursion to the local computer store was a journey to the unknown.
The salesman, more often than not some kid working at minimum wage,
would take your measure, as if you were a potential obstacle in an
adventure game, testing you by tossing off the jargon of Ks, bytes, nibbles,
and RAM cards. You would try to get him to explain, say, why this
accounting package ran better than that one, and he would come back with
some gibberish about protocols and macros. Finally you’d ask him the
question that almost every Apple owner asked in 1980 or 1981: “What’s the
hot new game?” Games were the programs which took greatest advantage
of the machine’s power—put the user in control of the machine, made him
the god of the bits and bytes inside the box (even if he wasn’t sure of the
difference between a bit and a byte). The kid would sigh, nod, reach under
the counter for the current Ziploc bag phenomenon, and, if you were lucky,
boot it on the screen and race through a few rounds, so you could see what
you were buying. Then you would plunk down your twenty or twenty-five
or even thirty-five dollars and go home for what was the essential interface
with the Apple. Playing games.

In early 1980, the Hot New Game would most likely be written in deadly
slow BASIC. Most of the Apples at that time used cassette recorders; the
difficulty of using an assembler with a cassette recorder made it nearly
impossible to go down into the deepest recess of the machine, the 6502
chip, to speak in the Apple’s assembly language.

This was changing: Steve Wozniak had recently hacked a brilliant design
for a disk-drive interface for the Apple, and the company was able to offer
low-cost floppy-disk drives which accessed thousands of bytes a second,
making assembling easy for those few who knew how to program on that
difficult level. Those infected with the Hands-On Imperative, of course,
would soon join that elite in learning the system at its most primal level.
Programmers, would-be programmers, and even users buying Apples would
invariably purchase disk drives along with them. Since Steve Wozniak’s
Apple adhered to the Hacker Ethic in that it was a totally “open” machine,
with an easily available reference guide that told you where everything was
on the chip and the motherboard, the Apple was an open invitation to roll
your sleeves up and get down to the hexadecimal code of machine level. To
hack away.

So Ken Williams was not the only one catching the glory train by hacking
Apple machine language in the spring of 1980. Technological pioneers all
over the country were sensing what hackers had known all along:
computers could change your life. In Sacramento, a Vietnam vet named
Jerry Jewell, who had sandy hair, a matching mustache, and a perpetually
addled, slightly pissed-off look about him, had bought an Apple to see if he
could switch from the insurance business to something more lucrative. Two
weeks after he got the machine, he enrolled in an assembly-language class
at Lawrence Hall of Science taught by Andy Herzfeld, one of Apple’s top
programmers. Jewell had no disk drive and could not run the sample
programs that were distributed each week. For eight weeks, he didn’t have
the slightest idea what Herzfeld was talking about, and not even brief
tutorials from the assistant instructor—John Draper, alias Captain Crunch—
could crack the code. Eventually, after Jewell got a disk drive and listened
to the tapes he’d made of the class, he caught on.

Jewell got a job managing a local computer store. All kinds of people came
into computer stores those days. It was almost like a statement in BASIC:
IF you own a computer THEN you’re probably a little crazy. Because even
then, four years after the Altair, you still couldn’t do many useful tasks with
a personal computer. There was a simple word-processing program called
"Easy Writer" written by John Draper (Jewell bought one of the first copies
at the 1980 Computer Faire), and some accounting stuff.

But mostly people hacked Tools to Make Tools. Or games. And they would
come into computer stores to show off their hacks.

So it was not surprising when an Arabic-looking college student named
Nasir Gebelli strode up to Jewell in the store and booted a slide-show
program he’d written. Jewell liked it, and worked with Gebelli to make a
spin-off, a graphics-drawing program they called “E-Z-Draw.” Jewell began
making the rounds of computer stores in L.A. and the Bay Area to sell it.

Then, Nasir, a computer science major who was doing poorly in his classes,
began to write games. Nasir’s use of color and a technique called "Page
Flipping" made the current crop of games look sick. Page Flipping used a
duplicate screen (“page”) for everything that was displayed on the Apple;
using machine-language instructions, you were flipping between the two
pages thousands of times each second, in order to eliminate the flickering
that made microcomputer graphics look so unappealing. Nasir was also

http://bit.ly/bcpGEX
http://bit.ly/agjWti
http://bit.ly/9t4nZc

unafraid to enlist everything and anything as “invader” in his games, which
almost always used one basic scenario: you’ve got to shoot lots of stuff
before some of it shoots back at you. It recreated the addictive, pyrotechnic
state of siege that was hugely popular in coin-operated games, which had
special microchips to create spectacular graphic effects, and only when
Nasir showed them did people realize that some of these effects could be
achieved on the Apple.

Nasir wrote twelve games that year. Jewell and the owner of the computer
store formed a company called Sirius Software to sell the games. Jewell
would look at Nasir’s preliminary version of a game and suggest outlandish
changes. One game that Nasir wrote was quite similar to Space Invaders, a
popular coin-operated arcade game where aliens irrevocably inch down the
screen in waves to attack the player’s little tank. Jewell suggested that
weapons fired by the invaders should not be shells, but eggs—and the
invaders should be, in turn, monsters, space wolves, giant-bomb-throwing
lips, and the most dangerous of all, killer fuzz balls. Killer fuzz balls that
bounce and shake and move toward you with frantic inevitability. Space
Eggs was a runaway bestseller for Sirius Software.

Another company breaking into the market then was the brainchild of a
former corporate lawyer from Wisconsin. Doug Carlston had been unhappy
working for a big law firm on the eighty-second ftoor of the Sears Building
in Chicago; he missed his college hacking days when he and his friends
would stuff chewing gum in the lock of the computer room door so the staff
couldn’t keep them out; at night fifteen of them would sneak in and hack.
Even after he’d set up a small law practice in rural Maine, his heart
remained in computing. Then the soft-spoken, contemplative Carlston heard
that Radio Shack was selling a computer for under two thousand dollars. He
bought one on a Friday and didn’t come up for air, he remembers, until that
Sunday night. Eventually he began writing a gigantic strategy game on the
TRS-80, one which involved an entire imaginary universe. Your mission
was to protect the interstellar good guys: the Brgderbund. (This was
Scandinavian for “Brotherhood.”)

It was early 1980, and Carlston, like Williams and Jewell, saw his life in
software. He enlisted his brother Gary, who had been working in a job so
desirable that grown men gasped when he mentioned it—coach of a

http://bit.ly/93ywHs

Scandinavian women’s basketball team. Together they set up Brgderbund
Software to sell Galactic Saga. The idea was to translate the Saga from
TRS-80 to the Apple.

The Saga did not fare too well at first. The seven thousand dollars that
Doug and Gary began with was down to around thirty-two dollars at one
point. They were living on Gary’s VISA card. It wasn’t until Doug drove
across the country, stopping at every computer store he found and showing
them the game, letting them soak in some of the program’s fine points, and
calling in seventeen thousand dollars’ worth of business in his nightly calls
back to Gary that things picked up.

But the really big break came at the 1980 Computer Faire, where the
Carlstons had scraped the money together to show the Saga in a low-cost
“microbooth,” an innovation of Jim Warren’s to allow small, often nonprofit
companies to display without shelling out the spiraling exhibitor’s fees on
the main floor. A conservative Japanese businessman took a liking to these
clean-living, religious Carlstons, and allowed them to distribute the work of
some Japanese programmers he handled. The games were faithful copies of
current coin-operated arcade games. And the very first Apple program he
gave them, a brilliant rip-off of the arcade game Galaxian—they named it,
unapologetically, Apple Galaxian—became a top hit, selling tens of
thousands of disks. And though Brgderbund began to recruit programmers
in the United States to write games, for months the Japanese product
accounted for most of its business.

On-Line, Bregderbund, and Sirius were the fastest risers of dozens of
companies springing up to cater to new computer users, particularly those
in what came to be known as the Apple World. The formerly dominant
Programma had overextended itself and eventually was folded into a bigger
company, which was not as much of a market force. But newer firms with
names like Continental and Stoneware and Southwestern Data were out of
the gate like wild quarter horses, too. The distinguishing characteristic of
these companies was that, like the hardware firms forming out of the
Homebrew Computer Club, the impetus seemed to be as much to get
software out there as it was to cash in on a budding trend. Hitting the
marketplace seemed to be the best way to show off one’s hacks.

Significantly, a new magazine which became closely identified with the
brash new wave of Apple World software companies was started by people

http://bit.ly/cpycf9
http://bit.ly/8Z30pg

who were not terribly experienced in publishing, but were fanatic
proselytizers of the Apple computer.

Margot Tommervik, a Los Angeles freelance textbook editor with brown
hair worn long and straight in true sixties-refugee style, had loved games
long before she touched her first computer. In early 1980, she appeared on
the television game show Password, and despite being paired with a couple
of soap opera personalities who, she later recalled, “had no idea that
Virginia was south and New Hampshire was north,” she came out of a
deftly played “lightning round” with fifteen thousand dollars. She and her
husband Al, a copy editor at Variety, made a list of things to do with the
money, and it turned out they needed twice as much as that to make a dent
in the list. So they said to hell with it and went out to buy a computer.

The best-known home computer those days was the TRS-80. But while
Margot and Al were waiting for a salesman in the local Radio Shack, a store
employee—a kid who was standing near Al said, “What’s that smell?” Al
was a stumpy, redheaded, long-bearded man who resembled a toll-taker at a
bridge in Middle Earth, and it was unimaginable to picture him without his
briar pipe. The kid, perhaps with an MIT-style smoke aversion in his hacker
blood, said to Al Tommervik, “Mister, you shouldn’t smoke that pipe, it’s
making me sick.” The Tommerviks walked out of Radio Shack, and a week
later bought an Apple.

Margot and Al, in her words, “became addicted” to the Apple. She enjoyed
the games it played, but her satisfaction went deeper. Without any technical
background, Margot Tommervik was able to extract the Hacker Ethic from
this sleek piece of machinery in her home. She believed that her Apple had
its own personality, life-loving and kind of daffy, in a positive way. She
later explained: “The very idea of naming it Apple—it’s wonderful. It’s
much better than [giving it a name like] 72497 or 9R. It says, ‘Hey, this is
more than just a piece of machinery. You can get more out of it.” Even the
little beep it emits when you turn it on shows a special enthusiasm.”

Margot Tommervik learned the story of how Apple Computer began, and
she marveled at how the machine conveyed Steve Wozniak’s “life-loving
spirit into the computer. He had that ability to bite all the big pieces of life
and chew it up and savor every bit. He put the spirit into it as he built. He
made the machine do as many things as he could think of ittodo . . .”
Margot believed that if you spent enough time with your Apple, you would

http://bit.ly/aRi86z

realize that you could also do anything you could think of. To her, the
Apple embodied the essence of pioneering, of doing something brand new,
having the courage and the willingness to take risks, doing what’s not been
done before, trying the impossible and pulling it off with joy. The joy of
making things work. In short, the joy of hackerism, for the first time
transparent to those not born with the Hands-On Imperative.

Margot saw it in everyone who used the Apple. They just fell in love with
it. Her plumber, for example, got an Apple, and as Margot watched the
plumber’s wife playing a game on it, Margot swore she was actually seeing
a mind expanding. You could get some of this excitement even just setting
up an Apple, when you got your first disk to boot, and the disk drive came
on, whirring happily, with the little red “in use” light glowing. By God, you
did it! You caused something to happen. You caused the disk drive to run,
you caused this to happen, and then as you started to set real tasks for your
Apple and construct your tiny universes, you started to solve things. You
saw your power tremendously increased. All the people she talked to in the
Apple world, and certainly Margot herself, showed that joy. She believed it
was no less than the joy in one’s own humanity.

Margot Tommervik loved the new kinds of software coming out, and
though she and Al did some BASIC programming, the machine was mostly
used to play these new games she would buy. One day she dropped by
Rainbow Computing and saw a notice that a new adventure-style program
was coming out, and would be put on sale at ten o’clock on a certain

Friday; the first one who solved it would win a prize. Margot was there with
$32.95 that Friday, and by noon Saturday she was back at the store with the
solution. The game was Mystery House.

Sometime later Margot stumbled across a publishing house which had
started a magazine about software, and was looking for a partner. Margot
and Al said they’d put up some money and do the magazine if they were
promised full control. So the remains of the Password money went into this
new incarnation of the magazine, a magazine devoted to the world of the
Apple computer. It would be called Softalk.

When Margot started drumming up advertisers she called up On-Line and
told Roberta, who was still handling corporate business from her Simi
Valley kitchen, about wanting a completely professional magazine that
would reflect the spirit of the Apple computer. Margot’s enthusiasm was

http://bit.ly/azHXLo

obvious. And when Margot mentioned that it was she who had won that
contest to solve Mystery House, Roberta howled, " You’re the one! We
thought it would take months to do it.” Roberta talked to Ken, and On-Line
decided to take out four quarter-page ads in the first issue. They called up
other companies and urged them to take out ads, too.

Softalk came out in September 1980 at thirty-two pages, including the
covers. Eventually the people in the cottage industry of supplying products
for the Apple began to realize the value of a magazine whose readers were
their direct target audience. By the end of 1981, there were well over a
hundred advertising pages in an issue.

These pioneering Apple World companies were bound by an unspoken
spiritual bond. They all loved the Apple computer, and the idea of mass
computing in general. Somehow, they all believed that the world would be
better when people got their hands on computers, learned the lessons that
computers had to teach, and especially got software that would help
expedite this process.

In pursuit of this common goal, On-Line, Sirius, and Brgderbund became
almost a Brotherhood of their own. Jewell and the Williamses and the
Carlstons got to know each other very well, not only at computer shows and
trade events, but at each other’s parties, where the three staffs gathered,
along with people from other Apple-oriented firms in California.

This was in high contrast to some not-so-old but already moribund
companies. Particularly Atari, the company which started as the first
purveyor of the computer game and sold millions of dollars of software for
the Atari "VCS" game machine (which could not be programmed like a
computer) and its own competitor to the Apple, the Atari Home Computer.
Since its acquisition by the huge Warner Communications conglomerate,
Atari had shorn itself of the hacker-like openness of its founders. You
almost had to be a KGB agent to find out the name of one of its
programmers, so terrified was Atari that someone would raid its ranks. And
the thought of programmers getting together and comparing notes was even
more frightening. What if one of its programmers realized that he could do
better somewhere else? No such secrets for the Brotherhood, who in 1981
most often paid their programmers on a thirty percent royalty basis, a rate

http://bit.ly/9F0mrn

well known to all three companies and all the programmers working in the
field.

The cooperation went deeper than partying. Almost as if they had
unconsciously pledged to adhere to at least part of the Hacker Ethic, there
were no secrets between them. Almost every day, Ken, Doug, and Jerry
would talk on the phone, sharing information about this distributor or that
floppy disk manufacturer. If some retailer didn’t pay off one of the
companies, the others would know immediately, and not deliver to that
retailer. “We had this unwritten code,” Jerry Jewell later recalled. “We
would let each other know what we were working on so we wouldn’t do the
same projects. If I was working on a racing car game, we would tell them,
so they wouldn’t start one.”

Some might look at this interaction and call it restraint of trade, but that
would be an Old Age interpretation. This Brotherhood was no cartel
banding together to the detriment of the user and the technology. The user
benefited by getting a wider range of games. And if a programmer from one
of the companies couldn’t figure out some assembly-language trick with
zero page graphics, the fact that he could get in touch with a programmer at
another company was only the application of the Hacker Ethic to
commerce. Why hide helpful information? If neat tricks were widely
disseminated, the quality of all the software would rise, and people would
get more out of computers, and it would be good for all the companies in
the long run.

Maybe it was time to scrap the divisive practices of corporate business and
adopt a more hacker-like approach, one which might, by its successes in the
software field, spread through all of America and revitalize the entire
country, long spinning in a Darwinian, litigious, MBA-dominated
maelstrom. Substance might then prevail over cloudy “corporate image,” in
a world free of the insane, anti-productive practice of owning concepts and
trade secrets which could be distributed far and wide. A world without all
that destructive, cutthroat seriousness. The attitude in the Apple World
seemed to be “If it’s not fun, if it’s not creative or new, it’s not worth it.”
That’s what you would hear from Ken and Roberta Williams, from Doug
and Gary Carlston, from Jerry Jewell.

This spirit reached its peak during the summer of 1981 in a scene imbued
with all the gusto of a cola commercial: a whitewater raft trip down the

Stanislaus River. It was Ken Williams’ idea, a joint vacation trip for the
whole industry. Ken joked that he did it only to put leaks into his
competitors’ boats; but the very absurdity of that statement underlined the
difference between this industry and others. Instead of sabotaging
competitors, Ken Williams would forge his way through fierce waters
alongside them.

The river was idyllic, but one participant later explained to a reporter that
even more idyllic than the isolated pine-treed and high-canyon-walled
setting was the feeling among the adventurers, who of course swapped all
sorts of product, technological, and financial information: “We all sort of
feel like we beat the system: we got to microcomputers before IBM did.
We’re all competitors but we like to cooperate.”

Even the boatmen had to tell the participants, which included the heads of
over six software firms, like Ken and Roberta, or the Carlstons, or Steve
Dompier (the Homebrew member who was independently writing software
now that Processor Tech was out of business) to stop talking shop.
Sometimes they did stop. They stopped at the end of the ride as they
approached the last rapid. Not for the first time, Ken Williams rammed his
raft into someone else’s. Some people on that raft tumbled onto another
one, and people from all ten rafts used their paddles and buckets to splash
one another, and the Brotherhood exploded in a mist of white water,
laughter, and thrilling camaraderie.

http://bit.ly/bEzL0F

Chapter 16. The Third Generation

There were still the born hackers, those blessed with the unrelenting
curiosity, the Hands-On Imperative. The last chosen in basketball and the
first in arithmetic class to divine the mysteries of fractions. The fifth-
graders who would mumble, when adults pressed them for explanation, that
they “like numbers.” The cowlicked kids in the back of the junior high
classroom who got so far ahead of the class that the math teachers gave up
on them, let them skip to future chapters in the text, and finally allowed
them to leave the room and wander downstairs to discover, with much the
same wonder as Peter Samson stumbling upon the EAM room at MIT, a
terminal connected to a time-sharing computer at some university. A gray
teletype terminal in the basement of a suburban school, a terminal which
held, wonder of wonders, games. You could play the games, but if you were
hacker-born, that would not be enough. You would ask, “Why can’t the
game do this?” “Why can’t it have that feature?” And since this was a
computer, for the first time in your life you would have the power to change
this into that. Someone would show you some BASIC, and the system
would be at your command.

It happened exactly like that with John Harris. Though he was tall and not
unattractive, a towheaded blond with a goofily appealing smile and the
breathless verbal delivery of someone whose enthusiasm runs too high to
acknowledge cycle-wasting grammatical interrupts, he was a social outcast.
He would later admit cheerfully that he had been “the worst English student
in school and the worst in P.E.” His roots were in the upper-middle class of
San Diego. His father was a bank officer. His siblings, a younger brother
and two older twin sisters, were uninterested in technical matters. “I was
completely, a hundred percent technical,” John later said with endearing
redundancy. It seemed he had no more intimate confidant than the remote
computer—he did not even know its location—connected to his school’s
time-sharing terminal.

John Harris was not one of those methodical, plodding geniuses who
dazzled folks in science fairs. Impressing adults was not his forte. John
Harris’ art hinged on impressing people who shared his passions, which
were few and well defined: science fiction (films and comics—not books,
because John was not much of a reader). Games. And hacking.

At one time, the apex of existence for a person like John Harris might have
been to find his way into a computer center like the MIT Al lab, where he
would have loitered and learned until he got his chances at a terminal. It
might have felt like delivery into heaven, as it had felt to fourteen-year-old
David Silver when he was initiated by the ninth-floor hackers and allowed
to take the sacrament of the PDP-6. But Harris came of high school age
after the revolution that began with the Altair. John Harris’ generation was
the first that did not have to beg, borrow, or steal computer time from a
distant mainframe attached to teletype terminals. In the lush suburbs around
San Diego, it was not uncommon for a high school kid in 1980 to cajole his
parents, or even earn enough money from a part-time job, for a large
purchase. Most kids wanted cars. But as the early computer store owners
knew well, other kids were asking for computers.

When John Harris was in eleventh grade, a senior he knew let him use his
Commodore PET computer. John later recalled: “I started playing games on
his system and started programming on his system, a Star Trek game. And a
couple of other things in BASIC that I had learned and that were a lot more
fun than any of the time-sharing stuff was. It was quicker, was much more
interactive, had graphics and sound effects . . . Teletypes were OK, but I
hadn’t known anything else existed, and I went, ‘Wow, this is great . ..””

For John Harris’ Third Generation, which followed the pioneering
generation of mainframe hackers and the second generation of hardware
hackers who liberated computers from the institutions, access to computers
was easy. You could own one, or use a friend’s. The computers were not as
powerful as those in institutions and there were no communities of wizards,
no Greenblatts or Gospers to urge you to abandon loserdom and engage in
The Right Thing until you could be called a winner. But those facts of life
did not bother this Third Generation. They could get hands on computers
now. In their bedrooms. And whatever they learned about hacking, and
whatever elements of the Hacker Ethic they picked up, would be
determined by a learning process that grew from the hacking itself.

John Harris was fascinated with the PET. You could do things so much
more easily with a personal computer. John was particularly impressed with
the full-screen editing capability, a great improvement on the teletype-style
edit-one-line-at-a-time process he’d been stuck at before. But the best part
of the PET and other personal computers were the games.

“I’m obsessed with all forms of games,” John Harris later said. “It’s just
me. I guess!” It was only natural that a junior high school electronics junkie
would be dazzled by the batch of space warfare arcade games appearing in
the late seventies: Harris did not know that their inspiration was Slug
Russell’s Spacewar hack. For a time after that, John fell in love with a game
called Crazy Climber, where you try to get a guy to the top of a building,
avoiding dropped flowerpots, people who close windows on your hand, and
a giant gorilla who tries to swat you off. What impressed him about Crazy
Climber was its groundbreaking creation of a unique and artful scenario. It
did something that no one had ever done before.

John Harris strove for that level of originality. His attitude toward games
was similar to his attitude toward computer languages or his preference for
a certain computer over another: an intense personal identification and a
tendency to take offense at an inefficient, suboptimal way of doing things.
John came to feel that games should have a certain degree of innovation, a
certain degree of graphic razzle-dazzle, and a certain degree of challenge.
His standards of “playability” were rigid. He took personal offense at cases
where a programmer could have made the game better in some obvious (to
John Harris) way, but did not, whether because of technical ignorance, a
lapse in perception, or—worst of all—laziness. Details made a game really
great, and John adopted the firm belief that a game author should include
every possible frill to make the game more enjoyable. Not neglecting, of
course, to perfect the basic structure of the game so that it was essentially
bug-free.

To fulfill his own exacting standards, John needed his own computer. He
began saving money. He even cut down on playing arcade games. John was
out of high school by then, enrolled in a local college in electrical
engineering, and working at a bank’s data processing center. One of his
friends owned the hottest hacker home computer around, the Apple, but
John did not like the machine’s editing capabilities or its quirky graphics.

With money in hand he went computer shopping, for a PET. The salesmen
sneered at him. “The only person who buys a PET is a person down to his
last penny,” they told him. “A person who can’t afford an Apple II.” But
John Harris did not want Wozniak’s creation. He had seen more of his
friend’s Apple and was convinced more than ever that the Apple was
severely brain-damaged. His contempt for the Apple grew beyond all

http://bit.ly/buuS2i

bounds. “Even the sight of that computer drives me up the wall,” he would
later say. At the very mention of the machine, Harris would recoil and make
the sign of the cross, as if warding off a vampire. He could explain at length
just why he felt this way—no full-screen editor, the necessity of loading the
machine up with more hardware before it really cooked, the limited
keyboard . . . but this loathing went beyond reason. Somehow Harris felt the
Apple stopped you from doing what you wanted to do. Whereas other
hackers considered the Apple’s limitations as challenging hurdles to leap
over or as a seductive whisper saying, “Take me further,” Harris deemed
them ridiculous. So he asked the salesman at one of the stores about this
other machine, the Atari computer.

Atari had just come out with its 800 (and its lower-powered companion, the
400), its competitor to the Apple. On first sight, it appeared to be some sort
of jazzed-up game machine with a keyboard. In fact, it had a slot to put
cartridges inside, a mark that the machine was geared at least in part for
novices too befuddled to handle even a tape cassette, let alone a floppy disk.
There wasn’t even a decent manual. John Harris played with an 800 in the
store, and discovered that, like the PET and unlike the Apple, it had full-
screen editing. But he wanted to know what was inside it, so he went to
another store, where a salesman slipped him a piece of paper with some
commands for this new computer. Like some secret code for use by the
French Resistance. No code-breaker devoured a message as avidly as John
Harris did these papers. He discovered that the Atari had a set of keystroke
graphic symbols, a high-resolution mode, and a separate chip for sound
effects. In short, exciting new features, every feature Harris liked on the
PET, and even the things he grudgingly considered worthwhile on the
Apple. He bought an 800.

He began programming in BASIC, but very soon realized that he would
have to learn assembly language to do the games he wanted to do. He quit
working at the bank and got a job at a company called Gamma Scientific,
which had needed a programmer to do assembly-language work on its
system and was willing to train someone.

Transferring his new assembly-language skills to the Atari was difficult.
The Atari was a “closed” machine. This meant that Atari sequestered the
information concerning the specific results you got by using microprocessor
assembly-language commands. It was as if Atari did not want you to be

http://bit.ly/8YabFz
http://bit.ly/aieRCX
http://bit.ly/aS9oVa

able to write on it. It was the antithesis to the Hacker Ethic. John would
write Atari’s people and even call them on the telephone with questions; the
voices on the phone would be cold, bearing no help. John figured Atari was
acting that way to suppress any competition to its own software division.
This was not a good reason at all to close your machine. (Say what you
would about Apple, the machine was “open,” its secrets available to all and
sundry.) So John was left to ponder the Atari’s mysteries, wondering why
Atari technicians told him that the 800 gave you only four colors in the
graphics mode, while on the software they released for it, games like
Basketball and Super Breakout, there were clearly more than eight colors.
He became determined to discover its secrets, the mysteries of its system,
the better to extend it and control it.

For the quest, John enlisted a friend who knew assembly language. They
got hold of a cassette-tape disassembler written in BASIC, something which
broke down programs into their object code, and disassembled the software
sold by Atari line by line. Then they would take these weird instructions,
which accessed all sorts of oddball memory locations on the 6502 chip
inside the Atari, and poke them into the machine to see what happened.
They discovered things like "display list interrupts,” which enabled you to
use a greater number of colors on the display screen; “user definable
characters™; and, best of all, something that they would later know as
"player-missile graphics,” which was no less than an assembly-language
method of accessing a special Atari chip called "Antic" that handled
graphics on its own, letting you run the rest of the program on the main
chip. Since one of the more difficult aspects of programming games was
parceling out the activities of the main chip between sound, graphics, and
game logic, player-missile graphics gave you a huge advantage. How could
a company that did something so neat in its machine be so Scrooge-like in
letting you know it existed?

Harris and his friend had cracked the secrets of the Atari. They wanted to
use their knowledge to liberate the machine, distribute the technical data,
break the Atari marketplace wide open. But around that time some bootleg
hardware manuals appeared. It seemed that some pirates inside Atari had
procured copies of its internal hardware and reference manual and were
distributing them for high prices to interested parties. The manual, however,
was written in such a way that only people who were already the equivalent

http://bit.ly/daygeS
http://bit.ly/d9Mhn1
http://bit.ly/cEtF8v
http://bit.ly/b3YTX4
http://bit.ly/8Xdf1x

of Atari design engineers could divine it. As Harris later put it, “It was
written in Atari, not in English.” So the bootleg manual wasn’t much help
except to those people who had integrated the workings of the Atari 800
into their own mental cosmology. People like John Harris.

Eighteen-year-old John Harris used this knowledge to write games. He
wrote games that he would like to play, and his desire to make the games
flashy enough and exciting enough to please him as a player incited him to
learn more about the Atari system. As a science-fiction fan who often
attended the “Cons”—the conclaves of sci-fi nuts, where people lost in
technological fantasy were considered normal—he naturally gravitated to
space warfare games. He would create spaceships, space stations, asteroids,
and other extraterrestrial phenomena. From his imagination he would make
these shapes appear on his display screen, and then he would control them.
Putting them up on the screen and controlling them was much more
important than the eventual fate of the game itself: John Harris could be
careless, and he often lost entire programs by saving files on the wrong side
of the cassette tape, or expanding the code so the program would crash—
finding out only then that he had failed to make a backup tape. He would
feel bad about it, but keep hacking.

Hacking was the best thing in his life. He had started working full-time at
Gamma Scientific to support himself. The pay was less than ten thousand
dollars a year. He liked the job insofar as it allowed him to work on the
computer. At home, he had his 800, now equipped with a disk drive for
fancy assembly-language programming. But without a tightly knit
community like the one the MIT hackers had, he found that hacking was
not enough. He yearned for more social contact. His relationship to his
family was shaky. He later claimed he was “kicked out” of his home
because his father had expectations John could not quite match. He
describes his father as less than enthusiastic about his mania for
programming games on an Atari 800 computer. So Harris moved into a
house with a few fellow sci-fi fans. He would attend the Cons with them,
wild affairs where they could stay up for days at a stretch, prowling the
hotel halls with plastic dart guns. But it often seemed to John that his
friends were planning some neat excursion without inviting him. John
Harris was a friendly, loping, puppy-dog youngster, and very sensitive to
these apparent rejections.

He wanted a girlfriend. The isolated times when he’d been out with
members of this desirable yet elusive gender always seemed to end in some
kind of disappointment. His housemates were often involved in romantic
intrigue—they jokingly called the house "Peyton Place of Outer Space”—
but John was rarely involved. There was one girl he saw for a couple of
weeks, and had even made a New Year’s Eve date with. But she’d called
him just before New Year’s. “I don’t know how to tell you this,” she said,
“but I met a guy and I’m going to marry him.” That was typical.

So he kept hacking games. Just like the MIT hackers, or the Homebrewers,
his reward was the satisfaction of doing it. He joined a local Atari users’
group and borrowed programs from their library to make them run faster
and do neat things. He took, for instance, a version of the arcade game
Missile Command and sped it up, jazzed up the explosions when one of
your ICBMs stopped the enemy nuke from destroying your city. He’d show
his work to others and they’d get a kick out of it. All his hacking
automatically reverted to the public domain; ownership was a concept he
never dealt with. When someone in the users’ group told John Harris that he
had a little company that sold computer games and he’d like to market a
game of John’s, Harris’ reaction was, “Sure, why not?” It was like giving a
game away and getting money for it, too.

He gave the man a game called Battle Warp, which was remarkably like the
old MIT Spacewar, a two-player game where ships “fly around and shoot at
each other,” as John was later to describe it. Harris made around two
hundred dollars from Battle Warp, but it was enough to get him thinking
about having his stuff distributed more widely than through the users’ group
network.

In March of 1981, Harris went to the Computer Faire in San Francisco,
primarily to attend a seminar on programming the Atari given by one of
Atari’s best programmers, Chris Crawford. John was extremely impressed
with Crawford, a mousy fellow who bounced around when he talked and
was skillful at explaining things. John Harris was on a high after that,
wandering around the densely packed aisles of Brooks Hall, looking at all
the hot new machines, and checking out the dozens of new software
companies that had taken booths that year.

John had gotten the courage by then to ask a few companies whether they
needed any programs on the Atari. They generally said no. Then he reached

http://bit.ly/azD4Dw
http://bit.ly/aRyvbn
http://bit.ly/aOvevk
http://bit.ly/csyHyV

the booth rented by On-Line Systems. Someone introduced him to Ken
Williams, who seemed nice, and John told Ken that he was an assembly-
language business programmer, but he was kind of fed up with it.

Ken Williams at that time had been discovering that people who could write
good assembly-language games were rare finds. He wanted to lure these
assembly-language programmers to Coarsegold, California. On-Line
Systems had seen explosive growth—at the last Computer Faire, Ken had
been testing the waters for Mystery House, and one year later he was an
established game publisher in need of products. He had placed an ad in
Softalk headlined “Authors Wanted,” promising “highest royalties in the
industry . . . No need to ever work anyone else’s hours again.” The ad
mentioned another benefit: a chance to work with Apple guru Ken
Williams, who would “be personally available at any time for technical
discussions, helping to debug, brainstorming . . .” Ken was smart enough to
realize that the programmers to create these products were not necessarily
veteran computer workers. They might well be awkward teenagers. Like
John Harris.

“Well,” Ken said to John Harris, not missing a beat, “how would you like to
program amongst the trees?”

As appealing as that sounded, it meant working for On-Line Systems,
which John Harris knew a little about. He knew they sold mostly Apple
software. “I don’t know the Apple system,” he said, tactfully omitting that
as far as he did know the Apple system he wanted to flush it down a toilet.

Ken said the magic words. “We want to expand to the Atari system. We just
haven’t found anyone who can program it.”

John was almost speechless.
“Can you program it?” Ken asked.

Within a month, Ken Williams had bought John Harris a plane ticket to
Fresno, where he was picked up at the airport and driven up Route 41 to
Oakhurst. Ken promised Harris a place to live, and then they started talking
salary. John had just gotten a raise at Gamma, so the one thousand dollars a
month Ken offered him would actually have been a pay cut. John found the
courage to say that he was getting more than that now. Did Ken think he
could pay twelve hundred a month, and throw in the free place to live? Ken
looked over at Roberta (at that time any employee in the tiny On-Line

office could at any time look over at anyone else working there) and she
said she didn’t think they could afford that.

Williams said, “I tell you what. How about if I put you on a thirty percent
royalty basis and you won’t have to work with the company? You work out
of your house and I’ll give you seven hundred dollars a month to live off of
until you finish your first game, in two or three months. If you don’t have a
game finished by that time, you won’t make it in this business anyway.”

John thought that sounded great. When he got home, though, his father told
him he was being taken advantage of. Why not get a bigger salary and a
lower percentage of royalties? What security did John have? John, who had
been intimidated by the blustery Ken, did not want to jeopardize his chance
to live in an atmosphere built around hacking games. He really wanted to
get out of San Diego, hack games, and be happy. Even though it might
mean less money, he’d hold on to the thirty percent royalty.

It was the most lucrative decision he ever made.

Ken Williams had purchased several houses around Oakhurst for the benefit
of his programmers. John Harris moved into the one called Hexagon House,
named after the shape of the upper floor, which was the only part visible
from the road: it jutted above the rest of the house like a large solid gazebo.
From the front door, the living room and kitchen were visible; the bedrooms
were downstairs. Living there with John was Ken’s twenty-year-old brother,
John Williams, who ran On-Line’s advertising and marketing division.
Though John Williams liked Harris, he considered him a nerd.

The first project that John Harris had mentioned to Ken was inspired by the
arcade game Pac-Man. This was the hottest coin-operated game in 1981,
and would soon be known as the most popular coin-op of all time. John
Harris saw nothing wrong with going to the arcade, learning the game in
and out, and writing his own version to run on the Atari 800. To a hacker,
translating a useful or fun program from one machine to another was
inherently good. The idea that someone could own Pac-Man, that clever
little game where ghosts chase the dot-munching yellow Pac-Man,
apparently was not a relevant consideration for John Harris. What was
relevant was that the Pac-Man game seemed a natural fit to the Atari’s
features. So even though he personally preferred games with space

http://bit.ly/d37Q7p

scenarios and lots of shooting, John suggested to Ken that he do an Atari
800 Pac-Man.

Ken had already been marketing a Pac-Man look-alike for the Apple under
the name of Gobbler. The program had been written by a professional
scientific programmer named Olaf Lubeck, who had sent Williams the
game, unsolicited, after seeing the “Authors Wanted” ad. The program was
selling around eight hundred copies a month, and Ken had arranged with
Lubeck to duplicate it for the Atari home computer.

John Harris, though, was appalled at the Apple game. “It didn’t look
spectacular, no animation,” he later explained. “The collision detection is
very unforgiving.” Harris did not want Olaf to compound the error on his
beloved Atari by translating the Apple game bit by bit on the 6502 chip,
which the Apple and Atari shared. This would mean that none of what John
considered the superior Atari features, most of which were housed on
separate chips, would be utilized. The thought was horrifying.

John insisted that he could do a better-looking game within a month, and
Ken Williams took Lubeck off the project. John Harris embarked on a
period of intense hacking, often wrapping around till morning. John’s style
was freewheeling. He improvised. “Whatever my mind is doing, I just let it
flow with it . . . things come out pretty creative,” he later explained.
Sometimes John could be sensitive about this, particularly at times when a
more traditional programmer, armed with flowcharts and ideas about
standard structure and clear documentation, examined his code. When John
left Gamma Scientific to move to Coarsegold, for example, he worried that
his replacement would be someone like that, who would throwaway all his
clever code, replacing it with something structured, concise . . . and worse.
As it turned out, Gamma considered six programmers, five of whom “had
degrees coming out of their ears,” John later said. The sixth was a hacker
with no degrees; John begged his bosses to hire the hacker.

“But he wants as much money as the people who have degrees,” the boss
told John.

John said, “He’s worth more.” His boss listened. When John broke this new
employee in and explained his system, the new hacker became very
emotional over John’s code. “You program like I do!” he said. “I didn’t
think there was anyone in the world that does this!”

Working with large conceptual blocks and keeping focused, John had a Pac-
Man-style game running on the Atari in a month. He was able to use some
of the subroutines he had developed in earlier efforts. This was a fairly good
example of the kind of growth that creative copying could encourage: a sort
of subroutine reincarnation in which a programmer developed tools that far
transcended derivative functions. One day, John’s subroutines would be
modified and used in even more spectacular form. This was a natural,
healthy outgrowth of the application of hacker principles. It was only too
bad that this Third Generation of hackers had to write their own software
tool kits, supplementing them only by haphazard additions from users’
groups and friends.

The Pac-Man game looked remarkably like the arcade version. It might
well have been one of the best assembly-language programs written so far
for the Atari Home Computer. But when Harris took his work to Ken
Williams, there was a problem. Lately, some companies were insisting that
the copyrights they owned on coin-operated games made unauthorized
home computer translations illegal. One of the biggest owners of copyrights
was Atari, and it had sent the following letter to small publishers like
Brgderbund, Sirius, and On-Line:

ATARI SOFTWARE PIRACY THIS GAME IS OVER

Atari is a leader in the development of games such as Asteroids™ and MISSILE COMMAND™ _
. We appreciate the response we have received from videophiles of the world who have made our
games so popular. Unfortunately, however, there are companies and individuals who have copied
ATARI’s games in an attempt to reap undeserved profits from games they did not develop. ATARI
must protect our investment so that we can continue to invest in the development of new and better
games. Accordingly, ATARI gives warning to both the intentional pirates and to the individuals
simply unaware of the copyright laws that ATARI registers the audiovisual works associated with
its games with the Library of Congress and considers its games proprietary. ATARI will protect its
rights by vigorously enforcing these copyrights and taking the appropriate action against
unauthorized entities who reproduce or adapt substantial copies of ATARI games regardless of what
computer or other apparatus is used in their performance . . .

Ken Williams knew that Atari had spent millions of dollars for the rights to
Pac-Man. After looking at John Harris’ brightly colored, fast-moving,
nonflickering duplication of the arcade game, he realized it was such a
faithful copy that it was unmarketable. “It looks too much like Pac-Man,”
he said. “You’ve wasted your time, John Harris.” He suggested that John
alter the game. Harris took the game home and reprogrammed the graphics.
This new version was virtually the same; the difference was that the ghosts,
those goofy little shapes that chased the Pac-Man, were wearing tiny

mustaches and sunglasses. Incognito ghosts! Perfect ironic commentary on
the stupidity of the situation.

It wasn’t exactly what Ken Williams had in mind. For the next two weeks,
John and Ken consulted with lawyers. How could they keep the essence of
Pac-Man and still keep Atari at bay? The lawyers said that the only thing
Atari really owned was the image of the character, what the game looked
like.

So a new scenario was developed, with the unlikely theme of preventive
dentistry. Ken’s brother John Williams suggested the ghosts be replaced
with “happy faces.” They would spin and flip around. John Harris replaced
the yellow Pac-Man with a set of clicking false teeth. Instead of dots, John
drew “lifesavers,” and programmed a routine that would occur when the
player cleared the dots—a toothbrush would appear and brush the teeth.
None of this was difficult to program. John Harris simply drew the new
images on shape tables and wrote them into his existing machine. One of
the wonderful things about the computer was that you could change the
world on impulse.

The lawyers assured Ken that this new Jawbreaker scenario presented no
problem with Atari. They did not know Atari. It was a company owned by
the Warner Entertainment Conglomerate; it was ruled by a former textile
executive who saw little distinction between computer software and any
other consumer item. Since engineers no longer ran Atari, the company had
been characterized by a bureaucracy which stifled hacker impulses.
Programmers at Atari were paid far less than the astronomical sales figures
of their games would seem to call for, and convincing the marketing
“experts” to release an innovative game was a formidable task. Atari would
not include the name of the game programmer on the package; it even
refused to give this artist credit when the press requested an author’s name.
When some of the company’s top programmers complained, the textile
alumnus who ran Atari reportedly called the hackers “towel designers”:
Those hackers were among many who quit to form companies which would
decimate Atari’s market share of game cartridges.

Atari did not seem to address this loss outright, but instead focused its
creative efforts on litigation and high-rolling licensing of seemingly failure-
proof properties from other media, from coin-operated games to movies. A
prominent example was Pac-Man, for which Atari spent millions. The idea

was to first convert the game to the VCS game machine, then to the Atari
home computers, the 400 and 800. The two divisions were separate and
competitive, but both shared the problem of disappearing programmers. So
imagine the joy of the executives in Atari’s Home Computer Division when
one day, out of the blue, some random person sent Atari a copy of a
program that had been circulating around the users’ groups that summer of
1981. It was a brilliant version of Pac-Man which ran beautifully on the
Atari 800.

It was the result of a classic John Harris real-world goof-up. When John had
been working on the Jawbreaker revision, some people at a computer store
in Fresno heard rumors of a brilliant Pac-Man hacked by the skinny,
nervous kid who would often drop by and check out peripherals and
software. They asked John Harris to show them the game. Without a
thought to such nonhacker restrictions as corporate secrecy, John Harris
drove down and proudly watched them play the version in progress, and
saw nothing unusual about their request to borrow a copy of the disk. He
left a copy there, went back to the Hexagon House, and continued writing
his revision.

Copies of the game began circulating through users’ groups across
America. When it reached Atari, people there called all the software
companies they could think of to find its author. Eventually, they spoke to
Ken Williams, who later recalled an Atari executive telling him that he was
in possession of a Pac-Man game of obviously superior quality and was
looking for its creator.

“Tell me about the game,” said Ken, and the Atari man described it as
having happy faces. “That’s John Harris!” said Ken. The Atari man said he
wanted to buy the program from John Harris. Ken had John Harris return
the call to Atari’s head of acquisitions, Fred Thorlin—from Ken’s office.
According to Ken, Thorlin was wild about John Harris’ game. He promised
Harris a large royalty, mentioned a contest Atari was running for best
software program, with a twenty-five-thousand-dollar prize, and said none
of the entries so far had come close to Harris’ game.

But John Harris remembered how mean Atari had been when he had been
trying to learn assembly language. He knew that it had been Atari’s letter to
On-Line that was forcing him to do all this revision in the first place. Atari
had acted, John later said, like “a bunch of babies,” holding on to

information like a selfish kid protecting a toy from his playmates. John
Harris told Ken that he would not consider having his name on anything
published by Atari (not that Atari had mentioned putting his name on the
program), and that he would finish Jawbreaker for Ken.

Jawbreaker was an instant bestseller. Almost everyone who saw it
considered it a landmark for the Atari Home Computer. Except Atari. The
men who ran Atari thought John’s program infringed on their right, as
owners of Pac-Man, to make as much money as they could from the game,
by marketing it in any way they saw fit. If Ken Williams released a game
that gave a player the feeling he was playing Pac-Man, especially if John
Harris’ version was better than the one Atari’s programmer might come up
with, that player would not be likely to buy Atari’s version of Pac-Man.
And Atari felt that its purchase of the Pac-Man license entitled it to every
penny to be earned from home computer games that played like Pac-Man.

It was a challenge to the Hacker Ethic. Why shouldn’t Atari be happy with
a royalty paid by people who wanted to hack Pac-Man code and eventually
improve the game? Did the public benefit from one company “owning” a
piece of software and preventing others from making it more useful?

Atari did not see merit in that argument. This was the real world. So after
Jawbreaker's release, Atari began pressuring On-Line Systems. On one
hand, it wanted Ken Williams to stop marketing the game. On the other
hand, it wanted to buy John Harris’ program.

Ken had no desire to fight Atari, He was not an unconditional supporter of
the Hacker Ethic, so he had no political problem, as John Harris did, with
selling the program to Atari, When Atari’s Fred Thorlin invited Ken and
John Harris to come up to Sunnyvale, Ken agreed.

John Harris, who seemed only rarely to handle the simple mechanics of
living as masterfully as he evoked magic from the guts of the Atari 800,
missed his flight, and got to Atari’s complex of low-lying glass-and-
concrete buildings in Sunnyvale after the meeting ended. He had been
lucky.

Ken later recounted the experience under oath. Fred Thorlin had ushered
him into an office where some of Atari’s in-house lawyers were waiting.
Atari’s associate general counselor, Ken Nussbacher (who was not at the

meeting), later described his company’s approach to publishers like On-
Line as “carrot-and-stick,” and this might have been a classic example.
According to Ken Williams, one attorney told them that he would like to
see On-Line agree to produce a Pac-Man game for Atari so that they could
quietly resolve the problem of infringement which Jawbreaker had created
(the carrot). Ken said he would be happy to deal with Atari and he hoped to
hear a proposal.

A second attorney delivered the stick. According to Ken, this attorney
began shouting and cursing. Ken recalled him saying “he had been hired by
Atari to find companies infringing on Atari’s copyrights and put them out of
business . . . he said [Atari] would be able to afford much, much more legal
support than I would and that if I did not play ball with them, they were
going to put me out of business.”

Ken was so scared he was shaking. But he told the attorneys that a judge
might be better qualified to see if Jawbreaker was a copyright infringement.

About that time, Fred Thorlin asked the attorney to calm down and consider
the prospect of the two companies working together (the carrot). They
discussed how long it would take John Harris, the nineteen-year-old hacker
who loved Atari computers but despised Atari and was lost somewhere
between Coarsegold and Sunnyvale, to finish a new Pac-Man game for
Atari. But Thorlin’s offer of a five percent royalty was insultingly low.
After Thorlin told him “You have no choice,” Ken’s fear began to turn to
anger. He decided he would rather let Atari sue him than give in to
blackmail. To signify his distaste, he threw the specifications for converting
Pac-Man on Thorlin’s desk, and returned to Coarsegold without a deal.

For a while it looked like Atari would close down On-Line. Ken’s brother
John later recalled that one day someone let him know that Atari had gotten
an injunction to confiscate any machinery that might copy disks of
Jawbreaker—every computer and disk drive in the company. The marshal
from Fresno was on the way. John Williams, twenty years old and running
the company that day, could not get hold of Ken and Roberta, so he ordered
everyone to carry out the computers before the marshal arrived. Otherwise,
the company couldn’t have run for another day.

Al Tommervik, who drove a wheezing Toyota all night to get to court to be
by Ken during the injunction hearing, suggested that Roberta mail down all

the masters to him for safekeeping. He said he’d find a place for On-Line if
Atari closed down its offices. It never came to that, but there were some
very tense times in the fall of 1981.

John Harris was particularly shaken. He had been getting enough in
royalties to buy himself a house outside of Oakhurst, a big, orange-colored
wood structure. He also bought himself a four-wheel-drive pickup. He was
working on a new game for On-Line, another maze game called
Mouskattack. Despite this upswing in his fortunes, it was a very nervous
John Harris who appeared for deposition in early December.

It made an odd picture. John Harris, a nineteen-year-old hacker in jeans and
T-shirt, facing the best pin-striped legal talent of one of the biggest
entertainment conglomerates in America. On-Line’s legal team was headed
by one Vic Sepulveda, a flip-talking Fresno lawyer with short gray hair,
large, aviator-style black glasses, and a laid-back confidence. His previous
experience in copyright law was in a case in which some printers had
insisted that the text to the homily “Desiderata” was in the public domain.

During the deposition, John Harris was so nervous he could not keep still.
Atari’s lawyer began by asking him about his early programming efforts,
his job in San Diego, how he met Ken, how he wrote Jawbreaker . . . all
questions John could easily answer, but because of his tenseness he kept
getting entangled and correcting himself—at one point cutting himself off
and saying, “Oh God, that sounded awkward.” John was usually a person
who liked to talk about his work, but this was different. He was aware that
this lawyer’s goal was to make him say something he didn’t mean, to trip
him up. Supposedly a deposition is a search for truth, where the most
effective questions are asked to get the most accurate responses. It should
work like a smooth program in assembly language, where you have given
the fewest instructions to access the 6502 chip, direct information in and out
of memory, keep the proper flags on the registers, and, out of thousands of
operations taking place each second, get your result on the screen. In the
real world it did not work that way. The truth that you found in a computer
was worthless here. It was as if the lawyer were feeding John Harris bogus
data in hopes of a system crash.

While the hacker in John Harris was appalled at the adversarial nature of
the legal system, the legal system had its difficulties adjusting to him. The
rules of evidence were somewhat more rigorous than John’s own archival

standards. Ken Williams, in his own deposition, had warned Atari’s lawyers
of this when they had asked him about the status of Harris’ source code for
the program and he had replied: “I know John Harris and I’m positive
there’s nothing written down. He doesn’t work like that.”

Doesn’t work like that? Impossible! A programmer at Atari, like any
“professional” programmer, probably had to submit code regularly, allow
for proper supervision. What Atari’s lawyers did not realize was that Ed
Roberts, Steve Wozniak, and even the designers of their own Atari 800 had
wrought a Third Generation of hackers, idiot savants of the microprocessor,
kids who didn’t know a flowchart from Shinola, yet could use a keyboard
like a palette and hack their way to Picasso-esque peaks.

ATARI LAWYER (to Ken): Isn’t it a fact that typically the programmer who’s designing these
games at least produces a flow chart and then writes out the source code manually prior to punching
itin?

KEN WILLIAMS: No.

ATARI LAWYER: Do they simply sit down at the keyboard and punch in the program?

KEN WILLIAMS: My programmers are typically too lazy to make up any sort of a flow chart. In
most cases they don’t even know where they’re going when they start a program. They try to get a
routine working to put in a background, and from that move toward some game.

It couldn’t have been too much of a surprise to Atari’s lawyers, on the
second day of John Harris’ deposition, that he was unable to find the copy
of the pre-Jawbreaker Pac-Man game he’d written. On-Line’s Atari
machines were in use copying Wizard and the Princess, and John’s
equipment was broken, so he couldn’t even find the disk it was on. “It’s not
labeled on the front,” John explained, saying, “As far as I know it should be
somewhere in my library.”

So Atari’s lawyers continued with John Harris, probing the difference
between the versions of his game. And as the examination continued, the
line between creative freedom and plagiarism got fuzzier and fuzzier. Yes,
John Harris consciously copied from Pac-Man in programming his game.
But some of the routines he used were written before he’d ever seen Pac-
Man. Since the Atari 800 was radically different from the Pac-Man arcade
machine, using different chips and requiring different programming
techniques, John Harris’ code bore no resemblance at all to the Atari code.
It was completely original.

Still, his first game had looked like Pac-Man, using the characters protected
by copyright. But Ken had refused to market that version, and John had
changed the characters. Atari insisted that this change was insufficient.
Atari had its marketing chief come in to explain “the magic of Pac-Man" to
the judge, calling it “a game with a little guy, a little Pac-Man” who gobbles
dots and power pills, which enable him to “turn the tables” and go after the
goblins who have been devouring him. The marketing man went on to say
that the “magic of Atari” rested in its commitment to buying the rights to
popular arcade games.

Vic Sepulveda insisted that John Harris had simply taken the idea of Pac-
Man from Atari, and cited law which stated that ideas are not copyrightable.
Vic’s brief listed side by side the differences between Pac-Man and
Jawbreaker. Atari’s reply was that despite the differences the game was
Pac-Man. Of all the mazes John Harris could have chosen, Atari’s lawyers
noted, he chose the Pac-Man maze. By On-Line’s own admission, they had
simply performed cosmetic surgery on a virtual copy of Pac-Man!

But the judge refused to grant Atari a preliminary injunction to force On-

Line to stop marketing Jawbreaker. He looked at the two games, figured he
could tell the difference, and ruled that, pending a full trial, On-Line should
be allowed to keep marketing Jawbreaker. Atari’s lawyers seemed stunned.

David had temporarily smitten Goliath. Still, Ken Williams was not as
thrilled with the decision as one might have expected. Because On-Line had
its own games, and its own copyrights. It was becoming clear to Ken
Williams that in the bottom of his heart he identified with Atari’s point of
view much more than he cared about the Hacker Ethic. “If this opens the
door to other programmers ripping off my software,” he told Al Tommervik
immediately after the decision, “what happened here was a bad thing.” He
would settle the lawsuit before it came to trial.

Chapter 17. Summer Camp

Ken Williams came to rely on people like John Harris, Third-Generation
hackers influenced not so much by Robert Heinlein or Doc Smith as by
Galaxian, Dungeons and Dragons, and Star Wars. A whole subculture of
creative, game-designing hacker-programmers was blooming, beyond the
reach of executive headhunters. They were mostly still in high school.

To lure young programmers to Coarsegold, Williams took out ads in the Los
Angeles Times tempting programmers to “Boot into Yosemite.” Typical of
the replies was a man who told Ken, “My son’s a great Apple programmer
and would like working with you.” “Why don’t you let me talk to your
son?” Ken asked. The man told him that his son didn’t come across well on
the phone. At the job interview at Oakhurst, the man insisted on answering
all the questions for his son, a small, round-eyed, sixteen-year-old blond
who had peach-fuzz on his cheeks and seemed intimidated by the entire
situation. None of this mattered when Ken discovered the kid was capable
of grasping the intricacies of Apple assembly language. Ken hired him for
three dollars an hour.

Slowly, Ken Williams began to fill up the house he bought in the Sierra Sky
Ranch area, just beyond Oakhurst where Route 41 starts climbing to
elevations of over five thousand feet. Besides free rent, there were Ken’s
impromptu graphics tutorials. Ken was now known as a certified Apple
wizard. He could turn on his hacker inquisitiveness almost on whim. He
refused to accept what others considered generic limitations on the Apple.
He would use page-flipping, exclusive-or-ing, masking technique . . .
anything to get something up on the screen. When looking at someone
else’s program, he could smell a problem, circle around it, get to the heart
of the matter, and come up with a solution.

On-Line’s corporate headquarters in 1981 was the second floor of a dark
brown wood-frame structure on Route 41 whose ground floor housed a
stationery store and a little print shop. You entered the office after climbing
a flight of stairs on the outside of the building; you had to go outside past
the staircase to go to the bathroom. Inside the office were a group of desks,
fewer desks than there were employees. People played a continuous game
of musical chairs to claim desk space and use of one of the several Apples.

http://bit.ly/aFJAdn
http://bit.ly/c8VUzt
http://bit.ly/b3oC2p
http://bit.ly/9F0mrn

Boxes of disks, discarded computer monitors, and stacks of correspondence
were piled on the floor. The disarray was mind-boggling. The noise level,
routinely intolerable. The dress code, nonexistent. It was productive
anarchy, reminiscent of the unstructured atmosphere of the Al lab or the
Homebrew Club. But since it was also a prosperous business, and the
participants so young, the On-Line office resembled a weird combination of
Animal House and The Millionaire.

It was indicative of Ken Williams’ priorities. He was involved in a new type
of business in a brand-new industry and was not about to establish the same
hateful, claustrophobic, secretive, bureaucratic environment that he
despised so much at almost every company he had worked for. He was the
boss, but he would not be the kind of boss Dick Sunderland at Informatics
was, obsessed with detail. He was in control of the bigger picture. Besides
getting rich, something that seemed to be falling neatly into place as his
programs regularly placed in the top ten or fifteen of the “Top 30
Bestsellers” list published by Softalk each month, Ken felt that he had a
dual mission to fulfill at On-Line.

The first was to have fun, an element he felt had been lamentably lacking in
the decorum-bound establishments of the Old Age. Ken Williams became,
in effect, the head counselor in a high-tech Summer Camp. There was
Summer Camp fun and rowdiness and drinking and dope-smoking. Stoned
or not, everyone was on a high, working in a field that felt good, politically
and morally. The extended party was fueled regularly by an influx of
envelopes of money.

Packages would also arrive containing new games—whether games from
friendly competitors like Sirius or Brgderbund, games from would-be
software superstars looking to get published, or games from one of On-
Line’s outside authors working under Ken’s supervision. No matter.
Everything stopped for new games. Someone would run off copies and
everyone would take to the Apples, playing the game, making fun of its
bugs, admiring its features, and seeing who could get the highest score. As
long as the money kept coming in, and it certainly did, who cared about a
little disorganization, or an excessive tendency to shift into party mode?

Outsiders would visit the office and not believe what they saw. Jeff
Stephenson, for instance. At thirty, he was an experienced programmer who
had recently worked for Software Arts, the Cambridge, Massachusetts,

http://bit.ly/9F0mrn
http://nyti.ms/9NNFjY

company that had written the bestselling Apple program of all time, the
financial “spreadsheet” VisiCalc. That company was also headed by
programmers—Jeff could recall the two presidents, one of them a former
MIT hacker and the other a meticulous young Orthodox Jew, arguing for
half an hour about where a comma should go on some report. Jeff, a quiet,
unassuming vegetarian who held a black belt in Korean sword-fighting, had
moved to the mountains with his wife recently, and called On-Line to see if
the closest company to his new home needed a programmer. He put on cord
jeans and a sport shirt for the interview; his wife suggested he dress up
more. “This is the mountains,” Jeff reminded her, and drove down
Deadwood Mountain to On-Line Systems. When he arrived, Ken told him,
“I don’t know if you’re going to fit in here—you look kind of
conservative.” He hired Jeff anyway, for eighteen thousand dollars a year—
eleven thousand less than he’d been making at Software Arts.

At the time, the most ambitious project On-Line had ever attempted was
bogged down in an organizational disaster. Time Zone, the adventure game
Roberta had been working on for almost a year, was a program out of
control, gripped by a literary equivalent to the Creeping Feature Creature.
Almost drunk with the giddy ambition of creating on the computer, Roberta
was hatching a scenario which not only would re-create scenes from all
over the world but would take in the breadth of recorded history, from the
dawn of man to the year 4081. When Roberta played a good adventure
game she always wished it would never end—this game, she decided,
would have so many plots and rooms that it would take even an experienced
adventurer a year to solve. You would see the fall of Caesar, suffer the
Napoleonic wars, fight Samurai warriors, rap with prehistoric Australian
aborigines, sail with Columbus, visit hundreds of places, and witness the
entire panorama of the human experience, eventually winding up on the
planet Neburon, where the evil leader Ramadu is planning to destroy Earth.
A microcomputer epic, conceived by a housewife in central California.

Programming this monster was grinding the business of On-Line to a halt.
One staff programmer was working on a routine to triple the speed with
which the program would fill in colors for the hi-res pictures. The young
programmer whose father had arranged his employment tried to cope with
the game logic, while a former alcoholic who had bootstrapped his way to
the title of programmer keyed in the Adventure Development Language

http://bit.ly/cHYX0i
http://bit.ly/aAaxlr
http://bit.ly/dCAgkj
http://bit.ly/ckvqnE
http://bit.ly/bfetlQ

messages. A local teenager was painstakingly drawing the fourteen hundred
pictures, first on graph paper, then retracing on an Apple graphics tablet.

Jeff Stephenson was asked to somehow tie the program together. He was
dismayed at the disorganization, and appalled at the deadline: autumn, so
the game would be on sale for Christmas. (He was later to conclude that any
deadline Ken gave was usually overoptimistic by a factor of three.)

Despite the project being so far behind schedule, the company was still run
like Summer Camp. Tuesday night was “Men’s Night,” with Ken out on a
drinking excursion. Every Wednesday, most of the staff would take the day
off to go skiing at Badger Pass in Yosemite. On Fridays at noon, On-Line
would enact a ritual entitled “Breaking Out the Steel.” “Steel” was the clear
but potent Steel’s peppermint schnapps which was On-Line Systems’
beverage of choice. In the company vernacular, a lot of steel would get you
“sledged.” Once they broke out the steel on Fridays, it could be reasonably
assumed that work on Time Zone would be halted while the staff, Ken
leading the way, would explore the hazy, timeless zone of sledgedom.

Christmas came and went, and Time Zone did not ship until February.
Twelve times the size of Wizard and the Princess, filling both sides of six
floppy disks, it retailed for one hundred dollars. The first person to solve it,
a jovial, adventure-game fanatic named Roe Adams (who was also the chief
reviewer for Softalk), went virtually without sleep for a week until he
vanquished Ramadu and declared Roberta’s creation one of the greatest
gaming feats in history.

Time Zone, though, did not earn nearly the notoriety of another On-Line
adventure which was well in keeping with the spirit of the company. The
game was called Softporn. In the spring of 1981, Ken had met a
programmer who had been talking to publishers about an adventure game
he had written and was trying, with little success, to market himself. This
game was not your usual adventure where you quest for jewels, or try to
solve a murder, or try to overthrow some evil Emperor Nyquill from the
Planet Yvonne. In this game, you were a bachelor whose quest was to find
and seduce three women. The programmer had written the program as a
training exercise to help teach himself about databases, using the sexual
theme to make it interesting. It was the kind of thing that hackers, at least
the ones who were aware that a thing called sex existed, had been doing for
years, and it was rare to find a computer center without its own particular

http://bit.ly/cDaWlR
http://bit.ly/bqooPe

sexual specially, be it an obscene-joke generator or a program to print out a
display of a naked woman. The difference was that in 1981, all sorts of
things that hackers had been doing as cosmic technical goofs had a sudden
market value in home computer translations.

The program in question was a cleaned-up variation of the original. It
would get vile only if you used obscenity in your command. Still, in order
to win the game you needed to have sex with a prostitute, buy a condom to
avoid venereal disease, and engage in sadomasochism with a blonde who
insisted on marrying you before you could bed her. If you wanted to do well
in this adventure, the replies you typed into the computer had to be
imaginatively seductive. But there were perils: if you came across the
“voluptuous blonde” and typed in EAT BLONDE, the computer would type
out a passage intimating that the blonde was leaning over and performing
oral sex on you. But then she’d flash her gleaming choppers and bite it off!

To those with a sense of humor about that sort of thing, Softporn was a
uniquely desirable Apple game. Most software publishers wanted nothing
to do with the game; they considered themselves “family” businesses. But
Ken Williams thought the game was a riot: he had a great time solving the
adventure in three or four hours. He thought the controversy would be fun.
He agreed to market Softporn.

One day not long afterward, Ken walked into the office and said, “Who
wants to come over my house and take pictures in the hot tub naked?”

The idea was to get three women to pose topless in Ken’s hot tub for the
Softporn advertisement. Somewhere in the picture would be an Apple
computer, and in the tub with the three naked women would be a male
waiter serving them drinks. They borrowed a waiter from The Broken Bit, a
Coarsegold steak house which was about the only decent place to eat in
town. The three women, all On-Liners, who took their blouses off were the
company bookkeeper, the wife of Ken’s assistant, and Roberta Williams.

The full-color ad, with the women holding wineglasses (the water in the hot
tub tactfully covering their nipples), the fully clothed male waiter holding a
tray of more wineglasses, and an Apple computer standing rather forlornly
in the background, caused a sensation. On-Line got its share of hate mail,
some of it full of Bible scripture and prophecy of the damnation ahead. The

story of the game and the ad caught the imagination of the news services,
and the picture ran in 7ime and over the UPI wire.

Ken Williams loved the free publicity. Softporn became one of On-Line’s
biggest sellers. Computer stores that wanted it would be reluctant to order
just that one program. So, like the teenager who goes to the drugstore and
says, “I’d like a comb, toothpaste, aspirin, suntan oil, stationery, and, oh,
while I’'m here I might as well pick up this Playboy,” the store owners
would order a whole sampling of On-Line products . . . and some Softporn
too. Ken guessed that Softporn and its ripple effect just about doubled his
revenue.

Having fun, getting rich, becoming famous, and hosting a never-ending
party were only part of Ken’s mission; there was a more serious component
as well. He was developing a philosophy about the personal computer and
its ability to transform people’s lives. The Apple, and the group of
computers like it, were amazing not only for what they did, but also for
their accessibility. Ken had seen people totally ignorant about computers
work with them and gain in confidence so that their whole outlook in life
had changed. By manipulating a world inside a computer, people realized
that they were capable of making things happen by their own creativity.
Once you had that power, you could do anything.

Ken Williams realized that he was able to expose people to that sort of
transformation, and he set about using the company he and Roberta had
founded as a sort of rehabilitation project on some of the underutilized
people around Oakhurst and Coarsegold.

The area had been suffering from the recession, especially in the industrial-
mining realm which once supported it. There hadn’t been any boom since
the Gold Rush. On-Line Systems quickly became the largest employer
around. Despite Ken’s unorthodox management style, the appearance of a
high-tech firm in town was a godsend—they were, like it or not, part of a
community. Ken enjoyed his role as nouveau riche town father, dispatching
his civic responsibilities with his usual bent for excess—huge donations to
the local fire department, for example. But the close friends Ken and
Roberta would make did not seem to come from the upper reaches of
Oakhurst society. They were, instead, the people Ken lifted from obscurity
by the power of the computer.

http://bit.ly/aIrICv

Rick Davidson’s job was sanding boats, and his wife Sharon was working
as a motel maid. Ken hired them both; Rick eventually became vice-
president in charge of product development, and Sharon headed the
accounting department. Larry Bain was an unemployed plumber who
became Ken’s head of product acquisition.

A particularly dramatic transformation occurred in the person of Bob Davis.
He was the prime specimen in Ken’s On-Line Systems human laboratory, a
missionary venture using computers to transmogrify life’s has-beens and
never-weres into masters of technology. At twenty-seven, Davis was a
former musician and short-order cook with long red hair and an unkempt
beard. In 1981, he was working in a liquor store. He was delighted at the
chance to reform his life by computers, and Ken was even more delighted at
the transformation. Also, the wild streak in Bob Davis seemed to match a
similar kink in Ken’s personality.

Whenever Ken Williams went into the liquor store to buy his booze, Bob
Davis would beg him for a job. Davis had heard of this new kind of
company and was curious about computers. Ken finally gave him work—
copying disks at night. Davis began coming in during the day to learn
programming. Though he was a high school dropout, he seemed to have an
affinity for BASIC and he sought extra help from Ken’s crew of young
hackers. Street-smart Davis saw that a hell of a lot of money was coming in
to On-Line from those games, and vowed to write one himself.

Bob and his wife began hanging out with the Williamses. On-Line Systems
was a loose enough company to accommodate an arrangement that flouted
traditional taboos between owners and employees. They went on trips
together, to places like Lake Tahoe. Bob’s status at the company rose. He
got appointed to programmer and was project director of the Time Zone
venture. Mostly, he typed in ADL code, not knowing much about assembly
language. It bothered a few people—even amiable Jeff Stephenson, who
liked Bob a lot—that Bob Davis was going around calling himself a
programmer, when a real programmer, anyone with hacker credentials,
should have been able to perform a lot more concentrated wizardry than
Davis had.

Once Davis learned Ken’s ADL tools, though, he had the key to writing a
professional-level adventure game. He’d always been interested in
mythology, and he read up on some Greek classics, particularly those

http://bit.ly/czi4Pz

dealing with Jason, and worked the ancient tales into an adventure game.
He programmed the game, he claimed, in his spare time (though some at
On-Line thought that he neglected his Time Zone duties for his own
project) and with some help from Ken, he finished it. Less than a year after
being rescued from clerkdom in a liquor store he was a software star. On-
Line’s lawyer guessed there might be a problem in calling the game Jason
and the Golden Fleece because that was a movie title which might be
copyrighted, so On-Line released the game as Ulysses and the Golden
Fleece.

It was an instant hit, placing comfortably in Softalk’s Top Thirty.
Videogame Illustrated magazine called it “one of the most important and
challenging videogames ever created,” though it really did not represent any
significant advance over previous hi-res adventures except that it was
longer and its graphics looked considerably more artful than the Mystery
House pictures with their stick-figure look. The magazine also interviewed
Davis, who sounded quite the pundit, talking about what gaming consumers
might expect in the next five years (“computers hooked up to every phone
and every television . . . voice synthesis . . . voice recognition . . . special
effects generated by videodisks . . .”). A Utopian scenario, and why not?
Look what computers had done for Bob Davis.

The changes that personal computers were making in people’s lives were by
no means limited to California. All over the country, the computer was
opening up new areas of creativity. Part of the hacker dream was that people
who had unfulfilled creative tendencies would be liberated by the computer.
They might even ascend to a level of wizardry where they might earn the
appellation of hacker. Ken Williams now could see this happening. Almost
as if predestined, some of his programmers, once immersed in communion
with the machine, had confidently blossomed. No transformation was more
dramatic than that of Warren Schwader.

Perhaps the most significant event in Warren Schwader’s life occurred in
1977, when Warren was eighteen: his brother purchased one of the first
Apple II computers. His brother had been paralyzed in a car accident, and
wanted the Apple to relieve his boredom. It was up to tall, blond, thick-
featured and slow-talking Warren to help his brother key commands into the
Apple. And it was Warren who became the hacker.

http://bit.ly/dojTye

At that time Warren was working at the Parker Pen Company in his
hometown in rural Wisconsin. Though Warren had a talent for math, he
stopped his schooling after high school. His job at Parker was running an
injection molding machine, which consisted of a big mold and a tube where
plastic was heated. The hot plastic would be injected into the mold, and
after twenty seconds of cooling Warren would open the door and take out
the newly formed pen parts. Then he would shut the door again. Warren
Schwader considered the job a challenge. He wanted the pen parts to be
perfect. He would constantly be adjusting the loader, or twisting the key, or
tightening the nuts and bolts on the molder. He loved that machine. Years
after leaving Parker, he said with pride that the pen parts from his molder
were indeed perfect.

He approached programming with the same meticulous compulsiveness.
Every day he would try a different graphics demo. In the morning he would
decide what he wanted to try. During the twenty-second intervals that his
molding machine allowed him, he would use pencil and paper to flowchart
a program for the demo. At night, he would sit down at the Apple and
debug the program until his intended effect filled the screen. He was
particularly fond of kaleidoscopic, multicolored displays.

One of the graphics demos Warren tried appealed to him so much that he
decided to try to expand it into a game. Ever since he first played Pong in
arcades, Warren had been a videogame fan. He tried to copy a game he’d
seen in an arcade: it had a paddle on the bottom of the screen and little
bricks at the top of the screen. You would hit a blip with the paddle and it
would bounce like a pinball machine. That took Warren a month of twenty-
second intervals and nighttime debugging, and though it was written in lo-
res graphics, which weren’t as sharp as the things you could do in assembly
language and hi-res, the game he turned out was good, too.

Up until this time Warren had been working on the Apple solely to discover
what he could do on it. He had been absorbed in pure process. But seeing
these games on the screen, games he had created from thin air, games which
might have been the most creative things that he had ever accomplished,
Warren Schwader began to realize that his computing could actually yield a
tangible result. Like a game that others might enjoy.

This epiphany drove Warren deeper into the machine. He resolved to do an
assembly-language game, even if it took him months. There were no books

on the subject, and certainly no one Warren knew in Wisconsin could tell
him anything about it.

Also, the only assembler Warren had was the simple and slow mini-
assembler that was built into the Apple. None of this stopped Warren
Schwader, who in personality and outlook is much like the fabled turtle
who eventually outraces the rabbit.

Warren did an assembly-language game called Smash-Up, in which the
player, controlling a little car, tries to avoid head-on collisions with other
cars. He considered it good enough to sell. Warren didn’t have enough
money for a magazine ad, so he just made as many copies as he could on
cassette tapes and sent them to computer stores. This was 1980, when the
newly minted Apple game market was switching from cassette to the faster
and more versatile floppy disks. Warren sold only about two thousand
dollars’ worth of Smash-Up games, spending out almost twice that in
expenses.

Parker Pen company closed down the factory, so Warren had a lot more
time to work on his next game. “I had just learned [the card game] Cribbage
and I really loved it,” Schwader would later recall. “There was nobody that
knew how to play it [with me] so I said, ‘Why don’t I write a program that
plays Cribbage?’” He worked perhaps a total of eight hundred hours on it,
often wrapping around until the Wisconsin dawn. He was attempting
graphics tricks he didn’t quite understand, things he would later know as
indirect addressing and zero-page graphics. He worked so hard at the game
that “the whole time I felt that I was inside the computer. People would talk
to me, but I couldn’t interact,” he later said. His native tongue was no
longer English, but the hexadecimal hieroglyphics of LDX #$0, LDA
STRING, X, JSR $FDF0, BYT $0, BNE LOOP.

The finished program was superb. Warren had developed some inspired
algorithms that allowed the computer to evaluate its hand by twelve major
rules. He considered the program flawless in its choosing of cards to throw
in the crib. It was only because Warren was familiar with the program’s
traits—he knew it like an old-time card partner—that he could beat it
around sixty percent of the time.

Warren Schwader sent the game to Ken Williams, who was impressed with
the logic and with the graphics, which gave a clear, sharp picture of each

http://bit.ly/aM5133

card dealt. What was even more amazing was that Schwader had done this
on the limited Apple mini-assembler.

It was as if someone had sent Ken a beautifully crafted rocking chair, and
then had told him that the craftsman had used no saw, lathe, or other
conventional tools, but had built the chair with a penknife. Ken asked
Warren if he wanted to work for On-Line. Live in the woods. Boot into
Yosemite. Join the wild, crazy Summer Camp of a new-age company.

Warren had been subsisting on the couple-hundred dollars a month he
received from the state for taking care of his brother. Warren was worried
about leaving him to day nurses, but his brother told Warren that this On-
Line thing was a big opportunity and he should take it. And it appealed to
Warren, this idea of going off and making money programming games and
living in the woods. So he decided to do it. But there was one part of the
package that did not appeal to him. The Summer Camp fun and rowdiness
and drinking and dope-smoking that were common practices at On-Line
Systems.

Warren was a Jehovah’s Witness.

Around the time Warren was working on Cribbage, his mother had died.
Warren got to thinking about where he was headed, and what his purpose
was in life. He found that computers were the main thing he was living for.
He felt there had to be more, and turned to his late mother’s religion. He
began intense study of the Bible. And he vowed that his new life in
California would be characterized by adherence to the precepts of Jehovah.

At first this did not interfere much with his life at On-Line. Warren
Schwader did not criticize la dolce vita at On-Line Systems. But because of
the godless habits of his colleagues, he generally limited his transactions
with them to business or technical discussions. He preferred to stick with
people of his faith so he would be protected from temptation.

He was living alone, free of charge, in one of Ken’s houses, a small two-
bedroom. His social life was confined to a hall of the Kingdom of Jehovah’s
Witnesses in Ahwahnee, five miles west of Oakhurst, The very first time he
went to a service there, he felt he had made more friends than he ever had
before. They approved of computers, telling him that they could do much
good for man, though one must beware that much can be done through
computers to do harm. Warren became aware that the love he had for

http://bit.ly/c4w1DD

hacking was a threat to his devotion to God, and though he still loved
programming he tried to moderate his hacking sessions so that he was not
diverted from his true purpose. So while he kept programming at night, he
would also maintain his Bible studies, and during afternoons and weekends
he would travel through the area, knocking on doors and going into people’s
houses, bearing copies of Awake! and The Watchtower, and preaching the
faith of Jehovah.

Meanwhile, he was working on a game based on some of Ken’s fastest,
most spectacular assembly-language subroutines yet. It was a game like
Space Invaders, where you had a rocketship and had to fight off waves of
invaders. But the waves were full of weird shapes and moved in all kinds of
directions, and if the player tried to send a constant stream of bullets off to
fight them, his “laser gun” would overheat and he would face almost certain
death. It was the kind of game designed to spur cardiac arrest in the feeble-
hearted, so fierce were the attackers and so violent were the explosions. It
was not exactly a landmark in Apple gaming, since it was so derivative of
the Space Invaders school of shoot-’em-ups, but it did represent an
escalation in graphic pyrotechnics and game-playing intensity. The name of
this computer program was Threshold, and it made Warren Schwader
almost one hundred thousand dollars in royalties, a significant percentage of
which was tithed to the Kingdom Hall in Ahwahnee.

But as Warren drew closer to the community of the Kingdom, he began to
question deeply the kinds of things he had been doing for On-Line. He
wondered if his very joy in programming wasn’t some kind of sin. The act
of programming the game had been carnal—Warren had worked through
the night with his stereo blaring Led Zeppelin (Satan’s rock band). Worse,
the shooting nature of the game left no doubt that it glorified war. Warren’s
study of scripture convinced him one should not learn war any more. He
felt ashamed that a war game he had programmed would be played by kids.

So he was not surprised to see an Awake! article about videogames which
compared them to drugs and said that the warlike games “promote
aggression without mercy:” Warren decided to stop programming violent
games, and he vowed that if Watchtower were to come out strongly against
all games, he would have to stop programming and find something else to
do with his life.

http://bit.ly/9ESsfL

He began work on a nonviolent game with a circus theme. The work went
slowly because he tried not to lose himself in programming to the point that
he would be a zombie who had lost contact with God. He got rid of all his
hard rock albums and played music like Cat Stevens, Toto, and the Beatles.
He even began to like music he once would have considered sappy, like
Olivia Newton-John (though when he played her record he always had to
remember to lift the needle when the sinful song Physical played).

Still, when Warren talked about his new game, how he was using dual-page
animation with twelve different patterns to control the rolling barrels that
the character must leap over, or how it would have zero-flicker and be “one
hundred percent playable,” it was clear that despite his asetic efforts, he
took a sensual pride in the hack. Programming meant a lot to him. It had
changed his life, giving him power, made him someone.

As much as John Harris loved living away from San Diego in the Sierra
foothills, as much as he appreciated the footloose Summer Camp
atmosphere, and as happy as he was that his programs were recognized as
colorful, creative efforts, one crucial part of his life was totally
unsatisfactory. It was a common disease of Third-Generation hackers, to
whom hacking was important, but not everything, as it was to the MIT
hackers. John Harris hungered for a girlfriend.

Ken Williams took the concerns of his young programmers seriously. A
happy John Harris would be a John Harris writing hit games. Roberta
Williams also felt affection for the ingenuous twenty-year-old, and was
touched by what she believed was a secret crush he harbored for her. “He
would look at me with those puppy-dog eyes,” she later recalled. The
Williamses resolved to clear up John’s problem, and for a considerable
length of time an unofficial corporate goal of On-Line Systems was getting
John Harris laid. It was not so easy. Though John Harris could conceivably
be called “cute” by women his age, though he could be verbally clever and
was certainly making enough money to please all but the most exacting of
gold diggers, women did not seem to react to him sexually.

Around Oakhurst, of course, even finding women was a problem. John
Harris had taken a part-time job in the local arcade, figuring that any girl
who liked games would have something in common with him; he made it a

http://bit.ly/9ESsfL
http://bit.ly/cuhNen
http://bit.ly/93yBlg
http://bit.ly/d6AgJH

point to stay around almost all the hours the arcade was open. But the girls
who spent time at the arcade were still in high school. Any local girl with
much in the way of brains would go away to college; the ones that stayed
were into motorcycle types, and didn’t relate to gentle guys who were
nervous around women, as John Harris was. John asked a lot of girls out,
and they usually said no, probably making him feel as he did when people
would choose sides for basketball games and he’d be standing there
unchosen.

Ken vowed to change all that. “I’m going to get you laid, John Harris,” he
would always say, and though John was embarrassed and urged Ken to stop
saying those things, he secretly hoped that Ken would keep his promise.
But the mishaps continued.

Every time John went out, there were calamities. First the teenage girl he
met in a fast-food restaurant who accompanied him for pizza and would not
go out with him again. Then a woman who packaged disks for On-Line, a
date arranged by Ken. John embarrassed himself by locking his keys in his
new four-wheel-drive, had trouble getting into the saloon where they all
went, and was mortified when Ken, in front of the woman, began making
crude remarks about how horny John was—“That really embarrassed me,”
John Harris later said. When everybody went back to the Williamses’ house
to get in the hot tub, John’s four-wheel-drive got stuck in the snow; and
finally, the girl met up with her old boyfriend and left with him. That was
the end of a typical John Harris date.

Ken Williams did not give up that easily. The Williamses took John Harris
to the Club Med in Haiti. How can a guy not get laid at Club Med? When a
woman wearing no bikini top—you could see her breasts right there in front
of you—asked John if he’d like to go snorkeling, Ken just laughed. Pay
dirt! The woman was around ten years older, but perhaps an experienced
woman was what John Harris needed. The snorkeling trip was lots of fun,
and on the way back all the girls were fooling around, putting their tops on
the guys. Roberta grabbed John’s arm and whispered, “If you don’t do
something with this girl, I’ll never talk to you again!”

John Harris suppressed his shyness at that point. “I finally put my arm
around the girl,” he later recalled. “She said—‘Can I talk to you?’ We sat
down and she brought up our age difference.” It was clear that there was no

romance in the offing. “I’d planned to take her sailing, but I was too
embarrassed after that,” John later said.

Ken got even bolder after Haiti. “He did quite a few things [to find me a
woman],” John Harris later said. At one point, Williams asked a waitress at
Lake Tahoe, “How would you like to sleep with a rich twenty-year-old?”

Probably the worst of all happened at a bachelor party they threw for an
On-Line employee. Ken had hired two strippers. The party was held at the
office, and it was indicative of the freewheeling, anything-goes spirit in
Ken’s company. People imbibed heavily; somebody started a game where
you would try to look the other way and throw beer bottles into a far
cubicle. The office became covered with broken glass, and the next day
almost everyone at the party woke up with cuts and bruises.

John liked the looks of one of the strippers. “She was unbelievably
gorgeous,” he recalled. She seemed shy to John, and confessed to him that
until a couple of weeks back she’d been a secretary, and was doing this
because the money was so good. She danced right around John Harris, at
one point taking her bra off and draping it around his head.

“I want to talk to you,” Ken said, taking John aside. “I’m being perfectly
honest. This is what she said—*‘He’s really cute.’”

John just listened.

“I told her you make three hundred thousand dollars a year. She asked if
you were married.”

Ken was not being totally forthright. He had made a deal with the woman to
have sex with John Harris. Ken arranged it all, telling John she would be at
the Chez Paree in Fresno, and John got all dressed up to see her. Ken went
along. John and the woman retreated to a rear table. Ken told John he’d buy
them drinks, but all she wanted was Seven-Up. Ken bought the couple a
bottle of Seven-Up. “The bottles were expensive,” John later recalled.
“Twenty dollars a bottle.” It was the first of many bottles of twenty-dollar
Seven-Ups. “I was totally entranced by this girl. She was really easy to talk
to. We talked about things she did before, why she decided to be a stripper.
She didn’t seem like the stripper type.” By then Ken was gone and John
was buying the twenty-dollar bottles of Seven-Up. The place was closing
down. It was the moment of truth. The girl was acting like it was natural for
her to go her way, and John to go his. So John went home. When Ken called

later and asked if he’d “scored,” John later recalled, “I didn’t have much to
say in my defense.”

It looked like a permanent plight. Success on the Atari, but no luck with
women.

Despite John Harris’ female troubles, he was a new role model for a new
age: the hacker superstar. He would sit for magazine interviews and gab
about the virtues of the Atari 800. The articles would often mention his six-
figure income from his thirty percent royalty deal. It was an enviable,
suddenly hip position. All over America, young, self-described hackers
were working on their masterpieces: it was the new-age equivalent to all
those young men in the forties trying to write the Great American Novel.
The chances that a bestselling game might come in over On-Line’s transom,
while not great, were somewhat better than those of an unsolicited
bestselling novel.

Ken realized that he was in competition with other companies of the
Brotherhood for these programmers. As more people learned the Apple and
Atari assembly-language wizardry that was unique when Ken Williams
started out, the home computer consumer was becoming more discerning
about what he or she bought. Companies besides On-Line were now
publishing graphic adventures, having figured out their own tricks to put
dozens of pictures with text on Apple disks. Also, a new company in
Cambridge called Infocom, using text only, had developed an advanced
interpreter that would accept large vocabularies of words—in complete
sentences. The company was begun by MIT hackers. Their first
microcomputer game, lifted straight from the game they’d written for fun
on one of the Tech Square computers, was Zork, a supercharged elaboration
on the original Adventure dungeon tale written by Crowther and Woods at
Stanford. It was selling like crazy.

It was indicative of how fast the computer game market was moving. What
was brilliant one year looked dated the next. The Apple and Atari hackers
had taken the machines far beyond their limits. It had only been a few
months, for example, since its introduction that On-Line’s Skeet Shoot
program looked so crude it was embarrassing, and Ken dropped it from the
product line. Threshold, for instance, blew that previous standard away.

http://bit.ly/a7oxJT
http://bit.ly/aqSze5

And a hacker named Bill Budge wrote a program that simulated a pinball
machine, Raster Blaster, that blew away almost anything On-Line had to
offer on the Apple.

Ken Williams knew On-Line had to present itself as a desirable place to
work. He and his staff put together a printed package full of promises and
dreams to prospective software superstars. Oddly, the enticements that On-
Line offered had little to do with the Hacker Ethic. The package did not
emphasize the happy Summer Camp community around On-Line. Instead,
it seemed almost a paean to Mammon.

One part of the package was titled “Questions and Answers.”

QUESTION: Why Should I Publish With On-Line (and not someone else)?

ANSWER: One very good reason is money. ON-LINE pays the highest and most regular royalties
in the business . . . Our job is to make your life easier!

QUESTION: Why Not Publish Myself?

ANSWER: With ON-LINE your product will receive support from a highly trained technical staff.
This frees you for more important things like Caribbean Cruises, skiing at Aspen, and all of life’s
other “rough” activities. To put it simply, we do all the work . . . The only thing we do ask of you is
to remain available to us in case any bugs occur. Other than that, just sit back and watch the money
roll in!

Also in the package was a letter from Ken Williams (“Chairman of the
Board”) explaining why On-Line Systems was the most professional and
effective marketing operation around. He cited the ace programming staff of
Schwader, Davis, and Stephenson, and trumpeted his own technical
expertise. There was also a letter from On-Line’s sales manager: “We are
the best and want only the best to be on our team. If you fit this simple
description, come breathe the rarified air with us at the top. Success is
heady. Can you stand it?” A note from the Software Acquisitions
Department summed up the message to prospective programmers: “We’re
interested in you because you are the life blood of our business.
Programming has become a premium commodity.”

It was quite a transformation from the days when a hacker would be more
than satisfied to see someone appreciate the artistry in his software. Now
that there was a marketplace, the real world had changed hackerism. It was
perhaps a necessary trade-off for the benefits of widespread computer
availability. Look at all the wonderful transformations computers had made
in the lives of the people in the On-Line community.

http://bit.ly/cJvMvR
http://bit.ly/cJvMvR

Ken was hugely proud of these transformations. They seemed to bear out
the brilliant promise of the hacker dream. Not only was he prospering, but
he and the other companies in the Brotherhood were doing it in an
unselfish, new-age mind-frame . . . they were the pioneers of the New
America! And what was more, as the months rolled by it became clearer
and clearer that computers were a boom industry the likes of which no one
had seen since the auto industry. Everybody wanted a piece of it. Apple
Computer, which seemed like some questionable venture when Ken first
saw the Apple II, was on its way to becoming a Fortune 500 company, more
quickly than any company in history had ever done. Venture capitalists
were focusing on the computer field and seemed to identify software—
things to make these computers work—as the hottest speculative investment
in the land. Since games were, by sheer volume of floppy disks sold, the
bestselling computer applications, and the Brotherhood companies between
them had a sizable percentage of the computer game market, offers for
investment and buyouts came in as often as packages of new games.
Though Ken loved to talk to these wealthy suitors, whose names often
appeared in The Wall Street Journal, he held on to his company. The phones
of the Brotherhood would often ring with the last report of a buyout offer
—“He said he would pay ten million!” “Well, I just got offered ten for half
the company!” “Oh, and I turned down so-and-so for that much!” Ken
would meet these suitors at airport breakfast meetings, but the respective
executives would jet off to their final destinations without buyout
agreements. Ken Williams was having too much fun changing people’s
lives and driving to work in his new, fire-engine-red Porsche 928 to
consider giving it up.

http://bit.ly/dbP1FS

Chapter 18. Frogger

As 1982 progressed and the second anniversary of his company rolled
around, Ken Williams was beginning to lose patience with John Harris and
with young hackers in general. He no longer had the time or the inclination
to give hours of technical assistance to his hackers. He began to regard the
questions his programmers would ask him (How can I put this on the screen
without flicker? How can I scroll objects horizontally? How do I get rid of
this bug?) as distractions from what was becoming his main activity:
hacking On-Line Systems as it grew in logarithmic leaps and bounds. Until
now, when a programmer would call Ken and frantically howl that he was
stuck in some subroutine, Ken would go over, cry with him, and fiddle with
the program, doing whatever it took to make his hacker happy. Those days
were ending.

Ken did not see the shift in attitude as making his company any less
idealistic. He still believed that On-Line was changing lives through the
computer, both the lives of its workers and the lives of its customers. It was
the beginning of a computer millennium. But Ken Williams was not sure
that the hacker would be the central figure in this golden age. Especially a
hacker like John Harris.

The split between Ken Williams and John Harris symbolized something
occurring all over the home computer software industry. At first, the artistic
goals of the hacker coincided neatly with the marketplace, because the
marketplace had no expectations, and the hackers could blithely create the
games they wanted to play, and adorn business programs with the nifty
features that displayed their artistry.

But as more nontechnical people bought computers, the things that
impressed hackers were not as essential. While the programs themselves
had to maintain a certain standard of quality, it was quite possible that the
most exacting standards—those applied by a hacker who wanted to add one
more feature, or wouldn’t let go of a project until it was demonstrably faster
than anything else around—were probably counterproductive. What seemed
more important was marketing. There were plenty of brilliant programs
which no one knew about. Sometimes hackers would write programs and
put them in the public domain, give them away as easily as John Harris had

lent his early copy of Jawbreaker to the guys at the Fresno computer store.
But rarely would people ask for public domain programs by name: they
wanted the ones they saw advertised and discussed in magazines,
demonstrated in computer stores. It was not so important to have amazingly
clever algorithms. Users would put up with more commonplace ones.

The Hacker Ethic, of course, held that every program should be as good as
you could make it (or better), infinitely flexible, admired for its brilliance of
concept and execution, and designed to extend the user’s powers. Selling
computer programs like toothpaste was heresy. But it was happening.
Consider the prescription for success offered by one of a panel of high-tech
venture capitalists, gathered at a 1982 software show: “I can summarize
what it takes in three words: marketing, marketing, marketing.” When
computers are sold like toasters, programs will be sold like toothpaste. The
Hacker Ethic notwithstanding.

Ken Williams yearned for the bestsellers, games whose very names had the
impact of brand names. So when his star programmer, John Harris,
mentioned that he would like to try converting a popular coin-op arcade
game called Froggerto the Atari Home Computer, Ken liked the idea.
Frogger was a simple yet bewitching game in which the player tried to
manipulate a cute little frog over a heavily trafficked highway and across a
stream by making it hop on the backs of logs and turtles; the game was
popular, and, if well hacked, might well be a bestselling computer game.
“John Harris saw it and said it was really neat. He told me he could
program it in a week. I agreed—it looked trivial,” Ken later recalled.

Instead of having Harris copy the program and give it another name, Ken
Williams played by corporation rules. He called the owner of the game’s
rights, the Sega division of the Gulf & Western conglomerate. Sega did not
seem to understand the value of their property, and Ken managed to acquire
computer-disk and cassette rights for a paltry ten percent royalty fee. (Sega
licensed cartridge rights to the Parker Brothers game company; the
marketers of Monopoly were breaking into the videogame market.) He set
John Harris to work immediately on the conversion of the game to the Atari
computer. He also assigned a programmer to do an Apple version, but since
the Apple graphics were not well suited to the game, it would be the Atari
which would showcase the excellence of Ken’s company.

http://bit.ly/9GxBPI
http://bit.ly/cDccXV

John Harris guessed that it would be a quick-and-dirty three-week project
(his original one-week boast had been an idle one) to do a perfectly
admirable Atari version of Frogger. This was the kind of illusion with
which hackers often begin projects. Working in the office he had set up in
the smallest of three bedrooms in his rambling orange-wood house—a room
cluttered with papers, discarded hardware, and potato-chip bags—John put
the graphics on the screen in short order; during that period, he later
recalled, “T glued my hands to the keyboard. One time I started
programming at three in the afternoon. After cranking out code for a while,
I looked out and it was still light outside and I thought, ‘It seems like I’ve
been typing for more than a few hours.” And of course it had already been
through the night and that was the next morning.”

The work went swiftly, and the program was shaping up beautifully. A
friend of John’s in San Diego had written some routines to generate
continuous music, using the three-voice sound synthesizer chip in the Atari
to mingle the strains of the original Frogger theme with Camptown Races,
all with the gay contrapuntal upbeat of a calliope. Harris’ graphic shapes
were never better—the leaping frog, the little hot rods and trucks on the
highway, the diving turtles and the goofy-looking alligators in the water . . .
every detail lovingly defined on shape tables, worked into assembly-
language subroutines, and expertly integrated into game play. It was the
kind of game, Harris believed, that only a person in love with gaming could
implement. No one but a true hacker would approach it with the lunatic
intensity and finicky artistic exactitude of John Harris.

It did not turn out to be a quick-and-dirty three-week project, but no one
had really expected it to. Software always takes longer than you expect.
Almost two months into the project, though, John was well over the hump.
He decided to take off work for a couple of days to go back to San Diego
for Software Expo, a charity benefit for muscular dystrophy. As a leading
software artist, John was going to display his work, including the nearly
completed Frogger. So John Harris packed the pre-release Frogger into his
software collection, and took the whole box with him to Southern
California.

When traveling with a cargo as valuable as that, extreme care was called
for. Besides including the only version of Frogger, the most important
program John Harris had ever written (John had a backup copy, of course,

http://bit.ly/bTBJ2x
http://bit.ly/9s687s
http://bit.ly/cl2lcK

but he brought that along in case the primary disk didn’t boot), John’s
library included almost every disk he owned, disks loaded with software
utilities—self-modified assemblers, routines for modifying files, music
generators, animation routines, shape tables . . . a young lifetime of tools,
the equivalent to him of the entire drawer of paper-tape programs for the
PDP-1 at MIT. One could not turn one’s back on a priceless collection like
that; one held it in one’s hand almost every moment. Otherwise, in the
single moment that one forgot to hold it in one’s hand and turned one’s back
on it—for instance, during a moment of rapt conversation with an admirer
—well, as Murphy’s Law holds (“Whatever can go wrong, will”’), one’s
valuable software library could be tragically gone.

That was precisely what happened to John Harris at the Software Expo.

The instant that John Harris ended his interesting conversation and saw that
his software collection was gone, he knew his soul had been wounded.
Nothing was more important to John than the floppy disks in that box, and
he felt the void deeply. It was not as if the computer had chomped up one
disk and he could go into marathon mode for a few days to restore what he
had lost onto the screen. This was a full-blown masterpiece totally wiped.
And even worse, the tools with which he had created the masterpiece were
gone as well. There was no worse disaster imaginable.

John Harris went into a deep depression.

He was much too upset to boot up his Atari and begin the laborious task of
rewriting Frogger when he returned to Oakhurst. For the next two months,
he wrote no more than ten lines of source code. It was hard to even sit in
front of the computer. He spent almost all day, every day, at Oakhurst’s
single arcade, a small storefront in a tiny shopping center across the street
from the two-story office building that On-Line was moving into. As
arcades went, this was a hole, with dark walls and nothing for decoration
but the videogame machines themselves; and not even the latest models.
But it was home to John. He took a part-time job as cashier. He would
exchange game tokens for quarters, and when he wasn’t on duty he would
play Starpath and Robotron and Berzerk and Tempest. It seemed to help.
Other times he would get in his four-wheel-drive truck, go off-road, look
for the biggest hill he could find, and try to drive to its crest. He would do
anything, in fact, but program.

http://bit.ly/cXaWS6
http://bit.ly/cxPmFH
http://bit.ly/cvOXaI
http://bit.ly/99dqEe

“I spent almost every hour of every day down at the arcade waiting for
some girl to walk in there,” he later recalled. “I’d go home and play a game
on my computer and then try to slip in the program disk and try to start
programming as if I were playing the game.” None of it worked. “I could
not motivate myself to write two lines of source code.”

Ken Williams’ heart was unmoved by John Harris’ loss. It was hard for Ken
to have sympathy for a twenty-year-old boy to whom he was paying several
thousand dollars a month in royalties. Ken felt a sense of friendship toward
John, but Ken had also developed a theory about friends and business.
“Everything is personal and good friends up to about ten thousand dollars,”
Ken later explained. “Once past ten thousand dollars, friendship doesn’t
matter.” The possible earnings of Frogger were worth many times that five-
figure threshold.

Even before John had once again proved his idiocy to Ken Williams by his
carelessness at the Software Expo, Ken had been impatient with his ace
programmer. Ken thought John should have written Frogger in less than a
month to begin with. “John Harris is a perfectionist,” Ken Williams later
said. “A hacker. He will keep working on a project for two months after
anyone else would have stopped. He likes the ego satisfaction of having
something out that’s better than anything else in the marketplace.” Bad
enough, but the fact that John was not working at all now, just because he
suffered a setback, drove Ken wild. “He would say his heart wasn’t in it,”
Ken recalled. “Then I would find him in the arcade, working for tokens!”

In front of John’s friends, Ken would make nasty remarks about how late
Frogger was. Ken made John too nervous to think of pithy rejoinders right
on the spot. Only away from Ken could John Harris realize he should have
said that he was not Ken’s employee, he was a freelance programmer. He
had not guaranteed Ken any delivery date. John could do whatever he
wanted. That was what he should have said. Instead, John Harris felt bad.

It was torture, but finally John dragged himself to the Atari and began to
rewrite the program. Eventually he re-created his earlier work, with a few
extra embellishments as well. Forty-four colors, the player-missile graphic
routines fully redefined, and a couple of neat tricks that managed to make
the eight bits of the Atari 6502 chip emulate ten bits. John’s friend in San
Diego had even made some improvement on the three-voice concurrent
sound track. All in all, John Harris’ version looked even better than the

arcade game, an astounding feat since arcade games used custom-designed
chips for high speed and solid-color graphics, and were almost never
approximated by the less powerful (though more versatile) home
computers. Even experienced programmers like Jeff Stephenson were
impressed.

The dark period was over, but something had changed in the relationship
between Ken and John. It was emblematic of the way that On-Line was
changing, into more of a bureaucracy than a hacker Summer Camp.
Whereas the procedure for releasing John’s previous games had been
impromptu testing onsite (“Hey! We got a game to play today! If everyone
likes it, let’s ship it”), now Ken had a separate department to test games
before release. To John, it seemed that it now took about fifty exchanges of
interoffice memos before anyone got around to saying that he liked a game.
There were also logjams in packaging, marketing, and copy protection. No
one quite knew how, but it took over two more months—two months after
John had turned in his fully completed Frogger—for the game to be
released.

When it was finally on the market, everyone recognized that Frogger was a
terrific conversion from arcade to home computer. John’s check for the first
month’s royalties was for thirty-six thousand dollars, and the program went
to number one on Softsel Distributors’ new “Hot List” of programs (which

was compiled weekly and patterned after Billboard’s record chart), staying

there for months.

Ken Williams never forgot, though, the troubles that John Harris had given
him during the depressed stage, when it looked like John would never
deliver a working Frogger. And by the summer of 1982, Ken began to plan
for the day that he would be free of all the John Harrises of the world. As
far as Ken Williams was concerned, the age of the hacker had ended. And
its end had come not a moment too soon.

Like his early role model, Jonas Cord of The Carpetbaggers, Ken Williams
loved making deals. He would call a prospective programmer on the
telephone and say, without any shame and only a slight sense of parody,
“Why don’t you let me make you rich?” He also liked dealing with
executives from giant corporations on a peer basis. In 1982, one of the early

http://bit.ly/cNtGRO

boom years of the computer revolution, Ken Williams talked to many
people, and the kinds of deals he made indicated what kind of business
home computer software was becoming and what place, if any, hackers or
the Hacker Ethic would have in the business.

“On-Line’s crazy,” Williams said that summer. “I have this philosophy that
I either want to pretend to be IBM or not be here.”

He dreamed of making a national impact on the mass marketplace. In the
summer of 1982, that meant the Atari VCS machine, the dedicated game
machine for which bestselling games were not counted in tens of thousands,
as Apple software was, but in millions.

Atari regarded the workings of its VCS machine as a secret guarded
somewhat more closely than the formula for Coca-Cola. Had it been a
formula for a soft drink, the schematic plan of the VCS—which memory
location on the chip triggered color on the screen, and which hot spot would
ignite sound—might well have remained within Atari’s vaults. But this was
the computer industry, where code-breaking had been a hobby ever since
the lock-hacking days at MIT. With the added incentive of heady profits
obtainable by anyone who topped the rather mundane software offerings
that complacent Atari sold for its machine, it was only a matter of time
before the VCS secrets were broken (as were the Atari 800 secrets).

The first companies to challenge Atari on the VCS, in fact, were start-ups
formed by the former Atari programmers who had been called “towel
designers” by Atari’s president. Almost all of Atari’s VCS wizards jumped
ship in the early 1980s. This was no small loss, because the VCS machine
was hopelessly limited in memory, and writing games on it required skills
honed as finely as those required in haiku composition. Yet the Atari
programmers who left knew how to extend the machine far beyond its
limitations; the games they wrote for their own companies made Atari’s
look silly. The improved quality of the games extended the market life of
the VCS for years. It was a stunning justification of the hacker insistence
that when manuals and other “secrets” are freely disseminated the creators
have more fun, the challenge is greater, the industry benefits, and the users
get rewarded by much better products.

Meanwhile, other companies were “reverse engineering” the VCS,
dissecting it with oscilloscopes and unspeakably high-tech devices until

they understood its secrets. One such company was Tiger Toys, a Chicago-
based company that contacted Ken Williams to set up an arrangement to
share his programming talent.

Williams flew three hackers to Chicago, where Tiger Toys taught them what
a bitch the VCS was to program. You had to be penurious with your code,
you had to count cycles of the machine to space out the movements of
things. John Harris in particular hated it, even though he and Roberta
Williams had sat down one night and figured out a nifty new VCS layout
for Jawbreaker which looked less like